REGULATION OF COHESIN AND PLK1 FUNCTION IN MOUSE OOCYTES

Submitted by
Dimitrios Kalleas

Institute for Ageing and Health
Newcastle University

A thesis submitted for the degree of Doctor of Philosophy
Newcastle upon Tyne, December 2012
Abstract

Faithful segregation of homologous chromosomes during the first meiotic division (MI) is essential for the formation of haploid gametes. Recent research in our lab and others has shown that female ageing is associated with depletion of chromosomal cohesin and is accompanied by a marked decline in the ability of oocytes to segregate chromosomes synchronously during MI. This mechanism likely underlies the dramatic increase in infertility, miscarriage and birth defects that accompany female reproductive ageing. Here, I have used a mouse model and the transgenic Rec8-myc mouse strain to investigate mechanisms regulating chromosome segregation in oocytes and to identify pathways leading to missegregation during MI.

I show for the first time that Plk1 is required for stepwise removal of cohesin, which is essential for normal segregation of chromosomes during meiosis. I found that a highly specific small-molecule inhibitor of Plk1 (BI 2536) inhibited APC/C-mediated degradation of securin, thereby preventing cleavage of cohesin by separase, which in turn prevents anaphase onset during MI. By using a lower concentration of BI 2536, which was permissive for securin degradation, I unmasked a function for Plk1 in protecting centromeric cohesin during anaphase of MI. My findings indicate that loss of centromeric cohesin in the presence of BI 2536 is due to mislocalisation of the cohesin protector Sgo2. These data indicate that PLK1 kinase activity is essential for two key events required for normal segregation of chromosomes during MI.

In somatic cells, Plk1 is involved in removal of cohesin by the separase-independent prophase pathway, which removes the bulk of arm cohesin during prophase/prometaphase. My findings indicate that removal of cohesin during prophase is particularly relevant to the problem of female reproductive ageing. I show that age-related depletion of chromosomal cohesin occurs during the prolonged period of prophase arrest experienced by oocytes from older
females. I also find that the cohesin protector Sgo2 is not recruited to chromosomes until the transition from prophase to prometaphase of MI and that its recruitment is impaired in cohesin-deficient oocytes. Moreover, I present data indicating that removal of cohesin by a Plk1-mediated mechanism is unlikely to contribute to the age-related loss of cohesin during progression through prometaphase of MI.

Taken together the data indicate that Plk1 is essential for stepwise removal of cohesin in oocytes, but is not likely to be a major contributor to its loss during mammalian female ageing. Overall, these findings advance our understanding of the molecular mechanisms controlling chromosome segregation during meiosis I in mammalian oocytes, and how these are influenced by female reproductive ageing.
Acknowledgments

I would like to thank my supervisors Prof Mary Herbert and Dr Gordon Strathdee for their helpful advice and guidance throughout the duration of my research.

I am deeply grateful to all my colleagues in the lab, Rez “the biker” Prathalingham, Randy “the blocker” Ballesteros, Qi “the slipper” Zang, Laura “eee God” Irving, Lyndsey “the OCD hand-washer” Butterworth and Daniel “the rookie” Cooney for their support and the fun times inside and outside the lab.

I am particularly thankful to Lisa Lister for introducing me to the lab-world of meiosis, for being patient and for being an excellent collaborator in a number of experiments presented in this thesis.

Many thanks go to Tania Papoutsi and Morten Ritso for their friendly support and advice and to Eleni Filipou for nominating me as David Attenborough’s successor.

A whole-hearted thank you to Alan Burns and Paul Hooley for being great lecturers and excellent mentors.

Στην αδερφή μου Σοφία και στους γονείς μου Βασιλική και Στέφανο το μόνο που μπορώ να πω είναι στι χωρίς το κουράγιο σας, την συμπαράστασή σας και την αγάπη σας, τίποτα δεν θα ήταν το ίδιο.

Finally, I want to thank Marilena for keeping me clean, well-fed and sane throughout the 13th herculean labour known as PhD write-up.
CHAPTER 1: INTRODUCTION ... 1
 1.1 MEIOSIS, ANEUPLOIDY AND AGEING: AN OVERVIEW .. 1
 1.2 MECHANISMS FOR SUCCESSFUL CHROMOSOME SEGREGATION 3
 1.2.1 The Spindle ... 4
 1.2.2 The Anaphase Promoting Complex / Cyclosome ... 6
 1.2.3 The Spindle Assembly Checkpoint ... 8
 1.2.4 Establishment and resolution of cohesion in mitosis .. 10
 1.2.5 Establishment and resolution of cohesion in meiosis ... 14
 1.3 DEVELOPMENT OF MAMMALIAN GERM CELLS ... 18
 1.3.1 Oogenesis .. 18
 1.3.2 Spermatogenesis ... 21
 1.4 MEIOTIC MATURATION IN MOUSE OOCYTES ... 22
 1.5 POLO-LIKE KINASE 1 ... 23
 1.6 FAILURE OF MEIOTIC DIVISION AND ASSOCIATED REPERCUSSIONS 29
 1.7 AIMS .. 32

CHAPTER 2: MATERIALS AND METHODS .. 33
 2.1 MOUSE STRAINS ... 33
 2.2 HARVEST, CULTURE AND DRUG TREATMENT OF MOUSE OOCYTES 33
 2.3 ISOLATION OF OOCYTES FROM PRE-ANTRAL FOLLICLES .. 34
 2.4 MICROINJECTION ... 35
 2.5 OOCYTE IMMUNO-FLOURESCENCE STAINING .. 36
 2.5.1 Whole oocyte Ca^{2+}-buffer treatment and fixation .. 36
 2.5.2 Indirect immunofluorescence staining of whole oocytes ... 36
 2.6 CHROMOSOME SPREADS THAT PRESERVE CHROMOSOME-ASSOCIATED PROTEINS .. 37
 2.6.1 Paraformaldehyde and slide preparation ... 37
 2.6.2 Removal of zona pellucida, fixation and spreading .. 38
 2.6.3 Indirect immunofluorescence staining of chromosome spreads 38
 2.7 FLUORESCENT CONSTRUCTS .. 39
 2.8 PREPARATION OF MRNAS ... 41
 2.9 MICROSCOPIC METHODS ... 41
 2.9.1 Time-lapse (4D) Microscopy ... 41
 2.9.2 Epifluorescence Imaging of Chromosome Spreads .. 42
 2.9.3 Confocal Imaging .. 43
 2.10 IMAGE PROCESSING AND QUANTIFICATION ... 43
 2.10.1 Time-lapse .. 44
 2.10.2 Chromosome spreads ... 44
 2.10.3 Confocal ... 45
CHAPTER 3 . THE EFFECT OF FEMALE AGEING ON CHROMOSOMAL COHESIN IN OOCYTES

3.1 INTRODUCTION .. 47
3.2 COHESIN IS DEPLETED IN OOCYTES OF AGED MICE .. 48
3.3 COHESIN DEPLETION IN AGED OOCYTES IS LINKED WITH DISRUPTION OF BIVALENT CHROMOSOME STRUCTURE .. 48
3.4 MECHANISMS OF COHESIN DEPLETION AND THE ROLE OF Sgo2 52
 3.4.1 Sgo2 levels are reduced in aged mouse oocytes ... 52
 3.4.2 Sgo2 becomes enriched on chromosomes during the transition from prophase to metaphase of MI .. 53
 3.4.3 Sgo2 levels are reduced in Smc1β/− mouse oocytes .. 54
3.5 DISCUSSION ... 56
 3.5.1 Cohesin depletion in oocytes of aged mice ... 56
 3.5.2 Female ageing is associated with loss of the closely apposed structure of sister kinetochores required for their monopolar attachment ... 59
 3.5.3 The role of Sgo2 in cohesin depletion ... 60

CHAPTER 4 . CHARACTERISATION OF PLK1 MEDIATING CHROMOSOME SEGREGATION DURING MEIOSIS I OF THE MOUSE OOCYTE .. 62

4.1 INTRODUCTION ... 62
4.2 PLK1 IS RECRUITED TO THE KINETOCHORE AFTER RELEASE FROM PROPHASE ARREST ... 63
4.3 BI 2536 DOES NOT PREVENT RECRUITMENT OF PLK1 TO THE KINETOCHORE DURING MI 66
4.4 BI 2536 DOES NOT AFFECT THE TIMING OF ENTRY INTO PROMETAPHASE OF MI IN MOUSE OOCYTES .. 67
 4.4.1 Effect on the timing of GVBD with short exposure to BI 2536 67
 4.4.2 Effect on the timing of GVBD with prolonged exposure to BI 2536 67
4.5 BI 2536 INHIBITS EXIT FROM MI IN A DOSE-DEPENDENT MANNER 70
4.5 OOCYTES ARRESTED IN MI IN THE PRESENCE OF BI 2536 DO NOT UNDERGO ANAPHASE ... 71
 4.5.1 BI 2536 increases inter-centromere distance during prometaphase of MI 73
 4.5.2 BI 2536 increases the number of erroneous Kt-Mt attachments at prometaphase of MI 75
4.6 PLK1 IS REQUIRED FOR EFFICIENT ACTIVATION OF APC/C_{Cdc20} DURING EXIT FROM MI ... 78
 4.6.1 BI 2536 inhibits securin degradation in MI ... 78
 4.6.2 Exogenous cyclin B1 relieves inhibition of securin degradation in the presence of BI 2536 ... 85
4.7 DISCUSSION..87

4.7.1 Plk1 is recruited to the kinetochore of meiotic chromosomes...87
4.7.2 BI 2536 does not affect the timing of entry into prometaphase of MI, but prevents
initiation of anaphase of MI in a dose-dependent manner...88
4.7.3 BI 2536 inhibits anaphase of MI, disrupts sister-centromere integrity and
promotes misalignment of bivalents..89
4.7.4 Plk1 prevents degradation of exogenous securin and is required for efficient
activation of APC/C\textsubscript{cdc20} in MI..90

CHAPTER 5. PLK1 IS REQUIRED FOR STEPWISE REMOVAL OF COHESIN IN MOUSE MEIOSIS

5.1 INTRODUCTION ...94
5.2 SECURIN PROFILE OF OO CYTES THAT EXIT MI IN THE PRESENCE OF BI2536.................................96
5.3 BI 2536 PROMOTES SEPARATION SISTER CHROMATIDS IN A DOSE-DEPENDENT MANNER.........98
5.4 POST-PBE TREATMENT WITH BI2536 DOES INDUCE PREMATURE SEPARATION OF SISTER
CHROMATIDS..100
5.5 CENTROMERIC COHESIN IS NOT DEPLETED DURING IN BI2536-TREATED OO CYTES........102
5.6 BI 2536 COMPROMISES THE CENTROMERIC LOCALISATION OF Sgo2-PP2A AT LATE
PROMETAPHASE OF MI ..104
5.7 BI 2536 DOES NOT AFFECT THE LEVELS OF CHROMOSOME-ASSOCIATED COHESIN DURING
PROMETAPHASE OF MI. ..107
5.8 DISCUSSION...110

5.8.1 The role of Plk1 in the protection of centromeric cohesion...110
5.8.2 No evidence of prophase pathway-like activity in MI ..114

CHAPTER 6. CONCLUSION & FUTURE DIRECTIONS...117

6.1 COHESIN AND FEMALE REPRODUCTIVE AGEING..117
6.2 PLK1 FUNCTION IN MOUSE OO CYTES AND ITS ASSOCIATION WITH COHESIN119
6.3 CLINICAL RELEVANCE..121

ABBREVIATIONS..122
REFERENCES..124
List of Figures and Tables

Figure 1.1 Incidence of trisomy in relation to maternal age. 2
Figure 1.2 Regulation of the APC/C by the SAC .. 10
Figure 1.3 Chromosome segregation during Mitosis and Meiosis 12
Figure 1.4 The cohesin complex .. 13
Figure 1.5 Protection of centromeric cohesin by shugoshin-PP2A in mitosis and meiosis. .. 15
Figure 1.6 The development of human germ cells ... 20
Figure 1.7 Meiosis in mouse oocytes ... 21
Figure 1.8 Plk1 structure and functions in mitosis and meiosis 27
Figure 2.1 Schematic representation of the constructs made using a pRN3 vector backbone .. 40
Figure 2.2 Conserved domains and motifs of Cdc20 .. 40
Figure 3.1 Cohesin depletion in oocytes of aged mice. 49
Figure 3.2 Reduced cohesin is associated with splitting of sister centromeres 51
Figure 3.3 Age-related decline in chromosome-associated Sgo2 levels 53
Figure 3.4 Localisation of Sgo2 in GV-stage mouse oocytes 54
Figure 3.5 Reduced levels of chromosome-associated Sgo2 in Smc1β−/− mouse oocytes .. 55
Figure 4.1 Experimental design ... 64
Figure 4.2 Plk1 is enriched at the centromere upon meiotic resumption 65
Figure 4.3 BI 2536 does not prevent recruitment of Plk1 to the kinetochore during MI. ... 66
Figure 4.4 BI 2536 does not affect the timing of entry into prometaphase of MI 69
Figure 4.5 BI 2536 inhibits exit from MI in a dose-dependent manner 71
Figure 4.6 BI 2536 inhibits anaphase I ... 72
Figure 4.7 BI 2536 inhibits exit from MI in a dose-dependent manner 72
Figure 4.8 BI 2536 increases inter-centromere distance in prometaphase of MI 74
Figure 4.9 BI 2536 inhibits exit from MI in a dose-dependent manner 74
Figure 4.10 Cdc20R132A allows degradation of securin in the presence of nocodazole. 83
Figure 4.11 BI 2536 inhibits degradation of securin in Cdc20R132A-injected oocytes in the presence of nocodazole. .. 84
Figure 4.12 Exogenous cyclin B1 relieves inhibition of securin degradation in the presence of BI 2536. ... 86
Figure 5.1 Degradation of securin-YFP during exit from MI in the presence of low concentrations (6.25 nM) of BI 2536 ... 97
Figure 5.2 Sister chromatid separation in the presence of BI 2536 99
Figure 5.3 BI 2536 does not induce premature separation of sisters during MetII arrest .. 101
Figure 5.4 Effect of BI 2536 on inter-centromere distance and centromeric cohesin in Rec8-myc oocytes .. 103
Figure 5.5 The effect of BI 2536 on centromeric localisation of Sgo2-PP2A in late prometaphase of MI .. 106
Figure 5.6 The effect of BI 2536 on chromosome-associated cohesin levels in late prometaphase I .. 109

Table 2.1 Antibodies used for immunofluorescence staining .. 37
Chapter 1: Introduction

1.1 Meiosis, aneuploidy and ageing: an overview

Sexual reproduction is a means for the continuation of most eukaryotic species and in the same time the pinnacle of their evolutionary course in life. Sexual reproduction requires the fusion of two gametes, the specialised reproductive cells, one from each parent, which produces a single cell, the zygote, from which the new organism develops. To prevent duplication of the genomic material at each generation, sexual reproduction relies on a specialised form of cellular division, known as meiosis, which as the name implies in Greek (μείωσις), it reduces the genomic material of gametes by half. In diploid organisms, such as mammals, meiosis gives rise to haploid gametes via two sequential rounds of chromosome segregation – meiosis I (MI) and meiosis II (MII) – without an intervening round of DNA replication. MI is the reductional part of the meiotic programme, during which the recombinant paternal and maternal homologous chromosomes are segregated into two different cells. MII is the equational part, where sister-chromatid pairs are segregated by mechanisms that are almost similar to those used in mitotic division of somatic cells (Petronczki et al., 2003; Marston and Amon, 2004).

As with every physiological process, cell division can fail. Deregulation of the mitotic programme has been identified as the malignant factor of a significant number of solid human cancers (Nakayama and Nakayama, 2006) and has been associated with neurodegenerative diseases, such as Alzheimer’s (Aulia and Tang, 2006). In most sexually reproducing organisms, meiotic errors are rare. However, in humans they appear to be more common and lead to the generation of gametes carrying an abnormal number of chromosomes, known as aneuploid gametes. Such abnormal gametes can give rise to embryos, which generally are non-viable and account for almost 50% of miscarriages occurring during the first semester of pregnancy (Suzumori et al., 2010). The few
aneuploid zygotes that are viable produce progeny with genetic birth defects, most common being the Down syndrome (trisomy 21).

Figure 1.1 Incidence of trisomy in relation to maternal age.
A graphical representation of the percentage of clinically recognized trisomic pregnancies in relation to maternal age. The risk for a trisomic pregnancy is exponentially increased after the late 30s for both trisomies 18 (green) and 21 (red), whereas for trisomy 16 (blue) it increases in an almost linear manner [modified from (Nagaoka et al., 2012)].

The majority of embryonic aneuploidies originate from the oocyte, rather than the sperm, and in particular from segregation errors during MI (Hassold and Hunt, 2001). More importantly, it appears that the frequency of meiotic errors increases rapidly as women age. Indeed, the probability of a trisomic pregnancy is known to reach 35% at the age of forty, from a mere 2% for a woman in her early twenties (Fig. 1.1) (Hunt and Hassold, 2010). Given that, if we also consider that it has become more commonplace for modern women to postpone childbirth, it would be easy to understand why in the last twenty years the incidence of Down syndrome pregnancies has increased by 71% in the UK (Morris and Alberman, 2009). The link between aneuploidies and ageing is most likely related to the extended meiotic arrest that occurs during mammalian female meiosis. As I will explain in more detail later, oocytes enter
meiosis during foetal development and remain arrested at MI until ovulation is triggered. In humans this state of limbo may last more than 40 years.

Whilst the phenomenon of age-related aneuploidies has been well established, the meiotic programme is so intricate that the molecular basis of segregation errors is not yet well defined. In this otherwise magically tuned and flawlessly orchestrated dance of chromosomes that takes place on the meiotic stage, there has to be at least one culprit responsible for the aneuploid confusion in the grand finale. Like a passionate lover of the theatre of life, this thesis sets out to uncover this felon.

1.2 Mechanisms for successful chromosome segregation
Chromosome segregation is essentially a mechanical process involving a structural lattice of microtubules (Mts) known as the spindle, which segregate chromosomes under the control of biochemical signals. The biochemical signals are largely generated from the kinetochore (Kt), a complex assembly of proteins at the primary constriction (centromere), which forms the attachment site between chromosomes and the Mts of the spindle. The biochemical signals generated from unattached Kts act as a surveillance mechanism known as the spindle assembly checkpoint (SAC). The SAC monitors the attachment of the spindle to all Kts, thereby ensuring the genomic material will be accurately segregated between daughter cells upon the onset of anaphase (Musacchio and Salmon, 2007). Most importantly, during mitosis, sister chromatids need to be tightly aligned on the metaphase plate (spindle equator) and establish correctly oriented attachments with the spindle microtubules. In order to accomplish that sister chromatids are held together by sister chromatid cohesion, which is mediated by protein complexes known as cohesins (Nasmyth and Haering, 2009). Upon SAC satisfaction and the onset of anaphase, chromosome disjunction is triggered through the cleavage of cohesin by a protease known as separase (Uhlmann et al., 2000; Waizenegger et al., 2000). Until that point and
for most of the cell cycle, separase is kept inactive by being sequestered by an inhibitory chaperon known as securin and through phosphorylation by Cdk1/cyclin B (Yamamoto et al., 1996; Stemmann et al., 2001a). Activation of separase is achieved when all chromosomes have bioriented, through the ubiquitination of securin and cyclin B by the anaphase-promoting complex or cyclosome (APC/C) and their subsequent degradation by the proteasome [reviewed by (Peters, 2006)].

1.2.1 The Spindle
The spindle is a complex, highly dynamic structure made up of tubulin polymers (microtubules) and microtubule-associated proteins, such as molecular motors that use chemical energy to perform mechanical labour. The meiotic spindle in mammalian oocytes differs from the somatic cell mitotic spindle in several aspects. In somatic cells, spindle positioning is mediated by astral microtubules in both symmetric and asymmetric divisions, whereas astral microtubules are absent in meiosis and the spindle is asymmetrically positioned through the action of the actin-filament network (Verlhac et al., 2000; Schuh and Ellenberg, 2008). Another major difference is that mammalian oocytes do not have “traditional” centrosomes, as they lack centriole pairs. Instead, microtubule nucleation and coordination is performed by microtubule-organising centres (MTOCs), which undergo a striking cell-cycle dependent remodeling (Maro et al., 1985; Messinger and Albertini, 1991). As discussed below, recent 3D live-cell (4D) imaging studies have verified the significance of MTOCs in the assembly of the meiotic spindle and have provided a unique insight into spindle-chromosome interactions during meiotic maturation (Schuh and Ellenberg, 2007; Kitajima et al., 2011).

The first phenotypical hallmark of meiosis I resumption is germinal vesicle breakdown (GVBD), the equivalent of nuclear envelope breakdown (NEB) in somatic cells. Before GVBD, chromosomes are partially condensed around the
nucleolus, although not to an extent where homologue pairs can be microscopically distinguished. In a study by Schuh and Ellenberg, the authors have used 4D confocal fluorescence microscopy to quantitatively analyse the functional dynamics of single MTOCs, bivalent chromosomes, and microtubule plus ends during meiosis I spindle assembly at high spatial and temporal resolution (Schuh and Ellenberg, 2007). According to this study, in mice, the first few hours following GVBD chromosomes condense further and a bipolar spindle is gradually formed through the coalescence of MTOCs. Approximately 80 MTOCs, which form during prophase from a network of cytoplasmic microtubules, migrate to the centre of the oocyte and gradually merge from a multipolar spindle into a bipolar spindle that elongates and captures the condensed chromosomes. During most of prometaphase I, chromosome movement is performed by microtubules associated with chromosome arms. Finally, at 4 hours after GVBD, at metaphase of MI, chromosomes appear to have aligned on the metaphase plate of a centrally localized, barrel-shaped spindle structure. Interestingly, the bipolar meiosis I spindle appears to form due to the actions of MTOCs, rather than due to any chromosome-induced effect (Brunet et al., 1998; Schuh and Ellenberg, 2007). Moreover, stable end-on Kt-Mt interactions appear to be established just a short time prior to anaphase (Brunet et al., 1999; Schuh and Ellenberg, 2007).

In another study, Kitajima and Ellenberg have performed 4D confocal fluorescence imaging of meiosis I in mouse oocytes expressing kinetochore proteins fused to GFP (Kitajima et al., 2011). Using a kinetochore tracking approach, where distances between centromeres in paired homologues were monitored, the authors reported that chromosomes form an intermediate configuration, the prometaphase belt; initially, condensing chromosomes arrange as a spherical shell around microtubules and then congress and become gradually ordered to form a ring structure in the equatorial region surrounding microtubules. A similar phenomenon has also been observed during mitosis.
Next, chromosomes invade the elongating spindle structure centre, align on the metaphase plate and gradually become bi-oriented. Furthermore, it was shown that multiple Kt-Mt attachment attempts are required to achieve biorientation of homologous chromosomes in late metaphase I and that Aurora B kinase is essential for the correction of erroneous Kt-Mt attachments. This finding is of particular interest, given the high incidence of aneuploidies of mammalian oocytes, due to meiosis I chromosome segregation errors.

1.2.2 The Anaphase Promoting Complex / Cyclosome

Under physiological conditions, the cell cycle comprises a predefined sequence of irreversible biochemical phenomena. One of the ways that this irreversible character is established is through the proteolytic degradation of the proteins that regulate the transitions along the stages of the cell cycle. The leading cellular mechanism that controls proteolysis is the process of ubiquitination (Hershko, 2005). The APC/C is a major component of this mechanism; therefore its activity is intimately associated with the progress of the cell cycle.

The APC/C is composed of 11-13 different subunits most of which have been conserved from yeast to animal cells (Baker et al., 2007). Phosphorylation of these subunits at multiple sites is also required for APC/C activation (Pines, 2006). The functions of most other APC/C subunits is not clear, and although it has been suggested that some of them may play a more essential role in meiosis than in mitosis, the question why APC/C is so complex still remains open.

Another fact that underlines the highly important role of APC/C is that its activity is finely tuned by a complex system of kinases, activators and inhibitors. Activators are essential for APC/C activity, bind to it at different times during mitosis/meiosis and control its substrate specificity. Two activators, Cdc20 and Cdh1 which belong to the family of WD40 proteins, give
rise to APC/C^{Cdc20} and APC/C^{Cdh1} respectively, and are of particular importance. Other activators include Mfr1 and Ama1 (in yeast) and Fzr2 and Cortex (in *Drosophila*), which are meiosis-specific and their functions have not been fully understood (Acquaviva and Pines, 2006). APC/C inhibitors include the mitotic checkpoint complex (MCC), the early mitotic inhibitor 1 (Emi1) and its homologue Emi2/XErp1, the tumour suppressor Ras association domain family 1 (Rassf1A), the APC/C^{Cdh1} modulator 1 (Acm1), the nuclear transport factors Nup98 and Rae1, and Mes1 (Pesin and Orr-Weaver, 2008). Most of these inhibitors act by directly binding activators, thus restricting APC/C activation.

In addition to the well investigated mechanism of modulation of APC/C activity through control of Cdh1 and Cdc20 levels, there is evidence that APC/C activity is also regulated by direct phosphorylation. A number of kinases, including Cdk1/cyclin B, Polo-like kinase 1 (Plk1) and protein kinase A (PKA) are known to regulate APC/C function through the phosphorylation of numerous residues (Kraft *et al.*, 2003; Baker *et al.*, 2007). Once somatic cells have entered mitosis, the APC/C is partially activated by Cdk1/cyclin-dependent phosphorylation (Rudner and Murray, 2000; Kraft *et al.*, 2003). In particular, B-type cyclins phosphorylate numerous APC/C subunits, thereby increasing the affinity of Cdc20 to the APC/C (Shteinberg *et al.*, 1999; Rudner *et al.*, 2000; Rudner and Murray, 2000; Kraft *et al.*, 2003). In *S. cerevisiae*, phosphorylation by Cdk1/cyclin B has been reported to determine APC/C activator-binding specificity, thus promoting Cdc20 binding during mitosis and Cdh1 binding during mitotic exit and interphase. Indeed, mutating the Cdk1/cyclin B phosphorylation sites on the APC/C promotes Cdh1 binding during mitosis, instead of Cdc20 (Cross, 2003).

Nevertheless, it is still unclear whether Cdk1/cyclin-dependent phosphorylation is the sole mechanism of APC/C activation in mitosis. Early studies have shown that APC/C activation may require phosphorylation by
Plk1 (Kotani et al., 1998). Moreover, the APC/C inhibitor Emi1 has been proposed to be targeted for degradation by the SCFβTrCP once phosphorylated by Plk1 (Reimann et al., 2001a; Hansen et al., 2004; Moshe et al., 2004). However, recent studies have shown that in the presence of a non-degradable form of Emi1 (Di Fiore and Pines, 2007), or with chemical Plk1-inhibition (Lenart et al., 2007), the activation of APC/C is not obstructed.

Although it is still unclear which characteristics of a target protein allow its recognition by the APC/C complex, it has been shown that the target proteins contain specific sequence motifs, known as degradation motifs (or degrons), which are necessary for their ubiquitination. One important motif is RxxLxxxxN (R for arginine; X any amino-acid; L for leucine; N for asparagine), which is known as the destruction box (D-box) (Prinz et al., 1998). Another motif is KENxxxN (K for lysine; E for glutamate) which is given the name KEN-box (Pfleger and Kirschner, 2000). The KEN-box is preferentially recognised by APC/C\(^{C\text{dh1}}\), whereas APC/C\(^{C\text{dc20}}\) can recognise only the D-box. Other degrons, such as the A-box, the O-box and the CRY-box have also been described [reviewed in (Barford, 2011)].

1.2.3 The Spindle Assembly Checkpoint

During mitosis separase activity is highly regulated by the inhibitory binding of securin (Yamamoto et al., 1996) and the Cdk1/cyclin B complex (Stemmann et al., 2001b; Gorr et al., 2005). The APC/C together with its activator Cdc20, promotes the ubiquitination and subsequent degradation of securin and cyclin B, thus promoting separase activation (Fig 1.2). However, before APC/C\(^{C\text{dc20}}\) can degrade its substrates to promote anaphase, the SAC has to be satisfied. In general, this is achieved through the activity of the MCC, a complex comprising the conserved checkpoint proteins Mad2, Bub3, BubR1 and Cdc20, which inhibits APC/C\(^{C\text{dc20}}\) from targeting cyclin B and securin for degradation [reviewed in (Musacchio and Salmon, 2007)] (Fig 1.2). The exact mechanism of
inhibition has not been fully unveiled yet and recent evidence suggests that
different inhibitory protein complexes may operate during the SAC in different
organisms and that the MCC is just a transient step in the activation of the SAC
(Eytan et al., 2008; Nilsson et al., 2008; Kulukian et al., 2009).

Although the SAC is the principal regulatory mechanism of APC/C activity
during mitosis [reviewed in (Nasmyth, 2005; Musacchio and Salmon, 2007)], in
meiosis its role still remains controversial. Studies focusing on SAC function in
vertebrate oocytes have proven it to be present and active. Preliminary
experiments using XO mice (mice carrying a single X chromosome), suggested
that the vertebrate meiotic SAC was inefficient in detecting misaligned
chromosomes (LeMaire-Adkins et al., 1997). However, later evidence showed
that biorientation of sister chromatids, instead of bivalents, is probably the
reason XO oocytes evade the SAC (Kouznetsova et al., 2007). Mad2, Bub1 and
BubR1 are present in vertebrate oocytes and perturbation or loss of their
function leads to premature resolution of chiasmata, failure to biorient
bivalents, premature onset of anaphase and chromosome missegregation in MI
(Wassmann et al., 2003; Zhang et al., 2004; Homer et al., 2005a; Homer et al.,
2005b; Niault et al., 2007; Homer et al., 2009a; McGuinness et al., 2009). In
contrast to mitosis, where the presence of a single unattached kinetochore
effectively inhibits anaphase (Rieder et al., 1994; Rieder et al., 1995), in MI the
SAC appears to be notoriously error-prone (Hassold and Hunt, 2009) and
various hypotheses have been proposed to explain this paradox (Hoffmann et
al., 2011; Nagaoka et al., 2011; Gui and Homer, 2012; Lane et al., 2012).
During early mitosis unattached kinetochores (Kts) promote the formation of the mitotic checkpoint complex (MCC), which consists of BubR1, Cdc20, Mad2 and Bub1. The MCC leads to inhibition of the APC/C by sequestering its activator Cdc20. Once all Kts establish end-on attachments with spindle microtubules and align on the metaphase plane, Cdc20 is released and activates the APC/C, which ubiquitinates securin and cyclin B, thereby tagging them for degradation by the 26S proteasome. Degradation of securin releases separase, which cleaves cohesin and allows anaphase to occur. Cyclin B degradation inactivates Cdk1, thus leading to exit from mitosis.

1.2.4 Establishment and resolution of cohesion in mitosis

Mitosis is a complex process during which the duplicated genome coming from the S-phase (DNA replication) is equationally segregated into two new daughter nuclei (Fig. 1.3.A). Following mitosis, the cell divides by cytokinesis to produce two daughter cells with identical genomes. This process is repeated in mammalian somatic cells contributing to the growth, development and maintenance of the organism.

During mitosis, sister chromatid cohesion is mediated by the multi-subunit cohesin complex (Fig. 1.4). Cohesin was first identified in *Saccharomyces*
cerevisiae (Guacci *et al.*, 1997; Michaelis *et al.*, 1997; Toth *et al.*, 1999) and was found to comprise of four core subunits: two subunits of the structural maintenance of chromosomes (SMC) protein family, Smc1 (also known as Smc1α in vertebrates) and Smc3; the kleisin family protein Scc1/Rad21; and an accessory subunit Scc3. According to the currently prevalent model, cohesin fulfills its role by forming a ring-like structure which encircles sister chromatids (Fig 1.4) (Gruber *et al.*, 2003; Uhlmann, 2004; Nasmyth and Haering, 2005; Nasmyth, 2011). Cohesin protein subunits are highly conserved among eukaryotes, from yeasts to vertebrates. In vertebrates two isoforms of Scc3 are expressed and are known as SA1 and SA2 (Losada *et al.*, 2000). The important role of cohesin subunits has been underscored in various experiments, where their depletion leads to chromosome segregation errors and increased levels of aneuploidy (Sonoda *et al.*, 2001; Hoque and Ishikawa, 2002).

Cohesin is recruited to chromosomes before S-phase, a process mediated by the Scc2/Scc4 cohesin-loading complex (Ciosk *et al.*, 2000; Tomonaga *et al.*, 2000), and appears to be enriched around the centromeres and at several sites along chromosome arms (Blat and Kleckner, 1999; Tanaka *et al.*, 1999). During S-phase, other factors including Ctf4, Ctf18 and the acetyl-transferase Eco1 facilitate the cohesin-dependent pairing of the emerging sister chromatids (Toth *et al.*, 1999) and consistently colocalise with DNA replication forks (Lengronne *et al.*, 2006). In fission yeast and mammals, the heterochromatin protein HP1/Swi6 facilitates the enrichment of cohesin at pericentromeric regions suggesting that the establishment of strong centromeric cohesion to counteract the pulling forces of spindle microtubules is of utmost importance, as this mechanical phenomenon essentially ensures the bipolar attachment of chromosomes (Pidoux and Allshire, 2004).
Figure 1.3 Chromosome segregation during Mitosis and Meiosis
A simplified schematic representation of chromosome segregation in mitosis and meiosis: (A) In vertebrate somatic mitosis, sister kinetochores are attached to spindle microtubules emanating from opposite poles. Prior to anaphase, sister chromatid cohesion mediated by Scc1/Rad21-cohesin is removed, allowing sister chromatid separation. (B) In mammalian female meiosis, the Scc1/Rad21 subunit is replaced by Rec8. During prometaphase I, sister kinetochores of recombined homologues attach to spindle microtubules emanating from the same pole. Cleavage of chromosome-arm cohesin allows separation of homologues, with one of them being extruded within the 1st polar body. Upon fertilisation, centromeric cohesin is removed and sister chromatids separate as in mitosis, with one sister chromatid being extruded within the 2nd polar body [modified from (Sakuno and Watanabe, 2009)].
Figure 1.4 The cohesin complex

In somatic vertebrate cells, the cohesin core complex consists of the subunits Smc1, Smc3, Scc1, and either SA1 or SA2. In mammalian meiosis the synthesis of cohesin alters, with Scc1 being substituted by Rec8 or Rad21L, Smc1 by Smc1\(\beta\) and SA1/2 by SA3/Stag3. According to the “ring” model, cohesin mediates SCC by forming a tripartite ring that entraps sister chromatids [modified from (Peters et al., 2008)].

In order for sister chromatids to separate during anaphase, cohesin needs to be removed (Fig 1.5). In yeast, a specific protease known as separase (Esp1 in S. cerevisiae, Cut1 in S. pombe) is activated at the onset of anaphase and cleaves the Scc1/Rad21 subunit, thus breaking open the cohesin ring and allowing sister chromatids to be pulled apart (Uhlmann et al., 1999; Uhlmann et al., 2000; Uhlmann, 2003). In vertebrates, however, the bulk of cohesin is removed from chromosome arms during prophase prior to separase activation, via a process known as the “prophase pathway” (Losada et al., 1998; Sumara et al., 2002). This process does not require the cleavage of Scc1/Rad21 by separase, as cohesin dissociation is achieved through phosphorylation of SA1/2 by Polo-like kinase 1(Plk1) mediated by Aurora B (Hauf et al., 2005) and Wapl (Gandhi et al., 2006; Kueng et al., 2006). During this process, centromeric cohesin is protected by the protein shugoshin (Sgo; Japanese 守護神 for “guardian spirit”), which together with protein phosphatase 2A (PP2A) counteract cohesin phosphorylation until the onset of anaphase (Katis et al., 2004; McGuinness et al., 2005; Kitajima et al., 2006; Riedel et al., 2006). Once the cell reaches the metaphase-anaphase
transition, separase is activated to cleave the remainder centromeric cohesin and allow sister chromatid segregation.

1.2.5 Establishment and resolution of cohesion in meiosis

Meiotic division (Fig. 1.3.B) is fundamental for the production of functional gametes and is a much more intricate and specialised programme than mitosis. Its level of complexity is well reflected by the increased levels of cohesin regulation through the activity of both mitotic and meiosis-specific mechanisms.

As in mitosis, meiotic cohesion is established during the pre-meiotic S-phase, however meiosis-specific cohesin subunits are also employed. In budding yeast, fission yeast and mammals, Scc1/Rad21 is largely replaced by its meiotic counterpart Rec8 (Klein et al., 1999; Watanabe and Nurse, 1999; Pasierbek et al., 2001) and the mammal-specific Rad21L (Gutierrez-Caballero et al., 2011; Herran et al., 2011; Ishiguro et al., 2011; Lee and Hirano, 2011). In mammalian germ cells further alterations include the replacement of SA1/2 by SA3/STAG3 (Pezzi et al., 2000; Prieto et al., 2001), and Smc1α by Smc1β (Revenkova et al., 2001). Various localization studies on these meiosis-specific cohesin variants have revealed differential chromosome distribution patterns throughout meiosis (Prieto et al., 2004; Revenkova and Jessberger, 2005; Sakuno and Watanabe, 2009; Jessberger, 2011), suggesting that different cohesin complexes might have unique functions. However, across all organisms Rec8 appears to play a predominantly significant role. Whereas Rad21L is not detectable in metaphase I oocytes (Ishiguro et al., 2011), Rec8 is recruited earlier than other cohesin subunits, is removed later from chromosome arms in MI and remains at the core centromeric regions until the metaphase-anaphase II transition (Fig. 1.5) (Eijpe et al., 2003). In addition, various experiments involving RNAi depletion of Rec8 and Rec8 mutations have revealed several effects including premature loss of cohesion, reduction or failure of recombination and increased aneuploidy and
infertility (Klein et al., 1999; Watanabe and Nurse, 1999; Pasierbek et al., 2001; Xu et al., 2005).

Figure 1.5 Protection of centromeric cohesin by shugoshin-PP2A in mitosis and meiosis.

During prometaphase of vertebrate meiosis, cohesin is removed from chromosome arms via Plk1-mediated phosphorylation. This mechanism is known as the “prophase pathway”. The shugoshin-PP2A complex protects pericentromeric cohesin until the onset of anaphase, when it is removed to allow the cleavage of cohesin by separase. In meiosis, during anaphase I, shugoshin-PP2A protects centromeric cohesin from cleavage by separase, until metaphase II, thus allowing accurate segregation of homologous chromosomes. With the onset of anaphase II, protection is removed and sister chromatids are separated into individual gametes [adapted from (Sakuno and Watanabe, 2009)].
One of the issues in meiosis is that segregation of the genomic material has to occur twice, without being interrupted by an S-phase. This is essential for haploid gametes to be generated. This scenario requires that homologous chromosome pairs (bivalents) and sister chromatids must be segregated separately in MI (reductional segregation) and MII (equational segregation), respectively, thereby imposing specific adaptations to the meiotic process.

As with sister chromatids, the pairs of homologous chromosomes must be somehow bonded to establish tension between them to counteract the pulling force of spindle microtubules. The establishment of physical linkages between paternal and maternal homologues occurs during early meiotic prophase, and is known as meiotic recombination or crossover formation, which involves reciprocal exchange of DNA between non-sister chromatids (Kleckner, 2006). Following crossover formation the physical linkages between recombined homologues become visible at cytologically distinct structures known as chiasmata. However, chiasmata hold homologues together in MI only because they are stabilized by sister chromatid cohesion on chromosome arms, distal to the chiasmata (Moore and Orr-Weaver, 1998; Petronczki et al., 2003).

Furthermore, studies on Rec8 and Smc1β deficient mice have shown that these proteins are involved in meiotic recombination and stabilisation of chiasmata (Bannister et al., 2004; Revenkova et al., 2004; Xu et al., 2005).

Proper homologue segregation during MI means that sister chromatids need to attach to microtubules that will pull them towards the same spindle pole. This is known as monopolar kinetochore-microtubule attachment of sister chromatids (Fig. 1.3.B) (Hauf and Watanabe, 2004; Brar and Amon, 2008) and depends on sister centromeres being closely apposed. In this case, centromeric cohesin is responsible for keeping sister centromeres tightly bound. In yeast, proteins known as monopolins have also been shown to be essential for monopolar attachment (Toth et al., 2000; Yokobayashi and Watanabe, 2005).
Finally, cohesin on chromosome arms of sister chromatids must be cleaved for MI to occur, whereas centromeric cohesin must remain intact until the onset of anaphase II, as it is essential for biorientation of sister chromatids before anaphase of MII. In both MI and MII, segregation is achieved by the breakdown of cohesin complexes through the same mechanism that has been described in mitosis, involving APC/C-dependent activation of separase (Buonomo et al., 2000; Kudo et al., 2006). However, to achieve chromosome arm-specific loss of sister chromatid cohesion in meiosis I, centromeric cohesin is protected from cleavage by either of two shugoshin isoforms, Sgo1 and Sgo2 (paralogs of MEI-S332 in Drosophila melanogaster) (Kitajima et al., 2004). This allows homologues to separate, while sister chromatids remain attached together (Fig. 1.5). In MII, protection is removed from the centromeres and separase is able to cleave cohesin and promote the segregation of sister chromatids (Watanabe, 2005). *S. cerevisiae* and *D. melanogaster* have only one known shugoshin (Sgo1 and MEI-S332, respectively), whereas *S. pompe*, *Xenopus laevis* and mammals have two (Sgo1/SGOL1 and Sgo2/SGOL2) (Gutierrez-Caballero et al., 2012). Although shugoshins are considered orthologs, they share little sequence homology and exhibit divergence in their functions among different species. For example, whereas Sgo1 is considered to be the guardian of meiotic centromere cohesion in yeast (Kitajima et al., 2004) and flies (Kerrebrock et al., 1995), resent studies have shown that in mammals Sgo2 is solely responsible and Sgo1 dispensable for protection of centromeric cohesin during meiosis (Lee et al., 2008; Llano et al., 2008).

It is evident that cohesin is a key component of all the fundamental meiotic mechanisms described above. Consequently, it is easy to understand why cohesin-related anomalies can cause chromosome missegregation and thus aneuploidy. In other words, accurate regulation of the cohesin complex is one
of the most central features of faithful chromosome segregation therefore it is important to understand the precise molecular mechanisms that surround it.

1.3 Development of mammalian germ cells
Mammalian germ cells (female oogonia and male spermatogonia) originate from primordial germ cells (PGCs), which migrate to the genital ridge during embryonic development to form the gonad. There, expression of sex-determining genes on the Y chromosome promote testicular development, whereas in their absence a female gonad develops (Gilbert, 2006).

1.3.1 Oogenesis
The development of female germ cells into mature oocytes is known as oogenesis and is initiated before birth (Fig. 1.6). In mice, oocytes start undergoing meiosis (primary oocytes) in the fetal ovary from embryonic day 13.5. In the human embryo, primary oocytes appear around the second month of gestation and oogonia continue to divide mitotically until the seventh month (Peters, 1970). During this developmental stage, maternal and paternal homologues pair and undergo reciprocal exchange of DNA. After birth, primary oocytes enter arrest in prophase of meiosis I, which is also known as the dictyate arrest. For the most part, prophase arrest is spent in the primordial stage, when the oocytes are not yet been recruited for growth. The fully grown oocytes becomes responsive to hormonal signals, which trigger exit from prophase arrest and entry into prometaphase of MI. Ovulation occurs once MI has been completed and the oocyte arrests at metaphase of MII until it is fertilized or otherwise activated. At this stage oocytes have a visible nucleus, called the germinal vesicle (GV; Fig. 1.7.A) and remain arrested there, until they receive the necessary hormonal signals to resume meiosis, or become atretic and perish (Jones, 2008).
With the onset of puberty, cyclical hormone stimuli are activated that promote oocyte maturation and ovulation. The effects of periodically secreted gonadotropins (follicle-stimulating hormone, FSH; luteinising hormone, LH) stimulate fully grown oocytes to make the transition from prophase arrest to prometaphase of MI, until they become arrested again at metaphase of MII prior to ovulation (Jones, 2008). Resumption of MI is marked by germinal vesicle breakdown (GVBD; Fig. 1.7.B). The completion of MI yields a secondary oocyte, in which half the chromosomes have been “discarded” into a tiny structure known as the first polar body (Fig. 1.7.C). Upon fertilisation, the secondary oocyte quickly completes MII to produce a second polar body and a haploid oocyte. The latter, together with the sperm will form the zygote, giving rise to a new organism (Gilbert, 2006).

Overall, during vertebrate oogenesis, meiosis is arrested twice, in prophase I and in metaphase II. Although the exact mechanisms have not been elucidated yet, it is known that APC/C activity must be highly regulated during both meiotic arrests. In mouse oocytes APC/C^{Cdh1}\text{-mediated degradation of substrates appears to be necessary for maintaining prophase I arrest and its inhibition by Emi1 contributes to resumption of MI (Reis \textit{et al.}, 2006a; Marangos \textit{et al.}, 2007; Reis \textit{et al.}, 2007). The metaphase II arrest is also known as the cytostatic factor (CSF) arrest and its function is to prevent egg activation prior to fertilisation. According to the currently accepted model, the MetII arrest is generated primarily due to the inhibition of APC/C^{Cdc20} by the protein Emi2/XErp1 (Gui and Homer, 2012) (Madgwick \textit{et al.}; Lane \textit{et al.}, 2012)
In both foetal testis and ovary, germ cells proliferate mitotically. However, they enter meiosis at markedly different stages through their development. **Males:** In the foetal testis male germ cells initially proliferate mitotically for a short period and then enter mitotic arrest. After birth spermatogonia resume mitotic proliferation and with the onset of puberty they begin to differentiate and mitotically divide into sperm cells. Spermatogonia continue to proliferate and produce sperm virtually throughout the lifetime of a male. **Females:** In the foetal ovary the brief period of proliferation is directly followed by entry into meiosis, while in the same time a significant number of oogonia become apoptotic. The remaining oogonia enter dictyate arrest prior to birth and begin forming primordial follicles by being surrounded with somatic cells. At puberty, small cohorts of primary follicles are periodically induced to mature via hormonal stimuli and typically each month a single secondary oocyte is ovulated, while the rest of the primary oocytes succumb to atresia. This process continues until the pool of oocytes is depleted and the female enters menopause [modified from (Hassold and Hunt, 2001)].
As mentioned previously, cohesin is recruited during S-phase, which takes place during fetal development, and is totally removed at the onset of anaphase II, which occurs upon fertilisation. Considering the developmental profile of mammalian oocytes, the time interval between recruitment and removal of cohesin is amazingly long, as in humans it could last until the onset of reproductive senescence (~40-50 years long). During such a prolonged period, cohesin might degrade and become defective, thus causing destabilisation of chiasmata and premature segregation of sister chromatids. From that perspective, cohesin could be the perfect link between reproductive age and aneuploidy.

1.3.2 Spermatogenesis

Spermatogenesis is the process by which male spermatogonia develop into mature spermatozoa, also known as sperm cells (Fig. 1.6). In the mammalian embryonic testis, immature spermatogonia enter a phase of mitotic arrest at G0/G1 early during development (~13.5 days post coitum in mice) and remain there until birth (de Rooij and Grootegoed, 1998). In mice, a few days after birth, spermatogonia begin to proliferate mitotically and through successive differentiation steps they enter MI and initiate spermatogenesis. Development from stem cell to spermatozoon takes 34.5 days. In human males, spermatogenesis begins with the onset of puberty and development takes almost twice as long. Nevertheless, each day nearly 100 million “fresh”
spermatozoa are made in each testicle and during his lifetime a human male can produce 10^{12} to 10^{13} sperm (Reijo et al., 1995; Gilbert, 2006).

1.4 Meiotic Maturation in Mouse Oocytes

Meiosis is the process by which diploid germ cells generate haploid gametes. As previously described, in females meiosis begins during fetal development and exhibits two arrest stages (Prophase I and Metaphase II). According to the widely accepted dogma, females are born with a finite cohort of oocytes, a big part of which become apoptotic during prophase I arrest (Beaumont and Mandl, 1961; Byskov, 1974; Coucouvanis et al., 1993). Developing oocytes are surrounded by granulosa cells, which support their growth (Eppig, 2001). During the prolonged prophase I arrest, granulosa cells increase in numbers and oocytes grow in size, while accumulating the necessary transcripts to support meiotic maturation, fertilisation, and preimplantation development (Moore, 1975; Sorensen and Wassarman, 1976; Moore and Lintern-Moore, 1978). Fully-grown, meiotically competent oocytes are contained within large antral follicles. Upon receiving ovulatory signals, these oocytes escape prophase arrest, complete MI, extrude the first polar body and arrest at metaphase II. Upon fertilization, a second polar body is extruded and MII is completed. The stages between MI resumption and Met-II arrest are collectively referred to as meiotic maturation.

During meiotic maturation a plethora of protein kinases and phosphatases engage in a highly dynamic play in order to regulate the process (Schultz et al., 1983; Bornslaeger et al., 1986; Bornslaeger et al., 1988). At the moment we know that the mouse genome encodes a total of 162 protein phosphatases and 561 protein kinases (Roy and Cyert, 2009). During recent years research has focused on key players of these protein groups and a constantly increasing number of them appear to be essential in the regulatory pathways that control oocyte meiotic maturation. Among the many kinases, Plk1 has been shown to have a
multitude of functions during mitosis and is therefore established as an important regulator of mitotic phenomena. However, very little is known to date about the meiosis-specific functions of Plk1.

1.5 Polo-like kinase 1

The serine/threonine kinase known as Polo was discovered almost 25 years ago in *Drosophila* (Sunkel and Glover, 1988; Llamazares *et al.*, 1991). Polo kinase is highly conserved among eukaryotes and its orthologues include Plk1 in mammals (Fig 1.8), Plx1 in *Xenopus*, Cdc5 in *S. cerevisiae* and Plo1 in *S. pombe* (Archambault and Glover, 2009). Extensive research has established Plks as key regulators of cell proliferation in all model organisms where they have been studied to date. Currently, in humans, the PLK family includes five members (PLK1-5), with PLK1 being arguably the most important member in regulating mitotic and meiotic divisions (Lens *et al.*, 2010). All Plks contain a C-terminal Polo-box domain (PBD), which allows them to interact with target proteins. In vertebrate cells Plk1 controls a number of processes, including mitotic entry, centrosome maturation, bipolar spindle assembly, microtubule (Mt)-kinetochore (Kt) attachments, release of cohesin from chromosome arms (prophase pathway), APC/C activation and cytokinesis (Fig 1.8) [reviewed in (van de Weerdt and Medema, 2006; Petronczki *et al.*, 2008; Archambault and Glover, 2009)]. Consistent with its multiple functions, Plk1 localises to various subcellular sites, mediated by its phospho-binding PBD (Elia *et al.*; Elia *et al.*, 2003b).

Most of research on Plk1 has focused on its multiple functions in mitosis. During interphase Plk1 is diffusely distributed throughout the cell (Taniguchi *et al.*, 2002; Acquaviva and Pines, 2006). In late G2 phase Plk1 localises at the centrosomes and then becomes enriched at kinetochores in prometaphase and metaphase, where it persists throughout most of mitosis (Golsteyn *et al.*, 1995).
In anaphase Plk1 localises on the central spindle and finally accumulates on the midbody in telophase (Golsteyn et al., 1995).

One of the major functions attributed to Plk1 is promoting mitotic entry. Plk1 achieves that by promoting Cdk1/cyclin B activation in three ways: (1) It phosphorylates and thereby promotes nuclear translocation of Cdc25C, a kinase activator of Cdk1/cyclin B (Roshak et al., 2000; Toyoshima-Morimoto et al., 2002). (2) It phosphorylates and so promotes the degradation of the Cdk1/cyclin B-inhibiting kinases Wee1 and Myt1 (Nakajima et al., 2003; Watanabe et al., 2004). (3) It phosphorylates cyclin B at the centrosome, which is the primary site where Cdk1/cyclin B is known to be activated (Toyoshima-Morimoto et al., 2001; Jackman et al., 2003). However, Plk1 activity has been shown to be non-essential for mitotic entry as its inhibition does not block mitotic entry, but significantly delays it (Lenart et al., 2007).

Plk1 is also involved in centrosome maturation and subsequently the formation and elongation of the bipolar spindle. It has been suggested that Nlp phosphorylation by Plk1 leads to dissociation of the former from the centrosome, thereby allowing the recruitment of various proteins, most importantly γ-tubulin, which are essential for microtubule nucleation (Casenghi et al., 2003; Casenghi et al., 2005; Rapley et al., 2005).

Plk1 is also implicated in regulating chromosome alignment on the mitotic spindle. A number of studies have shown that Plk1 activity and localisation at the kinetochore are required for the formation of Kt-Mt attachments and thereby chromosome congression (Casenghi et al., 2003; Sumara et al., 2004; Lenart et al., 2007). It has also been observed that Plk1 levels are increased on the kinetochores of chromosomes that have not established bipolar attachments and are not under tension (Ahonen et al., 2005; Lenart et al., 2007). Plk1 also phosphorylates proteins that are involved in the SAC, including BubR1 and
Bub1, but these phosphorylations appear to be non-essential for SAC activation (Sumara et al., 2004; Burkard et al., 2007; Lenart et al., 2007; Santamaria et al., 2007). Nonetheless, BubR1 is required for Kt-Mt attachments (Lampson and Kapoor, 2005) and its levels of phosphorylation by Plk1 are higher at kinetochores that are not under tension (Elowe et al., 2007).

Plk1 is also involved in direct and indirect activation of the APC/C. Several APC/C subunits are phosphorylated by Plk1, including Cdc16, Cdc27, Tsg24 the Apc1 subunits (Kotani et al., 1998; Golan et al., 2002; Kraft et al., 2003). Indirect activation of the APC/C by Plk1 involves the phosphorylation of the APC/C-activator Cdk1/cyclin B (Golan et al., 2002), together with the phosphorylation of the APC/C-inhibitor Emi1, which promotes its subsequent targeting for degradation by the ubiquitin ligase SCFβTrcp1 (Hansen et al., 2004; Moshe et al., 2004). However, APC/C activation appears to occur even in the absence of Plk1 activity (Kraft et al., 2003; Lenart et al., 2007).

Cytokinesis is also highly sensitive to Plk1 activity. Recent studies have shown that the onset of cytokinesis in human cells is blocked when Plk1 activity is inhibited at the metaphase to anaphase transition (Brennan et al., 2007b; Burkard et al., 2007; Petronczki et al., 2007; Santamaria et al., 2007). In particular, cells treated with different Plk1 inhibitors failed to form a contractile ring at the equatorial cortex during anaphase and to accumulate RhoA, the upstream regulator of the contractile function. The reason behind this phenotype appeared to be the abolishment of Ect2 recruitment to the spindle midzone, an essential activator of the RhoA network linking the anaphase spindle to the cellular cortex and stimulating cytokinesis (Brennan et al., 2007b; Burkard et al., 2007; Petronczki et al., 2007; Santamaria et al., 2007).
Finally, as already described in detail in section 1.2.3, Plk1 is involved in the removal of cohesin from chromosome arms of sister chromatids prior to anaphase (Sumara et al., 2002; Hauf et al., 2005).

Of particular interest is the study by Lenart et al. (Lenart et al., 2007) where the authors have used BI 2536, a small-molecule inhibitor of Plk1, to delineate some of the known functions of Plk1 in mitosis and uncover novel ones. According to this study, treatment of HeLa cells with BI 2536 induces a delay in prophase, consistent with a previously reported role for Plk1 in promoting activation of Cdk1/Cyclin B (Dehapiot et al., 2013). Once into mitosis, cells were arrested in late prophase, due to SAC activation, with abnormal monopolar spindles, which could not attach stably to chromosomes. Moreover, consistent with previous reports (Hansen et al., 2004; Moshe et al., 2004), BI 2536 inhibited the degradation of Emi1. However, cyclin A degradation was not perturbed, showing that Emi1 degradation is not required for Cyclin A to be degraded. This also shows that the prophase arrest caused by BI 2536 does not depend on Cyclin A not being degraded, which has been previously reported to inhibit exit from mitosis (den Elzen and Pines, 2001). Another significant observation made possible by the use BI 2536 was that Plk1 activity is essential not just for the establishment, but also for the maintenance of chromosome biorientation (Peters et al., 2006; Lenart et al., 2007).

Studies in mouse oocytes have revealed that Plk1 exhibits a highly dynamic localisation pattern also during mammalian meiosis (Fig 1.8). Plk1 is known to be activated by phosphorylation shortly prior to GVBD (Pahlavan et al., 2000) suggesting it could be involved in promoting meiotic resumption/Cdk1 activation. Consistent with that, its inhibition either by antibody-microinjection
Plk1 wild-type (1-603aa)

Figure 1.8 Plk1 structure and functions in mitosis and meiosis
(See legend on next page)
Figure 1.8 Plk1 structure and functions in mitosis and meiosis

(A) Schematic representation of mouse Plk1. The positions of the kinase domain (red) and polo-boxes 1 and 2 (purple) are depicted. The amino acid (aa) sequences that mediate its nuclear localization (green) and its destruction by the proteasome (D-box; yellow) are also shown. The amino- and carboxyl- termini are also indicated. Numbers indicate amino acid positions.

(B) Schematic representation of human mitosis indicating PLK1 localisation (green). During interphase PLK1 is diffusely distributed throughout the cell (Acquaviva and Pines, 2006). In late G2 phase PLK1 localises at the centrosomes and then becomes enriched at kinetochore microtubules in prometaphase and metaphase, where it persists throughout most of mitosis. In anaphase PLK1 localises on the central spindle and finally accumulates on the midbody in telophase. Major functions of PLK1 are listed in gray boxes (black lettering) at the corresponding cell cycle stages:

- **Recovery after DNA damage:** Turns off the DNA damage checkpoint by promoting the degradation of Claspin (Prinz et al., 1998; Pfleger and Kirschner, 2000; Barford, 2011).
- **Centrosome maturation:** Recruits γ-Tubulin, which is essential for microtubule nucleation (Lane and Nigg, 1996; Nasmyth, 2005; Schreiber et al., 2011).
- **Mitotic entry/ Cdk1 activation:** Activates Cdc25C, an activator of Cdk1/cyclin B (Toyoshima-Morimoto et al., 2002; Hershko, 2005). Promotes the degradation of the Cdk1/cyclin B-inhibiting kinases Wee1 and Myt1 (Watanabe et al., 2004; Baker et al., 2007). Phosphorylates cyclin B at the centrosome (Toyoshima-Morimoto et al., 2001; Jackman et al., 2003).
- **APC/C activation:** Stimulates APC/C activity by phosphorylating its Apc1, Cdc16, Cdc27 and Tsg24 subunits (Kotani et al., 1998; Golan et al., 2002; Kraft et al., 2003). Induces the destruction of APC/C inhibitor Emi1 (Hansen et al., 2004; Moshe et al., 2004). However, PLK1 activity appears to be nonessential for APC/C activation in mitosis (Lenart et al., 2007).
- **Prophase pathway:** Removes cohesin from chromosome arms prior to anaphase (Sumara et al., 2002; Hauf et al., 2005).
- **Chromosome condensation:** Involved in DNA supercoiling (Kulukian et al., 2009). Plk1 inhibition/depletion produces hyper-condensed chromosomes (LeMaire-Adkins et al., 1997; Gimenez-Abian et al., 2004; Lenart et al., 2007).
- **Mt-Mt attachment:** Promotes the formation of stable Kt-Mt attachments (Lenart et al., 2007), thus facilitating chromosome alignment, most probably through phosphorylation of BubR1 (Li and Zhang, 2004; Eloew et al., 2007).
- **Spindle elongation:** Plk1 inhibition abrogates spindle elongation during anaphase B (Brennan et al., 2007a).
- **Cytokinesis:** Plk1 activity is essential for the activation of RhoA, the upstream regulator of the contractile function (Brennan et al., 2007a; Burkard et al., 2007; Petronczki et al., 2007; Santamaria et al., 2007). [B adapted from (Lens et al., 2010)].

(C) Schematic representation of mouse oocyte meiosis from Prophase I to MII arrest indicating Plk1 localisation (green). In late prophase-arrest Plk1 is diffusely distributed throughout the ooplasm and enters the nucleus (GV) shortly prior to GVBD (Hoffmann et al., 2011). In prometaphase and metaphase Plk1 becomes enriched at spindle poles and centromeres and also associates with spindle Mts. In anaphase Plk1 localises on the central spindle, then at the cleavage plane and finally accumulates on the midbody in telophase. During MII arrest Plk1 is seen at spindle poles and along spindle Mts (Rieder et al., 1994; Wianny et al., 1998; Pahlavan et al., 2000; Hassold and Hunt, 2009). Meiosis-specific functions of Plk1 remain largely elusive and are listed in gray boxes (red lettering) at the corresponding cell cycle stages:

- **Cdk1 activation:** Plk1 inhibition delays GVBD suggesting it is a positive regulator of meiotic resumption (Tong et al., 2002; Vanderheyden et al., 2009).
- **Spindle formation:** Plk1 inhibition abrogates spindle formation (Tong et al., 2002).
- **MII resumption:** Induces the destruction of APC/C inhibitor Emi2 (Madgwick et al.; Lane et al., 2012).
(Tong et al., 2002) or by chemical means (Vanderheyden et al., 2009) causes a delay in GVBD. In budding yeast, the Plk1 homologue, Cdc5, participates in the regulation of chromosome segregation during MI by being involved into the establishment of correct Kt-Mt attachments and removal of cohesin from chromosomes, through phosphorylation of Rec8 (Clyne et al., 2003; Lee and Amon, 2003; Brar et al., 2006). A previous study suggested that Plk1 phosphorylation is essential for Rec8 cleavage by separase in vitro (Kudo et al., 2009), however, it is yet unknown whether Plk1 regulates these processes in mammalian oocytes.

1.6 Failure of meiotic division and associated repercussions

The process of cell division is of paramount importance for all organisms, with errors in chromosome segregation proving disastrous, either for the organism per se or its progeny. In most sexually reproducing species, meiosis is a highly accurate process and chromosome missegregation is a rare phenomenon. However, in humans more than 20% of all oocytes are regarded as being aneuploid, causing infertility, miscarriages and genetic birth defects, such as Down syndrome (trisomy 21), Turner syndrome (single X female) and Klinefelter’s syndrome (XXY male) (Kuliev et al., 2005; Rosenbusch and Schneider, 2006; Pacchierotti et al., 2007). Approximately 2-3% of newborns are trisomic (Hassold and Jacobs, 1984) and most aneuploidies are non-viable; 35% of spontaneous abortions between 6th and 20th week of gestation and 4% of foetal deaths occurring during the second trimester of gestation are a consequence of aneuploid conceptions (Jacobs, 1992; Wells and Delhanthy, 2000). Most of the errors leading to chromosome missegregation and aneuploidy may occur predominantly during the extended prophase I arrest of MI (Lister et al.) and are associated with the failure to establish, maintain or resolve chiasmata or with premature sister chromatid segregation (Jones, 2008).
Evidence from clinical genetic studies in cases of trisomy 21 provided valuable insight into the predisposition of oocytes to segregation errors during MI. The highest risk was associated with an absence of crossovers resulting in segregation of univalent rather than bivalent chromosomes. A single crossover in the subtelomeric or pericentromeric region was also associated with a high risk of trisomy (Lamb et al., 1997). These data gave ground to the idea that bivalents with susceptible chiasmata configurations were predisposed to missegregation during MI (Lamb et al., 1996; Lamb et al., 1997; Warren and Gorringe, 2006). However, it was later found that this association is lost during maternal ageing (Lamb et al., 2005). This implied that age-related errors in female MI are due to defects occurring subsequent to crossover formation. Evidence from recent studies (Hodges et al., 2005; Chiang et al., 2010; Lister et al., 2010; Revenkova et al., 2010; Tachibana-Konwalski et al., 2010) has established cohesin deficiency as a leading candidate for such a defect.

Although it had been known since the early 1930’s that the occurrence of Down syndrome increases with maternal age (Penrose, 2009), it was only in the late 80’s that the exact correlation between them was established (Morton et al., 1988). Today we know that the probability of a pregnancy involving a trisomic fetus increases abruptly in women around the age of thirty-seven years old (Hassold and Hunt, 2001). Apart from this increasing risk, another thing that comes with ageing is a decrease in the chances of establishing a successful pregnancy due to the lack of oocytes. Maternal fecundity has a limit in time, with ovarian reserves being constantly reduced until the onset of menopause (Telfer and McLaughlin, 2007). The impact of this decline in oocyte numbers becomes more daunting when we consider the fact that instead of being stable it gradually accelerates at mid-thirties (Faddy et al., 1992; Faddy, 2000). However, the reason why chromosomal instability becomes more prevalent as we reach the end of the oocyte pool remains unclear.
In the last fifty years birth patterns have markedly changed in developed societies. A variety of socioeconomic factors, influence contemporary human reproductive culture and ideology and as a result couples seek to have fewer children and they have them at older ages than before. For example, in the UK, between 1985 and 2001 there was a doubling (from 8% to 16%) in the number of first births for parents over the age of 35 years old (Rai and Regan, 2006). This trend to postpone childbirth combined with the increased risk of aneuploidies as women get older, have amplified the numbers of miscarriages and pregnancy terminations in recent years. As a reaction to these circumstances, there is an increasing focus on research in the field of female reproductive ageing. Not surprisingly, very little is still known about the molecular basis of this phenomenon in humans, a good reason being the ethical and physical limitations associated with human oocyte and embryo research. Our research employs the appropriate animal models that mimic human female ageing and aims to contribute to a further understanding of this inevitable physiological process.
1.7 Aims

The overall aim of this thesis is to investigate the mechanism of chromosome segregation in female mammalian meiosis in the context of reproductive ageing.

The specific aims were:

1. To further our understanding of female age-related meiotic segregation errors, I aim to investigate the effect of ageing on chromosome-associated cohesin and its protector Sgo2.

2. To advance knowledge of the mechanisms governing chromosome segregation in mammalian oocytes, I will characterise the functions of Plk1 during progression through MI using the small-molecule inhibitor BI 2536.

3. To establish whether oocyte chromosomal cohesin is removed by a mechanism analogous to the Plk1-dependent prophase pathway of somatic cells, I will measure the effect of Plk1 inhibition on levels of chromosome-associated cohesin using the transgenic Rec-Myc mouse strain.
Chapter 2 : Materials and Methods

2.1 Mouse Strains

C57BL/Icrfa mice were obtained from a long-established colony, which had been selected for use in studies of intrinsic ageing because it is free from specific age-associated pathologies and thus provides a good general model of ageing (Rowlatt et al., 1976). Smc1β+/+ and Smc1β−/− female mice were provided by Rolf Jessberger and their generation has been previously described (Revenkova et al., 2004). The transgenic Rec8-Myc mouse strain was provided by Nobuaki Kudo and its generation has also been described previously (Kudo et al., 2009). Finally, CD1 mice have also been used. The research was licensed by the UK Home Office.

2.2 Harvest, culture and drug treatment of mouse oocytes

Eight to twelve weeks old female CD1, eight to twelve weeks old female Smc1β+/+ and Smc1β−/−, eight to twelve weeks old and twelve month old Rec8-myc, and two month and fourteen month old C57BL/Icfra mice were killed by cervical dislocation and had their ovaries dissected out and briefly held in pre-warmed M2 medium (Sigma Aldrich, UK). C57BL/Icfra mice were injected with 7.5IU of pregnant mare serum gonadotrophin (PMSG; Sigma Aldrich, UK) approximately 48 hours prior to ovary collection. Oocytes were released from the excised ovaries by puncturing follicles with an insulin needle on a microscope stage in pre-warmed M2 medium supplemented with 0.022μg/ml 3-isobutyl-1-methylxanthine (IBMX; Sigma Aldrich, UK) to maintain oocytes at the germinal vesicle stage. After collection, only mature oocytes with a central GV were isolated for further experimentation and stored in 40μl droplets of pre-warmed M2 supplemented with IBMX overlaid with mineral oil (Sigma Aldrich, UK), until further use. Oocytes with peripheral GV were either discarded or used for optimising experimental techniques.
Oocytes to be *in vitro* matured were “washed” and transferred to 40μl drops of pre-equilibrated G-IVF™ medium (Vitrolife, Sweden), overlaid with pre-equilibrated mineral oil and incubated at 37°C in a humidified 7% CO₂ environment. In the absence of IBMX, MI resumption would occur, which is marked by GVBD. In order to be able to make timed and synchronous observations, the oocytes were scored for GVBD at 1, 1.5 and 2 hours after transfer to G-IVF, separated into groups accordingly and allowed to mature to the desired stage. Oocytes that had not undergone GVBD within 2 hours of G-IVF incubation were either discarded or used for optimising experimental methods.

Depending on the purpose of the experiment the “control” *in vitro* maturation medium would be either neat G-IVF or G-IVF supplemented with 1:500 (v/v) DMSO (Sigma Aldrich, UK). The Plk1 inhibitor BI 2536 (Axon Medchem, The Netherlands) was reconstituted to a 5M solution in DMSO (as recommended by the manufacturer) and then diluted down and aliquoted to individual 1.5μM, 2μM, 3.125μM, 6.25μM and 12.5μM working solutions, which were stored at -20°C. To supplement G-IVF with IBMX, 1μl of the appropriate working solution was added to 500μl of G-IVF. Nocodazole (Sigma Aldrich, UK) was reconstituted in a 5mg/ml solution in DMSO and stored at -20°C. Nocodazole treatments were carried out using G-IVF supplemented with 10μg/ml nocodazole, which allows the formation of the spindle assembly but causes microtubule instability, thus preventing chromosome congression and alignment.

2.3 Isolation of Oocytes from Pre-antral Follicles

Following puncture of antral follicles from excised ovaries, the remaining ovarian tissue was centrifuged at 700 rpm for 5 min. The supernatant was discarded and the pellet was washed twice in PBS pre-warmed at 37°C. After
the final wash, the pellet was resuspended in 4ml of 0.5 mg/ml collagenase type IV (Worthington Biochemical Corp., USA) and 2 IU TURBO™ DNase (Invitrogen, UK) in PBS and incubated at 37°C for 30-60min, on a shaker with occasional pipetting. Oocytes were manually isolated and transferred to M2 medium supplemented with 0.022 μg/ml IBMX.

2.4 Microinjection

Microinjections were performed on a Nikon TE-300 inverted diaphot microscope, fitted with an MMN-1 micromanipulator (Narishige, Japan) and an IM-300 Motor-Drive Microinjector (Narishige, Japan). Injection needles were made from thin-wall borosilicate glass capillaries with filament (BF 100-50-10; Intracel, UK) using a P-97 micropipette puller (Sutter Instruments Co, USA) programmed with the following settings: pressure, 200; heat, 518; pull, 70; velocity, 70; time, 150. Injection needle tips were angled to approximately 30° using a microforge device (Research Instruments, UK).

For mRNA microinjections, stock in vitro-transcribed mRNA was diluted to 500-1000ng/μl with injection buffer and 1.5μl of mRNA solution was loaded into a shortened glass capillary and mounted on a glass slide using beeswax. The glass slide with the capillary containing mRNA was placed on the microscope stage and the injection needle tip was broken open by gently tapping it to the edge of the glass capillary. The injection needle was then inserted into the mRNA solution and a negative pressure was applied to allow loading. mRNA loading columns were kept at 4°C during experiments, to avoid evaporation in case re-loading was required.

Mature GV stage oocytes to be microinjected were transferred to appropriate culture dishes containing 5μl droplets of IBMX-supplemented M2 medium, covered with mineral oil. Five to ten oocytes were transferred in each droplet and the dishes were kept at 37°C. During microinjections, the oocytes were
immobilised by gentle suction using a holding pipette (Hunter Scientific, UK) and the injection needle was inserted through the zona pellucida and oolemma, into the ooplasm, taking care to avoid the GV. Injections producing a cytoplasmic disturbance of approximately the size of the GV (~5% of oocyte volume) were administered. Injection pressure and balance pressure had to be adjusted constantly throughout a microinjection session to avoid intake of culture medium and deliver equal injection volumes. Following injections, oocytes were allowed to recover for 1-2 hours at 37°C, before being used for further experimentation.

2.5 Oocyte immuno-fluorescence staining

2.5.1 Whole oocyte Ca\(^{2+}\)-buffer treatment and fixation
Maturing oocytes were collected from in vitro culture and washed with pre-warmed PBS at 37°C. Oocytes were then transferred in a drop of pre-warmed Ca\(^{2+}\)-buffer for 90 sec on a stage heated at 37°C. Following Ca\(^{2+}\) treatment, oocytes were fixed in Ca\(^{2+}\)-buffer supplemented with 1% formaldehyde for 30 min at room temperature. After fixation, the oocytes were washed three times (5min/wash) with PBT (PBS supplemented with 0.1% Triton X-100) and were stored in PBS at 4°C for a maximum of three weeks.

2.5.2 Indirect immuno-fluorescence staining of whole oocytes
Fixed oocytes were blocked with 4% BSA in PBT (block solution) overnight at 4°C or for 1h at room temperature. Primary antibody incubations were performed in block solution overnight at 4°C, using the antibodies and the concentrations shown in table 2.1. After washing three times (5min/10min/10min) in PBT, the oocytes were incubated with the appropriate secondary antibodies (shown in table 2.1) diluted in block solution, in dark at room temperature for 1h on a shaker at a very low rpm setting. After washing three times (10min/15min/20min) in PBT and once (2min) in PBS, the oocytes were transferred into droplets of Vectashield with DAPI (Vector Labs, UK)
diluted 1:10 with PBS, in glass bottom dishes, and covered with mineral oil. Imaging was performed as described in section 2.9.3.

<table>
<thead>
<tr>
<th>Primary Antibody</th>
<th>Source</th>
<th>Dilution</th>
<th>Secondary Antibody</th>
<th>Source</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>human AutoAb CREST</td>
<td>Cellon HCT-0100</td>
<td>1:50</td>
<td>goat-anti-human Cy5</td>
<td>Jackson Immuno 109-175-003</td>
<td>1:400</td>
</tr>
<tr>
<td>human AutoAb CREST</td>
<td>Europa Bioproducts FZ90C-CS1058</td>
<td>1:100</td>
<td>goat-anti-human Cy5 or goat-anti-human AlexaFluor 555</td>
<td>Jackson Immuno 109-175-003 or Invitrogen A-21433</td>
<td>1:400 or 1:800</td>
</tr>
<tr>
<td>rabbit-anti-human Sgo2</td>
<td>Gift from Yoshinori Watanabe, The University of Tokyo, Tokyo</td>
<td>1:50</td>
<td>donkey-anti-rabbit AlexaFluor 488</td>
<td>Invitrogen A-21206</td>
<td>1:800</td>
</tr>
<tr>
<td>mouse-anti Myc Tag clone 4A6</td>
<td>Millipore 05-724</td>
<td>1:100</td>
<td>goat-anti-mouse AlexaFluor 488</td>
<td>Invitrogen A-11001</td>
<td>1:800</td>
</tr>
<tr>
<td>mouse-anti PP2A monoclonal clone 106</td>
<td>Millipore 05-421</td>
<td>1:50</td>
<td>donkey-anti-mouse AlexaFluor 555</td>
<td>A-31570</td>
<td>1:800</td>
</tr>
<tr>
<td>mouse-anti Plk1 monoclonal clone F-8</td>
<td>Santa Cruz 17783</td>
<td>1:100</td>
<td>goat-anti-mouse AlexaFluor 488</td>
<td>Invitrogen A-11001</td>
<td>1:800</td>
</tr>
<tr>
<td>mouse-anti-a-Tubulin (DM1A)</td>
<td>Sigma Aldrich T6199</td>
<td>1:100</td>
<td>goat-anti-mouse AlexaFluor 488</td>
<td>Invitrogen A-11001</td>
<td>1:800</td>
</tr>
</tbody>
</table>

Table 2.1 Antibodies used for immunofluorescence staining

2.6 Chromosome Spreads that preserve chromosome-associated proteins

The protocol for chromosome spreads was modified from Patricia Hunt (Scott, 2009).

2.6.1 Paraformaldehyde and slide preparation

0.25g of paraformaldehyde (PFA) and 4μl of 10M NaOH were added in 22.5ml of Milli-Q H$_2$O (Millipore, UK) in a 50ml universal tube. The solution was incubated at 60°C with occasional vortexing until it turned clear. Once cooled to room temperature pH was adjusted to 9.2 using 50mM boric acid. Finally, 175μl of 20% (v/v) Triton X-100 and 150μl of 0.5M DTT were added shortly prior to use.
In order to have a reference point that would assist in locating the chromosome spreads, a line was drawn on the back of the poly-L-Lysine coated glass microscope slides (Polysine® Slides; Fisher Scientific, UK) to be used, using a permanent marker.

2.6.2 Removal of zona pellucida, fixation and spreading

The zona pellucida was dissolved by brief exposure to a drop of acid Tyrode’s solution pre-warmed at 37°C. The oocytes were then moved through two successive drops of M2 medium, also pre-warmed at 37°C, to remove Tyrode’s solution, and were then incubated for 2 minutes in a drop of hypotonic 0.5% (w/v) solution of tri-sodium citrate. While waiting for the incubation, a slide was dipped in the PFA solution and excess fixative was removed by gentle tapping in a paper towel. The oocytes were then transferred on the slide, along the length of the drawn line under an SMZ-2T (Nikon, Japan) stereomicroscope. Finally, the slide was placed inside a humid chamber and allowed to dry overnight at room temperature.

Following overnight incubation, a rectangular region was drawn around the area containing the spreads using an ImmEdge™ hydrophobic barrier pen (Vector Laboratories, UK), to create a “chamber” to hold media drops for subsequent immunostaining procedures. After drying, slides were washed twice (2x2min) in 0.4% (v/v) Kodak Photo-Flo (Silverprint, UK) in dH2O solution, then twice (2x2min) in PBS and they were finally stored in PBS at 4°C, until further use.

2.6.3 Indirect immunofluorescence staining of chromosome spreads

Slides containing chromosome spreads were blocked in either 10% (v/v) goat serum (Sigma Aldrich, UK) in PBTT (0.1% Triton-X and Tween in PBS) or 10% (v/v) donkey serum (Sigma Aldrich, UK) in PBTT, depending in which animal the secondary antibodies to be used were raised in (i.e. if secondary antibodies
were raised in goat, then the goat block was used). After 1 hour of blocking at room temperature, primary antibody incubations were performed in block solution overnight at 4°C, using the antibodies and the concentrations shown in table 2.1. Following incubation with primary antibody slides were washed as follows: once (1x10min) in 0.4% (v/v) Photo-Flo in PBS; twice (2x10min) in 0.01% (v/v) Triton-X in PBS; once (1x10min) 0.4% (v/v) Photo-Flo in PBS; once (1x2min) in PBS. All washes were performed at RT on a shaker at 100rpm. The Spreads were then incubated with the appropriate secondary antibodies (shown in table 2.1) diluted in block solution, in dark at room temperature for 1h, before repeating the aforementioned wash steps. Chromosome spreads were covered using Vectashield with DAPI and glass coverslips (#1.5; VWR International, UK), and sealed with rubber solution to prevent evaporation (Halfords, UK). Imaging was performed as described in section 2.9.2.

2.7 Fluorescent Constructs
All constructs used in this thesis were manufactured by Lisa Lister or were gifts from collaborators.

For the generation of constructs and the production of mRNA the pRN3 vector was used (Fig 2.1) (Lemaire et al., 1995). The coding sequence for a fluorescent protein was inserted between the cloning site for the gene of interest and the 3’-UTR for most fluorescent constructs used. The gene of interest was either sub-cloned or amplified using a polymerase chain reaction (PCR) from a mouse oocyte cDNA library, constructed using the SMART PCR cDNA Synthesis Kit (Clontech, USA), and inserted into the plasmid by restriction digest and ligation. The cloning was confirmed by sequencing (The Sequencing Service, Dundee).
Figure 2.1 Schematic representation of the constructs made using a pRN3 vector backbone

The pRN3 vector contains a T3 promoter, an upstream 5’ globin untranslated region (UTR), which confers stability of RNA transcripts and a downstream globin 3’ UTR and a poly-A encoding sequence, to enhance translation. A series of restriction sites (red lines) allow the insertion of the desired gene and fluorescent protein coding sequences. The ampicillin resistance insert allows the identification of successfully transfected microbial colonies.

Figure 2.2 Conserved domains and motifs of Cdc20

A schematic representation of human wild-type Cdc20. Cdc20 contains a C-box, required to interact with APC/C core subunits (Schwab et al., 2001; Thornton et al., 2006); a KEN-box, a degradation motif (Pfleger and Kirschner, 2000); the Mad2-binding motif (Zhang and Lees, 2001); a CRY-box, another degradation motif (Reis et al., 2006b); seven WD40 repeats, forming a scaffold for protein-protein interactions [reviewed in (Yu, 2007)]; an IR motif at the C-terminal, which contributes to binding to the core APC/C subunits, as well as to its activity (Passmore et al., 2003; Vodermaier et al., 2003; Thornton et al., 2006). The R132A mutation allows robust binding to APC/C, but reduces the binding to Mad2 (Zhang and Lees, 2001; Ge et al., 2009).
2.8 Preparation of mRNAs

Capped mRNA constructs with a 30 poly-A tail were made using an mMESSAGE mMACHINE kit (T3, T7, or SP6 kit, depending on the RNA polymerase promoter site on the plasmid; Ambion, UK) from plasmid cDNA encoding histone H2B-RFP (a gift from Z. Polanski), cyclin B1-GFP (a gift from M. Levasseur), securin-YFP (a gift from K. Wassmann), Cdc20WT (a gift from A. Rattani) and Cdc20R132A (a gift from A. Rattani; Fig 2.2).

2.9 Microscopic Methods

2.9.1 Time-lapse (4D) Microscopy

Oocytes injected with fluorescent mRNA constructs (as described in 2.4) were transferred into a drop of pre-equilibrated G-IVF, covered with mineral oil, in a glass bottom dish (Ibidi μ-Dish; Thistle Scientific, UK). In experiments involving the use of BI 2536, a 40μl drop was made, as it was observed that smaller volumes (e.g. 2μl, as in controls) would weaken the effect of the inhibitor, probably because the latter is moderately oil soluble. The dish was fitted in a custom made CO₂ chamber (Medical Physics Department, Newcastle University) which was securely placed on the microscope stage and would allow imaging while maintaining a 7% CO₂ atmosphere.

Time-lapse imaging was performed on a Nikon Eclipse TE-2000-U inverted microscope using a 20x/0.75 n.a. Plan Fluor oil immersion objective and a Photometrics Cool- SnapHQ interline cooled charge-coupled device (CCD) camera (Roper Scientific, USA). The microscope was fitted with an incubator (Solent, UK) to maintain a stable temperature of 37°C. For fluorescence imaging, illumination was provided by a Xenon short arc XBO® 100W OFR lamp (Osram, Germany) and the following filter settings (Chroma, Germany) were available:
<table>
<thead>
<tr>
<th>Fluorescent Taq / Stain</th>
<th>Excitation Filter</th>
<th>Dichroic</th>
<th>Emission Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAPI</td>
<td>355±25</td>
<td>400</td>
<td>420 Longpass</td>
</tr>
<tr>
<td>GFP/AlexaFluor 488</td>
<td>480±10</td>
<td>500</td>
<td>510±10</td>
</tr>
<tr>
<td>YFP</td>
<td>500±10</td>
<td>CYR Multi Bandpass</td>
<td>535±15</td>
</tr>
<tr>
<td>RFP</td>
<td>580±10</td>
<td>GFP/RFP Multi Bandpass</td>
<td>630±30</td>
</tr>
<tr>
<td>Rhodamine/AlexaFluor 555</td>
<td>535±25</td>
<td>565</td>
<td>590 Longpass</td>
</tr>
<tr>
<td>Cy5</td>
<td>620±30</td>
<td>660</td>
<td>700±37</td>
</tr>
</tbody>
</table>

Filter wheels, shutters, Z-focus motor (Prior Scientific, UK) and camera were driven by Metamorph Image Acquisition software (Universal Imaging, USA) via a ProScan™ Controller (Prior Scientific, UK).

Oocytes were imaged for 14–16 hours with bright-field or DIC and fluorescence images acquired every 20 min on 5 x 0.75 μm Z planes.

2.9.2 Epifluorescence Imaging of Chromosome Spreads

The microscope used for time-lapse imaging was also utilised for acquisition of fluorescence images of chromosome spreads, prepared as described in 2.6.3, using a 100x/1.3 n.a Plan Fluor oil immersion objective.

IF stained chromosome spreads were also imaged on a Zeiss Axio Imager Z1 microscope fitted with a Zeiss ApoTome 2. Images were captured using an EC Plan Apochromat 63x/1.4 Oil DIC objective and a Zeiss AxioCam HRm Rev3 camera in combination with the Axiovision 4.8 software package. Excitation source was a Mercury short arc HBO® 100 W/2 lamp (Osram, Germany).

The filter sets that were utilised were:
<table>
<thead>
<tr>
<th>Filter Number</th>
<th>Fluorophore</th>
<th>Excitation Filter (nm)</th>
<th>Dichroic Mirror cut off (nm)</th>
<th>Emission Filter (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeiss 49</td>
<td>DAPI</td>
<td>335-385</td>
<td>395</td>
<td>420-470</td>
</tr>
<tr>
<td>Zeiss 38HE</td>
<td>Alexa 488</td>
<td>450-490</td>
<td>495</td>
<td>500-550</td>
</tr>
<tr>
<td>Zeiss 20HE</td>
<td>Alexa 555 Rhodamine</td>
<td>534-558</td>
<td>560</td>
<td>567-647</td>
</tr>
<tr>
<td>Zeiss 50</td>
<td>Cy5</td>
<td>610-670</td>
<td>660</td>
<td>665-715</td>
</tr>
</tbody>
</table>

Image acquisition of mature GV-stage and immature pre-antral-follicle oocytes, described in 3.2, was performed by Anna Kouznetsova, on a Leica DMRXA microscope equipped with a Hamamatsu C4880-40 CCD camera.

2.9.3 Confocal Imaging

Oocytes prepared as described in 2.5 were imaged using a Nikon A1R confocal microscope, using a Plan Apo VC 100x/1.40 Oil DIC N2 objective. Sequential (Channel series ON)/Simultaneous (Channel series OFF) excitation at 405nm, 488nm, 561nm and 642nm was provided by the 405nm Cube Laser (Coherent Inc., USA), 488nm Argon Laser (Melles Griot, USA), Sapphire 561nm Laser (Coherent Inc., USA) and Red Diode 642nm Laser (Melles Griot, USA), respectively.

Emission filters BP 425-475nm, BP 525-555nm, 570-620nm and 662-737nm were used to collect DAPI, Alexa 488, Alexa 555 and Cy5 signal respectively. Images, with a frame size of 1024x1024 pixels and a 2x line average, were captured using the Nikon Elements AR software package. The entire spindle was imaged with Z-confocal sections every 0.5 μm, in total covering at least 15.91μm x 15.91μm x 12.5μm volume.

2.10 Image Processing and Quantification

All figures and images in this thesis were designed and produced using Adobe Photoshop (Adobe Systems), Adobe Illustrator (Adobe Systems) and PowerPoint (Microsoft), unless otherwise indicated.
2.10.1 Time-lapse

Processing and analysis of time-lapse acquisitions was performed using MetaMorph software. Best focus images were identified for each timepoint and used for further analysis. To analyse the dynamics of a particular fluorophore, a region of interest has been drawn inside the oocyte and the average fluorescence intensity (FI) minus background FI was measured at each timepoint. The values were normalised relative to that of GVBD and were plotted against time in Excel (Microsoft).

2.10.2 Chromosome spreads

Images were acquired as raw 12-bit (Zeis Axio Imager) or 16-bit (Nikon Eclipse) images using identical exposure times within each experiment. Pseudo-colouring, brightness/contrast adjustments and general image processing were done using ImageJ software (http://rsb.info.nih.gov/ij/). For quantification of antibody staining fluorescence intensities (FI), six to eight cells or chromosome spreads were randomly selected. Prior to quantification, background subtraction was performed using the “subtract background” function in ImageJ, which removes uneven background from images using a “rolling ball” algorithm (Sternberg, 1983). In order to determine the appropriate “rolling ball radius”, different settings were used and average CREST FI of individual centromeres was measured at each setting. Then average CREST FI of the same centromeres was measured again, but this time local background was subtracted using the method described by Hoffman et al. (Hoffman et al., 2001). Briefly, an “inner” square region of interest (ROI) was drawn manually around a centromere and integrated FI was measured using MetaMorph software. This ROI was then expanded to create an “outer” region. The integrated FI of the “outer” ROI was subtracted from the “inner” ROI, after scaling values for differences in area, as described previously (Hoffman et al., 2001; Waters, 2009). Finally, the background-subtracted CREST integrated FI was divided by the
area of the “inner” ROI. The average CREST FI values obtained by utilizing the two different methods were statistically compared in Excel and the “rolling ball radius” setting that gave a correlation coefficient of approximately 1 ($R^2 = 0.9895$) was chosen for further application. For calculating centromeric Rec8:CREST fluorescence intensity ratios (Fig 5.4), following background FI subtraction, a square region of fixed area was centered on the centromere to be measured and the Rec8 and CREST intensities were measured in the same region.

3D surface plots of FI were produced using the “Interactive 3D Surface plot” plug-in in ImageJ (Barthel K.U.; Internationale Medieninformatik Berlin, Germany).

Inter-centromere distances were measured as described in 4.5.1. Briefly, “linear” ROI were drawn manually through sister-centromere CREST foci and their FI/length profiles were measured and logged using the “Plot Profile” function in ImageJ. Inter-centromeric distance (Δx) values were calculated using the in-house developed software Extrema™ (Glenis V.; School of civil engineering and geosciences, Newcastle University).

2.10.3 Confocal
With confocal images the “background subtraction” function of the Nikon Elements AR software was used to optimise image quality. 3D rendering of Z-stacks and subsequent distance measurements were performed using Nikon Elements AR software. Z-projections of maximum intensity and general image processing were done using ImageJ software.

2.11 Statistical Analysis
All statistical calculations and relevant data plotting were performed using Minitab (Minitab Inc., USA) or GraphPad Prism (GraphPad Software, Inc.,
USA) software. For numerical values the normality of the distribution of the data was firstly assessed using the either the Kolgomorov-Smirnov test or the D’Agostino and Pearson omnibus normality test. When normal distribution was confirmed, the appropriate parametric test was carried out. If normality was rejected, the appropriate non-parametric tests were performed.

The most commonly used tests for parametric data in this thesis were the unpaired t-test and one-way Anova, followed by a post hoc Tukey’s multiple comparison test. The most commonly used non-parametric tests were the Mann Whitney test and the Kruskal-Wallis test, followed by a post hoc Dunn’s multiple comparison test. In case a different test was used it will be specified alongside the relevant group of data throughout this thesis.

2.12 Reagents
All chemicals mentioned in this chapter were purchased from Sigma unless otherwise specified.

Ca\(^{2+}\)-buffer: 100mM PIPES pH 7.0, 1mM MgCl\(_2\), 0.1mM CaCl\(_2\), 0.1% Triton X-100
Tyrode’s solution: 0.8g NaCl, 0.02g KCl, 0.024g CaCl\(_2\).2H\(_2\)O, 0.01g MgCl\(_2\).6H\(_2\)O, 0.1g Glucose, 0.4g Polyvinylpyrrolidone. Added to 100ml Milli-Q water and pH adjusted to 2.5 with 5M HCl
Aliquoted and stored at -20°C.

0.5M DTT: 77.1g/ml DTT in Milli-Q water. Aliquoted and stored at -20°C
50mM Boric Acid: 0.15g in 50ml of Milli-Q water
0.5% tri-Sodium Citrate: 0.25g Na\(_3\)C\(_6\)H\(_5\)O\(_7\) in 50ml Milli-Q water
PBS: Diluted from 10x to 1x with Milli-Q water
Injection Buffer: 1M Tris HCl pH 7.5, 1M KCL in sterile Milli-Q water
Chapter 3. The effect of female ageing on chromosomal cohesin in oocytes

3.1 Introduction

In mammals, cohesion is established during the S-phase in the foetal ovary and its resolution to allow chromosome segregation may actually take place months (e.g. in mice) or even decades (e.g. in humans) later. This prolonged meiotic arrest, combined with the early establishment of cohesion has given rise to the notion that the maternal ageing effect could be caused by a gradual depletion of cohesin levels. Initial key findings came from Drosophila melanogaster, where age-related meiotic nondisjunction errors in oocytes were associated with defects in cohesion (Jeffreys et al., 2003). Since then, various groups including ours have studied a variety of mouse models and have provided evidence that depletion of cohesin during ageing can lead to chromosome missegregation and aneuploidy (Hodges et al., 2005; Liu and Keefe, 2008; Chiang et al., 2010; Lister et al., 2010).

The experiments described in this chapter involve the use of oocytes from C57BL/Icfa' mice, unless otherwise stated. Previous research in our lab has established that the C57BL/Icfa' mouse strain exhibits a distinct maternal age effect with aged oocytes appearing to have lower levels of chromosome-associated cohesin that younger ones. In particular, oocytes from 14-month-old mice exhibited a clear depletion of cohesin on chromosome arms and at centromeres when compared to 2-month-old oocytes at late prometaphase I (Lister et al., 2010). However, given that female ageing is characterised by a prolonged prophase arrest, a key question is whether cohesin depletion occurs during this prophase arrest. Here, the experiments aiming to answer this question are described.
3.2 Cohesin is depleted in oocytes of aged mice

In order to determine whether cohesin is depleted during the extended prophase arrest, I have compared the levels of the cohesin subunit Rec8 in the nuclei of GV-stage oocytes from 2-month and 14-month-aged mice using immunofluorescence (IF) labelling. Fully grown GV-stage oocytes from pre-ovulatory follicles were isolated, spread on PFA-coated slides and stained for Rec8 and CREST. The results show reduction of cohesin levels in oocytes of aged mice (Fig 3.1.A). These results tempted us to investigate even earlier stages of oocyte maturation. Therefore, oocytes from pre-antral follicles were isolated and similarly spread and stained (Staining and image acquisition was performed by Anna Kouznetsova). As with fully-grown GV-stage oocytes, cohesin levels were reduced in immature oocytes of aged mice, showing that cohesin depletion may occur at all the stages of oocyte development (Fig 3.1.B). These findings indicate that cohesin depletion during the protracted prophase arrest of aged oocytes may be a major causative factor in age-related chromosome missegregation during anaphase I of meiosis.

3.3 Cohesin depletion in aged oocytes is linked with disruption of bivalent chromosome structure

In previous immunofluorescence staining experiments we noticed from the CREST staining that sister centromeres are further apart during late prometaphase of MI (GVBD+5hr) in oocytes from 14-month-aged mice compared to oocytes from 2-month-old mice. This observation prompted a more detailed examination aiming to characterise and quantify these variations in sister-centromere apposition.
Figure 3.1 Cohesin depletion in oocytes of aged mice.

(A) Representative images showing DNA, Rec8, and CREST immunofluorescence (IF) staining in the nuclei of a fully-grown GV oocyte from 2-month-old (n = 18 oocytes from three mice) and 14-month-old (n = 16 from six mice) mice. Scale bar represents 10μm. Corresponding 3D surface plots show higher Rec8 fluorescence intensity in the 2-month-old compared with 14-month-old GV oocytes. (B) Images show DNA, Rec8, and CREST IF staining in the nuclei of oocytes isolated from pre-antral follicles, from 2-month-old (n = 21 from three mice) and 14-month-old (n = 12 from six mice) mice. Scale bar represents 10μm. Corresponding 3D surface plots show higher Rec8 pixel fluorescence intensity in the 2-month-old compared to 14-month-old oocytes. This experiment was performed in collaboration with Anna Kouznetsova.
Oocytes from young and old mice were used to prepare chromosome spreads at late prometaphase of MI (GVBD+5hr) and stained for CREST (Chromosome spreads were prepared by Lisa Lister). CREST antiserum binds to the centromeric proteins CENP-A, CENP-B and CENP-C (Earnshaw and Cooke, 1989) and subsequent staining with a secondary fluorescent probe produces clearly visible and well-defined centromere foci. Sister centromeres were categorized into three groups; sister centromeres that almost overlap each other and appear as single foci, others that are slightly separated and show as adjacent foci and finally some that appear as two well separated foci (Fig 3.2.A). Classification of numerous sister centromere pairs showed that there were significant ($P<0.001$) differences between young and old mice in all three sister centromere configurations (Fig. 3.2.B), with inter-centromere distance increasing with age. For example, in young oocytes 90% of MI centromeres appeared as “unified”, whereas the respective proportion in old oocytes was just 32%.

In order to eliminate any bias that might have entered the sister centromere classification analysis, I have also measured the distances between sister centromeres. Distances were measured from the outer extremities of the pairs, because sister centromeres were often overlapping. Consistent with our previous observation, I have found that inter-centromere distances significantly ($P<0.001$) increased in old oocytes compared to young oocytes (Fig 3.2.C). Based on these results it could be argued that weakened centromeric cohesion results in loss of the tightly apposed structure of sister centromeres required to promote monopolar attachment of sister centromeres (Haug and Watanabe, 2004). This is consistent with the finding that monopolar attachment in fission yeast requires Rec8 at the core centromere (Yokobayashi and Watanabe, 2005). Thus, it could be proposed that depletion of cohesin at centromeres creates a bias against monopolar attachment by inducing splitting of sister centromeres.
Figure 3.2 Reduced cohesin is associated with splitting of sister centromeres

(A) Representative images of sister centromeres at late prometaphase of M I (GVBD+5h) stained with CREST appearing as unified, adjacent and separated foci. Crest foci surrounded by white boxes are shown in the enlarged images. (B) Graph shows the proportions of centromeres in 2-month-old (n = 360 centromeres; 10 oocytes from four mice) and 14-month-old (n = 293 centromeres; 8 oocytes from six mice) oocytes showing unified, adjacent, and separated sister centromeres. The proportion of unified sister centromeres was significantly (P < 0.001) reduced in 14-month-old oocytes, whereas the proportion of adjacent and separated foci was significantly (P < 0.001) higher compared to 2-month-old oocytes. (C) Graph shows the distance between the outer extremities of CREST signals in 2-month-old (n = 218 centromeres; 10 oocytes from one mouse), and 14-month-old (n = 199 centromeres; nine oocytes from four mice) oocytes. The distance was significantly higher in the 14-month-old compared oocytes (P < 0.001). The calibrated pixel size for the microscope objective is 66.89 nm. This experiment was performed in collaboration with Lisa Lister.
3.4 Mechanisms of cohesin depletion and the role of Sgo2

During anaphase I, cohesin is removed from chromosome arms by separase-mediated cleavage, which is activated by the APC/C pathway (Buonomo et al., 2000; Kudo et al., 2006). Throughout this process, centromeric cohesin is protected from cleavage by shugoshin (Sgo1 in yeast and Sgo2 in mice) (Kitajima et al., 2004). Sgo2 together with PP2A protects centromeric cohesin throughout anaphase I until metaphase II, thus allowing proper bivalent segregation to occur (Riedel et al., 2006; Lee et al., 2008). Upon fertilization and release into anaphase II, centromeric cohesin is removed by separase allowing sister chromatid segregation to occur.

Having established that Rec8 is significantly depleted in aged MI oocytes the next question was whether this might be the result of a “defective” shugoshin protection mechanism. In particular, we decided to focus on Sgo2, which is known to protect centromeric cohesion in mouse oocytes during anaphase I (Llano et al., 2008) and investigate for differences in its levels between young and aged mice.

3.4.1 Sgo2 levels are reduced in aged mouse oocytes

Mature oocytes from 2-month and 14-month old mice were harvested at the GV stage and were allowed to undergo MI. Chromosome spreads were produced at late prometaphase (GVBD+5h) and chromosome-associated Sgo2 and CREST were detected by immunofluorescence (IF) (Chromosome spreads were prepared by Lisa Lister). Subsequent fluorescence analysis showed that Sgo2 levels were reduced on chromosomes of older oocytes (Fig 3.3.A/B).

Interestingly, we found that Sgo2 localises to chromosome arms in young oocytes during prometaphase of MI (Fig 3.3A). As this had not been previously reported, we confirmed specificity of arm staining by performing siRNA-mediated depletion of Sgo2 (Lister et al., 2010). Recruitment of Sgo2 to chromosome arms as well as centromeres raises the possibility that Sgo2 also
functions to protect arm cohesin until the onset of anaphase I. In support of this, data from our lab also indicates that Sgo2 recruits the phosphatase PP2A to arms as well as to centromeres (Lisa Lister, PhD thesis). These results suggest that Sgo2 might protect cohesin even before the onset of anaphase I in mouse oocytes.

![Figure 3.3](image)

Figure 3.3 Age-related decline in chromosome-associated Sgo2 levels

(A) Representative images of chromosome spreads of oocytes at late prometaphase of MI (GVBD+5h) from 2-month-old mice (n = 20 from three mice) and 14-month-old mice (n = 10 from four mice) stained (IF) for Sgo2 and CREST. Sgo2 levels on chromosomes of oocytes from 14-month-old mice appear reduced. Chromosomes surrounded by white boxes are shown in the enlarged images. Scale bar represents 10 μm. (B) 3D surface plots of images in (A) showing higher Sgo2 fluorescence intensity on chromosomes of 2-month-old compared to 14-month-old oocytes. This experiment was performed in collaboration with Lisa Lister.

3.4.2 Sgo2 becomes enriched on chromosomes during the transition from prophase to metaphase of MI

In view of the results presented above, it was of particular interest to investigate the relationship between cohesin and Sgo2 depletion. Therefore, we asked
whether Sgo2 is recruited on the chromosomes during prophase arrest of oocytes. To address this question, chromosome spreads from fully-grown prophase-arrested oocytes were prepared and stained for Sgo2 and CREST, using the same techniques as for prometaphase oocytes. The findings indicate that at this stage most of Sgo2 is localised into the nucleolus and only a small fraction appears to colocalise with DNA (Fig 3.4). For the time being, although it is still unclear at which stage during the oocyte’s development Sgo2 is recruited on the chromosomes, it could positively be argue that Sgo2 localisation on the chromosomes is gradually increased during transition from late prophase to metaphase of MI. Thus, Sgo2 might not be playing its putative protective role during the prolonged prophase-arrest.

![Image of the nucleus of a fully-grown prophase I-arrested oocyte stained (IF) for Sgo2 and CREST, using the same techniques as for prometaphase oocytes. It appears that at this stage most of Sgo2 is localized into the nucleolus with only a small fraction colocalised with DNA.](image)

Figure 3.4 Localisation of Sgo2 in GV-stage mouse oocytes

Image of the nucleus of a fully-grown prophase I-arrested oocyte stained (IF) for Sgo2 and CREST, using the same techniques as for prometaphase oocytes. It appears that at this stage most of Sgo2 is localized into the nucleolus with only a small fraction colocalised with DNA.

3.4.3 Sgo2 levels are reduced in Smc1β−/− mouse oocytes

The next step was to investigate the possibility that the observed recruitment of Sgo2 in oocytes from aged females might as well be a consequence and not exclusively a putative causative factor of cohesin depletion. To assess that, we have used the Smc1β knockout mouse (Revenkova et al., 2004). In mouse meiocytes, Smc1β is involved in maintenance of sister chromatid cohesion, and in Smc1β−/− oocytes defective sister chromatid cohesion has been shown to lead to a massive increase in aneuploidy (Revenkova et al., 2004), which is further amplified by age (Hodges et al., 2005). If Sgo2 levels in Smc1β depleted oocytes are equal with that of Smc1β wild type oocytes, it would imply that levels of
chromosome-associated Sgo2 are independent of the levels of the established chromosome-associated cohesin.

Chromosome spreads from Smc1β+/+ and Smc1β−/− late prometaphase (GVBD+5h) oocytes were prepared and immunolabeled (IF) for Sgo2 and CREST (Chromosome spreads were prepared by Lisa Lister). Analysis of the IF signal has shown that Smc1β−/− oocytes exhibit lower levels of chromosome associated Sgo2 (Fig 3.5.A/B). This indicates that in mouse oocytes, cohesin is either directly or indirectly required for recruitment of Sgo2. This is consistent with results from studies on maze meiosis (Hamant et al., 2005).

Figure 3.5 Reduced levels of chromosome-associated Sgo2 in Smc1β−/− mouse oocytes
(A) Representative images of chromosome spreads of oocytes at late prometaphase (GVBD+5h) from Smc1β+/+ mice (n = 32 from three mice) and Smc1β−/− mice (n = 20 from three mice), stained (IF) for Sgo2 and CREST. Sgo2 levels on chromosomes of Smc1β−/− mice appear reduced. Note loss of bivalent association Smc1β−/− oocytes due to depleted cohesin levels. Chromosomes surrounded by white boxes are shown in the enlarged images. Scale bar represents 10 μm. (B) 3D surface plots of images in (C) showing reduced Sgo2 fluorescence intensity on chromosomes of Smc1β−/− oocytes compared with wild-type oocytes. This experiment was performed in collaboration with Lisa Lister.
3.5 Discussion

This chapter represents an investigation of the hypothesis that cohesin loss during the protracted arrest of oocytes at prophase I is a leading causative factor of age-related aneuploidy. Overall, I have presented evidence that chromosome-associated Rec8 is reduced in growing and fully grown prophase arrested oocytes of aged mice (Fig 3.1) and this decrease correlates with an increase in the distance between sister chromatid centromere during late prometaphase (Fig 3.2). Moreover, we found that Sgo2 becomes enriched on chromosomes during the transition from prophase to metaphase of MI (Fig 3.4) and that this is markedly reduced in oocytes of aged mice (Fig 3.3). Finally, we have shown that Sgo2 is reduced in oocytes of Smc1β−/− mice (Fig 3.5).

3.5.1 Cohesin depletion in oocytes of aged mice

Previous studies investigating the effect of cohesin depletion in vertebrate meiocytes has depended on the introduction of genetic perturbations. Mouse strains deficient for SMC1β and REC8 have been generated, giving rise to sterile female and male mice (Bannister et al., 2004; Revenkova et al., 2004). Rec8−/− spermatocytes exhibited abnormal synapsis and deficiency in sister chromatid cohesion, and in Rec8−/− females the oocyte pool disappeared during embryonic development, thus precluding the use of this strain for research into oocyte ageing (Bannister et al., 2004; Xu et al., 2005). Smc1β KO mice, although they are also sterile, provided evidence that cohesin is a prime candidate for the molecular link between female age and oocyte aneuploidy. This strain exhibits an accelerated age-related loss of oocytes, which almost disappeared after 8 months of age and even young mice exhibit premature loss of sister chromatid cohesion along chromosome arms and at centromeres (Revenkova et al., 2004; Hodges et al., 2005). Importantly, SMC1β deficient oocytes show a striking age-depended destabilisation of chiasmata, resulting in an accumulation of distally associated and separated homologues during metaphase I (Hodges et al., 2005). In a study investigating cohesin behaviour outside the context of genetically
engineered mice, it has been reported that premature sister chromatid separation strongly correlated with reduced levels of chromosome associated REC8, SMC1β and STAG3 in oocytes from older females (Liu and Keefe, 2008). However, the latter study utilized a senescence-accelerated wild-type mouse strain, and since the molecular basis for ageing-acceleration is yet unknown, the conclusion might not describe accurately the mechanisms involved in age-associated loss of cohesion.

Unlike the experimental systems described above, here we have used oocytes of a long-lived, non-mutant mouse model, which we have shown to exhibit age-related loss of cohesin amongst other meiotic defects in oocytes (Lister et al., 2010). The conclusion that oocyte chromosomal cohesin was depleted during female ageing was based on analysis of prometaphase of MI chromosomes (Lister et al., 2010), however, as ageing is characterised by prolonged prophase arrest, a key question was whether cohesin is already depleted during prophase arrest. To test this I have measured colocalisation of Rec8 and DNA in fully grown and growing prophase-arrested oocytes. Compared with prometaphase of MI chromosomes, the chromatin of prophase-arrested oocytes is diffuse and is enclosed in the nucleus (GV). Moreover, the chromatin configuration appeared to vary widely and is probably influenced by transcriptional activity in the growing oocyte. Furthermore, the centromeric CREST signal used to normalize cohesin levels on prometaphase of MI chromosomes, were not distinct in many oocytes. This made it difficult to perform a quantitative assessment of chromosome –associated cohesin levels. To address this problem, I have employed the use of fluorescence intensity 3D surface plots.

My findings (Fig 3.1) indicate that loss of cohesion takes place during the growing phase of prophase-arrested oocytes. What mechanisms could be responsible for this loss? Is cohesin being actively replenished in growing prophase-arrested oocytes or does the oocyte rely just on the cohesin that is
loaded on meiotic chromosomes during fetal development? If the former is true then the observed cohesin loss in aged oocytes would imply a decline in this putative cohesin-reloading process and/or a decrease of cohesin reserves, likely due to impaired expression. Two recent mouse studies have elegantly addressed these questions and have surprisingly shown that cohesin loaded onto chromosomes during fetal development is sufficient to maintain cohesion even in aged oocytes (Revenkova et al., 2010) and that there is little or no cohesin replenishment on meiotic chromosomes during postnatal prophase I arrest (Tachibana-Konwalski et al., 2010). So, considering that low levels of Smc1β transcripts have been detected in growing oocytes (Hodges et al., 2005; Revenkova et al., 2010), and that Rec8 protein levels appear to be similar between young and aged mice (Chiang et al., 2010) the data I present here suggest that de novo cohesin synthesis is insufficient and probably not used for counteracting the depletion of chromosomal cohesion during ageing.

Various assumptions could be made regarding the mechanism(s) responsible for cohesin loss during prophase arrest. It is likely that the observed age-related depletion of cohesin could be due to degeneration of cohesin subunits, for example by oxidative stress. Alternatively, a mechanism that protects cohesin might be in place during prophase arrest and its gradual deterioration during ageing could lead to premature removal of cohesin from chromosomes. It is also conceivable that cohesin removal might be caused by a low background activity of either separase or a meiotic equivalent of the mitotic “prophase pathway”. Prolonged exposure to such a “cohesin-hostile” environment could provide a simple explanation for the cohesion depletion phenomenon in aged oocytes.

The next crucial step in this work is to establish whether cohesin loss is confined to the oocyte growth phase, or whether it is also a feature of primordial oocytes, which represents a relatively quiescent state, in which
oocytes remain for the vast majority of their lifespan. This question is the subject of ongoing research in the lab.

3.5.2 Female ageing is associated with loss of the closely apposed structure of sister kinetochores required for their monopolar attachment

Apart from maintaining the integrity of bivalent and dyad chromosomes until anaphase I and anaphase II, respectively, (Watanabe, 2005) cohesin plays another important role during MI. Studies in fission yeast indicate that cohesin at the core centromere promotes the establishment of monopolar attachment of sister kinetochores on the MI spindle, by keeping sister centromeres closely apposed (Watanabe and Nurse, 1999; Sakuno and Watanabe, 2009). Studies in plants have also provided similar evidence supporting the role of centromeric cohesin in the establishment of correct Kt-Mt attachments during MI (Chelysheva et al., 2005; Li and Dawe, 2009).

The depletion of cohesin in aged mouse oocytes (Lister et al., 2010) prompted us to investigate whether sister centromeres have lost their tight association. Indeed, based on centromere staining, I have shown here that the majority of sister centromeres in aged oocytes appear as two distinct foci, whereas in young oocytes they are predominantly merged into a single focus (Fig 3.2.A/B). By measuring the distance between the extremities of the CREST signals at sister centromeres, I found that the inter-centromeric distance is increased in aged oocytes compared to young ones (Fig 3.2.C). These results are consistent with findings in another naturally aged mouse strain (Chiang et al., 2010) and indicate that reduced centromeric cohesin levels at MI are associated with a failure of sister centromeres to maintain their tightly apposed structure. Given the importance of centromeric cohesion for correct Kt-Mt attachments in other organisms, it is likely that separation of sister Kts during prometaphase of MI creates a bias against monopolar attachment of sisters. In support of this, live-cell imaging of oocyte chromosomes during progression through MI, revealed
that the majority of oocytes from aged mice showed anaphase defects ranging in severity, from a single lagging chromosome, to large clumps of chromatin trapped in the spindle mid zone (Lister et al., 2010). These defects are considered to be the hallmark of erroneous Kt-Mt attachments (Sakuno et al., 2011). Thus, splitting of sister centromeres may be a major contributor to age-related missegregation during MI, by creating unpropitious prospects for stable biorientation and segregation of homologous chromosomes.

3.5.3 The role of Sgo2 in cohesin depletion
Mouse Sgo2 has been shown to be essential for protecting centromeric cohesin during anaphase I (Lee et al., 2008; Llano et al., 2008). Several lines of evidence indicate that cohesin is lost from centromeres in oocytes from aged mice. First, immunofluorescence labeling revealed reduced levels of centromeric Rec8 in oocytes of aged mice (Lister et al., 2010). Second, complete loss of centromeric cohesion leading to premature separation of sisters was prevalent in MII oocytes from aged mice (Lister et al., 2010). Moreover, the increased distance between sister centromeres discussed above is likely linked to cohesin depletion at centromeres. Together these findings raise the possibility that the mechanisms responsible for protecting cohesin at centromeres are compromised during female ageing. To address this we have measured and compared the levels of chromosome associated Sgo2, between young and aged oocytes. Our findings indicate that Sgo2 is actually massively reduced in aged oocytes (Fig 3.3).

Interestingly, we found that Sgo2 localises to chromosome arms in young oocytes during prometaphase of MI (Fig 3.3A). Unpublished live-cell imaging data (Ahmed Rattani; Nasmyth Lab) also suggest that Sgo2 localises along the entire chromosome during prometaphase I and is gradually restricted to the centromere prior to anaphase I. It is conceivable that Sgo2 and its partner PP2A
might be protecting arm cohesin to ensure timely removal by separase during exit from MI. Possible mechanisms by which cohesin might be removed before the onset of anaphase I, could involve phosphorylation of cohesin subunits promoting its dissociation in a prophase pathway-like manner.

The above data raised the possibility that Sgo2 might be protecting cohesin prior to anaphase I. However, my findings indicate that Sgo2 becomes enriched on chromosomes during the transition from prophase to metaphase of MI (Fig 3.4), indicating that it is recruited at this stage. Therefore, although we cannot exclude the possibility that Sgo2 might move on and off the chromosomes during prophase arrest, the data suggest Sgo2 is unlikely to be guarding cohesin’s integrity during prophase arrest.

Finally, in this chapter we have shown that the level of chromosome-associated Sgo2 was reduced in oocytes of Smc1β−/− mice (Fig 3.5). This observation, consistent with findings in maize meiosis (Hamant et al., 2005), suggests that Sgo2 depletion could be a consequence of cohesin loss. Therefore, we propose a model where cohesin loss during prophase arrest impairs recruitment/retention of Sgo2 during prometaphase I, thereby amplifying further cohesin depletion during prometaphase I. This could subsequently lead to cohesin depletion below the 10% threshold (Chiang et al., 2010), thus promoting chromosome missegregation. Given that recruitment of Sgo2 to centromeres appears to be regulated by various factors, including Bub1 (Kitajima et al., 2004; Huang et al., 2007) and Aurora B (Huang et al., 2007) kinase activities, and that recently MAD2 was identified to interact with SGO2 in human and X. laevis (Orth et al., 2011), our observation that Sgo2 is depleted in aged oocytes actually raises many questions regarding its etiology and possible repercussions.
Chapter 4. Characterisation of Plk1 mediating chromosome segregation during Meiosis I of the mouse oocyte

4.1 Introduction

Mammalian oocytes arrest at prophase of meiosis I (MI) during embryonic development and only resume meiosis when they receive the appropriate ovulatory cues. Meiotic resumption leads to a reductional chromosome segregation followed by an immediate entry into meiosis II (MII), without an intervening round of DNA replication, and a subsequent arrest at metaphase. Upon fertilisation MII resumes leading to an equatorial chromosome segregation, after which the zygote enters interphase. Meiotic resumption and passage through the two rounds of chromosome segregation of meiosis demands a high level of coordination of cellular processes to ensure accurate chromosome segregation and to prevent aneuploidy. Synchronization of meiotic events is achieved through an intrinsically complex interplay of interconnected regulatory pathways, where kinases and phosphatases play central roles. Cyclin-dependent kinases (Cdks), Aurora kinases and Polo-like kinases (Plks) are key to regulating various meiotic processes including meiotic arrest/progression, chromosome dynamics and spindle assembly/disassembly. This chapter focuses on the role of Plk1 during MI.

A significant step in uncovering the roles of Plk1 during mitosis has been the recent development and application of specific small-molecule inhibitors allowing acute inactivation of Plk1. The dihydropteridinone BI 2536, an ATP-competitive drug, is currently the best-established small-molecule inhibitor of Plk1 (Lenart et al., 2007; Steegmaier et al., 2007). It exhibits a potent and highly selective function as it can inhibit Plk1 in vitro with an IC50 of 0.83nM, while showing negligible activity against a panel of 63 other kinases (Steegmaier et al., 2007). There are several advantages in the use of BI 2536 to study Plk1 function during meiosis. Firstly, it is highly penetrant and acts fast, thus allowing precise
temporal control of Plk1 inhibition at any desired stage. Moreover, it can be combined with other treatments, its effect is reversible and by varying the applied dose, various phenotypes could be revealed. Importantly, although it inhibits the enzymatic function of Plk1, it still allows the kinase to function as a scaffold for protein-protein interactions, which would not be feasible if other methods of inactivation, such as RNA interference or genetic modification, were applied (Taylor and Peters, 2008).

Previous studies have shown that the activity of Plk1 increases during meiotic maturation, but little is known about its function in oocytes. This chapter aims to perform a functional analysis of Plk1 in mammalian oocytes. To achieve that the chemical inhibitor of Plk1, BI 2536 has been used in combination with indirect immuno-fluorescence (IF) staining and live-cell imaging of oocytes injected with mRNAs encoding fluorescent proteins.

4.2 Plk1 is recruited to the kinetochore after release from prophase I arrest
Enzymes do not just wander aimlessly inside the cell. Their localisation is directly associated and indicative of their function and vice versa. Therefore, a first step in investigating the role of Plk1 during meiotic maturation was to identify its localisation. To achieve that, fully-grown oocytes from CD1 mice were harvested at the GV stage and were allowed to undergo MI. Chromosome spreads were produced using oocytes at the GV-stage, early prometaphase I, late prometaphase I and Met-II arrest (Fig 4.1).
Figure 4.1 Experimental design.
Diagrammatic representation of the experimental methodology. Mature prophase arrested oocytes were harvested from CD1 mice and were allowed to undergo MI in media with or without BI 2536.

IF staining against Plk1 and CREST revealed that Plk1 is localised near the CREST foci at the GV-stage (Fig 4.2A), to the centromere of prometaphase I chromosomes (Fig 4.2B,C) and to the centromere of Met-II arrested chromosomes (Fig 4.2D), albeit at much lower levels compared to centromeric prometaphase I levels. A first look of the chromosome spreads at prometaphase I gives the impression that Plk1 shows both inner- and outer-centromere localisation. However, upon closer inspection Plk1 foci actually appear to have a common orientation on each individual chromosome spread (e.g. in Fig 4.2B they all “look” south, whereas in Fig 4.2C they all “look” west). This orientation suggests that Plk1 is localised to the kinetochore, which during the process of chromosome spreading may collapse on either side of the centromeric CREST foci, thus giving the wrong impression of being at the inner-centromere region of chromosomes. Similar observations were made for Met-II stage chromosome spreads, suggesting that during that stage of meiosis Plk1 is also localised to the kinetochore region of chromosomes.
Figure 4.2 Plk1 is enriched at the centromere upon meiotic resumption.

(A) Images show the nucleus of a prophase-arrested (GV-stage) oocyte. Representative images show DNA, Plk1, and CREST staining in the nucleus of a fully-grown GV-stage oocyte (n = 7 oocytes from three mice). (B) Representative images showing DNA, Plk1, and CREST staining of chromosome spreads prepared during early prometaphase of MI (GVBD + 2 hr). (C) Representative images showing DNA, Plk1, and CREST staining of chromosome spreads prepared during late prometaphase of MI (GVBD + 5 hr). (D) Representative images showing DNA, Plk1, and CREST staining of chromosome spreads prepared at the MetII-arrest stage. Notably, samples had to be exposed to the appropriate excitation wavelength for longer compared to (B) and (C) in order to “visualise” the Plk1 signal at the centromere of Met-II oocytes. Plk1 and CREST foci (A) and chromosomes (B, C, D) surrounded by white boxes are shown in the enlarged images. Scale bars represent 10 μm.
4.3 BI 2536 does not prevent recruitment of Plk1 to the kinetochore during MI

Next step was to assess the effect of BI 2536 on chromosome localisation of Plk1. Fully-grown oocytes from CD1 mice were harvested at the GV stage and were allowed to undergo MI in media supplemented with 6.25nM BI 2536 (Fig 4.1). Chromosome spreads were prepared using oocytes at early and late prometaphase of MI. Staining against Plk1 and CREST revealed that Plk1 localised to the kinetochore of prometaphase I chromosomes (Fig 4.3). These results suggest that the concentration of BI 2536 used here does not prevent recruitment of Plk1 to the kinetochore during meiotic resumption.

Interestingly, the chromosomes of BI 2536-treated oocytes were characterised by extremely short chromosome arms (e.g. Fig 4.3.B/enlarged image). As it will be shown in later images (Fig 4.6), this hyper-condensation effect became more severe as the concentration of BI 2536 increased. This observation is consistent with previous studies describing chromosome condensation defects when Plk1 function was perturbed (Losada et al., 2002; Gimenez-Abian et al., 2004; Jeong et al., 2010). These results suggest that Plk1 kinase activity is required to curtail chromosome condensation.

Figure 4.3 BI 2536 does not prevent recruitment of Plk1 to the kinetochore during MI.

Representative images showing DNA, Plk1, and CREST staining of chromosome spreads prepared using oocytes cultured in media supplemented with 6.25nM BI 2536 (A) during early prometaphase (GVBD + 2 hr) and (B) late prometaphase (GVBD + 5 hr) of MI. Chromosomes surrounded by white boxes are shown in the enlarged images. Scale bars represent 10 μm.
4.4 BI 2536 does not affect the timing of entry into prometaphase of MI in mouse oocytes

Previous studies on somatic cells have reported that BI 2536 causes a significant delay in Nuclear Envelope Breakdown (NEB) during mitosis. In order to assess if BI 2536 has a similar effect on GVBD (entry into prometaphase) during oocyte MI, I performed a series of *in vitro* dose-response experiments.

4.4.1 Effect on the timing of GVBD with short exposure to BI 2536

Fully-grown oocytes from CD1 mice were harvested at the GV stage and were allowed to undergo MI in control medium and medium supplemented with 3/4/6.25/12.5 and 25nM BI 2536. Under control conditions, GVBD normally occurs within 1h of removal from IBMX, which maintains arrest at the GV stage by inhibiting cAMP phosphodiesterases and maintaining high cAMP levels inside the oocyte (Schultz *et al.*, 1983). Moreover, based on empirical observations, oocytes that undergo GVBD within 1 to 2 hours of removal from IBMX are competent to successfully reach the MetII arrest stage.

In this set of experiments the percentage of oocytes in each group that underwent GVBD within 1.5-2h varied in the range of 75-100% (Fig 4.4A) and statistical analysis showed that the concentrations of BI 2536 used had no significant effect on the timing of GVBD (*P*>0.05).

Thus, consistent with what has been observed previously (Vanderheyden *et al.*, 2009), the tested BI 2536 concentrations do not cause a delay in GVBD in oocyte meiosis.

4.4.2 Effect on the timing of GVBD with prolonged exposure to BI 2536

Small molecule chemical inhibitors such as BI 2536 are generally highly penetrant and exhibit a rapid biochemical effect even at low concentrations
(Steegmaier et al., 2007). In order to eliminate the possibility that absence of an effect on GVBD timing might be due to delayed action of BI 2536, I decided to prolong the exposure to BI 2536 to 48h, prior to releasing the oocytes from prophase arrest.

Fully-grown prophase arrested oocytes were harvested from CD1 mice and were cultured in control medium and medium supplemented with 6.25nM BI 2536. Both media were also supplemented with IBMX in order to keep oocytes arrested at prophase of MI. After 48h of incubation oocytes were transferred to control medium and medium supplemented with 6.25nM BI 2536, and were allowed to resume MI. The average percentage of oocytes in each group that underwent GVBD within 1.5-2h varied between 80% and 100% (Fig 4.4B). Statistical analysis of these results showed that prolonged incubation at 6.25nM BI 2536 did not impede the transition from prophase-arrest (GV) to prometaphase of MI compared to control (P=0.5).

Moreover, comparing these results with the previous relevant results (i.e. Control, 6.25nM BI 2536) from short exposure to BI 2536, leads to the conclusion that GVBD timing remains unaffected with either short or prolonged exposure to 6.25nM BI 2536 (P>0.05).
Figure 4.4 BI 2536 does not affect the timing of entry into prometaphase of MI
(A) Average percentage of oocytes undergoing GVBD in 1.5-2h at various BI 2536 concentrations: Control, 92.87% (±7.47% SD); 3nM BI2536, 100% (±0% SD); 4nM BI 2536, 94.88% (±2.19% SD); 6.25nM BI 2536, 88.33% (±10.57% SD); 12.5nM BI 2536, 90.26% (±9.22% SD); 25nM BI 2536, 87.79% (±15.75% SD). No significant difference was observed between the different groups (P>0.05). (B) Average percentage of oocytes undergoing GVBD in 1.5-2h after exposure to 6.25nM BI 2536 for 48h: Control, 88.33% (±6.41% SD); 6.25nM BI 2536, 93.75% (±10.82 SD). No significant difference was observed between the two groups (P=0.5). Errors bars indicate ±SD.
4.5 BI 2536 inhibits exit from MI in a dose-dependent manner

Once I established that prolonged exposure to BI 2536 was not necessary to exert its effect, the next step was to investigate for possible effects on the ability of oocytes to exit MI and extrude their first PB. As previously, fully grown, prophase arrested oocytes from CD1 mice were harvested and were allowed to progress through MI in control medium and medium supplemented with 3/4/6.25/12.5 and 25nM BI 2536. After 20h of culture, oocytes that had completed MI, as assessed by the presence of the first PB, were scored in each group. I also prepared chromosome spreads to verify the scored numbers and avoid mistakes due to oocytes retracting their PBs. Under normal conditions, the first PB extrusion occurs 10-12h after release from prophase arrest.

In this set of experiments, concentration as low as 3nM and 4nM BI2536 did not have an effect on the ability of oocytes to exit MI, compared with control oocytes ($P>0.05$) (Fig 4.5). However, at higher concentrations the proportion of oocytes in each group that did not exit MI increased in a dose-dependent manner, ranging from 54.76% (\pm16.84% SD) in 6.25nM to 100% in 25nM BI 2536 ($P<0.05$) (Fig 4.5).

Overall, these results indicate that BI 2536 inhibits exit from MI in a dose-dependent manner, with 25nM producing a fully penetrant phenotype.
Figure 4.5 BI 2536 inhibits exit from MI in a dose-dependent manner

The graph shows the average percentages of oocytes that exit MI and arrest at MI with increasing concentrations of BI 2536: Control, 14.09% (±18.64% SD); 3nM BI 2536, 24.29% (±6.06% SD); 4nM BI 2536, 16.53% (±13.28% SD); 6.25nM BI 2536, 54.76% (±16.84% SD); 12.5nM BI 2536, 81.62% (±21.24% SD); 25nM BI 2536, 100% (±0% SD). Statistical analysis of these results showed a significant difference between the following groups: Control vs. 6.25/12.5/25nM; 3/4nM vs. 12.5/25nM; 25nM BI 2536 vs. 25nM (P<0.05). Notably, 25nM of BI 2536 are adequate to produce a fully penetrant phenotype. Error bars indicate ±SD.

4.5 Oocytes arrested in MI in the presence of BI 2536 do not undergo anaphase.

Previous studies have shown that BI 2536 can inhibit mitotic M-phase at different stages depending on the timing of application; early application could inhibit anaphase, whereas late application may allow anaphase and inhibit cytokinesis (Taylor and Peters, 2008). Could a mixture of these phenotypes arise in the subset of oocytes that arrest in MI? In other words, a visual microscopic assessment was not sufficient to classify an MI arrested oocyte, as anaphase might have occurred, but without being followed by cytokinesis and subsequent polar body extrusion. In order to assess at which stage of MI the BI 2536-treated oocytes were arrested, I produced chromosome spreads and IF stained them against CREST. The results revealed the presence of intact bivalents (Fig 4.6) in MI arrested oocytes in all tested BI 2536 concentrations. This clearly suggests that in this particular subset of oocytes, which arrest in MI in the presence of BI 2536, the mechanism of anaphase is inhibited.
Figure 4.6 BI 2536 inhibits anaphase I
(See legend on next page)
4.5.1 BI 2536 increases inter-centromere distance during prometaphase of MI

In previous immunofluorescence staining experiments I noticed from the CREST staining that sister centromeres appear to be further apart during late prometaphase of MI (GVBD+5hr) in oocytes treated with BI 2536 compared to control oocytes (Fig 4.3). This observation suggested that centromeric cohesion, which is required to closely appose sister kinetochores for accurate monopolar sister kinetochore-spindle attachment to be established (Sakuno and Watanabe, 2009) might be weakened in BI 2536-treated oocytes. However, as it will be shown in the next chapter this does not appear to be the case. Nevertheless, such disrupted sister centromere configurations could lead to erroneous Kt-Mt attachments, which might be the underlying cause of the observed prometaphase I arrest.

In order to examine for a possible disruption in sister centromere integrity, the inter-centromeric distances were measured and compared between late prometaphase I (GVBD+5h) control oocytes and oocytes matured in media supplemented with 6.25nM BI 2536 (Fig 4.7.A). Distances between sister centromeres were measured by identifying the peaks of CREST fluorescence (Fig 4.7.B; each peak represents the center of a sister centromere) and calculating the distance between them. Consistent with our previous observation, it was found that inter-centromere distances significantly ($P<0.05$) increased in BI 2536 treated oocytes compared to control oocytes (Fig 4.7.C). These results indicate that the close apposition of sister centromeres, which is required for the establishment of monopolar sister kinetochore-microtubule attachment (Hauf and Watanabe, 2004; Brar and Amon, 2008), is affected in oocytes in the presence of BI 2536.
Figure 4.7 BI 2536 increases inter-centromere distance in prometaphase of MI

(A) Representative images showing DNA and CREST staining of chromosome spreads prepared from control and 6.25nM BI2536-treated oocytes, at late prometaphase I (GVBD+5h). Scale bars represent 10μm. (B) The outlined regions in A enlarged with DNA omitted. Plotted is the intensity profile of the CREST (red) signal measured along a line (white) drawn across the centromere. Δx represents inter-centromere distance. (C) Frequency distribution of the distance between sister centromeres (Δx), measured from the CREST signals in control (n = 113 centromeres; 4 oocytes from three mice) and BI 2536-treated (n = 134 centromeres; four oocytes from three mice) oocytes, showing a significantly greater mean distance in the 6.25nM BI 2536-treated compared with control oocytes (P < 0.05).
4.5.2 BI 2536 increases the number of erroneous Kt-Mt attachments at prometaphase of MI

In view of the increased distance between sister centromeres, I next asked whether the establishment of Kt-MT attachments is disrupted in BI 2536-treated oocytes. To address this question, control oocytes and oocytes cultured in medium supplemented with 6.25nM or 25nM BI 2536 were briefly treated with Ca^{2+}-buffer and fixed shortly prior to anaphase (GVBD+6h). As kinetochore microtubules (K-fibers) are differentially stable to Ca^{2+}-buffer treatment in comparison to non-kinetochore microtubules, a short treatment allows an easier assessment of Kt-Mt attachments. Following IF staining against CREST and α-Tubulin, images of the whole spindle were acquired by means of scanning confocal microscopy.

One of the first observations was that in contrast to findings in mitosis, where BI 2536 induces the formation of monopolar spindles (Lenart et al., 2007), the meiotic spindle geometry appears to remain overall unaffected at the BI 2536 concentrations used in this study (Fig 4.8.A/B).

Next step was to determine the effect of BI 2536 on chromosome congression/alignment. To achieve this, bivalents were individually assessed for congression, by measuring the distance of their kinetochores from the spindle equator. Bivalents with both pairs of sister kinetochores situated further than 4µm of the spindle equator were classified as non-aligned, and those with both pairs of kinetochores inside this radius were classified as aligned (Fig. 4A). Results indicate that maturation in 25nM BI 2536-supplemented medium leads to significant congression defects at late prometaphase of MI (P<0.05; Fig 4.8.C).

Further analysis of the oocytes cultured in 25nM BI 2536 revealed that almost 57% of them exhibited severe bivalent misalignment (Fig 4.8.D), having at least
one bivalent with all four centromeres attached to a single pole (Fig 4.8.E/"Failed"). In addition, the increased distance between sister centromeres in the presence of BI 2536 (Fig 4.8.F/25nMBI2536/"Monopolar”2, 3) was also evident from these whole mount preparations, consistent with the data obtained previously from chromosome spreads (Fig 4.7).

Overall, these data indicate a dose-dependent effect of BI 2536 on the establishment of correct Kt-Mt attachments indicating the Plk1 kinase activity is required to promote bipolar attachment of bivalents. This raises the possibility that inhibition of anaphase by BI 2536 might be due to activation of the SAC.
Figure 4.8 BI 2536 increases the frequency of erroneous Kt-Mt attachments at late prometaphase of MI.

(See legend on next page)
Figure 4.7 BI 2536 increases the frequency of erroneous Kt-Mt attachments at late prometaphase of MI

(A) Schematic representation of a meiotic spindle in late prometaphase of MI. Bivalents with all kinetochores being further than 4μm from the spindle equator were classified as non-aligned; λ indicates the measured spindle length. (B) Graph showing spindle length at late prometaphase of MI (GVBD+6h) in control oocytes and oocytes cultured in media supplemented with 6.25/25nM BI 2536: Control, 25.95μm (±3.5μm SD); 6.25nM, 24.38μm (±3.3μm SD); 25nM, 24.83μm (±2.3μm SD). No significant differences were observed between analysed groups (P≥0.05); red lines indicate individual mean values. (C) Graph showing number of non-aligned bivalents at late prometaphase of MI (GVBD+6h) in control oocytes and oocytes cultured in media supplemented with 6.25 or 25nM BI 2536: Control, 0.12(±0.6 SD); 6.25nM, 0.78 (±1.6 SD);25nM, 1.9 (±1.9 SD). Asterisk indicates groups exhibiting significant difference from one another (P<0.05); red lines indicate individual mean values. (D) Graph showing the percentages of oocytes with aligned and non-aligned bivalents in the 25nM BI 2536 group from (C). Oocytes with non-aligned bivalents are further categorized into “Mild” and “Severe” misalignment groups. Oocytes with a bivalent attached to a single pole (e.g. Failed in (F)) were classified as exhibiting “Severe” misalignment. (E) Representative images showing DNA, CREST and α-Tubulin staining of oocytes at late prometaphase (GVBD+6h) after maturation in control media or media supplemented with 25nM BI 2536. Prior to fixation, oocytes were briefly treated with Ca²⁺-buffer. The top row shows maximum intensity Z projection images across the whole spindle, whereas the bottom row shows Z projection images of four selected sections from the same oocytes. Numbered circled regions indicate the kinetochores magnified in (E). Scale bars represent 1μm. (F) Enlarged images showing examples of kinetochore-microtubule attachments in the oocytes shown in (D). Kinetochore-microtubule attachments are classified into three categories: Monopolar (green), Undefined (yellow) and Failed (red). The images are colour-coded according to these categories. Note the increased inter-centromeric distance in BI 2536-treated oocytes (Monopolar-2, 3), where the 2 K-fibers can be distinguished from one another, compared to control oocytes, where the 2 K-fibers appear as one.

4.6 Plk1 is required for efficient activation of APC/C^Cdc20 during exit from MI.

4.6.1 BI 2536 inhibits securin degradation in MI.

In mitotic cells the SAC acts as a surveillance mechanism to ensure that the onset of anaphase is delayed until all chromosomes establish stable bipolar kinetochore microtubule attachments (Peters, 2006). The wait-anaphase signal generated from unattached Kts inhibits APC/C-mediated degradation of cyclin B and securin, thereby inhibiting activation of separase-mediated cleavage of cohesin (Musacchio and Salmon, 2007). Studies in oocytes indicate that the timing of cyclin B and securin degradation required for the onset of anaphase of MI (Herbert et al., 2003), is regulated by the SAC (Homer et al., 2005b; McGuinness et al., 2009).
Having established that BI 2536 severely compromises chromosome attachment and alignment, the next step was to investigate whether inhibition of anaphase in the presence of 25nM BI 2536 was a consequence of sustained activation of the SAC in the presence of erroneous Kt-Mt attachments. To address this question, fully-grown prophase-arrested CD1 oocytes were co-injected with mRNA encoding securin-YFP and H2B-RFP and were imaged by time-lapse microscopy during maturation in control or 25nM BI 2536-supplemented media, for approximately 16h (Fig 4.9.A). For these experiments, I used 25nM of BI 2536, because this concentration produced a single phenotype, where all oocytes arrest at prometaphase of MI (Fig 4.5). Analysis of the time-lapse movies showed that in control oocytes securin-YFP fluorescence declines about 6h post-GVBD (Fig 4.9.B/C), prior to anaphase and subsequent polar body extrusion (PBE) at 8.3h (±1.15h SD) post-GVBD (Fig 4.9.C). In contrast, in BI 2536-treated oocytes, securin-YFP FI does not decline (Fig 4.9.B/D) indicating that BI 2536 inhibits degradation of securin and subsequently the onset of anaphase and PBE (Fig 4.9.D). However, in contrast to control oocytes, securin-YFP did not accumulate during progression through prometaphase I. This could be due either to a low level of degradation or to suppression of translation of securin-YFP mRNA.
Figure 4.9 BI 2536 inhibits the degradation of securin in late metaphase of MI

(A) Schematic representation of experimental design: CD1 oocytes were co-injected with mRNA encoding securin-YFP and H2B-RFP. Following recovery oocytes were examined by time-lapse microscopy during progression through MI in control or BI 2536-supplemented medium, for approximately 16h. (B) Securin-YFP average fluorescence intensity (FI) in control (black) and 25nM BI 2536-treated (red) oocytes was measured at each time-point and background FI was subtracted. The values were normalised relative to that of GVBD (0h), and their mean values at each time-point were plotted against time. Securin-YFP degradation is inhibited in the presence of BI 2536. Errors bars indicate ±SD; AU, arbitrary units; PBE, polar body extrusion; n, oocyte number. (C) Selected DIC, RFP and YFP time-lapse images of a representative control oocyte at the indicated time-points. (D) Selected DIC, RFP and YFP time-lapse images of a representative 25nM BI 2536-treated oocyte at the indicated time-points. Note the absence of efficient securin degradation and PBE.
4.6.1 BI 2536 inhibits the activation of APC/CCdc20 in MI.

According to the latter results BI 2536 inhibits the degradation of securin in late metaphase of MI, indicating that the APC/C is not efficiently activated. However, they do not provide proof that this is mediated by sustained activation of the SAC. Could BI 2536 have a SAC-independent inhibitory effect on the APC/C? To answer that, it was necessary to find a way to bypass the SAC and that was achieved by employing a mutant form of the APC/C activator Cdc20, known as Cdc20R132A (Fig 2.2). According to the currently prevalent model of SAC activation, unattached kinetochores cause the formation of the mitotic checkpoint complex, a complex comprising the checkpoint proteins Mad2, Bub3, BubR1 and Cdc20, which sequesters Cdc20, thus inhibiting APC/C from targeting cyclin B and securin for degradation (Musacchio and Salmon, 2007). Recent studies have identified the binding domain of Cdc20 on Mad2 and a point mutation in that domain (R132A) has been shown to allow robust binding to APC/C, but prevent binding with Mad2 (Zhang and Lees, 2001; Ge et al., 2009). In other words, Cdc20R132A can activate the APC/C and promote anaphase without being given the “ok” signal from the SAC.

To test the ability of Cdc20R132A to bypass the SAC in oocytes, I asked whether it could degrade securin the presence of the drug nocodazole, which activates the oocyte SAC by depolymerising microtubules (Wassmann et al., 2003). Fully-grown prophase-arrested CD1 oocytes were co-injected with mRNA encoding securin-YFP, H2B-RFP and wild type Cdc20 (control group) or Cdc20R132A (test group) and were imaged by time-lapse microscopy during maturation in nocodazole-supplemented media, for approximately 16h (Fig 4.10). Analysis of the time-lapse movies showed that, in control oocytes exogenous securin is accumulated (Fig 4.10.A/B). This is consistent with sustained activation of the oocyte SAC in the presence of nocodazole (Wassmann et al., 2003). In contrast, in Cdc20R132A-injected oocytes, exogenous securin is degraded (Fig 4.10.A/C).
Considering that in oocytes injected with Cdc20^{R132A}-encoding mRNA, the timing of APC/C activation is unregulated, it would be reasonable to expect differences in the kinetics of securin degradation between individual oocytes as it could initiate any time during prometaphase of MI. Nevertheless, the results indicate that Cdc20^{R132A} is capable of bypassing the SAC to activate APC/C in mouse oocytes.

The next step was to use Cdc20^{R132A} to determine whether inhibition of APC/C during exit from MI in the presence of BI 2536 was due to sustained activation of the SAC. Therefore, fully-grown prophase-arrested CD1 oocytes were co-injected with mRNA encoding securin-YFP, H2B-RFP and wild-type Cdc20 or Cdc20^{R132A} and were monitored by time-lapse microscopy in the presence of nocodazole and 25nM BI2536 supplemented medium, for approximately 16h (Fig 4.11). As expected, oocytes injected with wild-type Cdc20 accumulated exogenous securin (Fig 4.11.A/B) in the presence of nocodazole. Surprisingly, in Cdc20^{R132A}-injected oocytes, exogenous securin was also stable, despite the ability of Cdc20^{R132A} to override the SAC and activate the APC/C (Fig 4.11.A/C). These results indicate that the SAC is not the sole cause of prometaphase arrest in the presence of BI 2536. Although we cannot rule out the SAC, it is clear that another mechanism, which involves inhibition of the APC/C is in play.
Figure 4.10 Cdc20R132A allows degradation of securin in the presence of nocodazole.

(A) Securin-YFP levels of representative oocytes (5 per group) co-injected with mRNA encoding securin-YFP, H2B-RFP and Cdc20WT (grey, n=8) or securin-YFP, H2B-RFP and Cdc20R132A (red, n=7) and examined by time-lapse microscopy during progression through MI, in nocodazole-supplemented media. Securin-YFP mean fluorescence intensity (MFI) in oocytes was measured at each time-point and background FI was subtracted. The values were normalised relative to that of GVBD (0h), and plotted against time. Securin-YFP degradation is inhibited in oocytes injected with Cdc20WT in the presence of nocodazole, whereas it is allowed in Cdc20R132A-injected oocytes. Bold curves indicate oocytes shown in (B) and (C). AU, arbitrary units. (B, C) Selected DIC, RFP and YFP time-lapse images of the oocytes whose securin-YFP levels are illustrated by bold curves in (A), at the indicated time-points before and after GVBD in hours. Note securin-YFP degradation in (C).
Figure 4.11 BI 2536 inhibits degradation of securin in Cdc20^{R132A}-injected oocytes in the presence of nocodazole.

(A) Securin-YFP levels of representative oocytes (5 per group) co-injected with mRNA encoding securin-YFP, H2B-RFP and Cdc20^{WT} (grey, n=6) or securin-YFP, H2B-RFP and Cdc20^{R132A} (red, n=7) and examined by time-lapse microscopy during progression through MI, in medium supplemented with nocodazole and 25nM BI 2536. Securin-YFP mean fluorescence intensity (MFI) in oocytes was measured at each time-point and background FI was subtracted. The values were normalised relative to that of GVBD (0h), and plotted against time. Securin-YFP degradation is inhibited even in oocytes injected with Cdc20^{R132A}. Bold curves indicate oocytes shown in (B) and (C). AU, arbitrary units. (B, C) Selected DIC, RFP and YFP time-lapse images of the oocytes whose securin-YFP levels are illustrated by bold curves in (A), at the indicated time-points before and after GVBD in hours.
4.6.2 Exogenous cyclin B1 relieves inhibition of securin degradation in the presence of BI 2536.

Based on the latter observations, the effect of Plk1 inhibition on the APC/C is not mediated solely by the SAC. To determine whether this is a securin-specific effect or if BI 2536-treatment also affects the degradation of other APC/C/Cdc20 substrates, we monitored the kinetics of ectopically expressed RFP-tagged cyclin B1 during progression through MI in the presence of BI 2536.

Fully-grown prophase-arrested CD1 oocytes were co-injected with mRNA encoding cyclin B1-RFP and securin-YFP and were monitored by time-lapse microscopy during maturation in control medium or medium supplemented with 25nM BI 2536 (Fig 4.12). Analysis of the time-lapse movies showed that in control oocytes degradation of exogenous securin and cyclin B1 is initiated at 4.8h (±1.5h SD) post-GVBD and continues until PBE, which is followed by reaccumulation of exogenous securin and cyclin B1 (Fig 4.12.A/B/C). Rather expectedly, in BI 2536-treated oocytes, exogenous securin and cyclin B1 do not accumulate as much as in controls and their degradation is initiated earlier, at 2.9h (±1h SD) post-GVBD (Fig 4.12.A/B/D). Moreover, degradation appears less abrupt, compared to controls, and continues until it reaches a baseline level (about 9h post-GVBD), without leading to anaphase or PBE during the experimental time-frame (Fig 4.12.A/B/D). Finally, in contrast to controls, no reaccumulation of exogenous securin and cyclin B1 is observed (Fig 4.12.A/B/D). These data indicate that overexpression of exogenous cyclin B1 partially relieves inhibition of APC/C/Cdc20 in the presence of BI 2536.

Additional experiments involving microinjection of exogenous mRNA encoding a mutant cyclin B1, which does not bind to Cdk1 [namely, cyclin B1Y170A (Bentley et al., 2007)], would allow us to test the hypothesis that the partial rescue was due to increased Cdk1 activity associated with overexpression of cyclin B1.
Figure 4.12 Exogenous cyclin B1 relieves inhibition of securin degradation in the presence of BI 2536.

(A) Cyclin B1-RFP and (B) securin-YFP levels of representative oocytes (5 per group) co-injected with mRNA encoding cyclin B1-RFP and securin-YFP and examined by time-lapse microscopy during progression through MI in control medium (grey) or medium supplemented with 25nM BI 2536 (red). Cyclin B1-RFP and securin-YFP mean fluorescence intensities (MFI) in oocytes were measured at each time-point and background FI was subtracted. The values were normalised relative to that of GVBD (0h), and plotted against time. Securin-YFP degradation is rescued in oocytes co-injected with cyclin B1-RFP in the presence of BI 2536. Bold curves indicate oocytes shown in (C) and (D). AU, arbitrary units; n, number of oocytes. (B, C) Selected DIC, RFP and YFP time-lapse images of the oocytes whose cyclin B1-RFP and securin-YFP levels are illustrated by bold curves in (A) and (B), at the indicated time-points before and after GVBD in hours.
4.7 Discussion

In this chapter I have aimed to perform a functional analysis of Plk1 in mammalian oocytes. To achieve that I have used BI 2536, a chemical inhibitor of Plk1, in various concentrations and in combination with indirect immunofluorescence staining and live-cell imaging of oocytes injected with mRNAs encoding fluorescent proteins. I have provided evidence that Plk1 is recruited to the kinetochore region upon release into prometaphase and its recruitment is unaffected by a low dose of BI 2536. Inhibition of Plk1 kinase activity by BI 2536 did not affect the timing of entry into prometaphase of MI, but prevented initiation of anaphase of MI in a dose-dependent manner. Oocytes that were arrested in prometaphase of MI in the presence of BI 2536 did not undergo anaphase, were characterised by increased distance between sister centromeres and exhibited severe chromosome misalignment defects. Finally, I have shown that BI 2536 inhibits securin degradation and the data indicate that this occurs by a SAC-independent mechanism.

4.7.1 Plk1 is recruited to the kinetochore of meiotic chromosomes

The association of Plk1 with chromosomes has not received much attention in published studies of the subcellular localisation of the protein during meiosis. Based on my knowledge, currently only a single publication has provided evidence that Plk1 localises to the kinetochore of mouse oocytes during prometaphase of MI (Kouznetsova et al., 2007). The localisation of Plk1 described here on the meiotic chromosomes suggests that it is associated with the kinetochore region during meiotic maturation, where it persists until late prometaphase of MI (Fig 4.2). I have also found that Plk1 localised on kinetochores of Met II arrested oocytes, albeit at significantly reduced levels compared to MI. The Kt-localisation of Plk1 described here is consistent with previous findings in somatic cells (Arnaud et al., 1998; Sumara et al., 2004; Lenart et al., 2007). The presence of Plk1 on this region of the chromosome
during meiotic maturation suggests that it is required for accurate kinetochore function as in mitosis [reviewed by (Petronczki et al., 2008)].

Furthermore, the data presented here indicate that inhibition of Plk1 kinase activity by BI 2536 did not prevent its kinetochore recruitment during MI when the concentrations of 6.25nM (Fig 4.3) and 25nM (data not shown) were applied. This contradicts findings in mitosis where Plk1 activity is required for its accumulation at kinetochores (Lenart et al., 2007; Santamaria et al., 2007), suggesting that this mechanism may not be essential in meiosis. However, we cannot exclude the possibility of residual Plk1 activity as previous mitotic studies have applied a 100nM concentration of BI 2536 to reach their conclusions (Lenart et al., 2007). Further experimentation with higher concentrations of BI 2536 could provide an answer regarding the necessity of Plk1 activity for the enzyme’s kinetochore recruitment in meiosis. However, considering the greater volume of an oocyte (~ 4x10^5 μm³) compared with that of a HeLa cell (~ 2x10^3 μm³) it is conceivable that a concentration of BI 2536 higher than 100nM might be required to achieve total Plk1-inhibition, thereby posing the risk of inhibiting other Plks with unpredictable effects.

4.7.2 BI 2536 does not affect the timing of entry into prometaphase of MI, but prevents initiation of anaphase of MI in a dose-dependent manner

A number of studies have implicated Plk1 in promoting mitotic entry in vertebrate cells by activating Cdk1-cyclin B (Toyoshima-Morimoto et al., 2001; Toyoshima-Morimoto et al., 2002; Jackman et al., 2003; Watanabe et al., 2004). However, Plk1 activity does not appear to be essential for mitotic entry, as its inhibition will only delay prophase and nuclear envelope breakdown (NEBD) (Lenart et al., 2007). Similar observations have been made in mouse and rat oocyte studies; inhibition of Plk1 activity either by Plk1 antibody microinjection (Tong et al., 2002; Fan et al., 2003) or by BI 2536 (Vanderheyden et al., 2009) caused a delay in resumption of meiosis I and GVBD onset and prevented the
extrusion of the first polar body. To determine the efficiency of different BI 2536 concentrations on oocyte maturation I have examined GVBD timing and PB extrusion. The results show that none of the tested BI 2536 concentrations causes a significant delay in GVBD (Fig 4.4A), consistent with previous observations, where concentrations of BI 2536 below 100nM had no effect on meiosis I resumption (Vanderheyden et al., 2009). Prolonged exposure to BI 2536 in order to eliminate the possibility of a delayed action also had no effect on GVBD timings (Fig 4.4B). However, BI 2536 has a dose-dependent effect on the ability of oocytes to exit MI; the extrusion of the first PB is abrogated by 25nM of BI 2536, while significant inhibition is observed even at a 6.25nM concentration (Fig 4.5). Overall these results indicate that in mouse oocytes, Plk1 activity is not essential for meiosis resumption, but is essential for MI completion and BI 2536 can effectively and rapidly inhibit it.

4.7.3 BI 2536 inhibits anaphase of MI, disrupts sister-centromere integrity and promotes misalignment of bivalents.

Analysis of chromosome spreads of oocytes arrested during prometaphase of MI in the presence of BI 2536 revealed the presence of intact bivalents (Fig 4.6) indicating that BI 2536 treatment induces arrest in prometaphase. Previous studies in somatic cells have shown that BI 2536 leads to arrest in prometaphase due to activation of the SAC (Lenart et al., 2007) and that Plk1 is involved in the establishment of correct Kt-Mt attachments [reviewed in (Petronczki et al., 2008)]. Could BI 2536-treated oocytes arrest in prometaphase I due to failure to establish monopolar Kt-Mt attachments of sister centromeres? Indeed, I have shown here that sister centromeres in BI 2536-treated oocytes lose their tight apposition (Fig 4.7), which has been proposed to facilitate the establishment of monopolar Kt-Mt attachments of sister chromatids (Hauf and Watanabe, 2004; Brar and Amon, 2008; Sakuno and Watanabe, 2009). Moreover, at 25nM of BI 2536 the majority (~78% - Fig 4.8C/D) of oocytes exhibited bivalent misalignment and more than half (~57% - Fig 4.8D) had at least one mono-
oriented bivalent (Fig 4.8.E/"Failed"). Finally, although I saw no convincing evidence of bipolar attachment of sisters, it is impossible to rule it out based on the immuno-labeling experiments shown here. Overall, these results demonstrate that bivalents do not congress in the presence of BI 2536, indicating that Plk1 kinase activity is required for congression in MI.

Taken together, our data suggest that Plk1 activity is essential for the establishment of stable microtubule-kinetochore attachments in MI. This is consistent with previous observations in somatic cells [reviewed in (Petronczki et al., 2008)]. It is possible that kinetochores can be captured by microtubules in the absence of Plk1 activity, but these attachments may not be stable and proper K-fibers may therefore not be formed. Previous studies in mammalian somatic cells (Ditchfield et al., 2003; Lampson and Kapoor, 2005) and oocytes (Homer et al., 2009b) have shown that depletion of BubR1 also causes defects in microtubule-kinetochore attachments. BubR1 phosphorylation is essential for the stability of Kt-Mt interactions and it is Plk1-dependent (Elove et al., 2007; Suijkerbuijk et al., 2012). Moreover, BI 2536-treated cells have been shown to lack the hyper-phosphorylated form of BubR1 (Lenart et al., 2007). Thus, as in mitosis, meiotic Plk1 activity might contribute to K-fiber formation by phosphorylation of BubR1 at kinetochores during MI.

On the basis of these findings, we propose that BI 2536 impairs the ability to establish and maintain monopolar sister kinetochore-microtubule attachments.

4.7.4 Plk1 prevents degradation of exogenous securin and is required for efficient activation of APC/C\(^{cd20}\) in MI

Previous studies in mouse oocytes have shown that the target of the SAC is APC/C\(^{cd20}\) activation and subsequent degradation of securin and cyclin B1, which are essential for completion of MI. Here, we have shown that BI 2536-
treated oocytes arrest in late prometaphase of MI (Fig 4.6) and that exogenous securin is not efficiently degraded in these oocytes (Fig 4.9). These data suggested the possibility that BI 2536-treated oocytes arrest in prometaphase I because of SAC activation.

To further test this possibility, we employed mRNA encoding Cdc20\(^{R132A}\), which can over-ride the SAC (Fig 4.10A/C). When we filmed oocytes expressing exogenous Cdc20\(^{WT}\) and securin-YFP incubated in the presence of BI 2536 and nocodazole, which causes sustained activation of the SAC in oocytes (Brunet et al., 2003; Wassmann et al., 2003; Homer et al., 2005a; Kudo et al., 2006), all oocytes arrested in prometaphase I and exhibited accumulation of exogenous securin (Fig 4.11A/B). Similarly, we observed prometaphase I arrest and exogenous securin accumulation in oocytes expressing exogenous Cdc20\(^{R132A}\) and incubated in nocodazole and BI 2536 (Fig 4.11A/C). These data indicate that inhibition of APC/C in the presence of BI 2536 is SAC–independent. This stands in contrast to what has been recently shown in mammalian mitosis (Lenart et al., 2007), but is consistent with older reports that in the absence of Plx1 activity some APC/C targets are not degraded by the proteasome (Descombes and Nigg, 1998).

By what mechanism might Plk1 inhibit the APC/C? In support of a direct effect on core APC/C subunits, it has been reported that mouse Plk1 phosphorylates subunits of the APC/C (Kotani et al., 1998). Also, the finding that overexpression of cyclin B1 partly relieves inhibition of APC/C\(^{Cdc20}\) in the presence of BI 2536 (Fig 4.12), suggests that Cdk1 and Plk1 may act synergistically to promote efficient activation of the APC/C during exit form MI. In support of this, subsequent experiments in the lab have shown that a mutant cyclin B1 (Y170A), which does not bind to Cdk1 (Bentley et al., 2007), does not rescue the inhibitory effect of Plk1 on securin degradation (data not shown), indicating that
activation of Cdk1 is necessary for rescuing the APC/C inhibition in the presence of BI 2536.

An alternative or additional possibility is that Plk1 is also required to deactivate an inhibitor of the APC/C in oocytes. This scenario might actually involve Emi1, which is known to inhibit APC/C in both mitosis (Reimann et al., 2001a; Reimann et al., 2001b) and meiosis (Marangos et al., 2007). During mitotic prometaphase, Plk1 phosphorylates Emi1, thereby leading to its recognition by the SCF ubiquitin ligase and its subsequent degradation by the proteasome (Guardavaccaro et al., 2003; Margottin-Goguet et al., 2003; Hansen et al., 2004; Moshe et al., 2004). Similarly, in meiosis Emi1 is degraded soon after GVBD (Marangos et al., 2007) presumably to allow APC\textsubscript{Cdc20} activation, once the SAC has been satisfied, which is necessary to coordinate the destruction of securin and cyclin B and allow exit from MI. Although the idea that Emi1 inhibits APC\textsubscript{Cdc20} has been previously contended (Di Fiore and Pines, 2007), a recent study has re-ignited the debate (Moshe et al., 2011). Based on the above, I propose that the observed APC\textsubscript{Cdc20} inactivation/inhibition during MI in the presence of BI 2536 is probably due to insufficient phosphorylation/activation of APC/C subunits, combined with insufficient degradation or accumulation of Emi1. Additional experimentation involving microinjection of oocytes with fluorescently-tagged Emi1 mRNA, to assess Emi1 kinetics in the presence of BI 2536, and non-degradable Emi1, to assess its effect on APC\textsubscript{Cdc20}, would allow further evaluation of this hypothesis.

In summary, the findings presented in this chapter indicate that Plk1 is required for activation of the APC/C during exit from prometaphase of MI. Inhibition of Plk1 also induced congression defects, and it is possible that severely misaligned bivalents induce sustained activation of the SAC. However, the findings indicate that inhibition of the APC/C in the presence of BI 2536 is not solely due to SAC and raise the possibility that phosphorylation of APC/C core
subunits by Plk1 is required for its efficient activation. To assess SAC activation in the presence of BI 2536 future experimentation should examine for the presence of Mad2 at the centromere of metaphase I arrested oocytes, which is a clear indication of Kt-Mt attachment defects (Wassmann et al., 2003; Homer et al., 2005a). Finally, the experiments described in section 4.6.1 should also be repeated in the absence of nocodazole as an additional control to further strengthen our conclusion that inhibition of APC/C in the presence of BI 2536 is SAC–independent.
Chapter 5. Plk1 is required for stepwise removal of cohesin in mouse meiosis

5.1 Introduction

The findings of the previous chapter indicate that Plk1 is required for efficient activation of the APC/C during exit from MI. However, a proportion of oocytes did produce polar bodies in lower concentrations (≤12.5nM) of BI 2536. This provided an assay to investigate possible functions of Plk1 in mediating chromosome segregation during MI.

In budding yeast, the Plk1 homolog, Cdc5, phosphorylates and primes Rec8 for cleavage by separase and is required for proper kinetochore orientation during MI (Clyne et al., 2003; Lee and Amon, 2003; Brar et al., 2006). However, a recent study suggests that Cdc5 has little, if any, role in promoting Rec8 cleavage and attributes this role to Casein Kinase 1 (Katis et al., 2010; Rumpf et al., 2010). It is not currently known if Plk1 regulates these processes in mouse oocytes. However, a previous study suggested that Plk1 phosphorylation is essential for Rec8 cleavage by separase in vitro (Kudo et al., 2009).

While the requirement for Plk1-mediated phosphorylation to prime Rec8 for cleavage by separase is controversial, Plk1 has a well-established function in removing the bulk of arm cohesin during prophase and prometaphase of vertebrate somatic cells, via a process known as the “prophase pathway” (Losada et al., 1998; Sumara et al., 2002). This process does not require the cleavage of cohesin by separase, as cohesin dissociation is achieved through its phosphorylation by Plk1, mediated by Aurora B (Hauf et al., 2005). My hypothesis was that a similar process might also occur during meiotic prophase. In other words, Plk1 could be involved in cohesin removal through a mechanism that would be the meiotic equivalent of the prophase pathway. Given that mammalian oocytes remain arrested in prophase of MI for an extended time period, prior to being released into prometaphase I, it is
conceivable that prolonged exposure to such a mechanism could be another factor contributing to the observed depletion of chromosome-associated cohesin in old oocytes.

In this chapter, I investigate the interplay between Plk1 activity and cohesin in mammalian oocytes during MI. I also investigate the role of Plk1 on chromosome segregation in mouse oocytes by analyzing oocytes that formed polar bodies in the presence of BI 2536. To achieve accurate observations I have used oocytes from the transgenic Rec8-myc mouse strain (Kudo et al., 2006) where cohesin-related measurements were necessary.
5.2 Securin profile of oocytes that exit MI in the presence of BI 2536

As described in the previous chapter BI 2536 inhibits anaphase of MI in a dose-dependent manner (Section 4.5). At low concentrations (6.25 and 12.5 nM) a subset of oocytes exit MI and extrude the first polar body. Having established that BI 2536 leads to prometaphase I arrest by inhibiting securin degradation, I hypothesised that in the case of oocytes that exit MI, securin degradation, and therefore anaphase, would most probably be delayed compared to control conditions. To test this hypothesis, fully-grown prophase-arrested CD1 oocytes were co-injected with mRNA encoding securin-YFP and H2B-RFP and were monitored by time-lapse microscopy during incubation in control or 6.25nM BI 2536-supplemented medium, for approximately 16h (Fig 5.1.A). Analysis of the time-lapse movies showed that in control oocytes exogenous securin starts being degraded about 6h post-GVBD and anaphase and subsequent polar body extrusion (PBE) occur at 8.3h (±1.15h SD) post-GVBD, followed by reaccumulation of securin (Fig 5.1.A/B). In contrast, in BI 2536-treated oocytes, exogenous securin degradation is delayed (Fig 5.1.A/C), and the onset of anaphase and PBE occur at 9.7h (±0.78h SD) post-GVBD (Fig 5.1.C). As in control oocytes, securin-YFP reaccumulated after PBE (Fig 5.1.C).

Interestingly, polar body formation was perturbed in BI 2536-treated oocytes. Abnormalities included production of large polar bodies (observed in 25% of oocytes), suggesting improper positioning of the meiotic spindle at the oocyte cortex. In addition, a proportion of oocytes (58%) showed polar body fragmentation, and failed abscission (17%). The latter phenotypes may reflect a requirement for Plk1 kinase activity for correct cytokinesis, which is consistent with previous observations in somatic cells (Brennan et al.; Burkard et al., 2007; Petronczki et al., 2007; Santamaria et al., 2007).

Overall, these results indicate that Plk1 kinase activity is required for timely degradation of securin and successful cytokinesis in MI.
Figure 5.1 Degradation of securin-YFP during exit from MI in the presence of low concentrations (6.25 nM) of BI 2536

(A) Securin-YFP levels of representative oocytes (3 per group) co-injected with mRNA encoding securin-YFP and H2B-RFP and examined by time-lapse microscopy during incubation in control medium (grey, n=15) or in medium supplemented with 6.25nM BI 2536 (red, n=12). Securin-YFP mean fluorescence intensity (MFI) in oocytes was measured at each time-point and background FI was subtracted. The values were normalised relative to that of GVBD (0hr), and plotted against time. Securin-YFP degradation is delayed in the presence of BI 2536. Bold curves indicate oocytes shown in (B) and (C). AU, arbitrary units. (B, C) Selected DIC, RFP and YFP time-lapse images of the oocytes whose securin-YFP levels are illustrated by bold curves in (A), at the indicated time-points before and after GVBD in hours. Note the large polar body in (C).
5.3 BI 2536 promotes separation sister chromatids in a dose-dependent manner

The next step was to identify any possible effects that BI 2536 might have on chromosome segregation during meiosis I. To do that I prepared chromosome spreads of the oocytes that produced polar bodies and immunolabelled the centromeres for CREST.

Surprisingly, I found that BI 2536 induced premature separation of sisters (Fig 5.2). Concentration as low as 3nM BI2536 resulted in precocious separation of sisters in the majority (90%) of oocytes compared with 8% of control oocytes (P<0.05) (Fig 5.2.B). The proportion of dyads showing premature separation of sisters increased in a dose-dependent manner, ranging from 9.3% (± 7.2%) in 3nM to 100% in 6.25nM and 12.5 nM (Fig 5.2.C).

Overall, these data indicate that Plk1 kinase activity is required to protect centromeric cohesion and that this function is highly sensitive to inhibition by BI 2536.
Figure 5.2 Sister chromatid separation in the presence of BI 2536

(A) Representative images showing DNA and CREST staining of chromosome spreads prepared from control and 12.5nM BI2536-treated oocytes, after exit from MI. Scale bars represent 10μm. Notice the separation of sister chromatids in BI 2536-treated oocytes. (B) The graph shows the percentages of oocytes exhibit premature sister-chromatid separation, following MI exit, after incubation in increasing concentrations of BI 2536: Control, 8% (±8% SD); 3nM BI2536, 90% (±13% SD); 4nM BI 2536, 95% (±7% SD); 6.25nM BI 2536, 100% (±0% SD); 12.5nM BI 2536, 100% (±0% SD). Notably, 6.25nM of BI 2536 are adequate to produce a fully penetrant effect. (C) The graph shows the number of separated sister chromatids in oocytes that exit MI, after incubation in increasing concentrations of BI 2536: Control, 0.3% (±0.87% SD); 3nM BI2536, 9.3% (±7.2% SD); 4nM BI 2536, 14.4% (±7.8% SD); 6.25nM BI 2536, 21.5% (±9% SD); 12.5nM BI 2536, 26.2% (±2.2% SD). BI 2536 appears to promote premature separation of sisters in a dose-dependent manner. Red lines indicate mean values and asterisks (*) indicate groups whose mean values show significant difference (P<0.05).
5.4 Post-PBE treatment with BI 2536 does induce premature separation of sister chromatids

In order to investigate whether the observed premature separation of sister chromatids caused by BI 2536 is due to an effect that occurs prior to metaphase II (MetII) arrest, I decided to expose oocytes to BI 2536 after the extrusion of the first polar body. Fully-grown prophase-arrested oocytes from CD1 mice were harvested and were cultured in control medium; those that had undergone GVBD within two hours were selected for further maturation. From the latter group, those that had successfully arrested at MetII after nine hours were transferred into medium supplemented with 6.25nM or 12.5nM of BI 2536. The oocytes were cultured for a further 10-12 hours in the presence of the inhibitor, before being used to produce chromosome spreads, which were immunolabeled for CREST.

In contrast to MI oocytes, exposure of MetII-stage oocytes to BI 2536 did not result in an increased incidence of single sisters (Fig 5.3). In particular, concentrations of 6.25nM and 12.5nM of BI 2536 did not have a significant effect either on the number of oocytes with separated sisters ($P>0.05$) or on the number of dyads showing premature separation of sisters per oocyte ($P>0.05$) compared with control oocytes.

These results indicate that PLK1 is likely to be involved in preventing separation of sisters during anaphase of MI.
Figure 5.3 BI 2536 does not induce premature separation of sisters during MetII arrest

(A) Representative images showing DNA and CREST staining of chromosome spreads prepared from control and 6.25nM or 12.5nM BI2536-treated oocytes. BI 2536 was applied after PBE (MetII-arrest). Chromosomes surrounded by white boxes are shown in the enlarged images. Scale bars represent 10μm. (B) The graph shows the percentages of oocytes that exhibit premature sister-chromatid separation at MetII-arrest, after post-PBE incubation in increasing concentrations of BI 2536: Control, 12% (±10% SD); 6.25nM BI 2536, 22% (±5% SD); 12.5nM BI 2536, 19% (±8.9% SD). BI 2536 did not have a significant effect on the number of oocytes with separated sisters (P>0.05) (C) The graph shows the number of separated sister chromatids in oocytes exposed to increasing concentrations of BI 2536 after PBE: Control, 0.31 (±0.89 SD); 6.25nM BI 2536, 0.63 (±1.19 SD); 12.5nM BI 2536, 0.5 (±1.08 SD). BI 2536 does not appear to compromise sister chromatid integrity at the concentrations used (P>0.05). Red lines indicate mean values.
5.5 Centromeric cohesin is not depleted during in BI 2536-treated oocytes.

The presence of single sisters in oocytes which exit MI in the presence of BI 2536, gave ground to the hypothesis that centromeric cohesin might become depleted before the onset of anaphase I. To test this idea, I used the transgenic Rec8-myc mouse strain, where wild-type Rec8 has been replaced by a C-terminally 9x Myc-tagged wild-type Rec8 (Rec8-Myc), which can be specifically immunolabeled with an anti-myc antibody (Kudo et al., 2009). In order to examine for a possible disruption in sister centromere integrity, the inter-centromeric distances and the levels of centromeric cohesin were measured and compared between late prometaphase (GVBD+6h) control oocytes and oocytes matured in medium supplemented with 6.25nM or 12.5nM BI 2536 (Fig 5.4). Consistent with my previous observation in oocytes from the CD1 mouse strain (Section 4.5.1), I found that inter-centromere distances significantly ($P < 0.0001$) increased in BI 2536 treated oocytes compared to control oocytes (Fig 5.4.D). For calculating centromeric Rec8:CREST fluorescence intensity ratios, following background FI subtraction, a square region of fixed area (5.4.Ea) was centred on the centromere to be measured and the Rec8 and CREST intensities were measured in the same region. Surprisingly, statistical analysis of the results showed a significant increase in the levels of centromeric Rec8-Myc in the presence of BI 2536.

These results indicate that premature sister separation in the presence of BI 2536 is not due to depletion of centromeric cohesin during progression through prometaphase I.
Figure 5.4 Effect of BI 2536 on inter-centromere distance and centromeric cohesin in Rec8-myc oocytes

Representative images showing DNA, Rec8, and CREST staining of chromosome spreads prepared during late prometaphase (GVBD + 6 hr) of MI oocytes from Rec8-myc mice incubated in (A) control media and media supplemented with (B) 6.25nM or (C) 12.5nM BI 2536. Chromosomes surrounded by white boxes are shown in the enlarged images. Scale bars represent 10 μm. (D) Frequency distribution of the distance between sister centromeres, measured from the CREST foci in control (mean= 0.33±0.12μm; n = 184 centromeres; six oocytes from three mice), 6.25nM BI 2536-treated (mean= 0.41±0.13μm; n = 183 centromeres; six oocytes from three mice) and 12.5nM BI 2536-treated (mean= 0.42±0.13μm; n = 191 centromeres; six oocytes from three mice) oocytes, showing a significantly greater mean distance in the BI 2536-treated compared to control oocytes (P < 0.0001). (E) Graph showing Rec8: CREST fluorescence intensity (FI) ratios at the centromeres (a) of oocytes in (A) (n = 302 centromeres; eight oocytes from three mice), in (B) (n = 307 centromeres; eight oocytes from three mice) and in (C) (n = 333 centromeres; eight oocytes from three mice). Red lines indicate mean values and asterisks (*) indicate groups whose mean values show significant difference (P<0.0001).
5.6 BI 2536 compromises the centromeric localisation of Sgo2-PP2A at late prometaphase of MI

In light of the finding that centromeric cohesin is not depleted before the onset of anaphase I, I next asked whether premature separation of sisters might be due to disruption of the mechanisms responsible for protecting centromeric cohesin during anaphase of MI. As discussed previously, Sgo2 and PP2A are known to protect centromeric cohesion in mouse oocytes during anaphase of MI (Riedel et al., 2006; Lee et al., 2008; Llano et al., 2008). I therefore investigated whether recruitment of these proteins to centromeres is disrupted in the presence of BI 2536.

Fully-grown prophase-arrested oocytes from CD1 mice were harvested and were allowed to mature in control medium or medium supplemented with 6.25nM BI 2536. Chromosome spreads were produced using oocytes at late prometaphase of MI (GVBD+7h) and were immunolabeled for CREST, Sgo2 and PP2A. Subsequent image analysis revealed what could be described as a diffused and “off-centred” localisation of both Sgo2 and PP2A on the sister centromeres of BI 2536-treated oocytes (Fig 5.5.B) compared to control oocytes (Fig 5.5.A). In addition, BI 2536-treated oocytes also appear to have higher levels of chromosome-associated PP2A (Fig 5.5.B) compared to controls. Sister centromeres were categorised into three groups; sister centromeres where Sgo2-PP2A colocalised centrally between centromeres (Fig 5.5.A1), others where the Sgo2-PP2A signal was displaced from the centre of the centromeres (Fig 5.5.B3) and finally some, where characterisation was not possible due to doubt and/or bad IF staining. Classification of numerous sister centromere pairs based on the “Central” or “Off-Centred” localisation of Sgo2-PP2A showed that there were significant ($P<0.001$) differences between control and BI 2536-treated oocytes (Fig. 5.5.C), with the “Off-Centred” configuration becoming prevalent in the presence of BI 2536. For example, in control oocytes 85% of late prometaphase
centromeres had a centrally localised Sgo2-PP2A signal, whereas the respective proportion in BI 2536-treated oocytes was just 33%.

These results indicate that the centromeric localisation of Sgo2 and PP2A, which is required for the maintenance of centromeric sister chromatid cohesion until the onset of anaphase II, is disrupted in oocytes in the presence of BI 2536. Based on these findings, I propose that centromeric cohesin might be partially “exposed” to the effect of seperase, and consequently cleaved, during anaphase I, thus leading to precocious sister-chromatid separation.
Figure 5.5 The effect of BI 2536 on centromeric localisation of Sgo2-PP2A in late prometaphase of MI

Representative images showing DNA, Sgo2, PP2A and CREST staining of chromosome spreads prepared during late prometaphase (GVBD + 7 hr) of oocytes cultured in (A) control medium (23 oocytes from 3 mice) and (B) in medium supplemented with 6.25nM BI 2536 (16 oocytes from 3 mice). Enlarged images show four numbered representative examples of sister centromeres. Notice the diffused and “off-centred” localisation of both Sgo2 and PP2A on the sister centromeres of BI 2536-treated oocytes compared to control oocytes. BI 2536-treated oocytes also appear to have higher levels of chromosome-associated PP2A. (C) Graph shows the proportions of centromeres in control (n = 400 centromeres; 10 oocytes from three mice) and BI 2536-treated (n = 440 centromeres; 11 oocytes from three mice) oocytes showing “Central” (e.g.,A1), “Off-centred” (e.g., B3), and “Unclassified” localisation of Sgo2-PP2A. The proportion of sister centromeres with “Central” localisation of Sgo2-PP2A was significantly (P < 0.001) reduced in BI 2536-treated oocytes, whereas the proportion of “Off-Centred” Sgo2-PP2A foci was significantly (P < 0.001) higher compared to control oocytes. Scale bars represent 10μm.
5.7 BI 2536 does not affect the levels of chromosome-associated cohesin during prometaphase of MI.

The finding that centromeric cohesin is increased in the presence of BI 2536 (Fig 5.4), raised the possibility that some cohesin might be removed by a Plk1-dependent mechanism such as a meiotic equivalent of the Plk1-dependent prophase pathway. However, in vertebrate cells, the prophase pathway targets arm cohesin rather than centromeric cohesin (Sumara et al., 2002; Hauf et al., 2005) and as shown in section 5.4, the scope for quantitative analysis was limited to centromere-associated cohesin. I therefore asked what is the effect of BI 2536 on arm cohesin in mouse oocytes.

In preliminary experiments to identify a suitable “house-keeping” target to improve quantification of arm-associated cohesin, TO-PRO-3, a sequence-independent DNA stain, which binds specifically and stoichiometrically to the sugar phosphate back bone (Bink et al., 2001; Ploeger et al., 2008) was used (data not shown). Overall, TO-PRO-3 gave promising results in prometaphase oocytes, however, the staining pattern in BI 2536-treated oocytes was less reproducible and unfortunately this approach was abandoned.

Measurement of arm cohesin is also complicated by the fact that chromosomes become hyper-condensed in the presence of BI 2536. Therefore, although a first look at the IF signal of arm-associated cohesin in BI 2536-treated oocytes gives the impression that it is brighter compared to controls, implying a role of Plk1 in the removal of arm cohesin, it could also be an optical artifact due to chromatin hyper-condensation. To overcome this difficulty, I decided to investigate the effect of BI 2536 on chromosome arm-associated cohesin levels in aged oocytes. The rationale behind that decision was that the age-associated depletion of cohesin would allow me to distinguish a possible increase in its levels in the presence of BI 2536.
To test this idea, fully-grown prophase-arrested oocytes from 12-months old Rec8-myc mice were harvested and were allowed to mature in control medium or medium supplemented with 12.5nM BI 2536. Chromosome spreads were produced using oocytes at late prometaphase of MI (GVBD+6h) and were immunolabeled for CREST, and Rec8-myc (Fig 5.6A/B/C). Subsequent image analysis revealed that consistent with our previous observations (Lister et al., 2010) Rec8 is significantly depleted in oocytes of aged mice (Fig 5.6B/D). However, only a slight and not particularly convincing increase was apparent in the levels of chromosome associated Rec8 in BI 2536-treated oocytes compared to control oocytes (Fig 5.6C/D).

These results suggest that in mouse oocytes arm-cohesin is generally resistant to removal by a Plk1-dependent pathway during progression through MI.
Figure 5.6 The effect of BI 2536 on chromosome-associated cohesin levels in late prometaphase I

Representative images showing DNA, Rec8, and CREST staining of chromosome spreads prepared during late prometaphase of MI (GVBD + 6 hr) of oocytes from (A) 8-weeks-old Rec8-myc mice, cultured in control media, (B) 12-months-old Rec8-myc mice, cultured in control media and (C) 12-months-old Rec8-myc mice, cultured in media supplemented with 12.5nM BI 2536. Chromosomes surrounded by white boxes are shown in the enlarged images. Notice the reduced Rec8 levels on chromosomes of oocytes from 8-weeks-old compared to 12-months-old mice. BI 2536-treated oocytes appear to have higher levels of chromosome-associated cohesin. Scale bars represent 10μm. (D) 3D surface plots of (A/B/C) showing higher Rec8 fluorescence intensity on chromosomes of 8-weeks-old compared with 12-month-old oocytes and a slight increase in Rec8 fluorescence intensity on chromosomes of 12-month-old control compared with 12-month-old BI 2536-treated oocytes.
5.8 Discussion

In this chapter I aimed to investigate the role of Plk1 in regulating chromosome segregation and cohesin removal during MI in mouse oocytes. I have provided evidence that Plk1 kinase activity is required for timely degradation of securin and successful cytokinesis in MI. My findings also indicate that Plk1 is required for the crucial meiotic function of protecting centromeric cohesin during MI, most likely through an effect on Sgo2-PP2A localisation. However, I found that, in contrast to its role in somatic cells (Sumara et al., 2002; Hauf et al., 2005), Plk1 does not appear to play a major role in removing cohesin before the onset of anaphase. This indicates that meiotic cohesin is largely resistant to removal by the prophase pathway.

5.8.1 The role of Plk1 in the protection of centromeric cohesion

To date most research has focused on the role of Plk1 and other Plks in the phosphorylation events that either directly promote cohesin dissociation (Sumara et al., 2002; Hauf et al., 2005) or prime cohesin for cleavage by separase (Lee and Amon, 2003; Kudo et al., 2009; Katis et al., 2010). Here, for the first time I present evidence that Plk1 kinase function is crucial for the protection of centromeric cohesin and thus its stepwise removal during mouse meiosis.

5.8.1.1 Effect of low concentrations of BI2536 on exit from MI

To study Plk1 function in regulating events during exit from MI, I took advantage of the fact that a subset of oocytes produced polar bodies in the presence of low concentrations (≤12.5nM) of BI2536. My findings indicate a delay in securin degradation in the presence of BI 2536 (Fig 5.1). This is consistent with the findings I presented in Chapter 4, that Plk1 is required for APC/C activation.

Notably, polar body extrusion was also massively perturbed in the presence of BI 2536, with oocytes extruding fragmented and occasionally very large (Fig
5.1.C) polar bodies. Failed abscission attempts were also observed. This is consistent with observations in mitosis, where exposure of HeLa cells to BI 2536 during anaphase has been shown to block the ingression of the cleavage furrow resulting in cytokinesis failure (Brennan et al., 2007a; Petronczki et al., 2007).

5.8.1.2 BI 2536 promotes premature separation of sisters in a dose-dependent manner

In control MetII-arrested oocytes, dyads (pairs of sister chromatids) were predominantly observed (Fig 5.2A), albeit approximately 12% of the oocytes (Fig 5.2B) exhibited 2-4 separated sisters (Fig 5.2C), presumably due to mechanical stress during chromosome spreading. In striking contrast, however, oocytes that developed to MetII in the presence of BI 2536 showed a marked prevalence of separated single chromatids (Fig 5.2A). BI 2536-treated oocytes exhibited a mixture of single chromatids and intact dyads at MetII stage (Fig 5.2A), with the number of single sisters increasing with higher concentrations of BI 2536 (Fig 5.2C). Thus, BI 2536 induces premature separation of sisters indicating that Plk1 is required for the crucial function of protecting centromeric cohesin during MI.

5.8.1.3 Post-PBE inhibition of Plk1 does not promote premature sister separation

Given that separated sisters were detected in oocytes that had already exited MI, it was important to determine whether sister separation occurred during exit form MI or during MII arrest. To distinguish between these two possibilities, I incubated oocytes in BI 2536 shortly after PBE and prepared chromosome spreads to assess the extent of sister separation. I found no significant differences in the number of single sisters between BI 2536-treated and control oocytes (Fig 5.3B/C). Therefore, it is likely that the single chromatids arise during anaphase I, when cohesin is normally removed from chromosome arms, but is retained at centromeres.
5.8.1.4 Centromeric cohesin is not depleted during prometaphase I in BI 2536-treated oocytes.

Having established that inhibition of Plk1 induces premature separation of sisters, I asked whether centromeric cohesin was already depleted before the onset of anaphase. To test this idea I measured intercentromeric distances and levels of centromeric cohesin in control and BI 2536-treated Rec8-myc oocytes at late prometaphase of MI. Consistent with my previous observations in oocytes from CD1 mice (Fig 4.7), BI 2536 caused an increase in the intercentromeric distances at late prometaphase of MI (5.4D). However, the results indicate that centromeric cohesin was not depleted during late prometaphase in BI 2536-treated oocytes. These data, together with absence of an effect on MetII oocytes, imply that Plk1 is required to protect centromeric cohesin during anaphase of MI, rather than before or after it.

5.8.1.4 BI 2536 compromises centromeric Sgo2-PP2A localisation in prometaphase of MI

In yeast and vertebrate meiosis, Rec8 must be phosphorylated in order to be cleaved by separase during anaphase I (Lee and Amon, 2003; Kudo et al., 2009; Katis et al., 2010; Rumpf et al., 2010). To prevent precocious separation of sister chromatids in MI, centromeric cohesin must be protected/de-phosphorylated. In both budding and fission yeast this is achieved through the phosphatase activity of PP2A, which is recruited to the centromere by Sgo1 and counteracts phosphorylation of Rec8 (Kitajima et al., 2006; Riedel et al., 2006). In mouse meiocytes, Sgo2 is responsible for recruitment of PP2A and protection of centromeric cohesin during MI (Lee et al., 2008). Previous studies have shown that Aurora B and Bub1 are required for centromeric recruitment of Sgo2 in vertebrate somatic cells (Huang et al., 2007) and that Bub1 might be involved in the recruitment of shugoshin proteins to centromeres in mouse oocytes (McGuinness et al., 2009). Could Plk1 activity at the centromere somehow also be involved in this process?
To test the idea that loss of centromeric cohesin during anaphase of MI was due to impaired protection, I asked whether Sgo2 and PP2A, are recruited to centromeres in the presence of BI 2536. Immunolabelling for Sgo2 and PP2A revealed a striking difference in the centromeric localisation of the Sgo2-PP2A complex between control and BI 2536-treated oocytes, with the latter being characterised by sister centromeres where Sgo2-PP2A was displaced from the centre of the centromeres (Fig 5.5). Presuming that Sgo2-PP2A should localise physically close to centromeric cohesin, in order to fulfill its protective role, then the off-centred positioning of Sgo2-PP2A is unlikely to be effective in protecting the cohesin complexes between sister centromeres from cleavage by separase.

It remains to be established whether mislocalisation of Sgo2 and PP2A is linked to the increased distance between sister centromeres observed in BI 2536-treated oocytes. The reason for the increased distance between sisters is also obscure, but it may be linked to the hyper-condensed state of the chromatin in the presence of BI 2536. In other words, hyper-condensation of pericentromeric chromatin may push sister centromeres apart. An alternative possibility is that Plk1 is required for monopolar attachment and that the increased distance between sisters is caused by bi-oriented sisters being pulled towards opposite poles. However, my analysis of kinetochore-microtubule attachments presented in the previous chapter provided no convincing evidence that biorientation of sisters is prevalent during MI in BI 2536-treated oocytes. Taken together the data suggest that that mislocalisation of Sgo2, due to either a direct or indirect effect of Plk1 inhibition, is sufficient to explain loss of centromeric cohesin during anaphase of MI.

Further experimentation to dissect the mechanisms of Plk1 function would involve the use of nocodazole or taxol in order to examine whether absence of
Mt attachments or tension, respectively, alters the observed effect of BI 2536 on Sgo2-PP2A localisation. The effects of hyper-condensation would be harder to assess, as I am not currently aware of a method that could counteract this effect of BI 2536 on chromosome condensation, without interfering with other known Plk1 functions.

5.8.2 No evidence of prophase pathway-like activity in MI

In vertebrate mitosis, the bulk of chromosome arm-associated cohesin is removed during prometaphase by phosphorylation of the SA2 (and presumably SA1) cohesin subunit by Plk1; this process is separase-independent and is referred to as the prophase pathway (Waizenegger et al., 2000; Sumara et al., 2002; Hauf et al., 2005). The presence or absence of this pathway has not yet been experimentally confirmed in vertebrate meiocytes, although Plk1 has been shown to be highly active during prometaphase I in mouse oocytes (Pahlavan et al., 2000). It seems logical though to presume that the prophase pathway is very tightly regulated, if not completely inhibited, as precocious removal of arm cohesin prior to anaphase I would result in premature resolution of chiasmata leading to devastating effects for meiosis (Roeder, 1997). However, this assumption does not exclude the possibility that Plk1 kinase activity might somehow contribute to arm-associated cohesin depletion in oocytes during the prolonged prophase arrest stage and/or the prometaphase I stage, which lasts longer in meiosis (~6h, mouse; ~20h, human) than in mitosis (~45min, human). Such an effect of Plk1 during meiotic maturation would have adverse effects especially on aged oocytes as these oocytes both spend more time in prophase arrest and resume MI with depleted levels of chromosome associated cohesin (Chapter 1).

To test the hypothesis that Plk1 activity might contribute to cohesin depletion during prometaphase I, I initially decided to inhibit it and examine for differences in chromosome arm-associated cohesin levels at late prometaphase.
of MI in oocytes from young (8wks old) Rec8-myc mice. Unfortunately, this approach proved inefficient, because the combination of high levels of cohesin in young oocytes and chromosome hyper-condensation rendered my immuno-fluorescence intensity quantification methods non-applicable. To overcome this I decided to follow the same approach, but to use oocytes from aged mice instead, assuming that a change in cohesin levels would be more distinguishable when using oocytes with already depleted levels of chromosome-associated cohesin. The results (Fig 5.6) revealed no apparent difference in the levels of chromosome-associated Rec8 between control and BI 2536-treated oocytes. In contrast to what has been shown in mitotic cells (Lenart et al., 2007), these data suggest that Plk1-mediated removal of cohesin is negligible, if any, in mouse oocytes. It could be argued that Plk1 activity might be removing Scc1-containing cohesin, instead of Rec8-containing ones, from chromosomes during prophase and/or prometaphase I. However, a recent study suggested that Scc1-containing cohesin does not contribute to sister chromatid cohesion in MI (Tachibana-Konwalski et al., 2010).

Assuming that Plk1 activity actually poses a threat to arm-associated cohesin during prometaphase of MI, what might be the protection mechanisms against it? In mitosis separase-independent removal of cohesin through the prophase pathway is achieved through Plk1-dependent phosphorylation of its SA2 subunit (Hauf et al., 2005). However, in invertebrate meiocytes SA1 and SA2 subunits are replaced by the meiosis-specific SA3 (Prieto et al., 2001). I have used Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) to align the nucleotide sequences of SA1, SA2 and SA3 and I found that although all the known Plk1 phosphorylation sites on SA2 (Hauf et al., 2005) are conserved in SA1, only 5 out of 21 (~24%) are conserved in SA3 (data not shown). Unfortunately, my limited bioinformatics knowledge has not allowed me to investigate for putative Plk1 binding sites on SA3. Could this reduction in Plk1 phosphorylation sites indicate a role for SA3 in protecting arm-associated
cohesin from Plk1 activity? This hypothesis would actually be consistent with previous findings showing that in mammalian oocytes SA3 localises to the interchromatid domain during prometaphase I, but is not detected on chromosomes after anaphase I (Prieto et al., 2001). Further research in our lab (Randy Ballesteros) has shown that Plk1 is mostly kept outside the nucleus during oocyte growth suggesting another mechanism in place for restricting putative Plk1 effects on chromosomal cohesin during prophase arrest. Taken together the above data indicate that Plk1 is not likely to be a major contributor to its loss during mammalian female reproductive ageing.

In summary, my findings indicate that the major role of Plk1 in relation to the regulation of cohesin, rests in the protection of centromeric cohesin from separase during anaphase I, rather than in the removal of arm cohesin via a meiotic equivalent of the prophase pathway.
Chapter 6 . Conclusion & Future Directions

The work described in this thesis makes a significant contribution towards a better understanding of the mechanisms regulating chromosome segregation in mammalian oocytes. This was achieved by pursuing three lines of investigation: 1) The effect of ageing on cohesin and its protector, Sgo2; 2) Characterisation of Plk1 function in oocytes; 3) The role of Plk1 in cohesin protection and removal in oocyte meiosis.

6.1 Cohesin and female reproductive ageing

During recent years evidence is accumulating to support the hypothesis that cohesin deterioration is an age-dependent process and correlates with an increasing incidence of aneuploidies (Hodges et al., 2005; Liu and Keefe, 2008; Chiang et al., 2010; Lister et al., 2010; Chiang et al., 2011).

In support of the above, in this thesis I show that age-related depletion of chromosomal cohesin occurs during the prolonged period of prophase arrest experienced by oocytes from older females. I also document an increase in intercentromere distance in older oocytes. Interestingly, I also find that the cohesin protector Sgo2 is also reduced with increasing age, that it is not recruited to chromosomes until the transition from prophase to prometaphase of MI and that its recruitment is impaired in cohesin-deficient oocytes. On the basis of these findings, we propose a scenario where the depletion of cohesin during the extended prophase arrest causes impaired recruitment or retention of Sgo2 to chromosomes during late prophase, which in turn renders the remaining cohesin vulnerable to removal during prometaphase I resulting in disruption of the unique chromosome architecture required for normal segregation of homologues during anaphase of MI.
Support for this model comes from recent findings in mouse oocytes that bivalent stability depends on cohesin complexes loaded in S-phase (Revenkova et al., 2010; Tachibana-Konwalski et al., 2010). This also implies that intervention strategies based on replenishment of cohesin are not likely to rescue age-related defects. Thus, the immediate focus of future research would be to uncover the primary mechanisms of cohesin loss and to determine whether the model can be applied to reproductive ageing in women.

Depletion of chromosome-associated cohesin in oocytes of older females may be a consequence of protein damage, or removal by a separase-independent or separase-dependent pathway. In support of the latter, preliminary experiments in our lab indicate that separase is expressed in prophase-arrested mouse oocytes. This is consistent with findings in budding yeast (Katis et al., 2010) and raises the possibility that even a very low level of separase activity might result in significant depletion of cohesin during the extended period of prophase arrest in aged females.

Another important question is whether cohesin loss occurs during the relatively quiescent primordial stage and whether it occurs uniformly across all stages of oocyte development. A marked difference between young and aged oocytes at the primordial stage would be consistent with a gradual loss of cohesin during prolonged prophase arrest. By contrast, if the difference becomes apparent only in growing oocytes, it could be speculated that the age-related depletion of cohesin is linked either to movement of the cohesin ring during the massive burst of transcriptional activity (Kagey et al., 2010), and/or due to protein damage associated with increased metabolic activity. Answering these questions is crucial to understanding the underlying mechanisms of cohesin loss and to gaining insight into the feasibility of preventative strategies.
6.2 Plk1 function in mouse oocytes and its association with cohesin

The previously reported (Wianny et al., 1998) association of Plk1 with meiotic chromosomes, has received very little attention in studies of the enzyme in mammalian meiosis. Consistent with what has been observed in mitotic cells (Petronczki et al., 2008), the punctate localisation of Plk1 that I have described in this thesis leaves no doubt that it associates with the kinetochore region of meiotic chromosomes. Importantly, by using a low concentration of BI 2536, I have unmasked a function for Plk1 in protecting centromeric cohesin during anaphase of MI. My findings indicate that loss of centromeric cohesin in the presence of BI 2536 is due to mislocalisation of the cohesin protector Sgo2. These findings indicate that Plk1 is required not only for accurate kinetochore function, but also for accurate chromosome segregation during meiosis. It is interesting how Plk1 almost disappears from the kinetochore region of Met-II chromosomes, which no longer necessitate protection of centromeric cohesion by Sgo2.

An additional important finding is that APC/C activation in MI appears to be Plk1-dependent. This contrasts with findings in mitosis where Plk1 inhibition leads to prometaphase arrest by activating the SAC and not through an effect on the core APC/C (Lenart et al., 2007). The key question that needs to be answered in the future is whether Plk1 is required to suppress an inhibitor of the APC/C in meiosis or whether phosphorylation by Plk1 is required for efficient activation of the APC/C during exit from MI.

Moreover, the finding that inhibition of Plk1 activity, permissive for anaphase to occur, had no effect on MI chromosome segregation indicates that Rec8 and/or separase phosphorylation by Plk1 is not required for Rec8 cleavage by separase. This finding challenges a previous report that phosphorylation by Plk1 is essential for mouse Rec8 cleavage by separase in vitro (Kudo et al., 2009). It is conceivable that either Rec8 phosphorylation by Plk1 is not important for
MI chromosome segregation or there are additional protein kinases phosphorylating Rec8 in vivo. However, we cannot at this stage exclude the possibility that residual Plk1 activity was present at the concentrations of BI 2536 used in the experiments described in this thesis.

Finally, I have investigated for evidence of Plk1-mediated removal of cohesin from meiotic chromosomes in a mechanism analogous to the prophase pathway. I present data indicating that removal of cohesin by a Plk1-mediated mechanism is unlikely to be a major mechanism of cohesin removal during prometaphase of MI and is therefore unlikely to contribute to an age-related loss of cohesin during progression through prometaphase. This triggers the question of how is arm-cohesin immunized against Plk1 activity, which is highly active during the prolonged prometaphase of MI in oocytes.

Plk1 has already been assigned a plethora of roles in mitosis; therefore it is not surprising to discover similar or additional functions in meiosis. However, we cannot exclude the possibility that the observed chromatin hyper-condensation in the presence of BI 2536 might cause deformations of the centromere and kinetochore, thus further interrupting the balance between levels of kinase-phosphatase activities at kinetochores, which is known to depend highly on Plk1 activity (Archambault and Carmena, 2012).

Taken together, our findings indicate that Plk1 has previously unknown functions during mammalian meiosis involving activation of the APC/C and stepwise removal of cohesin, both of which are essential for normal segregation of chromosomes. Moreover, we show that Plk1 activity is not likely to be a major contributor to cohesin loss during mammalian female ageing. The identification of Plk1’s exact role and position in the molecular pathways that govern these processes during meiosis remain to be elucidated. Although the small-molecule inhibitors BI 2536 has proven to be a fantastic research tool for
dissecting the spatio-temporal function of Plk1, further research into the molecular mechanisms will necessitate different approaches.

6.3 Clinical Relevance

Female ageing is the most important aetiological factor for genetic abnormalities and infertility in humans (Nagaoka et al., 2012). Despite this, recent birth statistics show that the number of babies born to mothers older than 35 years of age increased by 46% between 1996 and 2006 (Morris and Alberman, 2009). The impact of this on human reproductive health is highlighted by a 70% increase in the incidence of Down’s syndrome pregnancy during the past 20 years (Morris and Alberman, 2009). The trend for women to delay childbearing also has enormous implications for general health, wellbeing and socio-economic stability. For example, a report from the actuarial profession in the UK (More babies? Who needs them?, 2004) predicts that the declining birth rate will reduce the support ratio (defined as the number of working people per person aged >65 years) from 3.9 in 2004 to 2.2 by 2050. Thus, the trend for women to postpone reproduction is a double-edged sword, which cuts the support ratio while creating the additional problems of age-related infertility and health care demands of prenatal testing, pregnancy terminations and, in the event of birth defects, care of the disabled. The work presented in this thesis constitutes a significant step towards understanding the primary causes of female age-related chromosome defects. This will provide us with insights into the feasibility of developing strategies to prevent or reduce cohesin loss.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ama1</td>
<td>Activator of meiotic anaphase complex</td>
</tr>
<tr>
<td>APC/C</td>
<td>Anaphase promoting complex/Cyclosome</td>
</tr>
<tr>
<td>Ark1</td>
<td>Aurora kinase 1</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine tri-phosphate</td>
</tr>
<tr>
<td>Bub1-3</td>
<td>Budding uninhibited by benzimidazoles 1-3 homolog</td>
</tr>
<tr>
<td>BubR1</td>
<td>Budding uninhibited by benzimidazoles 1 homologue beta</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine mono-phosphate</td>
</tr>
<tr>
<td>Cdc20</td>
<td>Cell division cycle 20</td>
</tr>
<tr>
<td>Cdh1</td>
<td>Cell division cycle 20 homologue 1</td>
</tr>
<tr>
<td>Cdk1</td>
<td>Cell dependent kinase 1</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CENP A-F</td>
<td>Centromeric protein A-F</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CPC</td>
<td>Chromosomal passenger complex</td>
</tr>
<tr>
<td>CREST</td>
<td>Calcinosis, Raynaud phenomenon, esophageal dismotility, sclerodactyly, telangiectasia</td>
</tr>
<tr>
<td>CSF</td>
<td>Cytostatic factor</td>
</tr>
<tr>
<td>Cyclin B1-GFP</td>
<td>Green fluorescent tagged cyclin B1</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DIC</td>
<td>Differential interference contrast</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle stimulating hormone</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GV</td>
<td>Germinal vesicle</td>
</tr>
<tr>
<td>GVBD</td>
<td>Germinal vesicle breakdown</td>
</tr>
<tr>
<td>H2B-RFP</td>
<td>Histone 2B-red fluorescent protein</td>
</tr>
<tr>
<td>IBMX</td>
<td>Isobutylmethylxanthine</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinising hormone</td>
</tr>
<tr>
<td>Mad2</td>
<td>Mitotic-arrest deficient 2</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MCC</td>
<td>Mitotic checkpoint complex</td>
</tr>
<tr>
<td>ME-S332</td>
<td>Meiotic from Salaria 332</td>
</tr>
<tr>
<td>MetI</td>
<td>Metaphase I</td>
</tr>
<tr>
<td>MetII</td>
<td>Metaphase II</td>
</tr>
<tr>
<td>MI</td>
<td>Meiosis I</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µl</td>
<td>Microliter</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometre</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>MII</td>
<td>Meiosis II</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MTOC</td>
<td>Microtubule organizing centre</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Myc</td>
<td>Myelocytomatosis viral oncogene</td>
</tr>
<tr>
<td>na</td>
<td>Numerical Aperture</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NEBD</td>
<td>Nuclear envelope breakdown</td>
</tr>
<tr>
<td>NLS</td>
<td>Nuclear localisation sequence</td>
</tr>
<tr>
<td>nM</td>
<td>Nanomolar</td>
</tr>
<tr>
<td>PB</td>
<td>Polar body</td>
</tr>
<tr>
<td>PBE</td>
<td>Polar body extrusion</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyde</td>
</tr>
<tr>
<td>PGC</td>
<td>Primordial germ cell</td>
</tr>
<tr>
<td>Plk1/Plx1</td>
<td>Polo-like kinase 1</td>
</tr>
<tr>
<td>PMSG</td>
<td>Pregnant mare serum gonadotrophin</td>
</tr>
<tr>
<td>PP2A</td>
<td>Protein phosphastase 2A</td>
</tr>
<tr>
<td>Rad21</td>
<td>Double strand break repair protein Rad21 homologue</td>
</tr>
<tr>
<td>Rec8</td>
<td>Meiotic recombination protein Rec8 homologue</td>
</tr>
<tr>
<td>RFP</td>
<td>Red fluorescence protein</td>
</tr>
<tr>
<td>RNAi</td>
<td>Ribonucleic acid interference</td>
</tr>
<tr>
<td>RNAse</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>SA1-3</td>
<td>Stromal antigen protein 1-3</td>
</tr>
<tr>
<td>SAC</td>
<td>Spindle assembly checkpoint</td>
</tr>
<tr>
<td>SAM</td>
<td>Senescence accelerated mouse</td>
</tr>
<tr>
<td>Scc1-4</td>
<td>Sister chromatid cohesion protein 1-4</td>
</tr>
<tr>
<td>Sgo1-2</td>
<td>Shugoshin 1-2</td>
</tr>
<tr>
<td>siRNA</td>
<td>Small interference RNA</td>
</tr>
<tr>
<td>Smc1-3</td>
<td>Structural maintenance of chromosomes 1-3</td>
</tr>
<tr>
<td>Sycp3</td>
<td>Synaptonemal complex protein 3</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>v/v</td>
<td>By volume</td>
</tr>
<tr>
<td>w/v</td>
<td>By weight</td>
</tr>
<tr>
<td>YFP</td>
<td>Yellow fluorescent protein</td>
</tr>
</tbody>
</table>
References

Reimann, J.D., Gardner, B.E., Margottin-Goguet, F. and Jackson, P.K. (2001b) 'Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins', *Genes Dev*, 15(24).

Sonoda, E., Matsusaka, T., Morrison, C., Vagnarelli, P., Hoshi, O., Ushiki, T., Nojima, K., Fukagawa, T., Waizenegger, I.C., Peters, J.M., Earnshaw, W.C. and

