
Contention Management for Distributed Data

Replication

Yousef Abushnagh

School of Computing Science

Newcastle University

A thesis submitted for the degree of

Doctor of Philosophy

July 2013

ThesisFigs/ncl_logo1.eps

Abstract

Optimistic replication schemes provide distributed applications with ac-

cess to shared data at lower latencies and greater availability. This is

achieved by allowing clients to replicate shared data and execute actions

locally. A consequence of this scheme raises issues regarding shared data

consistency. Sometimes an action executed by a client may result in

shared data that may conflict and, as a consequence, may conflict with

subsequent actions that are caused by the conflicting action. This re-

quires a client to rollback to the action that caused the conflicting data,

and to execute some exception handling. This can be achieved by relying

on the application layer to either ignore or handle shared data inconsis-

tencies when they are discovered during the reconciliation phase of an

optimistic protocol.

Inconsistency of shared data has an impact on the causality relationship

across client actions. In protocol design, it is desirable to preserve the

property of causality between different actions occurring across a dis-

tributed application. Without application level knowledge, we assume

an action causes all the subsequent actions at the same client. With

application knowledge, we can significantly ease the protocol burden of

provisioning causal ordering, as we can identify which actions do not

cause other actions (even if they precede them). This, in turn, makes

possible the client’s ability to rollback to past actions and to change

them, without having to alter subsequent actions. Unfortunately, in-

creased instances of application level causal relations between actions

lead to a significant overhead in protocol. Therefore, minimizing the

rollback associated with conflicting actions, while preserving causality,

is seen as desirable for lower exception handling in the application layer.

In this thesis, we present a framework that utilizes causality to create

a scheduler that can inform a contention management scheme to re-

duce the rollback associated with the conflicting access of shared data.

Our framework uses a backoff contention management scheme to provide

causality preserving for those optimistic replication systems with high

causality requirements, without the need for application layer knowledge.

We present experiments which demonstrate that our framework reduces

clients’ rollback and, more importantly, that the overall throughput of

the system is improved when the contention management is used with

applications that require causality to be preserved across all actions.

Acknowledgements

First of all, I would like to thank my supervisor Dr. Graham Morgan

for his patience, guidance, and constant encouragement throughout my

PhD studies. Dr. Morgan has been very helpful and I think that I will

never forget this.

I would also like to thank my fellow PhD students who have helped

in various ways during my PhD studies, in particular Craig Sharp and

Matthew Brook.

Certainly, I would like to thank my family, especially my brother, because

without his assistance and sacrifices I would not have been able to reach

this point.

Finally, I would like to express my sincere thanks to my wife for her

patience when I spent too much time working, and for her faith in my

abilities.

Contents

1 Introduction 1

1.1 Distributed System . 1

1.2 Data Replication . 2

1.3 Replication and Consistency . 4

1.4 Consistency Models . 5

1.5 Causality and Correctness . 7

1.6 Contention management . 8

1.7 Contribution . 10

1.8 Publications . 11

1.9 Thesis Outline . 11

2 Background and Related Work 12

2.1 Maintaining the Causality Relationship 12

2.1.1 The Happens-before Relation 14

2.1.2 Lamport Timestamp . 15

2.1.3 Vector Clocks . 16

2.1.4 Directed Graph . 18

2.2 Shared Data Access . 20

2.2.1 Pessimistic Shared Data Access 20

iv

CONTENTS

2.2.2 Optimistic Shared Data Access 21

2.3 Consistency Guarantee of Shared Data 22

2.3.1 Strong Consistency Guarantee 23

2.3.2 Weak Consistency Guarantee 28

2.4 Reconciliation of Shared Data . 30

2.4.1 Semantic Conflict Detection 31

2.4.2 Syntactic Conflict Detection 31

2.4.3 Conflict Resolution . 32

2.5 Related Work . 33

2.5.1 Optimistic Replication Systems 33

2.5.1.1 Coda . 33

2.5.1.2 Bayou . 35

2.5.1.3 IceCube . 36

2.5.2 Predictive Protocols . 38

2.5.2.1 Seer . 38

2.5.2.2 Spy Utility . 39

2.5.3 Contention Management . 40

2.5.3.1 Backoff Algorithms 40

2.5.3.2 Contention Managers 42

2.6 Strong Causality . 45

2.7 Discussion . 46

2.8 Contribution Made by the Thesis . 48

2.9 Summary . 49

3 Framework 51

3.1 The Requirement . 51

v

CONTENTS

3.2 Notations . 52

3.3 System Model . 52

3.3.1 Data . 53

3.3.2 Clients . 54

3.3.3 Server . 55

3.4 System Protocol . 57

3.4.1 Overview . 57

3.4.2 Pseudo-code . 58

3.5 Protocol Description . 59

3.5.1 Client Side Algorithm . 59

3.5.2 Server Side Algorithm . 61

3.6 Contention Management . 63

3.6.1 Server Side Algorithm with Contention Management 67

3.7 Framework Properties . 71

3.8 Summary . 73

4 Framework Implementation 74

4.1 Simulation Architecture . 74

4.1.1 Clients . 75

4.1.2 Server . 75

4.1.3 Messaging Service . 75

4.2 Simulation Environment and Setting 76

4.3 Summary . 78

5 Framework Evaluation 79

5.1 Experiments . 80

vi

CONTENTS

5.1.1 Experiment 1: Irreconcilable client actions (conflicts) 82

5.1.2 Experiment 2: Throughput of successful client actions 83

5.1.3 Experiment 3: Execution time 86

5.1.4 Experiment 4: Protocol Overhead 87

5.2 Summary . 89

6 Conclusion and Future Work 90

6.1 Conclusion . 90

6.2 Future work . 92

6.2.1 Decentralization . 92

6.2.2 Dynamic graph . 92

6.2.3 Mixed-Mode Operation . 93

6.2.4 Flagging Early Conflicts . 93

References 95

vii

List of Figures

2.1 A Scenario for replicated shared data 14

2.2 Lamport timestamp . 16

2.3 An example of vector clocks’ timestamps 18

2.4 A simple directed graph . 19

2.5 A replicated system that is sequentially consistent but not linearizable 24

2.6 Total consistency guarantee replicated system 26

2.7 Causal consistency guarantee replicated system 26

2.8 FIFO consistency guarantee replicated system 27

2.9 Eventual consistency guarantee replicated system 29

3.1 System Model . 53

3.2 Relating action progression to data items 63

3.3 Graph with volatility values . 65

3.4 Message passing between clients and server 65

5.1 Irreconcilable actions with varying graph size 82

5.2 Throughput with varying graph size and increasing number of clients 84

5.3 Throughput with varying graph and client size 85

5.4 Execution time with varying graph size 87

5.5 Data size with varying graph and client size 88

viii

List of Tables

3.1 Summary of notations . 52

5.1 Simulation parameters for protocols evaluation 80

ix

List of Algorithms

1 Client side algorithm . 60

2 Server side algorithm without backoff 62

3 Server side algorithm with backoff . 69

4 volatility update algorithm . 70

5 Delta queue algorithm . 71

x

Chapter 1

Introduction

1.1 Distributed System

A distributed system is a well-known and powerful computing paradigm [1]. Several

definitions of a distributed system have been given in the literature and all of them

have their individual focus. One common aspect shared by these definitions is that

a distributed system has the property to always appear to users as a single highly

capable computer. This thesis summarizes these definitions for simplicity and defines

a distributed system as a system with more than one computer connected by a

network to achieve a common task. All definitions of a distributed system lead to

the following advantages of the system:

• Reliability: it is possible to share resources across several sites in a distributed

system. Resources in this context are hardware, software, and/or data. This

feature improves the accessibility of these resources at all times by allowing

the computers to carry out computation even when failures occur. Reliability

involves aspects such as availability and fault-tolerance.

• Performance: by sharing resources, any task can be portioned across the dif-

1

1. INTRODUCTION

ferent computers, and such a configuration enables a distributed system to

perform more work in the same amount of time, because many computations

can be carried out collaboratively between computers in parallel.

• Scalability: the capacity of any conventional (centralized) system poses a limit

for the system’s maximum size [2]. Since a distributed system is not central-

ized, this restriction on the maximum size does not exist, meaning that it can

easily add more recourses as needed to the system.

These are the most common advantages cited for distributed systems, and make a

distributed system more powerful than a centralized system, as well as being good

reasons for building a distributed system.

As communication channels over long distances are rather expensive and do not offer

adequate bandwidth, remote resources are replicated by nearby users which enhance

the performance and availability of those resources. In addition, placing resources

at a single site may introduce a bottleneck for the communication network.

An important goal of a distributed system is the sharing of resources. Sharing was

first introduced in the 1960s in time-sharing systems [3] in the form of a shared

single computer resource between many users. Subsequently, it has been used in

operating systems such as UNIX to enable processes to share system resources and

devices, and more recently in database systems such as Oracle to enable applications

to share objects.

1.2 Data Replication

With the increasing popularity of distributed systems, data access anytime and any-

where has become more and more feasible, and replication of data has become the

2

1. INTRODUCTION

most widely used approach in distributed systems. Data replication means that

data is replicated across multiple computers. Replication is a technique to provide

fault-tolerance or to improve performance. It provides fault-tolerance by replicat-

ing data in more computers, so if one replica fails the system continues working

by switching to one of the replicas. Also, it maintains multiple replicas to provide

protection against a single point failure. This replication improves performance by

allowing access to local data instead of remote access, and thus improves response

time and eliminates communication overheads.

Data replication has been used in different network environments. Previously, data

replication was used in well-connected environment for the purpose of providing fast

local access and higher reliability in the case of failure. Recently, in disconnected

environments, data replication has been used for availability as well as for perfor-

mance and reliability. Full details of replication along with the need for replication

are given in section 2.2.

A special form of data replication is caching, which means a temporary store fre-

quently accessed data on the client’s machine. By storing data locally, a client

can avoid many further contacts with the server. For example, browsers and proxy

servers store previous responses from web servers to reduce the latency of fetching

data from the web server, since information previously cached can always be reused.

Caching may need to employ hoarding methods to predict and retrieve data that

will be used by a client. Hoarding methods that have been proposed in the literature

are discussed in the related work section.

3

1. INTRODUCTION

1.3 Replication and Consistency

Data replication allows users to cooperate concurrently to achieve a common task

and may also allow computers to remain continuously operational, even in the event

of a temporary network failure. For example, in some systems, users could co-

operatively interact by replicating shared data on their devices to perform work

concurrently, and later merge the updates with each other. In other systems (mo-

bile environments), computers are frequently disconnected, and users are allowed to

replicate shared data on their laptops to proceed work and, when reconnected, they

merge the updates with other computers.

Unfortunately, this feature poses one serious drawback to replication protocols and

this is that it incurs overheads in the performance, as stated in [4][5]. Because of hav-

ing multiple copies of shared data on different computers, updating one copy makes

that copy different from the other. Therefore, replication introduces the problem of

data consistency. Consider, for example, a banking system in which bank accounts

are replicated in many different sites to improve availability and improve read per-

formance. Suppose a joint bank account shared between two clients (client 1, client

2) is replicated at a different bank’s branches. Initially, the balance of the account

is £50 in all replicas. Because both clients could access the account concurrently,

in the case of network partition, or when a communication link fails between some

branches, an inconsistent view may occur. Imagine this scenario: client 1 withdraws

£20 at the nearest ATM machine at one of the partitions and, at the same time,

client 2 withdraws £35 at another partition. Since the replicas are unable to com-

municate with each other, the updates performed at each replica are not propagated

between each other. As a result, an inconsistent view occurs, since the account can

be seen as having different balances depending on which replica the read operation

4

1. INTRODUCTION

was made. In addition, the account becomes overdrawn, since a total withdrawal

of £55 was made. This simple example demonstrates how the mutually consistent

view of the balance can be lost when the bank accounts are subject to replication.

1.4 Consistency Models

Maintaining shared data consistency is a major challenge because different users

have different requirements; in addition, different applications have different consis-

tency models. This makes the problem of maintaining a mutually consistent view

between replicas (ensuring that all copies have an identical value) is more difficult.

Therefore, the challenge to research in this area is to formulate an efficient replicas

control protocol that supports different distributed system applications.

There are several consistency models which have been found in the literature, and

they differ according to various parameters such as network characteristics, update

synchronization, and update conflict detection and resolution. These consistency

models can only support strong consistency forms or weak consistency forms [6].

The strong consistency model prevents inconsistency between replicas by reducing

their availability and therefore users do not observe any inconsistencies in the repli-

cated data. Weak consistency provides high availability as a cost of consistency by

allowing replicas to diverge from one another, but eventually they will converge. To

ensure the consistency model is satisfied, a suitable protocol must be available that

can provide consistency within the replicas. There are two main types for provid-

ing one of the consistency forms: pessimistic protocols (for strong consistency) and

optimistic protocols (for weak consistency).

Pessimistic protocols ensure that shared data must be consistent at all times. With

pessimistic protocols, users do not observe any inconsistency between shared data.

5

1. INTRODUCTION

In case some replicas are unavailable (due to network failure), pessimistic protocols

inhibit any updates to be performed in shared data until the failure is recovered.

When an update operation is performed to share data in one replica, it is synchro-

nized to all the other replicas and therefore all replicas have to reach agreement

on the ordering of operations. Such synchronization takes a great deal of commu-

nication time, especially when replicas are spread across large distributed systems.

Pessimistic protocols scale very poorly in large scale environments since the syn-

chronization overheads between replicas is too expensive [7]. Pessimistic protocols

are mainly used when fault-tolerance is the main goal [8]. Pessimistic protocols can

be classified into:

• Passive replication: passive replication requires a primary replica; any updates

to shared data must first be sent to the primary replica where it is processed.

The primary then propagates the update to all other replicas. This approach

introduces a single point of failure and a bottleneck. In the event that the

primary replica fails, the other replicas elect a new primary, which takes over

the role of the failed primary. This is done through a protocol.

• Active replication: unlike passive replication, an update to shared data can

be performed at multiple replicas instead of only one. This property removes

the single point of failure and bottleneck drawbacks, since if a replica fails the

updates are still processed by the other replicas. Active replication requires

all replicas to process the updates in an identical order.

In contrast to pessimistic protocols, optimistic protocols lower synchronization over-

heads and the ordering between replicas. In optimistic protocols, updates can be

served as long as any single replica is accessible; this property provides a higher

availability but may result in shared data to be inconsistent temporarily. However,

6

1. INTRODUCTION

it will be consistent eventually and improves response time, but clients may read

stale data (out of date) when they read data locally, which might not reflect updates

performed on other replicas. These protocols are suitable in systems where it is not

necessary for all replicas to be identical in order for clients to carry out their work.

Such type of protocols has been successfully used in environments where scalability

and availability requirements are important (i.e. Usenet, DNS) [9].

Both types of protocols have somewhat complementary roles in shared data. Pes-

simistic protocols emphasize fault tolerance and consistency but are not scalable.

Optimistic protocols emphasize scalability and availability but do not provide up to

date views of data.

1.5 Causality and Correctness

Causality (or causal precedence relation) refers to the preservation of the causal

relationship that holds between actions. It determines the sequence in which ac-

tions must be processed so that the cause action and the effect action appear in

the correct order. For instance, if an action 1 (A1) occurs before an action 2 (A2)

on the client-side, then we may say that A2 is caused by A1 or A2 depends on

A1. A causally preserving protocol would enforce this relation at the server-side. In

protocol design it is desirable to preserve the property of causality between different

actions occurring across a distributed application [10].

Preserving causality across client actions has a significant impact on data replica-

tion. For instance, reconsider the example in section 1.3 of the replicated bank

account at different bank branches. As demonstrated, the balance of the account

is initially £50 in all replicas. Suppose client 1 performed an action A1 to deposits

£50 at one replica and then subsequently performed another action A2 to withdraw

7

1. INTRODUCTION

£75 at the same replica. We may identify that A1 and A2 are causally related and

expect A1 to be received by all replicas of the account before A2 is received. If this

is not the case, then some accounts may become overdrawn and therefore the bank

charges an overdraft fee.

However, replication protocols cannot ensure by themselves the property of the

causality, and so some dependency mechanism management should be added to the

protocols. Exploiting semantic application knowledge is one way to maintain the

causality relationship. Without application level knowledge, we consider an action

to cause all subsequent actions at the same client. With application knowledge, we

can significantly ease the protocol burden of provisioning causal ordering as we can

identify which actions do not cause other actions (even if they precede them).

Maintaining causality is an additional check that increases the chances of non-

progression. Consider the following example: assume a client carried out three

actions (A1, A2, A3) locally. Assume, due to state conflicts, that A1 is not commit-

table at the server-side. This would mean that neither A2 nor A3 are committable

as they depend on A1 (causal relationship). The server would have to inform the

client and the client would have to rollback its actions somehow to reflect the server’s

decision. Therefore, chances of non-progression are increased the more requirements

are placed on the causal relationship.

1.6 Contention management

Contention management policies aim to guarantee progression of a system at some

level of fairness by making the right decision when conflict occurs. The choice of

contention management policy impacts strongly on the throughput of the system.

There are several contention management policies in the literature, and each policy

8

1. INTRODUCTION

has a corresponding application based on many factors such as maximum amount

of data access, previous history of actions, or actions priority. However, there are

many areas in which these policies are used.

In distributed multiple access, contention management policies aim to reduce colli-

sion and increase the utilization of the medium access. Since the medium is shared

between all nodes, whenever more than one node simultaneously tries to access the

medium to transmit data, data collision occurs and the nodes have to retransmit the

data causing repeated collision and contention. The contention manager decreases

collisions and resolves contention among competing nodes by adjusting the backoff

mechanism of the conflicting nodes (see subsection 2.5.3.1).

In transactional systems, contention management resolves conflicts between trans-

actions accessing the same shared data [11]. It occurs at the decision to determine

which transaction should proceed, which transaction should wait or abort, and how

transactions should wait. A number of contention managers implemented by various

policies which suit various benchmarking criteria are described in subsection 2.5.3.2.

In optimistic approaches, the contention management may be viewed as the ability

to derive the optimum schedule (e.g. one which maintains most causality, one which

satisfies the most access requests). In this respect, contention management becomes

an attribute of the reconciliation phase of the protocol. The application dependency

occurs only in application defined causal definitions across shared data accesses, and

decides what to do when accesses cannot be satisfied.

9

1. INTRODUCTION

1.7 Contribution

In this thesis, we present a framework for contention management within optimistic

replication schemes when causality requirements are high and must be preserved.

We provide a flexible and efficient contention manager policy that provides most

commits actions and maintains the most causality in optimistic replication schemes.

Our novel approach is to utilise a degree of application knowledge found in the

causal relationship between different data items to create a contention manager

that improves the throughput while maintaining overall fairness.

The contribution of the thesis may be summarized as follows:

• Implementing a novel contention management scheme that identifies areas on

the contention in the system. As the contention increases for given shared data,

conflicting clients will be unable to apply any state changes to the system in

order to allow non-conflicting clients to progress normally.

• Using a predictive scheme to provide the framework with the ability to predict

the clients that the data items are likely to access in the future.

• Using the predictability of client’s actions to maintain the causality require-

ments.

• Analyzing the performance of the framework by conducting a series of exper-

iments. These experiments were created to determine the performance of our

framework that may be appropriate for optimistic replication systems with

highly causality requirements.

10

1. INTRODUCTION

1.8 Publications

1. Abushnagh, Y., Brook, M., Sharp, C., Ushaw, G., and Morgan, G. Liana: A

framework that utilises Causality to Schedule Contention Management across

Networked Systems. The 11th International Conference on Ontologies, DataBases,

and Applications of Semantics (ODBASE 2012).

1.9 Thesis Outline

This thesis is organised as follows:

Chapter 2. We first introduce background studies related to optimistic replica-

tion systems. We then review the existing work related to such systems, classified

into three categories: semantic reconciliation protocols, predictive protocols for data

hording, and contention management policies.

Chapter 3. This chapter, presents a description of the framework (system model

and the protocol design). This chapter also provides a generic example to demon-

strate the implementation of the framework.

Chapter 4. We describe the design of the simulation and the implementation de-

tails to measure and compare the performance of the framework.

Chapter 5. In this chapter, we present performance results from a number of ex-

periments which carried out. Each result is followed by an analysis to identify the

characteristics of the framework.

Chapter 6. This chapter gives the conclusion of the study and suggests possible

future work.

11

Chapter 2

Background and Related Work

This chapter contains the background studies that are related to optimistic repli-

cation systems, semantic-based reconciliation in optimistic replication systems, and

maintaining causality in such systems. It begins by describing causality and how to

implement it in distributed systems. Then, the chapter provides an overview of data

replication along with the need for replication, and its environments. Next, we re-

view the existing work of the popular optimistic replication systems in the context

of their consistency models, application requirements and causality requirements.

Finally, we justify our approach and describe the contribution of this thesis.

Throughout this chapter, we give several examples. To make these examples clear,

we use a space time diagram in which we draw the operations of process, client,

and replica along a time axis. The time axis is always drawn vertically with time

increasing from up to down.

2.1 Maintaining the Causality Relationship

In a real-world scenario, it is taken for granted that things (events) happen accord-

ing to the causality relation, which simply means that a cause event must happen

12

2. BACKGROUND AND RELATED WORK

before an effect event. However, in distributed systems, this may not be the case

due to communication delay, and causality may be violated. Therefore, there must

be a mechanism to handle the ordering of events, otherwise inconsistency and cor-

rupted data may arise. The ordering of events is an important issue for system

execution because it determines the operations behaviour that can be expected by

the distributed applications [12].

Causality (or the causal precedence relation) refers to the preservation of the causal

relationship that holds between events. Causality is based on the happened-before

relation (see section 2.1.1), which means an event emay causally affect another event

e′ if, and only if, e precedes e′. Causality determines the sequence in which events

must be processed so that the cause event and the effect event appear in the correct

order. That is, if two events are causally related and have the same destination,

they are delivered to the application in their sending order.

Causality helps solve a range of problems in distributed systems, such as the de-

sign of distributed algorithms, the tracking of dependent events and concurrency

measures [12]. Also, causality plays an important role to maintain consistency in

replicated data, for example, consider a shared directory replicated across three sites

as illustrated in figure 2.1. Suppose that an update is executed on the local replica at

each site, then propagated to the other sites and executed there in its original form

upon its arrival. As shown in figure 2.1, update u2 is performed after the arrival

of u1 from site 1 and, therefore, u2 may be dependent on u1. However, since u2

arrived and is executed before u1 at site 3, inconsistency may occur in the system

due to a causality violation. For example, if u1 is to update a file in the shared

directory, and u2 is to delete the same file, then the execution of u2 before u1 at site

3 will result in u2 referring to non-existent content. Therefore, it is important that

13

2. BACKGROUND AND RELATED WORK

all sites see causally related updates in the same order to maintain data consistency.

u2

u1

Site 3Site 2Site 1

t t t

Figure 2.1: A Scenario for replicated shared data

Due to the importance of causality, several protocols [13][14][15] have been developed

to capture the causality relation in parallel and distributed systems. These protocols

use one of the following techniques [16]: causal histories, a Lamport timestamp, or

a vector timestamp.

In this section, we present methods of maintaining the causal relationship between

events. We start with an easy to understand concept of the happens-before relation,

which is the base of causality, and then we continue to discuss how to maintain the

causality.

2.1.1 The Happens-before Relation

Lamport [10] defined the notion of happens-before relation between events in a

distributed system. The happens-before relation captures the notion of one event

happening in the past of anoter. The expression e → e′ is read e happens before

14

chapter2/Chapter2Figs/A_Scenario_for_replicated_shared_data.eps

2. BACKGROUND AND RELATED WORK

e′. The happens-before relation can be observed if one of the following conditions is

true:

• C1: If e and e′ are events in the same process and e occurs before e′, then

e → e′.

• C2: If event e is the sending of a message by one process and event e′ is the

receiving of the same message by another process, then e → e′.

• C3: If e → e′ and e′ → e”, then e → e”.

C1 states that the causality relation is preserved between events of the same process,

and C2 captures the causality between events of different processes, while C3 states

the transitive property.

2.1.2 Lamport Timestamp

Lamport invented a simple mechanism by which the happens-before relation can be

maintained between events in the distributed system, called Lamport timestamps.

The Lamport timestamp is a monotonically increasing counter, and to apply a times-

tamp to events, an event e assigns a time value C(e) on which all processes agree.

These time values must have the property that if e → e′, then C(e) < C(e′). To

maintain the happens-before relation, a timestamp Ci at process pi is initially set

to zero and advanced according to the following rules:

• R1: When an event occurs at process pi, pi increments its timestamp as follows:

Ci = Ci+ 1,

• R2: When a process pi sends a message m, it piggybacks on m the value

t = Ci,

15

2. BACKGROUND AND RELATED WORK

• R3: On receiving (m, t), a process pj set Cj = max(Cj, t) + 1.

Figure 2.2 shows an example of Lamport timestamp progress according to the above

rules with three processes, each process with its own clock and an initial time value

of zero.

2

1

2

Process 1

t t t

2

1

6

4

3

5

3

Process 2 Process 3

Figure 2.2: Lamport timestamp

2.1.3 Vector Clocks

Although Lamport states that if C(e) < C(e′) then event e precedes event e′. How-

ever, this does not necessarily imply that e and e′ are causally related. For example,

as shown in figure 2.2, the timestamp of the first event of process1 is less than the

timestamp of the second event of process3, although they are not causally related.

Furthermore, two events e and e′ are concurrent, denoted by e ‖ e′, if neither e

happened before e′ nor e′ happened before e. Consider figure 2.2 again, in which

the third event of process1 and the second event of process2 have an identical

16

chapter2/Chapter2Figs/Lamport_timestamp.eps

2. BACKGROUND AND RELATED WORK

timestamp. Events that are causally independent may get the same or different

timestamps and it makes no difference in which order they occur.

A vector clock timestamp[17][18] provides a way to capture causality and concur-

rency between events. A vector timestamp V C(e) assigned to an event e has the

property that if V C(e) < V C(e′), then event e is known to causally precede event

e′. In a vector clock, each process pi keeps a vector Vi, which it uses to timestamp

local events with the following properties:

• V i[i] is the number of events that have occurred so far at pi.

• If V i[j] = k then pi knows that k events have occurred at pj.

In the vector clock timestamp, each process maintains a local n-element array

V Ci[1, .., n], where n is the number of processes as shown in figure 2.3. V Ci[i]

describes the logical time progress of pi. V Ci[j] represents process pi’s latest knowl-

edge of process pj local time. The vector clock element is a non-negative integer

number, initially set to zero. Each process pi updates its V Ci according to the

following rules:

• R1: When an event occurs at process pi, pi increments its counter element of

V Ci as follows: V Ci[i] = V Ci[i] + 1,

• R2: When a process pi sends a message m, it piggybacks on m the value

vt = V Ci,

• R3: When process pj receives (m, vt), pj sets it logical time as follows: V Cj[k] =

max(V Cj[k], vt[k]), then pj increments its local element as follows: V Cj[j] =

V Cj[j] + 1.

17

2. BACKGROUND AND RELATED WORK

Process 1

t t t

Process 2 Process 3

[1,0,0]
[0,1,0]

[1,2,0]

[0,0,1]

[0,0,2]
[2,0,0] [1,3,0]

[1,3,3]

[1,3,4]

[3,3,4]

Figure 2.3: An example of vector clocks’ timestamps

2.1.4 Directed Graph

A graph is a collection of vertices (or nodes) and a collection of edges (or arcs) that

connect some pairs of vertices, where a vertex may be anything. Typically, a graph

is used to model the relationship between two or more vertices from a certain col-

lection. For example, the pages in a website and their hyperlinks can be modelled

as a graph whose vertices are the pages available at the website and whose edges

are the hyperlinks between these pages; page x to page y exists if and only if page

x contains an edge to page y. A graph may be undirected, meaning that there is no

distinction between two vertices associated with each edge, or directed in which all

edges are assigned direction. A direct edge is an edge such that, one of its endpoints

is designated as the tail and its other endpoints are designated as the head.

A directed graph [19] G is defined as an ordered pair (V,E) where V (G) = {v1, v2,

..., vn }is a set of elements are called vertices, and E(G) is a set edges. Each edge

18

chapter2/Chapter2Figs/An_example_of_vector_clocks_timestamp.eps

2. BACKGROUND AND RELATED WORK

is an ordered pair (v1, v2) of vertices. In a directed graph, a path is a sequence of

vertices connected by edges, for each edge e = (v1, v2) is represented as v1 → v2;

v1 is called the tail of the edge and v2 is the head.

Furthermore, a directed graph comes in two forms: cyclic and acyclic. A directed

graph is cyclic if some numbers of vertices are connected in a closed chain, such

that a cyclic path begins with a vertex and follows a sequence of directed edges that

eventually returns to the same vertex. For instance, the path v1 → v2 → v3 → v1

is labelled as cyclic because we move from v1, v2, v3 then return to v1. Consider

the graph of figure 2.4: the path (C,F,E,C) is a cycle as we move from C through

F and E, then return to C.

A

B C

FED

Figure 2.4: A simple directed graph

On the other hand, if there are no cycles, the directed graph is said to be acyclic.

That is, a path is said to acyclic if no vertex appears more than once on the path.

Consider the directed graph of figure 2.4 again; the path (A,B,D) is an acyclic path

because no vertex appears twice. A directed acyclic graph can be used to represent

the causal relation between a set of vertices [20], where a sequence of direct edges

denote to a certain relationship that holds in pairs of vertices, recalling that the

causality relation in section 2.1 can be represented by directed acyclic graph where

events are vertices and where there is a direct edge from v1 → v2 if, and only if, v1

19

chapter2/Chapter2Figs/A_simple_directed_graph.eps

2. BACKGROUND AND RELATED WORK

precede v2. The directed acyclic graph has been used in data broadcast [21][22] for

efficient broadcast scheduling in wireless mobile environments.

The previous section provides substantial information on different ways which can

be used to order events and preserve the causality relationship between them in any

distributed system (i.e. a distributed replication system). Next, we will describe

replication systems and how weakly replication systems can take advantage of the

causal ordering properties.

2.2 Shared Data Access

Replication of data in a distributed system means that several copies exist of the

same data distributed over different computers. Data replication is used mainly for

improving performance and availability reasons. Performance is improved by elim-

inating the communication overheads by enabling access to data locally instead of

remotely. Availability is improved by allowing access to the data even when some

of the replicas are unavailable or the communication between replicas is transient.

Data replication is divided into two models, pessimistic and optimistic [23][24][8].

They represent the two extremes in the availability-consistency trade-off [25]. Pes-

simistic replication favours consistency over availability, while optimistic replication

favours availability over consistency.

2.2.1 Pessimistic Shared Data Access

Pessimistic schemes provide strong consistency among replicas [7]. In these schemes,

a user submits an update operation to some replica, before the operation is com-

mitted, the replica synchronises the operation to all other replicas. During the

synchronisation, the version of updated data is unavailable to other users in order

20

2. BACKGROUND AND RELATED WORK

to ensure that executing the operation will not violate the consistency. When the

replica receives confirmation that the update has reflected on all other replicas, it

commits the update and sends the response to the user. In case some replicas are

unavailable or communication fails, the synchronisation between replicas is blocked

indefinitely, as is the response to the user [7].

The pessimistic approach is suitable in environments where connections between

all nodes are robust and highly available. Therefore, the pessimistic scheme is not

an option for environments where communication between nodes is intermittent or

nodes are separated by a network partition.

2.2.2 Optimistic Shared Data Access

In contrast to the pessimistic scheme, optimistic schemes enable access to a replica

without a priori synchronization with the other replicas and, therefore, allows dis-

tributed application to access any replica at any time even when there is network

partitioning or when some replicas are unavailable. An update operation can be

served as long as any single replica is accessible, and then updates are propagated in

background between replicas. This property, however, has two significant implica-

tions. First, the states of replicas can be temporarily inconsistent; for example, an

update can be applied to a single replica without the update being synchronously

applied to other replicas. Second, concurrent updates to different replicas may in-

troduce conflict. Despite these two drawbacks, the optimistic approach offers several

advantages over the pessimistic, as follows [7]:

• Availability: as the replica does not need to wait for synchronization, applica-

tions can progress on their replicated data locally, even when a connection to

the other replicas is temporarily unavailable.

21

2. BACKGROUND AND RELATED WORK

• Scalability: optimistic schemes can support a larger number of replicas, be-

cause they require little synchronization between sites.

• Networking flexibility: optimistic protocols (i.e. epidemic protocols) work well

over an intermittent connection by allowing updates to be exchanged between

any pair of replicas.

• Site Autonomy: as the optimistic scheme requires little synchronization be-

tween sites, it supports asynchronous collaboration by allowing applications

to work autonomously.

Optimistic approaches are used mainly for performance and availability in wide-

areas such as distributed data services (i.e. Usenet, DNS) [9]. and mobile network

applications such as Coda [26][27], Roam [28], Bayou [29][30], and IceCube [31][32].

2.3 Consistency Guarantee of Shared Data

A fundamental challenge of shared data access is to guarantee consistency among

replicas, if one replica is updated the other replicas have to be identical. Different

systems offer different guarantees and, therefore, consistency can be guaranteed

according to a correctness criterion that is acceptable to applications of the system.

It is worth mentioning that different applications can have different correctness

criteria [33]. For example, a strong consistency guarantee is one of the correctness

criteria for some applications which prevents any read or write operation going to

the replicas in case of network partitions or network failure. This solution requires

employing pessimistic techniques, which prevent inconsistencies between replicas by

decreasing their availability.

22

2. BACKGROUND AND RELATED WORK

When a network is partitioned or some replicas are unavailable, availability and

consistency become an issue. As stated in [34], in the presence of network parti-

tions, consistency and availability cannot be achieved at the same time. Therefore,

the trade-off between availability and consistency offers another correctness crite-

rion called the weak consistency guarantee (also called relaxed consistency). Some

applications favour inconsistencies as a cost for improving availability, by accepting

that replicas temporarily diverge, and then the system guarantees that eventually

the replicas reach mutual consistency. Weak consistency has been successfully used

in wide range of applications (i.e. mobile databases and collaborative software).

In the following subsections we introduce some consistency guarantees of shared

data that have been investigated in the literature. We start by describing briefly

the most restrictive guarantee which is known as strong consistency. Then, we intro-

duce weaker guarantees that are more suitable for systems that require availability

and scalability properties.

2.3.1 Strong Consistency Guarantee

The strong consistency guarantee means that the data must be consistent across all

replicas at all times, and this requires that for any change to data all subsequent read

operations performed on that data return the last value. In order to demonstrate

the strong consistency guarantee in a concise way, we consider a virtual interleaving

of the clients’ operations (read or write) which reflect one possible correct execution

as if a centralized system (unreplicated system) was used. The following strong

consistency guarantees that will be described next take such virtual interleaving as

a reference.

Linearizability is the strongest form of consistency guarantee, which requires that

23

2. BACKGROUND AND RELATED WORK

the order of operations in the interleaving is consistent with the real-time at which

the operations were performed in the actual execution [3]. For instance, for any two

operations O and O′ occurring at times T and T ′ respectively, O occurs before O′

in the interleaving order if, and only if, T<T ′.

A weaker consistency guarantee than linearizability is sequential consistency, be-

cause it does not require that the interleaving operations order is consistent with

the real-time at which operations are performed. However, the order of operations

in interleaving is consistent with the program order in which each client executed

them [3]. For example, for two operations O and O′ performed at client Ci, O occurs

before O′ in the interleaving order if, and only if, Ci performed O before O′.

W1(x, 1)

Replica1

t t

Replica2

W1(y, 2)

R2(y, 0)

R2(x, 0)

Figure 2.5: A replicated system that is sequentially consistent but not linearizable

Figure 2.5 shows an example of a replicated system that is sequentially consistent but

not linearizable. In this example, two clients replicated the same data items x and

y, and initially their values are 0. The example illustrates client1 updates data item

x value to 1 by performing first the write operation W1(x, 1), and later updateing

data item y value to 2, also by performing write operation W1(y, 2). Client2 per-

forms two read operations R2(y, 0) and R2(x, 0) and sees the initial value for both

24

chapter2/Chapter2Figs/A_replicated_system_that_is_sequentially_consistent_but_not_linearizable_1.eps

2. BACKGROUND AND RELATED WORK

x and y. Consider the following interleaving order: R2(y, 0), R2(x, 0), W1(x, 1),

and W1(y, 2). Obviously, the real-time requirement for linearizability is not satis-

fied, because R2(x, 0) occurs after W1(x, 1), but the interleaving order by which the

clients performed is consistent with the sequential order.

Sequential consistency is similar to serializability.”The main difference is that of

granularity: sequential consistency is defined in terms of read and write operations,

whereas serializability is defined in terms of transactions, which aggregate such op-

erations” [35].

The total consistency represents a weakening of sequential consistency, which re-

quires that all operations are executed in all replicas in the same order. For example,

given two replicas Ri and Rj, and two operations O and O′ that are propagated to

both replicas, if operation O is executed before O′ at Ri, then Rj also executes O

before O′. Figure 2.6 shows a replicated system with three replicas that ensure a

total consistency guarantee between three operations O1, O2, and O3. As shown

in figure 2.6 O2 is arrived at after O1 at replica1, while O3 is arrived at after O1

at replica2 and replica3; in this way, the total consistency guarantee system ensures

that each replica makes the same ordering decision (O1, O3, O2) to execute the op-

erations.

A weaker consistency guarantee than total consistency is causal consistency, which

requires that operations are executed according to causality relations (see section

2.1). If operation O′ is caused or influenced by an earlier operation O, causal

consistency guarantee systems require that every replica first executes O then O′.

However, operations that are not causally related can be executed in any order on

each replica.causal consistency guarantee is illustrated in figure 2.7, in a replicated

system with three replicas. Suppose an operation O1 is executed in replica1. Later,

25

2. BACKGROUND AND RELATED WORK

O1

Replica3Replica2Replica1

t t t

O1 O1

O3

O3

O3

O2
O2

O2

Replica1 delayed the execution of O2

until receive and execute O3

Figure 2.6: Total consistency guarantee replicated system

an operation O3 is executed at replica3 after being received O1. In this scenario, O1

and O3 are potentially causally related because the computation of O3 may depend

on O1 and, therefore, all replicas must execute them in the same order. Similarly,

operations O1 and O2 are potentially causally related. Therefore, the replicated

system is considered a causal consistency guarantee, because the causal ordering

between operations O1 → O2 and O1 → O3 is maintained at the every replica.

O1

Replica3Replica2Replica1

t t t

O1 O1

O3

O3

O3
O2

O2

O2

Figure 2.7: Causal consistency guarantee replicated system

26

chapter2/Chapter2Figs/Total_consistency_guarantee_replicated_system_2.eps
chapter2/Chapter2Figs/Causal_consistency_guarantee_replicated_system.eps

2. BACKGROUND AND RELATED WORK

A relaxing form of causal consistency guarantee is the FIFO consistency guarantee,

which requires that operations performed by a client are executed on all replicas in

the order in which they were performed, but operations from different clients are

executed in a different order on other replicas [35].

Figure 2.8 illustrates the FIFO consistency guarantee system, in which the order

between operations performed at each replica is maintained at all other replicas.

O1

Replica3Replica2Replica1

t t t

O1

O1

O3

O3

O3

O2

O2

O2

Figure 2.8: FIFO consistency guarantee replicated system

27

chapter2/Chapter2Figs/FIFO_consistency_guarantee_replicated_system_1.eps

2. BACKGROUND AND RELATED WORK

2.3.2 Weak Consistency Guarantee

In contrast to the strong consistency guarantee, weakening consistency lowers the

ordering and reliability requriement placed on the underlying messaging protocol.

A very weak consistency form called eventual consistency [36] guarantees the con-

vergence of replicated states within an optimistic replication system. In principle,

all replicas will converge, as past inconsistencies will be reconciled at some point

during future execution. It follows that an absence of writes coupled with a window

of full connectivity across replicas is required to ensure all replicas become mutually

consistent. Two of the most popular, and well-known, distributed storage systems

are Dynamo [37] and Cassandra [38]. These are examples of optimistic replication

systems that utilise eventual consistency models, principally in achieving a high level

of scalability.

Replicated systems that employ eventual consistency are allowed to temporarily di-

verge. Therefore, the eventual consistency guarantee differentiates operations into

two phases. In the first phase, operations that are executed locally or on the nearest

available replica are considered tentative. In the second phase, the operations are

propagated and applied in some schedule with all other replicas in order to ensure a

strong consistent view. In this phase, the operations become stable (or committed).

The period between the first phase and the second phase is called the inconsistency

window.

Figure 2.9 shows an example of an update made on a shared data item in a replicated

system that guarantees eventual consistency. The figure illustrates three replicas

that replicate a shared data item X. Initially, X is 0. A user at replica1 updates

the value of X to 2 by performing write operation W (X, 2), and later users at

replica2 and replica3 read the value 0 from X (during the inconsistency window),

28

2. BACKGROUND AND RELATED WORK

which is the old value of X. Subsequently, the user at replica2 makes another read

of X, and this time the latest value of X is returned.

W(X,2)

Replica3Replica2Replica1

t t t

R(X,0)

R(X,0)

R(X,2)

Inconsistency

window

Figure 2.9: Eventual consistency guarantee replicated system

However, with the eventual consistency guarantee, replicas converge to an identi-

cal state, but cannot determine when have reached that state. As stated in [35],

eventual consistent replicated systems work fine if clients always access the same

replica. Sometimes problems may arise when the client operates on different repli-

cas. Suppose a mobile user connects to a replica and performs some updates and is

then disconnected. Sometime later, the same user moves to a different location and

connects to a different replica. If the updates performed previously have not yet

propagated, the user will see an inconsistent result. The notion of session guaran-

tees [39] has been introduced to overcome this problem. Session guarantees provide

an application with a view of the replicated data that is consistent with its reads

and writes performed in session1 even though these operations may be directed at

1A session is a sequence of read and write operations performed during the execution of an

application.

29

chapter2/Chapter2Figs/Eventual_consistency_guarantee_replicated_system.eps

2. BACKGROUND AND RELATED WORK

different replicas. The session guarantees are explained as follows:

• Monotonic read consistency: if a client reads the value of a data item any

subsequent read operation on that data item by the same client will always

return that same value or a more recent value.

• Monotonic write consistency: a write operation by a client on a data item is

performed before any subsequent write operation on that data item by the

same client.

• Read your writes consistency: the effect of a write operation by a client on

a data item will always be seen by a subsequent read operation on that data

item by the same client.

• Writes follow reads consistency: a write operation by a client on a data item

will be performed on the latest copy of that data item read by the same client.

However, allowing replicas to temporarily diverge implies that the replicated system

and its applications need to consider the conflicts between updates and how they

may be reconciled, and this is discussed in the next section.

2.4 Reconciliation of Shared Data

As we discussed in subsection 2.2.2, systems that utilize optimistic replication intro-

duce temporary inconsistency by allowing operations to be executed on one single

replica without requiring coordination with other replicas. These systems range from

distributed file systems, such as Roam [28] and Coda [27], to distributed database

systems, such as Bayou [29] and IceCube [32], and distributed storage systems, such

as Dynamo [37] and Cassandra [38]. However, such systems raise the issues of con-

flict detection and resolution.

30

2. BACKGROUND AND RELATED WORK

Reconciliation is a mechanism used in such systems to identify any conflicting up-

dates made at different replicas to the same data item and resolve these conflicts in

order to maintain the same global state between all replicas, according to the notion

of eventual consistency criterion. Replica conflict occurs when two updates U and

U ′ are applied to different replicas R and R′ of the same data item d, if neither U

nor U ′ has observed the effects of the other before executing.

Several works exist that attempt to achieve reconciliation of state. In recent years

such works [29][31][32][40][41][42][43][44][45][46][47] have concentrated on the mobile

environment, where transit connectivity has been such a reconciliation problem.

Reconciliation can be classified into syntactic and semantic techniques in terms of

conflict detection and conflict resolution. The following subsections describe recon-

ciliation techniques in more detail.

2.4.1 Semantic Conflict Detection

Semantic conflict detection uses application semantics to define and detect conflicts.

Semantic conflict detection is based on operation preconditions, and conflicts occur

when some operations do not satisfy their preconditions. For instance, for each

operation that may potentially conflict with other operations, applications specify a

precondition that must be evaluated as true for operations to be correctly applied,

otherwise an operation indicates conflict. Systems like [29][30][31][32] are examples

for using application semantics to detect update conflicts.

2.4.2 Syntactic Conflict Detection

In systems that rely on the syntactic technique, no explicit precondition is included

by the application that performs the update operations. Instead, they depend on

31

2. BACKGROUND AND RELATED WORK

the timing of operations. The timestamp mechanism is employed with the syntactic-

based technique in order to detect replica conflicts. Vector clocks accurately detect

concurrent updates to the same data item [7]. Each replica carries an n-element

array of timestamps V Ci[1, .., n], one for each replica that has a copy of the data

item. Here V Ci[i] indicates that the last time an update to the data item was

issued at replica i, and V Ci[j] indicates the last update to the data item issued

at replica j that replica i has received (see subsection 2.1.3). Every time a data

item is updated, a replica increments its vector clock element of the updated data

item. During update propagation, replicas exchange their vector clock timestamps.

Conflicts are detected between two replicas i and j as follows:

• If V Ci = V Cj, then the replicas have not been updated.

• If V Ci > V Cj, then the data item has been updated at replica i. Similarly, if

V Cj > V Ci, then the data item has been updated at replica j.

• If none of the above is true, then there is an update conflict.

2.4.3 Conflict Resolution

When a conflict is detected, it needs be resolved to bring the replicated system to

the identical consistent state. Resolving conflicts can be achieved manually or auto-

matically. Manual resolution needs user intervention, whereas automatic resolution

is application-specific. Consider the example of the calendar application, where a

shared calendar is accessed by multiple users during network partitioning or perhaps

some replicas are not accessible. A user requests a meeting proposing a time and

location. If conflict is detected for conflicting reservations for meeting time slots,

manual resolution may simply notify the user of the conflict and let the user de-

cide how to resolve it. Coda [26] is an example that uses manual resolution of file

32

2. BACKGROUND AND RELATED WORK

conflicts. With automatic resolution, this is performed by an application-specific

procedure which can try a different time slot. Bayou [29] is a system that supports

such a method through a mechanism called merge procedures. Optimistic replicated

systems favour automatic resolution since updates may propagate epidemically and

the user may not be available when the conflict is detected.

The next section provides more details of optimistic systems approaches that aim

to make use of the domain of the application to facilitate the process of handling ir-

reconcilable differences and preserving causal dependencies across their shared state

actions.

2.5 Related Work

This section surveys related work in the area of optimistic replication systems, hoard-

ing approaches and contention management. First, we review some existing work of

optimistic replication systems that attempts to implement semantic reconciliation

to achieve eventual consistency. Then, we present work on hoarding, which is a

strategy used in optimistic replication systems for retrieving necessary data likely

to be used during a client disconnection. Finally, we review contention management

policies, which are the mechanisms used in shared data systems to reduce conflicts

and resolve contention between nodes.

2.5.1 Optimistic Replication Systems

2.5.1.1 Coda

Coda [26][27][48] is a distributed file system that supports disconnected operations

and network partitions by allowing clients to replicate files and directories from

33

2. BACKGROUND AND RELATED WORK

servers. When a server is not accessible, a client reads and updates the contents of

locally replicated files and directories.

A client in Coda operates in one of three states during its execution: hoarding, emu-

lation, and reintegration. The hoarding state is normally when a client is connected

to the server and operates on files and directories that are stored on the server. Also,

a client in this state may replicate a certain set of files or directories in anticipa-

tion of disconnection. When disconnected, a client enters the emulation state and

relies on replicated data. Upon reconnection, a client enters the reintegration state

and propagates its updates in parallel to all servers, and then the client enters the

hoarding state.

The emulation state may lead to replica divergence. Therefore, reconciliation is

handled in the reintegration state. Coda uses both syntactic approaches (see sec-

tion 2.4.2) to detect file conflicts and resolve them manually, while it uses semantic

approaches (see section 2.4.1) to detect directory conflicts and resolve them auto-

matically.

File conflict resolution is based on the version timestamp. Each replicated file is

assigned a Coda Version Vector (CV V), with each element in CV V representing

each server that stores that file. Each element counts the number of updates made

at the server. A file that has been updated during disconnected replica will have

a different CV V . Therefore, conflict updates can be detected by comparing the

CV V s.

The state of replicas i and j are compared using their CV V . When every element

of CV V i is equal to the corresponding element of CV V j, the replicas are identical.

If every element of CV V i is greater than the corresponding element of CV V j, then

the replica i has the later version of file; the contents of file are applied to replica

34

2. BACKGROUND AND RELATED WORK

j and its CV V j is modified to CV V i. The same is ture if CV V j is greater than

CV V i. If some elements of CV V i are greater than but other elements are less than

the corresponding element of CV V j, then conflict is detected. In this case the con-

flict is resolved manually by the client through the Coda repairing tool.

In contrast to files, directories rely on application knowledge. Each server maintains

a resolution log along with each replicated directory. The resolution log records all

actions made to the directory. Also, the resolution log contains all the necessary

information to perform resolutions, such as names of new objects created and unique

identifiers of all objects (created, deleted or modified). Conflict updates can be de-

tected by simply comparing resolution logs. An example of such a conflict is when

two disconnected clients each create different files on a common replicated directory.

Coda easily solves this conflict be including both created files on a merged directory.

Coda maintains the dependencies order between log entries from one server when

logs are merged. For example, the entry for deleting file X must follow the entry of

creating file X. Log entries from different servers can be merged in any order [49].

2.5.1.2 Bayou

Bayou [29][30] is an optimistic replication system designed with the goal of satisfy-

ing the consistency requirement of a shared state that resides across mobile devices.

In essence, devices can access and update their local copy of the shared state while

disconnected. Then, the device can synchronize with any other replica, propagating

its updates and receiving new ones that it does not already know about.

Update propagation in Bayou is performed epidemically via an anti-entropy proto-

col, which means when a device connects to another replica it will send the updates

it has made locally, but also receive any updates it does not already know about.

35

2. BACKGROUND AND RELATED WORK

During this process, updates made at one replica will eventually be received by all

other replicas. Updates are applied tentatively as they are received from other repli-

cas. The order of tentative updates may vary at each replica. Within the system,

one device is designated as the primary, which is responsible for deciding the final

ordering of the updates and broadcasting this decision to all replicas. The ordering

of the updates is based on the happens-before order achieved by the vector clock

timestamp (see section 2.1.3). When a replica receives the decision, it will commit

the updates, thus bringing it towards an eventual consistency. Committed updates

are totally ordered (see subsection 2.3.2) according to the timestamp assigned by

the primary node.

Conflict resolution in Bayou is handled by using both a dependency check and a

merge procedure that are attached to each update action. The dependency check

and merge procedure mechanism allows the application to specify how to detect con-

flicts and what steps should be taken to resolve these conflicts. Every time an action

is executed, its dependency check is also executed. A dependency check consists of

a query and its expected result; a conflict is detected if the query does not return

the expected result. The merge procedure provides a number of alternate updates

(determined by the application programmer) in case the original update cannot be

succeeded. Once conflict is detected, a merge procedure is automatically executed

and provides an alternate update.

2.5.1.3 IceCube

IceCube [31][32] goes beyond Bayou in creating a framework within which an optimal

reconciliation of replica states may occur in the context of application dependencies.

IceCube attempts to create a near optimal schedule in order to minimize local ac-

36

2. BACKGROUND AND RELATED WORK

tions that cannot be honoured. Unlike Bayou, IceCube is considered a more flexible

type of ordering that may violate the happens-before order. It relies on running

actions in a different order because actions that are ordered by happens-before may

be semantically commuting. IceCube proposes the notion of static and dynamic

constraints to reduce the size of search space. Static constraints do not depend

on the state of the replica and is used to determine the ordering in which actions

are applied. Unlike static constraints, dynamic constraints depend on the state of

replica and are used to verify the success or failure of an action. IceCube represents

the relations between actions and constraints by a directed graph (see section 2.1.4),

where nodes correspond to actions and edges are constraints.

In IceCube, an application can be one of the following two phases: the isolated

execution phase or the reconciliation phase. During the isolated execution phase, a

client performs actions against its local replica. Actions are recorded in the local

log and remain tentative. The reconciliation phase starts when clients propagate

their logs to a centralized schedule (in the server). The centralized schedule merges

the logs of two or more clients to ensure a global consistent state between replicas.

To this end, the reconciliation phase is divided into three stages: the scheduling

stage, the simulation stage and the selection stage. The scheduling stage consid-

ers all possible combinations of merged actions to generate admissible schedules.

The admissible schedules contain all possible orderings of actions that satisfy the

static constraints. The simulation stage evaluates each admissible schedule against a

shadow copy of the replica associated with it. A schedule that violates any dynamic

constraints is aborted. The final outcome of this stage is one or more schedules. The

selection stage chooses the best schedule according to application-specific criteria.

The chosen schedule is the reconciled log, which can be applied to replicas to bring

37

2. BACKGROUND AND RELATED WORK

the system to one global state. Irreconcilable actions are dropped from the schedule

and the system must handle these exceptions in an application dependent manner.

Similar to Bayou, IceCube relies on a central node to decide the final optimal sched-

ule between merged updates and then broadcasts this decision to all replicas.

APPA [50] has extended the IceCube to a fully distributed version. The motiva-

tion was to implement the IceCube reconciliation algorithm in a peer-to-peer data

management system since a centralized algorithm is not suitable in such systems.

This is because a central node may be a bottleneck. Furthermore, if the reconciler

node fails, the whole replications system may be blocked until recovery. However,

performance analysis of APPA’s algorithm showed that there was not a significant

improvement in reconciliation speed compared to IceCube’s algorithm. This is be-

cause there are many dependencies that need to be maintained in a distributed

reconciliation algorithm [51].

There are several other works, based on the aforementioned systems, which have also

developed reconciliation to guarantee eventual consistency in optimistic replication

systems. These systems use one of the following techniques: (i) timestamp ordering

or (ii) application semantics. However, these works have one common goal, which

is to achieve an efficient reconciliation that leads to an eventual consistent state.

2.5.2 Predictive Protocols

2.5.2.1 Seer

Seer [52][53] is a predictive hoarding system that supports disconnected operations

in mobile environments. It infers semantic relationships between files based on a

user’s previous files access history. The main idea is that files are clustered using

a measurement called semantic distance. These clusters are used to indicate the

38

2. BACKGROUND AND RELATED WORK

necessary files that should be hoarded to a mobile computer prior to disconnection.

The notion of semantic distance defines relationships between files according to their

distance. The smaller the semantic distance between files, the more they are closely

related and, therefore, are probably involved in the same project; conversely, a big-

ger distance indicates that files are independent and belong to different projects.

The semantic distance is measured based on the sequence of file reference (reference

such as open or closed) rather than looking at the contents of file themselves. For

example, consider the open and closed reference sequence of three files A, B, and

C, such as {open A, open B, closed B, closed A, open C, closed C}, the semantic

distance from open A to open B is 0 because A has not been closed before B is

opened, whereas the semantic distance from open A to open C is 2. Similarly, the

semantic distances open B to open C is 1.

Seer consists of two components, an observer and a correlator. The observer moni-

tors the user behaviour and file access, classifying each access according to type and

converting path names to an absolute format. The result of the observer is submitted

to the correlator. The correlator calculates the semantic distance between various

files to aid the system to assign each file to one or more cluster. Seer does not itself

do the file hoarding; it relies on the replication system to perform the hoarding.

Coda system [27] uses Seer during the hoarding state (described in section 2.5.1).

2.5.2.2 Spy Utility

Spy utility [54] is automated file hoarding that relies on program execution to build

sets of related files. The main idea is to monitor file accesses in the background and

recode these activities in the log. The background process analyzes the program

executions in order to construct trees of various files accessed by each program.

39

2. BACKGROUND AND RELATED WORK

Each node in the tree represents a file or an executable program. A node in the

tree has branches of files or programs that have been opened or executed by the

parent node. For example, an edge from node A to node B is added if program

A calls program B, or program A uses the file B. After the trees have been built,

the system unites all the trees for each specific program and records this in the

database on the local disk. At hoarding time, the system presents this information

to the user through a hoarding application tool. However, Spy utility automatically

detects related files, requiring user intervention to select the sets to be hoarded.

2.5.3 Contention Management

2.5.3.1 Backoff Algorithms

In distributed multiple access environment, nodes are contend for the medium ac-

cess for transmitting data packets in a distributed manner. Collision is considered a

major problem in this environment, since the medium is shared between all nodes;

whenever more than one node simultaneously tries to access the medium to transmit

a packet, a packet collision occurs and the nodes have to retransmit the packets.

If the collided nodes try to access the medium again, the packet will collide as the

nodes may retransmit simultaneously.

Backoff algorithms are used in distributed environments to reduce collisions and

resolve contention between competing nodes. Specifically, the Binary Exponential

Backoff (BEB) algorithm that is used as a part of the Distributed Coordination

Function (DCF) standardized by the IEEE 802.11 is widely used [55]. In the BEB

algorithm, before transmission, a node senses the medium to determine whether it

is idle. If the medium is idle, the node sets a timer to zero and creates a contention

window with a size set to the minimum (CWmin). The node now selects a random

40

2. BACKGROUND AND RELATED WORK

interval between zero and CWmin. The node will then decrease this interval by

one until it reaches zero. Once at zero, the node begins transmission. If a collision

occurs, the node is backed off and it increases its timer by one and the contention

window size is doubled, up to a ceiling value (CWmax). After each successful trans-

mission, the timer is reset to zero and contention window size is reset to CWmin.

The performance of the BEB algorithm determines the contention window mecha-

nism. For example, if the window size is too small and there are many nodes, then

collisions are likely to occur. If the window size is too large and there are a few nodes

with packets to transmit, then there will be unnecessary delays. In either case, the

medium is not used efficiently. The BEB also suffers from a fairness problem where

successful nodes will rest their contention window to minimum while other nodes

can end up maintaining a large contention window, reducing their chance to access

the medium to retransmit.

Many algorithms have been developed to enhance the BEB performance to effi-

ciently utilize the medium. The Multiplicative Increase Linear Decrease (MILD)

[56] was proposed to overcome the fairness problem in BEB. In the MILD, upon a

collision, the collided nodes increase their contention window size multiplicatively

by 1.5 and, upon successful transmission, nodes decrease their contention window

size linearly by 1, instead of resting it to minimum. The algorithm has shown im-

provement to performance when the network load is high, but does not perform well

when the active nodes’ behaviour changes quickly from a period of high contention

to low contention. This is because it cannot adjust its contention window quickly.

The algorithm Exponential Increase Exponential Decrease (EIED) [57] enhances

the performance of the BEB. Whenever a collision occurs the contention window

is doubled and is decreased by two upon a successful transmission. This algorithm

41

2. BACKGROUND AND RELATED WORK

provides better performance over BEB and MILD in terms of throughput. In the

linear/Multiplicative Increase Linear Decrease (LMILD) algorithm [58], upon a col-

lision, the collided nodes increase their contention windows by multiplying by two,

while the nodes overhearing the collision increase their contention window linearly.

Upon a successful transmission, all nodes decrease their contention window linearly.

LMILD performs better than BEB and MILD in terms of throughput and fairness.

The Pessimistic Linear Exponential Backoff (PLEB) algorithm [59] is a combination

of the linear and exponential increment methods. The algorithm aims to merge the

advantages of these two increment methods. Using exponential increments achieves

high throughput by reducing the number of transmission failures, and using the

linear increment reduces the average network delay. In this algorithm, whenever

a collision occurs, the contention window is increased exponentially up to certain

number then starts to increase linearly instead of exponentially incrementing. This

method has shown improved performance over LMILD when used in moderately

sized networks.

However, all these algorithms aim to optimise the size of the contention window and

only differ by adjusting the contention window in a different manner.

2.5.3.2 Contention Managers

Deciding the order of shared data accesses to achieve the desired consistency model is

a scheduling problem. Such ordering can satisfy a consistency model yet still exhibit

a degree of data access bias that may cause problems in the application. Livelock is

one extreme case but more common problems relate to prolonged periods of access

starvation for processes, and this is an issue that increases in importance for real-

time systems. Contention management is the additional attribute to a shared data

42

2. BACKGROUND AND RELATED WORK

access protocol that alleviates such bias from the scheduling of data access.

Contention management is an ordering technique used to resolve conflicts between

transactions accessing shared data, and a conflict occurs if a transaction (victim

transaction) is holding shared data which another transaction (attacker transac-

tion) tries to access. Resolving such conflicts is managed by a contention manager.

In transactional systems, the contention manager occurs at the decision to deter-

mine which transaction should be committed, which transaction should be aborted

or delayed, and how the transaction should be delayed. An efficient contention

manager makes the right decisions when conflict occurs. The choice of contention

manager policy that guarantees a high level of progress and provides high through-

put is not easy. This issue has resulted in a number of different contention manager

policies [11][60]. The following contention manager policies have been described in

the literature:

• Aggressive: the aggressive contention manager is very simple, as it always

aborts the victim transaction.

• Randomized: the randomized policy randomly chooses aborting between con-

flicted transactions.

• KillBlocked: with the KillBlocked contention manager, upon a conflict the

manager marks the attacker transaction as blocked. KillBlocked aborts the

attacker transaction if: (i) it is marked as blocked many times, or (ii) its

maximum waiting time has expired.

• Timestamp: the timestamp policy aims to provide fairness between conflicted

transactions. The idea is to assign a timestamp at the beginning of each trans-

action. When a conflict occurs, the contention manager checks the attacker

43

2. BACKGROUND AND RELATED WORK

transaction’s timestamp, if it’s timestamp is smaller the manager aborts it.

Otherwise, the attacker transaction waits for fixed intervals, and in the mid-

dle of the intervals it will set the attacker transaction flag as defunct; if the

flag is still set at the end of the intervals the attacker transaction aborted. A

transaction timestamp resets when it is committed successfully.

• Greedy: this policy assigns a timestamp for each transaction when it starts.

When conflict is detected, the contention manager aborts the transaction with

a smaller timestamp.

• Polite: the Polite contention manager utilizes the exponential backoff tech-

nique to resolve conflict between transactions. When a conflict is detected,

the attacker transaction backs off for a random amount of time within the

range of 2n where n is the number of times conflict has occurred. After a fixed

number of attempts to access the same object, the Polite manger aborts the

attacker transaction.

• Karma: the Karma contention manager attempts to always abort a transac-

tion that has done less work. Karma keeps track of the number of objects

opened by a transaction and its priority. It increments this priority with each

object opened and resets to zero when a transaction commits. Priorities do

not reset to zero if a transaction aborts. When a conflict is detected between

transactions, and the attacker’s transaction has lower priority, it aborts. Oth-

erwise, it backs off for a fixed period of time and retries. When the number

of retries exceed the difference in priorities between the attacker and victim

transaction, the attacker transaction is aborted.

• Eruption: this policy is an extension of Karma. It is similar to karma, but

44

2. BACKGROUND AND RELATED WORK

when conflicts occur between transactions, it adds the attacker’s transaction

priority to the victim’s transaction priority and then the attacker transaction

backs off. The idea behind the extension is to increase the priority of the

transaction that blocks multiple transactions and therefore finish quickly.

• Polka: the Polka contention manager is a combination of two policies, Polite

and Karma. It combines the priority policies of Karma with the exponential

random backoff of Polite. Polka works in a similar way to Karma but instead

of backing off for a fixed number of intervals, it backs off exponentially; after a

set amount of maximum backoff, the contention manager aborts the attacker

transaction.

However, an evaluation of these policies in the literature [60][61] showed that no

contention manager policy seems to work universally better in all circumstances.

2.6 Strong Causality

As mentioned in section 2.1, the principle of causality usually means the relationship

between a set of actions (cause) and (the effect). We proceed in this section to

establish the strong causality: strong causality specify that all possible effect actions

can only be executed if, and only if, the cause action executed successfully [31]. This

is because an inability to satisfy action that resulted in a conflict in shared state

means that subsequent actions carried out by a client must be void. This is useful

when the cause action produces some effect used by the effect action. Suppose

that the client wants to copy a file after updating it. The update action must be

a predecessor of the action that copies the file. Strong causality works for those

systems that must maintain causality from the client’s view. That is, a server must

45

2. BACKGROUND AND RELATED WORK

process all client requests in the order they were sent by a client. This is the type

of system we are primarily concerned with.

2.7 Discussion

Achieving an implementation of an optimistic replication system that enforces even-

tual consistency balances the requirements of consistency, availability and timeliness.

Increasing consistency (moving towards a more pessimistic approach) contradicts

availability and timeliness. However, increasing inconsistency places a greater bur-

den on the application as exceptions that are the result of irreconcilable differences

in the shared state must be handled.

The amount of work required by an application to retrospectively handle exceptions

increases as the need to maintain causality across client actions on the shared state

increases. This is because an inability to satisfy an action that resulted in an irrec-

oncilable difference in the shared state means that subsequent actions carried out

by a client may also be void. However, earlier academic works like Coda, Bayou and

IceCube (recall section 2.5) do attempt to maintain a degree of causality, but only

at the application programmer’s discretion (which would not be known explicitly

in our approach as we expect client machines to not hold such information and so

cannot use it in their messaging protocol).

Coda works very well in environments where conflicts are very rare and it is effective

for shared objects with simple dependencies such as directories. Bayou and IceCube

rely on the application programmer to specify the extent of causality, preventing

a total rollback and restart. This has the advantage of exploiting application do-

mains to improve availability and timeliness, but does complicate the programming

of such systems as the boundary between protocol and application overlap. If the

46

2. BACKGROUND AND RELATED WORK

causality requirements of an application span many actions then the complication

of injecting application specific exception handling will increase. In some instances,

such exception handling defaults to an undesirable rollback scenario as ignoring ir-

reconcilable actions or attempting alternative actions may not be viable. This is

the worst case scenario for applications with strong causality requirements as the

reconciliation of optimistic protocols does nothing but increase overheads, both in

terms of throughput and the complexity of the programming model. In fact, the

model becomes transactional in nature.

Transactions may offer a solution, but do carry a substantial overhead in their

commit phase and are traditionally only employed at the end of a series of non-

transactional accesses (e.g. for financial transfers). In addition, transactional sys-

tems provide schedules that do not exploit semantic properties that could provide a

weaker, but still correct, consistency model (as in some optimistic approaches).

Contention managers are primarily related to transactional systems, where rollback

is expected. However, because compensation is expected in eventually consistent

protocols there has not been too much work in contention management in eventual

consistency. However, in those cases in eventually consistent protocols where causal-

ity must be maintained, contention managers play an important role. In optimistic

approaches, the contention manager may be viewed as the ability to derive the most

optimum schedule (e.g. one which maintains most causality, one which commits the

most actions). In this respect, contention management becomes an attribute of the

reconciliation phase of the protocol.

Therefore, we need to develop a contention manager for an eventually consistent pro-

tocol that may require stronger causal guarantees. We require a contention manager

that operates in a transactional like environment (as clients rollback in the presence

47

2. BACKGROUND AND RELATED WORK

of irreconcilable data accesses), but unlike transactions that can make use of ap-

plication level semantic knowledge (probability of future causal relations), similar

to optimistic approaches. However, such semantic knowledge is only maintained at

the server side, meaning we want a contention manager that does not rely on the

client’s understanding of how to best exploit such knowledge (similar to transactions

as clients being told to simply rollback or continue).

Maintaining semantic knowledge at the server side has the advantage of reducing the

client messaging protocol overhead on both message size and semantic knowledge.

In addition, removes the complexity of the application developer by delegating the

handling of semantic knowledge and causality at the server.

2.8 Contribution Made by the Thesis

In this thesis, we present a framework which provides contention management for

improving throughput when clients progress independently, but which also requires

the property of eventual consistency in the presence of irreconcilable differences of

state shared across clients. In addition, our framework is specifically designed for

environments where preserving causality in the same manner as a transactional type

system is a requirement.

We use causality inherent in the application layer to our advantage, in that we as-

sume a degree of predictability in a client’s actions. For example, in e-commerce,

such predictability is commonly used when suggesting subsequent purchases to

clients; for example, Amazon’s website provides information regarding the popu-

larity of items and the relationship between such items with regards to previous

sales to improve shoppers’ awareness of products. This may appear to a shopper as:

”people who bought this item also purchased the following items · · · · ·”. We use

48

2. BACKGROUND AND RELATED WORK

predictability in two ways:

1. Manage contention for popular items of shared data via a backoff scheme, and

2. Pre-emptively update a client’s shared state of the data items they are likely

to access in the future.

However, Backoff-based contention management has been used in distributed mul-

tiple access environment (see subsection 2.5.3.1) to reduce collisions and resolve

contention between competing nodes and in software transactional memory (e.g.

[60][62]), to resolve conflicts and avoid livelock and starvations when a conflicting

transaction aborts and restarts. Backoff has also been demonstrated in message

ordering (e.g. [63]) to attain replication systems with fault-tolerant properties. To

the best of our knowledge, this is the first time it has been combined with the pre-

dictability of causality within the application domain in an optimistic manner.

We stress that it is the contention management aspect of our work that is the main

contribution. To test our contention management approach, we have to construct

a more complete protocol to fulfil our requirements. We believe that any proto-

col suited to satisfying our approach requirement (will be formalised in the next

chapter) could be substituted to test our contention management framework.

2.9 Summary

This chapter has provided the necessary background relevant to the thesis. It started

with the fundamental concept of causality and described the techniques that have

been found in the literature to track causality in distributed systems. Then, the

data replication and the difference between optimistic replication and pessimistic

replication models were described. The consistency guarantee of the pessimistic

49

2. BACKGROUND AND RELATED WORK

replication model was briefly presented. More detail on the consistency guarantee

of the optimistic model was discussed, specifically eventual consistency, since the

thesis falls into eventual consistency. A description of achieving consistency within

optimistic approaches was introduced and the ways to achieve eventual consistency

was described. Next, an overview of several approaches related to optimistic repli-

cation, and how such approaches handle irreconcilable differences, were presented.

Finally, we sum up the contribution of the thesis.

50

Chapter 3

Framework

In this chapter, we present our framework, the formal model and the protocol de-

sign. We start by describing the system model and we detail the system architecture

and the requirements. Then we present the proposed protocol that is suitable for

optimistic replication systems. Next, we explain client and server algorithms us-

ing pseudo-code. Finally, we introduce the contention management that will be

augmented with the proposed protocol.

3.1 The Requirement

This section identifies the requirement of system to enable our contention man-

agement framework to be used in resolving conflict and maintaining causality, the

system must fulfil the following requirements:

• Client/Server architecture.

• Clients adopting full replication.

• Utilizing eventual consistency correctness criteria.

• Adopting Pull-base update propagation technique.

51

3. FRAMEWORK

3.2 Notations

In order to facilitate the tracking of the meaning of the symbols that will be used

throughout this chapter, Table 3.2 provides a summary of these symbols.

Table 3.1: Summary of notations

Symbol(s) Meaning
C Client
S Server
Ds Data set
di Data item
A, B, ..., etc Refer to data items
m Message
G Graph represents the relations between data items
V V Volatility value represents how many data items have

been accessed
UMR Update message request sent from a client to a server
MMR Missed message request sent from a server to a client
EARM Enhanced authoritative rollback message sent from a

server to a client
DQ Delta queue

3.3 System Model

The system used in this thesis is a typical distributed system consisting of a single

server and a number of clients, as illustrated in figure 3.1. The server maintains

all shared data and clients maintain duplications of such data. Clients communi-

cate with the server through message passing. A single client is not aware of any

other clients and can only communicate directly with the server. The system is

asynchronous, i.e. different clients may run at different execution speeds, clients

proceed sending immediately after they have submitted their message to server and

the delay of messages is not bounded, possibly varying from one message to the

next. However, there is no reason why the system cannot be extended to peer-to-

52

3. FRAMEWORK

peer (assuming each client holds shared data with epidemic message propagation as

in Bayou). Communication channels between clients and server exhibit FIFO (first

in first out) qualities but may lose messages.

Clients carry out actions locally on a duplication of the server state and periodically

inform the server of their shared data accesses. A server receives these access notifi-

cations from clients and attempts to carry out all client actions on the master copy

of the shared state. However, if this is not possible due to irreconcilable actions

then clients are informed. On learning that a previous action was not achieved at

the server, a client rolls back to the point of execution where this action took place

and resumes execution from this point. Subsequent actions from such a restart may

not be the same (the system is dynamic in this sense).

Client

Network

Server

Data

Replica

Client

Replica

Client

Replica

Figure 3.1: System Model

3.3.1 Data

Since replication is relevant to a distributed system, as explained in section 2.2, our

model considers shared data access. We define the shared data between the server

and each client as a collection of objects {d1,d2,· · ·,di }called a data set DS. We

refer to a single object di ∈ DS as a data item. Each data item di has a state and a

53

chapter3/Chapter3Figs/System_Model.eps

3. FRAMEWORK

logical clock value associated with it. Only the server can advance the logical clock

for a data item.

3.3.2 Clients

Clients are denoted by C1, C2, C3, · · ·, Cn. Each client maintains a local replica

of the data set maintained by the server (the master copy), as shown in figure 3.1.

All client actions performed on shared data are directed only to their local replica.

We define an action as an event invoked by the client that updates or reads a data

item’s state. An action may access at most a single data item at a time. Each client

uses a number of logical clocks to aid in managing their rollback and execution:

• Client data item clock (CDI): exists for each data item and identifies the

current version of a data item’s state held by a client. This allows the server

to recognise when a client’s view of a data item is out of date. This is updated

when the server informs a client when their actions were rejected for operating

on stale data.

• Client session clock (CSC): clients increment each time they are requested to

rollback. This allows the server to ignore messages belonging to out of date

session.

• Client action clock (CAC): clients increment each time they carry out an

action. This allows the server to recognise missing messages from clients.

The result of an action that accesses a data item’s value in the local replica state

results in a message that is sent to the server. This message contains the data item

state, the CDI of the data item, the CSC, and the CAC. An execution log is

maintained and all client messages belonging to actions that result in shared state

54

3. FRAMEWORK

accesses are added to it. This log aids the client rollback procedure.

A message arriving from the server indicates that a previous action, say An, carried

out by a client was not possible or client messages are missing. All server messages

contain a session identifier. If this identifier is the same, or lower, than the client’s

CSC, then the server message is ignored (as the client has already rolled back, and

the server may send out multiple copies of the rollback message). However, if the

session identifier is higher than the client’s CSC, the client must update their own

CSC to match it and rollback.

If the server sent the message due to missed client messages then only an action clock

identifier and session identifier will be present (we call this the missed message

request). On receiving this type of message, the client should rollback to the action

point using their execution log. However, if the server sent the message because a

prior client action was not possible then such a message will contain the latest state

of the data item that An operated on, and the new logical clock value the client

should install for this data item (we call this the irreconcilable message request).

On receiving such a message the client halts execution and rolls back to attempt

execution again from An.

Although a client will have to rollback when requested by the server, the receiving

of a server message also informs the client that all their actions prior to An were

successful (those with a lower CAC in the execution log). As such, the client can

reduce the size of their execution log to reflect this.

3.3.3 Server

Our model consists of a single server, S, which maintains the master copy of the

data set for the system, labelled DSs. From this data set the clients create their

55

3. FRAMEWORK

local replicas. The role of the server is to ensure that causal relationship between a

client’s actions is preserved and client replicas are eventually consistent.

Over time the state of data items maintained by a client will become inconsistent

with those held by the server. This is a result of actions applied by other clients. As

such, in order to ensure that updates are not lost and each client operates with the

most up to date version of the data item, the server maintains a number of logical

clocks to aid in informing clients when to rollback:

• Session identifier (SI): this is the server’s view of a client’s CSC. Therefore,

the server maintains an SI for each client. This is used to disregard messages

from an out of date session from clients. The SI is updated by one each time

a client is requested to rollback.

• Action clock (AC): this is the server’s view of a client’s CAC. Therefore,

the server maintains an AC for each client. This is used to identify missing

messages from a client. Every action honoured by the server on behalf of the

client results in the AC of that client being set to the CAC belonging to the

client.

• Logical clock (LC): this represents the version number of a data item. There-

fore, the server maintains an LC for each data item. The server uses this to

inform clients of their CDI values. Whenever an action successfully accesses

a shared data item, the LC of that data item is incremented by one.

A message from a client, say C1, may not be honoured by the server due to one of

the following reasons:

• Stale session : SI belonging to C1 is greater than the CSC in C1’s message

• Lost messages : CAC in C1’s message is two or greater than AC

56

3. FRAMEWORK

• Stale data : LC is greater than CDI in C1’s message

When the server has to reject a client’s (C1) message, a rollback message is sent to

the client.

3.4 System Protocol

We describe our protocol as a pair of algorithms, one for the clients’ side and one

for the server side. We first provide an overview of the protocol and then present

the algorithms for each side as pseudo-code. The algorithms described can be seen

in Algorithm 1 and Algorithm 2.

3.4.1 Overview

Our protocol consists of two parts: a client side algorithm and a server side algo-

rithm. Each client executes the same algorithm in which, for each action issued, the

result is communicated to the server.

A client is able to independently make changes to the data set. Once a single data

item has been modified, the client algorithm must be executed before another action

can be made. The algorithm does not block the client after having sent a message;

the client is free to issue a new action modifying the state of a data item locally.

Before a message can be sent, however, the client algorithm must process any mes-

sages that may have been received from the server. Message delivery is considered

reliable but may lose messages.

While not presented in the algorithms, we assume that each client initially connects

to the server to download a copy of the data set before being able to send a message

to the server. When retrieving a copy of the data set, the latest version will always

be provided.

57

3. FRAMEWORK

3.4.2 Pseudo-code

Upon receipt of a message, the communication layer will place the message in a queue

called messages for the process to access. Messages in the queue are processed in

a FIFO order. We assume the primitives add, remove and send for use when

manipulating collections in the pseudo-code.

Two message types exist in the system; a Request message is sent from client to

server, and a Response message is sent from server to client in the event of a previous

action carried out by a client was irreconcilable or a client message was missing.

When the client wishes to send a message, an update message request (UMR)

entity is created and populated with the required fields. These fields are the data

item state, client data item clock, client session clock and client action clock. The

format of the clock is an integer, starting at zero, which is incremented by one when

required.

A missed message request (MMR) entity is created and populated with the required

fields when a client’s UMR is missed. These fields contain only an action clock and

session identifier. An authoritative rollback message (ARM) entity is created and

populated with the required fields when a message needs to be sent to the client due

to irreconcilable message. The fields of the entity contain the server’s version of the

data item (state, logical clock, session identifier and action clock) for the conflicted

data item.

58

3. FRAMEWORK

3.5 Protocol Description

As mentioned in the preceding section our protocol consists of two algorithms, a

client side algorithm and a server side algorithm. This section provides a full de-

scription for both algorithms and illustrates them as pseudo-code.

3.5.1 Client Side Algorithm

The client executes the Algorithm 1 after having made an update to a data item.

The client provides the new state for the data item modified as a parameter. Any

messages received from the server are placed in the messages list. Before a client

can send a new message, the list must contain no Response messages (no messages

have been received from the server since the last message was sent).

If a Response message has been received, then this must be processed before the

sending of the new messages. If the session identifier (SI) in the Response message

is the same or less than the client’s CSC then the message is ignored, as the client

has already rolled back. Otherwise, the client must update their own CSC to match

SI and rollback (line 4). The rollback depends on the type of Response message:

if the Response message is due to missed message request then the client should

rollback to just after the last successful action using its execution log (line 6). If

the Response message is due to irreconcilable message request, then the client local

data set is rolled back to the state seen in the AC in the Response message using

its execution log and the updated state and logical clock values received from the

server are applied to the client’s local set (lines 8-10).

Once this is completed, or there were no messages received from the server, the

client can send a new message. The client action clock is incremented by one (line

20) and a Result message is created and sent to the server (line 21); the Result

59

3. FRAMEWORK

Algorithm 1 Client side algorithm

Client c; /* the client*/
Integer cCSC ; /* client session clock */
Integer cCAC ; /* client action clock */
Shared State DSc; /* client local replica */
list of Message messages; /* messages received from s */
list of ack; /* periodically acknowledgement received from s */

1: if messages 6= φ then
2: for each Message m in messages do
3: if mSI > ccsc then
4: ccsc := mSI ;
5: if mtype = MMR then
6: rollback DSc to mAC ;
7: end if
8: if mtype = ARMorEARM then
9: rollback DSc to mAC ;

10: apply mupdates to DSc;
11: end if
12: end if
13: end for
14: else
15: for each Acknowledgement in ack do
16: if mAC > CCAC then
17: remove mCAC from log;
18: end if
19: end for
20: cCAC := cCAC + 1;
21: send [UMR, c, di, CDI, cCSC , cCAC] to s;
22: end if

60

3. FRAMEWORK

message contains the data item state, the CDI of the data item, the CSC, and the

CAC. However, in order to avoid the unbounded growth of the clients logs, the

client periodically removes successful actions they submit (line 15-19).

3.5.2 Server Side Algorithm

The baseline server algorithm given in Algorithm 2 executes to processe arrived

messages from clients. When there are messages to process, the first is removed and

the session identifier, the action clock and logical clock value checks are performed.

The session identifier check is made first (line 4); if the server’s session identifier (SI)

is not equal to the received session identifier (CSC), then this message is ignored

(line 18).

If the message passes the session identifier check then the server now compares the

action clock, if it is greater then a reqired message from a client is missing. The

server incerments a client’s session identifier by one and send a missed message

request to the client (lines 5-7). The logical clock ensures that client used the same

state of the data item as the one held at the server. If the logical clock values are

not equal then the client used an out of date version and this message is considered

a conflict (line 9). In the event of a conflict, the server advances the SI of the client

by one and create authoritative rollback message. The message contains the latest

LC of the data item the action attempted to access, the value of the data item,

the AC and the SI value (this is the irreconcilable message request mentioned in

subsection 3.2.2). Then the server sends the authoritative rollback messagea to a

client.

If the clients message passes these two checks then the state and logical clock are

updated to reflect the clients action (line 14).

61

3. FRAMEWORK

The server periodically sends an acknowledgement message to inform clients of their

successful action (line 15).

Algorithm 2 Server side algorithm without backoff

Client c; /* the client*/
Server s; /* the server */
Shared State DSs /* shared state */
list of Message messages; /* messages received from clients */
list of Integer AC; /* action clock for each client */
list of Integer SI; /* session clock for each client */
list of Message rollbacks; /* rollback message for each client */

1: while true do
2: if messages 6= φ then
3: Message m := first message in message;
4: if mCSC = SI[mc] then
5: if mCAC >= (AC[mc] + 2) then
6: SI[mc]+ = 1;
7: send [MMR,AC[mc], SI[mc]] to mc;
8: elseif mCAC = AC[mc] then
9: if LC for mdi in DSs > mCDI then

10: SI[mc]+ = 1;
11: send [ARM,AC[mc], SI[mc], updates];
12: end if
13: else
14: update mdi in DSs with mdi,mCDI + 1;
15: send [ack, AC[mc]];
16: end if
17: else
18: skip;
19: end if
20: end if
21: end while

62

3. FRAMEWORK

3.6 Contention Management

We now explain how the framework described thus far can be augmented with con-

tention management to achieve greater performance (i.e. fewer irreconcilable differ-

ences providing less rollback without hindering overall throughput). To achieve this,

we exploit the causality inherent in the overall system. As we aim to satisfy appli-

cation types that exhibit strong causality requirements, we believe this approach as

appropriate.

As with all contention management schemes, we exploit a degree of predictability to

achieve improved performance. We assume that causality across actions is reflected

in the order in which a client accesses shared data items. The diagram in figure 3.2

describes this assumption.

A

B C

Figure 3.2: Relating action progression to data items

Considering the example shown in figure 3.2, we now describe the essence of causality

exploitation in our contention management scheme. We show three data items

(A,B,C). If a client, say C1, has carried out an action that successfully accessed

data item A, we can state the following: there is a higher than average chance that

data item B will be the focus of the next action carried out by C1; there is a higher

than average chance that data item C will be the focus of the next action carried

out by C1; there is a chance (less than going to B or C) that another data item

63

chapter3/Chapter3Figs/Relating_action_progression_to_data_items.eps

3. FRAMEWORK

(which could be anywhere in the shared state) will be the focus of the next action

carried out by C1.

The server maintains shared data as a directed graph, as mentioned in subsection

2.1.4. The graph created with probabilistic edges indicates the likelihood of clients

accessing individual items of shared state given the last item of shared state they

accessed. The graph is defined as G=(V,A, V V) where V (G) is s set of vertices

representing the data items in the server’s data set, A(G) is a set of ordered pairs

of vertices identifying the edge between two data items and V V : V (G) → X where

X is the volatility for a given vertex (X ≥ 0). The client is not aware of the graph

during execution. To achieve this we add a number of additional constructs at the

server side:

• Volatility value (V V): a value associated with each data item indicating its

popularity. Whenever a successful action accesses a data value, its volatility

value is incremented by 2 and the neighbouring data items’ volatility values

are incremented by 1.

• Delta queue (DQ): those actions that could not be honoured by the server

due to out of date LC values are stored for a length of time on the DQ. This

length of time is calculated as the sum of the volatility value of the data item

where the out of date LC was discovered, together with the highest volatility

values of data items up to three hops away on the graph. We call this the DQ

time of a client.

• Enhanced authoritative rollback message (EARM): when an action request

is de-queued from the DQ, an enhanced authoritative message is sent to the

client who initially sent the action request. An enhanced authoritative rollback

message extends the authoritative rollback message with all shared states and

64

3. FRAMEWORK

the LC values of up to three hops away in the graph of the most volatile nodes.

We now use an example to clearly describe how our backoff contention management

works. In figure 3.3, we show a graph created with probabilistic edges held by the

server with volatility values shown next to nodes. The length of both the predication

list and calculating the backoff time is set to three in this example. A graphical

representation G=(V,A, V V); for figure 3.3 the following set exists:

V (G)={A,B,C,D,E, F}

A(G)={(A,B), (A,C), (C,B), (B,D), (C,E), (C,F), (F,E)}

V V (A)=50, V V (B)= 5, V V (C)= 10, V V (D)= 7, V V (E)= 25, V V (F)= 40

7 40

A50

5 10B C

D E F25

Figure 3.3: Graph with volatility values

A

A

ServerC1

t t t

Update succeeded

Update conflict

C2

EAR
M

Back
off Backoff time

Figure 3.4: Message passing between clients and server

65

chapter3/Chapter3Figs/Graph_with_volatility_values.eps
chapter3/Chapter3Figs/Message_passing_between_clients_and_server1.eps

3. FRAMEWORK

Assume the server receives a client message from C1 indicating access to shared

data item A, as shown in figure 3.4. Unfortunately, the request was irreconcilable

due to out of date LC values. Since the successful action of C2, the logical clock for

A has been updated prior to receiving C1’s message.

The action request from C1 is placed on the delta queue. The DQ time for C1 is

the summation of the volatility values of A, C, F , and E (50 + 10 + 40 + 25 =

125). These are the highest volatility values up to three hops away. Therefore, each

time the client carries out an action, all the DQ time values are decreased by one

(see pseudo-code in Algorithm 3). For C1, the server will have to loop 125 time unit

before its action request can be de-queued. Once de-queued the enhanced author-

itative rollback message is sent to C1, complete with all the data item values and

LC descriptors of A, C, F , and E (the LC values are not shown on the diagram).

On receiving the enhanced authoritative rollback message, C1 can update A, C, F ,

and E in its own local replica and rollback, as instructed.

The approach we have taken is mostly a server side enhancement. We took this

design decision to alleviate clients from the burden of participating in contention

management. The only enhancement at the client side is the ability to update an

additional number of data items in its own replica of shared state on receiving a

rollback message.

If the contention management approach was left to run as described, then the volatil-

ity values would continue to rise and action requests would spend ever longer on the

DQ. To prevent this, we take a very simple approach in that, we zero volatility

numbers when they reach 200.

There are quite a number of parameter values that we have described that can be

changed (e.g. increasing volatility by 2 and neighbours by 1, determining DQ time,

66

3. FRAMEWORK

and assigning 200 as the ceiling value for DQ time). This was done to add clarity

to the descriptions and these are the values we use in our evaluation. These values

were inspired from backoff schemes, specifically the BEB and PLEB algorithms (see

section 2.8.1). We found that these values provided a suitable environment that

exhibits the benefits of our contention manager in this particular style of applica-

tion under these throughput conditions. However, an application developer may

experiment with other values.

3.6.1 Server Side Algorithm with Contention Management

The server algorithm given in Algorithm 3 executes in a loop, either processing ar-

rived messages or maintaining the delta queue. When there are messages to process,

the first is removed and the state of the client checks is performed. The state of the

client can be in one of two states:

• Progress : last client message could be honoured

• Stalled : last client message could not be honoured or was ignored

If the client is in the progress state then the CAC is checked first. If it is two or

greater than the AC of the client held by the server, then the server increments

the client’s SI and AC by one and moves the client to a stalled state (lines 4-8).

Otherwise, the logical clock of the data item checks is performed. The logical clock

ensures that the client uses the same state of the data item as the one held at the

server. If the clock values are not equal, then the client uses an out of date version

and this message is considered an irreconcilable action (line 10). In this case, the

session identifier at the server is incremented by one and the client moves to the

stalled state (lines 11-12). This means that any more messages sent by the client

in the same session will not be processed. The resulting message is put in the delta

67

3. FRAMEWORK

queue (lines 13-14) for the required time period, based on the volatility values seen

in the graph. The time period is calculated by taking the volatility value of the

highest volatile neighbour of the data item that conflicted. From that vertex, the

highest volatile neighbour is chosen. The sum of the resulting volatility values then

forms the backoff time. The number of vertices explored is a simulation parameter

that can be configured as required.

If the client is in the stalled state, the CAC is checked against the AC of the client

held by the server. If it is greater, the server increments the client’s session identifier

by one and an MMR message is sent to the client containing the action clock of

the client held by the server (lines 20-24). This means a required message from the

client is missing. If the CAC is equal, the AC of the client held by the server and

client uses the same state of the data item as the one held at the server; the client’s

state is moved to the progress state, and then the state and logical clock are updated

to reflect the client’s action (lines 32-34). Otherwise, the message is put in the delta

queue for the required time period based on the volatility values seen in the graph

(lines 26-29).

68

3. FRAMEWORK

Algorithm 3 Server side algorithm with backoff

Client c; /* the client*/
Server s; /* the server */
Shared State DSs /* shared state */
list of Message messages; /* messages received from clients */
list of Integer AC; /* action clock for each client */
list of Integer SI; /* session clock for each client */
list of Status status; /* status for each client */

1: while true do
2: if messages 6= φ then
3: Message m := first message in message;
4: if status[mc] = progress then
5: if mCAC >= (AC[mc] + 2) then
6: SI[mc]+ = 1;
7: AC[mc]+ = 1;
8: status[mc] = stalled;
9: send [MMR,Ac[mc], SI[mc]] to mc;

10: elseif LC for mdi in DSs > mCDI then
11: SI[mc]+ = 1;
12: status[mc] = stalled;
13: generate DQ time for mdi;
14: add m to delta for DQ time;
15: else
16: update mdi in DSs with mdi,mCDI ;
17: updateVolatility(mdi, V V , 0);
18: send [ack, AC[mc]];
19: end if
20: elseif status[mc] = stalled then
21: if mCSC = SI[mc] then
22: if mCAC > AC[mc] then
23: SI[mc]+ = 1;
24: send [MMR,AC[mc], SI[mc]] to mc;
25: elseif mCAC = AC[mc] then
26: if LC for mdi in DSs > mCDI then
27: SI[mc]+ = 1;
28: generate DQ time for mdi;
29: add m to delta for DQ time;
30: end if
31: else
32: status[mc] := progress;
33: remove rollbacks[mc];
34: update mdi in DSs with mdi,mCDI + 1;
35: updateVolatility(mdi, V V , 0);
36: send [ack, AC[mc]];
37: end if
38: else
39: send rollbacks[mc] to mc;
40: end if
41: end if
42: end if
43: updateDetlaQueue(m);
44: end while 69

3. FRAMEWORK

At this point (line 35), the volatility of the graph needs to be updated to reflect

the use of this data item (see Algorithm 4). The data item that the client used is

directly updated along with all the neighbour data items, according to the graph.

The amount by which the volatility is increased is a simulation parameter, but it

would be expected that the data item that was used directly will have its volatility

increased by a larger value than the neighbouring data items.

Algorithm 4 volatility update algorithm

function updatevolatility(mdi, V V , Threshold)
Graph G;
Data Item di;
Integer P ; /* Parameter */
Integer V V ; /* Volatility Value*/

1: for all (x, y) ∈ A(G) do
2: if Threshold < 3 then
3: if x := mdi then
4: V V (x) := V V + (P + 1);
5: else
6: V V (y) := V V + P ;
7: end if
8: Threshold := Threshold+ 1;
9: end if

10: end for

For every iteration of the loop, excluding when a message conflicts (line 43), the

delta queue is updated (see Algorithm 5). The update checks every message in the

delta queue and reduces the time value by one. After updating the time, if the value

is zero then this message has expired and a Response EARM message is created.

This message contains the updated state and logical clock for the data item used,

as well as the action clock and session identifier of the client held by the server, and

the data items that the server predicts the client is likely to use.

70

3. FRAMEWORK

Algorithm 5 Delta queue algorithm

function updateDeltaQueue(m)
list of Message delta; /* delta queue */

1: for each Message dqm in delta do
2: if DQ time for dqm > 0 then
3: set DQ time for dqm− 1;
4: end if
5: if DQ time for dqm = 0 then
6: generate updates for dqmdi;
7: send [EARM,AC[mc], updates];
8: remove dqm from delta;
9: end if

10: end for

From the original conflicting data item, an access prediction is created for the client.

This is based on a trace through the graph, where the highest volatile neighbour

is found and added to the prediction list. This process continues, with the highest

volatile neighbour becoming the next vertex to investigate in the next iteration.

The length of the trace is a simulation parameter that can be set as appropriate.

Once the message has been created, this is sent to the client and the old message is

removed from the delta queue.

3.7 Framework Properties

The framework described thus far can be rationalised in the following manner:

• Liveness: clients progress until a server informs them they must rollback (via

authoritative rollback message). If this message is lost in transit, the client

will continue execution anyway, sending access notification messages to the

server. The server will keep responding to these messages with the authorita-

tive rollback message until the client finally replies appropriately. If the client

message that is a direct response to the authoritative rollback message goes

missing the server will eventually realise this due to receiving client messages

71

3. FRAMEWORK

with the appropriate SI but CAC values that are too high. This will cause

the server to respond with a new authoritative rollback message.

• Causality: a client always rolls back to where an irreconcilable action (or

missing action due to message loss) was discovered by the server (liveness).

Therefore, all actions that are reconciled at the server and removed from a

client’s execution log maintain causality. Those actions in the execution log

are in a state of reconciliation and may be rolled back.

• Eventually consistent: if a client never receives a message from a server then

either: (i) all client requests are honoured and states are mutually consistent

or (ii) all server or client messages are lost. Therefore, as long as sufficient con-

nectivity between client and server exists, shared data will become eventually

consistent.

The framework described provides an opportunity for clients to progress indepen-

dently of the server in the presence of no message loss and no irreconcilable issues

on the shared data. However, the burden of rolling back is much more substantial

than other eventually consistent optimistic approaches (e.g. Bayou and IceCube),

as subsequent actions that occur at a client after an irreconcilable or message loss

event are void. This does, on the other hand, provide the benefit of not requiring

any application level dependencies in the protocol itself, the application developer

does not need to specify any exception handling facility to satisfy rollback. Actions

that are deleted from a client’s execution log are considered stable.

72

3. FRAMEWORK

3.8 Summary

In this chapter, we presented our framework architecture and its requirements.

Then, we described the protocol design which enables an optimistic replicated system

to reduce the number of update conflicts. We also stated the protocol’s assumptions

and environments. The protocol was illustrated by pseudo-code. Finally, we demon-

strated how the framework was augmented with contention management to handle

the updated conflicts and preserve causal relations between client actions by giving

a generic example.

In the next chapters, we focus on the practicality of our framework. We start the

next chapter by describing the simulation design for measuring the performance of

our framework.

73

Chapter 4

Framework Implementation

The preceding chapter provided a formal description of our framework. This allows

the framework to be theoretically understood and its function formally presented. In

this chapter, we will describe the implementation of the framework using simulation.

We chose simulation since a simulated environment has the advantage of allowing us

to vary the system parameters without physically changing the software or hardware.

Furthermore, simulation allows us to concentrate more on the behaviour of the

framework than the complexity of the implementation details, such as the network

environment and the message passing between clients and server.

This chapter describes the simulation system, which will be the basis for the results

presented in the next chapter.

4.1 Simulation Architecture

The simulation system was implemented using Java programming language and

Windows operating system. The architecture of the simulation was composed of a

single server process, a number of client processes and a messaging service. The

following subsections give a more detailed description of the architecture.

74

4. FRAMEWORK IMPLEMENTATION

4.1.1 Clients

The simulator runs a number of client processes, implemented by class Client. The

client class is associated with a number of different classes that generate a workload

for each client. A workload generates a number of logical clocks to aid clients’

management of their execution. The client class also includes rollback mechanism

to restore the local copy to a previous consistent state in the case that clients’ actions

have not been honoured by the server.

4.1.2 Server

The server process that frequently accepts messages from clients was implemented

by class Server. The server class maintains data items on behalf of clients and is

responsible for generating a number of logical clocks for each data item and for

each client. The server class is also responsible for handling irreconcilable actions

between different clients. The other entities associated with the server class are:

• Informing clients when to rollback

• Calculating the backoff time of unsuccessful messages

• Predicting data items to clients that are likely to be used in the future

• Preserving the causal relationship between a client’s actions, and

• Ensuring that clients’ replicas are eventually consistent.

4.1.3 Messaging Service

The simulator runs HornetQ [64] as its messaging service to manage the communi-

cation between clients and the server and provide an asynchronous message delivery

75

4. FRAMEWORK IMPLEMENTATION

layer. HornetQ is a high performance asynchronous messaging system from JBoss.

It provides a message queue pattern. In this service, clients communicate with a

server in an indirect manner. A client sends a message to a queue, and then some

time later HornetQ delivers the message to the server.

4.2 Simulation Environment and Setting

The simulation environment was executed on a single computer. The computer

has a 3 GHz Intel Dual core CPU, with 4 GB of RAM. The operating system was

Windows 7. Communication delays were introduced for the client process to mimic

those found in a real world system. Before sending a message, a client process was

paused for a random time ranging between 100 and 1000 milliseconds to create a

communication delay.

The graph was created with probabilistic edges to aid in informing the contention

manager used for the simulation located at the server side. It was generated ran-

domly with an ability to determine the maximum number of edges leading from a

vertex. Vertices within the graph could have no edges leading from them, whereas

others are permitted the maximum numbers of edges. Edges cannot loop back to

their starting vertex (they have to point to another node in the graph). We chose a

maximum of three edges for all the experiments.

With the contention management, when updating the volatility, the vertex (data

item) that the client directly touched is increased, alongside the neighbouring ones

(vertices that are linked by outgoing edges from the original vertex). The value of

the volatility is a simulation parameter. In this simulation, to prevent the volatil-

ity values from continuing to increase and action requests from spending a longer

time in the delta queue, we zero the volatility numbers when they reach a specified

76

4. FRAMEWORK IMPLEMENTATION

ceiling. The values were used in the simulation are inspired from backoff schemes,

specifically the BEB and PLEB algorithms (see section 2.8.1). We found that these

values provided a suitable environment that exhibits the benefits of our contention

manager in this particular style of application under these throughput conditions.

The length of the trace, when generating the access prediction, is also a simulation

parameter. This means that the prediction list will contain more than one data

item or a minimum of one data item (the original conflicting data item). The reason

the prediction may only contain the original item is if a vertex in the graph has no

outgoing edges. As such, the assumption is that the client’s next operation would

be for an unrelated data item.

The actions each client will make are generated before each test and are based upon

the structure of the graph created with probabilistic edges. From a random data

item, an action is created involving that data item. A random outgoing edge of the

data item is chosen to form the next action. This process continues either until the

number of actions required has been reached or a vertex has been chosen that has

no edges. If the vertex has no edges, then a new random data item is chosen.

The rollback mechanism implemented was to cache the data set before sending the

message. When an action conflicts, the cached data set simply replaces the current

data set and the updates are then applied. To achieve this, each message has to have

an identifier to link the message sent with the cached copy of the data set. When

a cache data set is no longer required (the message for which it was cached was

successful), it is removed to reduce the storage overhead. The rationale for choosing

to cache the data set for the rollback mechanism was to simplify the client side algo-

rithm. Each action is recorded forming a historical list of actions. When a message

is received from the server indicating a conflict, then the messages in the history

77

4. FRAMEWORK IMPLEMENTATION

could be used to reverse the change to the data item that the action performed. In

this scheme, the successful actions in the history can be removed safely, while any

message that came after the conflict message will have to be reverted. This scheme

does not require the whole data set to be cached, only the actions that potentially

need to be rolled back.

4.3 Summary

In this chapter, we have described the simulation design and the simulation setting.

The description specified the main components of the simulation package and out-

lined its architecture. Also, we introduced the simulation running environment and

explained the mechanism of the simulation.

The next chapter presents a series of experiments based on the above design to

analyse the performance of the protocol.

78

Chapter 5

Framework Evaluation

In order to evaluate the performance of our framework, we conducted a series of

experiments. The experiments carried out in the simulation described in the previous

chapter. Therefore, this chapter presents a variety of experiments followed by the

results obtained of such experiments for justifying the validity of our work.

To compare our contention management, as detailed in chapter 3, two versions were

implemented:

1. The baseline protocol as presented in algorithm 2. This protocol does not make

use of the delta queue to backoff a client process. The client operates in the

same way as in the contention management protocol, but if there is a logical

clock conflict at the server, a message will be sent to the client straightaway.

This message contains the updated state and all values for the data item that

the client conflicted against but not the server’s prediction for the client.

2. The protocol with contention management as presented in algorithm 3.

This comparison will allow us to make conclusions as to which protocol should be

used.

79

5. FRAMEWORK EVALUATION

In both protocols, we investigate their performance with various parameters in order

to demonstrate the irreconcilable actions rate at the server, as well as throughput.

However, some of the parameters are constant since their variation does not change

in the behaviour of the protocols. The simulation parameters are listed in table 5.1.

Parameter Value
Number of clients 2-100
Pause time between client’s actions 100-1000 ms
Number of data items 100-1000
Maximum number of edges per data item 3
Length of predication list 3
Increasing volatility of target data item 2
Increasing volatility of neighbours data item 1
Volatility ceiling 200

Table 5.1: Simulation parameters for protocols evaluation

The experiments were carried out to measure the performance of both protocols in

terms of reducing the number of update conflicts. Reducing the number of update

conflicts is usually considered a major indicator of superiority for reconciliation

protocols (see section 2.4). We also measured the system throughput under different

sizes of data items and different numbers of clients. The throughput is measured

as the number of successful committed actions over a given interval of time at the

server.

5.1 Experiments

This section describes a series of experiments. The first set of experiments de-

termines if backoff contention management can reduce irreconcilable actions. The

second set of experiments determines if throughput would be adversely affected by

the introduction of backoff contention management. The final set of experiments

determines if the server’s execution time would be affected by including backoff con-

80

5. FRAMEWORK EVALUATION

tention management. For each set, we created many graphs with varying numbers

of data items (100, 300, 500 and 1000). For each graph, we ran the experiments

with a different number of clients (2, 5, 10, 25, 50 and 100). Each experiment was

run a number of times to gain an average figure for analysis.

81

5. FRAMEWORK EVALUATION

5.1.1 Experiment 1: Irreconcilable client actions (conflicts)

This experiment provides a first performance analysis in order to provide a feel for

whether the effect of our protocol reduces the number of update conflicts. The num-

ber of conflicts is measured by counting the total number of irreconcilable actions

at the server for a particular number of clients. In this experiment, we have set

different numbers of data items with different numbers of clients. The four graphs

presented in Figure 5.1 show the number of conflicts for different client sizes. Each

graph displays the number of conflicts recorded for each different graph size.

Figure 5.1: Irreconcilable actions with varying graph size

The first observation to be made is that including backoff contention management

lowers conflicts in all graph sizes and for variable numbers of clients, indicating

that fewer client actions were irreconcilable (fewer conflicts). As the graph becomes

larger, both protocols result in fewer conflicts. This indicates that the larger the

82

chapter5/Chapter5Figs/Irreconcilable_actions_with_varying_graph_size1_new.eps

5. FRAMEWORK EVALUATION

replica state, the less chance there is of irreconcilable differences occurring (which is

quite obvious). However, the introduction of backoff contention management results

in fewer conflicts for all client numbers in all graph sizes.

The improvement gained by including backoff contention management shows itself

more significantly as graph sizes increase. This indicates that backoff contention

management provides a significant improvement in environments where conflicts

do occur, but proportionally less as the size of the replica state increases: if we

consider 100 clients, the most favourable circumstance (1000 data items) shows an

improvement of approximately 28%, compared to an approximate improvement of

6% in the least favourable circumstance (100 data items).

5.1.2 Experiment 2: Throughput of successful client actions

The second set of experiments measured the throughput at the number of successful

committed actions at the server. In this set, we conducted two types of experiments.

The first experiment measured the number of actions committed throughout the

entire simulation. In this experiment, we also have a set different numbers of data

items with different numbers of clients. The graphs in figure 5.2 show the throughput

in commits per second on the vertical axis versus the varying number of clients on

the horizontal axis.

The first observation to be made is that including backoff contention management

improves throughput for all graph sizes and all ranges of client numbers. We can

see in the graphs that when the number of data items increases, the throughput in-

creases. This is to be expected, as with a larger graph conflicts against the same data

item will be more infrequent. Again, if we consider 100 clients, the most favourable

circumstance (1000 data items) shows an improvement of approximately 29%, com-

83

5. FRAMEWORK EVALUATION

Figure 5.2: Throughput with varying graph size and increasing number of clients

pared to an approximate improvement of 16% in the least favourable circumstance

(100 data items).

The second experiment measured the number of committed actions every five sec-

onds. Figure 5.3 shows a graph size of 100, 300, 500, and 1000 data items, with

a varying client size of 25, 50, and 100. Each client performs two hundred update

actions, and then terminates.

The first point to note is the initial large number of successful actions for both

protocols in all graph sizes. This is reasonable because there is no high contention

workload on data items at the beginning and therefore the conflicts are rare. How-

ever, it can be seen in each graph that the number of successful actions of backoff

protocol is significantly higher than that for no backoff protocol when the system

84

chapter5/Chapter5Figs/Throughput_varying_graph_size_and_increasing_clients_new.eps

5. FRAMEWORK EVALUATION

Figure 5.3: Throughput with varying graph and client size

85

chapter5/Chapter5Figs/Throughput_clients12_new.eps

5. FRAMEWORK EVALUATION

stabilizes. This is due to the fact that the backoff protocol guarantees a lower conflict

rate than the no backoff protocol under high data contention workload, as shown in

figure 5.1.

The drop at the end for each protocol indicates that the number of clients active

in the system reduces as they finish and leave the system. Another observation

for all graphs is that the time taken to process clients’ messages by a server is less

with backoff protocol. This is to be expected since backoff contention management

provides high throughput and therefore clients quickly finish and leave the system.

5.1.3 Experiment 3: Execution time

This experiment measures the total execution time at the server. We define the

execution time as the time elapses from when the server starts executing the first

action to when the last action completes execution. Therefore, the four graphs in

figures 5.4 show the total execution time was spent at the server to handle clients’

actions with and without backoff contention management. The execution time is

measured for different graph sizes with increasing client numbers.

The first observation to consider is that as the size of the graph increases, the

execution time reduces for both protocols. Furthermore, the execution time grows

as the number of clients increase. However, the execution time with backoff protocol

is less than without backoff protocol, for example if we consider 100 clients on 100,

300, 500, and 1000 data items, it is approximately 6.8%, 10%, 12.9%, and 16%

respectively.

Another key point to make here is that increasing the number of data items has

a considerable impact on the execution time for both protocols. We can see in all

graphs that, as the size of the graph increases, the execution time reduces, with

86

5. FRAMEWORK EVALUATION

the reason being that the conflicts will be fewer over a greater range of data items.

However, including backoff protocol, the execution time always stays lower in all

graph sizes even when the number of clients increases.

Figure 5.4: Execution time with varying graph size

5.1.4 Experiment 4: Protocol Overhead

We now determine the overhead imposed by our protocol over our benchmark system

that simply affords rollback. Our benchmark is the same as in our previous experi-

ments that demonstrated that our contention manager provides increased through-

put and lower inconsistency rates. That is, in the benchmark the server simply

informs the client that they must rollback and affords a message containing only the

most up to date value of the item resulting in inconsistency.

The graphs in figure 5.5 show that our contention manager imposes significant over-

87

chapter5/Chapter5Figs/Execution_time_new.eps

5. FRAMEWORK EVALUATION

head in terms of increased data (message size). This is primarily to do with the

need to send multiple data values from the server to the client when inconstancy

is realised at the server. This cost rises as a percentage of the overall messages in

the system as client numbers rise (contention rises). A conclusion to be drawn is

that although our approach significantly improves overall throughput by lowering

inconsistency, it does so at the expense of resource requirements (network load and

client/server message handling). Therefore, systems employing our approach would

be required to consider the support of lower client numbers given an equivalent

resource.

1009080706050403020100

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

Clients

D
a
t
a
 i
t
e
m
s

Backoff

No Backoff

100 Data Items

1009080706050403020100

120000

100000

80000

60000

40000

20000

0

Clients

D
a
t
a
 i
t
e
m
s

Backoff

No Backoff

300 Data Items

1009080706050403020100

100000

80000

60000

40000

20000

0

Clients

D
a
t
a
 i
t
e
m
s

Backoff

No Backoff

500 Data Items

1009080706050403020100

60000

50000

40000

30000

20000

10000

0

Clients

D
a
t
a
 i
t
e
m
s

Backoff

No Backoff

1000 Data Items

Figure 5.5: Data size with varying graph and client size

88

chapter5/Chapter5Figs/protocol_overhead.eps

5. FRAMEWORK EVALUATION

5.2 Summary

In this chapter, we measured the performance characteristics of our framework via a

series of experiments. These experiments were conducted to justify our framework.

The results obtained were based on the two versions: (1)backoff contention manage-

ment, and (2) no backoff contention management. The analysis of the performance

shows the following:

• The backoff contention management protocol always out performs the no back-

off contention management protocol for all graph sizes. This means that intro-

ducing backoff contention management can reduce the update conflicts within

an optimistic replication scheme.

• In both protocols, as the number of data items increases, the number of con-

flicts reduces. This is to be expected in both protocols as with a larger number

of data items, clients are less likely to access the same data item as frequently

as they would when there are a smaller number of data items.

• The measurements indicated that our backoff contention management scheme

improved the overall system throughput for all ranges of data contention work-

load. This scheme has also shown improvement of overall performance for

those applications with strong causality requirements when augmented with

our protocol.

89

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has investigated the main issues concerning optimistic shared data ac-

cess in which domain semantics knowledge can be exploited in the design and im-

plementation of consistency models and reconciliation protocols, to ensure eventual

consistency and reduce update conflicts. The thesis pointed out how such semantic

knowledge can be used to ease the development of the distributed applications that

are required for optimistic replication. We observed that increased instances of ap-

plication levels results in protocol overheads.

The thesis analysed the advantages and limitations of existing approaches in opti-

mistic replication, semantic reconciliation and contention management policies, and

therefore the thesis has focused on building a distributed application which will ease

the design burden from application programmers where the causality requirement

is too high within the client’s actions.

The thesis has described a framework within which contention management can be

provided by exploiting semantic relations between data items. We used client/server

90

6. CONCLUSION AND FUTURE WORK

architecture as an implementation basis for our framework. A server was enhanced

to enforce the backoff based contention management scheme. A client plays no part

in determining backoff, allowing the backoff scheme to appear transparent to client

implementations. This also makes the contention management scheme independent

from whatever shared data access protocol is used to enforce the required consis-

tency model.

Our evaluation, via experimentation, demonstrates how the backoff contention man-

agement scheme improves overall performance by reducing irreconcilable actions on

the shared state while increasing throughput. A number of experiments were carried

out and the backoff contention management improved performances in all scenarios

(e.g. heavy to light congestion).

We acknowledge that our approach will only perform better than existing opti-

mistic approaches if causality is a critical factor. That is, it will perform better

for those applications within which all existing client actions occurring after the

rollback checkpoint are determined void, when resolving irreconcilable differences in

the shared state. However, we believe that such applications can benefit from op-

timistic replication if used together with a backoff contention management scheme

that utilises causality in its prediction of client actions.

To the best of my knowledge, this is the first time optimistic replication has been

combined with causality informed backoff based contention management. We have

shown this combination to benefit applications with strict causality requirements.

As such, we believe that this is not only a useful contribution to the literature, but

opens new avenues of research by bringing the notion of contention management

through client backoff to the attention of shared data based on replication schemes.

91

6. CONCLUSION AND FUTURE WORK

6.2 Future work

This section contains a discussion of paths for potential future research. We will

here list what we think are interesting directions to develop our work.

6.2.1 Decentralization

Although our approach is significant because it provides the benefit of not requiring

any application level dependencies in the protocol itself, we cannot use the frame-

work in a peer-to-peer system because its contention management scheme and the

shared state were designed to be maintained by a centralized server. The approach

could be extended to peer-to-peer based evaluation and create backoff contention

management for mobile environments where epidemic models of communication are

favoured.

6.2.2 Dynamic graph

We created the graph with probabilistic edges to aid the process of informing the

contention manager, specifically for the purposes of experimentation and associated

client behaviour to the graph. The use of the created graph with the probabilistic

edges structure accurately mimics the typical relations seen between data items and

users’ actions. For example, Amazon’s website provides a section on each product

page showing other products customers have purchased after having bought the

product displayed. Here, we see how a graph structure could be created among

products listed, with the vertices being the product and the edges forming the

semantic link that customers generate over time.

The structure of the created graph with probabilistic edges could be enhanced to

change dynamically to reflect client behaviour. Initially, we could consider all data

92

6. CONCLUSION AND FUTURE WORK

items as being connected to one another directly. Over the lifecycle of the system,

the graph with probabilistic edges could be modified to remove edges between items

that have never experienced a semantic link. Using this, the created graph with

probabilistic edges will change over time and illustrate how clients’ actions are made

between the different data items.

6.2.3 Mixed-Mode Operation

As mentioned in subsection 6.2.2, the created graph with probabilistic edges could

be enhanced to change dynamically to reflect clients’ behaviour. As a result of this,

relevant information could be extracted to create a causal history graph to allow the

framework to provide flexible causality preservation. By flexible causality, we mean

that some clients may need stronger causality than others (i.e. some clients need 60%

causal ordering, some need 100 %, and some have no at 0%). Therefore, depending

on the available information in the causal history graph, the framework can provide

a flexible judgement to maintain causality for clients only in the situations in which

they are needed.

6.2.4 Flagging Early Conflicts

The notification of a conflict is delayed in back-off. This has the desirable effect (as

already mentioned) of not inhibiting the client. However, this may not be desirable

in some application types, where there may be benefit in a client being notified

early that conflict has occurred (and so allow a client to proactively alter their

current execution). This issue is beyond the scope of this thesis and such application

types are not considered. However, future work could consider hybrid versions of

the approach presented here, where early flagging of conflict is possible while still

93

6. CONCLUSION AND FUTURE WORK

maintaining the appropriate back-off scheme. It could be that a client could decide,

once flagged, to instruct the server to remove the conflicting action from the back-

off queue. Alternatively, the client may simply acknowledge the conflict by altering

their own execution strategy and data access patterns, possibly carrying out work

not involving shared state until the conflict is raised in the normal manner via the

back-off approach, at which point the client may proceed as described within the

thesis.

94

References

[1] S. J. Mullender, Distributed Systems. ACM-Press, 1993. 1

[2] S. Mullender, Introduction to distributed systems. CERN, 1992. 2

[3] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems: concepts and

design. Addison-Wesley Longman, 2001. 2, 24

[4] S. Goel and R. Buyya, “Data replication strategies in wide area distributed

systems,” ISBN 1-599044181-2, Idea Group Inc., Hershey, PA, USA, Tech. Rep.,

2006. 4

[5] S. Son, “Replicated data management in distributed database systems,” ACM

SIGMOD Record, vol. 17, no. 4, pp. 62–69, 1988. 4

[6] S. Rahimi and F. Haug, Distributed database management systems: A Practical

Approach. Wiley-IEEE Computer Society Pr, 2010. 5

[7] Y. Saito and M. Shapiro, “Optimistic replication,” ACM Computing Surveys

(CSUR), vol. 37, no. 1, pp. 42–81, 2005. 6, 20, 21, 32

[8] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso, “Understand-

ing replication in databases and distributed systems,” in Distributed Computing

Systems, 2000. Proceedings. 20th International Conference on. IEEE, 2000,

pp. 464–474. 6, 20

95

REFERENCES

[9] Y. Saito, “Consistency management in optimistic replication algorithms,” IN-

TERNET, ÄOnlineÜ, vol. 15, pp. 1–18, 2001. 7, 22

[10] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”

Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978. 7, 14

[11] R. Guerraoui, M. Herlihy, and B. Pochon, “Polymorphic contention manage-

ment,” Distributed Computing, pp. 303–323, 2005. 9, 43

[12] A. Kshemkalyani and M. Singhal, Distributed computing: principles, algo-

rithms, and systems. Cambridge Univ Pr, 2008. 13

[13] M. Raynal and A. Schiper, “The causal ordering abstraction and a simple way

to implement it,” Information processing letters, vol. 39, no. 6, pp. 343–350,

1989. 14

[14] A. Schiper, J. Eggli, and A. Sandoz, “A new algorithm to implement causal

ordering,” Distributed Algorithms, pp. 219–232, 1989. 14

[15] A. Mostefaoui and O. Theel, “Reduction of timestamp sizes for causal event

ordering,” Relatório técnico, vol. 1062, 1996. 14

[16] M. Loper, “Causal ordering protocols: A survey,” Draft) en¡ http://www. cc.

gatech. edu/people/home/margaret/papers/CausalSurvey-Draft2. pdf, 2008. 14

[17] C. Fidge, “Timestamps in message-passing systems that preserve the partial

ordering,” in Proceedings of the 11th Australian Computer Science Conference,

vol. 10, no. 1, 1988, pp. 56–66. 17

[18] F. Mattern, “Virtual time and global states of distributed systems,” Parallel

and Distributed Algorithms, pp. 215–226, 1989. 17

96

REFERENCES

[19] J. Gross and J. Yellen, Graph theory and its applications. CRC press, 2006.

18

[20] P. Spirtes, “Directed cyclic graphical representations of feedback models,” in

Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence.

Morgan Kaufmann Publishers Inc., 1995, pp. 491–498. 19

[21] S. Yi and H. Shin, “Data replication preserving semantic relationship on a sin-

gle wireless channel,” in Complex, Intelligent and Software Intensive Systems,

2009. CISIS’09. International Conference on. IEEE, 2009, pp. 595–600. 20

[22] C. Liu and K. Lin, “Efficient scheduling algorithms for disseminating dependent

data in wireless mobile environments,” in Wireless Networks, Communications

and Mobile Computing, 2005 International Conference on, vol. 1. IEEE, 2005,

pp. 375–380. 20

[23] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication and

a solution,” in ACM SIGMOD Record, vol. 25, no. 2. ACM, 1996, pp. 173–182.

20

[24] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso, “Database

replication techniques: A three parameter classification,” in Reliable Distributed

Systems, 2000. SRDS-2000. Proceedings The 19th IEEE Symposium on. IEEE,

2000, pp. 206–215. 20

[25] H. Yu and A. Vahdat, “Combining generality and practicality in a conit-based

continuous consistency model for wide-area replication,” in Distributed Com-

puting Systems, 2001. 21st International Conference on. IEEE, 2001, pp.

429–438. 20

97

REFERENCES

[26] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D. Steere,

“Coda: A highly available file system for a distributed workstation environ-

ment,” Computers, IEEE Transactions on, vol. 39, no. 4, pp. 447–459, 1990.

22, 32, 33

[27] J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda file

system,” ACM Transactions on Computer Systems (TOCS), vol. 10, no. 1, pp.

3–25, 1992. 22, 30, 33, 39

[28] D. Ratner, P. Reiher, and G. Popek, “Roam: A scalable replication system

for mobile computing,” in Database and Expert Systems Applications, 1999.

Proceedings. Tenth International Workshop on. IEEE, 1999, pp. 96–104. 22,

30

[29] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser,

“Managing update conflicts in bayou, a weakly connected replicated storage

system,” in ACM SIGOPS Operating Systems Review, vol. 29, no. 5. ACM,

1995, pp. 172–182. 22, 30, 31, 33, 35

[30] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers, “Flexible

update propagation for weakly consistent replication,” in ACM SIGOPS Op-

erating Systems Review, vol. 31, no. 5. ACM, 1997, pp. 288–301. 22, 31,

35

[31] N. Preguiça, M. Shapiro, J. Legatheaux Martins et al., “Automating semantics-

based reconciliation for mobile databases,” 2003. 22, 31, 36, 45

[32] A. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel, “The icecube ap-

proach to the reconciliation of divergent replicas,” in Proceedings of the twen-

98

REFERENCES

tieth annual ACM symposium on Principles of distributed computing. ACM,

2001, pp. 210–218. 22, 30, 31, 36

[33] J. Barreto, “Information sharing in mobile networks: a survey on replication

strategies,” Citeseer, Tech. Rep., 2003. 22

[34] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services,” ACM SIGACT News, vol. 33, no. 2,

pp. 51–59, 2002. 23

[35] A. Tanenbaum and M. van Steen, Distributed systems: principles and

paradigms. Prentice-Hall of India Private Limited, 2003. 25, 27, 29

[36] W. Vogels, “Eventually consistent,” Communications of the ACM, vol. 52, no. 1,

pp. 40–44, 2009. 28

[37] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: ama-

zon’s highly available key-value store,” in ACM SIGOPS Operating Systems

Review, vol. 41, no. 6. ACM, 2007, pp. 205–220. 28, 30

[38] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage

system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35–40,

2010. 28, 30

[39] D. Terry, A. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B. Welch,

“Session guarantees for weakly consistent replicated data,” in Parallel and Dis-

tributed Information Systems, 1994., Proceedings of the Third International

Conference on. IEEE, 1994, pp. 140–149. 29

99

REFERENCES

[40] F. Laux and T. Lessner, “Transaction processing in mobile computing using

semantic properties,” in Advances in Databases, Knowledge, and Data Applica-

tions, 2009. DBKDA’09. First International Conference on. IEEE, 2009, pp.

87–94. 31

[41] M. Cart and J. Ferrie, “Asynchronous reconciliation based on operational trans-

formation for p2p collaborative environments,” in Collaborative Computing:

Networking, Applications and Worksharing, 2007. CollaborateCom 2007. In-

ternational Conference on. IEEE, 2007, pp. 127–138. 31

[42] Z. Abdul-Mehdi, A. Bin Mamat, H. Ibrahim, and M. Deris, “A model for

transaction management in mobile databases,” Potentials, IEEE, vol. 29, no. 3,

pp. 32–39, 2010. 31

[43] S. Phatak and B. Badrinath, “Multiversion reconciliation for mobile databases,”

in Data Engineering, 1999. Proceedings., 15th International Conference on.

IEEE, 1999, pp. 582–589. 31

[44] J. Abawajy and M. Mat Deris, “Supporting disconnected operations in mobile

computing,” in 4th ACS/IEEE international conference on computer systems

and applications. IEEE, 2011, pp. 911–918. 31

[45] S. Phatak and B. Nath, “Transaction-centric reconciliation in disconnected

client–server databases,” Mobile Networks and Applications, vol. 9, no. 5, pp.

459–471, 2004. 31

[46] M. Choi, Y. Kim, and J. Chang, “Transaction-centric split synchronization

mechanism for mobile e-business applications,” in Data Engineering Issues in

E-Commerce, 2005. Proceedings. International Workshop on. IEEE, 2005, pp.

112–118. 31

100

REFERENCES

[47] F. Hupfeld and M. Gordon, “Using distributed consistent branching for efficient

reconciliation of mobile workspaces,” in Collaborative Computing: Networking,

Applications and Worksharing, 2006. CollaborateCom 2006. International Con-

ference on. IEEE, 2006, pp. 1–9. 31

[48] M. Satyanarayanan, “Scalable, secure, and highly available distributed file ac-

cess,” Computer, vol. 23, no. 5, pp. 9–18, 1990. 33

[49] P. Kumar and M. Satyanarayanan, “Log-based directory resolution in the coda

file system,” in Parallel and Distributed Information Systems, 1993., Proceed-

ings of the Second International Conference on. IEEE, 1993, pp. 202–213.

35

[50] V. Martins, R. Akbarinia, E. Pacitti, and P. Valduriez, “Reconciliation in the

appa p2p system,” in Parallel and Distributed Systems, 2006. ICPADS 2006.

12th International Conference on, vol. 1. IEEE, 2006, pp. 10–pp. 38

[51] M. Asplund, Restoring Consistency after Network Partitions. Linköpings uni-

versitet, 2007. 38

[52] G. Kuenning and G. Popek, Automated hoarding for mobile computers. ACM,

1997, vol. 31, no. 5. 38

[53] G. Kuenning, “The design of the seer predictive caching system,” in Mobile

Computing Systems and Applications, 1994. WMCSA 1994. First Workshop

on. IEEE, 1994, pp. 37–43. 38

[54] C. Tait, H. Lei, S. Acharya, and H. Chang, “Intelligent file hoarding for mobile

computers,” in Proceedings of the 1st annual international conference on Mobile

computing and networking. ACM, 1995, pp. 119–125. 39

101

REFERENCES

[55] C. Hu, H. Kim, and J. Hou, “An analysis of the binary exponential backoff

algorithm in distributed mac protocols,” 2005. 40

[56] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “Macaw: a media access

protocol for wireless lan’s,” in ACM SIGCOMM Computer Communication

Review, vol. 24, no. 4. ACM, 1994, pp. 212–225. 41

[57] N. Song, B. Kwak, J. Song, and M. Miller, “Enhancement of ieee 802.11 dis-

tributed coordination function with exponential increase exponential decrease

backoff algorithm,” in Vehicular Technology Conference, 2003. VTC 2003-

Spring. The 57th IEEE Semiannual, vol. 4. IEEE, 2003, pp. 2775–2778. 41

[58] J. Deng, P. Varshney, and Z. Haas, “A new backoff algorithm for the ieee 802.11

distributed coordination function,” 2004. 42

[59] S. Manaseer and M. Masadeh, “Pessimistic backoff for mobile ad hoc networks,”

Al-Zaytoonah University, ICIT, vol. 9, 2008. 42

[60] W. Scherer III and M. Scott, “Advanced contention management for dynamic

software transactional memory,” in Proceedings of the twenty-fourth annual

ACM symposium on Principles of distributed computing. ACM, 2005, pp.

240–248. 43, 45, 49

[61] T. Harris, J. Larus, and R. Rajwar, “Transactional memory,” Synthesis Lectures

on Computer Architecture, vol. 5, no. 1, pp. 1–263, 2010. 45

[62] W. Scherer III and M. Scott, “Contention management in dynamic software

transactional memory,” in PODC Workshop on Concurrency and Synchroniza-

tion in Java programs, 2004, pp. 70–79. 49

102

REFERENCES

[63] G. Chockler, D. Malkhi, and M. Reiter, “Backoff protocols for distributed mu-

tual exclusion and ordering,” in Distributed Computing Systems, 2001. 21st

International Conference on. IEEE, 2001, pp. 11–20. 49

[64] J. J. Community, “http://www.jboss.org/hornetq,” 2012. 75

103

	1 Introduction
	1.1 Distributed System
	1.2 Data Replication
	1.3 Replication and Consistency
	1.4 Consistency Models
	1.5 Causality and Correctness
	1.6 Contention management
	1.7 Contribution
	1.8 Publications
	1.9 Thesis Outline

	2 Background and Related Work
	2.1 Maintaining the Causality Relationship
	2.1.1 The Happens-before Relation
	2.1.2 Lamport Timestamp
	2.1.3 Vector Clocks
	2.1.4 Directed Graph

	2.2 Shared Data Access
	2.2.1 Pessimistic Shared Data Access
	2.2.2 Optimistic Shared Data Access

	2.3 Consistency Guarantee of Shared Data
	2.3.1 Strong Consistency Guarantee
	2.3.2 Weak Consistency Guarantee

	2.4 Reconciliation of Shared Data
	2.4.1 Semantic Conflict Detection
	2.4.2 Syntactic Conflict Detection
	2.4.3 Conflict Resolution

	2.5 Related Work
	2.5.1 Optimistic Replication Systems
	2.5.1.1 Coda
	2.5.1.2 Bayou
	2.5.1.3 IceCube

	2.5.2 Predictive Protocols
	2.5.2.1 Seer
	2.5.2.2 Spy Utility

	2.5.3 Contention Management
	2.5.3.1 Backoff Algorithms
	2.5.3.2 Contention Managers

	2.6 Strong Causality
	2.7 Discussion
	2.8 Contribution Made by the Thesis
	2.9 Summary

	3 Framework
	3.1 The Requirement
	3.2 Notations
	3.3 System Model
	3.3.1 Data
	3.3.2 Clients
	3.3.3 Server

	3.4 System Protocol
	3.4.1 Overview
	3.4.2 Pseudo-code

	3.5 Protocol Description
	3.5.1 Client Side Algorithm
	3.5.2 Server Side Algorithm

	3.6 Contention Management
	3.6.1 Server Side Algorithm with Contention Management

	3.7 Framework Properties
	3.8 Summary

	4 Framework Implementation
	4.1 Simulation Architecture
	4.1.1 Clients
	4.1.2 Server
	4.1.3 Messaging Service

	4.2 Simulation Environment and Setting
	4.3 Summary

	5 Framework Evaluation
	5.1 Experiments
	5.1.1 Experiment 1: Irreconcilable client actions (conflicts)
	5.1.2 Experiment 2: Throughput of successful client actions
	5.1.3 Experiment 3: Execution time
	5.1.4 Experiment 4: Protocol Overhead

	5.2 Summary

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future work
	6.2.1 Decentralization
	6.2.2 Dynamic graph
	6.2.3 Mixed-Mode Operation
	6.2.4 Flagging Early Conflicts

	References

