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Abstract 

The vegetation history of the North Tyne basin, northern England, is presented for an 

extended Holocene period, dating back to ca. 8000 cal. Be. This study focuses upon 

vegetation histories from two types of site, which record changes at differing spatial scales. 

The regional vegetation of the area is recorded within three radiocarbon-dated pollen 

diagrams from upland sites at Drowning Flow, Bloody Moss and Sells Bum. These sites 

provide a different perspective of regional vegetation history in comparison to existing 

published accounts from the region. This work also fills a spatial gap in current knowledge, 

by providing records from the area between Hadrian's Wall in the south and the Cheviots 

to the north for which only one previous site exists (Steng Moss: Davies and Turner, 

1979). These regional records are complemented by the reconstruction of local, valley 

floor vegetation derived from organic-rich palaeochannel fills at Brownchesters Farm, 

Redesdale and Snabdaugh Farm, North Tynedale. These sites demonstrate how patterns of 

vegetation at local scales can provide valuable additional insights into former landscapes, 

valley floor land-use and human activity. Perceived problems of the usage of alluvial 

sediments for palynological investigation are discussed, while methodologies to overcome 

these difficulties are developed and the potential benefits of these contexts for vegetation 

reconstruction outlined. The unusually long and readily dateable alluvial record has also 

facilitated a new perspective on the timing and controls of Holocene fluvial activity in the 

North Tyne basin. The close integration of archaeological evidence with the results from 

this study has contributed to a number of debates concerning former human activity in the 

area. Palynological results suggest that the impact of Mesolithic and Neolithic societies 

upon the landscape has been underestimated; that postulated alterations in upland / lowland 

settlement patterns during the Bronze Age are a consequence of a fragmentary 

archaeological record rather than a response to changing environmental conditions; that 

Iron Age (and earlier) agricultural activity has been underestimated and that forest 

clearance was a gradual phenomenon with its origins in the Late Mesolithic and not 

primarily a result of activity associated with invading Roman forces. 
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Chapter 1 

Introduction and review of literature 

1.1 Introduction 

The reconstruction of former Holocene landscapes and the modelling of past human 

activity is a difficult, complex and multi-faceted task. Individual analytical techniques, 

whilst providing important insights into past environments, are frequently spatially and 

temporally fragmented, particularly in upland environments subject to long-term 

erosion. Multi-disciplinary approaches have significant benefits in this respect, by 

providing different perspectives to what are often very similar problems, questions and 

debates (Edwards, 1993). For example, the application and integration of 

palaeoecological techniques with elements of archaeological evidence has provided 

numerous opportunities for the detailed study of past environments inaccessible by 

individual methodologies (e.g. Edwards, 1989; Edwards et ai., 1983; Davies, 1997; 

Simmons, 1975a, 1975b , 1996; Turner, 1979). 

The archaeological record of northern England extends back to the Palaeolithic (Cousins 

and Tolan-Smith, 1995), yet, with the exception of Hadrian's Wall, (designated a World 

Heritage site, Breeze and Dobson, 1987), the region's prehistoric archaeological record 

has received little attention. However, recent work in the Milfield basin, north 

Northumberland is challenging perceptions of prehistoric human activity and prompting 

a re-evaluation of the region's multi-period archaeological record (Waddington, 1998a). 
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A palaeoecological research program designed to address specific archaeological issues 

is therefore desirable, in order that more accurate reconstruction of Holocene landscapes 

can be achieved. 

Whilst the North Tyne basin contains archaeological evidence of all periods from the 

Mesolithic onwards, records to date have been insufficiently complemented by 

radiocarbon-dated palaeoecological studies. Although work by lobey (1965,1977,1978; 

lobey and lobey, 1988), Charlton and Day (1978, 1979, 1981, 1982), Harbottle and 

Newman (1973, 1977), Gates (1983) and Topping (1989) have provided detailed 

archaeological information concerning individual sites and specific periods of 

prehistory, longer-term studies at landscape scale are lacking. A number of questions 

and debates raised by the archaeological evidence are pertinent to the palynologist and 

some, particularly those concerned with the Roman period, have been addressed by 

several studies (Davies and Turner, 1979; Dumayne, 1993a, 1993b; Dumayne and 

Barber, 1994). Whilst these have provided a temporal and spatial focus for existing 

palynological investigations, it has in some instances been to the detriment of analyses 

concerning longer-term Holocene vegetation dynamics and the influence of earlier, and 

later, human communities upon the landscape of the area. Palynological studies that 

address the following key areas are consequently critical in terms of understanding 

regional vegetation histories and the impact of past societies upon Holocene landscapes 

in northern Britain. 

The earliest impact of Stone-Age human societies upon vegetation of northern England 

has been poorly documented, due in part to a focus upon regional-scale vegetation 
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histories that may not register the impact of small-scale and possibly temporary forest 

clearance (e.g. Davies and Turner, 1979, Dumayne, 1992). Published archaeology and 

limited field survey suggests that there is a virtual absence of Mesolithic communities in 

North Tynedale and Redesdale, despite evidence that is emerging from the lower part of 

the Tyne system (Tolan-Smith, 1996, 1997) and an otherwise strongly riverine 

distribution of Mesolithic sites in the wider region (Davies, 1983). Palynological 

techniques, particularly those focused upon local scale vegetation records, may offer the 

opportunity to analyse any impacts Mesolithic societies may have had on the 

environment of the North Tyne basin. The evidence of cereal production and the 

development of Neolithic-type societies has also been documented as occurring 

relatively late in northern Britain (Pratt, 1996), although recent archaeological evidence 

from Milfield is altering these perceptions (Waddington, 1997a). The north-east and 

south-east parts of the region have apparently formed the focus for cereal cultivation 

(Pratt, 1996; Huntley, 1997), with existing palynological studies suggesting that the area 

of the North Tyne did not support arable agriculture until much later in prehistory 

(Davies and Turner, 1979). This conclusion requires careful testing to analyse if this is 

simply a function of the scale and focus of existing palynological investigations. 

Later prehistoric periods also contain a number of questions derived from regional 

archaeological issues. For example, climate conditions during the Early and Late Bronze 

Ages have been cited as responsible for alterations in the pattern of upland-lowland 

human settlement and subsistence activity during this period (Burgess, 1984, 1985). As 

population shifts are likely to have repercussions within the vegetation record, these 

theories are testable by palynological studies at appropriate scales. Indeed, debates 



4 
surrounding the relative impacts of human activity within upland and lowland 

environments are a critical issue for palynologists throughout much of prehistory 

(Janssen, 1986). Questions surrounding the onset of major deforestation of the region 

and associated large-scale cereal cultivation have been the focus of much existing 

palynological work. The Roman forces which invaded in AD 79 have been cited as 

causing widespread vegetation changes, although archaeological evidence suggests that 

levels of native Iron Age tillage in upland areas may have previously been 

underestimated (Topping, 1989). Post-Roman vegetation change has also received little 

attention within existing palynological literature (e.g. Davies and Turner, 1979). 

This study analyses these multi-period archaeological issues within the context of the 

North Tyne basin (Figure 1.1), facilitating debates concerning periods of prehistory to 

be engaged with landscape-scale vegetation reconstructions. This is particularly 

important given recent archaeological evidence emerging from the region that suggests 

this area of northern Britain was an important social, cultural and political centre 

throughout many periods other than the Roman occupation (Waddington, 1998a). This 

study also encompasses analysis of vegetation changes at a smaller, local spatial scales 

and within the potentially critical context of valley floor environments that are the most 

likely to have been proximal to areas of former human settlement and cultivation. The 

usage of radiocarbon-dated palaeochannel fills provides a unique opportunity to 

examine temporary and localised vegetation fluctuations possibly induced by 

anthropogenic involvement that may not be visible within upland regional pollen 

records. These valley floor studies may be particularly beneficial to studies concerned 

with the early impacts of human activity and the onset of agricultural practices in the 
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region. 

There follows a brief review of some of the pertinent elements of regional archaeology, 

including an outline of ongoing efforts to integrate these mUlti-proxy approaches into 

regional landscape-scale syntheses of Holocene environments. Existing palynological 

records from the area of the North Tyne basin are also examined in the context of 

regional archaeology and issues of scale are discussed with reference to approaches 

already adopted elsewhere. An outline of valley floor geoarchaeological methods and 

current Holocene alluvial histories in Britain is also addressed. It should be noted that 

unless otherwise stated all dates mentioned in the text are calibrated calendar dates (BC 

/ AD) and all dates quoted as BP are uncalibrated radiocarbon dates. 



Figure 1.1: Location of study sites and upland mire and bog sites 
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200 61 
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1.2 Regional Archaeological Records 

In common with existing palynological work from within the region, archaeological 

interest has, until recently, focused primarily upon the Roman period (e.g. Breeze and 

Dobson, 1987) and to a lesser extent Mediaeval times (e.g. Tolan-Smith M., 1997) 

(Young and Simmonds, 1995). This is understandable given the region's importance as 

the northern frontier of the Roman Empire and the scale and visibility of Hadrian's Wall 

and associated forts, marching camps and other constructions. Nevertheless, 

archaeological work upon other periods of prehistory has been ongoing within the 

region and this has recently expanded with some important and significant discoveries 

(e.g. Waddington and Davies, 1998; Waddington et al., in press). In particular, recent 

work in the Milfield basin, north Northumberland, by Waddington (1 997a, 1997b, 

1998a, 1998b) has confirmed the national importance of this area as a focus for 

successive generations of prehistoric and early historic communities. Excavations and 

radiocarbon dating of features associated with the Coupland enclosure, near Milfield 

village, have revealed this hengiform monument to be the oldest in the country, dating 

to ca. 3800 Be. In addition, one of the principal functions of this feature appears to be 

related directly to early agricultural practices, and yet existing palynological records 

indicate such activity occurred much later within northern England during the Bronze 

Age or even later (Rowell and Turner, 1985; Davies and Turner, 1979; Fenton-Thomas, 

1992). 

Further debate surrounds the apparent shift of prehistoric people from the low-lying 

river valleys to the Cheviot uplands in the Early Bronze Age. Archaeological evidence 

suggests that an increase in small hut circles in the uplands during this period reflect a 
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corresponding abandonment of the lowlands (Burgess, 1984, 1985). It is postulated that 

this shift in population was a response to the well-documented climatic amelioration 

that occurred during this period (Lamb, 1981). This trend is reversed in the Late Bronze 

Age, associated with a worsening of climatic conditions. Contradictory evidence is, 

however, beginning to emerge with the radiocarbon dating of what were originally 

believed to be later valley-floor and valley-side settlement sites (e.g. Lookout Plantation, 

Milfield Plain, Monaghan, 1994; Hallshill, Redesdale, Gates, 1983). In this case, the 

comparison of local pollen records from lowland sites with those from the uplands may 

contribute to debates concerning patterns of upland and lowland human settlement. 

Within the Tyne basin, recent and ongoing archaeological research has been carried out 

under the auspices of the Tyne-Solway Ancient and Historic Landscapes Programme 

based in the Department of Archaeology, Newcastle University. Associated field-

walking of the Lower Tyne corridor is discovering evidence of the presence of 

Mesolithic and Neolithic communities on the valley floor and valley sides (Tolan-Smith, 

1996, 1997b). Work in the North Tyne basin, with the exception of excavations at High 

Rochester Roman Fort in Upper Redesdale (Crow, 1997), has been less intensive, 

despite early surveys (Charlton and Day, 1976) which have indicated the presence of 

human communities in the area since the Mesolithic. Palaeoenvironmental and 

geoarchaeological work may be critical in establishing the nature and extent of former 

human activity within the area and allow archaeological research to be directly targetted 

into the areas most likely to yield finds which will enhance the current understanding of 

past communities and their associated environment. 
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1.3 Palynological Records from the North Tyne basin 

Whilst many areas of northern England have been the subject of palynological study 

(e.g. the North York Moors, the North Pennines and the Cheviot Hills), a recent review 

and spatial analysis of published and unpublished pollen records from sites in 

Northumberland and County Durham has highlighted the absence of pollen sites in 

central Northumberland (Pratt, 1996; Figure 1.2). Despite containing many potential 

sites for palaeoecological study, the North Tyne basin is particularly poorly documented, 

with existing pollen records restricted to peripheral upland mire sites at Steng Moss (NY 

965913: Davies and Turner, 1979) and Fozy Moss (NY 830714: Dumayne, 1992, 

1993a, 1993b; Dumayne and Barber, 1994). These sites, along with an undated diagram 

from the lower South Tyne basin at Muckle Moss (NY 800670: Pearson, 1954, 1960) 

(Figure 1.1) provide the only temporally extensive pollen records from the area. Other 

studies from archaeological sites, such as ditch fills at Vindolanda in the South Tyne 

valley (Manning et al., 1997), unpublished work from excavations at Kennell Hall 

Knowe (see Jobey, 1978 for archaeology) and palaeochannel fills at Snabdaugh 

(Passmore, 1994; Passmore and Macklin, 1997) in the upper reaches of the North Tyne, 

represent the only other palynological work in the area. 

The principal reasons for this spatial gap in existing palynological studies are twofold. 

Firstly, over recent years there has been increasing attention within the palaeoecological 

literature concerning the vegetation history of the corridor associated with Hadrian's 

Wall to answer questions concerning Roman impact (Dumayne, 1992, 1993a, 1993b; 

Dumayne and Barber, 1994; Manning et al., 1997). Secondly, studies have examined the 

upland areas of the North Pennines and Cheviot Massif, where deep peat profiles are 
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known to be present and archaeological records are frequently more extensive (Turner 

and Hodgson, 1979, 1981, 1983; Roberts et ai., 1973; Chambers, 1978; Tipping 1992, 

1996). 

In addition to the peripheral nature of the sites outlined above, each of these records is 

also focused principally upon the vegetation around the period of Roman occupation of 

the region in the early centuries AD (cf Turner, 1979; Davies and Turner, 1979; 

Dumayne, 1993a; 1993b; Dumayne and Barber 1994; Dumayne-Peaty and Barber, 1997; 

McCarthy, 1995, 1997; Manning et ai., 1997). The key questions these studies have 

attempted to address concern the timing of landscape-scale forest removal in the region 

and the degree to which it may be regarded as reflecting the increased need for 

agriculture and / or timber associated with the Roman incursion and the construction of 

frontier defences, including Hadrian's Wall. These debates over the relative impact of 

the Romans hinge upon problems inherent with the chronological control and resolution 

provided by radiocarbon dating frameworks (Dumayne et ai., 1995). This is partially 

due to problems with funding the large numbers of dates required to adequately resolve 

these questions, but is also a consequence of the magnification of error margins in the 

dendrochronological radiocarbon calibration curve during the years in question (Stuiver 

et ai., 1986, 1993). Various methods have been put forward to attempt to address these 

problems, notably by wiggle-matching the calibration curves and 'dragging' dates to 

known events (Dumayne et ai., 1995; Baillie, 1991, Clymo et ai., 1990), or by using 

precisely-dated archaeological sedimentary sequences as a window for pollen analysis 

(Manning et ai., 1997). Nevertheless, questions concerning the relative impact of the 

Romans remain, with existing evidence suggesting that the timing and scale of forest 



11 
removal has been spatially variable. Elucidation of patterns of clearance within the 

North Tyne basin, which lies in the frontier zone beyond the wall, will contribute 

significantly to this debate. 

A further element of concern is the spatial resolution of existing pollen diagrams from 

the region. The current principal diagrams from the region, Fozy Moss and Steng Moss 

(op cit.), are both large upland mires and reflect a predominantly regional vegetation 

signal (Jacobsen and Bradshaw, 1981; Figure 2.1). These types of off-site (sensu 

Edwards, 1991 b) palaeoecological studies, provide valuable information concerning 

broad-scale vegetation change and allow both archaeological sites and landscapes to be 

seen within an environmental context. However, small-scale, local fluctuations in 

species composition are a relatively diluted constituent in diagrams from these sites 

(J annsen, 1973, 1986). As a consequence, small, temporary and early anthropogenic 

involvement with the vegetation can be extremely difficult to discern (Buckland and 

Edwards, 1984). For example, the early cultivation of cereals and the onset of 

agricultural practices are notoriously difficult to identify confidently in pollen records of 

a regional nature (Edwards and Hirons, 1984; Edwards, 1989; Boyd, 1988; Hall et ai., 

1993). Coupled to this is the likelihood that cultivation and settlement occurred within 

valley floor and valley side environments in preference to remote upland areas where 

conditions were harsher. Organic-rich palaeochannel sediments within floodplain 

contexts provide a unique opportunity for these local-scale palynological investigations 

(Passmore and Macklin, 1997). 

Due to the relative insensitivity of the palynological record from upland mire sites, 
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many authors (e.g. Bradshaw 1988; Edwards 1991 a; Huntley 1997) have highlighted the 

importance of local vegetation records in providing the 'fine-print' with which to 

complement the more general regional picture. Indeed, Janssen (1986) and Brown 

(1996) both outline how the use of contrasting pollen diagrams from floodplain and 

upland localities can allow greater insight into a range of environmental settings. This is 

a particularly important means of linking archaeological features directly to vegetation 

records, as regional pollen analysis often presents too general a picture for optimum 

integration with archaeology (Smith, 1975). Janssen (1981), for example, has used 

regional pollen diagrams for chronological correlation of major events and local records 

as evidence for activity at and around specific sites. Huntley (1997), in a recent 

consideration of the direction of future palaeoenvironmental research in northern 

England, has also made a plea for the reconstruction of more local vegetation histories 

with which to correlate the rich archaeological information that is beginning to emerge 

from the region. When such studies are undertaken, whereby numerous pollen cores are 

taken from within a relatively limited area, specific loci of activity may be discerned 

(Tipping, 1992) which in tum may provide further clues to the lifestyles of past human 

communities. 



Figure 1.2: Existing Pollen Sites in Northern England (from Pratt, 1996). 
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1.4 Valley Floor Geoarchaeology 

The systematic geoarchaeological examination of Holocene alluvial sequences may 

facilitate the reconstruction of environmental change over a wide range of spatial and 

temporal scales (Brown, 1997). Valley floor and riparian environments have long been 

recognised as providing foci for human activity and are likely to have been intensively 

and continuously utilised by prehistoric and historic societies (Waters, 1992; Evans, 

1992; Brown, 1996; Passmore and Macklin, 1997). Owing to the sensitivity and 

susceptibility of these contexts to environmental change, natural and anthropogenically

induced perturbations at local, catchment and global scales can be registered within the 

alluvial sedimentary record (Knox, 1995). By using sedimentary, geomorphological and 

palaeoenvironmental analyses, unique insights into valley floor development and the 

landscape context of former populations are possible, facilitating more meaningful and 

realistic interpretations of the archaeological record within these areas. In addition, these 

types of geoarchaeological studies of valley floor environments have frequently revealed 

a rich archaeological resource despite an apparent lack of surface archaeology as former 

landscapes and features become buried beneath a veneer of protective alluvium (Brown, 

1997; Bell, 1992; Macklin and Needham, 1992). 

Geoarchaeological investigations in the UK have, to date, focused primarily upon 

lowland river systems, although the River Tyne has arguably been more intensively and 

extensively studied than any other upland British river system (Macklin and Needham, 

1992; Macklin et ai., 1992a, 1992b; Passmore and Macklin, 1997). Work on selected 

reaches located predominantly within the South Tyne system has shown that upland 

rivers are characterised by incised and terraced valley floors, which have been subject to 
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reworking and erosion during later prehistoric and historic times. The alluvial records in 

these systems are dominated by gravel, deposited as channel bed and bar sediments, 

with relatively thin fine members and few documented examples of well-developed 

valley floor peat. This has both inhibited the construction of detailed chronologies to 

elucidate the phases of valley floor development, and largely precluded palaeoecological 

study that would provide insights into environmental change. 

Recent studies have highlighted the local incidence of valley floor configurations 

conducive to low-energy sedimentation and organic accumulation, notably in the 

Southern Uplands of Scotland (Tipping, 1995a, 1995b, 1995c), piedmont rivers draining 

the Cheviot Hills in Northumberland (Tipping, 1992, 1998; Passmore et al., 1998) and 

the middle reaches of the North Tyne and Rede (Passmore, 1994; Passmore and 

Macklin, 1997; Moores et al., 1998). Preliminary investigations in these areas have 

revealed a well-developed record of Holocene fluvial activity, with the potential to yield 

information concerning environmental change, valley floor development and human 

activity. These environments go some way towards satisfying the need for a full 

integration of palynological records with other disciplines (e.g. Macklin et ai .• 1991; 

Shotton, 1978; Macklin and Lewin, 1986; Tipping, 1992; Tipping and Halliday, 1994). 

1.5 Holocene Alluvial Histories 

Elucidating the timing, character and controls upon the development of valley floor 

environments has been the focus of numerous studies across the U.K. (e.g. Harvey, 

1985; Macklin and Lewin, 1986; Burrin and Scaife, 1984). These investigations have 

focused upon episodes of valley floor alluviation and channel abandonment and 
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frequently attempt to link periods of geomorphic change to alterations in climate and I 

or anthropogenic regimes. Macklin and Lewin (1993) highlight an apparent widespread 

synchrony of fluvial patterns across a number of U.K. river catchments, which they 

attribute principally to changes in large-scale (hemispheric) atmospheric circulation 

patterns. They also draw parallels, in terms of chronology, with documented alluvial 

histories from both Europe (e.g. Becker and Schirmer, 1977, Starkel et ai., 1996) and 

the USA (e.g. Knox, 1983). It is concluded that the British Holocene fluvial record is 

"climatically driven but culturally blurred" (Macklin and Lewin, 1993; Page 119). 

Conversely, the effect of anthropogenic disturbance upon fluvial systems has been cited 

by some authors (e.g. Bell, 1982; Burrin and Scaife, 1988) as the principal causal agent 

controlling Holocene river activity. This would appear to explain the apparent increase 

in fluvial activity at around 4000 BC in rivers from lowland, southern England, as the 

timing is concomitant with the technological and agricultural advances associated with 

the onset of the Neolithic period. Macklin and Lewin (1993) have argued that as upland 

rivers also appear to exhibit evidence of increased fluvial activity at around this time, 

despite the relative absence of extensive archaeology, climatic mechanisms must be 

responsible. However, recent archaeological discoveries are pointing towards a far more 

intensively utilised landscape during the Neolithic in northern Britain and as a 

consequence purely climatic controls over fluvial activity during this period may need 

re-evaluation (Passmore and Macklin, 1997). 

To test these competing, although not necessarily mutually exclusive (Macklin et aI., in 

press; Tipping, 1998), hypotheses concerning the controls of alluvial valley floor 
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development, it is important to attempt to design studies that combine proxy records 

within an individual basin (Tipping 1995a). River basins form discrete, bounded study 

units within which processes may be analysed at a variety of scales. The establishment 

of causality is difficult and much current work is equivocal in identifying causal 

relationships between climate, vegetation, anthropogenic influence and fluvial activity 

(Bell, 1982; Burrin and Scaife, 1988; Ballyntyne 1991). Recent, basin wide 

investigations of Holocene alluvial records within the Cheviots and Milfield basin area 

of Northumberland are beginning to link periods of soil disturbance induced by 

anthropogenic activity and response within downstream alluvial records (Tipping, 1992, 

1998). Likewise, Passmore and Macklin (1994) have linked discrete sedimentary units 

to upstream anthropogenic activity on a more recent time-scale associated with heavy 

metal mining in the North Pennines. Further work, using this mUlti-proxy approach, 

upon upland British rivers is necessary in order to address the question of causality 

within the alluvial record. 

One of the principal questions pertaining to British Holocene alluvial sequences is 

whether the absence of dated alluvial units between ca. 8000-5200 uncal. BP (ca. 7000-

4000 BC) (Macklin and Lewin, 1993) and lack of recorded channel abandonment ca. 

9000-5000 uncal. BP (ca. 8000-4000 BC) (Brown, 1996) is genuine. This period may 

have been extremely stable in terms of British fluvial records, or it may be the case that 

sites with dateable units of this antiquity have not yet been found. If the climatically 

driven hypothesis is correct, the U.K. alluvial record should contain similar evidence to 

both mainland Europe and also the USA, where fluvial discontinuities dating to this 

period do exist (Starkel, 1985; Knox, 1983). Therefore, attempts to find sites which are 
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likely to contain evidence for early Holocene fluvial activity are potentially very 

valuable for enhancing not only local alluvial histories but also the enhancement of our 

understanding of country-wide valley-floor development. 

1.6 Thesis Aims 

The aims of this thesis are: 

1) To provide regional-scale radiocarbon-dated pollen diagrams from the North Tyne 

basin in order to extend both the spatial and temporal coverage offered by studies of 

Holocene vegetation histories. 

2) To address ongoing debates concerning the nature of former human occupation in 

the region at an appropriate scale, specifically; 

• to examine palynological evidence of Mesolithic occupation of the North 

Tyne basin, for which little archaeological evidence exists. 

• to examine the timing and scale of the onset of arable and pastoral 

agriculture within the North Tyne basin. 

• to analyse the palynological evidence with respect to hypothesised 

population shifts during the Bronze Age. 

• to examine the palynological evidence for pre-Roman and Romano-British 

agricultural activity in the area. 

• to analyse post-Roman vegetation dynamics and later human activity. 

3) To attempt to analyse the potential of palaeochannel sediments for the 

reconstruction of floodplain environments via pollen analysis and to provide a 

geoarchaeological assessment of the value of these contexts. 
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1.7 Study Area 

The North Tyne basin, consisting of the river North Tyne and its principal tributary the 

River Rede, covers an area of ca. 1118km2
, draining the south-western portion of the 

Cheviot Hills to the north and the Bewcastle Fells to the south and west (Figure 1.1). 

The North Tyne joins the South Tyne at Warden to form the River Tyne, the ninth 

largest river catchment in Britain, measured in terms of both drainage area and 

discharge. The modern area of the North Tyne basin is dominated in the upper part of its 

catchment by Kielder Forest, an area of commercial forestry planted from 1926 

onwards. Remaining land-use consists predominantly of rough pastoral agriculture, 

which is grazed by sheep, with limited higher-quality grazing and arable agriculture in 

low-lying valley floor and valley-side locations. Lower Carboniferous group rocks, 

including coal measures, limestone and Fell sandstone dominate the geology of the 

catchment. The entire basin lies within the limits of the former Late Devensian ice sheet 

and as a consequence is mantled by glacial, periglacial and glaciofluvial sediments 

deposited subsequent to glacial retreat (ca. 14,000-10,000 uncal. BP). 

1.8 Thesis Structure 

The thesis is divided into 8 chapters; Chapter 2 examines the utility of palaeochannels 

for the purposes of palaeoenvironmental reconstruction, as this forms a key element in 

the methodology for this thesis. A brief review of the common contexts for 

palynological analysis is followed by an examination of how a variety of 

palaeoecological techniques have been applied to valley floor and valley side 
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environments. The application of palynological techniques to alluvial environments is 

discussed with particular reference to the taphonomy of alluvial pollen. A summary of 

the sedimentary environments characteristic of floodplains is followed by an outline of 

palaeochannel formation and subsequent sedimentation. The benefits of palaeochannel 

sediments for palynological investigation and also their potential for recording flood 

histories are highlighted. 

Chapter 3 details the sites selected for this study and outlines some of the background 

information for each. The methods employed for the study are also outlined, with 

particular reference made to how pollen counts were undertaken in the light of the 

review of palaeochannel sediments in Chapter 2. Previous work upon the concept of 

pollen deterioration is reviewed and its potential importance acknowledged. 

Accordingly, the methodologies adopted to attempt to address the concerns are detailed. 

Chapter 4 presents the results of analyses from the upland sites examined in this study. 

For each site the stratigraphy, radiocarbon dating and palynological analyses are 

detailed. Likewise, Chapter 5 presents the results from each of the valley floor sites. 

Here, analyses are presented on a terrace by terrace basis in the light of 

geomorphological mapping. For each terrace the morphology, stratigraphy, dating 

control and palynology of the associated palaeochannels is described. In addition to this, 

Chapter 5 presents the results of analyses of pollen deterioration and a discussion of 

these results and their implications for alluvial pollen taphonomy. 

Chapter 6 focuses on Holocene valley floor development and the alluvial 
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geoarchaeology of the North Tyne basin. Discussion includes a consideration of the 

timing of alluvial episodes in the light of other British and world-wide studies, some 

preliminary findings in terms of alluvial records of flood histories and also examines the 

issue of external controls of the fluvial system 

Chapter 7 synthesises the palynological and geomorphological findings of this 

investigation in the light of previous work in the region and further afield. In order to 

examine specific questions that have arisen from archaeological debates, the discussion 

is structured on a period by period basis. Particular attention is paid to the variation 

between palynological records at different spatial scales and the connectivity between 

archaeological, palynological and geomorphological records. A record of Holocene 

vegetation change within the North Tyne basin is produced, which encompasses 

fluctuations at a variety of spatial scales and attempts to include the possible impact of 

former human communities. 

Chapter 8 summarises the principle conclusions and findings of this study and 

recommends potential directions for future research. 
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Chapter 2 

The Utility of Palaeo channels for Palaeoenvironmental 

Reconstruction 

2.1 Introduction 

Holocene palaeochannels within the UK are relatively under-utilised sources of 

palaeoenvironmental information (Passmore and Macklin, 1997). However, mUlti-proxy 

approaches to landscape reconstruction based upon data from palaeochannel sediments 

can allow insights into the nature of Holocene valley floor vegetation and fluvial activity 

not attainable from upland peat and lake sediments. This chapter briefly reviews the 

most commonly employed sedimentary sources of palaeoenvironmental information and 

outlines the application of palynological techniques to geomorphic contexts. The 

application of palaeoecological methods within alluvial environments is also reviewed 

and particular attention paid to the utility of palaeochannels for studies at high spatial 

and temporal resolutions. In addition, the problems and advantages associated with the 

taphonomy and provenance of pollen within fluvial sedimentary sequences is discussed 

and methods outlined which attempt to address these concerns. 

2.2 Palynological studies from lakes, bogs and soils 

Since pollen analysis was first pioneered by von Post (1916), the sediments utilised for 

analysis have been largely restricted to peat (e.g. Aaby, 1986; Davies and Turner, 1979; 

Dumayne and Barber, 1994), lake sediments (e.g. Davis, 1967; Bonny, 1976; 
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Pennington, 1979; Peglar, 1993b) and, to a lesser extent, soils (e.g. Dimbleby, 1957; 

1961a, 1961b; Tipping et ai., 1994). This is primarily due to these types of sediment 

providing the conditions necessary for the preservation of pollen and spores, namely 

anaerobic, non-oxidising (usually waterlogged) sediment, with a low pH to minimise 

micro-organism activity. Peat and lake sediments typically provide sediments that have 

accumulated both rapidly and continuously over millennia, providing the longest 

chronologies and offering the best temporal resolution. 

Numerous studies have examined the relationship between pollen records found within 

lake and bog sediments and the extent to which they are representative of past 

vegetation. These taphonomic processes are too extensive to review thoroughly here, but 

some of the key texts are outlined below. Differences exist in pollen production (Faegri 

and Iversen, 1989; Davis, 1963; Anderson, 1970), pollen dispersal (Caseldine, 1981; 

Tinsley and Smith, 1974), pollen deposition (Tauber, 1965, 1967; Jacobsen and 

Bradshaw, 1981), pollen preservation in sediments (Havinga, 1967; Cushing, 1967; 

Hall, 1981; Sangster and Dale, 1961, 1964) and pollen survival during laboratory 

processes (Charman, 1992). It is vital to have an appreciation of all taphonomic 

processes to correctly interpret pollen diagrams (Lawrence, 1968). 

Notwithstanding these taphonomic considerations, reliable reconstructions of former 

vegetation assemblages can be made through the analysis of fossil pollen from these 

sedimentary contexts. Indeed, vegetation records spanning the entire Holocene period 

(and earlier) have been constructed for many areas of the British Isles (see Bell and 

Walker, 1992), Europe (e.g. Woillard, 1978) and the rest of the world. Palynological 

analyses have assisted not only in the reconstruction of former climatic conditions, but 
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have also aided archaeologists in discerning the extent and character of land-use 

activities, even where archaeological material is absent or poorly preserved. However, in 

some cases palynological analyses of the traditionally utilised sediment mediums are 

inadequate for answering important questions pertaining to local vegetation history and 

the earliest impact of human societies upon the landscape. For instance, the impact of 

the first agricultural communities is frequently a difficult feature to discern within off

site pollen diagrams and various methods have been employed to increase the detection 

rate of palynological indicator species (e.g. Edwards and McIntosh, 1988; Turner, 1975; 

Maguire, 1983). 

2.3 Palaeoecological studies from Holocene valley side and valley 

floor environments 

In comparison with vegetation records from lake and peat sediments, relatively little 

work has been undertaken to elucidate vegetation histories associated with alternative 

depositional sedimentary sequences, or with linking vegetation records directly to 

important elements of geomorphic landscape development. Whilst a number of authors 

have advocated the need for a multi-disciplinary approach to problems concerning past 

environments (Tipping, 1995a; Macklin and Needham, 1992), this has not been widely 

forthcoming. This trend is being reversed and a number of examples of successful 

collaborations between workers in the fields of geomorphology, archaeology and 

palaeoecology occur (e.g. Mercer and Tipping, 1994; Macklin et al .. 1991; Burrin and 

Scaife, 1988; Passmore et al .• 1992; Moores et al.. 1998). 



25 

Palaeoecological methods have provided valuable insights whenever they have been 

applied to geomorphic contexts, in terms of both highlighting background ecological 

information and providing clues to the possible controls or mechanisms of landforming 

processes. A range of palaeoecological methods has been used to elucidate 

environments associated with geomorphic features, including analysis of molluscs 

(Robinson, 1978; Shotton, 1978), diatoms (Battarbee, 1986), plant macrofossils 

(Robinson, 1978; Becker and Schirmer, 1977; Cotton et ai., in press), pollen (Harvey et 

aI., 1981) and Coleoptera (Bishop and Coope, 1977). 

These various palaeoecological techniques have been applied to a diverse spectrum of 

valley-side and valley-floor landforms. For example, palynological analyses have been 

instrumental in determining the chronology and controls of Holocene debris cones 

(Brazier et al., 1988;Brazier and Ballantyne, 1989; Harvey et al., 1981), alluvial fans 

(Tipping and Halliday, 1994), solifluction terraces (Mottershead, 1977) and landslides 

(Tallis and Johnson, 1980; Redda and Hansom, 1989) in upland British river valleys. 

Pollen analysis has also been used by Ballantyne and Whittington (1987) to examine the 

accumulation and early vegetation history of niveo-aeolian sand deposits. Tipping 

(1995d) has investigated the development of valley floor peat using pollen and charcoal 

analyses, sediment stratigraphy and magnetic susceptibility. He identifies three forms of 

discrete minerogenic banding attributed to different geomorphic processes, thereby 

allowing a more detailed reconstruction of local environmental history. Similar methods 

were employed in the analysis of soil (Edwards et al., 1991) and peat erosion 

(Stevenson et al., 1989) where pollen and other evidence, including minerogenic inwash 

bands, has indicated the possible impact of human vegetation disturbance upon lakes 

and peat bog sediments. Dimbleby (1957, 1961 a, 1961 b) has also employed 
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palynological techniques to assist in the understanding of soil development processes 

and post-depositional influences on pollen grains. Thus, palaeoecological methods have 

facilitated a greater understanding of landscape development within a diverse range of 

geomorphic contexts. Edwards (1979), however, has warned against the over-use of 

palynological techniques as a chronological tool, advising caution due to differing 

taphonomic processes, for example, when correlating lake and peat deposits. 

2.4 Holocene alluvial contexts 

The application of palynological techniques to alluvial contexts is not widely practised 

in the UK despite the potential shown by some geoarchaeological investigations in the 

lowlands (Scaife and Burrin, 1992; Burrin and Scaife, 1984; Brown and Keough, 1992) 

and uplands (Tipping, 1995a, 1995b, 1995c, 1998; Passmore et ai., 1992, Macklin et ai., 

1991; Passmore, 1994; Passmore and Macklin, 1997). This is due partly to the relative 

abundance of lake and peat bog sites where pollen preservation is known to be good and 

taphonomic processes are reasonably well understood (Campbell and Chmura, 1994), 

and also concern over the influence of water currents upon pollen assemblages from 

alluvial environments (Brown, 1996). Elsewhere in the world, and particularly in arid 

and semi-arid regions, there is a paucity of 'wetland' sites and palynological methods 

have been applied more extensively to river terrace deposits and other alluvial features 

(e.g. America: Delcourt and Delcourt 1980; Delcourt et ai., 1980; Fall 1987; Martin 

1963; Solomon et ai., 1982; Freeman, 1972; China: Qinghai et ai., 1996). However, 

while palynological analyses have proved the existence of preserved pollen in these 

contexts, debate still exists as to how representative these are in terms of vegetation 

history. 
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The origins of pollen assemblages found within alluvial sediments are relatively poorly 

understood, and it is recognised that fluvial processes have a potentially great effect 

upon the composition of spectra derived from these contexts (Brown, 1996). Limited 

taphonomic work has focused upon the processes by which pollen is incorporated into 

alluvial sediments and as a consequence our understanding of the mechanisms is 

incomplete. A review of the principal concerns over the taphonomy of alluvial pollen 

assemblages follows and highlights the mechanisms that are potentially responsible for 

the distortion of records from these environments. 



Figure 2.1: The Jacobsen and Bradshaw model of pollen recruitment (from Brown, 1997) 
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2.4.1 Taphonomy of Pollen in Alluvial Sediments 

Alluvial sedimentary environments differ markedly from those traditionally used to 

model the taphonomic processes associated with pollen records. Models of pollen 

production, dispersal and deposition have typically been confined to consideration of 

terrestrial woodland environments (Tauber, 1965; Jacobsen and Bradshaw, 1981) or 

lake sediments (Bonny 1976; Peck 1973). While Scaife and Burrin (1992) have 

summarised the mechanisms for pollen transport into alluvial sediments, and have 

incorporated classic airborne models (Anderson 1970; Anderson 1973; Jacobsen and 

Bradshaw 1981; Tauber 1965; Tauber 1967) and additional sources such as stream

borne pollen (Peck 1973) and palaeopollen (reworked geological palynomorphs) (Hunt, 

1987; Davis, 1961; Cushing, 1964, 1967), there remain several critical taphonomic 

considerations when palynological analysis is undertaken on alluvial contexts. These 

include: 

(i) The potential for fluvial sorting of pollen and deposition in particular 

sedimentary environments. 

(ii) The secondary deposition of reworked pollen from older contexts. 

(iii) The scope for differential pre- and post-depositional preservation of various 

pollen taxa. 

2.4.1.1 Fluvial Sorting 

The recognition that an understanding of fluvial processes is critical in the interpretation 

of pollen assemblages occurred within the early phases of the development of 

palynology as an analytical tool (Erdtman, 1943). A number of taphonomic studies have 

been undertaken, although existing work concerning the dynamics of pollen within 
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fluvial systems is both limited, and with respect to certain processes, highly 

contradictory. Many of these studies are concerned principally with the effect of stream

borne pollen upon the composition of lake sediments (Peck, 1973: Bonny, 1976) and 

with the hydrodynamic properties of pollen within the water body (Catto, 1985; Brush 

and Brush, 1972), rather than the taphonomic processes leading to palynological records 

from alluvial sediments. 

The distribution of pollen during transportation within a river system has been studied 

within rivers of very different characteristics in a variety of countries. It has been 

established that greater concentrations of pollen are transported during higher discharge 

events than in base-flow conditions (Federova 1952; Peck, 1973; Brown, 1985; Hunt, 

1987; Traverse, 1990; Chmura and Liu, 1990). In most instances, pollen distribution has 

been analysed across channel cross-profiles, in conjunction with velocity and suspended 

sediment measurements (Starling and Crowder, 1980; Smirnov et al., 1996). Early 

studies suggested that pollen, once wetted, acts as any other fine clastic particle and is 

transported as part of the washload (particles below 0.08mm diameter) (Peck 1973). 

This implies an even distribution of pollen through the cross-section profile as, along 

with other fine material, it is kept in suspension by the upward turbulence of the water. 

This also explains the greater concentration of pollen in floodwaters as high stream 

powers carry a greater quantity of fine sediment. More recent investigations have 

indicated a non-uniform distribution of in-stream pollen, with load concentrated in the 

zone of maximum water velocity and also in the bed-load (Starling and Crowder, 1980). 

The reasons for this cross-sectional distribution are not fully explained, as it is not clear 

whether pollen is concentrated in these areas of the stream due to the increased 

entrainment capacity of the rapidly moving water and the bouncing of particles along the 
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bed of the stream. Starling and Crowder (1980) state that pollen concentration IS 

correlated with the silt portion of the suspended inorganic sediment load and also with 

fine sediments trapped within the bed material. Smimov et ai., (1996) attribute the 

cross-sectional variation in concentration found by Starling and Crowder (1980) to a 

delay in mixing of pollen deposited immediately onto the surface of the water, and that 

peaks in concentrations close to the bed of the river are due to the resuspension of pollen 

grains which have previously become adhered to larger particles of sediment. Crowder 

and Cuddy (1973) also found that overall pollen concentrations in Wilton Creek, 

Ontario were highest when pollen fell directly onto slow moving water and is thus 

independent of water velocity and sediment loads. Flume-based experiments by Brush 

and Brush (1972) also demonstrate that the floating time of most pollen grains was 

negligible and even the number of winged (saccate) grains that remain floating for any 

period of time are insignificant, while Campbell and Chmura (1994) found no 

percentage differences in taxa between samples when analysing pollen distributions in 

river cross-sections. This contradicts the evidence from within lake environments 

(Hopkins, 1950; Davis and Brubaker, 1973) where Pinus pollen deposited upon the 

surface remained afloat significantly longer than other taxa. It should be noted, however, 

that the conditions associated with lacustrine environments are significantly less 

turbulent than would be expected within a stream or river, although cut-offs may 

provide still, lacustrine-like conditions following flood-water incursion. Also, 

movement of instream material is not simply related to particle weight, with channel 

hydraulics and factors of the bed conditions such as armouring and sheltering effects 

also influencing transport (Laronne and Carson, 1976). 
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The inter-species variability in pollen transport has been recognised, if not analysed, by 

Starling and Crowder (1980) as an important consideration and it is accepted that "some 

differentiation of types during transport is to be expected" (Brush and Brush 1972; Page 

360). Indeed, Muller (1959) has found that modem pollen grains settled gradually and 

selectively within the (entirely fine-grained) deltaic environment of the Orinoco River, 

resulting in lighter grains travelling further than heavier ones and being deposited with 

finer grained sediments. Brush and Brush (1972), Davis (1967) and Crowder and Cuddy 

(1973) have found, via laboratory experiment, lake sediment traps and fluvial cross

profiles respectively, that each individual pollen type has a particular fall velocity. 

Despite the fact that lakes and laboratory conditions cannot be directly equated with 

alluvial environments, it does suggest that pollen spectra within alluvial sediment may 

be taphonomically biased. 

Fall (1987), in a study from Canyon de Chelly, north-eastern Arizona, has grouped 

several pollen types into those which settle out with clays (Pinus, Quercus, Populus) 

and those deposited with coarse-grained sediments (Chenopodiaceae-Amaranthus, 

Artemisia, other Tubiliflorae). However, these results contradict the findings of Grichuk 

(1967) who found a greater incidence of coniferous pollen with coarser-grained 

alluvium. The results of Fall (1987) have been criticised by Hall (1989) who highlights 

the lack of consideration paid to sorting which results in higher pollen concentrations in 

fine-grained deposits and that which results in differential sedimentation according to 

grain-size or morphology. These findings are emphasised by Delcourt and Delcourt 

(1980), who attribute the larger quantities of pollen deposited with fine sediment to 

either non-deposition of pollen in coarser sediments (due to rapidly flowing currents), or 

the post-depositional infiltration of pollen between the sand grains during non-flood 
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river stages. Catto e 1985) has also analysed inter-species variability within sediments of 

different grain sizes, finding Picea, Betula, Alnus and Poaceae in the silt units and 

Cyperaceae, Chenopodium, Lycopodium and Ericaceae in the sand strata. Catto e 1985) 

attributes this sorting to the hydrodynamic properties of the pollen grains but this could 

also possibly be explained by certain pollen grains becoming adhered to larger 

minerogenic particles or indeed post-depositional factors. 

In summary, the depositional pattern of all pollen types can be seen to positively 

correlate with the silt-fine sand grain-size fraction of alluvial sediments, although small 

inter-species differences in settling patterns do exist (Peck, 1973; Stanley, 1966; Muller, 

1959; Starling and Crowder, 1980; Delcourt and Delcourt, 1980; Brush and Brush, 

1972). An indication of the grain-size of the sediment matrix is a useful addition to data 

upon palynological records from alluvial environments and an element that has been 

incorporated into this study. Despite these considerations, studies by Smirnov et al., 

e 1996) have concluded that fluvial transport and depositional sorting of palynomorphs is 

not responsible for major taphonomic error within alluvial pollen records and reliable 

vegetation reconstructions can be obtained from alluvial sediments (Brown, 1996). 

2.4.1.2 Secondary Deposition 

The problem of fluvially reworked and secondary deposited pollen can introduce both 

temporal and spatial errors (Tschudy, 1969; Scaife and Burrin, 1992) and is the major 

reason why there have been few applications of pollen analysis on alluvial sediments. 

Temporal error occurs when palynomorphs from previously deposited older sediments 

are re-mobilised and incorporated into younger material. In some instances these 
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palynomorphs may be recognisable, for example when pre-Quaternary spores are 

liberated from geological deposits (Cushing 1964; Wilson, 1964; Traverse, 1990), but 

when catchment soils or older alluvial units are eroded the older pollen and spores may 

not differ from the contemporary spectra. Spatial error is introduced when pollen 

originates from an area upstream of the normal pollen source area and is thus 

transported away from the life setting (Lawrence, 1968). This pollen need not 

necessarily be of a chronologically different age and may be penecontemporaneous 

(Cushing, 1964) with the local pollen record. 

The predominantly minerogenic and allochthonous origin (Cundill and Whittington, 

1987) of most alluvial sediments therefore complicates the interpretation of 

palynological records from these environments. Previous studies have demonstrated that 

large quantities of pollen are transported within fluvial systems (up to 97% of the total 

pollen input to a lake: Peck 1973) and that the greatest concentrations are found in high 

discharge events (Brown 1985; Traverse, 1990). It has also been found that "even in the 

most sluggish stream, pollen grains will be transported in suspension" (Hall, 1985; p. 

100), and therefore, high pollen concentrations in floodwaters must be derived from 

previously deposited sedimentary contexts. Scaife and Burrin (1992) highlight the 

reworking of upper soil horizons and particularly acidic podsol soils as a major source 

of pollen within alluvial systems (see also Dimbleby 1957, 1961 a, 1961 b). Brown 

(1985) has taken this a stage further by using the pollen spectra of in-stream suspended 

organic load to provenance the sediment source, identifying the components derived 

from channel banks, hill-slopes or eroding bedrock. 
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The secondary deposition of pollen is not unique to alluvial sediments and must also be 

considered during the analysis of lake (Mackereth, 1965, 1966; Davis, 1967) and marine 

sediments (Manten, 1966; Stanley, 1966). Indeed, in the majority of lacustrine contexts 

the reworking of surface deposits, which often occurs due to the seasonal overturn of 

thermally discrete water layers, is frequently considered advantageous, as it produces a 

smoothed record that is devoid of annual fluctuations (Birks and Birks, 1980). However, 

alluvium differs from lacustrine sediments in that material from certain contexts is 

potentially subject to episodic and repeated transfer within the fluvial sediment system. 

This, therefore, makes the choice of alluvial sedimentary context critical when selecting 

sites for palaeoecological analyses (see Section 2.5). 

By default, fluvial sorting (see Section 2.4.1.1) also has a role in the secondary 

deposition of pollen (Campbell, in press) as differential resuspension and sorting of 

pollen occurs according to grain morphology (Davis and Brubaker, 1973). Beaudoin and 

Reasoner (1992), however, found that this differential focusing of pollen grains was not 

the case in sediments from Lake O'Hara, Canada. Pollen movement within alluvial 

systems appears, therefore, to be a factor of the individual site and sediment type. 

2.4.1.3 Differential Pollen Preservation 

Pollen production varies according to the vegetation type (Andersen, 1967, 1970, 1973), 

but is commonly measured in millions of grains per m2 per year. As pollen 

concentrations preserved within sediments rarely approach this figure, by implication 

most pollen is destroyed before or soon after its incorporation into the sediment. 

However, there have been few systematic studies of the processes of pollen destruction 
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(Campbell, in press). The preservation of pollen in sediments can be related to pre- and 

post-depositional factors, both of which can have an important bearing on the pollen 

record contained within alluvial sediments. A number of studies have been undertaken 

in the context of peat, lake and soil deposits that have considered post-depositional 

pollen preservation. However, pre-depositional pollen preservation, i.e. losses through 

transport processes, could, in theory, be more important for alluvial pollen records. 

Pre-depositional pollen preservation 

The pre-depositional preservation of pollen within alluvial contexts is intimately linked 

to the processes of fluvial sorting and secondary deposition discussed above. Little work 

has been undertaken upon this topic and the assumption has been that fluvial transport 

of pollen grains has led to damage through collision with clastic particles (Catto, 1985; 

Faegri and Iversen, 1989). This is because within non-alluvial deposits, degradation 

(sensu Cushing, 1964, 1967) has been found to coincide with minerogenic lenses in 

otherwise organic rich profiles (e.g. Birks, 1970; Edwards et ai., 1991). However, in a 

laboratory experiment Campbell (1991) found this is not the case and that damage to 

pollen grains is more likely to result from repeated post-depositional wet-dry phases, as 

hypothesised by Holloway (1981). Campbell (1991) cites the influence of pollen surface 

boundary layers (Crane, 1986) in explaining the overall lack of damage to pollen grains 

and the susceptibility of larger grains to be slightly more affected. Campbell (1991), 

however, is unclear with respect to his categories of pollen deterioration and does not 

use equivalent classes to those outlined by Cushing (1964, 1967) and subsequently 

refined by Birks (1970) and Lowe (1982). All mechanical damage appears to be related 

to splitting of the pollen wall, rather than an all round pattern of abrasion (degradation) 
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which a number of authors have suggested may be related to pollen transport (Birks, 

1970; Cushing, 1964, 1967). 

The preservation of pollen within various parts of stream profiles has been analysed by 

Starling and Crowder (1980). They found, contrary to Campbell's (1991) laboratory 

experiments, "that pollen in the bed load of the river was more corroded (abraded) than 

that nearer the surface" (Starling and Crowder, 1980; p. 316). This suggests mechanical 

abrasion of pollen grains via collision with minerogenic particles, which is likely to be 

greater at or near the bed of the river. However, once again definitions of deterioration 

classes are inconsistent as corrosion of pollen grains (sensu Cushing, 1964, 1967) are 

commonly believed to be due to biochemical action (Delcourt and Delcourt, 1980). 

Smimov et al., (1996) attribute the findings of Starling and Crowder (1980) to pollen 

deposition immediately onto the surface of the stream from local sources. They also 

found spatial heterogeneity in the pollen concentrations of cross-profiles, but attribute 

this to resuspension of grains from bed material and input from tributaries and aerial 

sources. Smimov et al. (1996) conclude that fluvial transport of palynomorphs should 

not cause distortion in the pollen assemblages of sediments. 

Post-depositional Pollen Preservation 

It has long been recognised that the post-depositional preservation of pollen grains is an 

important facet of pollen taphonomy and that different species have varying resistance 

to a range of environmental conditions. Early work on this topic was undertaken by 

Havinga (1964, 1967, 1985) and Sangster and Dale (1961, 1964) who discovered that 

different sedimentary environments preserved pollen to varying extents and that lack of 

oxidation is critical in the survival of pollen grains. Havinga (1964, 1967), following 
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Godwin (1956) related pollen survival directly to the sporopollenin content of the exine 

of the pollen grain. From this measure, plus experimental research on a range of taxa, he 

constructed a hierarchical classification of the susceptibility of pollen grains to post

depositional decomposition. The influence of different sediment types upon pollen 

survival is particularly critical within alluvial deposits, as significant and abrupt changes 

in sediment texture, moisture and organic content are common within sedimentary 

sequences. 

Elsik (1966) has also cited the physical morphology of the pollen grain as an important 

factor in determining the likelihood of non-preservation, with species having a greater 

surface area more likely to be preferentially removed from the sediment. Fungal attack 

by chytridiaceous species (Goldstein, 1960) and the bacteria Actinomycetes are also 

believed to facilitate decomposition of pollen and spore walls (see King et al., 1975; 

page 182). This process appears to be marked in penecontemporaneous sediments, with 

the rate of destruction increasing with humification (Konigsson, 1969). In common with 

processes of pre-depositional pollen preservation, wet-dry cycles are also likely to playa 

major role in post-depositional taphonomy (Holloway, 1981). This is likely to be 

particularly true of alluvial contexts, where entire sediment bodies are subject to such 

cycles (Burrin and Scaife, 1984, Waller, 1993; Cundill and Whittington, 1987). 

Examples of the exact effect of differential post-depositional pollen preservation are 

scarce, particularly those which may be relevant to alluvial sediments. However, some 

studies are of interest here. In particular, the problem with selective decomposition of 

Populus grains has been well documented, with the early work of Sangster and Dale 

(1961, 1964) highlighting the apparent weakness of the exine of this pollen type. This 
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feature has been held responsible for the under-representation of the species in North

American pollen diagrams (Lichti-Federovich and Ritchie, 1968; Erdtman, 1943) from 

lake and mire sediments respectively. Conversely, Artemisia, Chenopodiaceae, 

Taraxacum type and Dryopteris type and other thick-walled pollen and spores are 

frequently over-represented in alluvial sediments, where decomposition has removed the 

evidence of most other taxa (Burrin and Scaife, 1984; Lewis and Wiltshire, 1992). 

Havinga (1963) has found that in sand spectra the dominance of Alnus pollen, combined 

with high Calluna values, frequently arose from the decomposition of Quercus pollen, 

previously present in large quantities. This has particular relevance to upland alluvial 

situations within the British Isles as alder often occurs as a floodplain taxon within 

heather dominated uplands (Chambers and Price, 1985; Brown, 1988; Tallantire, 1992). 

Fall (1987) has also found a higher incidence of crumpled and tom pollen within sandy 

horizons of an alluvial sequence in Arizona. It is not clear whether Fall (1987) attributes 

this to pre- or post-depositional decomposition of the pollen grains, but Campbell's 

(1991) laboratory study suggests damage is caused almost exclusively by redeposition of 

pollen previously subjected to wet-dry cycles and biochemical action. 

2.4.2 Summary 

The identification of pollen that has been subjected to pre and post-depositional 

influences can be seen to be of critical importance in the palynological analysis of 

alluvial sediments. Characteristic physical elements of the pollen grains themselves may 

facilitate the identification of the potential sources and processes that have led to the 

fossil record. The preservation state of fossil pollen grains has been used to attempt to 

derive additional palaeoenvironmental information and to analyse whether the record 
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contained within the sediment is representative of conditions at the time of deposition. 

The techniques for this, together with a review of the literature and the methodology 

adopted in this study, are presented in Chapter 3. 

2.5 Utility of Palaeochannel Fills for Palaeoenvironmental Analyses 

Within alluvial valley fills there are a large variety of sedimentary contexts, with a range 

of depositional patterns and forms reflecting different sediment regimes and channel and 

floodplain environments (Allen, 1965; Brown, 1997). These have been classified by 

Lewin (1992a, 1992b) into 6 prototypes, which can be considered, in combination with 

their associated lithofacies type (Miall, 1983), for their suitability for 

palaeoenvironmental analyses. 

(i) Lag Deposits consist of coarse gravel derived from the basal erosion surface 

produced by migrating streams. They are unsuitable for palynological studies 

due to the aerobic and coarse-grained nature of the sediments (Brown, 1996). 

(ii) Channel Deposits also comprise fairly coarse sediments and are similarly 

unsuitable for pollen preservation. Features such as channel bed and bar deposits 

which represent evidence of accretion in meandering and divided gravel bed 

rivers (Passmore, 1994) are, however, useful in identifying former river courses 

and can be used for assessing planform changes over time. 

(iii) Channel Marginal Deposits include crevass splays and levees, which are 

frequently fine-grained, but tend not to allow water retention (Brown, 1996) and 

are consequently unsuitable for palynological analysis. Occasionally, in 

aggrading lowland U.K. river valleys, they have provided useful 
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palaeoenvironmental information where they have been buried by later alluvium 

(Scaife and Burrin, 1992). 

(iv) Colluvial Deposits occur within areas of active slope erosion and can consist of 

reworked material of a variety of grain sizes. Due to the reworked and usually 

unstratified nature of these deposits they are typically unsuitable for 

palynological investigation. 

(v) Backswamp Deposits derive from low energy slack-water environments that are 

remote from the active channel zone. They can be fine-grained and organic rich 

and hence suitable for palynological studies. However, this type of environment 

is typically associated with low-gradient, alluviating floodplains and laterally 

stable channels and hence are rarely developed in high relief incising upland 

British river valleys (Macklin et al., 1992a). 

(vi) Channel Fill Deposits are variable in character, but tend to be fine-grained, 

organic and relatively stable, thereby providing a likely source of polleniferous 

sediment (De1court and De1court, 1980). They are present in many mid-latitude 

valley floors prone to channel avulsion and I or cut-off and here palaeochannel 

features (Schumm, 1972; Chen, 1996) offer ideal opportunities for palynological 

investigations. The formation, character, processes and benefits of using 

palaeochannels for palynological study will be considered below in greater 

depth. 

2.5.1 Definition and Formation 

Palaeochannels are abandoned river courses that are characteristic of valley floors with 

channels that are prone to lateral migration or episodic avulsion. They are common on 
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laterally migrating, low gradient reaches of meandering (Leopold and Wolman 1957; 

Erskine and Melville, 1982) and anastomosing (Schumm 1972; Smith 1983) rivers. 

Abandonment can occur through a variety of processes the nature of which is believed 

to be dependent upon slope gradient (Tower 1904). However, only those created by 

chute, neck and mobile bar cut-off and avulsion (Leopold and Wolman 1957; Lewis and 

Lewin 1983; Waters, 1992) (see Figure 2.2) are suitable for palaeoenvironmental 

reconstruction. Of the other processes by which palaeochannels are formed, bend 

flattening tends to lead to a complex stratigraphy (Erskine et ai., 1992) from which 

interpretations are difficult and artificial cut-offs are generally of a relatively recent 

origin. Chute, neck and avulsion type cut-offs are useful within palaeoenvironmental 

studies, as in contrast to many other forms of planform change, such as progressive 

lateral and downstream meander loop migration, the evidence of channel alteration is 

not wholly or partially destroyed by the process itself (Schumm, 1969). 

Many studies have analysed the dynamics of meander loops in terms of their response to 

flood events, sediment supply and alterations in anthropogenic activity (e.g. Hooke and 

Harvey, 1983; Hooke, 1984). However, many of these studies have been concerned 

principally with river channel changes over historic or engineering (sensu Hickin, 1983), 

as opposed to Holocene, time-scales. Nevertheless, it is widely accepted that floods have 

played a critical role in the formation of palaeochannel features, with channel diversion 

frequently being associated with high-stage scouring of thalwegs in curved-channel 

segments (Bridge, 1985). River channels and alluvial valley floors more generally can 

be seen to be amongst the most sensitive and susceptible environments in the landscape 

of temperate regions to both changes in hydroclimate (Macklin et al., 1992a) and human 

agency (Burrin and Scaife, 1988). Frequently, these alluvial environments respond 



43 

rapidly to small- to medium-scale changes in certain environmental variables (Rumsby 

and Macklin, 1994) which can be critical in exceeding threshold conditions and 

disrupting natural equilibria (Schumm and Lichty, 1965; Burrin and Scaife, 1988). 

Changes in the planform of alluvial valley floors and the development of palaeochannel 

features may represent distinct changes in climatic and anthropogenic regimes (Macklin 

et al., 1992a). 



Figure 2.2: Types of cut-off leading to palaeochannel formation 
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2.5.2 Sedimentation Patterns within Palaeochannels 

Once abandoned, the sediment accumulation rate within a palaeochannel is dependent 

upon a number of factors, including the distance and the elevation of the palaeochannel 

relative to the active channel; the sediment supply regime within the fluvial system; the 

stability of the surrounding soils and vegetation; the nature of the in situ vegetation, the 

height of the ground-water table and in particular, the frequency and magnitude of flood 

events. As palaeochannels act as a focus for vertical accretion of fine sediments within 

floodplain environments, accumulation rates tend to be relatively rapid, particularly if 

high magnitude flood events re-occupying the channel deposit laterally accreted coarser 

sediment. For example, Lewis and Lewin (1983) have recorded fine sediment 

accumulation rates of 0.003 - 0.071 m y{l within cut-offs in Wales and the borderlands. 

However, in general sedimentation rates within Holocene palaeochannels have not been 

the subject of detailed study in the UK. Erskine et al., (1992) have found even greater 

sediment accumulation rates for palaeochannel infills in the lower Hunter River, south

eastern Australia, although these figures are also for recent palaeochannels abandoned 

since 1949. 

Palaeochannel fills can preserve the geometry, bedforms and bed material of the 

abandoned section of river by burial (Erskine et ai., 1992). This often allows a 

reconstruction of former channel dimensions, as the boundary between coarse bed 

material and generally finer-grained channel fill may be discerned through both cross

section exposures and sediment coring. Estimates of palaeochannel gradient, meander 

wavelength, sinuosity, discharge and pattern have also been inferred from sedimentary 

facies in cross-section exposures (Bridge 1985; Schumm 1972). 



46 

The precise character of the sedimentary infill is dependent upon both the type and angle 

of cut-off which the palaeochannel has undergone (Bridge, 1985). Typically utilised 

models suggest that chute cut-offs (Figure 2.2) tend towards bedload infill at the 

upstream end, where water velocities can remain relatively high, with progressively 

finer-grained and organic deposition downstream in slack water conditions (Allen 1965; 

Bridge 1985; Fisk 1947; Waters 1992). Meanwhile, neck cut-offs (Figure 2.2) tend to be 

quickly blocked during low stage flows by clay plugs in the slack water areas at the 

active channel margins. As a result of this, the channel fill is often fine-grained and 

organic-rich due to suspension deposition from ponded water (Allen 1965; Bridge 1985; 

Fisk 1947; Waters 1992). Palaeochannel fragments cut off by avulsion events have very 

different stratigraphies dependent upon the location and relative elevation of the new 

channel. Avulsion tends to be associated with extreme flood-events, aggradation and 

tectonic tilting (Bridge and Leeder, 1979; Qinghai et al., 1996) resulting in new 

channels being significantly lower than former examples and consequently being infilled 

with fine-grained sediments (Figure 2.2). 

The relatively low floodplain elevations of palaeochannels often facilitate the periodic 

influx and subsequent ponding of floodwaters (Bridge 1985; Waters 1992). This may be 

compounded by a combination of relatively high ground water levels (Brown and 

Keough 1992) and the deposition of fine-grained alluvial material in the low energy 

environment, forming an impermeable basal layer to the palaeochannel that aids water 

retention (Brown 1996). This enables palaeochannels to remain as perched aquifers after 

cut-off has occurred (irrespective of whether there is a tendency for net incision of the 

river, Brown 1996). 
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Periodic wetting and the water retention properties of these palaeochannel environments 

typically promote the development of relatively stable floodplain wetlands, in which 

colonisation by a range of aquatic plant species and the progressive succession and 

terrestrialisation of the environment (Brown, 1996; 1997; Van der Valk, 1981) is 

associated with the accumulation of organic-rich sediment. In common with lake and 

peat bog sediments, the anaerobic conditions which prevail prevent the decomposition 

of organic material (Moore, 1987b) and these progressively infill the palaeochannel. 

This is extremely useful from a palaeoecological perspective as not only does it enhance 

the preservation of pollen and plant macrofossils but also provides organic material for 

radiocarbon dating and allows insights into successional pathways (Janssen et ai., 1995). 

2.5.3 Palaeochannel tills as records of flood events 

Floods, and particularly moderate-large scale events, play a critical role in fluvial 

sediment transfers and the development of channel and floodplain environments, and in 

recent years investigations of palaeoflood hydrology have gained impetus with the 

recognition that long-term palaeohydrological data will assist the forecasting and 

management of river channel and floodplain environmental change (Knox, 1995). 

Particular attention has focused on slackwater facies in arid environments (e.g. Baker et 

ai., 1983; Webb et ai., 1988; Baker and Pickup, 1987; Enzel et ai., 1993) where, in the 

context of vertically-stable bedrock channels, it has proved possible to reconstruct 

former flood magnitude and frequency. In temperate regions such as NW Europe, by 

contrast, estimates of flood frequency and magnitude over Holocene timescales are 

typically hindered by the paucity of well-dated Holocene alluvial sequences that 
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preserve well-defined sedimentary evidence of individual flood events (Macklin and 

Needham, 1992; Macklin et al., 1992b; Butzer, 1980). Here, episodes of enhanced 

Holocene flooding tend to be indirectly inferred from broadly synchronous periods of 

increased fluvial activity reflected, for example, in meander avulsions (ef Starkel et al., 

1996) and episodes of basin-wide alluviation and/or channel incision (Macklin et aI., in 

press). 

Lithostratigraphic analysis of organic-rich palaeochannel fills does, however, offer a 

potential means of accessing readily dateable sedimentary records of flood frequency for 

moderate to large-scale events that temporarily re-occupy former watercourses. These 

will be manifested as discrete, inorganic sediment lenses or beds that are interbedded 

within peaty channel-fill sequences (Erskine et ai., 1992; Malik and Khadkikar, 1996; 

Moores et al., 1998). Using these techniques it may be possible to extend the Holocene 

flood record beyond documented periods and hence promote analyses of fluvial 

response to past fluctuations in climate and anthropogenic activity (Costa, 1978). 

2.5.4 Palynology of palaeochannel environments 

Debates surrounding the taphonomy of alluvial pollen have been outlined above, with 

the principal cause for concern being the possibility of secondary pollen deposition in 

alluvial contexts. Palaeochannel sediments may facilitate the identification of reworked 

pollen grains due to the possibility of a relationship between sediment type and pollen 

taphonomy. If detailed lithostratigraphic logs are combined with palynological analyses, 

as recommended by Grichuk (1967), minerogenic rich sediments which are presumed to 

have a higher proportion of allochthonous pollen, can be investigated and compared 
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with adjacent sediments in terms of their palynomorph content. The analysis of the 

preservation state of individual pollen grains may also highlight reworked and 

secondary deposited taxa (Section 2.4.1). 

During periods where sedimentation within the palaeochannel is primarily from 

autochthonous (non-flood) sources, it is assumed that the source of pollen within the 

sediment will conform to standard models of aerial deposition. Models of aerial pollen 

transfer have analysed different pathways (Tauber, 1965, 1967) and different spatial 

areas (Janssen, 1973) when considering the source of pollen in sediments. Jacobsen and 

Bradshaw (1981) have attempted to combine these models and relate pollen source 

directly to site size, based upon the fundamental premise that as site size increases so 

does the area from which pollen found within the sediments originates. On the basis of 

this, Brown (1996) has surmised that a cut-off feature of approximately 30 metres 

diameter would have a pollen composition comprised of 8% regional, 13% extra-local 

and 79% local pollen (Figure 2.1). Palaeochannels are of course very different in size 

and may experience alteration of their dimensions throughout the period that they are 

infilling, via truncation by successive younger channels. Unless reoccupation of the 

palaeochannel occurs these alterations will result in the shrinkage of overall channel 

dimensions leading to an increasingly local pollen source. 

The predominantly local nature of the pollen derived from palaeochannel contexts has 

important implications for the interpretation of palynological analyses from these 

sediments (Janssen et al., 1995). Floodplain and immediate valley side vegetation wiII 

contribute the majority of the pollen record, with the wider regional vegetation signal 

contained as a diluted component. Thus, the pollen record will primarily reflect changes 
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in local environmental conditions, with broader-scale fluctuations perhaps reflected in 

the nature of sedimentation within the palaeochannel. Any human activity within the 

immediate valley floor environment should register markedly within the pollen record 

from palaeochannels, whereas such small-scale local changes may not be visible within 

the wider regional signal from larger upland sites (Bradshaw, 1988). This has particular 

implications for the detection of the onset of arable agriculture, an important event in 

prehistory and one which has attracted much attention from palynologists (Edwards and 

Hirons, 1984). Cereal pollen grains are notoriously poorly registered in the pollen 

record, as most species are both poor pollen producers and only locally dispersed. This 

has led to the development of numerous methodologies to attempt to detect cereal pollen 

grains within large sites with a regional pollen signal (Edwards, 1983; Edwards and 

McIntosh, 1988; Turner, 1975; Clary, 1989). However, the use of local-scale diagrams 

can avert this concern, providing that suitable sites for analysis which are proximal to 

areas of past activity can be found. Palaeochannels may provide just such conditions, as 

they are adjacent to river corridors known to be a focal point for past human 

communities and also may be proximal to high, dry terraces suitable for arable 

cultivation (Passmore and Macklin, 1997). In addition, Bradshaw (1988) has highlighted 

that the use of sites in which the pollen has been transported only a small distance is the 

only way to increase the spatial precision of past vegetation assemblages. Many authors 

have highlighted that this local approach to landscape reconstruction is critical, 

particularly in the context of archaeological sites (Edwards, 1991 a, 1991 b; Huntley, 

1997). 
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2.6 Summary 

The benefits of palaeochannels for palaeoenvironmental analyses can be summarised: 

1. Sediment accumulation within palaeochannels may be relatively rapid, facilitating 

high temporal resolution analysis of pollen, plant macrofossils and other 

palaeoecological techniques. 

2. Palaeochannels offer relatively stable contexts within alluvial environments and 

therefore, minimise the likelihood of reworking and secondary deposition of 

sediment and associated pollen. 

3. The waterlogged and stable nature of palaeochannel features may facilitate the 

preservation of pollen and also organic material, which allows radiocarbon dating of 

sedimentary sequences. 

4. The small site size of palaeochannels means that aerial deposited pollen is of a 

predominantly local source and records reflect predominantly floodplain vegetation. 

5. Palaeochannels are within floodplain areas that are likely to have been preferentially 

utilised by humans over many millennia and this may be reflected in the 

palynological record. The proximity of high, dry terraces that may have been used 

for cereal cultivation is also critical in light of the dispersal characteristics of this 

type of pollen. 
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6. The sedimentary sequence within palaeochannels offers the opportunity for the 

identification and dating of discrete flood units. This may have implications for 

interpretation of the wider catchment vegetation, human activity and climatic 

factors. 
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Chapter 3 

Sites and Methods 

3.1 Sites 

Within the North Tyne basin there are a number of upland sites with potential for 

palaeoenvironmental investigation. To fulfil the aims of this thesis, in terms of analysing 

large-scale spatial variability within the pollen record, it was necessary to attain an 

approximately even distribution of sites across the basin. A further consideration was to 

find upland sites with a peat sequence containing a long Holocene record and, if 

possible, rapid sediment accumulation rates to provide the opportunity for high

resolution analyses. Three sites lying within the uplands of the North Tyne catchment, 

but also distributed between the headwaters and lower reaches of the North Tyne system 

were chosen (See Figure 1.1). 

Initially, it was envisaged that palynological analyses of suitable palaeochannel fills (see 

Chapter 2) would provide a series of relatively short, high-resolution snapshots of the 

local vegetation history of Holocene valley floors. It was anticipated that these would 

facilitate a re-examination of the corresponding periods within chronologically longer 

upland peat sediment, with a view to directly contrasting vegetation histories at these 

differing spatial scales. Preliminary analysis of palaeochannel fills at Brownchesters, 

however, revealed a series of sediments that not only provided dateable records for the 

almost the entire period of peat accumulation at the upland sites, but also extended the 

chronological range of sediments to the Early Holocene, for which no upland analogue 
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existed. This prompted a re-evaluation of strategy and it was decided to focus 

principally upon the valley floor sites, as these provide a unique and hitherto un

exploited opportunity for palaeoenvironmental reconstruction. 

3.1.1 Upland Sites (Figure 1.1) 

Drowning Flow (Figure 3.1) 

Drowning Flow (NY 760975) is an upland blanket / saddle mire (approx. 400m aD) on 

the interfluve between the headwaters of the Tarset Bum (which drains into the North 

Tyne) and Hindhope Bum (which drains into the River Rede). The site also lies within 

the confines of the Northumberland National Park, occupying an un afforested area of 

moorland between the commercially planted Kielder and Redesdale Forests. It is 

considerably larger than Bloody Moss measuring approximately one kilometre in 

diameter. Drowning Flow lies in an area of Lower Carboniferous geology, consisting 

mainly of Scremerston Coal Group rocks with Limestone group rock outcrops on the 

nearby Reedswood Crags. 

The vegetation surrounding Drowning Flow varies considerably. To the north and east 

sides there is commercially planted coniferous forest, consisting mainly of Sitka and 

Norway Spruce. This area is extensively drained and little understory vegetation 

survives as the trees have all reached canopy closure. The rest of the area surrounding 

this site is dominated by Calluna vulgaris moorland and acid grassland. The mire shows 

considerable vegetation diversity, possibly as a result of localised peat cutting and 

drying of the mire surface due to drainage. The mire shows extensive hummock and 

hollow patterning, which alters in composition according to hydrological conditions. In 
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the drier area hummocks are dominated by Empetrum nigrum and Calluna vulgaris, 

with wetter more extensively distributed hummocks consisting of Sphagnum 

magellanicum and S. capillifolium. Many large hollows contain natural pools that are 

dominated by Sphagnum cuspidatum and occasionally Eriophorum angustifolium. Other 

species present at Drowning Flow include Eriophorum vaginatum, Erica tetralix, 

Sphagnum recurvum, S. papillosum, Cladonia impexa, Narthecium ossifragum, 

Vaccinium oxycoccus, Vaccinium myrtillus and Pleurozium schreberi. 

The peat depth at Drowning Flow was assessed along two perpendicular transects prior 

to coring. Sediments were not logged during this process, but a location was identified 

where a total of 7.36 metres of peat was present. 



Figure 3.1: Map of Drowning Flow study site 
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Bloody Moss (Figure 3.2) 

Bloody Moss (NT 910024) lies within the Otterburn Military Training Area, which 

constitutes part of the Northumberland National Park. It is a small saddle / spur mire 

(Lindsay et al., 1988) immediately below the interfluve between the West Cleugh and 

Crane Sike streams at 310 metres OD. The mire, although lying just outside the North 

Tyne catchment, draining instead into the adjacent River Coquet basin immediately 

north of Redesdale, was chosen for analysis as it offered a deep peat sequence, which 

contained a long record of Holocene vegetation and still offered insight into North Tyne 

vegetation sequences. The co-operation of the M.o.D. in allowing access to this area 

also offered an opportunity to extract a sediment core from an area from which it may 

not have been possible to do so otherwise. 

The underlying solid geology of the site is Fell sandstones of the Lower Carboniferous 

period. In the vicinity of Bloody Moss there are also Lower Carboniferous limestones, 

which consists of interbedded limestones and grits and Scremerston coal group rocks 

which include Redesdale ironstone shale and coal measures. 

The vegetation surrounding the mire consists mainly of Calluna vulgaris dominated 

moorland and acid grassland on thin mor humus soils. A brief survey of the 

contemporary vegetation of the mire was also undertaken. The mire itself exhibits a 

classic hummock / hollow micro-scale ('Kleinform' -Aario, 1932) spatial vegetation 

pattern (Goode, 1973). At the mire periphery, Sphagnum papillosum and S. capillifolium 

dominate hummocks, while Calluna vulgaris has invaded the driest of these raised 

areas. Towards the centre of the mire, conditions become wetter and the vegetation 
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grades into Eriophorum vaginatum and S. papillosum. Other species evident at the mire 

include Erica tetralix, Vaccinium oxycoccus, S. magellanicum, S. tenellum, Eriophorum 

angustifolium, Drosera rotundifolia, S. recurvum and Aulacomnium palustre. 

Due to military restrictions concerning the possibility of buried live munitions, no 

preliminary survey to establish peat depths was possible. Coring was undertaken where 

peat depth was estimated to be greatest, close to the centre of the mire and recovered a 

6.44 metre peat core. 



Figure 3.2: Map of Bloody Moss study site 
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Sells Bum (Figure 3.3) 

'Sells Bum' (NY 812733) is an un-named blanket mire on the interfluve between 

Hopeshield Bum, (a tributary of the North Tyne) and Sell Bum (a tributary of the South 

Tyne). The site lies at approximately 260 metres aD almost at the southernmost extent 

of the Northumberland National Park. 

The geology of the area is complex due to the fairly steep angle of dip of the beds and 

exposes a large number of stratigraphies within a very small area. The strata consist 

mainly of interbedded lower Carboniferous limestones and sandstones, with the Whin 

Sill lying just to the south of the site. Differential erosion rates acting on these 

contrasting rock types have given rise to series of parallel (approximately East-West) 

outcropping ridges that locally control the drainage pattern in the area. 

The vegetation surrounding the site is rough pasture, which is grazed by both cattle and 

sheep. Mire vegetation includes Eriophorum vaginatum and S. papillosum in wetter 

areas with Calluna vulgaris invading drier positions. Other species evident at the mire 

include Erica tetralix, Vaccinium oxycoccus, S. magellanicum, S. tenellum, Eriophorum 

angustifolium, Drosera rotundifolia, S. recurvum and Aulacomnium palustre. The area 

is far more intensively utilised than either the Bloody Moss or Drowning Flow. 

The site was not subjected to a full stratigraphic investigation prior to coring being 

undertaken. However, several minimum measures of peat depth were established, using 

a hand-held peat probe, followed by estimating the deepest point based on these results. 

A 4.88m peat core was taken from the Sells Bum mire. 



Figure 3.3: Map of Sells Burn study site 
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3.1.2 Valley Floor Sites 

Snabdaugh Farm 

Snabdaugh Farm (NY 787846) lies within the North Tyne basin, approximately 8 km 

downstream of Kielder Reservoir (catchment area 429 km2
) and immediately below the 

confluence of the River North Tyne with the Chirdon and Tarset Bums. The reach 

occupies a small alluvial basin, approximately 750m wide, within which the modem 

river channel exhibits a gently meandering single-thread planform. 

Historic maps (O.S. County Series) indicate channels have been laterally stable since the 

mid-nineteenth century, although Holocene channel shifts are attested by palaeochannels 

developed on alluvial terrace surfaces (Passmore, 1994; Moores et aI., 1998). Much of 

this stability may be a consequence of significant flood-defence engineering within the 

reach that is manifested by large levees on either side of the present river channel. The 

construction of Kielder Water in 1979 has also had an ameliorating effect upon flood 

levels, although severe events do still breach the levees (Charles Allgood, pers. comm.). 

The surrounding geology of Snabdaugh is Lower Carboniferous in age, with a 

combination of Redesdale Ironstone Shale and associated sandstone strata. The site lies 

immediately to the north of the Antonstown fault, a prominent local geological feature. 

The valley floor itself is infilled by Holocene alluvium that supports a mixture of 

Typical Brown Alluvial Soil and Calcareous Alluvial Gley Soils (Soil Survey of 

England and Wales). Current land use on the valley floor is predominantly pastoral 

agriculture and is fairly intensively grazed by both sheep and cattle. The surrounding 



63 

valley sides, which are covered with peat deposits and podsolic soils, are used for rough 

sheep grazing. 

Brownchesters 

Brownchesters Farm (NY 889922) lies 1 km southwest of Otterbum village on the 

valley floor of the River Rede (Figure 1.1). The study reach occupies a small alluvial 

basin up to 600 m wide and extends over a valley length of 1.2 km (Figure 5.1). The 

modem river channel is deeply entrenched on the east side of the valley floor and, like 

the North Tyne, exhibits a meandering planform that is locally confined by flood 

embankments constructed sometime before the mid-nineteenth century. In addition, the 

river immediately upstream of the study reach features a weir construction and millrace 

associated with Otterbum Mill. A number of terrace surfaces and palaeochannel features 

are clearly visible within the study reach. The geology of the Otterbum area is a mixture 

of Lower Carboniferous limestone group and Scremerston Coal Group. 

3.2 Methods 

3.2.1 Coring 

A variety of coring techniques has been employed in this study, dependent upon the 

sedimentary environment under investigation. 
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Upland Sites 

The upland sites have all been cored using either 40mm or 80mm diameter Russian peat 

augers (Jowsey, 1966). This allowed semi-circular sediment cores to be extracted in 

continuous sub-sections and subsequently extruded into PVC piping. This technique 

minimises contamination and allows secure stratigraphic control over sampling. These 

cores were then wrapped using clingfilm and polythene bags for removal and 

refrigerated storage (4°C) in the laboratory. 

Valley Floor Sites 

The valley floor sites have all been cored using a pneumatic 'Cobra' corer or, in a few 

cases, a hand held sand auger. Generally, this was done using a 60mm gouge for 

sampling material, with 'cleaning drives' to minimise contamination using an 80mm 

gouge. On some occasions, where stratigraphic conformity could be established beyond 

question, material from the larger gouge was used to bulk dating samples. Multiple, 

overlapping cores were taken where recovery proved problematic, with great care again 

being taken to ensure stratigraphic correlation between cores. In addition, on a few 

occasions a Stitz piston corer was used in conjunction with the Cobra engine. This 

technique also allows the intact removal of sediment away from the site. 

3.2.2 Sedimentary Logs and Subsampling 

Cores taken with the Russian augers were described and sub-sampled in the laboratory. 

Sediment description was carried out using standardised Troels-Smith methods (Troels

Smith, 1955), with additional data on sediment colours made in comparison with 
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standard Munsell colour charts. Samples were taken from a 1 cm slice of peat and the 

sampling resolution varied through the core. 

Cores taken with either the pneumatic Cobra corer or hand held sand augers were 

described in the field, prior to sUb-sampling. Visual estimates of modal grain-size were 

noted by comparison with standard Phi-scale geological templates along with sediment 

structure, composition and colour. Sub-sampling was almost always continuous, but was 

carried out at varying intervals, dependent on the nature of the sediment. The sampling 

frequency was increased for sediment which was likely to have accumulated slowly, i.e. 

the organic rich horizons, and reduced for sediment which was likely to have 

accumulated rapidly i.e. coarser, more minerogenic horizons. 

3.2.3 Radiocarbon Dating 

Assays for radiocarbon dating analysis were sent to Beta Analytic, Florida. All samples 

underwent standard preparations and counting procedures. Within this thesis all dates 

are expressed as calibrated calendar ages BC / AD achieved by calibration procedures 

according to Stuiver et ai., (1993), all dates expressed as years BP are uncalibrated 

radiocarbon dates unless otherwise stated. 



Figure 3.4: Prehistoric time-chart showing the correspondence 
between calendar dates, archaeological periods and 
radiocarbon dates (not to scale). Adapted from Darvill (1987) 
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3.2.4 Pollen Preparation 

Pollen samples from the upland mire sites were prepared using standard pollen 

techniques (Moore et al., 1991; Faegri and Iverson, 1989). This comprised NaOH 

digestion to break down organic materials, HF treatment to remove minerogenic 

material from the sample, acetolysis (acetylation; Charman, 1992) to remove cellulose, 

followed by staining with safranin and mounting in glycerol jelly. 

Pollen samples from the valley floor sites underwent an additional preparation process, 

prior to staining. This stage aids the removal of what is often a high proportion of 

minerogenic material from the alluvial samples. This 'Amsterdam' technique 

(Munsterman and Kerstholt, 1996) uses sodium polytungstenate as a heavy liquid 

medium for separating pollen and other organic material from silt and clay sized 

minerogenic particles. This was found to be far more effective than either sieving 

techniques (Cwyner et aI., 1979) or sodium pyrophosphate (Bates et al., 1978; Heusser 

and Stock, 1984) in concentrating pollen from these types of sediments. 

3.2.S Pollen counting 

Pollen counting was undertaken on an Olympus microscope at a magnification of x400 

(x 1000 oil immersion for problematic grains). A total of >200 tree and shrub species 

was counted for each level where concentrations would allow. Samples from the valley 

floor sites were also classified into deterioration categories based upon Cushing's 

(1964) classification. A review of this methodology is outlined below. 
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3.3 Methodological Issues 

The literature review contained within Chapter 2 has demonstrated that the 

identification of sediment, or more particularly pollen, derived from older reworked 

deposits is of fundamental importance to the application of palynological techniques on 

alluvial sediments. Cundill and Whittington (1987), in their criticism of the 

interpretation of palynological results from Macklin (1985), outline a number of ways in 

which these inherent problems with alluvial pollen records can be minimised. These 

methods have been considered within this study and a number of techniques employed 

to identify potentially reworked pollen are discussed and applied here. 

3.3.1 Deterioration Index 

The concept of analysing the preservation state of individual pollen grains was first 

employed by Cushing (1964) to facilitate limited inferences about pre- and post

depositional taphonomic processes. This system is based upon a classification 

separating deteriorated (corroded, degraded, crumpled [exine thinned / exine not 

thinned] and broken) grains from those concealed, indeterminable and well-preserved 

(Cushing, 1964; 1967). This method has been employed and slightly adapted by a 

number of authors (e.g. Birks, 1970; 1973; Birks and Peglar, 1979; Lowe, 1982; Tipping 

1987; Tipping, 1995a, 1995b, 1995c, 1995d; Tipping et al., 1994; Waller, 1993), but 

has not become standard practice in Holocene palynology. It therefore remains difficult 

to accurately compare the results of different analysts, despite Cushing's (1967) original 

pleas and a more recent observation that preservation analyses should become routine 

(Tipping et al., 1994). 
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The system does offer a number of possibilities for this study as Cushing (1964) also 

indicates that the differentiation between corroded and degraded pollen grains may hold 

clues to their spatial and temporal origin. This is an area that has received relatively 

little attention, especially with regards to pollen that may have been transported by 

fluvial processes. Similar techniques have been used to differentiate between fossil and 

modem grains in pre-Pleistocene palaeopalynology, whereby older grains are seen to 

exhibit distinctive deterioration (Elsik, 1966) and differential staining (Muller, 1959). 

The application to Holocene palynology is somewhat more difficult and Muller (1959; 

Page 9) has gone so far as to state that "the separation of reworked older Holocene 

pollen from recent pollen is next to impossible." Here, via a combination of techniques, 

the distinction between reworked and contemporaneous pollen is attempted. 

As there has been some confusion regarding the types of deterioration and their probable 

causes, the precise nature of corrosion and degradation are defined below. 

Corrosion 

Corrosion usually occurs as localised damage and takes the form of radial perforations 

or channels in the exine of mature pollen grains that are believed to be caused 

principally by microbial attack (Cushing, 1964, 1967; Elsik, 1966; Havinga, 1967; 

Birks, 1970). Four genera of chytridiaceous fungi (Goldstein, 1960) and the bacteria 

Actinomycetes (Elsik, 1971) are believed to facilitate corrosion (see King et ai., 1975; 

Fig. 1 , p.182) leading to "absorption or enzyme solution of the spore walls rather than 

physical abrasion" (Elsik, 1966; p. 516). It is particularly prevalent in 

penecontemporaneous, recently deposited and reworked. pollen (Cushing, 1964) and the 
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rate of destruction can be seen to increase with humification (Konigsson, 1969; Birks, 

1970). The susceptibility of pollen grains to corrosion also varies between species 

(Cushing, 1964, 1967; Sangster and Dale, 1961, 1964; Havinga, 1964, 1967), with 

species such as Populus particularly susceptible to post-depositional removal (Sangster 

and Dale, 1961, 1964) and Filicales spores known to be extremely resistant (Cundill and 

Whittington, 1987). As mentioned in Chapter 2, wet-dry cycles have been shown to be 

critical for pollen preservation (Holloway, 1981; Campbell and Campbell, 1994; Waller, 

1993) as periodic oxidation increases bacterial activity. This is particularly relevant 

within fluvial environments in temperate regions, where water tables locally fluctuate 

upon a seasonal basis. Thus, post-depositional corrosion may occur in organic-rich 

sediments that are strongly influenced by hydrological regimes. It should also be noted 

that corroded grains may become remobilised and undergo secondary deposition and 

thus may also exhibit degradation characteristics. 

Degradation 

Degraded pollen grains are recognisable by their amorphous nature (Cushing, 1964, 

1967; Lowe, 1982), with degradation usually affecting the entire pollen exine. Structural 

and sculptural elements of the pollen grain become difficult to resolve, with severe 

examples leading to difficulties in identifying and distinguishing grains from other 

organic particles. Degradation, along with crumpling and breakage, appears to be 

correlated with more minerogenic sediments within a number of peat profiles (Birks, 

1970; Havinga, 1985). Thus, this form of pollen deterioration has been linked to 

transportation of pollen grains prior to deposition (Birks, 1970; Cushing, 1967). Lowe 

(1982), however, has questioned this interpretation stating that the processes responsible 
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for creating amorphous (degraded) pollen grains are not yet known. Additionally, Waller 

(1993) has identified poor pollen preservation, due to inwash from secondary or 

penecontemporaneous sources, within the silty horizons of a fluvial profile in southern 

England. This relationship has been confirmed by the presence of Pre-Quaternary spores 

within the same facies, although the precise type of deterioration exhibited by the pollen 

grains has not been discerned. 

3.3.2 Methodology Adopted 

In this study all pollen grains from alluvial contexts were classified into categories 

similar to Cushing (1964, 1967) and as used by Birks (1970, 1973), Birks and Peglar 

(1979) and Tipping (1995d). However, important modifications to the method were 

made in order to facilitate the identification of any pollen grains that may have been 

fluvially reworked. Thus, rather than corroded grains being preferentially recorded to 

degraded grains if the pollen exhibits more than one characteristic, the hierarchy was 

reversed for the following reasons. Firstly, as outlined above, degradation of pollen 

grains may originate from mechanical damage caused during transportation of the 

pollen. Therefore, recording degradation in preference to corrosion may assist the 

identification of secondary deposited pollen. Delcourt and Delcourt (1980) for example, 

found a greater proportion of degraded pollen within an alluvial sequence when a 

completely non-hierarchical classification was used. Secondly, this technique provides a 

rapid means of assessing the state of pollen preservation without the comprehensive, but 

complex, 23-class system employed by Delcourt and Delcourt (1980). In addition, 

crumpled and broken grains were recorded together within a single category, as the 



72 

mechanisms for the formation of these forms of pollen grain deterioration are believed 

to be the same. The categories were thus: degraded, corroded, crumpled / broken. 

To complement the analysis of the preservation state of each pollen grain, careful 

sedimentary logs were taken of cores, in order that minerogenic bands more likely to 

contain reworked pollen could be identified. Grichuk (1967) has highlighted the need 

for the close correlation of palynological and geomorphological data and Cushing 

(1967) also noted a relationship between preservation and lithology. Pollen 

concentration curves were also produced for each alluvial record so that fluctuations in 

the quantity of pollen within the sediments could be analysed. This would highlight 

potential percolation of pollen and spores down through the profile (Dimbleby, 1957, 

1962) and also sediments with extremely high concentrations derived from in situ 

vegetation (Brown, 1996). Special note was taken of any pollen samples which 

exhibited unusual floral signatures, such as abnormally high Filicales, Pteridium and 

Compositae liguliflorae values, which may have arisen due to poor pollen preservation 

(Cundill and Whittington, 1987; Tipping et al., 1994). 

3.3.3 Diagram Preparation 

Pollen and charcoal diagrams were produced using the computer program Tilia version 

2.0 and associated graphing package TiliaGraph version 2.0b.5 (Grimm, 1987). Diagram 

zonation was undertaken by a combination of the clustering program CONISS (Grimm, 

1987) and subjective methods. Pollen nomenclature follows Flora Europaea (Tutin et 

al., 1964, 1968, 1972, 1976, 1980), with herbaceous taxa arranged in alphabetic order of 

the family and trees arranged according to standard British practice (cj Godwin, 1975). 
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The positive identification of cultivated cereal grains has been the subject for much 

palynological literature (Anderson, 1979; Dickson, 1988; Edwards and McIntosh, 1988). 

Problems arise due to the morphological similarities between ubiquitous wild grass 

pollen and the larger cultivated varieties from the same family (Poaceae). Differentiating 

these types has previously been done on the size of the grain (Firbas, 1937), the 

diameter of the annulus (Beug, 1961) and the nature of the surface sculpturing (Rowley, 

1960; Nilsson et al., 1977). Using a combination of these techniques, Anderson (1979) 

distinguished 4 distinct groups of grasses that have been used with occasional 

modification by numerous authors. These are wild-grasses «37J.lm), Hordeum group, 

Avena-Triticum group and Secale cereale. Edwards (1989) has highlighted, however, 

that frequently problems concerning preservation make full identification impossible 

and that 'cereal-size' is the closest taxonomic level for some grains. This has also been 

employed in this study for grains that are large enough to fall into one of the cereal 

categories. In addition, a 'cereal-type' group has been used to group those grains that 

exhibit more than one characteristic, but cannot be confidently assigned to a specific 

group, for instance due to them being obscured or deteriorated in some way. Particular 

note should be taken of grass species that produce large pollen grains that may 

potentially be confused with cereals. In the environments dealt with in this study 

Glyceria spp. is particularly likely to occur in the stagnant water conditions provided by 

palaeochannels. 

The summary pollen diagrams within the main body of the thesis (Figures 4.1-4.3, 5.4, 

5.5,5.7,5.8,5.10,5.12) have been constructed for clarity and the emphasis of certain 

features within the diagram. The composite curves for the 'Other Trees / Shrubs / 
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Herbs' are constituted by species which attain only low percentages of the overall pollen 

sum. Composite curves for the 'Anthropogenic Indicators' and 'Cultivated Plants' are 

derived from species defined by Birks (1990) and Behre (1981, 1988) and have been 

produced to emphasise periods where these taxa occur together thereby representing 

anthropogenic involvement with the vegetation. 

Cultivated Plants (Behre, 1981) 

Secale, A vena / Triticum, Hordeum, Vicia 

Anthropogenic Indicators (Birks, 1990) 

Artemisia, Bidens, Cannabis, Centaurea, Chenopodiaceae, Cirsium, Cruciferae 

(Brassicaceae), Filipendula, Liguliflorae, Malus, Malva, Papaver, Plantago lanceolata, 

Polygonum persicaria, Potentilla, Ranunculaceae (excluding R. trichophyllus type), 

Rumex, Spergula, Stella ria, Urtica, Valerianella 

3.3.4 Geomorphological Mapping 

The differentiation of alluvial and colluvial landform assemblages by detailed field 

mapping and survey is of primary importance in the interpretation of former landscapes. 

The identification of discrete terrace units and associated palaeochannels allows an 

insight into valley floor development and reflects periods when fluvial processes such as 

incision and alluviation have occurred. Mapping was undertaken to provide a 

topographical and geomorphological context to pollen and sedimentological analyses at 

each of the valley floor sites. 
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Mapping was undertaken by detailed walking of each site, demarcating terrace scarps 

and palaeochannel features including planforrn geometry. Relative age differentiation 

and morphostratigraphic correlation of terrace fragments was also done with reference 

to aerial photographs, modem and also past editions of Ordnance Survey maps. A 

number of cross profiles of the valley floor were surveyed using a Leica TC400 total 

station. Additional spot-heights on terrace fragments and palaeochannels were located 

between surveyed cross-profiles. 
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Chapter 4 

Palaeoecology of upland bogs and mires 

4.1 Introduction 

In this chapter, the results of stratigraphic investigations, radiocarbon dating 

programmes and palynological analyses undertaken upon each upland site are outlined. 

Within each section, preliminary interpretations of the results are summarised, with 

discussion of certain problems associated with the results gathered. The full results of 

the Troels-Smith sediment description (Troels-Smith, 1955) for each site are shown in 

Appendices 10.3-10.5. Here, only major stratigraphic changes that are significant in the 

development of the mire are highlighted. 

4.2 Drowning Flow 

4.2.1 Stratigraphy 

The Drowning Flow peat core is dominated by a high percentage of Sphagnum peat 

throughout much of its 736-cm length. Small changes in composition, colour and 

humification are visible and can be related to changes within the environment 

conditions at the site. For instance, dark, highly humified peat is suggestive of relatively 

dry conditions where aerobic decomposition of the accumulating organic matter has had 

an opportunity to occur due to the length of time spent in the acrotelm before 
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incorporation into the catatelm occurs. Conversely, lighter, less-humified peat suggests 

rapid accumulation due to wet surface conditions at the bog (Barber, 1985). 

A mixture of sand and silt with highly humified peat (720-736 em) dominates the basal 

sediments at Drowning Flow. This progressively grades into wholly organic moss and 

sedge peat and from about 712 cm upward no minerogenic material is present in the 

core. This mixture of moss peat and sedge peat (Troels-Smith, 1955) continues in 

varying quantities between 510-712 cm, with some levels also containing small 

quantities of in situ wood remains. This indicates fluxes in woodland at the site, with re

invasion of the mire surface by trees occurring periodically, due either to climatic 

factors or variations in the intensity of anthropogenic impact at the site. Between 435-

510 cm the peat becomes slightly more humified, as proportions of highly humified peat 

increase, indicating slower peat accumulation possibly due to drier climatic conditions. 

This beginning of this period dates to ca. 2500 BC (Figure 4.4), a time when climate is 

believed to have affected Pinus sylvestris ranges in northern Scotland (Gear and 

Huntley, 1989) and may have caused the humification changes visible here. This more 

humified peat is replaced by poorly humified moss peat between 420-435 cm, before 

reverting to slightly more humified peat up to 247 cm depth. Between 190-247 cm the 

peat becomes lighter in colour and contains a higher proportion of herbaceous peat 

(predominantly Eriophorum vaginatum), reflecting a change in the vegetation 

composition of the mire surface at this time. Another well-humified band occurs 

between 176-190 em, before moss-dominated peat occurs once again. This principally 

moss peat continues between 31-176 em, until below the peat surface detrital plant 

material occurs (12-31 cm) with more humified peat towards the modem mire surface. 
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4.2.2 Dating 

A total of four bulk peat samples were submitted for radiocarbon dating from this 

sediment core (Appendix 10.1). The samples were selected to specifically target changes 

in the palynological record and to derive an accurate as possible chronology for the 

entirety of the core. The dates were taken at depths of 721-728,513-520,305-312 and 

181-188 cm (Beta-94637~94634) (Table 4.1). Quoted intercept dates are derived from 

where the radiocarbon curve intercepts the calibration curve, which is frequently not the 

same as the calibrated midpoint. 

Depth Lab Ref. 14C Date Calibrated Calendar Date Intercept Date 

(cm) (Beta) BP (20-) 

181-188 94634 1880 ± 50 AD 45-245 AD 130 

305-312 94635 2880 ± 70 1265-855 BC 1020 BC 

513-520 94636 3940 ± 70 2590-2205 BC 2460BC 

721-728 94637 6030 ± 70 5050-4805 BC 4925 BC 

Table 4.1: Radiocarbon dates, lab references and calibrated dates from Drowning 

Flow 

The dates indicate that sediment accumulation rates at Drowning Flow appear to have 

remained relatively constant, at a rate of around 0.12 cm year -\ as seen on the age-depth 

calibration curves (Figures 4.4 and 4.5). This rate of sediment accumulation is lightly 

faster than documented rates of raised mire peat formation in Northern England which 

tend to average approximately 0.07 cm year -\ (Barber et al., 1993). 
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4.2.3 Palynology (See Figure 4.1, Appendix 10.7) 

Pollen analysis has been undertaken on the entire 728-cm sequence at Drowning Flow to 

gain an understanding of vegetation change throughout the period during which 

sediment has been accumulating at the site. The diagram has been divided into pollen 

assemblage zones in order to aid the description and interpretation of the palynological 

analyses. Zonation was based upon significant and major fluctuations in the pollen 

spectra using the computer programme CONISS (Grimm, 1987) and subjective 

assessment. 

Zone A (728-640 em) (ca. 4925-4000 BC) 

This zone is characterised by high percentages of arboreal taxa, with Alnus values of 

around 20%, Coryloid type 35%, Quercus 10% Ulmus 5% and Pinus 5%. Low Calluna 

vulgaris levels of only 1-2% within the zone are the principal reason for the distinction 

of the zone boundaries. In the lower part of the zone levels of grasses peak at around 

20%, combined with Ericaceous values averaging around 10%, indicates partially 

cleared ground locally within a largely forested wider landscape. In the basal pollen 

sample (732cm) there are also a number of pollen grains of a variety of herbaceous taxa, 

(e.g. Rumex, Succisa) supporting the possibility of some small-scale woodland 

clearance. These species may colonise disturbed ground arising from the activities of 

Mesolithic communities in the area (See Chapter 7). At the top of the zone (640 em) 

Ulmus pollen frequencies decline markedly, consistent with the elm decline documented 

across north-west Europe. This chronostratigraphic marker horizon can thus be assigned 

a date of ca. 4000 BC and the zone therefore spans the period ca. 5000-4000 Be. This 
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fits very well with the interpolated date, derived from the age-depth diagram (Figure 

4.4), a depth of 640cm having an age-equivalence of ca. 5200 BP. 

Zone B (640-432 em) (ca. 4000-1800 BC) 

This zone is characterised by an increased level of Calluna vulgaris values that rise to 

values of 10-15% of the terrestrial pollen sum. Much of this occurs as a consequence of 

the virtual disappearance of Ericaceous taxa from a depth of ca. 500 cm. Coryloid type 

values increase slightly, attaining values of over 50% within samples in the middle of 

the zone. Other tree taxa, including Alnus, Betula, Pinus, Quercus and Ulmus decline 

marginally in comparison to Zone A and suggests a continued opening of the forest 

cover and the development of more scrub woodland and heathland within the landscape. 

This vegetation response may be due to climatic factors or, more likely the use of these 

upland environments for grazing purposes, this is discussed further in Chapter 8. Herb 

presence is slightly more diverse although Poaceae levels decline slightly. The 

Sphagnum curve shows major fluctuations from values of ca. 90% of the total pollen 

sum to just 5%. This could represent changes in response to a combination of climatic 

and anthropogenic pressure upon the mire surface and the wider environment, as well as 

local factors affecting spore production. 

Zone C (432-272 em) (ca. 1800-780 BC) 

This zone is characterised by rising and sustained high levels of Calluna vulgaris pollen 

(reaching approximately 60%). Much of this rise in Calluna vulgaris percentages 

reflects progressively declining levels of both Alnus and Coryloid type. Other arboreal 

taxa, such as Quercus and Pinus and also levels of Poaceae, remain relatively static, 
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although herb diversity increases. Overall this zone indicates an increase in 

anthropogenic impact upon the vegetation, with the continued removal of woodland and 

its replacement by Calluna vulgaris heathland suitable for grazing animals. This is 

supported by the first appearance of Pteridium spores within the zone that are likely to 

be a consequence of intensified grazing of areas of Calluna vulgaris. It is thought that 

this may equate to expansions in population levels during the Early Bronze Age, which 

is discussed further in Chapter 7. In addition, the first appearance of large grass pollen 

grains at the top of the zone indicates that cereals were being grown in the vicinity of the 

site ca. 1000 BC. The Sphagnum record also remains highly variable within this zone, 

indicative of changing moisture conditions upon the bog surface and which could be 

testament to anthropogenic impact, in terms of cultivation and grazing in the area 

altering local hydrological conditions. 

Zone D (272-144 em) (ca. 780 BC -AD 610) 

This zone is characterised by high Calluna vulgaris percentages, although some 

fluctuations are present in the early part of the zone. Alnus and Caryl aid type 

percentages continue to decline, with Alnus dropping to values of just 5% at a date of 

ca. AD 130. Herb diversity continues to increase and the first sustained appearance of 

Plantago lanceolata pollen (an important anthropogenic indicator) occurs towards the 

top of the zone. Levels of grasses and tree taxa such as Pinus and Quercus show little 

variation and maintain relatively low percentages of around 5%. The zone is 

characterised principally by a marked and sustained rise in the levels of Pteridium 

pollen. This may well reflect increased usage of these upland environments for grazing 

during the Iron Age and Romano-British periods. The occurrence of the species in these 
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quantities is likely to indicate either over-burning or overgrazing of the Calluna vulgaris 

heathland vegetation and is probably a direct consequence of anthropogenic impact. 

Zone E (144-0 em) (ca. AD 610 - present) 

Calluna vulgaris again dominates this zone, initially falling to around 30% before 

peaking at ca. 70% and then falling once again in the uppermost samples. Levels of both 

Alnus and Coryloid type show a progressive decline through the zone with levels falling 

to negligible values within the uppermost samples. Quercus values increase very 

marginally throughout and Pinus peaks towards the top of the core. The zone has been 

delimited, however, on the basis of the Poaceae curve that rises through the zone and 

peaks at around 40%. This indicates a continued deforestation of the area in the latter 

part of the diagram, with the recent Pinus peak related to modem day commercial 

afforestation (Appendix to.7). Pteridium values decline markedly in the middle of the 

zone, possibly related to a cessation of intense grazing pressure. 

Summary 

The 728-cm pollen diagram, spanning approximately the last 7000 calendar years from 

ca. 5000 Be, shows a landscape initially dominated by trees becoming increasingly 

transformed to Calluna vulgaris heathland. Evidence of anthropogenic activity is visible 

within the diagram, in the form of assorted indicator taxa and cereal pollen. Fluctuations 

in the Sphagnum curve may provide indications of large-scale climatic fluctuations 

although other evidence suggests that these may be masked by anthropogenic activity 

altering local hydrological conditions and the highly variable production of spores by 

this species. 
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4.3 Bloody Moss 

4.3.1 Stratigraphy 

The core from Bloody Moss is generally more humified than the Drowning Flow core, 

which would suggest a slower accumulation rate. However, dating evidence (Figures 4.4 

and 4.5) indicates that sediment accumulation has occurred more rapidly at this site. 

Enhanced humification of this core may be a function of site location and topography, as 

the mire occupies a saddle / spur position (Lindsay et al., 1988) (Chapter 3). In addition, 

the composition of the peat appears to be primarily herbaceous, as opposed to 

bryophytic in origin and this may explain its more humified nature. 

From a depth of 100 cm to the base (644-cm) of the sediments at Bloody Moss, the peat 

is composed primarily of highly humified amorphous peat, with evidence of some sedge 

component. Between 508-564 cm the peat body contains evidence of wood in the form 

of birch fragments and also twigs of Calluna vulgaris. At 382 and 400-cm depth there 

are two slightly lighter coloured bands, but other than this the peat is relatively uniform. 

Between 89-100 cm and 46-68 cm sediment was not recovered, but above 89-cm depth 

the peat changes markedly. Between 0-89 cm the peat is generally dominated by 

Sphagnum moss taxa and is less well-humified. Two distinct bands of more humified 

and herbaceous peat occur between 29-37 and 8-20 cm. 

4.3.2 Dating 

A total of two bulk peat samples and a basal wood sample were submitted for 

radiocarbon assay (Appendix 10.1: Table 4.2). These samples (Beta-90754, 94633, 
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94632) were taken from depths of 590-595, 421-428 and 221-228 cm. These dates 

demonstrate an approximately constant accumulation rate of approximately 0.12 cm 

yea(1 which can be seen on the age-depth calibration curve, Figures 4.4 and 4.5. 

Depth Lab Ref 14CDateBP Calibrated Calendar Date Intercept Date 

(em) (Beta) (20') 

221-228 94632 1290 ± 110 AD 575-990 AD 705 

421-428 94633 2900 ±70 1285-900 BC 1045 BC 

590-595 90754 4930 ± 80 3940-3845 BC, 3830- 3700 BC 

3620 BC, 3575-3535 BC 

Table 4.2: Radiocarbon dates, lab references and calibrated dates from Bloody 

Moss 

4.3.3 Palynology (See Figure 4.2, Appendix 10.8) 

Palynological analyses have been carried out on the fuJI sedimentary sequence from 

Bloody Moss (Figure 4.2). Zonation was based upon significant and major fluctuations 

in the pollen spectra using the computer programme CONISS (Grimm, 1987) and 

subjective assessment. 

Zone A (644-532 em) (ea. 4375-2800 BC) 

This zone is characterised by rising values of Coryloid type pollen (35-40%), fluctuating 

Calluna vulgaris levels (20%) and decreasing Alnus values (25-10%). Levels of Betula 
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(10%) and Quercus (5%) remain relatively constant through the zone, while Pinus 

values of around 5% are likely to relate to long distance transport (Huntley and Birks, 

1983). Ulmus values fluctuate slightly between 2-5% and also disappear from some 

samples. Herb presence within this zone is sparse although small peaks in Poaceae 

occur, along with species indicative of anthropogenic impact, such as Filipendula and 

Rumex crispus. This zone appears to represent a relatively open landscape, consisting of 

a combination of hazel scrub and heather moorland. Limited birch, oak and alder cover 

is also present, although much of this is likely to have occurred at slightly lower 

altitudes. 

Zone B (532-244 cm) (ca. 2800 BC- AD500) 

This zone is characterised by a stepwise transition from a landscape with plentiful 

Coryloid type scrub towards the dominance of Calluna vulgaris moorland. Calluna 

vulgaris percentages rise from around 20% at the bottom of the zone to almost 80% at 

the top with Coryloid type dropping concomitantly from values of 40% to 15%. Alnus 

values decline through the zone in a stepwise fashion from around 15% to ca. 3%. 

Quercus and Ulmus values fall, with Betula levels remaining around 10%. Quantities of 

Ericaceous taxa increase, fluctuating slightly, with occasional peaks of around 15%. 

Levels of herbaceous taxa also increase both in terms of quantities and diversity. 

Poaceae species show a progressive increase through the zone, with the exception of the 

top samples where levels are temporarily reduced. Of the other herb taxa anthropogenic 

indicator species, such as Plantago lanceolata and cereals become visible in the pollen 

record for the first time. This appears to suggest increasing using of these upland 

environments during the Late Neolithic and Bronze Age periods. 
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Zone C (244-0 em) (ca. AD 500 - present) 

The early part of the zone shows a temporary regeneration of a number of woodland 

taxa, including small rises in Alnus, Quercus, Betula, Salix and Fraxinus. Coryloid type 

values again exceed 20%, whilst Calluna vulgaris drops to around 40%. This suggests a 

reduction in grazing intensity within this upland environment, although the continuous 

presence of cereals and other anthropogenic indicator taxa may relate to a decrease in 

the extent of agriculture and a switch to more locally intensive techniques. The 

temporary increase in trees may relate to the site's position with respect to the Roman 

frontier, as forest regeneration occurred following the withdrawal of troops from the 

region (Chapter 7). This is, however, short-lived and Calluna vulgaris values recover to 

around 80% at a depth of approximately 110 cm. This is combined with a decline in 

almost all arboreal taxa, many of which become virtually absent from the rest of the 

diagram. Only within the uppermost samples does Pinus show a slight rise, which can 

be related to commercial afforestation within the region (Charlton, 1987). A number of 

herbaceous taxa show continuous percentages through the zone, including cereal pollen 

and other anthropogenic indicators. The zone is characterised by a rise in Poaceae pollen 

which fluctuates slightly but which consistently has values of ca. 15%. Sphagnum 

values fluctuate markedly in the zone and may indicate an increase in anthropogenic 

activity within the area. Overall, the zone reflects an open Calluna vulgaris dominated 

landscape, with little tree cover and probably small areas of grassland within which 

cereal cultivation was occurring. 
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Summary 

The diagram demonstrates a progressive and stepwise transition from an upland 

landscape dominated by hazel scrub and Calluna vulgaris heath with a few isolated 

stands of trees to one almost entirely dominated by heathland and grassland. This 

change in the landscape occurs over a period of around 2000 years, between 

approximately 3000-1000 Be. Increasing levels of herbaceous taxa, grasses and also 

cereal pollen indicates evidence of anthropogenic involvement in this transition. 
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4.4 Sells Burn 

4.4.1 Stratigraphy 

The sedimentary sequence at Sells Bum comprises a mixture of highly humified and 

herbaceous peat overlying very minerogenic basal deposits. Only in the upper portion of 

the core is there evidence for Sphagnum development that today characterises the mire 

surface. 

The basal sediments (453-488 cm) at Sells Bum are highly minerogenic, comprising 

sands, silts and clays. This sediment also contains wood remains, which would appear to 

have been growing directly into the minerogenic substrate. Wood fragments become 

even more abundant between 448-453 cm, where highly humified peat develops along 

with some minerogenic sediments. This indicates a birch / hazel woodland that became 

paludified. Between 200-448 cm is a peat comprising of approximately equal 

proportions of highly humified peat and sedge peat, which includes wood fragments 

between 254-258, 288-310, 374-385 and 406-410 cm. This suggests that the site was 

periodically reinvaded by forest, possibly as a consequence of a reduction in 

anthropogenic factors or in response to climate change. Between 38-200 cm the peat 

contains varying proportions of sedge peat and highly humified peat, until from 38 cm 

to the top of the core the moss content progressively increases. 

4.4.2 Dating 

Three samples (two bulk peat, one wood/peat) were submitted for radiocarbon dating 

from the Sells Bum core (Appendix 10.1: Table 4.3). These were taken from depths of 
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213-220, 313-320 and 449-456 cm returning dates of BC 1045-825, BC 1965-1630 and 

BC 4090-3810 respectively. In common with the Bloody Mo s and Drowning Flow 

cores these dates provide a relatively constant rate of ediment accumulation throughout 

the period analysed, averaging 0.08 cm y(l. This can be een on the age-depth 

calibration curve, Figures 4.4 and 4.5. 

Depth Lab Ref. 14C Date Calibrated Calendar Date Intercept Date 

(cm) (Beta) BP (20') 

213-220 94638 2800 ± 50 1045-825 BC 925BC 

313-320 94639 3490 ± 70 1965-1630 BC 1765 BC 

449-456 94640 5180 ± 60 4090-3925 BC, 3875-3810 3975 BC 

BC 

Table 4.3: Radiocarbon dates, lab references and calibrated dates from ells Burn 

4.4.3 Palynology (See Figure 4.3, Appendix 10.10) 

Zone A (464-400 em) (ca. 4100-3200 Be) 

This zone i characterised by pollen of several arboreal taxa, with Betula (30%), Alnus 

(20%) and Coryloid type (25%) and to a lesser extent Quercus (5%) dominating. All of 

these taxa fluctuate within the zone, indicating the dynamic, non-stable nature of the 

woodland that prevailed during this time. Herb presence in the zone is low, with only 

traces of Poaceae and taxa indicating anthropogenic disturbance, such as Stellaria 

holostea and Rumex type. Fern spore levels are very high in the ba al pollen sample, 
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however, this is characteristic of poor pollen preservation within these deposits (Tipping 

et al., 1994, Cundill and Whittington, 1987), rather than a genuine Pteridophyte 

dominated landscape. Levels of aquatic species are extremely low within this zone. This 

zone can therefore be seen to represent a wooded landscape dominated by birch, alder 

and hazel and to a lesser extent oak, with relatively little open ground herbaceous flora. 

Zone B (400-160 em) (ca. 3200-75 BC) 

The early part of this zone is characterised by a rapid decline in Betula and Alnus 

percentages and the rise of percentages of Calluna vulgaris, which quickly attains levels 

of 20% of the terrestrial pollen sum. Coryloid type and also Quercus percentages remain 

relatively stable throughout the zone. At ca. 320-cm Alnus levels recover, with a 

corresponding decline in Calluna vulgaris values. Alnus then declines progressively 

through the zone, whilst Calluna vulgaris values recover, with some peaks reaching 

35%. The first appearance of Ericaceous taxa also occur at the same time as the early 

rise in Calluna vulgaris, although they achieve a representative values of only around 

10%. Herb presence is moderately more varied in this zone, although Poaceae levels 

remain low. Significantly, anthropogenic indicator taxa, (including Plantago lanceolata) 

achieve a constant presence. Cyperaceae levels also increase in a similar fashion slightly 

higher up the core. This zone represents a rapid transition from a wooded environment 

to a landscape with a high proportion of heathland and probably patches of forest. 

Zone C (160-48 em) (ca. 75 BC -AD 1300) 

This zone is characterised by the rapid decline in all arboreal taxa and the rise in 

Calluna vulgaris percentages to over 80% of the terrestrial pollen sum. The Alnus, 
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Betula and Coryloid type curves all demonstrate similar profiles, with a decline 

followed by a brief regeneration at approximately 100-cm depth. The recovery of 

woodland is matched by a peak in the levels of grasses and suggests a brief cessation of 

grazing activity leading to re-invasion by trees, with specific areas cleared and covered 

by diverse herbaceous vegetation. The first occurrence of cereal pollen occurs at this 

depth and suggests a transition in the nature of anthropogenic manipulation of the 

natural vegetation. A large peak in Sphagnum coincides with the initial forest-heath 

transition and reflects the changing hydrological conditions associated with an alteration 

of the vegetation. 

Zone D (48-0 em) (ca. 1300 AD - present) 

This zone contains only a few pollen samples, but is markedly different in character to 

Zone C. Calluna vulgaris values decrease from around 80% to just 10% of the pollen 

sum, without any response in the Alnus, Betula or Coryloid type curves. The decline in 

heathland is marked by increases in both the Pinus curve and also the Poaceae curve, 

with a number of other herbaceous taxa also demonstrating small peaks. This is likely to 

reflect the onset of commercial afforestation and the advent of extensive farming 

practices in the area around Sells Bum. Cereal pollen also becomes continuously 

present, although in small quantities. 

Summary 

The diagram from Sells Bum contains a higher percentage of arboreal taxa than the 

other upland diagrams presented here. This is probably due to the lower altitude of the 

site and its topographic position. The transition to heathland dominated vegetation 
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occurs slightly later at this site and is combined with small incidences of anthropogenic 

indicator taxa and cereal pollen. 



Figure 4.3: Sells Burn 
Summary percentage pollen diagram 
Exaggeration x5 

J 
(0'0 

, ... q" 

Trees7/7 

~,,, 

" "rJ 

~:::'/} 
,,"> ,<:' ij 

0"(:" ~,o<l- ",~c.. ~"> 0'" ,,~ 

AquatiCs. 

,,,,"> 

925 Bel 
Q 
« ...... 
u 
ED 

" u 

1765 SC I 

,-c..~ 
i$' ~\o 

(3',q '6e~ 
fl' o~e\ \~\)., 

~ 

,,"> :>,q ~\4 
"'-,'" . 1> ' ~ <J (\0 

",' -\' ~\\j 
o;s' ci <P 

3oo1'?r~:: I\ • I 

• ~ ",0 00; v:-" oc..'" o~ 
'" 0" oq,,,,, :\'< 

",C> ,<" ~ ~~~q S~ & .s~<l-ov ~o G 

~.., 
~,1>0 

~,,, 

~ : ll : l\ r l 

/ Som. 

"CJf? 
~o 

~cs: 
,,"> ",-,,, .§>"> 

4 

r ia 

:Q"> 

v:-"" 

,-",<I-
0" 

"q 
"C> 

",-0 

~ o.s c.. 
o~e<::-

o-q 
",-0" 

I ~ I 

o"Of::' 

~' c..'" 
0<:' 

c; 

Zones 

o 

c 

I B 

A 

AnalysIs: A Moores. Newcaslle University (199B) 



Figure 4.4: Calibrated Age Depth Curve for Upland Sites 
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Figure 4.5: Uncalibrated Age-Depth Curve for Upland Sites 
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Chapter 5 

Geomorphology and palaeoecology of valley floor sites 

5.1 Geomorphological Mapping and Sediment Stratigraphy at 

Brownchesters 

98 

Geomorphological mapping and coring at Brownchesters has focused upon the western 

side of the modem river channel, downstream of the bridge carrying the B6320, where a 

series of fluvial terraces and palaeochannels are clearly visible on the valley floor 

(Chapter 3). A total of 11 discrete terrace units have been identified on the basis of 

morphostratigraphic relationships and radiocarbon assays obtained from within the 

associated palaeochannels (Moores et at., 1998). Full core logs and details of 

radiocarbon assays can be found within Appendices 10.2 and 10.6. Unless otherwise 

stated all radiocarbon dates are quoted as calibrated calendar dates, with single dates 

derived from the intercept point with the dendrochronological curve and age ranges 

quoted at two-sigma standard deviation. Given the likelihood of basal minerogenic 

channel fill sediments accumulating at a relatively rapid rate (cf Lewis and Lewin, 

1983), it is assumed here that 14C dates obtained from the lower part of organic-rich 

channel fills are not likely to significantly post-date channel abandonment and thus 

provide a post-terminum for meander cut-off (Macklin and Needham, 1992; Brown and 

Keough, 1992; Moores et aI., 1998). 
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5.1.1 Late-Glacial Terraces: Tl &T2 

On the western side of the modem channel, the valley floor is dominated by two 

extensive terraces, designated T1 and T2, that lie up to 6m and 5m respectively above 

present river levels (Figure 5.1). The surface of these high-elevation terraces locally 

feature fluvial palaeochannels and / or Holocene gullies, that preliminary coring has 

shown to be infilled with inorganic, homogenous grey clays. No palynological analyses 

have been undertaken upon these sediments due to the absence of organic material and 

their gleyed nature making them unlikely to preserve pollen grains. Although no 

radiocarbon data is available for these units, their extent and relative height is broadly 

comparable to the uppermost fills in alluvial sequences recorded elsewhere in the Tyne 

basin (Passmore, 1994; Passmore and Macklin, 1994). In common with other 

documented alluvial sequences in upland northern Britain (e.g. Harvey, 1985; Tipping, 

1995b), these features are believed to be outwash terraces formed during the late

Devensian de-glaciation. 



Figure 5.1: Geomorphological map of Pleistocene and Holocene river terraces and 
paJaeochannels at Brownchesters Farm showing cross profiles and core locations 
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Figure 5.2: Surveyed cross profiles of the valley floor at Brownchesters Farm 

8 

6 
E A T11 B 
.a 4 

'v 
T9a 

~~fr cu 
"0 

~2 
cu ..... 
:eO 
cu c ~ 8 0 
0 T1 T2 ..0 ,.-.--, 
cu 6 I 

II) T5 T9b 
Q) 
'- 4 ..... 
Q) 

~ Water 
2 level 

0 

0 100 200 300 400 500 
Metres 



102 

5.2 Outline of Holocene Terrace Formation, Nomenclature and Pollen 

Results 

Inset below the Tl and T2 high elevation terraces are a series of Holocene alluvial units 

that are characterised by well-developed palaeochannels and surface elevations 

restricted to a range between 2.5 - 3m above present river levels (Figure 5.1). 

Topographic survey of these terraces has revealed asymmetric surface profiles that 

progressively rise in elevation towards their point of truncation by younger fills (Figure 

5.2). Despite the restricted height range of the terraces within the reach, in most 

instances the delimitation of terrace units and determination of the relative age are 

facilitated by well-developed terrace bluffs. These are clearly evident where they 

coincide with palaeochannels developed upon the younger unit, with marked vertical 

discrepancies occurring at the point of cut-off (Figure 5.2). The maximum elevation of 

the Holocene floodplain is attained immediately adjacent to the present active channel, 

where coarser grained sediments from overbank flows has formed low-relief levees 

(Allen, 1965; Brown, 1996) (Figure 5.2). 

S.2.1 Terrace T3 

Morphology 

The T3 unit survives as a single, small terrace fragment inset immediately below T2 

(Figure 5.1). It is truncated at the upstream end by a T4 palaeochannel and by a T5 

palaeochannel at its downstream limit. The terrace contains evidence of a well-defined 

meander loop, approaching 100 metres in length. The preserved portion of this 
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palaeochannel is interpreted as the apex of a former meander bend that has undercut the 

higher T2 terrace unit. 

Stratigraphy (Figure 5.3) 

Five metres of sediment have been obtained from this palaeochannel, although some 

sediment was lost between 268-333 cm and 394-408 cm (Figure 5.3). The basal 28-cm 

of sediment comprises gravel in a coarse-sand matrix and is interpreted as former active 

riverbed material (Erskine et al., 1992). Overlying sediment (408-472 cm) comprises 

grey silty-clays, with some light brown minerogenic banding. The transition to fine-

grained sedimentation in a low energy environment most probably reflects isolation of 

the channel as a detached oxbow lake (Page and Mowbray, 1982; Allen, 1965). This is 

supported by pollen evidence (Figure 5.4) that shows traces of Potamogeton, a taxon 

usually found submerged within standing freshwater (Clapham et al., 1964). This unit 

gives way to a slightly coarser clayey-silt that is increasingly sandy down profile and 

contains frequent dark, well-humified organic lamina ca. 1 mm in thickness (344-394 

cm). This is indicative of an increasingly stable and relatively slowly accumulating 

sedimentary environment, which has periodically allowed the growth of aquatic plants 

within the palaeochannel. This is briefly replaced by a more consistently organic unit 

(341-344 cm), which contains numerous visible plant remains, including seeds and 

leaves and suggests stable vegetation growth both within and adjacent to, the 

palaeochannel cut-off. Between 164-341 cm are a number of silt, peaty-silt and silty-

peat dominated units, which contain varying amounts of organic material and wood 

fragments. This indicates small fluctuations in the relative stability of the 

palaeochannel, with more mineral-rich sediments derived from allochthonous input 
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from floodwaters. These units are indeed interrupted at a depth of 240-243 cm by two 

noticeably coarser laminae approximately 5 mm in thickness and composed of light 

grey fine sand / silt. These are indicative of the influx of overbank floodwaters into the 

palaeochannel, carrying a more minerogenic sediment load which is deposited within 

the low energy environment (Erskine et ai., 1992). Highly organic peat with varying 

quantities of wood between 164-240 cm, suggests progressive terrestrialisation of the 

palaeochannel and the reduced incidence of intrusive flood-events. From 164 cm to 

immediately below the topsoil at 50-cm, sediments are predominantly fine-sandy silty-

clays and fine sandy-clayey-silts with varying amounts of organic material. This 

appears to be a continuation of palaeochannel terrestrialisation occurring as the 

environment becomes progressively drier. At 129-137 cm, however, peat formation 

briefly resumes and may indicate a shift in local hydrologic conditions, a temporary re-

wetting of the palaeochannel or a response to an alteration in climatic conditions. An 

alluvial topsoil caps the modern palaeochannel surface. 

Dating 

The precise timing and rate of sediment accumulation within this channel is difficult to 

discern, due to an apparent reversal in the radiocarbon dating sequence. Two dates have 

been obtained from the palaeochannel at a depth of 242-250 and 146-156 cm (Beta-

96126, Beta-l 19823: Appendix 10.2). The upper of these dates has been obtained from 

a bulk peat sample and has been returned at 8100-7900 BC, while the lower date has 

been obtained from wood fragments preserved in the core and has returned a date of 

7595-7445 BC. The reason for this reversal is unclear, as the oldest and uppermost date 

has been obtained from in situ organic sediments that are believed unlikely to have been 
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derived from allochthonous sources. Although dendrochronological calibration curves 

during this period are less accurate than at many other times during the Holocene and 

are also subject to dating plateaux, these limitations are probably insufficient to account 

for the reversal alone. It is possible that the dated wood (Beta- 96126) may have been in 

situ root material and therefore younger than its stratigraphic position suggests (Brown 

et al., 1994; Brown, 1997). Nevertheless, both dates fall within 500 radiocarbon years 

of each other, and as a consequence the sediment can be seen to have been accumulating 

ca. 8000 Be. 

Furthermore, examination of the pollen records from this core support this, as 

fluctuations in characteristic pollen spectra, derived from numerous type-site pollen 

records appear to correlate very well with a chronology derived from the lower, younger 

date. This is discussed further below. 

Palynology (Figure 5.4, Appendix 10.11 ) 

Pollen preservation was limited to 80-395 em, where sediments were finer-grained and 

more organic in nature. Some portions of the diagram (Figure 5.4), notably between 

260-330 cm, have few pollen samples due to a combination of poor sediment recovery 

and the non-polleniferous nature of the material. The diagram can be divided into three 

Zones for the purposes of description and interpretation (Figure 5.4). 

Zone A (395-230 em) 

This zone is dominated by high percentages of Coryloid type (60%) and Betula (20%). 

Traces of other tree species are present including Salix, Quercus, and Ulmus which 
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occur in quantities which suggest that they were growing locally and Pinus pollen 

which is likely to result from long-distance transport (Huntley and Birks, 1983). Herb 

diversity is very high and contains evidence of some cereal pollen along with a number 

of other anthropogenic indicator species (discussed in Chapter 7). Potamogeton occurs 

in low quantities throughout the zone, demonstrating that the palaeochannel 

environment at this time consisted at least in part of standing water and this supports 

interpretations based upon the sediment stratigraphy of the core (Clapham et al., 1964). 

Overall, this zone is indicative of a typical early Holocene valley floor woodland, 

comprising of predominantly early colon ising species with only traces of the more 

thermophilous trees. 

Zone B (230-150 em) 

This zone is characterised by increasing percentages of arboreal species, notably Pinus 

and Quercus that are believed to have spread into Britain at around 8500 BP (Birks, 

1989; Huntley and Birks, 1983). The date of 8510 ± 70 BP uncalibrated radiocarbon 

years at 242-250 cm corresponds well to this chronology and supports the use of the 

lower date (Beta-96126) in fixing the chronology for the core. Increases in these taxa 

are associated with a decrease in Coryloid type levels, while other taxa including herbs 

remain at roughly similar levels. This Zone reflects the progressive succession of trees 

of a more thermophilous nature into the woodland environment, with overall arboreal 

cover relatively stable. 
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Zone C (150-80 em) 

The most notable feature of this zone is the migration of Alnus into the site and the 

subsequent domination of this species. The spread of Alnus has been the focus of many 

studies, most of which have utilised mire sediments to analyse the expansion of this 

wetland taxon (Chambers and Price, 1985). A number of authors have hypothesised that 

alder spread predominantly through fluvial transport, concentrated within wet, 

floodplain corridors for its initial expansion (Bennett and Birks, 1990; Chambers and 

Elliott, 1989; Tallantire, 1992) and that waterlogging favoured the species over birch 

and willow which had previously dominated floodplain environments (Brown, 1988). 

The results presented here appear to support this hypothesis, as the date of ca. 8005 Be 

at 146-156 cm for the rise in alder pollen is much earlier than the documented alder rise 

in northern Britain at between 7000-7500 BP (Birks, 1989) and earlier even that found 

by Chambers and Price (1985) in north-west Wales. Although the date at this depth may 

be erroneous due to contamination and renders the precise timing of the alder rise 

difficult to ascertain, it does appear that alder migration at this site concurs with existing 

models of a patchy riverine distribution (Bennett and Birks, 1990; Tallantire; 1992). 

Other arboreal species in this zone all reduce slightly as a consequence of alder 

expansion with herbaceous taxa remaining fairly constant. 

5.2.2 Terrace T4 

Morphology 

The T4 unit is a small fragment of terrace inset immediately below the gravel terrace of 

T2 and truncates the T3 unit. In common with T3, a well-defined palaeochannel is 
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present upon the terrace surface, and has a planform resembling a meander loop 

approximately 75 metres in length, the assumed apex of which has undercut the T2 

terrace unit. On the basis of morphostratigraphic relationships, this unit is interpreted as 

having formed through simple meander loop cut-off by the palaeochannel associated 

with terrace T5. 

Stratigraphy (Figure 5.3) 

Six metres of continuous sediment have been recovered from the palaeochannel 

associated with this terrace. The basal 30 cm of this core are comprised of former 

channel bed material, consisting of gravel (1 cm B-axis) in a coarse sand matrix. 

Overlying this, between 520-550 cm depth is a progressively fining upward sequence 

from coarse sands to clayey silty sand. This is likely to represent the depositional 

sequence immediately following abandonment, where the energy status of the meander 

loop is gradually reducing allowing increasingly finer material to be deposited (Allen, 

1965; Erskine et al., 1992, Waters, 1992). Overlying sediment between 384-520 cm 

comprise light grey silty clays with finer sandy laminations at intervals through it. This 

suggests a low energy environment, which is occasionally encroached by higher energy 

floodwaters, responsible for relatively rapid deposition of sandy lenses. Above this are 

two units of well-sorted and bedded sands (370-384 and 365-370 cm), that are also 

interpreted as being indicative of the encroachment of relatively high-energy 

floodwaters into the palaeochannel (Costa, 1978; Knox, 1985). Subsequent to this are a 

series of laminated units, comprising of alternating bands of silty-clays and fine to 

medium sands, which occasionally contain fragments of wood and other organic 

remains. Five distinct units can be identified with these characteristics, collectively 
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spanning a depth of 266-365 cm. These suggest a period where conditions were 

relatively unstable in the palaeochannel, as minerogenic input was fairly high. The first 

peat units develop above this series, initially comprising of organic rich silts but 

becoming increasingly peaty up profile (218-266 cm). Between 224-241 cm a large 

wood fragment has been radiocarbon dated (Beta-96127, Appendix 10.2). The 

sediments between 160-218 cm are comprised of slightly silty peat, which contains fine 

minerogenic laminae between 160-178 cm. The development of peat in these valley 

floor localities indicates that palaeochannel conditions were stable enough to allow 

vegetation to grow, although the laminae probably demonstrate that minor incursion of 

floodwater into the palaeochannel did occur. Between 112-160 cm deposition reverts to 

minerogenic silts and fine sandy sediments and consequently a more unstable regime. 

More peat between 78-112 cm punctuates this, before silt dominated units occur 

between 56-78cm immediately below well-developed alluvial topsoil. 

In summary, the sedimentary profile from this channel provides one of the most detailed 

records of flood history from this reach. Almost the entire sediment sequence contains 

evidence of what is interpreted as floodwater encroachment into the palaeochannel, in 

the form of laminations of coarser material (Costa, 1978; Knox, 1985). These vary from 

sub-millimetre clay and fine-medium sand bands, indicative of minor floodwater 

incursions to up to 5cm of well sorted grey medium to coarse sand, suggestive of fairly 

major overbank flooding. The dates for the adjacent and younger T5 terrace 

palaeochannel (abandoned ca. 3950 BC) suggest that this was the active channel during 

ca. 1000 years of sediment accumulation in the T4 channel. Thus, the proximity of the 

active channel to this T4 palaeochannel during the period 5030-3950 BC may be the 
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reason for the well-preserved and fine resolution flood record available from these 

sediments. 

Dating 

Two radiocarbon dates have been obtained from this channel at depths of 80-95 cm 

(peat) and 224-241 (wood) cm, these have returned dates of 3045-2870 /2795-2770 BC 

and 5240-4825 BC (Appendix 10.2). No date has yet been submitted from any of the 

basal sediments of this palaeochannel and thus the timing of channel abandonment of 

this terrace unit is difficult to speculate upon. It is likely, however, that sediment 

accumulation rates were likely to have been significantly quicker in the lower portion of 

the core due to the predominantly minerogenic nature of the material. Sediment 

accumulation rates in the upper part of the core appear to be far slower and are amongst 

the slowest encountered at Brownchesters. This may be a consequence of the distance of 

the channel from the contemporary active channel once the T5 channel had been 

abandoned, the lack of in situ vegetation development due to local hydrological 

conditions or a hiatus in sediment accumulation. 

Palynology (Figure 5.5, Appendix 10.12) 

Palynological results from this palaeochannel are restricted to the uppermost 365 cm of 

the sediment core where preservation of pollen grains is sufficient to allow counting. 

The diagram is difficult to divide into Zones owing to the diagram reflecting overall a 

relatively static flora. The results show vegetation characterised by a mix of 

predominantly arboreal tree and shrub taxa. Alnus and Coryloid type again form the 

major species present, consistently attaining values of 30% in the core. Quercus, Betula, 
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and Ulmus are also present at levels generally between 10 and 20%, reflecting the local 

presence of these species (Huntley and Birks, 1983). Pinus values of a similar 

magnitude (10-20%) usually reflect long distance transport when considering mire 

deposits, but the small diameter of this palaeochannel probably means that this taxon 

was growing fairly proximal to the valley floor in limited numbers. Herb presence is 

limited, although there are slight indications of a number of species that are frequently 

derived from anthropogenic vegetation disturbance, such as Ranunculaceae, Plantago 

lanceolata and Liguliflorae (Behre, 1981, 1988; Birks 1990). Occasional cereal grains 

are also present in the core, in both the uppermost and lowest pollen samples. The 

results from the radiocarbon assays from the core are confirmed by the presence of a 

clear and well-defined elm decline, which occurs at a depth of 130 cm. This event has 

been synchronously dated across north-western Europe to ca. 4000 Be (Peglar, 1993a, 

1993b, Peglar and Birks, 1993; Edwards and McIntosh, 1988) and thus provides an 

independent chronostratigraphic marker horizon within the profile. 



Figure 5.3: Simplified lithostratigraphy and 14C dates for palaeochannel 
sediment cores T3 and T4 at Brownchesters Farm 
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Figure 5.4: Brownchesters Farm Terrace T3 
Summary percentage pollen diagram 
Exaggeration x5 
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Igure 5.5: Brownchesters Farm Terrace T4 
Summary percentage pollen diagram 
Exoggero1lOn x5 
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5.2.3 Terrace T5 

Morphology 

The T5 terrace is one of the most extensive Holocene units at Brownchesters. The unit 

truncates both the T3 and T4 palaeochannels and has itself been locally truncated by 

later fluvial activity associated with the T9 unit at its upstream end and by the T8 unit at 

its downstream extent (Figure 5.1). It is characterised by a single palaeochannel at its 

western limit that appears less sinuous than palaeochannel fragments of similar length 

within the reach. This suggests channel abandonment is less likely to have resulted from 

a simple chute or neck cut-off event, but more probably reflects a major avulsion of the 

contemporary river (Allen, 1965; Lewis and Lewin, 1983; Erskine et ai., 1992). The 

palaeochannel itself is well defined at the upstream end, where coring took place, but 

becomes progressively less visible downstream. The terrace surface is covered by 

evidence of rig and furrow cultivation, conclusively demonstrating the usage of these 

valley floor areas for agriculture (Plate 6.1, see also Moores et al., 1998). This 

agricultural activity, however, is likely to date to far later than the period of terrace 

formation. 

Stratigraphy (Figure 5.6) 

A total of five metres of sediment have been collected from the upstream end of the 

palaeochannel, proximal to both the T3 and T4 terraces. Basal material (450-500cm) is 

interpreted as former channel bed material, comprising gravel in a coarse sand matrix 

(Erskine et al., 1992). This is overlain by a slightly organic sand unit (418-450cm) 

which is likely to be characteristic of post-abandonment sediments. The sediments 
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deposited above this unit (278-418 cm) are peat / silts, with occasional laminae of fine 

silty sand and sandy silts (388-389, 360-363, 340-342 cm). Frequent wood fragments 

occur in a number of the organic rich peat units, including between 342-360, 324-340, 

310-324 and 288-300 cm. A large piece of wood was recovered from 278-288 cm. 

These sedimentary units and wood fragments indicate stability of the palaeochannel 

environment in terms of vegetation, with floodwater incursions into the former channel 

of a relatively minor nature (Waters, 1992). The presence of large quantities of wood 

within the sedimentary sequence indicates in situ tree growth and although no wood 

fragments have been identified, likely ecological conditions suggest it is to be either 

alder or willow which occupy these floodplain environments (Brown, 1988). Between 

252-278 cm a distinctive minerogenic unit is present within the sedimentary profile. 

This comprises of a number of alternating bands of light grey sandy-silt / silty-sand with 

peaty-silt. In total six thin lenses of coarser material occur at depths between 252-254, 

256-258,260-261,268-270,271-273 and 275-277 cm. This indicates a minor change in 

regime within the channel environment as minerogenic matter is almost certainly 

derived from overbank flood events. Peat accumulation resumes within the channel at 

166-252 cm and once again demonstrates some evidence of minerogenie laminations 

through a number of the units. Wood is also present between 190-200 and 179-185 cm. 

Between 134-166 cm sedimentation is again more minerogenic in character with peaty-

silts laminated with silty sand lenses. Wood is also present through many of these units. 

Peat formation again resumes between 84-134 cm, although sandy-silt laminae are still 

present. This becomes increasingly silty up-profile between 55-84 ern as water table 

depths presumably limit peat formation. Between 38-55 cm silty-clay sediment caps the 

palaeochannel with brown alluvial topsoil developed above 38cm depth. 
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In summary, this palaeochannel provides one of the most consistently organic 

sedimentary profiles. This has facilitated in-depth analysis of the sediments and also 

radiocarbon dating. The predominantly organic sedimentation style also allows periods 

of minerogenic inwash to be more clearly seen and as a consequence episodes of 

increased fluvial activity can be discerned. 

Dating 

Two radiocarbon dates have been obtained for this sedimentary profile. These have 

been taken at depths of 140-142 (Beta-96124) and 340-350 cm (Beta-96125) on wood 

recovered from the sedimentary profile (Appendix 10.2). Dates of 2570-2145 BC and 

4055-3715 BC have been returned from these assays. It can therefore be seen that 

sediments within this T5 channel were accumulating contemporaneously with sediments 

in the channel from T4. As a consequence it may be possible to trace certain major 

events in the palaeoenvironmental record between the two sediment cores. 

Palynology (Figure 5.7, Appendix 10.13) 

Palynological results from this palaeochannel have been obtained from almost the entire 

sedimentary sequence, with even the material immediately overlying the former channel 

bed gravel yielding adequate pollen for counting (Figure 5.7). The diagram has been 

divided into three zones on the basis of major changes in the pollen curves to aid with 

description and interpretation of the pollen spectra. 
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Zone A (450-350 em) 

This zone is characterised by relatively stable percentages of all major taxa. The 

principal species visible in the pollen record are Alnus (20%), Coryloid type (20%) and 

Quercus (15%) along with Poaceae (5%) and Filicales (10%). The presence of Ulmus 

pollen (5%) is also important in defining a chronology for sedimentation. The zone has 

been differentiated on the basis of the presence of Potamogeton pollen and the stability 

of the alder curve. Potamogeton is indicative of open water conditions and thus the 

palaeochannel can be deduced to have been an oxbow lake at this time. 

Terrestrialisation of the palaeochannel is marked by an increase in alder percentages, 

which occurs concomitantly with an increase in the quantity of wood found within the 

sedimentary profile (Appendix 10.6). In addition, this zone boundary has been dated at 

4055-3715 BC and it is noticeable that cultivated taxa and also other anthropogenic 

indicators occur at around this time. The environment was thus fairly well wooded, 

comprising a mix of arboreal taxa, with small openings in the forest cover suggested by 

the levels of grasses and cultigens. 

Zone B (350-150 cm) 

This zone is dominated by rising and high percentages of Alnus, which attains 

maximum values of approaching 80%. Other arboreal taxa initially remain relatively 

stable, although at a depth of approximately 300 em, levels in Ulmus fall sharply, at a 

date later than the elm decline which is visible in mid-Holocene pollen records across 

north-west Europe and dated to ca. 4000 BC (Peglar, 1993; Peglar and Birks, 1993). 

Following this Quercus levels also decline, although this is more likely an artefact of 

the large percentages of locally growing alder, rather than a genuine decrease in oak 
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cover in the wider valley floor environment. A virtually constant level of anthropogenic 

indicator taxa through this zone supports this interpretation. However, Brown (1996) 

has highlighted that the decrease in diversity associated with alder woodland is not 

necessarily an artefact of other species being 'drowned out' and that this floodplain 

environment is relatively species poor. 

Zone C (150-60 em) 

This zone is characterised by rapidly falling Alnus percentages and a corresponding 

increase in Poaceae percentages. The values of all other trees, with the exception of 

Betula, also decline, although Coryloid type shrubs maintain values of around 20% 

apart from at the top of the core. A massive peak in Betula levels towards the top of the 

zone is almost certainly due to very local sources as some of the pollen grains were 

found in immature clumps and is associated with a large rise in pollen concentration. 

The grass percentage rise is associated with increases in levels of anthropogenic 

indicator taxa and other herbaceous species and is interpreted as clearance of the valley 

floor woodlands by human activity. This rise has also been radiocarbon dated to 2570-

2145 Be. 

5.2.4 Terrace T6 

Morphology 

The T6 terrace unit is at the downstream end of the Brownchesters study reach (Figure 

5.1). The unit forms the higher of two terraces that contain extremely well defined and 

highly sinuous meander loops, both of which are truncated by the present-day active 
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channel at their downstream ends. The T6 terrace palaeochannel is truncated at the 

upstream end by the T8 unit, with what has been interpreted as the former meander bend 

apex lying immediately below the high T2 terrace unit (Figure 5.2). 

Stratigraphy (Figure 5.6) 

The sedimentary sequence from this palaeochannel is relatively shallow at just 340cm, 

but in common with many of the Brownchesters palaeochannels it contains a large 

proportion of organic rich sediments. Between 334-340 cm is fine gravelly sand, 

interpreted as former bed material. Within this unit a solid piece of wood was recovered 

which was subsequently used for radiocarbon dating. This bed material is overlain by 

fine sandy-clayey-silt between 325-334 cm, which becomes laminated with peats 

between 300-325 cm. This reflects increasing stability of the palaeochannel following 

cut-off and abandonment as plant material begins to colonise the channel (Brown, 1996, 

1997). Between 271-286 cm this process continues with the development of peat, which 

contains significant amounts of wood towards the base of this unit. Between 268-271 

cm an extremely well defined coarsening upward minerogenic horizon occurs, 

comprising light grey silty sands. This can be equated with a progressively rising flood 

regime where increasingly larger grain sizes are transported into the palaeochannel 

environment (Costa, 1978). Between 166-268 cm an extensive series of peat units have 

developed which appear to be devoid of any minerogenic laminae, but are punctuated 

by frequent wood fragments. Between 158-166 cm a continuous piece of wood was 

recovered which was used for radiocarbon dating. This is interpreted as indicating an 

extremely stable palaeochannel environment that has not been subject to any major 

flooding. At a depth of 146-158 cm the peat becomes more minerogenic and silty, 
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although wood is still plentiful within the core. This probably reflects sedimentation 

occurring above the local water table, rather than floodwater input into the channel, as 

all the subsequent sedimentary units are more minerogenic in nature. Indeed, the next 

sedimentary units 52-146 cm are a combination of sandy clayey silts and silty clays, 

many of which contain occasional organic flecks and the unit between 62-82cm also 

demonstrating some evidence of laminations. Overlying these units to the top of the 

sequence is alluvial topsoil. 

Dating 

Two radiocarbon dates have been obtained from this core. The first of these dates has 

been obtained from wood from the basal sediments of the core at a depth of 337-340 cm 

(Beta-96123; Appendix 10.2). This has returned a date of 2585-2140 Be and provides a 

very good approximation for the timing of channel abandonment on this fragment of 

terrace T6. The second date has been taken upon wood recovered from a depth of 158-

166 cm (Beta-96122; Appendix 10.2) and has returned a date of 1890-1520 Be. Thus, it 

can be seen that accumulation of sediment in this channel has occurred relatively 

rapidly, despite its predominantly organic nature. Sedimentation in this channel also 

marginally overlaps infilling occurring within the palaeochannel associated with terrace 

T5. 

Palynology (Figure 5.8, AppendixlO.14) 

The pollen results from the palaeochannel associated with terrace T6 are in many 

respects very similar to those from the T5 unit (Figure 5.8). In common with T5, pollen 

recovery from all but the basal sediments was sufficient to allow counting, giving a 
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diagram spanning depths from 80-328 cm. The diagram is again divided into three 

zones based upon changes in pollen spectra, in order to aid description and 

interpretation of species fluctuations. 

Zone A (328-260 em) 

This zone is characterised by an abundance of Potamogeton pollen, indicative of an 

open water environment within the palaeochannel. The diagram also records high 

percentages of Alnus (reaching 40%), Quercus (declining from 40%) and Coryloid type 

(stable at around 20%). Grasses and Filicales achieve maximum values approximately 

20% and cultivated taxa and anthropogenic indicator species are present in small 

quantities throughout the zone. Thus, pollen results from within this zone indicate a 

relatively wooded environment, dominated by alder and oak, with a hazel understorey. 

Clearings within the forest appear to have supported a range of herbaceous taxa, some 

of which indicate the presence of human activity and floodplain agriculture on the 

valley floor. 

Sub Zone B (260-160 em) 

This zone is dominated by large percentages of Alnus pollen (approaching 70%) and a 

decline in all other arboreal taxa, with the exception of Coryloid type that maintains 

levels around 20%. Towards the top of the zone Alnus levels also begin to decline, 

although this species remains the main constituent of the diagram. Levels of Poaceae 

and Filicales are suppressed, probably as a result of the high, local coverage of alder. 

Anthropogenic indicator taxa remain at approximately 5% throughout the zone, 

although cultigens are mainly absent, possibly due to the shielding effect of in situ alder 
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trees. Potamogeton levels drop dramatically at the base of the zone, indicative of the 

slight desiccation of the palaeochannel environment and midway through the zone a 

peak in Sphagnum spores is suggestive of a growth of this moss within the confines of 

the channel. 

Zone C (160-80 em) 

This zone is characterised by a rise in the levels of Poaceae (attaining over 60%) and 

other herbaceous taxa, including anthropogenic indicator species and cultivated taxa. 

Alnus percentages decline throughout the zone to levels of approximately 10% and other 

tree species are reduced to insignificant «5%) levels. Coryloid type pollen remains at 

approximately 20% through the zone. These results suggest a significant opening of the 

woodland canopy and the use of cleared areas for crop cultivation and pastoral 

agriculture. This increase in what can be interpreted as anthropogenic activity on the 

valley floor has been radiocarbon dated to 1690 BC. Channel conditions remain wet, as 

indicated by rising levels of Cyperaceae, but it appears that alder is no longer a 

significant component of the in situ flora. Pollen concentrations decline as the sediments 

become progressively less organic in nature. 



Figure 5.6: Simplified lithostratigraphy and 14C dates for palaeochannel 
sediment cores T5 and T6 at Brownchesters Farm 
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Figure 5.7: Brownchesters Farm Terrace T5 
Summary percentage pollen diagram 
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Figure 5.8: Brownchesters Farm Terrace T6 
Summary percentage pollen diagram 
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5.2.5 Terrace T7 

Morphology 

The T7 unit is a small terrace fragment which is inset below the T2 unit in the middle of 

the present study reach (Figure 5.1). The terrace contains a short portion of a relatively 

straight palaeochannel, which is truncated at its upstream end by the TIl terrace unit 

and also the modern river channel. At its downstream end, where the channel is less 

well defined due to subsequent overbank alluviation, it is truncated by the channel 

associated with the TlO terrace. This terrace has been identified on the basis of a single 

radiocarbon date taken from the base of a bank section of the current river channel 

(Figure 5.9). 

Stratigraphy (Figure 5.9) 

Although the T7 terrace does contain a palaeochannel feature, sediment coring has not 

yet been carried out due to the land being given over to hay meadow. Owing to the high 

water tables at the site, coring could only be carried out during the drier summer months 

and permission to this area of the floodplain was not granted for this period. The bank 

section from which organic material was taken for radiocarbon dating has been 

described by Ellis (1995) and is duplicated here for completeness (Appendix 10.6). The 

lowest unit (261-306 cm) is a dark brown, silty-peat with frequent wood inclusions 

overlaying sandy gravel bed material at the base of the section. This is overlain by silty

clay unit with evidence of fine sand laminations (207-261 cm). A second period of 

relatively stable conditions is indicated by another organic peaty-clayey-silt horizon at a 

depth of 197-207 cm, which may represent a buried soil, this horizon is, however, 
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undated. Between 120-197 are silty-clays, which grade between 75-120 cm into a 

clayey-sandy-silt. Between 28-75 cm is an unstructured silty-sand, overlain by a finely 

laminated and well-defined sand horizon, which is likely to represent overbank 

flooding. Between 0-24 cm is a sandy alluvial topsoil. 

Dating 

A single radiocarbon date has been submitted from wood at the base of the bank section 

at a depth of approximately 300 cm (Beta-80068). This has returned a date of 200-800 

Be (Appendix 10.2). Further dating and also palynological analysis of this unit, in order 

to facilitate the derivation of accumulation rates and vegetation reconstruction, is 

planned, should the opportunity to take a full sediment core from the palaeochannel 

arise. 

5.2.6 Terrace T8 

Morphology 

The T8 terrace is towards the downstream end of the study reach, truncating the 

palaeochannels associated with Terraces T5 and T6 (Figure 5.1). The terrace is fairly 

small in extent, yet contains one of the longest sections of palaeochannel in this study 

reach, owing to the highly sinuous planform morphology of the river when it occupied 

this terrace. This palaeochannel is itself truncated at both its upstream and downstream 

ends by the modem river channel, where it becomes less well defined due to overbank 

levee features which have accumulated adjacent to the channel (Allen, 1965, Brown, 

1996). The terrace is inset below the high T2 terrace unit, which at this point contains 
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evidence of a former channel or gully feature upon it which runs down towards the apex 

of the T8 palaeochannel meander bend. 

Stratigraphy (Figure 5.9) 

A three-metre sediment core was taken from the apex of the meander bend where the 

infill sequence was likely to be longest. This comprised of basal sandy gravel between 

278-300 cm, which is interpreted as former channel bed material. Overlying this (250-

278 cm) are fine sandy-silts which contain frequent 2-3mm medium-coarse sand 

laminations. This is almost certainly deposited rapidly after channel abandonment, with 

the coarser horizons relating to periodic inundation by high stage events. The following 

unit (220-250 cm) is again predominantly silt, although it becomes increasingly organic 

up-profile and again contains several 2mm thick sand-silt laminae below 239 cm. The 

increasingly organic profile continues between 206-220 cm with a silty-peat unit. These 

indicate a progressive stabilisation of the palaeochannel environment, as sedimentation 

becomes more autochthonous. From 159-206 cm sedimentation is again more 

minerogenic, comprising of peaty-clayey-silts which become slightly more grey in 

colour up the sequence. This indicates a moderately less stable palaeochannel 

environment, which is receiving minerogenic material from allochthonous sources. 

Between 100-136 cm the sediment consists of a light brown silty peat, punctuated at a 

depth of 130-132 cm by a light grey sandy-silt unit, which is likely to relate to an 

overbank flood event encroaching into an otherwise stable environment. A peaty-

clayey-silt overlies this between 63-100 cm, which becomes sandy and less organic 

between 51-63 cm, probably representing sedimentation above the water table. Alluvial 

topsoil occurs above 51 cm. 
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Dating 

A single radiocarbon date was submitted for assay from peat at the top of the infill 

sequence and has returned a date of 635-865 AD (Beta-119822; Appendix 10.2). The 

onset of sediment accumulation, and consequently an estimate of channel abandonment, 

is difficult to speculate upon. However, it seems likely, based upon average 

accumulation rates, that the sediment sequence from this unit overlaps with the channel 

fill of the T7 terrace. Correlation between two discrete sedimentary units, without the 

benefit of numerous radiocarbon dates is extremely conjectural. However, the sand 

lenses found in this sequence may well correspond to that found within the T7 unit. 

Coring of the T7 palaeochannel and further dating control are necessary to validate 

these relationships (Figure 5.9). 

Palynology (Figure 5.10, Appendix, 10.15) 

Palynological results from this core have been obtained between a depth of 100-277 em 

(Figure 5.10). This diagram has not been zoned, owing to the relatively minor 

fluctuations in the principal taxa of the diagram. Poaceae species and a diverse 

assortment of herbaceous taxa dominate the diagram. Percentages of arboreal taxa are 

relatively low, with Alnus and Coryloid type levels around 20% and Betula and Calluna 

values around 10%. The exception to this stability is the Salix curve, which peaks 

markedly towards the top of the core. This is likely to be due to a very local increase in 

Salix percentages, opposed to an increase over the wider valley floor. One of the most 

notable and significant features of the pollen diagram is the massive peak in A vena / 

Triticum group pollen which occurs in the upper section of the core. This cereal type, 
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which produces low quantities of pollen and which is poorly dispersed conclusively 

demonstrates cultivation of wheat / oats on the valley floor at Brownchesters. Numbers 

of cereal grains in this quantity are extremely rare in fossil pollen deposits and 

emphasises the importance of these palaeochannel deposits in detecting valley floor 

anthropogenic activity where regional diagrams would not register this activity. 

The Potamageton and Nuphar curves for this channel are also very interesting, as they 

appear to contrast with patterns of palaeochannel development witnessed elsewhere 

within the Brownchesters study reach. Here the Potamageton and Nuphar curves peak 

in the middle of the sedimentary sequence opposed to the basal deposits, where 

palaeochannels commonly exist as oxbow lakes following cut-off (Allen, 1965). This 

supports the hypothesis that this palaeochannel was terrestrialised rapidly, as no 

indications of open water taxa are found in the basal deposits. In addition, the pollen 

diagram would appear to indicate an increase in water levels within the palaeochannel, 

which is almost certainly due to prolonged reoccupation of the former river course by 

overbank floodwaters. This event is also reflected within the sediments, where the 

infilling material alters from peat to organic-rich silt, there is however, no evidence of a 

large flood event that may be reflected by coarser grained sand material within the 

profile, although this palaeochannel may have been located some distance from the 

active river channel at the time. 



Figure 5.9: Simplified lithostratigraphy and 14C dates for palaeochannel 
sediment cores T7 and T8 at Brownchesters Farm 
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Figure 5.10: Brownchesters Farm Terrace T8 
Summary percentage pollen diagram 
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5.2.7 Terrace T9 

Morphology 

Terrace T9 is the only unit at Brownchesters which has two contemporaneous fragments 

within the study reach, defined as T9a and T9b (Figure 5.1). The first unit (T9a) is 

located at the upstream end of the reach, adjacent to the farm entrance. It is inset 

immediately below both the T1 and T2 units and is truncated at both its upstream and 

downstream ends by the TIl unit. Associated with T9a is one of the largest and most 

well defined palaeochannels within this reach, partly because the higher terraces form 

an almost continuous bluff around the outer edge of the channel giving a large height 

discrepancy which accentuates the channel profile (Figure 5.2). The terrace surface also 

contains traces of rig and furrow cultivation techniques upon it, although the age of this 

activity is uncertain. T9b is in the mid-section of the Brownchesters reach and is again a 

large terrace fragment with a well-defined prominent palaeochannel. It too, in part, is 

inset below the T2 high terrace although the bulk of the T9b terrace lies below T5 

(Figure 5.1). The palaeochannel on the terrace surface is truncated at its upstream end 

by the T 1 0 unit and also the modern river channel, and at the downstream by the 

modern channel alone (Figure 5.1). 

The palaeochannels associated with both the T9a and T9b terraces are provisionally 

assumed to have been subject to neck cut-off, owing to the extremely sinuous nature of 

the extant fragments and the relatively low gradients within the reach (Lewis and 

Lewin, 1983; Allen, 1965). Channel abandonment may have been broadly simultaneous 

(e.g. multiloop cut-off cf Lewis and Lewin, 1983; e.g. Kulemina, 1973) or cut-off could 

have occurred independently at slightly different times. 
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Stratigraphy (Figure 5.11 ) 

The sedimentary record from within these two channels is very similar and comprises 

up to three metres of predominantly organic post-abandonment sediment. Differences in 

sedimentation patterns can, to an extent, be explained by the different location of the 

cores within the cut-offs. The core from the upstream palaeochannel was taken from 

proximal to the point of cut-off, due to problems at the meander apex with sediment 

recovery caused by the extremely wet nature of the sediment. The pattern of 

sedimentation within palaeochannels is well documented (Erskine et al., 1992; Waters, 

1992; Allen, 1965), as overbank floodwaters which reach the palaeochannel deposit the 

heavier fraction of their load first, and thus minerogenic material is concentrated at the 

upstream end of the palaeochannel adjacent to the active river channel. This can be 

observed with the sediments from the upstream T9 palaeochannel, where organic silts 

are interbedded with fine-medium sand laminae. In contrast, sediments from the other 

section of the palaeochannel derived from the downstream end of the cut-off are much 

less minerogenic, containing an abundance of wood, leaf and other plant fragments 

(Waters, 1992; Bridge, 1985). 

The T9a core is comprised of basal gravels in a coarse sand matrix below 310cm depth 

and is interpreted as former bed material. This is overlain (216-310 em) by finely 

laminated sandy-silts and clayey-silts with frequent organics that represent periodic 

stability of the palaeochannel with floodwater incursions. This unit is divided by a very 

well defined grey medium sand lens between 287-290 em, that probably represents a 

relatively large scale flood event. Between 122-200 cm are well-laminated peaty-
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clayey-silts, sandy-clayey-silts and fine-medium sands. This represents a series of 

periods of stability broken by flood events at a depth of 122-124, 148-150, 153-154, 

160, 173-176, 183 and 191-193 cm. This is overlain by two particularly noticeable flood 

horizons at 120-122 cm comprising of grey medium sands and 11O-120cm a laminated 

silty fine sand. Between 83-110 cm is a fine sandy-clayey-silt which is indicative of a 

return to slightly more stable conditions within the palaeochannel. This trend continues 

with the development of peat (43-83cm) which only briefly broken by a clayey-silt unit 

between 74-77cm. A sandy-silty-clay (30-43 cm) and alluvial topsoil (above 30 cm) 

overlie this. 

The T9b core comprises sandy gravel below 290 cm, overlain by sands to a depth of 

286cm. These sediments can be viewed as channel bed and immediate post-

abandonment sediments respectively. Between 207-286 cm is a predominantly peaty-

clay unit, which contains a distinct flood horizon of sands between 269-270 cm. This is 

overlain by a peat unit (140-207cm) containing some silt and lots of wood fragments. 

This is indicative of a progressively more stable environment, with only occasional 

laminations of fine minerogenic material. Between 137-140 cm is an organic silt, which 

is replaced by a series of silty clay units (60-137 cm), presumably deposited above the 

water table in the palaeochannel. Overlying this is a sandy-silty-clay unit (17-60cm) 

with topsoil above 17cm. 

Dating 

Dating control upon the sedimentary sequences associated with the T9 terrace is 

provided by three radiocarbon assays, one upon T9a and two upon T9b. The date from 
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T9a has been taken on peat from a depth of 50-56 cm (Beta-96121; Appendix 10.2) and 

has returned a date of AD 1215-1325 and AD 1340-1390. Dating control upon T9b has 

been provided by a wood sample taken from a depth of 130-135 cm (Beta-90753) which 

has returned a date of AD 1245-1430 (Appendix 10.2). The second date from T9b, 

taken upon peat from a depth of 210-220 cm (Beta-90752) has returned a date of AD 

600-780 (Appendix 10.2). Thus, it would appear from the similar upper dates that these 

channels have been accumulating during the same period. This cannot be proven 

without further radiocarbon dates, however, the assumption here is that these are 

contemporaneous features. 

Palynology (Figure 5.12, Appendix 10.16) 

Owing to the contemporaneous nature of these terrace units, palynological analyses 

have been undertaken upon sediments from only one of the T9 palaeochannels, as they 

are likely to contain very similar vegetation records. Theoretically, fine, sub-site scale 

analysis of vegetation history would be possible using the sediments from these 

palaeochannels, allowing high-resolution, three-dimensional insights into spatial 

vegetation patterns (sensu Turner, 1975). However, due to the time constraints involved 

this was not undertaken. The sediment core used for pollen analysis was taken from the 

T9a palaeochannel, at the upstream end of the reach, due mainly to analyses having 

been carried out prior to the return of radiocarbon dates which revealed the timing of 

sedimentation within this channel. Pollen was recovered from all but the basal sands 

and gravel and thus spans a depth of 45-290 cm. The diagram has not been divided into 

zones as the majority of the principal species show little variation through the core. 
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The percentages of tree and shrubs, particularly Alnus, Calluna and Coryloid type are 

broadly comparable throughout the diagram, attaining values of around 20%. Betula 

values also remain relatively constant at approximately 10%. This probably reflects 

local stands of mixed woodland in what, as indicated by the levels of Calluna that is 

unlikely to have been growing locally, was a relatively open landscape. Fraxinus levels 

attain a significant and short-lived peak at a depth of around 135 cm and this too is 

likely to be related to local growth. Other arboreal taxa, such as Quercus, Salix, Pinus 

and Ulmus occur only in very low quantities, supporting the hypothesis of an open 

landscape. The Poaceae and Cyperaceae pollen curves are the only species that 

demonstrate any major fluctuations, both remaining relatively stable in the majority of 

the core, but peaking between 45-80 cm. What is particularly noticeable within the 

pollen record from this diagram is both the high number and high diversity of 

herbaceous taxa present in the samples. Although the curves for cultivated plants are 

relatively low, certainly in comparison with the peaks for Avena I Triticum visible in the 

core from the T8 terrace unit, levels of anthropogenic indicator taxa attain levels of 

almost 20% at the top of the core ca. 1285 AD. This suggests fairly intensive utilisation 

of the valley floor for agricultural purposes, although there is little evidence for cereal 

production. In contrast with many of the other pollen diagrams from Brownchesters, 

there is little evidence from the Potamogeton or other aquatic curves to suggest that this 

T9a channel existed as an oxbow following cut-off from the river channel. 



Figure 5.11: Simplified lithostratigraphy and 14C dates for palaeochannel 
sediment cores T9a and T9b at Brownchesters Farm 
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Figure 5.12: Brownchesters Farm Terrace T9a 
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5.2.8 Terrace TIO 

Morphology 

Terrace TIO is a small terrace fragment within a meander loop of the modern course of 

the River Rede. At its downstream end the palaeochannel associated with this terrace 

truncates the T9b channel, thus demonstrating that it post-dates this episode of fluvial 

activity. In common with the Terrace T7, from which only a bank section profile is 

available, the palaeochannel feature associated with this terrace also has been subject to 

sub-surface analysis due to logistical problems concerning access. Thus, the relative age 

relationship with the TIl unit described below is provisional; indeed. separation of the 

TIO and TIl units has been carried out on the basis of very different channel planforms 

on the terrace surface. 

5.2.9 Terrace Tll 

Morphology 

Terrace TIl. immediately downstream of the bridge over the River Rede, features 

relatively narrow palaeochannels that divide around one or more mid-channel bars. This 

terrace also truncates a the T9a meander loop adjacent to the farm entrance, which has 

been dated to ca. 700 - 1200 AD and therefore post-dates this period. The absence of 

significant organic material within this channel belt precludes radiocarbon dating, but 

the braided planform and coarser-grained sediment within these channels is suggestive 

of a different hydrological and sediment supply regime. It is postulated that this terrace 

dates to the Little Ice Age period where temperatures declined and there was a markedly 

higher rainfall that at present (Lamb, 1995). Enhanced channel braiding during the Little 



142 

Ice Age has been recorded at many sites throughout the South Tyne and Tyne, although 

the North Tyne has been little studied in this respect (Passmore et al., 1993). To date, 

stratigraphic investigations have been limited to sand auguring by hand, with sediments 

not being logged. Further analysis of this terrace unit is planned. 

5.3 Geomorphological Mapping and Sediment Stratigraphy at 

Snabdaugb 

Mapping of geomorphological units at Snabdaugh Farm has focused upon the area in 

front of the farm buildings on the south side of the River North Tyne. This has been 

complemented by mapping of the floodplain on the opposite side of the river, extending 

the reach upstream and the surveying of a series of cross profiles across the valley floor 

Figure 5.13). 

Preliminary analyses of the Holocene alluvial history at Snabdaugh are documented in 

Passmore (1994), Passmore and Macklin (1997) and Moores et al., (1998). In this study, 

work has focused upon extending the existing mapping carried out by Passmore (1994) 

which has been concentrated upon the south bank of the River Tyne and which has been 

partially documented in a paper by Moores et aI., (1998). A total of eight alluvial terrace 

assemblages, designated TI-8, have been differentiated at Snabdaugh on the basis of 

morphostratigraphic relationships, elevation above the current river and a variety of 

dating controls. In contrast to the site at Brownchesters (Redesdale), many units do not 

contain organic-rich palaeochannel fills and as a consequence many discrete terraces 

lack direct dating control. These have been classified on a provisional and relative basis, 

although some terraces remain unsurveyed and as a consequence have not been 
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classified. In addition, exploratory coring of the palaeochannels on the north side of the 

Tyne has been undertaken, although these too have not proved fruitful in terms of the 

level of organic preservation for dating and pollen preservation for palaeoecological 

analyses. Correlation of terrace units upstream and downstream has been done 

principally upon the basis of relative height and is thus subject to alteration should 

further dates become available. The descriptions provided below focus upon data 

gathered from the floodplain immediately in front of the farm as documented in 

Passmore (1994), Passmore and Macklin (1997) and Moores et aI., (1998). 



Figure 5.13: Geomorphological map of Pleistocene and Holocene river terraces and 
palaeochannels at Snabdaugh Farm showing cross prof"lIes and core locations 
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Figure 5.14: Surveyed cross-profiles of the valley floor at Snabdaugh Farm 
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5.3.1 Tl and T2 Terraces 

The highest elevation terraces, TI and T2 that lie 7-8 m and 5-6 m respectively above 

the current riverbed, represent the oldest alluvial surfaces evident in the study reach 

(Figure 5.13, 5.14). These units, however, lack dating control due to the inorganic 

nature of their sediments. Trenching of TI, adjacent to Snabdaugh Farm has revealed 

that this terrace comprises of a thin (up to 0.45 m) sandy fine member overlying sandy 

coarse gravel. To date the T2 terrace has not been investigated. 

5.3.2 T3 Terrace 

The T3 terrace unit is inset below the higher Tl and T2 units at a relative elevation of 4 

metres (Figure 5.13, 5.14). The palaeochannel associated with this terrace unit has been 

investigated by machine trenching and found to comprise of 2.2 metres of largely 

unstructured sands and silts, interbedded with peaty silts between 0.7-0.9 metres. 

Radiocarbon dating of wood and plant fragments from the organic horizon has returned 

a date of ca. 5220-4850 Be and suggests alluviation of T3 and subsequent abandonment 

of the channel and floodplain occurred between late-Pleistocene times and the later 

Mesolithic period (Passmore, 1994). The shallow nature of the organic horizon within 

this palaeochannel was deemed to be insufficient to warrant palaeoecological analysis, 

given the extensive range of organic-rich fills within other palaeochannels elsewhere 

within the North Tyne basin. 
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5.3.3 T4 Terrace 

The T4 terrace lies between 2.5 and 3 metres above the current riverbed, with sediments 

infilling the associated palaeochannel comprising of up to 1.5 m of poorly-bedded 

inorganic silty sands (Figure 5.13, 5.14). Palaeomagnetic dating of sediments between 

0.56-1.15 m indicates infilling of the upper levels of this channel was occurring around 

ca. 1500 BC (Noel, 1991; Passmore, 1994), and suggests that incision of T3 sediments 

and subsequent alluviation of the T4 unit occurred sometime between the later 

Mesolithic and the mid-2nd millennium BC. This very broad chronological range within 

the surviving terrace units at Snabdaugh is in stark contrast to the number of episodes of 

alluviation visible at Brownchesters within the same period. 

5.3.4 T5 Terrace 

T5 alluvial units also lie between 2-3 m above the present river bed, but are 

differentiated from earlier T4 fills by well-defined terrace scarps and, immediately east 

of Snabdaugh Farm, a dated palaeochannel fill sequence up to 2.7 m thick (Figure 5.13, 

5.14). Infilling the base of the channel is 0.3 m of fining-upward grey sandy silty clays 

that grade up-profile into 0.25 m of peaty sandy silt. A large piece of timber, clearly 

bearing tool marks and resembling a truncated plank, was recovered lying at the 

transition between these fills and has been 14C dated to ca. 800-150 BC (Passmore, 

1994; Moores et al., 1998). This date indicates local abandonment of the T5 channel 

occurred sometime during the late Bronze Age and Iron Age periods. Overlying these 

sediments are 0.75 m of silty peat with frequent wood and plant inclusions and 

interbedded fine silty lenses. Radiocarbon assays on wood and plant fragments 

extracted from the base (depth 2.2 m) and top (1.4 m) of the peat bracket this period of 
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organic-rich sedimentation to between ca. 210-440 AD and ca. 1000-1270 AD 

respectively. Overlying sediments largely comprise up to 1.3 m of inorganic coarse-fine 

sands and silts (Figure 5.15). 

Palynology (Figure 5.16) 

The organic-rich sediments within this palaeochannel fill have provided the primary 

opportunity for palaeoecological analyses from within the Snabdaugh study reach. 

Pollen preservation within this fill is adequate for counting only between a depth of 

approximately 1.3 and 2.7 metres where sediments are organic in nature. The pollen 

diagram shows a largely treeless environment throughout the period, with peaks in 

Alnus and Salix almost certainly relating to extremely local stands of these taxa. There 

is an almost constant, if low, presence of cultivated taxa through the diagram, with 

levels of anthropogenic indicator species very high particularly in the lower portion of 

the diagram covering the Late Bronze Age, Iron Age and Romano-British periods. The 

peak in alder of over 60% (which is likely to reflect in situ vegetation succession as 

suggested by pollen concentration values) distorts the diagram, as quantities of grass are 

depressed from what appears to be stable percentages of around 25%. The Cyperaceae 

curve also demonstrates some large fluctuations, which are related to local water table 

conditions, which appear in part to be determined by alder levels within the 

palaeochannel. 



Figure 5.15: Simplified lithostratigraphy and 14c dates for palaeochannel 
sediment core T5 at Snabdaugb Farm 
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5.3.5 Terraces T6, T7 and T8 

Fluvial activity dating to the Medieval and later periods in the study reach is manifested 

by terrace assemblages T6-T8 (Figure 5.13, 5.14). These fills have been differentiated 

on the basis of morphostratigraphic relationships, cartographic evidence and an 

inorganic palaeochannel fill (associated with T7) that has been dated using 

palaeomagnetic techniques to a period centred on ca. 1350 AD (Noel, 1991, Passmore, 

1994). Medieval and later fills truncate and locally encircle older alluvial surfaces, 

although associated terraces are typically also developed at elevations between 2-3 m 

above the present river bed. Indeed, the upper levels of T7 and T8 are locally perched 

up to 1 m above T5 palaeochannels. Alluviation to these levels is likely to have been 

promoted during the recent historic period through confinement of the active channel 

zone by flood protection measures (Passmore, 1994). 
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5.4 Analysis of Pollen Deterioration 

5.4.1 Summary Statistics 

Analysis of the deterioration state (sensu Cushing, 1964, 1967) of pollen grains derived 

from alluvial contexts was carried out in an attempt to assess whether individual grains 

could be identified as being reworked from their original depositional context. This was 

done on the premise that grains that exhibit degradation-type deterioration are more 

likely to have undergone fluvial transport and may therefore be non-contemporaneous 

and distinct in a spatial sense from the local valley floor vegetation represented within 

the palaeochannel sediments from which the pollen was derived (Cushing, 1964,1967; 

Birks, 1970). This differentiation between allochthonous and autochthonous pollen has 

been thoroughly reviewed within Chapter 2. 

The principal findings of the application of deterioration state analysis upon alluvial 

pollen samples was that relatively few of the pollen grains exhibited any form of 

deterioration (ca. 7 % of total pollen sum), the majority of pollen being well-preserved 

(Figure 5.17). 
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Figure 5.17: Pie Chart showing percentages of preservation state of pollen grains 

from valley floor alluvial sites. 
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5.4.2 Relationship of Deterioration Classes to Sediment Type 

Despite the relatively small data set of deteriorated pollen grains, further analyses were 

conducted to test whether the deterioration exhibited could be linked to particular 

sedimentary environments within the palaeochannel (See Sediment logs: Figures 5.3, 

5.6, 5.9, 5.11, 5.15 and Appendix 10.6). Minerogenic horizons within palaeochannels 

derive from overbank floodwaters (Erskine et ai., 1992) and thus may be the principal 

source of degraded pollen grains (Birks, 1970; see Chapter 2). However, as smaller 

floods may have encroached the channel without leaving a prominent sedimentary trace, 

the relationship between these events and degraded pollen is unknown. Peat sediments 

have frequently been linked to incidences of corrosion, derived from in situ micro

organism activity and periodic exposure to the air (Lowe, 1982; De1court and Delcourt, 

1980; see Chapter 2). 

Analyses of the deterioration state of pollen grains in comparison with the sedimentary 

context in which they are deposited are restricted by the original sampling strategy 

employed in the field. Cores were sub-sampled into 2-cm slices and although major 

stratigraphic divisions were taken into consideration in this strategy, minor alterations in 

the sediment were largely ignored. This has important implications for the results of any 

analyses, as sedimentary laminae between 1-20 mm existed within 2-cm sections of 

core. Recently, fine-resolution sub-sampling and analysis of palaeochannel infills at 

Brownchesters has revealed a detailed history of sedimentation at mm-scale resolution 

(Hildon, pers. comm.). The analyses described here, which are derived from pollen 

samples, may contain a range of sediment types and thus potentially important 

inaccuracies may exist within the data used for statistics. 
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In order to conduct statistical analysis upon these results it was nece sary to quantify the 

grain size and organic content of sediment logs of palaeochannel fills taken in the field 

(Appendix 10.6). Two proxy measures of sediment type were employed to facilitate 

this. Firstly, sedimentary logs from the palaeochannel-derived cores were converted into 

a subjective lO-point hierarchical classification, grading from wholly organic peat 

sediments to gravel. It should be noted that this is a discrete cIa sification, divisions 

between categories are non-scalar. Secondly, Loss-on-Ignition value were used as an 

approximate measure of the level of min erogenic material within individual samples. 

Sedimentary Sediment Description 

Index 

1 Peat 

2 Silty-Peat 

3 Peaty-Clay 

4 Peaty-Si lt 

5 Clayey-Silt 

6 Sandy-Silt 

7 Silty-Sand 

8 Fine Sand 

9 Medium / Coarse Sand 

10 Gravel 

Table 5.1: Outline of Sedimentary Index used for analyses of deterioration data 

Data for correlation analy es with Sediment Index were ranked due to the non

continuous nature of this variable. To examine the relationship between LOI and 
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Sediment Index a Spearman's Rank correlation was carried out, which produced a 

coefficient of -0.785, significant at in excess of 99%. This shows that Loss on Ignition 

is inversely related to the sediment index (See Figure 5.18) and that the categories as 

described in the field are an accurate reflection of the nature of the sediment. 
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Figure 5.18: Plot of Sediment Index against % Loss-on-Ignition. 
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Correlation analyses of Loss-on-Ignition values and ranked analyses of Sediment Index 

against the percentage of corroded, degraded and total deteriorated pollen within the 

alluvial pollen samples were an statistically insignificant at the 95% level (Table 5.2). 

Scatterplots of LOr values and Sediment Index against the percentage of each 

deterioration class, along with the associated correlation coefficient are shown in Table 

5.2 and Figures 5.20-5.24. This indicates that within the samples analysed here, 

degradation, corrosion or deterioration generally cannot be directly related to the nature 

of the sediment within palaeochannel infills. 

Preservation State Loss-on-Ignition Sediment Index 

(Correlation coefficient) (Spearman Rank Correlation) 

Corrosion 0.090 0.057 

Degradation -0.034 0.132 

Deterioration -0.051 0.163 

Table 5.2: Correlation coefficients for preservation state with Loss-on-Ignition and 

Sediment Index. 

5.4.3 Implications of Preservation State Analysis for Alluvial Pollen Taphonomy 

The apparent inability of the techniques employed here to attribute a mechanism to the 

incidences of deteriorated pollen could be seen as evidence that alluvial sediments 

contain reworked pollen and that it is impossible to accurately identify. However, while 

floodwaters have clearly encroached upon the palaeochannels under analysis, and the 

increased concentrations of pollen in high-stage events has been well-documented (see 
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Chapter 2), the contribution of short-lived flood events to the total pollen rain received 

by these environments over any given season, or indeed the entire period during which 

palaeochannel sediments are accumulating, is likely to be minimal. Although there is an 

element of circular reasoning within this argument, the overall, well-preserved nature of 

pollen grains recovered from these palaeochannel sediments is testament to this. A 

programme of deterioration state pollen analyses upon modem fluvial samples during a 

range of river stages would be extremely useful in this respect to test whether transport 

processes are having a detrimental effect upon pollen exines. 

The inability of these statistics to correlate specific elements of deterioration (corrosion 

and degradation) with the various sediment types may also be function of the resolution 

of the raw data; the sub-samples for palynological analysis having been taken from 2-

cm sediment slices and thus possibly containing a variety of sediment types. There of 

course may be no correlation between sediment type and deterioration state, in which 

case processes for the development of degradation and corrosion of pollen exines 

require re-appraising. 

In conclusion, it would appear that alluvial pollen samples derived from these organic-

rich palaeochannel sediments are not unduly affected by secondary pollen deposition. 

Pollen spectra derived from these contexts are believed to accurately reflect local 

vegetation, with pollen derived principally from airborne sources. These alluvial 

contexts therefore offer unique opportunities for the reconstruction of coherent pollen 

diagrams (cf Brown, 1996) from the valley floors of upland Britain. 
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Figure 5.19: Sediment Index against % Degraded Pollen for all alluvial samples. 
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Figure 5.20: % Loss-on-Ignition against % Degraded Pollen for all alluvial samples. 
Correlation coefficient = -0.034 
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Figure 5.21: Sediment Index against % Corroded Pollen for all alluvial samples. 
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Figure 5.22: Loss-on-Ignition against % Corroded Pollen for all alluvial samples. 
Correlation coefficient = 0.090 
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Figure 5.23: Sediment Index against % Deteriorated PoUen for all alluvial samples. 
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Figure 5.24: %Loss-on-Ignition against % Deteriorated Pollen for all alluvial samples. 
Correlation coefficient = -0.051 



Chapter 6 

Geoarchaeology of valley floor environments in the North 

Tyne basin 

6.1 Introduction 
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Geoarchaeology is a discipline that aims to conduct 'archaeological research using the 

concepts and methods of the earth sciences' (Butzer, 1982: p.35). Geoarchaeology has 

its application not only in identifying site characteristics associated with particular 

archaeological features, but also in providing a physical environmental context and an 

insight into the processes leading to site modification, destruction or burial (Waters, 

1992; Brown, 1997; Stein, 1985; Stein and Farrand, 1985). Floodplains and other 

alluvial environments warrant careful attention from the geoarchaeologist as fluvial 

processes have considerable scope for both affecting the distribution of the 

archaeological record during the period of deposition, and post-depositional 

modification. Furthermore, alluvial sediments may themselves constitute valuable off

site indicators of former environmental conditions and human activities (Passmore and 

Macklin, 1997). 

6.2 Geoarchaeological evaluation of valley floors in the North Tyne 

Basin 

A geoarchaeological approach to valley floor environments and human activity 

facilitates the extension of models of landform, sedimentary and archaeological 
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associations in regional alluvial environments (Macklin et ai., 1992a; Passmore and 

Macklin, 1997). As is the case throughout many upland British river valleys, the 

typically fragmentary nature of Holocene fluvial terrace survival will have led to partial 

or complete erosion of prehistoric and historic archaeological landscapes in the North 

Tyne basin. Indeed, the number and chronological range of the terrace fragments that 

have been described in Chapter 5 demonstrate the dynamic nature of the valley floor at 

Brownchesters (Figure 6.1). However, fluvial activity has been characterised by 

comparatively restricted rates of lateral reworking in this area of the valley floor and a 

tendency towards net aggradation of floodplains. This is the reason for the excellent 

survival of multiple terraces and also points to the greater likelihood of older Holocene 

surfaces remaining at least partially intact. 

The waterlogged and seasonally flooded nature of the Brownchesters site has probably 

precluded settlement upon the Holocene valley floor. However, settlement upon 

adjacent high gravel terraces has been demonstrated within other valley floors in the 

region (e.g. Milfield: Waddington, 1998a) and similar scenarios can be envisaged 

within North Tynedale. Areas of Holocene alluvium supporting floodplain woodland 

would have offered opportunities for hunting fowl and game, whilst rivers themselves 

are likely to have been fished, thereby provided rich resources for prehistoric 

communities (Zvelibil, 1994). Cleared land within the valley floor probably provided 

lush pasture for cattle and good quality soils for seasonal crop growth. Former human 

communities may also have built riverine structures, which may be particularly well-

preserved within former channels and overbank alluvium (Passmore and Macklin, 

1997). For instance, Neolithic trackways have been found within the Somerset Levels 

(Coles and Coles, 1986) and Roman bridge abutments have been found within the 
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region, with examples at Corbridge, Lower Tyne valley (Bidwell and Snape, 1996) and 

possibly at Eli shaw , Redesdale (Bidwell and Holbrook, 1989). Furthermore, machine-

trenching of the T5 palaeochannel sediments at Snabdaugh have revealed an Iron Age 

worked wooden plank (Passmore, 1994; Moores et al., 1998). 

Persistently anaerobic conditions present within peat-filled palaeochannels are also 

conducive to the long-term survival of organic archaeological materials such as wood 

and leather. However, the sediment coring techniques employed at Brownchesters 

provide little opportunity to analyse these environments for this type of feature while 

the high water tables at the site prevent this type of investigation without costly 

excavation techniques. Indeed, modem Ordnance Survey maps show the valley floor at 

Brownchesters to be marshy and as a consequence the high gravel terraces Tl and T2 

are likely to have been the focus for activity and possibly settlement. Evidence of rig 

and furrow cultivation on the surface of T5 (almost certainly of Mediaeval or later 

origin), illustrates the usage of these Holocene alluvial terraces within valley floor 

contexts by past human communities (See Plate 6.1). 

It can be demonstrated that at Brownchesters, pre-4000 BC (Mesolithic) material 

preserved in situ will be restricted to Terraces TI-T6 (although younger terraces may 

contain material reworked from upstream contexts, cf Gladfelter, 1985). Likewise, all 

Neolithic and Bronze Age material will only be found upon TI-T8 and Iron Age and 

Roman period artefacts upon Tl- TW. Thus, the importance of geomorphological 

techniques in interpreting and explaining archaeological distributions is critical. In areas 

where the higher Tl and T2 terraces have been eroded by subsequent fluvial activity 

there is little scope for discovery of early prehistoric artefacts within valley floor 
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contexts, despite the fact that these areas may have provided a focus for human activity. 

Additionally, many of the earliest Holocene terraces may have experienced subsequent 

phases of alluviation, thus burying former land surfaces beneath vertically-accreted, fine 

grained overbank alluvium. This is particularly true in alluvial basins such as 

Brownchesters, where vertical aggradation of the floodplain and levee surfaces may 

have rendered buried archaeological contexts invisible to surface survey. 



2000 

1000 

o 

1000 

..... 
~2ooo 

J 
I 
I a 

3000 

4000 

5000 

8000 

7000 

8000 

Figure 6.1: Brownchesters Palaeochannel Infill 
Sequence and Flood History Diagram 

.... . . ..... . . : . 
--+r==1D~~"': r --I ' ... ' . . 

--+1-1'--' - ..-••• I' ...... . . . . · . · . . . · . . . ·····U· . . . . . . 
: : ~ . . 

:····:u+-. . . . 
...... U..-

.~i =1 
--+ .- - .I:.::J ..-

.' ... 

. . . . . 

. 

n· .+-* 
.. +-* .... 

Legend 

. ..- - Discrete and dated hlgh-rnagnltude flood 

- - Discrete, undated hlgh-magnltude flood event 

Undated period of high flood frequency 

+- Radiocarbon date (midpoint of calibrated range) 

n Securely dated palaeochannellnftll 

••.• : Insecurely dated palaeochannellnflll 

T3 T4 T5 T8 0tt4 ott5 T7 T8 T9a T9b T10 T11 

Terrace 
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6.3 Holocene valley floor development at Brownchesters, River Rede 

The timing, dynamics and controls upon Holocene channel and floodplain development 

have been the focus of numerous geomorphological and geoarchaeological 

investigations (e.g. Harvey et al., 1984; Robertson-Rintoul, 1986; Macklin and Lewin, 

1986; Hooke et al., 1990; Macklin et al., 1992a and b; in press; Passmore and Macklin, 

1994; Rumsby and Macklin, 1994; Tipping, 1994, 1995c, 1996; Taylor and Lewin, 

1996; 1997). Within upland Northern Britain, however, these studies have typically 

been hampered by the tendency of older Holocene terrace and channel features to be 

partially or wholly eroded by subsequent fluvial activity, and also the lack of suitable 

organic deposits to provide chronological control via radiocarbon dating. 

In the context of alluvial sedimentary sequences in previously documented upland 

British river valleys, palaeochannel environments at Brownchesters are unusual in that 

they exhibit thick deposits of peat and organic-rich clayey silt alluvium (Figures 5.3, 

5.6, 5.9, 5.11). The benefits of these palaeochannels for palaeoenvironmental 

reconstructions arise from the interdigitated minerogenic alluvial deposits and organic 

rich horizons that facilitate 14C dating. These units consist of finely laminated silt and 

fine sand lenses (ca. 1-2 mm thick), with occasional thicker (> 1 cm) fine-medium sand 

units with laminations of organic-rich sandy silts (Figures 5.3, 5.6, 5.9, 5.11). Organic

rich channel fills are also documented on a more limited scale at Snabdaugh Farm, 

(Passmore, 1994; Passmore and Macklin, 1997; Moores et al., 1998). Discussion of the 

alluvial history of this site has been dealt with elsewhere (op cit.). 
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Investigations have focused on alluvial terraces developed between the present river and 

the west valley side, although further mapping and a programme of radiocarbon dating 

is planned from organic palaeochannel fills recently discovered on the eastern side of 

the River Rede. Details of 14C ages, calibrations and depths are presented in the Results 

Chapter 5 and also Appendix 10.2. Detailed reconstruction of long-term fluvial 

sedimentation styles at Brownchesters are hindered by lithostratigraphic data that is 

restricted to single sediment cores from individual channel fills along with limited 

sedimentary logging from selected terrace units (Figures 5.3, 5.6, 5.9, 5.11). These 

single cores have been taken primarily for the purposes of palaeoecological analyses, 

however, some geomorphic inferences are possible. These are detailed in Moores et ai., 

(1998), and here only a brief summary is presented. All Holocene terraces, bar one, 

feature single-thread palaeochannels of moderate-high sinuosity and no evidence of 

ridge-and-swale topography diagnostic of migrating point bars (See Chapter 5). 

Holocene floodplain development has been dominated by overbank alluviation in the 

context of laterally stable meanders, reducing the problem of erosion of extant 

sequences. The overall pattern of Holocene valley floor development at Brownchesters 

has given rise to laterally stacked, low-relief alluvial fills that resemble 'row terraces' 

described by Becker and Schirmer (1977) in Southern Germany. 

Relatively limited rates of lateral channel migration and a long-term tendency towards 

net aggradation of floodplain elevations contrasts with Holocene alluvial sequences 

described elsewhere in upper and middle reaches of northern British rivers. These are 

typically characterised by net incision of valley floors and development of younger 

terraces at progressively lower elevations (e.g. Harvey, 1985; Macklin et al. 1992a, 

1992b; Passmore, 1994; Passmore and Macklin, 1994; Tipping 1995c; Passmore and 
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Macklin, 1997). Fluvial activity at Brownchesters has parallels with alluvial histories 

elsewhere in middle reaches of the North Tyne at Snabdaugh (Passmore, 1994; Moores 

et al., 1998). 

The fragmentary nature of terraces and their restricted range of elevations at 

Brownchesters preclude long-distance correlation of discrete alluvial units throughout 

the study reach on the basis of relative height. However, abundant in-situ peat deposits 

within palaeochannels have been dated by radiometric techniques. To date, a 

combination of fifteen 14C assays and morphostratigraphic relationships for adjacent 

alluvial surfaces has established a terrace sequence comprising the nine Holocene 

alluvial fills, designated T3-Tll, that are described in Chapter 5. In combination, 

sedimentary infills from these palaeochannels at Brownchesters provide a near-

continuous record of Holocene fluvial activity from ca. 5000 BC - 1300 AD. In 

addition, a single channel dating to ca. 7500 BC offers an insight into early Holocene 

river evolution. 

6.4 Periods of Holocene aUuviation at Brownchesters 

Phases of Holocene alluviation at Brownchesters can be bracketed via reference to 

radiocarbon dates obtained from organic sediments and / or wood remains preserved 

within palaeochannel sequences (Appendix 10.2). Radiocarbon assays from 

palaeochannel sediments post-date phases of floodplain formation represented by their 

associated terraces, thereby providing a post-terminum (Macklin and Needham, 1992; 

Brown and Keough, 1992) for the timing of fluvial activity. In some instances, where 

dates have been obtained within or close to the basal sediments of palaeochannel fills, 
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the chronology for alluviation episodes is likely to be relatively accurate. Where dates 

close to the base of sedimentary sequences have not been obtained, chronologies for 

terrace sequences become less definite, although the rapidity of sedimentation within 

these contexts (Lewis and Lewin, 1983; Erskine et ai., 1992) means that error margins 

are significantly reduced. It is noted, however, that the upper levels of each terrace may 

have been subject to overbank alluviation associated with later periods of fluvial 

activity. 

Terrace 

T3 Early Holocene? Early Holocene? ca. 7500 BC 

T4 8510 ±70 ca. 7500BC ca. 5030 BC 

TS 6110 ± 80 ca.5030BC ca. 3950 BC 

T6 5110 ± 80 ca. 3950BC 3910 ± 80 ca. 2440BC 

T7 391O±80 ca. 2440BC ca. 395 BC 

T8 2350 ±60 ca. 395 BC 1320 ± 60 pre 685 AD? 

T9 1320 ± 60 pre 685 AD? 1370 ± 60 ca. 665 AD 

TI0 1370 ± 60 ca. 665 AD Unknown 

Ttl Unknown (LlA?) Unknown (LlA?) Unknown eLlA?) Unknown eLlA?) 

Table 6.1: Periods of alluviation at Brownchesters 
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Nationwide reviews of Holocene river activity have suggested that the period between 

ca. 9000-5000 BP (Macklin and Lewin, 1993; Brown, 1996) is characterised by relative 

floodplain stability, particularly in upland British rivers. The results presented here, 

however, provide some of the first dated evidence for Early-Mid Holocene fluvial 

activity, which Macklin and Lewin (1986) and Harvey (1985) suspect may be present, 

but hitherto have proved difficult to identify and / or date in fragmented and largely 

inorganic UK sequences. These early discontinuities in the alluvial record are apparent 

at ca. 7500 BC and 5000 BC (ca. 8500 and 6100 BP). 

Comparisons of these 'new' periods of fluvial activity within the UK alluvial record 

with documented changes in river systems further afield has highlighted some 

interesting and potentially important similarities. The earliest dated phase of fluvial 

activity, ca. 7500 BC (ca. 8510 BP), identified at Brownchesters correlates with both a 

major environmental discontinuity at 8490 BP (Wendland and Bryson, 1974) and also 

the onset of flood phases (ca. 8500 BP) in the Vistula River, Poland (Starkel et ai., 

1996). It is interesting that this date also coincides with one obtained from a 

palaeochannel close to Thirlings in the Milfield Basin, north Northumberland (Passmore 

et ai., 1998) of 8470 ± 70 BP (ea 7500 Be), supporting the possibility of climatic 

controlling mechanisms of Holocene flood frequency and / or magnitude. A major 

climatic discontinuity has been discovered within the GISP2 ice core from Greenland at 

around ca. 8200 cal BP (Meese et ai., 1994; von Grafenstein et ai., 1998) although this 

date is significantly later and cannot be considered contemporaneous with the signals 

from alluvial sequences within northern England. 
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The second period of fluvial activity within this previously recognised hiatus in the UK 

alluvial record occurs at ca. 5000 BC (6100 BP). This phase does not correspond to any 

of the major discontinuities identified by Wendland and Bryson (1974), but does occur 

concomitant with fluvial activity both in central European rivers (Becker and Schirmer, 

1977; Starkel et ai., 1996) and in the USA (Knox, 1983). This date is also precisely 

matched by another from the T3 palaeochannel at Snabdaugh Farm (Passmore, 1994; 

Moores et al., 1998), possibly demonstrating that controls upon this phase of alluviation 

are consistent over at least the basin-scale. Macklin and Needham (1993) also highlight 

an alluvial unit dated to shortly after 6270 BP from the Derwent catchment in the North 

York Moors, representing until now the oldest dated alluvial unit in upland Britain. 

Tipping (l995c) has also recently dated channel abandonment upon a terrace at 

Kirkpatrick Fleming to 5755 ± 40 BP (4727-4510 BC). Recent evidence suggests that 

the controlling mechanism responsible for this may be a global climatic deterioration 

and neo-glacial phase identified from the GISP2 ice core (Meese et al., 1994) and also 

independent precipitation records from the Cairngorms (Dubois and Ferguson, 1985). 

In their review of UK alluvial histories, Macklin and Lewin (1993) correlate previously 

documented (post-5000 BP) fluvial activity with these environmental discontinuities 

identified by Wendland and Bryson (1974) along with climatic shifts such as increases 

in precipitation (Birks, 1988) and the Little Ice Age (Lamb, 1995). They identify 6 

discrete phases of fluvial activity that they attribute to changing large-scale 

(hemispheric) atmospheric circulation patterns. Some periods of alluviation at 

Brownchesters do appear to fit within the phases, such as a shift to a wetter climate 

identified from blanket bog stratigraphy (Blackford and Chambers, 1991) at around 600 

AD, appears to coincide with the abandonment of the two T9 palaeochannels at 
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Brownchesters. In addition, although undated, the character and topographic position of 

the TIl terrace at Brownchesters suggests a Little Ice Age origin. However, other units 

at Brownchesters appear to correlate better with the flood phase history of the Vistula 

River (Starkel et ai., 1996). 

Other authors, particularly those working in southern England have highlighted the 

influence of anthropogenic activity in at least partially controlling post-5000 BP (ca. 

4000 Be) fluvial activity. The influence of human communities upon upland British 

rivers, has to some extent been a secondary consideration, with the exception of the last 

ca. 2500 years (Passmore and Macklin, 1997). This is principally because 

archaeological evidence has frequently been underestimated in importance and possibly 

also the fact that valley floor archaeology may have been buried beneath alluvium. 

However, the enhanced spatial resolution palynological studies presented here suggests 

a revaluation of the impact of prehistoric peoples upon the landscape of the region, and 

consequently the controlling mechanisms behind Holocene river activity, may be 

appropriate. 

As a result of the early phases of fluvial activity, the site at Brownchesters has prompted 

a refinement of models of upland river valley development within Northern Britain and 

has again highlighted the inherent dangers in generalising basin-wide models from a 

sample of individual study reaches (Passmore, 1994). Despite the dynamic nature of the 

River Rede over Holocene timescales, the relatively low gradient and low relief nature 

of this alluvial basin has preserved an unusually large number of discrete, although 

fragmentary, terrace units of different ages. Recent work in extending the 

Brownchesters study reach both upstream and downstream is continuing to identify 
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well-preserved terrace fragments of differing ages, thereby complementing existing 

knowledge of river activity in this reach of the River Rede. 

Early indications also suggest that these low lying alluvial basins within middle reaches 

of upland rivers may hold the key to refining existing knowledge of Holocene alluvial 

histories in northern Britain. The sites at Brownchesters, Snabdaugh and now Thirlings 

(Passmore et ai., 1998) all appear to have recorded multiple generations of post-glacial 

fluvial activity and more importantly subsequently preserved organic sediments with 

which to date these features and undertake palaeoenvironmental analyses. 

6.5 Flood records from palaeochannel sediments 

The potential of palaeochannel sediments to yield detailed and dateable records of 

Holocene flood histories has been detailed in Chapter 2. Within palaeochannels at 

Brownchesters, thick deposits of interbedded and often finely-laminated peats, organic-

rich silts and inorganic sands and silts potentially offer high resolution flood frequency 

records for the River Rede for a large proportion of the Holocene period. The discrete 

inorganic silt and sand horizons throughout these sequences are interpreted as 

representing deposits of moderate-large floods post-dating channel abandonment 

(Erskine et aI., 1992; Malik and Khadkikar, 1996). To date, quantitative estimates of 

flood magnitude are not possible owing to difficulties in elucidating the position and 

morphology of the active river channel that is contemporary with the flood unit within a 

given palaeochannel. However, these investigations do offer an insight into Holocene 

flood frequencies. 



177 

Given the limitations of working from individual sediment cores, and hence the limited 

knowledge upon the lateral variations of individual horizons, only limited inferences 

concerning flood magnitudes can be made. Coarser grain sizes may be broadly equated 

with higher magnitude events, but this inference rests on two assumptions. Firstly, it is 

assumed that the contemporaneous active river channel remains in the same location 

and is not subject to avulsion, incision, aggradation or extensive lateral reworking 

during the period palaeochannel sediments are accumulating. Secondly, progressive 

accumulation of sediment within the palaeochannel will render the local environment as 

progressively less likely to receive floodwaters from smaller-scale events. 

Several periods of flooding can however be identified, although the precise timing of 

some of the events is vague due to currently limited dating control. Interpolation of 

dates between radiocarbon dated horizons in these alluvial contexts is extremely 

tenuous owing to the likelihood of highly variable rates of sediment accumulation. 

Periods of increased flood frequency may be manifested within the sedimentary record 

of these palaeochannels as successions of minerogenic laminae, whilst coarser, more 

discrete sandy lenses may be interpreted as individual flood events of mid-high 

magnitude. Flood horizons are summarised below and also in Figure 6.1, major coarse 

lenses are also plotted on the sediment logs for individual channels in Figures 5.3, 5.6, 

5.9,5.11. 

Terrace T3 (Figure 5.3) 

The T3 palaeochannel contains two notable flood horizons at a depth of 240-243 cm 

(ca. 7500 BC), where there are a couple of distinct grey sand-silt laminae each 

approximately 5mm in thickness. 
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Terrace T4 (Figure 5.3) 

The T4 palaeochannel sediment records what appears to be evidence of several minor 

flood events between a depth of 306-520 cm in the form of thin sandy laminae within 

generally fine members. An additional larger and more discrete flood unit occurs 

between 365-370 cm where there is a lens of grey, well-sorted medium-coarse sand. All 

of these flood horizons occur sometime before ca. 5000BC. 

Terrace T5 (Figure 5.6) 

Within the T5 palaeochannel sediments flood laminae occur between 310-388cm, with a 

larger discrete grey silty-sand horizon between 340-342 cm, dated to ca. 3950 Be. A 

second phase of multiple minor flood incursions into the T5 palaeochannel occurs 

between 226-278 cm dating to sometime between ca. 3950-2400 Be (Moores et al., 

1998). 

Terrace T6 (Figure 5.6) 

The T6 palaeochannel contains comparatively little evidence of flood laminae, possibly 

as a consequence of its rapid sedimentation rate. A single flood unit does exist at a 

depth of 268-271 cm (1690-2440 Be) consisting of coarse upward light grey silty

medium sand. Additionally fine sandy laminae are also present toward the top of the 

core at a depth of 62-82 cm (post-1690 Be). 

Terrace T8 (Figure 5.9) 

The T8 palaeochannel contains a number of coarse sand horizons that become 

progressively finer overlying the basal gravel between 239-278 cm, indicative of post-
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abandonment flood dating to sometime pre-AD 685. A further potential flood horizon 

occurs between 130-132 cm, but absence of radiocarbon dates prevents anything more 

precise than a pre-AD 685 timing for this event. 

Terrace T9a (Figure 5.11) 

This palaeochannel sequence contains a highly detailed record of flood histories, 

probably due to the core location at the upstream end of the palaeochannel cut-off. 

Between 83-310 cm the sediments are virtually continuously laminated with sub-2mm 

thickness horizons of minerogenic material. In addition, two very distinct, grey medium 

sand flood units are present at depths of 287-290 and 120-122 cm respectively. All these 

units date to pre-AD 1285, and if this channel is assumed contemporaneous with T9b 

can also be bracketed to post-AD 665. 

Terrace T9b (Figure 5.11) 

This palaeochannel contains little evidence of flood horizons, despite apparently being 

contemporaneous with T9a. The reason for this is likely to be the relative difference in 

core location, as this sequence was taken from the downstream end of the meander loop 

cut-off. These distal cores typically exhibit only thinly developed or even an absence of 

flood horizons as these areas are well-documented to not receive as much minerogenic 

material as parts of the palaeochannel proximal to the point of cut-off (Bridge, 1985; 

Erskine et al., 1992). As a consequence of this, only the sediments between 141-159 cm 

(immediately pre-AD 1305) contain any evidence of minerogenic laminations indicative 

of floodwater encroachment into the palaeochannel. 
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Attention is drawn from this preliminary examination of the timing of flood events from 

the site at Brownchesters to the apparent correlation of phases of flood activity with 

episodes of channel abandonment (Figure 6.1). In particular, the abandonment phases of 

the palaeochannels associated with Terraces T5, T6, OTIS (derived from undergraduate 

dissertation), T9a and T9b all appear to be preceded by flood events recorded within the 

sediments of previously abandoned adjacent palaeochannels. While this is a provisional 

observation that requires detailed further analysis (and dating), this has extremely 

important implications when considering the question of causality within the fluvial 

record, which will be discussed in the following section. 

A further potential of the chronologically overlapping sediments at Brownchesters is the 

correlation of individual flood units. Once again this is limited by dating control, but it 

would appear that specific discrete high magnitude flood events, recorded by coarser-

grained minerogenic sediment, may be evident in multiple cores from different 

palaeochannels. For instance, a flood event at the top of sediments from T5 appears to 

match with a similar unit from the middle of the T6 profile. Likewise, another event at 

the top of the T8 core appears to be within the same chronologically time frame as one 

at the base of the T9b sediments. Additional phases of multiple minerogenic laminae 

also appear to be correlated both with similar periods in adjacent channels and also with 

larger magnitude events. It should be remembered that sedimentary records of high 

magnitude flood events in one channel might only manifest themselves as small laminae 

within another palaeochannel due to differences in relative height and proximity to the 

active channel at the time. Examples of this type occur predominantly within Terraces 

T3, T4 and T5, principally because these palaeochannels are where there is the greatest 

chronologically confirmed overlap in the sedimentary sequences. 
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6.6 Evaluating fluvial response to vegetation changes 

Evaluating the degree to which extensive, potentially catchment-wide anthropogenic 

activity may have controlled the pattern of Holocene valley floor development is an 

extremely contentious issue (Tipping, 1995a, 1995b, 1995c, 1998; Brown, 1997) and 

one which Passmore (1994) and Passmore and Macklin (1997) stress cannot be 

addressed simply by looking at isolated reaches within a large river catchment. The 

debate about causality within British Holocene alluvial records has, to some extent, 

been clouded by confusion regarding some fundamental issues, namely that fluvial 

activity occurs principally in response to flood events and that these are climatically 

controlled. Human activity in terms of vegetation manipulation cannot cause fluvial 

response only sensitise alluvial environments and catchments to the influence of 

climatic factors. This study does not incorporate an independent climatic record and 

thus discussion is limited to chronological similarities in the vegetation, fluvial and 

previously published climatic records. 

However, previous studies have shown that few alluvial sedimentary sequences in 

upland Northern England are dateable via standard radiocarbon methods (see Chapter 

2), and even fewer examples are of the antiquity encountered here (Macklin and Lewin, 

1993; Brown, 1997). Palaeochannel sediments, particularly at Brownchesters, therefore 

offer a unique opportunity for comparing palynological and geomorphological records 

within a precisely dated radiocarbon framework. This study provides an opportunity to 

attempt to establish the degree of synchroneity between human and / or climate changes, 

allowing for potential chronological lags in the fluvial system. 
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Although channel abandonment can occur through a variety of either relatively gradual 

or catastrophic processes (Chapter 2), the majority of changes in river channel 

development occur during short time periods associated with major flood events (Knox, 

1985, 1993; Rose et al., 1980). The importance of vegetation cover in regulating flood 

events is well-documented and there are numerous modem examples of humans 

significantly altering flood regimes through their actions (e.g. forest removal in the 

Himalayan foothills). Thus, the removal of trees in parts of the upper North Tyne 

catchment may have resulted in an increase of both the quantity of run-off and sediment 

supply, resulting in changes to sensitive alluvial environments in downstream areas. 

Human activity upon valley floor environments within the immediate environs of the 

channel may have also aided and facilitated the process of channel abandonment by 

destabilising the riparian vegetation, to an extent that alluvial sediments become 

sensitised to what may have been relatively minor changes in climate (Brown, 1997). 

This study appears to demonstrate that selected middle reaches of upland rivers have not 

only been sensitive to these changes but have also recorded mUltiple generations of 

Holocene fluvial activity. 

The principal instance where possible connections may be involved between vegetation 

change and geomorphic response at Brownchesters is dated to ca. 4000 Be. A large, 

possibly multi-loop or avulsion type, channel abandonment upon the TS terrace occurs 

and has been dated immediately prior to ca. 4000 BC. Pollen records derived from the 

sediment which has infilled this palaeochannel indicate that human activity was 

occurring within the valley floor environment at this time. Additionally, in two of the 

upland pollen diagrams from the region, peat formation was initiated at around this time 
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(ca. 3975 BC at Sells Burn, ca. 3700 BC at Bloody Moss: See Chapter 4, Appendix 

10.1). The precise mechanisms for this change are unknown, however, human activity 

and declining tree cover has frequently been cited in literature concerning the controls 

of prehistoric peat formation (Moore, 1988; Simmons, 1996). The third upland pollen 

diagram, from Drowning Flow, also records a decrease in tree cover at this date (Figure 

4.1, Appendix 10.7), supporting the hypothesis of anthropogenic forest removal in the 

uplands. This alteration in upland vegetation cover may have had important 

consequences for fluvial processes in valley floor areas further downstream and led to 

changes in channel plan form within downstream alluvial basins. An undated, but 

possibly contemporaneous period of increased fluvial activity is registered within the 

sediments of the adjacent T4 palaeochannel. This shift to a more minerogenic fluvial 

sedimentation style is likely to reflect an increase in flood magnitude and I or frequency 

and possibly sediment supply that again could be a consequence of upland vegetation 

change. Although circumstantial, recent archaeological evidence also adds credence to 

this proposed scenario. Interpretations of the role of a recently excavated and important 

hengiform monument in the Milfield Basin (Waddington, 1997a) have lent weight to the 

idea of widespread usage of upland areas for pastoral agriculture, particularly in areas of 

Fell Sandstone, at around 4000 Be. This usage would inevitably necessitate at least 

some degree of forest removal and subsequent alteration in hydrological regimes. 

At a date of ca. 2500 Be, there is a further phase of fluvial activity associated with the 

abandonment of the T6 palaeochannel at Brownchesters. Upland pollen diagrams from 

the region at this time show a progressive and sustained rise in heathland cover, but 

with no major changes that would suggest a dramatic alteration of hydrological patterns 

(Figures 4.1-4.3). However, the valley floor pollen diagram from the T5 palaeochannel 
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at Brownchesters shows a marked increase in herbs and grass species at this time, 

consistent with increased usage of the valley floors by human communities (Figure 5.7; 

Moores et al., 1998). It is possible that this manipulation of valley floor vegetation 

sensitised and destabilised previously deposited alluvium making them more susceptible 

to changes in fluvial activity. 

In summary, therefore, it can be seen that early phases (7500 and 5000 Be) of fluvial 

activity at Brownchesters appear to be consistent with hypotheses of global climatic 

controls (sensu Macklin and Lewin, 1993). Synchrony of the timing of alluvial 

discontinuities over basin, regional and international scales is testament to this. Later 

phases of alluviation at Brownchesters, however, appear to be related more closely to 

local factors associated with anthropogenic activity, similar findings to those of Tipping 

(1995c). It is these human-induced factors which appear to facilitate, if not control, most 

periods of fluvial activity post-4ooo Be. 
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The results from this study are discussed and analysed within an overarching 

chronological framework. Specific questions related to archaeological issues within the 

region are examined with respect to the palynological record derived from both the 

upland and valley floor sites. Instances where local-scale vegetation records have 

demonstrated the presence of human activity where archaeological evidence is absent or 

scarce are highlighted. In addition, evidence of local-scale activity which is absent from 

pollen records reflecting a predominantly regional vegetation signal, both already 

published and presented here, is also emphasised. 

A number of the specific questions derived from regional archaeological results have 

been outlined within the introduction. These include: 

• Existing archaeological and palynological records yield little evidence of Mesolithic 

communities in North Tynedale and Redesdale, despite a riverine distribution of 

existing sites elsewhere in the region. Is this a result of the insensitivity of regional 

pollen diagrams to small-localised vegetation fluctuations that may represent the 

first evidence of human activity or a genuine absence? 

• Existing pollen records suggest that there had been little vegetation disturbance pre

third millenium Be outside the area of the Milfield basin, north Northumberland. Is 
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this the case, given the scarcity of pollen records in the region between the Hadrianic 

Frontier and the Cheviots? 

• Pollen records suggest that cereal cultivation was a relatively late phenomenon in 

central Northumberland, with agricultural activity beginning earlier in the north-east 

and south-east of the region. Is this the case? Have fertile valley floors and 

associated river terraces provided a focus for early farming for Late Mesolithic I 

Early Neolithic farmers? 

• Fluctuations in upland I lowland settlement patterns during the Bronze Age have 

been inferred on the basis of some regional archaeological evidence. Can the 

palynological evidence provide further insights into this pattern? 

• Debates surround the relative impact of the Romans upon the vegetation of the 

region. These include the timing of major landscape-scale deforestation and the 

extent of existing Iron Age agriculture, which recent archaeological evidence 

suggests may have been more widespread than previously believed. Can carefully 

targeted palynological investigation resolve these issues? 

7.2 Small-scale upland clearance and the onset of peat formation 

This study has not been designed to examine the earliest date of the inception of peat 

development within the North Tyne basin. Indeed, in contrast to other parts of the 

country, little targeted work has been carried out upon elucidating the timing of the 

onset of peat formation within northern England. However, the onset of peat formation 

and the development of moorland has been unequivocally linked to anthropogenic 

interference with the vegetation in other areas of upland Britain (Simmons, 1996; Moore 
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and Wilmott, 1976) and may therefore represent the best way of discerning early human 

activity within the North Tyne basin. 

Radiocarbon dates from close to the base of cores obtained from the upland peat bog 

sites analysed in this study reveal that the inception of peat development occurs within 

the Late Mesolithic period (ca. 6000-3500 BC; Darvill, 1987). The timing of this 

process varies between sites, with a chronological variation of approximately 1000 years 

and while reflecting local topographic and hydrologic conditions; anthropogenic and 

climatic causal mechanisms must also be considered. 

The processes that lead to peat formation have been extensively reviewed by Moore 

(1973, 1975, 1987a, 1987b, 1988, 1989). Peat formation is the result of an excess of 

local plant productivity in relation to the rate of organic decomposition. This is usually 

caused by the inhibition of microbial decay rates rather than an increase in plant 

productivity and is frequently associated with the development of localised 

waterlogging. This creates an anaerobic environment and impairs the breakdown of 

plant material, allowing the accumulation of peat. Waterlogging is thus an important 

pre-requisite for the onset of peat development and can arise due to the combination of 

the following factors (from Moore, 1988); 

• Climatic change 

• Anthropogenic forest removal 

• Use of fire 

• Grazing 

• Edaphic changes 
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Each of the upland sites cored for this study lies at an altitude in excess of 250 metres 

and occupies flatter ground either on or adjacent to major interfluves (see Chapter 3: 

Section 3.1.1). Thinner, nutrient-poor soils combined with higher precipitation, reduced 

temperatures and potentially greater exposure make these areas highly susceptible to 

small perturbations in climate or alterations in either the intensity or nature of 

anthropogenic activity. Records of these fluctuations have registered in a variety of ways 

within the palaeoenvironmental record. 

Of the peat cores analysed in this study, the earliest date for the onset of peat formation 

in North Tynedale is around 4925 BC obtained from the Drowning Flow core. Since this 

time peat has constantly accumulated at the site, reaching in excess of 7 metres depth 

within localised areas. The basal sediments at Drowning Flow indicate peat 

development occurred on an already organic-rich silty, sandy soil, which supported a 

diverse woodland flora consisting predominantly of hazel scrub with some alder, oak 

and to a lesser extent, birch and pine (see Troels-Smith log, Appendix 10.3). 

The percentages of open ground taxa within these sediments are relatively high and 

extremely significant, with small peaks in the levels of Poaceae, Caryophyllaceae, 

Rumex and Succisa. This is indicative of a degree of local woodland clearance and is a 

regular feature of pollen diagrams from upland Great Britain covering the early stages of 

peat development. Indeed, Moore (1988) has demonstrated that removal of upland 

forests by anthropogenic activities has been one of the principal causes of the 

development of peat deposits. It is likely that selective removal of tree species from the 

area around Drowning Flow has resulted in an alteration of local hydrological 
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conditions, deterioration of soils and subsequent peat development. Forest clearance was 

probably carried out for a specific purpose and may constitute the first attempts by 

prehistoric groups to manipulate the environment in which they lived (Simmons 1975, 

1996; Simmons etal., 1975). 

The early onset of peat formation at Drowning Flow is, in part, also likely to have been 

due to both its higher altitude and interfluve location. At higher altitudes, the density of 

forest cover would have been reduced and many of the (particularly thermophilous) 

trees would not have grown as vigorously, making clearance by fire or manual methods 

far easier. The slightly lower temperatures and increased annual precipitation associated 

with the higher altitude would also have aided peat formation once forest cover was 

removed. Flatter ground associated with the interfluve would also have enabled 

waterlogging to occur and the treeless environment of the area would have afforded the 

site with commanding views of both the Tarset Bum, flowing into North Tynedale, and 

also Redesdale. Speculatively, this may have had spiritual significance to the Mesolithic 

communities, as prominent natural locations are often considered to be 'special places' 

by hunter-gatherer societies (Tilley, 1994). 

Work aimed at elucidating the fluctuations in Holocene tree limits has demonstrated the 

importance of altitude in determining the species composition and vigour of growth in 

upland environments. Macroscopic wood remains from the north Pennines have 

revealed that trees grew to 760m in the region and Turner (1984) has argued on the basis 

of palynological work on Cross Fell that tree lines extended beyond this during the post

glacial climatic optimum ca. 5000 BC (Lamb, 1995). Indeed, the base of some of the 

cores taken for this study (and other trial cores within the North Tyne basin) have 
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contained fragments of wood at the boundary between the more minerogenic substrate 

and the overlying peat (Appendix 10.3). Pinus sylvestris stumps have also been 

observed in exposed sections at the base of peat deposits at Caudhole Moss, close to 

Lordenshaws hill-fort in the Simonside hills at an altitude of ca. 290m (Manning, 1996). 

These fossil tree remains have been dated to ca. 5000 BC and although climatic 

(Bennett, 1984) and volcanic (Gear and Huntley, 1991) mechanisms have been linked to 

fluctuations in Pinus woodland elsewhere in Great Britain it is likely that these 

specimens were either deliberately cleared by humans or were wiped out by worsening 

edaphic conditions associated with hydrological changes caused by the anthropogenic 

removal of surrounding woodland. 

Peat formation dated to ca. 3700 BC at Bloody Moss begins ca. 1200 years later than at 

Drowning Flow. The pollen recovered from the basal deposits suggests vegetation 

composed predominantly of hazel scrub with some alder, birch, oak and pine. Levels of 

Calluna and other heath species are, however, much higher, suggesting that the 

surrounding landscape was already relatively open, possibly having already been cleared 

of forest by earlier human communities. Bloody Moss (Section 3.1.1) is a saddle I spur 

mire, occupying sloping ground just outside the North Tyne basin. It is likely that peat 

development occurred later at this site due to the slightly freer-draining nature caused by 

the slope-angle, when compared to Drowning Flow that occupies a flatter, interfluve 

location. The dating variation for the onset of peat development is, interpreted therefore, 

as reflecting local topographic factors. 

A further reason for the later development of peat at Bloody Moss may be the site's 

geographical location. Redesdale provides one of the most direct and easiest routes over 
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the western side of the Cheviot massif, thereby forming an important line of 

communication between Northumberland and Scotland. Bloody Moss is several 

kilometres further away from the valley floor of Redesdale in comparison to Drowning 

Flow and is therefore likely to have been a less attractive location for Mesolithic human 

activity. Bloody Moss is closer to the Coquet valley, which itself contains a wealth of 

prehistoric archaeological evidence. However, Coquetdale is likely to have been less 

favourable for settlement due to its steeper profile, narrower valley floor and poorer 

potential as a communication route. The importance of river systems for providing 

easier communication routes ought not to be underestimated, particularly when 

woodland cover was far more extensive than at present. Just as Redesdale can be viewed 

as important in a north-south direction, so the Tyne-Solway corridor provides 

opportunities for east-west communication routes. 

The date for the onset of peat formation at Sells Burn is ca. 3975 BC, obtained from 

wood fragments found between the overlying peat deposits and more minerogenic 

substrate close to the base of the core. This gives an intermediate date for the onset of 

peat formation at this site in comparison with Drowning Flow and Bloody Moss. Sells 

Burn is at a lower altitude (260m) than either of the previous sites and as a result the 

primary woodland coverage was far denser, containing a higher proportion of birch and 

alder pollen, with fewer indications of open ground taxa than the other upland sites 

discussed above. Topographically, the site lies within a small basin (Chapter 3) and thus 

waterlogging of the site may have occurred relatively rapidly, allowing peat to develop. 

Archaeological evidence of Mesolithic activity, in the form flint finds is far more 

concentrated in the lower reaches of the North Tyne catchment in the vicinity of Sells 
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Bum (Figure 7.1). This would seem to indicate the likelihood of a higher degree of 

interference with the vegetation around this site and may have assisted in the relatively 

early date for peat initiation at Sells Bum. 

However, despite the early initiation of peat development, the palynological record from 

Sells Bum is somewhat different to the sites discussed above. In contrast to the other 

sites, arboreal cover persists in the landscape surrounding Sells Bum for several 

centuries after peat had begun forming in the basin. This suggests that vegetation 

disturbance in the area was, contrary to the archaeological evidence, relatively minimal, 

or that the palynological record is locally biased by the presence of local forest stands 

adjacent to the basin. Additionally, the vegetation record is somewhat distorted, owing 

to poor pollen preservation in the basal minerogenic deposits, indicated by a reduction 

in the pollen concentration and relatively high percentages of post-depositionally 

resistant Filicales and Polypodium spores (Burrin and Scaife, 1984; Lewis and 

Wiltshire, 1992) (see Chapter 2). 

From the evidence presented here the development of peat has not been synchronous 

across the entire North Tyne basin and thus cannot be attributed to climatic factors 

alone. Inter-site differences in altitude, topography, underlying geology, soil type and 

aspect, although important, are deemed here to be insufficient to account for the 

chronological differences in the onset of peat formation alone. Palynological records of 

these sites are comparable to those found elsewhere in Britain (e.g. Moore, 1975, 1983; 

Moore and Wilmott, 1976), suggesting that there was human involvement in the process 

of localised deforestation which altered hydrological regimes and led to paludification. 
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Thus, in certain localities, peat inception may represent the earliest discernible impact of 

human populations on the environment. 

7.3 Mesolithic activity in valley floor locations 

The palynological results from the valley floor sites examined in this study are, by their 

very nature, chronologically fragmented (see Chapter 5) and only one of the analysed 

cores from Brownchesters covers a substantial portion of the Mesolithic period, with 

another covering the Late Mesolithic - Neolithic transition at its base. Significantly 

however, the core from Brownchesters Terrace T3 which spans the period ca. 8000-

7500 Be contains incidences of anthropogenic indicator species, including pollen 

possibly belonging to the group Avena I Triticum along with other cultivated taxa (see 

Section 3.3.3 for discussion on identification of cereal pollen grains). The earliest 

occurrence of cereal pollen in this context is pre-7500 Be, far earlier than the commonly 

accepted date for the onset of cereal cultivation in Great Britain ca. 4000 Be. This is 

even significantly earlier than the pre-elm decline cereals highlighted by Edwards and 

Hirons (1984), Edwards (1988, 1989) and Edwards and McIntosh (1988), although 

Davies (1997) has recorded several cereal type grains from around Oban, Scotland at 

dates of ca. 9200 BP, ca. 8800 BP, ca. 8380 BP and ca. 7400 BP. These dates concur 

with those found within Redesdale and as they come from an area renowned as a 

Mesolithic type site (Obanian culture) could be regarded as significant indicators of 

Mesolithic activity. Davies (1997) errs on the side of caution in the interpretation of 

cereal pollen of this age, citing the likelihood that the pollen is of a natural, non

cultivated origin, although tentatively suggesting that cereals could have been grown as 

a dietary supplement during periods of otherwise poor food supply. A similar conclusion 



194 

must be drawn in the case of the North Tyne basin, especially given the paucity of 

corroborating archaeological evidence and the possibility that the pollen may be derived 

from a non-indicator species such as Glyceria spp. which may thrive within 

palaeochannel conditions. However, some authors are beginning to question the validity 

of assumptions made concerning the initiation of arable agriculture within Northern 

Europe. For instance, Zvelibil (1994) outlines a number of scenarios which could 

explain the discovery of cereal pollen within these contexts, highlighting the cultivation 

of indigenous wild grasses in mainland Europe from ca. 6000 BC. 

Development of peat-filled palaeochannels within the North Tyne basin has occurred 

independently, or at least not as direct consequence, of anthropogenic interference with 

the vegetation. At both Snabdaugh and Brownchesters, peat development has been 

initiated due to locally high water tables within episodically alluviating palaeochannels 

(Brown, 1997) (see Chapter 2 for full discussion of palaeochannels as sources of 

palaeoenvironmental archives). 

The importance of proximity to water is a well-documented facet of Mesolithic 

settlement patterns (Simmons, 1996) and the apparent concentrations of activity in 

coastal areas have already been discussed. However, there is no doubt that coastal, 

lakeside and riverine environments provided a rich resource base for prehistoric peoples 

which have been exploited since long before the Mesolithic (cf Darvill, 1987, p29). 

Excavated Mesolithic sites such as Star Carr and Seamer Carr, North Yorkshire 

(Schadla-Hall, 1989), which occupies a fonner lake edge and Noyen-sur-Seine, northern 

France (Mordant and Mordant, 1992), are testament to this. Inland waterways act in the 

same way as cleared forest within the uplands by attracting grazing animals and 
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wildfowl. Fish (Simmons, 1980) and shellfish (Bonsall, 1981, 1996; Bonsall et al., 

1986) were an important component of the diet for Mesolithic people and a number of 

edible aquatic plants such as water chestnuts and waterlilies have also been found within 

Mesolithic contexts across Northern Europe (Zvelibil, 1994). Additionally, woodland 

that grows in proximity to lakes and rivers would have contained a number of useful 

species for the construction and tool making activities of Mesolithic communities. 

Within Northern England existing Mesolithic sites are distributed predominantly around 

the coast, with 26% of inland sites located within 2 km of a major river and below 244m 

(Higham, 1986; Davies, 1983) (See Figure 7.1). Weyman (1984) has also noted this 

distribution, highlighting the fact that many sites are concentrated on sloping ground 

close to rivers between 45 and 300 metres above Ordnance Datum. She also states that 

where there are apparent spatial gaps in the record, this may be a consequence of the 

lack of ploughing (which is critical for exposing buried lithic material) within a given 

area, and thus modem day agricultural practices have a large bearing upon our 

knowledge of Mesolithic and later communities. Targeted fieldwalking has aided the 

recovery of artefacts, for example, Fell and Hildyard (1953) discovered Mesolithic 

material in Upper Weardale after specifically searching along the route of a pipeline and 

within ploughed fields. Darvill (1987) has highlighted the prevalence of Mesolithic and 

earlier sites localised at the confluence of rivers, a pattern still evident in settlement 

today. He also highlights the usage of sheltered spots within valleys penetrating the 

uplands and it is likely that then, as now, Redesdale and North Tynedale offered 

similarly hospitable conditions as the Northern Pennines, where there is to-date more 

evidence for the active presence of Mesolithic peoples (Young, 1987; Fell and Hildyard 

(1953). 
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It is well known that in the east of Great Britain many Mesolithic sites have been 

inundated by rising sea levels associated with the melting of the Late Devensian ice 

sheets and also eustatic response of the continents (Lamb, 1995). Many sites now lie 

under the North Sea and a number of estuarine and low-lying settlements have also 

suffered the same fate. In the west of the country sites are concentrated around former 

coastlines which have been raised above modem sea level and are therefore more 

visible, such as at Eskmeals, Cumbria (Bonsall et al., 1986) and Oban, western Scotland 

(Bonsall, 1996; Davies, 1997). Within inland Britain major river valleys are likely to 

offer the best opportunities for the discovery of new sites, with Woodman (1989) 

highlighting that existing indications of Scottish riverine and lakeside Mesolithic 

distribution patterns are both underestimates and not viewed as significant. Indeed, 

Davies (1983) specifically cites the Rivers Blyth, Wansbeck, Aln and Coquet as 

particularly warranting systematic fieldwalking. However, even a brief inspection of the 

map of Mesolithic sites in Northumberland (Figure 7.1) demonstrates that this statement 

can equally be applied to the Rivers North Tyne and Rede. 

Seasonal use of riverine sites in inland Britain has been postulated by Evans (1975) who 

envisaged a pattern of hunting determined by the summer migration of animals into the 

upland areas. He believes that this movement can simply explain the distribution of flint 

flakes and also highlights the role of river valleys in providing communication routes 

between regions, an important factor when considering North Tynedale and Redesdale. 

Similar coastal-inland relations have been discovered in southern Norway (Bang

Andersen, 1996), although a lack of radiocarbon dates at Norwegian coastal sites and 

lack of evidence within the intermediate zones, makes it difficult to specify regional 
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patterns of seasonality. Recent indications from Milfield (Waddington, in press) suggest 

that this coastal-upland seasonal migration may have been dramatically overestimated in 

Northern England, at least for the Late-Mesolithic period. Lithic material used for tool 

making at Milfield originates both from local non-flint sources, particularly agates, and 

imported flint derived largely from north-east Yorkshire. This is despite the coast being 

only 15 km away and where flint, albeit of poorer quality, occurs within the glacial drift. 

This suggests that seasonal migration between coast and upland was not a major 

component of the annual cycle of activity in this vicinity, and that distinct cultural 

groups may have occupied these areas. 

Existing evidence of Mesolithic activity within the North Tyne basin is scarce, but what 

there is appears to conform to the general models of riverine distribution (Davies, 1983) 

(see Section 7.1) outlined above. Weyman (1984) has reported flint scatters found upon 

a glacial gravel terrace at High Warden adjacent to the confluence of the North and 

South Tyne and Waddington and Beckensall (Waddington, pers comm) have made 

additional finds around Warden Hill. The typology of some of these flints from this area 

suggests an Early Mesolithic phase of activity within Tynedale (Tolan-Smith, 1996) and 

the discovery of a Late Upper-Palaeolithic artefact at Prudhoe (Cousins and Tolan

Smith, 1995) is indicative of an even earlier phase of human activity, although as yet 

this remains an isolated find. Weyman (1984) details further flint finds which have 

occurred on both banks of the River Tyne around Corbridge and Bywell and more recent 

work by Tolan-Smith (1996, 1997) has demonstrated the presence of flint scatters on the 

valley sides of the Lower Tyne. 
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In mid-upper reaches of the North Tyne catchment, Mesolithic flints have been 

discovered during the excavation of a later Iron Age and Romano-British farmstead at 

Kennel Hall Knowe (Jobey, 1978). Likewise, recent excavations (by Lancaster 

University Archaeological Unit and the Archaeological Practice, Newcastle University, 

1997) close to Potts Durtrees on the Otterburn Military Range has revealed a small 

struck flint spall, indicating flint has been worked in this locality. However, any patterns 

of archaeological activity must be viewed with an element of caution as survey bias can 

have a significant influence over the derivation of distribution maps (Hamond 1980, 

Young 1994). In addition, alluvial and colluvial processes may have masked the 

archaeological record on valley floors and sides (Passmore and Macklin, 1997). 



Figure 7.1: Mesolithic sites in Northumberland 
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7.4 Upland vegetation manipulation in the Late Mesolithic and the 

development of moorland landscape 

Management of upland habitats by Mesolithic communities has been documented in 

both the palaeoenvironmental and archaeological literature (Simmons, 1969, 1975a, 

1975b; Smith, 1992). In particular, it is thought that clearance of upland scrub woodland 

is the most effective strategy for attracting ungulate populations (Jacobi et ai., 1976; 

Mellars 1976; Simmons, 1975; Simmons et ai., 1989; Simmons and Innes, 1987). The 

herbaceous taxa which colonise regenerating woodland have been shown to attract and 

concentrate grazing animals, making them much easier prey for Mesolithic hunter

gatherer societies (Mellars, 1978). 

At both Drowning How and Bloody Moss there is an increase in the percentages of 

undifferentiated Ericaceous species and Calluna vulgaris during the Late Mesolithic / 

Early Neolithic period ca. 4000BC. These species indicate a more open landscape and 

commonly relate to an initial, small-scale utilisation of these upland environments for 

grazing animals. Indeed, a recent archaeological study in the Milfield Basin has 

suggested that at this time, areas of sandstone upland surrounding the low-lying plain 

are likely to have been used and actively managed for seasonal grazing during the Late 

Mesolithic (Waddington, 1996). Excavations upon the 'Coupland Henge', which is on 

the raised gravel terraces of the basin adjacent to Milfield village, has revealed that this 

Late Mesolithic I Early Neolithic enclosure was probably used for corralling stock, as 

well as social gatherings and ceremonial activities. Trackways leading from this 

enclosure connect to areas of adjacent Fell-Sandstone upland an the east side of the 

River Till, where areas of outcropping rock are decorated with numerous examples of 
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cup and ring marked rocks (Beckensall 1983, 1991, 1992, 1995; Waddington, 1995, 

1996). These are thought to be contemporaneous features, dating to the Late Mesolithic / 

Early Neolithic period around 4000 BC (Waddington, 1996, 1998a) and have been 

interpreted as (amongst other things) early indicators of grazing rights over a particular 

portion of the landscape (Waddington, 1996). 

The concentration of monuments and early dates associated with the Milfield area of 

north Northumberland is testament to the relative importance of the region during this 

period of prehistory. The density of archaeological remains and monuments of this Late 

Mesolithic / Early Neolithic period within North Tynedale and Redesdale does not 

approach that present at Milfield, but this, at least in part, is likely to reflect also the lack 

of systematic survey within the area. However, a few cup and ring marked rocks are also 

known on the sandstone fells around Redesdale, such as those at Todlaw Crag 

(Beckensall, 1983), Dour Hill (Beckensall, 1995) and additional unconfirmed examples 

in the vicinity of Snabdaugh Farm (Charles Allgood, pers. comm.). Thus, a similar, 

smaller scale scenario can be envisaged within the North Tyne basin, where the cleared 

Fell-Sandstone uplands would have provided ample seasonal grazing for animals and 

the opportunity for foraging fruits, nuts and berries. 

Heathland expansion occurs later at Sells Bum, ca. 3000 BC, possibly as a result of 

grazing being initiated later in the vicinity of the site or indeed the lower altitude not 

being as conducive to heath development. It seems unlikely that grazing or other 

anthropogenically-induced impacts would be lessened at this site, which has already 

been demonstrated to be proximal to apparent concentrations of human activity. 

However, there is a marked lack of other shrub and herbaceous species characteristic of 
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open ground grazed environments. This may imply that the pollen represented in the 

diagram is of a relatively local origin due to the small basin location and therefore less 

reflective of the wider landscape that is sensed by the other sites examined in this study. 

Given that palynological indications show a significant proportion of forest within the 

area, this effect is likely to be exacerbated by the sheltering of local trees in the area and 

is hence dominated by Betula, Alnus and Coryloid type that may have been growing 

nearby. 

In addition to aiding hunting strategies, upland woodland clearance may have assisted 

gathering practices and facilitated pastoral agriculture. At Drowning Flow, fluctuations 

of hazel and grass percentages may be suggestive of woodland management for the 

production of hazelnuts (Simmons, 1996), which is a well-documented component of 

the diet of Mesolithic peoples (Zvelibil, 1994; Morrison, 1980). Hazelnut remains have 

been found at numerous excavations, such as Star Carr (Clark, 1972), Derravaragh, 

Ireland (Mitchell, 1972) and within more local upland contexts, such as in the Tweed 

valley (Mulholland, 1970). Dates from hazelnut and other edible plant remains 

throughout Britain and Ireland during the Mesolithic and Early Neolithic period have 

been collated by Zvelibil (1994) and vary between approximately 7600 and 3000 Be. 

Palynological support for this hypothesis comes from occurrences of Rumex, Potentilla 

and Ranunculaceae, which have been found to be colonising species following 

vegetation disturbance in the North York Moors (Simmons, 1996). Resolution of the 

diagram is insufficient to relate results to temporary local vegetation cycles in the 

manner of Simmons and co-workers. However, this evidence of woodland manipulation 

at Drowning Flow begins around SOOO BC and continues up to and beyond the elm 
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decline at approximately 3500 BC which has been a common feature of diagrams from 

the North York Moors (Simmons, 1996). 

Material records of hunting practices or Mesolithic settlement, in the form of either 

stone tools or animal bone remains within the North Tyne basin and indeed upland 

Great Britain generally, are extremely scarce. This is because Mesolithic dwellings 

tended to be either cave sites (e.g. Victoria Cave, near Settle - from Darvill, 1987) or 

were constructed of bio-degradable materials and were temporary rather than permanent 

residences. In addition, hunting above 300m is likely to have been a summer or autumn 

activity (Smith, 1992) and of an extremely transitory nature. Archaeological records thus 

do not tend to be concentrated within discrete sites. The actions of Mesolithic groups 

within the uplands may also have acted to cover their own traces, by initiating the peat 

formation processes which subsequently buried stone tools and destroyed bone material 

due to the low pH of the overlying substrate. This is undoubtedly one of the major 

factors for the apparent invisibility of Mesolithic populations within the archaeological 

record of the uplands of the UK and the apparent concentration of sites in coastal 

locations (Smith, 1992). 

However, recently Edwards et al., (1983) have indicated the presence of Mesolithic 

human communities in inland south-west Scotland, despite a previous absence of 

surficial archaeological remains. Here, flint flakes and tools have been found around the 

margins of a number of lochs and streams where peat is being actively eroded and also 

in peat upcast of forestry drains. Detailed survey of the South Pennines has revealed 

clusters of Mesolithic activity, despite an extensive peat cover (Stonehouse, 1987/88). In 

the north-east, flint artefacts have increasingly been found inland, concentrated around 
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major river valleys such as the Tweed (Mulholland, 1970), Till (Waddington, 1995, 

1997b, in press), Tyne (Tolan-Smith, 1997) and Wear (Young, 1987). It seems likely 

that a similar scenario can be envisaged in the Tyne basin, where worked flints have 

been discovered within upland contexts eroding from below blanket peat deposits at 

Birkside Fell (Tolan-Smith, 1998) and from soil ploughed for afforestation (Spikins, 

1996). Recently, Waddington (pers. comm) has identified Mesolithic material during 

field-walking of exposed peat around Black Stitchel, a cairn in the centre of the impact 

area of the Otterburn ranges, Redesdale, at an altitude of ca. 300m OD. This 

demonstrates that inland penetration of Mesolithic peoples was fairly widespread in this 

area of northern Britain and the paucity of further evidence is likely to be due to a 

combination of lack of survey, modem commercial afforestation and the lack of 

available ploughed soil for field walking. Indeed, Weyman (1984) cites the lack of 

systematic survey of much of Northern England as being one of the principal reasons for 

the relative absence of Mesolithic remains in the region. Palynological techniques, 

however, offer the opportunity for tracing the activities of Mesolithic communities 

despite the absence of archaeological evidence. 

7.5 Late Mesolithic I Early Neolithic Agriculture in Valley Floor 

Locations 

Palynological evidence for Late Mesolithic agriculture comes from the reach of the 

River Rede at Brownchesters. The early part of the Brownchesters Terrace T5 core 

(Figure 5.7) analysed covers the Late Mesolithic I Early Neolithic period and shows 

peaks in grass pollen, allied with incidences of anthropogenic indicator species and 

cultivated taxa as defined by Behre (1981) and Birks (1990) (see Chapter 3, Section 
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3.3.3). More specifically, these pollen grains of Hordeum (barley), Avena / Triticum 

(oats / wheat) along with grains which could not be accurately ascribed to a particular 

species, demonstrate that cereal cultivation was occurring extremely proximal to this 

valley floor location. This can be interpreted as evidence for the presence of agricultural 

human activity in this part of the valley floor during this period and is of particular 

significance given the lack of Late Mesolithic I Early Neolithic archaeological remains 

in the area (Moores et at., 1998). Furthermore, relatively large percentages of Coryloid 

type pollen also add credence to the hypothesis of a combination of agriculture and 

continued reliance upon more traditional gathering form of subsistence. High alder 

levels may also be a consequence of the management of this tree for wood production, 

as Coles and Coles (1986) have found evidence of coppiced alder forest within the 

Somerset Levels (See Plate 7.1, for example of floodplain alder woodland). 

Recent archaeobotanical work by Jacqui Huntley upon contexts derived from 

excavations at the Coupland Enclosure, Milfield, has lent weight to the palynological 

results from Redesdale by suggesting this valley floor arable agricultural activity was 

widespread within the region at this time. These analyses have revealed grains and 

glumes of emmer wheat and barley dating to ca. 3800-3900 BC along with an 

abundance of charred hazelnuts (Waddington, pers comm.). This suggests that valley 

floors played a critical role in the agricultural activities of human communities in 

Northumberland during the Late Mesolithic / Early Neolithic and that their diet 

depended upon a combination of subsistence strategies (Waddington, 1998b). The 

extension of this model of valley floor land utilisation into the late 3rd Millennium BC to 

other areas of Northern Britain, and indeed further afield, may be possible if suitable 

sites for palaeoenvironmental analyses can be found. The disturbance indicated by the 
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palynological evidence is by no means extensive, with arboreal taxa, particularly Alnus, 

Quercus and Coryloid type dominating the diagram during this period. However, the 

small-scale utilisation of drier areas of valley floor, such as the Late Glacial gravel 

terraces, is a likely scenario, with areas of Holocene alluvium remaining vegetated by 

alder woodland and other species with a preference for the damp floodplain conditions 

(Brown 1988: Tallantire, 1992; Chambers and Price, 1985; Chambers and Elliot, 1989). 

It is easy to envisage how this relatively small-scale, yet extremely important, 

occurrence of agricultural practice is absent from pollen diagrams reflecting a 

predominantly regional vegetation record (Figure 7.2). 

As outlined, Zvelibil (1994) has called for a re-examination of these early incidences of 

cereal cultivation as they provide grounds for a reinterpretation of the activities of Late 

Mesolithic communities. The results outlined here add further to the debate concerning 

early agriculture, demonstrating conclusively that cereal cultivation began prior to the 

elm decline and that previous diagrams, with an emphasis upon a regional pollen signal, 

may have underestimated the extent of Late Mesolithic agriculture in northern England. 

This can be extended to existing models of human development, the majority of which 

currently suggest that arable agricultural practices did not commence until permanent 

settlement was established and seasonal movement had ceased (Simmons, 1996). 

Palynological and archaeological results from northern England appear to suggest 

'advanced' Late Mesolithic cultures, who incorporate stock rearing and cereal 

cultivation into an otherwise nomadic lifestyle. The expansion of heathland in the 

region, as detected by regional pollen diagrams, may as a consequence be an extremely 

important indicator of the activities of Late Mesolithic cultures (Simmons, 1996). 



Plate 7.1: Alder floodplain woodland, showing abandoned palaeochannel, River Ohre, near Libocovice, Czech Republic 



Figure7.2: Schematic Diagram showing Late Mesolithic I Early Neolithic Vegetation 
in the North Tyne Basin 
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7.6 Intensified pastoral and arable farming during the Late Neolithic 

and Early Bronze Age 

The Neolithic period traditionally demarcates the introduction of food producing 

economies into Great Britain and a shift from transitory hunter-gatherer activities 

towards a more sedentary pattern of agricultural production. The mechanisms for this 

change have been debated at some length, with authors citing both the immigration of 

agriculturists from the continent (Burgess, 1984; Tolan-Smith, 1997) and natural 

evolutionary development of the indigenous people and subsequent diffusion of 

technology (e.g. Thomas, 1991; Waddington, in press) as being responsible for the 

introduction of agriculture. Palynologically, the onset of the Neolithic period has 

traditionally been linked to the elm decline, a feature that is visible and chronologically 

contemporaneous across much of north-western Europe (Bell and Walker, 1992) and 

which has received the attention of numerous workers over recent decades (Sturludottir 

and Turner, 1975; Whittington et aI., 1991; Edwards and McIntosh, 1988; Peglar, 

1993a, 1993b; Peglar and Birks, 1993). However, the presence of pre-elm decline 

cereals in a number of deposits throughout Great Britain has blurred this pollen

stratigraphic boundary for the purposes of defining cultural processes. Stallibrass and 

Huntley (1996) also note that social, cultural and political changes between the Early 

and Late Neolithic are likely to have been greater than those between the Late 

Mesolithic and Early Neolithic. 

Palynological results from the North Tyne basin suggest a progressive intensification of 

anthropogenic activity through the Neolithic period. There appears to be a widespread 

expansion of heathland in the uplands of the region, consistent with their utilisation for 
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grazing purposes. At both Drowning Flow and Bloody Moss this occurs in a progressive 

manner between a date of approximately 4000 and 2500 Be and is concomitant with a 

continued reduction in arboreal pollen percentages. However, Drowning Flow also 

records a decrease in heathland cover, associated with a regeneration of hazel scrub 

woodland at a date of approximately 3000 BC, that may reflect a temporary cessation of 

local grazing activity. At Sells Bum the first indications of any heathland cover in the 

area occurs during the Later Neolithic period and here the expansion of heath species is 

relatively steady. In all of the diagrams the incidence of anthropogenic indicator species 

also becomes more frequent, with some taxa demonstrating a more continuous presence 

through the diagram. This is testament to an increased level of activity in the uplands of 

the North Tyne basin during the Late Neolithic, moving away from small-scale 

temporary usage towards a more sustained and extensive pattern of pastoralism. 

The pollen diagrams presented here all demonstrate a general transition from a forested 

environment to one dominated by heathland taxa. However, in comparison with many 

other published pollen diagrams from the region, it should be noted that this expansion 

occurred within an environment that was already relatively sparse in tree cover. The 

reasons for this are as yet unclear, but may be attributable to earlier Mesolithic groups 

leaving their legacy upon the vegetation of the area or processes of edaphic 

development. 

Evidence of Neolithic activity from the valley floor site at Brownchesters comes 

principally from palynological results obtained from the palaeochannel associated with 

terrace T5. This covers the period dated to between pre-4000 BC and approximately 

2000 Be, thus representing virtually the whole of the Neolithic, bar the transition to the 
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Bronze Age. There is a constant presence of anthropogenic indicators with sustained 

levels of cultivated taxa, principally cereal-type pollen including Hordeum type and 

A vena / Triticum. The quantities of these cereals are significantly greater than equi valent 

values for the same period in the upland cores. From a date of approximately 2300 BC 

there is a large increase in percentage values of grass pollen, broken only by a massive 

influx of birch pollen which is almost certainly due to extremely local, in situ sources. 

This occurs concomitantly with a decrease in the percentage of tree cover, noticeably 

alder, oak and to a lesser extent and slightly earlier willow. Pine percentages are also 

reduced, but at the levels recorded here the pine pollen is probably of regional origin. 

Wetland pollen taxa found within the sediment cores are testament to the patchy nature 

of valley floor vegetation as damp conditions prevailed within parts of the floodplain. 

Overall, pollen records indicate a clearance of the valley floor floodplain woodland and 

the replacement by herbaceous taxa demonstrative of human activity on the valley floor. 

A second palaeochannel at Brownchesters provides support for this interpretation. 

Pollen records from the sedimentary infill of the former channel associated with terrace 

T6, which have accumulated rapidly over just 600 years between approximately 2300 

and 1700 BC, overlap the uppermost section of the diagram from T5 described above 

(Chapter 5). The curves for non-cultivated grasses, oak and indeed undifferentiated ferns 

can be seen to correspond well, thereby allowing more confidence to be placed upon the 

chronological framework provided by the radiocarbon dating. Again, there is a relatively 

high level of anthropogenic indicator species and cultivated taxa, which is at odds with 

some previous assumptions that regard human impact to be fairly minimal during this 

period (Davies and Turner, 1979; Dumayne, 1993a, 1993b). However, this does 

correspond well with palynological results from within the uplands of the Cheviot Hills, 
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where significant human impact has been found to be broadly synchronous around 

4650-4200 cal BP (ca. 2300 Be) (Tipping, 1992). 

Indeed, these palaeochannels contradict existing palynological evidence which has 

suggested that there has been little disturbance of regional vegetation before the third 

millennium BC outside of the Milfield basin (Higham, 1986). On the basis of 

archaeological evidence, the Milfield plain is believed to be the heartland of Neolithic 

occupation in northern Britain (Higham, 1986) and recent excavations have 

demonstrated that its relative importance may have been underestimated on a national 

scale (Waddington, 1997a). The evidence presented here suggests that Neolithic 

populations in North Tynedale may also have been greater than previously envisaged. 

Archaeological records of Neolithic populations in North Tynedale are more extensive 

and tangible than those of the Mesolithic period, but are still relatively limited. 

However, no known settlement sites have been found within the basin, although 

Neolithic sites discovered elsewhere in the Borders have been found whilst excavating 

Early Medieval remains (e.g. Thirlings, Yeavering, Doon Hill, Dunbar and the Hirsel, 

Coldstream). Burgess (1984) highlights that these chronologically distinct communities 

appear to have chosen the same sites and built similar timber buildings. 

A number of long cairns form documented monumental evidence of the Neolithic in the 

area. These features are burial monuments and take the form of large, elongate 

constructions, now covered by loose stone. The best known and largest of these long 

cairns is that at Bellshiel Law, on the northern side of the valley in Redesdale (Masters, 

1984) which measures approximately 114m in length. This has been partially excavated 
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by Newbigin (1936), who found a single rock cut grave, surrounded by an edging of 

well-laid kerbstones at its eastern end. Although this cairn was excavated prior to the 

advent of radiocarbon dating techniques, dates from other long cairns suggest that these 

monuments date broadly from 3500-2500 BC. There are further possible long cairns in 

the area, as outlined by Masters (1984), although the example at Dour Hill, has recently 

been surveyed by Waddington et al., (in press) and contains corbelled chambers. The 

potential long cairn named on Birks Moor (Masters, 1984), is particularly relevant to 

this study as it overlooks the study reach at Snabdaugh, on the North Tyne, where there 

are numerous palaeochannel features on the valley floor. Archaeological evaluation 

carried out as part of the proposed development of the Otterburn Training Area has 

highlighted that Hare Cairn, 5 km north of Otterburn village, is possibly a Neolithic 

feature, owing to its similarity to 'great barrows' from other areas of Northern England 

(LUAU & NUAP, 1997). The presence of these sepulchral remains implies fairly 

significant population levels and on this basis Upper Redesdale can be considered an 

important area to Neolithic communities despite the fact there is relatively little 

supporting artefactual evidence for their presence. However, the presence of an upland 

Neolithic enclosure on Harehaugh Hill, situated in-between different valley 

communities (i.e. Redesdale and Coquetdale) dating to ca. 3000 BC (Waddington et ai., 

1998), indicates that archaeological features of this period are frequently found at the 

margins of settlement, rather than centrally on the valley floors. 

The area of Milfield, in north Northumberland, contains more evidence of Neolithic 

occupation than North Tynedale throughout the whole period. There are a large number 

of henge monuments, stone circles, pit alignments and settlement sites in the area of the 

Milfield basin (Harding, 1981), coupled with a tradition of cup and ring marked rocks 
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(Beckensall, 1983, 1991, 1992, 1995; Waddington, 1995, 1996). The Eden valley west 

of the Pennines also contains considerable evidence for Neolithic activity in the fonn of 

'Long Meg' a stone circle on the east bank of the River Eden (Burl, 1976), plus a 

number of cursus monuments, long cairns and the Penrith henges (Higham, 1986). 

Burgess (1984) has mapped Neolithic activity in the Northumberland region on the basis 

of finds of stone and flint axe heads, concluding that Neolithic settlement was 

widespread and focused upon the lowlands and river valleys. In the Ingram valley, a 

tributary of the Till, ongoing excavations by Adams (1996) are analysing a rough stone 

revetment enclosing a lynchet, that is believed to date to ca. 4000 BC. This provides a 

tentative indication that early agricultural practices were taking place in this region of 

Northumberland. 

The records of flint and other Neolithic tools and artefacts from the North Tyne basin 

are very rare, primarily due to a lack of survey and the availability of ploughed soil. A 

'dark coloured arrow head' has been found at Shittleheugh, just a few kilometres 

upstream of Brownchesters and a barbed and tanged arrow head has been found within 

the Otterbum Military Training area at South Yardhope, which lies just outside the Rede 

catchment (Charlton, 1996). Lower down in the Tyne basin at Riding Mill, an extensive 

flint chipping sites has been found (Weyman, 1980). Here, a range of Late Mesolithic 

microliths and Neolithic arrowheads have been discovered, demonstrative of an active 

population over many years. Indeed, the re-use of specific sites by successive Mesolithic 

and Neolithic communities is extremely high in northern Britain and can be seen not 

only in the Lower Tyne, but also in Weardale, Walney Island and in the Milfield basin. 



215 

Stone axe technology has been implicated in the clearance of lowland woodlands 

throughout Britain in the Neolithic. East of the Pennines finds of these tools are rare, 

although notably the distribution is characteristically lowland and riverine (below 150m 

00) (Higham, 1986). Charlton and Day (1976) have discovered, during a detailed 

survey, three such examples of polished stone axes in Redesdale. Of these, one was 

discovered at Otterburn, adjacent to the site at Brownchesters, providing unequivocal 

evidence for the presence of Early Neolithic populations in this area of the North Tyne 

basin. A further example was also found within a valley floor context at Elishaw, 

approximately three kilometres upstream of Otterburn (adjacent to Shittleheugh 

mentioned above) and the third at Potts Durtees around three km north of Elishaw 

adjacent to the Durtees Bum which flows into the River Rede. On the southern valley 

sides of Redesdale, three celts (stone axes) have been discovered on Troughend 

Common, which overlooks the area around Otterburn. Further afield, in the Lake 

District and north Northumberland more examples of stone axes have been found, with 

their source commonly acknowledged to be the 'Langdale axe factories' (Smith, 1992), 

where volcanic tuffs provided the raw materials for production. 

Pottery remains are also scarce from the North Tyne basin during this period. A single 

piece of Neolithic pottery (Peterborough ware: see Burgess, 1984) has been recovered 

from very close to the site at Brownchesters, approximately 1 km downstream at 

Heatherwick. This was excavated from a circle of stones that has subsequently been 

destroyed (Charlton and Day, 1976). Again, the area around Milfield contains a more 

complete record, with Early Neolithic pottery discovered at Thirlings dating to ca. 3280 

Be (Miket, 1976, 1987) and similar material also found at nearby Ford (McInnes, 

1969). The excavation by Greenwell of an Early Neolithic long cairn on nearby 
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Broomridge has also produced a large amount of pottery sherds (from Waddington, 

1996). Grimston Ware pottery (el Miket 1987) has also been excavated from the 

'Coupland Henge'. This came from a context dating to 3800 BC, making it the earliest 

pottery discovered in Northumberland (Waddington, 1997, pers. comm.). 

Despite the relative scarcity of Neolithic (particularly Early Neolithic) archaeological 

evidence in the area, both the regional upland and local valley floor pollen diagrams 

have demonstrated a continuous human presence throughout this period. The upland 

diagrams (Figures 4.1-4.3) demonstrate a continuation of Late Mesolithic grazing 

practices associated with a progressive expansion of heathland vegetation in what 

appears to be an already fairly open environment. Valley floor pollen diagrams indicate 

a more sedentary form of agriculture based at least partially upon pastoralism, but 

including the cultivation of cereal crops. Woodland cover remains a significant 

component of the vegetation of the floodplains and valley sides and it is likely that 

small-scale arable agriculture took place within clearings in drier areas of the valley 

floor, such as upstanding late glacial gravel terraces. The discovery of a number of stone 

axes, worked flint and pottery in the vicinity of the valley floor at Brownchesters adds 

credence to this hypothesis. The pollen diagrams presented here support the indications 

of a relatively large Neolithic population, as suggested by the presence of long cairns in 

the area. The palynological results thus support the notion that the paucity of 

archaeological finds in the area is due to both a lack of systematic survey (Weyman, 

1984) and potential post-depositional geomorphological processes obscuring the 

evidence (Passmore and Macklin, 1997). 
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7.7 Population shifts in the Bronze Age 

The Bronze Age period saw a change in the nature of settlement and ritual practices in 

Britain at around 2000 Be. The period was not marked initially by the development of 

metal tools, but rather metal-based display objects, which had originated in the Late 

Neolithic ca. 2600 Be became more common. These tended to be based predominantly 

upon gold, silver, copper and tin, with stone tools dominating the Early Bronze Age and 

bronze tools not used until the Mid-Bronze Age ca. 1400 Be. The major features of this 

time were a move towards more sedentary settlement and an increase in the numbers of 

individual burials. 

Palynological records from the North Tyne basin demonstrate that despite an 

ameliorating climate in the Early Bronze Age (2nd Millennium Be) (Lamb, 1995) 

heathland expansion in the uplands continued unabated (Figures 4.1-4.3). This is 

consistent through all three upland pollen diagrams, although at Sells Bum the process 

seems to have been periodically checked, with limited regeneration of alder, birch and 

hazel scrub woodland. Elsewhere, tree cover declines markedly and at Drowning Flow 

there is a switch from heathland comprised of a variety of Ericaceous species to one 

dominated by Calluna vulgaris indicating a drying of the bog surface. The reasons for 

this is unclear, but modem studies demonstrate that grazing can have a significant effect 

upon the composition of heathland vegetation (Anderson and Yalden, 1981; Grant and 

Annstrong, 1993) which may have been compounded by climatic change. Two potential 

scenarios can be envisaged. Firstly, stocking levels of domesticated herbivores increased 

in response to demand generated by population pressures or secondly, intensification of 
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grazing occurred through year round usage associated with the improved and more 

stable climatic conditions. 

The first occurrence of taxa directly associated with cultivation also appear at around 

1000 BC in the diagrams from Drowning Flow and Bloody Moss, albeit at relatively 

low percentages. This rise is concomitant with a slight increase in the percentage of 

grasses and thus demonstrates an intensification of land utilisation within the uplands. 

This appearance of cereal-type pollen is not particularly unusual for this Late Bronze 

Age date. Indeed Davies and Turner (1979) found the first incidence of cereal pollen at 

precisely this date in the diagram from Steng Moss and also the inferred Bronze Age 

levels from the undated diagram from Broad Moss in the Cheviots. Likewise, Dumayne 

(1992) has found small scale cultivation occurring in the vicinity of Fozy Moss between 

ca. 1575 Be and 835 BC, and also further north at both Fannyside Muir between 1775 

Be and 1180 BC and also Cranley Moss between approximately 1650 Be and 1285 Be. 

Dumayne (1992) has attributed this to cultivation occurring within semi-permanent 

clearings over time periods of ca. 400-700 years. 

Pollen records from the valley floor study reaches are somewhat limited from this 

period, owing to a lack of palaeochannel fills dating to this time. The upper portion of 

the palaeochannel associated with terrace T6 at Brownchesters covers the early Bronze 

Age. Here there is a sharp rise in the quantity of anthropogenic indicator species, with 

the incidence of cultivated cereal taxa also increasing and becoming a constant presence 

in the diagram. It can be envisaged that the few cereal-type grains recorded within the 

upland cores represent small-scale cultivation of suitable environments in what would 

have been relatively marginal terrain. Cultivation appears to have been focused upon the 
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valley floors and lower valley sides, such as around the Brownchesters study reach, 

which would have been more conducive to arable agriculture. 

During this Early Bronze Age period, tree cover in the vicinity of the valley floors was 

relatively limited. Indeed, the presence of very high alder percentages are reflecting 

virtually in situ growth as indicated by the presence of clumps of alder pollen 

encountered on the slides during counting (Davis, 1989). The decline in alder 

percentages reflects, in part, the natural terrestrialisation of the palaeochannel, but the 

large increase in herbaceous taxa, particularly grasses, lends support to the notion that 

this reduction in alder percentages was abetted by human clearance. Of the other 

arboreal taxa only hazel is present in any significant quantities and this almost certainly 

coexisted as scrub within the areas of alder woodland. The valley floor and immediate 

valley sides can be seen to be a mix of woodland within damper areas, surrounded by 

pastoral and arable cultivation in the drier areas of the floodplain. 

The pollen diagram from this palaeochannel ends at a date of approximately 1600 BC, 

therefore not allowing any further insights into the vegetation of the later Bronze Age. 

However, the results from this Early-Mid Bronze Age context demonstrate that not only 

was there significant woodland removal in valley floor areas, but also that production of 

cereals was occurring on a greater scale than previously envisaged. Previous published 

diagrams from the area have suggested that these events occurred slightly later, either in 

the Iron Age or during Romano-British times (Dumayne, 1993a, 1993b; Davies and 

Turner, 1979). The combination of regional upland diagrams and local valley floor 

diagrams suggest that this is not the case and that deforestation and cereal production 
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have been occurring at least locally, for many millennia prior to conventionally accepted 

dates. 

In many respects this new palynological evidence supports the existing archaeological 

evidence of cultivation (Gates, 1982). Topping (1989) has mapped incidences of cord 

rig and cultivation terraces throughout Northumberland and the Borders, with a 

noticeable concentration in the vicinity of Redesdale. These agricultural archaeological 

remains tend to survive primarily in the uplands of the region, where disturbance in 

subsequent periods has been minimal. As a result of this, cord rig remains are likely to 

be a gross under-representation of the area formerly under plough (Topping, 1989). 

Although the dating of these prehistoric agricultural features is frequently difficult and 

they are commonly ascribed to the Late Bronze Age I Iron Age period, there is some 

evidence from Perthshire (Barclay, 1983) to suggest that narrow ridged cultivation was 

taking place in the Early Bronze Age. Indeed, Mercer and Tipping (1994) have 

identified a phase of soil erosion from the Cheviot Hills dating to the Early Bronze Age, 

consistent with the advent of extensive farming practices and Macklin et aI., (1991) 

have also identified evidence of Late Neolithic to Bronze Age activity from sediments 

on Callaly Moor, near Rothbury, Northumberland. 

The cessation of sediment accumulation within this palaeochannel, and the absence of 

any immediate succeeding examples, prevents the direct comparison of this 

environment of the Early-Mid Bronze Age with that of the later Bronze Age and Early 

Iron Age. This is critical, as it would provide an indication of the environmental 

conditions associated with the worsening climate of this period and would demonstrate 

the influence of climatic fluctuations upon agricultural practices within these relatively 
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marginal areas. Although this is highly conjectural, it may well be that the reason for the 

absence of palaeochannels within this study reach is precisely the fact that climatic 

conditions did deteriorate. This may have led to an enhanced level of fluvial activity 

within these valley floor areas and as a result the reworking of channel and terrace forms 

during this period. 

Archaeological evidence of Bronze Age activity within Tynedale and indeed 

Northumberland more generally is far more extensive than that of the preceding periods 

of prehistory. Conclusive evidence of Bronze Age activity exists in Redesdale with the 

extensive settlement at Todlaw Pike, on the Otterburn Training Area. This site consists 

of 2 I 3 timber round houses, a small cremation cemetery, burial and field clearance 

cairns and a broken cup-marked stone (Charlton, 1996). Further Bronze Age huts can be 

found on Hillock, Wholehope Knowe and near Barrow Cleugh, all within the Otterburn 

ranges (op cit.). Excavations at Hallshill (Gates, 1983), close to East Woodburn and 

overlooking the River Rede, have revealed a Late Bronze Age I Early Iron Age timber 

roundhouse which has heen the focus of a substantial volume of work, including 

detailed archaeobotanical analysis (van der Veen, 1992). These unenclosed settlements 

date from the mid-second millennium BC, if not the Early Bronze Age (Burgess, 1984) 

to just after the mid-first millennium BC (Johey, 1985) (Figure 7.3). They are often 

associated with field plots and extensive cairnfields, such as those at Todlaw Pike and 

Black Stitchel on the Otterburn Training Area (Charlton, 1996). 

Extant monumental remains of the Bronze Age period in Redesdale include the 'Three 

Kings' stone circle on the valley side above Cottonshopeburnfoot. This feature, dating 

to the Early Bronze Age, actually consists of four standing stones (one having collapsed) 
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and is of a type consistent with 'four posters' more regularly found in Perthshire, 

Scotland (Burl, 1971). In addition, The Goatstones, lower down the North Tyne valley is 

a similar feature, dating to the same Early Bronze Age period. Bronze Age pottery, in 

the form of food vessels and urns, in this part of Northumberland are relatively scarce 

(Gibson, 1978). Examples are mainly associated with burial practices and funerary 

monuments (Higham, 1986) containing either cremated remains or perishable grave

goods. 

7.7.1 Upland I Lowland Population shifts in the Bronze Age 

Burgess (1984, 1985) has used an apparent hiatus in the dates of late-Neolithic I Early 

Bronze Age settlement on the Milfield plain to suggest that this period saw a huge social 

and spiritual upheaval in Northumberland. He suggests that rising populations were 

creating adverse effects on the productivity of fragile soils and that as a consequence 

lowland settlement was abandoned and Early Bronze Age communities lived 

predominantly in the uplands. A more favourable climate at this time (Lamb, 1981) is 

argued to have facilitated a longer growing season and hence 'making it possible to 

cultivate cereals at over 400 metres' (Burgess, 1985; p. 200). Waddington (pers comm) 

has questioned this hypothesis on the basis of recent evidence for Early Bronze Age 

occupation in the Milfield plain, provided by the Lookout Plantation settlement 

(Monaghan, 1994) and re-use of the Coupland Enclosure also dated to this period. A 

further argument is that the apparent concentration of Bronze Age settlement in the 

uplands is purely a result of preservation bias between upland and lowland 

environments. Additionally, Tipping (1996) has suggested estimates of the extent of 

Neolithic settlement in the Cheviot uplands have been under-represented by the 
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archaeological record. Therefore, the apparent Bronze Age exodus to the uplands as they 

apparently became much more attractive to human communities is not necessarily a 

genuine distribution, but an artefact of archaeological survey, preservation bias and 

theoretical standpoint (Tipping, 1996; Mercer and Tipping, 1994). 

The palynological results presented here, whilst not resolving debates surrounding 

settlement, suggest that the lower-lying river Valleys continued, and increasingly, 

became the focus of arable cultivation and were not, as Burgess suggests, non

productive as a consequence of preceding Neolithic farming practice. Similar results 

have been found at Burnfoothill Moss by Tipping (1995b) who suggests that although 

farmers moved into the uplands, this was an expansion from, rather than an 

abandonment of the lowlands. In addition, Burgess' (1984) premise that this Bronze 

Age activity represented the first incursion by human populations into the uplands of the 

Cheviots also seems in doubt. The upland diagrams presented here suggest that 

clearance of forests and expansion of heathlands began far earlier than the Bronze Age, 

although it must be conceded that the process was accelerated during this period. Other 

pollen diagrams in the region, as Young and Simmonds (1995) have already pointed out, 

do not manifest this apparent translocation of population. Steng Moss (Davies and 

Turner, 1979) does not register the hypothesised sudden influx of people into the area, 

with pollen curves all demonstrating a smooth profile and Dumayne (1992) has found 

no evidence of large-scale changes in the vegetation associated with this apparent shift 

in settlement. 

A second facet to Burgess' (1984) upland-lowland hypothesis is the subsequent 

abandonment of the uplands at the beginning of the first millennium BC, associated 
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with a climatic downturn. This climatic event is manifested in proxy climatic records 

from Bolton Fell Moss, Cumbria (Barber et al., 1994) where macrofossil evidence 

indicates a shift from Sphagnum section Acutifolia to S. imbricatum indicating a wet 

period. Evidence for this event is also somewhat fragmentary, although the Hallshill 

unenclosed settlement site in Redesdale, excavated by Gates (1983), provides some of 

the most securely dated contradictory evidence (Young and Simmonds, 1995). This site 

spans a wide-range of dates (ca. 1200-600 BC), which have been attained from charcoal 

from post-holes and hearth deposits (Gates, 1983). Recently, van der Veen (1992) has 

obtained further dates from carboni sed seeds from the Hallshill site which calibrate to 

1200 BC and has also demonstrated the presence of cereals at the beginning of the first 

millennium BC. This demonstrates that this site was not abandoned and as Gates 

(1983), has suggested, there is no archaeological evidence to indicate that upland 

desertion occurred early in the first millennium as a consequence of climatic change. 

Indeed, Jones (1981, 1984) has suggested that during the first half of the first 

millennium BC there was an increase in the scale of arable production, caused by rising 

populations and a reduction in soil fertility. 

The pollen records in this study all have the benefit of radiocarbon dates which lie at 

and around the first millennium BC, although a minor calibration plateau means the 

dates have a relatively wide range (Appendix 10.1). At this time, both Sells Bum and 

Bloody Moss show an increase in Poaceae accompanied by notable rises in Plantago 

lanceolata and other anthropogenic indicator taxa such as Ranunculaceae and Rumex 

spp. Both diagrams also begin to record significant quantities of Cyperaceae pollen, 

indicating changing surface moisture conditions. This is associated with a general trend 

of increased cover of heathland, although in both cases this is periodically interrupted by 
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small regeneration phases of Coryloid type vegetation. At Drowning Flow minor 

regeneration of hazel also occurs, but this is concomitant with the first indications of 

upland cereal cultivation and the appearance of small percentages of a number of 

herbaceous taxa. In summary, the three upland diagrams do show significant changes in 

vegetation composition at around this time but not, as Burgess (1984) has suggested, an 

abandonment of these higher altitudes. In all instances the alterations in vegetation 

suggest an increased level of anthropogenic impact in the uplands during this Late 

Bronze Age period and this is a pattern which continues into the Iron Age. 

7.8 The Pre-Roman Iron Age in the North Tyne basin 

The early part of the Iron Age period is believed to have had witnessed immediate 

impact upon the societies living in Northern Britain, who remained rooted in Bronze 

Age traditions (Cunliffe, 1974). Iron Age archaeology is abundant within the North 

Tyne basin and includes a number of unenclosed settlements (Jobey, 1985), palisaded 

enclosures (Burgess, 1985; Jobey, 1965) and hillforts (Jobey, 1965, 1966). These 

settlement types are frequently stated to belong to successive generations and although 

the chronological definition of this model has become somewhat blurred and 

overl~pping with the advent of radiocarbon dates, the general pattern of development 

does still hold true (Figure 7.3). 
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Figure 7.4: Generalised Model of Bronze Age· Iron Age Settlement Development 

This evolution of settlement type from the Late Bronze Age through the Early Iron Age 

period has been attributed to increased population pressures brought about by climatic 

deterioration, increased clearance and need for more defensive situations (Jobey, 1985). 

Unenclosed settlements, such as that at Hallshill (Gates, 1983) have already been 

discussed with respect to Bronze Age communities in the North Tyne basin. This form 

of settlement has been recognised principally through the advent of radiocarbon dating 

and have been found to range between approximately 1200-600 Be. The discovery of 

these settlements has supported and helped account for the numerous examples of Late 

Bronze Age burial cairns that are present in the upland areas of the region (Gates, 1983). 

Subsequent paHsaded enclosures date from approximately 900 Be onwards and can be 

found in a variety of locations. Several palisaded enclosures have been excavated in 

North Tynedale prior to the construction of Kielder Water (Jobey, 1973, 1977, 1978; 

Jobey and Jobey, 1988). These settlements, particularly at Gowanburn which is located 

on an upstanding river terrace (Jobey and Jobey, 1988) and that at Belling Law which is 

on a riverine spur (Jobey, 1977), illustrate the importance of riverside settlements to 

prehistoric groups. The Iron Age / Romano-British site at Kennel Hall Knowe has al 0 

produced one of the few examples of Mesolithic flint from the area, again emphasising 

the usage of certain sites for many millennia. Significant proportions of palisaded 
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enclosures in Northumberland underlie later hillfort structures, indicating a direct line of 

settlement evolution through time at specific localities. 

The distinction between hillforts and settlements is frequently slight, due to both being 

used for habitation while not all hill forts occupy positions of outstanding natural 

defence (Jobey, 1965). There are two small adjacent defended enclosures / hillforts 

overlooking Redesdale at Fawdon Hill and Colwellhill immediately northwest of 

Otterbum village (Jobey, 1965). Whilst these examples are extremely proximal to the 

sites in this study, some of the best examples of these defensive structures lie a little 

further afield. Lordenshaws hillfort (Topping, 1991) is strategically located on a locally 

prominent spur of the Simonside Hills looking out over Coquetdale and east towards the 

coast. Adjacent to this site there are a number of examples of prehistoric rock art carved 

into the outcropping Fell Sandstones (Beckensall, 1983), demonstrating the importance 

of these areas for multiple periods of human occupation. Harehaugh hillfort is nearer to 

the North Tyne basin, lying at the foot of Upper Coquetdale adjacent to the confluence 

with Grasslees Bum. Another site, Warden Law, overlooks the confluence between the 

North and South Tyne Rivers, illustrating the importance of strategic location. One of 

the largest examples of a hillfort in Northumberland can be found at Yeavering Bell, 

overlooking the Milfield plain. This earthwork, which contains some 130 hut circles 

(Jobey, 1965), along with further forts located some 16-22km apart (Jobey, 1965) 

illustrates the level of population within Northumberland during this period. Indeed, the 

density of hill forts in the region is far greater than most other areas of Britain (Clack and 

Gosling, 1976), indicating not only the necessity of these protected settlements but also 

the possibility that they were occupied for extended periods of time. The relative paucity 

of such settlements south of the River Tyne suggests that this landscape boundary also 
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formed a significant cultural divide in the later prehistoric period (Clack and Gosling, 

1976). 

The Iron Age is generally assumed to be a period when population levels were rising 

rapidly and consequently utilisation of the landscape for agriculture was intensified 

(Topping, 1989). Evidence of extensive Iron Age agricultural practice is witnessed by 

cord rig field systems throughout the uplands of the North Tyne Basin, particularly in 

Redesdale (Topping, 1989). Further examples of this form of cultivation are being 

discovered as more areas are surveyed and excavated, such as at the scooped settlement 

of Barracker Rigg (Charlton, 1996) within the Otterbum Military Range (LUAU / 

NUAP, 1997). Direct evidence for pastoralism is less plentiful, with relatively few 

faunal remains precluding the reconstruction of livestock populations (Higham, 1986). 

Of the remains found, cattle, goat, pig, ox, horse and sheep are the most common, 

although differences in assemblage are apparent between sites in the region (cj. Jobey, 

1973, 1978, 1982, Heslop, 1983). These faunal remains do, however, suggest that 

grazing levels are likely to have intensified during this period. Indeed, all the upland 

pollen diagrams from this study appear to reflect an increased utilisation of the 

landscape for grazing purposes at this time, a pattern that originates in the Late Bronze 

Age (Figures 4.1-4.4). At Drowning Flow, intensified grazing activity appears to be 

manifested by a large increase in the number of Pteridium spores recorded within the 

core. This suggests that areas of upland Calluna heathland were either being overgrazed 

or overbumt (to facilitate new growth for grazing). Either of these processes would have 

given Pteridium a competitive advantage over Calluna due to its un-palatability for 

grazing animals and deep rhizome system allowing rapid re-growth following fire 

(Hobbs and Gimingham, 1984). At both Sells Bum and Bloody Moss, the impact of 
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grazing is suggested by increases in grass species, allied with the occurrence of 

herbaceous taxa associated with pastoral agricultural practices, such as Ranunculaceae, 

Rumex spp., Potentilla, Chenopodiaceae, Plantago lanceolata (Behre, 1981). 

There is an absence of Iron Age pollen records from the valley floor of Redesdale due to 

the lack of suitably dated palaeochannel infills. A date of ca. 395 BC has, however, been 

returned from wood eroding out of the base of a contemporary section of bank on the 

River Rede at Brownchesters (Terrace T7) thereby dating the onset of the terrace 

formation (Figure 5.9). In North Tynedale the only palaeochannel to have so far yielded 

suitable organic sediment for dating and palynological analyses has a chronological 

range covering the Iron Age dating to between ca. 757 BC and 1260 AD (Moores et al., 

1998; Passmore, 1994). This valley floor diagram indicates an almost complete absence 

of trees during this period, with uncharacteristic peaks in both alder and willow 

percentages at a later date reflecting in situ development of these tree taxa. From this it 

can be said with some confidence, that valley floor woodlands in this area of North 

Tynedale had been cleared prior to the Iron Age. In addition, the diagram shows an 

extremely high level of anthropogenic indicator taxa, attaining values in excess of 40% 

during the Iron Age. This, in combination with the occasional occurrence of cereal 

pollen, indicates that this valley floor and immediate valley-side environment was being 

managed for a combination of pastoral and arable agricultural practices (Moores et al., 

1998). Iron Age human activity is also attested by the recovery of a worked wooden 

plank, which has provided the date 757-210 Be from close to the base of this channel 

(Passmore, 1994). 
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7.9 Existing pollen diagrams in the region and the impact of the 

Romans 

Pollen diagrams from the region have been the focus of much debate with respect to the 

impact of Iron Age societies relative to that of the Romans who invaded in Northern 

Britain between AD 71-83 (Higham, 1986; Keppie, 1986; Breeze and Dobson, 1987). 

Widespread forest clearance in this area of Northern Britain is believed to have occurred 

either during the Iron Age or Romano-British periods. Early hypotheses suggested that 

forest removal was principally a Roman phenomenon and that the invading forces had a 

dramatic effect upon the vegetation of the region (Davies and Turner, 1979; Turner, 

1979). This hypothesis has subsequently been refined and includes suggestions that the 

area was deforested and utilised for farming from the late pre-Roman Iron Age 

continuously throughout the Roman period (Turner, 1979). Alternative views suggest 

that within certain localities Iron Age deforestation was minimal and Roman troops 

initiated the first major clearance episodes for military rather than agricultural purposes 

(Dumayne, 1993a, 1993b). Thus, while pollen diagrams have indicated marked spatial 

differences in the removal of forest cover of the region (Dumayne, 1992), debate still 

exists as to precisely when forest removal began and the extent to which the Romans 

were responsible for an alteration of the landscape into which they invaded. 

7.9.1 'Problems' with existing pollen records from the North Tyne basin 

The two diagrams most pertinent to this study of the vegetational development of the 

North Tyne basin are (as mentioned in Chapter 1) Steng Moss (Davies and Turner, 

1979) which lies on the interfluve between the Rivers Rede and Wansbeck, and Fozy 
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Moss (Dumayne, 1992; 1993a, 1993b; Dumayne and Barber, 1994) outside the North 

Tyne catchment close to Hadrian's Wall (see Figure 1.1). Both these diagrams have 

primarily focused upon the issue of the impact of the Roman troops on the vegetation 

and the Iron Age landscape into which they invaded. Both diagrams have limitations 

associated with their interpretation and the manner in which the data is displayed. A 

third paper (Manning et al., 1997) has also attempted to address this debate and will also 

be discussed. 

7.9.1.1 Steng Moss 

The pollen diagram from Steng Moss (Davies and Turner, 1979) has been generated 

from a 7.35m peat core which covers the period from just prior to the elm decline up to 

the present day, with most samples spanning Late Bronze Age to Early Anglian times. 

The diagram has a total of 7 radiocarbon dates and a proxy date at elm decline levels. 

This diagram is, however, somewhat misleading, due to the manner in which pollen 

percentages have been calculated, four key interconnected points can be identified. 

1. The herbaceous taxa have been calculated as percentages of the total tree pollen, as 

opposed to the now conventional way of expressing their quantity as a percentage of 

the total terrestrial pollen. This has meant that individual herbaceous taxa are 

relatively over-represented with species such as grasses showing peaks of over 

300% and individual tree pollen types reaching far greater levels than they would if 

the diagram had been calculated as is now standard practice. 

2. In addition, Calluna has been included as a 'bog species' and as a result is excluded 

from the percentage calculations along with the aquatic species. The reasoning that 
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Davies and Turner (1979) provide is that this species was growing upon the bog 

surface along with assorted sedges and Sphagnum species. This is undoubtedly true, 

however. the ecological requirements of Calluna are such that it also extremely 

likely to have occupied other areas of the surrounding landscape from which the 

arboreal pollen grains are also derived. This has important implications for the 

interpretation of the diagram. For instance. Calluna values at levels dating to ca. 

1200 BC reach almost 100% of the arboreal pollen sum, and would. therefore. if 

calculated using the methods employed in this study represent approximately 50% 

Calluna coverage and a significant degree of open heathland landscape. Likewise. 

peaks in Calluna at a date ca. AD 100 would not be so pronounced and would only 

represent in the order of 70-80% on one of the diagrams presented here. 

3. This calculation is further amplified by the fact that Coryloid type is also excluded 

from the tree pollen sum. This. however. is fairly standard practice as this species 

can frequently occur as an understory scrub (Huntley and Birks, 1983) and is thus 

grouped with shrub taxa. However, the exclusion of Coryloid type from the total 

upon which all other percentages are based has the effect of further exaggerating tree 

pollen curves. This occurs at the expense of species that are more likely to have 

persisted within an open landscape and thus provide a very different picture of the 

prehistoric landscape than the one that is advocated here. 

4. A further potential problem with the diagram is the estimated rates of peat 

formation. which increase dramatically at a date around 800 BC to levels in excess 

of six times the average for the sedimentary sequence as a whole. Davies and Turner 

(1979: p793) cite 'the widespread climatic deterioration that is thought to have 
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culminated at this time' for the increase in peat accumulation rates. However, this 

figure is far in excess of any other measures of ombrotrophic peat development from 

elsewhere in the region (which are on average just 14 years cm -\ : Barber et al., 

1993). Other diagrams which Davies and Turner (1979) present from 

Northumberland within the same paper do not show this marked increase, which 

may be expected if it were a climatically driven phenomenon. Also the sedimentary 

log associated with the core does not show any signs of an increase in rate at this 

point, which would perhaps be indicated by the peat mass becoming less humified 

(Barber, 1985). There is also no apparent increase for other periods of climatic 

deterioration within the core, although it could be argued dating of these periods is 

not at sufficient resolution to determine this. It seems more likely that there is the 

possibility of erroneous radiocarbon dates within this sequence, although the reasons 

for this remain difficult to elucidate. 

It can therefore be seen that the Steng Moss diagram relatively under-represents possible 

impacts of early human cultures upon their environment which may be manifested by 

heath land expansion. Widespread clearances are also over-represented due to herb 

pollen calculations which emphasise later prehistoric forest removal during the Roman 

period. 

7.9.1.2 Fozy Moss 

The diagram from Fozy Moss has been generated from a three-metre peat core covering 

the period from the Early Neolithic to the present, with the Roman period being the 

focus of the study. The diagram contains three radiocarbon dates, and it is partially this 

factor which is critical to the adequate interpretation of the pollen sequence. Dumayne 
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(1992) has carried out high-resolution palynological analysis of the period around the 

time when Roman troops invaded northern Britain. However, chronological control of 

this portion of the diagram is provided by a radiocarbon date of AD 185, with a linear 

interpolation between the other two dates in the core. These dates are 900 cal. years and 

1390 cal. years respectively away from this Roman date and thus the assumption of a 

constant sediment accumulation rate over this period is somewhat doubtful. Whilst this 

is a perennial problem for palynologists, the unquestioning application of this technique 

over this period, where a plateau in the dendrochronological calibration curve exists and 

hence dating ranges are relatively large, complicates the refinement of the vegetation 

record. Dumayne et al., (1995) acknowledge this inadequacy in their dating scheme 

from Fozy Moss and have used the presence of a minerogenic inwash layer which 

occurs concomitant with the decline in arboreal cover as evidence for the building of 

Hadrian's Wall and not as a result of deforestation per se. The palynological record that 

Dumayne and co-workers present is not in question, however, to suggest that this 

mineral layer is Roman because it relates to the building of the wall is circular 

reasoning. The mineral layer almost certainly relates to the deforestation of the area, 

although its origin within a raised mire system is also questionable, but this 

deforestation has not been adequately demonstrated to be Roman. 

Dumayne et al. (1995; p119) also selectively use the archaeological evidence to 'suck 

the date to that event' citing 'the scarcity of archaeological evidence' (Dumayne and 

Barber, 1994, p167) from the Neolithic, Bronze Age and Early Iron Age in the area. 

This paucity of archaeological evidence from the early prehistoric is simply not the case, 

with multi-period features occurring within just a few kilometres of the site at Fozy 

Moss. Goatstones four-poster stone circle (Burl, 1971) lies just three kilometres north of 
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Fozy Moss and dates to the Early Bronze Age. The stones used also contain cup and 

ring marks, an example of the re-use of decorated rock outcrops from earlier periods that 

is a frequent phenomenon in stone monuments dating from this time (Higham, 1986). A 

second stone circle lies just 2 km west of Fozy Moss, dating to the same period, along 

with a number of Bronze Age cairns on the adjacent King's Crags and also a tumulus 

immediately to the south of the wall ca. 2 km from this site. There is also an example of 

a pre-Roman boundary which is cut by the ditch associated with the wall, a type of 

unlikely to be associated with a wholly forested environment (Waddington, pers comm). 

Another set of pre-Roman earthwork boundaries is known at Sycamore Gap, near Crag 

Lough (Crow, pers. comm.) that are overlain by the Roman Military Way and which are 

now buried at their southern end by peat bogs. This indicates division of the landscape 

for agricultural purposes and thus a cleared environment. Further evidence for 

agriculture within the corridor of Hadrian's Wall comes from cord rig agriculture that 

underlies the Roman camp adjacent to Greenlee Lough, this relationship has been 

established through excavation (Welfare, 1985) although it is difficult to establish the 

late Iron Age origin of these features. Further afield, to the east of Haltwhistle Burn 

fortlet more cord rig is overlain by a temporary Roman marching camp, suggesting Iron 

Age agriculture. Warden hillfort, is also relatively proximal and is a prime example of 

an Iron Age settlement in the vicinity. This all suggests that pre-Roman archaeology in 

the area is not as scarce as Dumayne and Barber (1994) highlight and that the Romans 

were faced with a relatively open landscape that was already being fairly intensively 

utilised for agricultural purposes. The evidence suggests that the area was, in fact, a 

place where activity was concentrated given that many examples of earlier prehistoric 

archaeology are likely to have been destroyed during wall construction due to stone 

robbing and increased activity in the area associated with the vici. Furthermore, if the 



238 

area was entirely forested then why was the wall built in the location that it now 

occupies? The defensive benefits of the Whin Sill are obvious, but if the area were 

covered in dense woodland, the River Tyne itself would have surely afforded more 

protection from native tribes. 

Similar criticisms to the ones voiced here have already been levelled at the conclusions 

of Dumayne and Barber (1994). Indeed, McCarthy (1995; 1997) has highlighted the pre

Roman archaeology of the area around Carlisle and the Lower Eden valley in the 

context of palynological results from Glasson Moss, Walton Moss and Bolton Fell 

Moss, which suggest a similar pattern of forest removal. The conclusions of Dumayne 

and Barber (1994) are thus, in some ways, symptomatic of the concentration upon 

Roman archaeology in the region (Higham, 1986, Young, 1994). The pollen evidence 

Dumayne (1992) and Dumayne and Barber (1994) presents are convincing, and there 

appears no doubt that major vegetation changes did occur around this time. However, to 

ascribe the impact purely to invading Roman forces, on the basis of an insecurely 

established radiocarbon chronology is misleading. 

In common with Davies and Turner (1979), Dumayne (1992) has also excluded the 

pollen of Ericaceous species (including Calluna) from the total pollen sum, citing the in 

situ growth of the taxa as the reason for its exclusion. This leads to a percentage over

representation of the tree species, which gives an impression of the landscape being 

largely forested where it may have consisted of a significant proportion of heathland. 

Had the Ericaceous species been included in the pollen sum, conclusions drawn about 

the lack of impact that earlier prehistoric peoples had upon the landscape may have been 
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significantly different, as heath species constitute approximately 20% of the total pollen 

for much of the pre-Roman period. 

7.9.1.3 Vindolanda Ditch Fills 

Manning et al., (1997) have utilised two ditch fills at the Roman fort of Vindolanda, 

close to Hadrian' s Wall to attempt to overcome the chronological problems of 

reconstructing vegetation histories during this period. These ditches have been precisely 

dated, on the basis of archaeological evidence, to ca. AD 85-92 and ca. AD 160-180 

respectively. Manning et al., (1997) have used pollen evidence to demonstrate that 

clearance in the vicinity of Vindolanda occurred prior to ca. AD 85 and this was likely 

to have been a native rather than Roman phenomenon. Whilst the conclusions that 

Manning et al., (1997) present are convincing and appear to be supported by the results 

of this study, the manner in which they have been derived appears to be flawed. Three 

key points can be identified. 

Firstly, ditch fills of this size are generally expected to receive a predominantly local 

pollen input (Tauber, 1965; Jacobsen and Bradshaw, 1981; Prentice, 1988), a fact which 

Manning et al. (1997) acknowledge and discuss. They cite the herb pollen present as 

being agrarian assemblages rather than ones that could be derived from close to 

buildings. This distinction is vague as many species indicate anthropogenic disturbance 

and cannot be accurately assigned to such specific land-use categories. Additionally, one 

would expect that sediments from within an occupation site would contain pollen 

indicative of clearance and anthropogenic activity. This would most likely be the case 

even if the ditch fill were receiving pollen from a greater source area. Finally, if the 

pollen were derived from a greater distance, species such as Calluna, indicative of the 
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clearance of which Manning et al., (1997) hypothesise, would be represented in greater 

quantities within the ditch. 

Work by the author (Moores, unpublished; Crow, 1997) on organic ditch fills at High 

Rochester, Redesdale have revealed very similar pollen assemblages. These samples are 

characterised by very stable vegetation, with high pollen diversity indicating a 

combination of pastoral and arable agricultural practice in the vicinity of the fort. 

Dating, and indeed the resolution of these samples, is not as tightly constrained as the 

sedimentary sequence at Vindolanda that Manning et aI., (1997) present. However, the 

results indicate a local presence of Calluna vulgaris, demonstrating that this species is 

not exclusively a bog plant. Tree pollen percentages, particularly alder and birch, are 

fairly consistent with the regional diagrams and it could be interpreted that this is 

indicative of the small ditch fill being representative of the wider region, sensu Manning 

et al. (1997). However, these species are particularly prolific pollen producers 

(Anderson, 1970) and may simply originate from an isolated local stand of these species 

of trees. 

7.9.2 Interpretation of data presented here 

Having outlined the differences in interpretation between the existing pollen diagrams 

within the region, on the basis of the various ways percentage pollen diagrams can be 

calculated, it is necessary to appraise the methods used in this study. Of particular 

relevance to the interpretation, is the inclusion of Calluna and undifferentiated 

Ericaceous species in the total terrestrial pollen sum. As already discussed, the inclusion 

of these species is based upon the likelihood that they grew in more areas of the 
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landscape than just the bog surface. This pattern is clearly visible today and is 

particularly prevalent within the Fell Sandstone areas of the region (Lunn, 1976). The 

fact that many of these species are likely to have been growing in situ means that they 

are undoubtedly over-represented in the pollen diagrams presented here. However, the 

in situ growth of a number of arboreal species within upland mire ecosystems is a 

common occurrence observable at many sites today. Davies and Turner (1979) cite the 

development of a birch dominated assemblage from one consisting primarily of alder as 

a consequence of changing mire surface conditions at Camp Hill Moss, 

Northumberland. Therefore, to selectively remove species that occupy far wider 

ecological niches than those present upon the bog surface is likely to lead to confusion. 

The over-representation of Calluna within the diagrams here is thus acknowledged, with 

the view that seeing the genuine vegetation pattern behind a single curve is far easier 

than attempting it for all arboreal species. Evans and Moore (1985) have examined the 

representation of Calluna vulgaris in modem surface samples, concluding that in areas 

where insect activity is minimal the plant produces far more pollen which is 

subsequently dispersed by the wind, meaning that Calluna pollen can be found far from 

its original source. 

7.10 Major Forest Clearance: an Iron Age I Romano-British 

phenomenon? 

The palynological records from the upland sites presented here can add little to the 

debate of the relative impact of the Romans versus the pre-existing native Iron Age 

communities. This is because they have not been counted to specifically elucidate the 

period in question, they too suffer from an inadequate number of radiocarbon assays and 



242 

the dates that are present suffer the same calibration problems. However, the diagrams 

do, as already discussed, provide a different perspective upon the vegetation history of 

the North Tyne basin. They suggest that deforestation of the uplands began far earlier 

than the Iron Age or Romano-British periods and that it was a progressive, as opposed 

to rapid process. 

In the diagrams from Bloody Moss and Drowning Flow the principle factor consistent 

with the hypothesis of forest clearance during this period is the onset of the decline in 

Coryloid type percentages. This species, which probably occupied the more marginal 

areas, may well have been cleared in response to increasing demand for pastoral 

agriculture to feed an expanding population and later the garrisons occupying the 

frontier zone around Hadrian's Wall. Indeed, the association with declining CoryJoid 

type percentages and the increase in levels of grasses is notable and suggestive of 

manipulation of the landscape for grazing purposes. At Drowning Flow there is a 

marked rise in the level of Plantago lanceolata pollen from a date of ca. AD 45-245, 

which supports this hypothesis of grazing within the uplands during the Roman period. 

Alder pollen levels do also decrease, however, this is impossible to confidently ascribe 

to Roman influence and part of a much longer term downward trend in the relative 

coverage of these species. 

The site at Sells Bum is just two kilometres to the northwest of Dumayne's (1992) site 

of Fozy Moss and demonstrates many of the same patterns of vegetation disturbance. At 

a depth of ca. 150 cm, likely to equate to either the Iron Age or Romano-British period, 

there is a marked decline in arboreal taxa. It could be postulated that this represents 

Roman impact upon the vegetation, but it should be noted that this sudden decline forms 
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part of a much longer-term trend of forest removal. The clearance is associated with an 

increase in percentages of Calluna, this may partially reflect local in situ vegetation 

fluctuations. Grasses also increase but due to the vagaries of percentage calculations 

never attain the levels found by Dumayne and Barber (1994). The results from Sells 

Burn indicate that an increase in the rate of forest destruction did occur in the late first 

millennium BC or early first millennium AD. However, the invading Roman troops did 

not invade into an area that was bereft of indigenous Iron Age communities and nor did 

they encounter an almost entirely forested landscape. Evidence of clearance was present 

in the area for many millennia prior to the Roman invasion and is witnessed within both 

the archaeological and palaeoecological records from the region. 

It should be noted that the Roman period did not appear to bring about any increase in 

the quantities of cereal pollen grains recorded within the upland cores. Indeed, the site at 

Sells Burn, which is the most proximal to the main area of Roman activity in the region, 

does not demonstrate any conclusive proof of cereal cultivation in the vicinity until after 

the Roman withdrawal. This suggests that Roman arable agriculture was no more 

extensive than that of the preceding indigenous Iron Age people. There is no doubt that 

cereal cultivation close to extant Roman structures was occurring, as witnessed by the 

presence of Hordeum pollen within the ditch fill at High Rochester. (Crow, 1997) 

However, this site is relative proximal to the valley floors and lower valley sides which 

would have been both more conducive to crop growth and easier to manage, given the 

volatile nature of the frontier zone. 
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7.11 Post-Roman Vegetation record 

As debates surrounding the relative impact of the Romans upon the vegetation of the 

region, so too the effect on the landscape following the withdrawal of troops has 

attracted much attention (Finberg, 1972). Dumayne and Barber (1994) have found that 

at Fozy Moss and Glasson Moss, woodland regeneration occurred, although this is 

limited to elements of scrub vegetation, principally Coryloid type. They postulate that 

the local economic and political structures of the area collapsed and that settlement in 

the frontier zone was abandoned. Conversely, Turner (1979) has found, through 

palynological methods, that agricultural practices continued until at least the sixth 

century. This has been assumed to represent a measure of political and economic 

stability after the Romans withdrew from northern Britain and a continuation of the 

same forms of farming techniques. Indeed, of the sites that Dumayne and Barber (1994) 

have analysed, Bolton Fell Moss and Walton Moss do not show this woodland 

regeneration. Consequently, it can be seen that there are marked regional differences in 

the recovery of woodland in the Hadrianic frontier zone following Roman withdrawal. 

The results presented here support this spatially variable hypothesis. Both Drowning 

Flow and Bloody Moss which are several kilometres north of the corridor of Hadrian's 

Wall do not show any forest regeneration in periods subsequent to those likely to 

represent Roman levels. However, these same diagrams never significantly registered 

Roman influence upon the landscape in the first instance and thus non-response to their 

departure is unsurprising. It is likely that these areas were covered by extensive 

heathland vegetation with some hazel scrub, the poor nature of the podsolised soils upon 

the sandstone uplands unsuited to the re-establishment of trees. Bloody Moss registers a 



245 

small drop in levels of grasses during this period, although the dating resolution is 

insufficient to ascribe this event confidently to the Roman withdrawal. The proximity of 

this site to the arterial route of Dere Street, the major road running north-south 

connecting York and Edinburgh, along with the major outpost fort at High Rochester 

and several camps, such as at Bellshiel, Birdhope and Silloans (Charlton, 1996) 

indicates the presence of the Romans in Redesdale. However, occupation of High 

Rochester fort in the later 4th Century has been postulated on the basis of pottery finds 

dating to this period (Crow, 1997). This contradicts previous evidence from High 

Rochester, as many archaeologists believe that wholesale abandonment occurred with 

the departure of the Romans (Casey and Savage, 1980). However, any occupation of the 

fort during this period was likely to have been significantly less than during the Roman 

presence in the region and thus a decline in agricultural practices appear likely. 

The site at Sells Bum, does register a small-scale and relatively short-lived phase of 

woodland expansion in what is presumably the period following Roman occupation. 

Coryloid type is the principal species that increases its coverage, although both Betula 

and Alnus also show small increases. This occurs at the expense of Calluna heathland, 

suggesting a revegetation of the better soils around Sells Bum. The fact that Calluna 

levels fall so sharply adds credence to the suggestion that this species occupied a far 

wider range of habitat than simply the bog surface itself. Admittedly arboreal taxa 

produce vast quantities of pollen, but this would not be expected to register so 

dramatically if the in situ Calluna were 'filtering' the signal. 

One of the most striking features of the pollen diagrams from the valley floor 

palaeochannel infills at Brownchesters is the presence of a prominent peak in the 
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presence of Avena-Triticum at a date of pre-ca. AD 685. The low pollen productivity 

(Anderson, 1970) and poor dispersal capabilities of this group of cereal crops has been 

the topic of much discussion with respect to discerning early prehistoric agriculture. 

Therefore, this abnormally high presence demonstrates the cultivation of oats I wheat at 

a large scale within the immediate valley floor. It is also likely to represent a marked 

shift away from previous regimes of subsistence strategy towards a more intensive form 

of agricultural production. Indeed, terrace surfaces adjacent to this and other 

palaeochannels contain evidence of broad rig agriculture which may be 

contemporaneous to the sedimentary infill. The association between this archaeology 

and the pollen record is by no means assured, as these features are notoriously difficult 

to date. 

Further pollen records from the valley floor sites are limited to the single diagram from 

Snabdaugh. Resolution, both in terms of pollen counting frequency and sediment 

accumulation rate at this time is poor. However, a decrease in the numbers of 

anthropogenic indicator taxa from approximately the Late Bronze Age continues 

throughout the Roman and Post-Roman period. This is associated with minimal levels 

of tree taxa, with the exception of those that are likely to have been growing in situ, 

namely Alnus and Salix. 

The interpretation of pollen records from this time must also consider changing climate 

patterns within the British Isles. Abandonment of agriculture within upland Britain may 

not have been driven by purely cultural forces and may have had a physical origin. 

Blackford and Chambers (1991) have found a shift towards a wetter climate, indicated 
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by blanket mire stratigraphic records, dating to ca. 600 AD. It may be this pattern which 

has forced the shift and concentration of agriculture within suitable areas of valley floor. 

Archaeology from this period is limited due to a paucity of diagnostic artefactual 

evidence (Charlton, 1996) and has resulted in records from this time being heavily 

dependent upon documentary sources for which interpretation is frequently difficult 

(Higham, 1986). A series of plagues are documented to have spread following Roman 

withdrawal, with outbreaks occurring in the mid-sixth and the late seventh / early eighth 

centuries (Higham, 1986). Evidence for habitation is minimal throughout this period in 

much of Northumberland, with the exception of Edwin's Palace at Gefrin (Yeavering) 

or the Grubenhausen (huts with sunken floors) in the Till valley (Charlton, 1996). 

Undoubtedly, this is once again most likely a consequence of a lack of survey and a 

concentration upon Roman archaeology within the region (Young, 1994). It is likely that 

many Romano-British settlements continued in existence long after withdrawal and 

Charlton (1996) highlights that only excavation can resolve this apparent archaeological 

hiatus. 

7.12 Early Anglian, Viking and Scandinavian Settlement in the North 

Tyne Basin 

Documentary sources suggest that these were turbulent times in the history of 

Northumberland and palynological analyses can do little to elucidate the economic and 

social processes at this time. Small fluctuations in the intensity of anthropogenic impact 

by this time become increasingly difficult to distinguish within the regional pollen 

record. The following discussion is thus somewhat speculative, particularly where 
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archaeological records are scarce and reliance is placed largely upon documentary 

evidence. 

Bloody Moss demonstrates a renewed increase in the levels of grasses at a date 

immediately prior to ca. AD 575-990. This is concomitant with an increase in cereal 

type pollen, which for the first time achieves a sustained, although small, presence 

throughout the remainder of the core. Sells Burn demonstrates a very similar pattern at 

approximately the same date, with a peak in Poaceae pollen and the first signs of any 

cereal cultivation from this site. This may represent the cessation of the area as a 

military zone and the establishment of more extensive farming practice in the vicinity. 

Any evidence of cereal cultivation at Drowning Flow ceases subsequent to the Roman 

period and cereal type pollen is not registered again within this profile. 

Valley floor sediments from this period are limited to infills from two contemporaneous 

channels at Brownchesters and the uppermost levels of the diagram from Snabdaugh 

Farm. The Brownchesters channels have been correlated on the basis of their 

morphology, relative height, sedimentary sequence and radiocarbon dating. One of the 

channels has not had palynological analyses carried out upon it due to time constraints; 

it is likely that this channel would also show the same general pattern of species. The 

analysed channel shows a fairly constarit level of anthropogenic activity within the 

valley floor areas throughout the period to approximately AD 1250. Percentages of 

arboreal taxa are fairly constant along with levels of Poaceae, anthropogenic indicator 

species and indeed cereals within the period dated ca. AD 665-1285. At Snabdaugh, 

levels of anthropogenic indicator species and cultivated taxa appear to progressively rise 

through this period, following a reduction in percentages in immediate post-Roman 
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times. This, however, is partially a consequence of the ontogeny of the palaeochannel 

system, as alder levels peak as the immediate environs become slightly drier. This has 

had a masking effect upon the levels attained by all other species within the diagram and 

thus this apparent reduction in anthropogenic activity may not be a genuine decline. 

It is difficult from this to build an accurate picture of the nature of the vegetation, but it 

would appear that agriculture continued to be concentrated in the lower altitude areas of 

the North Tyne basin. Anthropogenic interference with the natural vegetation seems to 

have remained at similar levels throughout this period with there being no indication 

that forest regeneration occurred either in upland or lowland areas. The resolution of the 

diagrams is possibly insufficient to register small, temporary changes that may have 

occurred as a result of the changing fortunes of the Northumbrian kings and Viking and 

Scandinavian settlers during this period, as summarised by Higham (1986). 

7.13 Mediaeval and later vegetation history 

Vegetation patterns within the North Tyne basin from this period are limited to results 

from upland pollen sites as no palaeochannel fills have been dated to this time. These 

suggest a continuation of earlier practices, with the uplands utilised primarily for 

grazing purposes and some limited arable agriculture presumably focused in valley floor 

and valley side areas. Documentary and archaeological records from North Tynedale 

also suggest that by 1300 AD much of the upper part of the valley had been developed 

for farming purposes (Charlton, 1987), with a similar pattern of exploitation envisaged 

for Redesdale. 
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Further archaeological evidence for this pattern of agriculture comes from the presence 

of shielings, which are widely distributed throughout North Tynedale and Redesdale. 

These temporary settlements housed herdsmen, whilst they were tending flocks in the 

upland summer pastures of the region. This suggests a similar agricultural scheme as 

proposed for the preceding post-Roman periods, where the uplands were utilised as 

seasonal pasture and the valley floors and lower valley sides were the location for crop 

husbandry. 

Settlement evidence during this period consists of numerous stone-built castles, such as 

at Otterburn, Elsdon, Troughend and Hesleyside (Charlton, 1987). There was thus a 

fairly high level of population within the area, concentrated upon the valley floors and 

lower valley sides. The evidence of cereal cultivation found at Brownchesters may thus 

relate directly to the occupation of Troughend and Otterburn castles, whose residents no 

doubt exercised considerable power over Redesdale. 

Later, in mid 16th Century Tynedale and Redesdale, fortified farmhouses (known as 

bastJes) were built in response to the activities of the Border Reivers (Charlton, 1987). 

These legendary people were lawless groups who would raid and pillage property and 

livestock either side of the Scottish border. Due to a collapse of local administration, 

local populations became vigilantes in the fight against criminals and anarchy reigned, 

with individuals responsible for meting out justice. This regime lasted for many years 

and resulted in the defensive nature of these individual settlements. Many of these are 

still standing, such as at Hole near Bellingham, Black Middings near Shipley Shiels and 

two at Gatehouse (Charlton, 1987) and were once widely distributed in the upper North 

Tyne and Rede Valleys. 
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In common with results from elsewhere in northern Britain, the upland sites presented 

here all demonstrate a marked decline in Corylus percentages at the top of the pollen 

sequence. This phenomenon has been dated to commence at ca. 1700 AD elsewhere in 

the region with an almost complete removal by ca. 1800 AD (Barber, pers. comm.). 

Here, interpolated dates from Sells Bum and Drowning Flow can be considered roughly 

parallel to this chronology, but the decline at Bloody Moss begins much earlier at ca. 

1200 AD. The reasons for the virtual disappearance of this species from the uplands of 

the region are not known, but may be related to climatic factors such as the Little Ice 

Age or intensified land-use within the uplands. 

7.14 Summary 

The palynological analyses from a variety of sedimentary contexts within the North 

Tyne basin, representing vegetation records over a range of spatial scales have provided 

new insights into the Holocene landscape dynamics of this area. The upland diagrams 

have provided regional vegetation records that have previously been absent for this area 

and have demonstrated patterns of land utilisation and human activity that contrast with 

previously published studies. The pollen diagrams derived from palaeochannel contexts 

have provided additional detail of local scale and potentially important valley floor 

environments over both over extended Holocene periods and also at relatively high 

chronological resolutions. They have highlighted the preferential use of lowland 

floodplain environments by generations of societies, but have in particular emphasised 

human activity during the Late Mesolithic and Early Neolithic periods. 
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Chapter 8 

Conclusions and recommendations for future research 

8.1 Conclusions 

Holocene land-use and vegetation landscapes in the North Tyne basin revealed by this 

study have been shown to contrast with previously published palynological results from 

the region. The combination of pollen diagrams from upland sites, which reflect 

predominantly regional-scale vegetation patterns, and alluvial valley floor sites with a 

mainly local pollen source, has facilitated detailed analyses of environmental changes 

and the assessment of a wider range of temporal and spatial scales than has hitherto 

been possible within North Tynedale, Redesdale and northern England. This 

combination of scales has also allowed the integration of Holocene vegetation patterns 

with archaeological evidence from the region, providing both the environmental context 

of former human cultures and an off-site perspective upon questions posed by the 

existing archaeological record of the area. 

Local-scale palynological records have been obtained from a series of organic-rich, 

relatively rapidly accumulating palaeochannel fills within an alluvial basin of the River 

Rede and an individual channel in North Tynedale. These newly identified sedimentary 

resources offer opportunities for providing little exploited records of valley floor 

environments within upland northern Britain. Therefore, these environments are likely 

to prove as valuable as those in southern Britain, in terms of reconstructing patterns of 

Holocene vegetation. These local-scale off-site palaeoecological records represent the 
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most effective means of evaluating former valley floor land-use and human activity and 

offer considerable potential for future research. Despite concerns, it has been 

demonstrated that coherent (cJ Brown, 1996) pollen records can be produced from this 

type of sedimentary environment and that the benefits of this approach for future 

palynological studies outweigh problems of pollen taphonomy which are not fully 

understood. 

8.1.1 Early anthropogenic impact upon the landscape of the North Tyne basin 

Existing palynological studies have recorded minimal anthropogenic vegetation 

disturbance in northern England pre-ca. 2500 BC, whereas the sites analysed here in the 

North Tyne basin, indicate interference began much earlier. It is believed that this is 

principally a function of site selection and the scale at which the vegetation record has 

been reconstructed, as opposed to the North Tyne basin having a unique landscape 

history. Upland sites reflecting regional vegetation demonstrate progressive woodland 

removal and replacement by heath from the Late Mesolithic onwards. Local-scale 

palynological analyses, meanwhile, have revealed convincing evidence of 

anthropogenic activity, particularly in low-lying valley floor areas, also since the Late 

Mesolithic period. This includes evidence of cereal cultivation upon drier alluvial 

terraces at a date of ca. 4000BC and which continues throughout the Neolithic period. 

This onset of arable agricultural practices is much earlier than regional diagrams have 

suggested and emphasises the importance of local-scale analyses for discerning small, 

temporary periods of human activity. These palynological results support recent 

archaeological evidence that is emerging from the region, particularly in north 

Northumberland, which suggests that the impact of human activity in the Late 
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Mesolithic / Early Neolithic period has been underestimated. Both the palynological 

work and archaeological evidence from the region support findings from elsewhere in 

Europe which indicate that openings within forested floodplain environments may have 

provided foci for the earliest farmers (van Andel and Runnels, 1995). The palynological 

results also suggest that systematic, carefully targeted geoarchaeological survey of the 

North Tyne basin may yield further corroborating evidence of the presence former 

human societies and their activities. 

8.1.2 Bronze Age settlement patterns 

Although to an extent archaeological evidence has already challenged hypotheses of 

shifts in upland-lowland settlement patterns during the Bronze Age in northern England 

(Gates, 1983; Young and Simmonds, 1995), palynological results presented here add 

weight to arguments against these altitudunal migrations. Upland pollen records dating 

to this period show a continuation of patterns of heathland expansion throughout the 

North Tyne basin, without the major alterations in vegetation composition that might be 

expected if there were movements of people to and from the area. Additionally, lowland 

diagrams suggest an intensification of valley floor human activity during the period 

when abandonment was supposed to have occurred. The postulated alterations in 

settlement location are thus believed to be a function of a fragmentary and frequently 

poorly dated archaeological record in the region. 

8.1.3 Roman impact upon the landscape of the North Tyne basin 

The impact of the Romans upon regional vegetation is a topic that has been the focus 

for considerable debate (Dumayne, 1992, 1993a, 1993b; Dumayne and Barber, 1994; 
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Manning et al., 1997; McCarthy, 1995). This study has demonstrated that forest 

clearance was a phenomenon that had its origins far earlier than the Iron Age or 

Romano-British period. Although the Romans inevitably had an impact upon the 

environment of the region, it would appear that they certainly did not encounter an 

entirely forested landscape and had only the effect of expanding the range of clearance. 

It is postulated, from upland pollen evidence, that this was undertaken to increase the 

range of grazing land. Pollen evidence from Sells Bum, which is the most proximal site 

to the Hadrian's Wall corridor, in contrast to results from Fozy Moss (Dumayne, 1992, 

1993a, 1993b) demonstrates no presence of cereal cultivation until after Roman 

withdrawal. Comparison of these results with published accounts in relatively close 

proximity, demonstrating how pollen records that represent different spatial scales may 

contain contradictory evidence of vegetation histories. 

8.1.4 Post-Roman vegetation dynamics 

Post-Roman vegetation records presented here are in accordance with previously 

published work which have suggested a spatially variable pattern of vegetation 

following Roman withdrawal. At Sells Bum limited and short-lived woodland 

regeneration does occur, whilst at other sites forest remains largely cleared. Later 

human activity within the North Tyne basin appears to remain focused upon the areas of 

valley floor. For instance, palynological records from palaeochannel sediments dating to 

the Dark Ages show large peaks in cereal cultivation that are consistent with fairly 

intensive agricultural practices. This suggests that wholesale abandonment of the region 

did not occur following the end of Roman rule and indicates native settlement remained 

relatively stable for several centuries. 
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8.1.S Summary 

This study has contributed to filling spatial and temporal gaps in the existing knowledge 

of Holocene landscape evolution and vegetation dynamics. Whilst, this has been by no 

means exhaustive, data presented here has helped to address a number of pertinent 

archaeological issues. Many of these issues have to some extent been overlooked in 

published palynological records from the region, due principally to an overt spatial and 

temporal focus upon the Roman period. This study has demonstrated that palynological 

evidence exists for early human activity within the North Tyne basin, and, in some 

respects has placed the onus upon archaeologists to conduct landscape scale surveys of 

the nature of that carried out by Waddington (1998) in the Milfield basin. However, 

geoarchaeological methods may also prove instrumental in discerning human activity 

due to the complications of post-depositional alterations of archaeological assemblages, 

particularly within valley floor environments. With the continued refinement of this 

multi-disciplinary approach to the reconstruction of former landscapes, the post-glacial 

history of the North Tyne basin may be better understood and appreciated. 

8.2 Future Research 

This study has utilised the potential of organic-rich palaeochannel sediments to yield 

high-resolution, locally detailed palynological records. The importance of these results 

in terms of their application and contribution towards providing relevant contextual 

environmental information for archaeological evidence has been demonstrated. Further, 

prospection of likely alluvial environments is necessary to extend existing knowledge of 

valley floor environments into areas where palynological records of this scale do not 
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exist. Using these techniques it may be possible to identify individual areas, which have 

an absence of local archaeology, but for which the pollen record provides indications of 

past human activity. 

These environments have also indicated that, due to the interdigitating of peat and 

coarse minerogenic sediment, records of Holocene flooding may also be discernible and 

more importantly dateable. Early indications suggest that these periods of flooding can 

be linked to documented alterations in global climate and also possibly to local 

anthropogenic interference with the vegetation. Multiple core studies using recently 

developed Stitz coring methods and an increased programme of radiocarbon dating may 

also facilitate the reconstruction of the frequency and magnitude of flood events. 

Results to date, however, have already prompted a re-examination of models concerning 

the timing and controls over periods of Holocene alluviation. Previous studies have 

suggested that the early-mid Holocene was a period of stability within upland Britain, 

with no documented episodes of cut-off or alluviation. Results presented here counter 

these conclusions, suggesting that at ca. 7500 BC and ca. 5000 BC two periods of 

enhanced fluvial activity occurred. 

Additional analysis of the technique for classifying deteriorated pollen grains may also 

be a valuable future avenue for research. Once again new coring techniques may aid 

these studies, as sub-sampling can be undertaken at sub-cm resolution under laboratory 

conditions. This will allow samples to be taken from a range of sediments derived from 

different palaeochannel conditions. Modem fluvial samples of water-borne pollen, 

during a range of river stages, may also provide additional information upon the 

technique of analysing deterioration states. 
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Many opportunities can, therefore, be seen to exist. Some of this work is already 

underway, with work upon flood histories at Brownchesters and other regional sites the 

subject of an ongoing PhD study in the Geography Department at Newcastle University. 

The extension of the application of palynological tools to other regional contexts is also 

beginning with funds being sought for work upon palaeochannel sequences at Thirlings 

and other areas of the Milfield basin. It is hoped that this PhD will facilitate further 

analyses of these environments in a regional sense and has flagged avenues that might 

be most beneficially explored within a wider British context. 
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Appendix 10.1: Details of radiocarbon dating assays for upland sites in this study 

Core Ref. Depth Lab Ref. Beta Code Date and S.D. (1 sigma) Calibrated Date 95% Midpoint Material 

(Beta) 

BM1 221-228 94632 BM1a 1290 + / - 11 0 BP AD 575 - 990 AD 705 Peat 

BM1 421-428 94633 BM1b 2900 + / - 70 BP BC 1285 - 900 BC 1045 Peat 

BM1 590-595 90754 BM1 4930 +/- 80 BP BC 3940 -3845,BC 3830 - 3620, BC 3700 Peat 

BC 3575 - 3535 

DF2 181-188 94634 DF2a 1880 + / - 50 BP AD 45- 245 AD 130 Peat 

DF2 305-312 94635 DF2b 2880 +/-70 BP BC 1265 - 855 BC 1020 Peat 

DF2 513-520 94636 DF2c 3940 + / - 70 BP BC 2590 - 2205 BC 2460 Peat 

DF2 721-728 94637 DF2d 6030 + / - 70 BP BC 5050 - 4805 BC4925 Peat 
• 

SB1 213-220 94638 SB1a 2800 + / - 50 BP BC 1045 - 825 BC925 Peat 

SB1 313-320 94639 SB1b 3490 + / - 70 BP BC 1965 - 1630 BC 1765 Peat 

SB1 449-456 94640 SB1c 5180 + / - 60 BP BC 4090 - 3925, BC 3875 - 3810 BC 3975 Peat 
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Appendix 10.2: Details of radiocarbon dating assays for valley floor sites in this study 

Terrace Depth Lab Ref. Beta Code Core Ref. Date and S.D. Calibrated Date 95% Midpoint Material! 

(Beta) (1 sigma) 

T3 146-156 119823 BCb BC5 8960 + / - 90 BP BC 8100 - 7900 BC 8005 Peat 

T3 242-250 96126 BC5a BC5 8510 + / - 70 BP BC 7595 - 7445 BC 7525 Wood 

T4 224-241 96127 BC6a BC6 6110 + / - 80 BP BC 5240 - 4825 BC 5030 Wood 

T4 80-95 119824 BCd BC6 4310 + / - 60 BP BC 3045 - 2870, BC 2795-2770 BC 2905 Peat 

T5 140-142 96124 BC4a BC4 3900 + / - 70 BP BC 2570 - 2145 BC 2400 Wood 

T5 340-350 96125 BC4b BC4 5110 + /- 80 BP BC 4055 - 3715 BC 3950 Wood 

T6 158-166 96122 BC2a BC2 3410 + / - 80 BP BC 1890 - 1520 BC 1690 Wood 

T6 337-340 96123 BC2b BC2 3910 +/- 80 BP BC 2585 - 2140 BC 2440 Wood 

T7 Base 80068 Brownc 1 Bank Section 2350 +/- 60 BP BC 200-800 BC395 Wood 

T8 75-90 119822 BCa BC3 1320 + / - 60 BP AD 635 - 865 AD 685 Peat 

T9a 50-56 96121 BC1a BC 1 730 +/- 60 BP AD 1215 - 1325, AD 1340- AD 1285 Peat 

1390 

T9b 130-135 90753 BC3 BCC3(2b) 650 +/- 80 BP AD 1245 - 1430 AD 1305 Wood 

T9b 210-220 90752 BC2 BCC3(2b) 1370 + / - 60 BP AD 600 -780 AD 665 Peat 

T? 145 111013 OTI5 Tom 3320 + -70 BP BC 1750 - 1430 BC 1605 Peat 

T? 185 111012 OTI4 Tom 2820 + / - 80 BP BC 1200 - 815 BC940 Peat 
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Appendix 10.3: Troels-Smith sediment log for Drowning Flow 

Depth Nig Mun Strf Elas Sicc Humo Composition 
0-12 3 10R1.7/1 0 1 2 1 Sh2, Tb1, Th1 
12-31 2 2.5R 212 0 2 2 0 Dh2,Th1,Tb1,Sh+ 
31-58 2 2.5YR 3/4 0 2 2 1 Tb3,Th1 
58-65 2 2.5YR 3/4 0 2 2 1 Tb2,Th2 
65-88 2 2.5YR 3/4 0 2 2 1 Tb3, Th1 
88-98 2 2.5YR 3/4 0 2 2 1 Th2,Th2 
98-122 2 2.5YR 3/4 0 2 2 1 Tb3, Th1 
122-145 3 7.5R 211 0 3 2 2 Tb3,Th1,Sh+ 
145-176 2 2.5YR 3/4 0 3 2 2 Tb3, Th1 
176-190 3 7.5R 211 0 3 3 3 Sh2,Tb1,Th1 
190-247 2 2.5YR 3/4 0 3 3 2 Sh1, Tb1, Th2 
247-254 2 2.5YR 3/4 0 3 3 2 Sh1, Tb2, Th1 
254-271 2 2.5YR 3/4 0 3 3 2 Sh1, Tb1, Th2 
271-298 3 7.5R 212 0 2 3 2 Sh1, Tb2, Th1 
298-370 2 2.5YR 2/2 0 2 2 3 Sh2,Tb2,Th+ 
370-380 2 2.5YR 2/2 0 2 2 2 Sh1, Tb1, Th2 
380-402 2 5YR 2/3 0 2 2 3 Sh2, Tb2 
402-420 2 5YR 2/3 0 2 2 2 Tb2, Sh1, Th1 
420-435 2 7.5YR 2/1 0 3 3 2 Tb3, Th1 
435-448 3 7.5YR 211 0 2 3 3 Sh2,Th2 
448-472 3 5YR 3/2 0 2 2 2 Sh1, Tb1, Th2 
472-479 2 5YR 3/3 0 3 2 2 Sh1, Th3 
479-498 2 2.5YR 2/2 0 2 3 2 Sh1, Th2, Tb1 
498-510 3 5YR 1.7/1 0 2 2 2 Sh2, Th2,Tb+ 
510-576 2 5YR 3/6 0 3 2 2 Tb2, Th1, TI1 
576-601 2 5YR 3/6 0 3 3 2 Th3, Tb1 
601-625 2 5YR 3/6 0 3 2 2 Tb2, Th1, TI1 
625-630 2 5YR 3/6 0 3 2 2 Tb2, Th2, TI+ 
630-653 2 2.5YR 2/3 0 2 3 2 Tb2,Th2 
653-694 2 2.5YR 2/3 0 2 3 2 Tb2, Th1, TI1 
694-712 3 2.5YR 3/3 0 2 2 2 Tb3, Th1 
712-720 2 5YR 3/4 0 1 2 2 Th2, Tb1, Sh1, Ag+ 
720-732 4 5YR 1.7/1 0 1 2 2 Sh2, Ag1, Tb1, Th+ 
732-736 2 5YR 4/6 0 1 2 1 Sh2, Ag1, As1 



304 
Appendix 10.4: Troels-Smith sediment log for Bloody Moss 

Depth Nig Mun Strf Elaa Sicc Humo Composition 
0-8 2 SYR 3/6 0 3 1 0 Tb4 
8-20 3 2.5YR 211 0 2 2 1 Sh2,Th2 
20-29 2 5YR 3/6 0 3 2 1 Tb3, Th1 
29-37 3 2.5YR 211 0 2 2 1 Sh2,Th2 
37-46 2 SYR 3/6 0 3 2 1 Tb3, Th1 
46-68 Unrecovered 
68-7S 3 2.5YR 211 0 2 2 1 Sh1, Th1, Tb2 
75-89 2 10YR 3/4 0 3 2 0 Tb3, Th1 
89-100 Unrecovered 
100-263 3 7.5YR 211 0 2 2 1 Sh2,Th2 
263-300 3 7.5YR 211 0 2 2 2 Sh3, Th1 
300-318 3 7.5YR 2/1 0 2 2 3 Sh4,Th+ 
318-364 3 7.5YR 211 0 2 2 2 Sh2,Th2 
364-S08 3 7.5YR 211 0 2 2 2 Sh3,Th1 
S08-564 3 7.SYR 211 0 2 2 2 Sh3, T11, Th+ 
564-644 3 7.SYR 2/1 0 2 2 2 Sh2, Th2, TI+ 
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Appendix 10.5: Troels-Smith sediment log for Sells Burn 

Depth Nig Mun Strf Elas Sicc Humo Composition 
0-6 1 2.5Y 6/8 0 3 2 0 Tb4 
6-22 2 7.5YR 4/4 0 2 2 1 Tb2,Th2 
22-38 3 7.5YR 2/2 0 3 2 1 Tb1, Th3 
38-54 3 2.5YR 2/2 0 3 2 2 Th3,Sh1 
54-123 3 2.5YR 2/1 0 3 2 2 Th3, Sh1 
123-154 3 2.5YR 1.7/1 0 3 2 2 Th2,Sh2 
154-200 3 2.5YR 211 0 3 2 2 Th3,Sh1 
200-448 3 2.5YR 1.7/1 0 3 2 2 Th2,Sh2 
448-453 2 7.5YR 4/4 0 1 1 1 Sh2, 012, Ga+, Ag+ 
453-488 1 7.5YR 4/6 0 1 0 1 Ga1, As1, Ag1, 011 



Appendix 10.6: Sediment Logs for Brownchesters 

Underlining convention - solid underlining is a distinct transition to lower unit, 

dashed underlining represents gradual transition to lower unit. 

Brownchesters 1 (Terrace T9a) 

0-22 Compression 

22=~Q _______ ~I~yj~LtoJtS9jl __________________________________________ . 

30-43 brown sandy silty clay. frequent oxidised organic flecks 

43-54 dark brown clayey silty peat 

~~:~I _______ 9~~P19~q~U~~~t--------------------------___________ . 

~1:Q2 _______ 9~~PJ9~Q/_~I~~~aJ-~~b-tr~gY~Ql(~~d_rrE~fQ~Q~-- __________ . 

69-74 dark brown clayey silty peat. frequent reed fragments 

74-77 grey clayey silt. well-humified organics 

dark grey fine sandy clayey silt, occasional fine sand laminae and 

Qtg~i~_Q~~~~ __________________________________________ _ 

110-120 grey silty fine sand. laminated 

120-122 grey medium sand 
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122-200 well laminated brown peaty clayey silts / grey fine sandy clayey silt / 

fine- medium sands (latter distinct between 122-124, 148-150, 153-

154. 160. 173-176. 183. 191-193) 

200-216 lost 
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grey laminated clayey fine sandy silt, frequent thin oxidised fine sand 

262-287 

287-290 

l~iQ~~j!~qY~QtQQt~j~~ ________________________________ _ 

finely laminated grey clayey silt (1-2mm parings) / fine sandy silts, 

frequent organics and leaf remains 

grey medium sand 

~2Q:~lQ _____ ~_~Q~-~~] ______________________________________________ _ 

310+ gravelly coarse sands 
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Brownchesters 2 (Terrace T6) 

0-22 compression 

.~~:~.:f ................ wJ"yi~J.QP.~gjJ,,<gr.<tyL1;>.{Q~n •. g~.i.9.i~.<tg.m9.UJ.iJ)g} .............................. . 

. ~~:§~ ................ UghtJ?r9.w.n.(gr.<ty.b.QmQg~nQY~ .. c;.1.~.Y.<t.Y.~iJ~ ........................................... . 

62-82 dark grey slightly clayey silt, occasional fine sand laminae and organic 

fragments towards base 

.~.~:~~ ....•••.......• .P.~(I..t.Y •. ~j.1.t;y.c;.1.{l.Y •................••.••........••..........•.....................•...•.....•.••......•... 

85-94 light grey (50-50) silty clay. occasional fine sand and organic flecks 

94-100 light brown I grey silty clay. some organics 

100-110 lost 

110-130 grey clayey silt, occasional fine sandy silt laminae, frequent oxidised 

.......................... 9.rg~j£ .f.l.<;.<;:Js:~ ........................................................................................ . 

130-146 grey fine sandy clayey silt. freguent organic flecks 

146-158 dark brown I grey peaty silt freguent wood inclusions 

158-166 wood 

166-177 light brown peaty silt freguent wood 

177-190 brown silty peat 

190-200 lost 

200-206 dark reedy peat 

206-268 silty peat. frequent wood 200-230 

268-271 coarsening upwards light grey slightly silty medium sand, at base silty 

fine Sand. upper and lower boundaries of unit very well delimited 

271-282 silty peat 

282-286 wood 

286-300 lost 

300-325 brown I grey fine sandy clayey silt, slightly peaty with frequent 

organics ...................... JQ.W.~9.~.J?~~.:.f.i.n~.lmninl!~ ..................................................... . 

334-340 fine gravelly sand, large wood at 337-340 
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Brownchesters 3 (Terrace T8) 

0-22 compression 

.~~:~J ............... .tQp.~.9.U .................................................................................................... . 
51-63 light grey slightly sandy clayey silt, oxidised brown mottling 

63-79 peaty clayey silt. less peaty towards base of unit 

79-87 lost 

.~7.:.l99 ............. 1ightgrJ;y.~.~~.Y .. ~J.~.Y~y..~ilt::.~.§J::7.9. .................................................. . 

. J.QQ:J.I.I ........... lightbIQw.n.~Uty..~i!t ............................................................................ . 
111-130 light brown silty peat. vel)' dense 'leaf stalks?' 

130-132 light grey fine peaty sandy silt (flood?) 

132-136 as 111-130 

.J}(:!:J.~.9 ........... 1ightbI9.w.n.~i!ty..~.Ut,.~9.m~.fj.1J.~ .. ~i!ng.~ng .. '.tt;.~f.~.tJ:lJ.K~: ...................... . 

J~9.:J.~.? .......... JightbIQw.nlgr.~.Y.~~tt.~J.~y.~y..~.Ut ...................................................... . 

J~~:Z9.~ ............ p.fQ~!}.~~~y..~Hgb~J.Y..~J.~.Y.~y..~m ............................................................ . 

. ~Q(:!:ZZ9 ............ ~i.l.tY.~~t •. ~.9.ming.m.Qx~.mjn~f.Q.g~.1J.i.~ . .tQw.~rg~.p.~~~.Qf.lJni~ ............ . 

. ~~Q:Z19 ............ h9.mQg.~nQ~~.~~tY..£1~.Y.f;.Y .. ~jJ~~.p.ylk.~~mp.I~.!*-~n.~~9:.~~~ ............... . 

. ~~9.:Z.~.Q ............ fin~.Zm.m.lamjD~_Qf..fiD~_~.~.Q.Y..~jJ.t.~1J.9..P.~~t.Y..9.t~.Y_~y .. ~jJt_. __ .. _ .... __ ... __ 
250-278 fine sandy silts with occasional organic flecks, frequent medium / 

coarse sand laminations 2-3mm thick 

278-300 fine sandy gravel 
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Brownchesters 4 (Terrace TS) 

0-16 compression 

JJ1:-J.~ ............... .t9.p.~QUJ?r.Qw.t\Lgr.~y.g~.i.9.t~.~g ............................................................... . 

. J.~~1. .............. .Y.~y..D.Q.~ .. ~m1gy..~tlty.~I~y.J.JQt~.Qf..Qrg~n!~~ ........................................... . 

47.:-~~ ................ 9.~k.gr.~y.fin~.~.;mg.Y .. ~Hgl.t.Uy..9.1~.Y.~.Y..~ntl.~g.IIw . .9.rg~ni~~ ..................... . 
55-66 same as 38-47. more organic 

66-81 peaty slightly fine sandy silt, peatier towards base of unit, occasional 

minerogenic horizons - mainly fine silt I sand J well defined at 69-70 

81-84 

84-100 

100-107 

107-127 

127-134 

134-150 

150-154 

154-159 

159-166 

166-179 

179-185 

185-190 

190-200 

200-214 

fine sandy silt. some organic content flood? 

dark brown silty peat occasional fine sandy silt laminae 

contamination 

dark brown silty peat as 84-100 

brown homogenous silty peat 

light grey clayey silty I fine sand (50-50). Wood fragments throughout 

finely laminated silty sands and peaty silts, organics throughout, light 

grey I brown laminations 

brown peaty silt occasional very fine sand laminations 

laminated light grey fine silty sands and peaty silt 

brown silty peat, becoming laminated towards base with light grey silty 

sands 

wood 

brown silty peat 

wood and silty peat 

lost 

.f.H::-ZZ.(i ............ ~J.i,ghtb.~Uty.~~t2.f.t~gp.~m.»:QQg . .i.1J.<;J.\l.~.i.9.lJ.~ ....................................... . 

. f.f.§.:-l~.~ ............ 9.~k.R[Q.W.t\.W.QQQy..~~tJ.9.~9.~~jg.IJ.~.1 .. thin.l~m.i.IJ.~.~ . .9J.f.i.IJ.~.gmb:.~Jlt .. 
252-278 alternating bands of light grey sandy silt and silty sand with some wood 

and organics (at 52-54,56-58,60-61,68-70,71-73,75-77) with laminae 

of peaty silt 

278-288 wood 

288-300 dark brown peat. abundant wood 

300-310 lost 



310-324 

324-340 

340-342 

dark brown / grey fine sandy silty peat, occasional fine sand 

laminations. freguent wood 

brown silty peat. freguent wood. occasional fine sandy silty laminae 

light grey fine silty sand 

311 

342-360 brown peaty silt, fine sandy silt laminae throughout, more minerogenic 

towards base of unit. freguent wood 

360-363 

363-369 

369-388 

388-389 

389-400 

400-406 

fine laminations of fine grey sands and sandy silts, occasional organic 

flecks 

light grey I brown fine sandy peaty silt. some laminations 

brown fine sandy silty peat. frequent laminations of fine silty sand 

light grey fine silty sand 

fine sandy silty peat / peaty silt 

lost 

4Q~~J.~ ............ P'fQY(n.~j!~.f.imt~~gJ .. ~HJ.l..Q.9.9.~iQnj!I.~H~J.~~m!.I~mj.Q.~~ ................ . 

4J.~;~J.~ ............ P'fQY(n.~j!lY.fimt~~gJ .. ~HJ.l..w.Q.Qct.fr.~gm~.IJ.t~ ...................................... . 
418-450 brown / light grey fine silty sand, occasional fine / medium sand 

......................... .tmmnj!lj9.IJ.~J.~~M.i.Q.t;lW .. w.9.9.g.f.t:~.&m~nt~.~.~J.i.&hHy..p.~~!Y..~f~;.4~~ ..... . 
450-500 sandy gravel with wood fragments 



312 

Brownchesters 5 (Terrace T3) 

0-23 compression 

23-51 topsoil 

51-52 dark clayey silt. black colorations. possibly charcoal from burning 

52-79 brown I grey silty clay, frequent oxidised flecks associated with root 

......................... ~.Jl~.triltiQJ}", .. ~$!~J~mru.QrglID.i.<;.~ .......................................................... . 

79-96 brown I grey silty clay. some fine sand. increase in organics 

96-100 lost 

100-109 as 79-96 

JQ9.:J.t~ ........... lm~y..~.~.Y.~.Y.Jin~.~IID.c;l.Y..~jJ.t .................................................................... . 

JJ.~:J.:f.Q ........... N.i!g~~J?~$!~..i.IJ.t9..p.fQ.w.IJ.L¥,r~y..~9.IQ~r.~~ .. t99.-.J.Q9.,.7.9.:-.9.~ ................... . 
120-129 grades back to 109-115. wood at 122-124 

.J.7.9.:J.~.7 ............ ftn~.~@.9.Y..~.utY..p.~~t,.im~r~~Jngly..m.i.IJ.~I9.g~ni~.tQ.R~~~ .. 9.f.!.!njl ......... . 

. J.~7.:J§.4 ........... N.~y..filJ.~ .. ~i!ngyJ~lilY.~.Y..~jJ.t,.~.Q.tm~.9.rg~nj~~ .......................................... . 

JM:J.6.:f ............ UghtJ:?.t:9.w.n.~ilty..~.iJt •. ~9.m~.fi.IJ.~ .. ~ang ................................................. . 
182-200 light brown silty peat. lots of wood 

200-210 lost 

.7.J.Q:ZZ] ............ ~.l~Z.-.fQQ ............................................................................................. . 
227-240 brown silty peat. less wood. more consolidated than overlying unit 

240-243 two distinct light grey laminae 0.5 cm width. very fine sandy silt 

.7.4~:Z.~Z ............ ~.ZZ]::f4Q ............................................................................................. . 

. 7.~f:Z.~.~ ........... N.~y.lJ?f.9.w.ll.<;J~.Y.~.Y .. ~H~.1Jru:g~.w.QQ~.f.mgm~nt~ .................................. . 
258-264 grey clayey silt. some organic inclusions 

264-268 

268-300 

300-333 

333-338 

338-341 

341-344 

344-394 

grey I brown silty peat. small wood fragments, visible plant remains 

lost - too wet 

lost 

grey / brown clayey silt. occasional organics 

brown peaty silt. some sand 

organic silt. large plant remains. seeds and leaves 

grey clayey silt, some fine sand, frequent dark well humified organic 

laminae, some light brown minerogenic laminae - approx 1 mm thick, 

unit becomes increasingly sandy down profile 



394-400 

400-408 

408-472 

472-500 

lost 

lost 

fairly homogenous grey silty clay, some evidence of light brown 

minerogenic banding 

coarse sandy gravel 
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Brownchesters 6 (Terrace T4) 

0-30 compression 

.~.Q:~9. ............... .tQP.~.Q.U ........ , ................................................................ --................. --.... --. 

49-56 

56-59 

59-64 

64-66 

66-78 

light grey fine sandy silty clay, homogenous bar occasional oxidised 

organic flecks 

dark brown fine sandy clayey silt, occasional organics, more sand than 

above 

grey clayey sandy silt. some organic flecks 

dark grey fine sandy silt. some organics 

peaty fine sandy clayeysilt, occasional oxidised mottling, organics 

...... __ .............. __ jn£r~M~.g.9~JJ.l'.t:Qfjl~-'.Q~.~~iQn~J.fin~.~.~ng.YJ~mi.mw ........... __ ........... . 

78-100 dark brown silty peat 

100-107 lost 

107-112 as 78-100 ._-----------_ .... _----_ .... __ .... -.... _--_ .... _---------_ ...... _ ...... _---- .... _-- .. --- ... _ .... _ .. _-_ .. _---_ .. __ .. _-_ .. _--------------------------_ .. _----------

112-130 light grey fine sandy silt, getting coarser down profile tosilty fine sand, 

.......................... ~.9m~.J.@1in~tiQn~.~g.Qr,g@.i.c.fl~£KS . .tI).rQ~gb.9)J.t ............................... . 
130-150 

150-158 

158-160 

160-200 

fine sandy clayey silt. organic flecks and occasional wood 

wood 

grey clayey silt. occassional organics 

brown silty peat, wood at 178-180, minerogenic bands (fine laminae) 

between 160-178 

200-207 lost 

~Ql:~.t~ ............ ~.lHQ._:~QQ ............................................................................................. . 

218-224 slightly silty peat 

224-241 wood 

241-266 brown peaty fine sandy silt, laminations of fine silty sand throughout, 

......................... .fr~.wggg.-'1~s~.Qr,g@.i.9 .. c,t.Q.w.n.P.fQftl~ .................................................. . 

. ~~~:~1.~ ........... 1Mnin!!t~g.t}.n~ .. ~!!!lg~,.~.Utfdm9..91~.Y.~, . .9~f~~.i.9.n~l.w.QQg.f.t:~,gm~nt~ .... . 

273-300 laminated fine / medium light grey sands and organic rich fine sandy 

silts, occasional wood and organic flecks 

300-306 lost 



306-316 

316-348 

348-365 

365-370 

370-384 

315 

laminated medium lighgt grey coarse sand and brownfine clayey silty 

sand 

laminated fine I coarse sands. some silt, frequent wood fragments 

finely laminated (-2mm) grey silty clays and silty fine I medium sands, 

occasional organic flecks 

well sorted grey medium / coarse sand 

well bedded fine / medium sands and silty fine sand, occasional organic 

flecks 

.3_8.4:~W ______ ._ ... _Ught&.fJ;~ .. ~nt.Y..~J.~~.~ •. Q£~~.i.Q.mv.JjD~_J.~m.i_n~\iQn~_9.f.fin~_~.uty..~_@_c.t._. 
400-520 light grey silty clay with fine sandy laminations which become less 

frequent down profile 

520-525 clayey silty sand 

525-550 fining upward coarse to fine sands. occasional shale I coal bands 

550-570 gravelly coarse sand. B axis -lcm 

570-600 slightly gravelly coarse sand 



Appendix 10.7: Sediment Log for Snabdaugh 

Snabdaugh (Terrace TS) 

9:4Q ________ 91[~PlQ~Q§il~§~Q!QQ~QU----------------------_________ _ 

1Q:~Q _______ flnjD~~wE[4PrQ~_n_Dl~djYDl1iQ~~Uty_~~Qq __________________ _ 

50-105 

105-135 

fining upward orange-brown medium-coarse sand, occasional 

laminations 

laminated fining upward light brown coarse-fine sand 

316 

unstructured dark grey fine sandy silt peat, occasional wood and plant 

f~ajLrn~Q~~!~s~-R~~tY_~-~!QfU~P§lW~~D_Ll~-J§P ______________ _ 

fining upward dark grey peaty fine sands and silts with occasional 

~_QQq~gJ>J~DlfGijtrn~Q~ _________________________________ _ 

240-270 grey medium-fine sands with occasional laminations 
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