
On the Synthesis of Integral and
Dynamic Recurrences

by

Lucia Rapanotti

NEWCASTLE UNIVERSITY LIBRARY
----------- --------------

095 51187 X
-------------------- --------

Ph.D. Thesis

Department of Computing Science
University of l\e\ycastle upon T~~ne

~Iarch 1996

To Jon, with rOI'(.

Abstract

Synthesis techniques for regular arrays provide a disciplined and well-founded approach to

the design of classes of parallel algorithms. The design process is guided by a methodology

which is based upon a formal notation and transformations.

The mathematical model underlying synthesis techniques is that of affine Euclidean geometry

with embedded lattice spaces. Because of this model, computationally powerful methods

are provided as an effective way of engineering regular arrays. However, at present the

applicability of such methods is limited to so-called affine problems.

The work presented in this thesis aims at widening the applicability of standard synthesis

methods to more general classes of problems. The major contributions of this thesis are the

characterisation of classes of integral and dynamic problems, and the provision of techniques

for their systematic treatment within the framework of established synthesis methods. The

basic idea is the transformation of the initial algorithm specification into a specification

with data dependencies of increased regularity, so that corresponding regular arrays can be

obtained by a direct application of the standard mapping techniques.

We will complement the formal development of the techniques with the illustration of a

number of case studies from the literature.

Acknowledgments

I would like to thank my supervisor, Professor Graham M. Megson, for having suggested

this subject of research. I am grateful to him for his invaluable guidance and advice in the

development of this thesis, and during the three years which I have spent as a member of his

Algorithm Engineering Research Group.

A special thank you goes to my husband, Jon Hall, for the patience, loving support and

encouragement without which this work would not exist, as well as the valuable comments

and discussions on early drafts of this thesis.

I am grateful to Shirley Craig and Trevor Kirby, who have been most helpful on so many

occasions, and David Cornish, the members of the Algorithm Engineering Research Group,

and various members of the Department of Computing Science, who have provided a friendly

working environment.

An affectionate thank you goes to my family and friends, who have been very supportive

throughout the preparation of this thesis.

Finally, I would like to thank my examiners, Professor John V. Tucker and Dr Alex Yakovlev,

and several anonymous referees whose comments have helped me to greatly improve the

quality of the work.

Any remaining errors or omissions are the author's sole responsibility.

The work of this thesis was carried out within the REFLEX (REcurrence For-Loop EXten­

sions) project, EPSRC (formerly SERC) grant no. GR/H46725.

Contents

1 Introduction

1.1 Algorithm Specialisation

1.2 Regular Array Synthesis

1.2.1 Algorithm Specification

1.2.2 Parallelism and Data Dependence Relations

1.2.3 Algorithm Specialisation and Space-Time).Iapping

1.2.4 The Role of Regularity.

1.2.5 Enforcing Regularity ..

1.3 From Affine to Integral Problems

1.4 From Static to Dynamic Problems

1.5 Outline of the Thesis

2 Regular Array Synthesis

2.1 Basic Design Steps ..

2.1.1 Algorithm Specification

2.1.2 Analysis of the Data Dependencies

2.1.3 Space-Time Mapping.

2.2 Euclidean Synthesis

2.2.1 Representation and ~Iechanisation

2.2. 2 ~ ormalisation of Index Expressions.

2.2.3 Fniform and Affine Data Dependencies

1

1

:~

.!

6

6

9

10

11

13

14

Fi

1,/

21

2,/

CONTENTS

2.2.4

2.2.5

2.2.6

Affine Space-Time Mapping

Linear Optimisation and Affine Scheduling

Affine Scheduling and Dependence Cone

2.3 Regularisation

2.3.1 Decomposition and Uniformisation

2.3.2 Data Conflicts and Data Broadcasts

2.3.3 Regularisation and Dependence Cone

2.3.4 Substitution of a Data Dependence

2.4 A Brief Survey

2.5 Summary ...

3 Integral Recurrence Equations

3.1

3.2

Integral Data Dependencies .

3.1.1 Integral VS. Affine Recurrences

Regularisation.

3.2.1 Regularisation Directions

3.2.2 Injectivity of an Atomic Integral Index Mapping

3.2.3 Uniformisation

3.2.4 Parametric Uniformisation

3.2.5 Decomposition

3.3 Regularisation and Affine Scheduling

3.4 Summary

4 Dynamic Recurrence Equations

4.1 Inputs and Indexed Variables .

4.1.1 Implicit Quantification.

4.2 Dynamic Data Dependencies

4.3 Dynamic Data Dependencies in Euclidean Synthesis

II

32

:3-1

:37

38

39

-11

43

43

44

51

53

54

56

57

58

60

63

7.5

82

91

95

97

98

100

101

103

CONTENTS

4.3.1 Finitely Generated Index Mapping ..

4.3.2 Finitely Generated Data Dependence.

4.3.3 Dependence Cone and Pointedness ..

4.3.4 Finitely Generated vs. Integral Recurrences

4.3.5 Extended Dependence Graph

4.3.6 Separability

4.4 Regularisation...

4.4.1 Translation of a System of Equations.

4.4.2 Regularisation Directions

4.4.3 Injectivity of an Atomic Finitely Generated Index Mapping

4.4.4 Uniformisation

4.4.5 Parametric Uniformisation

4.4.6 Decomposition

4.5 Regularisation and Affine Scheduling

4.6 Summary

5 Case Studies

5.1

5.2

Cyclic Reduction

5.1.1 Specification

5.1.2 Analysis of the Data Dependencies

5.1.3 New Specification

5.1.4 Analysis of the New Data Dependencies

5.1.5 Regularisation

5.1.6 Space-Time Mapping.

N Points FIR Filter for M-to-1 Decimation

5.2.1 Specification

5.2.2 Analysis...

5.2.3 Problem Revisited

UJ

105

106

107

109

110

III

113

113

115

116

117

128

132

138

139

141

142

144

147

1.51

1.52

153

1.58

164

166

167

169

CONTENTS

5.2.4 Space-Time Mapping.

5.3 Knapsack Problem .

5.3.1 Specification

5.3.2 Analysis ...

5.3.3 Regularisation

5.3.4 Space-Time Mapping.

5.4 Gaussian Elimination with Partial Pivoting

5.4.1 Dynamic Formulation

5.4.2 Static Formulation ..

5.4.3 Space-Time Mapping.

5.5 Summary

6 Conclusions

A Notation

B Proofs of Basic Results

B.1 Timing and Allocation Functions

B.2 Condition for Uniformity

B.3 Affine Timing Function for Affine Data Dependencies

B.4 Dependence Cone and Affine Timing Function

B.5 Pointed Cone with Unimodular Generators ..

C Case Studies

C.1 Notation and Conventions

C.2 Cyclic Reduction

C.2.1 Program.

C.2.2 Test ...

C.3 M-to-1 Decimator .

IV

171

172

173

175

176

179

182

185

185

190

194

197

201

205

205

206

207

211

212

213

213

214

214

223

22.S

CONTENTS

C.3.l Program.

C.3.2 Test ...

CA Knapsack Problem

CA.l Program.

CA.2 Test ...

C.5 Gaussian Elimination with Partial Pivoting

C.5.l Program.

C.5.2 Test ...

D Graph Theory

E

D.1 Graphs ...

D.2 Connectivity Relations

D.3 Graph Operations ..

Convex Sets and Polyhedra

E.1 Combinations

E.2 Affine Sets and Transformations

E.3 Convex Sets .

EA Cones

E.5 Recession Cone and Unboundedness

E.6 Polyhedral Convex Sets

E.7 Duality

E.8 Separating Hyperplane Theorem

E.9 Other Results

F Aspects of Linear Algebra

F.1 Elementary Row Operations and Elementary Matrices

F.2 Hermite Normal Form

F.3 Integer Elementary Row Operations

\'

22.S

227

22,

22,

231

232

232

235

237

237

238

238

239

239

240

241

241

241

242

243

244

244

245

245

246

2-!6

CONTENTS \'1

FA U nimod ularity 246

F.5 Echelon Form . 2-17

F.6 Linear Functional and Duality. 2-17

F.7 Annihilators 248

F.S Algorithmic Issues 2-18

F.S.1 Standard Basis of V 248

F.S.2 Basis of WI + W 2 • 249

F.S.3 Basis of WI n W 2 . 2-19

F.SA Basis of W.L ... 249

Chapter 1

Introduction

Parallel computing (see, e.g., [HwBr85, Kri89]) is a fast growing branch of computing sci­

ence. Many of today's computer applications require a great computing power at very high

speed. Higher performance for these applications can be achieved through parallel processing,

that is by allowing the concurrent and cooperative execution of their computations. Paral­

lel computing has become a necessary and effective alternative to building faster sequential

computers: - necessary as hardware components are approaching their technological limits

as for the level of circuit integration and the speed of signal propagation; - effective as signif­

icant "speed-ups" have been obtained for many applications of interest. Also, technological

advances have made it possible for both commercial and research parallel computers and sys­

tems to be widely available at a relatively low cost. Research in parallel computing spans from

architectural and algorithmic issues, to programming languages and compiler technology, to

theoretical models and complexity theory (see, e.g., [Kri89] for an overview).

A substantial part of the research in parallel computing has been devoted to the study

of parallel machines which are algorithm specific [Sn-et-aI85]. Algorithm specific machines

are machines whose architectures are specialised to provide efficient solutions for classes

of problems which share a common solution method. Hence they provide a trade-off in

which improved performance is gained at the expense of generality. This thesis deals with a

particular aspect of algorithm specific computing, that of the synthesis of regular (processor)

arrays.

1.1 Algorithm Specialisation

The basic objective of algorithm specialisation is the definition of a (parallel) machine for the

efficient execution of an algorithm. Efficiency is obtained by an optimal exploitation of the

1

CHAPTER 1. INTRODUCTION 2

structural properties of the algorithm within a number of design constraints. The structural

properties of an algorithm are those related, for instance, to its sub-tasks, their generation

and data communications. Architectural specialisation is based on such properties. Design

constraints are those related, for instance, to processing speed, physical size, accuracy of the

results, etc .. Design constraints can be typical of the application area of an algorithm. or

imposed by the available physical resources.

A methodological approach to algorithm specialisation considers the definition of an algorithm

specific machine as a design process in which methods are provided for the formal description

and transformation of an algorithm, and optimisation strategies for the optimal exploitation

of its structural properties within a given set of constraints.

We may classify methods for algorithm specialisation into two broad categories. On the one

hand, we find general design strategies, including divide and conquer, branch and bound.

dynamic programming, search and traversal methods, backtracking, etc.1 [Kri89]. Given a

problem, the designer adopts a number of these strategies until a satisfactory algorithm spe­

cific machine is defined. In general, this approach to design requires a high degree of expertise

from the designer who needs to have a deep knowledge of the various design strategies in order

to apply them optimally for the particular problem. Usually, little automatic support can

be provided because of the ad hoc transformations which are involved. These design strate­

gies, however, have the benefit of being generally applicable and likely to produce optimal

solutions given the problem requirements.

On the other hand, we find methods which focus on a particular model of parallel computation

and try and identify those algorithms which can be efficiently executed within such a model.

This viewpoint has led to the development of parallel compilation techniques and systematic

synthesis of regular arrays. The emphasis, in this case, is on the syntactic characterisation of

algorithms and their systematic manipulation by formal transformations. In this approach a

prominent role is given to the development of automatic support, so that the transformations

are not only systematic, but also largely mechanised. Because of the relevance given to

tool support, in the design process a lower level of expertise is expected from the designer.

However, there is a loss of generality, as only algorithms which conform to a particular syntax

can be treated. Also, sub-optimal solutions are likely to be derived, as optimisation strategies

are formulated in general terms for classes of problems instead of being targeted to particular

1 Most of these strategies were actually developed independently and prior to parallel computing, motivated
by the desire of devising optimal algorithms for applications of interest.

CHAPTER 1. INTRODUCTION 3

applications.

In this thesis we take this second approach and aim at developing design methods for the

systematic synthesis of regular arrays.

1.2 Regular Array Synthesis

The type of parallelism we address in this work is that characteristic of regular (processor)

arrays, i.e., synchronous regularly connected networks of processors. We will refer to this form

of parallelism as regular parallelism. Regular parallelism is synchronous and deterministir in

that data are supposed to be transferred through the processor network at regular. consecutive

and specified instants of time. Regular parallelism is massive in that the number of processors

in the network is assumed to be of the same order of the size parameters of the problem,

with each processor performing simple operations, corresponding to the basic computations

of the algorithm.

Historically, the development of regular arrays and their synthesis techniques is related to

the advent of VLSI design and fabrication techniques, and was initiated, in the late 70s, by

Kung and Leiserson [KuLe80] with the introduction of systolic arrays. Regular arrays have

developed from systolic arrays by relaxing some of the initial constraints on the topology

of the network and the complexity of the processing elements (such as strictly neighbour

connections, or bit and word level operations). Also, in time regular arrays have evolved

from being seen as particular types of hardware components to being considered as special

types of synchronous parallel programs, hence they have been adopted as a model of parallel

computation. (A brief survey of the development of regular array synthesis with the relevant

references is given in Chapter 2.)

This development of the subject has brought regular array synthesis closer to parallel compi­

lation techniques for Fortran-like programs, and, in particular, the automatic parallelisation

of nested for-loops [WoI89]. Besides, together with the traditional exploitation of parallelism

for vector processors and shared memory machines, parallel compilation techniques have also

evolved to include techniques for distributed memory architectures [OBo93]. The combined

effect of these developments have resulted in an even stronger bond between parallel compi­

lation and regular array synthesis [Me-et-al95b].

CHAPTER 1. INTRODUCTION

1.2.1 Algorithm Specification

Synthesis methods for regular arrays are based on the systematic manipulation of algorithm

descriptions or specifications'l. A specification should conform to a formal syntax and corre­

sponds to a functional description of the algorithm. Restricted forms of imperative nested

for-loops or recurrence equations are usually admitted as a specification (no standard synta.x

exists in the literature). For example, an algorithm which computes the first n + 1 entries of

the Fibonacci sequence could be specified as the code segment:

F(O) := 1;

F(I) := 1;

for i := 2 to n do

F(i) := F(i - 1) + F(i - 2);

or the recurrence equation:

F(i) = {~(i-l)+F(i-2) i = 0,1
i = 2, .. . ,n

The specification does not contain any explicit directive for the parallel execution of the

computations of the algorithm, because, in principle, the specifier should not be concerned

with the model of computation adopted.

Although, it could be argued that the use of imperative code may imply a degree of awareness

of some model of computation by the algorithm designer, its traditional use is for syntactic

description only. Indeed, the subset of imperative code used corresponds to so-called single

assignment code3 • To a certain extent, the use of single assignment code allows the specifier

to adopt a (perhaps more familiar) imperative programming style, while a functional inter­

pretation of the specification is assumed by the method. (The reader interested in the debate

imperative vs. functional is referred to the famous article by Backus in [Bac78].)

Our main concern in this thesis is the development of methods for the systematic synthesis

of regular arrays, and a purely functional approach to the specification of algorithms will be

adopted. We will, however, use nested for-loops in examples and illustrations, so that the

reader less accustomed to mathematical notations may gain an intuition of the effects of the

2In the following, we will often use the terms algorithm and specification indifferently to indicate the formal
description of an algorithm.

3Single assignment form means that assignment statements cannot have a destructive effect on the value
of an already assigned variable. In other words, each variable is assigned exactly once during the execution of
the algorithm [Lis89J.

CHAPTER 1. INTRODUCTION

formal transformations. Work on how to convert imperative nested for-loops into a functional

description exists in the literature. See, for instance, [BuDe88, Lis89].

1.2.2 Parallelism and Data Dependence Relations

While there are no directives for concurrency or data communication, the algorithm specifi­

cation contains a description of the data dependence relations between the computations of

the specified algorithm.

A data dependence relation introduces a sequentiality constraint by expressing that the exe­

cution of some computations relies on data generated by other computations. For instance, if

we consider the specification of the Fibonacci sequence of the previous section, the evaluation

of F at each i depends on the evaluations of F both at i-I and i - 2. Hence, the entries of

F have to be computed sequentially for i from 2 to n.

Fortunately, strictly sequential computations do not characterise all algorithms. Indeed, the

source of the exploitable parallelism of a specification is represented by the sets of its com­

putations which are not related under any data dependence relation. For instance, consider

the following segment of code, which computes a vector C whose entries are the sums of two

adjacent entries of a given vector A:

for i := 2 to n do

C[i] := A[i] + A[i - 1];

The corresponding equation is:

C(i) = A(i) + A(i - 1) i = 2, .. . ,n

Data dependence relations can be established between C and A. In particular, for all i, the

evaluation of C at i depends on the values of A both at i and i - 1. On the other hand,

there is no data dependence between the computations of C for different values of the index

i. Therefore, the entries of C may be computed in parallel.

That the ordering of the operations of a program is based on the needs of data (instead

of being specified by the programmer) is the basic principle of data flow computing [Ada68,

Ada 70, De We77, Den80]. The analysis of the data dependencies of a program has a prominent

role in regular array synthesis, and more generally in the exploitation of algorithm parallelism

and parallel compilation techniques, and a number of tools have been developed for the

representation of data dependence relations (mainly based on graph theory [Car79]). A basic

CHAPTER 1. INTRODUCTION 6

tool, which we will use extensively in this work, is the so-ca.lled data dependence groph,

which provides a graphical representation of the data dependence relations of an algorithm.

Nodes in a data dependence graph represent computations. with arcs representing their data

inter-dependencies.

1.2.3 Algorithm Specialisation and Space-Time Mapping

By decomposing an algorithm into basic computations and their inter-dependencies, the ma. -

imal inherent parallelism of the algorithm is uncovered. In particular. if the corresponding

data dependence graph defines a partial order, its sets of incomparable nodes correspond to

computations that can be executed in parallel, while its arcs indicate the data communications

required between computations. In being a graphical representation, the data dependence

graph allows for structural and topological considerations. In particular, a processor net­

work whose topology matches the data dependence graph may provide a specialised parallel

machine for the execution of the algorithm. The correspondence couples processors of the

network with nodes of the data dependence graph (computations) and communication links

with arcs of the data dependence graph (data communications).

More complex correspondences can be established between a data dependence graph and a

network of processors, for instance by associating several computations to the same processor.

In this case, care should be taken that the partial order induced by the data dependencies is

reflected by the ordering of execution of the computations in the processor network.

Therefore, in regular array synthesis we can consider algorithmic specialisation as a mapping

of the data dependence graph of the algorithm onto a processor network. This mapping is

usually known as a space-time mapping, as it can be seen as characterised both by a spatial

and a temporal component. The spatial component defines a correspondence between compu­

tations and processors. The temporal component indicates the ordering of the computations

at each processor.

1.2.4 The Role of Regularity

A space-time mapping is straightforward only if data dependence graph and processor network

share a similar topology. When the target processor network is a regular array, we are left

with the problem of characterising regular data dependence graphs and the type of algorithms

to which they correspond. In other words, we need to identify those properties of an algorithm

which yield regular data dependence graphs and, hence, regular array designs.

CHAPTER 1. INTRODUCTION

Regular array synthesis has developed from the realisation that particular forms of nested

for-loops and recurrence equations correspond to regular data dependence graphs. They

are characteristic of so-called uniform problems [Ka-et-al6/]. The term uniform refers to

characteristics of the data dependencies of the problem. Our description of the Fibonacci

sequence is an example of a uniform algorithm. In particular, for all i, the computations of F

are characterised by the data dependence of F(i) on F(i -1) and F(i - 2). In terms of data

dependence graph, the same arcs, from i-I to i and from i - 2 to i, are uniformly replicated

at each node of the graph (which is then highly regular). Uniform problems can be easily

recognised by considering the form of the index expressions of their variables. If t he indices

are seen as representing the axes of a Euclidean space, uniform index expressions correspond

to translations in that space.

From a designer's point of view, uniform recurrences offer a limited abstraction power for

the specification of algorithms. The expression of a generic algorithm as uniform nested

for-loops or uniform recurrences requires considerable effort and expertise from the designer,

often involving several manipulations of (from a human's point of view) more natural expres­

sions of the algorithm. It also implies a high level of awareness of the underlying model of

computation.

In order to increase the abstraction power of the languages for algorithm specification, so­

called affine problems have been considered [MoI83, RaFu90]. This type of specifications

are characterised by index expressions which are affine expressions of the indices, that is the

combination of linear expressions and translations [Ner63, Roc70, Sch86]. An example of an

affine specification is the following set of nested for-loops for the computation of the product

of two n X n matrices A and B:

for i := 1 to n do

for j := 1 to n do

begin

C(i,j,O):= 0;

for k := 1 to n do

C(i,j, k):= C(i,j, k - 1) + AU. k) * B(k,j);

end;

CHAPTER 1. INTRODUCTION 8

The recurrence formulation of the same algorithm is:

CC "k) {O i,j=l, ... ,n,k=O
z,J, = C(" k) (.) . z,J, -1 +Az,k *B(k.J) i,j,k=1. n

Note that the single assignment form of the code requires a third index for the accumulation

variable C. The entries of the result matrix correspond to the values C (i, j, n) for all com­

binations of i and j. Each computation C(i,j, k) depends on the computation of the values

C(i,j, k - 1), A(i, k) and B(k,j), and the relation between each pair of index expressions can

be described as an affine mapping.

As uniform index expressions define translations and affine index expressions combine trans­

lations and linear transformations, then a uniform data dependence relation is a particular

case of affine data dependence relation. Hence, the power of abstraction of affine specifi­

cations is higher than that of uniform specifications. The gain in abstraction is, however,

counterbalanced by a loss of regularity of the data dependencies.

1.2.5 Enforcing Regularity

The increase of abstraction power from uniform to affine can be usefully exploited only if

it is accompanied by the provision of systematic transformations of an affine description

into a uniform algorithm. These transformations have, indeed, been the object of study by

several authors and the problem of making an affine problem uniform is now well-understood

[FoM084, RaFu87, Raj89, WoDe92, Qu Va89]. As the effect of these transformations is that

of enforcing regularity, we call them regularising transformations. (This is not a standard

terminology. Other names which have appeared in the literature include uniformisation and

localisation. We feel, however, that regularity carries a more general meaning than the others

- in fact, uniform does not necessarily mean local, while locality does not imply uniformity.)

With the introduction of regularising transformations, algorithm specialisation through reg­

ular array synthesis can be logically outlined as in the diagram of Fig. 1.1. Initially, a

non-regular specification is provided. This is transformed into a regular algorithm (trans­

formation 71) by the application of regularising transformations, and subsequently mapped

onto a regular array (transformation 72) through a mapping of its regular data dependence

graph.

Although in the diagram regularisation has been represented as a mapping from non-regular

to regular algorithms, it should be represented more faithfully as a transformational process

iterating on non-regular specifications, and which terminates with a regular algorithm. This is

CHAPTER 1. INTRODUCTION 9

Irregular "t Regular "2 Regular

Problem Problem Array Design

Fig. 1.1. Outline of Regular Array Synthesis.

because, in general, regularisation techniques apply to single non-uniform data dependencies.

rather than to a specification as a whole. For instance, the matrix product example of the

previous section would be transformed by classic regularisation techniques into a uniform

algorithm by transforming separately the data dependence relations between C(i, j, k) and

A(i,k) and between C(i,j,k) and B(k,j) (the relation between C(i,j,k) and CU.j,k-l) is

already uniform).

The fact that regularising transformations apply to single data dependence relations has a

significant impact on the simplicity of their definition and software implementation. Indeed,

regularising transformations have also to be consistent with optimisation strategies which

apply to the problem as a whole.

The balance between scope of application, complexity and optimality of the transformations

plays an important role in the design process. While fully automated optimisation is not

supported in regular array synthesis as yet (mainly because an exhaustive search of the

solution space of the problem would not be computationally feasible), a possibility is offered

to the designer to choose an optimisation strategy and perform some basic transformations of

the specification automatically. The development of optimising compilers for regular arrays

is, however, an active area of research and likely to become more and more relevant as

realistically computational approaches to optimisation are developed.

1.3 From Affine to Integral Problems

Although affine data dependencies characterise a large number of problems, they still impose

severe restrictions on the specification of algorithms. For instance, the nested for-loops shown

below (in which each entry of variable P accumulates the values of m entries of Q, as specified

by the index expressions, with Q suitably initialised) cannot be treated in a systematic way

under current synthesis methods because they do not apply to data dependencies which are

not expressed as affine index expressions:

for i := 1 to n do

begin

CHAPTER 1. INTRODUCTION 10

P(i,O):= 0;

for j := 1 to m do

P(i,j) := P(i,j - 1) + Q(i * j);

end;

In the example, the value P(i, j) is data dependent on the value Q(i * j) (as well as P(i, j -1)).

where i * j is not an affine expression.

The limitations of the present techniques are mainly due to the choice of the underlying

mathematical model for regular array synthesis, that of linear algebra and affine geometry

[Ner63, Roc70, Sch86]. Linear and affine transformations as well as convex polyhedral sets

are the key concepts which are exploited by synthesis techniques both from a theoretical and

an applicative point of view. Hence data dependencies which are defined through arbitrary

index expressions fall outside the scope of the established synthesis techniques.

That synthesis techniques are not applicable does not imply that regular parallel solutions are

not possible for non-affine problems. It simply means that the techniques are not powerful

enough to provide such solutions systematically. Indeed, ad hoc regular arrays for non-affine

problems have been proposed in the literature (see, e.g., [Eva91]).

One ofthe main objectives of the thesis is the characterisation of classes of non-affine problems

and the provision of regularising techniques for their systematic transformation into uniform

specifications. The characterisation that we will provide yields the definition of integral

problems as problems whose index expressions are general integer mappings of the indices.

1.4 From Static to Dynamic Problems

Both affine and integral problems share the property that their data dependencies are entirely

specified by the algorithm description. Hence, a static or compile-time analysis of those data

dependencies is possible, as well as their representation as a data dependence graph. There

exist problems, however, which do not share this property. For instance, consider the code

segment below (obtained through a small modification of the code segment of the previous

section):

for i := 1 to n do

read(G(i));

for i := 1 to n do

CHAPTER 1. INTRODUCTION 11

begin

P(i, 0):= 0;

for j := 1 to m do

P(i,j):= P(i,j - 1) + Q(G(i));

end;

In this case, the computation of P(i,j) depends on the value P(i,j - 1) as well as on the

value of Q at G(i). However, this index expression cannot be resolved until the program is

executed and a value is provided for G(i). Moreover, such a value may be different at each

execution of the algorithm, as different inputs may be provided. (In this case we also need

to ensure that G is well-defined and the value provided generates a valid index expression for

Q.)

A data dependence of this type is called dynamic or run-time as, in general, its complete

representation and analysis is not feasible before the algorithm is executed. The main problem

with dynamic data dependencies is that, in general, they do not allow one to derive array

designs statically. Therefore, in principle, dynamic problems and regular array synthesis are,

at a simple level, incompatible.

However, a second and surprising result of this thesis is to show that for restricted classes

of dynamic problems the provision of a regular array solution in a systematic fashion and at

compile time is still feasible. The approach we take will require some boundedness assump­

tions on the specification. For instance, if for the above segment of code we assume that the

input values of G(i) are contained in a finite range, we can define a regular array which will

execute the algorithm for all the inputs in that range.

1.5 Outline of the Thesis

This thesis is organised as follows. Chapter 2 describes the design process in regular array

synthesis, and introduces some basic definitions and properties. Technical issues related to

the regularisation of non-uniform data dependencies are discussed at length as the basis for

the development of the following chapters. A brief survey of the most significant contribu tions

to regular array synthesis is given.

Chapter 3 introduces integral problems and their regularisation. The relation between integral

and affine problems is explored. The advantages and limitations ofthe approach are discussed.

CHAPTER 1. INTRODUCTION 12

The step from static to dynamic problems is formalised in Chapter 4. which also introduces

a subclass of dynamic problems for which we provide systematic regularisation techniques.

A number of case studies are presented in Chapter .5 to illustrate the application of our

techniques to well-known problems from the literature. Integral and dynamic problems which

fall outside the scope of our techniques are also illustrated for comparison. and ad hoc solutions

provided.

Chapter 6 outlines some possible developments of the work and draws a number of conclu­

sions.

Chapter 2

Regular Array Synthesis

Regular array synthesis is the process of transforming the functional description of an al­

gorithm into its implementation as a regular ilrril)'. WI' call this proCf'SS the r/r sign pmI'(ss

of the algorithm. Its basic steps, illustrated in Fig. :2.1. include l : -"flU ifim t ion. (J T/olysis.

reguiarisation, space-time mapping and implfTTlOltotion.

Analysis

Implementation

Fig. 2.1. Design process.

The specification of the algorithm denotes the first stage of the process, in which a functional

description of the algorithm is provided as recurrence equations (or some equivalent, such as

single assignment code). The design process terminates with the implementation of the algo­

rithm either as parallel code for a target machine or as specialised hardware. The remaining

design steps (contained within a dotted box in the figure) constitute the core of the synthesis

method, in which a regular spreading of the computations of the algorithm in space and time

is performed, so that the data dependence relations between computations are exposed and

l This is a simplified view of the design process. A more complete description is given in Section 2 ~
including classes of transformations which are not considered in this thesis.

13

CHAPTER 2. REGULAR ARRAY SYNTHESIS

the maximal inherent parallelism of the algorithm can be exploited. A spatial distribution i~

obtained by representing the computations as the nodes of a graph. A temporal distribution

follows from the partial order induced by the data dependence relations. and the assumption

that a constant time cycle is associated with the execution of each computation. Regularity

is enforced through systematic transformations of the specification.

In the figure, the arrows indicate the logical flow in the design process. That all arrows in

the synthesis core are bi-directional follows from the fact that several iterations of the design

steps may be necessary before the algorithm reaches a form which satisfies optimality. design

and correctness requirements.

This chapter contains some preparatory work which is necessary to the development of the

remainder of the thesis, and reviews some basic concepts of regular array synthesis which

are of particular significance for our approach. The chapter is organised as follows. Sec­

tion 2.1 addresses the basic definitions for the specification, analysis and space-time mapping

of regular parallel algorithms. In the discussion, a generic index space is assumed for the rep­

resentation of the computations of the algorithm, and the theory is developed at an abstract

level. These basic concepts are made more specific in Section 2.2, where the computation

space is assumed to be a Euclidean (lattice) space. The advantages of this embedding are

highlighted. Proofs of relevant properties can be found in Appendix B. The main issues

regarding regularising transformations are discussed in Section 2.3, laying the basis for the

development of the following chapters. A brief survey of the major contributions in the lit­

erature to regular array synthesis is given in Section 2.4. We summarise the main issues of

the chapter in Section 2.5.

2.1 Basic Design Steps

In this section, the basic concepts relative to the specification. analysis and space-time map­

ping of algorithms are introduced. An index space with no particular structure (apart from

being a set) is assumed for representing the computations of an algorithm. We call it com­

putation space, denoted by CS. We also assume the existence of a set Var of variable names,

from which new variables can always be selected, and a set of data values Vat, from which

variables are assigned and which contains a special undefined value L Variables will be

indexed by computation points. In particular, if If is a variable and c E CS, then \'(c) will

be called an instance of V (at c). Also, we will call an index mapping a mapping from CS to

itself.

CHAPTER 2. REGULAR ARRAY SYSTHESIS 15

2.1.1 Algorithm Specification

In our context, an algorithm is specified as a system of recurrence equations, defining the

computations and data dependencies of the algorithm. Each recurrence equation expresses

the evaluation of a function (the applied function) on a set of computation points (the compu­

tation domain). The equations are recurrent in that the evaluation of a function may depend

on other evaluations of the same function. Also. the equations constitute a system because,

in general, the evaluation of a function depends on the evaluation of other functions of the

system (so-called simultaneous recursion).

The result of evaluating a function on each point of a domain as prescribed by a recurrence

equation, is recorded by an indexed variable, called the result (variable) of the recurrence

equation. The indexing corresponds to the computation point. The definition of the applied

function by a recurrence equation is obtained by specifying a number of indexed variables

(arguments) to which the function is applied. The indexed variables provide a tabulation of

the functions computed by the algorithm. The index expressions of the result and argument

variables of a recurrence equation establish the data dependence relations existing between

computations.

We distinguish two types of equations: recurrence equations, which define indexed variables

in terms of functions applied to a number of argument indexed variables; and input equations,

which define variables by the assignment of input values.

Definition 2.1.1 [Recurrence and Input Equations] A recurrence equation E (with m argu­

ments) is defined as a 5-tuple (DE,eE,Ee,fE,IME)' where: DE ~ CS is the computation

domain of the equation; eE E Var is the result of the equation; Ee E Var
m

is the m-tuple

of its arguments; IE : Valm ---> Val the applied function; IME E [CS ---. cs]m the m-tuple

of its index mappings.

An input equation E is defined as a 3-tuple (DE, eE, fE), where: DE ~ CS and eE E Var

are as above; and IE : CS ---> Val is the applied function. .2.1.1

The applied function IE depends strictly on its arguments (see [Ka-et-al67]) and has constant

complexity. The notation eE and Ee (notation reminiscent of the pre- and post-sets in Petri

net theory [Br-et-al87]) simply indicates the left- and right-hand sides of the equation E.

Given a recurrence equation E, the order of E is equal to the number of its arguments I i.e ..

CHAPTER 2. REGULAR ARRAY SYNTHESIS 16

IEel = m in the above definition). The order of an input equation is zero. Given an equation

E, we say that E defines variable eE on each point of the domain DE.

In the literature a more usual notation for a recurrence equation is (similar to) the following2
:

where D is the domain of the equation, U the result, f the applied function, and for all

i, Vi are the arguments and Ii the index mappings. The correspondence between the two

notations is straightforward, as illustrated in the following example.

Example 2.1.2 Consider the specification of the Fibonacci sequence given in Chapter 1.

For convenience, we recall it here, both as imperative code:

F(O) := 1;

F(I) := 1;

for i := 2 to n do

F(i) := F(i - 1) + F(i - 2);

and as the recurrence equation:

F(i)={ ~(i-l)+F(i-2)
In our notation, the specification can be expressed as:

i = 0,1
i = 2, .. . ,n

where Dl = {O, I}, D2 = {2, .. . ,n}, inF(i) = 1, +(a,b) = a+b,I1(i) = i-I andI2(i) = i-2.

In the more traditional notation the specification might be:

F(i) = inF(i)

F(i) = +(F(I1(i)),F(I2(i)))

• 2.1.2

The choice of an algebraic notation as given above is not just a matter of personal taste. but

will prove to be convenient for the expression of the definitions and properties necessary in

the development of regularisation techniques for dynamic problems (see Chapter 4).

2Many variants of this nota,tion exists. See, for instance, [Ka,-et-a.l67, Ra.o85. QuVa,89, Raj89, QuRo91].

CHAPTER 2. REGULAR ARRAY SYNTHESIS 17

An algorithm is specified as a system of recurrence and input equations. In such a system.

each variable is assumed to be assigned exactly once at each computation point. This is

enforced by assuming that equations of the system with the same variable as result haw

disjoint domains. Note that the same property could be enforced in other ways. for instance

by assuming that if the domains of such equations intersect, then the applied functions

evaluate to the same value for each point of the intersection. Although, the former condition

is more restrictive, it is also easier to enforce and verify, hence it is the one usually adopted.

Definition 2.1.3 [System of Equations] A system of equations S is defined as a set of

equations {EI, ... ,Er }, where for all Ej,Ej E S, with i i- j. for i.j = l. ... ,r, eE j = eEJ

implies DEi n DE} = 0. .2.1.3

Given a system of equations S, we define its domain as the union of the domains of its

equations, Le., as the set Ds = UEES DE'

Example 2.1.4 [System of Equations] Consider the equations of Example 2.1.2 for the

computation of the Fibonacci sequence. Equation El is an input equation, while E2 is a

recurrence equation. Their domains are disjoint sets, so that S = {El' E 2} is a system of

equations. .2.1.-1

The set of variables of an equation E is the set VarE = {eEl U S(Ee) (see Appendix A, for a

definition of the support set S(u) of a tuple u), for a recurrence equation, and VarE = {eEl,

for an input equation. A system of equations S has set of variables Vars = UEES VarE'

Moreover, given a variable V E Vars, we can identify the set of equations defining V, as

DefEv = {E E S I eE = V}, as well as the set of computation points on which V is defined, as

DefDv = UEEDejEv DE' In the following, we assume that an indexed variable has undefined

value outside its definition domain, Le., V(c) = .1.. for all c rt DefDv.

2.1.2 Analysis of the Data Dependencies

The process of extracting parallelism from an algorithm specification is based on the anal­

ysis of the data dependencies existing between its computations. To this end. several no­

tions of dependence relation have been developed either among variables or their instances

[Ka-et-al67, Ra085, SYKun88].

A basic dependence relation is the so-called data dependence relation (or simply data depen­

dence). This relation is defined between variable instances and is based on index mappings.

CHAPTER 2. REGULAR ARRAY SYNTHESIS

A recurrence equation implicitly defines a number of data dependencies equal to the order of

the equation. Each of them involves the result of the equation and one of the arguments. If

D is the domain of the equation, U its result, V any such argument and I the corresponding

index mapping, a data dependence relation between F and V is established as follows: for

each point c of the domain D, the computation of U(c) depends on the value of " computed

at the point I(c) of the computation space, hence the value F(I(c)) has to be available for

the computation of U(c) to be possible.

Abstracting away from particular equations, a data dependence can be represented as a 4-

tuple 1)1) = (D, U, V,I), where D ~ CS, U, V E Var and I : CS - CS, expressing that for

all c ED, U(c) is data dependent on V(I(c)).

Let E be a recurrence equation of order m. Then, the ith data dependence generated by E

is IYDEi = (DE, eE,pri(Ee),pri(IME)) (where pri is a projection - see Appendix A), and

the set of data dependencies of E is 1)1)E = U~l {1)1)EJ. As the order of an input equation

is 0, its set of data dependencies is empty. Finally, the set of data dependencies of a system

of equations S is 1)1)s = UEES 1)1)E·

Example 2.1.5 [Data Dependencies] Consider the system S of Example 2.1.4. Its data

dependencies are:

1)1)1 (D2' F, F,Il)

1)1)2 (D2' F, F,I2).

.2.1.5

Graphs are the usual tools for the representation and analysis of data dependencies. The

following three types of graphs are commonly used in regular array synthesis3
. A fourth type

of graph, the so-called signal flow graph, which also plays a very important role in synthesis.

will be introduced in Section 2.1.3 for the description of regular array designs.

Data Dependence Graph

A data dependence graph is the natural graph representation of a data dependence. Its nodes

are computation points and its arcs relate computation points under the index mapping of

the data dependence.

3Many variants of these graphs are known from the literature. According to Feautrier [Fea92aJ: ~depen­
dence graphs are used in every form of parallel programming [... J. There are nearly as many dependence

graphs as there are workers in the field" .

CHAPTER 2. REG ULAR ARRAY SYNTHESIS 19

o 2 n
a)

~
(F,O) (F,l) (F,2)

c)
(F,n)

b)

Fig. 2.2. System S: a) data dependence graph; b) complete data dependence graph; c)
reduced dependence graph.

Definition 2.1.6 [Data Dependence Graph} Let VV = (D, U. V,I) be a data dependence.

Define its data dependence graph 1JVg as the graph (N,A). where:

- N = D UI(D)j and

- A = {(I(c),c) ICE D}.

.2.1.6

The data dependence graph of an equation or a system of equations can be defined as the

union of the graphs of their data dependencies, with the data dependence graph of an input

equation being the empty graph (as an input equation defines no data dependencies).

Example 2.1.7 [Data Dependence Graph} Consider the system S of Example 2.1.4. Its

data dependence graph, illustrated in Fig. 2.2 a), is vvg = (N. A), where:

N {i,i-l,i-2Ii=2, ... ,n}

A {(i - l,i),(i- 2,i) Ii = 2, .. . ,n}.

.2.1.7

Complete Data Dependence Graph

In a data dependence graph variable names are abstracted away: the nodes represent com­

putation points, and distinct variable instances at the same computation point are not dis­

tinguished in the graph. When a distinction between variable instances is important, the

following type of graph is used4
:

4The notation (U, e), where U is a variable name and e a computation point, is used to distinguish a node
of the complete data dependence graph from U(e), which represents the instance of U at L

CHAPTER 2. REGULAR ARRAY SYNTHESIS 20

Definition 2.1.8 {Complete Data Dependence Graph} Let DD = (D. U. \ ',I) be a data

dependence. Define its complete data dependence graph eDDg as the graph (.\'.A), where:

- N = {(U,c) ICE D} U ((V, d) IdE I(D)}; and

- A = {(V,I(c)), (U,c)) ICE D}.

.2.1.8

The complete data dependence graph of an equation may be defined as the union of the com­

plete dependence graphs of its data dependencies. Similarly, the complete data dependence

graph of a system of equations may be defined as the union of the complete data dependence

graphs of its equations.

Example 2.1.9 {Complete Data Dependence Graph} Consider the system S of Example 2.1A.

Its complete data dependence graph, illustrated in Fig. 2.2 b), is eDVg = (N. A), where:

N {(F, i), (F, i-I), (F, i - 2) \ i = 2, ... , n}

A {((F, i-I), (F, i)), ((F, i - 2), (F, i)) I i = 2, ... , n}

.2.1.9

Reduced Dependence Graph

Data dependence graph and complete data dependence graph allow a fine-grain analysis of

the algorithm at the level of its basic computations. The reduced dependence graph, instead,

allows a coarser-grain dependence analysis, in which the inter-dependencies between variables

(hence, computed functions) are exposed.

Definition 2.1.10 {Reduced Dependence Graph} Let S be a system of equations. Define its

reduced dependence graph RDg as the graph (N,A), where:

- N = VaTS; and

- A = {(U, V) \3D,I such that (D, U, V,I) E VDs}·

.2.1.10

CHAPTER 2. REGULAR ARRAY SYNTHESIS 21

Example 2.1.11 [Redu.ced Dependence Graph} Consider the system S of Example 2.1.-1. Its

reduced dependence graph, illustrated in Fig. 2.2 c), is RIXis = (.Vs.As), where '\5 = {F}

and As = {(F, F)}. .2.1.11

2.1.3 Space-Time Mapping

A (processor) array design for a specification is obtained by mapping its data dependence

graph onto a graph describing the design. The mapping is realised by identifying a timing

fu.nction (or scheduling) and an allocation function (or placement) of the computations.

A timing and allocation pair are usually selected on the basis of minimising some parameters.

such as the number of execution steps of the algorithm, the number of processing elements

of the network, their connections and/or memory requirements, etc. The selection of an

optimal space-time mapping is of fundamental importance in the synthesis process, and has

been extensively studied (see, e.g., [Da-et-al91, ShF092, DaR094]). Whilst in this section we

only recall some of the basic requirements and properties of a space-time mapping, in the

following section we will discuss how optimal timing functions can be systematically derived

for particular forms of recurrence equations embedded in Euclidean lattice spaces.

Timing Function

A timing function associates an execution time with each computation point of a system of

equations. As we consider discrete schedulings only, we may assume that time coincides with

the integers, so that a timing function will be a partial mapping from CS to Z. In particular,

a timing function for a system of equations is a mapping from CS to Z which is defined

(at least) at each computation point of the system. A valid timing function for a system of

equations is a timing function which preserves the ordering of the computations induced by

their data dependencies5
:

Definition 2.1.12 [Valid Timing Function for a Data Dependence Graph} Let vvg =
(N, A) be a data dependence graph and t a timing function for 1)1)g. Then t is a valid

timing function for Vvg if and only if for all (c,c') E A, t(c) < t(c'). .2.1.12

5 Feautrier, in [Fea92a], uses the name causality to indicate a condition similar to the one we use in the
definition of valid timing function.

CHAPTER 2. REGULAR ARRAY SYNTHESIS 22

Given a timing function t, an infinite family of timing functions can be derived from t by

introducing integral delays6. In fact, if t is a valid timing function for a data dependence

graph V1Xi, then for all e E CS, the mapping defined by te(e) = t(c) + :3. with .3 E Z. is a

valid timing function for vvg. The proof is trivial, and rests on the observation that the

ordering defined by a valid timing function among the nodes of a data dependence graph is

invariant under the addition of constants. We will use this invariant to restrict ourselves to

valid timing functions which are non-negative.

For implementation on finite array architectures, the following two properties of a timing

function are required: that only finite sets of computations are scheduled for parallel execu­

tion; and that there is a starting time for the execution of the algorithm. For specifications

with a finite computation set any valid timing function satisfies these requirements.

Definition 2.1.13 [Finite and Bounded Timing Function} Let Vvg = (N, A) be a data

dependence graph and t a valid timing function for vvg. Then:

- t is finite if and only if for all T E ranget(N), the set {e E N I t(e) = T} is finite;

_ t is bounded (below) if and only if there exists f E ranget(N) such that for all T E

ranget(N), f ::; To

.2.1.13

From the previous discussion, it follows that, given a valid bounded timing function t with

lower bound f, it is always possible to derive a non-negative valid bounded timing function

from t, for instance, by adding a delay equal to f. Without loss of generality, in the following

we will restrict ourselves to non-negative timing functions, unless otherwise specified.

The above definitions naturally extend from a data dependence graph VVg to, respectively,

the data dependence vv, equation E or system of equations S, of which vvg is the data

dependence graph. Hence, for instance, we may refer to a valid timing function of a system

of equations, by which we mean a valid timing function of its data dependence graph.

Example 2.1.14 [Timing Function} Consider the data dependence graph in Fig. 2.3 a). A

valid timing function is defined by: t(i) = 0, for i = 1. 8; t(i) = 1, for i = 9, ... ,12;

t(i) = 2, for i = 13,14; and t(15) = 3. .2.1.1.1

All timing functions will be considered valid from hereon.

6Indeed, this is not the only operation which preserves timing functions. It is, however, the only operation

we will consider in this work.

CHAPTER 2. REG ULAR ARRAY SYNTHESIS

2 3

15

4 5

a)

6
1\7\/\1\

7 8 pJ p2 p3 p4 p5 p6 p7 p8

b)

Fig. 2.3. a) Data dependence graph; b) signal flow graph.

Allocation Function

23

An allocation function determines the distribution of the computations of a system of equa­

tions among a set of processing elements.

We assume the existence of an index space, which we call the processor space and denote

by PS, as a convenient abstraction in which the placement of computations onto processing

elements can be represented (in the same way the space CS provides a convenient abstraction

for the representation of computations). No particular structure is assumed of PS, other

than being a set.

An allocation function can be represented as a partial mapping from CS to PS (as for timing

functions, an allocation function is required to be defined at least on the computation points

of a system of equations).

We term a timing and an allocation functions as compatible7 if and only if computations which

are scheduled at the same time are not allocated to the same processing element, i.e., poten­

tially parallel computations are not forced to be executed sequentially. This implies that the

maximal parallelism of the specification is exploited, and no sequentiality is enforced which

is not prescribed by the partial order defined by the data dependencies of the algorithms.

The property of compatibility may be expressed more formally as follows:

Definition 2.1.15 [Compatibility] Let 1)1)9 = (N, A) be a data dependence graph and let

t be a timing function and a an allocation function for 1)1)9. Then t and a are compatible

if and only if for all c, c' EN, with c =1= c', t(c) = t(c') implies a(c) =1= a(c'). .2.1.15

Note that given a valid timing function t for, and the 1)1)9 of, a system, any allocation

function which is injective on the nodes of 1)1)9 is trivially compatible with t. However, as

7 Another term used in the literature is conflict-free [Fea92a].
8Note that with this notion of compatibility, design constraints related to the implementation of the al­

gorithm, such as a limited number of processing elements, are not taken into consideration. See also the
discussion on partitioning techniques in Sections 2.2.4 and 2.4.

CHAPTER 2. REGULAR ARRAY SYNTHESIS 24

we will see in the following section, such allocation functions correspond to highly inefficient

array designs.

Example 2.1.16 [Allocation Function] Consider the data dependence graph in Fig. 2.3 a)

with valid timing function t as given in Example 2.1.14. An allocation function a compatible

with t is defined as: a(i) = Pi, for i = 1 9; a(10) = a(13) = PlO; and a(ll) = a(U) =
a(15) = Pu; and a(12) = P12, where Pi, for i = 1, ... ,12, denote distinct processors in PS.

In Fig. 2.3 a), dotted lines surround computation points which are allocated to the same

processing element under a.

A non-compatible allocation function is, for instance, a' defined as: a'(i) = Pi, for i = 1, 8;

a'(9) = a'(13) = P9, a'(10) = a'(l1) = PlO; and a'(12) = a'(14) = a'(15) = Pll' Under a',

computations 10 and 11 would contend the use of processor PIO at time t = 2.

A trivially compatible allocation function is a" defined as a"(i) = Pi, for i = 1, ... ,1.5. with

Pi distinct processors in PS, for i = 1. 15. .2.1.16

In the above presentation, we have assumed that a timing function is selected first, followed

by the choice of a compatible allocation function. In this approach, the emphasis is on the

optimality of the scheduling as a timing function which guarantees the minimum number of

computation steps. Alternatively, an allocation function may be selected first [ClM093]. In

this case, the optimality of a placement can be expressed in terms of a number of design

parameters, such as the locality of the connections of the network or minimising the memory

requirements for its processing elements.

Signal Flow Graph

A (valid) timing function for a system of equations together with a compatible allocation

function determine an array design for a system of equations. Such a design is represented

by a labelled graph known as a signal flow graph9 . Its nodes represent processing elements,

its edges communication links and their labels communication delays.

Definition 2.1.17 [Signal Flow Graph under t and a] Let S be a system of equations and

vvg = (N, A) its data dependence graph. Let t be a valid timing function for S and a a

9Signal flow graphs are well-known design tools for digital signal processing applications. The type of signal
flow graph addressed in this work is only a particular type of signal flow graph, and more general definitions
may be found, for instance, in [CrRa83, SYKun88].

CHAPTER 2. REGULAR ARRAY SYNTHESIS 2.5

compatible allocation function. Define the signal flow graph ot,a of Sunder t and a, as the

labelled graph (Nt,a, At,a, f) such that:

- Nt,a = {aCe) ICE N};

- At,a = {(a(e),a(e'» I (e,e') E A}; and

- f: At,a -+ N such that V(e, e') E A, f((a(c), a(e'))) = t(e') - t(c).

• 2.1.17

Given a timing function for, and the data dependence graph of, a system of equations, an

allocation function which is trivially compatible (i.e., an allocation which is just an injective

mapping on the nodes of the graph - see Section 2.1.3) generates a highly inefficient array

design whose processing elements are active exactly once.

Example 2.1.18 [Signal Flow Graph] Consider the data dependence graph in Fig. 2.3 a),

the timing function t, given in Example 2.1.14, and the compatible allocation function a,

given in Example 2.1.16. The corresponding signal flow graph is illustrated in Fig. 2.3 b).

All the arcs have a unit label, which we have omitted in the figure. In this (and in the

general) case, a associates more than one computation to some of the nodes of the signal flow

graph, and the correct order of execution of such computations is determined by the timing

function t. .2.1.18

Note that a signal flow graph provides an abstraction for the algorithm implementation. Such

an implementation can be realised in a number of ways, including custom VLSI circuits whose

topology matches that of the signal flow graph, or parallel code to be executed on a general

purpose parallel machine.

Timing Function and Cyclic Data Dependence Graph

Definition 2.1.12 precludes the definition of a valid timing function for a data dependence

graph containing cycles (given a data dependence graph VVO and a path nl, ... , np of VVO,

where nl = np = n, then for a function t to be a valid timing function of 1)VO the definition

implies that t(nl) < t(np), i.e., ten) < ten). As t is a function to the integers, this can never

be the case). As a consequence only acyclic data dependence graphs admit valid timing

functions.

CHAPTER 2. REGULAR ARRAY SYNTHESIS

0-1 0

a)

(B,2)

(F'~~
.-'H-.

(A,I) (A,2)

(B,o-I) (B.o)

)J ... ,..........~)(F~.IJ
(A,o-l)

b)

26

Fig. 2.4. System S: a) data dependence graph; b) complete data dependence graph.

Requiring that the data dependence graph be acyclic is too strong a restriction: there are

many examples of recurrences with cyclic data dependence graphs which are (intuitively)

computable and for which we would like to define a timing function. For instance:

Example 2.1.19 The system S = {EI , ... , Es} of equations below computes the sum

a + b, where a and b are input values (at points 1 and n, respectively). The sum is computed

at each point of the sub-domain D2 of S (we have intentionally defined S so that its data

dependence graph is cyclic, although simpler definitions no doubt exist). The equations are:

El (DI' A, ina)

E2 (D2' A, A, id,II)

E3 (D3, B, inb)

E4 (D2' B, B, id,I2)

Es (D2' F, (A, B), +, (I,I)),

with: domains DI = {1}, D2 = {2, ... , n - 1}, D3 = in}; index mappings I(i) = i, II(i) =
i - 1, I 2 (i) = i + 1; computed functions id(a) = a, ina(i) = a, inb(i) = b, with a,b E R,

and +(a, b) = a + b. The addition a + b at each point of D2 is realised by the computation

of variable F. Variables A and B transfer, respectively, a and b among the computation

points. The data dependence graph and complete data dependence graph of S are illustrated

in Fig. 2.4 a) and b), respectively. We note that the complete data dependence graph is

acyclic. .2.1.19

The reason why cycles may appear in a data dependence graph even when the complete data

dependence graph is acyclic is that a data dependence graph abstracts away from variable

names, i.e., does not distinguish between variables, so that variable instances with different

names at the same computation point are collapsed onto the same node of the graph. Such

cycles can be eliminated if the specification is modified. for instance. to redistribute its

CHAPTER 2. REGULAR ARRAY SYNTHESIS 2/

computations in the space, so that a distinct computation point is associated with each node

of the acyclic complete data dependence graph.

In the following, without loss of generality and unless otherwise indicated. we will always

assume that data dependence graphs are acyclic.

2.2 Euclidean Synthesis

Although in the previous discussion no assumption was made of the nature and properties of

the computation space CS and processor space PS, regular array synthesis techniques have

developed mainly for computation and processor spaces represented by multi-dimensional

Euclidean spaces. This geometric embedding of regular array synthesis has the following

important advantages. From a theoretical point of view, linear algebra and affine geometry

provide for rich mathematical models. From an applicative point of view, their constructive

and algorithmic properties may be exploited for the development of automatic support.

The central idea of Euclidean regular array synthesis is the embedding of the data dependence

graph of a specification into convex regions of the space. Of such convex regions only lattice

points are considered. Therefore, the actual representation of the graph is in a lattice space.

However, properties of the embedding linear and affine spaces can be exploited, such as

polyhedral convexity, which allows for a finite representation of the computation domains,

and linear and affine transformations, which, by preserving polyhedral convexity, allow for a

finite manipulation of the domains.

The choice of linear and affine (lattice) spaces for the representation of algorithm specifica­

tions is not arbitrary, but comes from the realisation that multi-dimensional lattice spaces

offer a natural interpretation of the index spaces defined by sets of nested for-loops, which,

in turn, are widely used in the sequential coding of large classes of numerical algorithms

[Lam74]. Moreover, for those algorithms, loop bounds are often given as affine expressions of

the indices, which can be interpreted as the definition of the boundaries of polyhedral convex

sets in the embedding Euclidean space.

Finally, another major benefit of this representation is the possibility of defining systematic

techniques for generating optimal space-time mappings, by relating the problem specification

to the formulation of (integer) linear programming problems. for which computationally

effective solution methods are well-developed [Sch86].

In the remainder of this section we will discuss the basic concepts of Euclidean synthesis

CHAPTER 2. REGULAR ARRAY SYNTHESIS 2."

and the specialisation of regular array synthesis concepts arising from this embedding strat­

egy. From now on, computation and processor spaces are assumed to be multi-dimensional

Euclidean spaces and computation domains to be (convex) polyhedra.

2.2.1 Representation and Mechanisation

For a specification to be formally represented and manipulated. it has to be expressible as

a term according to some syntactic rules. Euclidean synthesis techniques account for this

requirement. In particular computation domains, index mappings, and timing and allocation

functions admit term representations, such as linear and affine expressions.

As computation domains are assumed to be polyhedral convex sets, by definition, they admit

a finite representation either as the intersections of a finite set of half-spaces or as the convex

closure of a finite number of points and directions (see also Appendix E).

Index mappings, in their most general form, are assumed to be affine transformations. Hence

they can be represented as a combination of a linear transformation (as a matrix-vector

product) and a translation vector. A similar form is provided for timing and allocation

functions, which are assumed to be affine and linear transformations, respectively. This form

and related properties are discussed in the remainder of this section.

2.2.2 Normalisation of Index Expressions

In Euclidean synthesis the computation domain is assumed to be a multi-dimensional lattice

space. Let zn denote such a space for some n EN. Then an index mapping in zn is a

mapping I from zn to zn.
In general, however, the initial specification of an algorithm may contain a more general

form of index mapping as a mapping I : zn --+ Zl, where I ~ n. Such mappings need to be

normalised [Qu Va89] before synthesis techniques can be applied. For example, let us consider

the specification of the matrix product of Chapter 1 (recalled here, for convenience):

for i := 1 to n do

for j := 1 to n do

begin

C(i, j, 0) := 0;

for k := 1 to n do

CHAPTER 2. REGULAR ARRAY SYNTHESIS 29

C(i, j, k) := C(i, j, k - 1) + A(i, k) * B(k, j);

end;

Its computation space can be assumed to be a 3-dimensional space in which each value

C(i,j,k) is computed for all i,j,k from 1 to n. Note that the number of dimensions of

the space corresponds to the number of nested for-loops. Variables A and B, however, are

indexed by two indices only. Hence, they need to be normalised in Z3.

Normalisation usually consists of "padding" the index expressions of \'ariables which are

not fully indexed, with extra indices up to the number n of dimensions of the space. Geo­

metrically, this corresponds to positioning the computations of such variables in particular

sub-spaces of the n-dimensional space. In principle, any arbitrary choice of the extra indices

can be made. However, because of the relation between index expressions and data depen­

dencies, this choice has an impact on the regularity of the specification. When the variables

to be fully indexed correspond to input or output data of the algorithm (as in our example),

it is common practice to position their evaluation on some boundary of the computation

domains. This, in general, translates into array designs where input and output operations

are confined to border processing elements.

In our examples, we could pad the index expressions of A and B with extra null entries and

obtain:

for i := 1 to n do

for j := 1 to n do

begin

C(i,j,O):= 0;

for k := 1 to n do

C(i,j,k):= C(i,j,k-l) + A(i,k,O)*B(k,j,O);

end;

If we interpret the overall computation domain as the hypercube D = {(i,j.k) 11 ::; i,j::;

n,O ::; k ::; n} (which corresponds to the evaluation of all index expressions in the nested

for-loops, for i,j and k ranging between their bounds), then the evaluation of A and B occurs

on the boundary D' = {(i,j,k) ED I k = O}.

This type of normalisation is generally applicable [QuVa89] and. in the following, we always

CHAPTER 2. REGULAR ARRAY SYNTHESIS .30

assume that all variables are normalised.

2.2.3 Uniform and Affine Data Dependencies

An affine index mapping is an index mapping in zn which defines an affine transformation.

An affine index mapping has the following form:

Definition 2.2.1 [Affine Index Mapping] Let I be an index mapping. I is affine if for all

z E zn, I(z) = A· z + b, with A E znxn and bE zn. In addition. I is uniform if A = In .

• 2.2.1

Together with index mappings, so-called dependence mappings are commonly used in the

analysis of the data dependencies. Dependence mappings are specific to Euclidean synthesis

in that their definition relies upon the existence of arithmetic operations in the computation

space. A dependence mapping is derived from an index mapping as follows:

Definition 2.2.2 [Affine Dependence Mapping] Let I be an affine index mapping. Its

dependence mapping 0I is the mapping defined as 0I(Z) = z - I(z), for all z E zn .
• 2.2.2

For all z, 0I(Z) is a vector, called the data dependence vector determined by I at z. Note

that as I is affine, 0I is also affine. Affine index mappings are used in the definition of affine

data dependencies:

Definition 2.2.3 [Affine Data Dependence] Let 1)1) = (D, U, ",oJ) be a data dependence.

1)1) is affine if I is an affine index mapping. • 2.2.3

Given an affine data dependence 1)1) = (D, u. V,I), with 0I the dependence mapping defined

by I, the image of D under 0I is called the dependence domain of 1)1):

Definition 2.2.4 [Dependence Domain] Let 1)1) = (D, [~, F.I) be an affine data dependence

and 0I the dependence mapping defined by I. The dependence domain OI of 1)1) is OI =

0I(D). .2.2A

As D is a convex polyhedron and 0I is affine, OI is also a conyex polyhedron (see Ap­

pendix E).

CHAPTER 2. REGULAR ARRAY SYNTHESIS 31

An important sub-class of affine data dependencies is represented by uniform data depen­

dencies. A uniform data dependence is characterised by a constant vector replicated for each

point of the domain. Because of their regularity, uniform data dependencies generate regular

array designs under a space-time mapping. Uniformity depends both on the index mapping

and the domain of the data dependence:

Definition 2.2.5 [Uniform Data Dependence} Let lYD = (D, U, V,I) be an affine data

dependence. 1)1) is uniform if and only if there exists an integer vector c E zn such that. for

all zED, 0y(z) = c. • 2.:2.5

From this definition it follows that the dependence domain of a uniform data dependence

reduces to a singleton set.

Example 2.2.6 [Uniform and Non-Uniform Data Dependencies} Consider the index map­

ping

in Z3, and its dependence mapping 0y(i,j, k) = (i - k, 1,0). Let 1)1) = (D, [T. V, I) and

1)1)' = (D', U, V, I) be data dependencies with domains, respectively:

D {(i,j,k)ll~i,j~m,l~k~i}

D' {(i,j,k) 11 ~ i,j ~ m,i = k},

where m is a constant in N. Domains D and D' are illustrated in Fig. 2.5 a) and b),

respectively. A section (for k = 1) of the data dependence graph relative to 1)1) is given in

Fig. 2.5 c), while the data dependence graph of 1)1)' is illustrated in part d) of the figure.

Note that 1)1) is not uniform. For instance, by assuming m 2: 3 and considering the points

(2,2,1) and (3,2,1) of D, then 0(2,2,1) = (1,1,0) i: 0(3,2,1) = (2,1,0). However, 1)1)' is

uniform as for all (i,j, k) E D', 0y(i, j, k) = (0,1,0). • 2.2.6

It can be proved (see Appendix B) that given an affine data dependence 1)1) = (D, F. V.I),

with I(z) = A· z + b, for all zED, 1)1) is uniform if and only if lin(D) ~ null(In - A) (this

is trivially true if I is a uniform index mapping, as .A = In). Moreover. if 1)1) is uniform

then I can always be replaced by a uniform index mapping.

CHAPTER 2. REGULAR ARRAY SYNTHESIS 32

D D'
k k

~
.

I , .
~- I

... ' I

....... I I
,.'" I,

I..... I ,
'(.... I -~

a) b)

(k=l) (k=i)

L
c) d)

Fig. 2.5. Domains: a) D; and b) D'. Data dependence graph of: c) DV (section only); and
d) DV'.

Example 2.2.7 In Example 2.2.6, lin(D) = Z3, lin(D') = ((1,0,1),(0,1,0)), A =

[0 ° 1] o 1 0 , and null(I3 - A) = ((1,0,1), (0,1,0)). As lin(D) C£ null(I3 - A), DD is not
001

uniform. As lin(D') ~ null(I3 - A) (in particular they are equal), DD' is uniform. Note

that, in DD', I can be replaced by I'(i, j, k) = (i,j, k) + (0, -1, 0). .2,2.7

2.2.4 Affine Space-Time Mapping

An affine timing function is a timing function which is also an affine transformation:

Definition 2.2.8 [Affine Timing Function} Let t : zn ----+ Z be a timing function. t is affine

if and only if, for all z E zn, t(z) = A' Z + 11-, where A is a non-null vector in zn and 11- E Z .

• 2.2.8

The vector A may be regarded as the normal vector to a family of parallel hyperplanes which

it defines. There exists one such hyperplane for each (instant) i E Z, called an isochronous

or equitempoml hyperplane. Intuitively, all the points on such a hyperplane are assigned by

t the same instant of time, and so should be computed on different processors.

A linear allocation function is an allocation function which is defined as a linear transfor-

mation from the computation space to the processor space. The processor space is usually

assumed to have dimensionality no greater than the computation space, as, in general, in

order to increase the efficiency of the array, several (sequential) computations are allocated

CHAPTER 2. REGULAR ARRAY SYNTHESIS

I I I I
I I I I

I 1 I I
J I , I

U ,',',"A
....- I I I I~

I I I I
I I I I

I I I I
I I I I

I I I I
I I I I

I I L/ / / /
a)

I I , I
, I , I

, , , I U'I I I

" " " I A " " / ,'~ I I I I
I I I I

I I I I
I I I I

I I
I I

I I
I I

b)

:3.'3

Fig. 2.6. a) Compatible and b) non-compatible affine scheduling and linear allocation.

to the same processor. Hence, in general, the image of an allocation function has a lower

dimensionality than its application domain. Computationally, a mapping from zn onto a

space of lower dimension can be conveniently realised as a linear projection.

Definition 2.2.9 [Linear Allocation Function) Let a : zn - Zl be an allocation function.

a is linear if and only if, for all z E zn, a(z) = a . z, where a is a non-null matrix in zlxn

and IS; n. • 2.2.9

The simplest type of linear allocation functions are projections from zn to zn-l. These

projections can be expressed by corresponding projection vectors:

Definition 2.2.10 [Projection Vector) Let a : zn ~ zn-l be a linear allocation function,

with a(z) = a· z and a E z(n-l)xn, for all z E zn. A projection vector for a is a non-null

vector u E null(a). .2.2.10

For affine timing and allocation functions t and a, respectively, their compatibility can be

verified as follows. If t(z) = A' z + J.l, and a has projection vector u, then t and a are

compatible if and only if A' u i= 0 (see Appendix B). That the dot product of A and u is not

zero, implies that points on an equitemporal hyperplane defined by A are not projected onto

the same processor, hence their computations can proceed in paralleL An intuitive picture

of this property is given in Fig. 2.6 for A and u in Z2.

An affine timing function t, defined as t(z) = A . z + J.l. together with a compatible linear

allocation function a, defined as a(z) = a· z. can be regarded as a space-time mapping from

CHAPTER 2. REGULAR ARRAY SYNTHESIS

zn to itselflO. This mapping is usually represented in its matrix form as:

[t,a](z) = [~] .

An affine space-time mapping [t,a] defines a signal flow graph according to Definition 2.1.17.

If S is a system of equations with dependence domain n, the arcs of the signal flow graph

under [t, a] are the images of the vectors in n. In particular. each data dependence vector d

in n corresponds to the arc (J • d of the signal flow graph, with label A . d.

2.2.5 Linear Optimisation and Affine Scheduling

One of the main advantages of Euclidean synthesis is the possibility of defining semi-automatic

techniques for the scheduling of specifications containing affine data dependencies. Such

techniques are based on the formulation of an integer linear programming problem, whose

solution is an optimal affine timing function for the specification. These techniques were first

introduced by Quinton in [Qui84] for uniform problems, and subsequently extended to affine

problems in [RaFu87, RaFu89, QuVa89].

If VV is an affine data dependence, the optimisation problem which defines an optimal affine

timing function for VV is defined both on the computation domain and the dependence

domain of 1)1). The fundamental result is expressed by the following theorem, which is based

on the formulation given in [QuVa89]:

Theorem 2.2.11 Let 1)1) = (D, U, V,I) be an affine data dependence, with nI its depen­

dence domain. Let t be an affine timing function, such that for all z E zn, t(z) = A . Z + J.l,

where A E zn and J.l E Z. Then t is a non-negative, finite, bounded valid timing function for

VV if and only if:

i) for all v E vert(nI), A' v> 0;

ii) for all r E ray(nI), A' r 2': 0;

iii) for all v E vert(D), A' v + J.l 2': 0;

iv) for all r E ray(D), A' r > O.

lOMore general types of affine space-time mappings have been considered in the literature for partitioning
techniques (see the discussion in Section 2.4). In such cases, both scheduling and allocation functions are
seen as multi-dimensional mappings, with the dimensions of their ranges summing up to the dimension of the
computation space. As we do not address partitioning in this work, and for ease of presentation, we do not
consider this type of mapping formally.

CHAPTER 2. REG ULAR ARRAY SYNTHESIS

.2.2.11

A proof of Theorem 2.2.11 is given in Appendix B. Condition ii) of the theorem implies

that if S1I contains a line with direction 1 E zn (l =J 0), thenll A' 1 = 0. The following

correspondence exists between the conditions of Theorem 2.2.11 and the properties of t:

- Conditions i) and ii) correspond to the validity of t. As polyhedral convex sets are

finitely generated, i) and ii) imply that for all zED, A . 0I(z) > 0, which in turn,

implies that for all ZED, t(I(z») < t(z). Hence, t(n) < t(n'). for all pairs of nodes

(n, n') of the data dependence graph of VV. As a corollary, the validity of t can be

expressed by the condition A ·0(z) > 0, for all zED. Also, if there exists a valid

affine timing function, then S1I does not contain two non-null vectors d, d' such that

d' = -cd, with c > 0.

- Conditions iii) and iv) correspond to the non-negativity of t over D. This comes from

the property of finite generation of polyhedral sets applied to the domain D; and

- Condition iv) corresponds to the finiteness and boundedness of t. In particular. t is

finite if and only if A • r =J 0, for all r E ray(D) (see Appendix B).

Example 2.2.12 Consider the affine data dependence VD = (D, U, V,I), with D =
{(i,j) I 1 :::: j :::: n, i E Z}, where n is a constant in N, and I(i,j) = (2i,j - 1). The

corresponding data dependence graph is depicted in Fig. 2.7 a). ~ote that D is finitely

generated, for instance, by the points (0, 1) and (0, n) and directions (1, 0) and (-1, 0). The

dependence mapping is 0I(i,j) = (-i, 1) so that S1I is finitely generated by the point (0,1)

and the directions (1,0) and (-1,0) (see Fig. 2.7 b».

A valid affine timing function for DD is that given by A = (0, I), which satisfies conditions i)

and ii) of Theorem 2.2.11. Note, however, that any affine timing function defined by A is not

finite, as A does not satisfy the inequality A . r =J ° for all r E ray(D). Indeed, for this data

dependence there is no valid and finite affine timing function as the constraints for the two

properties are in contradiction (as the infinite directions of D and S1I are the same). However.

if the domain D were bounded, a valid finite timing function might exist. Consider the data

dependence VD' = (D', U, V,I), with D' = {(i,j) I 1 :::: i :::: m,l :::: j :::: n}, where nand m

are constant in N. The corresponding data dependence graph is given in Fig. 2.7 c). ~ote

llIf 1 is the direction of a line of nI, then there exist two rays in nI with direction 1 and -I, respectively.
From condition ii), it follows that A ·1 = o.

CHAPTER 2. REGULAR ARRAY SYNTHESIS 36

D

a)

---------------------I!-~-----------------------
"

b) i

D'

-m c) m

-m d) m

Fig. 2.7. Data dependence 1YD: a) data dependence graph; b) dependence domain. Data
dependence 'D'D': c) data dependence graph; d) dependence domain.

that D' is finitely generated by its vertices (-m,l),(-m,n),(m,l) and (m,n), and nT' by

the vertices (-m, 1) and (m, 1) (see Fig. 2.7 d)). Then A = (0,1) satisfies all the conditions

of Theorem 2.2.11. .2,2.12

For a uniform data dependence, the dependence domain reduces to a singleton set and condi­

tions i) and ii) of Theorem 2.2.11 reduce to the simpler condition i) of the following corollary

(corresponding to a result in [Qui84]):

Corollary 2.2.13 Let 'D'D = (D, U, V, I) be a uniform data dependence, with index

mapping I(z) = z + b, for all z E zn, and b E zn. Let t be an affine timing function, such

that for all z E zn, t(z) = A . z + /-L, with A E zn and /-L E Z. Then t is a non-negative. finite,

bounded valid timing function for 'D'D if and only if:

i) A·b<O;

ii) for all v E vert(D): A· v + /-L ~ 0;

iii) for all E ray(D): A· r > O.

CHAPTER 2. REGULAR ARRAY SYNTHESIS .Ji

.2.2.13

Note that the above results refer to a single data dependence. In general. as algorithm

specifications are systems of recurrence equations, several data dependencies will have to

be considered at the same time. The results extend naturally to a system of equations

by considering as domain and dependence domain of the system. the smallest polyhedral

convex sets containing the union of, respectively, the domains and dependence domains of its

equations.

2.2.6 Affine Scheduling and Dependence Cone

Given a data dependence, its dependence cone is defined as the smallest polyhedral convex

cone containing its dependence domain:

Definition 2.2.14 [Dependence Cone} Let 'V1) = (D, U, V,I) be an affine data dependence

with dependence domain ny. The dependence cone 0i- of 1)1) is 0i- = cone(ny). .2.2.14

In the previous section we have established necessary and sufficient conditions to the existence

of a valid affine timing function based on the generators of the dependence domain of an

affine data dependence. Here we discuss a sufficient condition for the existence of a valid

affine timing function which is based on its dependence cone.

The existence of a valid affine timing function may be related to the pointedness of 0i.
If 0i- is pointed (see Appendix E), then there exists a hyperplane with a non-null, integer

normal vector A such that: 0i- is entirely contained in one of the half-spaces defined by

the hyperplane; and A . Z > 0 for all z in 0i-. As, by definition, ny is contained in 0 T,
then, in particular, A . Z > 0 for all z in ny. Therefore, A defines a (family of) valid affine

timing function(s) for the data dependence 'V1). The formal result is stated in the following

proposition (a proof of which may be found in Appendix B).

Proposition 2.2.15 Let 1)1) = (D, U, V,I) be a data dependence and 0 T its dependence

cone. If 0i- is pointed then there exists a valid affine timing function for 1)'V.

Note that pointedness of 0i- gives a sufficient condition for the existence of a valid timing

function. That it is not necessary can be seen by considering, for instance, the data depen­

dence of Example 2.2.12, which admits a valid (but not finite) affine timing function even

CHAPTER 2. REGULAR ARRAY SYNTHESIS

though its dependence cone is not pointed (such a cone is 0i- = cone({(-1,0), (0,1), (1, O)}),

corresponding to the dependence domain in Fig. 2.7 b)).

As we will see, the main advantage of this condition is that it can be exploited even in those

cases when the dependence domain is not a convex polyhedron. It is this weaker condition

which will be used in the remainder of this work.

2.3 Regularisation

One of the requirements of regular array design is that the processing elements are locally

and uniformly connected. This was originally motivated by technological consideration. If

the design is implemented as a VLSI circuit, long wiring is too expensive and introduces un­

desirable delays in signal propagation. On the other hand, a regular communication topology

guarantees simple and cost-effective layouts. Although these requirements can be partially

relaxed if the regular array is implemented in software, regularity remains one the basic

feature of regular arrays as a model of computation.

Because of the relationships between data dependence structure of the specification and

communication structure of the design, notions of uniformity and locality can be formulated

on data dependencies. We have already formally defined what we intend by a uniform data

dependence, and we can think of a local data dependence as a data dependence under which

only (nearest) neighbour computation points are related. The lack of regularity of a data

dependence has to be addressed before the mapping onto a regular array design is feasible.

We use the term regularisation to refer to the set of techniques which can be used to improve

the uniformity and locality of data dependencies.

As discussed in Chapter 1, regular array synthesis is based on the specification of algorithms

as systems of equations whose data dependencies conform to a particular syntax, and, his­

torically, recurrences with uniform data dependencies were the first class of recurrences to

be considered, for their natural correspondence with regular arrays. In fact, any regular ar­

ray can be expressed as a system of uniform recurrences (as proved by Roo in [RooS.5j) and

uniform recurrences always map to regular array designs under linear space-time mappings.

Also, we have already mentioned that in order to facilitate the specification of algorithms,

more general classes of recurrences have been introduced together with regularising transfor­

mations for their manipulation into systems of uniform recurrences. These new recurrences

are those characterised by affine data dependencies, and constitute the most general type of

CHAPTER 2. REGULAR ARRAY SYNTHESIS .19

data dependencies which is considered in regular array synthesis at present.

The main goal of this thesis is the extension of synthesis techniques to more general classes of

problems. This will be formally addressed in the following chapters. In this section, however.

we intend to discuss in general terms the basic issues and properties which are involved in

the regularisation of non-uniform data dependencies. We will capitalise on these properties

in the development of the regularisation techniques of the following chapters.

2.3.1 Decomposition and Uniformisation

Regularisation involves replacing a non-uniform data dependence with a set of data depen­

dencies which exhibit improved uniformity and locality. Although regularisation mainly refers

to transformations of the data dependence graph, it can be described in terms of pipe lining

and routing of the data flow between computation points. This terminology can be justified if

we think of a data dependence graph as a signal flow graph (this is always possible - consider

the trivial allocation function in Section 2.1.3). Also, regularisation has the ultimate goal of

producing specifications for which a regular array design is guaranteed under a space-time

mapping. Hence, ultimately the application of regularisation techniques is reflected in the

improved uniformity and locality of the connection topology of the design. Early forms of

regularisation were actually defined directly on the signal flow graph rather than the data de­

pendence graph (see, e.g., the work on retiming in [KuLe80, LeSa83, SYKun88]). The appeal

of this terminology is that of providing an intuitive picture of the effect of the transformations,

which certainly helps in the understanding of the mathematics.

In general, we associate the term pipelining with a particular direction vector in the lattice

space, and we expect the data to be propagated in a regular fashion through the computation

points in that direction. On the other hand, we associate the term routing with a set of

direction vectors in the lattice space, used to define a sequence of directions used for the

propagation of the data among computations. Such directions contribute to the definition of

routing paths on the nodes of the dependence graph. A regular routing scheme is one such

that the propagation of the data flow in each of the routing directions is pipelined.

Given a non-uniform data dependence, its regularisation may be achieved by selecting a

number of routing directions in the lattice space and pipelining the data flow in each of

those directions. We illustrate these two activities on the data dependence graph depicted in

Fig. 2.8 a).

CHAPTER 2. REGULAR ARRAY SYNTHESIS

a)

- -/- ",,- ". /- ,,'"
e---4' ,,?' ,,'? ,,"ft.' ,,';II' ,,'"

_ .' .' L-a' .'
,," ,"'- "T ,,"- ",,-

- •• '. e" ?" .' ,.' _

j~ .. /L-.,/.<.".
c)

40

b)

Fig. 2.8. Regularisation: a) a generic data dependence; b) and c) possible decompositions;
d) a possible uniformisation.

The basic requirements for the choice of routing directions, is that each data dependence

vector can be expressed as an integer combination of those directions. For instance, any

unimodular basis (see Appendix F) of the space will meet this requirement. The integer

combination can be used for the definition of a routing path which replaces the dependence

vector, simply by fixing an ordering of the routing vectors and considering the summands of

the combination in the sequence established by the ordering. In our example, let us choose as

routing directions the vectors (1,1) and (1,0). These vectors constitute a unimodular basis

in Z2, therefore any data dependence vector in Fig. 2.8 a) can be rewritten as a combination

of (1,1) and (1,0) with suitable integer coefficients. By considering (1,1) and (1,0) in this

order, the data dependence vectors of Fig. 2.8 a) may be replaced by the routing paths of

Fig. 2.8 b), where solid lines correspond to the direction (1,1) and dashed lines to (1,0).

Reversing the ordering of the routing directions produces the paths of Fig. 2.8 c). Note that

one of the effects of this substitution is that more points of the lattice space are involved

in the transfer of the data among computations. Hence, from a point-to-point connection

represented by a data dependence vector, we define a path of lattice points through which

the data is transferred. The end points of the path are the pair of points initially related by

the dependence vector.

In the following chapters, we will use the term decomposition for the techniques which allow

the definition of these routing paths for various classes of non-uniform data dependencies.

In general, decomposition will also allow us to separate and consider singularly the sub-

CHAPTER 2. REGULAR ARRAY SYNTHESIS 41

paths generated in each of the routing directions (hence the name we have chosen for the

transformation) .

Once the routing paths have been established by a selection of the routing directions and their

ordering, the data flow can be pipelined along the paths. In our example, the routing paths

of Fig. 2.8 b) are transformed into those of Fig. 2.8 d), by pipelining the data according to the

direction of (1,0). Note that the result of this transformation is a set of more dense routing

paths, which involve nearest neighbour points in each of the routing directions. The name

which we have chosen for this transformation is uniformisation, as. in general. it corresponds

to the definition of a set of uniform data dependencies.

2.3.2 Data Conflicts and Data Broadcasts

A data conflict is an attempt by distinct pieces of data to share the same communication

channel during the same time cycle. A data conflict is avoided by providing distinct commu­

nication channels for each of these pieces of data. If the array design is realised in hardware,

because of the cost involved, the amount of data conflicts needs to be contained. Also, if

the level of data conflicts increases with the size of the problem, the array design is not

scalable. This is a strong limitation for hardware implementation as it would involve the

replacement of the whole piece of hardware every time a problem of larger size needs to be

solved. Therefore, array designs characterised by data conflicts which are dependent on the

size of the problem should be avoided.

Data conflicts may be generated by overloading the dependence graph of a specification. The

nodes of a dependence graph become overloaded when the pipelining of the data flow accord­

ing to a certain direction produces several routing paths which cross the same computation

points. Then distinct communication channels at the corresponding processing elements need

to be provided in order to avoid conflicts. If the level of overloading is dependent on the prob­

lem size, the level of conflicts exhibits the same dependence. Therefore, a major constraint

in the selection of routing directions is to avoid directions of the lattice space which yield

problem size dependent overloading of the data dependence graph. Let us consider once

again the data dependence graph of Fig. 2.8 a). The choice we made of routing directions

and their ordering resulted in the graphs in Fig. 2.8 b) and d). Note that some of the nodes

of the graph in Fig. 2.8 d) are overloaded (those labelled as A and B).

The appearance of overloading can be related to the presence of data broadcasts. In terms of

array design, a data broadcast indicates that the same data is shared by several processing

CHAPTER 2. REGULAR ARRAY SY~THESIS

k

•

• • • • • •
• •

•
-:. ~o·. " • . -_.. ,",.'~. " , .;...;, . .

• :-.. " .. " ..
---~ ..• ' . •
• • •

Fig. 2.9. Non-overloaded 3-dimensional data dependence graph.

42

elements during the same time cycle, and therefore has to be transferred from some source

processing element to all the recipients with a direct communication. Data broadcasts usually

involve non-local communication between processing elements and in regular array design are

always replaced by a pipelining of the data among neighbour recipients. In a specification. a

data broadcast corresponds to a one-to-many data dependence relation, that is several nodes

of the dependence graph depend on the same node. In Fig. 2.8 a) several data broadcasts

are present. When compared with Fig. 2.8 d) the overloading appears exactly on those

paths replacing data broadcasts. A more precise way of defining a data broadcast is as

the data dependence relation defined by a non-injective index mapping (trivially. if several

points depend on the same point. that point is their image under the index mapping, and

the mapping is not injective). Therefore, overloading the nodes of the graph can be avoided

by avoiding the definition of data broadcasts.

It is this important principle which is exploited in the definition of the regularisation tech­

niques of the next chapters: routing directions are selected such that their routing paths

correspond to data dependencies defined by injective index mappings. Indeed the question

to address is whether this selection is always possible. Fortunately. in general the answer is

affirmative. However. it may require an increase in the number of dimensions of the specifi­

cation. For instance, let us consider, once again, the graph of Fig. 2.8 b). Overloading can

be avoided by adding a third dimension to the problem and producing the graph of Fig. 2.9.

In the figure, white nodes denote the extra routing points in the 3-dimensional space. :"ote

that not only an increase of dimensionality is required, but also new routing directions are

used (the order of the paths, however, remains unchanged).

CHAPTER 2. REGULAR ARRAY SYNTHESIS 4.3

2.3.3 Regularisation and Dependence Cone

Because of the relation between affine timing functions and pointed dependence cones. a

condition for the preservation of affine scheduling by regularisation may be formulated in

terms of the preservation of pointedness of the dependence cones. In particular. the routing

directions need to be chosen as vectors of the lattice space which, together with the original

dependence cone of the specification, generate a pointed polyhedral convex cone. This is

possible, in general, but may require an increase of the dimensionality of the space. The

formulation of this condition for various types of data dependencies will be provided in the

following chapters.

2.3.4 Substitution of a Data Dependence

The definition of a routing scheme which replaces a data dependence finds a mathematical

expression in the function composition of index mappings. It is not limited, however, to such

a composition as the computation domains and variables of the data dependencies have also

to be taken into account. The definition of a routing scheme may be described as follows.

Let 1)1) = (D, U, V, I) be a data dependence describing the dependence relation between

the instances of variables U and V on the domain D. In particular. for all zED, U(z)

is data dependent on V(I(z)). In other words, the value of V at the computation point

I(z) has to be transferred to z in order to enable the computation of U. 1)1) implies that

there exists a direct data communication from I(z) to z. A routing scheme for 1)1) defines a

communication path from I(z) to z via a number of intermediate points of the lattice space.

The routing scheme has to guarantee the following two requirements: that for each ZED the

communication path from I(z) to z is finite; and that the value V(I(z)) is transferred among

neighbour points on the communication path from I(z) to z via a set of routing variables.

In order to define the routing scheme, a system of recurrence equations is introduced which

defines the routing variables, and the original data dependence is replaced by a new data

dependence which is defined on such variables. Let us illustrate the transformation in the

following example.

Example 2.3.1 Consider the data dependence 1)1) = (D, u. V,I), such that D = ({i,j) I
i ~ 1, 1 ~ j ~ m}, for some m in N, and I(i,j) = (O,j). I defines the data broadcasts

sketched in Fig. 2.10 a). For each point of D, we want to replace any such data broadcast

with a pipelined propagation as illustrated in Fig. 2.10 b). This is achieved by replacing 1)1)

CHAPTER 2. REGULAR ARRAY SYNTHESIS 44

. l
r---------------------- J; j

D • D2 Dl

,

a) b)

Fig. 2.10. Substitution of data broadcasts with pipelined propagation.

by the data dependence

lXV' = (D, U. R,Io)

where Io(i,j) = (i,j) and R is the routing variable defined by the equations:

with It(i,j) = (i - l,j), id(a) = a, and

D t {(i,j) Ii 2 2.1 <5: j <5: m}

D2 {(i,j) Ii = 1.1 <5: j <5: m}.

By induction, it is easy to show that, for all (i, j) ED, Ii oIo(i, j) = I(i, j) (where Ii denotes

the composition It 0 It 0 ••• 0 It, i times - see Appendix A). and

U(i,j) = R(Io(i,j)) = R(I~-l oIo(i,j)) =

= V(Il oIo(i,j)) = V(I(i.j)).

2.4 A Brief Survey

• 2.3.1

The basic ideas behind regular array design can be related (see [Meg92]) to the theory of

cellular automata, whose foundations were established by John von Neumann [VonN66] in

the early 60s. Cellular automata were initially developed for the study of the evolution of

biological systems, although several applications in mathematical and physical sciences have

successively been developed. Cellular automata deal with large (possibly infinite) collections

of interconnected finite state automata and, hence provide a framework for the investigation

of systems characterised by homogeneous and scalable components. (An oven'iew of the

theory and application of cellular automata can be found in [Wol86].)

CHAPTER 2. REGULAR ARRAY SYNTHESIS -15

The formal development of regular array synthesis began in the late 60s with the work by

Karp, Miller and Winograd [Ka-et-al67]' who proposed the idea of expressing (classes of)

iterative algorithms as systems of uniform recurrence equations (UREs). In their work, the

computability of the algorithm was related to properties of the (reduced) dependence graph

of the equations, and necessary and sufficient conditions for the existence of a scheduling

were stated.

While the work by Karp et al. is based on a functional representation of an algorithm, the

work by Lamport [Lam74], may be considered as its imperative counterpart. His work is based

on the observation that for large classes of (numerical) algorithms, most of the computation

is devoted to the execution ofloops, in particular FORTRAN-like for-loops. Under a number

of assumptions on the form of the loops (such as the absence of input/output operations or of

control transferred outside the loop), Lamport proposed a systematic rewriting of sequential

nested for-loops into concurrent loops, based on the analysis of the data dependencies. He also

introduced the notion of equitemporal hyperplanes for the scheduling of the computations,

a notion which has been extensively exploited in regular array synthesis. His work has been

also most influential in the subsequent development of parallel compilers.

In the early 70s, data flow computing [Ada68, Ada70, DeWe77, Den80] was defined for the

maximal exploitation of parallelism as an alternative to conventional control flow computers.

The essential idea of data flow computing is that of enabling the execution of an instruction

as soon as its operands become available. In other words, computations are driven by data

availability rather than explicit control.

In the early 80s, systolic arrays were introduced by H.T.Kung and C.E.Leiserson [KuLe80].

The term array indicates their structural affinity with array processors, while the term sys­

tolic describes their behaviour using the human circulatory system as a metaphor (signals

are rhythmically "pumped" among processing elements). Systolic arrays are structurally

simple, regular and modular and, typically, are realised through replication and local inter­

connection of simple processing elements which perform basic operations. Multiprocessing

and pipelining are principles of systolic behaviour ensuring high performance with low mem­

ory and input/output bandwidth (the same data can be propagated among neighbouring

processing elements to be, thus, reused by the recipients). Also, parallelism is synchronous

and decentralised: computations occur in lockstep, with signals representing both data and

control information. Although systolic arrays were initially designed for hardware imple­

mentation as VLSI circuits, the principles of systolic computation are now considered more

CHAPTER 2. REGULAR ARRAY SYNTHESIS 46

generally as a paradigm for parallel processing, and in synthesis methods they are retained

as a computational modeL

Asynchronous regular arrays, so-called wavefront arrays, were introduced by S.Y.Kung ft af.

in the early 80s [Ku-et-aI81, Ku-et-aI82). Wavefront arrays are based on the principles of data

flow computing. The name wavefront is evocative of the way their computations proceed.

which resembles a wave propagation. A major advantage of wavefront arrays over systolic

arrays is that they do not require global synchronisation.

An automata and complexity theory for systolic computing, known as systolic automata

theory, developed through the 80s and early 90s [Cu-et-aI83, Cu-et-aI84, Gru84. FaNa88.

Gru90], mainly dealing with a restricted class of problems which have systolic solutions as

linear array, trellis or tree-like forms.

From an applicative point of view, a vast literature exists on systolic arrays for the solu­

tion of numerical and non-numerical problems. Systolic arrays have become a popular form

of parallel computing, and collections of systolic algorithms can be found, for example, in

[QuRo91, Eva91, Meg92).

Initially, array designs were derived manually and in an ad hoc fashion. Attempts at coding

the expertise acquired in the development of systolic algorithms into a methodology with

mechanised support started in the middle of the 80s. Between 1983 and 1985 a number

of independent contributions defined the foundations of regular array synthesis. Moldovan

[MoI83) introduced the notion of space-time mapping of the data dependence graph as a pair

of linear functions. He also defined the concept of dependence mapping (rather than simply

a dependence vector as it is for UREs), hence defining a new type of recurrence equations for

the specification of algorithms. We refer to such recurrences as affine recurrence equations

(AREs), a name introduced later by Rajopadhye and Fujimoto [RaFu90). Quinton [Qui84)

proposed the detection of a scheduling for system of UREs as the solution of an (integer)

linear optimisation problem. Cappello and Steiglitz [CaSt84) focused on the geometric rep­

resentation of an algorithm and its data dependencies as a graph in a Euclidean lattice space

together with sets of linear transformations of such a representation. They showed that this

geometric framework is a powerful unification tool, as several array designs for the same

algorithm correspond to the mapping of data dependence graphs which are linear transforms

of the same specification. Miranker and Winkler's contribution [MiWi84) can be seen as em­

phasising that the mapping problem reduces to a mapping between graphs: the space-time

representation of the algorithm and its data flow representation.

CHAPTER 2. REGULAR ARRAY SYNTHESIS 47

------------ ________ ____________________ J

Implementation

Fig. 2.11. Design process.

Between 1985 and the early 90s, several contributions followed these seminal works on

methodology. It would be impractical to enter the details of each of them. To summarise,

even though there were no major revisions to the methodology, particular aspects of regular

array synthesis were addressed, resulting in the refinement of the design process to the struc­

ture illustrated in Fig. 2.11. This diagram is a more detailed version of that of Fig. 2.1 at

the beginning of this chapter, with more steps included in the core of the design process. In

the following we provide a brief review of some of the major contributions.

The analysis step, together with the analysis of the data dependencies, also addresses the

computability of the specification, where a computable specification is a specification which

admits a valid timing function. The computability of uniform and affine recurrence equations

has been investigated widely [Ka-et-al67, Ra085, Delp86, Delp87, Ra- Ka88, SaQu90]. It has

been established that if the computation domains are unbounded, the computability of a

system of recurrence equations can be reduced to the halting problem [BoJe89]. and so is

undecidable. On the other hand, for uniform recurrence equations with a finite computation

set, computability is decidable and corresponds to checking whether the (complete) data

dependence graph is acyclic.

A correspondence between systolic arrays and algorithms specified by recurrence equations

was formally established by Rao in his doctoral thesis in 1985 [Ra085]. In particular he showed

that if an algorithm can be implemented as a systolic array then it can be expressed as a

Regular Iterative Algorithm (RIA), an extension of UREs with finite conditional branches in

CHAPTER 2. REGULAR ARRAY SYNTHESIS

each recurrence equation. Li and Wah [LiWa85] treated the derivation of a systolic design

from a specification as an optimisation problem, based on a set of design parameters such

as the velocity of data flows, the spatial distribution of data, or the periods of computation.

Similarly, M. Chen [Che86] treated the design process as an optimisation problem applied

to algorithms specified in the parallel programming language Crystal [Che86b]. Her work

included an initial investigation into aspects of the design such as regularisation, synthe­

sis of control signals and mapping to fixed-size architectures. Delosme and Ipsen [DeIp86]

concentrated on computability issues and extended the work of Karp et al. [Ka-et-al61] to

systems of AREs. Based on the work by Delosme and Ipsen, Yaacoby and Cappello [YaCa88]

provided necessary and sufficient conditions for the existence of an affine scheduling and a

procedure to construct a scheduling vector. Similarly, Rajopadhye and Fujimoto [RaFu90]

extended the work of Quinton [Qui84] to AREs, defining a linear optimisation problem for

the automatic derivation of an affine scheduling.

Early work on regularisation includes the retiming of a signal flow graph, for example, by

Leiserson and Saxe [LeSa83]. Subsequent regularisation techniques were defined by several

authors, mainly for the removal of data broadcast in AREs. As data broadcasts correspond

to non-injective index mappings, for affine data dependencies, they can be related to rank

deficient matrices (defining the linear part of the index mapping), and simple forms of regu­

larisation can be provided based on the selection of pipelining directions in the null space of

such matrices. This approach was taken by Fortes and Moldovan [FoM084] and Rajopadhye

and Fujimoto [RaFu87, Raj89]. Wong and Delosme [WoDe92] proposed more general forms

of regularisation of data broadcasts based on the selection of routing vectors as the elements

of canonical and non-canonical basis of the lattice space. Regularisation techniques for more

general forms of non-uniform AREs (Le., not limited to data broadcasts) were proposed by

Quinton and Van Dongen [QuVa89], via a combination of pipelining and routing. They also

defined a new class of recurrences, generalising AREs with linear size parameters. Our work

in this thesis on the regularisation of non-affine types of data dependencies has developed

from their approach.

The systematic derivation of control signals from conditional expressions was first addressed

by M. Chen [Che86] in 1986. In this work she proposed methods to replace conditionals of a

recurrence equation by control signals pipelined from the boundary of the array. Radjopad­

hye and Fujimoto [RaFu87] also proposed a systematic pipelining of conditional expressions.

However, they considered a more restricted class of conditional expressions which arise be-

CHAPTER 2. REGULAR ARRAY SYNTHESIS 49

cause of the application of regularisation techniques to AREs. The characterisation of such

conditionals resulted in the definition of the class of so-called conditional uniform recurrence

equations (CUREs). Teich and Thiele in [TeTh91] adopted an approach similar to Chen's

for what they defined as piecewise regular iterative algorithms (an extension of Rao's RIAs

with affine data dependencies). Their formalism is based on Chandry and Misra's UNITY

[ChMi88]. Finally, Xue [XuLe92, Xue92] proposed a more general method that also extends

to space-time mappings of a dependence graph onto fixed-size array designs.

Regular array synthesis aims at producing optimal array designs based on the assumption that

unbounded computational resources are available. For more realistic situations in which this

assumption cannot be made, partitioning techniques have been developed which allows the

mapping of, possibly, multi-dimensional algorithms onto fixed-size lower-dimensional array

designs. The development of partitioning techniques is not confined to regular array design,

but is part of the more general problem of parallel code generation from sequential code (see,

e.g., [IrTr88, AnIr91, Fea92b]). The main goal of partitioning methods is to operate a com­

pression of the design. This can be achieved either at the data dependence level, by defining

clusters of computations to allocate onto the same processor, or at the signal flow graph

level, by merging clusters of cells into a single (super-) processor. Partitioning techniques

are usually related to the use of multi-dimensional schedules (see, e.g., [Fea92b]), i.e., the

timing function is a mapping between multi-dimensional lattice spaces. Work on partitioning

for regular arrays started in 1986 with a contribution by Moldovan and Fortes [MoF086].

Partitioning techniques were classified by Darte [Dar91] into Locally Parallel Globally Se­

quential (LPGS) and Locally Sequential Globally Parallel (LSGP). In LPGS partitioning,

each partition is a block of parallel computations, while the blocks are processed sequentially.

This class includes the work by Moldovan and Fortes [MoF086] and Bu et ai. [Bu-et-al90].

In LSGP partitioning, each partition is a sequential block of computations and blocks are

executed in parallel. Darte's work [Dar91] belongs to this class. Independent partitioning

was proposed by Shang and Fortes [ShF092b], where independence means that no communi­

cation is needed between the blocks of the partition, while X. Chen and Megson [MeCh94]

related partitioning to code generation for parallel platforms (in particular, transputers). by

exploiting the idea of canonical dependencies derived from a positive expressive basis.

Verification refers to the formal proof of some correctness properties of a regular array de­

sign. Early work on verification, undertaken since 1983, includes: the approach by M. Chen

[Che83], based on systems of recurrence equations and fixed point induction; the algebraic

CHAPTER 2. REGULAR ARRAY SYNTHESIS .50

approach by Kung and Lin [KuLi84]; and the approach based on the solution of systems of

differential equations by Melhem and Rheinboldt [MeRh84]. In 1986, Hennessy [Hen86] used

process algebras for the specification of a systolic circuit and fixed point induction to deriyE'

an implementation from the specification. With work started in 1988, Thompson and Tucker

[ThTu88, ThTu91, ThTu94] have developed formal specification and verification techniques

for Synchronous Concurrent Algorithms (SCA), of which systolic arrays are a particular case.

Their method is based on many-sorted universal algebras, primitive recursion and equational

logic. Work towards automatic verification systems for systolic arrays includes: the approach

by Abdulla [Abd90, Abd92], which addresses a general model for the description and verifica­

tion of systolic circuits over arbitrary algebras (he provides completely automatic verification

for subclasses of systolic circuits [Abd92]); and the work by Ling and Bayoumi [LiBa94],

which defines a systolic temporal arithmetic (based on temporal logic) for the specification

and verification of systolic designs at the array level (for which they provide a Prolog-based

verifier).

Finally, as the automation of the design process is one of the basic objectives of regular

array synthesis, a number of support software tools and environments have been developed.

Among the major contributions in the form of Computer-Aided Design (CAD) tools, we

may recall DIASTOL [Ga-et-al87] and its more complete version Alpha du Centaur (AdC)

[Ga-et-al88], ADVIS (Automatic Design of VLSI Systems) [Mo187], PRESAGE, [VanD88],

DECOMP [VeCr91] and SADE (Systolic Array Design Environment) [MeC091]. In general,

these tools support (some of) the basic steps of regular array synthesis, such as the generation

of the data dependence graph and its (optimal) space-time mapping. Languages for the initial

specification of an algorithm vary from case to case, and include specialised languages based

on recurrence equations or restricted forms of nested for-loops. Early tools accept as inputs

only uniform problems, while more recent developments can be used also for the synthesis

of affine problems. Often graphical interfaces have been developed for the representation of

the data dependence graph as well as the animation of the array design through snapshots

of computations. More sophisticated tools also include parallel code generation. Compilers

for systolic and regular programs have also been developed. The first systolic compiler was

developed by H.T.Kung et al. in the early 80s, for the CMU Warp machine [KuWe8.5,

An-et-al87], a systolic array computer of linearly interconnected programmable cells. A

more general approach to systolic compilation is due to Lengauer et al. [HuLe87]. in which,

from a formally specified program, traces (of operations) are extracted, transformed into

CHAPTER 2. REGULAR ARRAY SYNTHESIS 51

parallel traces, and a corresponding systolic design is derived. The design can then be either

implemented in hardware or corresponding parallel code can be generated for a target machine

[Le-et-a19l].

2.5 Summary

In this chapter we have introduced some of the basic concepts of regular array synthesis.

In particular, the design process was outlined and the basic notions of recurrence and in­

put equation, equation system, data dependence and relative graphical representations were

formally discussed. We have explained how a regular array can be derived from an algo­

rithm specification through a space-time mapping, that is a scheduling of the computations

and their placement onto processing elements. Formal properties of such a space-time map­

ping were stated such as the validity. finiteness and boundedness of the scheduling, and the

compatibility of scheduling and placement.

We have discussed the advantages of developing synthesis methods in the framework of Eu­

clidean geometry, both theoretically and in the practical development of systematic transfor­

mations. In this framework, powerful techniques can be developed by restricting ourselves

to affine data dependencies and affine timing and allocation functions, and exploiting the

basic properties of linear and affine spaces. Among the major advantages is the possibility

for the systematic derivation of optimal affine timing functions. Central to Euclidean syn­

thesis methods is the concept of dependence cone, as a polyhedral convex cone embedding

all possible data dependence vectors of an algorithm specification. Its pointedness can be

related to the existence of linear schedulings and their preservation by transformations of the

specification.

The role of regularisation in the design process was discussed at length, the development of

regularisation techniques being the main theme of this thesis. Routing and pipelining were

outlined, on a small example, as basic transformations for regularisation. We have explained

the relation between data conflicts and data broadcasts. and how they can be detected and

avoided in regularisation. The relation between regularisation directions and dependence

cones was discussed together with guidelines for the preservation of affine timing functions.

From the discussion, a regularisation scheme has emerged. which will be used in the de­

velopment of the following chapters. It consists of a syntactic characterisation of classes of

non-uniform data dependencies, and their systematic substitution with new data dependen-

CHAPTER 2. REGULAR ARRAY SYNTHESIS ·5:2

des which exhibit improved locality and uniformity, the target being specifications as systems

of uniform recurrence equations. The new data dependencies are defined by selecting regu­

larisation directions in the embedding Euclidean space and defining regular routing systems

for transferring data among computation points. Conditions have to be provided for the

preservation of affine schedulings by relating regularisation directions and (the generators of)

data dependence cones. Conflict-freeness has to be guaranteed.

The last part of the chapter was devoted to a brief survey of the major contributions in

regular array synthesis.

Chapter 3

Integral Recurrence Equations

In this chapter we introduce integral recurrence equations and their systematic regularisation.

We will base the definition of integral recurrence on the notion of integral index mapping, as an

index mapping in zn which is not required to define an affine transformation. The syntactic

form of an integral index mapping is an integer combination of a finite set of directions of the

lattice space, in which the coefficients are functions from zn to Z. With this form we will be

able to establish an explicit relation between the index mapping and a finite set of vectors of

the space, which can be exploited for regularisation purposes. Based on this syntactic form

we will show that affine data dependencies are particular types of integral data dependencies.

The regularisation techniques that we will define will allow us to transform integral specifi­

cations systematically into systems of uniform recurrence equations. This fact implies that

ordinary mapping techniques can subsequently be applied for the derivation of regular array

designs. Regularisation directions will be chosen among the direction vectors defining the

index mappings. Based on the same vectors, conditions will be given for the existence of

affine timing functions and their preservation through regularisation.

The main difficulty in the definition of regularisation techniques for integral data dependen­

cies stems from the necessity of reconciling the existence of polyhedral convex sets and the

application of non-affine transformations. Because of the role of convexity in Euclidean syn­

thesis, we need to guarantee that all computation domains are (convex) polyhedra. However,

non-affine index mappings, in general, do not preserve convexity. The solution we have chosen

is that of enforcing convexity, at the expense of an increased complexity of the regularisation

techniques. In particular, we will consider enlarged polyhedral convex domains and define

control variables l in order to identify non-convex subsets of computation points in those do-

1 A control variable is an ordinary variable of the specification. whose values are interpreted as control
signals rather than data. As in a regular array, control signals (other than clock synchronisation) are entirely

53

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS

mains. Hence, the solution we will adopt introduces some control overhead, but it allows

us to recover convexity and remain within the domain of classic regular array synthesis. As

we will see in the next chapter, the use of control variables also accounts for a degree of

reconfigurability of the array design, which we will exploit for particular classes of dynamic

data dependencies.

This chapter is organised as follows. In Section 3.1 we define integral index mappings and

data dependencies, and discuss their relation with the affine and uniform cases. Section 3.2 is

devoted to regularisation techniques. In particular, a condition for the injectivity of an inte­

gral index mapping is established, and used for the development of regularisation techniques

which guarantee that no size dependent overloading of the dependence graph is generated.

The regularisation techniques developed have the form of decomposition and uniformisation

techniques. A parametric version of uniformisation is also defined, where the parameter is

seen as an upper bound on the level of overloading allowed, hence the level of conflicts and

corresponding physical resources of the array design can be controlled to some extent. Para­

metric uniformisation allows for compact designs at the expense of increased communication

resources. That the regularisation techniques preserve affine scheduling is formally addressed

in Section 3.3. Toy examples are used in the chapter to clarify the basic results. More

interesting applications of the techniques will be found in Chapter 5.

3.1 Integral Data Dependencies

We define an integral index mapping as an index mapping in zn, which can be expressed as

an integer combination of a finite set of direction vectors in the lattice space. In addition,

when only one direction vector is used, we call the index mapping atomic integral (or simply

atomic).

Definition 3.1.1 [Integral Index Mapping] Let I be an index mapping. I is integral if for

all z E zn, I(z) = z + I:~1 gj(z)dj, where, for j = 1, ... , m, gj : zn --; Z and dj is a non-null

vector in zn. In addition, I is atomic integral if m = 1. .3.1.1

We call the vectors dj the generators of I, and the integer functions gj its coefficients. The

form of an integral index mapping of Definition 3.1.1 is not unique, as illustrated in the

following example.

distributed, the distinction between data and control variables is rather artificial. However, it emphasises the
particular role that these variables play in the computation.

CHAPTER 3. INTEGRAL RECURRENCE EQt:ATIOSS 55

Example 3.1.2 Consider the index mapping I(i, j, k) = (i - 2), j - 1, k - 1). I may be

expressed, for instance, by any of the two integral forms:

I(i,j,k)

I(i,j,k)

(i,j, k) + 2j
(-1,0,0) + 1(0, -1,0) + 1(0,0, -1)

(i,j, k) + 2j
(-1,0,0) + 1(0, -1, -1)

.3.1.2

In theory, any number of generators and corresponding coefficients can be chosen to express

an integral index mapping. In practice, however, only expressions with a number of generators

less or equal to the number of dimensions of the lattice space are actually considered. Indeed,

this is always possible (trivially, by considering the elements of the standard basis of the

space). As we will see, the choice of generators has an impact on the regularisation of the

corresponding data dependencies, hence on the complexity of the resulting array design. We

will consider this issue in greater detail in Section 3.2.1.

Integral dependence mappings may be defined, similarly to the affine case, as follows:

Definition 3.1.3 [Integral Dependence Mapping] Let I be an integral index mapping. Its

dependence mapping 0r is the mapping defined as 0r(z) = z - I(z), for all z E zn .

• 3.1.3

If I is an integral index mapping defined as I(z) = z+ 2:.7'=1 gj(z)dj, its dependence mapping

is 0r(z) = - 2:.7'=1 gj(z)dj = 2:.7'=1 gj(Z)(-dj). We call the vectors -d j the generators of 0r

and the integer functions gj its coefficients. Note that, in general, 0r is not affine. Integral

index mappings characterise integral data dependencies:

Definition 3.1.4 [Integral Data Dependence] Let 1)1) = (D, U, V,I) be a data dependence.

1)1) is integral if I is an integral index mapping. In addition, 1)1) is atomic integral if I is

atomic integral. .3.1.4

The relation between atomic integral and integral data dependencies is similar to that between

uniform and affine data dependencies. In particular, atomic integral data dependencies are

simple forms of integral data dependencies, and for regularisation purposes we will aim at

substituting a generic integral data dependence with a set of corresponding atomic integral

data dependencies.

The dependence domain and cone of an integral data dependence can also be defined similarly

to the affine case.

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS .56

k

Fig. 3.1. Pointed dependence cone.

Definition 3.1.5 [Integral Dependence Domain} Let VV = (D. U. V.I) be an integral data

dependence and 0r the dependence mapping defined by I. The dependence domain nT of

VV is nr = 0r(D). .3.1..5

As, in general, 0T is not affine, the dependence domain nr is not a convex polyhedral set.

Definition 3.1.6 [Integral Dependence Cone} Let 1)V = (D, U, V,I) be an integral data

dependence with dependence domain nr. The dependence cone 01- ofVV is 01- = cone(nr)·

.3.1.6

Because of the relation between pointed dependence cones and affine scheduling discussed in

Section 2.2.6, in the following we always assume that 0i is pointed.

Example 3.1.7 Consider the data dependence VV = (D, U, V,I) with domain D =

{(i,j,k) 11 ~ i,j ~ p,k = I}, for some pEN. and index mapping I(i.j.k) = (i.j,k) +
2j (-1,0,0) + (0, -1, -1). Its dependence mapping is 0r(i, j, k) = 2j (1,0,0) + (0,1,1). Its

dependence domain is nr = {(2 j , 1, 1) 11 ~ j ~ p} and its dependence cone 0i is pointed

(see Fig. 3.1). .3.1.7

3.1.1 Integral vs. Affine Recurrences

Because of the generality of our definition of an integral index mapping, it is easy to show

that affine index mappings constitute a particular type of integral index mappings.

Let us consider an affine index mapping I(z) = Az + b, with A E znxn and bE zn. Then I

can be expressed as the integral index mapping below. where, for j = 1, n: each coefficient

gj is defined by the vector expression gj(z) = (A - In)j . Z + bj . with (A - In)j denoting the

jth row of the matrix A - In, and bj the /h component of b: and each generator t j is the /h

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS .)/

AREs IREs

a
AIREs

Fig. 3.2. Inclusions among the classes of uniform (DREs). affine (AREs). atomic integral
(AIREs) and integral (IREs) recurrence equations.

vector of the standard basis of zn. The mapping is:

I(z) = Az + b

z+(A-1n)z+b
n

z + Lgj(z)ej.
j=1

Trivially, all uniform index mappings are atomic integral. In fact, a uniform index mapping

has a generic form I(z) = z + b, which can be seen as an integral form with a single generator

b and, as coefficient, the constant function g(z) = 1.

Given the above relations, a taxonomy of the different classes of recurrences2 can be defined as

illustrated in Fig. 3.2. In particular, affine recurrences (AREs) constitute a proper subclass

of integral recurrences (IREs), while uniform recurrences (UREs) are in particular atomic

integral (AIREs).

Therefore, integral recurrence equations can be used as more general forms of specification

than those obtained with affine recurrences only. For specification in the intersection of the

two classes, the convenience of one formalism over the other needs to be evaluated case by

case. In particular, a trade-off between ease of expression and complexity of the required

regularisation should be considered. We will return to this point in the discussion at the end

of the chapter.

3.2 Regularisation

The regularisation of an integral data dependence consists of two main steps:

- the substitution of a generic integral data dependence by a set of atomic integral data

dependencies; and

2It is custom to name recurrence equations after the (most general) type of their data dependencies.

CHAPTER 3. INTEGRAL RECURRENCE EQUATIOSS 58

_ the substitution of each atomic integral data dependence by a set of uniform data

dependencies.

Routing directions are chosen among the generators of the data dependence mapping. which

guarantee the definition of injective index mappings, hence no overloaded data dependence

graphs are generated. The major difference with respect to regularisation techniques for the

affine case is the necessity of using control variables to reconcile the preservation of convexity

with the application of non-affine transformations.

3.2.1 Regularisation Directions

Let 1)1) = (D, U, V,I) be an integral data dependence, with pointed dependence cone 0i-.

We intend to use a set of non-null generators of I as regularisation direction vectors. To do

so, we want to express I so that the generators of I form a pointed cone (' containing 0i-.

Such a representation is particularly convenient because:

_ it allows us to formulate conditions for the existence and preservation of affine schedul­

ing through regularisation;

_ it simplifies the definition of regularisation techniques, as the coefficients define non­

negative integer functions on D.

Such a form always exists, as can be proved by using a result due to Quinton and Van Dongen

[QuVa89]. The result is contained in the following proposition (a proof of which is sketched

in Appendix B):

Proposition 3.2.1 [Qu Va89] Let C be a pointed polyhedral convex cone of full dimension

in Qn. Then there exists a pointed polyhedral convex cone C' such that C' contains C and

its extremal rays constitute a unimodular basis of zn. .3.2.1

We illustrate the result in the following example.

Example 3.2.2 Consider the data dependence 1)1) = (D, U, ~',I) with domain D =
{(i,j) I -2 ~ i ~ 2, 1 ~ j ~ 2} and index mapping I(i.j) = (i,j) + 6(-1, -1) + i

3
(-1,0).

The dependence mapping is 0r(i,j) = 6(1,1)+ i3(1,0) and 0i- is illustrated in Fig. 3.3 a).

The dependence cone is pointed (intuitively, it does not contain any line). Howeyer. the

coefficient i3 does not define a non-negative integer function over D.

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS

, , ,

j

,

a*
I ...

2 ~:, -.. ..,""
, --,"

\

-2 2 6

..-

14

a) b)

Fig. 3.3. a) Data dependence cone 0i-; b) Pointed cone C containing 0i-.

59

Consider the pointed cone C = cone({(-l,l),(l,O)}). C contains 0i (see Fig. 3.3 b)) and

its generators constitute a unimodular basis (Le., , they integrally span Z2 - see Appendix F.

where unimodularity is defined). The correspondence between the generators of 0T and those

of C is the following:

(1,1) 1(-1,1)+2(1,0)

(1, 0) O(-1, 1) + 1 (1, 0).

Therefore we can rewrite 0T and I as follows:

0T(i,j)

I(i, j)

6[1(-1,1)+ 2(1,0)]+ i 3[0(-1,1)+ 1(1,0)]

6(-1,1) + (12 + i 3)(1,0)

(i,j)+ 6(1, -1) + (12 + i 3)(-1,0).

With this rewriting, the coefficients of I are non-negative over D. • 3.2.2

Note that if 0i- is pointed and the coefficients of 0T are non-negative integer functions on

D, the cone C defined by the generators of 0T contains the dependence cone 0i-. However.

C is not guaranteed to be pointed, as shown in the following example.

Example 3.2.3 Consider the data dependence VV = (D, U. V,I) with domain D =
{(i,j) 11 ~ i,j ~ m}, where mEN, and index mapping I(i,j) = (i,j) + 6(1,0) + 4(-1,0).

The dependence cone 0i- is pointed. However, C = cone({(l,O),(-l,O)}) contains aline (see

Fig. 3.4). Indeed, a straightforward rewriting of I exists such that 0i- and C coincide. The

rewriting is I(i,j) = (i,j) + (6 - 4)(1,0) = (i,j) + 2(1. 0). • 3.2.3

In the following, we always assume that given an integral data dependence VV = (D. C l',I),

the generators of I are non-null vectors, its coefficients define non-negative integer functions

on D, and the cone C defined by the generators of 0T is pointed. We will also refer to the

cone C as the embedding dependence cone.

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS

e* I
i1

______ ~ _______ ~_--_ C

a) b)

Fig. 3.4. Dependence cones: a) 0i-; b) C.

3.2.2 Injectivity of an Atomic Integral Index Mapping

60

From the discussion in Section 2.3, we know that a data broadcast corresponds to a non­

injective index mapping. A sufficient condition for the injectivity of an atomic integral

index mapping I on a domain D can be established by considering the relation between the

generator of I and the direction lin(D) of the domain D (for a definition of lin(D), see

Appendix F). The result is contained in the following proposition:

Proposition 3.2.4 Consider an atomic integral index mapping I and a domain D ~ zn,
such that for all zED, I(z) = z + g(z)d and g(z) ~ O. If d </. lin(D) then I is injective over

D.

PROOF: From linear algebra, if z, z' E D then z - z' E lin(D). Assume that there exist

z, z, E D, such that z i- z' and I(z) = I(z'). We want to prove that this assumption

always implies a contradiction with respect to the hypotheses of the proposition

and therefore for all z, z' ED, z i- z' implies I(z) i- I(z'). There are only two

possibilities, both leading to a contradiction. If g(z) = g(z') = c, then I(z) = I(z')

implies z + cd = z' + cd, i.e., z = z'. Otherwise, if g(z) i- g(z'), then g(z') - g(z) =
c i- 0 and I(z) = I(z') implies z - z, = cd, i.e., dE lin(D). .3.2.4

Example 3.2.5 Consider a data dependence 1YD = (D, U, V,I) with domain D = {(i,j) I
i ~ 0, i = j} and integral index mapping I(i,j) = (i,j) + 2i(1, -1). The direction of D

is lin(D) = ((1,1)) and d = (1, -1) </. lin(D). Hence, according to Proposition 3.2.4, I is

injective over D. Some of the corresponding data dependence vectors are sketched in Fig. 3.5 .

• 3.2 .. 5

Note that the condition is only sufficient and there may exist atomic index mappings which

are injective regardless of the geometric relation between their generators and the domain.

This is illustrated in the following example.

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS

j

,
;

Fig. 3.5. Injectivity.

61

Example 3.2.6 Consider the atomic index mapping I(i,j) = (i.j)+j(1.0) and the

domain D = {(i, j) I 1 ~ i, j ~ p}, for some p > 1. As D is of full dimension in Z2. then

dE lin(D). However, I is injective on D. In particular I defines an injective mapping on

Z2. .3.2.6

Given an atomic integral index mapping which is injective according to Proposition 3.2.4.

we want to define a corresponding inverse mapping. Inverse mappings will be needed in the

definition of the decomposition techniques for integral index mappings in Section 3.2.5.

An inverse of an atomic integral index mapping which satisfies the condition of Proposi­

tion 3.2.4, can be obtained in a systematic way, based only on geometric properties. This

definition is given in Proposition 3.2.7 below. and is based on the following:

- the choice of a hyperplane [1[' : 0], with 1[' i- 0, containing D. By definition, 1[' has to be

a vector orthogonal to all vectors in D. Hence 1[' has to be chosen in the space D 1. (the

orthogonal complement of D - see Appendix F for a definition). We also require that 1['

is in the space generated by D and d. This choice will allow us to define a measure of

the distance from D of a point in the direction of d. Formally, this choice is expressed by

the condition 1[' E lin(P) n D1. of the proposition, where P is the polyhedron generated

by D and d (see also Appendix E). The effect ofthis choice is illustrated in Fig. 3.6 a)

in Z2, for a l-dimensional domain D. Fig. 3.6 b) illustrates a (non-admissible) choice

of 1[' outside the polyhedron P.

- the scalar product f/ = 1[' • d, which represents the projection of d along the direction of

7r. The integer f/ may be seen as establishing a "distance" between parallel hyperplanes

with normal vector 7r intersecting the polyhedron P (see Fig. 3.6 c)).

- a linear transformation 1, defined so that for all zED, /(z) = g(;:;). For each point

zED, l(z) defines the "distance" (as a multiple of f/) between the parallel hyperplanes

CHAPTER 3. INTEGRAL RECURRENCE EQCATIONS 62

, ,

p , p
j • , , ,

, 1t! , , ,

'd

D ~d 1t/ D

,{
.
i

k
a) b)

,
-:":---p------;..<---- [1t:9+3T1]

- _,J: - -- -- -- -- - -/- - -- [1t:9+2T1]
-,-/--1trm-~;"<:m [1t:9+TI]

-- ---- [1t:9]
D

, I(z) /
-- ,'- -- - - -- --. -r - ---

,/ P ,/ [It:9+ g(z) TIl

,/ It t '
- . /_---
D z [It:9l

k k
c) d)

Fig. 3.6. Inverse of an injective atomic integral index mapping: a) admissible choice of 11"; b)
non-admissible choice of 11"; c) intuitive meaning of ",; d) intuitive meaning of 1.

[11" : e] and [11" : e + g(z)",] (see Fig. 3.6 d)).

Proposition 3.2.7 Consider an atomic integral index mapping I and a domain D ~ zn.
such that for all zED, I(z) = z + g(z)d and g(z) ~ 0. Let d ¢ lin(D) and P the convex

polyhedron generated by D and d. Consider 11" E lin(p)nDl., with 11" -I- 0, and the hyperplane

[11" : 8] containing the domain D.

Then the mapping I'(z) = z + l(z)(-d), where l(z) = (11". Z - 8)/", and", = 11". d, defines an

inverse of I over D.

PROOF: By definition, for all zED, 11" . z = 8. Let zED, then:

I(I(z)) = l(z + g(z)d) = (11". (z + g(z)d) - e)/",

= (7r. Z + g(z)7r· d - 8)/", = (8 + g(z)", - 8)/", = g(z).

Therefore, for all zED,

I' 0 I(z) = I'(I(z)) = I(z) + I(I(z))(-d) = z + g(z)d - g(z)d = z .

• 3.2.7

Example 3.2.8 Let us consider the atomic integral index mapping of Example 3.2 . .5, and

apply Proposition 3.2.7. Let 7r = (1. -1),8 = ° and", = 7r • d = (1. -1)· (1. -1) = 2. Then

l(i,j) = (i - j)/2 and I'(i,j) = ((i + j)/2, (i + j)/2). Forinstance, I' oI(3, 3) = I'(11. -.j) =

(6/2,6/2) = (3,3). • :3.2.,,",

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS 63

Proposition 3.2.7 provides a way of defining an inverse for an atomic index mapping (which

satisfies the conditions of the proposition) that can be easily mechanised. It may be the

case that an inverse for the mapping can be provided by the designer by other means. This

happens, in particular, for injective linear mappings, as shown in the following example.

Example 3.2.9 Consider the index mapping I(i,j) = (i+ j,j) of Example 3.2.6. I defines

an injective linear mapping in zn. In its matrix form, I can be expresses as:

An inverse for I can be determine by computing the inverse of the matrix

A= [~ ~]
that is the matrix

Therefore, the mapping I'(i,j,k) = (i - j,j) defines an inverse of I. • 3.2.9

From the above discussion, it follows that we may consider two ways of deciding whether

an atomic integral index mapping is injective on a certain domain, as well as defining a

corresponding inverse: automatically, by considering geometric properties only, or in an ad

hoc fashion by direct intervention of the designer. The two approaches are complementary

and should both be accounted for by the method. In Section 3.2.5 we will take advantage of

both for the definition of decomposition techniques.

3.2.3 Uniformisation

Given an atomic integral data dependence V1), uniformisation defines a substitution of VV

with a uniform routing system defined by a set of uniform recurrence equations.

Let I denote the atomic integral index mapping of 1)V and 9 its coefficient. Uniformisation

can be applied only if 9 admits an upper bound on the domain D, i.e., there exists mEN

such that for all zED, g(z) ::; m. Technically, it is this condition which allows us to

define and initialise the control variables which control the uniform routing of the data.

Although this is a restriction to the application of the technique, we can justify it in terms

of requirements for a realistic implementation. In fact, if 9 is not bounded over D, the

Euclidean distance between pairs of data dependent points increases without a bound, and

so does the order of the routing paths which are defined between the two points. Because

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS 64

d D d D

a)
b)

d z D d D

c)
d)

Fig. 3.7. Uniformisation 1.

of the relation between data dependence graph and data flow graph, this fact results in

unbounded resources (either memory or number of processing elements and connections) of

any regular array implementation of the specification.

The following propositions define two uniformisation techniques with the guarantee that no

problem size dependent overloading ofthe data dependence graph is generated. The difference

between the two techniques is the geometric relation between the direction vector d and the

domain D of the data dependence. In particular, if d <t lin(D), because of Proposition 3.2.4,

I is injective and d can be used as the direction for pipelining the data. Otherwise, new

pipelining directions need to be found outside lin(D), which guarantee the injectivity of the

corresponding index mappings.

Control variables are used in the definition of the routing schemes. The need for control

variables comes from the contrasting necessity of obtaining polyhedral convex regions even

when non-affine mappings are applied. As, in general, I is not linear. the image of D under

I is not a polyhedral convex set. However, polyhedral convex routing domains are enforced,

which embed the actual routing paths of the data. The points needed for routing constitute

non-convex sub-sets of such domains. The identification of the required points is achieved

via conditional expressions based on the integer coefficient g.

The content of Proposition 3.2.10 is illustrated in Fig. 3.7, for a 2-dimensional case. The

aim is to transform the data dependence graph in Fig. 3.7 a) into that of Fig. 3.7 d). A new

domain Dl is defined from D and the maximum value g that the coefficient 9 assumes on D

(see Fig. 3.7 b)). The choice of 7r and the hyperplane [7r : 0] containing D. already discussed

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS 65

in Section 3.2.2, guarantees that no data broadcast is generated. In Fig. 3.7 d) solid arrows

correspond to the routing paths which substitute the data dependence vectors of Fig. 3.7 a).

The dashed arrows result because of the uniformisation on the enlarged domains and do not

contribute to the actual routing. The computations on the routing paths are identified by the

evaluation of control variables a and "(. The definition of a and "(is based on the coefficient

9 ofthe index mapping, and their use is illustrated in Fig. 3.7 c). In the figure, three points

of the domain Dl are emphasised: point z needs to receive the data from z + g(z)d; variables

a and I are initialised at z + gd. Note that the three points lie on the line z + Id, for I E R.

At z + gd, variable a is initialised to the value g(z), and "(to g. Hence, initially, 1 ~ a. The

tags a and I are then pipelined according to the direction of -d. At each step, the value of

I is decreased by 1. Also, at each step the values of a and "(are compared, and when they

become equal (Le., both equal to g(z», the data is collected by a routing variable Rand

subsequently pipelined to z along -d.

Proposition 3.2.10 {Uniformisation 1] Let 1XV = (D, U, V,I) be an atomic integral data

dependence, with I(z) = z + g(z)d. Let 9 be non-negative and bounded over D, and 9 the

least upper bound of g. Let d <t lin(D) and P be the convex polyhedron generated by D and

d. Consider 7r E lin(P) n D.L, with 7r i= 0, and the hyperplane [7r : 0] containing the domain

D.

Then 'D'D can be substituted by the uniform data dependence

'DDt = (D, U, R,Io)

and the system of equations:

El (Dl' R, (R, V, a,,), f, (I1,Io, Io,Io»

E2 (D1,b a, a, id,I1)

E3 (D 1,2, a, ino:)

E4 (D1,b ,,(, ,,(, dec,I1)

Es (D1 ,2,,,(,in-y)

where:

- the index mappings are:

Io(z) Z

I1(z) Z + d

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS

- R,o: and, are new variables;

- the applied functions are:

- the new domains are:

ina(z) = g(z - gd)

in.-y(z) = 9

idea) = a

decCa) = a - 1

f(a,b,c,d) = { ~ c:j;d
otherwise

Dl = {z + ld I zED. 0 ~ 1 ~ g}

Dl,l = {z+ldlzED,O~l<g}

D l ,2 = {z + gd I ZED}

66

PROOF: For all zED, let segm(z) = {z+ld I 0 ~ I ~ g}. By definition. for all z' E .~tgm(z).

o:(z') = g(z). In fact, for zED,

o:(z) = o:(z + d)

= ... = o:(z + gd) = g(z + gd - gd) = g(z).

Also for all z, = z + ld E segm(z), ,(z') = l. In fact, for zED,

,(z) = ,(z + d) - 1

= ... = ,(z + gd) - 9 = 9 - 9 = O.

Therefore, for all z' = z + ld E segm(z), o:(z') = ,(z') if and only if 1 = g(z).

Hence, for all zED,

U(z) = R(Io(z)) = R(Il 0 Io(z))

= ... = R(Ii(z) 0 Io(z)) = V(Io 0 Ii(z) 0 Io(z))

= V(z + g(z)d) = V(I(z)).

• 3.2.10

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS 6i'

5
~D

..... """"~--"""" --

9 9
a) b)

Fig. 3.8. U niformisation: a) domain D and corresponding data dependence vectors; b)
domain Dl and data dependence vectors after uniformisation.

Corollary 3.2.11 Let VV = (D, U, V, I) be an atomic integral data dependence. with

I(z) = z + g(z)d. Let 9 be non-negative and bounded over D. and 9 the least upper bound

of g.

If 9 = 0, then VV can be substituted by the uniform data dependence

VV' = (D, U, V,Io)

where Io(z) = z. • 3.2.11

Example 3.2.12 Consider the atomic integral data dependence VV = (D, F. '".I) with

index mapping I(i,j) = (i,j) + g(i,j)(l,O), where g(i.j) = (i2 + j2)mod 6, and domain

D = {(i,j) 11 ~ j ~ 5,i = 11- 2j}. lineD) = ((2,-1)) and d = (1,0) ¢ lineD). VV is

illustrated in Fig. 3.8 a).

The space generated by D and d is the whole Z2. and 11" can be any vector in Dl.. For instance,

the vector 11" = (1,2) (which is orthogonal to the generator (2, -1) of lineD)) satisfies the

conditions of Proposition 3.2.10, and [(1,2) : 11] is a hyperplane containing D. Also, for all

(i,j) ED, g(i,j) ~ 5. If we apply Proposition 3.2.10 we obtain the new data dependence

VV' = CD, U. R,Io)

and the system of equations:

where:

CHAPTER 3. INTEGRAL RECURRENCE EQUATIOSS

- the index mappings are:

- the applied functions are:

- the new domains are:

Io(i,j)

Il(i,j)

in')'(z)

id(a)

dec(a)

f(a,b,c,d)

(i, j)

(i,j)+(1,0)

g(i-.5.j)

a

a-1

{
a c:j;d
b otherwise

Dl {(i,j) 11 ~ j ~ 5,11- 2j ~ i ~ 16 - 2j}

Dl,l {(i,j) E Dl Ii + 2j < 16}

Dl ,2 {(i,j) E Dl Ii + 2j = 16}.

The resulting data dependence graph is illustrated in Fig. 3.8 b). The correct routing of the

data is achieved by evaluating the control variables a and ,. For simplicity, in the figure, the

propagation of the control variables has been omitted. .3.2.12

The second uniformisation technique applies when the generator d of the index mapping I

cannot be used as a regularisation direction. Fig. 3.9 illustrates the result in a 3-dimensional

space. In this case we assume that d is contained in lin(D) (in Fig. 3.9 a), lin(D) is the space

generated by (1,0,0) and (0,1,0)). A vector 7r is chosen in Dl.. (in the figure, 7r = (0,0,1)).

Three regularisation vectors are involved: d itself, together with d = d + 7r and d = d - 7r (see

Fig. 3.9 d)). Also, three control variables, a, (3 and" are used. The effect of uniformisation

is illustrated in Fig. 3.9 b) and c) for g(z) even and odd, respectively. The data dependence

vector between z and z + g(z)d is replaced by a routing path of order g(z). This path is the

result of:

- a sub-path of order Lg(z)/2J according to the direction of d. On this sub-path the data

is pipelined by a routing variable R2 (R2 in the figure);

CHAPTER 3. INTEGRAL RECURRENCE EQUATIOSS 69

k

aPT _ A '

ez+g d

a)

, [. "" It:a~ •• __
'.'

b)

aPT _A
'-", e Z+g d

"

[It: g 11+8) k~.d+lt j
It .

. • d

d- It '.'

'.'

c) d)

Fig. 3.9. Uniformisation 2.

- a sub-path of order g(z) mod 2 according to the direction of d. On this sub-path the

data is pipelined by a routing variable Rl (Rl in the figure). This is necessary only if

g(z) is odd, as in Fig. 3.9 c);

- a sub-path of order 19(z)/2J according to the direction of d. On this sub-path the data

is also pipelined by the routing variable Rl.

The control variables a, f3 and I are initialised at z + gd, where 9 = l m/2 J and m is the least

upper bound of 9 on D. Variable a is initialised to 19(z)/2J, I to g, and f3 to g(z) mod 2.

The values of a, f3 and I are pipelined according to the direction of -d, with the value of I

decreased by one at each step. Also, the values of a and I are compared at each step; when

they become equal (i.e., both equal to 19(z)/2J). the value of f3 is considered to determine

whether g(z) is either even or odd, and the data is transferred accordingly from R2 to Rl.

Proposition 3.2.13 {Uniformisation 2} Let VV = (D, U, F,Y) be an atomic finitely gener­

ated dynamic data dependence, with Y(z) = z + g(z)d. Let 9 be non-negative and bounded

over D, m the least upper bound of 9 and 9 = lm/2J. Let dE lin(D) and dim(D) < n.

Consider 7r E Dl., with 7r :/: 0, the hyperplane [7r : 0] containing the domain D. and let

d = d + 7r and d = d - 7r.

CHAPTER 3. INTEGRAL RECURRENCE EQFATIONS

Then 1)1) can be substituted by the uniform data dependence

and the system of equations:

EI {D}, R\ (R\ R2, R2, Ct, (3,,), I, CII.I2,O,I2,J,Io,Io,Io))

E2 (D2,I,R2,R2,id,I3)

E3 (D2,2, R2, V, id.Io)

E6 (D I,}' (3, (3, id,I1)

E7 (Dl,2, (3, in(3)

Es (D1,}"",dec,It)

Eg (D1 ,2",in,,()

where:

- the index mappings are:

Io{z) Z

I1{z) z + d

I2,O{Z) Z

I 2,1{Z) Z + d

I3(Z) Z + d

- Rl, R2, Ct, (3 and , are new variables;

- the applied functions are:

in(3(z)

in"((z)

idea)

decCa)

I(a,b,c,d,e,J)

Lg(z - gd)j2J

g(z - gd) mod 2

9

a

a-I

di-I
d=j.e=O
d = I,e = I

iO

CHAPTER 3. INTEGRAL RECURRENCE EQL'A.TIOSS

- the new domains are:

Dl

D1,1

D1 ,2

=

=

=

{z+zdlzED,O:::;Z:::;g}

{z + Ld I zED, 0:::; L < g}

{z+gdlzED}

D2 = {z + h d + 12d I z E D1, ° :::; h :::; 1, ° :::; 12 :::; g} n {Z E Zn I 7r • :; ~ 8}

D2,1 = {Z E D2 I 7r • Z > 8}

D2,2 = {Z E D2 I 7r ' Z = 8}.

71

PROOF: For all zED, let segm(z) = {z+ld 10:::; I:::; g}. By definition, for all:;' E 8I:gl7l(:;).

a(z') = Lg(z)/2J. In fact, for zED,

a(z)=a(z+d)

= ... =a(z+gd)= Lg(z+gd- gd)/2J = Lg(z)/2J.

Also, for all z' E segm(z), (3(z') = g(z) mod 2. In fact, for:; E D.

(3(z) = (3(z + d)

= ... = (3(z + gd) = g(z + gd - gd) mod 2 = g(z) mod 2.

Finally, for all z' = z + ld E segm(z), ,(z') = 1. In fact, for:; E D,

,(z)=,(z+d)-l

= ... =,(z+gd)-g=g-g=O.

Therefore, for all z' = z + ld E segm(z), a(z') = ,(z') if and only if 1= Lg(z)/2J.

We observe that, for all c E Z,

Lc/2J = (c - c mod 2)/2

c = 2Lc/2J + c mod 2.

Hence, for all zED,

U(z) = RI(Io(z)) = RI(II o Io(:;))

= .. , = Rl (I}9(Z)/2 j
0 Io(z))

= R2(I2,g(z) mod 2 0 I}g(z)/2 j
0 Ia(Z))

= R2(I3 0 I 2,g(z) mod 2 0 I}g(z)/2 j
0 Ia(:;))

CHAPTER 3. INTEGRAL RECURRENCE EQUATIOSS

... = R 2(Tf(z)/2 j
0 T2,g(z) mod 2 0 Tp(Z)/2J 0 To(z)

VeTo 0 T1g(z)/2 j
0 T2,g(z) mod 2 0 T}9(Z)/2 j

0 To(z»)

V(z + Lg(z)/2Jd + (g(z) mod 2)d + Lg(z)/2jd)

V(z + 2Lg(z)/2jd + (g(z) mod 2)d)

V(z + (2Lg(z)/2J + g(z) mod 2)d)

V(z + g(z)d) = V(T(z».

,2

• 3.2.13

Because of the condition dim(D) < n, the application of Proposition 3.2.13 may require an

increase in the number of dimensions of the lattice space and to reindex the data dependence

accordingly. Such a reindexing is a particular case of normalisation as described in Sec­

tion 2.2.2 and is realised by "padding" the index expressions with extra indices. Note that

this normalisation should not alter the dimensionality of the domains (it simply produces an

embedding of the domains in a space of higher dimension).

Corollary 3.2.14 Let IX]) = (D, U, V, T) be an atomic integral data dependence, with

T(z) = z + g(z)d. Let 9 be non-negative and bounded over D, m the least upper bound of g,

andg= lm/2J.

If g = 0 then 1)1) can be substituted by the uniform data dependence:

1)1)' = (D, U, R,To)

and the equations:

E1 (D, R, (V. V. {3). j, (TO,1"1,To»

E2 (D, {3, in(3)

where:

- the index mappings are:

To(z) Z

T1(Z) z+d

- Rand {3 are new variables;

CHAPTER 3. INTEGRAL RECURRENCE EQUATlOSS

k

5
5

~~ D

6 ,

9
a) b)

14

k

.::>::"

Fig. 3.10. Uniformisation: a) domain D in Z2 and corresponding data dependence vectors;
b) domain D in Z3; c) domain D 1 ; d) domain D 2 ·

- the applied functions are:

in{3(z) g(z) mod 2

f(a,b,c) {
a c = 0
b c = 1

.3.2.14

Example 3.2.15 Consider the atomic integral data dependence VV = (D, U, V,I) with

index mapping I(i,j) = (i,j) + g(i,j)(l,O), where g(i,j) = (i2 + j2)mod 6, and domain

D = {(i,j) 11 :::; j :::; 5,11- 2j :::; i :::; 16 - 2j}. The domain D is illustrated in Fig. 3.10 a).

lin(D) = Z2 and d = (1,0) E lin(D). As D is of full dimension in Z2, we need to reindex

the data dependence in Z3, before applying Proposition 3.2.13 (Fig. 3.10 b) illustrates D

in Z3). Any non-null vector in D.L can be chosen as 1['. For instance, vector II = (0,0,1)

satisfies the conditions of Proposition 3.2.13 and [(0,0,1): 0] is a hyperplane containing D.

Let d = d + II = (1,0,1) and d = d - 1[' = (1, 0, -1). For all (i,j, k) E D, g(i,j. k) :::; .5, hence

we can assume 9 = 2. By applying Proposition 3.2.13, we obtain the data dependence

and the system of equations:

CHAPTER 3. INTEGRAL RECURRENCE EQ['ATIONS

E2 = (D2,l, R2, R2, id,I3)

E3 = (D2,2, R2, V, id,Io)

E4 = (Dl ,}, a, a, id,Id

Es = (D l ,2, a, ina)

E6 = (Dl ,!, {3, {3, id,It}

E7 = (Dl ,2, (3, in/3)

Es = (Dl,l"", dec,Il)

Eg = (Dl ,2",in-y)

where:

- the index mappings are:

Io(i,j, k) = (i,j,k)

Il(i,j,k) = (i,j,k)+(l,O,l)

I 2,o(i,j,k) = (i,j,k)

I 2,l(i,j, k) = (i,j, k) + (1,0,0)

I 3(i,j,k) = (i,j,k)+ (1,0,-1)

- the applied functions are:

ina(i,j,k) = 19(i - 2,j, k - 2)/2J

in/3(i,j,k) = g(i-2,j,k-2) mod 2

in-y(i, j, k) = 2

idea) = a

decCa) = a-I

{ ~
d#I

I(a,b,c,d,e,J) = d = I,e = °
d = I,e = 1

- the new domains are:

Dl = {(i, j, k) 11 S; j S; 5, ° S; k S; 2,11 - 2j + k S; i S; 16 - 2j + k}

Dl,l = {(i,j,k)EDl lk<2}

Dl ,2 = {(i,j,k)EDl lk=2}

D2 = {(i,j,k)11S;jS;5,0S;kS;2.11-2j+kS;iS;21-2j-k}

74

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS 75

a) b)

Fig. 3.11. Data dependence vectors after uniformisation: a) section of D 1 ; b) section of D
2

•

D2,1 {(i,j,k) E D21 k > O}

D2,2 {(i,j, k) E D2 I k = O}.

The routing domain Dl and D2 are sketched in Fig. 3.10 c) and d), respectively, while sections

of the data dependence graph in Dl and D2 are given in Fig. 3.11 a) and b), respectively. As

shown in the figure, the data dependence graph is uniform and its nodes are locally connected .

• 3.2.15

3.2.4 Parametric Uniformisation

While uniformisation according to Proposition 3.2.10 defines data pipelining in the existing

computation space of the problem, the technique defined by Proposition 3.2.13, in general,

adds new dimensions to the specification and artificially introduces new domains for the sole

purpose of routing the data. Because of the correspondence between computation points and

processing elements under space-time mappings, a correspondent increase in both latency

and number of processors will characterise the resulting array design. In this section we

introduce a parametric version of the technique which allows us to control the amount of

routing overhead to a certain extent.

The size of the routing domains defined through the unifonnisation technique depends on the

quantity 9 = l m/2 J, where m is the least upper bound of the values of the coefficient 9 on

the domain D. In this section we show that by allowing a limited amount of overloading of

the data dependence graph, the size ofthe routing domains can be reduced. In particular, we

introduce a parameter p as a small positive integer, in order to represent an upper bound to

the amount of overloading allowed in the specification. Then we define new routing domains

whose size depends on the quantity 9 = l m/ (p + l)J , and new routing paths in these smaller

domains. For each z of the domain, the order of the corresponding routing path remains

equal to 9(z). However, the shape changes according to the parameter p. Fig. 3.12 may

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS

_A _

z+g d [n: g l]+6]
-------------------~------------

a~'YJ/

RI~ ''''I -------~-------------~-------
z z+g(z)d

a)

_A _

z+g d [n: g l]+9]
---------a~y-~~-----------------

~l R1R2

R3 R2 [n:9]
------- ------------- -------

z R3 z+g(z)d
c)

_A _

z+g d [n: g l]+6]
- - - - - - - 0: lff ; .• --- -- --------------

_______ ~:---~~-~~2 • ___ ~~~_
z R3 z+g(z)d

e)

_A _

z+g d [It: g l]+6]
-------------------~------------

a~'Y .r··

Ry'''''z "'1 -------~-----------.---------
z b) z+g(z)d

_A _

z+g d [It: g l]+6]
-----------~--~-----------------

_____ --Z'-~ _____ '_"1_
z R3 z+g(z)d

d)

_A _

z+g d (n: g l]+6]
- - - - - - - -Ii P 1;'. - --- - -- - -- -- - -- -- - -

~
I

RI R2 (n:9]
------- -------- ---------

z R3 z+g(z)d
o

Fig. 3.12. Parametric uniformisation.

76

help to illustrate how the technique works. Fig. 3.12 a) and b) illustrate the routing path

(for g(z) odd and even, respectively) corresponding to the data dependence vector between

z and z + g(z)d, as defined in the previous section. For the same data dependence vector,

Fig. 3.12 c) and d) and Fig. 3.12 f) and g) illustrate the corresponding routing paths for

values of the parameter p = 2 and p = 3, respectively. Note that as p increases, 9 decreases,

and the hyperplanes [7r : 0] and [7r : 911 + 0] become closer together. Control variables Q, (3

and I are still initialised at the point z + 9d. However, their initialisation values become

19(z)j(p + l)J, g(z) mod (p + 1) and 9, respectively. As before, the control variables are

pipelined according to the direction of -d. At each step the value of ~(is decreased by one,

and Q and I are compared. When their values are equal, the value of (3 determines at which

lattice point the data has to be transferred between R2 and RI. Note that three variables

RI, R2 and R3 are used to route the data. The figure illustrates the correspondence between

the routing variables and the routing directions d, d and d.

Proposition 3.2.16 [Parametric UniformisationJ Let VV = (D, U, V,I) be an atomic in­

tegral data dependence, with I(z) = z + g(z)d. Let 9 be non-negative and bounded over D,

and m the least upper bound of g. Let p E N+ and 9 = lmj(p+ l)J. Let dE lin(D) and

dim{D) < n. Consider 7r E D.l.., with 7r =I 0, the hyperplane [7r: 0] containing the domain D.

and let d = d + 7r and d = d - 7r.

CHAPTER 3. INTEGRAL RECURRENCE EQUATIOSS

Then 1)1) can be substituted by the uniform data dependence

and the system of equations:

El (Db Rl, (Rl, R2, ... , R2, a, (3, "/),f, (Ib I 2,o, I 2,p,Io,Io,Io))

E2 (D2,b R2, R3, id,I3)

E3 (D2,2, R2, V, id,Io)

E4 (D2,3,R3,R2,id,I4)

Es (D1,b a, a, id,Il)

E6 (D1,2, a, ina)

E7 (D1,b(3,(3,id,I1)

Es (D1,2,(3,in{3)

Eg (D1,I."/,,,/,dec,I1)

ElO (D1,2, ,,/, in')')

where:

- the index mappings are:

- the applied functions are:

Io(z)

I1(z)

I 2 ,o(z)

I 2 ,1(Z)

I 2 ,p(z)

I3(Z)

I4(Z)

Z

Z

z+d

z+ pd

z+d

z + (p - l)d

Lg(z - gd)/(p+ l)J

g(z - gd) mod (p + 1)

II

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS

in.y(z) = 9

idea) = a

decCa) = a-I

F· f(a,bo, ... ,bp,c,d,e) =
bp

cf:.e
c = e,d = 0

c=e,d=p

- the new domains are:

Dl =

Dl,1 =

D1 ,2 =

D2 =

D2,1 =

D2,2 =

D2,3 =

{z + zd I zED, 0 ~ 1 ~ g}

{z + ld I z E D,O ~ I < g}

{z + gd I ZED}

{z + (h + 12)d + 13d I z E Db 0 ~ h ~ p, 0 ~ 12 ~ (p - l)g, ° ~ 13 ~ g}

n{ z E Zn I 7r • Z ~ O}

{z E D2 I 7r • Z > O}

{z E D2 I 7r • Z = O}

{z E D2 I 7r • Z < 0 + g'Tl}.

,8

PROOF: For all zED, let segm(z) = {z+ld I ° ~ 1 ~ g}. By definition, for all z' E segm(z),

a(z') = 19(z)j(p + I)J. In fact, for zED,

a(z) = a(z + d) = ... = a(z + gd)

= 19(z + gd - gd)j(p + I)J = 19(z)/(p + I)J.

Also, for all z' = z + 1 d in the segment segm(z), with zED, (3(z') = g(z) mod (p+ 1).

In fact, for ZED,

(3(z) = (3(z + d) = .,. = (3(z + gd)

= g(z + gd - gd) mod (p + 1) = g(z) mod (p + 1).

Finally, for all z' = z + ld E segm(z), ,(z') = l. In fact, for zED,

,(z) = ,(z + d) - 1

= ... = ,(z + gd) - 9 = 9 - 9 = O.

Therefore, for all z' = z+ld E segm(z), a(z') = ,(z') if and only if 1 = 19(Z)/(p+ l)J.

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS

We observe that, for all c E Z,

l c j (p + 1) J = (c - c mod (p + 1)) j (p + 1)

c = (p+ l)lcj(p+ l)J +c mod (p+ 1).

Hence, for all zED,

U(z) = RI(Io(z)) = RI(II 0 Io(z))

= ... = RI(I}u(z)/(PH)J 0 Io(z))

= R 2(I2 ,(g(z) mod (p+l)) 0 I}g(z)/(PH)J 0 Io(Z))

= R3(I3 0 I 2 ,(g(z) mod (p+l)) 0 I}g(Z)/(P+l)J 0 Io(z))

= R2(I 'T 'T 'TLg(z)/(p+l)J 'T ())
4 O.L3 O.L2,(g(z) mod (pH)) O.Ll O.LO Z

=

,9

= R 2 (Ilg(z)/(PH)J oIJg(Z)/(P+l)J oI
2
,(g(z) mod (p+l)) oI}g(Z)/(P+l)J oIo(z))

= V(Io 0 Ilg(z)/(p+l)J 0 IJg(z)/(PH)J 0 I 2,(g(z) mod (pH)) 0 IlLg(z)/(P+l)J 0 Io(z))

= V(Z + 19(Z)j(p + l)Jd + (g(z) mod (p + l))d + 19(z)j(p + l)Jd +

19(z)j(p+ 1)J(p-1)d)

= V(z + ((p+ l)lg(z)j(p+ l)J + g(z) mod (p+ l))d)

= V(z + g(z)d) = V(I(z)).

• 3.2.16

Corollary 3.2.17 Let VV = (D, U, V,I) be an integral data dependence, with I(z) =

z + g(z)d. Let 9 be non-negative and bounded over D, and m the least upper bound of g.

Let p E N+ and g = lmj(p+ l)J.

If g = 0 then 1YD can be substituted by the uniform data dependence:

and the equations:

where:

VV' = (D, U, R,Io)

El = (D, R, (V, ... , V, (3). j, (Il,o, Il,p,Lo))

E2 = (D. (3, in(3)

CHAPTER 3. INTEGRAL RECURRENCE EQUATIOSS

- the index mappings are:

- Rand f3 are new variables;

- the applied functions are:

Io(z)

I1,o(z)

I1,1(Z)

in{3(z)

z

z

z+d

z + pd

g(z) mod (p + 1)

{ :~ ~: ~
ap b = p

• :3.:2.17

Note that uniformisation according to Proposition 3.2.13 corresponds to parametric uniformi­

sation with parameter p = 1.

Example 3.2.18 Let us apply parametric uniformisation to the atomic integral data

dependence of Example 3.2.15, with the same choice of routing directions, i.e., d = (1,0,0),

d = (1,0,1) and d = (1,0, -1).

Let !J = l5/ (p + l)J, with p E N+. The application of parametric uniformisation according

to Proposition 3.2.16 yields the data dependence

1),])' = (D,U,R1.Io)

and the system of equations:

El (Dl' Rl, (R\ R 2, . .. , R2, a. f3. ,), j, (I1,I2,o, ... ,I2,p,Io,Io,Io)

E2 (D2,1, R2, R3, id,I3)

E3 (D2,2, R2, V, id,Io)

E4 (D2,3,R3,R2,id,I4)

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS

E7 = (Dl,1,{3, (3, id,Il)

Es = (Dl ,z,(3,in{3)

Eg = (Dl,I", " dec, II)

ElO = (Dl,z", in')')

where:

- the index mappings are:

Io(i,j,k) = (i,j. k)

Il(i,j,k) = (i,j,k)+(I,O,I)

Iz,o(i,j, k) = (i,j,k)

IZ,I(i,j, k) = (i,j,k)+(I,O,O)

Iz,p(i,j,k) = (i.j,k)+(p,O,O)

I3(i,j,k) = (i,j,k)+(I,O,-I)

I 4 (i,j, k) = (i , j, k) + (p - 1, 0, 0)

- the applied functions are:

incx(i,j,k) = 19(i - g,j,k - g)/(p+ I)J

in{3(i,j, k) = 9 (i - g, j, k - g) mod (p + 1)

in')'(i, j, k) = 9

idea) = a

decCa) = a-I

{ ~.
c=/:-e

f(a,bo, ... ,bp,c,d,e)
c = e,d = ° =

bp c = e, d = p

- the new domains are:

Dl = {(i,j,k)ll':5:j':5:5,O':5:k':5:g,11-2j+k':5:i':5:16-2j+k}

D1,1 = {(i,j, k) E Dl I k < g}

D1,z = {(i,j, k) E Dl I k = g}

Dz = {(i, j, k) 11 ':5: j ':5: 5, ° ':5: k ':5: g, 11 - 2j + k ':5: i':5: 21 - 2j - k}

81

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS 82

k k

a) b)

k

c) d)

Fig. 3.13. Data dependence vectors after parametric uniformisation: a) and b) sections of
Dl and D2 for p = 2; c) and d) the same sections for p = 3.

D2,1 {(i,j,k)ED 2 I k >O}

D2,2 {(i,j, k) E D2 I k = O}

D2,3 {(i,j, k) E D2 I k < g}.

The routing domains Dl and D2 are similar to those sketched in Fig. 3.10 (as the same

regularisation vectors are considered). A section of the data dependence graph in Dl and D2

is given in Fig. 3.13 a), b) and Fig. 3.13 c), d) for values of the parameter p = 2 and p = 3,

respecti vely. .3.2.18

3.2.5 Decomposition

While uniformisation replaces an atomic integral data dependence with a system of uniform

recurrences, decomposition allows us to substitute an integral data dependence with a set

of atomic integral data dependencies. This is obtained by decomposing all data dependence

vectors into their components along the generators of the integral dependence mapping.

Given an integral data dependence VV = (D, U, V,I), whose integral index mapping I has

m generators, where m > 1, the application of a decomposition technique aims at generating

a set of integral data dependencies such that:

- each of the new index mappings is integral with less than m generators; and

- the composition of the new index mappings is equal to I for each point of the domain

D.

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS 8:3

b)

Fig. 3.14. Decomposition 1.

A recursive application of the techniques yields a system of atomic integral data dependencies.

Decomposition is subject to the same constraint as uniformisation, namely that the coeffi­

cients of the index mapping define bounded integer functions on the computation domain.

Also, similar to uniformisation, two decomposition techniques can be defined according to the

relation between the generators of the index mapping and the domain of the data dependence.

In the first case, illustrated in Fig. 3.14 (in 2 dimensions), the application of the technique

consists of:

- the selection of a generator d of I such that d ¢ Lin(D). Let 9 be the coefficient of I

relative to dj

- the definition of the atomic integral index mapping Io(z) = z + g(z)d. Because of

Proposition 3.2.4, Io is guaranteed to be injective over D and an inverse I01 can be

defined according to Proposition 3.2.7;

- the definition of a new integral index mapping II, based on the remaining generators

of I, and having as coefficients the composition of I01 with the relative coefficients of

I.

Suitable routing domains and an auxiliary variable are introduced. Fig. 3.14 a) and b)

illustrate the decomposition technique for I(z), respectively, inside and outside lin(D).

Proposition 3.2.19 [Decomposition 1} Let 1)1) = (D, U, V,I) be an integral data depen­

dence, with I(z) = z + g(z)d + 2::7=1 gj(z)dj. Let 9 be non-negative and bounded over D,

and 9 the least upper bound of g. Let d ¢ lin(D) and P be the convex polyhedron generated

by D and d. Consider 7r E lin(P) n D.l.., with 7r i- 0, and the hyperplane [7r : 0] containing

the domain D.

Then V1) can be substituted by the atomic integral data dependence

1)1)' = (D, U, R,Io)

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS 84

and the equation

where:

- the index mappings are:

1"o(z) z + g(z)d
m

1"1(Z) Z + Lgj(z)dj
j=1

with gj(z) = gj(1"01(z», 1"01(Z) = z + I(z)(-d), I(z) = (11"' Z - (J)/TJ and 1] = 11"' d;

- R is a new variable;

_ the applied function is ide a) = a;

_ the new domain is D1 = {z + ld I zED, 0::; I ::; g}.

PROOF: 1"01 defines an inverse of 1"0 on D, according to Proposition 3.2.7. Hence, for all

zED, 1"01 o1"o(z) = z.

Therefore, for all zED,

m

= 1"o(z) + Lgj(1"o(z))dj
j=1
m

1"o(z) + Lgj(1"01 o1"o(z))dj
j=1

m

= z + g(z)d + L gj(z)dj = 1"(z)
j=1

Finally, for all zED,

U(z) = R(1"o(z))

= V(1"1 o1"o(z)) = V(1"(z)).

• 3.2.19

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS

I

I
I

I
I

I

I

I

I

I

r-------------------------,
I I

I I
I I

z+g(z)d

z
I

[It:9j "

a)

, , , ,
I

I ,

I , ,

, ,
I

I

I

,
I ,

I

I

I
I

I

I

I

I
I

I

~-------------------------7

" :
I I

l" • Hz)
,

I , , ,
[1t:91 "

, , , ,

I
I ,

- - - - - - - - - - - - - ---- - - - - ----- -"

b)

Fig. 3.15. Decomposition 2.

Example 3.2.20 Consider the integral data dependence 1)1) = (D. U. L I) with index

mapping I(i,j) = (i,j) + gl(i,j)(l,O) + g2(i,j)(0, 1), where gl(i,j) = (i2 + j2)mod 6 and

g2(i,j) = 2j , and domain D = {(i,j) 11 ~ j ~ 5,i = 11- 2j}. lin(D) = (2.-1)) and

d = (1,0) (j lin(D).

We can choose 7r as any vector in Dl.. In particular 7r = (1,2) (which is orthogonal to the

generator (2, -1) of lin(D)) satisfies the conditions of Proposition 3.2.19. Then, [(1. 2) : 11]

is a hyperplane containing D, Tf = (1,2)· (1,0) = 1 and l(i,j) = i + 2j - 11. Also, for all

(i,j) ED, gl(i,j) ~ 5. If we apply Proposition 3.2.19, we obtain the data dependence

1)1)' = (D, U, R,Io)

and the equation

E = (DI' R, V, id,Id

where id(a) = a, the index mappings are:

Io(i, j)

I 1 (i,j)

(i,j) + gl(i,j)(1.0)

(i,j) + g~(i,j)(O, 1)

and the new domain is Dl = {(i,j) I 1 ~ j ~ 5.11 - 2j ~ i ~ 16 - 2j}. Note the new

coefficient g~, which is defined, according to the proposition, as the composition of g2 and

Ir;I, that is:

'(. .) g2 1,)

(i,j)+ l(i,j)(-1.0)

g2(Ir;1(i,j)) = 2i

.3.2.20

CHAPTER 3. INTEGRAL RECURRENCE EQUATIOl\"S

The second decomposition technique is similar to the first one, and corresponds to a situation

in which the selected generator d of I is contained in the direction of the domain D. i.e ..

dE lin(D). As for uniformisation, a vector 7r needs to be chosen so that routing directions

outside lin(D) can be considered. The choice of 7r is that of a vector orthogonal to both lin(D)

and the space spanned by the generators of I. The resulting decomposition is illustrated (in

3 dimensions) in Fig. 3.15 a) and b) for I(z) inside and outside lin(D), respectively. Xote

that this choice of 7r implies that even for a I-dimensional domain D. the application of

the technique may require a 3-dimensional space (see Fig. 3.15 b)). The direction vectors

J = d + 7r and -7r are considered as the generators of the new integral index mappings. Let

9 be the coefficient of I relative to d. The technique consists of:

_ the definition of the atomic integral index mapping Io = z + g(z)J. Because of Propo­

sition 3.2.4 and the choice of 7r, J is not in lin(D), the mapping Io is guaranteed to be

injective over D, and an inverse IOI can be defined according to Proposition 3.2.7;

_ the definition of an integral index mapping II based on the remaining generators of I,

and having as coefficients the composition of IOl with the relative coefficients of I; and

_ the definition of a third atomic integral index mapping I2 with generator -7r.

Proposition 3.2.21 [Decomposition 2} Let VV = (D, U, V, I) be an integral data depen­

dence, with I(z) = z + g(z)d + 2::j=1 gj(z)dj. Let g,gj be non-negative and bounded over

D and let g, gj be the least upper bounds of g. gj, respectively. Let d E lin(D), P be the

convex polyhedron generated by D and {d1 •... ,dm }, and dim(P) < n. Consider 7r E pl.,

with 7r 1= 0, the hyperplane [7r : 0] containing the domain D, and let J = d + 7r.

Then VV can be substituted by the atomic integral data dependence

V1)' = (D, U, R\Io)

and the equations:

El (Db Rl. R2, id,I1)

E2 (D2• R2, F. id,I2)

where:

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS 8,

- the index mappings are:

Io(z) = z+g(z)d
m

I1(Z) = Z + Lgj(z)dj
j=1

I 2(z) = Z + g'(Z)(-1i)

with gj(z) = gj(I01(z)), I01(z) = Z + I(z)(-d), g'(z) = l(z), l(z) = (1i' Z - 0)/1] and

'fJ = 1i' dj

_ R1, R2 are new variablesj

- the applied function is id(a) = a;

- the new domains are:

Dl = {z + Id I zED, 0 ~ 1 ~ g}
m

D2 = {z+ Lljdj I z E DbO ~ lj ~ gj}.
j=1

PROOF: As 1i ~ lin(D), then d = d + 1i ~ lin(D) and Io is injective over D. Hence, Io1

defines an inverse of Io on D, according to Proposition 3.2.7. Therefore, for all

zED, I01 o Io(z) = z.

For all zED,

m

= Io(z) + L gj(Io(z))dj
j=1
m

= Io(z) + Lgj(Iol o Io(z))dj
j=l

m

= z+g(z)d+ Lgj(z)dj.
j=l

Also, as 1i E pi-, then 1i • dj = 0 and 1i . (L~l gAz)dj) = O. Hence, for all zED,

g'(Il o Io(z)) = l(Il o Io(z))

= (1i' (II o Io(z)) - O)/rJ
m

= (1i' (z + g(z)d+ Lgj(z)dj) - O)/'fJ
j=1

m

= (1i' Z + g(z)1i' d + 1i' (Lgj(z)dj) - O)/'fJ
j=1

= (0 + g(z)'fJ + 0 - 0)/1] = g(z).

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS

Therefore, for all zED,

I2 OIl o Io(z) = I 2(II oIo(z»)

Finally, for all zED,

II 0 Io(z) + g'(I1 0 Io(z»)(-1i)

II 0 Io(z) + g(z)(-1i)
m

Z + g(z)d + Lgj(z)dj + g(z)(-1i)
j=1

m

j=1
m

Z + g(z)d + L gj(z)dj = I(z).
J=l

U(z) = Rl(Io(z» = R2(II 0 Io(z»

= V(I2 0 II 0 Io(z» = V(I(z».

• 3.2.21

Condition dime P) < n above implies that it may be necessary to increase the number of

dimensions of the space prior to the application of Proposition 3.2.21.

Example 3.2.22 Consider the integral data dependence VV = (D, U, V, I) with index

mapping I(i, j) = (i, j) + gl (i, j)(l, 0) + g2(i, j)(O, 1), where gl (i, j) = (i2 + j2)mod 6 and

g2(i,j) = 2j, and domain D = {(i,j) 11 ~ j ~ 5,11- 2j ~ i ~ 16 - 2j}. lineD) = Z2 and

d = (1,0) E lineD). As the polyhedron P generated by D and d2 = (0,1) is offull dimension

in Z2, we need to reindex the data dependence in Z3, before applying Proposition 3.2.21.

Any non-null vector in D.L can be chosen as 1i. For instance, vector 1i = (0,0,1) satisfies

the conditions of Proposition 3.2.21 and [(0,0,1) : 0] is a hyperplane containing P. Let

d = d+1i = (1,0,1),1] = (0,0,1)·(1,0,1) = 1 and l(i,j,k) = k. Note that, for all

(i,j,k) ED, gl(i,j,k) ~ 5, and g2(i,j,k) ~ 25. If we apply Proposition 3.2.21 we obtain the

data dependence

VV' (D,U,Rl,Io)

and the equations:

El (D 1 ,R1 .R2.id,It}

E2 (D2,R2,V,id,I2)

where:

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS

- the index mappings are:

- the new domains are:

Io(i,j,k)

I 1(i,j, k)

I 2(i,j,k)

(i, j, k) + gl (i , j, k)(1 , 0, 1)

(i,j,k)+ g~(i,j,k)(O,I,O)

(i,j, k) + g'(i, j. k)(O, 0, -1)

Dl {(i,j, k) 11 ~ j ~ 5, 0 ~ k ~ 5,11- 2j + k ~ i ~ 16 - 2j + k}

89

D2 {(i,j,k) I 16 ::; i+2j- k::; 16+26 ,1::; li-k::; 14,I::;j::; 5+25 }.

Note the new coefficients g~ and g' defined, according to Proposition 3.2.21, as:

g~(i,j, k)

g'(i,j, k)

g2(Io
1 (i,j, k)) = 2j

l(i,j, k) = k

where Iol(i,j, k) = (i,j, k) + l(i, j, k)(-1,0, -1) = (i - k, j, 0). .3.2.22

The previous results provide means of defining decomposition techniques for integral data de­

pendencies which can be automated. The decomposition procedure is based on the possibility

of defining, at each step, an inverse of an atomic integral index mapping. This definition relies

upon the results in Propositions 3.2.4 and 3.2.7, and, in general, may require an increase in

the dimensionality of the computation space. A more economic decomposition step may be

defined if such an inverse is known independently from geometric considerations. In such a

case, a decomposition technique may be defined as follows:

Proposition 3.2.23 [Decomposition 3} Let 1YD = (D, U, V,I) be an integral data depen­

dence, with I(z) = z + g(z)d + 2:j=1 gj(z)dj . Let 9 be non-negative and bounded over D,

and 9 the least upper bound of g. Let Io(z) = z + g(z)d be an injective mapping over D with

inverse I01 .

Then 1YD can be substituted by the atomic integral data dependence

1)1)' = (D, U,R,Io)

and the equation

where:

CHAPTER 3. INTEGRAL RECURRENCE EQUATIOSS 90

- the index mappings are:

Io(z) z + g(z)d
m

I1(Z) Z + Lgj(z)dj

j=l

- R is a new variable;

- the applied function is ide a) = a;

- the new domain is D1 = {z + ld I ZED, 0 ~ I ~ g}.

PROOF: As I01 is an inverse ofIo on D, then for all zED, I01 oIo(z) = z.

Therefore, for all zED,

II 0 Io(z) =
m

= Io(z) + L gj(Io(z»dj

j=l
m

Io(z) + L gj(IOl 0 Io(z»dj
j=l

m

Z + g(z)d + Lgj(z)dj = I(z).
j=l

Finally, for all zED,

U(z) = R(Io(z»

= V(I1 0 Io(z» = V(I(z».

• 3.2.23

Example 3.2.24 Consider the integral data dependence 1)1) = (D, u, V,I) with index

mapping I(i,j) = (i,j) + (1,1) + g(i,j)(l,O), where g(i,j) = (i2 + l) mod 6, and domain

D = {(i,j) 11 ~ j ~ 5,11 - 2j ~ i ~ 16 - 2j}.

The index mapping Io(i,j) = (i,j) + (1,1) admits the inverse I 0
1(i,j) = (i,j) + (-1, -1).

Hence, 1)1) can be substituted by the data dependence

1)1)' = (D, [T, R,Io)

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS 91

and the equation

where II(i,j) = (i,j) + g'(i,j)(1, 0), g'(i,j) = g(Ii) 1
(i, j)) = ((i - 1)2 + (j - 1)2) mod 6. and

Dl = {(i + 1,j + 1) I (i,j) ED}.

Note that as lineD) = Z2 and d = (1,0) E lineD). the application of Proposition 3.2.21

would require an increase in the dimensionality of the space. .3.2.2-1

From the previous results, we obtain the corollary:

Corollary 3.2.25 Let V1) = (D, U, V,I) be an integral data dependence, with I(z) =

z + g(z)d + L:j=I gj(z)dj. Let 9 be non-negative and bounded over D. and 9 the least upper

bound of g.

If 9 = 0, then 1)1) can be substituted by the integral data dependence

VVo = (D, U, V,Io)

.3.2.25

3.3 Regularisation and Affine Scheduling

Form the discussion in Section 2.2.6, a pointed dependence cone implies the existence of

valid affine timing functions. The preservation of such functions by regularisation can be

guaranteed if the techniques realise transformations of pointed dependence cones.

The following two propositions provide the basic results to prove that integral regularisa­

tion techniques preserve affine scheduling. The results are illustrated in Fig. 3.16 for a

3-dimensional space. Parts a), b) and c) of the figure illustrate Proposition 3.3.1, while parts

d), e) and f) correspond to Proposition 3.3.2.

Proposition 3.3.1 Let C be a pointed polyhedral convex cone with generators TI" •• , Tp.

Let P E Cl. and T E C. with polO and T # O. Define T = T + p and f = T - p. Then the cone

C' generated by TI •••• , Tp , T, f is pointed.

PROOF: The result is based on the separation theorem for pointed cones (see Appendix E).

As C is pointed, there exists A E line C) such that A' C > 0, for all c E C, with c f= O.

In particular, A . T > 0 and A . Tj > 0, for all j = L .. . p. As p E ('1-. then A . p = O.

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS 92

/

/

k k /

~
d+1t

'X --- 't< / -'
/ ----- It

/ -.
<:'---:

/ - .
v - - .,: C - .

'- --i ' ---
'-'-~----

d- It '-
'-

'-

a)
'-

b) c)
/

/

k k /

~
d+1t kt< --- It

-:: :'~ --: / --f":_ C'

-It

d) e) I t)

Fig. 3.16. The preservation of pointedness through regularisation.

We prove that A . C > 0, for all c E C', with c -1= O. Trivially the property is true for

each of the generators r j of C. Besides:

Therefore, C' is pointed.

A·r+A,p=A·r>O

A·r-A,p=A·r>O

.3.3.1

Proposition 3.3.2 Let C be a pointed polyhedral convex cone with generators rl,"" rp'

Let p E C.l and r E C, with p -1= 0 and r -1= O. Define r = r + p. Then the cone C' generated

by rl, ... , r p , r, -p is pointed.

PROOF: The result is based on the separation theorem for pointed cone (see Appendix E).

As C is pointed, there exists A E line C) such that A' c > 0, for all c E C, with c -1= O.

In particular, A·r > 0 and A ·rj > 0, for all j = 1, .. . ,p. As p E C.l, then A'P = O.

Let ,XI = aA - p, with a > IpI2/(A' r) > O. We prove that ,XI. c > 0 for all c E C',

with c -1= O. In fact, for all c E C. with c -1= 0, A' . c = aA . c - p . c = aA . c > O.

Hence, ,XI. rj > 0 for all j = 1. ... , p. Besides:

\' .
1\ • r

A'·(-p)

A'· (r + p) = aA' (r + p) - p. (r + p)

aA . r + aA . p - p. r - p. p = aA . r - Ipl2 > 0

-aA . p + p . p = Ipl2 > 0

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS

a)

, , ,

. '~ J , - •
k ,--, ,,: t / ~.:--..... c. ~ ,-- : . ,- .

1 ,:':"'- __

, . ./'" --
...;/ -

c)

, , , ,
I .
I,"

. r2

b)

, , ,

d)

, ,

k=O

,

c·

Fig. 3.17. a) Cone C; b) Vector Tin C; c) Cone C' d) Cone C".

Therefore, C' is pointed. • 3.3.2

Note that if C is a dependence cone and A corresponds to a valid affine timing function for

C, the proofs of the above propositions indicate how to determine a vector A' from A, which

defines a valid affine timing function for the dependence cone C'. In particular. according to

Proposition 3.3.1, >.' is equal to A, while according to Proposition 3.3.2, A' is equal to aA - p,

with a > IpI2/(A' T).

Example 3.3.3 Consider the pointed cone C of Fig. 3.17 a), generated by Tl = (1,2,0),

T2 = (3,1,0), and the non-null vector A = (0,1,0). Note that A' Ti > 0, for i = 1,2. Consider

the vector T = Tl + T2 = (4,3,0) in C (see Fig. 3.1 i' b)) and the vector p = (0,0,1) in Cl..

Let us first consider the cone C' (see Fig. 3.17 c)) generated by Tl, T2, f and 1', where f =

T + p = (4,3,1) and l' = T - P = (4,3,-1). Then C' is pointed and A' C > ° for all c E C'.

This fact can be verified by considering the generators of C', Le., :

A . Tl 2 > °
A . T2 1 > °
A·f 3>0

A·1' 3>0

Let us now consider the cone C" (see Fig. 3.17 d)) generated by TI. T2. f and -p, where

f = T+p = (4,3,1) and -p = (0,0,-1). Then C" is pointed and any>.' = aA - p. with

CHAPTER 3. INTEGRAL RECURRENCE EQUATIONS 94

Technique Generators of C Generators of C' Proposition

Unif. (3.2.10) r r -

Unif. (3.2.13) r r, r, T 3.3.1
Par. Unif. (3.2.16) r r, r, T 3.3.1
Decomp. (3.2.19) r,rl,···,rm r,rl,···,rm -

Decomp. (3.2.21) r,rI, ... ,rm r, rl,"" rm, r,p 3.3.2
Decomp. (3.2.23) r,rI, ... ,rm r,rr, ... ,rm -

Table 3.1. Regularisation and the preservation of affine scheduling.

a> 1/3, is such that).'·c > 0 for all c E C". For instance, let a = 1 and >" = >.-p = (0.1, -1).

Then:

>. ' • ·r

>.' . (-p)

2> 0

1> 0

2>0

1>0

Note that>. does not have the same property as, for instance, >. . (- p) = O. • 3.3.3

Both the uniformisation and decomposition techniques which we have introduced for integral

data dependencies, define particular cases to which the above propositions apply. We have

summarised the various techniques in Table 3.1. The first column of the table indicates the

technique with, in brackets, the reference number of the corresponding formal result. The

generators of the (embedding dependence) cone before (C) and after (C') the application of

the technique are given in the second and third columns, respectively. In particular, in such

columns r = -d and r j = -dj, for all j = 1, ... , m, denote the generators of the corresponding

dependence cone, while r = -d, T = -d and p = -1[" the new generators introduced by the

various techniques. The last column indicates which of the above proposition applies. A line

- indicates that no result applies and corresponds to a case in which the dependence cone

is not modified by the regularisation technique.

From the above results, it follows that the integral regularisation techniques which we have

defined preserve the affine scheduling of a data dependence. In order to guarantee a similar

result more globally for the whole specification, we need to consider all its data dependencies

at the same time. Fortunately, this is not a major problem. In fact, we rna:, define the

dependence cone of a system of equations S as the smallest polyhedral convex cone which

CHAPTER 3. INTEGRAL RECURRENCE EQUATIOSS 95

Technique Condition Extra Dimensions

Unif. (3.2.10) d ~ lineD) no
Unif. (3.2.13) dE lineD) yes

dim(D) < n
Par. Unif. (3.2.16) dE lineD) yes

dim(D) < n
I

I
Decomp. (3.2.19) d ~ lineD) no
Decomp. (3.2.21) dE lineD) yes i

dim(P) < n I
Decomp. (3.2.23) known in verse no

Table 3.2. Summary of regularisation techniques.

contains all the dependence cones of S. Let Cs denote such a cone. Then, by definition,

for each data dependence VV of S, the corresponding cone C is contained in eso Hence, a

choice of 11" in (Cs)l. guarantees both that 11" E Cl. and that affine schedulings are preserved

for the system S.

3.4 Summary

In this chapter we have discussed how integral data dependencies can be defined and made

uniform in the context of classic regular array synthesis. The key issue was the relationship

established between the integral index mapping and sets of direction vectors of the lattice

space. This relationship has allowed us both to relate integral data dependencies to affine

data dependencies, and to generalise forms of regularisation techniques from the affine to the

integral case.

The notion of atomic integral data dependence was formulated as an integral data depen­

dence with a particular role in regularisation. Based on such a notion, we have developed

both decomposition and uniformisation techniques. vVe have summarised those techniques in

Table 3.2. In the table, the first column indicates the technique and in brackets the reference

number of the corresponding formal result. The second column indicates the basic conditions

for its applicability. In particular, d denotes a generator of the integral index mapping, D

the domain of the data dependence, and P the polyhedron generated by d and D. The last

column indicates whether the application of the technique may require an increase in the

number of dimensions of the space.

The techniques which we have developed are amenable to semi-automatic support. Designer·s

CHAPTER 3. INTEGRAL RECURRENCE EQL'ATIONS 96

intervention is required, typically for the choice ofthe regularisation directions (the generators

of the integral index mapping and their ordering) as well as the hyperplane on which pipelining

and routing schemes are based (the vector 7r in the formal propositions). The details of the

transformations are, however, accounted for by the techniques. Also, the conditions for

the existence and preservation of affine scheduling which we have developed are not just of

theoretical relevance, but provide guidelines to the designer in the choice of the regularisation

directions.

As affine data dependencies are particular cases of integral data dependencies, several tech­

niques are available for their regularisation, including those specifically developed in the

literature for them, and those we have developed in this work for the integral case. In gen­

eral, the designer has to evaluate which technique should be adopted on the basis of the

requirements of each specific problem. As a general rule, however, the more specialised is a

technique, the simpler and more effective it is likely to be. For instance, integral techniques

always introduce control overhead as they are tailored to situations in which convexity needs

to be recovered. Indeed, in the affine case convexity comes for free. Also, the removal of

affine broadcasts can be achieved very effectively through a technique (known in the litera­

ture as pipelining [Qu Va89]) which selects regularisation directions in the null space of the

linear part of the affine transformation defined by an index mapping. A similar technique

cannot be adopted for integral mappings, as linearity is not one of their general properties.

On the other hand, the regularisation schemes that we have developed have a property of

reconfigurability, achieved by the initialisation of the control variables, which is not char­

acteristics of any affine regularisation technique. Our techniques are also, in general, more

detailed than the affine techniques presented in [QuVa89] (on which our work in based), which

tend to state the applicability conditions without providing all the details for their practical

implementation.

Chapter 4

Dynamic Recurrence Equations

Both affine and integral data dependencies are static in that they are completely determined

when the algorithm is specified. There exist algorithms, however, whose data dependence

relations do not share this characteristic. For example, their definition may rely upon values

which are provided or computed only when the algorithm is executed. We call such data

dependence relations dynamic. In this chapter we aim at introducing the concept of dynamic

data dependence in the context of regular array synthesis and identifying classes of dynamic

data dependencies which are amenable to a systematic transformation into regular arrays.

The development of synthesis techniques for dynamic problems constitutes an entirely new

chapter in regular array design. Researchers in the field have so far avoided consideration of

dynamic problems, mainly on the belief that dynamic dependencies and the static topology of

regular arrays cannot be reconciled. However, examples of ad hoc regular arrays for problems

which may be considered as dynamic exist in the literature (one of these problems, that of

Gaussian elimination with pivoting, will be considered in Chapter 5). Therefore, it appears

that regular array design is feasible at least for restricted classes of dynamic problems.

One of the basic issues we need to address in the synthesis of dynamic problems is the type

of dynamic data dependence relation that we want to consider. The notion we adopt in this

chapter is that of a data dependence relation which is dynamic with respect to the inputs

of the algorithm. More precisely, the data dependence relation between two variables of a

specification changes (Le., different pairs of their instances may be related under the data

dependence) at each execution of the algorithm on the basis of the input values provided. In

formalising this notion in the context of regular array synthesis, a major difficult:, to overcome

is the lack, in the classical framework, of some of the necessary basic concepts. primarily a

formal notion of input. Hence, the first part of this chapter will be devoted to introducing

97

CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 98

some of these basic notions. In particular, formal definitions of input and indexed \a.riable

will be provided in Sections 4.1, while notions of dynamic index mapping. dynamic data

dependence and dependence graph will be developed in Section 4.2.

Once the basic notions have been established, we proceed to identify classes of dynamic

problems which can be reduced systematically to uniform problems. The problems we con­

sider may be regarded as a dynamic generalisation of integral problems and possibilities for

their regularisation stem from the use of control variables in the definition of the uniformisa­

tion techniques, which can be dynamically reconfigured at each execution of the algorithm.

Reconfigurable control variables enable us to reconcile the existence of dynamic data depen­

dencies in the algorithm with its execution on a regular array of static topology. ;\ amely. the

connections between processing elements are not altered, while software control provides for

a flexible routing of the data through the network. This type of dynamic problems and their

regularisation will be considered in the second part of the chapter, including Sections 4.3, 4.4

and 4.5. We will draw some conclusions in Section 4.6.

4.1 Inputs and Indexed Variables

As mentioned above, we consider data dependencies which are dynamic with respect to the

inputs of a system of equations. For their characterisation we need first to define more

precisely what an input is. The basic concepts of regular array synthesis introduced in

Chapter 2 do not account for a such a definition, because inputs do not play an essential part

in the analysis and transformation of static data dependencies (hence their explicit treatment

can be avoided).

By recalling the notation of Chapter 2, we will denote by CS the computation space and Val

the set of data values, containing the undefined value l..

Given a system of equations S, we define an input of S as an assignment of values to some

of the variables of S at points of the computation space. As may be expected, such an

assignment is based on the input equations of S. More precisely:

Definition 4.1.1 [Inputs} Let S be a system of equations with input equations E I , ... , E r ,

where Ei = (Dj,Ui,ini). for i = 1, r. Let V = {Ut, ... ,Ur } and D = Ui=IDi. An input

of S is defined as a mapping in : V X D --7 Val, where:

. (U')-{ ini(c) cEDi zn "C - h .
.l.. ot erWlse

CHAPTER 4. DYNAMIC RECURRENCE EQL"ATIONS 99

_ 4.1.1

We denote the set of inputs to S by Inputs.

Example 4.1.2 Consider the following system of equations (which generalises that in

Example 2.1.2 for the Fibonacci sequence):

with domains DI = {O, I}, D2 = {2, ... , n}, for some integer n > 2; index mappings II (i) =

i-I, I2(i) = i - 2; and applied functions +(a,b) = a + b, inF(i) = k with fi E Z. The

difference with respect to Example 2.1.2 is the definition of inF that. here, is not a constant

function.

EI is the only input equation of the system. The inputs of S are functions of the type

in: {F} X DI ~ Z U {1.}, where:

. (F .) _ { inF(i)
zn ,Z - 1.

i E DI
otherwise

_ 4.1.2

The definition of inputs above allows us to define more precisely the indexed variables of

a system of equations. In particular, while in Chapter 2 we informally associated indexed

variables with the (tabulated) functions computed by the algorithm, we can now define an

indexed variable as a mapping which associates a (tabulated) function with each input of the

algorithm. The definition is the following:

Definition 4.1.3 [Indexed Variable} Let S be a system of equations and Inputs its set of

inputs. A variable V of S, with definition domain Def Dv, is a mapping from Inputs to

[Def Dv -+ Val]. _ 4.1.3

Example 4.1.4 Let us consider the system of equations in Example 4.1.2. For inF(i) = 1

on Db variable F represents the first n + 1 entries ofthe Fibonacci sequence. For inF(i) = 0.

F is the zero function. For inF(i) = 2, F represents the first n + 1 entries of the sequence

2,2,4,6,10, Indeed infinitely many functions may be obtained. _ 4.1.-1

CHAPTER 4. DYNAMIC RECURRENCE EQUATIO;,\S 100

In the following, given a variable V, we adopt the notation V[_]. where [_] is a place holder

for inputs. Then, for all in E Inputs, V[in] defines a function from DelDv to Val.

Once a formal definition of indexed variable has been provided, a number of properties for

those variables can be given. The following properties characterise indexed variables which

assume integer values. They will be used in the second part of this chapter for the definition

of a class of dynamic data dependencies in the context of Euclidean synthesis methods. For

ease of presentation, we prefer to introduce them here rather than later in the chapter.

Definition 4.1.5 [Integer-valued Indexed Variable} Let S be a system of equations, Inputs

its set of inputs, and V a variable of S with definition domain Del Dv· F is integer-valued

if V defines a mapping from Inputs to [De I Dv ~ Z]. In addition, let D ~ De I Dv. Then

V is:

_ non-negative over D, if for all in E Inputs, V[in](c) ~ 0 for all c ED;

_ bounded (above) over D, if there exists m E Z, such that for all in E Inputs, \T[in](c) ~

m for all c ED.

.4.1.5

We assume an integer-valued indexed variable V equal to 0 outside its definition domain. i.e.,

for all in E Inputs, V[in](c) = 0 for c t/. DelDv. This assumption replaces that made in

Chapter 2 that a variable is undefined (equal to 1-) outside its definition domain. Although

there is a small change of semantics (we cannot distinguish when the variable is defined

and equal to 0 from when it is undefined), this assumption simplifies the definitions of the

regularisation techniques of the following sections.

4.1.1 Implicit Quantification

As index variables are defined in terms of inputs. all definitions which involve indexed vari­

ables are implicitly universally quantified over those inputs. For instance, a recurrence equa-

tion

in a system S can be seen as a short-hand for the expression: for all in E Inputs,

E[in] = (D, U[inJ, (l:I[inJ, \rm[in]) , j, (II.' ., ,Im))·

CHAPTER 4. DYNAMIC RECURRENCE EQr.:ATIONS 101

This implicit quantification is not usually addressed in the synthesis methods (indeed. we have

ignored it in the previous chapters) as only static elements of the system are manipulated. In

particular, the emphasis is on the analysis and transformation of data dependence relations

between computation points, and those relations are defined as static (both computation

points and index mappings do not depend on the inputs of a system of equations). However.

the shift from static to dynamic data dependencies addressed in the following sections. will

require us to consider the inputs of the system explicitly. In the following, we will retain the

implicit quantification whenever possible.

4.2 Dynamic Data Dependencies

Our concept of dynamic data dependencies is based on the idea of dynamic index mapping

as an index mapping which is dynamic with respect to the inputs of an algorithm. That

an index mapping becomes dynamic may appear as a simple extension of the static notion.

It has, however, far reaching repercussion on the whole formalism. as index mappings are

among the basic elements of synthesis methods. In particular, data dependence relations and

their graphical representation as dependence graphs are affected, in that a new dependence

relation and graph are obtained for each input. Formally, we define a dynamic index mapping

as follows:

Definition 4.2.1 [Dynamic Index Mapping] Let S be a system of equations and Inputs its

set of inputs. A dynamic index mapping I is a mapping from Inputs to [CS - CS] .

• 4.2.1

Definition 4.2.1 implies that for all in E Inputs, I[in] is an index mapping. Note that

the definition assumes the existence of a system of equations upon whose inputs the index

mapping is defined. For convenience, in the following we will omit the explicit reference to

this system, and will denote the set of its inputs simply by Input, without decoration.

Note that a (static) index mapping can be interpreted as a dynamic index mapping with a

singleton set as its range, i.e., the dynamic index mapping always associates the same (static)

index mapping with all the inputs to the system.

Example 4.2.2 Consider the following single assignment code segment:

for i := 1 to 3 do

CHAPTER 4. DYNAMIC RECURRENCE EQUATIOSS

read(Y(i»;

for i := 4 to n do

begin

read(G(i));

read(X(i));

I(i):= X(i) - (G(i) mod 4);

Y(i):= sqr(Y(i - I(i»);

end;

The code corresponds to the system S of equations:

EI (Db Y, iny)

E2 (D 2 , G, ina)

E3 (D 2 , X, inx)

102

E4 = (D2,I,(X,G),h,(I1,Il))

with domains Dl = {O, ... , 3} and D2 = {4, ... , n}, index mappings II (i) = i, I2(i) = i-I(i),

and applied functions h(a, b) = a - (b mod 4), sqr(a)

ina(i) = gi, with gi E Z, and inx(i) = i.

a2
, iny(i) = Yi, with Yi E R,

The mapping I 2(i) = i - I(i) is a dynamic index mapping. In fact, I2 is defined in terms of

the indexed variable I that, by definition, depends on the inputs of S. .4.2.2

Dynamic data dependencies and data dependence graphs can be defined on the basis of

dynamic index mappings. The main difference from the static case is that for each input a

new relation and corresponding graph are defined, based on the corresponding index mapping.

The reader may compare the definitions below with those in Chapter 2.

Definition 4.2.3 [Dynamic Data Dependence} Let I be a dynamic index mapping. A

dynamic data dependence 1)1) is a 4-tuple (D, U, V,I), such that for all in E Input, V1)[in] =
(D, U, V,I[inJ) is a data dependence. .4.2.3

CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 10.3

Definition 4.2.4 [Dynamic Data Dependence Graph} Let 1)V = (D, U.l",I) be a dynamic

data dependence. Its dynamic data dependence graph V1)g is a 2-tuple (X, A), such that

for all in E Input, (N[in], A[inD is the data dependence graph defined by:

- N[in] = D U I[in](D); and

- A[in] = ((I[in](d), d) IdE D}.

• .t.2.4

Example 4.2.5 Consider the system S of Example 4.2.2. Its data dependencies are:

1)1)1 (D2' I, X,I1)

VV2 (D2' I, G,I1)

1)1)3 (D2' Y, Y, I 2)

with I1 (i) = i and I 2(i) = i - I(i). The data dependencies VV1 and VV 2 are (static)

uniform, while VV3 is dynamic. The data dependence graph defined by VV3 is also dynamic.

Fig. 4.1 a) and b) illustrate the dynamic data dependence graph for two inputs to S (and for

n = 11). The related tables give the corresponding values of the variables of the system on

their domains.

• 4.2.5

4.3 Dynamic Data Dependencies in Euclidean Synthesis

In this section we introduce a class of dynamic data dependencies which are amenable to

systematic transformation into regular arrays in the context of Euclidean synthesis methods.

The benefits of adopting Euclidean geometry and linear algebra as the mathematical frame­

work for synthesis methods, both from a theoretical and applicative point of view, have

already been discussed at length in Chapter 2. We have also already mentioned the necessity

of providing an explicit syntactic characterisation for the formal manipulation of algorithm

specifications in such a context (see Section 2.2.1).

In the following we will provide a syntactic characterisation of a class of dynamic data de­

pendencies, which we see as a natural dynamic generalisation of integral data dependencies.

The generalisation is provided by replacing integer functions with integer-valued variables as

CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 104

i 0 1 2 3 4 5 6 7 8 9 10 11
G(i) ~ ~ ~ ~ 4 5 6 7 8 9 10 11
X(i) ~ ~ ~ ~ 4 5 6 7 8 9 10 11
I(i) 0 0 0 0 4 4 4 4 8 8 8 8

i - I(i) 0 1 2 3 0 1 2 3 0 1 2 3
Y(i) Yo Yl Y2 Y3 Y5 Y? Y~ Y5 Y6 Y? Y~ Y5

~~~. 
o 2 3 4 5 6 7 8 9 10 11 

a) 

z 0 1 2 3 4 5 6 7 8 9 10 11 

G(i) ~ ~ ~ ~ 2 3 5 2 7 11 9 17 

X(i) ~ ~ ~ ~ 4 5 6 7 8 9 10 11 

I( i) 0 0 0 0 2 2 5 5 5 6 9 10 

i - I( i) 0 1 2 3 2 3 1 2 3 3 1 1 

Y(i) Yo Yl Y2 Y3 Y~ Y§ yt y~ Y§ Y§ Yl yl 

• 
o 2 3 4 5 6 7 8 9 10 11 

b) 

Fig. 4.1. Values of the variables of S for two inputs to the system and relative data dependence 

graphs. 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 10.5 

the coefficients of the index mappings. Such a replacement introduces a form of dynamicity 

which depends on the inputs of the system of equations. 

The main benefit of this approach is that regularisation techniques can be developed from 

those of integral data dependencies. In particular, we will show that the reconfigurability 

characteristics of the integral routing scheme that we have defined, provides the necessary 

flexibility for the treatment of this particular type of dynamic problems. There is. however. a 

restriction to their applicability, which is formally captured by the notion of separability be­

tween variables. Separability indicates that all computations necessary to resolve the dynamic 

data dependence relations can be separated and carried out prior to any other computation 

of the algorithm. Intuitively, if an algorithm is specified as a sequence of nested for-loops, 

separability allows us to reorganise the nested for-loops so that the control variables which 

define the dynamic routing of the data are computed initially, while all remaining nested for­

loops follow. This type of restructuring of the computations implies that a further updating 

of the control signals is not possible. That is, once a dynamic data dependence relation has 

been established, it becomes static for the rest of the execution of the algorithm. From a 

mathematical point of view, the reorganisation of the computations is achieved through geo­

metric translations of computation domains and a redefinition of the relative equations. That 

separability constitute a restriction for the regularisation of dynamic problems will become 

clear also from the case studies of Chapter 5. 

For presentation purposes, the remainder of the chapter is structured similar to Chapter 3 

for integral recurrences. Such an organisation facilitates the comparison between the two 

approaches. The main differences to keep in mind concern the notion of separability and the 

corresponding reorganisation of the computations. Other minor differences will be enlightened 

in the discussion. 

4.3.1 Finitely Generated Index Mapping 

A natural dynamic generalisation of an integral index mapping is the following (the reader 

may compare this definition with Definition 3.1.1 in Chapter 3), which replaces integer func­

tions with integer-values variables as the coefficients of the index mapping: 

Definition 4.3.1 [Finitely Generated Index Mapping} Let I be a dynamic index mapping. 

I is finitely generated iffor all in E Input and for all z E zn, I[in](z) = z+ L7=1 Gj[in](z)d j • 

where, for j = 1. ... , m, Gj is an integer-valued indexed variable and dj is a non-null yector 



CHAPTER 4. DYNAMIC RECURRENCE EQLTATIOSS 106 

in zn. In addition, I is atomic finitely generated if m = 1. .4.3.1 

Variables Gj are called the coefficients of the index mapping and vectors dj its generators. 

Following the convention in Section 4.1.1, in the following, when possible, we will express 

such an index mapping I more succinctly as I(z) = z + L~l Gj(:;)dj . i.e., we will leave the 

quantification over the inputs implicit. 

Example 4.3.2 Consider the system of equations in Example .1.2.2. The index mapping 

I z, defined as Iz(i) = i-I(i), is finitely generated and, in particular, is atomic. The generator 

is the vector (-1) with coefficient the integer-valued variable I. • .1.3.2 

Similar to the integral case we may define: 

Definition 4.3.3 [Finitely Generated Dependence Mapping] Let I be a finitely generated 

index mapping. Its dependence mapping 0r is such that, for all in E Input and for all 

z E zn, 0r[in](z) = z - I[in](z). • 4.3.3 

If I is expressed as I(z) = z + Lj=l Gj(z)dj, its dependence mapping can be expressed as 

E>r(z) = - Lj=l Gj(z)dj = Lj=l Gj(z)( -d j ). We call the vectors -dj the generators of 0r 

and the variables Gj its coefficients. 

4.3.2 Finitely Generated Data Dependence 

Finitely generated index mappings characterise finitely generated dynamic data dependencies: 

Definition 4.3.4 [Finitely Generated Data Dependence] Let VV = (D, U, F,n be a dy­

namic data dependence. VV is finitely generated if I is a finitely generated index mapping . 

In addition, VV is atomic finitely generated if I is atomic finitely generated. • 4.3.4 

The dependence domain and dependence cone of a finitely generated data dependence can 

be defined accordingly: 

Definition 4.3.5 [Finitely Generated Dependence Domain] Let VV = (D, Co V.I) be a 

finitely generated data dependence and 0r the dependence mapping defined by I. The 

dependence domain nr of VV is such that for all in E Input. nr[in] = 0r[in](D). • .1.:3 . .1 



CHAPTER 4. DYNAMIC RECURRENCE EQL'ATIOX5 10, 

Definition 4.3.6 [Finitely Generated Dependence Cone] Let IXl) = (D. U. l',I) be a finitely 

generated data dependence with dependence domain S1r. The dependence cone 0i- of VV is 

such that for all in E Input, 0Hin] = cone(S1r[in]). .4.3.6 

Example 4.3.7 Consider the finitely generated data dependence VV = (D. C. \".I) with 

index mapping I(i,j) = (i,j) + G I (i,j)(I, 1) + G2(i,j)(LO) and domain D = {(i.j) 11 ~ 

i,j, ~ n}, for some n E N. Assume that the coefficients of I are defined by the input 

equations: 

El (D, GI , inG1 ) 

E2 (D,G2,inG2 ) 

with inGl(i,j) E Z and inG2 (i,j) = i + j, for all (i,j) ED. 

The points of the dependence domains and the dependence cones of VV for two inputs are 

illustrated in Fig. 4.2 (for n = 3). The values of the variables and ofthe index and dependence 

mappings for each point of D are given in the related tables. 

.4.:3.7 

4.3.3 Dependence Cone and Pointedness 

From a previous discussion (see Sections 2.2.6). we know that pointed dependence cones guar­

antee the existence of an affine scheduling. For an integral data dependencies this property 

was exploited as a guideline in the choice of the generators of the index mapping, and sufficient 

conditions were given for an integral dependence cone to be pointed and integral regulari­

sation techniques to realise transformations of pointed dependence cones (see Sections 3.2.1 

and 3.3). 

In this section we investigate the possibility of formulating similar conditions for finitely 

generated data dependencies. The main difficulty here is that a dynamic dependence cone 

actually defines a family of dependence cones, one for each input, and that each such cone is 

known only when the algorithm is executed. Hence, in general, we cannot decide at compile 

time if all the cones of the family will be pointed. However. we may be able to guarantee 

that this is the case if we can make a number of assumptions on its finitely generated index 

mapping. The result is contained in the following proposition: 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIOSS 

(i, j) G1(i,j) 
(1,1) 3 
(1,2) 2 
(1,3) 5 
(2,1) 1 
(2,2) 1 
(2,3) 2 
(3,1) 3 
(3,2) 2 
(3,3) 1 

(i, j) G1(i,j) 
(1,1) 2 
(1,2) 3 
(1,3) 2 
(2,1) 4 
(2,2) 1 
(2,3) 1 
(3,1) 5 
(3,2) 1 
(3,3) 2 

-5 

-'- - - " 
__ .... - -. -.- I ...... 

---- > ... . . ...... 
• • ... ... 

... 

-5 

G2 ( i,j) I( i. j) 0y(i. j) I 
2 (6,4) (-5.-:3 ) ! 

3 (6,4) (-,j.-2) 
4 (10,8) (-9.-.,)) 
3 (6,2) (-4,-1) 
4 (7,3) (-.,).-1) 
.5 (9,5) (-7.-2) 
4 (10,4) (-7,-3) 
5 (10,4) (-7,-2) 
6 (10,4) (-7.-1) 

G2 ( i,j) I( i,j) 0y(i,j) 
2 (5,3) (-4,-2) 
3 (7,5) (-6,-3) 
4 (7,5) ( -6,-2) 
3 (9,5) (-7,-4) 
4 (7,3) (-5,-1) 
5 (8,4) (-6,-1) 
4 (11,6) (-9,-5) 
5 (9,3) (-6,-1) 
6 (11,5) (-8,-2) 

-5 

c:..--", 

- - .-. - - -; ...... - - , ". -----. . ........ 

.... ... 

. ...... ... 
... .... 

... 

Fig. 4.2. Dependence domains and cones for two inputs of G1 and G2 . 

-5 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 

- - - - - - - ----,~--+-.... 

, 

, , c '-, 

, , , 
, 

, , 

Fig. 4.3. Cone C. 

109 

Proposition 4.3.8 Let IXD = (D, U, V,I) be a finitely generated data dependence with 

index mapping I(z) = z + L:~1 Gj(z)dj. If: 

- the coefficients Gj are non-negative over D; and 

- the embedding dependence cone C = cone( { -d1 , ••• , -dm }) is pointed, 

then, for all in E Input, 0* [in] is pointed and contained in C. 

PROOF: The result follows from the definition of C. In fact, by definition C contains all 

points c in zn such that c = L:j=l aj( -dj ), with aj ~ O. For all inputs in, OI[in] 

is defined as the set {L:~l Gj[in](z)( -dj) I zED}. If for all j, Gj[in](z) ~ 0 then 

OI[in] C C and 0T[in] ~ C. Furthermore, because of the inclusion 0T[in] ~ C, C 

pointed implies 0T[in] pointed. _ 4.3.8 

From Proposition 4.3.8, it follows that if A is a non-null vector in zn, such that A . z > 0 for 

each element z of C, then A' z > 0 for all z E 0T[in] and for all inputs in. Therefore any 

affine timing function defined by A is valid for all data dependence cones 0T[in]. 

In the following we always assume that the conditions of Proposition 4.3.8 are satisfied. Note 

that if this assumption is not fulfilled, we can guarantee neither the existence of a timing 

function for all inputs, nor that our regularisation techniques will preserve affine scheduling. 

Example 4.3.9 Consider the data dependence of Example 4.3.7 and its dependence cones 

in Fig. 4.2 for two inputs of G1 and G2 • The cone C = cone( {( -1, -1), (-1, O)}), illustrated 

in Fig. 4.3, is pointed and contains both dependence cones. _ 4.3.9 

4.3.4 Finitely Generated VS. Integral Recurrences 

Given a finitely generated data dependence IXD, for all in E Input, VV[ in] defines an integral 

data dependence. Vice versa, any integral data dependence may be regarded as a finitely 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 110 

FGREs 

AREs IREs 

EJ 
AIREs 

Fig. 4.4. Taxonomy of classes of recurrence equations. 

generated data dependence. This can be achieved, for instance, by replacing the coefficients 

ofits index mapping with integer-valued variables, as explained below. Let '0'0 = (D, U. V.I) 

be an integral data dependence, with index mapping I( z) = z + E~l 9j( z )dj . Then '0'0 can 

be transformed in a dynamic data dependence by redefining its index mapping as I( z) = 
z + E~l Gj(z)dj, where each coefficient Gj, for i = 1, ... , m, is an integer-valued variable 

defined by the input equation Ej = (D,Gj,9j)' Note that this transformation is not just 

a simple syntactic manipulation of the index mapping (as, for instance, that we used to 

demonstrate that an affine index mapping is also integral - see Section 3.1.1). The change 

from static to dynamic is a semantic transformation, as the new interpretation modifies the 

possible models of the specification. Also, the transformation is not unique. Here we have 

chosen the simplest transformation we could think of. The reader may experiment other ways 

of interpreting an integral data dependence as a dynamic data dependence. 

Note that, although theoretically an interpretation of a static data dependence as a dynamic 

data dependence is possible, from a practical point of view there is little convenience in doing 

so, as, in general, dynamic data dependencies require more complex (and often less efficient) 

forms of regularisation. 

By recalling the taxonomy in Section 3.1.1. we may represent the relations between the various 

classes of recurrences which we have considered in this thesis, as illustrated in Fig. 4.4. The 

abbreviations used in the figure are: UREs, for uniform recurrences; AREs, for affine; AIREs 

and IREs, for atomic integral and integral recurrences; and FGREs, for finitely generated 

recurrences. 

4.3.5 Extended Dependence Graph 

By introducing variables in the index mappings, extra dependencies among the variables of a 

system of equations are generated. In fact, given a finitely generated data dependence '0'0 = 
(D, U, V,I) with index mapping I(z) = z + E~l Gj(z)dj . for all z E zn. the computation of 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIOSS 111 

U depends on the values of Gj as well as the values of V. Let us define the set of variables 

of I as VarT = {G1 , ••• , G m}. For an (uninterpreted) static index mapping I we assume 

VarT = 0. We define an extended version of the reduced dependence graph of a system of 

equation as follows: 

Definition 4.3.10 [Extended Dependence Graph} Let S be a system of equations. Define 

its extended dependence graph [DO as the graph (N, A), where: 

- N = Vars; and 

- A = {(U, V) I 3D,I such that (D, U, V,I) E DDs} 

U{(U, G) I 3D, V,I such that (D, U, V,I) E DDs and G EVarT}. 

• -L3.10 

If no finitely generated index mapping is present in the system, its extended dependence 

graph is equal to its reduced dependence graph. 

Given a system of equations S and a variable V of S, based on the notion of extended 

dependence graph, we can define the subsystem of equations defining V. In particular, let 

VA denote the set of the nodes of the graph which are accessible from V (see Appendix D 

for a definition). Then the subsystem of equations defining V is DefSv = UUEVA DefEu. 

Similarly, for a set of variables V, the subsystem of equations defining V is De fSv = 
UVEvDefSv. 

4.3.6 Separability 

Separability is a property defined between the variables of a system of equations which allows 

the identification of separable sets of computations. The notion of separability is based on the 

dependence relations existing among variables, instead of their instances, i.e., its formulation 

is based on the extended dependence graph of the system. The definition of separability relies 

upon the strong connectivity relation of graphs (see Appendix D for a formal definition). We 

define: 

Definition 4.3.11 [Separability} Let S be a system of equations, [DO its extended depen­

dence graph and U, V E Vars. U and V are separable in S if and only if e and \' are not 

strongly connected in [DO. • ~.3.11 



CHAPTER 4. DYNAMIC RECURRENCE EQL'ATIONS 112 

a) b) 

Fig. 4.5. Extended dependence graph of: a) S; b) S'. 

Example 4.3.12 Consider the system of equations of Example 4.2.2. Its extended depen­

dence graph is given in Fig. 4.5 a). The equivalence classes of the nodes of the graph under 

strong connectivity are {[G], [Y], [1], [X]}. Therefore, all variables are pairwise separable in 

S. 

.4.3.12 

In the following, given a finitely generated data dependence 1)1) = (D, U, V,I), we will be 

interested in the separability of variable U from the coefficients of the index mapping I. If 

these variables are separable, it will be possible to reorganise their computations in the lattice 

space and to define, similar to the integral case, a uniform and acyclic routing of the data 

which substitutes the data dependence 1)1). Note that when an integral data dependence 

is regarded as finitely generated (with the interpretation of Section 4.3.4), this separation is 

always possible, as the coefficients of its index mapping are defined by input equations. 

We will not be able to localise finitely generated data dependencies for which this separation 

is not possible. One such case is illustrated in the following example. The separability of 

the variables (or the lack of it) is the main restriction to the application of the regularisation 

techniques developed in this chapter. 

Example 4.3.13 Consider the following system of equations S', obtained by modifying 

that in Example 4.2.2: 

El (Dl' Y, iny) 

E2 (D2. G, Y, mod4,Il ) 

E3 (D2'X, inx) 

E4 (D2, 1, (X, G). sub, (I2,I2)) 

Es (D2, Y. y, inc.I3) 



CHAPTER 4. DYNAMIC RECURRENCE EQlrATIO/-,S 113 

with domains Dl = {D, ... ,3}, D2 = {4, ... ,n}, index mappings Ll(i) = i -1, L2(i) = i. 
I3( i) = i - J( i), and applied functions mod4 ( a) = a mod 4, sub( a. b) = a - b, inc( a) = a + 1. 

and, on their domains, inx{i) = i and iny(i) = Yi E Z. 

The extended dependence graph of the system is given in Fig. 4 .. 5 b), and the corresponding 

strongly connected equivalence classes are {[G, Y, I), [X]}. Note that Y and J are not sepa-

rable in S'. .4.3.13 

4.4 Regularisation 

The regularisation of finitely generated data dependencies aims at replacing a dynamic spec­

ification with a static uniform specification. Once this specification is obtained. classical 

mapping techniques apply for the derivation of an array design. The transformation from 

dynamic to static relies upon the definition of control variables which allow us to define a 

reconfigurable routing scheme for the data without having to alter the topology of the array 

design. 

Regularisation techniques for finitely generated data dependencies extend those for integral 

data dependencies and have the form of uniformisation and decomposition. The main differ­

ence from the integral case stems from the necessity of redefining subsystems of computations 

of the specification, due to the definition of finitely generated index mappings, in which the 

coefficients are variables of the system. This characteristics of finitely generated index map­

pings implies that the corresponding dependence relations can be established only once such 

coefficients have been computed by the algorithm. Reorganising the computations guaran­

tees that the coefficients are computed prior to their use. The way the computations are 

reorganised in the computation space of the algorithm is critical for the synchronisation of 

the data and the possibility of providing affine scheduling. In particular, as an effect of the 

transformation, new uniform dependence relations are introduced corresponding to acyclic 

data dependence graphs. 

4.4.1 Translation of a System of Equations 

We call translation of a system of equations the technique which allows us to reorganise 

the computations of a specification in its computation space. As the name indicates, the 

technique is based on a geometric translation (that is a simple type of affine transformation). 

Systems of equations are translated in the lattice space by translating their computation 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 114 

domains along some direction vector of the space. The technique is defined here with respect 

to an arbitrary direction vector. In the regularisation techniques of the following section. 

such a direction vector will correspond to one which is subsequently used for the uniform 

propagation of the data. 

Technically, the translation of a system of equations is a combination of the translation of its 

domains together with a composition of index mappings which replicates on the translated 

domains the same data dependence relations of the original domains. In particular. if a 

computation point x in the original domain is data dependent on a point y under an index 

mapping I, a similar data dependence relation is established between the translated images 

of x and y. 

As a translation tr is just a mapping in zn, the translation of a system of equations can be 

defined by "lifting" tr from computation points to all the components of the system which 

are affected by the translation. This lifting is defined in Definition 4.4.1. 

Usually we will have to combine a translation of the equations with a renaming of their 

variables. In fact, in general, the original system of equations is not removed from the 

algorithm specification, as there might exist other data dependencies in the specification 

relying on the same equations (this is a side-effect of applying regularisation techniques 

locally to each data dependence). Indeed all redundant equations may be eliminated once all 

the necessary regularisations have been completed. 

Definition 4.4.1 [Liftings} Let tr : zn _ zn be a translation and tr- t denote its inverse. 

Define the following liftings of tr: 

- Let D ~ zn. Define tr(D) = {tr(d) IdE D}; 

- Let I E [Input _ [zn _ zn]]. Define tr(I) such that for all in E Input, tr(I)[in] = 

tr 0 I[ in] 0 tr -t ; 

- LetIM E [Input _ [zn _ zn]]m. Definetr(IM) = (tr(pri(IM)), .... tr(prm(IM))): 

- Let E = (DE. eE, Ee, fE,IME). Define tr(E) = (tr(DE)' eE, Ee. fE, tr(IME)); 

- Let E = (DE, eE, fE)' Define tr(E) = (tr(DE), eE, fE 0 tr- t
); 

- Let S = {Et, ... , Es}. Define tr(S) = {tr(Et ), .. . , tr(Es)}. 

Let Ten: Var _ Var be a variable renaming. Define the following liftings of r: 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 115 

- Let V = (Vi, ... , Vm) E Varm. Define ren(V) = (ren(Vt}, ... ,ren(l~). 

- Let E = (DE, -E, E-, fE,IME)' Define reneE) = (DE, rent-E), ren(E-), fE.T.\..1E): 

- Let E = (DE, -E,fE)' Define reneE) = (DE,ren(-E),fE); 

- Let S = {Et, ... ,Es }. Define ren(S) = {ren(Et}, .... ren(Es )}. 

• -.1.-1.1 

By combining the renaming of the variables of a system of equations S with a translation 

of its equations, we obtain a new system of equations, which is an image of S with renamed 

variables and computations positioned differently from the computations of S in the lattice 

space. 

Definition 4.4.2 [Translated Image of a System of Equations] Let S be a system of equa­

tions. Let tr : zn ---> zn be a translation and ren : Var --> Var an injective renaming of the 

variables of S with new names. Define the translated image of S according to tr and ren as 

str,ren = ren 0 tr(S). .4.-1.2 

Example 4.4.3 Consider the system S of equations of Example 4.2.2. and its sub-system 

DefSf = {E2 , E3 , E4}, defining variable I. The data dependence graph and reduced depen­

dence graphs of DefSf are illustrated in Fig. 4.6 a) and b), respectively. Let tT be the trans­

lation tr( i) = i - 5 and Ten a renaming such that ren(I) = C, rene G) = Band ren(X) = A. 

Then (DefSf)tr,ren is the following system of equations (whose data dependence graph and 

reduced dependence graphs are illustrated in Fig. 4.6 c) and d), respectively): 

E~ (D~r,B,inB) 

E~ (D~r,A,inA) 

E~ (D~r, C, (B, A), h, (I~,ID) 

where D~r = {-I .... , n-5}, inB(i) = inG(i+5), inA(i) = inx(i+5), h(a, b) = a-(b mod 4), 

and THi) = Il(i + 5) - 5 = i. .4.4.3 

4.4.2 Regularisation Directions 

Similar to the integral case, given a finitely generated data dependence, we will choose its reg­

ularisation directions among the generators of its index mapping. Because of the assumptions 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 116 

4 5 n 

a) b) 

-1 0 n-5 

c) d) 

Fig. 4.6. System (DeIS]): a) data dependence graph; b) reduced dependence graph. System 
(DejS])tr,ren: c) data dependence graph; d) reduced dependence graph. 

made in Section 4.3.3, that the coefficients of the index mapping are non-negative variables 

and the cone defined by the generators of the dependence mapping is pointed, this choice will 

guarantee the preservation of affine scheduling. We will address this issue in Section 4.5. 

4.4.3 Injectivity of an Atomic Finitely Generated Index Mapping 

We can avoid data broadcasts by restricting ourselves to injective index mappings (see Sec­

tion 2.3.2). Given an atomic finitely generated index mapping I and a domain Din zn, the 

injectivity of the index mappings I[inJ, for all inputs in, can be established by considering 

the geometric relation between D and the generator of I. Indeed, this fact generalises the 

similar result for atomic integral index mappings (Proposition 3.2.4). 

Proposition 4.4.4 Consider an atomic finitely generated index mapping I and a domain 

D ~ zn, such that for all zED, I(z) = z + G(z)d. If d ~ lineD) then for all in E Input, 

l[in] is injective over D. 

PROOF: For in E Input, I[in] is the integral index mapping defined by I[in](z) = z + 
G[in](z)d. From linear algebra, if z, z' E D then z - z' E lin(D). Assume that there 

exist z, z, E D, such that z 1= z' and I[in](z) = I[in](z'). We want to prove that 

this assumption always implies a contradiction with respect to the hypotheses of the 

proposition and therefore for all z, Zl E D, z 1= z' implies I[in](z) 1= I[in](zl). There 

are only two possibilities, both leading to a contradiction. If G[in](z) = G[in](z') = 
e, then I[in](z) = I[in](z') implies z + cd = z' + cd, i.e .. z = z'. Otherwise. if 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 

n 
a) 

c) 

j2ld ---------" 
(ij) " ,. 
, 

, , 

, , 
n 

b) 

" 

, """, 
"""" ,,'.' ,,' ,,' ,,'.' ,,' ,,' 

at' ,,"at' ;,' ,,' ,,' ,,; ,,' ,., ,., , , , , 
2 ,I"" >,' ;,' ,,' ;,' ;,' ;,' 

"""" 
, ' ,,' ,I' '" ,,' ,,'.' ,,' 
"""" " , , , , , , , 
"""" 

, ,,' " )...' " " ,'.' n 

d) 

Fig. 4.7. Injectivity of an atomic finitely generated index mapping. 

G[in](z) -=J G[in](z'), then G[in](zl) - G[in](z) = c -=J 0 and I[in](z) = I[in](zl) 

implies z - Zl = cd, i.e., dE lin(D). .4.4.4 

Example 4.4.5 Consider the data dependence VV = (D, U, V,I), with index mapping 

l(i,j) = (i,j) + G(i,j)(I, 1), domain D = {(i,j) 11 ~ i ~ n,j = 2}, for some n E N, and G 

defined by the equation E = (D, G, ina), with ina(i,j) E Z for all (i,j) E D. 

The generator of I is d = (1,1), lin(D) = ((1,0)) and d (j. lin(D) (see Fig. 4.7 a)). Hence, 

according to Proposition 4.4.4, all index mappings I[in], for all inputs, are injective on D. 

In fact, for all inputs in, (i,j) + G[in](i,j)d belongs to the line {(i,j) + Id lIE R} (see 

Fig. 4.7 b)). In addition, such lines are parallel for all points in D. This is illustrated in 

Fig. 4.7 c) and d) for two possible inputs of G. .4.4.5 

4.4.4 Uniformisation 

Uniformisation substitutes an atomic finitely generated data dependence with a system of 

uniform data dependencies. Let VV = (D. U, V,I) be an atomic finitely generated data 

dependence, with I(z) = z + G(z)d. The application of uniformisation techniques is subject 

to the following constraints: 

- that the coefficient G of the index mapping I is bounded over D. This restriction also 

applies to the integral case and its justification was discussed in Section 3.2.3; 

- that variables G and U are separable. This property allows us to translate in the lattice 

space, the system of equations defining the variable G, so that the computations of G 



CHAPTER 4. DYNAMIC RECURRENCE EQL'ATIONS 

d 

d 

D 

a) 

ar 
G

Ir 
z-tGd [It: GTJ+6] 

- - - - - - -r-:! .... ---7-

/ Dl 

~. z+G[in](z)d 
, [1t:S] 

z D 

c) 

d 

D 

i 
b) 

ar 
_______ Grtr .... ~Z+G_-_d_~[It:_ 9:1~] 

.' Dl 

Y Z+G[in'](Z)d 

[1t:S] 

z D 

Fig. 4.8. Uniformisation 1. 

can be performed prior to those of U. The property also guarantees that no cycles are 

generated in the data dependence graph for effect of the translation. 

Note that we are implicitly assuming that the index mapping has been specified correctly, 

hence that G is defined at each point of D. If this is not the case, the assumption we made 

in Section 4.1 on the default value of an integer-valued indexed variable implies that our 

techniques are still well-defined. This fact should be taken into account if verification issues 

are considered. To this end, a different choice of default value, which allows to identify a 

condition of error, may be more appropriate. 

As for integral uniformisation, in the finitely generated case two uniformisation techniques 

are defined based on the geometric relation between the direction vector d and the domain 

D of the data dependence. 

The first technique is illustrated in Fig. 4.8 for a 2-dimensional case. In the figure, C denotes 

the upper bound of G on D. Routing directions and domains are chosen similar to the integral 

case, and two control variables, a and I, are required. In the figure, the vector 11" defines the 

hyperplane [11" : 0] containing D and TJ = 11"' d. For each z in D, a and I are initialised at the 

point z + Cd. In contrast to the integral case, their initialisation requires the redefinition of 

the computations of G. For simplicity, let us assume that D is the definition domain of G. 

Then its computations are redefined on the translated domain D tT , shown in Fig. 4.8 b). A 

new variable GtT is used such that for each z in D, GtT(Z + Cd) is defined to be the same 

as G(z), The initialisation of a and I is obtained through variable Gtr instead of G. The 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 119 

Fig. 4.9. The need for the redefinition of the coefficient G. 

routing scheme is developed as for integral data dependencies. Fig ... 1.8 c) and d) illustrate 

the routing scheme for two possible values of G(z). That the scheme works for all inputs 

follows from the assumption that G is a non-negative bounded variable on D. In fact. for all 

inputs in and for all zED, z + G[in](z)d lies on the segment {z + Id I 0 ~ I ~ C}. On this 

segment the dynamic reconfiguration of the control variables a and 'Y guarantees that, for 

all inputs, the right data is transferred. The redefinition of variable G is necessary to avoid 

cycles in the resulting data dependence graph. If G were not redefined as Gtr, the resulting 

data dependence graph would resemble the cyclic graph sketched in Fig. 4.9. 

Proposition 4.4.6 (Uniformisation 1] Let V1) = (D, U, V,I) be an atomic finitely gener­

ated data dependence, with I(z) = z + G(z)d. Let G be non-negative and bounded over D 

and let C be the least upper bound of G. Let d f/. lin(D) and P be the convex polyhedron 

generated by D and d. Consider 7r E lin(P) n D'L, with 7r ::J. 0, and the hyperplane [7r : BJ 

containing the domain D. Let U and G be separable. Consider the system of equations 

(DefSa)tr,ren, defined by the renaming ren(G) = Gtr and the translation tr(z) = z + Cd. 

Then VV can be substituted by the uniform data dependence 

1)1)' = (D, U, R,Io) 

and the system of equations: 

E2 (D1,1,a,a,id,I1) 

E3 (D1,2,a, Gtr,id,Io) 

where: 



CHAPTER 4. DYNAMIC RECURRENCE EQ['ATIOSS 

- the index mappings are: 

- R, a and '"'( are new variables; 

- the applied functions are: 

Io{z) = z 

I1(z) = z+d 

in-y(z) = C 

id(a) = a 

dec(a) = a-I 

f(a,b,c,d) = { : cf:d 
otherwise 

- the new domains are: 

Dl 

D1,1 

D 1 ,2 

= 

= 

= 

{z + ld I zED. 0 ~ I ~ C} 

{z + 1 d I zED, 0 ~ I < C} 

{z + Cd I zED} 

120 

PROOF: The proof relies upon the fact that, for all zED and for all inputs in, G[in](z) E 

{O, .. . ,C}. 

For all zED, let segm(z) = {z+ld I ° ~ 1 ~ C}. By definition, for all z' E segm(z), 

a(z') = G(z). In fact, for zED, 

a(z) = a(z + d) 

= ... = a(z + Cd) = GtT(z + Cd) = G(z). 

Also for all z, = z + ld E segm(z). '"'((z') = 1. In fact. for zED, 

'"'((z) = '"'((z + d) - 1 

= ... = '"'(( z + Cd) - C = G - G = O. 

Therefore, for all z' = z + ld E segm(z), a(zl) = '"'((Zl) if and only if 1 = G(z). 

Hence, for all zED, 

U(z) = R(Io(z)) = R(II 0 Io(z)) 

= ... = R(I7(z) oIo(z)) = V(Io oI7(z) oIo(z)) 

= V(z + G(z)d) = V(I(z)). 

• .t.4.6 



CHAPTER 4. DYNAMIC RECURRENCE EQ['ATIONS 121 

k 't< 
i 

(,,:8( __ 

oj bl 

............ ,-, 

cJ d) 

Fig. 4.10. Uniformisation 2. 

Corollary 4.4.7 Let 1XD = (D, U, V, I) be an atomic finitely generated data dependence, 

with I(z) = z + G(z)d. Let G be non-negative and bounded over D and C the least upper 

bound of G. 

If C = 0, then 1XD can be substituted by the following uniform data dependence 

lYDo = (D, U, V,Io) 

where Io(z) = z. .4.4.7 

The second uniformisation technique consists of the combination of the corresponding integral 

techniques with the redefinition of the computations of the coefficient G of the index mapping. 

Once again, for simplicity, let us assume that D is the definition domain of G. The technique 

is illustrated in Fig. 4.10 for a 3-dimensional case. In the figure D tr indicates the translated 

domain and Gtr the new variable defined as G on Dtr. Fig. 4.10 c) and d) illustrate the 

routing scheme for two possible values of G(z). Regularisation directions and domains. as 

well as routing and control variables are defined as for integral uniformisation. 

Proposition 4.4.8 {Uniformisation 2} Let 1)1) = (D. u. V,I) be an atomic finitely gener­

ated data dependence, with I(z) = z + G(z)d. Let G be non-negative and bounded over D, 

m the least upper bound of G and C = lm/2J. Let dE lin(D) and dim(D) < n. Consider 

1[" E D.l, with 1[" f 0, the hyperplane [1[" : OJ containing the domain D. and let d = d + 1[" 

and d = d - 1[". Let U and G be separable. Consider the system of equations (Dr: fSG )tr.ren, 

defined by the renaming rene G) = Gtr and the translation tr( z) = z + cd. 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 

Then VV can be substituted by the uniform data dependence 

VV' = (D, U, R\LO) 

and the system of equations: 

EI (Db RI, (RI, R2, R2, Ct, (3, I), j. (LI,L2.0,L2.I,LO,LO,LO») 

E2 = (D2.b R2,R2,id,L3) 

E3 = (D2,2,R2,V,id,Lo) 

E4 (DI,b Ct, Ct, id,LI) 

Es = (DI,2, Ct, Gtr, half _floor,Lo) 

E6 (DI,I, (3, (3, id,LI) 

E7 (D I,2, (3, Gtr , mod2,Lo) 

Es = (DI,I, " I, dec,Ll) 

Eg (Dl,2, " in")') 

where: 

- the index mappings are: 

LO(Z) Z 

Ll(Z) = Z + d 

L2,O(Z) = z 

L2,l(Z) Z + d 

L3(Z) = Z + d 

- Rl, R2, Ct, (3 and 1 are new variables; 

- the applied functions are: 

in")'(z) G 

idea) = a 

half-floor(a) la/2J 

mod2(a) a mod 2 

decCa) a-I 

{ ~ d#f 
f(a,b,c,d,e.j) d = f.e = 0 

d=j.E=1 

122 



CHAPTER 4. DYNAMIC RECURRE.\'CE EQL
T

.4.TIOSS 

- the new domains are: 

DI 

DI,1 

D I ,2 

D2 

D 2,1 

= 

= 

= 

= 

= 

{z + Id I zED, 0 :s; 1 :s; a} 

{ z + 1 d I zED, 0 :s; I < a} 

{z+adlzED} 

{z + ltd + 12d I z E D I , 0 :s; h :s; 1,0 :s; 12 :s; a} n {z E zn I 7r • Z ~ O} 

{z E D2 I 7r . Z > O} 

D2,2 = {z E D2 17r . Z = O}. 

12.1 

PROOF: The proof relies upon the fact that, for all zED and for all inputs in, G[in](z) E 

{O, .. . ,a}. 

For all zED, let segm(z) = {z+ld 10 :s; 1 :s; a}. By definition, for all z' E segm(z), 

a(z') = lG(z)/2J. In fact, for zED, 

a(z) = a(z + d) = ... = a(z + ad) 

= half _floor( GtT(z + ad)) = half _floor( G(z)) = l G(z)/2J. 

Also, for all z' E segm(z), (3(z') = G(z) mod 2. In fact, for zED, 

(3(z) = (3(z + d) = ... = (3(z + ad) 

= mod2(C tr (z + ad)) = mod2(G(z)) = G(z) mod 2. 

Finally, for all z, = z + ld E segm( z), ,( z') = 1. In fact, for zED, 

,(z) = ,(z + d) - 1 

= ... = ,(z + ad) - G = G - a = o. 

Therefore, for all z' = z + ld E segm(z), a(z') = ,(z') if and only if 1= lG(z)/2J. 

We observe that, for all c E Z, 

lc/2J = (c - c mod 2)/2 

c = 2lc/2J + c mod 2. 

Hence, for all zED, 

U(z) = RI(Io(z)) = RI(II o1"o(z)) 

= ... = Rl(I}G(Z)/2J o1"o(z)) 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 

= R 2(I2.G(z) mod 2 a I}G(z)/2 j a Io( z)) 

= R2(I3 a I 2•G(z) mod 2 a I}G(Z)/2 j a Io( z)) 

... = R 2(IJG(Z)/2 j aI2.G(z) mod 2 aI}G(Z)/2j aIO(Z)) 

V(Io a IJG(Z)/2j a I 2,G(z) mod 2 a I}G(Z)/2J a Io( z)) 

V(z + LG(z)/2Jd + (G(z) mod 2)d + LG(z)/2Jd) 

= V(z + 2LG(z)/2Jd + (G(z) mod 2)d) 

= V(z + (2LG(z)/2J + G(z) mod 2)d) 

= V(z + G(z)d) = V(I(z)). 

124 

• -1...1.8 

Corollary 4.4.9 Let V1J = (D, U, V,I) be an atomic finitely generated data dependence, 

with I(z) = z+G(z)d. Let G be non-negative and bounded over D, m the least upper bound 

of G, and G = Lm/2J. 

If G = 0 then 1JV can be substituted by the uniform data dependence: 

VV' = (D, U, R,Io) 

and the equations: 

El = (D,R,(V, V,(3),j,(Io,I1,Io)) 

where: 

- the index mappings are: 

- Rand (3 are new variables; 

- the applied functions are: 

Io(z) = Z 

I1(z) = z+d 

mod2(a) = a mod 2 

j( a, b, c) = {: ~: ~ 
• -1.4.9 



CHAPTER 4. DYNAMIC RECURRENCE EQ['ATIOSS 12.5 

Example 4.4.10 Consider the system S of equations of Example .t.2.2. As }- and I are 

separable, we can apply uniformisation to the data dependence 1)1) = (D 2 , L } -, I 2 ). wit h 

I2( i) = i - I( i) and D2 = {4, ... , n}. 

As lin(D) = Z, d = (-1) E lin(D) and dim(D) = 1 we need to reindex (see SectioIl 2.2.2) 

the equations in Z2 (so that dim(D) < 2). Let 7r = (0,1), d = d + 7r = (-1.1) and 

d = d - 7r = (-1,-1). Note that I(i) ~ n for all i E {4 .. .. ,n}. Consider the translation 

tr(i,j) = (i,j)+ In/2Jd = (i -In/2J,j + In/2J). and the variable renaming ren such that 

ren( G) = Gtr, ren( X) = X tr and ren(I) = Itr. 

The application of Proposition 4.4.8 and the generation of the corresponding equations pro­

duces the following system: 

(inputs of Y) 

EI (Do,Y,iny) 

(translated sub-system of equations) 

E2 (Dtr, Gtr , inG) 

E3 (Dtr,xtr,inx) 

(computations of Y) 

E5 (D, Y, R\ sqr,I1 ) 

(routing variables RI, R2) 

E6 (D1, RI, (RI, R2, R2, lX, {3, "}'), f, (I2,I1,I3 ,I1• II, It}) 

E7 (D2,b R2, R2, id,I4) 

Es (D2,2, R2, Y, id,II) 

(control signals lX,;3, ")' ) 

Eg (D1,b lX, lX, id,I2) 

E10 (D1,2, lX,Itr, half_floor. II) 

Ell (D1,b {3, {3,id,I2) 

El3 (D1,I,,,},,,,},,dec,I2) 

El4 (D1,2." in"Y) 

where: 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 126 

- the index mappings are: 

Ll(i,j) = (i, j) 

L2( i, j) (i, j) + d = (i - 1. j + 1) 

L3( i, j) = (i,j) + d = (i - 1.j) 

L4(i,j) = (i,j)+d=(i-l,j-l) 

- the applied functions are half_floor(a) = la/2J, mod2 (a) = a mod 2, id(a) = a, 

dee(a) = a-I in-y(i,j) = In/2J, h(a,b) = a - (b mod 4), and 

{

a o!-"{ 

f(a,b,e,o,(3,"{)= be 0=,,(3=0 
0=,,3=1 

- the domains are: 

Do = {(i,j) \ 0 :S i :S 3,j = O} 

D {(i,j) \4 :S i :S n,j = O} 

Dtr = {(i,j) \4 - In/2J :S i:S n - In/2J,j = In/2J} 

Dl = {(i,j) \4 - j :S i :S n - j, O:s j :S In/2J} 

Dl,1 = {(i,j) \4 - j:S i:S n - j,O:S j:S In/2J - 1} 

D1 ,2 = {(i,j) \4 - In/2J :S i:S n - In/2J,j = In/2J} 

D2 = {(i,j) \2 - 2ln/2J + j:S i:S n - j,O:S j:S In/2J} 

D2,1 = {(i,j) E D2 I j > O} 

D2,2 = {(i,j)E D21 j = O} 

The resulting domains, data dependence graph and routing direction vectors are illustrated 

in Fig. 4.11 a), b) and c), respectively. A possible corresponding code segment is the following 

(that the reader may compare with that initially given in Example 4.2.2): 

n':= floor( n/2); 

(* separated code segment *) 

for i := 4 - n' to n - n' do 

begin 

read( GtT 
( i)); 

Xtr(i) := i + n'; 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 

t 
D 

a) 

jL~ 
b) 

12-; 

~i 
-d 

c) 

Fig. 4.11. a) Domains after uniformisation; b) Data dependence graph; c) routing direction 
vectors. 

end; 

(* control signals *) 

for i := 4 - n' to n - n' do 

begin 

a(i,n'):= floor(ItT(i)/2); 

j3(i, n') := [tT(i) mod 2; 

,( i, n') := n'; 

for j := 1 to n do 

begin 

end; 

a(i + j, n' - j) := a(i + (j - 1), n' - (j - 1)); 

j3(i + j, n' - j) := j3(i + (j - 1), n' - (j - 1)); 

,(i+ j,n'- j):= ,(i+ (j -l),n'- (j -1)) -1; 

end; 

(* inputs of Y and their routing *) 

for i := 0 to 3 do 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 

begin 

read(Y(i»; 

R2( i, 0) := Y( i); 

for j := 1 to floor(I( i)/2) do 

R2(i + j,j):= R2(i + j - 1),j - 1): 

end; 

(* computations of Y and their routing *) 

for i := 4 to n do 

begin 

Rl(i - n' - 1, n' + 1) :=..l; 

for j := 0 to n' do 

if (a( i - n' + j, n' - j) #- ,( i - n' + j, n' - j) 

then Rl(i - n' + j,n' - j):= Rl(i - n' + j - l,n'- j + 1); 

else if ({3(i - n' + j, n' - j) = 1) 

then Rl(i - n' + j,n' - j):= R2(i - n' + j -1,n' - j); 

else Rl(i - n' + j,n' - j):= R2(i - n' + j,n' - j); 

Y(i) := Rl(i, 0); 

R2( i, 0) := Y( i); 

for j := 1 to n' do 

end; 

4.4.5 Parametric Uniformisation 

.4.4.10 

Parametric uniformisation techniques can be used to reduce routing overhead by allowing 

a restricted amount of overloading of the data dependence graph (see Sections 2.3.2 and 

3.2.4). A technique similar to that for atomic integral data dependencies can be developed 

for atomic finitely generated data dependencies, the main difference being the separation 

of the computations of the coefficient of the index mapping. The reader is referred to the 

discussion in Section 3.2.4 for a description of the technique. 



CHAPTER 4. DYNAMIC RECURRENCE EQ"C.4.TIO.YS 129 

Proposition 4.4.11 [Parametric UniformisationJ Let VV (D, C. LI) be an atomic 

finitely generated data dependence, with I(z) = z + G(z)d. Let G be non-negative and 

bounded over D and m the least upper bound of G, Let p E N+ and G = Lm/(p + l)J. 

Let d E lin(D) and dim(D) < n. Consider 7r E D.L, with 7r =1= 0, the hyperplane (7r : OJ 

containing the domain D, and let d = d + 7r and d = d - 7r. Let U and G be separable. 

Consider the system of equations (De fSa )tr,ren, defined by the renaming rio n (G) = Gtr and 

the translation tr( z) = z + cd. 

Then VV can be substituted by the uniform data dependence 

VV' = (D, U, R\Io) 

and the system of equations: 

El (Db Rl, (Rl, R2, ... , R2, 0', (3,,), f, (I},I2,o, ... ,I2,p,Io,Io,Io)) 

E2 (D 2 ,1,R2 ,R3 ,id,I3 ) 

E3 (D2,2, R2, V, id,Io) 

E4 (D 2,3,R3,R2 ,id,I4 ) 

Es (D1,b 0', 0', id,I1) 

E6 (D 1,2,0',Gtr ,(p+ l)_floor,Io) 

E7 (D 1,b(3,/3,id,I1) 

Es (D1,2, (3, G tT
, modp+1, Io) 

Eg (D1,b""dec,It} 

ElO (D 1,2", in'Y) 

where: 

- the index mappings are: 

Io(z) 

I1(z) 

I 2 ,o(z) 

I 2,1(Z) 

z 

Z 

z+d 

z + pd 

z+d 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 

I 4 ( Z) = Z + (p - I)d 

- Rl, R2, R3, a,!3 and 'Yare new variables; 

- the applied functions are: 

in-y(z) = C 

idea) = a 

(p+ I)_floor(a) = laj(p+ I)J 

modp+ I ( a ) = a mod (p + 1) 

decCa) 

f(a,bo, ... ,bp,c,d,e) 

- the new domains are: 

DI 

DI,1 

DI,2 

= 

= 

= 

{z + ld I zED, 0:::; 1 :::; C} 

{z + Id I zED, 0 :::; I < C} 

{z + cd I ZED} 

= a-I 

F 
c=fe 

= 
c = e,d = 0 

bp c = e,d = p 

130 

D2 = {z + (It + 12)d + 13d I z E DI, 0 :::; It :::; p,O :::; 12 :::; (p - 1 )C, 0 :::; 13 :::; C} 

n{ z E zn I 11" • z 2:: O} 

D2,1 = {z E D2 111"' Z > O} 

D2,2 = {z E D2 I 11" • Z = O} 

D2,3 = {z E D2 I 11" • Z < 0 + Cry}. 

PROOF: The proof relies upon the fact that for all zED and for all inputs in, G[in](z) E 

{O, .. . ,C}. 

For all zED, let segm(z) = {z+ld 10 :::; 1 :::; C}. By definition, for all z' E segm(z). 

a(z') = lG(z)j(p+ I)J. In fact, for zED, 

a( z) = a( z + d) = ... = a( z + cd) 

= (p+ 1)_floor(GtT(z + cd) = (p+ 1)_floor(G(z) = lG(z)/(p+ l)J. 

Also, for all z' = z+ld in the segment segm( z), with zED, 3( z') = G( z) mod (p+ 1). 

In fact, for zED, 

!3( z) = 8( z + d) = ... = 3( z + cd) 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 1.11 

Finally, for all z' = z + zd E segm( z). -Ii z') = 1. In fact. for zED. 

I(Z) = I(Z + d) - 1 

= ... = I( z + ad) - a = G - a = o. 

Therefore, for all z' = z + Zd E segm(z). a(z') = -,(z') if and only if 1 = lG(z)/(p+ 

I)J. 

We observe that, for all c E Z, 

l c j (p + 1) J = ( c - c mod (p + 1» j (p + 1) 

c = (p + I)lc/(p + I)J + c mod (p + 1). 

Hence, for all zED, 

U(z) = RI(Io(z» = RI(II 0 Io(z» 

= ... = RI(I}G(z)/(PH)J 0 Io(z» 

= RZ(I 'TLG(z)/(p+1)J 'T ( » Z,(G(z) mod (pH)) O.L1 O.LO z 

= R3(I3 0 IZ,(G(z) mod (pH)) 0 I}G(Z)/(P+1)J 0 Io(z)) 

= RZ(I4 0 I3 0 IZ,(G(z) mod (pH)) 0 I}G(z)/(p+I)J 0 Io(z» 

= 
= RZ(IlG(z)/(PH)J 0 I~G(Z)/(P+1)J 0 IZ,(G(z) mod (p+1)) 0 I}G(z)/(P+l)J 0 Io(z» 

= V('T 'TLG(z)/(pH)J 'TLG(z)/(p+1)J o'T 0 ILG(z)/(p+l)J 0 L (z» .LO O.L4 O.L3 .LZ,(G(z) mod (p+1)) 1 0 

= V(Z + lG(Z)j(p + I)Jd + (G(z) mod (p + I»d + lG(z)/(p + 1)Jd + 

lG(z)j(p + I)J(p - I)d) 

= V(z + ((p + I)l G(z)j(p + I)J + G(z) mod (p + I»d) 

= V(z + G(z)d) = V(I(z». 

• 4.4.11 

Corollary 4.4.12 Let VV = (D, U, V,I) be an atomic finitely generated data dependence, 

with I(z) = z + G(z)d. Let G be non-negative and bounded over D and m the least upper 

bound of G. Let p E N+ and a = lmj(p+ I)J. 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 

If (; = 0 then DD can be substituted by the uniform data dependence 

DD' = (D, U, R,Io) 

and the equations: 

EI (D, R, {V, ... , V, (3), J, (II •a .•. .• Il,p.Io)) 

E2 {D , (3, G, modp+ I, Io) 

where: 

- the index mappings are: 

- Rand (3 are new variables; 

- the applied functions are: 

4.4.6 Decomposition 

Io{z) 

II.O(z) 

I1,I(Z) 

z 

z 

z+d 

z+ pd 

a mod (p + 1) 

{ 

ao b=O 
al b = 1 

ap b = p 

132 

.4.4.12 

Decomposition techniques allow us to substitute a finitely generated data dependence with a 

number of generators m > 1, with a corresponding finite set of atolnic finitely generated data 

dependencies. Once again, the techniques derive from those for integral data dependencies by 

taking the separation of the coefficients of the index mappings into account. ~ote, however, 

that because of the translation of their subsystems of equations. no inverse mappings are 

needed in the transformations. In particular, let VD = (D, F. l·.I) be a finitely generated 

data dependence with index mapping I(z) = z + G(z)d+ I:~I Gj(z)d j . Two decomposition 

techniques are developed. 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIOSS 

z+Gd [It: Gq-Hl] 
-------------------~-------

, , 

, , , , 

,.' z+G[in](z)d 
, __ y./ 0 • 

I[in](z) 

[1t:9) 

z 
a) 

z+Gd -
---4.t------.!['::-'!1J~) 

-G~~y otT 

------------------~r __ l~ _G_TJ-Hl) 
, 

• " z+G[in'](z)d 

--y-e.;....., _...::o~ __ [1t:9) 

z 
b) 

z+Gd -
---4.t-----![~ _ ~'J:el 

-~--Z otr GI. .... Gm 
II 

~·l(Z) 

.~ [1t:9] 70 --Y-e.~......::.--- [1t:9j 

z I[in)(z) 
c) 

z 
d) 

Fig. 4.12. Decomposition 1. 

133 

The first technique applies when d ~ lin( D) and is illustrated in Fig . .t.12 (in :2 dimensions). 

For all z in D, I(z) and z + G(z)d assume different values for different inputs. Two of these 

values are illustrated in parts a) and b) of the figure. However, for all inputs, z + G( z)d lies on 

the segment {z + ld I 0 :S I :S C}, where C is an upper bound of G on D. In Fig. 4.1:2 a) and 

b) the segment is represented as a dashed line through z. The expression z + G( z)d defines 

the atomic finitely generated index mapping Io of the decomposition. New variables Gy are 

defined such that for all zED, Gn z + Cd) assumes the same value as G j (z). Their values 

are pipelined from z + Cd to z along the direction of -d, and used in the definition of the 

finitely generated index mapping II of the decomposition (see Fig. 4.12 c) and d)). Hence, 

an inverse of Io is not necessary for the definition of II (as it is for integral decomposition -

see Proposition 3.2.19). 

Proposition 4.4.13 [Decomposition 1] Let DV = (D, U, V,I) be a finitely generated data 

dependence, with I(z) = z + G(z)d + L:j=l Gj(z)dj. Let G be non-negative and bounded 

over D, and C the least upper bound of G. Let d ~ lin(D) and P be the convex polyhedron 

generated by D and d. Consider 7r E lin(P) n Dl.., with 7r =I 0, and the hyperplane [7r : 0] 

containing the domain D. Let U and G j be separable. for all j. Consider the system of 

equations (DejS{G1,,,.,Gm})tr,ren, defined by the renaming ren(Gj) = Gy and the translation 

tr(z) = z + Cd. 

Then DV can be substituted by the atomic finitely generated data dependence 

DDf = (D, C. R,Io) 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 

and the equations: 

where: 

- the index mappings are: 

Ell (Dl,1, Gj, G~, id,I2) 

El2 = (Dl ,2,Gj,GiT ,id,I3) 

Eml = (Dl,l, Gj. G~, id,I2) 

Em2 (D1,2, Gj, G~, id,I3 ) 

Io(z) z + G(z)d 
m 

I 1(z) = Z + L Gj(z)dj 
j=1 

I2(Z) = z+d 

I3(Z) = z 

- Rand Gj, for j = 1, ... , m, are new variables; 

- the applied function is id( a) = a; 

- the new domains are: 

Dl {z+ldlzED,O:SI:SC} 

Dl,l {z + ld I zED, 0 ~ I < C} 

D1,2 {z + Cd I ZED} 

134 

PROOF: In the proof, we use the condition 0 :S G(z) :S C which is satisfied for all inputs. 

For all zED, let segm(z) = {z+ld I 0 :S I ~ C}. By definition, for all z' E segm(z). 

Gj(z') = Gj(z). In fact, for all zED, 

Therefore, for all zED, 

Gj(z) = Gj(z + d) = ... = Gj(z + Cd) 

= Gr<z + Cd) = Gj(z). 

m 

II 0 Io(z) = z + G(z)d + L Gj(z + G(z)d)dj 
j=l 

m 

=[O$G(z)$G] Z + G(z)d + L Gj(z)dj = I(z). 
j=1 



CHAPTER 4. DYNAMIC RECURRENCE EQC4TIOSS 

r-------------------------, 
I 

" 
,r------------------------_~ 

, , , , o 

, , , , 

, , 
I . , . 

,/~ ""~[inJ(Z)d 
, , 

Ilio'Xz) ,- . . 

, 
I 

/ ,*' • , 
," l[inJ(z) 

, , 

" 

a) 

r-------------------------, 
I In: (m+9] ,/ 

, , 
---/---7 

, , 
~-f-:,-~~-I----':' 

, , , , 

, , , 

, , , , 

" (,,:9J " ... ---- - - - - - - ---- - - - - - - - - - - - -' 

c) 

, 

, , , 

, , z+G[in'](z)d 

o 
I • 

I • 

I . 
: 
. 

!.----- --- -- -----------~~~I __ ,' 

, , , , 

I 

, , 
I 

I , 

. , 

, , 

, , 

b) 

,r-------------------------' 
: (It: (;'1+61 .: 

, 
(1<:81 I 

d) 

. . . 
, 

. . . , , 

: " 

Fig. 4.13. Decomposition 2. 

Finally, for all zED, 

U(z) = R(Io(z)) 

= V(II o Io(z)) = V(I(z)). 

13.') 

• -1.4.13 

The second technique extends the scheme discussed for the previous technique to the case 

when the generator d is contained in lin(D). It combines integral decomposition (see Propo­

sition 3.2.21) with the redefinition of the coefficients G1 , ... , Gm . The technique is illustrated 

in Fig. 4.12 (in 3-dimensions) for two possible values ofI(z) (I[inJ(z) in part a) and I[in'J(z) 

in part b)). 

Proposition 4.4.14 [Decomposition 2] Let VV = (D, U, V,I) be a finitely generated data 

dependence, with I(z) = z+G(z)d+ 'Ej=l Gj(z)dj. Let G.Gj be non-negative and bounded 

over D and let C, Cj be the least upper bounds of G, Gj , respectively. Let dE lin(D), P be 

the convex polyhedron generated by D and {d1 , ... , dm } and dim( P) < n. Consider Jr E pl.. 

with Jr i- 0, and the hyperplane [Jr : OJ containing the domain D, and let d = d + Jr. Let 

U and Gj be separable, for all j. Consider the system of equations (DejS{Gk .. Gm})tr,ren, 

defined by the renaming ren( G J = Gy and the translation tr( z) = z + cd. 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 136 

Then VV can be substituted by the data dependence 

VV' = (D, U,Rl,Io) 

and the equations: 

El (Db Rl, R2, id,It) 

E2 (D2' R2, V, id,I2) 

Ell (Dl,l, Gj, G~, id,I3) 

El2 (Dl ,2, Gj, GiT
, id,I4 ) 

Eml = (Dl,b Gj,G'm, id,I3) 

Em2 (D l ,2, Gj, G~, id,I4 ) 

E3 (D2 ,G',inG') 

where: 

- the index mappings are: 

Io(z) z + G(z)d 
m 

Il(Z) Z + L Gj(z)dj 
j=l 

I2(Z) z + G'(z)( -11") 

I3(Z) z+d 

I4(Z) z 

- Rl, R2, G' and Gj, for j = 1, ... , m, are new variables; 

- the applied functions are: 

(11"' Z - (J)/(1I" .J) 

id(a) a 

- the new domains are: 

Dl {z+ZdlzED,O::;Z::;C} 

D1,1 {z+ZdlzED,O::;Z<C} 

D1,2 {z + cd I zED} 
m 

D2 {z+ Lljdj I z E D1,O::; Ij::; Gj} 
j=l 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIONS 137 

PROOF: In the proof, we use the condition 0 :S G(z) :S C. which is satisfied for all inputs. 

For all zED, let segm(z) = {z+ld I O:S 1:S C}. By definition, for all =' E segm(=). 

Gj(z') = Gj(z). In fact, for all zED, 

'( I A ,_A 
Gj z)=Gj(z+d)= ... =Gj(=+Gd) 

= GY(z + cd) = Gj(z). 

Therefore, for all zED, 
m 

II 0 Io(z) = z + G(z)d + L Gj(z + G(z)d)dj 
j=1 

m 

=[O~G(z)~Gl Z + G(z)d + L Gj(z)dr 
)=1 

Also, as 7r E pl.., then 7r' dj = 0 and 7r' (l:::~l Gj(z)dj) = O. Hence, for all zED. 

G'(Il 0 Io(z)) = inGI(Il 0 Io(z») 

= (7r' (II o Io(z)) - 0)/(7r' d) 
m 

= (7r' (z + G(z)d + L Gj(z)dj) - 0)/(7r' d) 
j=l 

m 

= (7r' Z + G(z)7r' d + 7r' (L Gj(z)dj ) - 0)/(7r' d) 
j=l 

= (0 + G(z)7r' d + 0 - 0)/(7r' d) = G(z). 

Therefore, for all zED, 

I2 OIl o Io(z) = I 2(II o Io(z)) 

Finally, for all zED, 

= IIOIo(z)+G'(IIOIo(z»(-7r) 

= I l oIo(z)+G(z)(-7r) 
m 

= Z + G(z)d + L Gj(z)dj + G(z)( -7r) 

j=l 
m 

= Z + G(z)(7r + d - 7r) + L Gj(z)dj 
j=l 

m 

= Z + G(z)d + L Gj(z)dj = I(z). 
j=l 

U(z) = RI(Io(z» = R2(II o Io(z)) 

= V(I2 OIl oIo(z» = V(I(z». 

From the previous to results, we obtain the corollary: 

• 4.-1.14 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIOSS 138 

Technique Generators of C Generators of C' Proposition 

U nif. (4.4.6) r r -

Unif. (4.4.8) r T, r, i' 3.3.1 
Par. Unif. (4.4.11) r r, r, i' 3.3.1 
Decomp. (4.4.13) r,TI, ... ,Tm r,r1,···,Tm -

Decomp. (4.4.14) r, rI, ... , rm r, r1, ... , r m, T, P 3.3.2 

Table 4.1. Regularisation and the preservation of affine scheduling. 

Corollary 4.4.15 Let 1XD = (D, U, V,I) be a finitely generated data dependence. with 

I(z) = z + G(z)d + 2:5=1 Gj(z)dj. Let G be non-negative and bounded over D and (; the 

least upper bound of G. 

If (; = 0, then VV can be substituted by the data dependence: 

VVo = (D, U, V,Io) 

.4.4.15 

4.5 Regularisation and Affine Scheduling 

The preservation of affine scheduling by the regularisation techniques of the previous section 

can be proved by applying Propositions 3.3.1 and 3.3.2. The results are summarised in 

Table 4.1, where: the first column indicates each regularisation technique with. in brackets, 

the reference number of the corresponding formal statement; the generators of the embedding 

dependence cone before (C) and after (C') the application of each technique are given in the 

second and third columns, respectively. In particular, in such columns r = -d and r j = -dj, 

for all j = 1, ... , m, denote the generators of the corresponding dependence cone, while 

r = -d, r = -d and p = -IT the new generators introduced by the various techniques; the 

last column indicates which of Propositions 3.3.1 and 3.3.2 applies. A line - indicates that 

no proposition applies and corresponds to a case in which the dependence cone is not modified 

by the regularisation technique. 

Note that Propositions 3.3.1 and 3.3.2 apply to the dynamic case because of the assumption 

that the coefficients of a finitely generated index mapping are non-negative and bounded 

variables. In turn, this condition guarantees that for all inputs, the corresponding integral 

index mappings are characterised by coefficients which are also non-negative and bounded. 



CHAPTER 4. DYNAMIC RECURRENCE EQUATIO}\S 1.39 

Technique Condition Extra Dimensions 

Unif. (4.4.6) d ¢ lineD) no 
Unif. (4.4.8) dE lin(D) yes 

dim(D) < n 
Par. Unif. (4.4.11) dE lin(D) yes 

dim(D) < n 
Decomp. (4.4.13) d ¢ lin(D) no 
Decomp. (4.4.14) dE lineD) yes 

dim(P) < n 

Table 4.2. Summary of regularisation techniques. 

In order to guarantee the preservation of an affine scheduling for the whole specification 

we can consider (as we did for integral problems in Section 3.3) the dependence cone of 

the corresponding system of equations. Let S be such a system, and Cs its dependence 

cone. Then, when a regularisation technique is applied, the normal vector (7r in the formal 

statements) to the hyperplane at the basis of the transformation can be chosen in the space 

(Cs)1.. This choice guarantees both that 7r E C1. and that affine schedulings are preserved 

for the system S. 

4.6 Summary 

The main objective of this chapter was to demonstrate that classes of dynamic problems can 

be transformed systematically into regular arrays in the context of classic synthesis meth­

ods. We have reached our objective by characterising a type of dynamic data dependencies 

(those which vary with the inputs of an algorithm) and identifying a subclass which can be 

represented and treated within Euclidean synthesis. 

Both the formalisation and treatment of this type of problems was based on a generalisa­

tion of integral index mappings, in which indexed variables replace integer functions as the 

coefficients of the mappings. The implications of this substitution were enlightened. In par­

ticular the notions of extended dependence graph and variable separability were developed. 

with variable separability as the primary condition for the application of the regularisation 

techniques. 

The regularisation techniques that we have developed are summarised in Table 4.2. In the 

table, the first column indicates the technique and in brackets the reference number of the 

corresponding formal result. The second column indicates the basic conditions for its appli-



CHAPTER 4. DYNAMIC RECURRENCE EQC4..TIOSS 140 

cability. In particular, d denotes a generator of the index mapping, D the domain of the data 

dependence, and P the polyhedron generated by d and D. The last column indicates whether 

the application of the technique may require an increase in the number of dimensions of the 

space. 

A major difference with respect to integral techniques concerns the necessit:. of redefining the 

subsystems of equations relative to the coefficients of the index mappings in the computation 

space of the problem. This redefinition is necessary to reconfigure the data routing scheme 

through the initialisation of its control variables. This also limits the applicabilit~· of the 

techniques, and many interesting problems from the literature cannot be treated with our 

methods. One of these problems, that of Gaussian elimination with pivoting, will be discussed 

in the next chapter. 



Chapter 5 

Case Studies 

In this chapter we will consider a number of problems from the literature in order to illustrate 

the application, and limitations, of the techniques which we have developed in the previous 

chapters. 

The first problem considered is a cyclic reduction algorithm for the solution of tridiagonal 

systems [Mod88, LoZa94]. A tridiagonal system is a system of linear equations whose matrix 

of coefficients is tridiagonal, i.e., the non-null entries of the matrix are all concentrated 

around the main diagonal in a band of width equal to 3. The solution of tridiagonal systems 

is at the base of several numerical applications, such as the solution of systems of partial 

differential equations [BuFa93]. Cyclic reduction algorithms for the solution of tridiagonal 

systems are known from the literature [Mod88, LoZa94]. In this chapter, we will show how 

the problem can be synthesised with our techniques through its specification as a system of 

integral recurrence equations. 

The difficulties posed by integral data dependencies with unbounded coefficients will be dis­

cussed by considering the example of a decimation filter. Decimation filters are used for the 

conversion of the sampling rates of digital signals and constitute significant applications in 

digital signal processing [CrRa83]. We will show that the problem can be specified as a sys­

tem of integral recurrence equations (the problem is, in particular, affine). However, because 

of the unbounded coefficients of its data dependencies, our techniques are not applicable. 

Instead, a simple reformulation of the problem will be given directly as a system of uniform 

recurrence equations. We will also show that not even affine regularisation techniques apply 

to the problem in its first specification. 

As an example of dynamic problem we will consider the well-studied knapsack problem 

[MaTo90, Hu82], an NP-hard combinatorial optimisation problem both of theoretical and 

141 



CHAPTER 5. CASE STUDIES 142 

Problem Type of Spec. Regu.iarisation 

Cyclic Reduction Integral Yes 
M -to-1 Decimator Integral ~ 0 (unbounded coefficient) 

Knapsack Dynamic Yes 
Gauss. Elim. with Pivoting Dynamic No (non-separable variables) 

Table 5.1. Summary of the case studies. 

practical interest. We will show that a treatment of the knapsack problem as a dynamic 

finitely generated problem is possible and that our techniques can be applied for the system­

atic derivation of corresponding regular array designs. 

Finally, we will consider the technique of Gaussian elimination with partial pivoting [Mod88] 

[BaE188, Ho-et-al89, ElBa90, Meg90] for the reduction of a dense matrix to a triangular 

form. The addition of pivoting to the elimination process increases its numerical stability 

and avoids breakdown due to division by zero. Pivoting, however, introduces dynamic data 

dependencies which cannot be handled by classic synthesis methods. When formulated as 

a dynamic problem, Gaussian elimination with pivoting is characterised by computations 

which cannot be separated. Therefore our techniques are not applicable. Instead, a static 

specification of the problem will be given, corresponding to regular array designs which have 

appeared in the literature [Meg90]. 

We have summarised the case studies in Table 5.1. The table indicates the problem, the type 

of the corresponding specification, whether our regularisation techniques apply and, if not, 

the condition that prevents their application. 

5.1 Cyclic Reduction 

The first problem that we consider is an algorithm for the solution of tridiagonal systems of 

equations through cyclic reduction. The following formulation of the problem is based on 

[Sa-et-al93]. Let N = 2T - 1, for some integer T. A tridiagonal set of N irreducible linear 

equations is: 



CHAPTER 5. CASE STUDIES 143 

for i = 2,4,6, ... , N - 1, with non-null coefficients and boundary values Xo = XS+l = O. 

The solution of this set of equations with cyclic reduction consists of a so-called reduction 

phase followed by a backsubstitution phase. The reduction phase aims at reducing the s~'s­

tern to a single equation in a single variable, whose value can be determined with a single 

arithmetic operation. The backsubstitution phase recursively substitutes the variable values 

already determined in the sets of equations generated in the reduction phase, until all variable 

values are determined. 

The reduction phase includes r - 1 reduction steps. Let j denote the current step, with 

j = 1,2, ... , r - 1, and let g(j) = 2]-1. Each reduction step j consists of the computations 

of the following coefficients, for i = 2g(j), 4g(j), ... , 2T - 2g(j): 

The initial values are a? = ai, b? = bi, C? = Ci and d? = di· 

At the end of the reduction phase, the remaining equation is: 

r-l br-1 + r-l - dr - 1 
a2g(r_l)xO + 2g(r_l)X2g(r-l) c2g(r_l)X4g(r-l) - 2g(r-l)' 

Note that 4g(r - 1) = 4 * 2r - 2 = 2r = N + 1, hence X4g(r-l) = XN+!. Therefore, because of 

the boundary conditions Xo = XN+! = 0, the value of variable X2g(r-l) can be obtained from 

the above equation in a single operation. 

The other values of x can be obtained in r - 1 backsubstitution steps. Once again, let j 

denote the current step, with j = r - 1, r - 2, ... ,1, and let g'(j) = 2j
. Then, at each step 

j, and for i = g'(j), 3g'(j), ... , 2r - g'(j), Xi can be determined as: 

Xi 
di - a{ Xi_gl(j) - c{ Xi+gl(j) 

bJ , 

Note that the two phases are strictly sequential and can be treated separately. 



CHAPTER 5. CASE STUDIES 144 

5.1.1 Specification 

Let us specify the two phases of the algorithm separately. 

Reduction Phase 

The formulation of the reduction phase in the previous section was that of a s:.stem of 

recurrence equations, with coefficients indexed by two indices i and j. \\'e can specify this 

phase in Z2 by introducing the variables A, B, e and D, corresponding to the coefficients of 

the equations. 

The main difficulty with this specification is that the computation points do not constitute 

convex polyhedral domains. We solve the problem by embedding the computation points in a 

convex polyhedral region Dl and defining a control variable T to identify these computation 

points in D 1 • The domain Dl is defined as: 

Dl = {(i,j)ll~j~r-l,2~i~2r-2} 

while the definition of T is based on the function: 

f(i .)={ 1 i/2j-l~{2,4,6, ... ,2r-2} 
,J 0 otherwIse 

We make variables A, B, e and D undefined (equal to .1.) at each (i, j) E Dl such that 

f( i, j) = O. The specification is: 

(variable A) 

El (Do, A, inA) 

E2 (Db A, (T, A, A, B), ft, (Io,I1 ,I2,L2)) 

(variable B) 

E3 (Do, B, inB) 

E4 (Dl' B, (T, B, A,e,B, e, A,B), 12, (Io,I},Il.'h.I2,Il,I2,I3») 

(variable e) 

E5 (Do,e, inc) 

(variable D) 

E7 (Do, D, inD) 



CHAPTER 5. CASE STUDIES 

Es = (DbD, (T, D, A, D, B, C, D, B), 12, (Io.Il.Il.I2,I2,Il,I3,I3») 

(control variable T) 

with: 

- domains: 

Do {(i,j) IJ = 0,1:S i:S 2T -I} 

Dl {(i,j)11:Sj:Sr-1,2:Si:S2T-2} 

- index mappings: 

Io( i,j) 

I 1 ( i,j) 

I 2 ( i, j) 

I 3(i,j) 

where g(i,j) = 2j - 1
; and 

- applied functions: 

inA(i,j) 

inB( i, j) 

inc( i, j) 

inD( i,j) 

f1(t, a, b, c) 

f2(t,a,b,c,d,e,f,g) 

f(i,j) = 

a , 

b· , 

c· , 

di 

( i,j) 

(i,j - 1) 

(i - g(i,j),j - 1) 

(i+g(i,j),j-1) 

{ 
-1..a * b / c t = 1 

otherwise 

{ 
a-b*c/d-e*f/g t=l 
1.. otherwise 

{
I i/2 j - 1 E {2, 4. 6, .... 2T - 2} 
o otherwise 

A picture of the computation points of the phase is given in Fig. 5.1 a), for r = 4. 

Backsubstitution Phase 

i-l.5 

The backsubstitution phase of the algorithm can also be formulated as a system of recurrences 

in Z2. To this end we introduce a variable X, corresponding to x. which we full index in Z2 



CHAPTER,) C4SE ST['DIES 

3 ,--------------~--------------, 
2 • • • Dl 

.----e- ---e- ---e--- -e- - --e- - --e 

2 4 6 8 10 12 1.+ 

a) 

3 

2 DI 

2 4 6 8 10 12 1.+ 

b) 

Fig. 5.1. Reduction phase: a) computation points: b) data dependence graph. 

(in the previous section x is indexed by a single index i). Let us consider the domains: 

D~ {(i.j)Jj=r,O~i~2r} 

D~ {(i.j)IO~j~r-l,O~i~2r} 

and the control variable T' defined on D~ by the function: 

j' (i .) = {I 2) / i E ~ 1. :3. I ..... Y - I} 
,J 0 otherwise 

Then the backsubstitution phase may be specified as: 

(variable X) 

E~ (D~, X, in]') 

E~ (D~, X, (T', X. D, A.. X. C. X. B). j, (Iu. I~ ,Ia,Ia. I~,Ia, I~,Ia)) 

(control variable) 

E~ = (D~.T'.f') 

with index mappings: 

Ib(i,j) 

I~( i. j) 

I~( i, j) 

I~(i.j) 

where g'( i. j) = 2·i . and applied functions: 

(i. j) 

(i,j + 1) 

(i - g'(i,j),j + 1) 

( i + g' ( i. j). j + 1) 

1.J6 



CHAPTER 5. CASE STUDIES 14, 

4 

3 ------------------~-------------------, 

2 • 0 • D'I 

• 0 • 0 • 0 • 
2 4 6 8 10 11 12 

4 a) 

3 

2 D'I 

2 4 6 8 10 11 12 

b) 

Fig. 5.2. Backsubstitution phase: a) computation points; b) data dependence graph. 

/(t,a,b,c,d,e,/,g) { (b-c*d-e*f)/g t f = 1 
a otherwise 

f'(i,j) { 1 2 j /i E {1,3, 7, .... 2T -I} 
0 otherwise 

The values Xi correspond to the values X(i,O), for all i = O,1, ... ,2T. The computation 

points of this phase are given in Fig. 5.2 a), for r = 4. In the figure, black nodes indicate 

points at which values Xi are actually computed, while white nodes the points at which 

already computed Xi are pipelined. Note the similarity existing between the two phases, as 

illustrated in Fig. 5.1 and Fig. 5.2. 

5.1.2 Analysis of the Data Dependencies 

Although several variables are involved, and the overall specification may appear rather 

complicated, only a few types of data dependencies characterise all the computations of the 

two phases. Besides, the two phases and their data dependencies are very similar. Therefore, 

for brevity, in the following discussion we restrict ourselves to the reduction phase of the 

algorithm. 

Let U, V represent any of the variables A, B, C, D or T. All the data dependencies of the 

phase reduce to one of the following cases: 

VVo (D!, U, V,LO) 

VV} (D}, U, V,L}) 

VVz (D}. u. V,LZ) 

VV3 (D}. U, V.L3) 



CHAPTER 5. CASE STUDIES 

, , , , , , • j 

L t " J , 
/-

1, , _---­, '------ I ~ 

, 
-' ___ .' ',_1 

- - -- ' --->-

a) b) 

r-l 
2 

i r-l 
- 2 

c) 

Fig. 5.3. Dependence cones: a) 01-
1

; b) 01-
2

; c) 01-3, 

'± ---__ 1 _----- ,'.... -----
I ---- -~-- I 

r-l 
- 2 

a) 

------ / ±------" .... , 
I -"-. - \ 

r-I 
- 2 

b) 

r-I 
2 

r-I 
2 

• 
i 

Fig. 5.4. Reduction phase: a) 0*; b) C. 

.. 

with index mappings: 

LO( i, j) (i, j) 

Ll(i,j) (i.j-I) 

L2( i, j) (i - g(i,j),j - 1) 

L3( i, j) (i + g(i,j),j - 1) 

where g( i, j) = 2j - 1 • The data dependence graph is illustrated in Fig .. 5.1 b). The dependence 

cones 0t, 01-
2 

and 01-3 are illustrated in Fig. 5.3 a). b) and c). respectively. and the overall 

dependence cone 0* in Fig. 5.4 a). 

The above index mappings are all integral and, in particular, LO and Ll are uniform. An 

explicit integral form for the mappings is the following: 

LO( i, j) 

Ll(i,j) 

L2(i,j) 

L3( i,j) 

(i. j) 

(i,j) + (0, -1) 

(i,j)+ (-1.-1)+ (g(i,j)-I)(-l.O) 

(i, j) + (2 r - 1 • -1) + (2 r
-

1 
- g( i. j))( -1, 0) 

The generators of the above index mappings have been chosen so that the cone C that 

they span (see Fig. 5.4 b)) contains the data dependence cone 0*. is pointed and has as 



CHAPTER 5. CASE STUDIES 149 

extremal rays the vectors of the unimodular basis {(2r-I, -l),(l,On (see also the discussion 

in Section 3.2.1). Moreover, the corresponding coefficients define non-negative and bounded 

integer functions over D I . In particular, as for all (i.j) E D I , 1 :::; g(/,j) = 2j - 1 :::; 2,-2. 

then: 

0:::; g(i,j)-l 

Although all the conditions are met for the application of integral regularisation techniques. 

array designs derived from this specification would be non-scalable and exhibit non-local 

(albeit regular) connections. To see that this is the case, let us consider t he dependence cone 

more closely. As the size parameter r of the problem increases, the dependence cone e­

tends toward a non-pointed dependence cone. This is illustrated in Fig. 5.5 a). for r = 3 and 

r = 4. In addition, any possible decomposition of the index mappings is based on generators 

which are also dependent on the size parameter r, namely the vector (_2r-1, 1) (Fig. 5.5 b) 

shows how the cone C varies with r). By stepping ahead a little, Fig. 5.6 shows the data 

dependence graph that would result from a decomposition of the data dependencies according 

to the above formulation. Parts a) and b) of the figure illustrate the decomposition of VV 2 , 

while parts c) and d) that of V1h. The fact that vector (_2 r - 1 , 1) depends on r implies 

that the data dependence graph corresponding to VV3 (hence the resulting signal flow graph 

under a space-time mapping) is not scalable, that is as r varies a different connection topology 

is required. If the array design is realised in hardware, this fact implies that an entirely new 

component has to be built any time we want to solve a problem of different size. On the 

contrary, a scalable design allows one simply to update an existing component, typically by 

adding or removing processing elements, when a problem of larger or smaller size needs to be 

addressed. Although scalability is a design constraint which is mainly relevant to hardware 

implementation, it is good design practice to try and generate fully scalable regular array 

designs. From a theoretically point of view, the notion of scalability can be captured by 

a notion of uniformity of the data dependencies with respect to the size parameters of the 

problem. This notion was developed by Quinton and Van Dongen in [QuVa89]. Fig . .5.7 a) 

and b) show the non-scaling data dependence graphs of VV3 for values of the size parameter 

r = 3 and r = 4, respectively. The reader may notice how the data dependence vectors 

change non uniformly as the size parameter increases, by comparing the sub-graph in b) 

corresponding to the graph in a). 



CHAPTER.5. CASE STL"DIES 

-4 4 

---------- __ ~~lt-,~------------
I - --- - I .. 

-8 8 i 
a) 

-------<,:t-
-----rl----~-~---'~,~-+_----~~--

________ ~ ,: 1 _ 
I ---",-_t " 

4 

I • 
-8 8 I 

b) 

Fig. 5.5. Reduction phase: a) 8* for r = :3 and r = 4; b) C for r = :l and r = .t. 

3 

2 

3 

2 

3 

2 

2 

2 4 6 8 10 12 14 

a) 

,--------------~--------------
02 ' ' 
: .... ~... ..... .. .. ~ ......, 01 

~- .. -- -...-- .. - - -...-- .. -~- .. 
2 4 6 8 10 12 14 

b) 

01 ,- - - - - - - - - - - - --~ - - - - - - - - - --, 
, . ~ , 02 
, . . .................................. ,- ................. . 

~~~~ 
2 4 6 8

c)

10 12 14

01
,--------------~-------------,
I I : . :...... ,--- .. ---~---~--- ..

4 6 8

d)

10 12 14

02

150

Fig. 5.6. Reduction phase: a) and b) decomposition of DD2 : c) and d) decomposition of
DD3 .

CHAPTER.5. CASE STUDIES

3

2

2

2

4

246

a)

D2

6 8 10 12 14

b)

Fig. 05.7. Data dependence graph of VV3 for: a) r = 3; b) T = .f.

3

2

5 7 9

DI

II 13 15

Fig. 05.8. Reduction phase (ne\\' specification): data dependence graph.

5.1.3 New Specification

151

We want to reformulate the specification so that the data dependence graph for its reduction

phase assumes the form of Fig. 5.8. As we will see this new specification will r('~ lIlt in scalable

regular array designs. The transformation we are looking for is defined by t 11(' mapping

T(i, j) = (i + '2) - L j) in Z2. The computation domain Dl becomes

Dl = {(i. j) I 1 ~ j ~ r - 1,:3 ~ i ~ '2 r - I}

and the actual computations in D1 are identified by the guard:

{
I (i - '2) + 1)/2 j - 1 E {2, 4. 6 2T - 2}

f(i,j) = 0 otherwise

The new index mappings are:

IoU· j)

I1(i.j)

I 2 (i.j)

I 3 (i. j)

(i. j)

(i - g(i,j).j - 1)

(i - g'(i,j),j - 1)

(i.j - 1)

CHAPTER.5. CASE STUDIES

3

2

~---------------------------------
I
I
I
I
I

3 5 7 9 II 13

0'1

15

Fig . .5.9. Backsubstitution phase (new specification): data dependence graph.

1·52

where g(i, j) = 2j
-

1 and g'(i, j) = 2 j
. The input domain Do and the applied functions are

the same as in the previous specification.

A similar, transformation applied to the backsubstitution phase, produces the data depen­

dence graph of Fig. ·5.9.

5.1.4 Analysis of the New Data Dependencies

Once again let us restrict ourselves to the reduction phase of the algorithm, and let C. \.

represent any of the variables A, B, C, D or T. All data dependencies reduce to one of the

following cases:

with index mappings:

1YDo (D1' U, V,Io)

1)1)1 (D1' U, V,I1)

1)1)2 (D1' U, V,I2)

1)1)3 (Db U, V,I3)

Io(i,j)

I 1 (i, j)

I 2(i,j)

I 3 (i, j)

(i, j)

(i - g(i,j),j - 1)

(i - g'(i,j),j - 1)

(i,j - 1)

where g(i,j) = 2j - 1 and g'(i,j) = 2j . The dependence cones relative to I 1 ,I2 • and I3 are

sketched in Fig. 5.10 a), b) and c), respectively, while the overall dependence cone 0- is

illustrated in Fig. 5.11 a).

Explicit integral forms of the index mappings are:

Io(i,j) = (i,j)

CHAPTER 5. CASE STUDIES

J ,

, , , , ,
, ,

i " ,
F' _-

I, \ _----
'-1- - -'- - 1

. i // J /
/

I 7-
/ \ -----

_'<1- - - - - - - - - I,.. L ..

a)

r-2
2

h)

r-l
2

Fig. 5.10. Dependence cones relative to: a) It; b) I 2 ; c) I 3 •

I

-....
I '
jf

\ -------
1- - - - - - - I" I

a)

r-I
2

h)

Fig. 5.11. Reduction phase (new specification): a) 0*: b) C.

It(i,j)

I2(i,j)

I 3 (i, j)

(i,j) + (-1, -1) + (g(i,j) - 1)(-1,0)

(i,j) + (-1, -1) + (g'(i,j) - 1)(-1. 0)

(i,j) + (0, -1)

cl

1.5.3

The cone C generated by (0,1), (1,0) and (1,1) is pointed and contains 0* (see Fig .. 1.11 b)).

Also, all the coefficients of the mappings define non-negative and bounded integer functions

over D1 . In particular, for all (i,j) E Db 1 ::; g(i,j) = 21- 1 ::; 2,-2, 2::; g'(i.j) = 2) ::; 2r - 1 ,

and:

5.1.5 Regularisation

0::; g(i,j)-l ::; 2r
-

2 _1

1::; g'(i,j)-1 ::;2r
- 1 _1

Both integral data dependencies 1)1)1 and 1)1)2 are not atomic. Therefore their decomposition

is necessary before uniformisation may be applied. We present the two transformations

separately.

Decomposition

Both data dependencies admit a simple decomposition, as their first component defines a

uniform (hence, linear and injective) index mapping for which an inverse can be determined

directly.

CHAPTER 5. CASE STUDIES

We substitute DDI with the atomic integral data dependencies:

DD' 1

DV 4

(Db C. P,I~)

(D2' P, V,I4)

where P is a new variable, the index mappings are:

I~(i,j)

I4(i,j)

(i,j) + (-1, -1)

(i,j)+(g'(i,j)-I)(-I,O)

with g'(i,j) = 2), and the new domain is:

D2 = {(i - l,j - 1) I (i,j) E D 1 } = {(i,j) I ° ~ j ~ r - 2, 2 ~ i ~ 2T - 2}.

Similarly, DV 2 can be substituted by:

with index mappings:

where g"(i, j) = 2)+1.

I{ (i, j)

I 5 (i,j)

(i,j)+(-I,-I)

(i,j)+(g"(i,j)-I)(-l,O)

154

The effects of these substitutions are illustrated in Fig. 5.12 a) and b) for the components of

DDt and Fig. 5.12 c) and d) for the components of VV 2 .

U niformisation

We can now proceed to the uniformisation of VV 4 and VV 5 , the only remaining non-uniform

data dependencies.

The two cases are similar. In particular. by adopting the notation of Section 3.2.3, in both

cases d = (-1,0). Also lin(D2) = Z2 and d is contained in this space. Hence, in both cases.

a reindexing in Z3 is required. We choose a new index k and a system of axes i. j. k in this

order. With this choice, a hyperplane [7r : 0] containing the domain D2 is determined by

the vector 7r = (0,0, 1) and the coefficient 0 = 0. Hence, the uniformisation directions are

d==d+7r = (-l,O,I)and d= d-7r = (-1,0,-1).

CHAPTER 5. CASE S·TL·DIES

3

2

3

2

1

3

2

3

2

02

a)

:------------ -----------.
I • ..• •• 01

.---~-.---~-.---~-.
3 5 7 9

b)

3 5 7 9

c)

3 5 7 9
d)

11 13

II 13

11 13

+-+--- i
15

01

15

15

Fig. 5.12. Decomposition of: a) and b) VV 2 : a) and c) VV 2 •

1.55

CHAPTER 5. CASE STUDIES 156

The differences between the two cases concern: the routing domains (as the upper bounds of

the coefficients of the index mappings are different): and the values of the control variables

(as the coefficients of the index mappings define different functions on D2)'

The data dependence IXl) 4 can be replaced by:

where routing and control variables are defined by the equations:

(routing variables Rl, R2)

ElO (D21' Rl, (a, {3, 'Y, Rl, R2, R2), h, (Io, Io,Io,I~,Io, I 6))

En (D22 l' R2, R2, id, I 7)

E12 (D22 2' R2, V, id,Io)

(control variables a, {3 and 'Y)

E13 (D211'a,a,id,I~)

E14 (D21 2' a, inoJ

E 15 (D211'{3,{3,id,I~)

E16 (D 21 ,2' {3, in(3)

E17 (D21.p'Y,'Y,dec,I~)

E18 (D 21 ,2,'Y,in-y)

with:

- index mappings:

Io(i,j, k)

I~(i,j, k)

I 6(i,j,k)

I 7 (i, j, k)

(i,j,k)

(i,j, k) + (-1,0,1)

(i,j,k)+ (-1,0,0)

(i,j, k) + (-1,0, -1)

- applied functions (where g' = L(2r
-

2
- 1)j2J):

ino(i, j, k)

in{3(i,j, k)

in-y(i,j, k)

L(g'(i + g',j, k - g') - 1)j2J

g'(i + g'.j. k - g') mod 2

g'

CHAPTER 5. CASE STUDIES

idea)

decCa)

h(a,{3",a,b,c)

- domains:

a

a-I

a=j;,
a=~1,3=0

a=,,3=1

D21 {(i,j,k) 11- k ~ i ~ 2T - 2 - k,O ~ k ~ g',O ~ j ~ r - 2}

D21 ,1 {(i,j,k) E D21 I k < g'}

D21 ,2 {(i,j,k) E D21 1 k = g'}

D22 {(i,j, k) 1 k - 2g' ~ i ~ 2T - 2 - k. 0 ~ k ~ g', 0 ~ j ~ r - 2}

D221 {(i, j, k) E D22 1 k > O}

D222 {(i,j,k) E D22 1 k = OJ.

Similarly, the uniformisation of 1YDs yields the data dependence:

and the equations:

(routing variables SI, S2)

E 20 (D24 l' s2, S2, id, I 7)

E21 (D 242 ,S2,V,id,Io)

(control variables ~,¢ and 'IjJ)

E 23 (D23,2,~,ind

E24 (D23 ,1 , ¢, ¢, id, I~)

where:

- the index mappings are:

Io(i,j, k) (i,j,k)

CHAPTER 5. CASE STUDIES

I~(i,j, k)

I 6 (i,j, k)

I 7 (i,j,k)

(i,j,k)+(-LO.l)

(i,j.k)+(-l.O,O)

(i,j,k)+(-l.O,-l)

- the applied functions are (where gil = l(2T
-

1 - 1)/2J):

ine(i,j,k)

in¢>{i,j,k)

in1f;(i,j,k)

l(g"(i + g",j. k - gil) - 1)/2J

(g"(i + g",j,k - gil) - 1) mod 2

idea)

decCa)

h(~, 1>, 'l/J, a, b, c)

- the domains are:

-II
9

a

a-I

CI='l/J
~=lI',1>=O
~ = 'l/J,1> = 1

D23 {(i, j, k) I 1 - k ~ i ~ 2T - 2 - k, 0 ~ k ~ gil, 0 ~ j ~ r - 2}

D231 {{i,j,k) E D231 k < gil}

D 23 ,2 {(i,j, k) E D23 I k = gil}

D24 {(i,j, k) I k - 2g" ~ i ~ 2T - 2 - k. 0 ~ k ~ gil, 0 ~ j ~ l' - 2}

D241 {(i, j, k) E D24 I k > O}

D 24 ,2 {(i,j,k) E D24 I k = o}.

The data dependence graphs corresponding to 1Y])~ and VV~ are sketched in Fig. 5.13 a)

and b), respectively, where only the routing paths of interest are illustrated.

5.1.6 Space-Time Mapping

A uniform system of equations is obtained by applying regularisation techniques to all the

data dependencies of the specification as explained in the previous section. The resulting

uniform specification (which we have coded in Mathematica in Appendix C) includes :3.)

variables, which we have summarised in Table 5.2.

The uniform data dependencies of the specification are summarised in Tables .) .:3-·").1. where:

the first column indicates the pair of variables which are related; the second and third

CHAPTER 5. CASE STUDIES
159

k
k

13

a) b)

Fig. 5.13. Uniformisation of: a) DD4 ; b) DD 5 •

Type Name Number
Original variables A,B,C,D 4

Original control variables T 1
Decomposition variables PA,PB,PC,PD

QA,QB,QC,QD 8
U niformisation variables R~,R1,RbRb

R~,R1,Rb,Rb
s~,81,8b,81
81,81,8[:.81 16

U niformisation control variables 0',j3'~1
~,7j;,<p 6

Table 5.2. Variables in the final specification.

CHAPTER 5. CASE STUDIES
160

Pair Decamp. Un ifor. DDVector
A,T - - (0,0,0)
A,A - - (0.1,0)
A,A A,PA - (1.1,0)

PA,A PA,R~ (0,0,0)
R~,R~ (1,0, -1)
R~,R~ (0,0,0)
R~,R~ (1.0,0)
R~,R~ (1,0,1)
R~,A (0,0,0)

A,B A,PB - (1,1.0)
PB,B PB,R1 (0,0,0)

R1,R1 (1,0,-1)
R1,R~ (0,0,0)
R1,R1 (1.0,0)
R1,R1 (1,0,1)
R1,B (0,0,0)

Table 5.3. Data dependencies relative to variable A.

k

Fig. 5.14. Dependence cone 0* after uniformisation.

columns, respectively, the new data dependencies introduced by decomposition and Ulll­

formisation (when applicable, a dash, -, otherwise); and the last column the corresponding

(uniform) data dependence vector.

By considering all data dependence vectors, the resulting dependence cone is

0* = cone({(O, 1,0), (1,1,0), (1, 0, 0), (1, 0, -1), (1, 0, I)}),

with extremal rays (0,1,0), (1, 0, -1) and (1,0,1). The cone is illustrated in Fig .. 5.14.

Such a cone is pointed and, according to the conditions discussed in Section 2.2.6, an affine

timing function for the specification is determined by any vector A = (AI' A2, A3) in Z3. such

that:

CHAPTER 5. CASE STUDIES 161

Pair Decomp. Unifor. DDVector
B,T - - (0,0,0)
B,B - - (0,1,0)
B,A - - (0,1,0)
B,G B,Pc - (1,1,0)

Pc,G Pc,Rh (0,0.0)
Rh,Rh (1,0, -1)
RbR~ (0,0,0)
Rh,Rh (1,0,0)
R~,R~ (1,0,1)
R~,G (0,0,0)

B,B B,PB - (1,1,0)
PB,B see Table 5.3 see Table 5.3

B,G - - (0,1,0)
B,A B,PA - (1,1,0)

PA,A see Table 5.3 see Table 5.3
B,B B,QB - (1,1,0)

QB,B QB,S1 (0,0,0)
S1,S1 (1,0,-1)
S1,S1 (0,0,0)
S1,S1 (1,0,0)
S1,S1 (1,0,1)
S1,B (0,0,0)

Table 5.4. Data dependencies relative to variable B.

Pair Decomp. Unifor. DDVector
G,T - - (0,0,0)
G,G - - (0,1,0)
G,G CQc - (1,1,0)

Qc,G Qc,Sb (0,0,0)
Sb,Sb (1,0,-1)
Sb,Sb (0,0,0)
Sh,Sb (1,0,0)
Sb,Sb (1,0,1)
Sb,G (0,0,0)

G,B G,QB - (1,1,0)
QB,B see Table 5.4 see Table 5..1

Table 5.5. Data dependencies relative to variable C.

CHAPTER 5. CASE STUDIES 162

Pair Decomp. Un ifor. DDVector
D,T - - (0,0,0)
D,D - - (0.1,0)
D,A - - (0.1.0)
D,D D,PD - (1,1,0)

PD,D PD,Rb (0,0,0)
Rb,Rb (1,0.-1)
Rb,Rb (0,0.0)
Rb,Rb (1,0,0)
Rb,Rb (1,0,1)
Rb,D (0,0,0)

D,B D,PB - (1,1,0)
PB,B see Table 5.3 see Table .).3

D,C - - (0,1,0)
B,A B,PA - (1,1,0)

PA,A see Table 5.3 see Table 5.3
D,D D,QD - (1,1,0)

QD,D QD,S1 (0,0,0)
S1,S1 (1,0, -1)
S1,S1 (0,0,0)
S1,S1 (1,0,0)
S1,S1 (1,0,1)
S1,D (0,0,0)

D,B D,QB - (1,1.0)
QB,B see Table 5.4 see Table 5.4

Table 5.6. Data dependencies relative to variable D.

Pair Decomp. Unifor. DDVector
a,a - - (1,0,-1)
/3,/3 - - (1,0, -1)

,,' - - (1,0,-1)
~,~ - - (1,0, -1)
</>,</> - - (1,0,-1)
1j;,1j; - - (1,0,-1)

Table 5.7. Data dependencies relative to the routing control variables.

CHAPTER 5. CASE STUDIES
1 tJ."J

Note that, according to our discussion in Section 2.2.5, further inequalities may be derived

by considering the properties of time optimality and non-negativeness of the corresponding

timing functions. In particular, such inequalities can be obtained by considering the genera­

tors (vertices and rays) of the computation domain of the specification, which is the smallest

convex polyhedral set containing all computation domains of the system. The resulting in­

equalities define an integer linear programming problem whose solution provides an optimal

affine scheduling. For brevity, here (and in the following examples) we omit the complete for­

mulation of the problem. The reader may be convinced that the vector). = (1,1,0) provides

such an optimal solution, corresponding to the affine timing function t(i,j. k) = i + j. To

make t non-negative, a suitable delay can be added so that t associates an initial time 0 with

the first set of computations of the algorithm. With this scheduling the algorithm executes

in O(N + 2lN/2J + 2) time steps, where N = 2T - 1.

A possible projection vector is any u = (u}, U2, U3) in Z3 such that). . u f:. 0, i.e., Ul + U2 f:.

O. For instance, u = (1,0,0) satisfies the requirement and corresponds to the allocation

function a(i, j, k) = (j, k). The effect of the space-time mapping [t, a] on the (uniform) data

dependence vectors of the specification is summarised in Table 5.8, and the image of the data

dependence graph under [t, a] is the signal flow graph of Fig. 5.1.5 a). In the figure, two types

of nodes are indicated, which correspond to two basic types of processing elements (see later

on). For simplicity, in the figure, unit arc labels have been omitted. Note that here we have

considered only a single instance of each data dependence vector. Hence, this signal flow

graph is a simplified version of the actual signal flow graph of the specification, in which each

arc should be replicated for all the corresponding data dependencies of the system.

The signal flow graph together with the information provided by the recurrences are used for a

detailed description of the array design. In particular, a processing element is associated with

each node of the signal flow graph and a communication channel or a memory cell with each

of its arcs. The operations at each processing element are specified by the applied functions

of the recurrences whose computation points are mapped onto that processing element by

the allocation function. The association of variables and communication channels or memory

cells is also determined by the allocation function though the mapping of the corresponding

data dependence vectors. A description of the two basic cells of the regular array relatiw

to the signal flow graph in Fig. 5.15 a) is given in Fig. 5.16 a). In the figure we haw

CHAPTER 5. CASE STUDIES 164

d)"·d a(d) a'(d) a"(d)
(0,1,0) 1 (1,0) (-1,0) (0,0)
(1,1,0) 2 (1,0) (0,0) (1, 0)
(1,0,0) 1 (0,0) (1,0) (1,0)

(1,0,-1) 1 (0, -1) (1,-1) (1.-1)
(1,0,1) 1 (0,1) (1.1) (1. 1) i

Table 5.8. Transformation of the data dependence vectors under the space-time mappings
[t, aJ, [t, a'J, and [t, a"J.

~~~ 
• •• •• .. ,. . .. -. .. -. 
XX XX .X.X. X.X. · '. .. •• •• 

~~JJ 
XX ... X.X. XX X.X. • •• •• • •• •• kW XX ~a0a k 8Xcs1s ~~ ~~~ k~-8-a ~2 2 2 2 2 2 2 2 2 2 

j i-j 

a) b) c) 

Fig. 5.15. Signal flow graphs corresponding to: a) [t,aJ; b) [t,a'J; c) [t,a"J. 

assumed that: U,V E {A,B,C,D}; P,Q E {PA,QA,PB,QB,PC,QC,PD,QD}; R1,Sl E 

{R1,S1,R1,S1,Rb sb,Rb,Sb}; and R2,S2 E {R~,Si,R~,S~,Rb,Sb,Rb,Sb}· Dotted 

arrows correspond to control signals. Note that the loops of the signal flow graph correspond 

to memory cells in the processing elements. A slash, /' indicates an alternative (between 

variables of the two routing schemes of Section 5.1.5, while a single quote, " denotes an output 

signal. Note that the description of the processing elements is only partial, as a complete 

description should include signals corresponding to all 35 variables of the specification. 

Other compatible projection vectors for the given timing function t are, for instance, u' = 

(1,1,0) and u" = (0,1.0), corresponding to the allocation functions a'(i,j,k) = (i-j,k) 

and all ( i, j, k) = (i, k), respectively. The effect of the resulting space-time mappings on the 

data dependence vectors are also given in Table 5.8, while Fig. 5.15 b) and c) illustrate the 

corresponding signal flow graphs, and Fig. 5.16 b) and c) the corresponding basic processing 

elements. 

5.2 N Points FIR Filter for M -to-l Decimation 

One of the most fundamental concepts of digital signal processing [CrRa83] is the idea of 

sampling a continuous process to obtain a set of numbers which, in some sense, is represen-



CHAPTER 5. CASE STUDIES 

a.IJ.~+V . . 

t 
a',W;t /~ ,~ ,I{! 

a,po'Y/~cIJ'" 

a) 

a,p,y;s,cIJ.", 

__ ~_l __ --.J~' 
R21S2 Rl~~~;: ------~ 

a' ,f3' ;y' /~' ,cIJ' ,v 

b) 

RllSl R2'1S2' 

c) 

Fig. 5,16. Basic processing elements corresponding to: a) [t,a]; b) [t,a]; c) [t,a'l 

165 

tative of the characteristics of the process being sampled, Let xc( t) denote a continuous 

function of the process being sampled, where t is a continuous variable (typically time) and 

-00 < t < 00. A set of samples of Xc can be defined by another function xD(n). with 

-00 < n < 00, where the correspondence between t and n can be expressed by an equation 

n = q(t), for some function q specified by the sampling process. 

A common form of sampling, called uniform (periodic) sampling, is one in which q(t) = 
tiT = n, where n is an integer. That is, the samples xD(n) are uniformly spaced (occurring 

T apart) in the dimension t. T is called the sampling period. 

In some cases the input signal may already be sampled at some predetermined sampling 

period T and the goal is to convert this sampled signal into a new sampled signal with a 

different sampling period T'. If T' > T this digital conversion is called decimation. In 

particular, an M -to-1 decimator, for some natural number M, is a decimator which discards 

M - 1 every M (output) samples. 

Decimation is usually obtained by filtering the input digital signal. A Finite Impulse Response 

(FIR) filter is a digital filter whose impulse response h(k) is of finite duration, i.e., it is zero 

outside a finite interval of samples k. In particular, the direct form of an _Y points FIR filter 

is the convolution 
N-l 

y(m) = L h(n)x(m - n) 
n=O 

where the filter response h is assumed to be 0 for n < 0 and n > N - 1. 

By combining the above definitions, the direct form of an N points FIR filter for J1 -to-l 



CHAPTER 5. CASE STUDIES 166 

decimation corresponds to the convolution: 

N-l 

y(m) = L h{n)x(Mm - n) 
n=O 

for m 2:: 0. 

5.2.1 Specification 

We want to specify the problem as a system of integral recurrence equations. The first step 

is to transform equation 
N-l 

y(m) = L h{n)x{Mm - n) 
n=O 

by exploiting the associativity of addition and introducing a variable Y which accumulates 

the partial sums. Then each y( m) can be computed by the system of equations: 

Y(m,O) 

Y(m,l) 

Y(m,2) 

Y{m,N) 

That is, more concisely: 

for j = 1, ... , N. 

Y(m,O) 

Y(m,j) 

° 
Y(m,O) + h(O)x(Mm) 

Y(m, 1) + h(l)x(Mm - 1) 

Y(m, N - 1) + h(N - l)x{Mm - N + 1) 

o 

Y(m,j - 1) + h(j - l)x(Mm - j + 1) 

By introducing two new variables H and X, corresponding to h and x, respectively, we can 

specify the problem in 2 dimensions as follows. An index i is used which corresponds to m. 

For simplicity, let us assume that the new digital signal y is sampled starting at i = 1, so that 

y is computed for i 2:: 1, Variable X is initialised to the values of x. for all i. while variable 

H is initialised to the values of h. As those values are used in each convolution, variable 

H also pipelines the values through the computation space. The system of equations is the 

following: 



CHAPTER 5. CASE STUDIES 

E3 = (D3,Y, (Y,H,X),j. (I1.I2.I3 )) 

E4 = (D 4 , H, inH) 

Es = (D3,H,H,id,I2) 

where: 

- the index mappings are: 

- the applied functions are: 

- the domains are: 

Dl 

D2 

D3 

D4 

5.2.2 Analysis 

Il(i,j) = (i,j - 1) 

I2(i,j) = (i - 1,j) 

I3(i,j) = (Mi-j+l,O) 

j(a,b,e) = a + be 

id(a) = a 

inx(i,j) = x( i) 

iny(i,j) = 0 

inH(i,j) = h(j - 1) 

= {(i,j) Ii 2: -(N - 1),j = O} 

= {(i,j) I i 2: l,j = O} 

= {(i,j) I i 2: 1,1::; j ::; N} 

= {(i,j) Ii = 0,1::; j ::; N} 

The data dependencies of the system are the following: 

1),D1 = (D3, Y. Y,I1) 

VV2 = (D3,Y,H,I2) 

V1h = (D3,y,X,I3) 

1)V4 = (D3,H,H,I2) 

167 



CHAPTER 5. CASE STUDIES 

N 

03 

6 
a) b) 

Fig. 5.17. Data dependence graph (JI = 3). 

where the index mappings are integral and can be expressed, for instance, as: 

I 1(i,j) 

I 2(i,j) 

I 3 ( i, j) 

(i,j) + (0, -1) 

(i,j)+(-1,0) 

(i,j)+((M -1)i+ 1)(1,0)+j(-L-1) 

In particular, II and I2 are uniform. The form we have chosen for I3 guarantees that its 

coefficients define non-negative integer functions on D3 . Let 91 (i, j) = (M - 1)i + 1 and 

92(i,j) = j be such coefficients. 

The corresponding data dependence graph is sketched in Fig. 5.17, where, for clarity, we have 

separated the uniform data dependence vectors from those relative to VV3 (parts a) and b) 

of the figure, respectively). In the figure we have assumed M = 3. 

A simple analysis of 91 shows that the coefficient is not bounded on D3 • In fact, is value 

grows linearly in i. Therefore integral regularisation techniques are not applicable. 

Although we have been treating VV3 as an integral data dependence, VV3 is in particular 

an affine data dependence. In fact, its index mapping can be written in matrix form as: 

As the matrix A = [~ ~1] is rank deficient, a well known regularisation technique (known 

in the literature as pipelinin9 - see [FoM084, RaFu87, Raj89, Qu Va89]) can be applied. 

According to this technique, a regularisation vector can be chosen as a non-null vector in 

null(A) nlin(D3) (see Appendix F for a definition of null(A». D3 is offull dimension, hence 

we can restrict ourselves to null(A). The space null(A) is spanned, for instance, by the vector 

d = (1, M). As d is not a null vector, it can be chosen as a pipelining vector. The technique 

prescribes to partition the domain D3 in two non-empty sub-sets defined as: 



CHAPTER 5. CASE STUDIES 169 

Intuitively, D31 corresponds to computation points inside D3 , while D~ to points on (or 

around) some boundary of D 3 · The result is obtained by pipelining the data among neigh­

bour points in D31 according to the direction of d, while possible residual non-uniform data 

dependence vectors are confined to D32 • 

Unfortunately, as d = (1, M) depends on the problem parameter jf. the applicability of the 

technique also depends on the values of M. In particular. for M ~ S. the subset D3
1 

reduces 

to the empty set, and the technique is ineffective. Note that a different choice of pipelining 

vector would not solve the problem as any pipelining vector for the problem is an integer 

multiple of d. 

5.2.3 Problem Revisited 

Let us consider the original equation: 

N-l 

y(m) = L h(n)x(Mm - n) 
n=O 

For each m, y( m) is a convolution of N terms, involving the filter responses h( 0), h( 1), ... , 

heN -1) and the input samples x(Mm), x(Mm-1), ... , x(Mm- N + 1). In other words, each 

y(m) is just a convolution of N input samples. However, different from ordinary convolution, 

the selection of such input samples depends on the decimation rate M. 

A straightforward formulation of the problem can be obtained by computing ordinary convo­

lution and then decimating the outputs according to M. This can be obtained through the 

following equations, where y' computes all convolutions, while y is assigned the decimated 

samples only: 

N-l 

L h(n)x(m - n) 
n=O 

y(k) y'(k) 

for m ~ 0 and k = O,M,2M,3M, .... 

The convolution problem is a very well known problem in regular array synthesis (see, e.g .. 

[QuRo91, Meg92]). The decimation is easy to specify with the help of control signals: it 

simply amounts to locate a non-convex sub-domain of a convex polyhedral domain. \\"e have 

encountered this problem earlier in this chapter for cyclic reduction (see Section .).1.1). In 

this case, we may define a control variable C which assumes value equal to 1 on those k· of the 



CHAPTER 5. CASE STUDIES 110 

.•• D5 

N 

Fig. 5.18. Uniform data dependence graph. 

domains which are integer multiples of M. A possible specification is the following system of 

equations (whose uniform data dependence graph is illustrated in Fig. 5.18): 

where: 

(variable X) 

El (DI,X,inx) 

E2 (D 2 ,X,X,id,I1) 

(variable Y) 

E3 (D3 , Y, iny) 

E4 (D 2 ,Y,(Y,H,X),h,(I2,I3 ,Id) 

(variable H) 

Es (D4, H, inH) 

E6 (D 2 , H, H, id,I3) 

(control variable C) 

E7 ( D s, C, inc) 

(variable Y) 

Es (Ds, Y, (Y, C), 12, (Il,Io)) 

- the index mappings are: 

Io( i, j) (i, j) 

I1(i,j) (i,j - 1) 

I 2 ( i, j) (i-I,j-I) 

I 3 ( i, j) (i-I,j) 



CHAPTER 5. CASE STUDIES 

-j 

a) b) 

Fig. 5.19. a) Dependence cone; b) Signal flow graph. 

- the applied functions are: 

- the domains are: 

h(a,b,e) 

h(a, b) 

id(a) 

inx( i,j) 

iny( i,j) 

inH(i,j) 

inc( i, j) 

a + be 

{: 
a 

b = 1 
b=O 

x(i - N) 

o 

h(N - j) 

{
I (i - N - 1) mod M = 0 
o otherwise 

Dl {(i,j) I i ~ 1,j = O} 

D2 {(i,j) I i ~ j, 1 ~ j ~ N} 

D3 {(i,j)li~O,j=O} 

D4 {(i,j) Ii = j - 1, 1 ~ j ~ N} 

Ds {(i,j) I i ~ j,j = N + I} 

5.2.4 Space-Time Mapping 

All data dependencies are uniform and the corresponding dependence cone is 

0* = eone( {(O, 1), (L 1), (1, o)}), 

1 ;-1 

with extremal rays (0,1) and (1,0). The dependence cone is illustrated in Fig. 5.19 a). 

As the dependence cone is pointed, a valid affine timing function is determined by any 

A = (AI. A2) E Z2 such that the following system of inequalities is satisfied: 



CHAPTER 5. CASE STUDIES 112 

d )..·d a(d) 
(1,0) 1 0 
(1,1) 2 1 
(0,1) 1 1 

Table 5.9. Transformation of data dependence vectors under the space-time mapping [t. a]. 

X' :=x 
Y ':= fl(Y. H, X) 
H' :=H 
Y :=f2(Y. C) 

Fig. 5.20. Processing element. 

The vector).. = (1,1) is a possible choice. A non-negative timing function determined by ).. 

is the function t( i, j) = i + j. 

A compatible linear allocation function is a projection according to any non-null vector 

U = (Ul,U2) E Z2, such that)..· u"# 0, i.e., U E Z2 such that Ul + U2 #- o. However, a finite 

array design can be obtained only if the projection is done in the same direction of the ray of 

the domain D 2 , that is for a projection vector U = (1,0), which corresponds to the allocation 

function a( i, j) = j. 

The transformation of the dependence vectors of the system under the space-time mapping 

[t, a] is summarised in Table 5.9. The resulting signal flow graph is illustrated in Fig .. 5.19 b). 

For simplicity arcs with a unit delay are not labelled. A description of the corresponding 

basic processing element and its operations is given in Fig. 5.20. 

5.3 Knapsack Problem 

As an example of dynamic problem, in this section we consider the knapsack problem. The 

knapsack problem can be formulated either as a linear optimisation problem or as a dy­

namic programming problem (see, e.g., [Hu82]). The latter formulation is based on recursive 

functions, and is the formulation we have chosen in this section. 

The problem can be described as follows. Let us consider a knapsack of finite capacity c. 

together with objects of n different types, each type i, for i = 1, .... n. characterised by a 

weight Wi and a value Vi. We assume that both the capacity of the knapsack and the weights 

ofthe objects are integers, and that, for all i, 0 < Wi ~ c. We also assume that there exists an 

unbounded number of objects of each type. The knapsack problem consists of determining 

the optimal (i.e., the most valuable) selection of the given objects, which can be carried in 



CHAPTER.5. CASE STUDIES 173 

the knapsack without exceeding its capacity. 

A possible dynamic programming formulation of the algorithm is the following l . Let !i(j) 

represent the maximum value which can be carried in a knapsack of capacity j by selecting 

objects of types from 1 to i. !i(j) may be defined as follows: 

i = 1, ... ,n, j = 1, ... ,c 

i = 0, j = 0, ... , c, 

i = 0, .. . n, j = 0 

i = 1, .. . n, j < 0 

!i(j) = max(!i-l(j),!i(j - !Cd + Vi) 

!i(j) = 0 

!i(j) = 0 

!i(j) = -00 

The boundary conditions express that !i(j) is 0 if either the capacity of the knapsack is equal 

to 0 or there are no objects which can be selected; and !i(j) is -00 if the capacity of the 

knapsack is negative2
• The solution to the knapsack problem is the value !n{ c). 

Note that these equations only compute the optimal value of the objects which can be carried 

in the knapsack. In the literature this is known as the forward phase of the algorithm [Hu82]. 

The corresponding combination of objects can be determined subsequently as a backward 

substitution process on the sub-optimal values of !. This is known as the backward phase 

of the algorithm. This phase is essentially sequential and will not be considered here. (An 

efficient algorithm for the backward phase is given in [H u82].) 

5.3.1 Specification 

In order to specify the algorithm as a system of recurrence equations, we make the following 

observations: 

- two indices, i and j, are sufficient to the expression of the recurrences. Hence, we adopt 

Z2 as the computation space and associate i to the types of the objects and j to the 

capacity of the knapsack; 

- a variable F, corresponding to !, is needed to compute the optimal solution, together 

with two variables, Wand V respectively, for the weights and values of the objects; 

- the computation domain of F is the rectangular region determined by the points (i, j). 

such that i = 1, ... , nand j = 1, .... c. Variables Wand V are initialised on the 

boundary of this domain and their values are subsequently pipelined through the region. 

lThis formulation is based on [Hu82]. 
2We have used the symbol 00 to indicate the largest integer representable in a machine. 



CHAPTER 5. CASE STUDIES 

A possible system of equations is the following: 

whit: 

- index mappings: 

- applied functions: 

(variable F) 

El (D},F,in}) 

Ez (Dz,F,in}) 

E3 (D3 , F, in}) 

E4 (D4 ,F,(F,F. V),j,(Ll,LZ,L3)) 

(variable V) 

Es (Dz,V,inv) 

E6 (D4 , V, V, id,L3) 

(variable W) 

E7 (Dz, W,inw) 

Es (D4 , W, w, id,L3) 

Ll(i,j) = (i - l,j) 

Lz(i,j) = (i,j - W(i,j)) 

L3(i,j) (i,j - 1) 

in}( i,j) 0 

in}(i,j) -00 

inv(i,j) v· t 

inw(i,j) Wi 

j(a,b,c) max(a, b + c) 

where Wj is an integer, with 0 < Wi ~ c, and Vi Z 0; 

- domains: 

Dl = {(i,j)li=O,I~j~c} 

Dz {(i,j) 11 ~ i ~ n,j = O} 

114 



CHAPTER 5. CASE STUDIES 

5.3.2 Analysis 

{(i,j) 11 ~ i ~ n,j < O} 

{(i,j) I 1 ~ i ~ n.I ~j ~ c}. 

The data dependencies of the specification are the following: 

VVt (D4' F. F.It) 

VV 2 (D4' F, F,I2) 

VV3 (D4' F, V.I3) 

VD 4 (D4' V. V.I3) 

DDs (D4' W, W.I3) 

with index mappings: 

II(i,j) (i-I,j) 

I2(i,j) (i,j - W(i,j» 

I3(i,j) (i,j-I) 

Data dependencies DDt, DD3, VV4 and VVs are static and uniform, while data dependence 

1)1)2 is dynamic and atomic finitely generated. An explicit form for the index mapping is: 

It(i,j) 

I 2(i,j) 

I 3 ( i, j) 

(i,j)+ (-1,0) 

(i,j) + W(i,j)(O, -1) 

(i,j) + (0, -1) 

where 0 < W(i,j) ~ c, for all (i,j). As DV2 is dynamic, for each configuration of weights in 

input we obtain a different data dependence graph. For c = 8 and n = 3. two instances of 

the dynamic data dependence graph are given in Fig. 5.21 a) and b), corresponding to the 

two distributions of weights WI = 5, W2 = 4, W3 = 2 and w~ = 4, w~ = 1, w~ = 3. respectively. 

Note that only the sub-graph relative to VV 2 varies with the inputs. 

By considering the generators of all index mappings, we obtain the embedding dependence 

cone C = cone( {(I, 0), (0, I)}, illustrated in Fig. 5.22 a). ~ote that C is pointed and, because 

of the condition 0 < W( i, j) ~ c contains the dependence cone of the specification for all 

inputs (see also the discussion in Section 4.3.3). 

The separability of F and W, which is necessary for uniformisation, can be verified on t he ex­

tended dependence graph ofthe system. This graph is illustrated in Fig. 5.22 b). and is defined 



CHAPTER 5. CASE STUDIES 176 

2 4 5 6 7 

2 4 5 6 8 

b) 

Fig. 5.21. Two instances of the dynamic dependence graph of the knapsack problem, for 
c = 8, n = 3, and weight distributions, respectively: a) WI = .5, W2 = "I. W3 = 2; b) 

wi = 4,w~ = 1,w~ = 3. 

a) b) 

Fig. 5.22. a) Cone C; b) Extended dependence graph. 

as the graph ['Ot;; = (N, A), where N = {F, V, W} and A = {(F, F), (F, V), (F, W), (V, V), 

(W, WH. As is clear, variables F and Ware separable in [vt;; . 

5.3.3 Regularisation 

We want to make the data dependence '0'0 2 uniform, by applying parametric uniformisation 

according to Proposition 4.4.11. Let P E N+. We note that: 

- for all (i,j), 0 < W(i,j)::; c, then W = lc/(p+ 1)J. 

_ lin(D) = Z2 and d = (0, -1) E lin(D), hence we need to reindex the system in Z3. Let 

k indicate the index of the added axis. We choose the new system of axes characterised 

by the indices i,j,k in this order. 



CHAPTER 5. CASE STUDIES 

_ 1r can be chosen as the vector 1r = (0,0,1). As is clear, Tt is in Dt and D4 is contained 

in the hyperplane [1r: 0]. Then d = d + 1r = (0, -1.1) and d = d - iI = (0,-1.-1). 

_ tr is the translation defined as tr(i,j,k) = (i,j,k)+ (O,-l{'. 11') = (i.j - l1'.k+ Ii'). 

and ren renames W as W tT . 

_ The system of equations defining W is DefSw = {E7, Eg}. and its image under tT and 

ren is (De jSw yT ,Ten defined as: 

E '7 (DtT W tT ' ) 2 • , Znw tr 

E 'g (DtT wtT wtT id ItT) 
4 , , " 3 

with domains: 

D~T {(i,j,k) 11 ~ i ~ n,j = -W,k = W} 

DY {(i,j,k)ll~i~n,I-W~j~c-W,k=W} 

and index mapping: 

The parametric uniformisation of I),D 2 produces the system of equations: 

(variable F) 

EI (D 1 , F, in~) 

E2 (D2,F,in~) 

E3 (D3, F, in}) 

E4 (D4, F, (F,R\ V),f,(I1,I2,I3)) 

(variable V) 

Es (D 2 , V,inv) 

E6 (D4, V, V, id,I3) 

(variable WtT) 

Eg (D tT wtT WtT id ItT) 
4 , , ,'3 

(routing variables RI. R2 and R3
) 

Eg (D41' R\ (Ct, /3, 'Y, R\ R2, . ... R2),1', (I2,I2,I2. I~.I5,O.· ., ,I5,p)) 



CHAPTER 5. CASE STUDIES 

ElO (D42 ,1' R2, R3
, id,I6 ) 

Ell (D42 ,2' R2, F, id,I2) 

E12 (D42 ,3' R3
, R2, id,I7) 

(control variables a, (3 and "() 

E 13 (D41 ,1' a, a, id,I4) 

E14 (D41 ,2,a, Wtr,(p+ 1)-floor,I2) 

E 15 (D41 l' {3, (3, id,I4) 

E 16 (D41,2' (3, W tr , modp+1 ,I2) 

E17 (D 41 1'"{,,,{,dec,I4) 

E18 (D412,,,{,inl') 

with: 

- index mappings: 

- applied functions: 

I 1(i,j,k) 

I 2(i,j,k) 

I 3(i,j,k) 

T;{(i,j,k) 

I 4(i,j,k) 

L5,O(i,j,k) 

L5,1(i,j,k) 

L5,p( i,j, k) 

L6( i,j, k) 

L7(i,j,k) 

(i,j,k)+ (-1,0,0) 

(i,j,k) 

(i,j, k) + (0, -1,0) 

(i,j,k)+(O,-l,O) 

(i,j,k)+(O,-I,I) 

(i,j,k) 

i,j,k+ (0,-1,0) 

(i,j,k)+(O,-p,O) 

(i,j, k) + (0, -1, -1) 

(i,j,k)+(O,l-p,O) 

in}(i,j,k) ° 
in}(i,j,k) -00 

inv(i,j,k) Vi 

intv(i,j, k) Wi 

178 



CHAPTER.5. CASE STUDIES 

- domains: 

in-y(i,j, k) 

(p+ 1)_floor(a) 

modp+1(a) 

idea) 

dee( a) 

f(a,b,e) 

la/(p + l)J 

a mod (p + 1) 

a 

a-1 

max(a. b + e) 

{ :~,o : ~ ~. 3 = 0 

a2,p Q = I. J = p 

Dl {(i,j,k)li=0,1~j~c,k=0} 

D2 {(i,j,k) 11 ~ i ~ n,j = O,k = O} 

D3 {(i,j,k) 11 ~ i ~ n,j < O,k = O} 

D4 {(i,j,k) 11 ~ i ~ n, 1 ~ j ~ e,k = O} 

D41 {(i,j,k)11~i~n,0~k~W,1-k~j~e-k} 

D411 {(i,j, k) E D41 I k < W} 

D 41 ,2 {(i,j, k) E D41 I k = liT} 

D 42 {( i, j, k) I 1 ~ i ~ n. 0 ~ k ~ W, k - 211' ~ j ~ e - k} 

D 42 ,1 {(i,j, k) E D42 I k > O} 

D422 {(i,j, k) E D42 I k = O} 

D 42 3 {( i, j, k) E D 42 I k < W}. 

1-:9 

Domains D4, D41 and D42 are sketched in Fig. 5.23, a), b) and c), respectively, while 

Fig. 5.24 a) and b) illustrate sections of the data dependence graphs in D41 and D42 for 

values of the parameter p = 1,2, respectively (in the figure, we assume c = 8). Only the 

routing variables Rl, R2 and R3 are considered. 

5.3.4 Space-Time Mapping 

After regularisation, all data dependencies are uniform. They are summarised in Table .'dO 

(with similar conventions to those in Section 5.1.6). The corresponding dependence cone is 

0* = eone( {CO, 1. 0), (0, 2, 0), .... (0, p. 0). (0.1. -1). (0.1, 1). (1. O. On)· 



CHAPTER .5. CASE STUDIES 1';0 

k k 

041 

D4 

/ / 
a) k b) 

042 

c) 

.~~~ .~/ 
j j 

a) 

'L~ ,~, 
j j 

b) 

Fig. 5.24. Sections of the routing domains D41 and D42 for values of the parameter: a) P = 1; 

b) p = 2. 



CHAPTER 5. CASE STUDIES 

Pair Unifor. DDVector 
F,F - (1,0,0) 
F,F F,R1 (0,0,0) 

Rl,Rl (0,1, -1) 
Rl,R2 (0,0,0) 
Rl,R2 (0,1,0) 

... 
Rl,R2 (O,p,O) 
R2,R3 (0,1,1) 
R3,R2 (O,p- 1.0) 
R2,F (0,0,0) 

F,V - (0,1,0) 
V,V - (0,1,0) 

WtT, WtT - (0,1,0) 
a,a - (0,1,-1) 
(3,(3 - (0,1,-1) 

", - (0,1,-1) 

Table 5.10. Summary of the data dependencies. 

k 

, , , , , , , , 

Fig. 5.25. Dependence cone after uniformisation. 

with extremal rays (0,1, -1), (0, 1, 1) and (1,0,0). The dependence cone, illustrated in 

Fig. 5.25, is pointed. 

A valid affine timing function is determined by any .x 
following system of inequalities is satisfied: 

The vector .x = (1, 1, 0) is a possible choice, corresponding to the timing function t ( i, j, k) = 

i + j. With this timing function, the algorithm is executed in O( c + 2l c/2 J + n) steps. 



CHAPTER 5. CASE STUDIES 

d )..·d a(d) a'(d) a"(d) 
(1,0,0) 1 (1,0) (1,0) (0,0) 
(0,1,0) 1 (0,0) (-1,0) (1,0) 
(0,2,0) 2 (0,0) (-2,0) (2,0) 

... . .. ., . " . . .. 
(O,p,O) p (0,0) (-p,O) (p,O) 

(0,1,-1) 1 (0, -1) (-1,-1) (1, -1) 
(0,1,1) 1 (0,1) (-1,1) (1,1) 

Table 5.11. Transformation of data dependence vectors under the space-time mappings [t, a), 
[t, a'], and [t, a'l 

A compatible linear allocation function is a projection according to any non-null vector 

U = (Ub U2, U3) E Z3, such that).. . u =1= 0, i.e., U E Z3 such that Ul + U2 =1= 0. A possible 

projection vector is u = (0,1,0), corresponding to the allocation function a(i,j,k) = (i,k). 

The transformation of the dependence vectors of the system under the space-time mapping 

[t, a] is summarised in Table 5.11. 

The resulting signal flow graph is illustrated in Fig. 5.26 a), where the left-hand side illustrates 

the nodes and the non-parametric communication channels, while the right-hand side details 

the parametric communication channels at each node. For simplicity arcs with a unit delay 

are not labelled. Note that there are three types of nodes in the graph (illustrated as white, 

black and dotted nodes). 

Under [t, a], the p parametric communication links may be implemented as p locations of the 

local RAM at each processing element of the array. The three types of cells are described in 

Fig. 5.27 a). 

Different compatible placements are determined, for instance, by the projection vectors u' = 
(1,1,0) and u" = (1,0,0), corresponding to the allocation functions a'(i,j, k) = (i - j. k) and 

a"(i,j,k) = (j,k), respectively. The transformation of the dependence vectors under [t,a'] 

and [t, a"] are also given in Table 5.11. The resulting signal flow graphs are illustrated in 

Fig. 5.26 b) and c), while the corresponding processing elements are sketched in Fig. 5.27 b) 

and c), respectively. 

5.4 Gaussian Elimination with Partial Pivoting 

Gaussian elimination reduces an n X n matrix A = [ai,i] to a triangular form in n-1 iterations. 

At each iteration the elements, under the main diagonal, of one of the columns of the matrix 



CHAPTER ,'j C1SL STC-DIES 

f ~, p-l 
P 

a) 

~~p 
- p-l 

b) 

c) 

Fig. 5.26. Signal flow graphs corresponding to: a) [t,a]; b) [t,a']: c) [t,a"]. 

F 

a.~.'Y 

v 
a·.I3·.r 

a) 

,Rl' ~ 
~ b'·a.13.y 

F -I --'--~, F 

\"1 + 
Rl· •... R2'. R3',----- R2 .. ,. R1. R3 

b) 

Wtr ,__ WI[ 

---' 
R2. R1. k.' . k2 RZ·. R3 

~r ___ - ~I' • 

a.I3.'Y 

a.I3.'Y Rl R1' 
... ~--~ 

Rl, _ R1. R3 y= ". Rl', R3 

~R1 --- 'R')"· ~ 
."'.,, a ... ·.r 

a.~~~ ;( 
\' V' 

F --
R2,. R1. R ,--- R2 ... R2 _ R3 

c) 

Fig. 5.27. Processing elements corresponding to: a) [t.a]: b) [t.a']: c) [t.a"]. 



CHAPTER 5. CASE STUDIES 

j 

.. . 
_. --:--_ .. :----->----:---_.:-- .. 

I • • • · .. t . . . . . 
-- --;-----;-----;-----;-----;-- --

p .... : ...•... : ... <:) ... : ... . 
i .. -.: ... <:) ... ~- .. & ... : ... . · . . . . · '" · . . , . -- --:-----:-----:-----:-----:-- --

o • • • • , . . , , · . . . . 

Fig. 5.28. Pivot operation: the black circle indicates the pivot; the white circle indicates 
the entry to be updated; and the other circles indicate the corresponding row and column 
coefficients. 

are nullified by a series of elementary row operations3 . The columns are processed from left 

to right. At each iteration t, for 1 ~ t ~ n - 1, a new matrix is generated as follows. The 

element at,t of the current matrix is selected and used to update each aj,j, with i > t and 

j 2 t, by applying the operation ai,j - ai,t . at,j / at,t. 

When Gaussian elimination is combined with partial pivoting, at iteration t, an element of 

the subcolumn [at,t, at+l,t, . .. , an,t] with maximum modulo is chosen as the pit'Oi at that 

iteration and used to update the current matrix. Let ap,t denote the pivot at iteration t. The 

new matrix is updated by applying the operation ai,j - ai,t . ap,j / ap,t, for all i, j such that 

i 2 t, i f:. p and j ?:: t. (By generalising, Gaussian elimination without pivoting may be seen 

as a form of pivoting in which at each iteration t, ap,t = at,t.) 

A way of exploiting parallelism in Gaussian elimination with pivoting is to break the computa­

tion of the operation which updates the elements of the matrix into sub-computations. which 

can be executed in a distributed fashion. Let us consider the operation aj,j - ai,t . ap,j/ap.t. 

The quotient ai,dap,t is used to update all the elements of the ith row of the matrix, while 

ap,j is applied to all the elements of the /h column. This is illustrated in Fig. 5.28. These 

values can be treated as coefficients, which can be propagated among computation points 

and used for the parallel updating of the matrix. In the following we will call them row and 

column coefficients, respectively. 

In Gaussian elimination without pivoting, at each iteration a particular element of the matrix 

is selected according to its position in the matrix (namely. at,t. at iteration t). When pivoting 

is present, the pivot is selected according to its absolute value as an entry of the current 

matrix, and this value is known at run-time only, i.e .. when the algorithm is executed on 

3Elementary row operations correspond to changes of basis of a vector space [:\ er63J. They include: 
swapping rows, multiplying a row by a non-zero scalar; and subtracting from one row a mult iple of another 
row. 



CHAPTER 5. CASE STUDIES 185 

actual data. It is this characteristics which makes Gaussian elimination with pivoting a 

dynamic problem. 

5.4.1 Dynamic Formulation 

In order to specify Gaussian elimination with pivoting as a dynamic problem, let us consider 

the basic operation 

more closely. The index p indicating the row of the pivot is actually a function of the iteration 

index t, and should be indicated more precisely as p(t). Therefore, both a and p can be seen 

as variables to be computed by the algorithm. Then at each iteration t, for t = 1, ... , n, the 

algorithm computes the values: 

a t . t-l t-l t-l / t-l 
I,J ai,j - ai,t * ap(t),j ap(t),t 

for all i,j such that i 2: t and i 1= p(t). The operation c:., compares the entries of the tth 

column of the current matrix to find the pivot, and once found it, returns the corresponding 

row index. The initial values are a?,j = ai,j for all i, j. 

If we had to specify the problem more formally as a system of dynamic recurrence equations 

we would soon realise that the techniques we have developed are not powerful enough to deal 

with this problem, the reason being that the computations of p(t) and the updating of the 

entries aL of the matrix are interleaved at each iteration. This fact introduces a mutual 

dependence between the computations of the pivot and the new entries of the current matrix 

so that the variables corresponding to p and a are not separable. 

5.4.2 Static Formulation 

Regular array designs for Gaussian elimination with partial pivoting have been proposed 

in the literature, which are based on a static formulation of the problem [BaEI88, Meg90, 

ElBa90j. This is obtained if, at each iteration, the elements of the current matrix are re­

arranged before the new entries are computed. In this way the pivot always assumes a 

predetermined position. 

Each iteration of the new algorithm includes the following operations: finding the pivot and 

rearranging the elements of the matrix; determining and propagating the row and column 

coefficients; and computing the new entries of the matrix. We note that: 



CHAPTER 5. CASE STUDIES 186 

- at each iteration of the algorithm the same sequence of operations is carried out on the 

current matrix: hence the specification of the algorithm can be simplified by concen­

trating on the single iterations (otherwise we would need to consider a specification in 

4 dimensions); 

- the size of the current matrix decreases at each iteration: hence the specification of the 

iterations can be induced from the specification of the first iteration b~· a restriction to 

appropriate submatrices; 

- the output matrix of each iteration represents the input matrix of the following iteration: 

hence a strong sequentiality constraint exists between consecutive iterations, and the 

overall design of the algorithm can be obtained as a sequential composition of the 

specifications of the single iterations. Indeed pipelining techniques should be used to 

overlap some of the operations of consecutive iterations. 

Preliminary Specification 

At each iteration of the algorithm, the pivot is chosen as the element with maximum modulo 

in a set of entries of the matrix. In this section we illustrate a technique for the selection 

of the pivot, which is used in the specifications of the following sections. The technique is a 

sorting of the elements according to their absolute value. 

Let us consider n numbers, a1, . .. , an. Sorting the n numbers a1, ... , an according to their 

absolute value can be realised as follows. We introduce two variables V, H, with V initialised 

with the n given numbers (plus n - 1 zero entries) and H with all its n - 1 entries equal to 

00. The computations of V and H in a two dimensional space are illustrated by the data 

dependence graph in Fig. 5.29 (in the figure we have assumed n = 4). At each point (i,j) the 

pair of values V( i - l,j) and H( i,j - 1) are compared. The element with greater absolute 

value is stored in V(i,j), while the other element in H(i,j). The recurrences are: 

(variable V) 

E1 (D1' V, inv1) 

E2 (D2, V, inv2) 

E3 (D4' V, (V, H), Imaxl, (I1,I2 )) 

(variable H) 

E4 (D3 ,H,inH) 



CHAPTER 5. CASE STUDIES 

n 2n-1 J I DI n 
I 

n-I 

1 i 
I 

V 
.> , 

- 1-> T v - J J - -> 
~ v l- V V 

a) bl 

Fig. 5.29. Sorting: a) data dependence graph; b) domains. 

where: 

- the index mappings are: 

I1(i,j) (i - l.j) 

I 2(i,j) = (i,j - 1) 

- the applied functions are: 

invl(i,j) = a" J 

inv2(i,j) = 0 

inH( i,j) 00 

Imaxl(a, b) { : a 2. b 
otherwise 

Iminl(a,b) { : a2.b 
otherwise 

. the domains are: 

Dl {(i,j)li=o,l~j~n} 

D2 {( i , j) 1 0 ~ i ~ n - 2. j = i + n + 1} 

D3 {(i.j) 11 ~ i ~ n - l.j = i - 1} 

D4 {(i, j) 11 ~i ~ n - l.i ~ j ~ i + n}. 

20·1 j 



CHAPTER 5. CASE STUDIES 

Specification 

At each iteration t, the sub column [at,t, at+l,t, .... an,t] of the matrix is scanned to identify 

the pivot. Every time two elements of the column are swapped, their corresponding rows 

are also exchanged. This provides the necessary rearrangement of the elements of the matrix 

before updating its entries. Once all the rows of the matrix have been rearranged, the row 

and column coefficients are determined and the new matrix computed. 

Let us consider the first iteration of the algorithm, i.e., t = 1. The iteration can be represented 

in a 3-dimensional space, in which we assume that A is input on the (k. j)-plane (the index 

k corresponds to columns of A). For k = 1. the elements of the first column of .-1 are 

processed, looking for the pivot, as explained in the previous section. When the values of 

H(i,j - 1,1) and V(i - l,j, 1) are swapped, a control signal (variable C below) is issued 

and propagated upwards (direction of (0,0,1)). In this way, for k > 1. the corresponding 

exchange of H(i,j -1, k) and V(i -1,j, k) is performed. The first phase of the iteration can 

be specified as follows: 

where: 

(variable V) 

El (Dl' V, invl) 

Ez (Dz, V, invz) 

E3 (D4,b V, (V, H), Imaxl, (I1,Iz)) 

E4 (D4,z, V, (V, H, C), swapv, (I1,Iz,I3)) 

(variable H) 

Es (D3 ,H,inH) 

E6 (D4,b H, (V, H), Iminl, (IbIz)) 

E7 (D4,z, H, (V, H, C), swapH, (I1,Iz,I3)) 

(control variable C) 

Es (D4 ,b C, (V, H), Icmpl, (I1,Iz)) 

Eg (D 4,z, C, C, id,I3) 

- the index mappings are: 

(i-l,j.k) 



CHAPTER 5. CASE STUDIES 

- the applied functions are: 

- the domains are: 

I 2(i,j,k) 

I 3(i,j, k) 

inVl(i,j,k) 

inV2(i,j,k) 

idea) 

swapv(a, b) 

swapH(a, b) 

Imaxl(a, b) 

Iminl(a,b) 

Icmpl(a,b) 

o 

(i,j-Lk) 

(i,j,k-1) 

00 

a 

b 

a 

{
a a> b 
b otherwise 

{ 
b a> b 
a otherwise 

{ 
0 a> b 
1 otherwise 

Dl {( i, j, k) I i = 0,1 S: j S: n, 1 S: k S: n} 

D2 {( i, j, k) lOS: i S: n - 2, j = i + n + 1,1 S: k S: n} 

D3 {( i, j, k) lIS: i S: n - 1, j = i - 1, 1 S: k S: n} 

D4 ,1 {(i,j,k) 11 S: i S: n -1,i S: j S: i + n,k = I} 

D4 ,2 {(i,j, k) 11 S: is: n - 1, is: j S: i + n, 2 S: k S: n}. 

189 

Icmpi compares the absolute values of its arguments and sets the signal C to 1 if an exchange 

is necessary (0 otherwise). swapH and swapv swap the values of H and V if the signal C is set 

to 1 (they pipeline H and V, respectively, otherwise). At the end of this phase, V(n-1,j.l), 

for n S: j S: 2n - 1, contain the elements of the pivot column, sorted in decreasing absolute 

value, and V(n-l, n, 1) is the pivot. These elements are used to compute the row coefficients, 

which are subsequently pipelined upwards (direction of (0,0,1)). The pivot row is contained 

in V(n -1,n,k), for 1 S: k S: n. These elements represent the column coefficients, which 

are propagated horizontally (direction of (0, L 0)). The computation of the new matrix is 

specified by: 

(variable V) 



CHAPTER 5. CASE STUDIES 

ElO (Ds.b V, inv3) 

Ell (Ds.z, V, (V, H,RC). update, (II.Iz.I3)) 

EIZ (D6, V, V, id,II) 

(variable H - column coefficients) 

E13 (D6,H, V,id,It) 

E14 (D7' H, H, id,Iz) 

(variable RC - row coefficients) 

E1S (DS,I, RC, (V, H), div, (II. I z)) 

E16 (D 5 ,z, RC, RC, id,I3) 

where: 

- the index mappings are as above; 

- the applied functions are: 

- the domains are: 

inV3(i,j,k) 

id(a) 

div(a,b) 

update( a, b, c) 

o 

a 

alb 

D5,1 {(i,j, k) Ii = n, n + 1 ~ j ~ 2n - 1, k = 1} 

D 5 ,z {(i,j, k) Ii = n, n + 1 ~ j ~ 2n - 1, 2 ~ k ~ n} 

D6 {(i,j,k) Ii = n,j = n,l ~ k ~ n} 

D7 {(i,j,k)li=n,n+1~j~2n-1,1~k~n}. 

190 

The data dependence graph is given in Fig. 5.30 a) and b), and for k = 1 in Fig. 5.31. The 

iteration itself is illustrated in Fig. 5.32. 

5.4.3 Space-Time Mapping 

At each iterationt for 1 ~ t ~ n-1,asubmatrixof(n+1-t)x(n+1-ijelementsisconsidered. 

as the remaining t-1 rows and columns of the current matrix are already in their final format. 

On each of these submatrices the same sequence of operations is performed. Therefore the 



CHAPTER 5. CASE STUDIES 191 

a) b) 

Fig. 5.30. Data dependence graph: a) finding the pivot (i 
computing the new matrix (i = n). 

c and 1 < c < n - 1); b) 

n-J 

n 

k~ 
i 

n 2n-J 01 n 2n-1 -
I -> • 

v - -> 4_ - V 

-> 

02 

D3 ~ D4.l ~ n-l 

V 

-> 
D6 07 n 0 

V V V V 

a) b) 

Fig. 5.31. Iteration for k = 1: a) data dependence graph; b) domains. 

I J- ______ _ 

a) b) 

I 

J-

c) 

Fig. 5.32. Phases of the iteration: a) finding the pivot; b) computing the new matrix; c) 
composition of the phases. 



CHAPTER 5. CASE STUDIES 192 

k 
e* 

j 

Fig. 5.33. Dependence Cone. 

specification given in the previous section can be used as the specification of each iteration 

of the algorithm (indeed the computation domains have to be "resized" accordingly at each 

iteration). In order to obtain an array design for the algorithm, we first apply a space­

time mapping to each iteration and compose the mapped iterations subsequently. Indeed, 

the combinations of different mappings and compositions of the iterations produce several 

distinct array designs for the algorithm. 

The data dependencies of the specification are uniform and the corresponding dependence 

cone IS 

0* = cone({(I,O,O),(O,I,O),(O,O,I)}). 

The dependence cone, illustrated in Fig. 5.33, is pointed. 

A valid affine timing function is determined by any A = (AI, A2, A3) E Z3 such t hat the 

following system of inequalities is satisfied: 

The vector A = (1,1,1) is a possible choice, determining the timing function t(i,j,k) = 

i + j + k. With this timing function, a single iteration on an n X n matrix requires O( 4n) 

steps. 

A compatible allocation is determined by any projection vector u = (Ub U2, U3) E Z3 such 

that A . U ::fi 0, that is Ul + U2 + U3 ::fi 0. For instance, U = (0,1. 0) satisfies the condition and 

determines the linear scheduling a( i, j, k) = (i, k). The corresponding projection, summarised 

in Table 5.12, produces the signal flow graph of Fig. 5.34. There are four types of nodes in the 

graph: type a) (represented as white nodes) corresponds to the computations to determine 

the pivot; type b) (black nodes) corresponds to the computations to rearrange the ent ries of 



CHAPTER 5. CASE STUDIES 19.3 

d A·d a(d) 
(1,0,0) 1 (1,0) 
(0,1,0) 1 (0,0) 
(0,0,1) 1 (0,1) 

Table 5.12. Transformation of data dependence vectors under the space-time mapping [t, aJ. 

C 

V' 

V' := Imaxl (V, H) 
H' := Iminl (V, H) 
C:= Icmpl (V, H) 

a) 

k 

Fig. 5.34. Signal flow graph of the iteration. 

C C' 

V' 

V' := swapV (y, H, C) 
H' := swapH(V, H, C) 

C' :=C 

b) 

H' :=V 
RC :=V,/H 

c) 

Fig. 5.35. Processing elements. 

RC' 

V' 

V' := update (V, H, RC) 

H' :=H 
RC':= RC 

d) 



CHAPTER.5. CASE STUDIES 

Jc .-.... 
i -

a) 

.- .... 
i --

,u, ., __ ' .,u, .• · ., " ., • .~ I. .. · " ., I. 
'- - .. 

b) 

Fig. 5.36. Signal flow graphs: a) Sequential composition b) Superimposition. 

194 

the current matrix; type c) (crossed white node at the bottom left-hand corner) corresponds 

to the computations to determine the row coefficients; and type d) (white dotted nodes) 

corresponds to the computations to update the entries of the current matrix. A description 

ofthe corresponding processing elements and their operations is given in Fig. 5.35. :;'ote that 

signal flow graph and processing elements refer to a single iteration. 

A sequential composition of the iterations produces the signal flow graph in Fig. 5.36 a) (where 

we have omitted the loops at each node and different types of nodes are not distinguished). 

As the iterations of the algorithm are strictly sequential, a more compact graph (which 

yields a more efficient use of the processing elements) can be obtained by superimposing the 

iterations. The resulting signal flow graph is given in Fig. 5.36 b). Regular array designs 

corresponding to both these graphs were proposed by Megson in [Meg90]. These designs 

compute the algorithm in, respectively, O(2n2 + n) and O(n2 + 3n) time steps. Note that, 

as data are pipelined between consecutive iterations, some of the computation of the next 

iteration can begin before those of the current iteration have all been completed. 

Finally, note that both designs require the specification of control signals (which for brevity 

we have omitted) in order to tag the beginning of each new iteration. 

5.5 Summary 

We have presented a number of case studies for the illustration of the techniques developed 

in the previous chapters of this thesis, and shown that some interesting problems from the 

literature, such as cyclic reduction techniques for the solution of tridiagonal systems or the 

knapsack problem, can be treated systematically with our methods. 

From the work presented in this chapter we can make a number of observations. While. in 

general, some expertise and problem-specific knowledge is required from the designer both 



CHAPTER 5. CASE STUDIES 191 

for the initial specification of an algorithm and the application of the subsequent transforma­

tions, synthesis methods provide guidelines to support the designer in his/her task as well as 

the mechanisation of some of the design steps. These guidelines include. for instance. condi­

tions related to the scalability of the array design (i.e., the uniformity of the regularisation 

directions with respect to the size parameters of the problem) and the existence of an affine 

scheduling (i.e., guaranteeing that the dependence cone is pointed). For example. in the 

case of cyclic reduction for the solution of tridiagonal systems, we could identify the lack of 

scalability of our specification in the early phases of the design, by analysing t he generators 

of the dependence cone. On the other hand, little support is provided by synthesis methods 

to indicate how a "better" specification can be chosen. For instance, in the same example, 

the transformation T at the basis of the new specification was chosen arbitrarily, based on 

our knowledge of the regularisation techniques and computational model. 

Characterising what makes a specification particularly suitable for regular array synthesis is 

not a trivial problem, and very little work exists in the literature on the subject (the problem 

is mentioned in [LeXu91]). It is, however, an important issue as sometimes reformulating a 

problem is necessary (for instance, because the synthesis method breaks down). This was the 

case in our example of an M-to-1 decimator, where neither integral nor affine regularisation 

techniques could be applied successfully. Note that the necessary reformulation was not just 

a simple syntactic manipulation of the recurrences, but was based on a totally different view 

of the algorithm. 

Changing the specification was also necessary in our example of Gaussian elimination with 

pivoting, where we replaced a dynamic algorithm with a static specification. We have already 

discussed (in Chapter 4) how a transformation from dynamic to static is necessary for the 

synthesis of dynamic problems as regular arrays. However, the type of transformation that 

we have applied in the example appears to be more complex than those we have defined 

through our regularisation techniques in Chapter 4. In particular, the transformation of 

the example was applied to the algorithm as a whole rather than its single dynamic data 

dependencies (as we do with our method). The relation between complexity and scope of 

application of synthesis transformations was discussed in Chapter 1, where we stressed how 

synthesis methods have developed by favouring simple locally applicable transformations. 

The limitations of this approach appear to be critical with dynamic problems, where more 

global (hence complex) transformations seem to be required (even our techniques require 

the redefinition of sub-systems of equations in order to make a dynamic data dependence 



CHAPTER 5. CASE STUDIES 1':16 

uniform). 

The two dynamic examples, knapsack problem and Gaussian elimination with pivoting. have 

been useful to stress the type of problems characterised by finitel:.- generated dynamic recur­

rences. In the knapsack problem the dynamicity is resolved as soon as the weight distribution 

is known. The control variables are assigned once and maintain their values throughout the 

algorithm. On the other hand, Gaussian elimination requires to compute a new pivot at each 

iteration, hence (the same) dynamic data dependence relations have to be resolved several 

times throughout the algorithm. 

We may conclude that finitely generated recurrences characterise a restricted class of dynamic 

problems, and that a more general treatment of dynamic problems requires the consideration 

of specifications at a more global (and abstract) level. We will return to these points in the 

following final chapter. 



Chapter 6 

Conclusions 

The focus of this thesis was the systematic synthesis of regular arrays. We have discussed 

some of the major benefits of synthesis methods such as the provision of a disciplined and 

rigourous approach to algorithm design (the various stages of the design process are clearly 

identified and supported by the methodology, and formal notation and transformations guar­

antee that the approach is well-founded), or the fact that they represent an effective way 

of engineering parallel algorithms (as computationally powerful methods can be developed 

based on the underlying mathematical model of affine Euclidean geometry with embedded 

lattice spaces). We have also exposed some of the limitations of the synthesis methods, pri­

marily their restricted scope of application, and the fact that, even for problems in their 

scope, synthesis techniques have not (as yet) reached the maturity of a formal method which 

provides best practice without expertise [Hal95]. In particular, a fairly high level of expertise 

is required from the specifier throughout the design process to guide the transformations and 

provide efficient solutions under the given problem constraints. 

The work of this thesis has aimed at overcoming some of the limitations of the existing 

techniques by widening their applicability to more general classes of problems. In doing so, 

the provision of practical solutions was one of our major concerns, and our techniques were 

developed within the traditional mathematical framework of synthesis methods. The two key 

issues in our developments have been: the identification of classes of non-affine problems; and 

their systematic transformations into regular problems to which classic mapping techniques 

can be applied. Related issues of scheduling and placement were also addressed. 

A major achievement of this work is the characterisation and systematic treatment of classes 

of integral and dynamic problems. That these problems are of practical interest has been 

demonstrated by considering case studies from the literature to which our techniques apply. 

197 



CHAPTER 6. CONCL USIONS 

In the thesis we have defined novel engineering solutions for regular arra\·s. rather than 

improving on existing methods, hence we cannot assess the solutions we have proposed by 

direct comparison with other methods. We can, however, make a number of observations on 

our development and stress points which deserve further investigation. 

The emphasis of the work has been more on the feasibility of the approach than on its op­

timality. An obvious source of inefficiency both for integral and dynamic techniques is the 

computational overhead due to the way data routing is defined. Although we haw partially 

addressed the problem through the provision of parametric uniformisation techniques. the re­

duction of routing overhead is an area of research for which further work would be beneficial. 

Note that, while regularising integral data dependencies mainly reduces to the definition of a 

suitable routing system, the treatment of dynamic data dependencies involves the definitions 

of two classes of computations: those computations necessary to establish the data depen­

dence relation at run-time, and those computations necessary to route the data accordingly 

once such a relation has been established. Therefore, more efficient regularisation techniques 

for dynamic data dependencies should not just reduce the routing overhead, but also maximise 

the parallel execution of the two classes of computations. In our techniques, this is achieved 

by separating the computations for determining the coefficients of a dynamic index mapping 

from those for computing the new values, hereby increasing their potential for parallelism. In 

the case of Gaussian elimination with pivoting, a similar effect is obtained, at each iteration, 

by rearranging the entries ofthe current matrix while determining the pivot. Indeed, efficient 

regularisation techniques could be developed by considering special subclasses of problems. 

This type of approach is taken in [Fr-et-al93, Sw-et-al94] for so-called piece-wise linear data 

dependencies (a type of integral dependencies in which the index mappings define piece-wise 

linear transformations). 

A major difference between transformations for integral (in general static) and dynamic 

problems is the necessity, in the latter case, to consider algorithm specifications more glob­

ally rather than applying the transformations to single data dependencies in isolation. The 

reason for such a difference is that the computations which establish the dynamic data depen­

dencies at run- time have to be taken into account as part of the new algorithm specification. 

With our techniques this is achieved by combining the separation of some computations of 

the algorithm and their translation in the computation space. A limitation of our approach. 

formally captured by the requirement of separability of the computations (see Section 4.3.6). 

is that the computation domain of the non-uniform data dependence remains unchanged 



CHAPTER 6. CONCLUSIONS 199 

throughout the transformations. In other words, the techniques provide a systematic routing 

of the data between pairs of computation points which are fixed by the specification. This 

characteristic of our techniques is also shared by classic regularisation techniques for affine 

problems [QuVa89] from which our approach has developed. However, more powerful reg­

ularisation techniques could be developed which modify the original computation domains, 

so that separability is not necessary. For instance, such techniques may allow the domains 

to be expanded so to include the (possibly interleaved) computations of both the coefficients 

of the index mapping and the routing of the data. Such an approach would be particularly 

beneficial to problems such as Gaussian elimination with pivoting, in which the determination 

of the pivot and the corresponding updating of the matrix entries are interleaved throughout 

the algorithm. Indeed, such sophisticated techniques are likely to be complex and based 

on non-affine domain transformations, making more difficult the development of correspond­

ing tool support. Also, a possible introduction of new non-uniform data dependencies in 

the specification due to the modification of the original computation domain needs to be 

addressed. 

Our work on dynamic problems raises a number of questions. First of all, it could be argued 

whether our definition of dynamic data dependence provides an adequate abstraction for 

dynamic problems of practical interest, or whether other and more general forms of dynamic 

problems should be considered (a taxonomy of static and dynamic problems based on data 

dependencies and task generation can be found in [Me-et-al95]). We have shown that our 

approach is general enough to characterise interesting problems from the literature. However, 

a better insight is needed on its applicability in general. Also we could question whether the 

mathematical framework in which such an approach has been developed is adequate. Our 

treatment of dynamic problems, even in the restricted connotation which we have considered, 

shows that the existing framework lacks of some of the necessary basic notions, such as that 

of input. Moreover, we feel that the extension that we have provided, while realising our 

objective, does not constitute a particular elegant mathematical model for the treatment of 

dynamic problems. At this stage of the work, however, we have preferred to remain within 

the framework of the established synthesis methods (so that our techniques can be made 

immediately available to the engineering community) rather than attempting to redefine the 

whole theory. 

Finally, there are a number of issues which have not been addressed in this work. Among 

them, whether the computability of integral and dynamic problems can be established. It 



CHAPTER 6. CONCLUSIONS 200 

is possible that, because of the relationships among the various types of recurrences. some 

of the results known for other classes of recurrences (see the overview in Section 2 .. 5) may 

be generalised to integral and dynamic problems. Also, although we have stressed the im­

portance of providing synthesis techniques which can be mechanised, we have not considered 

the issue explicitly. Tool support for regular array synthesis exists (see the overview in Sec­

tion 2.5) including algorithms for the manipulation ofthe recurrences, their domains and data 

dependencies. Those algorithms are based on known techniques from linear algebra. com­

putational geometry and linear programming (such as determining standard basis of vector 

spaces, computing the convex hull of sets of points or solving linear optimisation problems -

see Appendix F and work in [Ner63, PrSh85, Sch86]). The same type of algorithms could be 

applied for the manipulation of the specifications as defined by our regularisation techniques. 

which could then be easily integrated with existing libraries of transformations for regular 

array synthesis. 



Appendix A 

Notation 

(set theory) 

R 

Q 

z 
N 

N+ 

U 

P(U) 

lUI 
un 
prj: un ----+ U 

[U~Ul 

u 

S(u) 

f 
f(U) 

fm 

[linenl' and affine algebra} 

In 

,\I 

\Ij 

.\1-1 

real numbers 

rational numbers 

integer numbers 

natural numbers 

positive integer numbpr" 

n-dimensional Euclidean space 

n-dimensional Euclidean lattice space 

generic set 

powerset of U 

cardinality of U 

n-fold Cartesian product of U, i.e .. U X ... xU 11 tiIll('~ 

ith projection mapping, for i = L .... 11 

set of all mappings from U to U 

n-tuple in un 
support sEt of u, defined as S( u) = Uf=l {pri( U)} 

generic function 

image ofU under f. i.e .. {f(u) I u E U} 

composition of f \\'ith itself m times. i.e .. f 0 ... 0 f. m times 

11 X 11 identity matrix 

generic matrix 

/h row oflJ 

inverse of ,\1 

201 



APPENDIX A. NOTATION :?o:? 

Mt 

null(M) 

e' J 

[11" : OJ 

D 

lin(D) 

aff(D) 

conv(D) 

P 

vert(P) 

ray(P) 

C 

cone( {db . .. , dm} ) 

(db .. ·,dm) 

S 

S1. 

T 

transpose of M 

null space of M 

ph vector in the standard basis of R n 

hyperplane R n with normal vector 11" and coefficient () 

generic set in R n 

direction of D 

affine hull of D 

convex hull of D 

generic convex polyhedral set in R n 

set of points generating P 

set of directions generating P 

generic convex polyhedral cone in R n 

r.n vectors in R n 

the smallest convex polyhedral cone generated by dt , ... , dm 

linear space generated by dl , ... , dm 

generic space (or set) in R n 

orthogonal space of 5 

generic affine transformation in R n 

linear part of T 

{basic concepts in regular array synthesis} 

CS 

PS 

Var 

1 

0* I 

.l.. 

[equations and systems} 

E 

DE 

'E 

E' 

computation space 

processors space 

universe of variables 

generic index mapping 

dependence mapping defined by I 

dependence domain defined by I 

dependence cone defined by I 

undefined value (for variables) 

generic recurrence or input equation 

computation domain of E 

result of E 

arguments of E 

applied function of E 



APPENDIX A. NOTATION 

IME index mappings of E 

VarE set of variables of E 

S generic system of equations 

Ds domain of S 

Vars set of variables of S 

V generic variable 

De/Ev definition equations of V 

DefDv definition domain of V 

DejSv definition subsystem of V 

[data dependencies and graphs} 

VV 

VVE, 

VVE 

VVs 

Vvg 

eVvg 

nvg 

[Vg 

generic data dependence 

ith data dependence of E 

data dependencies of E 

data dependencies of S 

generic data dependence graph 

generic complete data dependence graph 

generic reduced dependence graph 

generic extended dependence graph 

[timing and allocation functions} 

t 

A 

J.L 

a 

(j 

[t, aJ 
Gt,a 

[miscellaneous} 

tT 

Ten 

str,ren 

in 

R, RI, ... , S, S\ . . , 

Ct, {3, I,· .. 

G}, ... ,Gm 

generic timing function 

vector defining of an affine timing function 

coefficient of an affine timing function 

generic allocation function 

matrix defining of an affine allocation function 

space-time mapping determined by t and a 

signal flow graph under t and a 

translation in R n 

variable renaming 

translated image of S 

generic input 

routing variables 

control variables 

integer-valued variables 

203 



APPENDIX A. NOTATION 

91,·· ·,9m 

d,d,d 

r,f,f 

mod 

l-J 
p 

integer functions 

regularisation direction vectors 

rays of a dependence cone 

modulus function 

floor function (_ place holder) 

parameter 

204 

For simplicity, we usually represent an n-dimensional vector as an n-tuple, that is :r 

(Xl, ... , xn). The only exception to this convention is the case of matrix expressions. in 

which vectors are represented as column vectors. 

As we restrict ourselves to lattice spaces, with some abuse of notation, we represent vector 

spaces, such as lin(D) or null(M), as lattice spaces. 



Appendix B 

Proofs of Basic Results 

In this appendix we provide a formal proof of some of the basic results discussed in Chapter 2. 

For some of these results, a formal statement was given in Chapter "2. In these raspo.. we have 

maintained the same reference number. and indicate, in the right margin. the page at which 

the formal statement was given. 

B.1 Timing and Allocation Functions 

Proposition B.1.l [Compatibility} Let t be an affine timing function such that liz) = 
A . Z + IL. and a a linear allocation function wit h projection vector !J. Then t and a iIl"(' 

compatible if and only if A . u :j:. o. 

PROOF: We first prove that if t and a are compatible then A' lL :j:. O .. \~~\IJll(' A . U = O. 

Then lL E null(A). Therefore there C'xist z.::;' E [A : c], for some (" E Z. such that 

::;' = z + mu, with m:j:. O. and t(z) = t(::;'). Then: 

a( ::;') = a . ::;' = a . (z + m lL) = 

= a· z + ma . u = a· ::; = a(z). 

Hence, t and a are not compatible. 

We now prove that if A . U :j:. 0 then t and a are compatible. Assume t and a non 

compatible. Then there exist z,z' such that z:j:. z'. t(::;) = t(z') and a(.:) = at::;'). 

However. if at::;) = a(::;'). then there exists m :j:. 0 such that z' = z + mu. as u is the 

projection vector. Therefore: 

t(:::') = A . z' + 11 = A • (::; + mu) + 11 = 

A . ::; + rnA . u + 11 = t( z) + mA . lL. 

20.5 



APPENDIX B. PROOFS OF BASIC RESULTS 
206 

and t(z') = t(z) only if A' u = o. • B.l.I 

B.2 Condition for Uniformity 

Proposition B.2.1 [Condition for Uniformity} Let VV = (D. C \ ",I) be an affine data 

dependence, with I(z) = A . z + b, for all zED. Then VV is uniform if and only if 

lineD) ~ null(In - A). 

PROOF: By definition, the affine closure of Dis: 

and given d ED, the direction of Dis: 

lineD) = aff(D) - d = {z - d I ZED}. 

From the above definitions, it follows that Vz E D, z - d E lineD). 

Let us prove that lineD) ~ null(In - A) implies that there exists c E zn such that 

Vz E D, 0 r (z) = c. For all ZED, 

0r(z) (In - A)· z - b = (In - A)· (z - d + d) - b 

(In - A) . (z - d) + (In - A) . d - b. 

As z- dE lineD) and, by assumption, lineD) ~ null(In - A), then (In - A) ·(z-d) = 
o and the expression above reduces to 

0 r (z) = (In-A)·d-b, 

where (In - A) . d - b is a constant vector in zn, independent from z. In particular, 

when A = In, then 0r(z) = -b. 

We now prove that the existence of c E zn such that V zED, 0r( z) = c implies 

lineD) ~ null(In - A). As Vz E D, 0r(z) = c then Vz E D. (In - A) . z = b + c. 

and, in particular, (In - A) . d = b + c. The (matrix) expression: 

(In - A) . z = b + c 

defines a system of non-homogeneous linear equations whose solution space null(In­

A) + (b + c) contains D. Also af feD) is contained in this space, as any affine 

combination of elements of D is a solution to the system. In fact, let z, ED, for 



APPENDIX B. PROOFS OF BASIC RESULTS 20, 

i = 1 ... , m, and let Li aizi be an affine combination of the points. with L. ai = 1. 

Then: 

Le., the affine combination is a solution to the system. By definition of lin( D). for 

all Z E lineD), there exist z' E af feD) and d E D such that z = ::;' - d. Then: 

(In - A) . z = (In - A) . (z' + d) = 0 

i.e., Z E null(In - A). It follows that lineD) ~ null(In - A). • B.2.1 

Corollary B.2.2 Let 1)1) = (D, U, V,I) be an affine data dependence. If I is uniform 

then 1)1) is uniform. • B.2.2 

Corollary B.2.3 Let 1)1) = (D, U, V,I) be an affine data dependence. with a non-uniform 

index mapping I. If 1)1) is uniform then I can be replaced by a uniform index mapping I'. 

PROOF: I' is the index mapping I'(z) = z - c, where c is the constant vector of Proposition 

B.2.l. • B.2.3 

B.3 Affine Timing Function for Affine Data Dependencies 

Linear programming problems for optimal affine timing functions have been considered by 

several authors in the literature [RaFu87, RaFu89, QuVa89]. The main result of this section 

(Theorem 2.2.11) is based on the formulation in [QuVa89]. 

Lemma B.3.1 [Valid Affine Timing Function} Let 1)1) = (D, U, V,I) be an affine data 

dependence, E>r its dependence mapping and f!r = rangeey(D). Let t be an affine timing 

function, such that for all z E zn. t(z) = A' z + p, with A E zn and with p E Z. t is a valid 

timing function for 1)1) if and only if: 

i) for all v E vert(f!r), A' v> 0; 

ii) for all r E ray(f!r), A' r ~ O. 



APPENDIX B. PROOFS OF BASIC RESULTS 208 

PROOF: According to Definition 2.1.12, t is a valid timing function for VV if and only if for 

all zED, t(z) > t(I(z)). By expanding t to its affine form we obtain: 

A . Z + Jl > A • I( z) + JL 

A'(z-I(z))>O 

A' 0r(z) > 0 

i.e., t is a valid timing function for V1J if and only if for all ZED, A . 0r(::) > O. 

First we prove that conditions i) and ii) implies A' 0r(z) > 0, for all zED. As nT 

is a convex polyhedron, it is finitely generated by a set of points and directions in 

zn. Let vert(f!r) = {VI, ... ,vm } and ray(nr) = {rt, ... ,rp }. Then, for all zED, 

0r(z) can be expressed as: 

0r(z) = L aiVi + L bjrj, 
, j 

with ai,bj ~ 0 and Liai = 1. As 0r(z) =I- 0 (otherwise the data dependence graph 

is cyclic), from i), ii) and the conditions on ai and bj it follows that: 

A' 0r(z) = L ai A ' Vi + L bjA' rj > O. 
, J 

We now prove that A ·0r(z) > 0, for all zED. implies conditions i) and ii). 

Condition i) is straightforward. As any vertex v of Or is in particular an element of 

the set, there exists ZED such that v = 0T(Z), Therefore A . v > O. Condition ii) 

can be proved by noticing that if r is an infinite direction of OT then it is the image 

of an infinite direction r' of D under the linear part LeI of 0r. Suppose that for 

all z, 0r( z) = LeI (z) + c, for some c E zn. Assume that A . r < 0 and consider 

z + ar' E D. Then: 

A . 0r( z + ar') = 

A . (£8 I (Z + ar') + c) = 

A' (£eI(z) + a£eI(r') + c) = 

A' (0r(z) + ar) = 

A·0r(z)+aA·r, 

which is negative for a sufficiently large, as A . 0T( z) > O. As this violates the 

validity of t, then the assumption A . r < 0 is false. • B.3.1 



APPENDIX B. PROOFS OF BASIC RESULTS 209 

Corollary B.3.2 Let 1)1) = (D, U, V,I) be a uniform data dependence, with index map­

ping I( z) = z + b, for all z E zn, and b E zn. Let t be an affine timing function, such that 

for all z E zn, t( z) = >. . z + JL, with>' E zn and JL E Z. t is a valid timing function for VV if 

and only if >. . b < O. • B.3.2 

Lemma B.3.3 [Finite and Bounded Affine Timing Function} Let V1) = (D. Co \',I) be an 

affine data dependence and t a valid affine timing function for VV. Then: 

i) t is finite if and only if, for all r E rayeD), >. . r =I 0; 

ii) t is bounded (below) if and only if, for all r E ray( D). >. . r 2: O. 

PROOF: i) As D is a convex polyhedral set, D contains unbounded sets ofthe form {z+arla 2: 

O}, for zED and r E rayeD). Therefore, t is not finite if and only if, for any such 

set, t( z) = t( z + ar) for all a > O. However, by expanding the definition of t. 

t(z) >"Z+JL 

t(z + ar) >.. (z + ar) + JL = >.. z + JL + a>.· r 

Therefore, t( z) = t( z + ar) for all a > 0 if and only if >. . r = O. 

ii) t is not bounded below if and only if, given a set {z + aria 2: O}. for zED 

and r E rayeD), there exists an infinitely decreasing chain fez) > t(z + r) > ... > 

t(z + ar) > .... Such a chain exists if and only if >.. r < O. In fact. for all a 2: 0, 

if and only if 

t(z + ar) > t(z + (a + l)r) 

>'.(z+ar)+JL > >'.(z+(a+l)r)+JL 

>. . z + a>. . r + JL > >.. z + (a + 1)>' . r + JL 

a>. . r > (a + 1)>. . r 

i.e., if and only if >. . r < O. • B.3.3 

Corollary B.3.4 Let 1)1) = (D, U, V,I) be an affine data dependence and t a valid affine 

timing function for 1)1). Then t is finite and bounded if and only if, for all r E ray( D), 

>. . r > O. 
• B.:3.I 



APPENDIX B. PROOFS OF BASIC RESULTS 210 

Corollary B.3.5 Let 1X!) = (D, U, V,I) be an affine data dependence and t a valid affine 

timing function for 1)1). Then: 

i) for all r E ray(D) and z, z' E D such that z' = z + ar, with a E Z. a =1= 0, if t is finite 

then t(z) =1= t(z'); 

ii) for all r E ray(D) and z,z' E D such that z' = z+ar, with a E Z. a> O. ift is bounded 

below then t( z) < t( z'). 

• B.3.5 

Theorem 2.2.11 Let 1)1) = (D, U, V, I) be an affine data dependence, 0r its dependence p. 34 

mapping and !h = ranges7 (D). Let t be an affine timing function, such that for all z E zn, 
t(z) = A' z + J.L, with A E zn and with J.L E Z. Then t is a non-negative, finite, bounded valid 

timing function for 1)1) if and only if: 

i) for all v E vert(nr), A . v > 0; 

ii) for all r E ray(nr), A' r 2:: 0; 

iii) for all v E vert(D), A' v + J.L 2:: 0; 

iv) for all r E ray(D), A' r > O. 

.2.2.11 

PROOF: First we prove that conditions i)-iv) implies that t is a non-negative, finite, bounded, 

valid timing function for 1)1). Condition i) and ii) implies that t is valid (see 

Lemma B.3.1). Conditions iii) and iv) implies that t is non-negative. In fact, 

let vert(D) = {Vb"" vm } and ray(D) = {rI,'''' rp}. Then, for all zED, z can 

be expressed as: 

z = Laivi + Lbjrj. 
, J 

with a' b· > 0 and "". a' = 1 Because of conditions iii) and i'l}. Li ai(A' Vi + J.l) + 
" J - 1....". 

L ai(A' Vi + J.L) + L bjA' rj = 
i j 

J 

j 

A . z + J.L = t( z) 2:: o. 



APPENDIX B. PROOFS OF BASIC RESULTS 
211 

Finally, condition iv) implies that t is finite and bounded (see Lemma B.3.31. 

Now we prove that if t is a non-negative, finite, bounded, valid timing function for 

VV then conditions i)-iv) hold. t valid implies conditions i) and ii) (see Lemma B.3.1). 

t non-negative implies condition iii). In fact, as v E vert(D). in particular. t' is an 

element of D; then t( v) ~ 0, i.e., A . Vi + J.l ~ O. Finally, t finite and bounded implies 

condition iv)(see Lemma B.3.3). .2.2.11 

Corollary 2.2.13 Let VV = (D, U, V, I) be a uniform data dependence, with index p.36 

mapping I(z) = z + b, for all z E zn, and b E zn. Let t be an affine timing function. such 

that for all z E zn, t(z) = A' z + J.l, with A E zn and J.l E Z. Then t is a non-negative, finite, 

bounded valid timing function for V1) if and only if: 

i) A' b < 0; 

ii) for all v E vert(D): A' v + J.l ~ 0; 

iii) for all E ray(D): A' r > O. 

.2.2.13 

B.4 Dependence Cone and Affine Timing Function 

Proposition 2.2.15 Let 1)1) = (D, U, V, I) be a data dependence and 0i its dependence p. 37 

cone. If 0i- is pointed then there exists a valid affine timing function for 1)1). .2.2.1.5 

PROOF: The cone 0i- is, by definition, a convex polyhedral set. If 0; is pointed then it 

contains no lines, and is finitely generated by its extremal rays. Let {rt, ... , rm} 

be the set of the extremal rays of 0;. A valid affine timing function for 1)1) = 
(D, u, V,I) is determined by any non-null A E zn such that A . ri > 0 for all 

extremal rays rio At least one such A exists because of the separation theorem (see 

Appendix E). 

By definition of 0;, for all zED, 0r(z) E 0;. Hence, for all zED, 0r(z) can be 

written as a positive combination of the extremal rays of 0r. i.e .. 0r(z) = Li airi· 

with ai ~ 0 and not all ai = O. Therefore, for all zED, 

L ai A ' ri > O. 



APPENDIX B. PROOFS OF BASIC RES('LTS 212 

Therefore, any timing function defined as t( z) = >. • z + J1.. for some J1. E Z. defines a 

valid timing function for DD. .2.2.1.5 

B.5 Pointed Cone with Unimodular Generators 

The following result is due to Quinton and Van Dongen [QuVa89]. 

Proposition 3.2.1 [Qu Va89] Let C be a pointed polyhedral convex cone of full dimension p. 58 

in Qn. There exists a pointed polyhedral convex cone C' such that: C' contains (' and its 

extremal rays constitute a unimodular basis of zn. .3.2.1 

PROOF: The proof is based on the two following properties of convex polyhedral cones: 

- if C and C' are convex polyhedral cones such that C ~ C', then their dual 

cones C and C' are such that C' ~ C; 

- if C is an n-dimensional cone in Qn, with n extremal rays T1, ... , Tn forming 

the columns of a matrix Q, then if C is an n-dimensional cone in Qn. with n 

extremal rays forming the columns of the matrix Q = - ( Q -1 )t . 

Suppose C has m extremal rays, with m ~ n (m cannot be less than n as C is 

assumed of full dimension in Qn). Let C be its dual cone and let R be the matrix 

having as columns the m extremal rays of C. Choose a sub-cone C' of C such that 

C' has exactly n extremal rays which form a unimodular basis. Such rays are the 

columns of any n X n unimodular matrix il', which satisfies the matrix equation: 

R·P=R' 

with P a non-negative m x n rational matrix. Then the dual cone C' of C' is the 

cone we are looking for, with extremal rays the columns of the matrix -( il'-1 r· 
.3.2.1 



Appendix C 

Case Studies 

This appendix contains programs for the execution of the specifications of the case studies 

in Chapter 5. The programs are expressed in Mathematica. (Mathematica is a trade mark 

of Wolfram Research Inc. For a description of the syntax of Mathematica expressions and 

predefined functions, see [WoI88].) Input and output codes for the various case studies were 

produced with Mathematica and subsequently edited for inclusion in this thesis. 

C.l Notation and Conventions 

In general, we have tried to be consistent with the notation used in Chapter S. There are, 

however, a few exceptions. In particular, as C and D are protected symbols in Mathematica, 

variables with such names in Chapter 5 have been named CC and DD, respectively, in this 

appendix. Also, n has been used instead of the reserved symbol N. 

In the following programs, domains are defined as systems of inequalities and represented in 

their matrix form, i.e., if a domain is defined by the system of inequalities 11" • Z ~ 8, for a 

matrix 11" and a vector 8, the pair (11", 8) is provided to describe it. 

Different from the specifications in Chapter 5, in the following programs we need to evaluate 

explicitly whether a point belongs to a certain domain before being able to evaluate any 

variable at that point. To this end we have defined a predicate in, which checks whether a 

point point belongs to a domain defined by a pair (pi, theta). The predicate computes 

the matrix expression (pi .point-theta) and checks whether all the entries of the resulting 

vector are non-negative. The predicate in is defined as follows: 

in[pi_. theta_. point_] := in[pi. theta. point] = 

Apply [And. Map[NonNegative. pi . point - theta]] 

213 



APPENDIX C. CASE STUDIES 
21-4 

where the predefined function Map applies the boolean predefined function NonNega1:ive to 

each entry of (pi. point-theta), and Apply realises the logical And of the results. 

C.2 Cyclic Reduction 

The following Mathematica program refers to the case study presented in Section .').1. The 

reduction phase of the algorithm is fully given, corresponding to the system of uniform 

equations obtained by applying regularisation techniques (as explained in Section ,).1.5) to 

all the variables of the specification in Section 5.1.3. In the code, we have included some 

comments which should help the reader to compare the program and the specification. 

By recalling our discussion in Section 5.1.5, only two basic types of non-uniform data de­

pendencies, which we called 1YD1 and 1YD2 , were present in the original specification. Their 

decomposition introduced variables P and Q as well as the new non-uniform data dependen­

cies VV 4 and 1)1)5. In turn, their uniformisation produced the routing variables Rl, R2 and 

Sl,S2, respectively, and the control variables 0:,(3,1, and ~,¢,1j;, respectively. In the follow­

ing program, all necessary decompositions and uniformisations relative to all the variables of 

the specification have been included. In order to maintain the relation with the discussion 

in Section 5.1.5 we have adopted the convention that the above decomposition and routing 

variables are prefixed with the name of the variable to which they refer. For instance, vari­

ables relative to A have been named as AP, AQ, AR1, etc. Similarly for B, CC and DO. Note that 

only two sets of control variables (alpha, beta, gamma, and xi. phi, psi. respectively) are 

used for the routing of all the variables of the algorithm. 

The correspondence between the identifiers in the following program and those in the speci­

fication should be straightforward, with the exception, perhaps, of bargprime, which corre­

sponds to g' and bargdbprime, which corresponds to g". 

C.2.1 Program 

(* Cyclic Reduction - Reduction Phase *) 

(* constants *) 

bargprime = Floor[(2-(r-2)-1)/2] 

bargdbprime = Floor[(2-(r-1)-1)/2] 



APPENDIX C. CASE STUDIES 

(* domains *) 

(* DO *) 

piO = {{1, 0, 0},{-1, 0, O},{O, 1, 0},{0,-1, O},{O, 0, 1},{0, 0, -1}} 

thetaO = {1, -2-r+l, 0, 0, 0, O} 

(* Dl *) 

pil = {{1, 0, 0},{-1, 0, O},{O, 1, 0},{0,-1, O},{O, 0, 1},{0, 0, -1}} 

thetal = {3, -2-r+l, 1, -r+l, 0, O} 

(* D2 *) 

pi2 = {{1, 0, 0},{-1, 0, O},{O, 1, O},{O,-l, O},{O, 0, 1},{0, 0, -1}} 

theta2 = {2, -2-r+2, 0, -r+2, 0, O} 

(* D21 *) 

pi21 = {{1, 0, 1},{-1, 0, -1},{0, 1, 0},{0,-1, O},{O, 0, 1},{0, 0, -1}} 

theta21 = {1, -2-r+2, 0, -r+2, 0, -bargprime} 

(* D2 ( 1 , 1) * ) 
pi211 = {{1, 0, 1},{-1, 0, -1},{0, 1, 0},{0,-1, O},{O, 0, 1},{0, 0, -1}} 

theta21l = {1, -2-r+2, 0, -r+2, 0, -bargprime+l} 

(* D2(1,2) *) 

pi2l2 = {{l, 0, 1},{-1, 0, -1},{0, 1, 0},{0,-1, O},{O, 0, l},{O, 0, -l}} 

theta212 = {1, -(2-r)+2, 0, -r+2, bargprime, -bargprime} 

(* D22 *) 

pi22 = {{l, 0, -1},{-1, 0, -1},{0, 1, O},{O,-l, O},{O, 0, 1},{0, 0, -1}} 

theta22 = {-2 bargprime, -2-r+2, 0, -r+2, 0, -bargprime} 

(* D2(2,1) *) 

pi22l = {{l, 0, -1},{-1, 0, -1},{0, 1, 0},{0,-1, O},{O, 0, l},{O, 0, -l}} 

theta221 = {-2 bargprime, -2-r+2, 0, -r+2, 1, -bargprime} 

215 



APPENDIX C. CASE STUDIES 

(* D2(2,2) *) 

pi222 = {{1, 0, -1},{-1, 0, -1},{0, 1, 0},{O,-1, O},{O, 0, 1},{O, 0, -l}} 

theta222 = {-2 bargprime, -2-r+2, 0, -r+2, 0, O} 

(* D23 *) 

pi23 = {{1, 0, 1},{-1, 0, -1},{0, 1, O},{O,-l, O},{O, 0, 1},{O, 0, -1}} 

theta23 = {1, -2-r+2, 0, -r+2, 0, -bargdbprime} 

(* D2(3,1) *) 

pi231 = {{1, 0, 1},{-1, 0, -1},{0, 1, O},{O,-l, O},{O, 0, 1},{O, 0, -1}} 

theta231 = {1, -2-r+2, 0, -r+2, 0, -bargdbprime+1} 

(* D2(3,2) *) 

pi232 = {{1, 0, 1},{-1, 0, -1},{0, 1, 0},{0,-1, O},{O, 0, 1},{O, 0, -1}} 

theta232 = {1, -(2-r)+2, 0, -r+2, bargdbprime, -bargdbprime} 

(* D24 *) 

pi24 = {{1, 0, -1},{-1, 0, -1},{0, 1, 0},{O,-1, O},{O, 0, l},{O, 0, -1}} 

theta24 = {-2 bargdbprime, -2-r+2, 0, -r+2, 0, -bargdbprime} 

(* D2(4,1) *) 

pi241 = {{1, 0, -1},{-1, 0, -1},{O, 1, 0},{O,-1, O},{O, 0, 1},{O, 0, -1}} 

theta241 = {-2 bargdbprime, -2-r+2, 0, -r+2, 1, -bargdbprime} 

(* D2(4,2) *) 

pi242 = {{1, 0, -1},{-1, 0, -1},{0, 1, 0},{0,-1, O},{O, 0, 1},{0, 0, -1}} 

theta242 = {-2 bargdbprime, -2-r+2, 0, -r+2, 0, O} 

(* belongs to *) 

in[pi_, theta_, point_J := in[pi, theta, pointJ = 
Apply [And, Map [NonNegative , pi . point - theta J J 

(* integral coefficients *) 

gprime[i_, j_, k_J := 2-j 

216 



APPENDIX C. CASE STUDIES 

(* applied functions *) 

inA[L, j-, k_J a[iJ 

inB[L, j-, k_J := b[iJ 

inCC[L, j-, k_J c [iJ 

inDD[L, j-, k_J .- d[iJ 

f[L, j_, k_J := If[ Mod[(i-2-j+1)/(2-(j-1», 2J == ° 
&& «i-2-j+1)/(2-(j-1» >= 2) && «i-2-j+1)/(2-(j-1» <= 2-r-2), 1, OJ 

U[t_, a_, b_, c_J := If[ t == 1, -a*b/c, undeff1J 

f2[t_, a_, b_, c_, d_, e_, f_, g_J := 

If[ t == 1, a-(b*c/d)-(e*f/g), undeff2J 

inAlpha[i_, j_, k_J := Floor [(gprime [i+bargprime, j, k-bargprimeJ-1)/2J 

inBeta[i_, j_, k_J := Mod[(gprime[i+bargprime, j, k-bargprimeJ-1), 2J 

inGamma[i_, j_, k_J := bargprime 

21;-

inXi[i_, j_, k_J := Floor [(gdbprime [i+bargdbprime , j, k-bargdbprimeJ-1)/2J 

inPhi[i_, j_, k_J := Mod[(gdbprime[i+bargdbprime, j, k-bargdbprimeJ-1), 2J 

inPsi[i_, j_, k_J := bargdbprime 

id[a_J := a 

dec [a_J := a-1 

f3[a_, b_, C_, d1_, d2_, d3_J := 

If[a != c, d1, If[b == 0, d2, d3 J J 

(* control variable T *) 

If[ in[pi1, theta1, {i, j, k}], f[i, j, kJ, undefT J 

(* variable A *) 

If[ in[piO, thetaO, ii, j, k}], inA[i, j, kJ, 

If[ in[pi1, theta1, {i, j, k}], 

f1[T[i, j, kJ. AP[i-1, j-1, kJ. AQ[i-1, j-1, kJ. 

BQ[i-1, j-1, k]J, undefA J J 



APPENDIX C. CASE STUDIES 

(* routing of A - dependence type DD4 *) 

(* variable AP *) 

AP [i, j, kJ = 

If[ in[pi2, theta2, {i, j, k}J, id[AR1[i, j, kJJ, undefAP ] 

(* variable ARl *) 

AR1[i_, j_, k_J:= AR1[i, j, kJ = 

If[ in[pi21, theta21, {i, j, k}J, 

f3[alpha[i, j, kJ, beta[i, j, kJ, gamma[i, j, kJ, 

21" 

AR1[i-l, j, k+1J, AR2[i, j, k], AR2[i-l, j, kJ], undefARl ] 

(* variable AR2 *) 

AR2[i_, j_, k_J:= AR2[i, j, k] = 

If[ in[pi221, theta221, {i, j, k}J, id[AR2[i-l, j, k-l]], 

If[ in[pi222, theta222, {i, j, k}J, id[A[i, j, k]], undefAR2] ] 

(* routing of A - dependence type DD5 *) 

(* variable AQ *) 

AQ[i, j, k] = 

If[ in[pi2, theta2, {i, j, k}], id[AS1[i, j, k]], undefAQ ] 

(* variable ASl *) 

AS1[L, j_, k_J:= AS1[i, j, k] = 

If[ in[pi23, theta23, {i, j, k}], 

f3[xi[i, j, kJ, phi[i, j, kJ, psi[i, j, k], 

AS1[i-l, j, k+1J, AS2[i, j, kJ, AS2[i-l, j, k]J, undefASl ] 

(* variable AS2 *) 

AS2[i_, j_, k_]:= AS2[i, j, kJ = 

If[ in[pi241, theta241, {i, j, k}J, id[AS2[i-l, j, k-1J], 

If[ in[pi242, theta242, {i, j, k}J, id[A[i, j, k]], undefAS2 ] ] 

(* variable B *) 



APPENDIX C. CASE STUDIES 

If[ in [piO, thetaO, ii, j, k}], inB[i, j, k], 

If[ in[pil, thetal, ii, j, k}], 

f2[T[i, j, k], BP[i-l, j-l, k], AP[i-l, j-l, k], 

CCQ[i-l, j-l, k], BQ[i-l, j-l, k], CCP[i-l, j-l, k], 

AQ[i-l, j-l, k], B[i, j-l, k]], undefB] ] 

(* routing of B - dependence type DD4 *) 

(* variable BP *) 

BP [L, j _, k_] : = BP [i, j, k] = 

If[ in[pi2, theta2, ii, j, k}], id[BR1[i, j, k]], undefBP] 

(* variable BRl *) 

BR1[i_, j_, k_]:= BR1[i, j, k] = 

If[ in[pi21, theta21, ii, j, k}], 

f3[alpha[i, j, k], beta[i, j, k], gamma[i, j, k], 

219 

BR1[i-l, j, k+l] , BR2[i, j, k], BR2[i-l, j, k]], undefBRl ] 

(* variable BR2 *) 

BR2[i_, j_, k_]:= BR2[i, j, k] = 

If[ in[pi221, theta221, ii, j, k}], id[BR2[i-l, j, k-l]], 

If[ in [pi222, theta222, ii, j, k}], id[B[i, j, k]], undefBR2] ] 

(* routing of B - dependence type DD5 *) 

(* variable BQ *) 

BQ [L, j _, k_] : = BQ [i, j, k] = 
If[ in[pi2, theta2, ii, j, k}], id[BS1[i, j, k]], undefBQ] 

(* variable BSl *) 

BS1[L, j_, k_]:= BS1[i, j, k] = 

If[ in [pi23, theta23, ii, j, k}], 

f3[xi[i, j, k], phi[i, j, k], psi[i, j, k], 

BS1[i-l, j, k+l] , BS2[i, j, k], BS2[i-l, j, k]], undefBSl ] 



APPENDIX C. CASE STUDIES 

(* variable BS2 *) 

BS2[i_. j_. k_J:= BS2[i. j. kJ = 
If[ in[pi241, theta241, ii, j, k}J, id[BS2[i-1, j, k-1JJ, 

If[ in [pi242, theta242, ii, j, k}J, id[B[i, j, kJJ, undefBS2 J J 

(* variable CC *) 

CC [L. j _. k_J : = CC [i, j. kJ = 

If[ in[piO. thetaO. {i. j, k}J, inCC[i, j, kJ, 

If[ in[pi1, theta1, ii, j, k}J, 

f 1 [T [i, j, kJ, CCP [i -1, j -1, kJ, CC [i, j -1, kJ, 

B[i. j-1, kJJ, undefCC J ] 

(* routing of CC - dependence type DD4 *) 

(* variable CCP *) 

CCP[i, j, k] = 

If[ in[pi2, theta2, ii, j, k}J, id[CCR1[i, j, kJJ, undefCCP J 

(* variable CCRl *) 

CCR1[i_, j_, k_J:= CCR1[i, j, kJ = 

If[ in[pi21, theta21, ii, j, k}], 

f3[alpha[i, j, kJ, beta[i, j, k], gamma[i, j, k], 

CCR1[i-1, j, k+1J, CCR2[i, j, k], 

CCR2[i-1, j, kJJ, undefCCR1 J 

(* variable CCR2 *) 

CCR2[i_, j_, k_J:= CCR2[i, j, kJ = 

If[ in[pi221, theta221, ii, j, k}J, id[CCR2[i-1, j, k-1JJ, 

If[ in[pi222, theta222, ii, j, k}J, 

id[CC[i, j, kJJ, undefCCR2 J J 

(* routing of CC - dependence type DDS *) 

(* variable CCQ *) 

CCQ [L, j _, k_J : = CCQ [i, j, kJ = 

If[ in[pi2, theta2, ii, j, k}J, 

220 



APPENDIX C. CASE STUDIES 

id[CCS1[i. j. k]]. undefCCQ ] 

(* variable CCSl *) 

CCS1[i_. j_. k_]:= CCS1[i. j. k] = 

rf[ in[pi23. theta23. {i. j. k}]. 

f3 [xi[i. j. k]. phi [i. j. k]. psi[i. j. k]. 

CCSi[i-l. j. k+l]. CCS2[i. j. k]. 

CCS2[i-l. j. k]]. undefCCSl ] 

(* variable CCS2 *) 

CCS2 [i_. j _. k_]: = CCS2 [i. j. k] = 

rf[ in[pi241. theta241. {i. j. k}]. id[CCS2[i-l. j. k-l]]. 

rf[ in[pi242. theta242. {i. j, k}], 

id[CC[i. j. k]], undefCCS2 ] ] 

(* variable DO *) 

DO [L, j _. k_] : = DO [i, j. k] = 

rf[ in[piO, thetaO, {i, j, k}], inDD[i, j, k], 

rf[ in[pil, thetal, {i, j, k}], 

f2[T[i, j, k], DDP[i-l, j-l, k], AP[i-l, j-l, k], 

DDQ[i-l, j-l, k], BQ[i-l, j-l, k], CCP[i-l, j-l, k], 

DD[i. j-l, k], B[i, j-l, k]], undefDD] ] 

(* routing of DD - dependence type 004 *) 

(* variable DDP *) 

DDP[i_, j_. k_] := DDP[i. j. k] = 

rf[ in[pi2, theta2. {i, j, k}], id[DDR1[i, j, k]], undefDDP] 

(* variable DDRl *) 

DDR1[i_. j_. k_J:= DDR1[i. j, kJ = 

rf[ in[pi21. theta21. {i. j. k}J. 

f3[alpha[i. j. kJ. beta[i. j. kJ. gamma [i. j, kJ, 

DDR1[i-l. j, k+1J. DDR2[i, j, kJ, 

DDR2[i-l, j. k]]. undefDDRl ] 

221 



APPENDIX C. CASE STUDIES 

(* variable DDR2 *) 

DDR2[i_, j_, k_]:= DDR2[i, j, k] = 

If[ in[pi221, theta221, {i, j, k}], id[DDR2[i-1, j, k-l]], 

If[ in[pi222, theta222, {i, j, k}], 

id[DD[i, j, k]], undefDDR2] ] 

(* routing of DD - dependence type DD5 *) 

(* variable DDQ *) 

DDQ [L, j _. k_] : = DDQ [i, j, k] = 

If[ in[pi2, theta2, ii, j, k}], id[DDS1[i, j, k]], undefDDQ] 

(* variable DDS1 *) 

DDS1[i_, j_, k_]:= DDS1[i, j, k] = 

If[ in[pi23, theta23, {i, j, k}], 

f3[xi[i, j, k], phi[i, j, k], psi[i, j, k], 

DDS1[i-1, j, k+l], DDS2[i, j, k], 

DDS2[i-1, j, k]], undefDDSl ] 

(* variable DDS2 *) 

DDS2[i_, j_, k_]:= DDS2[i, j, k] = 

If[ in[pi241, theta241, ii, j, k}], id[DDS2[i-l, j, k-l]], 

If[ in[pi242, theta242, ii, j, k}], 

id[DD[i, j, k]], undefDDS2] ] 

(* control variables - dependence type DD4 *) 

(* control variable alpha *) 

alpha[i_, j_, k_]:= alpha[i, j, k] = 

If[ in[pi211, theta211, ii, j, k}], id[alpha[i-l, j, k+l]] , 

If[ in[pi212, theta212, ii, j, k}], 

inAlpha[i, j, k], undefAlpha] ] 

(* control variable beta *) 

222 



APPENDIX C. CASE STUDIES 

If[ in[pi211, theta211, {i, j, k}], id[beta[i-l, j, k+l]], 

If[ in[pi212, theta212, {i, j, k}], 

inBeta[i, j, k], undefBeta] ] 

(* control variable gamma *) 

gamma[i_, j_, k_]:= gamma[i, j, k] = 

If[ in[pi211, theta211, {i, j, k}], dec [gamma [i-l, j, k+l]] , 

If[ in[pi212, theta212, {i, j, k}], 

inGamma[i, j, k], undefGammaJ ] 

(* control variables - dependence type DD5 *) 

(* control variable xi *) 

xi[L, j_, k_]:= xi[i, j, k] = 

If[ in[pi231, theta231, {i, j, k}], id[xi[i-l, j, k+l]], 

If[ in [pi232, theta232, {i, j, k}], 

inXi[i, j, k], undefXi] ] 

(* control variable phi *) 

phi[i_, j_, k_]:= phi[i, j, k] = 

If[ in[pi231, theta231, {i, j, k}], id[phi[i-l, j, k+l]] , 

If[ in[pi232, theta232, {i, j, k}], 

inPhi[i, j, k], undefPhi] ] 

(* control variable psi *) 

psi[i_, j_, k_]:= psi[i, j, k] = 

If[ in[pi231, theta231, {i, j, k}], dec[psi[i-l, j, k+1J] , 

If[ in[pi232, theta232, {i, j, k}], 

inPsi[i, j, k], undefPsi ] ] 

C.2.2 Test 

223 

As the algorithm is static, we can obtain a symbolic computation (i.e., without providing 

actual inputs) of the program. We have tested the program for r = 3. For breyity. we have 

restricted the output values below to the last computations on the domain D1 which occur 



APPENDIX C. CASE STUDIES 

at the point (2T - 1, r - 1,0) (point (7,2.0) in our example). 

(* test *) 

(* size parameter *) 

r = 3 

(* outputs *) 

(* variable A *) 

A [7. 2. 0] = 
-«a[1]*a[2]*a[3]*a[4])/ 

(b [1] *b [3] * (b [2] - (a [2] *c [1] ) /b [1] -

(a[1] *c [2] ) /b [3] ))) 

(* variable B *) 

B[7, 2, 0] = 
b[4] - (a[4]*c[3])/b[3] -

(a[3] *a[4] *c [2] *c [3]) / 

(b[3] -2* (b [2] - (a [2] *c [1] ) /b [1] - (a [1] *c [2] ) /b [3] )) -

(a[3]*c[4])/b[5] - (a[1]*a[2]*c[4]*c[5])/ 

(* variable CC *) 

CC [7, 2, 0] = 
-«c[4]*c[5]*c[6]*c[7])/ 

(b [5] *b [7] * (b [6] - (a [6] *c [5] ) /b [5] -

(a[5]*c[6])/b[7]))) 

(* variable DD *) 

DO[7, 2, 0] = 

-«a[4]*d[3])/b[3]) + (a[3]*a[4]* 

(-«a[2]*d[1])/b[1]) + d[2] - (c[2]*d[3])/b[3]))/ 

(b[3]*(b[2] - (a[2]*c[1])/b[1] - (a[1]*c[2])/b[3])) + 

d[4] - (c[4]*d[5])/b[5] + 

(c[4]*c[5]*(-«a[6]*d[5])/b[5]) + d[6] -

(c [6] *d [7] ) /b [7] ) ) / 

22-1 



APPENDIX C. CASE STUDIES 225 

(b [5] * (b [6] - (a [6] *c [5] ) /b [5] - (a [5] *c [6] ) /b [7] » 

C.3 M-to-l Decimator 

The program below corresponds to the specification of Section .'5.2.3. The identifier Ybar i~ 

used to name Y. 

C.3.1 Program 

(* M-to-l Oecimator *) 

(* domains *) 

(* 01 *) 

pi1 = {{1, O}, {o, 1}, {o, -1}} 

thetal = {1, 0, O} 

(* 02 *) 

pi2 = {{1, -1}, {O, 1}, {O, -1}} 

theta2 = {O, 1, -n} 

(* 03 *) 

pi3 = {{1, O}, {O, 1}, {O, -1}} 

theta3 = {O, 0, O} 

(* 04 *) 

pi4 = {{1, -1}, {-1, 1}, {O, 1}, {0,-1}} 

theta4 = {-1, 1, 1, -n} 

(* OS *) 

piS = {{1, -1}, {O, 1}, {O, -1}} 

thetaS = {O, n+l, -n-l} 

(* belongs to *) 

in[pi_, theta_, point_] := in[pi, theta, point] = 

Apply [And , Map[NonNegative, pi . point - theta] ] 



APPENDIX C. CASE STCDIES 
--------------------~~----------- .. --_. 

(* applied functions *) 

inX [i_, j _J : = x [i -nJ 

inYbar[i_, j_J := ° 
inH[L, j _J : = h[n-jJ 

inCC[i_, j_J := If[ Mod[i-n-1, MJ == 0, 1, oJ 

f1[a_, b_, c_J := a + b * c 

f2[a_, b_J 

id[a_J : = a 

If[b == 1, a, undefJ 

(* variable X *) 

X [L, j _J : = X [i, j J = 

If[ in[pi1, theta1, {i, j}J, inX[i, jJ, 

If[ in[pi2, theta2, {i, j}J, XCi, j-1J, undef J J 

(* variable Ybar *) 

Ybar[i_, j_J:= YbarCi, jJ = 

If[ in[pi3, theta3, {i, j}J, inYbar[i, jJ, 

If[ in[pi2, theta2, {i, j}J, 

f1[Ybar[i-1, j-1J, H[i-1,jJ, XCi, j-1J J, undef J J 

(* variable H *) 

H[i_, j_J:= H[i, jJ = 

If[ in[pi4, theta4, {i, j}J, inH[i, jJ, 

If[ in[pi2, theta2, {i, j}J, id[H[i-1, jJJ, undef J J 

(* control variable CC *) 

CC[i_, j_J:= Ctr[i, jJ 

If[ in[pi5, theta5, {i, j}J, inCC[i, jJ, undef J 

(* variable Y *) 

Y[L, j_J:= YCi, jJ = 

If[ in[pi5, theta5, {i, j}J, f2[Ybar[i, j-1J ,CC[i, jJJ, undef J 



APPENDIX C. CASE STUDIES .)-)-__ I 

C.3.2 Test 

We have executed the program for values of the size parameters J! = 3 and .Y = 5. .-\ few 

output values are provided for variables Ybar and Y. Note how variable Y decimates the values 

of Ybar according to the parameter M. 

(* size parameters *) 

M = 3 

n = 5 

(* outputs *) 

(* variable Ybar - for i=n, ... ,2n and j=n *) 

Ybar[5, 5] = h[4]*x[-4] + h[3]*x[-3] + h[2]*x[-2] + h[l]*x[-l] + h[O]*x[O] 

Ybar[6, 5] = h[4]*x[-3] + h[3]*x[-2] + h[2]*x[-1] + h[1J*x[O] + h[O]*x[l] 

Ybar[7,5] = h[4]*x[-2] + h[3]*x[-1] + h[2]*x[OJ + h[1]*x[lJ + h[OJ*x[2J 

Ybar[8,5] = h[4]*x[-lJ + h[3]*x[OJ + h[2]*x[lJ + h[lJ*x[2] + h[OJ*x[3J 

Ybar[9,5] = h[4]*x[0] + h[3]*x[lJ + h[2]*x[2J + h[1]*x[3J + h[0]*x[4J 

Ybar[10, 5] = h[4]*x[lJ + h[3]*x[2] + h[2]*x[3] + h[1]*x[4] + h[0]*x[5J 

(* variable Ybar - for i=n, ... ,2n and j=n+l *) 

Y[5, 6] = undef 

Y[6, 6] = h[4]*x[-3] + h[3]*x[-2] + h[2]*x[-lJ + h[l]*x[O] + h[OJ*x[lJ 

Y[7, 6J = undef 

Y[8, 6] = undef 

Y[9, 6] = h[4]*x[0] + h[3]*x[1] + h[2]*x[2J + h[1]*x[3] + h[OJ*x[4J 

Y [10, 6] = undef 

C.4 Knapsack Problem 

This program corresponds to the specification of Section 5.3.3. The name barW is used to 

indicate W. 

CA.1 Program 

(* Knapsack Problem *) 



APPENDIX C. CASE STUDIES 

(* constants *) 

barW = Floor[c/(p+1)] 

infty = 10000 

(* domains *) 

(* 01 *) 

pi1 = {{1, 0, 0},{-1, 0, O},{O, 1, 0},{0,-1, O},{O, 0, 1},{0, 0, -i}} 

theta1 = {o, 0, 1, -c, 0, O} 

(* 02 *) 

pi2 = {{1, 0, 0},{-1, 0, O},{O, 1, 0},{0,-1, O},{O, 0, 1},{0, 0, -i}} 

theta2 = {1, -n, 0, 0, 0, O} 

(* 02tr *) 

pi2tr = {{1, 0, 0},{-1, 0, O},{O, 1, 0},{0,-1, O},{O, 0, 1},{0, 0, -1}} 

theta2tr = {1, -n, -barW, barW, barW, -barW} 

(* 03 *) 

pi3 = {{1, 0, 0},{-1, 0, 0},{0,-1, O},{O, 0, 1},{0, 0, -1} } 

theta3 = {1, -n, 1, 0, O} 

(* 04 *) 

pi4 = {{1, 0, 0},{-1, 0, O},{O, 1, 0},{0,-1, O},{O, 0, 1},{0, 0, -1}} 

theta4 = {1, -n, 1, -c, 0, O} 

(* 04tr *) 

pi4tr = {{1, 0, 0},{-1, 0, O},{O, 1, 0},{0,-1, O},{O, 0, 1},{0, 0, -1}} 

theta4tr = {1, -n, 1-barW, -c+barW, barW, -barW} 

(* 04(1) *) 

pi41 = {{1, 0, 0},{-1, 0, O},{O, 0, 1},{0, 0, -1},{0, 1, 1},{0, -1, -1}} 

theta41 = {1, -n, 0, -barW, 1, -c} 



APPENDIX C. CASE STUDIES 229 

(* 04(1,1) *) 

pi411 = {{1, 0, 0},{-1, 0, O},{O, 0, 1},{0, 0, -1},{0, 1, 1},{0, -1, -1}} 

theta411 = {1, -n, 0, -barW+l, 1, -c} 

(* 04(1,2) *) 

pi412 = {{1, 0, 0},{-1, 0, O},{O, 0, 1},{0, 0, -1},{0, 1, 1},{0, -1, -1}} 

theta412 = {1, -n, barW, -barW, 1, -c} 

(* 04(2) *) 

pi42 = {{1, 0, 0},{-1, 0, O},{O, 0, l},{O, 0, -1},{0, 1, -l},{O, -1, -1}} 

theta42 = {1, -n, 0, -barW, -2 barW, -c} 

(* 04(2,1) *) 

pi421 = {{1, 0, 0},{-1, 0, O},{O, 0, l},{O, 0, -1},{0, 1, -l},{O, -1, -1}} 

theta421 = {1, -n, 1, -barW, -2 barW, -c} 

(* 04(2,2) *) 

pi422 = {{1, 0, 0},{-1, 0, O},{O, 0, l},{O, 0, -l},{O, 1, -l},{O, -1, -1}} 

theta422 = {1, -n, 0, 0, -2 barW, -c} 

(* 04(2,3) *) 

pi423 = {{1, 0, 0},{-1, 0, O},{O, 0, l},{O, 0, -l},{O, 1, -l},{O, -1, -1}} 

theta423 = {1, -n, 0, -barW+l, -2 barW, -c} 

(* belongs to *) 

in[pi_, theta_, point_] := in[pi, theta, point] = 

Apply [And, Map[NonNegative, pi . point - theta]] 

(* applied functions *) 

inF1[i_, j_, k_] := ° 
inF2[i_, j_, k_] -infty 

inV[L, j_, k_] := v[[i]] 

inWtr[L, j_, k_] := w[[i]] 

inGamma[i_, j_, k_] := barW 



APPENDIX C. CASE STUDIES 2.'30 

f[a_. b_. c_] := Max[a. b+c] 

fl[alpha_. beta_. gamma_I al_. a20_. a2l_. a2p_] := 

If[alpha != gamma. al. If[beta == 0. a20, If[beta == 1. a21. a2p] ] ] 

(* variable V *) 

V [L. j _, k_]: = V [i. j. k] = 

If[ in[pi2. theta2, {i. j. k}]. inV[i. j. k]. 

If[ in[pi4. theta4. {i, j, k}]. Vei, j-l. k]. undef]] 

(* variable Wtr *) 

Wtr[i_. j_. k_]:= Wtr[i. j. k] = 

If[ in[pi2tr. theta2tr. {i. j. k}]. inWtr[i. j. k]. 

If[ in[pi4tr. theta4tr. {i. j. k}], Wtr[i. j-l. k]. undef]] 

(* control variable alpha *) 

alpha[i_. j_. k_]:= alpha[i, j, k] = 

If[ in[pi4ll. theta4ll, {i, j, k}], alpha[i, j-l, k+l], 

If[ in[pi4l2, theta4l2, {i. j, k}], 

Floor[Wtr[i. j. k]/(p+l)], undef ] ] 

(* control variable beta *) 

beta[i_. j_. k_]:= beta[i. j. k] = 

If[ in[pi4ll, theta4ll. {i, j, k}], beta[i, j-l, k+l] , 

If[ in[pi4l2, theta4l2, {i, j, k}], 

Mod[Wtr[i, j, k], (p+l)], undef ] ] 

(* control variable gamma *) 

gamma[i_, j_, k_]:= gamma[i, j, k] = 

If[ in[pi4ll, theta4ll, {i, j, k}], gamma[i, j-l, k+l]-l, 

If[ in[pi4l2, theta4l2, {i, j, k}], inGamma[i, j, k], undef] ] 

(* variable R2 *) 

R2 [L, j _, k_]: = R2 [i, j, k] = 

If[ in[pi42l, theta42l, {i, j, k}], R3[i, j-l, k-l] , 



APPENDIX C. CASE STUDIES 231 

If[ in [pi422, theta422, {i, j, k}], F[i, j, k], undef] ] 

(* variable R3 *) 

R3[i_, j_, k_]:= R3[i, j, k] = 

If[ in [pi423, theta423, {i, j, k}], R2[i, j-1, k], undef] 

(* variable R1 *) 

R1[L, j _, k_]: = R1[i, j, k] = 

If[ in[pi41, theta41, {i, j, k}], 

f1[alpha[i, j, k], beta[i, j, k], gamma[i, j, k], R1[i, j-1, k+1] , 

R2[i, j, k], R2[i, j-1, k], R2[i, j-2, k]], undef] 

(* variable F *) 

F[i_, j_, k_]:= F[i, j, k] = 

If[ in[pi1, theta1, {i, j, k}], inF1[i, j, k], 

If[ in[pi2, theta2, {i, j, k}], inF1[i, j, k], 

If[ in[pi3, theta3, {i, j, k}], inF2[i, j, k], 

If[ in[pi4, theta4, {i, j, k}], 

f [F[i -1, j, k], R1[i, j, k], V [i, j -1, k]], undef ] ] ] ] 

C.4.2 Test 

The knapsack problem is a dynamic problem. Hence we cannot obtain an entirely symbolic 

computation of the algorithm. We have provided an actual weight distribution (variable w 

below) and obtained the corresponding optimal value F( n, c, 0) (value of F[ 4, 10, 0] in our 

test case). 

(* size parameters *) 

c = 10 

n = 4 

p = 2 

(* inputs *) 

v = {1, 3, 5, 9} 



1.32 

w = {2, 3, 4, 7} 

(* outputs *) 

F[4, 10, oJ = 12 

C.5 Gaussian Elimination with Partial Pivoting 

The program below corresponds to the first iteration of the algorithm a;; ~pecified ill 'we 

tion 5.4.2. 

C.5.1 Program 

(* Pivoting *) 

(* constants *) 

infty = 1000000 

(* domains *) 

(* 01 *) 

pil = {{1, 0, O},{-l, 0, O},{O, 1, O},{O, -1, O},{O, 0, l},{O, 0, -1}} 

thetal = {O, 0, 1, -n, 1, -n} 

(* 02 *) 

pi2 = {{1, 0, O},{-l, 0, O},{-l, 1, O},{l, -1, O},{O, 0, l},{O, 0, -1}} 

theta2 = {O, -n+2, n+l, -n-l, 1, -n} 

(* 03 *) 

pi3 = {{1, 0, O},{-l, 0, O},{-l, 1, O},{l, -1, O},{O, 0, 1},{0, 0, -1}} 

theta3 = {1, -n+l, -1, 1, 1, -n} 

(* 041 *) 

pi41 = {{1, 0, O},{-l, 0, O},{-l, 1, O},{l, -1, O},{O, 0, 1},{0, 0, -1}} 

theta41 = {1, -n+l, 0, -n, 1, -1} 



APPENDIX C. CASE STUDIES 

pi42 = {{1, 0, 0},{-1, 0, 0},{-1, 1, 0},{1, -1, O},{O, 0, 1},{0, 0, -1}} 

theta42 = {1, -n+l, 0, -n, 2, -n} 

(* 051 *) 

pi51 = {{1, 0, 0},{-1, 0, O},{O, 1, O},{O, -1, O},{O, 0, 1},{0, 0, -1}} 

theta51 = in, -n, n+l, -2n+l, 1, -1} 

(* 052 *) 

pi52 = {{1, 0, 0},{-1, 0, O},{O, 1, O},{O, -1, O},{O, 0, 1},{0, 0, -1}} 

theta52 = in, -n, n+l, -2n+l, 2, -n} 

(* 06 *) 

pi6 = {{1, 0, 0},{-1, 0, O},{O, 1, O},{O, -1, O},{O, 0, 1},{0, 0, -1}} 

theta6 = in, -n, n, -n, 1, -n} 

(* 07 *) 

pi7 = {{1, 0, 0},{-1, 0, O},{O, 1, O},{O, -1, O},{O, 0, 1},{0, 0, -1}} 

theta7 = in, -n, n+l, -2n+l, 1, -n} 

(* belongs to *) 

in[pi_, theta_, point_] := in[pi, theta, point] = 

Apply [And, Map [NonNegative , pi . point - theta]] 

(* applied functions *) 

inV1[L, j_, k_] .- a[[j ,k]] 

inV2[L, j_, k_] .- ° 
inV3[i_, j_, k_] .- ° 
maxAbs[a_, b_] := If[Abs[a] >= Abs[b], a, b] 

swV[a_, b_, c_] := If[c == 1, b, a] 

inH[i_, j_, k_] := infty 

minAbs[a_, b_] := If[Abs[a] >= Abs[b], b, a] 

swH[a_, b_, c_] := If[c == 1, a, b] 

cmpAbs[a_, b_] := If[Abs[a] >= Abs[b], 0, 1] 

id[a_] := a 

133 



APPENDIX C. CASE STUDIES 

upd[a_, b_, c_] := a - b * c 

div[a_, b_] := a / b 

(* variable V *) 

v [L, j _, k_]: = V [i, j, k] = 
If[ in[pi1, theta1, {i, j, k}], inV1[i, j, k], 

If[ in[pi2, theta2, {i, j, k}], inV2[i, j. k]. 

If[ in[pi41, theta41, {i, j, k}], 

maxAbs[V[i-1, j, k] .H[i.j-1,k]]. 

If[ in [pi42, theta42, {i. j. k}]. 

(* variable H *) 

swV[V[i-1, j, k] ,H[i,j-1.k] .CC[i.j.k-1]], 

If[ in[pi51. theta51, {i. j. k}]. inV3[i.j,k]. 

If[ in[pi6, theta6, {i. j, k}], id[V[i-l.j,k]]. 

If[ in[pi52, theta52. {i. j, k}]. 

upd[V[i-1, j, k],H[i,j-l,k],RC[i.j.k-l]]. 

undef ] ] ] ] ] ] ] 

H[i_, j_, k_]:= H[i, j, k] = 
If[ in[pi3, theta3, {i, j, k}], inH[i. j, k]. 

If[ in[pi41, theta41, {i, j, k}], 

minAbs[V[i-1, j, k] ,H[i,j-1.k]]. 

If[ in [pi42, theta42, {i, j, k}], 

swH[V[i-1, j, k] ,H[i,j-1,k] ,CC[i.j .k-1]], 

If[ in[pi6, theta6, {i, j, k}], id[V[i-1,j.k]], 

If[ in[pi7, theta7. {i, j, k}]. id[H[i.j-l,k]], 

undef ] ] ] ] ] 

(* control variable CC *) 

CC [L, j _, k_]: = CC [i, j, k] = 

23-4 

If[ in[pi41, theta41, {i, j, k}], cmpAbs[V[i-1, j, k],H[i. j-1, k]]. 

If[ in [pi42, theta42, {i, j, k}], id[CC[i, j, k-1]], undef ] ] 

(* row coefficient RC *) 



APPENDIX C. CASE STUDIES 

RC [L, j _, k_]: = RC [i, j, k] = 

If[ in[pi5l, theta5l, {i, j, k}], div[V[i-l, j, k],H[i, j-l, k]], 

If[ in[pi52, theta52, {i, j, k}], id[RC[i, j, k-l]], undef ] ] 

C.5.2 Test 

2:3.5 

Gaussian elimination with pivoting is a dynamic problem and a numerical execution of the 

program is required. In our test case we have considered a .j X ,j input matrix (a below). 

The outputs show such the initial matrix (origmat), the matrix obtained by rearranging 

(rearmat) the entries once the pivot has been established, and the updated matrix (updmat) 

at the end of the iteration. 

(* test case *) 

(* size parameter *) 

n = 5 

(* input matrix *) 

a = {{ 1, 0, 1, 4, 2}, {2, 1, 0, 3, O}, {1, 1, 1, 2, 1}, 

{3, 1, 0, 2, 1}, {l, 5, 1, 2, 1}} 

(* outputs - single iteration *) 

(* original matrix *) 

origmat = Flatten[Table[V[i,j,k],{i,O,O}, {j,i+1,i+n}, {k,l,n}], 1] 

MatrixForm[origmat] 

1 ° 1 4 2 

210 3 ° 
1 1 1 2 1 

3 1 ° 2 1 

1 5 1 2 1 

(* rearrenged matrix -- end of phase one *) 

rearrmat = Flatten[Table[V[i,j,k],{i,n-1,n-1}, {j,i+l,i+n}, {k,l,n}], 1] 

MatrixForm[rearrmat] 

3 1 ° 2 1 

2 1 ° 3 ° 



APPENDIX C. CASE STUDIES 

1 1 121 

1 6 1 2 1 

1 0 1 4 2 

(* updated matrix *) 

updmat = Flatten[Table[V[i,j,kJ ,{i,n,n}, 

MatrixForm[updmatJ 

3 1 0 2 1 

0 1/3 0 5/3 -(2/3) 

0 2/3 1 4/3 2/3 

0 14/3 1 4/3 2/3 

0 -(1/3) 1 10/3 5/3 

{j,i,i+n-1}, {k,l,n}J, 1J 



Appendix D 

Graph Theory 

This appendix is based on [Car79J. 

D.l Graphs 

A graph is a pair 9 = (N, A) such that X is a finite set and .A ~ ,\' X X. The ~pl .\" is railed 

the set of nodes of 9 and A its a set of arcs. The empty graph is the graph 9 = (0.0). 

A graph 9 is said to be simple if and only if 

- for all ni EN, (ni' nil rf. A; and 

Let 9 = (N,A) be a graph and P = {,,,'I." .. ,\'n.} be a partition of X. The condensation 

of 9 induced by P is the graph 9p = (P . .A1') such that .A1' = {(Xr.X,) E P X P I,\~· =f 

Ns and :JII; E N r, nj ENs such that (11;. nj) E A}. 

The simplification of a graph 9 is the graph 9s = (, \'. As) such that .As 

N X ,V I l!i =f nj and either (ni, n)) E A or (n j. l!;) E .A}. 

A path p of a graph 9 is a finite sequence (1l0.nl).(nl.n2) ..... (n r -l.nr ) such that Vi.j. 

(ni' IIj) E A. The order of p is the number of arcs in the sequence. A path p is called a cycle 

if no = n, .. A loop is a cycle of order one. 

Let 9 = (,V.A) be a graph and II E ,\'. Then: 

a descendant of n is a node n' such that there exists a path (no.Tld·(nl,Tl2) ..... 

(nr -I.Il,.) with no = nand Tlr = n'. \Ye denote by Til the ,et of all the descendants of 

11: and 



APPENDIX D. GRAPH THEORY 

- a node accessible from n is a node n' such that n' E nl or n' = n. We denote by nA 

the set of all nodes accessible from n. 

D.2 Connectivity Relations 

Let (I = (.AI', A) be a graph. Then: 

- the connectivity relation I> ~.AI' x .AI' of (I is the equivalence relation such that n I> m if 

and only if mE nA on the simplification (Is of (I. When nl> m. n is said to be connected 

to m; and 

- the connected components of (I are the subgraphs of (I generated by the equivalence 

classes of 1>. If (I has only one connected component, (I is said to be connected. 

- the strong connectivity relation 1Xl~ N x N of (I is the equivalence relation such that 

n IXl m if and only if mE nA and n E m A on (I. When n IXl m, n is said to be strongly 

connected to mj and 

- the strongly connected components of (I are the subgraphs of (I generated by the equiv­

alence classes of 1Xl. If (I has only one strongly connected component, (I is said to be 

strongly connected. 

Let (I = (N, A) be a graph and IXl its strong connectivity relation. The reduced graph (11< of 

(I is the condensation of (I induced by N / 1Xl. 

D.3 Graph Operations 

Let (I = (.AI', A) be a graph and N' ~ N. The restriction of (I to N' is the graph (I L~'I= 

(N',A') such that A' = {(n, n') E A I n, n' EN'}. 

Let (lj = (Nj , Aj) be graphs, for j = 1, .... r. Their union is the graph (I = (Ar,A) such that 

N = UjNj and A = UjAj. 



Appendix E 

Convex Sets and Polyhedra 

This appendix is based on [Roc70, Sch86J. In the appendix. for x 

(YI, .. ·,Yn) ERn, X· Y denotes their scalar product XIYI + ... + XnYn-

E.1 Combinations 

Let Xl, . .. , Xm be m points in R n. A vector sum >'1Xl + ... + Amxm, wit hAl ... " Am E R. 

is called: 

- a linear combination of Xl, ...• X m: 

- an affine combination of .1:1., . " Xm , if Al + '" + Am = 1; 

- a convex combination of :1'1, .... X m . if the coefficiellh Ai are all non-negative and Al + 

'" + Am = 1; 

- a positive (non-negative) linear combination of Xl, .... x m • if the coefficients Ai are all 

positive (non-negative); 

- an integer combination of Xl . ...• X m' if the coefficients Ai are all integers. 

A vector sum Al.1:1 + ... + Akxk + Ak+lXk+l ... + AmJ'm. is called a convex combination of 

m points and directions if aU the coefficients Ai are non-negative and Al + ... + Ak = 1 for a 

fixed k, with 0 :=; k :=; m (k = 0 means that there is no requirement about certain coefficiPlih 

adding up to 1). 



APPENDIX E. CONVEX SETS AND POLYHEDRA 240 

E.2 Affine Sets and Transformations 

If x and yare distinct points in R n, the set of points of the form (1 - A)X + AY, for A E R. 

is called the line through x and y. 

A subset M of Rn is called an affine set if it contains the line through any pair of its points. 

i.e., if (1- A)X + AY EM for every x E M, Y E M and A E R. The empty set 0, Rn and all 

singleton sets are affine. 

For M C Rn and a E Rn, the translate of M by a is M + a = {a + x I x EM}. An affine set 

M is said to be parallel to an affine set L if M = L + a for some a. 

The subspaces of Rn are the affine sets which contain the origin. 

Each non-empty affine set M is parallel to a unique subspace L, given by L = M - M = 

{x - y I x E M, y EM}. L is called the direction of M and is denoted by lin(M). 

The dimension dim(M) of an affine set M is defined as the dimension of the subspace L 

parallel to it, i.e., dim(M) = dim(lin(M)). By convention, dim(0) = -1. Affine sets of 

dimension 0, 1 and 2 are called points, lines and planes, respectively. An (n - 1 )-dimensional 

affine set in R n is called a hyperplane. 

Given {3 E R and a non-zero b ERn, the set H = {x I bt . X = {3} is a hyperplane in R n. Every 

hyperplane may be represented in this way, with band {3 unique up to a common non-zero 

multiple. b is called a normal to the hyperplane H. We denote a hyperplane H by [b : {3]. 

Given bERm and an m x n real matrix B, the set H = {x E R n I Bx = b} is an affine set 

in Rn. Every affine set may be represented in this way. (Therefore, any affine subset of R n 

is an intersection of a finite collection of hyperplanes.) 

The intersection of an arbitrary collection of affine sets is affine. Given 5 E R n
, the in­

tersection of all the affine sets containing 5 is called the affine hull of 5 and is denoted by 

aJ J(5). aJ J(5) is the unique smallest affine set containing 5 and consists of all the affine 

combinations of the elements of 5, i.e., aJJ(5) = {LiAiXi I Xi E 5,LiAi = I}. 

A set of m+ 1 points bo, bt, . .. , bm is said to be affinely independent if aJ J( {bo, b1,·· ., bm }) is 

m-dimensional. Therefore bo, bt, . .. , bm are affinely independent if and only if b1 -bo, .. . , bm -

bo are linearly independent. 

The affine transformations from R n to Rm are the mappings T of the form T(x) = L(X) + b, 

where £, is a linear transformation from R n to R m and b E R m • 



APPENDIX E. CONVEX SETS AND POLYHEDRA 
2-11 

E.3 Convex Sets 

If x and yare distinct points in R n , the set of points of the form (1 - A )x + Ay. for 0 ~ A ~ 1. 

is called the closed line segment between x and y. 

A subset C of R n is said to be convex if it contains the closed line segment between any two 

of its points, i.e., (1 - A)x + >.y E C for every x E M, y E J1 and 0 < A < 1. The empty set 

o and R n are convex. 

Given j3 E R and a non-zero b ERn, the sets {x I bt . X ~ J} and {x I bt . .r ~ J} are called 

closed half-spaces, and the sets {x I bt . X < j3} and {x I bt . X > j3} are called open half-spaces. 

Half-spaces are non-empty and convex. 

A subset of R n is convex if and only if it contains all the convex combinations of its elements. 

The intersection of an arbitrary collection of convex sets is convex. Given S E Rn, the 

intersection of all the convex sets containing S is called the convex hull of S and is denoted by 

conv(S). conv(S) is the unique smallest convex set containing S and consists of all the convex 

combinations of the elements of S, i.e., conv(S) = {Li AiXi I Xi E S, Ai ~ 0, L. Ai = I}. 

The dimension dim( C) of a convex set C is defined as the dimension of the affine hull af f( C) 

ofC. 

E.4 Cones 

A subset K of R n is called a cone if it is closed under non-negative scalar multiplication, Le., 

AX E K for every x E K and A ~ O. A convex cone is a cone which is convex. 

Let K be a convex cone. Then there is a smallest subspace containing K, namely J< - J< = 

{x-y I x E K, y E K} = af f(K), and there is a largest subspace contained within J<, namely 

( - K) n K. Cones are not necessarily pointed. For instance, su bspaces are in particular convex 

cones. A cone K is pointed if and only if (-K) n K = {a}. 

E.5 Recession Cone and Unboundedness 

Unbounded closed convex sets have a simple behaviour at infinity. If C is an unbounded 

closed convex set and x E C, then C contains some entire half-lines starting at x. The 

directions of such half-lines do not depend on x: the half-lines of C starting at a different 

point y are just translates of those starting at x. 



APPENDIX E. CONVEX SETS AND POLYHEDRA 242 

The direction of the half-line {x + AY I A ~ O}, where y :/: 0, is defined as t he set of all 

translates of the half-line, and is independent of x. This is called the direction of y. Two 

vectors have the same direction if and only if they are positive scalar multiplies of each other. 

The zero vector has no direction. 

Let C be a non-empty convex set in Rn. C recedes in the direction of y if C includes all the 

half-lines in the direction of y which start at points in C, i.e., C recedes in the direction of 

y, where y:/: 0, if and only if x + AY E C for every A ~ 0 and x E C. 

The recession cone of C, denoted by O+C, is the set of all vectors y E R n satisfying the latter 

condition, including y = O. The directions of the recession of C are directions in which C 

recedes. 

Let C be a non-empty convex set. The recession cone O+C is a convex cone. It is the same 

as the set of vectors y such that C + y c C. 

A non-empty closed convex set C in Rn is bounded if and only if its recession cone O+C 

consists of the zero vector alone. 

If C is a non-empty convex set. the set (-O+C) n O+C is called the linearity space of C. It 

consists of the zero vector and all the non-zero vectors y such that, for every' x E C. the 

line through x in the direction of y is contained in C. The directions of the vectors y in the 

linearity space are called directions in which C is linear. If the linearity space has dimension 

0, C is called pointed. 

E.6 Polyhedral Convex Sets 

A polyhedral convex set in R n is a set which can be expressed as the intersection of some 

finite collection of closed half-spaces. Every affine set is polyhedral. 

A polyhedral convex cone in Rn is a set which can be expressed as the intersection of a finite 

collection of closed half-spaces whose boundary hyperplanes pass through the origin. 

A finitely generated convex set is a set which is the convex hull of a finite set of points 

and directions. Thus C is a finitely generated convex set if and only if there exist vectors 

Xl, .•. , Xm such that, for a fixed integer k, with 0 ~ k ~ m, C consists of all the vectors of 

the form 

where Ai are non-negative and Al + ... + Ak = 1. 



APPENDIX E. CONVEX SETS AND POLYHEDRA 243 

The finitely generated convex sets which are cones are the sets which can be expressed this 

way with k = 0, i.e., with no requirement about certain coefficients adding up to 1. In such 

an expression, {Xl,"" xm} is called a set of generators of the cone. A finitely generated 

convex cone is the convex hull of the origin and finitely many directions. 

The cone generated by the vectors XI"",Xm is cone(xl, ... ,xm ) = {AIXI + ... + AmIm 

Ab" .Am ~ O}, i.e., it is the smallest convex cone containing Xl,. ",Xm' 

The finitely generated convex sets which are bounded are called polytopes. 

The property of being polyhedral is a finiteness condition on the external representations of 

a convex set. The property of being finitely generated is a finiteness condition on the internal 

representations of a convex set. The two properties are equivalent, and polyhedral convex 

sets are the same as finitely generated convex sets. 

The concepts of polyhedron and polytope are related under the so-called decomposition 

theorem. The theorem states that a set P of vectors in a Euclidean space is a convex 

polyhedron if and only if P = Q + C for some convex polytope Q and some polyhedral 

convex cone C. 

Also, if P = Q + C for some convex polytope Q and some polyhedral convex cone C, then C 

is the recession cone of P. 

We say that P is generated by the points Xl,' •• ,Xm and the directions YI,· .. ,Yt if 

In this case we adopt the notation vert(P) to denote the set {Xl, ... , xm} and ray( P) for the 

set {Yb . .. , Yt}· 

E.7 Duality 

Let P be a set in Rn. The dual (or polar) cone of P is the cone P = {z E R
n I z·x ~ 0, Vx E 

P}. 

If P and pI are such that P ~ pI, then P ~ pl. 

If C is a polyhedral convex cone, then C is also a polyhedral convex cone. If C is finitely 

generated by the set {ri"'" rm }, then C = {z E R n I z· rl ~ 0, ... , z· rm ~ O}. 

There exists a one-to-one correspondence between the generators of C and those of C'. In 

particular, let C be an n dimensional cone with n generators {ri, . ... rn}, and let Q denote a 



APPENDIX E. CONVEX SETS AND POLYHEDRA 244 

matrix having those generators as columns. Then the generators of C' are the column of the 

matrix Q = -( Q-1 )t, i.e., the opposite of the transpose of the inverse of Q. 

E.8 Separating Hyperplane Theorem 

If C is a finitely generated cone in R nand d is a vector not in C. then there exists r. E R" 

such that 7r • x ~ 0 for all x E C, and 7r • d < O. That is, the hyperplane [" : 0] divides R n 

into two parts, one containing d and the other containing C. In addition, C is pointed if and 

only if 7r • x > 0 for all x E C. 

E.9 Other Results 

Let £ be a linear transformation from R n to R m. Then £( C) is a polyhedral convex set in 

Rm for each polyhedral convex set C in Rn, and £-l(D) is a polyhedral convex set in R" 

for each polyhedral convex set D in R m . 

If D is a convex polyhedron and Yl, ... , Ym are directions in R n, the polyhedron generated 

by D and Yl, ... , Ym is defined as the set 



Appendix F 

Aspects of Linear Algebra 

This appendix is based on [Ner63, Ban93]. In this a.ppendix. \' denoted a generic vector space 

over a generic field F. If VI, ... , Vp are vectors in \'. then (1'1, .... l'p) denotes the Sll bspace 

spanned by VI, ... , Vp' 

F.1 Elementary Row Operations and Elementary Matric('s 

There are three types of elementary' row operations1 defined on (the rows of) a matrix JI: i) 

multiply a row of M by a non-zero scaJar; ii) add a multiple of one row to another 11)\\: iii) 

interchange two rows. 

An elementary matrix is any matrix obtained from an identity matrix by any element a ry row 

operation. Therefore there is a one-to-one correspondence between elementary row ojlNations 

and elementary matrices. An elementary matrix is a non-singular matrix and its ill\I'I~I' 

matrix is also an elementary matrix. 

An elementary row operation on a matrix M can be accomplished by premultipJying .1/ by 

the corresponding elementary matrix. 

Any non-singular matrix M can be written as a product of elementar\' matrices. 

I Elementary column operations are defined in a similar way. In this work we consider elementary row 
operations only. 



APPENDIX F. ASPECTS OF LINEAR ALGEBRA 246 

F.2 Hermite Normal Form 

A matrix in Hermite normal form2 has the following form: 

0 0 1 x x 0 x 0 I I 

0 0 0 0 0 1 x 0 I I 

0 0 0 0 0 0 0 1 I I 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

where an x denotes any number. 

Any m x n M matrix can be reduced to its Hermite normal form. and such a form is 

unique. The reduction to Hermite normal form can be achieved by a series of elementary 

row operations. As the form is unique, it is independent from the the particular sequence of 

operations chosen. 

If M is a non-singular square matrix, its Hermite normal form is the identity matrix. 

The Hermite normal form has a number of important applications in linear algebra among 

which finding a standard basis for a subspace S and its orthogonal complement Sl., deter­

mining the linearly independent vectors among the vectors of a set, solving systems of linear 

equations, inverting a matrix, etc. (see this appendix later on). 

F.3 Integer Elementary Row Operations 

As we mainly work in zn, then in general, we restrict ourselves to integer matrices and 

integer elementary row operations [Ban93] There are three types of integer elementary row 

operations: i) multiply a row of M by -1; ii) add an integer multiple of one row to another 

row; iii) interchange two rows. 

F .4 U nimod ularity 

A square integer matrix M is unimodular if its determinant det(M) is equal to ±1. 

Each unimodular matrix is the result of a finite sequence of integer elementary row operations 

performed on the identity matrix (of the same size). 

Unimodular matrices have the following properties: the transpose and the inverse of a uni­

modular matrix is unimodular; the product of two unimodular matrices is unimodular. 

2This form is often called row-echelon form. 



APPENDIX F. ASPECTS OF LINEAR ALGEBRA 

F .5 Echelon Form 

Let M be an m X n integer matrix and Ii denote the column number of the leading element 

of row i (for a zero row, li is undefined). Then M is in Echelon form3 if for some integer p, 

with 0 ~ P ~ m, the following conditions hold: 

- rows from 1 to p are non-zero rows; 

- rows from p + 1 to m are zero rows; 

- for 1 ~ i ~ p, each element in column li below row i is zero; 

The leading element of a row need not be equal to 1. A zero matrix is an echelon matrix for 

which p = O. The rank of a matrix in Echelon form is equal to p, i.E' .. rank(M) = p. 

A matrix in Echelon form has the following form: 

0 0 Xl X X X X X X I 

0 0 0 0 0 X2 X X X X 

0 0 0 0 0 0 0 xp X x 
0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

where x, Xi denote integer numbers. 

Any integer matrix can be reduced to Echelon form by a sequence of integer elementary row 

operations. Applying a finite sequence of elementary row operations to a matrix is equivalent 

to premultiplying the matrix by a suitable unimodular matrix. 

F .6 Linear Functional and Duality 

Let V be a vector space over a field of constants F. A linear transformation L of V into 

F is called a linear form or linear functional on ~V. The set of all linear functionals on V is 

a vector space, called the dual or conjugate space of V. and denoted by F. Besides these 

spaces have the same number of dimensions, i.e .. dim("(') = dim(l·). 

3In classical text of linear algebra, Hermite normal form and row-echelon form are exactly the same. The 
distinction we have made here is a little arbitrary. It would be more appropriate to call this form an integer 
Hermite normal form. However we adopt the terminology of [Ban93]. 



APPENDIX F. ASPECTS OF LINEAR ALGEBRA 248 

If B = {bt, ... , bn } is a basis of V then there exists a corresponding dual basis E = {b
l 
.... .hr.} 

of V. The relation between the two basis is characterised by the equations b, (b.:) = ("j. for 

all i, j = 1, ... ,n, where Oi,] is the Kronecker delta (Oi,] = 1 if i = j and fl.) = 0 if i :f; j). 

Let B' = {b~, ... ,b~} be another basis of V. Let P = [Pi,j] be the matrix of transition from B 

to B', i.e., b~ = 2:i=1 Pi,jbi. Then pt is the matrix of transition from basis E' to E. Therefore 

(pt) -1 = (P-l)t is the matrix of transition from E to i1'. 

F . 7 Annihilators 

Let V be an n-dimensional vector space and ( its dual. If for l' E " and i' E L we haw 

v . v = 0, we say that v and v are orthogonal. 

Let W be a subset of V. The set of all the linear functional v such that v . U' = 0 for all 

w E W, is called the annihilator or orthogonal complement of IV, denoted by W 1.. Any 

element of Wl.. is called an annihilator of W. W 1. is a sub-space of V. Besides if I f is a 

sub-space of dimension p, then V is a sub-space of dimension n - p. 

If WI and W2 are two subspaces of V and wf and wf are their annihilators in \-'. then the 

annihilator of WI + W2 is wf n W21., and the annihilator of WIn W2 is H l + H'/-. 

F.8 Algorithmic Issues 

F .8.1 Standard Basis of V 

Let B = {bI. ... , bn } be a basis of a vector space V. A standard basis of ~' can be found 

according to the following. Represent the basis as a matrix B = [bi,j] where each row is a 

vector of the basis. Reduce B to its Hermite normal form B'. Then the rows of B' represent 

a standard basis for V. This basis is standard because any basis of F reduces to such a basis 

by Hermite normal form reduction. 

Set Spanning the Same Sub-space 

To decide whether two sets of vectors span the same subspace, we can simply reduce the 

corresponding matrices to their Hermite normal forms and compare their rows. 



APPENDIX F. ASPECTS OF LINEAR ALGEBRA 
249 

Linear Independence 

Given a set of vectors {Xl, ... , Xk} in an n-dimensional space, their linear independence can be 

checked by defining a matrix M having such vectors as columns and reducing ,\/ to Hermite 

normal form. The standardised columns (those with just one non-null entry equal to I) of 

the resulting matrix correspond to the linearly independent elements of the set. 

F.8.2 Basis of WI + Wz 

Given two subspaces WI, Wz of a linear space V, their sum is defined as WI + H'z = {WI + Wz I 
WI E WI,Wz E W z}. 

If BI and Bz are bases of WI and W z, respectively, then BI U Bz spans WI + H'l. Finding a 

basis for WI + Wz amounts to discarding the dependent vectors of Bl UB2 until an independent 

spanning set remains. Therefore we can construct a matrix whose rows are the vectors in 

BI U Bz and reduce it to Hermite normal form. The resulting rows constitute a basis of 

WI + Wz. 

F.8.3 Basis of WI n Wz 

Instead of finding the intersection WI n Wz directly, it is easier to find W/· and "Ft, then 

W1.L + wf and finally (WI + Wf).L. 

F .8.4 Basis of W.L 

Given a basis {bt, ... ,bm } of W, a basis of W.L is a basis of the solution space of the 

homogeneous system of equations B . y = 0, where B is the matrix having the vectors bJ as 

columns. This can be obtained by reducing B to Hermite normal form and finding the k 

independent columns of the resulting matrix, with k ::; n. If k = n then W is full-dimensional 

and W.L = {o}. Otherwise, W.L is a subspace of dimension n - k. A basis for such subspace 

can be found by arbitrarily considering n - k variables as parameters and solving, with respect 

to them, the subsystem of equations resulting from the Hermite normal form of B. 

Basis of null (A) 

Finding a basis for nUll(A), where A is an n X n matrix, is equivalent to providing a basis 

for the solution space of the homogeneous system of linear equations A . X = 0 for I E Rn. 



APPENDIX F. ASPECTS OF LINEAR ALGEBRA 2.50 

Therefore, finding a basis of null(A) is an instance of the problem of finding a basis for the 

orthogonal complement of a given subspace. 



Bibliography 

[Abd90] P.Abdulla, Decision problems in systolic circuits verification. t-ppsala r niversity, 

PhD Thesis, 1990. 

[Abd92] P.Abdulla, "Automatic verification of a class of systolic circuits", Formal A.spect ... 

of Computing, vol. 4, pp. 149-194, 1992. 

[Ada68] D.A.Adams, "A computation model with data flow sequencing", Stanford Uni­

versity, Technical Report, no. CS-117, 1968. 

[Ada70] D.A.Adams, "A model for parallel computations", Parallel Processor Systems, 

Technology and Applications, L.C.Hobb et a1. (eds.), pp. :311-333, 1970. 

[Anlr91] C.Ancourt, F.Irigoin, "Scanning polyhedra with DO loops", ProCEedings 3rd 

SIGPLAN Symposium on Principles and Practice of Parallel Programming, 

pp. 39-50, ACM Press, 1991. 

[An-et-al87] M.Annarote, E.Arnould, T.Gross, H.T.Kung, M.Lam, O.Menzilcioglu, 

J.A.Webb, "The Warp computer - architecture, implementation and perfor­

mance", IEEE Transactions on Computers, vol. 36, no. 12, pp. 1523-1538, 1987. 

[Bac78] J .Backus, "Can programming be liberated from the Von Neumann style? A 

functional style and its algebra of programs", Communication of A CM, vol. 21, 

pp. 613-641, 1978. 

[Ban93] U .Banerjee, Loop Transformations for Restructuring Compilers: The Founda­

tions. Kluwer Academic Publisher, 1993. 

[Ban94] U .Banerjee, Loop Parallelization. Kluwer Academic Publisher, 1994. 

[BaEl88] H.Barada, A.El-Amawy, "Systolic architecture for matrix triangularisation with 

partial pivoting", lEE Proceedings, vol. 135, no. 4. pp. 295-300. 1988. 

251 



BIBLIOGRAPHY 
252 

[BaLe91] M.Barnett, C.Lengauer, "A systolizing compilation scheme-. Unin:rsity of Ed­

inburgh, Tecnical Report, no. ECS-LFCS-91-134, January 1991. 

[BaLe91b] M.Barnett, C.Lengauer. "The synthesis of systolic programs". Research Direc­

tions in High-Level Parallel Programming Languages, Lecture ;'\otes in Computer 

Science, Springer-Verlag, no. 574, pp. 309-325, 1991. 

[Bay94] M.A.Bayoumi (ed.), VLSI Design Methodologies for Digital Signal Procf;$$irlg 

Architectures. Kluwer Academic Publishers, 1994. 

[Be-et-aI90] A.Benaini, P.Quinton, Y.Robert, Y.Sauter, B.Tourancheau, "Synthesis of a new 

systolic architecture for the algebraic path problem", Science of Computer Pro­

gramming, vol. 15, pp. 135-158, North-Hoiland, 1990. 

[BoJe89] G.S.Booles, R.C.Jeffrey, Computability and Logic. Open University Set Book, 

Cambridge University Press, Third Edition, 1989. 

[Br-et-aI87] W.Brauer, W.Reisig, G.Rozenberg (eds.), Petri Nets: Central Models and their 

Properties. Lecture Notes in Computer Science, nos. 254-255, Springer Verlag, 

1980. 

[Bro83] A.Br0ndsted, An Introduction to Convex Polytopes. Graduate Texts in Mathe­

matics, Springer-Verlag, 1983. 

[BuDe88] J .C.Bu, E.F .Deprettere, "Converting sequential iterative algorithms to recur­

rent equations for automatic design of systolic arrays", Proceedings IEEE Inter­

national Conference on Acoustics, Speech and Signal Processing (ICASSP 88), 

Vol. IV, VLSI: Spectral Estimation, IEEE Press, pp. 2025-2028, 1988. 

[Bu-et-al90] J.C.Bu, E.F.Deprettere, P.Dewilde, "A design methodology for fixed-size sys­

tolic arrays", Proceedings International Conference on Application Specific Ar­

ray, IEEE Press, pp. 591-602, 1990. 

[Bun83] A.Bundy. The computer modelling of mathematical reasoning. Academic Press 

Inc., 1983. 

[BuFa93] R.L.Burden, J.D.Faires, Numerical Analysis. PWS Publishing, 1993. 

[CaSt84] P.Cappeilo, K.Steiglitz, "Unifying VLSI array design with linear transformations 

of space-time", Advances in Computing Research, no. 2. pp. 23-6.5. 198-1. 



BIBLIOGRAPHY 
2.53 

[Car79] B.Carre, Graphs and Networks. Oxford Applied ~lathematics and Computing 

Science Series, Oxford University Press, 1979. 

[CaGe89] N.Carriero, D.Gelernter, "Linda in context'·, Communicatiorl8 of A e\!. \'01. 32. 

no. 4, pp. 444-458, 1989. 

[ChKa70] D.R.Chand, S.S.Kapur, "Algorithm for convex polytopes". Journal of ..lCU. 

vol. 17, no. 1, pp. 78-86, 1970. 

[ChMi88] K.Chandy, J.Misra, Parallel Program Design. Addison-Wesley. 1988. 

[Che83] M.C.Chen, Space-time algorithms: semantics and methodology. California Insti­

tute of Technology, PhD Thesis, 1983. 

[Che86] M.C.Chen, "A design methodology for synthesizing parallel algorithms and archi­

tectures", Journal of Parallel and Distributed Computing, vol. 3, no. -I. pp. 461-

491, 1986. 

[Che86b] M.C.Chen, "A parallel language and its compilation to multiprocessor ma­

chines", Proceedings 13th Annual Symposium on POPL, pp. 131-139,1986. 

[CIM093] P.Clauss, C.Mongenet, "Synthesis aspects in the design of efficient processor ar­

rays from affine recurrence equations", Journal of Symbolic Computation, vol. 1,). 

pp. 547-569, 1993. 

[CollMD] E.J .Borowski, J .M.Borwein, Dictionary of Mathematics, Collins. 1989. 

[ChMe93] X.Chen, G.M.Megson, "A methodology of partitioning and mapping for fixed­

shape and given-mesh regular arrays", The University of Newcastle upon Tyne, 

Computing Science, Technical Report Series, no. 423, 1993. 

[Che65] N.V.Chernikova, "Algorithm for finding a general formula for the non-negative 

solutions of a system of linear inequalities", U.S.S.R. - Computational Mathe­

matics and Mathematical Physics, vol. 5, pp. 228-233, 1965. 

[Chv83] V.Chvatal, Linear programming. W.H.Freeman and Company. 1983. 

[Co-et-al86] M.Cosnard, P.Quinton, Y.Robert, M.Tchuente (eds.), Parallel Algorithms and 

Architectures, North-Holland, 1986. 

[CrRa83] R.E.Crochiere, L.R.Rabiner, Multirate digital signal processing. Signal Process­

ing Series, Prentice-Hall, 1983. 



BIBLIOGRAPHY 254 

[Cu-et-aI83] K.Culik II, J .Gruska, A.Salomaa, "Systolic automata for VLSI on balanced 

trees" , Acta Informatica, vol. 18, pp. 335-344, 1983. 

[Cu-et-aI84] K.Culik II, J .Gruska, A.Salomaa, "Systolic trellis automata, Part II"". Interna­

tional Journal of Computer Mathematics, vol. 16, pp. 3-22, 1984. 

[Dan55] G.B.Dantzig, "Upper bounds, secondary constraints, and block triangularity in 

linear programming", Econometrica, Journal of the Econometric Socidy, vol. 23. 

pp. 174-183, 1955. 

[Dar91] A.Darte, "Regular partitioning for synthesising fixed-size systolic arrays" , Jour­

nal of VLSI Integration, vol. 12, pp. 293-304, 1991. 

[Da-et-aI91] A.Darte, L.Khachiyan, Y.Robert, "Linear scheduling is nearly optimal", Parallel 

Processing Letters, vol. 1, no. 2, pp. 73-81, 1991. 

[DaRo94] A.Darte, Y.Robert, "Constructive methods for scheduling uniform loop nests", 

IEEE Transactions on Parallel and Distributed Systems, vol. .), no. 8, pp. 814-

822,1994. 

[Delp86] J .-M.Delosme, Upsen, "Systolic arrays synthesis: computability and time 

cones" , in [Co-et-aI86]' pp. 295-312, 1986. 

[Delp87] J.-M.Delosme, Upsen, "Efficient systolic arrays for the solution of Toeplitz sys­

tems: an illustration of a methodology for the construction of systolic architec-

tures in VLSI", in [Mo-et-al87], pp. 37-46. 1987. 

[Den80] J .B.Dennis, "Data Flow Supercomputers", IEEE Computers, no. 18, pp. 42-.56, 

1980. 

[DeWe77] J.B.Dennis, K.S.Weng, "Applications of data flow computation to the weather 

problem", High Speed Computer and A.lgorithm Organization. D.J .Kuck, 

D.H.Lawrie, A.Sameh (eds.), pp. 143-157, Academic Press, 1977. 

[DuMe84] D.E.Dudgeon, R.M.Mersereau, Multidimensional Digital Signal Processing. Sig­

nal Processing Series, Prentice-Hall, 1984. 

[EkTu87] S.M.Eker, J.V.Tucker, "Specification, derivation and verification of concurrent 

line drawing algorithms and architectures". The University of Leeds. Centrt for 

Theoretical Computer Science, Report, no. 10.87. 1987. 



BIBLIOGRAPHY l.55 

[ElBa90] A.El-Amawy, H.Barada, "Efficient linear and bilinear arrays for matrix triangu­

larisation with partial pivoting". lEE Proceedings, vol. 137. no. -1. pp. 29.5-300. 

1990. 

[Eva91] D.J.Evans (ed.), Systolic Algorithms, Topics in Computer ~lathematics:3. Gor­

don and Breach Science Publishers, 1991. 

[FaNa88] E.Fachini, M.Napoli, "C-tree systolic automata··. Theoretical Computer Science. 

vol. 56, pp. 155-186, 1988. 

[Fea92a] P.Feautrier, "Some efficient solutions to the affine scheduling problem, part I, one 

dimensional time" , Journal of Parallel Programming, vol. 21, no .. 5. pp. 313-348. 

1992. 

[Fea92b] P.Feautrier, "Some efficient solutions to the affine scheduling problem. part II. 

multidimensional time", Journal of Parallel Programming, vol. 21, no. 6, pp. 389· 

420, 1992. 

[Fea94] P.Feautrier, "Towards automatic distribution", Parallel Processing Letters. 

vol. 4, no. 3, pp. 233-244, 1994. 

[Fo-et-al88] J.A.B.Fortes, K.S.Fu, B.W.Wah, "Systematic design approaches for algo­

rithmically specified arrays", Computer Architecture: Concepts and Systems, 

J.M.Milutinovic (ed.). pp. 454-494, North Holland. 1988. 

[FoM084] J .A.B.Fortes, D.Moldovan, "Data broadcasting in linearly scheduled array 

processors", Proceedings 11th Annual Symposium on Computer Architecture, 

pp. 224-231, 1984. 

[FoMo85] J .A.B.Fortes, D.I.Moldovan, "Parallelism detection and transformation tech­

niques useful for VLSI algorithms", Journal of Parallel and Distributed Com­

puting, vol. 2, pp. 277-301, 1985. 

[FoWa87] J.A.B.Fortes, B.W.Wah, "Systolic arrays - from concepts to implementation". 

IEEE Computer, vol. 20, no. 7, pp. 12-17, 1987. 

[Fr-et-al93] F.H.M.Franssen, F.Balasa, M.F.X.B.Van Swaaij, F.V.M.Catthoor. H.J.De ~lan. 

"Modelling multidimensional data and control flow", IEEE Transactions on 

VLSI Systems, vol. 1, no. 3, pp. 319-327. 1993. 



BIBLIOGRAPHY 2.56 

[Ga-et-a187] P.Gachet, B.Joinnault, P.Quinton, "Synthesizing systolic arrays using DL-\S· 

TOL", in [Mo-et-al87]' pp. 25-36, 1987. 

[Ga-et-a188] P.Gachet, P.Quinton, C.Mauras, Y.Saouter, "Alpha du Centaur: a prototype 

environment for the design of parallel regular algorithms"', IRISA. Publication 

Interne, no. 439, 1988. 

[GaPe92] E.Gautrin, L.Perraudeau, "MAD~\IACS: a tool for the layout of regular arrays'" 

IRISA, Publication Interne, no. 641, 1992. 

[Ge185] D.Gelernter, "Generative communication in Linda", .-leAf Tmnsadions on Pro­

gramming Languages and Systems, vol. 7. no. 1, pp. 80-112. 1985. 

[Ge-et-a190] D.Gelernter, A.Nicolau, D.Padua (eds.), Languages and compilers for parallel 

computing. Research Monograph in Parallel and Distributed Computing, Pit­

man, The MIT Press, 1990. 

[GeKu81] W.M.Gentleman, H.T.Kung, "}'latrix triangularization", SPIE Real Time Signal 

Processing IV, vol. 298, pp. 19-26 1981. 

[GiRy88] A.Gibbons, W.Rytter, Efficient Parallel Algorithms. Cambridge University 

Press, Cambridge, 1988. 

[Grii67] B.Griinbaum, Convex Polytopes. Interscience Publishers, 1967. 

[Gru84] J.Gruska, "Systolic automata: power, characterisation. nonhomogeneity", 

Proceedings Mathematical Foundations of Computer SciEnce (MFCS '84), 

M.P.Chytil, V.Koubek (eds.), Lecture Notes in Computer Science, no. 176, 

pp. 32-49, Springer-Verlag, 1984. 

[Gru90] J .Gruska, "Synthesis, structure and power of systolic computations", Theoretical 

Computer Science, no. 71, pp. 47-77. 1990. 

[GuLi82] L.J.Guibas, F.M.Liang, "Systolic stacks, queues and counters". 1982 Conference 

on Advanced Research in VLSI. M.LT, 1982. 

[Hal95] J .G.Hall, "Combining formal methods: the two button press case study". Ltcture 

at the Colloquium on Practical Application of Formal Methods. lEE Computing 

and Control Division, Professional Group C1 (Software engineering), ~lay 199·,), 

Digest No: 1995/109, 1995. 



BIBLIOGRAPHY 25;-

[Har92] D.Harel, Algorithmics: The Spirit of Computing. Addison-Wesley Publishing 

Company, 1992. 

[Hen86] M.Hennessy, "Proving systolic systems correct". ACM Transaction.' on Progrom­

ming Languages and Systems, vol. 8, no. 3, pp. 344-387, 1986. 

[HoTu94] K.M.Hobley, J.V.Tucker, "Clocks, Retiming and Transformations of Syn­

chronous Concurrent Algorithms", Transformational Approache.' to Systolic De­

sign, G.M.Megson (ed.), Chapman & Hall, 1994. 

[Ho-et-a189] B.Hochet, P.Quinton, Y.Robert, "Systolic Gaussian elimination over GF(p) with 

partial pivoting", IEEE Transaction.' on Computers, vol. 38, no. 9, pp. 1:321-

1324, 1989. 

[Hu82] T.C.Hu, Combinatorial Algorithms. Addison-Wesley Publishing Company, 1982. 

[HuLe87] C.-H.Huang, C.Lengauer, "The derivation of systolic implementation of pro­

grams", Acta Informatica, vol. 24, no. 6, pp .. 595-632, 1987. 

[Hi-et-aI90] P.Hilfinger, J.Rabaey, D.Genin, C.Scheers, H.De Man, "DSP specifications using 

the SILAGE language", Proceedings IEEE International Conference on Acous­

tics, Speech and Signal Processing, pp. 1057-1060, 1990. 

[H w Br85] K.H wang, F .A.Briggs, Computer architecture and parallel processing. Computer 

Science Series, McGraw-Hill International Editions, 198.5. 

[IrTr88] F.Irigoin, R.Triolet, "Supernode partitioning", Proceedings 15th POPL, San 

Diego, California, pp. 319-328, 1988. 

[Ka-et-al67] R.M.Karp, R.E.Miller, S.Winograd, "The organization of computations for uni­

form recurrence equations", Journal of the ACM, vol. 14. no. 3, pp .. 563-590, 

1967. 

[KeMc90] K.Kennedy, K.S.McKinley, "Loop distribution with arbitrary control flow". 

IEEE/ACM, Proceedings Supercomputing '90, New York, 1990. 

[Kri89] E.V.Krishnamurthy, Parallel processing. International Computer Science Series, 

Addison-Wesley, 1989. 

[HTKun82] H.T.Kung, "Why systolic architectures?", IEEE Computer. vol. 1·5. no. 1, pp. 37-

46, 1982. 



BIBLIOGRAPHY 

[KuLe80] H.T.Kung, C.E.Leiserson, "Systolic arrays (for YLSIf. Introduction to l L"',/ 

Systems, C.Mead and L.Conway (eds.). sect. 8.3, pp. 271-292. Addison-Wesley. 

1980. 

[KuLi84] H.T.Kung, W.T.Lin, "An algebra for VLSI algorithm design", TEchnical Report. 

Carnegie Mellon "(niversity, no. CMU-CS-84-100, 1984. 

[KuWe85] H.T.Kung, J.A.Webb, "Global operations on the c~n; Warp :'.Iachine'·. Proceed­

ings of 1985 AIAA Computer in Aerospace '0 Conference, American Institute of 

Aeronautics and Astronautics, pp. 209-218, 198.5. 

[SYKun88] S.Y.Kung, VLSI array processors. Information and System Sciences Series. Pren­

tice Hall, 1988. 

[Ku-et-a181] S.Y.Kung, K.S.Arun, D.V.Bhaskar Rao, Y.H.Hu. "A matrix data flow lan­

guage/ architecture for parallel matrix operations based on computational wan'­

front concept", Proceedings CMU Conference on VLSI Systems Computations, 

pp. 235-244, Computer Science Press, 1981. 

[Ku-et-a182] S.Y.Kung, K.S.Arun, R.J.Gal-Ezer, D.V.Bhaskar Rao, "Wavefront array pro­

cessor: language, architecture, and applications", IEEE Transactions on Com-

puters, vol. C-351, no. 11. pp. 1054-1065, 1982. 

[Lam74] L.Lamport, "The parallel execution of DO loops", Communications of the ACM, 

vol. 17, no. 2, pp. 83-93, 1974. 

[Le-et-al89] P.Lee, J.Wu, A.Yang, K.Yip, "SYSDES: a systolic array automation design sys­

tern", Proceedings 4th SIAM Conference on Parallel Processing for Scientific 

Computing, 1989. 

[Lei81] C.E.Leiserson, Area-efficient VLSI computation, PhD Thesis, Carnegie-Mellon 

University, 1981. 

[LeSa83] C.E.Leiserson, F.Saxe, "Optimizing synchronous systems", Journal of VLSI and 

Computer Systems, vol. 1, no. 1, pp. 41-67. 1983. 

[Len90] C.Lengauer, "Code generation for a systolic computer", Software - PractiN and 

Experience, vol. 20, no. 3, pp. 261-282, 1990. 

[Le-et-al91] C.Lengauer, M.Barnett, D.G.Hudson, "Towards systolizing compilation". Dis­

tributed Computing, vol. 5, pp. 7-24, 1991. 



BIBLIOGRAPHY 
2.59 

[LeXu91] C.Lengauer, J.Xue, "Recent developments in systolic design", Fnm"r."ly of Ed­

inburgh, Technical Report, no. ECS-LFCS-91-1,6, 1991. 

[LiWa85] G.-J.Li, B.W.Wah, "The design of optimal systolic arrays". IEEE Tronsactions 

on Computers, voL C-34, no. 1, pp. 66-17, 198.5. 

[LiBa94] N .Ling, M.A.Bayoumi, "From architecture to algorithm - a formal approach ~ , in 

[Meg94], pp. 242-295, 1994. 

[Lis89] B.Lisper, "Single-assignment semantics for imperative programs", Parallel Ar­

chitectures and Languages Europe (PARLE '89). \'01. II. Parallel Languagls. 

Lecture Notes in Computer Science, no. 366, pp. 321-334, Springer-Verlag, 1989. 

[LoZa94] J.Lopez, E.L.Zapata, "Unified architecture for divide and conquer based tridiag­

onal system solvers", IEEE Transactions on Computers, vol. ·13. no. 12. pp. 1413-

1425, 1994. 

[MaTo90] S.Martello, P.Toth, Knapsack Problems: Algorithms and Computer Implemen­

tation. John Wiley and Sons, 1990. 

[MaRu80] T .H.Matheiss, D.S.Rubin, "A survey and comparison of methods for finding all 

vertices of convex polyhedral sets", Mathematics of Operations Research, vol. 5, 

pp. 167-185, 1967. 

[Mc-et-aI89] J.McCanny, J.G.McWhirter, E.Swartzlander (eds.), Systolic Array Processors, 

Prentice Hall, 1989. 

[McE86] K.McEvoy, "A formal model for the hierarchical design of synchronous and sys­

tolic algorithms", The University of Leeds, Centre for Theoretical Computer Sci­

ence, Report, no. 7.86, 1986. 

[McW89] J.G.McWhirter, "Algorithmic engineering - an emerging discipline", SPIE, Ad­

vanced Algorithms and Architectures for Signal Processing IV, vol. 11.52. 1989. 

[Meg90] G.M.Megson, "Systolic helix for matrix triangularis at ion with partial pivoting", 

Parallel Computing, vol. 14, pp. 199-206, 1990. 

[Meg91] G.M.Megson, "Automatic systolic algorithm design I: basic synthesis technique". 

The University of Newcastle upon Tyne, Computing Science, Technical Report 

Series, no. 363, 1991. 



BIBLIOGRAPHY 260 

[Meg91b] G.M.Megson, "Automatic systolic algorithm design II: a practical approach-. 

The University of Newcastle upon Tyne, Computing Science. Technical Report 

Series, no. 364, 1991. 

[Meg92] G.M.Megson. An introduction to systolic algorithm design. Oxford Science Pub­

lications, Oxford University Press,1992. 

[Meg92b] G.M.Megson, "Mapping a class of run-time dependencies onto regular array~". 

The University of Newcastle upon Tyne. Computing Scimce. Technical Report 

Series, no. 397, 1992. 

[Meg93] G.M.Megson, "Mapping a class of run-time dependencies onto regular arrays". 

Proceedings 7th International Parallel Processing Symposium. ~ewport Beach. 

USA, pp. 97-104, IEEE Computer Society Press, 1993. 

[Meg93b] G.M.Megson, "Mapping certain non-linear dependencies onto regular arrays". 

The University of Newcastle upon Tyne, Computing Science, Technical Report 

Series, no. 421, 1993. 

[Meg94] G.M.Megson (ed.), Transformational approaches to systolic design. Parallel and 

Distributed Computing, Chapman & Hall, 1994. 

[MeCh94] G.M.Megson, X.Chen, "Partitioning and Mapping for Lower Dimensional Given 

Arrays". Proceedings 2nd Euromicro Workshop on Parallel and DistributHi Com­

puting, pp. 149-156, IEEE Computer Society Press, 1994. 

[MeCo91] G.M.Megson, D.Comish, "Systolic algorithm design environments", Proceedings 

2nd International Specialist Seminar on Parallel Digital Processors, pp. 100-104, 

1991. 

[MeCo92] G.M.Megson, D.Comish, "Automatic Derivation of Systolic Algorithms for 

Kalman Filtering", Proceedings 3rd IMA Conference on Mathematics in Signal 

Processing, Warwick, 1992. 

[MeCo94] G.M.Megson, D.Comish, "Systolic algorithm design environments (SADEs)". in 

[Meg94J, pp. 205-241. 1994. 

[MeCo94b] G.M.Megson, D.Comish, "Automatic derivation of systolic algorithms for 

Kalman filtering", Mathematics in Signal Processing III. J.C.~lcWhirter (ed.l. 

Oxford University Press, 1994. 



BIBLIOGRAPHY 261 

[MeRa95] G.M.Megson, L.Rapanotti, "Regularising transformations for integral dependen­

cies", Parallel Algorithms for Irregular Problems: State of thE Art. A. Ferreira. 

J.D .P. Rolim (eds.), Proceedings, Irregular '94. Summer School and Workshop. 

University of Geneva, Geneva (Switzerland), August 1994. Kluwer Academic 

Publishers, 1995. 

[Me-et-a195] G.M.Megson, L.Rapanotti and X.Chen, '"Automatic Synthesis of Parallel .\.!go­

rithms", Solving Combinatorial Optimization Problems in Parallel . . \.Ferreira, 

P.M.Pardalos (eds.), Special Issue, Lecture Notes in Computer Science. Springer­

Verlag, 1995. 

[Me-et-a195b] G.M.Megson, L.Rapanotti, G.A.Hedayat, M.F.P.O'Boyle. Z.Chamski, "De­

tecting and extracting parallelism: old result and a new perspective". REFLEX 

Technical Report, in preparation. 

[MeRh84] R.G.Melhem, W.C.Rheinboldt, "A mathematical model for the verification of 

systolic networks", SIAM Journal on Computing, vol. 13, no. 3, pp .. 541-565. 

1984. 

[MiWi84] W.L.Miranker, A.Winkler, "Spacetime representations of computational struc­

tures", Computing, vol. 32, pp. 93-114, 1984. 

[Mod88] J.J .Modi, Parallel algorithms and matrix computation. Oxford Applied ~lathe­

matics and Computing Science Series Clarendon Press, Oxford, 1988. 

[MoI83] D.l.Moldovan, "On the design of algorithms for VLSI systolic arrays", Proceed­

ings IEEE, vol. 71, no. 1, pp. 113-120, 1983. 

[MoI87] D.l.Moldovan, "ADVIS: A Software Package for the Design of Systolic Arrays". 

IEEE Transactions on Computer-Aided Design, vol. CAD-6, no. 1, pp. 3:3-40, 

1987. 

[MoFo86] D.l.Moldovan, A.B.Fortes, "Partitioning and mapping algorithms into fixed size 

systolic arrays", IEEE Transactions on Computer. vol. c-35, no. 1, pp. 1-12, 

1986. 

[MoCa95] M.Moonen, F.Catthoor (eds.), Algorithms and Parallel VLSI A.rchitEcturEs II/, 

Proceedings International Workshop, Elsevier Science publisher. 1995. 



BIBLIOGRAPHY 262 

[Mo-et-aI87] W.Moore A McCabe R U h t ( d ) 5' l' ,. ,. rqu ar e s.. ysto IC Arrays - Papers p'"fsented at 

the 1st International Workshop on Systolic Arrays. Oxford. July 1986. Adam 

Hilger, 1987. 

[Ner63] E.D.Nering, Linear algebra and matrix theory. J.Wiley &. Sons Inc .. 1963. 

[OBo93] M.F.P.O'Boyle. "Program and data transformations for efficient execution on 

distributed memory architectures", University of J/anchf:8tEr. PhD ThE" i ..... Tech­

nical Report Series, no. UMCS-93-1-6, 1993. 

[PrSh85] F .P.Preparata, M.I.Shamos, Computational Geometry. Texts and Monographs 

in Computer Science, Springer-Verlag, 198.') (Corrected and Expanded Second 

Printing, 1988). 

[PrLi88] D.K.Probst, H.F.Li, "Abstract specification of synchronous data types for \'LSI 

and proving the correctness of systolic network implementations". IEEE Trans­

actions on Computers, vol. 37, no. 6, pp. 710-720. 1988. 

[Qui83] P.Quinton, "The systematic design of systolic arrays", Technical Report. Institut 

National de Recherche en Informatique et en Automatique (ISRIA). no. 216, 

1983. 

[Qui84] P.Quinton, "Automatic synthesis of systolic arrays from uniform recurrent equa­

tions" , IEEE/ACM, Proceedings 11th Annual International Symposium on Com­

puter Architecture, 1984. 

[QuRo91] P.Quinton, Y.Robert, Systolic algorithms and architectures. Masson and Prentice 

Hall International, 1991. 

[QuVa89] P.Quinton, V.Van Dongen, "The mapping of Linear Recurrence Equations on 

Regular Arrays", Journal of VLSI Signal Processing, vol. 1, pp. 95-113, 1989. 

[Raj89] S.V.Rajopadhye, "Synthesizing systolic arrays with control signals form recur­

rence equations", Distributed Computing, vol. 3, pp. 88-105, 1989. 

[Raj90] S.V.Rajopadhye, "Algebraic transformations in systolic array synthesis: a case 

study", Formal VLSI Specification and Synthesis, FLSI Design .\hthods I. 

pp. 361-370, Elsevier Science Publishers, 1990. 

[Raj93] S.Rajopadhye, "An improved systolic algorithm for the algebraic path problem". 

Integration, The VLSI Journal, vol. 14, pp. 279-296, 1993. 



BIBLIOGRAPHY 263 

[RaFu87] S.V.Rajopadhye, R.M.Fujimoto, "Systolic array synthesis by static analysis of 

program dependencies", PARLE - Parallel ArchitfctuT€8 and LanguagE ... EtHYJJX. 

Eindhoven, The Netherlands, June 1987. Proceedings, Lecture ~otes in Com­

puter Science, no. 258, Springer-Verlag, 1987. 

[RaFu89] S.V.Rajopadhye, and R.M.Fujimoto, "Automating systolic array design". Intf­

gration - The VLSI Journal, vol. 9, pp. 22.5-242. 1989. 

[RaFu90] S.V.Rajopadhye, R.M.Fujimoto, "Synthesizing systolic arrays from recurrence 

equations", Parallel Computing, vol. 14, no. 2, pp. 163-189, 1990. 

[Ra085] S.K.Rao, Regular iterative algorithms and their implementations on procE ...... or 

arrays. Standford University, PhD Thesis, October 1985. 

[Ra-Ka88] S.K.Rao, T.Kailath, "Regular iterative algorithms and their implementations on 

processor arrays", Proceedings of IEEE, vol. 76, no. 3, pp. 259-282, 1988. 

[RaMe93] L.Rapanotti, G.M.Megson, "Pre-Processing in SADE: Stage I", ThE Fnil'crsity 

of Newcastle upon Tyne, Computing Science, Technical Report Series, no. 431, 

1993. 

[RaMe93b] L.Rapanotti, G.M.Megson. "Pre-Processing in SADE: Stage II", The University 

of Newcastle upon Tyne, Computing Science, Technical Report Series, no. 446, 

1993. 

[RaMe94] L.Rapanotti, G.M.Megson. "Pre-Processing in SADE: Stage III", The Uni­

versity of Newcastle upon Tyne, Computing Science, Technical Report Series, 

no. 471, 1994. 

[RaMe94b] L.Rapanotti, G.M.Megson, "Uniformisation techniques for integral recurrence 

equations", The University of Newcastle upon Tyne, Computing Science, Tech-

nical Report Series, no. 478, 1994. 

[RaMe94c] L.Rapanotti, G.M.Megson, "Mapping integral recurrences onto regular arrays", 

The University of Newcastle upon Tyne, Computing Science, Technical Report 

Series, no. 492, 1994. 

[RaMe95] L.Rapanotti, G.M.Megson, "Uniformisation techniques for reducible integral re­

currence equations", in [MoCa95], pp. 283-295, 1995. 



BIBLIOGRAPHY 26-1 

[RaMe95b] L.Rapanotti, G.M.Megson, "A class of dynamic data dependencies and their lo­

calisation", The University of .Vewcastle upon Tyne. Computing SC!t nee Tech­

nical Report Series, to appear 1995. 

[Roc70] R.T.Rockafellar, Convex analysis. Princeton rniWTsity Press. 1970. 

[Rot85] G.Rote, "A systolic array algorithm for the algebraic path problem (shortest 

path; matrix inversion)", Computing, vol. 34, pp. 191-219, 198.). 

[Sa-et-a193] G.Saghi, H.J.Siegel, J.L.Gray, "Mapping onto three classes of parallel machines: 

a case study using the cyclic reduction algorithm", IEEE Proceedings 7th Int(T­

national Parallel Processing Symposium, Newport Beach. California, 1993. 

[SaQu90] Y.Saouter, P.Quinton, "Computability of recurrence equations", IRISA, Publi­

cation Interne, no. 521, 1990. 

[Sch86] A.Schrijver, Theory of linear and integer programming. Wiley-Interscience Series 

in Discrete Mathematics and Optimization, 1986. 

[ShF092] W.Shang, J.A.B.Fortes, "On time mapping of uniform dependence algorithms 

into lower dimensional processor arrays", IEEE Transactions on Parallel and 

Distributed Systems, vol. 3, no. 3, pp. 350-363, 1992. 

[ShF092b] W.Shang, J.A.B.Fortes, "Independent partitioning of algorithms with uniform 

dependencies", IEEE Transactions on Parallel and Distributed Systems, vol. 4 L 

no. 2, pp. 190-206, 1992. 

[Sha87] E.Shapiro (ed.), Concurrent Prolog. MIT Press, vol. 1,1987. 

[Sn-et-al85] L.Snyder, L.H.Jamieson, D.B.Gannon, H.J.Siegel (eds.). Algorithmically special­

ized parallel computers, Academic Press, 1985. 

[StWi70] J.Stoer, C.Witzgall, Convexity and Optimization m Finite Dimensions [. 

Springer-Verlag, 1970. 

[Sw-et-al94] M.F.X.B.Van Swaaij, F.H.M.Franssen, F.V.M.Catthoor. H.J.De Man, "\Iod­

elling data and control flow for DSP system synthesis", VLSI Design Methodolo­

gies for Digital Signal Processing Architectures, ~LA.Bayoumi, Kluwer Academic 

Publishers, 1994. 



BIBLIOGRAPHY 26.5 

[Swa85] G.Swart, "Finding the convex hull facet by faceC. Journal of Algorithms. \'01. 6. 

pp. 7-48, 1985. 

[TeTh91] J.Teich, L.Thiele, "Control generation in the design of processor arrays". Journal 

of VLSI Signal Processing, vol. 3, no. 1/2. pp. 77-92, 1991. 

[ThTu88] B.C.Thompson, J.V.Tucker, "Synchronous concurrent algorithms". The Cllil"fr­

sity of Leeds, Centre for Theoretical Computer Science. Report, 19"-';. 

[ThTu91] B.C.Thompson, J.V .Tucker, "Equational specification of synchronous concurrent 

algorithms and architectures", University College of Swansea, Department of 

Mathematics and Computer Science. Computer Science Division. Report Series. 

no. CSR 9-91, 1991. 

[ThTu94] B.C.Thompson, J.V.Tucker, "Equational specification of synchronous concurrent 

algorithms and architectures (second edition r, (' niversity College of Swansea. 

Department of Mathematics and Computer Science. Computer Science Division. 

Report Series, no. CSR 15-94, 1994. 

[VanD88] V.Van Dongen, "PRESAGE, a tool for the design of low-cost systolic circuits", 

Proceedings IEEE International Symposium on Circuits and Systems, Espoo, 

Finland, June 1988. 

[Veh94] U .Vehlies, "DECOMP - A program for mapping DSP algorithms onto systolic 

arrays", [Meg94], pp. 159-179, 1994. 

[VeCr91] U .Vehlies, A.Crimi, "A compiler for generating dependence graphs of DSP al­

gorithms", Algorithms and Parallel VLSI Architectures, Volume B: Proceedings, 

Elsevier Science Publishers, pp. 319-328, 1991 

[VonN66] J.Von Neumann, The Theory of Self-Reproducing A.utomata. A.W.Burks (ed.). 

University of illinois Press, 1966. 

[Wil90] S.A.Williams, Programming models for parallel systems. Series in Parallel Com­

puting, Wiley, 1990. 

[WoI89] M.Wolfe, Optimizing supercompilers for supercomputers. Research Monographs 

in Parallel and Distributed Computing, Pitman, 1989. 

[WoI86] S.Wolfram, Theory and Applications of Cellular Automata. World Scientific. 

1986. 



BIBLIOGRAPHY ltit, 

[WoI88] S.Wolfram, Mathematica. A System for Doing J/athematics by Compurt roo 

Addison-Wesley, 1988. 

[WoDe92] Y.Wong, J.M.Delosme, "Transformation of broadcasts to propagations in ~y~­

tolic algorithms", Journal of Parallel and Distributed Computing. yol. 1-t. no. 2. 

pp. 121-145, 1992. 

[WoDe92b] Y.Wong, J .M.Delosme, "Optimisation of computation time for systolic arrays". 

IEEE Transactions on Computers, vol. 41. no. 2. pp. 1.59-1 II. 1992. 

[Xue92] J .Xue, The formal synthesis of control signals for systolic armys. The r niyersity 

of Edinburgh, PhD Thesis, no. CST-90-92, April 1992. 

[XuLe92] J.Xue, C.Lengauer, "The synthesis of control signals for one-dimensional systolic 

arrays", Integration - The VLSI Journal, vol. 14. no. 1 pp. 1-32, 1992. 

[YaCa88] Y.Yaacoby, P.R. Cappello, "Scheduling a system of affine recurrence equations 

onto a systolic array", Proceedings of the International Conferf TlN on Systolic 

Arrays: Design Methodology and Tools - I, pp. 373-382, IEEE Press, 1988. 


	295111_0001
	295111_0002
	295111_0003
	295111_0004
	295111_0005
	295111_0006
	295111_0007
	295111_0008
	295111_0009
	295111_0010
	295111_0011
	295111_0012
	295111_0013
	295111_0014
	295111_0015
	295111_0016
	295111_0017
	295111_0018
	295111_0019
	295111_0020
	295111_0021
	295111_0022
	295111_0023
	295111_0024
	295111_0025
	295111_0026
	295111_0027
	295111_0028
	295111_0029
	295111_0030
	295111_0031
	295111_0032
	295111_0033
	295111_0034
	295111_0035
	295111_0036
	295111_0037
	295111_0038
	295111_0039
	295111_0040
	295111_0041
	295111_0042
	295111_0043
	295111_0044
	295111_0045
	295111_0046
	295111_0047
	295111_0048
	295111_0049
	295111_0050
	295111_0051
	295111_0052
	295111_0053
	295111_0054
	295111_0055
	295111_0056
	295111_0057
	295111_0058
	295111_0059
	295111_0060
	295111_0061
	295111_0062
	295111_0063
	295111_0064
	295111_0065
	295111_0066
	295111_0067
	295111_0068
	295111_0069
	295111_0070
	295111_0071
	295111_0072
	295111_0073
	295111_0074
	295111_0075
	295111_0076
	295111_0077
	295111_0078
	295111_0079
	295111_0080
	295111_0081
	295111_0082
	295111_0083
	295111_0084
	295111_0085
	295111_0086
	295111_0087
	295111_0088
	295111_0089
	295111_0090
	295111_0091
	295111_0092
	295111_0093
	295111_0094
	295111_0095
	295111_0096
	295111_0097
	295111_0098
	295111_0099
	295111_0100
	295111_0101
	295111_0102
	295111_0103
	295111_0104
	295111_0105
	295111_0106
	295111_0107
	295111_0108
	295111_0109
	295111_0110
	295111_0111
	295111_0112
	295111_0113
	295111_0114
	295111_0115
	295111_0116
	295111_0117
	295111_0118
	295111_0119
	295111_0120
	295111_0121
	295111_0122
	295111_0123
	295111_0124
	295111_0125
	295111_0126
	295111_0127
	295111_0128
	295111_0129
	295111_0130
	295111_0131
	295111_0132
	295111_0133
	295111_0134
	295111_0135
	295111_0136
	295111_0137
	295111_0138
	295111_0139
	295111_0140
	295111_0141
	295111_0142
	295111_0143
	295111_0144
	295111_0145
	295111_0146
	295111_0147
	295111_0148
	295111_0149
	295111_0150
	295111_0151
	295111_0152
	295111_0153
	295111_0154
	295111_0155
	295111_0156
	295111_0157
	295111_0158
	295111_0159
	295111_0160
	295111_0161
	295111_0162
	295111_0163
	295111_0164
	295111_0165
	295111_0166
	295111_0167
	295111_0168
	295111_0169
	295111_0170
	295111_0171
	295111_0172
	295111_0173
	295111_0174
	295111_0175
	295111_0176
	295111_0177
	295111_0178
	295111_0179
	295111_0180
	295111_0181
	295111_0182
	295111_0183
	295111_0184
	295111_0185
	295111_0186
	295111_0187
	295111_0188
	295111_0189
	295111_0190
	295111_0191
	295111_0192
	295111_0193
	295111_0194
	295111_0195
	295111_0196
	295111_0197
	295111_0198
	295111_0199
	295111_0200
	295111_0201
	295111_0202
	295111_0203
	295111_0204
	295111_0205
	295111_0206
	295111_0207
	295111_0208
	295111_0209
	295111_0210
	295111_0211
	295111_0212
	295111_0213
	295111_0214
	295111_0215
	295111_0216
	295111_0217
	295111_0218
	295111_0219
	295111_0220
	295111_0221
	295111_0222
	295111_0223
	295111_0224
	295111_0225
	295111_0226
	295111_0227
	295111_0228
	295111_0229
	295111_0230
	295111_0231
	295111_0232
	295111_0233
	295111_0234
	295111_0235
	295111_0236
	295111_0237
	295111_0238
	295111_0239
	295111_0240
	295111_0241
	295111_0242
	295111_0243
	295111_0244
	295111_0245
	295111_0246
	295111_0247
	295111_0248
	295111_0249
	295111_0250
	295111_0251
	295111_0252
	295111_0253
	295111_0254
	295111_0255
	295111_0256
	295111_0257
	295111_0258
	295111_0259
	295111_0260
	295111_0261
	295111_0262
	295111_0263
	295111_0264
	295111_0265
	295111_0266
	295111_0267
	295111_0268
	295111_0269
	295111_0270
	295111_0271
	295111_0272
	295111_0273
	295111_0274
	295111_0275
	295111_0276

