
PROGRAMMING AND VERIFYING ASYNCHRONOUS SYSTEMS

J. Y. COTRONIS

University of Newcastle-upon-Tyne

N EI,', C,', '.:'_= -j PO~-n ill E
U;::VE:'::iTY L1B\RY

hCC':::S'::';OiJ No,

82-16710

LOCATION

t~CI'S.

I.,.. ~~Sg-

Computing Laboratory

July 1982

Ph.D. Thesis

AKNOWLEDGEMENTS

I would like, first of all to express my thanks to my supervisor Dr.

Pe ter Lauer for his con tinuou s cooperation dur ing the year s I have been

a student and later a member of his research project. Peter's comments

on early drafts of my thesis were valuable and in a great extend

determined the contents of the thesis. In particular Peter suggested

the four criteria for a good macro notation. His work in [L79] provided

the guidelines for developing syntax rules for macro programs uniform

with syntax rules for basic programs. Peter also suggested the

elimination of the box" "in replicators and the restriction of the

"," as far as possible in regular expressions denoting choice. Peter

al so sugge sted po ssible theorems to be proved abou t macro programs.

I would like to thank Brian Hamshere for his patience in reading

through an early version of my thesis suggesting improvements and

corrections. I would also like to thank old members of the Asynchronous

Systems Project, Dr. Mike Shields and Dr. Eike Best for providing the

basis for the re searc h in this thesis.

Finally, I would like to express my warmest thanks to my parents and

to Lily who many a time s, regre tably, took second place to this thesis,

for their encouragement and support during the past years.

ABSTRACT

The basic COSY (COncurrent SYstems) notation [LSB79b] is briefly

presented. Programs in this notation abstractly specify the

aspects of concurrent systems and are possessed of

synchronic

behavioural

semantics, which are capable of expressing concurrency and which also

provide a firm mathematical foundation for verifying properties of

systems.

We are mainly concerned with the macro COSY notation [LTS79] which

contains macro features for concisely representing and precisely

generating by expansion similar regularities of structure of programs in

the basic notation. We re-examine and revise all aspects of macro COSY,

the design of the notation as a specification language, the formal

2;rammar for producing macro COSY programs, the rules for the expansion

of macro elements and of complete macro programs, eliminating serious

drawbacks of previous macro COSY notations and grammars.

We characterize the strings generated by

elements and macro programs and we investigate

which macro elements may generate the same

elements.

the expansion of macro

the conditions under

strings as other macro

Finally, we give direct semantics to macro programs following two

approaches.

CONTENTS

1 I;';TRODUCTIO~ ••••• • • • • • • ••••••••••••••••••• 1

2 THE BASIC COSY NOTATION . · · · · . 9

2.1 The Syntax of Basic COSY · · · · 10

2.2 The Semantics of a Basic Path · · · · · 11

2.3 The Semantics of Path-programs 14

2.4 The Semantics of General Basic programs · · · · 18

2.5 The Nature of Analysis in COSY · · · · · · · · · · 27

3 THE MACRO COSY NOTATION · · · · · · · · 30

3.1 A Review of Macro COSY Notations 37

3.1. 1 The Macro COSY Program · · · · 37

3.1. 2 The Collectivisors · · · · · · · · · · · 38

3.1. 3 The Bodyr epl ica tor s · · · · · 40

3.1. 4 The Paths and Processes · · · · · · · · 44

3.1. 5 The Replicators in Sequences · · · · · · · · SO

3.1. 6 The Distributors · · · · · · · · · · · · 64

3.1. 7 Some More Repl icators · · · · · · · · · · · · 68

3.2 A New Notation and Grammar for Nacro COSY 69

3.2.1 The Macro Program · · · · · 70

3.2.2 The Collectivisors · · · · · · · · · · · · 72

3.2.3 The Bodyreplicators · · · · · · · · · 78

4

3.2.4 The Paths and Processes

3.2.5 The Sequence Replicators

3.2.6 Some ~lore Replicators

3.2.7 The Distributors

3.3 The Expansion of Macro COSY Programs

3.3.1 The Expansion of Replicators

3.3.2 The Expansion of Distributors

3.3.3 The Expansion of Macro Programs

3.4 Evaluation of the New Notation for Macro COSY

THE SEMANTICS OF ~~CRO COSY PROGR&~S

79

80

• 102

105

• • • 116

• • 117

153

• 170

• • 178

194

4.1 Constructing Ordered Cycle Sets upon Expansion of ~~cro Programs 196

4.1.1 Finding the Cycle Sets of pure macro Paths ••• 200

4.1.2 Finding the Cycle Sets of Restricted pure macro Paths •• 209

4.2 Constucting Ordered Cycle Sets by Expansion of Nacro-Cycle

Objects • 228

4.2.1 Syntax and Expansion Rules of Constrained macro-Programs • 234

4.2.2 ~~cro Cycle Objects and their Kxpansion • 248

4.2.3 The Ordered Cycle sets of the Expansion and the Expansion

of macro-Cycle Objects of Constrained Macro-Programs • 269

5 CONCLUSIONS • • 288

6 REFERENCES ••••••••••••••• • • • • • •••••••••• 293

Appendix A THE SYNTAX OF PROGRMIS IN THE BASIC COSY NOTATION • • ••• 303

Appendix B THE SYNTAX OF HACRO PROGRAl'1S I~ THE GENERAL NACRO NOTATIO:J • 304

Appendix C THE SYNTAX OF ~1ACRO PROGRMIS IN THE STRICT HACRO NOTATION • 309

Appendix D : THE SYNTAX OF ~CRO PROGRAHS IN THE CONSTRAINED ~~CRO

NOTATION • • • • 316

- 1 -

1 INTRODUCTION

In the past few years there has been an increasing interest in

distributed computing systems, that is systems in which there are a

number of autonomous but interacting computers co-operating on a common

problem. Such systems cover a broad spectrum which includes networks of

main-frame computers, systems containing microprocessors, novel forms of

highly parallel computer architecture etc. Recent and continuing

developments in component technology have initiated new ideas on system

design, based on the decomposition of systems into a number of

subsystems which when combined in new ways may perform the same general

functions as earlier systems but with much greater degree of parallelism

and distribution. These new design options have at the same time

increased the difficulties for the precise specification, analysis and

verification of systems.

The COSY notation [LSB79b, LTS79], the name has been derived from

COncurrent SYstems, is a formalism indented to simplify these t~sks by

abstracting away from all aspects of systems, except those which have to

do with synchronization. In the COSY methodology systems are considered

as consisting of notionally indivisible actions or events, the

occurrences of which may be related to other events in the system.

Systems are also assumed to be decomposed into a collection of

sequential subsystems each involving a subset of the events of the whole

system. Thus the events in the system are left uninterpreted and only

the synchronic properties of systems are considered, those which solely

concern the ordering of occurrences of these events. That is to say,

only properties of a behavioural nature are of interest in the COSY

methodology.

System behaviour is abstractly specified in COSY by programs,

consisting of operations which correspond to events in the system,

together with ordering relationships between their activations,

specified in such a way that each relationship determines possible

sequences of occurrences of subsets of these operations. These

sequences are represented by regular expressions [CH74] which are

incorporated in COSY [LC75, LSB79b] and are called path expressions and

process expressions or paths and processes respectively, for short. A

- 2 -

single path or process is used for specifying the sequential constraint

relating all the operations mentioned in the path or process. A system

will he associated with a progra~, a grammatical type object, consisting

of a collection of paths and processes, the "language" of which models a

set of permitted or required behaviours. This collection of paths and

processes determines a set of vectors of strings of operations. Vectors

of strings of operations may be considered as a labelled partial order

of operations, modelling a non-sequential behaviour of operation

executions, and for this reason they have been called vector firing

sequences [SL79]. Vector firing sequences may be shown to have the same

modelling power as more conventional models for concurrent behaviour,

such as occurrence graphs but have the advantage that may be manipulated

in the same manner as strings. The vector firing sequence semantics

does not reduce concurrency to arbitrary interleaving [18lj and provides

a mathematical environment for the formal definition of system

properties and for the analysis of programs, determining whether the

system they specify possesses such properties.

The aspects of the notation we have discussed so far constitute the

basic COSY notation or basic COSY for short. Programs in this notation

involve only paths and processes and are called basic programs.

The COSY notation involves other aspects which were considered

essential in a software design environment. Thus, two other notations

have been developed, the macro COSY notation and the system COSY

notation. The macro COSY notation, macro COSY for short, contains

features for the concise representation and precise generation of

similar regularities of structure in basic COSY programs. The macro

notation was introduced as a matter of convenience for the programmer

and as a facility for generalization by allowing the representation and

generation of strings of finite but indefinite length. The system COSY

notation is equipped with a class-like construct called system,

permitting the expression of hierarchy and modularity. Systems allow

the specification of levels of abstraction in a design, information

hiding and the application of other techniques of structured

programming.

- 3 -

In this thesis we are mainly concerned with the macro COSY notation.

Since its introduction [L76j macro COSY has been evolved into a flexible

and powerful tool for system specification. Three are its main

features: the collectivi~~, the replicator and the distributor. The

collectivisor declares arrays of indexed operations to be used in paths

or processes. These arrays may be rectangular but also of other shapes.

The replicator is the most general feature for representing and

generating a variety of similar regularities of structure in basic

programs. These structures include paths and/or processes and regular

expressions of paths and processes and their parts. Replicators may

generate regularities which either follow each other or are nested

within each other. Finally, the distributor may represent and generate

some regularities in basic COSY programs. Distributors cannot generate

all the regularities which replicators can, but their advantage is that

they represent regularities more concisely than replicators.

Replicators and distributors are the macro elements of macro COSY and

are associated with expansion rules by which they generate basic COSY

strings.

Collectivisors, replicators and distributors are used in macro

programs. Macro programs do not increase the expressive power of the

basic COSY notation as they should expand to basic programs. Macro

programs were not given any semantics directly.

those of the basic programs they generate.

Their semantics are

Although, the need for a macro COSY notation was realized and

introduced early in the development of COSY, its development was rightly

considered to be an "open-ended" effort. "Open-ended" in the sense that

the aim should not be to initially produce a fixed notation, but to

permit changes until it is precisely clear what constitutes a "good"

macro notation. As a consequence of this approach various macro

notations and subnotations have been developed, some being extensions of

others or, more commonly, differing in many respects. Some of the

differences are for example, that replicators in some notations may

generate paths and/or processes whilst in other notations just paths or

just processes, that replicators in some notations could be nested

inside other replicators and in others not, etc.

- 4 -

Besides this diversity of notations there is a diversity of formal

grammars producing macro COSY programs. The difterences in the

notations and subnotations are certainly reflected in the grammars. In

addition, various approaches have been adopted in defining the syntax of

macro programs and in particular the syntax of macro elements. These

approaches however are not equivalent, in the sense that their

corresponding syntax rules do not produce the same classes of macro

programs.

The main problem with most grammars is that they may produce "macro

programs" which when expanded do not generate basic programs. This was

realized and some meta-restriction rules were imposed on macro programs

which were to eliminate these "unwanted programs". However, even these

"wide" grammars do not permit some programs we would like to write.

Thus, grammars are too "wide" in some aspects and at the same time

restrictive in others. The need for a context-free grammar producing

exclusively macro programs expanding to basic programs was realized and

some close-fitting syntax rules were suggested [L79] but overconstrained

the class of valid macro programs.

There are also a number of minor aspects of the macro notation and

grammar which need to be improved such as that some symbols are awkward

to use, that the syntax of some features of macro programs has never

been obtained, and others.

Another aspect of the macro notation are the expansion rules for

replicators, distributors and of complete macro programs. Whilst the

expansion of replicators was formally defined that of distributors was

not formally defined directly.

The objectives of this thesis are to re-examine and revise all

aspects of the macro notation, its design as a specification language,

the formal syntax of macro programs, the expansion rules of macro

elements and of complete macro programs, alleviating or eliminating

altogether the drawbacks of other notations and grammars; to

characterize the strings generated by the expansion of replicators,

distributors and of complete macro programs produced by the formal

grammar; to investigate some aspects of programming methodology such as

- 5 -

when replicators and distributors may be replaced by other replicators

and distributors expanding to the same string as the former; and finally

to give direct vector firing sequence semantics to macro programs rather

than indirectly via the basic programs generated by their expansion.

Our guidelines for revising the macro notation and grammar were

mainly four:

1. The syntactic well-formedness of a macro program should imply that

its expansion is a syntactically well-formed basic program.

2. The notation should allow the generation of a large class of basic

programs and their concise representation.

3. The macro grammar should include context-free rules and should be

uniform with the grammar of basic COSY.

4. The reading of macro programs should be possible without formal

expansion.

In the design of the notation, changes of symbols and of the forms of

the collectivisors, replicators and distributors are suggested improving

the readability of these constructs and of the macro programs as a

whole. Some restrictions imposed on what replicators may generate

ensure the readability of unexpanded macro programs. But the new

replicators may generate strings which could not be generated by a

single replicator in previous notations. Distributors are extended to

generate more strings more economically than replicators. Two new types

of replicators are added generating strings which could not be generated

by replicators in previous notations. It is precisely specified where

distributors and each type of replicators should appear in macro

programs.

The new context-free syntax rules for macro programs combine some of

the syntax rules of previous grammars, modified to be consistent with

changes in the design of the notation. For the main features of the

notation though, that is collectivisors, replicators and distributors

- 6 -

new syntax rules are introduced. Particular attention is given to the

problem of obtaining a grammar uniform with the grammar for basic COSY.

This is achieved by expressing the new grammar as an extension of the

basic COSY grammar and by expressing the syntax of the features of macro

programs in a style similar to that of basic COSY.

The expansion rules for replicators are modified to deal with their

new form and the expansion of distributors is directly defined. The

expansion of replicators and distributors is also characterized. The

expansion of complete macro programs is formally defined and it is

proven that programs permitted by the new grammar generate syntactically
too

well-formed basic programs. Thus, the suggested grammar is notVw1de and

no meta-restriction rules are needed to eliminate any "unwanted"

programs, that is programs not generating basic programs. The

conditions under which replicators and distributors may be replaced by

other replicators or distributors are also examined.

Finally, we give direct vector firing sequence semantics to macro

programs and we show that the vector firing sequences of macro programs

are the same as the vector f~ring sequences of the basic programs

generated by their expansion.

The rest of the thesis is structured as follows: In chapter 2 the

basic COSY notation is briefly presented, chapter 3 deals with the

syntax and expansion of macro COSY programs, chapter 4 deals mainly with

the semantics of macro COSY programs, and chapter 5 contains the

conclusions of the thesis. The contents of the main chapters 2, 3 and 4

in more detail are as follows:

Chapter 2 deals with the syntax and semantics of basic COSY programs

and briefly with the nature of analysis and verification in

COSY. In section 2.1 the syntax of basic programs is given.

Section 2.2 gives the semantics of a single path by associating with it

a set of str ings of operations involved in the path. The elements of

this infinite set may be obtained from a set, the set of cycles

of a path. Section 2.3 gives the semantics of basic programs consisting

exclusively of paths by means of sets of vectors of str ings of

operations involved in the programs, representing the behaviour of these

- 7 -

programs. Each of the components of these vectors relates to a path in

the basic program and must be a possible total order of the operations

in that path. Furthermore, all components must agree on the number and
activation of

order of theYiPerations they share. Besides the usual definition of

vector firing sequences, an alternative definition is given which we

shall use in chapter 4 where direct semantics are given to macro

programs. In section 2.4 the semantics of a general basic program

involving paths and processes are given by two methods. The first is

the usual method found in the literature for COSY [LS81] and consists of

transforming path-process programs into programs involving paths only,

the vector firing sequences of which define the behaviour of the

original program. The second method obtains vector firing sequences

directly from the general basic programs without any intermediate

transformation. It is shown that both methods are equivalent in the

sense that they produce the same set of vectors. Finally, in section

2.5 a brief account is given on the nature of analysis and verification

in COSY.

Chapter 3 is concerned with the syntax and expansion of macro

programs. In section 3.1 we review most of macro COSY

notations and subnotations in detail, focussing our

attention on their formal grammars and discussing the implication of

design choices and their drawbacks. In the subsections of 3.1 we

examine major syntactic entities of macro programs. In section 3.2 we

set the criteria for a "good" macro notation, we revise the macro

notation and define the syntax of macro programs. A number of changes,

modifications and extensions are introduced. The most important of

these are applied to replicators and distributors. In section 3.3 we

define the expansion of replicators and distributors and of complete

macro programs. We prove four theorems which characterize the strings

obtained by the expansion of replicators and distributors. We also show

under which conditions replicators may replace distributors and

vice-versa, and replicators may be replaced by other replicators.

Finally, we formally define the expansion of complete macro programs and

prove that they yield well-formed basic programs. In section 3.4 we

evaluate the new notation and grammar and discuss certain extensions we

could incorporate.

- 8 -

Chapter 4 is concerned with obtaining the vector firing sequences of

basic programs generated from macro programs directly from

the macro programs themselves. We reduce this task to the

task of finding the cycle sets of the paths of such basic programs

directly from the macro programs. Two approaches are followed.

According to the first which is presented in section 4.1, the cycle sets

are constructed by finding the cycle sets of expanded parts of macro

programs which are then combined together. We applied the first

approach to macro programs produced by the grammar of section 3.2 and to

macro programs produced by a restrictive grammar introduced in section

4.1.2. According to the second approach which is presented in section

4.2, the cycle sets of basic paths may be found by constructing macro

cycle objects from macro programs representing cycle sets concisely,

which may be expanded to generate cycle sets, in the same way macro

programs are expanded to generate basic programs. The second approach

is applied to macro programs which are produced by the grammar of

section 4.2.1, obtained by constraining the grammar in section 4.1.2.

- 9 -

2 THE BASIC COSY NOTATION

In the COSY methodology systems are considered as consisting of

notionally indivisible actions or events, the occurrences of which may

be related to occurrences of other events in the system. Thus the

events in the system are left uninterpreted and only the synchronic

properties of systems are considered, those which solely concern the

ordering of occurrences of these events. That is to say only properties

of a behavioural nature are of interest in the COSY methodology.

The COSY notation is a formalism which may be used to describe

concurrent and distributed systems in their synchronic properties. The

notation used was basically the path notation due to Campbell and

Habermann [CH74] which was designed so that one could state the proper

coordination of concurrent processes as the permissible order of

execution of operations on shared system objects as part of the object

definition. The idea behind the Campbell-Habermann path concept was put

into a more abstract form, the path and process expressions of Lauer and

Campbell [LC75], or paths and processes for short. Later this notation

was named the basic COSY notation [LSB79b). System behaviour may be

specified by programs consisting of collections of paths and processes,

that is basic programs. Paths and processes are essentially regular

grammars represented by regular expressions. Just as a single regular

expression determines a set of strings, each of which may be considered

as a labelled total order modelling a sequence of execution of

operations which label it, so may a basic program, a collection of

regular expressions, determine a set of vectors of strings, where each

vector may be considered as a labelled partial order, modelling a

non-sequential behaviour of operation executions.

In the next section 2.1 the syntax of basic programs is given. In

section 2.2 the semantics of a single path P are given, by means of the
activation of

possible sequences of theVoperations involved in its regular expression,

the set of its firing sequences denoted by FS(P). In section 2.3 the

semantics of a basic program consisting only of paths is defined by

means of a mapping which associates with each program R the set of its

vector firing sequences denoted by VFS(R) consisting of vectors of

strings of operations in R. In section 2.4 the semantics of a general

- 10 -

basic program consisting of paths and processes are given in two ways:

According to the first, a transformation Path is defined which

transforms a general basic program R into a basic program denoted by

Path(R) consisting of just paths. Then the semantics of R are defined

in terms of the vector firing sequences of Path(R) denoted by

VFS(Path(R». According to the second way the same semantics are

obtained without R having to undergo any transformation. In section 2.5

the nature of analysis and verification of COSY programs is outlined.

2.1 THE SYNTAX OF BASIC COSY

A basic COSY program is a string derived from the production rules

given below. The following meta-language conventions have been used in

the syntax rules: The symbols "=" "{", "}", "/", "*" "+", "@" have , ,
been used as meta-symbols. The symbol It=" denotes production of its

left hand side to strings on its right hand side. The braces "{ }" are

used to group items together, "/" indicates alternate produc tions,

"{item}~" indicates production of "item" zero or more times, "{item}+"
-

production of "item" one or more times. The notation

{iteml @ item2}+

is used as a shorthand for

iteml {item2 iteml}~

In the syntax rules for basic COSY programs "item2" may be one of the

terminal symbols ";" and ",". Non-underlined lower case words, except

single lower case letters and digits, are non-terminal symbols, and all

other symbols like ";", ",", "(", ")", "*", unde1ined lower case words

and single lower case letters and digits are terminal symbols. We shall

additionally use the following convention: in right parts of production

rules the catenation of terminals and non-terminals has precedence over

alternation. Thus A B/C means either A B or C. When necessary we use

"{ }" to override the normal precedence. Thus A {B/C} means either A B

or A C.

- 11 -

The syntax of a basic COSY program is given by the following rules:

BN1. basicprogram = program programbody endprogram

BN2. programbody = {path/process}+

BN3. path = path (sequence)* end

BN4. process = process (sequence)* end

BNS. sequence = {orelement !j}+

BN6. orelement = {starelement !,}+

BN7. starelement = element/element*

BN8. element = operation/(sequence)

BN9. operation

BN10. lc-letter

lc-letter{lc-letter/digit/_}~

a/b/ ••• /z

BNll. digit = 0/1/ ••• /9

In the regular expressions produced by the non-terminal "sequence" the

symbols 11.11 , and " II , denote sequentialization and arbitrary choice

respectively; the symbol "*" is the Kleene star.

All the regular expressions in paths and processes are considered to

be cyclic in the sense that constituent operations may be executed

repeatedly subject to the constraints of sequentialization and arbitrary

choice. For this reason the outermost star and parentheses are usually

omitted, their presence being implicit.

2.2 THE SEMANTICS OF A BASIC PATH

The semantics of a basic path P are given in terms of its set of

firing sequences denoted by FS(P). The infinite set FS(P) may be

constructed from a set consisting of the cycles of P. Let us

define the function "Cyc" by which the cycles of a basic path P may be

constructed. The function "Cyc" will apply to syntactic entities of

basic paths, that is to say substrings produced by non-terminals.

Syntactic entities of paths will be denoted by syntactic variables. A

path P will be represented by

path (SEQ)* end

- 12 -

where SEQ denotes a sequence, which may be represented by

ORELl ; ••• ; ORELn

where ORELi for i=1, ••• ,n denote orelements.

represented by

An orelement may be

STARELl, •.• ,STARELn

where STARELi for i=l, ••• ,n denote starelements. A star element may be

represented by

ELE:·1* or ELEM

where ELEH denotes an element which may be represented by

(SEQ)

when it is produced by the second option of the syntax rule for element

BN8, or by

OP

when produced by the first option. The function "Cyc" is defined as

follows:

Cyc(e)=cases e:

1- path (SEQ)* end -~ Cyc(SEQ)

2. ORELl ; ••• ; ORELn ~ Cyc(OREL1) U ••• O Cyc(ORELn)

3. STAREL1, ••• ,STARELn -7 Cyc(STARELl) V ••• V Cyc(STARELn)

4. ELEM* ~ Cyc(ELEM)*

5. (SEQ) ~ Cyc(SEQ)

6. OP -~ top}

- 12a -

The function "Cyc" is defined in terms of a "case-function". A

function f defined by cases

f(e)=cases e:

l.el

2. c2

n. en

-~fel

-~fc2

-~fcn

in which el ,c2, ••• ,en are the valid forms which expression e may take,

has the follow ing seman tic s:

if e is of form el then f(e)=f(cl) converts into fel else

if e is of form c2 then f(e)=f(e2) converts into fc2 else

if e is of form en then f(e)=f(cn) converts into fen

In the definition of "Cyc" the symbol "U" denotes the set-union

operator and the symbol "" the concatenation of sets of strings

- 13 -

OrerA.tnr. The operation

Xuy

where X, Y are sets of strings is defined as:

XOY={x.ylx € X,y € Y}

where 11 " . denotes string concatenation and" € " element of a set.

In the definition of "Cyc" a starred set X* indicates the set

obtained by concatenation of zero or more times of the set X.

X* is defined by

x* X 0 U Xl U X 2 U •••

where X is a set of strings and Xi is defined recursively by

Xi Xi-loX

XO {>..}

where "A" denotes the empty string.

Formally

From the set Cyc(P) we may construct the set of firing sequences of P

denoted by FS(P) as follows:

FS(P)=Pref(Cyc(P)*)

where Pref(X) is defined as

Pref(X)={xlx.y € X, for some y}

where X is a set of strings.

The set FS(P) is the set of sequences of operation executions

permitted by the path P.

- 14 -

2.3 THE SEMANTICS OF PATH-PROGRAMS

As already mentioned, to model the non-sequential behaviour of a

basic program R consisting of paths P1 ••••• Pn partial orders of

occurrences of operations will be constructed which are specified by

vectors of strings. An n-vector x

~=(xl •••• ,xn)

is a possible behaviour of R if each xi for 1~i~n is a possible firing

sequence of Pi for i=l ••••• n and furthermore, if the xi's agree on the
activation of

number and the order ofVoperations they share.

To formally define the set of possible behaviours or histories of R.

vectors of strings are introduced together with a composition operation

on them. Let S1 ••••• Sn be a family of sets of strings and let

n
x Si*=Sl* x ••• x Sn*={(sl ••••• sn)lfor all i, si € Si*}

i=l

where "x" denotes the cross product operator. If the vectors x and 1..

belong to the above set then their composition ~01.. is defined as

!.ox.=(xl, •.•• xn)o(yl •••• ,yn)=(xl. y1, ••• ,xn. yn)

where "0" denotes the vector concatenation operation and the " " . denotes

string concatenation operator.

To each program R consisting exclusively of paths

R=Pl. •• Pn

we associate its set of operations Ops(R) defined by

Ops(R)=Ops(Pl)U ••• U Ops(Pn)

and its set of vector operations Vops(R) defined as follows:

For each operation "a" in R we construct an n-vector a. The

- 15 -

i'th component of this vector for l<i<n denoted by [~)i is given

by

[~)i=1 a if a € Ops(Pi)

I A otherwise

where "A" denotes the null string.

The set of vector operations of R, Vops(R) is then defined as

Vops(R)={~la € Ops(R)}

Let us define Vops(R)* to be the submonoid of

n
x Ops(Pi)*

i=1

generated by Vops(R) and ~=(A, ••• ,A) under the vector composition

operation. The set of all possible behaviours or histories of R, the

vector firing sequences of R, denoted by VFS(R) is defined by:

VFS(R)=(~ FS(Pi» (\ Vops(R)*
i=1

The set

n
x FS(Pi)

i=1

in the definition of VFS(R) guarantees that each string component of a

history ~ € VFS(R) is a firing sequence of the corresponding path and

the set Vops(R)* guarantees that all these firing sequences agree on the

number and order of activations of the operations they share.

By the construction of VFS(R) every element x of it represents

everything that has happened in some possible period of activity of R.

We may write x as a composition of vector operations ~, ••• ,am of

Vops(R) as in (Vi)

- 16 -

(VI) x=a1 0 ••• Oam

If for some operations "ak" and "al" for 1(k l(d k.11 _ ' _m an ~, [ak] He
implies [~]i=e for i=I, ••• ,n then the composition akoal is the same as

aloak. Such operations are said to be independent and we write

ind(ak,al). If furthermore l=k+1 that is ak and ~ are neighbouring

vectors in (VI), as in (V2)

(V2) x=aIo ••• akoalo ••• am

then x may also be written as (V3)

(V3) x=alo ••• oaloako ••• oam

The commutativity of vector operations in a vector firing sequence is

interpreted to mean that the operations corresponding to these vector

operations may execute concurrently. We say that

two operations "a" and "b" are concurrent at a history x and we

write

a co b at x

if ind(a,b) and xOa , xOb 6 VFS(R).

This definition implies that only independent operations may execute

concurrently. However, independent operations may not always be executable

concurrently or may never execute concurrently at all. Let us consider

the basic program (RI)

(RI)

program

path a b end

path b d end

endprogram

Although ind(a,d) and operation "a" may be executed initially, the

operation "d" cannot be executed. However, whenever the operation "d"

- 17 -

can be executed so can the operation "a" and since they are independent

they may be executed concurrently. For example, after the history aOb

the operations "a" and "d" may be concurrently executed.

It may happen that two independent operations cannot be executed

concurrently at all. This occurs when there is not a history after

which both operations may execute.

program (R2)

(R2)

program

path a b d end

path b c d end

endprogram

Consider for example the basic

Although operations a and c are independent that is ind(a,c) there is

not an x 6 VFS(R2) such that

xOa , xOc 6 VFS(R2)

as the second path specifies that operation c occurs after b and before

d, and operations a, band dare sequentialized in the first path.

For the construction of the vector firing sequences of a basic

program R, the following sets need to be constructed directly from R:

1. the cycle sets of all paths in R, and

2. the set of the vector operations in R, Vops(R).

There is a modification of this construction by which the latter set is

obtained from the sets of cycles of the paths of R and not from the

program R. This alternative construction will be useful in the fourth

chapter where we construct the vector firing sequences of basic programs

generated from macro programs directly from the macro programs

themselves. The sets of cycles of a basic program generated from a

macro program will be constructed directly from the macro program

itself. The set of vector operations however, cannot easily be obtained

- 18 -

directly from the maCrl) program but may b'~ obtained, as we show below

from the sets of cycles of paths.

Let s be a string of concatenated symbols sl, ••• ,sn:

s=sl. ••• • sn

and denote by (s)i the i'th constituent symbol of s for l~i~n and by lsi

the length of s. We may now obtain the set Ops(Cyc(P», the set of

operations appearing in the cycle set Cyc(P) of the path P as follows:

Ops(Cyc(P»={ala=(s)i for s € Cyc(P)and l~i~ISI}

The two sets Ops(P) and Ops(Cyc(P» are the same since all the

operations involved in P must appear in at least one string of the cycle

set of P, as a single path cannot exclude any of its operations from

executing. Having found the operations involved in each path of R we

proceed by constructing Ops(R) and Vops(R) as before.

2.4 THE SEMANTICS OF GENERAL BASIC PROGRAMS

In general, a basic program R is a string of the form

R=P1 ••• Pn Q1 ••• Qm

where Pj for j=l, ••• ,n and Qi for i=l, ••• ,m denote paths and processes

respectively. Although paths and processes may be intermixed in a basic

program, in the above expressions for convenience, we assumed that all

paths are collected before processes.

In the COSy literature e.g [LS81] the semantics of a basic program

involving processes is given by means of the vector firing sequences of

an equivalent basic program R' involving just paths. The conversion of

R into R' is denoted by Path(R) and is obtained by the following rule:

- 19 -

(Path Conversion Rule)

1. For every a € Ops(R) construct a set

la={ila € Ops(Qi) for l~i~m}

and, if the cardinality of the set la denoted by Ilal is

greater than zero, say 1=IIal>O then

replace the operation "a" in each path it occurs,!by

element

(a&il, ••• ,a&il)

where ik € Ia for k=l, ••• ,l

the

replace the operation "a" in processes Qik by a&ik for

all ik € la.

2. Replace all occurences of "process" by "path".

Then the semantics of R are given by means of VFS(Path(R» and are

obtained as defined in the previous section.

Besides some differences of formulation between the way the path

conversion ruleJ~xpressed in [LS81] and above, there is one another

important difference. The rule in [LS81] specifies that an operation
in

"a" occuring in processes is replaced in each path it occurs V by the

orelement OREL

OREL a&il, ••• , a&il

When however, the operation "a" is starred it should not be replaced by

OREL but by the element

(a&il, ••• ,a&i1)

In the above rule we generalized this replacement to avoid considering

- 20 -

cases and we treat all the operations in the same way simplifying the

conversion rule.

The relation between the basic path program Path(R) and its vector

firing sequences VFS(Path(R)) is already defined in 2.3. Here we have

to relate the behaviour of Path(R) with that of R since R is the program

the semantics of which we seek. Let us first introduce some

terminology. We shall call the operations of the form

a&ik for ik € Ia

the descendent operations of a. The behaviours of Path(R) and Rare

related as follows:

If an operation "op" may be activated in Path(R) then

1. If op is not a descendent operation of any operation in R

then it may also be activated in R.

2. If op is a descendent of some operation "a" in R of the form

" a&j" for j € la, then the operation "a" may be activated in

Rand out of all processes requiring its activation to

progress, process Qj will be granted it.

The set of histories VFS(Path(R)) may be obtained without R having to

undergo any conversion, that is it may be obtained directly from R. In

the method which follows the definition of firing sequences of paths and

vector operations of programs defined in the previous section are

modified and firing sequences for processes are defined. A program R is

considered to be of the form

R=Sl ••• Sn+m

where Si for i=l, •••• n are paths and Sj for j=n+1, ••• ,m processes. Let

us denote the set of histories obtained by this method by MVFS(R)

standing for modified vector firing sequences. Let us define the set of

the modified firing sequences of paths and processes in R by

- 21 -

MFS(Sj)=Pref(~Cyc(Sj)*) for j=l, .•• ,n+m

where MCyc(Sj) denotes the modified cycles of Sj for j=l, .•• ,n+m. We

shall distinguish two cases for the construction of MCyc(Sj) depending

on whether Sj for j=l, ••• ,n+m is a path or process.

MCyc(Sj) is defined by

MCyc(Sj)=lpath-Cyc(Pj) if j=l, .•• ,n
I
Iproc-Cyc(Qj-n,j-n) if j=n+l, ••• ,n+m

The function

where path-Cyc(Pj) for j=l, ••• ,n denote the cycle sets of paths Pj for

j=l, ••• ,n and proc-Cyc(Qj-n,j-n) for j=n+l, ••• ,n+m the cycle sets of

processes Qj-n for j=n+l, ••• ,m.

The function "path-Cyc" will be applied to the same syntactic

entities as the function "Cyc" both yielding the same results except

when applied to an operation OP belonging to processes. In this case

"path-Cyc" will yield the set of descendent operations of operation OP.

The function path-Cyc(Pj) is defined as follows:

path-Cyc(e)=cases e:

1- path (SEQ)* end -~ path-Cye(SEQ) --
2. ORELl; ••• ; ORELk -~ path-Cyc(ORELl) 0 ••• 0 path-Cyc(ORELk)

3. STARELl, ••• ,STARELk -7 path-Cyc(STARELl) U ••• U path-Cyc(STARELk)

4. ELEM* -7 path-Cyc(ELEM)*

5. OP -7 I{OP} if Ilopl=O
I
I {OP&ili € lop} if IIopl>O

6. (SEQ) -7 path-Cyc(SEQ)

The function "proc-Cyc" will have two arguments. The first are

syntactic entities in processes, the same as in paths. The second is

the integer indexing processes and remains unaltered for a given

process. The effect of "proc-Cyc" on the first argument is the same as

that of "Cyc" with the exception of the case when the syntactic entity

is an operation OPe In this case "proc-Cyc" yields one of the

descendent operations of OP namely OP&j where j is second argument of

"proc-Cyc". The function proc-Cyc(Qj,j) is defined as follows:

- 22 -

proc-Cyc(e,j)=cases e:

1- process (SEQ)* end --
2. OREL1; ••• ;ORELk

3. STARELl, ••• ,STARELk

4. ELEM*

5. OP

6. (SEQ)

-~ proc-Cyc(SEQ,j)

-~ proc-Cyc(OREL1,j) 0 ••• 0 proc-Cyc(ORELk,j)

~ proc-Cyc(STARELl,j) U ••• U proc-Cyc(STARELk,j)

~ proc-Cyc(ELE:1, j)*

-~ {OP&j}

-~ proc-Cyc(SEQ,j)

Let us define the sets of operations occurring exclusively in paths

denoted by Pops(R) and operations occurring in processes denoted by

Qops(R) of a program R by

Pops(R)={ala € Ops(R),IIal=O}

Qops(R)={a&ila € Ops(R),i € Ia}

and the set of all operations in R denoted by Mops(R) by

Mops(R)=Pops(R)U Qops(R)

Let us now define two sets of vector operations of operations in Pops(R)

and Qops(R) denoted by VPops(R) and VQops(R) respectively. The set

Vops(R) is defined by

VPops(R)={~la € Pops(R)}

where a is an (n+m)-vector the j'th component of which, for l~j~n+m,

denoted by [~]j, is given by:

[a]j=la if l_<j~n and a € Ops(Pj)
- I

I A otherwise

The set VQops(R) is defined by:

VQops(R)={a&ila&i € Qops(R),i € Ia}

where a&i is an (n+m)-vector the j'th component of which, for l~j~n+m,

denoted by [a&i]j, is given by:

- 23 -

[a&i]j=la&i if l<j<n and a € Ops(Pj) or j=i+n
- I --

If. otherwise

Let us finally denote the set of the vector operations in R by lWops(R)

and define it by

HVops(R)=VPops(R)U VQops(R)

We may now define the set of histories of R denoted by MVFS(R) by

n+m n
MVFS(R)=(x ~1FS(Sj» MVops(R)*

j=1

Having constructed MVFS(R) we need to relate its elements with execution

of operations in R. Let us introduce some terminology first. We shall

call the vector operations in the form a&j the descendent vector

operations of an operation "a".

The relation between ~NFS(R) and R is as follows:

If a history x e XVFS(R) may be continued by the vector

operation "op" then

1. if ~ is not a descendent vector operation of R then

operation "op" in R may be activated.

2. If "op" is a descendent vector operation of operation "a"

in R of the form a&j then operation "a" may be activated in

R and out of all processes requiring the activation of "a"

to progress, process Qj will be granted it.

We next prove that the set VFS(Path(R» is the same as ~NFS(R). The

symbol "III" will indicate "end of proof".

THEOREM 2.1:

For a basic program R of the form

R=Pl ••• Pn Ql ••• Qm

- 24 -

where Pj for j=l, .•. ,n are paths and Qi for i=l ~ ,· •• ,u are processes,

MVFS(R)=VFS(Path(R»

Proof:

We need to prove that

1. n+m n+m
x (MFS(Sj)= x (FS(P'j»

j=l j=l

where P' j represents the J"' th path in Path(R) for "1 +m J= , ••• , n , and

that

2. MVops(R)*=Vops(Path(R)*

Proof of 1. It suffices to prove that

MFS(Sj)=FS(P'j) for j=l, ••• ,n+m

We will distinguish two cases: (a) when Sj is a path and (b) when it is

a process.

(a) Sj is a path, that is j=l, ••• , n.

Since

MFS(Sj)=Pref(path-Cyc(Sj)*) and

FS(P'j)=Pref(Cyc(P'j)*)

we have to prove that

path-Cyc(Sj)=Cyc(P'j)

The function "path-Cyc" is applied to the same syntactic entities as

"Cyc". Furthermore, their definitions are exactly the same except in

the case in which the syntactic entity is an operation. When an

operation "op" does not appear in processes then path-Cyc(op)={op}. The

operation "op" belongs to Ops(P'j) since it has not been replaced in Pj

- 25 -

and Cyc(op)={op}.

When an operation "op" does belong to processes

path-Cyc(op)={op&ili 6 lop}

The operation "op" in path Pj is replaced by (op&il, ••• ,op&il) where

1=1 lopl and ik € lop for l<k<l. According to the definition of "Cyc"

Cyc«op&il, ••• ,op&il»)=Cyc(op&il, ••• ,op&il)=

Cyc(op&il)U ••• U Cyc(op&il)=

{op&il} U ••• U{op&il}={op&ili 6 lop}

Therefore, MFS(Sj)=FS(P'j) for j=l, ••• ,n.

(b) Sj is a process, i.e. j=n+l, ••• ,n-+m.

Since

MFS(Sj)=Pref(proc-Cyc(Sj)*)

FS(P'j)=Pref(Cyc(P'j)*)

we have to prove that

proc-Cyc(Sj)=Cyc(P'j) for j=n+l, ••• ,m

A process Qj in R for j=l, ••• ,m of the form

Qj=process (SEQ)* end

is converted into the path p'j+n of the form

P'j+n=path (SEQ')* end

in which SEQ' is obtained from SEQ by replacing each operation in SEQ by

its name suffixed by "&j". Therefore,

Cyc(P'j+n)=Cyc(path (SEQ')* end)

- 26 -

is the same as

Cyc(path (SEQ)* end)

after replacing each operation name in all the strings in the above set

by its operation name suffixed by "&j".

produced by proc-Cyc(Qj,j). Therefore,

MFS(Sj)=FS(P'j) for j=n+l, •• ,n+m

Proof of 2. It suffices to prove that

MVops(R)=Vops(Path(R»

First, we observe that

Ops(Path(R»=Mops(R)=Pops(R)U Qops(R)

This however, is the set

We shall show that for any a € Ops(Path(R» the vector operation

~ € Vops(R) and ~ 6 MVops(R) are the same. If R consists of n paths and

m processes in either case a will be an (n+m)-vector.

We shall distinguish two cases: (a) operation a occurs only in paths

and (b) operation a occurs in processes.

(a) When operation "a" occurs only in paths the j'th component of

a € Vops(Path(R» denoted by [~jj for j=l, ••• ,n+m is given by

[ajj=la if a 6 Ops(P'j)
- 1

I>' otherwise

which is the same as a 6 MVops(R) defined by

[ajj=la if l~j~n and a 6 Ops(Sj)
- 1

I>' otherwise

since for l~j~n Sj is Pj.

- 27 -

(b)when an operatl"on "a" belongs t . 0 processes, it is eliminated in

Path(R) and descendent operations of the form "a&i" are introduced where

i € la. The j'th component of the vector operations a&i € Vops(Path(R»

denoted by [a&i]j for j=l, •.. ,n+m is defined by:

[a&i]j=la&i if a&i € Ops(P'j)
- I

II.. otherwise

Since "a&i" for i € Ia appears in paths P' j of Path(R) corresponding to
paths Pj of R and in the p'i+n path of Path(R) corresponding to the

process Qi of R, the vector operation a&i above is the same as

a&i € MVops(R) defined as --

[a&i]j=la&i if l<j<n and a € Ops(Sj) or j=i+n
- I --

I A otherwise

Therefore, VFS(Path(R»=MVFS(R).111

We may just add, for reasons of completeness, that basic programs

were at first [LC75] given formal semantics in terms of Petri-nets

[P73]. A construction was defined which associated any path-process

program with a marked, labelled transition net which was intended to

express its "meaning". The net semantics of [LC75] have since been

modified [LSB79a] but the central idea remained the same. Each

individual path or process, being essentially a regular expression, is

associated with a labelled state machine. Putting paths and processes

together into a program corresponds to a composition of their associated

state machines. The distinction between paths and processes is

expressed formally in the nature of the composition in each case.

The current net semantics are based on a composition rule which takes

two marked labelled nets Nl and N2 and produces a marked labelled net

Nl(±)N2 by the identification of transitions with the same label.

2.5 THE NATURE OF ANALYSIS IN COSY

As we have mentioned, a basic COSY program descr ibes a system by

specifying partial orders on the execution of its operations and

- 28 -

therefore, the only properties of interest are behavioural in nature.

The formal model of behaviour, the vector firing sequences of

path-programs permit us to speak formally of dynamic properties of a

system specified by a path-program R. Properties of R may be

expressed in terms of its corresponding vector firing sequences VFS(R).

Such properties fall into two classes, the general and the specific

properties.

The general properties are those which apply to any program,

properties such as absence of deadlock or starvation, which may be

defined in terms of uninterpreted operations.

path-program R is deadlock-free if and only if

We say

for every x € VFS(R) there exists an a € Ops(R):~o~ 6 VFS(R)

that

that is if and only if every history x may be continued. We say that

a program R is adequate if and only if

for every ~ 6 VFS(R) and for every operation a 6 Ops(R)

there exists a X € Vops(R)*: ~o~o~ 6 VFS(R)

a

that is, if and only if every history of R may be continued activating

eventually every operation in R. Adequacy is a property akin to absence

of partial system deadlock.

The specific properties involve the interpretation of a COSY program

as a description of an actual system. The operations of a COSY program

are interpreted as actions of a system and the behaviour of the program

as the behaviour of the system.

Considerable work has been done concerning the general properties of

programs and in particular relating to adequacy [SL78, S79, LS80] and a

number of general theorems have been obtained [S79]. For simple

comma-free path programs there is a complete characterization of

adequacy. Other theorems have been obtained which permit certain

program transformations which preserve adequacy.

- 29 -

As far as specific properties of programs are concerned, various

programs have been shown to satisfy some design requirements. The most

involved of these is the parallel resource releasing mechanism [SL80j.

In this short chapter we gave the syntax and the semantics of basic

COSY programs, and we briefly outlined the nature of analysis and

verification in COSY. The rest of the thesis deals with the macro

notation. The next chapter deals with the syntax and expansion of macro

programs and chapter four with their semantics.

- 30 -

3 THE MACRO COSY NOTATION

Often in a basic COSY program we find regularities of structure

forming various structures like collections of paths and/or processes,

sequences, orelements, starelements and elements. For example, let us

consider the basic paths specifying the three free frame buffer [LTS79]:

Pl path depositl

path deposit2

path deposit3

removel end

remove2 end

remove3 end

in which the regularity of structure RSl

RSl path depositi;removei end

is repeated three times with "i" taking values 1, 2, 3. The regularity

RSl may be used to obtain a more economical representation of Pl or to

generalize it by parameterising the number of repetitions of RS1. For

simple regularities, such as that of Pl, we may denote a repetition of a

number of them implicitly by ellipses. For example Pl may be

generalized to specify the n free frame buffer [LTS79] by

P2 path depositl ; removel end

path depositn ; removen end

where the ellipses denote implicitly (n-2) repetitions of the regularity

of structure RS1.

When regularities appear within other regularities each having its

own ellipses, the unambiguous characterization of the general pattern

intended becomes an impossible task. It is apparent that a mechanism

for the concise representation of regularities in basic COSY programs is

needed from which these regularities may be generated unambiguously.

The function of such a mechanism should be twofold:

1. to use the template of a regularity, such as RS1, to make copies of

it, differing, if at all, in the names of the operations involved,

- 31 -

and

2. to generate the distinct operation-naQes in each copy.

A simple way to generate names is to use common or collective names each

denoting a collection of operations. Each of these operations may then

be represented by a common name subscripted by a set of indices.

~ow the task of generating names is reduced to the task of generating

indices from an index set which may be the set of integers. By

convention upper case letters have been used in the identifiers of

common names. Following this approach PI may be rewritten using two

common names "DEPOSIT" and "REXOVE" from which one obtains by

subscripting the operations "DEPOSIT(i)" and "REHOVE(i)" which

correspond to "depositi" and "removei" for i=1,2,3. The basic paths PI

under this transformation become P3:

P3 path DEPOSIT(l)

path DEPOSIT(2)

path DEPOSIT(3)

REHOVE(1) end

RE!10VE(2) end

REMOVE(3) end

Strictly speaking P3 is not legal in basic COSY, since subscripted

operations are not permitted. For this reason the syntax rule BN9 for

the non-terminal "operation" of basic COSY will be replaced by the

following three rules:

BN9a. operation=simple-op/subscr-op

BN9b. simple-op=lc-letter {lc-letter/digit/_}~

BN9c. subscr-op=uc-letter {uc-letter/digit/_}~({integer ~,}+)

and the following rules

BNl2. uc-letter=A/B/ ••• /Z

BNl3. integer={digit}+

will be added

In the above syntax rules we have used the same meta-language

conventions as in chapter 2. From now on by a basic COSY program we

will mean a string produced by the syntax rules BNI to BN8, BN9a, BN9b,

BN9c, and BNIO to BNI2. Programs in this notation should satisfy the

following context-sensitive restriction (Brest):

- 32 -

(Brest)

Subscripted operations of the same collective name should

have the same number of dimensions.

The semantics of such programs are precisely the same as for programs

produced by rules BNl to BNll of section 2.1 with the notion of

operation extended to cover subscripted operations as well.

The three paths in P3 may be precisely generated by the template RS2

RS2 path DEPOSIT(i);REMOVE(i) end

replicated three times with "i" taking values 1, 2, 3.

This kind of a mechanism was incorporated in the COSY notation

forming the macro COSY notation [L76, TL77]. In this notation

collective names and their permitted sets of indices are collected by

the collectivisors and regularities are concisely represented and

precisely generated by replicators and distributors.

Using the macro notation P3 would be represented by FB(3):

FB(3)

Cl array DEPOSIT, REHOVE(3)

P4 [path DEPOSIT(i);REHOVE(i) end[2Jll,3,l]

in which Cl is the collectivisor declaring the subscripted operations:

DEPOSIT(i) and REHOVE(i) for i=l,2,3

and P4 is the replica tor which specifies that the template RS2 is to be

replicated and that the values index "i" takes, form a finite arithmetic

progression which starts from 1 has upper limit 3 and difference 1, that

is it takes the values 1, 2, 3. An n free frame buffer may be specified

simply and concisely and generated precisely by generalising FB(3) to

FB(n) :

- 33 -

FB(n)

C2 array DEPOSIT,REMOVE(n)

PS [path DEPOSIT(i);REMOVE(i) end~11,n,11

which differs from FB(3) in that the number of operations in each

collection of subscripted operations and the upper bound of the value

the index takes have been parameterized by the constant n.

Replicators may also be used to represent and generate regularities

in sequences in paths and processes. Let us for example consider the

basic path P6

P6 path DEPOSIT(1);DEPOSIT(2); ••• ;DEPOSIT(n) end

which together with FB(n) sequentializes the deposits on the frames of

the free frame buffer. In P6 there is a regularity "DEPOSIT(i);" which

is repeated (n-1) times with "i" taking values 1,2, ••• ,(n-l). Using the

replicator feature of macro COSy the path P6 may be concisely

represented avoiding the ellipses by P7

P7 path [DEPOSIT(i);~ll,n-l,ll DEPOSIT(n) end

Path P4 may be represented even more concisely by repeating

"DEPOSIT(i);" n times and dropping the final ";" after "DEPOSIT(i)".

This in macro COSY is specified by P8:

P8 path [DEPOSIT(i)@;~ll,n,11 end

in which the u@" is an operator which str ips the

copy of "DEPOSIT(i);", that is when i=n.

It. 11 , after the final

Replicators of the form used in P8 occur so frequently that a

shorthand has been introduced, the distributor. The distributor which

generates P6 is simply:

P9 path ;(DEPOSIT) end

assuming that the collective name DEPOSIT has been previously declared

- 34 -

by the collectivisor C2. The distributors do not generate indices

explicitly, like the replicators, but generate indices defined by the

collectivisors. Although more complex distributors have been used in

the notation, which we shall examine in the next section, for each of

them there exist replicators which represent and generate the same

regularities. The distributors cannot represent and generate all the

regularities that replicators can and certainly they cannot represent or

generate regularities that replicators cannot. The distributors may

only represent and generate some special kind of regularities more

economically than replicators. The distributor for example, cannot

generate regularities which are nested within each other. In the

sequence of the path P10, for example, specifying the stack of size

three

P10 path (UP(1);(UP(2);(UP(3);DOWN(3»*;DOWN(2»*;DOWN(1»* end

the starelement "(UP(3);DOWN(3»*" is nested within the starelement

"(UP(2); ••• ; DOWN(2))*", which in turn is nested within the starelement

"(UP(l); ••• ;DOWN(l»*". To generate this imbrication of regularities

another type of replicator has been used. According to it P10 may be

generated by:

Pll path [(UP(i)@;~;DOWN(i»*ll,3,l) end

which may be easily parameterized to specify a stack of size n by

P12 path [(UP(i)@;[}J;DOWN(i»*ll,n,l) end

Replicators and distributors do not extend the descriptive power of

basic COSY. They merely represent strings of indefinite but finite

length of basic COSY concisely. The expansion of the replicators by

. h sent has been which they generate the basic regularit1es t ey repre ,

defined [LS80) as follows:

If a replicator is of the type Tl

Tl [P CD q lin,fi,inc]

- 35 -

where "p" and "q" are patterns involving the index i and "in", "fi",

"inc" are integer expressions, then its expansion is given by Rulel

(Rulel)

lempty
I
I if inc=O or (fi)in and inc(O) or (in)fi and inc)O)
I
Isubstitute(p,i,in) [p[}Jqlin+inc,fi,inc] substitute(q,i,in)
I
I otherwise

where "substitute(pattern,index,value)" indicates the string obtained

from "pattern" by b t· t t· f " " su s ~ u ~ng every occurrence 0 the index by the

integer value "value". If the replicator involves the "@" ,thus being

of the form T2

T2 [p@sl ~ q@s2 lin,fi,inc]

where "p", "q", "in", "fi", "inc" are as in Tl, and "sl" and "s2" are

one of the separators

(Rule2)

lempty
I

It." , or "," then its expansion is given by Rule2

I if inc=O or (fi)in and inc(O) or (in)fi and inc)O)
I
Isubstitute(p,i,in) [sl p[JJq s2Iin+inc,fi,inc] substitute(q,i,in)
I
I otherwise

where "substitute(pattern,index,value)" is defined as in Rulel. An

alternative shorter way of specifying the long conditional expressions

for the empty expansion is

inc=O or (fi-in)*inc<O

As we shall see in the next section the form T2 is not a valid form of

replicators as it involves the "@" on both sides ot the index placer

" [IJ ". Besides replicators of type Tl, two other forms of replicators

are valid, denoted by T2a and T2b which involve the "@" on one side of

the index placer only:

- 36 -

T2a [p @ s[I]q lin,ti,inc] and

T2b [p~q @ s lin,fi,inc]

where "p", "q" are patterns as in Tl, and "s" one of the separators 11.11 ,
and 11 II , . The expansion of replicators of the forms Tl, T2a and T2b may

be defined by one rule:

(Replicator Expansion Rule)

lif inc=O or (fi-in)*inc<O then empty
I .
lotherw~se

I
Ifor Tl :substitute(p,i,in) [p~qlin+inc,fi,inc] substitute(q,i,in)
I
Ifor T2a:substitute(p,i,in) [s p~qlin+inc,fi,inc] substitute(q,i,in)
I
Ifor T2b:substitute(p,i,in) [p~q slin+inc,fi,inc] substitute(q,i,in)

The expansion of distributors was not formally defined directly; it

was either described by an example or in terms of a replicator

generating the same string. For example, in [LSB79] the expansion of

the distributor

csl(cs2(CNl cs3 CN2(k3, ,) cs4 CN3(,k4,»)

where csi for i=1, ••• ,4 are either

collectivisors defined by

array CNl(n,m)

array CN2(k,n,m)

array CN3(n,k2,m)

"." , or "," and CNj

was defined to be the same as the string obtained from

for j=1,2,3 are

([([(CNl(i,j)cs3 CN2(k3,i,j) cs4 CN3(i,k4,j»@cs2[IJ11,n,1])@csl

mll,m,l])

after all replicators are expanded.

After the expansion of all the replicators and distributors in a

d th li ' ti n of collectivisors, the resulting macro program an e e m~na LO L L

- 37 -

string should be a basic program.

After this informal presentation of the macro notation features, we

next review various notations and subnotations in detail, focussing our

attention on their formal grammars and indicating which parts of the

notation may be extended to obtain a concise representation of more

basic programs and which parts of the grammars should be modified to

obtain a more precise formulation of what a macro COSy program may

generate. It is recommended that the reader, and especially when not

familiar with the macro COSy notation, should leave the section 3.1

until a later reading. In section 3.2 we propose a new notation and

grammar for macro COSy which incorporates the suggestions for extensions

and modifications of section 3.1. In section 3.3 we define and

characterize the expansion of replicators and distributors and prove

certain properties they possess. Some of these properties are used in

proving that the expansion of any program produced by the grammar of

section 3.2 may be produced from basic COSy rules as well. Finally in

section 3.4 we evaluate the new notation and grammar.

3.1 A REVIEW OF MACRO COSY NOTATIONS

The macro notation has evolved considerably since it was first

introduced [L76, LT77]. In this section we shall review the grammars

for a number of notations and subnotations which have been used,

concentrating our attention

collectivisors, replicators

mainly on the

and distributors.

syntax rules for

In the syntax rules of

this section we shall use the same meta-language conventions as in

section 2.1.

3.1.1 The Macro COSY Program

A macro program consists of collectivisors, paths, processes, and

replicators generating paths and processes,

bodyreplicators. According to the

which are usually called

grammar in [L76, TL77]

collectivisors, paths, processes and bodyreplicators appear between the

word pair "begin" and "end". The syntax of a macro program is given by:

- 38 -

program=beg~~ {{path/process/collectivisor/bodyreplicator} l;}+ end

Later the word-symbols "begin" and "end" were replaced by "program" and

"endprogram" respectively [L79, LSB79, LSC81] and the ";" was eliminated

as a delimiter between paths, processes, bodyreplicators and

collectivisors. Some gr ammar s [LSC81] force the ordering that

collectivisors should appear immediately after the word "program"

followed by all paths and bodyreplicators generating paths which in turn

are followed by all processes and bodyreplicators generating processes.

This ordering restricts the ordering of paths and processes in basic

programs obtained by expansion. The ordering of paths and processes in

basic programs is not important. But the ordering specified in [LSC81]

degrades the conciseness of macro programs in representing basic

programs. Also the readability of macro programs is affected as the

enforced ordering may not be the best way to group collectivisors, paths

and processes, and bodyreplicators

collectivisors were not used at all.

together. In [L79, LSB79]

3.1.2 The Collectivisors

Collectivisors are used to declare subscripted operations of any

finite number of dimensions. The collectivisor which declares

subscripted operations corresponding to rectangular arrays the indices

of which take consecutive positive integer values starting from 1 has

been extensively used. Typical syntax rules may be found in [L76, TL77,

TL78] :

collectivisor=array {collectivename @,}+({upperbound ~,}+)

collectivename=upper-case-letter{upper-case-letter/digit/_}~

upperbound=integer-expression

The value of the integer expression "upper bound" should be greater

or equal to 1.

than

In [LS80, LSC81] the explicit specification of a lower bound was

permitted, thus increasing the class of subscripted operations which may

be declared. The syntax of these replicators is given by:

- 39 -

collectivisor=array {arrayid ~,}+({lowerbound:upperbound ~,}+)

where "arrayid" is defined like "collectivename" above. The value of

the integer expression "upper bound" should be greater than or equal to

the value of the integer expression "lowerbound".

Subscripted operations which do not correspond to rectangular arrays

and/or the indices of which are not consecutive integers could also be

declared by the collectivisors. Replicators were used to specify either

the exact set of admissible indices for each collective name or the

exact set of admissible subscripted operations. The first approach was

used in [LTD79]. For example, the subscripted operations

S(1,l),

S(3,1), S(3,2), S(3,3),

S(5,1), S(5,2), S(5,3), S(5,4), S(5,5)

would be declared by

G3 array S<[[(i,j)Q]ll,i,1]011,5,2]>.

The second approach was used more extensively [LTD80, G80

According to it, the subscripted operations S would be declared by

G4 array [[S(i,j)@,Wll,i,l] @,[IJll,5,2].

] .

Both approaches specify equally concisely a single collection of

subscripted operations. The advantages of the second approach become

apparent when two or more collections of subscripted operations are to

be declared which have the same range in some of their dimensions. In

[LTD79], for example two collections of operations GET and GR were

declared by G5

in

C5 array GET<[[[(p,w,f)[EJ 11,m,l] [I] Iw,n, 1] G 11,n,1]>

array GR<[[(w,f)[I]lw,n,l]G 11,n,1]>

which GR and GET have the same index range in two dimensions but had

- 40 -

to be declared by two distinct collectivisors. In [LT[)80] though, the
same operations were declared by a single collectivisor C6

C6 array [[GR(w,f),[GET(p,w,f)@,C!] Il,m,l] @,[!]Iw,n,l] @,~Il,n,l]

much more concisely.

Although collectivisors involving replicators were used extensively,

no formal grammar was ever given for them.

3.1.3 The Bodyreplicators

As we have seen in example FB(n) in the introduction of chapter 3

specifying the n free frame buffer, replicators may generate collections

of paths and/or processes. These replicators have been called

"bodyreplicators" [L76, TL77, LTS79, LT78] or "replicatorprogrambody"

[L79, LSB79] when they may generate paths and/or processes and

"replpathprogrambody" and "replprocessprogrambody" [LSC81] when they may

only generate paths and processes, respectively. We shall be refering

to them as "bodyreplicators". The first syntax rule for them may be

found in [L76, TL77]:

bodyreplicator=[{bodypattern @ separatorlindex

/bodypatternllindex\bodypattern2}lin,fi,inc]

bodypattern={{path/process}~;}+

where "in", "fi", "inc" are integer expressions and "index" is an

identifier distinct from any operation in the program.

The "separator" in the first option of "bodyreplicator" should simply

be ";" since the other separator, namely "," was never used at that

position. Later the "." was eliminated as a delimiter between paths ,
and/or processes appearing only as the synchronization symbol for

sequentialization of orelements in paths and processes. This option

produces bodyreplicators generating consecutive regularities.

- 41 -

The second option of "bodyreplicator" produces bodyreplicators which

generate imbrication of paths and processes. Since paths and processes
simply follow each other and cannot be nested within each other, their

imbrication was not essential and the same collection and ordering of

generated by bodyreplicators of the
paths and/or processes could be

first option. For example the expansion of the bodyreplicator P13

P13 [path DEPOSITl(i);REHOVEl(i)end[Ij

path DEPOSIT2(i);REMOVE2(i)end Il,n,l]

could be generated by two bodyreplicators P14, PIS

P14 [path DEPOSITl(i);REMOVEl(i)end~11,n,l]

PIS [path DEPOSIT2(i);REMOVE2(i)~ In,l,-l]

or even by a single bodyreplicator P16

P16 [path DEPOSIT1(i);REMOVE1(i)end

path DEPOSIT2(n-H 1) ; REHOVE2(n-H 1)end [Il11, n, 1]

To guarantee the well-formedness of the basic program obtained after

the expansion of a bodyreplicator the meta-restriction MRl was used:

MRl

"bodypattern1" and "bodypattern2" must be strings of symbols

such that the omission of

[... I index I· .. I in, fi, inc]

yields a valid expression in basic COSY except for possible

occurrences of indices.

Meta-restriction MR1 does not
~oo

only exclude wide bodyreplicators, but

also some which generate well-formed basic strings. The reason is that

paths and processes in "bodypattern1" and "bodypattern2" may involve

replicators and distributors in their sequences which are not valid

expressions in basic COSY. The meta-restriction ~ml was not really

necessary when the second option in the rule for "bodyreplicator" is

- 42 -

replaced by:

bodypattern ;Iindex bodypattern

which is precisely the syntax of the regularities in bodyreplicators

generating imbrication.

The above rules do not permit nesting of bodyreplicators, but any

number of paths and/or processes could constitute a bodypattern. The

replicators in P4 and P5 are permitted under these rules (pgs 32,33, resp.)

In [LTS79] the ";" was eliminated as a delimiter between paths and/or

processes. The syntax of all replicators was centred around one rule:

&replicator= [&patternil index l&pattern2 I in, fi, inc]

where "&" is replaced throughout by one of "body" or

non-terminal "bodypattern" was defined as follows:

bodypattern=body/bodyreplicator

body=path/process

" II The

To guarantee the well-formedness of the expanded program a

meta-restriction was defined which when applied to bodyreplicators

reduces to HRI. This meta-restriction is not necessary on

bodyreplicators when the non-terminals "bodypatternl" and "bodypattern2"

are defined as "bodypattern".

The above rules permit nesting of bodyreplicators. For example the

bodyreplicator PI7 is permitted:

PI7 [[path TR(i,j);TR(i+I,j) endm II,k+I,I] OJ 11,n,l]

specifying n pipelines of size k.

The grammars in [LSB79, L79] defined bodyreplicators, produced by the

non-terminal "replicatorprogrambody" which is defined as follows:

- 43 -

replicatorprogrambody=programbody

/[replicatorprogrambodylindex !Iin,fi,incl

programbody=pathprogrambody processprogrambody

pathprogrambody={path}~

processesprogrambody={process}~

According to the above rules bodyreplicators may be nested and any

number of paths and/or processes could be in each one provided paths

appear before processes. These replicators unlike the replicators in

[LTS79] do not generate imbrication of paths or processes and no

meta-restriction was necessary to be applied to them. However, the way

"programbody" is defined permits the production of empty program bodies

and empty regularities in bodyreplicators. Consequently, the expansion

of macro programs may yield basic programs with empty bodies which are

not permitted by the basic COSY syntax. This could be avoided if the

rules for "programbody", "pathprogrambody" and "processprogrambody" are

replaced by the rule:

programbody={path/process}+

The bodyreplicators produced by the rules in [L79, LSB79] above, always

generate well-formed basic notation strings when their expansion is not

empty.

In [LSC81] the syntax rules

replpathprogrambody={path/[replpathprogrambodylindex\ lin,fi,inc]}~

replprocessprogrambody={ process

/[replprocessprogrambodylindexi lin,fi,incl}~

produce bodyreplicators generating either paths or processes. The paths

and bodyreplicators generating paths must appear before processes and

bodyreplicators generating processes. Nesting of replicators generating

paths and nesting of replicators generating processes is permitted but

- 44 -

nesting of one type inside the other is not. Similarly to the rules in

[L79, LSB79] the above rules also permit empty program bodies and empty

regularities in bodyreplicators.

3.1.4 The Paths and Processes

These differ from the paths and processes of basic COSY in that they

may include replicators, distributors and indexed operations the indices

of which may depend on replicator indices. Some of the grammars

developed specify that they may appear as elements, others as

orelements, and others as sequences. Here we examine the implications

of each of these choices.

The first syntax for them appeared in [L76] where the following rules

for paths and processes were given:

path=path pathsequence end

pathsequence=starsequence

starsequence=starsequence;starorelement/starorelement

starorelement=starorelement,starelement/starelement

starelement=pathelement*/pathelement

pathelement=element/(pathsequence)/pathreplicator

process=process sequence end

sequence=sequence;orelement/orelement

orelement=orelement,element/element

element=operation/(sequence)/replicator/distributor

/collectivename({{integer/integerexpression} ~,}+)

- 45 -

In this grammar the "sequence" and "pathsequence" differ in that the

former may produce starelements. However they both may produce

replicators, produced from "replicator" if the whole string is produced

by "sequence", or from "pathreplicator" if the whole of the str ing is

produced from "pathsequence". The "pathreplicator" according to the

above syntax could be starred. We believe that this makes the notation

confusing, since after expansion the star only applies to the rightmost

element of the resulting string and not to the whole string. However

this choice does not generate invalid basic COSY programs and

furthermore it increases the power for conciseness of the replicators.

Consider for example path P18:

P18 path A(1);A(2);A(3)* end

which may be generated by P19

P19 path [A(i)@;[2Jli,3,1]* end

which is permitted by the syntax of [L76]. In these syntax rules the

non-terminal "operation" produces only simple operations. Subscripted

operations

"element".

are produced by the last option of the non-terminal

In the grammars of [TL77, LT78] "pathsequence" was replaced by

"sequence" so both paths and processes may include replicators and

distributors but no starelements.

The syntax rules in [LTS79] for paths and processes was given by

- 46 -

path=path sequence end

process=process sequence end

sequence=sequence;orelement/orelement

orelement=orelement,starelement/starelement

starelement=element/element*

element=operation/(sequence)/replicator/distributor

/collectivename({indexexpression !,}+)

According to the above rules starelements are reintroduced in the

sequences of processes. Consequently, replicators and distributors may

be starred as in the sequences of paths.

In [L79j various syntax rules were developed. Some of these rules

however, specify both the context of replicators in sequences together

with the syntax of the replicators themselves. We feel that these are

two distinct issues. A replicator for example, could appear in a path

as a sequence, as an orelement or as an element but in each case it may

generate any string be it a sequence, or an orelement, or an element

forming in each case a well-formed basic string. We took the liberty to

split some of the rules so that we may concentrate on one of these

issues at a time without being distracted by the other. By doing so we

create some new non-terminals which we super fix by "0,, to indicate that

these were not in the original syntax of [L79j but ~Sue to our

modifications. In the next subsection we give the original syntax rules

and examine what strings replicators generate and \vhether these strings

on their own are legal basic COSY and only then we examine both the

expanded string together with its context for well-formedness. Let us

examine the syntax of the paths and processes in [L79j:

- 47 -

path=path {sequence/replicator O} end

process=process {sequence/replicator O} end

sequence={orelement ~;}+

orelement={starelement ~,}+

starelement=element/element*

element=operation/indexedoperation/(sequence)

As it was observed in [L79] this syntax only generates sequences in

paths which consist of single replicators or a number of them
individually nested within "e)". The above rules cannot produce

replicators in other contexts as for example that of P20

P20 path a;[•••];[•••];b end

where "[•••]" indicate replicators.

The second set of syntax rules given in [L79] replaced the production

for non-terminals "path", "process" and "sequence" by

path=path sequence end

process=process sequence end

sequence={replicatororelement @;}+

replicatororelement={orelement/orreplicatorO}

respectively. According to the above rules a replicator can only appear

as an orelement in a sequence and therefore only in the following

contexts:

on its left

any of

e

on its right

any of

end

)

This . d b t Ii ators cannot appear in the implies that P20 is perm1tte u rep c

context of starelernents as for example in path P21

- 48 -

P 21 pa t h a, [••• 1 , [••• 1 , bend

Certainly a sequence of the form in path P22

P22 path a,([•••]),([•••]),b end

is permitted but we should not conclude that this syntax just generates

redundant parentheses maintaining the semantics of the path when

expanded. It may well be that the additional parentheses change these

semantics. It all depends on the main connective of the expanded

string. If it is a comma then the parentheses are just redundant, but

if it is a semicolon these may change the semantics of the path if one

of the separators around the replicator is a " 1t , . Let us consider the

path P23

P23 path a,[C(i)@,IT]ll,3,1] end

which expands to P24

P24 path a,C(1),C(2),C(3),b end

the cycle set of which is

{a,C(l) ,C(2) ,C(3) ,b}

If the replicator in P23 were nested within parentheses as in P25

P25 path a,([C(i) @AJOll,3,1]),b end

the cycle set of its expansion would be exactly that of P24.

To demonstrate that additional parentheses may change

of a path consider the path P26

the semantics

P26 path a,[C(i) @1J]ll,3,1],b end

which expands to the basic path P27

- 49 -

P27 path a,C(1);C(2);C(3),b end

the cycle set of which is

{a.C(2).C(3),a.C(2).b,C(1).C(2).C(3),C(1).C(2).b}

If the replicator in P26 were nested inside parentheses

P28 path a,([C(i)@;~ll,3,lj),b end

the cycle set of the path obtained by its expansion P29

P29 path a,(C(1);C(2);C(3»,b end

would be

{a,C(1).C(2).C(3),b}

which defines firing sequences different than those defined by the
cycles of P27.

In the grammar of [LSC81j the syntax of paths and processes is given

by:

path=path (gsequence)* end

processes=process (gsequence)* end

gsequence={gorelement ~;}+

gorelement={gelement ~,}+

gelement=element/replgseq/distrgseq

element=operation/indexedoperation/(gsequence)/element*

in which "gsequence", "gorelement", "gelement" stand for "generalized"

sequence, orelement, element respectively as the strings they produce

may include replicators and distributors. The non-terminals "replgseq"

and "distrgseq" produce replicators and distributors respectively which

appear in sequences. According to the above syntax, replicators and

distributors appear as non-starred elements.

- 50 -

3.1.5 The Replicators in Sequences

In section 3.1.4 we examined

context of replicators in sequences.

these replicators.

the syntax rules which specify the

Here we examl" ne th f e syntax 0

The grammar in [L76] specified the following syntax for

in sequences:

&replicator=[{ &pattern @ separator I index

/&patternl lindexl&pattern2}\in,fi,inc]

replica tors

where "&" is replaced throughout by either "path" or "" The

non-terminals "pattern" ad" th t" d f" • n pa pa tern were e lned by:

pattern=sequence

pathpattern=pathsequence

The restriction MRla, similar to MRl for bodyreplicators, applied to

patterns and pathpatterns:

MRla

"&pattern1" and "&pattern2" must be strings of symbols such

that the omission of "[••• lindex .•• \ in, fi, inc]" yields a

valid expression corresponding to the prefix "&" of the

patterns except for possible occurrences of indices.

The first option of the syntax rule for replicators produces replicators

which generate consecutive regularities. The replicators produced by

the non-terminals "pathreplicator" and "replicator" of this type always

generate well-formed valid strings when expanded. This may be shown

formally in the manner demonstrated in section 3.3 where we prove

similar results for programs produced by the grammar of section 3.2.

Furthermore they may generate regularities forming strings which may be

produced by the basic COSY non-terminal "sequence". The disadvantage of

this syntax is that the separators after the "@" are treated as of equal

precedence, thus altering the precedence of comma over semicolon

specified in basic COSY.

- 51 -

The second option intends to prodlJce repl' t h' h lC~ ors w lC gener~te

imbrication of regularities. Unfortunately, the replicators produced by

this option, satisfying MRla do not generate well-formed basic COSY

strings. This is for two reasons:

1. Since replicators appear as elements and pathreplicators as

pathelements in sequences, whatever they generate must be between

one of the symbols "path", ";", ",", "(" on the left and ")", ",",

11.11 , , "end" on the right. Any legal string between these sets of

symbols may in general, be produced by the non-terminal "sequence"

of basic COSY.

2. The second reason is that the "@" does not appear in the second

option at all, thus no separators are dropped upon expansion.

Let us consider the path P30

P30 path [(UP(i);RESET(i)[IJ)*ll,n,l] end

which is permitted by the syntax of [L76] and when expanded for n=3

generates the string

P31 path(UP(1);RESET(1)(UP(2);RESET(1)(UP(3);RESET(3»»end

which is not legal since there are some separators missing after

RESET(l) and RESET(2). If we try to improve on that by putting a comma

after RESET(i) in P30 obtaining P32

P32 path [(UP(i);RESET(i),~)ll,n,l] end

and expand it again for n=3 we obtain the string

P33 path(UP(i);RESET(1),(UP(2);RESET(2),(UP(3);RESET(3),»)end

which would be legal if it were not for the co~na after RESET(3). Only

P30 is a legal pathreplicator according to the syntax and satisfies

MRla, but neither P30 nor P32 generate basic sequences. There is only

one special case when P30 generates a well-formed expansion that is when

- 52 -

n=1 i.e. when the replica tor generates one copy only

P34 path (UP(1);RESET(1» end.

As we have noted replicators according to the syntax of [L76] appear

as elements in a sequence. For this reason another meta-restriction

should be imposed on them to exclude replicators specifying empty index

ranges which would imply empty expansions and collision of terminal

symbols in the context of the replicators. This should apply to all

replicators which appear as sequences, orelements and elements. For

example, if in the path P35

P35 path a,[C(i)@,~11,n,l] end

the value of n were zero, the path after the expansion of the replicator

would be P36

P36 path a, end

which is not legal in basic COSY, as there is a collision of the

terminal symbols " tI , and "end".

In [TL77] the "pathsequence" was replaced by "sequence". The syntax

rules were simplified after the elimination of "&" standing for either

"path" or " " but still all the previous comments regarding the grammar

of [L76] apply to the grammar of [TL77] as well.

be

In [LS77] no formal grammar was given. A replicator was defined to

"an iterative copy operator which permits the finite

. of program text of finite but indefinite length".
representat~on

The general form of a replicator was defined as

either [patternlindex! lin,fi,inc]

or [patternl !index!pattern2I in ,fi,inc]

- 53 -

where the patterni for i=1,2 were defined to be strings. This is the

most general replicator which may be defined Ob· 1 all
• VlOUS Y possible

regularities could be generated by using such replicators not
necessarily forming well-formed basic strings. For this reason
meta-restriction MR2 was used:

MR2

patterni's must be such that the resulting string after

expansion must be a valid expression in basic COSY.

the

The above rule may be interpreted in two ways. The first may be that

the expansion of each replicator must be a sequence, or an orelement, or

an element. However, the path in page 16 of [LS77]

P37 path

testO*

,(countincr

;testl*[,(countincr;test*~;countdecr)*ln,1,-l]

;countdecr

)*

end

contradicts this interpretation since the replicator itself does not

expand to any valid expression in basic COSY.

The above path is consistent with the second interpretation by which

programs may involve replicators in any context and patterni for i=1,2

may be any strings. For the replicator to be well-formed though, the

string obtained after the expansion of the replicators must be

well-formed basic COSY programs. This interpretation of MR2 has some

interesting implications. In the introduction of this chapter we

presented the replicator P4 specifying the three free frame buffer from

which a generalization for an n-free frame buffer was derived by just

altering the upper limit of the values the index takes from 3 to n. The

second interpretation of rule MR2 does not in general permit this kind

of generalization. Consider for example, the path P38

P38 pat~ (([A(i);B(i))@,[IJll,2,1] end

- 54 -

which is well-formed according to the second int~rpretation of ~~2.

since after the expansion of the replicator path P39

P39 path((A(1);B(1»,(A(2);B(2»end

is obtained, which is well-formed in basic COSY. If we generalize the

replicator in P38 to generate n regularities of "A(i);B(i»," by

replacing 2 by n path P40 is obtained:

P40 path (([A(i);B(i»@,~ll,n,l] end

The resulting string after the expansion of the replicator in P40 will

only be well-formed when n=2. When n<2 there will be more opening

parentheses than closing ones and when n>2 more closing parentheses than

opening ones. Therefore the fact that a replicator is expanded to a

well-formed basic string for a particular index range does not

necessarily imply that this replica tor will generate well-formed basic

strings for any index range. We shall call this kind of replicator

range dependent. We feel that these replicators should be avoided and

that the macro notation should only allow replicators which when

expanded always generate well-formed basic COSY strings for any non

empty range of their index.

The syntax rules in the grammar of [LTS79] producing replicators

which generate imbrication of regularities were similar to those

presented in [L76] but the problem of not generating well-formed basic

COSY strings is overcome. The syntax for the replicators generating

consecutive regularities was considered as a special case of the

replicator generating imbrication of regularities. The rules for the

syntax of replicators were:

replicator=[pattern1Iindex!pattern2Iin,fi,inc]

pattern={sequence/separator}2 /pattern @{;/,}

separator=;/,/*/(/)

where exactly one of patterni for i=1,2 must have the form

"pattern @{;/,}". Similarly to [L76, LT79] a meta-restriction of the

type of MR1 was applied to these patterns:

- 5) -

MRl'

"pat te nl'" st b t i fbi L mu e s r ngs 0 sym 0 s such that the omission

of

P.~d~xJ I in, fi, inc] or

li~~dex-, @{;/,}Iin,fi,inc] or

@{;/,}Iindex lin,fi,inc]

yields a valid expression.

This syntax together with the meta-restriction MRl' produce replicators

which generate well-formed basic sequences. This may be proved in the

style we proved similar results in section 3.3. This syntax does not

produce any range dependent replicators. The meta-restriction rule MRl'

excludes all replicators which when expanded do not generate well-formed

basic COSY strings. Furthermore the legal replicators may generate

nested regularities. For example the paths

P41 path [(DEPOSIT(i)@;~;REMOVE(i))*ll,n,l] end

P42 path [(DEPOSIT(i);~REMOVE(i))*@;ll,n,l] end

are both valid. However there is a class of nested regularities which

they cannot generate. Consider for example the basic path P43

P43 path(A(1),(A(2),(A(3);B(3)),B(2)),B(1)) end

the sequence of which cannot be generated by any of these replicators.

If we examine P43 we see that the element "(A(3);B(3))" is nested inside

the element "(A(2), ••• ,A(2))" which in turn is nested inside the element

"(A(l), ••• ,B(l))". The reason this kind of replicator cannot be written

is not because the innermost element is not an exact copy of the other

elements. This is true in general for any nested regularities.

Consider for example the path P44

P44 path(A(1),(A(2),(A(3);B(3));B(2));B(1))end

are
in which the innermost regularity is "(A(3) ;B(3))" whilst the others'iof

the type "(A(), ••• ;B())". However the sequence of path P44 may be

- 56 -

gener a ted by P45

P45 path [(A(i)@,IT);B(i»ll,3,1] end

We may characterize the class of regularities which cannot be generated

by replicators. It is the class of regularities in which all are of the

form

p(i) sl ••• sl q(i)

in which "p", "" q are patterns involving some index "i" and "sl"

represents one of the separators

regularity which is of the form

p(fi) s2 q(fi)

II " , or ";", except for the innermost

in which the index "i" in the patterns "p", "q" is replaced by i's last

value, namely "fi" and the separator "s2" is distinct from "sl". For a

replicator to generate this kind of regularities, the separator after

the "@" should not be stripped but should be replaced by another

separator.

We have pointed out that the syntax rules of [LTS79] together with

MRl' produce replicators which only generate well-formed basic COSY
too

strings. Without MRl' though their syntax would be'lwide as the strings

the replicators could generate would not in general be well-formed in

basic COSY. We feel that close-fitting formal syntax rules should be

derived producing replicators which after expansion generate well-formed

basic COSY strings. The syntax in [L79] and [LSC81] gave some partial

solutions to this problem.

In [L79] the problem of more "close-fitting" rules for replicators

was discussed and various syntax rules were developed. The approach

followed was to start from syntax rules producing simple replicators and

to extend them to produce replicators able to generate larger classes of

regularities. The first replicator together with its context was

defined by

- 57 -

path=pat~ {sequence/[element @ separatorIT]lin,fi,inc]} end

process=process {sequence/[element ~ separator[}Jlin,fi,inc]} end

separator=j/,

According to this definition nesting of replicators is not permitted.

Replicators may generate sequences if the separator after the "@" is ";"

or orelements if this separator is a ",". Since the regularity they

replicate is "element", redundant parentheses have to be introduced when

orelements or sequences are replicated. Consider for example paths P46

and P47

P46 path A(l),B(l)jA(2),B(2);A(3),B(3) end

P47 path A(l)jB(2)jA(2)jB(2);A(3);B(3) end

According to the above rules the paths P48 and P49

P48 path [(A(i),B(i»@j~ll,3,l] end

P49 path [(A(i)jB(i»@j~ll,3,l] end

are permitted, involving replicators which when expanded generate paths

with the same semantics as P46 and P47 respectively, by introducing

redundant parentheses. The above rules cannot produce replicators which

expand to precisely the paths P46 and P47.

The above syntax rules produce replica tors which always generate

well-formed basic COSY strings when their expansion is not empty.

However, they may only appear in a very limited context, namely in place

of whole sequences between "path" and "end" or between "(" and ")".

Thus, as it was pointed out in the example (E20) in [L79] the process

PSO

PSO process b;[(AB(i);AE(i»@,[Ijll,n,l];c end

is not permitted. The syntax rules were then extended to cover at least

this case:

- 58 -

path=path sequence end

process=process sequence end

sequence={ {orelement

/[orelement 2 separator~ lin,fi,inc]}_@;}+

These rules also do not °t 0 f perml nestlng 0 replicators. They do not

introduce as many redundant parentheses as the previous rules though.

For example P46 may be exactly generated by PSI:

PSI path [A(i),B(i)@;~ll,3,1] end

The main limitation with both the above sets of rules in [L79] is that

they do not permit nested replicators. As the example (E22) in [L79]

demonstrates, the process PS2

PS2 process b;[[(AB(i,j);AE(i,j»@,[IJll,n,l]@,Wll,k,l];c end

is not permitted. The syntax rules were extended to permit nesting of

replicators:

sequence={replicatororelement ~;}+

replicatororelement=orelement

/[replicatororelement J separator~lin,fi,inc]

separator=; / ,

The replicators produced by these rules generate well-formed basic COSY

strings. Again, redundant parentheses have to be introduced when

sequences are replicated as in P49. The intention in [L79] was not just

to define replicators which generate well-formed strings. In addit ion

the syntax in [L79] was aiming to define replicators the expansion of

which could be produced by the basic COSY non-terminal "sequence" or

"orelement" and this expansion to appear in a sequence as a subsequence

or as a suborelement respectively. In other words the first and the

last element of the expansion should bind with the rest of the expansion

- 59 -

and not with other elements in the rest of the sequence.

example the path P53:

P53 path b;[A(i)@,[IJll,3,1];c end

which when expanded yields P54

P54 path a;A(1),A(2),A(3);c end

Consider for

The expansion of the replicator in P53 on its own yields an orelement

and it is also an orelement in the context it appears in path P54. We

will say that the replicator in P53 generates a syntactically strong

string. Not all replicators generate syntactically strong strings and

furthermore not in any context. Consider for example P55:

P55 path b,[A(i)@;[}Jll,3,1],c end

in which the expansion of the replicator on its own is a sequence. But

its expansion in the context of P55

P56 path b,A(1);A(2);A(3),c end

is not a syntactically strong string since A(l) binds with operation b

and A(3) with c and not with the rest of its expansion. The aim of

[L79] was therefore to obtain syntax rules for replicators which

generate syntactically strong strings in the context they appear. The

previous syntax rules of [L79] do not permit path P55.

permit path P57

P57 path [[A(i,j)@;(I]ll,2,1]@,[IJll,2,1]end

They however

in which the inside replicator does not produce syntactically strong

strings, as may be seen when both replicators are expanded:

P58 path A(1,1);A(2,1),A(2,1);A(2,2) end

For this reason the definition of "replicatororelement" was redefined

as:

- 60 -

replicatororelement=orelement

/([replicatororelement @;[IJlin,fi,inc])

/[replicatororelernent @,~Iin,fi,incl

and at the cost of redundant parentheses it was simplified to:

replicatororelement=orelement

/([replicatororelement @ separator~lin,fi,inc])

These rules produce replicators which when expanded produce well-formed

and syntactically strong strings. Their only disadvantage is that they

introduce reduntant parentheses in three contexts. The first is when

they appear as orelements in a sequence as for example in P59:

P 5 9 pa t h ([•••]); ([•••]) ; ••• end

The parentheses are redundant for whatever strings the replicators

generate. The second context is when replicators appear as elements in

an orelement and the replicators generate orelements as in P60:

P60 path ([••• @,OI •••]),([••• @,OI •••]), ••• end

Finally, they introduce reduntant parentheses around the regularities

they generate in the context

P61 path ••• [(••• ; ••• ; •••) @;O I •••] • •• end

In the next chapter, where we address the problem of finding the

semantics of a basic program generated from a macro program, directly

from the macro program itself, we derive syntax rules for replicators

generating syntactically strong strings without the enforcement of

redundant parentheses.

The rules given in [L79] which we examined up to now, produce

replicators which generate consecutive regularities. The first rule for

replicators generating imbrication of regularities is:

- 61 -

replicatororelement=orelement

/«(replicatororelement @ separatorCI]

{/separator replicatororelement}lin,fi,inc)

/ ([replicatororelement separator OJ
replicatororelement @ separatorlin,fi,inc)

This rule produces all replicators produced by previous rules in [L79).

It also produces replicators which generate some imbrication of

regularities as for example the replicator in P62:

P62 path ([A(i)@;~;B(i)II,3,l) end

which expands to

P63 path(A(1);A(2);A(3);B(3);B(2);B(1» end

This is a special kind of imbrication. The general kind of imbrication

of regularities is when these have opening parentheses on the left of

the place holder 'e" and corresponding closing parentheses on the right

of the place holder as in the stack example PII, P12. To produce this

kind of replicator the rules for "replicatororelement" were extended to

replicatororelement=

orelement

/([{rseparator}2 replicatororelement @ separatorCI]

{/{rseparator}2 replicatororelement {rseparator}~}lin,fi,inc)

/ ([{rseparator}2 replicatororelement @ separator II]
{rseparator}2 replicatororelement @ separatorlin,fi,inc)

rseparator=separator/(/)/*

Although these rules permit the replicators in Pll, PI2 they may also

produce other replicators which do not generate well-formed basic COSY

strings. For example, the number of opening parentheses on the left

- 62 -

hand side of the place holder "0" do not necessarl'ly h matc with closing

parentheses on the right hand side of the place holder. Therefore

together with the above rule a meta-restriction rule is needed to filter

out all those replicators which generate invalid basic COSy strings. It

is apparent that even more close-fitting rules are needed.

In [LS80] the grammar for replicators was given by:

basicsymbol

index

=some finite set of basic symbols

not including the "@".

=sorne possibly infinite set of symbols

distinct from basic symbols

indexexpression =integer expression involving only indices and

integer constants

pattern

replicator

={basicsymbol/index}~/replicator

=[pattern{@{;/,}/}~pattern{@{;/,}/}I

indexexpression,indexexpression,indexexpression]

Since no other rule for constraining the patterns of the replicators was

given these may generate any strings of basic symbols. We feel that

these rules are very wide and more close fitting rules are required

improving on the syntax of [L79].

In [LSC81] we presented context-free syntax rules general enough to

produce all the macro programs in this paper involving replicators

generating well-formed basic COSy strings. The context-free rules were:

- 63 -

replgseq=[{gseqrepll/gseqrep12}lin,fi,inc]

gseqrepll=gsequence @ sep lindex

gseqrep12=gsequence @ sepQiidex Jsep gsequence

/{gsequence sep/} elementrepl {/sep gsequence}

elementrepl=elementrepl*

/ ({gsequence @ sep lindex 11 i~ gsequence/gseqrep12})

If we eliminate the middle option of the second alternative for

"elementrepl" all replicators produced generate well-formed basic COSy

strings. This again may be proved in the style we proved similar

results in section 3.3. The above rules permit replicators which

generate a large class of imbrication of regularities such as the stack

specified by Pll and path P64:

P64 path [(A(i)@ ; IT]) , B(i) 11,3,1] end

The above rules specify that any number of unmatched opening parentheses

on the left of the place holder, match with closing parentheses on the

right of the place holder. These rules however, cannot produce

replicators which involve the "@" on the right of the place holder like

the replica tor in path P65

P65 path [SK(i),(G]A(i);B(i»@;ll,n,l] end

The rules of [LSC81] may be extended to permit such replicators:

replgseq=[gseqrepllin,fi,inc]

gseqrepl=gsequence @ sep !index I
/ !indexlgsequence @ sep

/gsequence @ sep!indexlsep gsequence

/gsequence sep lindex\gsequence @ sep

/elementrepl

elementrepl=elementrepl*/(gseqrepl)

- 64 -

Although the above rules are close-fitting and all replicators they

produce generate well-formed basic COSY strings they specify a mixed

precedence of ".," and ",". Th b I e a ove ru es may not produce replicators

generating strings such as the sequence of path P43 since the "@" only

strips and does not replace any separators by others. The need is still

apparent for context-free rules producing more general replicators which

expand to well-formed basic COSy strings.

3.1.6 The Distributors

Historically, distributors were the first macro feature to be used

[CL76] in the path notation [LC7S] as a shorthand. The term

"distributor" was introduced later [L76] with the rest of the macro

notation. In [LC7S] the formal definition of the path definition was

introduced and was extended by a SIMULA class-like construct which

permits classes to contain both paths and processes. In [LC76] arrays

of classes could be declared which were called sets. The shorthands

P.(,S) and P.(;S)

were defined, where S is a set containing k elements and P is an

operation, called a procedurename in [LC76], in paths or processes in

each class SCi) for i=1,2, ••• k. These shorthands denoted the strings:

P.S(1),P.S(2), ••• ,P(k) and

P.S(1);P.S(2); ••• ;P.S(k) respectively.

In [L76, TL77] the notation for distributors was changed to deal with

collective names and not with sets:

distributor=

separator({{collectivename

/collectivename({{integer/indexexpression}~,}+)}

~separator}+)

A distributor may only generate certain types of consecutive

- 65 -

regular it ies. The indices needed in each of these regularities to

generate subscripted operations are implicitly generated. These are the

same as the indices in a dimension of the collective names involved in a

distributor, as defined by the collectivisor. When a distributor

involves collective names with more than one dimension then it is

required to specify the dimensions over which the connectives are to be

distributed by leaving a blank field in their index list. If a

collective name has all its index fields blank then its index list may

be eliminated altogether. This applies to all distributors and will be

assumed to apply throughout this section.

In [L76, TL77] the following constraint was imposed on distributors:

the sets of indices corresponding to each of the dimensions over

which collective names are to be distributed must be the same,

otherwise the distributor is not well-formed.

If this constraint is satisfied then we say that the dimensions to be

distributed are compatible. Sometimes the above constraint is refered

to as the compatibility criterion.

criterion the distributors Dl, D2 and D3

According to the compatibility

Dl ; (DEPOSIT)

D2 ,(DEPOSIT;REMOVE)

D3 ,(A(2,))

are well-formed, provided the collectivisors C7 and C8

C7 array DEPOSIT,REMOVE(n)

C8 arr ay A(2,2)

have been declared. When a distributor is expanded each regularity is

wrapped between an opening and a closing parentheses.

Dl then expands to

(DEPOSIT(1));(DEPOSIT(2)); ••• ;(DEPOSIT(n))

the distributor D2 to

The distributor

(DEPOSIT(l);REMOVE(l»

,(OEPOSIT(2);REMOVE(2»

,(OEPOSIT(n);REMOVE(n»

and 03 to

(A(2,1»,(A(2,2»

- 66 -

The regularities that distributors generate may be produced by the

non-terminal of basic COSY "sequence", but do not however include

elements of the type "(sequence)". As may be seen in the strings

generated by 01 and 03, the parentheses enforced around each regularity

may be redundant.

Later in [LTS79] nested distributors were defined such as

D4 , (; (A))

where A is assumed to have been declared by the collectivisor CS.

For this distributor we must specify which separator applies to which

dimension

innermost

of the collective name. The adopted convention was that the
the

separator will apply toVTleftmost dimension the next

separator to the leftmost not allocated dimension etc. Obviously, a

collectivisor must have as many dimensions to distribute over as the

number of nested distributors it is in. The distributor 04 therefore

expands to

«A(1,1»;(A(2,1»),«A(1,2»;A(2,2»)

provided A has been declared by the collectivisor CS. The syntax of the

distributor was defined in [LTS79] by:

distributor={; /,} { distributor

/({{collectivename

/collectivename({{integer/indexexpression}~,}+)}

~separator}+)

- 67 -

The syntax of [LSC81] permits the production f dO o lstr ibutors which
generate any consecutive regularities the elements

starred and/or which could be of type "(sequence)".

distributors was given by:

of which may be

The syntax of

distributor={j/,}[gsequence]

In [LSC81] the lower bound of the collective names were explicitly

specified and not implicitly fixed to 1. The "b
compat~ ility criterion of

[L76] was accordingly relaxed by requiring

the sets of indices of dimensions of collective names to be

distributed by the same collectivisor, to have the same number

of elements.

For example if the collective names A, B, C and D were defined by:

C5 array A,B(2)

array C,D(2:3)

the distributor

D6 ; « A; B* ; C) , D)

would expand to

(A(1);B(1)*;C(2»,D(2)

;(A(2);B(2)*;C(3»,D(3)

In this syntax replicators were permitted inside distributors as well as

distributors inside replicators, as in the earlier grammars.

sense distributors and replicators become symmetrical.

In that

The expansion of distributors, unlike the expansion of replicators,

was never formally defined directly. Their expansion was either

described by an example or in terms of a replicator generating the same

string. Furthermore, the expansion of distributors was not at all

defined when distributors involve collective names corresponding to

- 68 -

non-rectangll Lar arrays.

3.1.7 Some More Replicators

In the review up to now we have examined various replicators

generating subscripted operations, paths and/or processes, sequences,

orelements, starelements and elements. However, the values of their

indices always formed finite arithmetic progressions.

In macro COSY other replicators have been defined which permit the

index to take values forming infinite arithmetic progressions and others

which take a finite number of values but do not form arithmetic

progressions in general.

In [SL77. SL79] it was shown that any "program" using the extended

semaphore primitives (ESP's) of Agerwala [A77] as its only means of

synchronization and which is in some sense "bounded" has an equivalent

description in the COSY formalism. It was pointed out however that to

obtain a complete translation of a given ESP program, which may contain

unbounded semaphores, requires a real extention of the descriptive power

of the COSY notation as it may only describe finite systems. Such an

extention was suggested in terms of Petri-nets [P76] in [SL77] and in

terms of the "Cyc" operator in [SL79] but as it was pointed out, out of

theoretical interest. After this

extension infinite counters were defined

P66 path [(V(s)@;~;P(s))*ll,oo,l] end

which were given vector firing sequence semantics.

In [LTD79, D79, LSB79, LTD80, SLBO] replicators were defined the

index of which could take a finite number of values not necessarily

f In [LTD80] these were called test orming arit~metic progressions.

replicators. Two formalisms were used, both incorporating predicates to

select or define the range of the index. The replicators in [LTD79,

079, LTD80] used predicates to select the range of an index out of an

arithmetic progression. For example path P67

- 69 -

P67 path [SIEVE(i)@;'i, i is prime 12,15,1] end

generates P68

P68 path SIEVE(2);SIEVE(3)jSIEVE(S);SIEVE(7)jSIEVE(11);SIEVE(13) end

filtering out the elements in the arithmetic progression 2,3, ••• ,15

which are not prime. The standard replicators therefore may be viewed

as a special case of the test replicators in which the value of the

predicate P(i) is true for all values of the replicator index "i" takes.

In [SL80] the predicates were defined outside the replicators. These

predicates were used in place of the arithmetic progression generator

"Iin,fi,inc" generating the integers which satisfied them. For example

the replicator in PSO would have been written as

predicate P(i)=(2~i~15 and i is prime)

P69 path [SIEVE(i)@ ;!iIP(i)l] end

This concludes the review of most macro COSY notations and

subnotations. In the next section we introduce a new macro notation

1 h d b ks Of the notations we which improves or eliminates a toget er raw ac

examined in this section.

3.2 A NEW NOTATION AND GRAMMAR FOR MACRO COSY

In this section we make some changes to the macro COSY notation

We extend it in such a way improving the readability of macro programs.

included, generating classes of basic COSY
that new replicators are

b t d by r eplicators produced by strings which cannot e genera e
the

grammar s and in such a way that new reviewed in section 3.1,

- 70 -

distributors are included, generating more basl'c COSy t' s rings more

concisely than replicators. Together with the notation we present the

syntax rules for producing macro programs in this new macro COSy

notation. Our general considerations in developing the new notation and

grammar were mainly four:

1. The syntactic well-formedness of a macro COSY program produced by

the grammar should imply the syntactic well-formedness of the

corresponding basic COSY program resulting from expansion. Our aim

is to derive formal context-free rules avoiding meta-restriction

rules on the regularities of replicators. For this reason we need

to specify exactly what we are allowed to write in replicators and

distributors and where these should appear in the programs.

2. The grammar should be general, producing replicators and

distributors able to represent a large class of regularities of

structures concisely.

3. The grammatical rules should be uniform with the rules for basic

COSY and should formally show the hierarchy of the macro COSY

notation over the basic COSY notation.

4. The macro elements should represent the regularities they generate

in a way as obvious as possible for the reading of macro programs to

be possible without their formal expansion.

The meta-language conventions which will be used in the syntax rules

in this section will be the same as in last section.
The subsections

way as in the last sec tion,' in each we examine a
are divided in the same

major syntactic category.

3.2.1 The Macro Program

"endprogram". Since after expansion of a macro program all

- 71 -

collectivisors disappear, the macro program should· 1
Inc ude at least one

of a path, process, or bodyreplicator, f th b d
by or e 0 y of the basic program

obtained V expansion to be non-empty. Th f
e syntax or macro programs is

given by:

MN2.

mprogram=program mprogrambody endprogram

mprogrambody={{collectivisor}~ {mpath/mprocess/bodyreplicator}}+

In the above rules, and henceforth, non-terminals of macro COSy which

correspond to non-terminals of basic COSy have been obtained by

prefixing the latter by "m" standing for "macro".

According to the above rules, collectivisors, macro paths, macro

processes and bodyreplicators may appear in any order, with the

exception that no collectivisor may appear after all the paths,

processes and bodyreplicators. The following restriction is imposed on

programs:

(l1Prest)

Collective names should be declared before any path or

process involving any of its subscripted operations.

The context-sensitive restriction (MPrest) is imposed so that for the

expansion of a macro program one pass is sufficient. It also makes

the syntax checking more efficient as well. For otherwise, two passes

would be required for expansion and syntax checking, since the

collective names and the number of their dimensions have to be known in

either case and in addition, when expanding, the bounds of the indices

in every dimension have to be known as well. We could avoid this

meta-restriction by forcing all collectivisors to appear before paths,

processes and bodyreplicators. We would however need the

context-sensitive restriction that all subscripted operations in macro

paths and macro processes should be permitted by the collectivisors.

When writing programs though, we find it sometimes convenient to declare

collective names near the paths which involve indexed operations

corresponding to these collective names.

- 72 -

3.2.2 The Collectivisors

Pr evious notations permit declarations of collective names

corresponding to rectangular arrays and to arrays of other shapes. In

the new notation we shall permit both types of collective names to be

declared. When declaring rectangular arrays two conventions have been

followed: either the lower bound of indices in their dimensions are

implicitly considered as having the value one, or the lower bound is

explicitly specified. In the new macro notation we combine both

conventions. We also follow the convention that collective names will

be in upper case letters. When subscripts in the dimensions of arrays

are consecutive positive integers starting from 1, the lower bound in

these dimensions may be implicitly assumed to have the value one and

only the upper bound has to be specified. We permit collective names

with a different number of dimensions and/or different bounds in their
•

dimensions to be declared by the same collectivisor. Two notational

changes are introduced in declaring collective names:

1. The elimination of commas between collective names. The intention

is to confine the use of the comma to sequences,

synchronization symbol for "choice", as much as possible.

as the

2. The introduction of the word symbol "endarray" which indicates the

end of a declaration. All declarations will now be enclosed between

word symbol pairs "array" and "endarray" in the same way major

syntactic entities like "programbody" and "sequence" in basic

are enclosed between word symbol pairs.

For example the declaration NCI

NCI array A(k) endarray

array B C(5) D(3,m) endarray

declares the subscripted operations

COSY

A(l) ••••• A(k) •

B(l) ••••• B(S).

C(l) •••• • C(S).

O(l.l) •.••• O(l.m).

0(2.l) ••••• 0(2.m).

0(3.l) ••••• 0(3.m)

- n -

The "N" in front of the mnemonic names of examples in this section and

in section 3.3 indicate that these are written in the new macro notation

introduced in this section. The letter "c" indicates collectivisors.

the letter "p" paths. processes or bodyreplicators and the letters "0"

and "R" distributors and replicators in sequences. respectively.

If the lower bound in some dimensions of collective names is not 1

but some other fixed integer n we may specify it explicitly as in

[LSB79, LSC8l]. To specify for example that the single dimension of

collective name E has lower bound nand upper bound k. and that the first

dimension of the two dimensional collective name F has lower bound m and

upper bound n and its second dimension lower bound one and upper bound

k. we write:

NC2 array E(n:k) F(m:n.k) endarray

We may also combine the declarations in NCl and NC2 in one declaration:

NC3 array A(k) B C(5) D(m,3) E(n:k) F(m:n,k) endarray

For the collectivisors to be well-formed we shall require all the

declarations to satisfy the collectivisor restriction Crestl:

(Crestl) has
the upperbound of the dimensions of the collective names V to

be greater than or equal to their corresponding implicit or

explicit lowerbound.

We permit
h . d· f also declaration of subscripted operations t e In lces 0

.. d d on the index of some which either are not consecutlve lntegers or epen .

- 7'-1 -

other dimension. For example, the index in the first dimension of the

subscripted operations:

SO,I)

S(3,1), S(3,2), S(3,3)

S(5,1), S(5,2), S(5,3), S(5,4), S(5,5),

takes values 1, 3, 5 and the index in their second dimension takes

consecutive values from one to the value of their first dimension. We

shall use replicators to generate the set of admissible subscripted

operations as in [LTD79]. The subscripted operations corresponding to S

may be declared by the collectivisor NC4

NC4 array #i:l,5,2[#j:l,i,l[S(i,j)]] endarray

using replicators the notation of which we have modified. We have

changed the generator for index values "[IJlin,fi,inc" to "11i:in,fi,inc"

and moved it in front of "[]". The reason for the change was more or

less technical: the place holder "0" is not standard in size depending

on the length of the index identifier and it is not a standard character

symbol in any computer or typewriter. It has always to be drawn by hand

on paper and be replaced by other symbols whenever a macro program is to

be given as input to a computer program, for example for syntax checking

or for expansion. The reason we moved the index generator in front of

"[]" is mainly for the improvement of readability of replicators. The

replicator may now be read from left to right as

"index i takes values from in to fi in steps of inc which upon

expansion are replacing index 'i' in each copy of the regularity

inside ' []' "

Thus we have separated the index specification part which is common to

all replicators no matter what they generate, from the regularities they

. "[]". generate, which are now the only strings 1n Similar notational

changes will be applied to bodyreplicators and replicators appearing in

sequences. For the replicators to be well-formed they should obey the

second collectivisor restriction Crest2:

- 75 -

(Crest2)

Each replicator must specify a non empty range for its

index.

Restriction Crest2 guarantees that replicators in collectivisors declare

at least one subscripted operation corresponding to each collective

name.

Subscripted operations with the same subscripts in all their

dimensions may be declared by the same replicators and will not be

separated by commas, simplifying the syntax of these replicators and

eliminating the comma between subscripted operations altogether. Also

subscripted operations with the same subscripts in some of their

dimensions, may be groupped together in the same replicator, e.g.

NC5 array #i:l,5,2[T(i) #j:l,i,l[S(i,j) U(i,j)]] endarray

where the collective name T corresponds to the operations

T(l), T(3), T(5)

and the collective name U to the operations

U(l,l),

U(3,1), U(3,2), U(3,3),

U(5,1), U(5,2), U(5,3), U(5,4), U(5,5)

The subscripted operations in replicators may be indexed by expressions

1 · i d· These expressions should satisfy the involving rep 1cator n 1ces.

third collectivisor restriction Crest3:

(Crest3)

All expressions 11 t · es should yield indexing co ec 1ve nam

i h th . d· es they involve integers for all the values wh c e 1n 1C

take.

We also permit grouping

expressions depending

d ti ns indexed by together subscripte opera 0 ,

i d · ther subscripted on replicator indices n eX1ng 0

- 76 -

operations, as in NC6:

NC6 array #i:l,5,2[V(i+3)#j:l,i,I[S(i,j»)) endarray

where V corresponds to the operations V(4), V(6), V(S). We shall

require that collectivisors involving nested replicators,

constrained by the fourth col1ectivisor restriction Crest4:
(Cre st4)

A collectivisor involving nested rep1icators must be of the

form

are

itkn: inn, fin, incn[•• • llkl: inl, fil, inel [Y(hl, h2, ••• , hn») •••]

where hi for i=I, ••• ,n are expressions involving indices kj

for j=I, ••• ,n such that each ki for i=I, ••• ,n must appear in

at least one dimension, and an index ki i=I, ••• ,n may only

appear together with indices kj for j>i in a single

expression and in at most (i-I) expressions with indices kj

for j<i.
The restriction Crest4 is imposed to guarantee the independence of the

indices of different dimensions of the same collective name and to avoid

duplication of declarations of subscripted operations. The invalid

declaration

array iti:l,5,2[W(i,i+l)] endarray

declares a two dimensional array W corresponding to the subscripted

operations:

W(l , 2), W(3 , 4), W(5 , 6)

The indices in the dimensions of Ware dependent for if one index is

known the other may be determined. This type of declaration contradicts

the notion of dimension and for this reason is excluded. Crest4 also

excludes duplication of declaration of subscripted operations as

example the following invalid col1ectivisor specifies:

array #i:l,S,2[#j:l,i,I[T(i) S(i,j)]] endarray

for

which declares T(3) three times and T(S) five times. There is a third

11 "" whl."ch is excluded by Crest4 which does not type of co ect1.Vl.sor
define

(0)

- 71 -

dependent dimensions nor dublicates subscripted operations such as

array #i:O,9,l[#j:O,9,l[A(lOO*j+i)]] endarray

The reason we have excluded this type of collectivisor is more subtle

and has to do with the expansion of distributors. We shall discuss this

point in section 3.4 having examined the distributors and their

expansion. We may characterize the shapes of arrays declared by

replicators as being finite n-dimensional arrays, the indices in each

dimension of which 3v~ generated by an integer expression depending on
integer variables taking values from an arithmetic progression.

(ll)

We may also combine the NC3 and NC6 types of declarations in a single

declaration. The complete syntax for the collectivisors is:

MN3. collectivisor=array {simpleardecl/replardecl}+ endarray

MN4. simpleardecl={arrayid }+({{iexpr:/} iexpr ~,}+)

MN5. replardecl=index_spec[{replardecl/arrayid({iexpr ~,}+)}+]

MN6. index_spec=#index:iexpr,iexpr,iexpr

MNl. arrayid=uc-letter{uc-letter/digit/_}~

where "simpleardecl" stands for a list of collective names which

correspond to simple rectangular arrays together with their bounds and

"replardecl" stands for the replicator generating admissible sets of

subscripted operations. The non-terminal "index_spec" stands for the

. d ·f·· f 1· t and ";expr" ~n ex spec~ ~cat~on part 0 a rep ~ca or ~ for an integer

expression. The syntax of "index" is the same as that of a simple

operation rule BN9 of basic COSY. Identifiers used for replicator

indices though, must satisfy the index restriction Irestl:

(Irestl)

Identifiers for replicator indices should be distinct from

any identifiers used for simple operations.

and the restriction Irest2:

The following restric tion mu st also hold:

(CrestS)

An array identifier may only occur once in collectivisors.

- 78 -

(Ires t2)

Replicator indices are only defined inside"[lIt of the

replicator with which they are associated. In the scope of

a replicator index no other replicator index having the same

identifier is permitted.

The restrictions on replicator indices (Irestl) and (Irest2) apply to

all replicators.

3.2.3 The Bodyreplicators

We permit replicators, bodyreplicators as we call them, which may

generate paths and/or processes. Bodyreplicators are permitted to

generate consecutive regularities of paths and/or processes. vIe also

permit nesting of bodyreplicators. The only change to the grammar of

[LTS79] is a notational one and involves the index specification part of

the bodyreplicator, which was changed from "1 index II in, fi, inc" to

"tlindex:in,fi,inc" and was moved in front of "[]". Their syntax is

formally given by:

MN8. bodyreplicator=index_spec[{mpath/mprocess/bodyreplicator}+]

No meta-restriction is needed to guarantee the well-formedness of the

expanded programs. If each of the paths and processes they generate is

well-formed then the whole expansion is well-formed. This will formally

be demonstrated in section 3.3.

The above rules permit for example, the n-free frame buffer to be

specified by NPl:

NPl #i:l,n,l[path DEPOSIT(i);REMOVE(i) end]

f h · t d 1.. th a mechanism controlling and m pipelines 0 size n eac aSSOC1.a e w

exits similar to that in the bounded delay priority queues in [LT79,

C80] to be specified by:

- 79 -

NP2 fli:l,m,l

[flj:l,n,l[path TR(i,j);TR(i,j+l) end]

path TR(i,n+l);CS_END(i) end

We impose the restriction BRrest on bodyreplicators

(BRrest)

The range of the bodyreplicator indices should be non empty.

guaranteing that bodyreplicatorsgenerate at least one regularity. This

is important, for a macro program body could consist of just

bodyreplicators which upon expansion should generate a non-empty basic

program body.

3.2.4 The Paths and Processes

Their syntax will be similar to the syntax of paths and processes of

basic COSY:

MN9. mpath=path (msequence)* end

MNIO. mprocess=process (msequence)* end

We have used "msequence" instead of "sequence" to stand for "macro

sequence" since we will allow replicators and distributors as parts of

them. Similarly, in the syntax rules below, "morelement" will stand for

"macro orelement":

MNll. msequence={morelement ~;}+

MN12. morelement={gelement ~,}+

MN13. gelement=starelement/sreplicator/distributor

MN14. starelement=element/element*

MNlS. elernent=operation/indexedop/(msequence)

MN16. operation=lc-letter{lc-letter/digit/_}~

MN17. indexedop=arrayid({iexpr ~,}+)

In the above rules, "gelement" stands for "generalized element" since it

- 80 -

can be any of starelement, replicator or distributor. We have used

"sreplicator" to indicate replicators which expand to basic COSY

sequences which we call sequence replicators. The only difference

between the above rules and corresponding ones in basic COSY is that

here we allow three new types of elements, sequence replicators and

d istr ibutors, produced by "sreplicator" and "distr ibutor" respectively,

which cannot be starred, and indexed operations, produced by

"indexedop" • The above rules satisfy our third consideration for

developing this grammar since it is structurally similar to the grammar

of basic COSY. It is clear that any basic COSY program may be produced

by the rules obtained up to now. According to these, a macro program

could consist of just macro paths and processes the macro sequences of

which do not involve any sequence replicators or distributors or indexed

operations. But such a program could be produced by the basic COSY

syntax as well. In addition "msequence" may involve any number of the

three new types of elements.

We did not permit replicators and distributors to be starred as the

star will not apply to the whole of the string they would generate, but

only to its last element.

3.2.5 The Sequence Replicators

As we have noted in the previous section 3.1, the syntax rules for

replicators in sequences produced replicators which are either too wide,

not generating well-formed basic COSY strings when expanded, and

meta-restrictions need to be applied, or are not general enough,

generating a class of regularities which is not as large as we would

like it to be. On the other hand we require that the replicators should

be readable without formal expansion. For this reason we shall exclude

replicators generating certain types of regularities. Before we give

any syntax rules, let us specify exactly which replicators we will

exclude. From the discussion in the section 3.1 it is obvious that we

avoid the production of some replicators, namely those
would like to

well-formed only for particular range of their index, the
which were a

range dependent replicators. The path P40 for example

- 81 -

p40 patl2. (([AU);BU»@,IT]11,n,1] end

expands to a well-formed string only for n=2. We will require that when

a replicator expands into a well-formed basic COSy string it does so for

any non-empty range of its index.

Sometimes we may have a choice in generating a string. Should our

replicators be so general as to be able to generate a string in any way

or should they be more restricted? Is the shortest replica tor always

the "best"? To demonstrate the problem in deciding the "best" grammar

let us consider the following example:

P70 path

(A(l); B(l»

,(C(1);D(l),A(2);B(2»

,(C(2);D(2),A(3);B(3»

, (C(3) ; D(3))

end

We may use replicators to abbreviate the regular substructures of the

outermost orelement in P70. Two obviously similar substructures are the

two middle elements of the orelement of P70, which may be generated

using the old notation by:

P71 path

(A(l) ; B(l»

,[(C(i);D(i),A(i+l);B(i+l»@,[IJll,2,1]

,(C(3);D(3»

end

But if we examine the orelement in P70 more carefully we see

another regular pattern is the string

A(i);B(i»,(C(i);D(i) for i=I,2,3.

So P70 may be generated by:

P72 pa t~([A(i) ; B(i)) ,(CCi) ; D(i)@,G 11,3,1])end

that

- 82 -

Although P72 is the most concise path ' generating P70 it has some
drawbacks. The regularity of the r l' t ep lca or cannot be described

syntactically in terms of the non-terminals used in basic COSY because

of the unmatched opening and closing parentheses. On the other hand the

regularity in the replicator P71 may be described as:

(sequence)@,

(orelementjorelementjorelement)@,

(elementjelement,elementjelement)@,

etc.

Furthermore, the expansion of the replicator in P72 is only well-formed

in the context "(•••)" and not in any other context of any sequence

replicator. We shall call this type of a replicator context dependent.

As we would like our replicators to be well-formed when expanded in any

possible context these replicators will not be permitted.

There is yet a third kind of a replicator we will not permit, the

expansion of which does not depend on the separators on its left and on

its right but on other replicators nearby. Consider for example the

stack written as:

P73 path [(UP(i)@j[2J11,n,1]j[DOWN(i))*@j~ln,1,-1] end

which may be produced by the grammar of [LS77]. When the replicators in

P73 are expanded, the resulting path is well-formed in basic COSY. We

shall call these replicators neighbourhood dependent.

All three types of replicators we shall exclude have a common

characteristic. They do not generate sequences themselves but only

together with other parts of the macro sequence in which they are

embedded. Since replicators may appear as non-starred elements in a

macro sequence and according to our first consideration should produce

11 f d b ' COSY h panded they should generate we - orme aS1C programs w en ex ,

basic COSY sequences. The replicators and the distributors according to

f " th" "" "." "(" and rules MN9 to MN15 may only appear after any 0 ~, " "

before any of "end", "" II. II ")" and what may legally be written
" "

d from the non-terminal between any of these is a string generate

- 83 -

"sequence" of bacic C()SY Th "f h a • e expanSion a t ese replicators should

always be non-empty, otherwise collision of terminal symbols will arise.

We will obtain replicators which when expanded always generate

well-formed basic COSY strings in any context they appear in the macro

sequences. Here we do not try to produce replicators which generate

syntactically strong strings (cf. section 3.1.5 grammar of [L79]). A

part of a basic sequence which is a sequence itself is said to be

syntactically strong in its context, if no parts of it bind with parts

in its context. Our intention is to obtain a grammar which produces

replicators generating a large class of well-formed basic COSY strings.

In chapter 4 we shall give alternative rules for macro sequence by which

all replicators in sequences generate syntactically strong strings.

Although such replicators restrict the power for conciseness of macro

programs, they have the advantages that it is not necessary for a macro

sequence to be completely expanded for its semantics to be understood,

and that they improve the readability of macro sequences significantly.

We would like to extend replicators to be able to generate

imbrication of regularities which could not possibly be generated by any

single replicator we examined in section 3.1, owing to the restrictive

operational semantics of "@". These include sequences of path P43 for

example

P43 path (A(I),(A(2),(A(3);B(3)),B(2)),B(I)) end

in which all regularities are of the form

p() s1. •• s1 q()

except the innermost which is of the form

p() 52 q()

"51" "s2" f "." or " " but not the same. We had where and are one 0, ,

" 3 1 5 h t t generate these kind of regularities pointed out in sectl.on •• tao

the "@" should not only strip separators but replace them
by others. We

d 1 Wi" th this shall modify the replicator notation to ea
extension and

bring it into the same form as the rest of the replicators we have

- 84 -

developed up to now in this section. Let us first give the rules

according to which a replicator in the old notation expanding to a basic

COSY sequence is transformed into the new. The replicators which most

of the grammars permit and which expand to sequences are of three types:

A. [p(i) @ sepCDq(i)lin,fi,inc]

B. [p(i)[]q(i) @ seplin,fi,inc]

C. [p(i) @ sepGJlin,fi,inc]

where "p", "q" are str ings which may involve subscr ipted operations the

indices of which may depend on the replicator index "i". We shall

transform A, Band C to the new notation in five simple steps. For each

step we indicate to which type it will apply as some of the steps apply

only to one or two types. When a step is applied the new intermediate

forms of A, B, C will be given and will be identified by super scripting

A, B, C by an integer denoting the number of transformations this type

has undergone until that point. We assume that A, B, C are the same as

AO, BO and CO respectively. The five transformation steps are:

stepl

applied to AO: put after "II]" the symbol "@".

applied to BO: put before "11] II the symbol "@".

Ai. [p(i) @ sepGJ@ q(i)lin,fi,inc]

Bl. [p(i) @[Dq(i) I~ seplin,fi,inc]

step2

applied to Bl: move "@ sep" immediately after "m ".

B2. [p(i) @[TI@ sep q(i)lin,fi,inc]

step3

1 ° "@"" @" applied to A ,C : change sep to sep •

A2. [p(i) sep @GJ@ q(i) I in, fi, inc]

C l • [p(i) sep @0Iin,fi,inc]

- 85 -

step4

applied to ;\2, 32 , C 1: since the two "'J"s in AL and BL are

sufficient to demarkate the patterns on the left d an on the right of

"[}]" we may remove the place holder, change the index specification

to "Iti:in,fi,inc" and move it in front of "[)" as we did for

other replicators. The same may be done for C1•

A 3. #i:in,fi,inc[p(i) sep 2 @ q(i)]

B 3. #i:in,fi,inc[p(i) @ @ sep q(i))

C2• IIi: in, fi, inc[p(i) sep @] C is now in its final form.

stepS

the

applied to A3 and B3: if q(i) in A3 is of the form "sepl q'(i)"

and p(i) in B3 of the form "p'(i) sepl" copy the separator "sepl"

leading q(i) and respectively terminating pO) between the two "@"s

in A3 and B3 respectively.

A4 #i:in,fi,inc[p(i) sep @ sepl @sepl q'(i)]

B4 #i:in,fi,inc[p'(i) sepl @ sepl @ sep q(i)]

A and B are now in their final form. If q(i) and p(i) in A3 and

B3 respectively are not in the appropriate form, step 5 is not

applied and A3 and B3 are therefore in their final form.

Let us apply these transformations to three replicators Rl, R2 and R3 in

the old notation corresponding to the types A, B, C respectively. In

the expressions below Rli, R2i and R3i will correspond respectively to

forms Ai, Bi and Ci for i=O, ••• ,4 of the above conversion rule.

The replica tor Rl

Rl. [(SKIP(i)@;m),DO(i)ll,n,l]

after step 1 becomes Rll

Rll. [(SKIP(i)@;IT!@),DO(i)ll,n,l)

which after step 3 becomes R12

- 86 -

R1 2 , [(SKIP(i) ;@QJ@),OO(i) 11 ,n, 1]

which finally after step 4 becomes R1 3

R1 3, #i:l,n,I[(SKIP(i);@ @),OO(i)]

As step 5 cannot be applied this is now in the new notation,

The replica tor Rl

Rl , [(UP (1) ; IT] omm (i)) *@; I 1 , n, 1]

after step 1 becomes

Rll, [(UP(i);@!Il00WN(i»*@;ll,n,1]

which after step Z becomes Rl2

RZ 2. [(UP (i) ; @ Q @ ; DOWN (i)) * I 1 , n, 1]

which after step 4 becomes R2 3

RZ 3, #i:l,n,l[(UP(i);@ @;DOWN(i»*]

taking its final form after step 5

Rl4. #i:l,n,l[(UP(i);@;@;DOWN(i»*]

The replicator R3

R3 • [(A(i) ; B (1)) @ , [I] I 1 , n, 1]

after step 1 becomes R3 1

R3 1 , [(A(i) ; B (i)) ,@ IT] I 1 , n, 1]

taking its final form after step 4

- 87 -

R3 2. iii: 1, n, 1 [(AU) ; B(i)) ,@ 1

The replicators generating basic COSY sequences in the

are of two types:

the concatenator

generating consecutive regularities and are of the form

(Cone) #i:in,fi,inc[p(i) sep @1 and

the imbricator

new notation

generating regularities nested within each other and are of the form

(Imbr) #i:in,fi,inc[p(i) @ t @ q(i)1

where "p", "t", "q" denote "patterns" and "sep" one of the separators

11." , or II tt , . For concatenators and imbricators to expand to the same

strings as replicators in the old notation of types C and A, B

respectively, the operational semantics of "@" have to be changed.

In the concatenator the "@" strips the separator in front of it in

the last copy of the regularity "p(i) sep". The expansion of the

concatenator therefore looks like:

(concexp)

p(in) sep p(in+inc) sep ••• sep p(fi')

where "fi'" denotes the final value of the range of the index which may

be different from "fi".

In the imbricator the separators before the first "@" and after the

"() ()" will be second "@" in the last copy of the regularity p q

replaced by "t". The expansion of the imbricator looks like:

(imbrexp)

p(in) p(in+inc) ••• p'(fi') t q'(fi') ••• q(in+inc) q(in)

- 88 -

In the :J.bolJe expression "fi'" is the same ''is l'n (concexp) and "p''', "q'"
are the same as "" "" . p, q respectIvely but with any tr il' a lng separator of
"p" d 1 d an any ea ing separator of "q" respectively, removed.

The reason we have specified a string "t" to be between the two "@"s

instead of just a separator is that we would like our grammar to

paths such as NP3

NP3 path empty,#i:l,n,l[(UP(i);@;full*;@;DOWN(i»*] end

permit

which specifies a stack of size n with tests for empty and full. When

NP3 is expanded for n=3 for example the path NP4 is obtained:

NP4 path

empty

,(Up(l)

;(UP(2);(UP(3);full*;DOWN(3»*;DOWN(2»)*

; DOWN(l)

)*

end

in which the starred operation "full*" appears only once, in the

innermost regularity. In general we shall permit any string to appear

at that position as long as it forms a well-formed basic COSY string

with the rest of the expansion.

Having specified what kind of replicators we will permit, and having

decided on the notation of sequence replicators, we proceed to obtain

their formal syntax rules. The approach we follow here is not to leave

"p", "t", "q" as "patterns" but to specify more precisely what these may

be syntactically. The syntax of the two types of replicators,

concatenators and imbricators, shall be considered separately. The

non-terminal "sreplicator" producing sequence replicators is defined as

follows:

MN18. sreplicator=index_spec[{concseq/imbrseq}]

where the non-terminals "concseq" and "imbrseq" produce to the string

- 89 -

inside "[j" of concatenators and imbricators respectively. We next
give the syntax for "concseq" and "imbrseq".

The non-terminal "concseq"

Before

us examine

we give the syntax rules for the non-terminal "concseq", let

informally what p(i) in Conc should be syntactically. Its

expansion (concexp) has been schematically given by:

p(in) sep p(in+inc) sep ••• sep p(fi')

For this string to be a well-formed basic COSY sequence each of "p()"

may in general be a sequence as we shall formally prove in 3.3.1.

Therefore we may define "concseq" as

concseq=msequence sep @

which in principle is the syntax given in [L76, TL77].

According to the above rules though, '1 • " , and " 11 , in the context

before "@" have equal precedence, whilst in the rest of the macro

notation and in basic COSY"," has precedence over 11.11 , . To avoid this

mixed precedence we shall consider the string produced by "concseq" as a

regular expression with the symbol "@" appearing once as the last

"element":

concseq={morelement;}~ concor

concor={gelement,}~ @

in which "concor" stands for the special "orelement" which contains as

its last "element" the symbol "@". According to the above rules " " , has

precedence over ";" as in basic COSY. However, the above rules permit

"concseq" to produce the string consisting of just "@", and therefore

the replicator

lIi:in,fi,inc[@]

may be produced which replicates the empty regularity thus generating an

- 90 -

empty expansion. To avoid the production of this empty replica tor we

finally define "concseq" as:

concseq={morelementj}~ concor

/{morelementj}+ @

concor={gelement,}+ @

The path R3
3

obtained from R3 by the conversion rule from the old to

the new notation is permitted by the above rules. Also the replicators

NRl and NRl:

NRl #i:l,n,l[DEPOSIT(i)j@]

NRl #i:l,n,l[#j:l,k,l[A(i,j),@]j@]

In section 3.3.1 we shall formally prove that each of the replicators

produced by these rules expand to macro sequences in general, and that

their complete expansion forms a basic COSY sequence.

The non-terminal "imbrseq"

Before we give syntax rules for "imbrseq" let us examine informally

what imbricators should generate so that when completely expanded they

always generate well-formed basic COSy sequences. Let us first consider

just the outermost regularity of their expansion (imbrexp):

p(in) ••• q(in)

Since (imbrexp) on the whole forms a sequence, p(in) must be a legal

head of a sequence and should start with either an operation or "(".

Similarly, q(in) must be a legal tail of a sequence and must terminate

with an operation or ")" or ")*". Let us now examine the first and the

second regularity of the expansion (imbrexp):

p(in) p(in+inc) ••• q(in+inc) q(in)

The strings "p(in)" and "p(in+inc)" must be legally connected if they

together are to form a legal head of a sequence. Since these two

- 'J 1 -

strings differ only in the integer expressions they involve, they start

with the same symbols which implies that for the expansion of the

imbricator (imbrexp) to be well-formed "p(i)" must terminate with ";" or
I' 11 , or Applying a similar argument to "q(in)" and "q(in+inc)" we

determine that "q(i)" lIDlst start with ";" or "," or ")". Furthermore,

the number of unmatched opening parentheses in "p(i)" should match with

closing parentheses in "q(i)".

The above observations imply that the string "@ t @" appears in the

string generated by "imbrseq" in the context in which generalized

elements would appear. Therefore, the string generated by "imbrseq" may

be considered as a "sequence" in which the string ",:E t @" appears once

only as a non-starred "element". In addition "t" may be of four

different forms depending on its immediate enclosing context, that is

depending on whether on the left of the first n@n is any of n[", "(" or

a separator, and whether on the right of the second If@" is any of "]'1,

")" or a separator. If t is in the context

1. { ; / , } @ t @ { ; / , } then t=sep{/msequence sep}

2. {(/ [} @ t @ { ; / , } then t= {/msequence sep}

3. { ; / , } @ t @ O/]} then t={/sep msequence}

4. {(/ [} @ t @ O/]} then t=msequence

where "sep" indicates of It." or 1f II and "msequence" a macro one , ,

sequence.

Let us first give formal context-sensitive rules (CS) for "imbrseq":

(CS)

imbrseq={morelement ;}~ imbror {; morelement}~

imbror={gelement ,}~ imbrgel {, gelement}~

imbrgel=special_el/imbrstarel

imbrstarel=imbrel/imbrel*

imbrel=(imbrseq)

{ ; / , } special_el {;/,}={;/,}

{C/ [} special_el {;/,}={C/[}

{ ; / , } special_el O/]}={;/ ,}

{C/ [} special_el Oll}={(/[}

@

@

@

@

sep {/msequence sep} @ {if,}

{/msequence sep} @ {;/,}

{/sep msequence} @ {)/]}

msequence @ {)/]}

- 92 -

The string "{sl/s2}" where sl and s2 are one of ";", ",", "(", ")", "l"
and "]" denote alternative equivalent contexts for "special el". The

symbols "l" and "]" are possible contexts for "special_el" in spite of

the fact that they do not appear in the first five production rules of

(CS) since the string produced by "imbrseq" is enclosed in "l]" CcL

XN18), and since "imbrseq" could just produce

"special_el" produces.

a string which

Let us apply the above rules CS to derive the strings inside "[]" of

imbricators NR3, NR4 and NR5:

NR3 #i:l,n,l[(UP(i);RESET(i),@@)]

NR4 #i:l,n,l[(UP(i);@;@;DOWN(i))*]

NRS #i:l,n,l[(SKIP(i);@@),V(i)]

The symbol "=>" in the derivations which follow, means that the leftmost

non-terminal to the left of "=>" is replaced using a rule of the grammar

to yield a string to the right of "=>". We shall use the symbol "=>+"

to denote the derivation of a simple or indexed operation from a

non-terminal, for brevity. For example the derivation

gelement=> starelement=> element=> indexedop=> UP(i)

may be abbreviated to

gelement=>+ UP(i)

The complete derivation of the string inside "[]" of NR3 is:

- 93 -

imbrseq =) irnbror =) irnbrgel =) irnbrstarel =) imbrel =)
=) (imbrseq)

=) (morelement ; imbror)

=)+ (UP(i) imbror)

=) (UP(i) gelement imbrgel)

=)+ (UP(i) RESET(i) imbrgel)

=) (UP(i) RESET(i) special_el)

=) (UP(i) RESET(i) @@)

The complete derivation of the string inside "[]" of NR4 is:

imbrseq =) imbror =) imbrgel =) imbrstarel =) imbrel*
=) (imbrseq)*

=) (morelement ; imbror ; mor e lemen t) *

=)+ (UPCi) imbror ; morelement)*

=) (UPCi) @ sep @ ; morelement)*

=) (UPCi) @ @ morelement)*

=)+ (UP(i) @ @ DOWN(i))*

The complete derivation of the string inside "[]" of NRS is:

imbrseq =) imbror

=) imbrgel • gelement

=) imbrstarel. gelement

=) imbrel. gelement

=) (imbrseq) • gelement

=) (gelement

=)+ (SKlPCi)

=) (SKlP(i)

=) (SKIP(i)

=) (SKIP(i)

=)+ (SKIP(i)

imbror) , gelement

imbror) • gelement

imbrgel) • gelement

special_el) • gelement

@@)

@@)

gelement

vCi)

If t has its right form then when a replicator is expanded it will

"bind" the left and the right expanded parts so that the resulting

string may be produced by "sequence" of basic COSY.

- 94 -

The rules (CS) have two disadvantao?es', th ' e syntaK of 'imbr seq" is

given in terms of context-sensitive rules and the "," and "" , ,are of

mixed precedence. Let us first obtain context-free rules keeping the

mixed precedence of

"element" on its

f1 " ,
own

and ";". We will not express "@ t ;E" as an

but together with other strings on its left and

right so that the context of each of the four

u orms may e expressed as: distinguishable. The fo r f b

1 I •

2 I •

msequence sep @ sep{/msequence sep}@ sep msequence

@ {/msequence sep} @ sep msequence

3' • msequence sep @ {/sep msequence} @

4' • @ msequence @

The context-free syntax rules for "imbrseq" in which

still mixed precedence are:

(CFm)

imbrseq={morelement ;}~ imbror {; morelement}*

If." ,

forms

and

/msequence sep @ sep{/msequence sep} @ sep msequence

/@ {/msequence sep} @ sep msequence

/msequence sep @ {/sep msequence} @

/@ msequence @

imbror={gelement,}~ imbrstarel{,gelement}~

imbrstarel=imbrel/imbrel*

imbrel=(imbrseq)

become

" .. , have

These syntax rules guarantee the production of well-formed macro COSY

programs which when expanded produce well-formed basic COSY programs.

This was possible by distinguishing the four different places where "@ t

@" could appear. The string between the two "@" may contain, as it is

clear from the syntax rules, a macro sequence. These syntax rules also

allow any number of opening parentheses anywhere on the left of the

first "@" and matching closing parentheses anywhere on the right of the

second "@". Parentheses always match since they are produced in pairs.

- 95 -

Let us derive the strings inside "[J" of NRJ N"4 'TC ,) '" and,!{5.
NRJ:

imbrseq =) imbror =) imbrstarel =) imbrel

=) (imbr seq)

=) (msequence sep @ @)

=) (morelement; morelement sep @ @)

=)+ (UP(i)

=)+ (UP(i)

=) (UP(i)

morelement sep @ @)

RESET(i) sep @ @)

RESET(i) , @ @)

then of NR4:

imbrseq =) imbror =) imbrstarel =) imbrel*
=) (imbrseq)*

=) (msequence sep @ sep @ sep msequence)*

=)+ (UP(i) sep @ sep @ sep msequence)*

=) (UPCi) @ sep @ sep msequence)*

=) (UPCi) @ @ sep msequence)*

=) (UP(i) @ @ msequence)*

=)+ (UPCi) @ @ DOWN(i»*

and finally of NR5:

imbrseq =) imbror

=) imbrstarel , gelement

=) imbrel , gelement

=) (imbrseq) , gelement

=) (msequence sep @ @) , gelement

=) (morelement sep @ @) , gelement

=)+ (UPCi) sep @ @) , gelement

=) (UP(i) ; @ @) , gelement

=)+ (UP(i) ; @ @) , VCi)

Fir st of

In the syntax rules CFm however, the separators ";" and"," are of mixed

precedence. The following context-free rules specify the precedence of

" II over ";", but some meta-restriction rules are needed:

(CFr)

imbrseq={@/ } {imbror ~;}+ {@/ }

imbror={imbrgel ~,}+

- 96 -

imbrgel=imbrstarel/distributor/sreplicator/@

imbrstarel=imbrel/imbrel*

imbrel=operation/indexedop/(imbrseq)

The above rules do not constrain the production of "@". Any number of

"@"s . may appear ~n the strings produced by the above rules. Therefore,

meta-restriction rules are needed to exclude certain strings:

(MR3)

(i) Only two "@" should be produced, and

(ii) the string "@ ••• @" should be in its appropriate form

according to its context.

The above syntax rules CFr and meta-restriction rule MR3 are based on a

different approach from other syntax rules and corresponding

meta-restrictions. Instead of leaving the symbols free, constraining

them by meta-restrictions MRI or MR2, we specify the "patterns" these

symbols may form, leaving the number of "@"s free. Therefore, the

checking of an imbricator for well-formedness is simplified, it being

necessary only to check a substring, rather than the whole string,

namely the substring "@ t @" and its immediate context.

We may derive the strings inside "[]" of the replicator NR3, NR4 and

NRS, applying the syntax rules of CFr as follows. Firstly, of NR3:

imbrseq =) imbror =) imbrgel =) imbrstarel

=) imbrel =) (imbrseq)

=) (imbror;imbror @)

=)+ (UPCi); imbror @)

=) (UP(i);imbrgel,imbrgel @)

=)+ (UP(i);RESET(i),imbrgel @)

=) (UP(i);RESET(i),@ @)

- 97 -

then of ~R4:

imbrseq =) imbror =) imbrgel =) imbrstarel

=) imbrel* =) (imbrseq)*

=) (imbror; imbror ; imbror ; imbror)*

=)+ (UP(i)

=) (UP(i)

=) (UP(i)

=)+ (UP(i)

imbror ; imbror ; imbror)*

@ imbror; imbror)*

@

@

@

@

imbror)*

DOWN(i))*

and finally of NRS:

imbrseq =) imbror

=) imbrgel , imbrgel

=) imbrstarel , imbrgel

=) imbrel , imbgel

=) (imbrseq) , imbrgel

=) (imbror , imbror @) , imbrgel

=)+ (SKIP(i) imbror @) , imbrgel

=) (SKIP(i) @ @) imbrgel

=)+ (SKIP(i) @ @) V(i)

We would like however, to avoid the use of meta-restrictions

altogether. To accomplish this we follow the approach in (CFm) letting

the string inside the innermost "(•••)" which contains "@ t @" to be

produced by a non-terminal "imbr_at_seq".

produced by "imbrseq" will look like an

non-terminal "imbrseq" may be defined by:

The rest of the string

macro sequence. The

- 98 -

(CF)

imbrseq=imbr_at_seq

/{morelement ,"}_* imbror {", 1 more ement}*

imbror={gelement .}* imbrstarel {, gelement}*

imbrstarel=imbrel/imbrel*

imbrel=(imbrseq)

We have to specify what "imbr_at_seq" produces. We will consider it to

produce one of the following strings each corresponding to one of the

forms l' to 4':

I". A regular expression in which the two "@" are included as special

elements.

2". A regular expression including one "@" as a special element, headed

by an "@".

3". A 1 @ regu ar expression including one " " as above, followed by an

U@".

4". A regular expression headed and followed by "@"s.

We need to specify where the symbols "@" in these "regular" expressions

are to appear. They may appear on their own as single non-starred

elements. They may also appear in "or elements" as non-starred elements.

We shall denote the "orelements" in which they are to appear by "at_or".

Since these may contain one or two instances of "@" we suffix "at_or" by

either "1" or "2". Furthermore. we need to specify where in "at or" the

"@"s are to appear. For"a t or 1" we may distinguish three cases in

which the "@" may be in front. in the middle. or at the back and for

"at or2" four cases in which the first "@" is in front and the second in

the middle or the first in front and the second at the back. or the

first in the middle and the second at the back. or both in the middle.

Therefore we shall need seven non-terminals: "at orlf". "at orlm".

- 99 -

"at or2mb" - , "at or2mm"

each of the "orelements" we described above. Their syntax: is:

at_or 1 f=@ {,gelement}+

at_orim={gelement ,}+ @ {, gelement}+

at_or 1 b={gelement ,}+ @

at or2fb=@ {, gelement}~ , @

at or2fm=@ {, gelement}~ , @ {, gelement}+

at_or2mb={gelement ,}+ @ {,gelement}~ , @

at_or2mm={gelement ,}+ @ {,gelement}~ , @ {, gelement}+

producing

Let us give some examples of productions of the above non-terminals:

at orif =) @ , gelement =)+ @ , A(i)

at orim =) gelement,@,gelement =)+ A(i),@,gelement =)+ A(i),@,B(i)

at orib =) gelement,@ =)+ RESET(i),@

at or2fb =) @,gelement,@ =)+ @,ready,@

at or2fm =) @,@,gelement =)+ @,@,B(i)

at or2mb =) gelement,@,@ =)+ A(i),@,@

at or2mm =) gelement,@,@,gelement =)+ A(i),@,@,gelement

=)+ A(i),@,@,B(i)

The non-terminal "imbr_at_seq" may now be defined by:

- 100 -

imbr_at_seq=

{morelement ;}+ {@/at orlf/at orlm/at orlb} { 1 }* - - _ ; more ement ;
{@/at_orlf/at_orlm/at_orlb} {; morelement}+ -

@/
/{morelement ;}+ {~t_orif/at_orim/at_orlb} {; morelement}~;

{at_or If/at_or 1m}

/{at_orim/at_orlb} {; morelement}~;

{@/at_or1f/at_or1m/at_or1b} {; morelement}+

/{at_or1m/at_or1b} {; morelement}~;

{at_orlf/at_or1m}

\at_or2fb/

/{morelement ;}+ ~ or2fm/at_or2mm/at_or2mb} {; morelement}+

/{morelement ;}+ {at_or2fm/at_or2mm}

/{at_or2mm/at_or2mb} {; morelemnt}+

fat or2mm

/@ {morelement ;}~ {at_or If/at_or 1m}

/@ {morelement ;}~ {@/at_or1f/at_or1m/at_or1b} {;morelement}+

/{at_or1m/at_orlb} {; morelement}~ @

/{morelement ;}+ {@/at_or1f/at_or1m/at_or1b} {;morelement}~ @

/@ msequence @

The above rules are certainly context-free, specify the precedence of

" II , over ";" and as we shall formally prove in the next section, always

produce replicators which when expanded yield macro sequences in

general. These rules were obtained by keeping the production rules in

(CFm) which did not involve "@" and by expressing the strings which were

produced by productions of (CFm) involving the "@" as a "regular

expression" with special "orelements" containing the special element

- 101 -

"@". This was necessary for the elimination of the mixed precedence of

the two separators. The first eight of the production rules of

"imbr_at_seq" in (CF) correspond to the form 1', the next two to 2', the

next two to 3' and the final one to 4'.

Let us derive the strings inside "[l" of replicators NR3, NR4 and

NRS from the above rules. First of NR3:

imbrseq =) imbror =) imbrstarel =) imbrel

=) (imbrseq)

=) (imbr at seq) - -
=) (morelement ; at or 1 b @)

=)+ (UP(i) at orlb @) -
=) (UP(i) gelement @ @)

=)+ (UP(i) RESET(i) @ @)

then of NR4:

imbrseq =) imbror =) imbrstarel =) imbrel*

=) (imbrseq)* =) (imbr_at_seq)*

=) (morelement; at_orlf ; at_orlf ; morelement)*

=)+ (UP(i)

=) (UP(i)

=) (Up(i)

=)+ (UP(i)

and finally of NR5:

at or 1 f ; at_or 1£ ; morelement)*

@

@

@

at orlf ; morelement)*

@ morelement)*

@ DOWN(i»*

imbrseq =) imbror =) imbrstar , gelement

=) imbrel, gelement

=) (imbrseq) , gelement

=) (imbr_at_seq) , gelement

=) (morelement; at orlf @) , gelement

=)+ (SKIP(i)

=) (SKIP(i)

=)+ (SKlP(i)

at orlf @) , gelement

@ @)

@ @)

gelement

V(i)

f t his subsection sequence
As we have indicated in the introduction 0

- 102 -

replicators should not expand to empty strLngs.

3.2.6 Some More Replicators

One criterion for the generality of a macro COSY notation would be

whether macro programs in this notation may represent basic programs

which have been represented by macro programs in other macro notations.

Although quite a number of extensions have been introduced so far in the

notation sequence replicators have a limitation: they should not expand

to empty strings. A replicator may generate empty strings for two

reasons, either because its regularity is the empty string, or because

the values of "in", "fi", "inc" are such that the range of the index is

empty. The former situation cannot occur in replicators produced by the

grammar introduced so far since empty regularities are not permitted by

the syntax rules. Tnese replicators are not useful anyway. The latter

situation is excluded by our meta-restrictions on "in", "fi" and "inc"

imposed to avoid collision of terminal symbols.

The only place where a replicator would sometimes expand to the empty

string and sometimes not, is encountered in the non-starving banker in

[LT78] where the string

S1 (BNKRD(1)[;par;rap[]ll,n+1,-1];

of wh;ch had "1" as its was nested inside three replicators one L
index,

ranging from n+1 to 1 in steps of -1. Obviously, the replicator in the

above string expands to non-empty when l=n+l and even then only one copy

of"; par jr ap" is gener a ted. The string S1 in the style of the new

notation for replicators would look like

S2 (BNKRD(1)#i:l,n+1,-1[jpar;rap];

which would not be permitted by our rules in any macro COSy program.

is not the Context of a "gelement" and the The context of the replicator

regularity in "[]" cannot be produced by "concseq"

however, S2 were rewritten as

or "imbrseq". If

- 103 -

S3 (BNKRD(1);#i:l,n+1,-1[par;rap;@];

it would be a well-formed substring in a macro COSY program. When the

replicators in S3 and Sl are expanded to non-empty t i h s r ngs t ey generate

the same basic COSY string. When however, 1<n+1 then the expansion of

the replicator in S3 would would yield the empty string, and S3 would

become:

S4 (BNKRD(l);;

which is not a well-formed basic COSY string because of the collision of

the two semicolons. We will permit some special kind of replicators

which may expand to empty strings. These replicators should generate

well-formed basic COSY strings whether expanded to empty or not. They

should conform with our primary consideration for well-formedness after

expansion. To permit this kind of replicators we need to extend the

notation and modify one of our syntax rules.

To avoid collision of separators when these replicators generate

empty strings as in S4, their context should not be the same as that of

generalized elements. A separator should be "missing" either on their

left or on their right. Their expansion has to provide the extra

separator. If the separator on their left is missing they will be

called left replicators and will be produced by the non-terminal

"lreplicator" and if the separator on their right is missing, they will

be called right replicators and will be produced by the non-terminal

"rreplicator". For their expansion to bind correctly, right replicators

should precede and left replicators should follow starelements, sequence

replicators and distributors. The syntax rule for "gelement", MN 13

should be modified to

HN 13. gelement={rreplicator}*

{starelement/sreplicator/distributor}

{lreplicator }~

The replicator s produced by the non-terminals "lreplicator" and

" rrep licator" will generate sequences with a separator preceding and

following respectively. We shall define their syntax by the rules:

- 104 -

lreplicator=index_spec[{;/,}I {concseq/imbrseq})

rreplicator=index_spec[{concseq/imbrseq}I{;/,})

and therefore a replicator produced by the fO lrst rule will have the
forms:

(Lconc) #i:in.fi.inc[seplp(i) sep @)

(Limbr) #i:in.fi.inc[seplp(i) @ t @ q(i)]

and by the second rule the forms:

(Rconc) #i:in,fi,inc[p(i) sep @Isep]

(Rimbr) #i:in,fi,inc[p(i) @ t @ q(i)lsep]

If their index range is empty the strings generated by their expansion

will be empty as well. Otherwise the strings generated by the expansion

of L(conc or imbr) and R(conc or imbr) will be the same as the strings

generated by the expansion of the sequence replicator obtained from them

by removing "sepl" and "Isep" respectively, preceded and respectively

followed by "sep". In the above notation S3 would be written as:

NR6 (BNKRD(l)#i:l,n+1,-1[;lpar;rap;@];

Although the replicator in the string S1 was used in [LT78] it cannot be

produced by the grammar in that paper. As we noted in section 3.1.5 the

grammar in [LT78] specified that replicators in sequences appear in the

context of "elements". This kind of replicators may be produced only by

the grammars which specified their regularities as strings together with

MR2 or by the grammars in [LS80] and [SL80].

In certain cases the same basic COSY string could be generated by

another replicator more economically than by a left or right replicator.

Indeed the replicator

#i:l.n+l,-1[;par;rap]

generates the same string as the replicator in NR6 for any land n.

This is only possible when the separator before the "@" is the same as

- 11)5 -

the separator before "I" in left replicators or the
separator after "I",

which is not true in gen 1 F
era. or example consider the left replicator:

NR7 tli:l,n,k[; I(A(i);B(i)),@]

and suppose it is nested within another 1" rep ~cator with index "k"
ranging from 0 to n where n is a constant.

expansions for NR7 would be:
For n=3 the possible

for k=O: empty

for k=l: "; (A(1); B(1)) ,(A(2); B(2)) ,(A(3); B(3))"

for k=2: " ; (A(1) ; B (1)) ,(A(3) ; B (3))"

for k=3: "; (A(1) ; B(1))"

No grammar for macro COSY given in the literature may produce
replicators which generate the above strings at all, let alone more

economically.

As we would like our replicators to have a fixed form we have chosen

generality at the expense of some loss of conciseness rather choosing

conciseness at the expense of generality.

3.2.7 The Distributors

As we have noted in section 3.1.9, the distributor able to generate

the largest class of regularities was defined in [LSC81] by:

distributor=sep[msequence]

In the new notation we have replaced the round parentheses "(", and ")"

around the string to be distributed by the square brackets "[" and "]"

respectively to distinguish between basic COSY and macro COSY symbols.

What is inside "[]" is specified as a macro sequence. However,

there is a difference between a macro sequence in a distributor and a

macro sequence in paths and processes. The operations and indexed

operations in the former are really array-slices. By an array-slice we

- 106 -

mean an equivalence class of indexed operations corresponding to the

same collective name the indices of which differ in at least one

dimension. Array-slices are represented like indexed operations but

with the index fields, corresponding to the dimensions in which their

elements differ, left blank. We call the dimensions corresponding to

blank fields of an array slice the distributable dimensions of the

array-slice. An array slice could have several distributable

dimensions. When all the dimensions of an array slice are distributable

then these define all the operations in the array and are represented by

the collective name itself without any index fields at all. For example

the collective names A and B defined by the collectivisor

NC7 array A(O:3) B(4,3) endarray

contain several slices. The collective name A has only one dimension

and therefore only one array slice represented by

A() or A

defining the equivalence class of all the operations in A

[A(O) ,A(1) ,A(2) ,A(3)]

The collective name B has two dimensions and eight array slices:

B(l,)

defining the equivalence class

[B(1,1),B(1,2),B(1,3)]

and

B(2,), B(3,), B(4,), B(,1), B(,2), B(,3), B(,)=B

i d Off between macro sequenc e i n distributors
The only syntact c ~ erence

is that some of the index fields of the
and macro sequence anywhere else

- 107 -

"operations" of the former may be empty We suggest to define the

"indexedop" in such a way that it would be s t ti 11 yo ac ca y valid for them

to have some empty index fields. We can further restrict the

"operations" involving blank fields to distributors by meta-restriction

rules. The non-terminal "indexedop" will then be defined as:

MN17. indexedop= arrayid{({{iexpr/ }~ ,}+)/ }

Alternatively we could specify rules to distinguish the two macro

sequences but this would almost double the number of our syntax rules.

A distributor operates on a specific distributable dimension of each

array-slice in its macro sequence which after the expansion of the

distributor ceases to be distributable. We shall refer to them as the

distributable dimensions of a distributor. The array slices will be

replaced upon the expansion of the distributor by sections of

array-slices. By a section £! an array slice we mean the equivalence

subclass of operations in the array-slice which have the same index in

one of the distributable dimensions of that slice. These sections can

either be indexed operations or other array-slices with one

distributable less dimension than the slice they originated from. For

example slice A contains four sections which are indexed operations

A(0), A(l), A(2), A(3)

and slice B contains seven sections which are all array-slices

B(l,), B(2,), B(3,), B(4,), B(,1), B(,2), B(,3)

The distributable dimensions on which the distributor operates are said

to be compatible when they all contain the same number of sections and

the distributor is said to satisfy the compatibility criterion (eel).

Only if this compatibility criterion (eel) is satisfied is the

d d b nded Before we specify how a
distributor well-forme an may e expa •

distributor is expanded we need to define a total order on sections of

f 1 · S1·nce these sections differ distributable dimensions 0 array-s 1ces.

from the others in the index value of one of their dimensions their

order is natural to be defined according to these indices. The order of

- 108 -

the sections is defined to b h
e t e order in which these indices are

generated in the array declarations. A distributor in which all the

distributable dimensions on which it operates contain n sections may be
expanded as follows:

n copies of the macro sequence in the distributor will be
concatenated separated by th e separator associated with the

d istr ibutor. I the f' n ~rst copy each array slice will be

replaced by the first section in this slice. In general, the
i'th copy (lii~n) of each array-slice will be replaced by the

i'th section of this slice.

According to this scheme the distributor NDI

NDI ;[A,B(,3)]

where A, B are declared by NC7 expands to:

A(O),B(1,3);A(1),B(2,3);A(2),B(3,3);A(3),B(4,3)

The distributor implicitly introduces a total order on the sections

of array slices, the order specified by the collectivisors. The order

defined by the collectivisors is immaterial in a program without

distributors. For example the substitution of NC7 by NC8

NC8 array #i:3,O,-1[A(i)] B(4,3) endarray

in a program MPROG would not affect at all the expansion of MPROG and

therefore would not necessitate any changes to the rest of MPROG for its

behaviour to remain unchanged, as long as, in general, A is not used in

a distributor. If A were distributed then its expansion would depend on

the collectivisor by which A was declared. With NC7 the order of the

indices of its operations after the expansion will be ascending from

left to right and with NC8 descending. However, we have to point out

that although ,[A] produces different strings when A is defined by NC7

and NC8 this would not have any effect on the behaviour of MPROG,

because of the semantics of ",", and 11.11 , . The same of course is not

- 109 -

true for ; [A].

We shall extend the class of regularities which the distributors may

generate by permitting them to distribute not only over the whole range

of array-slices but over a subrange of them as well. We need to extend

the notation for distributors to

ND2 sep #inind,fiind,incind[msequence]

in which "inind", "fiind", "incind" denote integer expressions,

representing the subrange over which "msequence" is to be distributed.

Using the subrange option we may restrict the expansion of a distributor

to some selected "copies" of its regularity. The subrange defines which

copies should be selected. The integer expressions "inind", "fiind",

"incind" specify the first copy to be selected, the upper limit of the

copies to be selected and the step by which the upper limit should be

reached from "inind", respectively. Thus the copies to be selected in

the expansion of ND2 are:

(inind)'th,(inind+incind)'th, ••• ,(inind+(Ns-l)*incind)'th

where Ns is the number of copies to be selected.

For example the distributor ND3

ND3 ;ff1, 3,1 [A]

would expand to:

A(O);A(l);A(2)

of all copies O f "A" in the string generated by the
selecting out

d d thO d The distributor ND4
expansion of ;[A] only the first, secon an ~r.

ND4 ;ff1,3,2[A]

would expand to:

- 110 -

A(0) ; A(2)

selecting the fir-st and the third copies of "A" in the expansion of

j [Aj.

We shall require the expansion of ND4 to be non-empty and the indices

of the operations to be in the range defined by the collectivisors. In

view of the semantics of the subrange the compatibility criterion (CCl)

may be somewhat relaxed.

(Drestl)

When a subrange is defined the slices will not be required

to contain the same number of sections but at least as many

sections as specified by the subrange.

For example the distributor NUS

NDS j/12,3,l[B(1,),B(,1)j

where B is defined by NC6 or NC7 satisfies (Drest1) although B(l,) has

three array slices and Be ,1) four, and may be expanded to:

B(1,2),B(2,1)

j B(l , 3) , B(3, l)

h t exam;ne is what interpretation will be given A final point we ave 0 ~

to the subrange when fiind<inind and incind<O as in ND6

ND6 j/13,1,-l[A]

There are three options:

1.

2.

to consider it as meaning the same as N03 arguing that the subrange

acts only as a selector and does

copies.

not impose any order on these

to consider it illegal arguing that it does specify an order which

- 111 -

nevertheless condradicts the order specified by ;[AJ.

3. to consider it as an extension of ; [AJ and expand according to the

subrange. The distributor ; [AJ will be considered as an

abbreviation for ;fll,4,1[AJ in which no copies of A are excluded.

Of the three options only the third extends the power for abbreviation

of the distributor, allowing more sequences to be generated, and for

this reason we adopt it as the interpretation of the subrange. For

example the sequence

A(3);A(2);A(1);A(O)

may be generated by the distributor ND7 by reversing the order of

distribution of A:

ND7 ;#4,1,-1[A]

It is clear from the syntax of the distributors that these may be

nested. Each of these distributors must apply to a different

distributable dimension of each array-slice. The following restriction

is imposed:

(Drest2)

Inside a k-nested distributor there must only be arrays with

at least k dimensions out of which exactly k should be

specified as their distributable dimensions.

Equivalently we may say that after the expansion of the outermost

distributor, the rest of the distributors must obey the syntax rules.

For example ND8

ND8 ; [, [A]]

where A is defined by NC7, is not valid since after the expansion of the

outermost distributor a non-valid distributor is generated:

- 112 -

, [A(0) 1 ; , [A(l) 1 ; , [A(2) 1 ; , [A(3) 1

The reason for this is that the macro sequences inside "[1" of the

above expansion do not consist of array-slices but of operations.

We must specify which of the nested distributors applies to which of

the distributable dimensions of array slices. The rule adopted in the

past is that the outermost distributor will apply to the rightmost

distributable dimension of each slice; the second outermost to the

rightmost not allocated distributable dimension, etc. A possible

relaxation of the above rule would be to consider it as the default rule

and specify explicitly which separator applies to which distributable

dimension. The distributor ND9 for example

ND9 ; [, [B 11

where B is defined by NC7 or NC8 would expand according to either rules

to:

B(1 , 1) , B(2, 1) , B(3, 1) , B(4, 1)

;B(1,2),B(2,2),B(3,2),B(4,2)

;B(1,3),B(2,3),B(3,3),B(4,3)

with "," applying to the first dimension of Band

But ND10

ND10 ; 1[, [B]]

would expand to

B(1,1),B(1,2),B(1,3)

;B(2,1),B(2,2),B(2,3)

;B(3,1),B(3,2),B(3,3)

;B(4,1),B(4,2),B(4,3)

fI_" , to the second.

since it is explicitly specified that ";" applies to the first dimension

of B and implicitly that "," applies to the rightmost unallocated

dimension of B, according to the default rule.
The following restriction needs to be imposed on dimension selectors:

(Drest3)

The dirilension selectors in distributors must have values

dimensions of array slices.

- 11'j -

The complete syntax for the distributlJr would then be:

distributor={;/,}{/iexpr}{/#iexpr,iexpr,iexpr}[msequencel

The feature for selection of distributable dimensions is very helpful

when both N09 and NOlO are required in the same program. Without it we

had to use the equivalent replica tor NR8

NR8 iii: 1,4, 1 [, [B(i,)];@ 1

instead of NDlO. If only one of N09 or NDlO were required then we could

define the collectivisor in such a way as to conform to the default

rule. This extension is also important when distributing over

dimensions of array slices in which the indices of the operations depend

on some other dimension, like in NC8:

NC8 array #i:l,5,2[#j:1,i,1[S(i,j) T(j,i)]] endarray

where the indices in the second dimension of S depend on the indices of

its first, and the indices of the first dimension of T on the indices in

its sedond dimension. According to the expansion rules the distributor

NDll

:-lDll ;[,[T]]

expands to

TO, 1)

;T(1,3),T(2,3),T(3,3)

;T(1,5),T(2,5),T(3,5),T(4,5),T(5,5).

However we cannot expand the nested distributor ND12

ND12 ;[, [S]]

be dl."stributed first and the number since the second dimension of S must

of operations in this dimension depends on the first. It will be

required that when distributing over some dimension of collectivisors

- ll'. -

which depend on other dimensions the indl'ces of th 1 e atter must be known
since otherwis~ the expansion is not defined.

However, our extension allows the distributor NOl3

NDl3 ;1[,[5]]

to be expanded instead of being obliged to write the replicator NR9:

NR9 It i: 1, 5,2 [, [5 (i,)];@]

Both N013 and NR9 expand to:

S(1,l)

;S(3,1),5(3,2),S(3,3)

;S(S,1),S(5,2),S(S,3),S(S,4),S(S,5)

To demonstrate the use of the two new features of distributors, the

subrange and the facility of specifying distributable sections, let us

consider two more "realistic" examples. In the first we shall specify

the pipeline which, using just replicators may be written as

NP3 #i:1,n,l[path TRANSFER(i);TRANSFER(i+1) end]

where array TRANSFER is declared by

Ne9 array TRAN5FER(n+1) endarray

We may replace the sequence in the above path by a distributor obtaining

NP4 IIi: 1, n, 1 [path ;111, HI, 1 [TRANSFER] end]

In the second example we shall specify a square matrix which is

initially empty. Processes may read or write to any element of the

array asynchronously, but write's and read's on any element should

alternate, and no read's should occur before the initial write. These

- 115 -

constraints may be specified by:

NCIO array WRITE READ(n,n) endarray

NP5 #i:l,n,l[#j:l,n,l[path WRITE(i,j);READ(i,j) end]]

A writer process which updates the elements of the matrix by columns may

be specified by any of the following processes:

NP6 process #j:l,n,l[#i:l,n,l[WRITE(i,j);@];@] end

process #j:l,n,l[;[WRITE(,j)];~] end

process ;[#i:l,n,l[WRITE(i,);@]] end

process ;[;[WRITE]] end

We now specify a number of processes each specifying reading from

selected elements of the matrix. A process reading all the elements of

the matrix by rows may be specified most concisely by

NP7 process ;l[;[READ]] end

A process reading the elements of the first r (l~r~n) rows by columns may

be specified by

NP8 process ;[;#l,r,l[READ]] end

A process reading the lower left triangular matrix may be specified by

NP9 process #i:l,n,l[#j:l,i,l[READ(i,j);@];@] end

or by

NPIO process #i:l,n,l[;#l,i,l[READ(i,)];@] end

Finally a process reading the elements of the matrix forming the upper

right triangular matrix by rows may be specified by

NPll process ;[#j:l,n,l[#k:j,n,l[READ(,k);@];@]l end

- 116 -

or by

NP12 process jl[#j:l,n,l[j#j,n,l[READ);@)] end

We have now completed the development of the design and the syntax of

the macro notation, except for the non-terminal "iexpr" producing

integer expressions. The syntax rules for integer expressions may be

found in appendix B together with the rest syntax rules for macro COSY.

The syntax for "iexpr" in appendix B permits all integer expressions

which have been used in macro programs.

The next section 3.3 is concerned with the expansion of replicators,

distributors and of complete macro programs.

3.3 THE EXPANSION OF MACRO COSY PROGRAMS

In the last section 3.2 the expansion of replicators and distributors

was given in a schematic way. In this section the expansion of

replicators, distributors and of complete macro programs is formally

defined. The strings obtained from their expansion are characterized.

In particular macro programs are shown to expand to well-formed basic

programs. We also prove a number of theorems for the replacement of

macro elements in macro sequences by other macro elements generating the

same strings as the former. In the three sub-sections of this section

we examine the expansion of replicators, distributor and macro programs

respectively.

- 117 -

3.3.1 The Expansion of Replicators

The replicators we developed in the previous section 3.2 are of the

form

#index:in,fi,inc[s(index)]

where "index" is the replicator index, "in", "fi", "inc" are integer

expressions and "s(l.·ndex)" at· h· h h s rl.ng w l.C may ave various forms,

depending on the type of replicator. If, for example, a replicator is a

bodyreplicator then "s(index)" has the form:

p(index)

where p represents a collection of paths, processes and bodyreplicators

the integer expressions in which may depend on "index". If a replicator

is an imbricator then "s(index)" has the form:

p(index) @ t @ q(index)

where p and q are strings, the integer expressions in which may depend

on "index" and t a string none of the integer expressions of which may

depend on "index". For the purposes of this section we shall consider

the general form of "s(index)" as being

(Gs) sep11 p(index) @ t @ q(index) I sep2

Of course none of the strings inside "[J" of any of our replicator has

the general form (Gs), but all appropriate forms may be obtained from

(Gs) by removing certain substrings. Therefore, a replica tor may be

considered as having the general form (GR)

(GR) #index:in,fi,inc [sep1 I p(index) @ t @ q(index) I sep2]

The parts of "s(index)" depending on "index", namely p(index) and

q(index), may be repeated upon the expansion of replicators. The index

specification part "tlindex:in, fi,inc" determines how many copies of

these parts are to be made and the~alues the index takes which

order of the

are to

- 118 -

be substituted in each copy for "index" upon the expansion of

replicators. The values in the range of the index, if non-empty, form

finite arithmetic progressions having initial value "in", difference

"inc" and bound "fi". Under this interpratation of the index

specification, the value for "inc" must be non-zero. Otherwise an

infinite arithmetic progression would be formed with the value of "in"

as the only element of the progression. If the number of copies to be

generated is n (n)O) then the values the index takes are:

in,in+inc,in+2*inc, ••• ,in+(n-1)*inc

The value of n is also determined by the index specification of

replicators and is given by the formula:

n=(fi-in)llinc+1

where "II" denotes integer division. The above formula is well-defined

since inc~O. The value m=(fi-in)llinc gives the number of intervals of

length lincl from in to fie If m is positive it indicates that fi may

be approached from in in steps of inc and if negative that fi may be

approached from in in steps of -inc. If m is zero it indicates that the

distance from in to fi is less than lincl. The index is to take values

from in to fi in steps of inc. If m(O then fi may not be aproached at

all from in in steps of inc. In this case the index specification

specifies an empty range for the values of index. If m)0 then fi may be

approached from in in steps of inc and the values it may take are m+1.

If m=O then the index takes only one value, namely the value of in.

Therefore, the index takes m+1 values and for a non-empty range

m+1=(fi-in)llinc+1=n)0

we have used the phrase "fi may be approached from in" instead of the

phrase "fi may be reached from in" to indicate that fi acts as a bound

not to be exceeded by index and does not necessarily specify the last

value of index. For example the index specification

#i:1,6,2

- 119 -

specifies the values 1, 3, 5 for index, thus in that sence is equivalent

to the index specification

lIi:1,5,2

The values the replicator index may take may be generated by the

formula:

(F) f(j)=in+(j-1)*inc for j=1,2, ... ,n.

When a replicator is expanded the values of f(j) for j=l, ... ,n will be

substituted in the j'th copy of p(index) and q(index) for index.

Although the replicators generate various kinds of regularities

produced by different syntax rules their expansion may be defined by one

and the same formula. Let us first define the primitive-recursive

operator COpy having three string arguments separated by "I":

I 1
lif l)k then P(k) COpy {P(j)/T/Q(j)} Q(k)

1 I j=k+1
COPY{P(j)/T/Q(j)}= I

lif l=k then P' (k) T Q' (k) j=k
I

T' lif l<k then

where P(j) and Q(j) are strings in which the integer expressions may

depend on j. The strings P'(k) and Q'(k) are the same as P(k) and Q(k)

respectively with the terminating and respectively leading separator,i

removed. T is a string which does not involve integer expressions

depending on j. The string T' is the same as T with both leading and

trailing separators removed. Finally 1, k are integers.

The expansion of (GR) denoted by replexpO(GR) will be given by the

formula:

lif inc/O and n=(fi-in)llinc+1>O or t' non empty
I
I n

replexpO(GR)=lsepl COPy{p(f(j»/t/q(f(j»} sep2
I j=l
I
lotherwise empty

where p(f(j» and q(f(j» are obtained from p(index) and q(index)

- 120 -

respectively by substituting the function f(j)=in+(j-l)*inc for "index"

and where the string t' is the same as t with its leading and trailing

separators removed. The superscript "0,, in "replexpoll indicates that

only GR is expanded and not any other replicators which may be generated

by its expansion.

Let uS apply this formula to expand some replicators. In the

expansion of the bodyreplicator NPl2

NPl2 #i:l,4,l[path DEPOSIT(i);REMOVE(i) end]

the regularity inside "[]" will be replicated (4-1)1/1+1=4 times. In

the symbolism of (GR)

p(index)="path DEPOSIT(i);REMOVE(i) end"

and t and q(index) are the empty strings. The expansion of NPl2 denoted

by replexp o(NPl2) is given by:

4
}~ry{path DEPOSIT(l+(j-l)*1);REMOVE(l+(j-l)*l)endl I}=

4
COPY{path DEPOSIT(j);REMOVE(j) endl I}
j=l --

which yields

path DEPOSIT(l);REMOVE(l) end

path DEPOSIT(2) ;REHOVE(2) end

path DEPOSIT(3);REMOVE(3) end

path DEPOSIT(4);REMOVE(4) end

Consider also the macro path NPl3

NPl3 path #i:l,4,2[DEPOSIT(i);@] end

specifying the sequentialization of the deposits in the odd frames of

four free frame buffer specified by NPl2. The expansion of the

replicator in the macro sequence of the above path is given by the

formula:

2
COPY{DEPOSIT(1+(j-l)*2;//}=
j=l

- 121 -

2
COPY{DEPOSIT(2*j-l);//}=DEPOSIT(1);DEPOSIT(3)
j=l

The expansion of the imbricator in the path NP14

NP14 path empty.#i:l.k,l[(UP(i); @;full*;@ ;DOWN(l»*] end

when k=3 is given by:

3
COPY{(UP(j);/;full*;/;DOWN(j»*}
j=l

which yields

(UP(1);(UP(2);(UP(3);full*;DOWN(3»*;DO\m(2»*;DOWN(1»*

In the previous section we set the restriction that a sequence

replicator should always expand to non empty strings. From the formula

replexpO(GR) giving the expansion of GR it may be deduced that this

restriction is formally expressed by:

(Rrestl)

inciO and n=(fi-in)//inc+l>O or t' non empty.

If k=O in NP14 its expansion is still non empty and is given by

o
COPY{(UP(j);/;full*;/;DOWN(j»*}=full
j=l

Therefore NP14 after the expansion of its replica tor for k=O becomes:

NPlS path empty.full* end

which specifies that a "stack" of size 0 is both empty and full. If

- 122 -

however <l stack may only be tested for empty as specified by '~C'l6

NP16 path empty,Hi:1,k,l[(UP(i); @;@ ;DOWN(i»* end

the expansion of the replicator in NP16 for k=O is not defined, since

(k-l) / /1+1=0, the string t' is empty and consequently, the index

specification does not satisfy (Rrestl). We may in this case use a left

replicator, to which (Rrestl) does not apply, obtaining path NP17

NPl7 path empty#i:l,k,l[,I(UP(i); @;@ ;DOWN(i»*] end

in which the replicator when k=O, yields the empty string and path NP18

is obtained

NP18 path empty end

which specifies that a stack of size ° is always empty.

The condition n)O also implies that the expression for n in Rrest is

well-defined. If it is not then n)O does not hold and the range of the

replicator index is empty. Consider for example the two nested

replicator s

NRIO Hj:O,2,1[Hi:O,m mod j,l[A(i);@];@]

The index j of the outer replicator takes values 0, 1, 2. For j=O the

inner replicator becomes

NRll Hi:O,m mod O,l[A(i);@]

As the expression "m mod 0" is not defined the range of i is empty and

as the replicator is a concatenator does not satisfy (Rrestl).

The condition (Rrestl) for non-empty expansions is not the same as the

one required in other notations. We may recall from the introduction of

chapter 3 that the expansion of a replica tor is empty when

inc=O or (fi-in)*inc<O

- 121 -

the complement of which

incfO and (fi-in)*inc>O

gives the condition a replicator expanding to non-empty strings. One

obvious difference is that (Rrestl) could expand to non-empty when t' is

non-empty irrespective of the values of in, fi, inc, as we demonstrated

in the expansion of NP14 when k=O. But a more subtle difference is that

the conditions

incfO and n=(fi-in)//inc+l>O

incfO and (fi-in)*inc>O

(A) and

(B)

are not equivalent. Condition (B) certainly implies (A). Both require

incfO. Condition (B) additionally requires that

(fi-in)*inc~O =? (fi-in)/inc~O

=? (fi-in)//inc~O

=? (fi-in)//inc+l~l

(incfO)

Therefore (B) implies (A). Let us now show that (A) does not imply (B).

n>O =? (fi-in) //inc+l~l

=? (fi-in) /inc-e~O (-l<e<l)

=? (fi-in)/inc~e

=}< (fi-in)/inc>l (as r.h.s. min. when e tends to -1)

For values of in, fi, inc satisfying

O>(fi-in) / inc>-l (I)

that is

O>fi-in>-inc when inc>O

O<fi-in<inc when inc<O

also satisfy

- 124 -

(fi-in)*inc<O

For values of in, fi, inc satisfying (I) the number of values the index

takes is

(fi-in)//inc+l=O+l=l

namely the value of in. Therefore for in, fi, inc satisfying (I)

replicators in the new notation do expand to non-empty strings. Thus

more replicators expand to non-empty strings under condition (A) than

under (B). We have relaxed condition (B) for the folowing reasons. The

value of fi is not always the last value the index takes.

replace fi by fi', the true final value index takes. We took

Thus we may

the view

that fi' is the integer closest to fi, such that (fi'-in) is an exact

multiple of inc and fi' is either closer to in than fi or is the same as

fi, as no integer in the range of an index could exceed fie

Mathematicaly fi' is defined by:

(i) (fi'-in) mod inc=O

(ii) I f i' - f i I < I inc I

(iii) Ifi'-inl~..Ifi-inl

The value of fi' may be obtained by the formula:

fi'=in+(n-l)*inc

where n=(fi-in)//inc+l. When in an index specification

lIi:in,fi,inc

fi is the true final value of index i both conditions (A) and (B) are

equivalent as in, fi, inc cannot satisfy (I):

O>(fi-in)/inc>-l (I)

as (fi-in) is an exact multiple of inc, thus

(fi-in)/inc=O

- 125 -

A final restriction has to be imposed on replicators not in collectivisors

(Rrest2)

The replicators should generate subscripted operations

permitted by the collectivisors.

Replicators however may only generate some of the subscripted operations

permitted by the collectivisors. In the expansion formula for

replicators the index of COpy ranges from 1 to some integer n in steps

of I, no matter what the values of in, fi, inc are. This indicates that

all replicators may be transformed to others the index specification of

which has in=inc=l, expanding to the same string as the former. For

example the replica tor inside path NP19

NP19 path #j:l,2,l[DEPOSIT(2*j-l);@] end

has in=inc=l and expands to the same string as the replicator inside

path NPl3

2
COPY{DEPOSIT(2*j-l);//}=DEPOSIT(I);DEPOSIT(3)
j=1

In fact there are families of replicators which all expand to the same

string, differing in the index specification part and in the integer

expressions inside"[]". The integer expressions inside "[J" of a

replicator which may depend on the replicator index may be subscripting

indexed operations, or may appear in index specifications of replicators

and subrange specifications and dimension selection expressions. A

replicator in which in=1 and inc=1 will be called the normal form of a

replicator. We next prove two theorems, showing that all replicators

may be replaced by replicators in normal form and that from replicators

in normal form all replicators in the same family may be obtained. Let

us first prove a lemma. The symbol ,,///" will indicate end of a proof.

LEMMA 1:

A string S obtained from a syntactic entity SE by replacing the

integer expressions in SE by other integer expressions forms also

the same syntactic entity.

- 126 -

Proof:

A syntactic entity is a string which may be produced by a

non-terminal of the grammar. The string S may be produced by applying

the same syntax rules as for producing SE down to the non-terminal

"iexpr". Then the production for S diverges from that for SE in that

different syntax rules may be applied to obtain integer expressions.

Therefore S forms the same syntactic entity as SE.III

Let us now prove the theorem for the replacement of replicators by

replicators in normal form.

THEOREM 3.1:

A replicator of the general form

(GR) Uindex:in,fi,inc[sepl I p(index) @ t @ q(index) I sep2]

expands to the same string as the replica tor in the normal form

(GR') Uj:1,n,1[sep1 I p(f(j» @ t @ q(f(j» I sep2]

where n=(fi-in)//inc+l and f(j)=in+(j-1)*inc.

Proof:

As (GR) and (GR') differ only in the integer expressions, by lemma 1,

both may be produced by the same non-terminal. Consequently, (GR') is a

syntactically well-formed replicator.

The expansion of both (GR) and (GR') is given by the same formula

namely

lif inc#O and n=(fi-in)//inc+1>O or t' non empty

I n
replexp O(GR)=lsepl COPY{p(f(j»/t/q(f(j»} sep2

I j=l
I
lotherwise emp ty

Therefore, (GR) may be replaced by (GR').III

- 1L7 -

Le t us now prove the theorem for replacement of repl icator in normal

form by general replicators.

THEOREM 3.2:

A replicator of the normal form

(GRNF) Ifj:l,m,l[sepl I p(j) @ t .'} q(j) I sep2]

expands to the same string as the replica tor

(G~I) Ifi:in,fi,inc[sepl I p(g(i) @ t @ q(g(i» I sep2]

where in, inc are integers (inc#O), fi=in+(m-l)*inc+e where

O<e<inc

O>e>inc

when inc>O

when inc<O

or

and g(i) the function g(i)=(i-in)//inc+l and i does not appear in p,t,c

Proof:

By lemma 1 the replicator (GR") is syntactically well-formed. The

expansion of (GRNF) is given by

if m)O or t' is non-empty then

m
sepl COPY{p(i)/t/q(i)} sep2

j=l

otherwise empty

The condition for a non-empty expansion for (GR") is

if inc#O and n=(fi-in)//inc+l>O or t' is non-empty

The value of inc is by definition non-zero. The value of n is given by:

n=(fi-in)/ / inc+1

=«in+(m-l)*inc+e)-in)//inc+l

=«m-l)*inc+e)//inc+l

=m-l+l

=m

- 12.8 -

(as e/ /inc=O)

Therefore the condition for non-empty expansion of (GR") is

if m)O or t' is non-emp ty

The expression giving the expansion of (G~') is

if ~l or t' is non-empty then

m
sepl COPY{p(g(f(j»/t/q(g(f(j»} sep2

j=l

otherwise emp ty

where f(j)=in+(j-l)*inc. For the above expression to be the same as the

expression for the expansion of (GRNF) the composite function g(f(j»

should be

g(f(j»=j

Let us demonstrate the validity of the above equality:

g(f(j»=(f(j)-in)//inc+l

=«in+(j-l)*inc)-in)//inc+l

=«j-l)*inc)//inc+l

=j-l+l

=j

Therefore the expansion of (GR") is the same as that of (GRNF) .111

In the previous section we claimed that the syntax rules produce

sequence replicators which when expanded generate macro sequences.

Having formally defined the expansion of replicators we proceed in

proving this claim. Without loss of generality we shall prove it for

replicators in normal form which we assume have been produced by the

non-terminals "sreplicator", "concseq" and by the (CF) rules for

- 129 -

"imbrseq".

Let us first prove some le®nata which we will use in proving our main

theorems. From now on we assume without loss of generality that all

replicators are in normal form.

LEMMA 2:

In a concatenator of the form

#i:1,n,1[p(i) sep @j

the string p(i) is a macro sequence.

Proof:

The string "p(i) sep @" is produced h the non-terminal "concseq"

which produces in general, strings either of the form:

1. morelementl morelement2 morelementn @

or of the form:

2. morelement1 morelementn gelement, ••• ,gelement,@

If the substrings ";@" and ",@" are removed from 1 and 2 respectively

the remaining strings correspond to p(i) and may be produced by the

non-terminal "msequence".///

LEMMA 3:

If "sl sep s2" is the string obtained by juxtaposition of two macro

sequences sl and s2 and the separator sep as shown, then it is a

macro sequence.

Proof:

Let s 1 be:

morelement1l mor e 1 erne n t 1 2 morelement l n

- LlfJ -

and s2 be:

morelement 2 l morelement 2 Z morelementLm

If sep=; then "5 1 ;5 2" forms the macro sequence:

morelement l l

morelement 2 l

morelement l Z

morelement 2 Z

morelement in

morelement 2m

If sep=, then the last macro orelement of sl, namely "morelement 1n" and

the first macro orelement of s2, namely "morelement21" in "sl,s2" form a

macro orelement which we denote by "morele;nentc". Then the string

"s 1,s2" clearly forms the macro sequence:

morelement1l morelement 1Z morelement 1 n-l

morelementc

morelement 2Z mor e lemen t 2m

This completes the proof of this lemma. III

We may now prove our first theorem, the theorem for the expansion of

concatenators to macro sequences:

THEOREM 3.3:

The expansion of a concatenator of the form of

(Conc) #i:l,n,l[p(i) sep @]

yields a macro sequence for any n)O.

Proof:

The expansion of the concatenator Conc is given by replexpO(Conc)

n
COPY{p(i) sep/ /}
j=l

To prove that this yields a macro sequence for any (1)0 we shall use an

inductive argument on n. When n=l its expansion ECl) is given by pCl).

- 131 -

According to Lemma 2, p(i) is a macro sequence, and therefore according

to Lemma 1 the str ing p(1) is a~~equence, as well.
Imacro

Assume that the expansion of Cone for a finite integer n, denoted by

E(n) is a macro sequence which is of the form

E(n)=p(l)sep p(2)sep ••• sep p(n)

The expansion of Cone for n+1 denoted by E(n+l) is given by:

E(n+1)=p(1)sep p(2)sep ••• sep p(n)sep p(n+l)

which may be written as

E(n+1)=E(n) sep p(n+l)

According to lemmata 1 and 2 the string p(n+l) is a macro sequence.

Therefore according to lemma 3 the string E(n+1) is a macro sequence

since it is of the form "msequence sep msequence". By induction we

deduce that Cone expands to macro sequences for any n)O.///

Before we prove a similar result for imbricators let us prove three

more lemmata.

LEMMA 4:

In an imbricator of the form

#i:1,n,1[p(i) @ t @ q(i)]

the string t' obtained from t by removing its leading and trailing

separators is either empty or a macro sequence in general.

Proof:

The string t is the part of the string produced by "imbr_at_seq" (cf.

section 3.2) between the two "@"s. According to the first four

production rules for "imbr_at_seq" the string t may be of one of the

four forms:

- 132 -

1. ,gelement, ... {; morelement}* gelement, ..• ,

2. {; morelement}~; gelement, ••• ,

3. ,gelement, ••• ;{morelement ;}~

4. ;{morelement ;}~

By removing the leading and the terminating separator the resulting

string t' may clearly be produced by "msequence" except in case 4 in

which it may be empty.

According to the second group of four productions for "imbr_at_seq"

the string t may be of two forms:

1. ,gelement, ••• ,

2.

When the leading and terminating commas are removed from 1 the resulting

string t' is a macro orelement which certainly is a special case of a

macro sequence. In the second case as t consists of just the 11 " ,
this comma is removed the resulting string t' is the empty string.

when

According to production options 9 and 10 for "imbr_at_seq" the string

t may be of the forms:

1. . Jmorelement ;}.!.. gelement, ••• ,

2. {morelement;}!.

Clearly by removing the terminating separator from 1 and 2 either a

macro sequence or an empty string is obtained.

According to production options 11 and 12 for "imbr_at_seq" the

string t may be of the forms:

1. ,gelement, ••• {; morelement}~

2. {; morelement}~

Again, by removing the leading separator either a macro sequence or an

empty string is obtained.

- 131 -

Finally, the last production option for "imbr_at_seq" specifie~ that

t does not have leading or terminating separators and that it is a macro

sequence. III

LEMMA 5:

If, in an imbricator of the form

fli:1,n,1[s]

where s is produced by "imbrseq", the two "@" s and the separators

before the first and after the second "@" S are removed from s, then

the resulting string is a macro sequence.

Proof:

The syntax rules (CF) for "imbrseq" show that it suffices to prove

that if from a string s1 produced by "imbr_at_seq" the two "@" s and some

separators are removed as above then the resulting string is a macro

sequence. The reason is that s1 is either the complete string s or it

appears as an element "(s1)" in s. The only difference between a macro

sequence and a string produced by "imbrseq" is that the latter contains

this special element. Therefore if s1 after the above transformation

becomes a macro sequence, the whole string s in "[]" will be one as

well.

The first "@" in s1 may appear after

(a 1) "[" or " ("

(b 1) ";" or ","

Similarly the second "@" may appear before

(a 2) "]" or ")"

(b 2) ";" or " "

From the production rules for "imbrseq"

combinations of these contexts may occur.

combination separately.

it

We

may be

shall

seen that all

consider each

- 134 -

Case a1-a2

The first and the second "~" do not have any separator before and

after them respectively. The string sl is produced by the last

production option for "imbr_at_seq". When the two "@" are removed from

sl the remaining string is a macro sequence.

Case 2 al-b2

The string sl is produced by the 9th and 10th production options for

"imbr_at_seq" • The first "@" does not have any separator in front of

it. When the first "@" is removed from sl the resulting string s1' is

like a macro sequence except for one of its "orelements" which involves

"@" either on its own or in an orelement produced by one of "at_orlf",

"at_orlm", "at orlb". The string s1' may be of four forms:

1 • {morelement ; }~ @,gelement, ••• ,gelement { ; morelement}~

2. {mor elemen t ; }.:. @ { ; morelement}+
• •• ,@ , •••

3. {morelement ; }.:. gelement: 'y-,gelement { ; morelement}*

4. {morelement ; }.:. gelement, ••• ,@ { ; morelement}+

When "@," and "@;" are removed from 1, 2 and 3 respectively the

remaining strings are macro sequences. When "@;" is removed from 4 the

string "gelement, ••• ," together with the first macro orelement after

"@;" is a macro orelement and therefore the whole of the remaining

string is a macro sequence.

Case 3 bl-a2

The string sl is produced by the 11th and 12th production options for

"imbr_at_seq". The second "@" is not followed by a separator. When the

second "@" is removed from sl the resulting string sl' is like a macro

sequence except that one of its "orelements" involves the "@" either on

its own or in an orelement produced by one of "at_orlf", "at_orlm",

"at or1b". The string s1' may be of the forms:

1. {morelement ;}~ gelement, ••• ,@ {; morelement}*

2. {morelement ;}-i- @ {; morelement}~

- 135 -

3. {morelement ;}..:. gelement, •.• ,@,gelement {; morelement}*

4. {morelement ;}+ @,gelement, ••• ,gelement {; morelement}*

As in the previous case, when ",@" and ";@" are removed from 1, 2 and 3

respectively the remaining string is a macro sequence. When ";@" is

removed from 4 the macro orelement in front of it together with

",gelement, ••• " is a macro orelement and therefore the whole of this

string is a macro sequence.

Case 4 b1-b2

This case has two subcases: Either the two "@"S are in two separate

special orelements either on their own or in orelements produced by one

of "at_or If", "at_or_lm", "at or lb" when productions 1 to 4 for

"imbr_at_seq" are applied, or both "@"s appear in the same special

orelement produced by one of "at_or2fm",

"at or2mb" when productions 5 to 8 for "imbr_at_seq" are applied.

1 •

2.

3.

4.

In the first subcase we apply the same arguments as in cases 2 and 3.

In the second subcase sl may take four forms:

{morelement; }..:.

{morelement; }+

{morelement; }..:.

{morelement; }+

gelement, ••• ,@, ••• ,@, ••• ,gelement {;morelement}~

@,gelement, ••• ,@, ••• ,gelement {;morelement}~

gelement, ••• ,@, •••• ,gelement,@ {;morelement}+

@,gelement, ••• ,gelement,@ {;morelement}+

When ",@" and "@," are removed from 1 the resulting string is a macro

sequence. When ";@" and "@," are removed from 2 the macro orelement

before ";@" together with ",gelement, ••• ,gelement" is a macro orelement

and therefore the whole string is a macro sequence. Similar ly, when

",@" and "@;" are removed from 3 the string "gelement, ••• " is a macro

orelement and therefore the whole string is a macro sequence. Finally,

when ";@" and "@;" are removed from 4 the macro orelement in front of

";@" together with the string ",gelement, ••• ,gelement" and the macro

orelement after "@;" is a macro orelement and the whole of that string

is a macro sequence. III

- 136 -

LEMMA 6:

If in an imbricator of the form

(Imbr) #i:l,n,l[p(i) @ t @ q(i»)

the string t is replaced by a string tl consisting of a macro

sequence MSEQ preceded by the trailing separator of p and followed

by the separator leading q, then the imbricator obtained may be

produced by the syntax rules for "sreplicator" and the (CF) rules

for "imbrseq".

Proof:

Let RS be the part of the string "p(i) @ t ~ q(i)" produced by the

non-terminal "imbr_at_seq". Since t appears only in this string it

suffices to prove that the string obtained from RS by replacing tl for t

may be produced by "imbr_at_seq". Depending on whether p(i) terminates

with and q(i) starts with a separator or not, the string tl may be of

four different forms. We shall consider each case separately.

Case 1 :p(i) does not terminate and q(i) does not start with a

separator.

Then RS is of the form

@ t @

in which case tl is of the form

tl=morelementl morelementn

The string obtained by replacing tl for t in RS may be produced by the

last production option for "imbr_at_seq".

Case 2 :p(i) terminates but q(i) does not start with a separator.

The string RS may be of two forms. The first one is:

- 137 -

1. {morelement ;}2 gelement ••..• @ t (j

in which case tl is of the form

tl=,morelementl morelementn

By replacing t for tl in 1 the string

{morelement;}2 gelement ••••• @,morelementl morelementn @

is obtained in which the substring

gelement •••• ,@,morelement1

may be produced by "at_or 1m" and therefore the whole string may be

produced by the 11th and 12th production options for "imbr_at_seq".

The string RS may also be of the form:

2. {morelement ;}+ @ t @

in which case t1 is of the form

t1= morelement1 morelementn

By replacing t1 for t in 2 the string

{morelement ;}+@ morelement1 morelementn @

is obtained which may be produced by the 12th

"imbr _at_seq".

production

Case 3 :q(i) starts but p(i) does not terminate with a separator.

Again RS may be of two forms. The first one is:

1. @ t @,gelement, ••• ,gelement {; morelement}2

for

- 118 -

in which case t 1 is of the form

t l=morelemen t 1 morelementn.

When t1 is replaced for t in 1 the substr ing of t1 "morelementn".

together with "@,gelement, ••• " may be produced by "at or1m" and the

whole of the string by the 9th and 10th options for "imbr_at_seq".

The second form RS may take is

2. @ t @{;morelement}+

in which case t1 is of the form

t1=morelement morelementn;

When t1 is replaced for t in 2 the whole string may be produced by the

10th option for "imbr_at_seq".

Case 4 p(i) terminates and q(i) start with a separator.

In this case RS may take four forms. The first one is:

1. {morelement ;}~ gelement ••••• @, ••• ,@, ••• ,gelement {;morelement}~

in which case t1 is of the form

t1=,morelement1 morelementn.

When t1 is replaced for t in 1 the string "gelement, ••• ,@" together with

",morelementl" may be produced by "at_orlm". Similarly, "morelementn,"

together with "@, ••• ,gelement" may be produced by "at_orlm". Therefore

the whole string may be produced by one of the production options 1 to 4

for "imbr _at_seq", depending on whether "{morelement ; }~" and

"{; morelement}~" in 1 represent at least one macro or element or the

empty strings.

- 139 -

In the special case wher8 MSEQ="morelementl" then tl=",morelementl,"

and the string "gelement, •.• ,@" together with ",morelementl," and

"@, ••• ,gelement" may be produced by "at or2mm" and the whole string by

production options 5 to 8 for "imbr_at_seq".

The second form RS may take is

2. {morelement;}+ @ t J,gelement, ••• ,gelement {;morelement}~

in which case tl is of the form

tl=; morelement 1 morelementn,

When tl is replaced for t in 2 the string "morelementn," concatenated

with "@,gelement, ••• ,gelement" may be produced by "at_or2mm" and the

whole string by the 6'th and 7'th options of "imbr_at_seq".

The third form RS may take is

3. {morelement;}~ gelement, ••• , @t @ {;morelement}+

in which case tl is of the form

tl=,morelement morelementn;

By applying similar arguments as before the string obtained by replacing

tl for t may be produced by productions 1 or 3 for "imbr_at_seq".

Finally, RS may take the form:

4. {morelement ;}+ @ t @ {;morelement}+

in which case tl is of the form

tl=;morelementl morelementn;

By similar arguments we may show that by replacing tl for t in 4 the

resulting string may be produced by production option of

- 140 -

The theorem analogous to 3.3 may now be proven, the theorem for the

expansion of imbricators ~ ~ sequences:

THEOREM 3.4:

The string obtained by the expansion of an imbricator

(Imbr) #i:1,n,l[p(i) @ t @ q(i)]

is a macro sequence.

Proof:

The expansion of a replicator is valid when

n>l or t' is not the empty string

We shall distinguish two cases:

1. n<l and t' is non empty.

Its expansion then is given by t' which by lemma 4 is a macro sequence.

2. The second case is when n>l.

To prove that the imbricator expands to a macro sequence we shall use an

inductive argument for n. When n=l the expansion of the imbricator

denoted by E(l), is given by

1
E(l)=COPY{p(i)/t/q(i)}

i=l

which yields

E(l)=p'(l) t q'(l)

which according to lemmata 5 and 1 is a macro sequence.

- 141 -

Assume that the strLng generated by the expansion of the imbicator,

for some ~1, denoted by E(n) is a macro sequence. Its expansion E(n)

is given by

n
E(n)=COPY{p(i)/t/q(i)}

i=1

which yields

E(n)=p(1) p(2) ••• p'(n) t q'(n) ••• q(2) q(1)

Consider now the expansion E(n+1) given by

n+1
E(n+1)=COPY{p(i)/t/q(i)}

i=l

which yields

E(n+1)=p(1) p(2) ••• p(n) p'(n+1) t q'(n+1) q(n) ••• q(2) q(1)

If E(n) is a sequence then by lemma 1 so must E'(n)

E'(n)=p(2) p(3) ••• p'(n+1) t q'(n+l) ••• q(3) q(2)

obtained from E(n) by replacing the integer
and index specifications

subscripted operationsVdepending on "i" by

depending on "i+1" for i=1,2, ••• ,n.

We now construct the imbricator

(R) k:1,1,1[p(k) @ tl @ q(k)]

expressions of the

the same expressions

where t1 is obtained from E'(n) prefixed by the terminating separator of

p(i) and postfixed by the leading separator of q(i). According to lemma

6 this replicator is syntactically well-formed and its expansion E(R) is

E(R)=p'(1) t1 q'(1)

- 142 -

which according to lemmata 1 and 4 is a macro sequence. Therefore E(R)

is the macro sequence:

pel) p(2) p(3) ••• p'(n+l) t q'(n+I) ••• q(3) q(2) q(l)

as the leading separator of tl together with p'(l) form p(l), the

terminating separator of tl together with q'(l) form q(l) and the rest

of tl is E(n). As E(R) is the same as E(n+l), the latter is a macro

sequence. III

A similar result for generalized elements is the the theorem for the

expansion of generalized elements ~ macro sequences. A generalized

element GEL may be represented by

RLs M LLs

where LLs denote left replicators LRl ••• LRm and RLs right replicators

RRl ••. RRn and M a sequence replicator or a distributor or a starelement.

The expansion of all the left and right replicators of GEL will be given

by gelexpO(GEL) defined as follows:

gelexpO(GEL)=a M b

where a= replexpO(RRl) ••• replexpO(RRn)

b= replexpO(LRl) ••• replexpO(LRm)

We may now prove the theorem for the expansion of generalized elements

~ macro sequences.

THEOREM 3.5:

When all left and right replicators in a generalized element GEL are

expanded the resulting string gelexpO(GEL) is a macro sequence.

Proof:

A generalized element GEL has the form

- 143 -

RRl ..• RRn {strlrelement/sreplicator/distributor} LR1 ... LRm

where RRi for i=1, ••• ,n denote right replicators and LRi for i 1 = , ••• ,m

denote left replicators. From the definition of the expansion of left

and right replicators and from theorems 3.3 and 3.4 it follows that the

expansion of a right replicator is of the form

msequence sep or empty

and of a left replicator

sep msequence or empty

When all left and right replicators are expanded the generated string

will be of the form:

{msequence sep}~ {starelement/sreplicator/distributor} {sep msequence}~

Applying lemma 3 in the above string from left to right we deduce that

this is a macro sequence. III

The expansion rule for replicators may be applied to expand any

replicators of the general form

#i:l,n,l[p(i) @ t @ q(i)]

in which "@ t @ q(i)" and lit @ q(i)" may not exist and the string inside

"[]" may not necessarily have been produced by "concseq" or "imbrseq".

Let us call these replicators, wide replicators which may be of two

forms: wide concatenators or wide imbricators. We may now prove the

replacement theorem of imbricators by wide concatenators.

THEOREM 3.6:

Wide concatenators of the form

(Wconc) #i:l,n,l[s(i)@]

are sufficient to generate strings generated by imbricators of the

- l44 -

type

(Imbr) Uj:l,n,l[p(j) @ t @ q(j)]

Proof:

Let us transform (Imbr) to the replica tor form (RF)

(RF) Iii: 1 , n, 1 [P (i) @] t It i : n, 1 , -1 [q 1 (i) @]

where ql(i) is obtained by

ql(i)=lif q(i)=sep q'(i) then q'(i) sep
I
lelse q(i)

The expansion of the replicators in (RF) is given by:

n n
COPY{p(i)/ /} t COPY{ql(n-i)/ /}
i=1 i=1

which yields E(RF)

E(RF)=p(1) p(2) ••• p'(n) t ql(n) ••• ql(2) ql'(1)

The expansion of (Imbr) is given by:

n
COPY{p(i)/t/q(i)}
i=1

which yields the string E(Imbr)

E(Imbr)=p(1) p(2) ••• p'(n) t q'(n) ••• q(2) q(1)

We will show that the strings E(RF) and E(Imbr) are the same.

They certainly have the same head "p(l)p(2) ••• p'(n)t". Therefore it

suffices to show that the string (s1)

- 145 -

is the same as the string (52)

(52) q'(n) ••• q(2) q(1)

If q(i) does not start with a separator (51) is the same with (52) for

then q'(n) is the same as ql(n), q(l) the same as ql'(1) and each of

q(j) is the same as ql(j) for j=2,3, ••• ,(n-l).

Consider now the case where q(j) starts with a separator i.e. it is

of the form

sep q'(j)

and therefore

Substituting the right hand expression for ql in (sl) we obtain (sl')

(sl') q'(n)sep ••• q'(2)sep q'(I)

But each of tlsep q'(j)tI is the same as "q(j)" for j=1,2, ••• ,(n-l).

Substituting these expressions in (sl') the string

q'(n) q(n-l) ••• q(2)q(1)

is obtained which is the same as (52).///

The next theorem characterizes the imbricators which when replaced by

the transformation (RF) of the previous theorem the well-formedness of

the macro programs is preserved. Let us first prove a lemma.

LEMMA 7:

If a generalized element GEL in a macro sequence MS is replaced by a

macro sequence MSEQ the resulting string is a macro sequence.

- 146 -

Proof:

Without loss of generality we may assume that the element GEL is not

nested inside "()". For if it is we may consider the sequence XS' in

the innermost element "(MS') which involves GEL. If by replacing MSEQ

for GEL in MS' a macro sequence MSEQ' is obtained then "(MSEQ')" would

be an element and the whole string a macro sequence.

may be of the form

The sequence MS

where MSl may be either empty or in one of the forms

morelementln;

2. morelementll morelementln;gelement, ••• ,gelement,

and MS Z may be either empty or in one of the forms

1. ;morelement Zl;morelement 2 2 morelementZn

2 1 t 1 t 1 t ZI morelementZn • ,ge emen , ••• ,ge emen ;more emen

If MS l and MS Z are non empty it can be seen from their respective

forms 1 and 2 that they are of the forms

msequence l sep and

sep msequence Z

respectively. Therefore MS may be of the following forms

1. msequence l sep MSEQ sep msequence Z

2. msequence l sep MSEQ

3. MSEQ sep msequence Z

4. MSEQ

Applying lemma 3 twice in 1 and once in each of 2 and 3 we prove that

the forms in 1, 2, 3 are macro sequences. MSEQ in 4 is already a macro

- 147 -

sequence. III

Let us now prove a theorem giving the conditions for the replacement

of imbricators by concatenators

THEOREM 3.7:

The imbricators of the form

(Imbr) #i:l,n,l[p(i) @ t @ q(i)]

may be equivalently replaced by the concatenator forms

(CFl) #i:l,n,l[p(i)@] t #i:n,l,-l[ql(i)@]

when p and q are non empty, or by

(CF2) #i:l,n,l[p(i)@] t

when p is non empty but q is empty, or by

(CF3) t #i:n,l,-l[ql(i)@]

when p is empty but q is not, or finally by

(CF4) t

when both p and q are empty,

where ql is obtained from q by transfering its leading separator to

its back,

if and only if

p and q in (Imbr) do not contain any unmatched opening and closing

parentheses respectively.

Proof:

(if)

Since p and q do not contain any opening and respectively closing

- 148 -

unmatched parentheses "p(i) :1 t:d q(i)" is produced by "imbr_at_seq".

We have to show that the replicators in the strings (CFi) for i=1,2,3,4

may be produced by "concseq" and that when the whole of (CFi) for

i=1,2,3,4 is replaced for (Imbr) the well-formedeness of the program is

preserved. We shall consider each of the four cases separately.

Case 1 p and q are non empty.

From the production options 1 to 8 for "imbr_at_seq" which generate

such strings it may be seen that p in general is of the form

msequence sep

the string t of the forms

sep
sep msequence or sep

and q of the form

sep msequence

which implies that ql is of the form

msequence sep

The strings p and ql appended by "@" may be produced by the syntax rule

for "concseq":

concseq={morelement ;}+ @

/ {morelement ;}~ concor

depending on whether p and ql terminate with ";" or ",". Therefore both

replicators in (CFl) are legal. The whole string (CFl) is a macro

sequence by lemma 3. Replacing (Imbr) for (CFl) in a macro sequence the

new string by lemma 7 is a macro sequence as well.

- 149 -

Case 2 P is non empty, q is empty

From the production options 11, 12 which produce such strings it may

be seen that p is of the form

msequence sep

and t is either empty or of the form

sep msequence

Using similar arguments to those used in case 1 we may show that the

replicator in (CF2) is legal. By lemma 3 the whole of (CF2) is a macro

sequence, and by lemma 7, by replacing it in a macro sequence for (Imbr)

a macro sequence is obtained.

Case 3 P is empty, q is non-empty.

From the production options 9, 10 for "imbr_at_seq" which produce

such strings it may be seen that t is either empty or of the form

msequence sep

and q of the form

sep msequence

which implies that ql is of the form

msequence sep

Using similar arguments as in cases 1 and 2 we may prove that the

replicator in (CF3) is legal and that when (CF3) is replaced for (Imbr)

a macro sequence is obtained.

Case 4 p and q are both empty.

From the last production of "imbr_at_seq" which generates such

- 1:f0-

strings we deduce that t is of the form

msequence

By lemma 7, if t or (CF4) is replaced for (Imbr) in a macro sequence

then the new string is a macro sequence also.

From theorem 3.6 it follows that in each case (CFi) for i=1,2,3,4

expands to the same string as (Imbr).

(only if)

For every unmatched opening bracket in p there is an unmatched

closing bracket in q and vice-versa. By lemma 2 in a replicator

ifi:1,n,1[p(i) Q]

the str ing p(i) is of the form

msequence sep

In a macro sequence of course all parentheses are matched. There fore

for the replicators in (CFi) for i=1,2,3 to be legal, p and q must not

contain any un.-natched opening and respectively closing parentheses.

The previous thc;orcm gave the conditions unde:-,:hich an in~ricfltr)r

:lay be substituted 0:-' expr~ssions involving concate'1dtors. Obviously if

t and nnl' <) r p or:j in (Imbr) are emp ty then (1::1'0 r) ::ld:: be repL1c,~d by a

single cuncatenator. Under restricted conditions it it als·, possible to

r'"i) Lace an i.-nbr ica [or in vJ hic h po ssibly all three of p, t, '1 ariO

n,)l1ei1;J tJ b',' a single conca tena tur bo th expand in,:; the same strin~.

The foll()..Jing theorem '3.7' for the replacement ·')f an imbricator by ~

singl-e concatenator gives these conditions.

THEOREM 3.7':

A well-formed imbricator

lIi:l,n,1[p @ t @ q]

- I SOo. -

may be replaced by a single concatenator if and only if 1. any

trailing separator of p, leading separator of q and trailing and

leading separator of t must be the same.

2. the string p is either emp ty or of the form "p' sep", where p

may be generated by a concatenator of the form

j: 1 , k 1 , 1 [s(g 1 (i, j » sep Q]

the string q is either empty or of the form "sep q''', where q' may

be generated by a concatenator of the forD

~!j: 1,k2, l[s(g2(i,j» sep @]

and the string t' obtained by stripping t of its leading and

trailing separators may be empty or may be generated by a

coneatenator of the form

j:l,d,l[s(g3(i,j» sep @]

where kl, k2, k3 do not depend on i, and where s(gl(i,j»,

s(g2(i,j», s(g3(i,j» denote that the indexed operations in s

dep,~nd on expressions 61(i,j), g2(i,j), g3(i,j) respectively, ",'hiel,

h3\'e the foca s:

kl*(i-l)+j

n*::l+j

res:J~ctivcoly. If :IIlY 'If p, q, t' are e:c1:Jty then the correspunJin,~

Vdi.Il(~S or k1, '><.2, k3 in the correspondin6 f:l)nc(ltenators is l;-i,,-2n CiS

zero.

Proo £ (ske tc h) :

(if)

_ I fO ~ -

We construct the concatenator

Iii: I,m, 1 [s(i) sep @j

where m=n*(kl+k:2)+k3. the values generated by

gl(i,j) for i= 1 , ••• , n and j=l, ... ,kl

g2(i,j) for i=l, ..• ,n and j= 1, ••• , k2

g3(i,j) for i= 1 , ••• , n and j= 1 , ••• , k3

are precisely the values 1, ••• ,m=n*(kl+k2)+k3.

(only if)

1. the separators must ne the same

2. kl, k2, k3 must not depend on i for g1, g2, g3 to genaratelrithmetic

p r')c;re ssion s, re spee tively. Al so, g1, 63 mu s t have the forms

indi.::ated so that the values (;enerated by all three form one arithmetic

prvc;ression.[.jj The nc'{c theorem deals 'with the opposite direction

naoely the ,replacement of eoncatenators by imbricators.

THEORE:'-! 3.8:

..... concatenator of the foe;)

(Cone) ifi:l,n,1[p(i) Q]

ma': always be r",;)lacej by the in:Jrieacur

(L l~l b r) 'Ii: 1 , n, 1 [! (i) ,7 2 1

- 1:)1 -

Proof:

The expansion of both replicators (Conc) and (Imbr) is given by

n
COPY{p(i)/ /}
i=l

Also by lemma 7, by replacing a generalized element by a macro sequence,

and afortiori by another generalized element a macro sequence is

obtained. One more thing has to be proved: that "p(i) @ @" may be

produced by "imbrseq".

The string "p(i) @" may either be produced by

1. {morelement ;}~ concor or by

2. {morelement ;}+ @

The string "p(i) @" may therefore be of the forms

1'. {morelement ;}~ gelement •••• ,@

2'. {morelement ;}+ @

If an "@" is appended to l' and 2' ,Le. constructing "p(i) @ .')"
\:: . the

new strings may be produced by applying the production options 11 or 12

of "imbr _at_seq" .111

Some important corollaries of the above theorem are the following:

COROLLARY:

At the expense of one extra symbol namely "@", all concatenators may

be replaced by imbricators.

COROLLARY:

Concatenators can only generate sequences which can be generated by

imbricators also.

An important implication would be that the syntax rules for sequence

- 152 -

replic~tors could be simplified by eliminating production rules for

concatenators without reducing the generality of the notation. However,

this may only be done at the expense of some loss of conciseness, since

an extra "@" has to be used.

We may also constrain the syntax for imbricators to produce just

genuine imbricators for which the conditions of theorem 3.8 do not

apply. This could be done by forcing at least one pair of parentheses

in "[]" to open before the first "@" and close after the second "@".

Non-genuine imbricators are produced when the whole string produced by

"imbrseq" is produced by "imbr_at_seq". We decided against that for it

would worsen the conciseness and readability of programs. Consider for

example the n-free frame buffer

NPl2 #i:l,n,l[path DEPOSIT(i);REMOVE(i) end]

which could be modified to a fill-empty last in first out queue by

adding the path

NP20 path #i:l,n,l[DEPOSIT(i);@;@;REMOVE(i)] end

which involves a non-genuine imbricator which could be replaced by two

concatenators as follows:

NP2l path Iii :l,n,l[DEPOSIT(i);@] # i : n , 1 , -1 [REMOVE (i); @] end

The path NP2l with the two concatenators is the least concise. The

replacement of an imbricator by two concatenators may not be as simple

as the above example. It could lead to long index specifications which

are difficult to read as the following example demonstrates. Let us

consider the bodyreplicator

NP22 #i:l,lO,l[path #j:l,lOO,i[A(j);@;@;B(j)] end

which generates ten paths with their sequences consisting of just a

non-genuine imbricator. If we replace the imbricator by the two

concatenators

- 153 -

Hjl:1,100,i[A(jl);@j Hj2:100,1,-i[B(j2);~1

a different sequence will be generated. W "1 e can eas~ y see that when
i=2. Then the range of index jl is

1,3, ••• ,97,99

but that of j2 is

100,98, ••• ,4,2

and not

99,97, ••• ,3,1

as its correct range should be. The reason for this difference is that

the index specification of j2 should be correctly specified by

Hj2:«100-1)//i)*i+l,I,-i

which is quite a complicated formula. The above index specification

gives the same range as the erroneous one when

«100-1)//i)*i+l=100 =~

(100-1)//i=(100-1)/i =~

99//i=99/i

that is when

99 mod i=O

for values of i between 1 and 10, that is for i=I,3,9.

3.3.2 The Expansion of Distributors

In section 3.2.7 we developed the syntax for distributors, we defined

compatibility criteria (CCI) and (Drestl) for well defined distributors,

- 154 -

and we sketched their expansion. In this section we formally define

their expansion and we prove that for each distributor there are

sequence replicators which yield the same string after expansion and we

derive necessary and sufficient conditions for obtaining sequence

replicators from distributors yielding the same string after expansion.

Let us first, obtain the rule for the expansion of distributors

without specifying any subrange, i.e. distributors of the form

NDl4 sep[p]

where p is a macro sequence of array slices (cf. section 3.2.7). For

the expansion of a distributor in this form to be defined, the first

compatibility criterion (eel) must be obeyed, implying that all the

distributable dimensions of array slices must contain the same number of

sections, say m. In the expansion of NDl4 m copies of p will be

generated separated by "sep" which may be formally obtained by

m
(El) eOPY{p sep/ /}

j=l

Furthermore, the array slices of the first copy must be replaced by the

first array section of this slice, in the second copy by the second

section etc. Therefore, the blank fields of the array slices of the p's

in (El) must be replaced by a function of j which relates the j'th copy

with the j'th section of each array slice. We specify that by

m
(E2) eOPY{p(g(j» sep/ /}

j=l

in which p(g(j» indicates that each of the distributable dimensions of

ND14 must be replaced by a function g(j).

The function g should be such that for a particular slice

g(j) should give the index of the j'th section for j=l,2, ••• ,m

The function g for each particular slice may only be obtained from

collectivisors since these define the sections and their order.

the

The

- 155 -

collectivisors may be of two forms: those produced by h tenon-terminal

"simpleardecl" and those produced by "replardecl". All collective names

declared by the former are of the form:

X(lb1 :ub1, .••• lbn:ubn)

where "lbi" and "ubi" for i=l, •••• n denote the lower bound and upper

bound respectively of dimension i of collective name X, may be declared

equivalently by the latter as follows:

#j1:1b1,ub1,1[••• #jn:lbn,ubn,l[X(j1 ••.. ,jn)] •••]

or when all replicators are transformed into their normal form by

if j l' : 1 , m1 , 1 [•• • 11 jn' : 1 , mn, 1 [X(1 b 1+ j 1 ' -1, ••• ,I bn+ jn' -1)] •••]

where mi=ubi-lbi+1 for i=1,2, •.• ,n. From now on we assume that all

collective names are declared by collectivisors produced by "replardecl"

in which all replicators are in their normal form. For example the

collective names A and B declared by NC7 may be equivalently declared by

NC11 array ifk:1,4,1[A(k-1)]

ifk:1,4,l[#j:1,3,l[B(k,j)]]

endarray

or more concisely by

NC12 array #k:1,4,1[A(k-1) #j:l,3,l[B(k,j)]]endarray

In general the declaration of subscripted operations corresponding to

a collective name Y of n dimensions has the form

(NCR) #k1:1,m1,1[••• #kn:1,mn,1[Y(h1(k1), ••• ,hn(kn»] •••]

where hi for i=1,2, ••• ,n are integer functions of ki.

- 156 -

The order of the sections of an array slice along its l'th dimension

for i=l, ••• ,n may be easily obtained by:

hi(j) gives the index of the j'th section for j=l, •.. ,mi

along dimension i, for i=l, ••• n.

This implies that hi(j) is the function by which g(j) in each of the

operations of p in (E2) must be replaced.

Let now us expand NDI

ND I ; [A, B(,3)]

where A, B have been declared by NCl2 using the form (E2). To construct

"p(g(j»" from p which in this case is "A,B(,3)" we have to replace A

by A(j-l) and B(,3) by B(j,3) where the expressions j-l and j have been

obtained from NCI2. The expansion of NDI is given by

4
(E3) COPY{A(j-l),B(j,3);/ /}

j=l

which yields

A(O),B(1,3);A(1),B(2,3);A(2),B(3,3);A(3),B(4,3)

Let us also expand the distributor

NDlS ;[C]

where C is declared by NC13

NC13 array #j:l,4,1[C«j-l)**2)] endarray

where "**" denotes "to the power", by which the operations

C (0), C(1), C(4), C(9)

are declared. The expansion of NDIS is given by

- 157 -

4
COPY{C«j-l)**2)'/ /}
j=1 '

which yields

C(0);C(1);C(4);C(9)

Let us now obtain a formula for the expansion of a distr ibutor with

subrange

ND2 sep#inind,fiind,incind[pj

According to the compatibility criterion (Drestl) of distributors,

distributors are well defined when all the distributable dimensions of

array slices on which the distributor applies contain at least Ns

sections, where Ns=(fiind-inind)//incind+1. The expansion of ND2 will

be given by

in

Ns
(ES) COPY{p(g(l» sep/ /}

1=1

which p(g(l» indicates that each of the blank fields of

distributable dimensions on which the distributor operates have been

replaced by a function gel). This function will not in general be the

same as in NOl since

gel) must give the inind'th array slice,

g(2) the (inind+incind)'th slice,

etc.

The order of the sections we would like to generate may be given by the

formula

f(1)=inind+(1-1)*incind, for 1=1,2, ••• ,Ns =(fiind-(inind»//(incind)

Therefore the function gel) for dimension i, l<i<n in (ES) will be

g(l)=hi(f(l»

- 158 -

where hi is obtained from the declaration of the form of (:~CR).

Let us demonstrate this rule by expanding

ND16 ;It2,4,2[D]

where D is defined by NC14

NC14 array #i:2,11,2[D(i)] endarray

which when the replicator is transformed into its normal form (cf.

3.3.1), is declared by

array #i1:1,5,1[0(2+(i1-1)*2)] endarray

or more simply by NC15

NC15 array #il:1,5,1[0(2*il)] endarray

defining operations

0(2),0(4),0(6),0(8),0(10)

The expansion of ND16 is given by:

Ns
COPY{0(2+(f(1)-1)*2);/ /}
1=1

where Ns=(4-2)//2+1=2 and f(1)=2+(1-1)*2. Therefore (E6) becomes

2
(E7) COPY{0(2+(2+(1-1)*2-1)*2);/ /}=

1=1

2
COPY{O(2+(2*1-1)*2);/ /}=
1=1

2
COPY{O(4*1);/ /}=0(4);0(8)
1=1

Finally, let us expand N017

- 159 -

~m 1 7 ; 1/ 2 , 4 , 2 [C J

where C is declared by NC13. Its expansion is given by (E8)

Ns
(E8) COPY{C«f(1)-1)**2);/ /}

1=1

where Ns=(4-2)/ /2+1=2 and f(l)=2+(1-1)*2 which when substituted in (E8)

we obtain (E9)

2
(E9) COPY{C«2+(1-1)*2-1)**2)"/ /}=

1=1 '

2
COPY{C«2*1-1)**2)"/ /}=
1=1 '

C(l);C(4)

A distributor of the form

NDI sep[p]

may be considered as a special case of ~2

ND2 sep#inind,fiind,incind[p]

,common
in which inind=l, incind=l and fiind is the"number of sections in the

distributable dimensions in the array slices of p.

Then the expansion distrexpO(D) of a distributor D of the form of ND2

in which inind, fiind, incind may be declared implicitly, is given by

Ns
COPY{p(g(j» sep/ /}
j=l

where Ns=(fiind-inind)//incind+1, p(g(j» indicates that each blank

field of distributable dimensions on which the distributor operates,

will be replaced by a function

g(j)=hi(f(j»

- 160 -

where f(j) is defined by

f(j)=inind+(j-l)*incind

and hi is obtained from the corresponding i'th dimension of each

collective name in the collectivisors.

For the expansion of distributors to be non empty the following

restriction (Drest3) must hold:

(Drest3)

inc indIO and Ns=(fiind-inind)//incind+l)l

that is at least one copy of the regularity must be made. For the

expansion of a distributor to generate subscripted operations which are

permitted by the collectivisors the following restriction (Drest4) must

be imposed on the values of "inind", "fiind", "incind".

(Drest4)

l~inind+(j-l)*incind~Ms for j=l, ••• ,Ns

where Ms is the minimum number of slices over the number of slices of

all the distributable dimensions of the distributor. The expression

f(j)=inind+(j-l)*incind

gives the array slice of ordinality j, l~j~Ns and as such must take

values between 1 and Ms. Let us obtain restrictions on the values of

"inind", "fiind" and "incind" independent of j. As fU) is a monotonic

function its lower and upper values are obtained for j=l and j=Ns. As

f(j) may be either increasing or decreasing with increasing values of j

we may only infer that for j=l

l~inind+(l-l)*incind~Ms

l<inind<Ms

and that for j=Ns

=?
(I)

- 1 f) 1 -

l~inind+«fiind-inind)//incind)*incifld<as =~

l~inind+«fiind-inind)/incind-e)*incind<Ms (-I<e<l) =~

l~inind+fiind-inind-e*incind<Ms

l<fiind-e*incind<Ms

l+e*incind<fiind<Ms+e*incind

=~

=~

When incind)O, the expression l+e*incind is minimum when e tends to -1 ,
and the expression Ms+e*incind is maximum when e tends to 1. Therefore,

when incind)O l-incind<fiind<Hs+incind (IIa)

When incind<O the the expression l+e*incind is minimum when e tends to 1

and the the expression Ms+e*incind is maximum when e tends to -1.

Therefore

when incind<O l+incind<fiind<Ms-incind (IIb)

By combining (IIa) and (lIb) we obtain:

1-1 incindl<fiind<MS+1 incindl (II)

A distributor may be considered as a shorthand for some replicators.

In fact for every distributor there is a family of replicators which

when expanded generate the same string as the string obtained from the

expansion of the distributor. Before we formally show how to obtain

such replicators let us prove the following lemma.

LEMMA 8:
If sCi) is a macro sequence involving integer expressions depending

on some integer i then the concatenator

#i:1,n,l[s(i) sep @]

is syntactically well-formed.

- 162 -

Proof:

Since sCi) is a macro sequence it may in general be of the form

morelementl morelementm

If sep is a semicolon the string sCi) sep @ may be produced by the secon<l

option of "concseq"and if sep is a comma by the first option of

"conc seq':.tli

Let us now prove the theorem for the replacement of distributors by

concatenators.

THEOREM 3.9:

The string obtained by the expansion of a distributor of the general

form

~D2 sep#inind,fiind,incind[p]

may also be generated by a concatenator of the normal form

#j:l,Ns,l[p(g(j» sep @]

where Ns=(fiind-inind)//incind+l and p(g(j» is obtained from p by

substituting the fields of the distributable dimensions of sections

in ND2 by g(j) as in distrexpO.

Proof:

The syntax rules in 3.2.7 for distributors specify that the string p

is produced by "msequence" in which the fields of the distributable

dimensions on which the distributor operates are blank. When p is

transformed to p(g(j» all these blank fields are replaced by an integer

expression g(j). Any other blank fields in p(g(j» are in array slices

which correspond to other distributors nested in ND2.

and lemma 1
By le~ma ~the replicator of the form

- ItS] -

#j:I,Ns,l[p(g(j) sep @J

is syntactically well-formed since p(g(j» is a macro

Furthermore its expansion is given by

Ns
COPY{p(g(j» sep/ /}
j=l

sequence.

which is the same as the formula for the expansion of ND2. If the

values of "inind", "fi ind" and "incind" satisfy (Drest3) and (Drest4)

then the concatenator generates only indexed operations permitted by the

collectivisors.111

The concatenator constructed in the above theorem is in normal form

and from it all concatenators belonging to its family may be obtained,

all expanding to the same string. This concatenator may by theorem 3.8

be replaced by an imbricator generating the same strings. The

concatenators generating the same strings as NDI, ND16, and NDl7 are

NR12 #j:l,4,I[A(j-I),B(j,3);@]

NRl3 #1:1,2,I[D(4*1);@]

NR14 #1:1,2,1[C«2*1-1)**2);@]

respectively.

A corollary of theorems 3.3 and 3.9 is

COROLLARY:

All distributors expand to macro sequences.

The reverse of theorem 3.9 that all replicators expand to strings

which may be generated by distributors does not hold. However, under

some conditions this is possible. The next theorem for the replacement

of concatenators and imbricators by distributors gives these conditions.

THEOREH 3.10:

The string generated by the expansion of a sequence replicator of

the form

- 164 -

(NR)IIi:1,n,1[p(i) @ t @ q(i)]

may be generated by one distributor if and only if the following

conditions hold:

either t and one of p or q are empty or the conditions of theorem 3.7'
1.

L__ hold.

•
2. n> 1

3. all operations in p and q must be subscripted by i and the index

"i" should not be involved in expressions in replicator index

specification or subrange specifications of replicators and

distributors in p or q.

4. each subscripted operation must have exactly one field depending

on the index i by an expression say g(i).

5. if p(i) and q(i) involve distributors, the field of subscripted

operations depending on index "i" should be in the same position

relative to the blank fields of the array slices of these

distributors.

6. the g(i) in each of the above fields must be such that it may be

transformed into the form h(f(i» where h is the function in the

corresponding dimension of each collective name in the

collectivisors and f(i) is the same for all fields and is of the

form a+(i-l)*b where a, b are integers with the restriction that

. Proof:

(if)

If t and one of p or q in (NR) are empty and since ~1, the expansion

of (NR) is nonempty and according to theorem 3.7 the expansion of (NR)

may be obtained by a single concatenator. Sinilarly, if p, t, q satisfy

the cond i tions of theorem 3.7' then the expansi,)n of (NR) is nonemp ty

and may be also be obtained by a single concatenator.

- If)S -

either IIi:l,n,l[p(i) @j

or #i:n,l,-l[ql(i) ~]

where ql(i) is defined in theorem 3.7. Therefore it suffices to show

that the expansion of a concatenator of the form

(NR1) #j:l,m,l[s(g(j» sep @j

where s(g(j» indicates that the sixth condition holds, may be obtained

by a distributor.

Let us construct the distributor (NO)

(NO) sep#a,a+(m-l)*b,b[sj

where s is obtained from s(g(j» by removing from each subscripted

operation the integer expression g(j). Since s(g(j» is a macro

sequence in which all operations are subscripted by condition 3, by

lemma 2, s is a macro sequence having array slices instead of

operations. The index i does not appear anywhere is s as it has been

eliminated from the subscripted operations and as any other context it

could be in, has been excluded by condition 2. By condition 3, the

distributor NO applies to a single distributable dimension of each

slice in s.

If "sep" in NO does not apply to the right field of the slices of s

then we may use the section selection feature of the distributor either

in NO or in the distributors in p(i) and/or q(i). We know this is

possible because of condition 5.

Obviously its expansion is given by

m
COPY{s(g(j» sep/ /}
j=l

since the number of times s will be copied is given by

(a+(m-l)*b-a)//b+l=

«m-l)*b)//b+l=m

- 166 -

and g(j) is the same as h(f(j».

expansion of (NR1).

(only if)

Condi tion 1 mu st be satisfied for

The same formula gives also the

otherwise more than one of the arguments of the COpy expression giving

its expansion will be non empty. The COpy expression giving the

expansion of a distributor has the second and third arguments empty.

Condition 2 guarantees that the expansion of (NR) is non empty which

is necessary since distributors should not generate empty expansions.

All operations should be subscripted by expressons depending on "i",

as condition 3 requires, for after these expressions are eliminated all

operations inside "[]" of ND should be array slices. Also "i" should

not be involved anywhere else, for the index "i" inside "[]" of ND, it

will still be by context an integer constant, not controlled at all by

the distributor and therefore undefined.

Subscripted operations in s must have at most one field depending on

i, as condition 4 requires, as each distributor applies only to one

dimension of each array slice.

Condition 5 must hold since otherwise, neither the default rule nor

the section selection feature of distributors can specify the right

slices to be distributed.

Finally, g(i) must be of the specified form since the subrange of

distributors selects sections of array slices the position ordering of

which form arithmetic progressions. III

Let us demonstrate how distributors may be obtained which generate

the same strings as replicators. Consider the concatenator NR12

NR12 II j : 1 .4. 1 [A(j-l) , B(j , 3) ; @]

where collective names A and B have been declared by NC12. The

- 167 -

replicator NR12 satisfies the first five conditions of theorem 3.10.

Let us demonstrate that it also satisfies the sixth condition. The

expression (j-l) subscripting A should be possible to be re-writen as

ha(g(j» where f(j) is of the form a+(j-1)*b and ha is the function

subscripting A in NC12. Therefore

ha (f (j)) = f (j)-1

As f(j) is of the form

f(j)=a+(j-l)*b

we have to find integers a and b such that

a+(j-1)*b=j or

a-b+b*j=j

The only such integers are a=b=l. Therefore the expression j-1 may be

re-writen as

f(j)-l or as

l+(j-l)* 1-1

Therefore condition 6 is satisfied by A(j-1). It should also be

satisfied by B(j,3). Simirarly, the expression j should be re-writen as

hb(f(j» where hb is subscripting the first dimension of B in the

collectivisor NC12. As

hb(f(j))=f(j)

we have to verify that

f(j)=l+(j-l)*l

is the same as

f(j)=j

- 16H -

which obviously is. Therefore condition 6 is also satisfied and the

distributor expanding to the same string as N~12 is NU18

NDl8 ; Ill, 4, 1 [A, B(,3)]

or mor e simp ly

NDl ;[A,B(,3)]

as the subrange of NDl8 is redundant defining all sections of array

slices of A and B(,3).

Let us also examine the concatenator NRl3

NRl3 IIl:1,2,1[D(4*1);@]

where D is declared by NC14. The replica tor NR13 satisfies the first

five conditions of thoerem 3.10. Let us try to transform "4*1" into the

necessary form h(£(l». Since £(1) must be of the form a+(l-l)*b the

relation

g(1)=4*1

must hold. Since h from the collectivisor NC14 is h(j)=2+(j-1)*2 the

relation

2+(f(1)-1)*2=4*1

must hold which implies that

f(1)=(4*1-2)/2+1=2*1

Since f(l) must be of the form

£(1)=a+(1-1)*b

the re lat ion

- 169 -

a+(l-1)*b=2*l

must hold, which implies that

a=b=2

Therefore f(l)=2+(j-1)*2 and NR13 satisfies the sixth condition of

theorem 3.10. The distributor expanding to the same string as NR13 is

ND16

ND16 ;1f2,4,2[D]

Not all g(i) may be tranformed into the appropriate form.

for example the replica tor

NRlS lfi:l,3,1[E(i**2);@]

where E is declared by NC16

NC16 array #j:l,lO,l[E(j)] endarray

Consider

The concatenator NRll satisfies the first five conditions. Let us try

to transform g(i)=i**2 into the appropriate form, h(f(j». As h(j)=j

h(f(i»=f(i)

Therefore f(i) must be the sane as i**2 and f(i) must be of the form

f(i)=a+(i-l)*b

which means that

a+(i-l)*b=i**2

must hold. But there are no integers a and b for which this relation

holds, as the left hand side is a linear expression of i whilst the

right hand side a quadratic expression of i. Therefore condition 6 is

- 170 -

not satisfied and there is no distributor which may generate the string

which NR13 generates. The reason is that NR15 generates the string

E(l);E(4);E(9)

that is. consisting of the first. fourth and ninth operations of E the

ordering of which does not form arithmetic progression.

3.3.3 The Expansion of Macro Programs

In the previous two sections 3.3.1 and 3.3.2 we obtained expansion

rules for replicators (replexpO) and distributors (distrexpO) and we

proved various properties which their expansions possess. Here we

define the complete expansion of macro programs and by using the results

theorems 3.3 •• 3.4. 3.5 and the corollary of theorem 3.9 of the previous

two sections we show that their expansion yields basic COSY programs.

Let us represent a macro program schematically using syntactic

variables to represent its syntactic entities. that is substrings

produced by non-terminals. A macro program will be denoted by MPROG and

represented by

program MPBODY endprogram

where MPBODY denotes a substring produced by

"mprogrambody". As such MPBODY may have the form

CPQBR1 ••• CPQBRn

the non-terminal

where each CPQBRi for i=l ••••• n denotes a single path or process or

bodyreplicator possibly headed by collectivisors.

collectivisors it may be represented by

COLs PQBR

If headed by

where COLs denotes a collection of collectivisors and PQBR a single

path. or a process or a bodyreplicator. A bodyreplicator may be

- 171 -

represented by

II i : 1, n, 1 [PQBRs 1

where PQBRs denotes a collection of paths, processes and
bodyreplicators. A bodyreplicator upon expansion generates a collection

of paths, processes and bodyreplicators represented by

PQBRl ••• PQBRn

where each PQBRi for i=l, ••• ,n denotes a single path or process or

bodyreplicator. A path and a process will be represented by

path MSEQ end

process MSEQ end

respectively, where MSEQ denotes a macro sequence. A macro sequence

will be represented by

MaRl ;"'; MORn

where each MORi for i=l, .•. ,n denotes a macro orelement, which is

represented by

GELl , ••• , GELn

where each GELi for i=l, •.• ,n denotes a generalized element.

In general, a generalized element may involve right and left

replicators and will be represented by

RRs M LRs

where RRs and LRs denote right and left replicators respectively and H

denotes either a starelement or a sequence replicator or a distributor.

A generalized element may be just a sequence replica tor denoted by

SREPL. or a distributor denoted by DISTR, or a starelement represented

by

- 172 -

EL* or EL

where EL denotes an element which could be either an operation or an

indexed operation denoted by OP or a macro sequence in parentheses
represented by

(MSEQ)

The complete expansion of a macro program MPROG is given by

expand(MPROG) where the function "expand" is defined as follows:

expand(e)=cases e:

1. program MPBODY endprogram

2. CPQBR1 ••• CPQBRn

3. GOLs PQBR

4. #i:1,n,1[PQBRs]

5. PQBR1 ••• PQBRn

6. path MSEQ end

7. process MSEQ end

8. MOR1; ••• ;MORn

9. GEL1, ••• ,GELn

10. RRs M LRs

11. SREPL

12. DISTR

13. EL*

~ program expand(MPBODY) endprogram

~ expand(GPQBR1) ••• expand(GPQBRn)

~ expand(PQBR)

~ expand(replexp O(#i:l,n,I[PQBRs]»

~ expand(PQBRl) ••• expand(PQBRn)

~ path expand(MSEQ) end

~ process expand(MSEQ) end

~ expand(MORl); ••• ;expand(HORn)

~ expand(GEL1), ••• ,expand(GELn)

~ expand(gelexpO (RRs H LRs»

~ expand(replexpO(SREPL»

~ expand(distrexpO(DISTR»

~ expand(EL)*

14. OP ~ OP + possible expression eval~tions
15. (MSEQ) ~ (expand(MSEQ»

We may now prove the theorem for the expansion ~ macro programs

~ programs.

THEOREM 3.11:

to

The expansion of a macro program MPROG produced by the syntax rules

of section 3.2 given by

expand(MPROG)

- 173 -

is a well-formed basic COSy program.

Proof:
The expansion certainly stops.

We shall prove the theorem for each of the fifteen cases of syntactic

entities on which function "expand" applies.

case 1

Applying expand to MPROG we obtain

expand(program MPBODY endprogram)=program expand(~PBODY) endprogram

which is a basic program since expand(~~BODY) is a basic programbody as

may be shown by case 2.

case 2

Applying expand to MPBODY we obtain

expand(CPQBRl ••• CPQBRn)= expand(CPQBRl) ••• expand(CPQBRn)

The r.h.s. is a basic programbody since each of

expand (CPQBRi) for i= 1, ••• , n

is a basic programbody as may be shown by case 3.

case 3

Applying expand to a single path or process or bodyreplicator

by a collectivisor we obtain

expand(COLs PQBR)=expand(PQBR)

which is a basic programbody as may be shown by cases 4, 6, 7.

headed

- 174 -

case 4

Applying expand to a bodyreplicator we obtain

expand(#i:1,n,1[PQBRs])=expand(replexp O(#i:1,n,1[PQBRs]))

Since

replexpO(#i:l,n,l[PQBRs])

yields a collection of paths, processes and bodyreplicatorsin which the

index "i" has been replaced by values in the range of "i", its

expansion may be shown by case 5 to be a basic programbody.

case 5

Applying expand to a collection of paths, processes and

bodyreplicators we obtain

expand(PQBR1 ••• PQBRn)=expand(PQBR1) ••• expand(PQBRn)

which is a basic programbody since each of

expand(PQBRi) for i=1, •.. ,n

is a basic programbody as may be shown by cases 4, 6, 7.

case 6

Applying expand to a macro path we obtain

expand(path MSEQ end)=path expand(MSEQ) end

which is a basic path and a basic programbody if

expand(MSEQ)

is a basic sequence which may be shown by case 8.

- 175 -

case 7

Similarly, the expansion of a macro process is a basic process and

basic programbody.

case 8

Applying expand to a macro sequence we obtain

expand(MOR1; ••• ;MORn)=expand(MOR1); •.• ;expand(MORn)

Each of

expand(MORi) for i=I, ••• ,n

is a basic sequence as may be shown by case 9.

a

Therefore, the r.h.s. is a basic sequence since if sl and s2 are

basic sequences "sl;s2" is a basic sequence also. This may be shown by

similar arguments to that of lemma 3.

case 9

Applying expand to a macro orelement we obtain

expand(GEL1, ••• ,GELn)=expand(GELl), ••• ,expand(GELn)

Each of

expand(GELi) for i=I, ••• ,n

is a basic sequence as may be shown by each of the following cases.

Therefore, the r.h.s. is a basic sequence also since if sl and s2 are

basic sequences "sl,s2" is a basic sequence also. Again this may be

shown by similar arguments to those of lemma 3.

- 170 -

case 10

Applying expand to a generalized element which involves left and/or

right replicators we obtain

expand(RRs M LRs)=expand(gelexpO(RRs M LRs»

As we have shown in theorem 3.5 the expansion of a generalized element

gelexpO(RRs M LRs)

is a macro sequence in which all the indices of the left and right

replicators have been replaced by integer values in their range. The

expansion of this macro sequence may be shown to be a basic sequence by

case 8.

case 11

Applying expand to a sequence replica tor we obtain

expand(SREPL)=expand(replexpO(SREPL»

By theorems 3.3 and 3.4 the expansion of a sequence replicator given by

r eplexp ° (SREPL)

yields a macro sequence in which the index "i" has been replaced by

integer values in its range. By case 8, its expansion may be shown to

be a basic sequence.

case 12

Applying expand to a distributor we obtain

expand(DISTR)=expand(distrexpO(DISTR»

By the corollary of theorem 3.9 the expansion of a distributor given by

- 177 -

distrexp U(DISTR)

yields a macro sequence in which all the distributable dimensions of the

distributor have been replaced by integer values. The expansion of this

macro sequence may be shown to be a basic sequence by case 8.

case 13

Applying expand to a starelement we obtain

expand(EL*)=expand(EL)*

which is a basic element since expand(EL) is a basic element as may be

shown by cases 14, 15.

case 14

Applying expand to a simple or a subscripted operation we obtain

expand(OP)=OP + possible expression evaluations

which is a basic operation.

case 15

Applying expand to an element of the form (MSEQ) we obtain

expand«MSEQ»=(expand(MSEQ»

which is a basic element since

expand(HSEQ)

is a basic sequence as may be shown by case 8.

As we have considered every possible case of syntactic entities of

h · h h ft' "expand" macro macro programs to w 1C t e unc 10n applies, we may

conclude that the theorem is proven. III

- 178 -

In this section 3.3 we formally defined the expansl'on of replicators,
distributors and of complete macro programs. We prove that

concatenators, imbricators and

upon their expansion. We

distributors g t enera e macro sequences

also proved that the expansion of complete

macro programs yields well-formed basic programs. We also proved a

number of theorems for the replacement of macro elements in macro

sequences by other macro elements.

3.4 EVALUATION OF THE NEW NOTATION FOR MACRO COSY

In the previous two sections 3.2 and 3.3 we introduced a new macro

notation and grammar, we defined

replicators, distributors and macro

and characterized the expansion of

programs. In this section we

evaluate this new notation using as criteria the four properties we set

at the begining of section 3.2 which a "good" macro notation should

possess.

1. As we have proved in section 3.3.3 programs produced by the

grammar of section 3.2 always generate well-formed basic

programs when expanded. This grammar gives context-free rules and no

meta-restriction rules are required to constrain the regularities of

replica tor s. The few meta-restrictions imposed are of a

context-sensitive nature and cannot be expressed by context-free rules.

These include the restrictions that collective names should be declared

before any of its corresponding subscripted operations are used in paths

or processes; that the number of dimensions of indexed operations

corresponding to a collective name should have the same number of

dimensions as specified in the collectivisors, etc. The production of

macro programs which always yield well-formed basic programs when

expanded was considered to be a very important property of a macro

notation.

However, this property on its own does not justify a good macro

notation as the macro features it involves should generate a large class

of strings in order to represent basic COSY strings concisely.

- 179 -

2. We shall examine in detail the generality of each feature of the

notation, the generality of the collectivisor, the

bodyreplicator, the sequence replicators, the left and right replicators

and the distributor.

a. the collectivisor

Collectivisors do not generate any basic strings as they are

eliminated upon the expansion of macro programs, but declare permissible

sets of subscripted operations. They are important though, since the

expansion of distributors depends on these declarations; distributors do

not explicitly generate indices but generate the indices defined by the

collectivisors.
They are also usefull as a check for the indices used in the rest of
programs.

Collectivisors may declare rectangular arrays of any number of

dimensions either specifying the lower bound in each of these explicitly

or assuming it to have the value one implicitly. By using replicators

generating permissible sets of subscripted operations other shapes of

arrays may be declared. Although, more complex shapes could be

permitted to be declared we did not allow the maximum degree of

generality possible and we imposed the restrictions (Crest3) specifying

that there should be as many dimensions in an indexed operation in

collectivisors as the number of replicators within it is nested and that

indices in each dimension should depend directly on one distinct

replicator index. These restrictions were imposed to guarantee the

independence of the indices and to avoid duplication of declaration of

subscripted operations. A third and more subtle reason for these

restrictions was to avoid the declaration of collective names, one

dimension of which either depends directly on two or more indices, or

depends on one index which itself depends on another index on which none

of the indices in other dimensions depend directly. These

collectivisors would overcomplicate the expansion of distributors which

would no longer be replaced by a single concatenator but by a number of

them nested within each other. Consider for example the declarations

- 180 -

C array

#i:O,9,1[#j:O,9,I[A(100*i+j»))

#i:O,9,1[#k:lOO*i,100*i+9,I[B(k»))

endarray

which are not permitted by our restrictions. These declare

one-dimensional arrays A and B the indices of which take the values:

0,1, ••• ,9, 100,101, ••• ,109, , 900,901, ••• ,909

two

The only difference in the declarations of A and B is that the indices

of A depend on i and j directly and the indices of B directly on k and

indirectly on i. With the above declarations of A and B the distributor

D j[A,B)

would no longer be replaced by a single concatenator but by two nested

ones as follows:

#i:0,9,1[#j:0,9,I[A(100*i+j),B(100*i+j)j@)j@) or

#i:0,9,1[#k:l00*i,100*i+9,I[A(k),B(k)j@)j@)

Although, this kind of declarations increase the class of strings

distributors could generate we have excluded them for they would

overcomplicate the expansion rules for distributors. The above arrays A

and B could be modified to the two dimensional arrays Al and Bl declared

by:

NCl7 array #i:0,9,1[#k:100*i,IOO*i+9,I[AI(i,k) Bl(i,k)]] endarray

The above collectivisor is valid in the new notation, as the number of

dimensions of Al and Bl are the same as the number of replicators

defining them and each dimension depends on a single replicator index

directly. The operations in A and B correspond to operations in Al and

Bl as follows:

AI(i,k) and Bl(i,k) correspond to A(k) and B(k) respectively,

for i,k as generated by the replicators in NC17

- 181 -

Under the restrictions Crest3 on collectl'vl'sors, I tle expansion of
distributors is reasonably simple which compensates for the loss of
generality of the strings distr ibutor s may generate. Under the above
correspondence of operations of A and B with operations of A1 and 81 the
string the distributor

D ; [A,B]

generates, when A and B have been declared by C, may be generated by by

the distributor ND19

ND19 ; [; [Ai, Bl]]

where AI and Bl are declared by NC17. The distributor ND19 is permitted

in the new macro notation.

Collectivisors contribute to the notation the option of simplifying

macro sequences by using distributors rather than the more lengthy

replicators. Collectivisors in a program without distributors are not

essential and they may only serve as a means of testing that replicators

do not generate subscripted operations not admitted by collectivisors.

b. the bodyreplicator

Bodyreplicators may generate paths and processes and other

bodyreplicators. Unlike sequence replicators they are only of one form,

generating consecutive regularities. In that respect they are analogous

to concatenators and not to imbricators. We did not allow two types of

bodyreplicator s "bodyconcatenators" and "bodyimbricators" for two

reasons. The first is a pragmatic one; we have never needed or used

bodyimbricators although some of the grammars permitted them [TL77,

LT76]. The second is that the paths and/or processes a "bodyimbricator"

generates may be generated by a single "bodyconcatenator", as we have

indicated in section 3.1.3 where discussing the syntax for

bodyreplicators of [LT76].

- 132 -

c. the sequence replicators

They may generate regularities which are macro sequences. We have

distinguished two kinds of these replicators, concatenators and

imbricators. In the expansion of concatenators all regularities follow

each other and these only differ in the subscripts of the indexed

operations they involve. In the expansion of imbricators regularities

wrap or imbricate each other. All but one of these regularities differ

in the integer expressions they involve. The innermost regularity

however differs additionally from the rest in that instead of

imbricating another regularity it imbricates a string, namely that

between the two "@"s in an imbricator, dropping the separators before

and after the two "@"s. This imbricator is a powerful extension we have

introduced and allows generation of sequences which cannot be generated

by a single replicator produced by any other grammar.

We have excluded replicators which do not generate matching pairs of

parentheses. These are the range, context and neighbourhood dependent

replicators. Of the three only the third has been used in macro

programs but for a very specific purpose: to specify the more general

imbrication of regularities which our imbricators do permit. For

example the stack with a test for "full" had to be specified by using

two wide concatenators, which are neighbourhood dependent, as follows:

P74 path #i:l,n,l[(UP(i);@] full* #i:n,l,-l[DOWN(i»*;@] end

The string obtained from the expansion of the two neighbourhood

dependent replicators may be generated by one of the new imbricators:

NP23 path #i:l,n,l[(UP(i);@;full*;~;DOWN(i»*] end

Since no other use was made of these replicators we have not obtained

formal results on the limitation of our notation due to their

elimination. We however outline how macro sequences involving these

replicators may be transformed into macro sequences valid in our

notation.

expansion

Although, these replicators do not generate sequences their

together with their context should form sequences, parts of

which may be generated by sequence replicators.

- 183 -

Simple range dependent replicators where "(" or ")" is the immediate

left and respectively right context of them may be generated together

with their context by a single imbricator. For example, the string

«(Ui:l,3,1[A(i);D(i»,@]

after the expansion of the replicator becomes the sequence

«(A(l);D(l»,A(2);D(2»,A(3);D(3»

which may be generated by the imbricator

NRl6 #i:3,l,-l[(@@,A(i);D(i»]

The context of the range dependent replicators could be more involved

in that "(" and ")" are not their immediate context, as for example:

(a;(b;(c;#i:l,3,l[D(i»,@]

which after the expansion of the replicator becomes

(a;(b;(c;D(1»,D(2»,D(3»

The above sequence cannot be generated by any of our replicators since

the regularities differ in the simple operation names and not just in

the subscripts of indexed operations. We may however use a collective

name, say A, corresponding to the subscripted operations A(l), A(2),

A(3) and rename the simple operations a, b, c to A(3), A(2) and A(l)

respectively. Thus the above string becomes

(A(3);(A(2);(A(1);D(I»,D(2»,D(3»

which may be generated by the imbricator

NR17 #i:3,l,-l[(A(i);@;@,D(i»]

Not all well-formed basic strings parts of which are generated by range

- 18~ -

dependent operations may be generated by sequence replicators.

for example the string

(a;(b,(c;#i:l,3,1[D(i»;@]

Consider

in which the connectives after a and care ";" but the connective after

b is ",". Here the mapping of operations to indexed operations is not

sufficient to overcome the problem of constructing a sequence replicator

expanding to the string above.

A string s part of which is generated by a range dependent replicator

which is a wide concatenator may be generated by an imbricator provided

that the head of the string s not generated by the range dependent

replicator may be generated by~range dependent replicator. Then if the

ranges of the indices of the two wide concatenators are the same the

string s may be generated by a single imbricator. If the substring of s

not generated by the range dependent replica tor cannot be generated by a

wide concatenator then s may not be generated by a sequence replicator.

We have to point out that the syntax of such replicators has to be

expressed by context-sensitive rules if these are to form well-formed

basic strings after expansion. Only by context-sensitive rules we can

specify that the number of opening or closing parentheses of their

context must be equal to the number of regularities the replicator is to

generate, determined by the values of "in", "fi" and "inc" of the index

specification part of the replicator.

If the range replicator in s is not a wide concatenator but a wide

imbricator then s may not in general be generated by a single

imbricator. It may however be abbreviated by generating parts of it by

more than one sequence replicator. For this to be possible though, it

is still necessary for the part of s not generated by the range

dependent replicator to be generated by a wide concatenator. We shall

discuss this case when considering neighbourhood dependent replicators

below, since the string s may be generated by two replicators which are

of this form.

He may always though, generate by sequence replicators strings parts

of which have been generated by context dependent replicators provided

- 185 -

We construct sequence they always generate more than one regularity.

replicators out of them by rearranging parts of the regularities they

that parentheses in each regularity match. These sequence generate so

replicators cannot generate the complete strings which context dependent

replicators generate but only parts of them. Consider for example the

following str ing

(iii: 1. n. 1 [A(i)) • (B(i) ; @])

involving a context dependent replica tor which as all context dependent

replicatocs generates the same number of opening and closing

parentheses. though not all matching. Since upon expansion the i'th

opening parenthesis matches with the (i+l)'th closing parenthesis for

i=1.2 ••••• (n-1), we may modify the regularity to form the sequence

replicator:

NR18 #i:1,n-l,I[(B(i);A(i+I)),@]

The strings "A(l));" and ",(B(n)" which are heading and respectively

trailing the expansion of the context dependent replicator, and the

opening and closing parentheses around the context dependent replicator

are not generated by the above concatenator and have to be written

explicitly. Thus the string

(A(I));#i:l,n-I,I[(B(i);A(i+1)),@].(B(n))

abbreviates the expansion of the expression involving the context

replicator as long as n)1 and it is valid in our notation. If n takes

the value 1 the range of the index of the concatenator becomes empty

which is not permitted. If n could take the value 1 we may replace the

concatenator together with the ";" before or the
11 11 , after it by a left

or respectively right replicator:

(A(I)) II i : 1 , n-1 , I [; I (B(i) ; A(i + I)) ,@] , (B(n))

(A(l)) ; iii : 1 , n-1 , I [(B(i) ; A(i+ 1)) , @ I ,] (B(n))

If the context dependent replicator is of the form of imbricators we

first transform it into wide concatenators and we then apply, from left

- 186 -

to right, the transformations we outlined above. Consider for example
the context dependent imbricator

(IIi: 1 , n, 1 [A(i» ; (B(i) ,@@) ; C(i) , (0 (i)])

Let us transform it first into wide concatenators

(lIi:1,n,1[A(i);(B(i),@] Ui:n,1,-1[);C(i),(D(i)])

Then re-arrange the regularity of the leftmost replicator, transforming

it into a concatenator

(A(l)) ; iii : 1 , n-1 , 1 [(B(i) , A(i+ 1)) ; @] ; (B(n) II i : n, 1 , -1 [) ; C (i) , (D (i)])

Do the same for the other wide concatenator

(A(l))

;Ui:l,n-1,l[(B(i),A(i+l»;@]

; (B(n))

;C(n),lIi:n-l,l,-l[(D(i»;C(i+l),@],(D(l»

The above string is valid in our notation. We may simplify it by

eliminating a number of redundant parentheses which could not be easily

detected in the original expression involving the two neighbourhood

dependent replicators:

A(l)

;#i:l,n-l,l[B(i),A(i+l);@]

; B(n)

;C(n),lIi:n-l,l,-1[D(i);C(i+l),@],(D(1»

We may also replace the two concatenators and the string between them by

a non-genuine imbricator thus simplifying the above expression, even

further:

A(1);#i:1,n-l,1[B(i),A(i+1);@;B(n);C(n),@,D(i);C(i+l)],0(1)

- 187 -

Finally, basic sequences generated by groups of neighbourhood

dependent replicators may be generated by sequence replicators provided

they generate more than one regularity similarly to the context

dependent replicators. Let us abbreviate the expansion of

iii : 1 , n, 1 [(A(i) ; @@) , (B(i)] #i:l,n,l[C(i»;(@@;D(i»]

by sequence replicators. We first split the two replicators into wide

concatenators as follows:

#i:l,n,l[(A(i);@]#i:n,l,-l[),(B(i)];

#i:l,n,l[C(i»;(]#i:n,l,-l[D(i»;@]

Then re-arrange parts of regularities of these replicators balancing the

parentheses

#i:l,n-l,l[(A(i);@];

(A(n»;#i:n,2,-1[(B(i»,@],(B(1);C(1»;#i:2,n,1[(C(i»;@];(D(n»;

#i:n-l,l,-l[D(i»;@]

We may now eliminate some redundant parentheses in the above expression,

thus obtaining:

#i:l,n-l,l[(A(i);@];

A(n);#i:n,2,-1[B(i),@],(B(1);C(1»;Ui:2,n,l[C(i);@];D(n);

#i:n-l,l,-l[D(i»;@]

The above expression contains two concatenators and two neighbourhood

dependent replicators which may be replaced by one imbricator,

follows:

as

NR19 Ifi:l,n-l,l

[(AU)

;@

;A(n)

- 188 -

; !Ii: n, 2, -1 [B(i) ,] , (B(1) ; C(1))

;#i:2,n,1[CU);]

)

]

;D(n)

;@

;D(i)

which may be abbreviated by combining the two concatenators between the

two "@"s into one non-genuine imbricator

t/i:l,n-l,l

[(A(i);@;A(n);#j:n,2,-1[B(i),@,(B(1);C(1»;@;C(i)];D(n);@;D(l»]

We may easily verify by expansion that the above imbricator generates

the same string as the two original neighbourhood dependent replicators.

Although the above string is lenghtier than that involving the

neighbourhood dependent replicators its advantages in understanding it

compensates for this loss of conciseness. This is true of all three of

the types of replicators we eliminated.

d. left and right replica tors

These may generate empty expansions or sequences followed or

preceeded by a separator. Previous grammars permit replicators which

may generate a subclass of this type of strings. Left and right

replicators do not only generate more strings of this type but by

specifying their context they guarantee the well-formedness of the

expanded program.

e. distributors

Their contribution in the notation is not in the generality of the

strings they generate since the same strings may be generated by

- 189 -

concatenatocs but in the conciseness in cepcesenting these stcings. We

have extended the type of cegularities they may generate. These

regularities may include replicators also, thus making our two macro

features symmetrical as one may be nested within each other. We have

also relaxed the compatibility criterion for distributable dimensions.

In previous notations it was required that these should have the same

set of subscripts in these dimensions. We only require that the number

of these subscripts are the same.

We have further extended the class of sequences which the

distributors may generate by the introduction of two features: the

subrange and the dimension selection.

All these extensions greatly improve the conciseness of macro

programs since more strings could be generated by distributors in the

new notation than in any other macro notation used before.

3. The readability of macro programs in the new notation is also

greatly improved. This was mainly achieved by the following:

a. By changing the index specification part of a replicator from

"0Iin,fi,inc" to "I!i:in,fi,inc" and moving it in front of "[]" of

the replica tor which now just encloses the regularity to be

replicated.

b. By changing "()" around the regularity of the distributor to "[]".

By that we have distinguished symbols not used in the basic notation

but only in the macro notation.

identified in a macro sequence.

Distributors are now easily

c. By eliminating range, context and neighbourhood dependent

h h d b d t d l.°n conJouction with other replicators w ich a to e un ers 00

parts of a macro sequence.

d. By permitting replicators in sequences to genecate regular ities

which ace sequences separated by semicolons oc commas, which means

that their expansion consists of famil iac substrings.

- 190 -

We have to point out that this is not the best notation for

readability of macro programs. Its weakness is that in general, the

head and/or tail of their expansion may bind with strings before or

after rather than with the rest of the expansion. In other words their

expansion is not syntactically strong, in general. Also each regularity

may not be syntactically strong in the expansion.

In chapter 4 we give two grammars which restrict the strings

replicators may generate. The first produces replicators and

distributors &enerating syntactically strong expansions and the second

produces replicators and distributors which additionally generate

syntactically strong regularities. These two grammars greatly improve

the readability of macro programs, particularly macro sequences as we

shall demonstrate in chapter 4. Of course programs produced by the

grammars of chapter 4 are not as concise in general as macro programs

produced by the notation of section 3.2.

4. The syntax of the notation of section 3.2 is uniform with that

of the basic notation. Basic program bodies have been extended

to macro program bodies by permitting collectivisors and

bodyr eplicator s. Basic sequences in paths and processes have been

extended to macro sequences by permitting indexed operations and

generalized elements which may involve replicators and distributors.

The production rules for macro sequences look very similar in

structure as the syntax rules of basic sequences. Also the rules

producing the strings inside "[]" of sequence replicators and

distributors have been expressed in the style of a basic sequence, as

"extended" regular expressions.

The notation introduced in section 3.2 could be extended by other

features and its existing features could be generalized. We shall

discuss one new feature, distributors generating paths and/or processes

and two generalizations of existing features, the index specification of

. i forming arithmetic replicators not necessarily generat~ng ntegers

progressions and a more flexible selection of distributable dimensions

of distributors.

- 191 -

As there are

and/or processes

replicators, the bodyre 1" p lcators, generatin~ paths
we may have "bodydistributors" generating some paths

and/or processes more concisely than replicators. There is no problem

in principle as bodyreplicators gener t a e consecutive regularities only.
The only problem is that there is no connective between paths and
processes and therefore there is no connective to be distr ibuted
separating the regularities they would generate. We may not use a
connective at all in front of bodydistributors. With this convention
the n free frame buffer may be specified by

[path DEPOSIT;RE~OVE end]

where DEPOSIT and RE~OVE have been defined by NCl8

NCl8 array DEPOSIT RE110VE(n) endarray

When a subrange is incorporated we may write

#l,n,2[path DEPOSIT;REMOVE end]

to specify the odd frames of the n-free-frame buffer.

This form however looks very similar to that of replica tors and could

effect the readability of the programs. For this reason we were

reluctant to include it in the notation but we only mentioned it here as

a possible option, for further extensions of the macro notation.

As we have seen the index specification part of replicators generates

finite arithmetic progressions of integers in ascending or descending

order. This kind of index generation proves to be very powerful in

generating indices of subscripted operations. Nevertheless, the index

specification of replicators could be extended to generate finite

collections of integers not necessarily forming arithmetic progressions.

The predicate or test replicator [LS80] (cf. 3.1.9) are examples of

replicators using such generators. The predicates is a convenient and

powerful tool for generating finite collections of integers. Another

way to generate indices is to use generating functions which could be

specified in some conventional programming language. The index

- 192 -

specification part as it now st~nds would be specified by a
f or- s ta temen t. As not enough experimentation has been done to satisfy

us for the best way to specify this general generation of index

replicator range and as both of the above suggested methods introduce

great complexity we did not incorporate them in the notation.

The feature for the selection of distributable dimensions has a

limitation, already indicated by condition 5 of theorem 3.10 giving the

conditions for the replacement of sequence replicators by distributors.

This condition suggests that it is not possible to generate the string

generated by the replicators:

NR2 0 IF i: 1 , n, 1 [(II j : 1 , m , 1 [A (j , i) ; B (i , j) ; @]) , @]

where A and B are defined by

NC19 array A(m,n) B(n,m) endarray

by two nested distributors. We may either replace the inner replicator

by a distributor as:

ND20 h:l,n,l[(; [A(,i);B(i,)]),@]

or the outer one as

ND21 ,[(lFj:l,m,l[A(j,);B(,j);@])]

The replicators in the above two expressions may not be replaced by

distributors in a valid way. The following expression

,[(;[A;B])]

involving two nested distributors is not valid

distributor applies to the second dimensions of A and B

since

which

compatible and futhermore is not what the replicators specify.

the outer

are not

If however, we allow each dimension to specify the distributor to be

applied to it then distributors may replace both the above replicators.

- 1 ':J] -

Therefore instead of specifying di~tributable dimensions by blank

fields, we must define them by an integer, specifying the level of the

distributor applied to it, which has to be distinguished from

subscripts, by, say pefixing it by "II". With this convention we may

replace the above nested replicators by

,[(;[A(#2,#1);B(#1,#2)])]

This feature lenghtens distributors substantially and as it is only

useful in special cases we did not include it in the new notation.

In this chapter we reviewed previous macro notations and grammars, we

introduced a new macro notation and grammar and proved several syntactic

properties which macro elements and complete macro programs possess. In

the next chapter we address the problem of the semantics of macro

programs.

- 194 -

4 THE SEMANTICS OF MACRO COSY PROGRAMS

In the previous chapter we obtained fairly complete results relative

to the syntax and expansion of macro programs, but no reference at all
was made to their semantics. The theore 3 11 . . 3 3 3 m. ~n sect~on • • , proving
the expansion of macro programs to basic programs allows us to define

their semantics in terms of the vector firing sequences of the basic

programs obtained by their expansion. The semantics of a macro prograill

MPROG which does not include any macro processes will therefore be given

in terms of

VFS(expand(XPROG»

and that of a macro program involving processes in terms of

VFS(Path(expandOiPROG») or

MVFS(expand(MPROG»

where the conctruction of VFS and MVFS and the transformation Path are

defined in chapter 2, and the function "expand" in section 3.3.3.

In this chapter we examine ways by which the vector firing sequences

of basic programs generated from macro programs may be obtained directly

from the macro programs themselves. We shall restrict our discussion to

programs involving just macro paths and bodyreplicators generating macro

paths.

We may recall from chapter 2 that to obtain the vector firing

sequences of a basic path-program PROG we need two sets:

1. the set of all vectors each component of which is a firing sequence

of a path in PROG, and

2. the set of vector operations in the program PROG, the set

Vops(PROG) •

- 195 -

To construct therefore, the vectr)r fir ing sequences of the expal1sion

of a macro program fro.n the macro program itself, we need tCJ construct

both sets mentioned in 1 and 2 above directly from it. To obtain the

set in 1, the cycle set of each basic path generated from a ~cro

program should be constructed from the macro program itself. These

cycle sets should be totally ordered and their ordering should be the

same as the ordering of their corresponding basic paths in the expanded

program, and will be called ordered cycle sets. If the cycle sets

obtained from the macro program are the same as the cycle sets obtained

from the basic paths in the basic program generated by the

expansion of the macro program but their ordering is different, the

vector firing sequences produced by these two collections of sets will

in general, be different. This order of cycle sets was implicit in the

construction of the vector firing sequences of a basic program in

section 2.3, being the order of appearance of their corresponding paths

in the basic program.

The second set we have to obtain direcly from macro programs, the set

of vector operations of corresponding expanded programs Vops(PROG) may

be obtained from the ordered cycle sets as it was shown in section 2.3.

Assuming that the ordered cycle sets may be obtained directly from macro

programs, then so may the set of vector operations Vops, and

consequently the vector firing sequences as well.

In the rest of this chapter we concentrate on how we may find the

ordered cycle sets of expanded programs directly from the macro programs

themselves. We follow two approaches for constructing these sets.

According to the first, they are constructed by finding the cycle sets

of expanded parts of macro programs which are then juxtaposed, when

corresponding to cycle sets of paths, or combined by the concatenation

operation, when corresponding to cycle sets of orelements or by the

union operation, when corresponding to cycle sets of starelements.

According to the second approach, macro cycle objects are constructed

from macro programs, representing concisely and generating upon

expansion ordered cycle sets, in the same way, macro programs represent

and generate basic programs.

- 1% -

In section 4.1 we follow the fir s t approach, "" I f g~V~l1b ru es or
constructing the ordered cycle sets of macro programs produced by the

g rammar of section 3.2. We also give I f b
L ru es or 0 taining the cycle sets

of macro programs produced by a restrictive grammar by which all macro

elements generate syntactically strong strings.

In section 4.2 we follow the second approach. This approach however

may only be applied to macro programs produced by a more restrictive

grammar than that of section 4.1.2 producing macro elements generating

regularities which are syntactically strong strings. We first develop

this grammar, we give expansion rules for programs produced by it and we

outline syntactic properties which macro elements and programs produced

by this grammar possess. Then we present a notation for representing

ordered cycle sets concisely, we define rules for obtaining objects in

this notation from macro programs and we give expansion rules by which

these objects generate ordered cycle sets which are shmVQ to be the same

as those obtained from expanded macro programs.

4.1 CONSTRUCTING ORDERED CYCLE SETS UPON EXPANSION OF MACRO PROGRAMS

We split the construction of ordered cycle sets into two parts. In

the first part ordered expressions for obtaining cycle sets of

individual macro paths are derived from macro programs upon expansion of

their bodyreplicators. As the expansion of a single macro path is a

single basic path, we obtain as many such expressions as basic paths in

the expanded program. Furthermore, the order of these expressions will

be the same as the order of corresponding basic paths in the basic

program obtained by the the expansion of macro programs.

In the second part of the construction of the ordered cycle sets of a

basic program PROG generated by the expansion of a macro program ~WROG,

we obtain cycle sets of single basic paths of PROG directly from

f MPROG h " h fter the first part is corresponding macro paths 0 [,w ~c a L

applied they do not involve any integer expressions involving

bodyreplicator indices. We shall call these macro paths the pure macro

paths of HPROG.

- 197 -

We construct the ordered cycle sets of macro prrJgr.im'5 involving onl,

paths and bodyreplicators generating paths, produced by the grammar of

section 3.2, and by a restrictive grammar which will be developed in

section 4.1.2. The two grammars differ in the way the non-terminal

"msequence" is defined and not in any other aspects. The first part of

the construction of ordered cycle sets of programs will therefore be

common to programs produced by either grammar. The second part in which

cycle sets of individual paths produced by the two grammars are

obtained, are treated separately in sections 4.1.1 and 4.1.2.

Let us now define the function "exp-Cycls" by which ordered

expressions for cycle sets of pure macro paths will be obtained from

macro programs. The syntactic variables used in this definition denote

the same syntactic entities of macro programs as in the definition of

"expand" in section 3.3.3. As no processes are involved in these

programs though, we will drop the "Q" from the syntactic variables

"CPQBRi" for i=1, ••• ,n, "PQBR", "PQBRs", "PQBRi" for i=1, •.. ,n, which

thus become "CPBRi" for i=I, ••• ,n, "PBR", "PBRs", "PBRi" for i=1, .•• ,n

respectively. In addition "MP" will denote a single pure macro path.

exp-Cycls(e)=cases e:

1. program ~WBODY endprogram-7 cycles exp-Cycls(MPBODY) endcycles

2. CPBR1 ••• CPBRn

3. COLs PBR

4. #j:1,m,1[PBRs]

5. PBRI ••• PBRn

6. MP

-7

-7

-7

-7

-7

exp-Cycls(CPBRl)& ••• &exp-Cycls(CPBRn)

exp-Cyc1s(PBR)

exp-Cycls(replexp O(#j:l,m,I[PBRS]»

exp-Cycls(PBRl)& ••• &exp-Cycls(PBRn)

if produced by grammar of section 3.2

then exp-Cycl(MP)

else

if produced by grammar of section 4.1.1

then exp-Cyc20lP)

In the above definition the two functions introduced in case 6

"exp-Cycl" and "exp-Cyc2", will be defined in sections 4.1.1 and 4.1.2;

d 1 ro paths originating they yield the cycle sets of indivi ua pure mac ,

d t " ly by the grammars of sections from macro programs produce respec ~ve

3.2 and 4.1.2. The symbol "&" on the right hand side of cases 2, 4, 5

- 198 -

is used to separate cycle sets.

Let us also define the function "expand1" by which macro programs may

be expanded. We have modified slightly the first six cases of the

definition of function "expand" of section 3.3.3, adopting the above

changes in syntactic variables; the expansion of macro paths is defined

by two distinct functions depending on whether these are produced by the

syntax rules of section 3.2 or that of 4.1.2. By applying the function

"expand1" we therefore obtain expressions for the expansion of

individual pure macro paths. The function "expandl" is defined as

follows:

expand1(e)=cases e:

1. program }1PBODY endprogram-~ program expandl(HPBODY) endprogram

2. CPBR1 ••• CPBRn

3. COLs PBR

4. #j: I,m, 1 [PBRs]

s. PBRI ••• PBRn

6. MP

-~

~

-~

~

~

expandl(CPBRl) ••• expandl(CPBRn)

expandl(PBR)

expand1(replexp O(#j:l,m,l[PBRs]))

expandl(PBRl) ••• expand1(PBRn)

if produced by grammar of section 3.2

then path-expl(}fP)

else

if produced by grammar of section 4.1.1

then path-exp2(MP)

where path-expl(XP) denotes the expansion of a pure macro path }fP of a

macro program produced by the grammar in section 3.2 and path-exp2(MP)

denotes the expansion of a pure macro path MP of a macro program

produced by the grammar in section 4.1.2.

The similarity of " " C 1" d the definitions of the funct10ns exp- yc s an

t corre spondence between "expandl", shows that there exists an exac

construction of the cycle sets of macro paths and construction of the

Let us def1"ne the function "Cycles", by which expansion of macro paths.

the ordered cycle sets of basic programs are obtained:

Cycles(e)=cases e:

1. program BPEODY endprogram

2. Pi. .. Pn

3. P

- 199 -

-~ cycles Cycles(BPBODY) endcycles

~ Cycles(P1)& •.• &Cycles(Pn)

-~ Cyc(P)

where BPEODY denotes a basic path program body which is represented by

P 1 ••• Pn

where Pi for i=1,2, ••• ,n denote basic paths and P denotes a single basic

path. The function "Cyc" is defined in section 2.1. We may easily show

that for a macro program MPROG, the relation

Cycles(expandl(MPROG)=exp-Cycls(MPROG)

is true, provided that, if !1PROG is produced by the grammar of 3.2 then

Cyc(path-exp l(~1P))=exp-Cyc1 (MP)

for any pure macro path MP of 11PROG and that, if MPROG is produced by

the grammar of 4.1.2 then

Cyc(path-exp2(MP»=exp-Cyc2(MP)

for any pure macro path MP of MPROG.

The validity of the above two equalities will be proven formally in

the next two subsections 4.1.1 and 4.1.2 respectively, where we define

the functions "exp-Cyc1" and " exp-Cyc2" by which the cycle set of a

single basic path may be obtained directly from its unexpanded pure

macro path, and where we also define the functions "path-exp1" and

"path-exp2" by which pure macro paths are expanded.

4.1.1 Finding the Cycle Sets of pure macro Paths

In this subsection we define the function "exp-Cycl" by which we

obtain the cycle sets of pure macro paths produced by the grammar of

section 3.2.

The function "exp-Cycl" expands parts of a macro sequence, constructs

the cycle sets of these parts and performs concatenation or union

operations on them until the cycle set of the whole path is constructed.

What the smallest such parts of macro sequences should be is governed by

the syntax of the macro path. The reason for considering some smallest

parts is that it only makes sense to find the cycle set of a

syntactically strong string or of macro elements generating such

strings. Had we allowed range, context and neighbourhood dependent

replicators in macro sequences we would in general, have to expand the

whole of a macro sequence, to construct the cycle set of a macro path

which involved such sequences. Consider for example the paths Pl, P2,

P3 the macro sequences of which involve range, context and neighbourhood

dependent replicators, respectively:

PI path «b,#i:I,2,1[A(i»;c,@] end

P2 path (c;#i:l,2,1[A(i»;(B(i);@]) end

P3 path #i:l,3,1[(UP(i);@];#i:3,1,-1[DOWN(i»*;@] end

which expand respectively to P4, PS and P6:

P4 path «b,A(1»;c,A(2»;c end

PS path c;(A(1»,(B(1);A(2»,(B(2» end

P6 path(UP(1);(UP(2);(UP(3);DOllli(3»*;DOWN(2»*;DOWN(1»* end

We cannot find the cycle sets of any parts of the macro sequences of Pl,

P2, P3, since the replicators they involve do not generate matching

opening and closing h and the precedence of connectives parent eses
II 11 ,

and II." , in their context may be overuled by the generation of

parentheses upon the expansion of the range, context and neighbourhood

dependent replicator s, thus making it impossible to detec t the

" "th t expandfng completely the macro syntactically strong strings Wi ou ~

sequences they are in.

- 201 -

The macru paths pruduced by the grammar of section 3.2 are such that

we may break up their macro sequences into their macro orelements the

cycle sets of which may be constructed and which may then be

concatenated to give the cycle set of the complete macro path. The

string generated by the expansion of the macro elements produced by this

grammar is always syntactically strong in the context of any of "path",

";", "(" on their left and any of ")", ";", "end" on their right. The

reason is that the precedence of "," over ";" cannot be overuled by the

expansion of these macro elements produced by this grammar since the

macro elements always generate macro sequences and consequently matching

pairs of parentheses. Therefore, to find the cycle set of a macro

sequence, we may concatenate the cycle sets of their constituent

orelements. If these orelements involve only starelements, we construct

their cycle sets by the union of the cycle sets of these starelements.

If however, the orelements involve generalized elements, all replicators

and distributors which they involve have to have been expanded first, as

they may generate semicolons which would transform the original macro

orelement into a macro sequence. Let us define an auxilliary function

"gel-exp" by which all replicators and distributors of a generalized

element are expanded. If we represent a generalized element GEL by

RRl. •• RRn 1-1 LRl. •• LRm

where each of RRi for i=l, ••• ,n is a right replicator, each of LRi for

i=l, ••• ,m is a left replicator and 1-1 a sequence replicator or a

distributor or a starelement, then by the expansion of GEL denoted by

gel-exp(GEL), we mean the string obtained by the expansion of the right

replicators, the expansion of M if its a sequence replicator or a

distributor, and by the expansion of the left replicators. The function

"gel-exp" is defined by: gel-exp(GEL)=a b c

where a=

b=

c=

replexpO(RR1) ••• replexpO(RRn)

if ~ is a sequence replicator then replexpO(M) else

if M is a distributor then distrexpO(M) else 1-1

replexpO(LR1) ••• replexpO(LRm)

If ~1 is a starelement the function "gel-exp" is the same as "gelexpO",

" h" h" 1 0" and "distrexpO" defined in section 3.3, the section ~n w ~c rep exp

- 202 -

have also been defined.

We shall use this func tion when defining "pa th-exp 1" , by which macro
paths are expanded. The difference between "path-expl" and

corresponding cases 6 and 8 to 15 in the function "expand" of section
3.3.3 is that when "path-expl" is applied to a syntactic entity S, it

will not always distribute over the syntactic subentities of S but only

if they are syntactically strong strings or macro ele~ents generating

such strings. In particular, the expansion of a macro orelement

consisting of generalized elements will not be defined by juxtaposition

of the expansions of its constituent generalized elements separated by

commas, as in general, the expansion of generalized elements are macro

sequences which are not syntactically strong in the context of a comma

on their left or their right. The expansion of a macro orelement will

be defined as the expansion of the string, sequence in general, obtained

after the function "gel-exp" is applied to all its generalized elements.

When however, a macro orelement consists entirely of starelements the

its expansion will be defined by the juxtaposition of the expansions of

its constituent starelements separated by commas. Syntactic entities

corresponding to macro sequences, orelements, generalized elements,

starelements, elements and operations will be represented by HSEQ, MORi

for i=I, ••• ,n, GELi for i=I, ••• ,n, STELi for i=l, .•• ,n, EL and OP

respectively. Formally the function "path-expl" is defined by:

path-expl(e)=cases e:

1. path MSEQ end _~ path path-expl(MSEQ) end

2. MORl; ••• ; MORn -7 path-exp l(MORl); ••• ; path-exp 1(~10Rn)

3. GEL1, ••• ,GELn -7 path-expl(gel-exp(GELl), ••. ,gel-exp(GELn»

4. STELl, ••• ,STELn _~ path-expl(STEL1), ••• , path-expl(STELn)

5. EL* -7 path-expl(EL)*

6. (MSEQ) -7 (path-expl(}1SEQ»

7. OP
-7 OP + possible express~on evaluations

h the expansion of a macro path P, He shall not formally prove t at

path-expl(P) yields a basic path but we only point out that it may be

proven in the style of theorem 3.11 in section 3.3.3.

- 2U3 -

Let us now formally define the function "exp-Cycl" by which the cycle

set of an expanded path may be obtained directly from the macro path.

The function "exp-Cycl" will apply to the same syntactic entities as the

function "path-expl" above.

exp-Cycl(e)=cases e:

1. path MSEQ end

2. MaRl; ••• ;MORn

3. GELl, ••• ,GELn

4. STELl, ••• , STELn

5. EL*

6. (HSEQ)

7. OP

-~ exp-Cycl(~SEQ)

~ exp-Cyc1(:!OR1) 0 ..• 0 exp-Cyc1(MORn)

-~ exp-Cycl(gel-exp(GEL1), ••• ,gel-exp(GELn»

-~ exp-Cycl(STEL1) U ••• U exp-Cycl(STELn)

~ exp-Cyc1(EL)*

-~ exp-Cycl(~SEQ)

-~ {OP}

Let us find the cycle set of path P7

P7 path a,#i:l,3,1[B(i);@],c;d end

by applying the function "exp-Cycl":

exp-Cycl(P7)=exp-Cycl(a,#i:l,3,1[B(i);@],c;d)

=exp-Cycl(a,#i:l,3,1[B(i);@],c)oexp-Cycl(d)

exp-Cycl(a,#i:l,3,1[B(i);@],c)=

exp-Cycl(a,gel-exp(#i:l,3,1[B(i);@]),c)=

exp-Cycl(a,B(1);B(2);B(3),c)=

exp_Cycl(a,B(1»Oexp-Cycl(B(2»Oexp-Cycl(B(3),c)=

{a,B(1)}o{B(2)}o{B(3),c}=

{a.B(2).B(3),a.B(2).c,B(1).B(2).B(3),B(1).B(2).c}

exp-Cyc1(d)={d}

Thus,

exp-Cycl(P7)={ a.B(2).B(3).d, a.B(2).c.d,

B(l) • B(2) • B(3) • d, B(l). B(2) • c. d}

The same cycle set may be obtained from the exprlnsion of P7, path P8

P8 path a,B(1);B(2);B(3),c;d end

by applying the func tion "Cyc" of chapter 2.

We may formally prove the theorem 4.1 for the direct construction of

cycle sets from pure macro paths.

THEOREM 4.1:

The cycle set of any pure macro path 11P of a macro program produced

by the syntax rules in section 3.2 obtained by exp-Cycl(MP) is the

same as the cycle set of the basic path obtained by its expansion,

or formally

exp-Cycl(MP)=Cyc(path-expl(MP))

Proof:

We shall prove the theorem by considering separately each syntactic

case for which "exp-Cyc1" defined comparing the results with

corresponding results obtained by applying the function "path-exp1" and

then "Cyc".

case 1

Applying "exp-Cycl" to a macro path we obtain

exp-Cycl (path MSEQ end)=exp-Cyc1U1SEQ)

and applying the function "path-expl" and its result to "Cyc" we obtain

Cyc(path-expl(path MSEQ end)Y

Cyc(path path-exp1(MSEQ) end)=

Cyc(path-expl(MSEQ))

- 2')5 -

The two results are the same as may be shown by Case 2.

case 2 --
Applying "exp-Cycl" to a macro sequence we obtain

exp-Cycl(~ORI; ••• ;MORn)=exp-Cycl(XORI)O ••• Qexp-Cyc(XORn)

and the functions "path-expl" and then "Cyc" we obtain

Cyc(path-exp I(MORI; ..• ;MORn»=

Cyc(path-expl(MORI); ••• ;path-expl(XORn»

Since path-expl(MORi) for i=l ••••• n yields a basic sequence in general.

the above expression is the same as:

Cyc(path-expl(MORI»O ••• OCyc(path-expl(~ORn»

The last step is valid since each of path-expl(MORi) for i=l ••••• n is a

basic sequence and if SEQI and SEQ2 are basic sequences then

Cyc(SEQI)OCyc(SEQ2)=Cyc(SEQl;SEQ2)

To show the above relation let

SEQl=ORl1; ••• ;ORk 1 and

SEQ2=OR1 2 ; ••• ;ORm 2

where ORjl for j=l• n and ORi 2 for i=l •.... m are basic orelements.

Then.

Cyc(SEQl)=Cyc(ORl1; ••• ;ORk 1)=

Cyc(ORl1)o ••• oCyc(ORk 1) and

Cyc(SEQ2)=CYC(OR1 2; ••• ;ORm 2)=

Cyc(ORI 2)o ••• oCyc(ORm 2)

Therefore.

- 206 -

which is the same as

Cye(SEQ 1 ; SEQ2) =Cyc (ORt 1 ; ••• ; ORk 1; ORl 2; ••• ; ORrn2)=

Cyc(ORl 1)o .•• OCyc(ORk 1)OCYC(ORl 2)o ••• OCyc(ORm 2)

Therefore, if for any macro orelement XOR the relation

exp-Cyc1 OlOR)=Cye(path-exp 1 (MOR»

holds, then the theorem holds for case 2. The above relation may be

shown to be true by cases 3 or 4, depending on whether ~lOR involves

generalized elements or just starelements.

case 3

Applying "exp-Cyc1" to a macro orelement involving generalized

elements we obtain

exp-Cycl(GELl, ••• ,GELn)=

exp-Cycl(gel-exp(GELl), ••• ,gel-exp(GELn»

and applying the functions "path-expl" and then "Cyc" we obtain

Cyc(path-expl(GELl, ••• ,GELn»=

Cyc(path-expl(gel-exp(GELl), ••• ,gel-exp(GELn»

The expression

gel-exp(GELl), ••• ,gel-exp(GELn)

is a macro sequence in general since each of gel-exp(GELi) for i=l, ••. ,n

is a macro sequence in general, by lemma 3 of section 3.3.1.

Therefore, the equality of the above expressions may be shown by case 2.

case 4

Applying "exp-Cycl" to an orelement consisting entirely of
starelements we obtain

exp-Cycl(STELl, •••• STELn)=exp-Cycl(STELl)U ••• U exp-Cycl(STELn)

and applying "path-expl" and then "Cyc" we obtain

Cyc(path-expl(STEL1, ••• ,STELn»=

Cyc(path-expl(STELl), ••• ,path-expl(STELn»=

Cyc(path-expl(STELl»U ••• U Cyc(path-expl(STELn»

Therefore, if for any starelement STEL the relation

exp-Cycl(STEL)=Cyc(path-expl(STEL»

holds, then the theorem holds for case 4. The above relation may be

shown to be true by case 5.

case 5

Applying "exp-Cycl" to a starelement we obtain

exp-Cycl(EL*)=exp-Cycl(EL)*

and applying "path-expl" and then "Cyc" we obtain

Cyc(path-expl(EL*»=Cyc(path-expl(EL)*)=Cyc(path-expl(EL»*

The equality of the two expressions may be shown by case 6.

case 6

Applying "exp-Cycl" to an element elf the form (:1SEQ) we obtain

- 2U8 -

exp-Cycl ((MSr~Q)) =exp-Cyc (>lSEI~)

and by applying "path-expl" and then "Cyc" we obtain

Cyc(path-expl«MSEQ»)=Cyc«path-expl(~SEQ»)=Cyc(path-expl(~SEQ»

the equality of which may be shown by case 2.

case 7

Applying "exp-Cyc1" to an operation we obtain

exp-Cycl(OP)={OP}

and applying "path-expl" and then "Cyc" we obtain

Cyc(path-expl(OP)=Cyc(OP)={OP}

and as both expressions are the same the theorem is proven. III

As we have pointed out the grammar of section 3.2 does not in general

produce replicators which generate syntactically strong strings in all

the contexts they appear. This occurs when one of the separators on

their left or their right is "," and the main connective of the

expansion is "." , ,
would be wrong

as indeed may be seen in path P7. Consequently, it

to construct the cycle set of a macro orelement by

constructing the union of the cycle sets of its constituent generalized

elements. If we define a function "exp-Cycl'" identical to "exp-Cycl"

except for cases 3 and 4 which are replaced by

GELl , ••• , GELn ~ exp-Cycl'(GELl)U ••• U exp-Cycl'(GELn)

and apply it to path P7, we obtain:

exp-Cycl'(P7)=exp-Cycl'(a,#i:l,3,l[B(i);@])Oexp-Cycl'(d)

- 2()'j -

exp-Cycl'(a,#1,3,1[B(i);@],c)=

exp-Cycl'(a) U exp-Cycl'(#i:l,3,l[B(i);@]) U exp-Cycl'(c)=

exp-Cycl'(a) U exp-Cycl'(gelexp(#i:l,3,1[B(i);@]» U exp-Cycl'(c)=

exp-Cycl'(a) U exp-Cycl'(B(1);B(2);B(3» U exp-Cycl'(c)=

{a} U {B(l).B(2).B(3)} U {c}

Therefore exp-Cycl'(P7) yields

{a,B(l) .B(2) .B(3) ,c}o{d}=

{a.d,B(l).d,B(2).d,B(3).d,c.d}

which of course is not the cycle set of P7 but of P9

P9 path a,(ifi:l,3,l[B(i);@]),c;d end

The reason the above construction failed is that we used the equality

Cyc(A,B)=Cyc(A)U Cyc(B)

which in general is not true unless A and Bare orelements which means

that A and B are syntactically strong in the whole of "A,B".

To be able to find the correct cycle set of a macro path by the above

method, all replicators and distributors should generate syntactically

strong strings in any context they appear. In the next subsection we

develop syntax rules for the production of restricted macro paths

involving only such replicators and distributors and define the function

"path-exp2" by which these are expanded. We also define the function

"exp-Cyc2" by which the cycle sets of pure macro paths of programs

produced by this grammar may be constructed directly from them.

4.1. 2 Finding the Cycle Sets of Restricted pure macro Paths

In the grammar in this subsection the syntax rules for macro

sequences will be modified. Left and right replicators will be

eliminated and the rest of macro elements generating macro sequences,

- 210 -

macro orelements, macro starelements and macro elements will he produced

by distinct syntax rules guaranteing that their expansion is always

syntactically strong. In the syntax rules in this section we follow the

same meta-language conventions as in chapter 3.

Macro elements generating macro sequences will be permitted to appear

only between any of "path", ";", "(" on their left and any of "end",
II.1t , , ")" on their right.

The new production rule for "rnsequence" is:

msequence={seqpart 1;}+

seqpart=seqmacro/morelement

where "seqpart" produces parts of macro sequences separated by ";" which

may be either macro elements strictly generating macro sequences,

produced by "seqmacro" or macro orelements, produced by "morelernent".

The new rules for "morelement" are:

morelement={orpart ~,}+

where "orpart" denotes parts

These parts

produced by

may be macro

"ormacro" , or

of macro

elements

macro

orelements separated by 11 " , .
strictly

elements

generating orelements,

strictly generating

starelements, produced by "starmacro"; they could also be starred

elements, produced by "mstarelement". The latter is prefixed by "m" as

we permit certain macro elements to be starred. The syntax of "orpart"

is given by:

orpart=ormacro/starmacro/mstarelement

The non-terminal "mstarelement" produces elements .Jhich could be

starred as can be seen in the following rule:

mstarelement=element/element*

- 21l -

where the non-terminal "element" is riefined by:

element=indexedop/operation/(msequence)/elmacro

where the non-terminal "elmacro" produces macro elements which generate

elements. The syntax for "seqmacro" is:

seqmacro=seqrepl/seqdistr

where "seqrepl" and "seqdistr" produce replicators and distributors

respectively, generating strictly macro sequences, and will be called

strict sequence replicators and strict sequence distributors

respectively. Strict sequence replicators could either be concatenators

or imbricators. The syntax for "seqrepl" will be defined by:

seqrepl=index_spec[{seqconcseq/seqimbrseq}]

where "index_spec" has been defined in section 3.2, "seqconcseq" and

"seqimbrseq" denote str ings inside "[lIt of strict sequence

concatenators and imbricators respectively. For strict sequence

concatenators and distributors to generate strictly sequences, either

the main connective of their regularities should be a "." , , or their

regularities should be separated by";". The syntax of "seqconcseq" and

of "seqdistr" will therefore be defined by:

seqconcseq={seqpart;}+ {@/seqconcor}

seqconcor={orpart ,}+ @

seqdistr=;{/iexpr}{/#iexpr,iexpr,iexpr} [msequence]

/,{/iexpr}{/#iexpr,iexpr,iexpr} [{seqpart{;seqpart}+]

As in the distributors of section 3.2 the "operations" produced by

"msequence" and "seqpart" in the above rule, will be array slices (cL

section 3.2.2).

Strict sequence imbricators may be either genuine or not. As in

either case they should strictly generate sequences, the main connective

- 212 -

of the whole expansion should be a se~icolon which implies that the main

connective of the string produced by "seqimbrseq" should also be a

semicolon. The syntax rule for "seqimbrseq" is:

seqimbrseq=seqimbr_atout_seq

/{seqpart ;}+ seqimbror {; seqpart}~

/{seqpart ;}~ seqimbror {; seqpart}+

The non-terminal "seqimbr_atout_seq" produces the string inside "[lot of

a non-genuine imbricator, and its syntax may be obtained from the syntax

of "imbr_at_seq" of section 3.2 exluding productions which do not

produce at least one t1." , . This implies that "seqimbr atout_seq" may

produce strings which are produced by the alternative productions 1 , 2,

3 , 5, 6, 7, 10, 12 and 13 of "imbr at _seq". The occurrences of the -
non-terminal "morelement" in these rules should be replaced by the

non-terminal "seqpart". The complete rules may be found in appendix c.

The second and third alternative productions for "seqimbrseq"

guarrantee that at least one ";" is produced in the string inside "[]"

of a genuine imbricator. The syntax for "seqimbror" is given by:

seqimbror={orpart ,}~ seqimbrstarel {, orpart}~

seqimbrstarel=seqimbrel/seqimbrel*

In the last rule the non-terminal "seqimbr _atin _seq" produces strings

which involve the "@"s and "seqimbr_in_seq" strings which involve the

"@"s but nested within "()". As the main connective of the string

inside "[]" of a strict sequence imbricator is already specified to be

a ";", these non-terminals may produce strings which may not involve the

";". The syntax for "seqimbr_in_seq" is given by:

seqimbr_in_seq={seqpart ;}~ seqimbror {; seqpart}~

The syntax for "seqimbr _a tin_seq"

"imbr at_seq" of section 3.2, with all the occurrences

will be the same as the syntax for

of "morelement"

- 213 -

replaced by "seqpart". Again the definition for
"seqimbr_atin seq" may be found in appendix C.

The macro elements strictly generating orelements could either be

strict orelement replicators or strict orelement distributors produced

by "orrepl" and "ordistr" respectively.

given by:

ormacro=orrepl/ordistr

The syntax of "ormacro" is

where the non-terminal "orrepl" produces strict or element replicators

and "ordistr" strict orelement distributors. The definition of

"ordistr" is:

ordistr=,{/iexpr}{/#iexpr,iexpr,iexpr} [morelement]

As in all syntax rules for distributors the "operations" in the string

produced by "morelement" are array slices (cf. section 3.2).

Strict orelement replicators may be either concatenators or

imbr ica tor s , the string inside "[]" of which is produced by "orconcor"

and "orimbror" respectively:

orrepl=index_spec[{orconcor/orimbror}]

For strict orelement concatenators to generate strictly orelements the

main connective in each regularity and the connective separating

, . The syntax of "orconcor" is given by: regularities should be If "

orconcor={orpart ,}+@

For imbricators to generate strictly orelements the main connective

f "h Id b "" Whl"ch l"mpl1."es that the main connective of o its expanslon s ou e,

the string inside "[]" should be

is given by:

" " , also. The syntax for "or imbror"

- 214 -

orimbror=orimbr atout or

/{orpart,}+ orimbrstarel {,orpart}*

/{orpart,}~ orimbrstarel {,orpart}+

where "or imbr a tou t or" produces the

non-genuine strict orelement imbricator.
string inside "l J" of a

The main connective of the
string it produces should be ",". Its syntax may be obtained from the
alternative productions of "imbr_at_seq" of section 3.2 'dhich do

produce a ";", and is given by:

or imbr _atout_or='.8 {at_or 1 f/ a t_ or 1m}

/{at_orlm/at_orlb} @

fat or2mm

/@ morelement @

not

The second and third alternative productions for "orimbror" guarantee

that at least one "," and no ";" is produced as the main connective of

the string inside "[]" of a genuine imbricator strictly generating

orelements. The syntax of the non-terminal "orimbrstarel" is given by:

orimbrstarel=orimbrel/orimbrel*

orimbrel=(orimbrseq)

As the main connective of the string inside "[]" is a comma, the main

connective of the string generated by "orimbrseq" could be ";", as it is

nested within "C)" and consequently the "." cannot be the main

connective of the string inside" []". Its syntax is given by:

orimbrseq={seqpart ;}* orimbr_in_or {; seqpart}~

/orimbr_atin_seq

The non-terminal "orimbr atin_seq" produces strings which involve "']"s.

As these strings are nested within "()" their main connective may be a

";". These strings however, cannot be as general as the strings

generated by "seqimbr_atin_seq" above.

for replicators (cf. section 3.2.1) the

still defined when their index range

According to the expansion rule

expansion of imbricators is

is empty provided the string

- 21) -

between the two "(~"s with its leading and tr'liling separators removed is

non-emp ty. For imbr icator s produced by "ormacro" to generate orelements

for any legal range of their indices this st' . r Lng must be a macro
orelement. Therefore, from the alternative production rules for

"seqimbr_atin_seq" we shall eliminate those which produce " . " , between
the two "@"s. Because the correct rules are lengthy we give them in

appendix c.

The non-terminal "orimbr in or" produces strings which nest the

"@ t @" fur ther. Its syntax is given by:

orimbr_in_or={orpart ,}~ orimbrstarel {, orpart}~

The non-terminals "at or2mm"

"at or2mb" in the syntax rules for

from "seqimbr_atin_seq" and "seqimbr_atout_seq" are obtained

corresponding ones in section 3.2 by replacing all occurrences of

"gelement" by "orpart". Their complete rules may be found in appendix

c.

The syntax rule for "starmacro" produces macro elements strictly

generating starelements of the form:

(msequence)*

As concatenators only generate such strings when they generate a single

regularity, "starmacro" will only produce imbricators, called strict

starelement imbricators. Furthermore, they will always be genuine. The

syntax for "starmacro" is:

starmacro=index_spec[(starimbrseq)*]

where "index_spec" has been defined in section 3.2. The syntax rule for

"s tar imbr seq" may d almost as general as the the rule pro uce sequences,

for "seqimbr" in section 3.2. However, certain strings produced by

alternative productions for "seqimbr" have to be excluded: those in

which the string between the two "@"s with its leading

separators removed form sequences or orelements.

and terminating

The \~hole string

- 216 -

produced by "starimbrseq" though, may be a sequence ()(an rJrelr;;nent,

the following rules show:

starimbrseq=starimbr_at_seq

/{seqpart ;}~ starimbror {; seqpart}*

starimbror={orpart ,}~ starimbrstarel {, orpart}*

starimbrstarel=starimbrel/starimbrel*

starimbrel=(starimbrseq)

as

The syntax rule for "starimbr_at_seq" produces sequences which involve
the "@"s. Th . 1 f e prec1se ru e or it may be found in appendix c.
Similarly to the syntax rule for "starmacro", the syntax rule for

"elmacro" may only produce genuine imbricators, called strict element

imbricators. Their syntax is given by:

elmacro=index_spec[(elimbrseq)]

where "index_spec" is defined in section 3.2. The syntax rule for

"elimbrseq" is very similar to "starimbrseq". Their only difference is

that, if the string between the two "@"s with the leading and

terminating separators removed is not null then, if the string inside

"[(...)]" is produced by "starimbrseq" is also produced by

"mstarelement", but if produced by "elimbrseq" it may be produced by

"element". The precise rules may be found in appendix C.

Every replicator and distributor produced by the above rules may be

produced by the rules of the grammar of section 3.2. The same though is

not true for the context of strict element imbricators which, unlike the

replicators of section 3.2, may be starred. If strict element

imbricators could not be starred the grammar of section 3.2 would be a

true extension of the above. Here we permitted these replicators to be

starred since they always generate elements when expanded and the star

applies to the sole element generated from the expansion.

- 217 -

Since all replicators and distributors may be produced by the grammar

of section 3.2 the same rules for their expansion given in terms of

" 1 0" d "d' to" . 1 . rep exp an 1S rexp respect1ve y, w111 still apply.

We may characterize the expansion of the macro elements produced by

the grammar of this subsection as we did for replicators and

distributors in section 3.3. Since all ~acro elements may be produced

by the syntax of 3.2 we may use the theorems 3.3 and 3.4 of section 3.3

for the expansion of concatenators and imbricators to macro sequences

and the corollary of theorem 3.9 of the same section showing a similar

result for the expansion of distributors.

Strict sequence macro elements generate macro sequences in general.

When they generate more than one regularity the main connective of the

expansion is a semicolon. This is not true though, in general, when

they generate one regularity or, in the case of imbricators, their index

range is empty, in which case they may generate a single orelement, or

starelement, or element. Let us consider the concatenator

1Ii: 1 , n, 1 [A(i) ; @]

which for n)l generates sequences. But for n=l it generates a single

element. Let us also consider the non-genuine imbricator

#i:l,n,l[A(i);@,c,@;B(i)]

which for n)l it generates sequences.

orelement

A(l),c,B(l)

and for n=O the element

c

For n=l it generates the

Genuine imbricators always generate sequences for any non empty range,

as the string "@ t2" is nested inside parentheses and the ";", which is

the main connective of the string inside "[J", is not stripped. But

- 2l~ -

when the range is empty, they too may generate orelements, starelements

or elements. Whatever they generate though, is syntactically strong in

their context.

Strict orelement macro elements generate macro orelements. Similarly

to the strict sequence macro elements, they may also generate

starelements and elements. S tr ic t sequence concatenators and

distributors may generate starelements and elements when they generate

only one regularity. Strict sequence imbricators, whether genuine or

not, may also generate such strings when their index range is empty. As

str ic t orelement macro elements cannot generate sequences their

expansion will always be syntactically strong in their context.

Strict starelement imbricators generate starelements except when

their index range is empty, in which case they may generate elements.

Finally, strict element imbricators generate elements for any valid

range of their indices.

Let us now give some examples of macro paths produced by the above

rules.

PlO path f;#i:I,3,I[A(i);B(i),@];,[D],e end

PII path ;[B,C];,[B;D];,[C,D] end

PI2 path #i:I,3,1[(UP(i);@;full*;@;DOWN(i»*],empty end

where collective names A, B, C, D, UP, DOWN are defined by

array ABC D UP DOWN(3) endarray

" h 2" f r the expansion of pure Let us define the function pat -exp 0

macro paths of macro programs consisting of macro paths the macro

sequences of which are produced by the rules in this section.

. var~ables HSEQ, OP which we have used before Apart from the syntact~c ~

denoting macro sequences

introduce some new ones.

and operations respectively, we

The syntactic variables SEQPRTi for

need to

i=1, ... ,n

- 219 -

denote either macro orelements or strict sequence macro elements,

SEQREPL and SEQDISTR denote strict sequence replicators and distributors

respectively. The syntactic variables ORPRTi for i=l, ••• ,n denote macro

orelements or macro starelements or starelements; ORREPL and ORDISTR

denote strict orelement replicators and distributors respectively.

ST~~CRO and EL~CRO denote strict starelement and strict element

imbricators respectively. Finally, EL denotes elements which could be

starred. The function "path-exp2" may be defined by:

path-exp2(e)=cases e:

1 • path :lSEQ end ~ path path-exp2(HSEQ) end

2. SEQPRT1; ••• ;SEQPRTn -7 path-exp2(SEQPRT1); ••• ;path-exp2(SEQPRTn)

3. SEQREPL ~ path-exp2(replexp O(SEQREPL))

4. SEQDISTR -7 path-exp2(distrexpO(SEQDISTR))

5. ORPRT1, ••• ,ORPRTn -7 path-exp2(ORPRT1), ••• ,path-exp2(ORPRTn)

6. ORREPL ~ path-exp2(replexp O(ORREPL))

7. ORDISTR -7 path-exp2(distrexpO(ORDISTR))

8. STAR...'1ACRO ~ path-exp2(replexpO(STA&~CRO))

9. EL* ~ path-exp2(EL)*

10. OP ~ OP + possible expression evaluations

1t. 01SEQ) ~ (path-exp2(HSEQ))

12. ELMACRO ~ path-exp2(replexpO(ELMACRO))

Using similar arguments to those of theorem 3.11 for the expansion of

macro programs to basic programs, we may show that macro programs, the

macro paths of which are produced by the syntax rules of this section,

Let us app ly the function "path-exp2" to
also generate basic programs.

expand path P10:

path-exp2(P10)= path path_exp2(f;Ui:l,3,1[A(i);B(i),@1;,[Dl,e) end

pat h-e xp 2 (f ; II i : 1 , 3, 1 [A (i) ; B (i) , @ 1 ; , [D 1 , e) =

path-exp 2(f) ; pa th-exp 2(#i: 1 ,3,1 [A(i) ; B(i) ,@ 1) ; pa th-exp 2(, [01 , e)

path-exp2(f)=f

- 220 -

pa th-exp 2 (If i : 1 .3. 1 [A(i) ; B(i) .@]) =

pa th-exp 2(r eplexp ° (II i: 1 .3. 1 [A(i) ; BCi) .@] » =

path-exp 2(A(1) ; B(l) • A(2) ; B(2) • A(3) ; B(3)) =

A(1);B(1).A(2);B(2).A(3);B(3)

path-exp2(.[D].e)=path-exp2(.[D]).path-exp2(e)

path-exp2(.[D])=path-exp2(distrexpo(.[D]»=

path-exp2(D(I).D(2).D(3»=

DO) .D(2) .D(3)

path-exp2(e)=e

Therefore. the expansion of PIO is

path f;A(I);B(I).A(2)jB(2).A(3);B(3);D(I).D(2).D(3).e end

To obtain the cycle sets of pure macro paths the sequences of which

are produced by the syntax rules of this section we define the function

,. exp-Cyc2" as follows:

exp-Cyc2(e)=cases e:

1. path HSEQ end -~ exp-Cyc2(HSEQ)

2. SEQPRTl; ••• ;SEQPRTn -~ exp-Cyc2(SEQPRTI) 0 •.• 0 exp-Cyc2(SEQPRTn)

3. SEQREPL -7 exp-Cyc2(replexp O(SEQREPL»

4. SEQDISTR -~ exp-Cyc2(distrexpo(SEQDISTR»

s. ORPRTl ••••• 0RPRTn -~ exp-Cyc2 (ORPRTl) U ••• U exp-Cyc2CORPRTn)

6. ORREPL -7 exp-Cyc2(replexpOCORREPL»

7. ORDISTR -7 exp-Cyc2(distrexpO(ORDISTR»

8. STA~'1ACRO -~ exp-Cyc2(repIexpOCSTARMACRO»

9. EL* -7 exp-Cyc2(EL)*

10. OP -~ {OP}

11. (HSEQ) -7 exp-Cyc2(MSEQ)

12. ELMACRO -7 exp-Cyc2(replexpO(ELMACRO»

- 221 -

Let us find the cycle set of path PlO, by applying "exp-Cyc2":

exp-Cyc2(PIO)=

eXP-CYC2(f)OexP-CYC2(#i:l,3,1[A(i);B(i),@)oexp_Cyc2(,[D),e)

exp-Cyc2(f)={f}

exp-Cyc2(#i:l,3,1[A(i);B(i),@)=

exp-Cyc2(replexpO(#i:l,3,1[A(i);B(i),@))=

exp-Cyc2(A(1);B(1),A(2);B(2),A(3);B(3»=

exp-Cyc2 (A(1))

oexp-Cyc2(B(1),A(2»

Oexp-Cyc2(B(4),A(3»

Oexp-Cyc(B(3»=
{A(1)}C{B(1),A(2)}O{B(2),A(3)}O{B(3)}=

{A(1).B(1).B(2).B(3),A(1).B(1).A(3).B(3),

A(1).A(2).B(2).B(3),A(1).A(2).A(3).B(3)}

exp-Cyc2(,[D],e)=

exp-Cyc2(,[D])U exp-Cyc2(e)=

exp-Cyc2(distrexpO(,[D]»U exp-Cyc2(e)=

exp-Cyc2(D(1),D(2),D(3»U exp-Cyc2(e)=

{D(1),D(2),D(3)} U {e}=

{D(1),D(2),D(3),e}

Therefore,

exp-Cyc2(PIO)={f}O{A(1).B(1).B(2).B(3),

A(l) • B(1) • A(3) • B(3) ,

A(l) .A(2) .B(2) .B(3),

A(1).A(2).A(3).B(3)}o{D(1),D(2),D(3),e}

We may now prove the theorem for the direct construction of cycle

~ ~ pure macro paths.

THEOREM 4.2:

The cycle set of any pure macro path HP the sequence of which is

- 222 -

produced by the grammar of subsection 4.1.2, is the sa::le as the

cycle set of the basic path generated by the expansion of :'fP, or

formally

Cyc(path-exp2(~P))=exp-Cyc2(XP)

Proof:

We shall prove the above equality by considering separately each case

of syntactic entities on which "exp-Cyc2" and "path-exp2" apply.

case 1

Applying fuction "path-exp2" and then "Cye" to a macro path we obtain

Cye(path-exp2(path MSEQ end))=

Cyc(path path-exp2(MSEQ) end)=

Cye(path-exp2(XSEQ))

and applying "exp-Cyc2" we obtain

exp-Cyc2 (pa th :lSEQ end) =exp-Cyc2 (MSEQ)

The equality of the above expressions may be shown by case 2.

case 2

Applying "path-exp2" and then "Cye" to a macro sequence we obtain

Cyc(path-exp2(SEQPRT1; •.• ;SEQPRTn))=

Cyc(path-exp2(SEQPRT1); ••• ;path-exp2(SEQPRTn))

which as we have shown in case 2 of theorem 4.1 is equal to

Cye(path-exp 2(SEQPRTl))0 ••• oCye(path-exp2(SEQPRTn))

as each path-exp2(SEQPRTi) for i=1, ••• ,n is a basic sequence. Applying

- 223 -

func t ion "exp-Cyc2" we obtain we obtain

exp-Cyc2(SEQPRT1; ••• ;SEQPRTn)=

exp-Cyc2(SEQPRT1)G .•. Oexp-Cyc2(SEQPRTn)

The two expressions are the same provided that for any macro

orelement or strict sequence macro element denoted by SEQPRT

Cyc(path-exp2(SEQPRT»=exp-Cyc2(SEQPRT)

holds, which may be shown by cases 3, 4, 5, depending on whether SEQPRT

is a macro orelement, a strict sequence replicator, or a strict sequence

distributor respectively.

case 3

Applying "path-exp2" and then "Cyc" to a strict sequence replicator

we obtain

Cyc(path-exp2(SEQREPL»=Cyc(path-exp2(replexp O(SEQREPL»)

and applying "exp-Cyc2" we obtain

exp-Cyc2(SEQREPL)=exp-Cyc2(replexp O(SEQREPL»

Since replexpO(SEQREPL) yields a macro sequence the equality of the

above expressions may be shown by the previously considered case 2.

case 4

Applying "path-exp2" and then "Cyc" to a strict sequence

we obtain

distr ibutor

Cyc(path_exp2(SEQDISTR»=cyc(path-exp2(replexpO (SEQDISTR»)

and applying "exp-Cyc2" we obtain

- 224 -

exp-CycZ (SEQDISTR)=exp-CycZ (r eplexp ° (SE(~DISTR))

Since replexpO(SEQDISTR) yields a
~acro sequence the equality of the

above expressions may be shown by the previously considered case Z.

case 5

Applying "path-expZ" and then "exp-CycZ" to a macro orelement we

obtain

Cyc(path-expZ(ORPRT1, ••• ,ORPRTn»=

Cyc(path-expZ(ORPRT1), ••• ,path-exp2(ORPRTn»

Since path-exp2(ORPRTi) for i=l, ..• ,n yields an orelement, the above

expression is the same as

Cyc(path-expZ(ORPRTl»U ••• U Cyc(path-exp2(ORPRTn»

In case 2 of theorem 4.1 we had to prove the relation

Cyc(SEQ1)OCyc(SEQ2)=Cyc(SEQ1;SEQ2)

Here we have to prove the relation

Cyc(OR1)U Cyc(0R2)=Cyc(OR1,0R2)

where OR1 and OR2 are basic orelements, which may be shown by similar

arguments, as those in case Z of theorem 4.1.

By applying "exp-CycZ" to a macro orelement we obtain

exp-Cyc2(ORPRT1, ••• ,ORPRTn)=

exp-Cyc2(ORPRT1)U ••• U exp-Cyc2(ORPRTn»

The two expressions above are the same, provided that for any string

produced by "orpart" denoted by ORPRT, the relation

- 225 -

Cyc(path-exp2(ORPRT»=exp-Cyc2(ORPRT)

holds. This relation may be shown by the following cases, depending on

whether ORPRT denotes a strict orelement replicator or distributor

(cases 6 and 7 respectively), or a strict starelement imbricator (case

8), or a macro starelement (cases 9,10,11,12).

case 6

Applying "path-exp2" to a strict orelement replica tor and then "Cyc"

we obtain

Cyc(path-exp2(ORREPL»=Cyc(path-exp2(replexp O(ORREPL»)

and applying "exp-Cyc2" we obtain

exp-Cyc2(ORREPL)=exp-Cyc2(replexp O(ORREPL»

The equality of the two expressions may be shown by case 5 since

r eplexp ° (ORREPL)

yields a macro orelement.

case 7

Applying "path-exp2" to a strict orelement distributor and then "Cyc"

we obtain

Cyc(path-exp2(ORDISTR»=Cyc(path-exp2(replexp O(ORDISTR)»

and applying "exp-Cyc2" we obtain

exp-Cyc2(ORDISTR)=exp-Cyc2(replexpo(ORDISTR»

- 226 -

The equality of the two expressions may be shown by CJse 5 since

distrexpO(ORDISTR)

yields a macro orelement.

case 8

Applying "path-exp2" to STARl'1ACRO and then "Cyc" we obtain

Cyc(path-exp2(STARMACRO»=Cyc(path-exp2(replexp O(STARMACRO»)

and "exp-Cyc2" we obtain

exp-Cyc2(STARMACRO)=exp-Cyc2(replexp O(STARMACRO»)

The equality of the two expressions is shown by case 9 since

replexpO(STARMACRO)

yields a starelement.

case 9

Applying "path-exp2" to EL* and then "Cyc" we obtain

Cyc(path-exp2(EL*»=Cyc(path-exp2(EL)*)=Cyc(path-exp2(EL»*

and by applying "exp-Cyc2" we obtain

exp-Cyc2(EL*)=exp-Cyc2(EL)*

The equality of the two expressions depend on the equality of the

starred expressions which may be shown by any of the following cases,

depending on whether EL denotes an operation (case 10), or an element

(case 11), or a strict element imbricator.

- 227 -

case 10

Applying "path-exp2" to OP and then "Cye" we obtain

Cye(path-exp2(OP»=Cye(OP)={OP}

and applying "exp-Cye2" we obtain

exp-Cye2(OP)={OP}

yielding the same result.

ease 11

Applying "path-exp2" to (MSEQ) and then "Cye" we obtain

Cye(path-exp2«MSEQ»)=Cye«path-exp2(MSEQ»)=Cye(path-exp2(MSEQ»

and "exp-Cye2" we obtain

exp-Cye2«MSEQ»=exp-Cye(XSEQ)

The equality of the two expressions may be shown by ease 2.

ease 12

Applying "path-exp2" to ELMACRO and then "Cye" we obtain

Cye(path-exp2(ELMACRO»=

Cye(path-exp2(replexp O(ELMACRO»)

and applying "exp-Cye2" we obtain

exp-Cye2(ELREPL»=exp-Cye2(repl exp O(ELREPL»

- 228 -

The equality of the rtbove expressions may be shown by case 12, since

r eplexp 0 (ELREPL)

yields an element of the form

(HSEQ)

This completes the proof of the theorem. III

The above theorem gives us a shortcut for constructing the cycle set

of the expansion of a macro path. Instead of applying two functions

"path-exp2" and "Cyc" we may just apply the function "exp-Cyc2" which is

of the same order of complexity as "path-exp2".

4.2 CONSTRUCTING ORDERED CYCLE SETS BY EXPANSION OF MACRO-CYCLE OBJECTS

In the previous section we gave rules for constructing the ordered

cycle sets of basic programs obtained by the expansion of macro

programs, from the macro programs themselves. The ordered cycle sets

were constructed in two parts. In the first part all bodyreplicators

are expanded and ordered expressions yielding the cycle sets of

individual pure macro paths were obtained. In the second part, the

cycle sets of individual pure macro paths were obtained by the

composition of cycle sets of parts of macro sequences by concatenation

or by union operations. This approach yields correct results only when

the constituent parts are syntactically strong strings, or, if these

involve macro elements, generating syntactically strong strings. This

means that by understanding the ordering of operations specified by

small parts of a macro sequence, we may understand the ordering of

operations specified by the whole path. For the macro paths produced by

the grammar of section 3.2 the smallest such parts are the macro

orelements. For the macro paths produced by the grammar of section

4.1. 2 however, the smallest such parts are the elements or macro

elements. Programs produced by the syntax rules of 4.1. 2 are more

easily readable, in general, than those produced by the syntax of 3.2,

- 229 -

as it is easier to understand a lot of small parts of d macro sequence

rather than a few larger ones. Of course, this is achieved at the

expense of loss of power of expression, since the syntax of macro

elements was restricted. The reading of macro elements produced by the

grammar of 4.1.2 is not possible, in general, without them being

expanded first, as the regularities they generate may not be

syntactically strong and some parts of them may bind with parts of

adjacent regularities. For example consider the replicator Rl in PI0:

Rl #i:l,3,I[A(i);B(i),@]

which expands to:

A(l) ; B(l) , A(2) ; B(2) , A(3) ; B(3)

\\1e observe that the operation "B(l)" of the first

orelement with the operation "A(2)" of the

similarly the

orelement with

R1 is:

do

followed by

followed by

followed by

operation "B(2)" of

"A(3)" of the third

A(l)

B(l) or A(2),

B(2) or A(3),

B(3).

the second

regularity.

regularity forms an

second regularity and

regularity forms an

The correct reading of

The reading of macro elements is greatly improved when they generate

regularities which are syntactically strong strings for two reasons:

1. each regularity may be read independently of the rest, that is no

part of any regularity binds with parts of other regularities, and

2. their reading is very similar.

To demonst rate the above points let us consider few replicators

d h · ad;ng First the replicator generating such regularities an t e~r reo ~ •

R2:

R2 it i: 1 , 3, 1 [A(i) , BCi) ; @ 1

which may be read as:

do

followed by

followed by

A(1) or B(1) ,

A(2) or B(2) ,

A(3) or B(3).

- 2)r; -

Observe that the phrase "A(1) or B(1)" corresponds to the reading of the

orelernent "A(1) ,B(1)" in the first regularity which R2 generates, the

phrase "A(2) or B(2)" to the reading of "A(2),B(2)", etc.

The replica tor R3

R3 #i:l,3,1[(A(i);B(i)),@]

may be read as:

do ACl) followed by B(l),

or A(2) followed by B(2),

or A(3) followed by B(3).

Similarly to R2 above, the phrase "A(l) followed by B(1)" corresponds to

the reading of the element "(A(l);B(l))" in the first regularity which

R3 generates, the phrase "A(2) followed by B(2)" to the reading of

" (A(2) ; B (2))", etc.

Imbricators are more difficult to read than concatenators and

distributors, in general, because the regularities they generate do not

follow each other but are nested within each other. However, the

reading of imbricators the regularities of which are syntactically

strong strings is easier than the reading of the rest. Consider for

example the imbricator R4

R4 #i:l,3,1[(SKIP(i);@@),V(i)]

which may be read as:

do SKIP(l)

followed by

or by V(2),

or by YO).

- 231 -

SKlP(2)

followed by SKIP(3)

or by YO),

The phrase "SKIP(l) ••• or V(l)" corresponds to the reading of the

outermost regularity "(SKIPO) •••),V(l)", the phrase "SKIP(2) ••• or V(2)"

to the reading of "(SKIP(2) •••),V(2)" which follows "SKIP(l)", etc.

The reading of macro elements generating regularities which are

syntactically strong strings could be concisely represented. This

concise representation is particularly important when the index

specification of replicators are parametarized and the number of

regularities which macro elements generate is not fixed.

The reading of macro elements is an informal way of describing the

ordering of operations they specify. The ease of reading of macro

elements generating regularities which are syntactically strong strings

may be formally expressed in the construction of the cycle sets of macro

paths involving only such macro elements. These cycle sets may be

constructed by the composition of the cycle sets of their regularities.

For example the cycle set of RZ may be formed by the composition:

{A(1),B(1)}O{A(2),B(2)}O{A(3),B(3)}

We may observe that the three string sets in the above expression are

very similar and may be obtained by replacing "i" indexing the

operations in the string set

by the values 1,2,3, the values in the range of the replicator index.

The above set may be considered as the cycle set of the general

regularity inside "[]" of RZ, ignoring the ";@". If all replicators

and distributors in sequences had this property then they would not in

- 232 -

principle have to be expanded in order to find their cycle set. The

cycle set of their general regularity would be sufficient to generate

the cycle set of the whole replicator or distributor. Furthermore,

since macro elements would not have to be expanded, the bodyreplicators

would not have to be expanded as well. We cannot in general avoid the

expansion of bodyreplicators in the approach in the previous section,

since the range of indices of replicators in macro sequences may depend

on bodyreplicator indices, implying that for the replicators and

distributors in macro sequences to be expanded the bodyreplicators have

to have been expanded first. This leads to the idea of macro cycle

objects constructed from macro programs which represent ordered cycle

sets of basic programs as economically as macro programs represent basic

programs, and from which ordered cycle sets may be generated in the same

way as basic programs are generated from macro programs.

These macro cycle objects besides being a formal means for

representing the ordered cycle sets of an expanded macro program, they

also aid the verification of macro programs. Strictly speaking, all

verification methods and techniques developed in COSY apply to basic

programs only. This has the disadvantage that a macro program cannot be

verified, unless it is expanded first, implying that all its parameters

have to be given specific values. The consequence of this is that macro

programs cannot be verified for all values of their parameters. This

limitation was overcome by adopting informal techniques, as in [SL78],

which made possible the verification of parametarized macro programs.

When verifying a COSY program, we frequently argue in terms of the

firing sequences of paths, which are constructed by their cycle sets

(cL section 2.2). Thus, we are confronted with the task of

representing the firing sequences of the macro paths of macro programs.

As these paths may involve macro elements generating a finite but

indefinite number of regularities the representation of the general

cycle sets is fundamental.

An informal approach for representing repetition of patterns in the

elements of the cycle sets was followed in [SL78] using ellipses. For

example the cycle set of the path involving the replicator R4

path Ui:l,m,l[(SKIP(i);@@),V(i)] end

was represented by:

{VO) ,

SKIP(l).V(2),

SKIP(l).SKIP(2).V(3),

SKIP(l).

SKIP(l).

.SKlP(:a-l) .V(m),

• SKIP(m)}

- 233 -

The ellipses in the above cycle set denote two kinds of repetition

patterns. The ellipses denote repetition of operations SKIPs of the

form:

skip_rep(j)=SKIP(l). ••• . SKIP(j) for l~j~m

but also denote repetition of cycles of the form:

,skip_rep(m-l).V(m)

Even expressing the cycles of this relative simple path by ellipses is

cumbersome. As macro elements may in general, be nested inside other

macro elements the precise representation of cycle sets using ellipses

becomes an impossible task. We need a notation for the concise

representation of ordered cycle sets of macro programs from which the

ordered cycle sets of the expanded basic program could be generated by

expansion. This notation should be able to represent sets of cycles or

cycles of all macro elements be it bodyreplicators, concatenators,

distributors or imbricators. For this representation to be possible

though, all macro elements in macro sequences should always generate

regularities which are syntactically strong strings.

In the next subsection 4.2.1 we constrain some of the syntax rules of

4.1.2 to produce macro programs the macro paths of which involve

concatenators, distributors and imbricators the regularities of which

are syntactically strong strings and we define the function "expand2" by

which these programs are expanded. In subsection 4.2.2 we define a

notation for concisely representing cycle sets of macro progLL:J.s

produced by this grammar, we define the function "m-eycs" for obtainin,:;

- 234 -

macro cycle objects in this not8.tion from macro programs and define the

function "exp-CYc" by which these objects are expanded yielding ordered

cycle sets. Finally, in subsection 4.2.3 we prove that the ordered

cycle sets of the expansion of a macro program produced by the grammar

of 4.2.1 are the same as the ordered cycle sets we obtain from the

expansion of the macro cycle objects of the macro program.

4.2.1 Syntax and Expansion Rules of Constrained macro-Programs

In the grammar of this section we constrain the production rules in

section 4.1.2, or, to be more precise, those in appendix C, in order to

produce concatenators, distributors and imbricators the expansion of

which and each of their regularities are syntactically strong strings.

This is achieved by forcing the main connective of the string generated

by expansion to separate each regularity. Actually, the only macro

elements the syntax of which needs to be constrained are those which

generate sequences since the main connective of their expansion, namely

";", does not always separate the regularities. The regularities in the

expansion of the rest of the macro elements are orelements, starelements

and elements and consequently are syntactically strong strings in any of

their contexts. Therefore, we only need to constrain the production

rules for "seqconcseq", "seqimbrseq" and "seqdistr". The non-terminals

"seqdistr" and "seqconcseq", producing distributors generating sequences

and strings inside "[]" of a sequence concatenator, respectively, will

be redefined by:

seqdistr=;{/iexpr}{/#iexpr,iexpr,iexpr} [msequence]

seqconcseq={seqpartj}+@

The difference with corresponding rules rules of section 4.1.2 for

"seqconcseq" and "seqdistr" is that here we eliminated the production of

"," as the connective separating regularities generated by concatenators

and distributors.

- 235 -

We have yet to constrain thp ;mbrlo t
- L ca ors generating sequences

produced by the syntax in 4.1.2 in which each regularity is a

syntactically strong string. An imbricator

lIi:1,n,1[p(i) @ t ~ q(i)]

generates three kinds of regularities in general:

1. pO) ••• qO)

2. p'(n) t q'(n)

3. t'

when 1~i~n-l,

when i=n

when n<1

as we may recall from sections 3.2 and 3.3.

For imbricators generating sequences each regularity they generate is

a sequence and for it to be syntactically strong it should be between

any of "(", ";" and any of ")", ";". These regularities appear in the

same context as that of"@ t @" and consequently, the string "@ t ~"

should be between any of "c", ";", "[" and any of ")", ";", "]". The

two extra terminal symbols "[" and "]" in the context of "@ t @" arise

from the fact that when a replicator expands these disappear and the

context of the expanded string is the context of the imbricator itself.

The context of the imbricator generating sequences is any of "c", 11.11 , ,
"path" on its left and any of ") II , 11." , , "end" on its right which

guarantee that the outermost regularity and consequently the whole

expansion of an imbricator is syntactically strong.

The syntax rules for "seqimbrseq" producing strings inside "[]" of a

sequence replica tor then should be:

- 23fi -

seqimbrseq=seqimhr_at_seq

/{seqpart;}+ seqimbror {; seqpart}*

/{seqpart;}":' seqimbror {; seqpart}+

seqimbror={orpart,}":' seqimbrstarel {, orpart}*

seqimbrstarel=seqimbrel/seqimbrel*

seqimbrel=(seqimbrseq)

seqimbr _at_ seq=

{seqpart;}+ {~/at_or1f} {;seqpart}":'

/{seqpart ;}+ at_or2fb {; seqpart}+

/@{seqpart ;}~ {@/at_or1b} {; seqpart}+

/{seqpart ;}+ {@/at_or1f} {; seqpart}~@

/@ msequence @

{~/at_or1b} {;seqpart}+

For the imbricators generating orelements, starelements and elements

each of their regularities must be orelements, starelements and elements

respectively. These regularities are syntactically strong in any

context the str ing ",2 t @" is in. The syntax rules for them will still

be those of section 4.1.2 or more accuratly those of appendix C. The

complete syntax for programs involving only these macro elements may be

found in appendix D. Syntax rules in appendix 0 are associated with

mnemonic names starting with "HN" to denote syntax rules developed in

section 3.2, or with "RN" to denote syntax rules developed in section

4 .1. 2 (appendix C), or with "0;" to denote syntax rules developed in

this section.

Let us now give some examples of imbricators the regularities of

which are syntactically strong in their expansion. The imbricator is R5

produced by "seqmacro"

R5 lIi:1,3,1[(A(i);@@),B(i);C(i)]

and expands to the sequence E(RS)

E(RS) (A(1);(A(2);(A(3»,B(3);C(3»,B(2);C(2»,B(1);C(1)

- 237 -

The imbr ica tor R6 is produced by "ormacr 0"

R6 tli: 1,3,1 [(SKIP(i) ;C~@),(CS_BEGI:;(i); CS_END(i))]

and expands to the orelement E(R6)

E(R6) (SKIP(l)

(SKIP(2)

; (SKIP(3))

,(CS_BEGIN(3);CS_END(3))

)

,(CS_BEGIN(2);CS_BEGIN(2))

)

,(CS_BEGIN(l);CS_END(l))

The imbricator R7 is produced by "starmacro"

R7 Iii: 1,3,1 [(UP(i) ;@; full*;~; DO~(i))*]

and expands to the star element

E(R7) (UPO)

; (UP(2)

; (UP(3)

; full*

; DOWN(3)

)*

; DO\m (2)

)*

; DOWN (1)

)*

" 1 " Finally, the imbricator R8 is produced by e macro

R8 lIi:l,3,1[(C(i);R(i),@@)]

and expands to the element

- 238 -

E(R8)(C(l)

; R(1)

, (C(2)

; R(2)

, (C(3) ; R(3))

)

)

The reading of macro elements generating regularities which are

syntactically strong strings could be concisely represented. This is

particularly important when the index specification of replicators and

the sizes of the arrays are parametarized and as a result the number of

regularities to be generated is not fixed. Concatenators and

distributors generating sequences of the form

#i:l,n,l[p(i) ;@1

; [p 1

respectively, may be read as:

for all i=l, ••• ,n do consecutively p(i)

Concatenators and distributors generating orelements of the form

#i:l,n,l[p(i) ,@1

, [p 1

respectively, may be read as

for any i=l, ••• ,n do p(i)

For example, R2 and R3 when the final value of their indices is

parametarized by the integer n may be read as:

for all i=l, ••• ,n do consecutively A(i) or B(i)

for any i=l, •.• ,n do A(i) followed by B(i)

and

- 239 -

respectively. L~bricators are more difficult to read than concatenators

and distributors as regularities are nested and not following each

other. Imbricators generating syntactically strong strings

#i:l,n,l[p(i) @ t ~ q(i)]

may be read recursively by defining the reading of their general

regularity as follows:

read_reg(i)= if i<n do p(i) read_reg(i+l) q(i)

if i=n do p'(n) t q'(n)

if On do t'

Then the general reading of imbricators is given by

When the final value of the indices of imbricators RS, RO, R7, RB is

parametarized by the integer n, then the imbricators may be read by

where read_reg(i) for RS is

read_reg(i)= if i<n do A(i) followed by read_reg(i+l) or

followed by C(i)

B(i),

if i=n do A(n) or B(n), followed by C(n)

For i>n the expansion of RS is empty and consequently RS is not valid.

The reading of the general regularity of R6 is:

read_reg(i)= if i<n do SKIP(i) followed by read_reg(i+l),

or CS BEGIN(i) followed by CS E~D(i)

if i=n do SKIP(i)

or CS BEGIN(n) followed by CS END(n)

For i>n the expansion of R6 is empty and consequently R6 is not

The reading of the general regularity of R7 is

val id.

- 24() -

read _reg(i)= if i<n do repeat:UP(i)

followed by read_reg(i+l)

followed by DOWN(i)

if i=n do repeat:UP(n)

followed by repeat: full,

followed by DOWN(n)

if Dn do repeat: full

The general regularity of R8 may be read as

read_reg(i)= if i<n do C(i), followed by R(i) or by read_reg(i+l)

if i=n do C(n) followed by R(n)

Any program produced by the syntax rules of appendix D may also be
r.)

produced by the syntax rules of the section 4.1.2 and as we have

constrained and not extended the syntax rules generate basic programs

when expanded. Similarly to the strict sequence macro elements of

section 4.1.2, the macro elements produced by the above syntax rules may

also generate orelements, starelements and elements, when their index

range consists of one value or it is empty.

Here we will define the expansion of macro programs in an alternative

way from that of sections 3.3 and 4.1.2 by defining a function

"expand2". The necessity for an alternative expansion is of a technical

nature. As we like to find the cycles of the general regularity inside

"[lIt of a macro element, we cannot consider this regularity as a

string. We need to decompose regularities into their syntactic entities

on which a function "m-Cycs" will apply yielding ultimately the macro

cycles of these regularities. As both "expand2" and "m-Cycs" apply to

macro programs, it would be convenient, in showing that the ordered

cycle sets of the expansion of macro programs are the same as the

expansion of the macro cycle objects of macro programs, if both

functions applied to the same syntactic entities of macro programs.

Since the functions "expand", "replexpO" and "distrexpO" of 3.3 treat

regularities as strings and do not decompose them into their syntactic

entities, an alternative definition for the expansion of macro programs

will be given, in terms of the function "expand2".

~) produ~tion rules 4.1.2 are subset of pro~uction rules in 4.1.3

- 2" 1 -

In the definition of function "expand2" we do not' F of :ndr~e use o~ any

the auxilliary functions "replexpO", "distrexpO", we used in "expand" of

section 3.3.3 and "expand1" of section 4.1.2. In "expand2" the

expansion of macro elements is defined in an alternative way. We have

distinguished two kinds of macro elements:

concatenators the expansion of which is defined

imbricators the expansion of which is obtained

expansion of distributors is obtained from the

equivalent replicators (cf. section 3.3.2).

bodyreplicators

by iteration

by recursion.

expansion of

and

and

The

their

\.Je have made this

distinction between bodyreplicators and concatenators on one hand and

imbricators on the other, since the former generate strings which would

be produced by iterative productions of a non-terminal, whilst the

latter generates strings which would only be produced, in general, by

recursive productions of non-terminals, as regularities are nested

within each other. The expansion of a bodyreplicator, for example will

be defined by

expand2(#i:1,n,1[PBRs(i)])=expand2(PBRs(1)) ••• expand2(PBRs(n))

The expansion of imbricators will be defined recursively, generating at

each level of the recursion one regularity. The regularities are

obtained by substituting in "p(i) @t@ q(i)" the appropriate value for

"i". These strings are considered to be special macro "sequences",

involving "@t@" as a special non-starred "element". The expansion of

these macro "sequences" will be defined, similarly to the expansions of

proper macro sequences, by expanding its syntactic sub-entities. As the

syntactic entities of this macro sequence are expanded, the expansion of

the element "@t@" will be eventually needed. We consider the expansion

of this special element to be the next regularity of the imbricator.

The problem is that when we reach that point we do not know the

imbricator the string "@t@" corresponds to. One solution would be to

pass together with each syntactic entity of the regularity the

imbricator as a second argument to "expand2". But this would mean that

for some syntactic entities "expand2" would be a one argument function

and for others a two argument function. For this reason we decided on

another solution. We assume the existence of a stack in which a copy of

the imbricator is to be saved whilst syntactic entities of its

regularities are expanded. This copy will be needed when the element

- 242 -

",~ t @" is "expanded". The re 1 son we usc> t k" h
- u ~ ~ a s ac lS t at the regularity

of an imbricator could involve other imbricators, each having its own

lIra t @" t" h" h " d" dOff ~ s rlng, w lC expan to 1 erent strings. We associate two

operations with this stack: "imbr-push" by which imbricators are pushed

into the stack and "imbr-pop" by which they are poped out of the stack.

We may use this stack as follows: When an imbricator is to generate

at least one of its general regularities, determined by its index

specification, the imbricator is pushed into the stack with the lower

value of its index incremented by one. The expansion of this stacked

imbricator will generate all the inner regularities to the current

regularity of the original imbricator. After the modified imbricator is

stacked its current regularity may be expanded. As the expansion of

syntactic entities of this regularity are expanded, the expansion of the

special element "@ t @" will be eventually needed. Its expansion is

defined to be the expansion of the imbricator at the top of the stack.

When the imbricator generates its last regularity it will not be stacked

and as this last regularity will not contain the special element "@ t ~"

the expansion of the original imbricator will terminate correctly.

In the definition of "expand2" which follows the syntactic variables

MPBODY, CPBRi for i=l, ••• ,n, COLs, PBRi for i=l, ••• ,n and PBRs denote

the same syntactic entities as defined in section 4.1. Paths will be

represented by:

path l1SEQ end

where HSEQ denotes a macro sequence which is represented by

SEQPRT1; ••• ;SEQPRTn

where each of SEQPRTi for i=l, ••• ,n denotes a macro element produced by

"" I A macro orelement is represented bv seqmacro or a macro ore ement. -

ORPRTl, ••• ,ORPRTn

where each of ORPRTi for i=l, ••• ,n denotes either a macro element

produced by "or par t" or "s tarmacro" or d starred element. A starele:nent

- 243 -

is represented by

EL* or EL

where EL denotes a macro element produced by "elmacro", or an operation

represented by

OP

or an element of the form (msequence) represented by

C·1SEQ)

Concatenators and distributors produced by "seqmacro" will be

represented by

Ui:l,n,l[MSEQ(i);@]

; [MSEQ]

respectively, where MSEQ(i) denotes a 8acro sequence some operations of

which may depend on "i", and HSE~ denotes a macro sequence involving

array slices instead of operations.

Concatenators and

represented by

#i:l,n,l[MOR(i),@]

, [MOR]

distributors produced by "ormacro" will be

respectively, where HOR(i) denotes a macro orelement some operations of

which may depend on "i" and MOR denotes a macro orelement involving

array slices instead of operations.

All imbricators produced by "seqmacro", "ormacro", "starmacro" and

"elmacro" will be represented by

#i:l,n,l[p(i) @t@ q(i)]

- 244 -

The string "p(i)Jt~ q(i)" in the above representation of an

imbricator may be of four different forms each corresponding to one of

the four types of imbricators. In order to keep the definitions of the

functions "expand2" and "m-eycs" as short as possible we shall not

distinguish similar syntactic entities of the four forms. In the formal

grammar of appendix D we had to have four groups for syntax rules

producing imbricators for two reasons:

1. to specify that the string "t" between the two "@"s is different in

each case. and

2. to specify that the context of "@t@" in imbricators generating

sequences excludes commas.

If we regard the string "@ t ~" as one entity. the first reason for

their distinction is not important. As for the second reason we may for

the moment ignore it when defining syntactic entities. All syntactic

variables except the syntactic variable representing the string "@t,~"

will be sufficed by "(1)" to denote that integer expressions in the

strings they represent, may depend on "i". denoting the index of

replicators.

We may represent the string "p(i) @t@ q(i)" of a genuine imbricator

by

where I~SP j(i) for j=1 ••••• n denote strings produced by "seqpart".

except exactly one which involves the string "@t@" corresponding to the

imbricator. which may be represented by the orelement

I~~ op 10) •.••• Il~OPn(i)

If an imbricator generates an orelement. a starelement or an element.

the each of IM_OPj(i) for j=l, •••• n denotes a string produced by

"orpart". except exactly one which involves the string "@t@"

corresponding to this imbricator. The entity which involves "@t@" is

the \vhole of the string "p(i) @t@ q(i)" of imbricators generating

- 245 -

starelements and elements. This entity entity may be represented by

1M EL(i)* or I~EL(i)

The syntactic variable I~EL(i) denotes. an element involving lira t ~" and

may be represented by

(IMB~SEQ(i))

in which r:1BR_SEQ(i) denotes a special sequence which involves "@t@" and

may be represented by either

if "I,h@" is further nested inside "()", or by

when "@t@" is not further nested inside "()". Each of AT_SP j(i) for

j=l, .•• ,n denotes a string produced by "seqpart", except exactly one

which in the case of imbricators generating sequences is "@t@",

represented by

AT EL

but in the case of imbricators generating orelements, starelements and

elements is an orelement involving "@t@" as an element and may be

represented by

where each of AT_OPj(i) for j=l, ••• ,n denotes strings produced by

"orpart" except exactly one which is the special element "~t2" which we

have represented by AT EL.

Finally, the string "p(i) @t@ q(i)" of non-genuine imbricators

generating sequences may be represented by

- 246 -

defined as above. The string " p (i) @t@ q(i)" of non-genuine imbricators

generating orelements may be represented by

as explained above.

Let us now define the function "expand2":

- 247 -

expand2(e)=cases e:

1. program :·1PBODY endprogram -~ progra,) expand2(~PBODY) endprogram

2. CPBR1 ••• CPBRn -~ expand2(CPBR1) ••• expand2(CPBRn)

3. COLs PBR -~ expand2(PBR)

4. Iti:1,m,I[PBRs(i)] -~ expand2(PBRs(l» ... expand2(PBRs(m»

5. PBR1 ••• PBRn -~ expand2(PBRl) ••• expand2(PBRn)

6. path MSEQ end

7. SEQPRTl; ••• ;SEQPRTn

8. #i:l,n,l[~SEQ(i);@]

9. ;[MSEQ]

10. ORPRTl, ••• ,ORPRTn

11. Iti:1,n,1[MOR(i),@]

12. , [MOR]

13. #i:in,n,l[p(i)@ t @q(i)]

14. I!~SPl(k); ••• ; I:~SPn(k)

15. n~OPl(k), ••• ,I~OPn(k)

16. I~EL(k)*

17. (IMB~SEQ(k))

18. AT SPl(k); ••• ;AT_SPn(k)

19. AT_OPl(k), ••• ,AT_OPn(k)

20. AT EL

21. EL*

22. OP

23. (MSEQ)

-7 path expand2(~SEQ) end

-~ expand2(SEQPRTl); ••• ;expand2(SEQPRTn)

-~ expand2(MSEQ(1»; ••• ;expand2(MSEQ(n»

-~ expand2(MSEQ(1»; ••• ;expand2(MSEQ(n»

-~ expand2(ORPRTl), ••• ,expand2(ORPRTn)

-~ expand2(~OR(1», ••• ,expand2(~OR(n»

-7 expand2(MOR(1», ••• ,expand2(MOR(n»

-~ if in<n then

imbr-push(#i:in+l,n,l[p(i)@t@q(i)])

expand2(p(in)@ t @q(in»

if in=n then expand2(p'(n) t q'(n»

if in>n then expand2(t')

-~ expand2(IM SPl(k»; ... ;expand2(HI SPn(k» - -
-~ expand2(n~OPl(k», ••• ,expand2(I~OPn(k»

-7 expand2(Ul_EL(k»*

-7 (expand2(H1BR_SEQ(k»

-~ expand2(AT_SPl(k»; ••• ;expand2(AT_SPn(k»

-~ expand2(AT_OPl(K», ••• ,expand2(AT_OPn(k»

-7 expand2(imbr-pop)

-7 expand2(EL)*

-7 OP

-7 (expand2(MSEQ))

- 248 -

\~e will not formally prove that the expansion of a ::ldcro program

MPROG, given by expand2(:1PROG), is a basic progra::J. as it may be proven

in a style we have proven theorem 3.11 of section 3.3.3.

We have to point out a subtle operational difference between the'

functions "expand2" and the rest of the functions defined by cases, such

as "expand", "expandl", "Cycles", "exp-Cycls", etc., due to the use of

the stack in "expand2". When a function applies to syntactic variables

which themselves have as components other syntactic variables, the

result is defined in terms of the partial results obtained by applying

the same function on these components. The order of evaluation of these

partial results is not important. This is true for all our functions

defined by cases. In evaluating partial results of "expand2", however,

some fixed order should be followed, whilst in other functions these

evaluations could be performed concurrently. The reason for this

difference is that "expand2" uses a common stack which should be

accessed orderly. For otherwise, if imbricators are pushed and poped

unorderly, an imbricator may be expanded at a wrong position.

4.2.2 Macro Cycle Objects and their Expansion

Let us now examine what kind of features we need to represent sets of

cycles of macro programs concisely, and suggest a reasonable notation

incorporating these features.

The macro cycles of a macro program body will be wrapped between the

word pair "mcycles" and "endmcycles" and the macro cycles of a macro

path between "pcyc" and "endpcyc". The macro cycle sets of

bodyreplicators and paths will be separated by "&", macro cycle sets of

strings produced by "seqpart" will be separated by""''', and macro cycle

sets of d b "U". strings produced by "orpart" will be separate y As ","

has precedence over ";" in macro sequences so "u" will have precedence

over "0" in macro cycle sets.

We need four other features in this notation:

1. one to represent the union of similar sets, for representing the

- 249 -

union of cycle sets of the regularities of concatenators and

distributors generating orelements,

2. another to represent the concatenation of similar cycle sets, for

representing the concatenation of cycle sets of the regularities of

concatenators and distributors generating sequences,

3. a third one to represent the imbrication of similar cycle sets, for

representing the cycle sets of the regularities of imbricators, and

finally

4. one to represent the ordering of similar cycle sets, for

representing ordered cycle sets of paths in the regularities of

bodyr eplica tor s.

As we have already used the symbol "U" for the set union operator, it

is natural to use the notation

B[S(i)]
i=l

to represent the union of the sets S(l), ••• ,S(n)

SO) U ••• U S(n)

where S(i) denotes a string set expression, involving sets of a single

. d t the l·nteger expressions in which may operat1on name an macro se s,

d f S(l·) by replacing depend on "i", and S(j) for j=l, ••• ,n is obtaine rom

the index "i" by one of the values for j. For example the expression

3
i~t {DEPOSIT(i)}]

represents the union of sets

{DEPOSIT(1)}U{DEPOSIT(2)}U{DEPOSIT(3)}

- 250 -

As we have used the symbol "0" for the concatenation of sets of

strings, we shall use the notation

n
o[S(i)]

i=l

to represent concatenation of the sets S(l), ••• ,S(n)

SO) 0 ••• 0 Sen)

where SCi) and S(j) for j=l, ... ,n are defined as above.

the expression

3
i~f{DEPOSIT(i)}]

represents the concatenation of sets

{DEPOSIT(1)}O{DEPOSIT(2)}O{DEPOSIT(3)}

Similarly, we shall use the notation

n
&[S(i)]

i=l

For example,

to represent the ordering of collections of cycle sets S(l), ••• ,S(n)

SO) & ••• & Sen)

where SCi) and S(j) for j=l, ... ,n are defined as above.

For example the expression

3
&[pcyc {DEPOSIT(i)}o{REMOVE(i)} endpcyc]

i=l--

represents the ordering of the sets of cycles

pcyc {DEPOSIT(l)}"{REHOVE(l)} endpcyc &

- 251 -

pcyc {DEPOSIT(2)}u{Rt:~IOVEU)} endpcyc &

pcyc {DEPOSIT(3)} Q{RE:I0VE(3)} endpcyc

The macro cycle sets of the paths

path #i:l,3,1[DEPOSIT(i),@] end

path #i:l,3,1[DEPOSIT(i);@] end

and of the the ordering of the cycle sets of the paths generated by the

bodyr epl ica tor

lIi:l,3,1[path DEPOSIT(i);REHOVE(i) end]

may be concisely represented by

3
pcyc U[{DEPOSIT(i)}] endpcyc
-- i=l

3
pcyc i~l{DEPOSIT(i)}] endpcyc

3
&[pcyc {DEPOSIT(i)}o{REMOVE(i)} endpcyc]

i=l--

respectively.

Let us now examine what kind of a notation we need to represent

concisely the cycle set of an imbricator.

imbricator

lIi:l,n,l[p(i)@ t @q(i)]

generates either the string Expl

Exp 1. t'

when l>n, or the string Exp2

Exp2. p(l) p(2) ••• p'(n) t q'(n) ••• q(2) q(l)

We may recall that an

- 252 -

when n> 1. The string Exp2 involves t o kinds of r"gularities in

general:

p(i) ..• q(i) for i=1, ••• ,n-1

and

p' (n) t q' (n)

Therefore for the concise representation of the cycles of the regularity

of any imbricator we need in general the macro cycles of

1. t'

2. p' (n) t q' (n)

3. p(i) ••• q(i) for i=l, ••• ,n-l

Of the three of the above expressions 1 and 2 are not repeated in the

imbricator expansion and must therefore, be considered individually; the

regularity which is repeated in the expansion of an imbricator is of the

form 3. This leads us to adopt the following notation for representing

the cycles of the regularities of imbricators:

n
t[A(i)/B/C]

i=l

where A(i), B, C denote the macro cycle expressions of "p(i)@ t @q(i)",

"p'(n) t q'(n)" and "t'" respectively.

As the regularity of the form 3 will always imbricate other

regularities, we must indicate in A(i) where the cycle set of the inner

regularities are to appear. We do that by using the symbol "-1-". As the

inner regularity is to appear in the context of "@ t @" we shall regard

h 1 f h ' 1 1 ",'3 t ra" as 'Del'ng "-1-". t e cyc e set 0 t is spec1a e ement - ~

For example the macro cycle expression

- 251 -

3
. t[({C(i)}~{R(i)}U+)/({C(3)}O{R(3)})/{A}1
1.=1

where "A" denotes the empty string, represents the set-expression

({C(1)}O{R(1)}U({C(2)}O{R(2)}U({C(3)}O{R(3)}»)

which is the cycle set of the sequence

(C(l) ; R(l) , (C(2) ; R(2) , (C(3) ; R(3) »)

which may be obtained by the expansion of the imbricator R8

R8 #i:l,3,1[(C(i);R(i),@@)]

The macro cycle set representing the cycles of the string obtained by

the expansion of replicator R4 is

n
t[({SKIP(i)}e+) U {V(i)}/({SKIP(n)}) U {V(n)}/{A}]

i=l

The macro cycle object of a macro program may be constructed formally

by the function "m-Cycs" defined below, which applies to the same

syntactic entities as function "expand2".

- 254 -

m-Cyes(e)=eases e:

1. program XPBODY endprogram -~ meyeies m-Cyes(HPBODY) endmeyeies

2. CPBR1 ••• CPBRn -7 m-Cyes(CPBRl) ... m-Cyes(CPBRn)

3. COLs PBR -7 m-Cyes(PBR)

4. h:1,n,1[PBRs(i)]

5. PBRI ••• PBRn

6. path MSEQ end

7. SEQPRTl; ••• ;SEQPRTn

8. #i:l,n,l[MSEQ(i);@]

9. ; [MSEQ]

10. ORPRTl, ••• ,ORPRTn

11. Ifi:l,n,l[MOR(i),@]

12. ,[MOR]

13. #i:in,n,l[p(i) @ t @ q(i)]

14. I}~SPl(i); ••• ;I~SPn(i)

15. IM_OPl(i), ••• ,IM_OPn(i)

16. I~EL(i)*

17. (IHBR_SEQ(i»

18. AT SPl(i); ••• ;AT_SPn(i)

19. AT_OPl(i), ••• ,AT_OPn(i)

20. AT EL

21. EL*

22. OP

23. (MSEQ)

n
-7 &[m-Cyes(PBRs(i»]

i=l

-7 m-Cyes(PBRl)& ••. &m-Cyes(PBRn)

-7 peye m-Cyes(MSEQ)endpeye

-7 m-Cyes(SEQPRTl)o ••• o m-Cyes(SEQPRTn)

n
-7 o[m-Cyes(MSEQ(i»]

i=l

n
-7 O[m-Cyes(MSEQ(i»]

i=l

-7 m-Cyes(ORPRTl)U ••• U m-Cyes(ORPRTn)

n
-7 U[m-Cyes(HOR(i»]

i=l

n
-7 U[m-Cyes(MOR(i»]

i=l

n
-7 t[m-Cyes(p(i) @ t @ q(i»/

i=in

m-Cyes(p'(n) t q'(n»/m-Cyes(t')]

-~ m-Cyes(IM_SPl(i»o ••• o m-Cyes(IM_SPn(i»

-~ m-Cyes(IM_OPl(i»U ••• U m-Cyes(IM_OPn(i»

-7 m-Cyes(IM_EL(i»*

-7 (m-Cyes(U1B~SEQ(i»

_~ m-Cyes(AT_SPl(i»o ••• o m-Cyes(AT_SPn(i»

_~ m-Cyes(AT_OP1(i»U ••• U m-Cyes(AT_OPn(i»

-? +
-7 rn-Cyes(EL)*

~ {OP}

~ (m-Cyes(11SEQ»

- 255 -

The macro cycle object of the ring buffer with one producer and one

consumer specified by the following macro program :1PROGl

MPROGl

program

array DEPOSIT REHOVE(n) endarray

#i:l,n,l[path DEPOSIT(i);REMOVE(i) end}

path ;[DEPOSIT} end

path ; [REMOVE} end

path ,[DEPOSIT} end

path ,[REMOVE} end

endprogram

obtained by the function "m-eycs" is:

mcycles

n
&[pcyc {DEPOSIT(i)}o{REMOVE(i)} endpcyc} &
i=l--

n
pcyc o[{DEPOSIT(i)}] endpcyc &
-- i=l

n
pcyc o[{REMOVE(i)}] endpcyc &
-- i=l

n
pcyc U[{DEPOSIT(i)}] endpcyc &
-- i=l

n
pcyc U[{REMOVE(i)}] endpcyc
-- i=l

endmcycles

Th 1 b ' t of the priority resource manager [LT78, LS78] e macro cyc e 0 Jec

specified by the macro program MPROG2

:1PROG2

program

array

DEPOSIT REMOVE(n,m)

SKIP CS BEGIN CS_END(m)

endarray

ilj:l,m,l

[path ;[DEPOSIT(,j)] end

path ;[REMOVE(,j)] end

- 256 -

lIi:l,n,l[path DEPOSIT(i,j);REHOVE(i,j) end]

path SKIP(j), (, [REMOVE(, j)] ; CS _BEGINU); CS_END(j» end

]

path IIj:l,m,l[(SKIP(j);@@),(CS_BEGIN(j);CS_END(j»] end

endprogram

obtained by "m-Cyes" is

meyeles

m n
&[peye Q[{DEPOSIT(i,j)}] endpeye &

j=l --i=l

n
peye Q[{REMOVE(i,j)] endpeye &
--i=l

n
i~t {DEPOSIT(i, j) }o{REt10VE(i, j)}] &

n
{SKIP(j)}U(U[{REMOVE(i,j)}]O{CS BEGIN(j)}O{CS_END(j)})

i=l -
endpeye

&

m
t[({SKIP(j)}o+)U({CS BEGIN(j)}o{CS END(j)})!

j=l -
({ SKIP(n)})U({CS _BEGIN(n)} o{CS _END(n)}) /{ A}]

endpeye

endmeyeles

- 257 -

Let us now give general concise readings for the macro cycle sets.

Macro cycle sets of the form

n
~[S(i)]

i=l

may be read as:

for all i=l, ••• ,n do consecutively S(i).

For example the macro set

n
°1{A(i)}U{B(i)}]

- i=l

may be read as

for all i=l, ••• ,n do consecutively A(i) or B(i).

Macro sets of the form

n
U[S(i)]

i=l

may be read as

for any i=l, ••• ,n do S(i).

For example the macro set

n
i~t({A(i)}O{B(i)})]

may be read as

for any i=l, ••• ,n do ACi) followed by B(i).

Finally macro sets of the form

n
t[S(i)/U/T]

i=l

- 258 -

may be read recursively by defining the reading of the i'th regularity
as follows:

read_cycreg(i)= if i<n then SCi)

if i=n then U

if i)n then T

where the symbol 11,11 .. must appear in

"read_cycreg(i+ 1)". For example the cycle set

n
.t[({SKIP(i)}Q+)U{V(i)}/({SKIP(n)}U{V(n)}/{A}]
~=l

may be read as:

read_cycreg(l)

SCi) standing

where the reading of the i'th regularity read_cycreg(i) is

read_cycreg(i)= if i<n do SKIP(i) followed by read_cycreg(i+l),

or V(i)

if i=n do SKIP(n) or yen)

for

For programs involving simple macro elements there is no real

practical advantage in reading macro cycle objects of macro programs
than

ratherVreading the programs themselves. However, for programs involving

more complicated macro elements, macro cycle objects have an advantage

and are useful in that aspect as well. In certain cases we may simplify

the macro cycle expressions by the composition rules of "0" and "u" of

sets of strings and by applying some relations regarding the union and

concatenation operations on sets of strings and macro cycle sets, such

as:

- 259 -

1 • A ~ B U C (A 0 B) U (A o C)

B U C o A (B o A) U (C o A)

2. A U B B U A

3. A U (B U C) (A U B) U C A U B U C

4. A Q (B o C) (A o B) o C A Q B 0 C

5. (A U B) o C A U B 0 C

where A, Band C are sets of strings, or macro cycle sets. In addition

when A is a string set or a macro set representing union of similar

sets, the following property holds:

6. (A) A

Finally when A is a set of strings the following properties hold:

n n
7. U[S(i)] 0 A U[S(i) U A]

i=l i=l

8.

Consider for example the macro cycle of the replicator R9

R9 #i:l,n,l[«A(i);B(i»,C(i);D(i»,~]

in which none of the parentheses in the regularity are redundant. By

applying the function "m-Cycs" we obtain the macro cycle set:

n
U[{«{A(i)}o{B(i)}) U {C(i)}o{D(i)})]

i=l

which is a quite complicated expression and certainly not more readable

than the replica tor itself. The above macro set may be read as:

for any i=l, ••• ,n do

A(i) followed by B(i), or C(i)

followed by D(i).

We may apply some of the above well defined properties to simplify this

- 260 -

macro set and its reading. The cycle set of the regularity of the above

set expression is equivalent to

« {A(i). BCi)}) U {C(i)}o{D(i)})= by composition of "0"

({A(i).BCi)} U {C(i)}o{D(i)})= by rule 6

({A(i).B(i),C(i)}o{D(i)})= by composition of "u"
({A(i).B(i).D(i),C(i).D(i)}) by composition of "0"

{A(i).B(i).D(i),C(i).D(i)} by rule 6

which means that the macro cycle set of R9 is simplified to the macro

cycle set:

n
U[{A(i).B(i).D(i),C(i).D(i)}]

i=1

We believe that the above expression greatly simplifies the task of

understanding replicator R9, which may be now read as:

for any i=I, ... ,n

do A(i) followed by B(i) followed by D(i),

or C(i) followed by D(i)

The above macro set is also the macro cycle set of the replicator

RIO #i:l,n,I[(A(i);B(i);D(i»,(C(i);D(i»,@]

The replicator RIO might be slightly easier to read than R9 but RIO

involves repeated operation names which make RIO semantically more

involved than R9 [LSB79b]. Although we could have defined an "inverse"

function of "m-Cycs" to take us from simplified macro cycle objects to

macro programs we did not, as this inverse function would in general

introduce in macro programs the complexity of repeated operation names.

We would not gain anything as the macro objects give us quite a

coprehensive reading of the paths in macro programs anyway.

Let us also simplify the macro cycle set of the imbricator R5:

n
i!{({A(i)} Q +)U{B(i)}O{C(i)}/(A(n)})U{B(n)}O{C(n)}/{A}]

- 261 -

The first set expression inside "[)" may be simplified as follows:

«{A(i)} o +) o {C(i)}) U ({B(i)} Q {C(i)}) by rule 1
«{A(i)} 0 ~) o {C(i)}) U({B(i).C(i)}) by compo of "Oil

« {AO)} 0 t) ° {C(O}) U {B(i).C(i)} by rule 6

({A(i)} ~ + 0 {C(i)}) U {B(i).C(i)} by rule 4

The second expression inside "[]" may be simplified as follows:

by rule 6 {A(n)} U {B(n)} U {C(n)}

{A(n),B(n)} 0 {C(n)}

{A(n).C(n),B(n).C(n)}

by the composition of "u"
by the composition of "0"

Thus the macro set representing the cycles of R5 may be simplified to

n
t[({A(i)}o+o{C(i)})U{B(i).C(i)}/{A(n).C(n),B(n).C(n)}/{A})

i=1

Let finally simplify the macro cycle expression

n
{SKIP(j)}U (U[{REMOVE(i,j)}]o{CS BEGIN(j)}o{CS END(j)})

i=1 -

which represents the cycles of the last path in the bodyreplicator of

MPROG2, namely the path

path SKIP(j),(,[REMOVE(,j)];CS!EGIN(j);CS_END(j» end

The above set expression may be simplified as follows:

n
{SKIP(j)}U (U[{REMOVE(i,j)}]o{CS BEGIN(j).CS_END(j)})

i=1 -
compo of "0"

n
{SKIP(j)}U (U[{REHOVE(i,j)}o{CS BEGIN(j).CS_END(j)})]

i=1 -
rule 5

{SKIP(j)}U i~I{REMOVE(i,j)}.CS_BEGIN(j).CS_END(j)}]) comp. of "0"

{SKIP(j)}Ui~i{REMOVE(i,j)}.CS_BEGIN(j).CS_END(j)}] rule 6

- 262 -

To construct the vector firing sequences of a macro program, the

ordered cycle sets of the expanded paths will be needed. Let us

therefore define the function "cyc-exp" by which macro sets in macro

objects are expanded. We will then be in a position to show formally

that for a macro program ~WROG, generated by the the syntax in appendix

D, the relation

Cycles(expand2(HPROG))=cyc-exp(m-Cycs(MPROG»

holds, where the function "Cycles" yields the ordered cycle sets of

basic programs and is defined in section 4.1.

The function "cyc-exp" applies to macro cycle objects of macro

programs which may be represented by

mcycles BODY-CYCS endmcycles

where BODY-CYCS denotes ordered macro cycle expressions representing the

cycle sets of the paths and bodyreplicators in the body of a macro

program and may be represented by

BD-CYCSl & ••• & BD-CYCSn

where each of BD-CYCSi for i=l, ••• ,n denotes a macro cycle set of a

single bodyreplicator or a macro cycle expression representing the cycle

set of a path.

A macro cycle set of a bodyreplicator may be represented by

m
&[BD-CYCS(i)]

i=l

where BD-CYCS(i) denotes ordered macro cycle expressions representing

the ordered cycle sets of the paths in the regularity of the

bodyreplicator. The macro cycle expression representing the cycle set

- 263 -

of a single path may be represented by

pcyc SEQ-CYC endpcyc

where SEQ-CYC denotes the cycle expression representing the cycles of

macro sequence and may be represented by

SP-CYCI 0 ••• 0 SP-CYCn

a

where each of SP-CYCi for i=l, ••• ,n denotes the macro cycle expression

representing the cycle set of a string produced by "seqpart", which

could be a concatenator or distributor generating sequences, a macro

orelement or an imbricator generating sequences. The macro cycle set of

a concatenator or distributor generating sequences may be represented by

m
o[SEQ-CYC(i) 1

i=l

where SEQ-CYC(i) denotes the macro cycle expression representing the

cycle set of the regularity of concatenators and distributors. The

macro cycle expression representing the cycle set of a macro or element

may be represented by

ORP-CYCI U ••• U ORP-CYCn

where each of ORP-CYCi for i=l, ••• , n denotes a macro cY,cle expression

representing the cycle set of a string produced by "orpart", which could

be a concatenator or distributor generating orelements, a starelement,

or an imbricator generating an orelement. The macro cycle set

representing the cycle set of a concatenator or distributor generating

orelements may be represented by

m
U [ORP-CYC(i) 1

i=l

where ORP-CYC(i) denotes the macro cycle expression representing the

cycle set of the regularity of the concatenator or distributor. The

macro set expression representing the cycle set of a star element may be

represented by

- 264 -

EL-CYC* or EL-CYC

where EL-CYC denotes the macro cycle expression representing the cycle

set of an element and may be represented either by

STRING-SET

if the element is an operation. or by

(SEQ-CYC)

if the element is of the form (msequence).

The macro cycle set representing the cycle set of an imbricator may

be represented by

n
. t[SP(i)+SQ(i)/B/C]
~=~n

where SP(i)+SQ(i) denotes the macro cycle expression representing the

cycle set of the repeatable regularity. B denotes the macro cycle

expression representing the cycle set of the innermost regularity and C

denotes the macro cycle expression representing the cycle set of the

string between the "@"s without its leading and terminating separators.

The macro cycle expressions Band C are of form of SEQ-CYC (cf. lemmata

4. 5 in section 3.3). The macro cycle expression SP(i)+SQ(i) may be

represented by

RSEQ-CYC(i)

which may be represented by

RSP-CYCl(i) U ••• O RSP-CYCn(i)

where each of RSP-CYCj(i) for j=l ••••• n denotes a macro cycle expression

of a string produced by "seqpart". except exactly one which either

denotes the cycle set of "@t@" represented by "+". or denotes the macro

cycle elCpression of a string involving "@t@" and it is represented by

- 265 -

ROP-CYC1(i) U ••• U ROP-CYCn(i)

where each of ROP-CYCj(i) for j=l, ••• ,n denotes a macro cycle expression

of a string produced by "seqpart", except exactly one which denotes the

macro cycle expression of "@t@" represented by "~", or the macro cycle

expression of a starred element involving "@t@" represented by

REL-CYC(i) or REL-CYC(i) *

where REL-CYC(i) denotes the macro cycle expression of an element

involving "@t@" and may be represented by

(RSEQ-CYC(i»

The expansion of macro cycle sets of bodyreplicators, and the macro

cycle sets of concatenators and distributors will be defined by

iteration, whilst the expansion of macro cycle sets of imbricators will

be defined by recursion. For the latter we use the same technique as in

"expand2" for defining the expansion of imbricators. Here, we assume

the existence of a second stack in which macro cycle sets of imbricators

are pushed, while their constituent macro cycle entities in "[]" are

expanded. We unstack the stacked macro cycle sets when "cyc-exp" is

applied to "-1-", the expansion of which is considered to be the expansion

of the original macro cycle set to which "-I-" corresponds, '..;ith the lower

limit of the index of the macro cycle element increased by one. \ve

associate with this stack two operations, "cyc-push" and "cyc-pop" by

which macro cycle sets of imbricators may be pushed in and respectively

popped out of the stack.

The function "cyc-exp" is defined by:

- 266 -

cyc-exp(e)=cases e:

1. mcycles BD-CYCS endmcycles ~ cycles cyc-exp(tiD -CYCS)endcycles

2. BD-CYCSl& ••• &BD-CYCSn -~ cyc-exp(BD-CYCSl)& ••• &cyc-exp(BD-CYCSn)

m
3. i~fBD-CYCS(i)] ~ cyc-exp(BD-CYCS(l»& ••• &cyc-exp(BD-CYCS(m»

4. pcyc SEQ-CYC endpcyc

5. SP-CYClo ••• oSP-CYCn

m
6. CI[SEQ-CYC(i)]

i=l

7. ORP-CYC1 U ••• U ORP-CYCn

m
8. i~iOR-CYC(i)]

n
9. t[SP(i)+SQ(i)/B/C]

i=in

10. RSEQCYC1(k)o ••• oRSEQCYCn(k)

11. RORCYCl(k)U ••• U RORCYCn(k)

12. RELCYC(k) *

l3. (RSEQ-CYC(k»

14. oj.

15. EL-CYC*

16. (SEQ-CYC)

17. STRING-SET

-~ cyc-exp(SEQ-CYC)

~ cyc-exp(SP-CYC1)O ••• Qcyc-exp(SP-CYC)

~ cyc-exp(SEQ-CYC(l»o ••• Qcyc-exp(SEQ-CYC(m»

-~ cyc-exp(ORP-CYC1)U ••• U cyc-exp(ORP-CYCn)

~ cyc-exp(OR-CYC(l»U ••• U cyc-exp(OR-CYC(m»

-~ if n) in then

~

~

~

~

~

~

~

~

n
cyc-push(t[SP(i)+SQ(i)/B/C])

i=in+1

cyc-exp(SP(in)+SQ(in»

if n=in then cyc-exp(B)

if n)in then cyc-exp(C)

cyc-exp(RSEQCYC1(k»o •.• ocyc-exp(RSEQCYCn(k»

cyc-exp(RORCYC1(k»U ••. U cyc-exp(RORCYCn(k»

cyc-exp(RELCYC(k»*

cyc-exp(RSEQ-CYC(k)

cyc-exp(cyc-pop)

cyc-exp (EL-CYC) *
cyc-exp(SEQ-CYC)

STRING-SET

- 267 -

Let us apply the func t ion "cyc-exp" to expand the macro cycle objec t of

the macro programs MPROGl and MPROG2. The expansion of the macro cycle

object of MPROGl for n=3 is

cycles

{DEPOSIT(l).REMOVE(l)} &

{DEPOSIT(2).REMOVE(2)} &

{DEPOSIT(3).REMOVE(3)} &

{DEPOSIT(1).DEPOSIT(2).DEPOSIT(3)} &

{REMOVE(1) • REMOVE (3) • REHOVE(3) }

endcycles

and the expansion of the macro cycle object of MPROG2 for m=3, n=3 is

- 268 -

cycles

{DEPOSIT(1,1).DEPOSIT(2,1).OEPOSIT(3,1)} &

{REMOVE(1,1).REMOVE(2,1).REMOVE(3,1)} &

{SKIP(l),REMOVE(l,l).CS_BEGIN(l).CS_END(l),

SKIP(1),REMOVE(2,1).CS_BEGIN(1).CS_ENO(1),

SKIP(1),REMOVE(3,1).CS_BEGIN(1).CS_END(1) } &

{DEPOSIT(l,l).REMOVE(l,l)} &

{DEPOSIT(2,1).REMOVE(2,1)} &

{DEPOSIT(3,1).REMOVE(3,l)} &

{DEPOSIT(l,2).DEPOSIT(2,2).DEPOSIT(3,2)} &

{REMOVE(1,2) . REHOVE(2 , 2) • REMOVE (3 , 2)} &

{SKIP(2),REMOVE(l,2).CS_BEGIN(2).CS_END(2),

SKIP(2) ,REMOVE(2,2).CS_BEGIN(2).CS_END(2) ,

SKIP(2),REMOVE(3,2).CS_BEGIN(2).CS_END(2)} &

{DEPOSIT(l,2).REHOVE(l,2)} &

{DEPOSIT(2,2).REMOVE(2,2)} &

{DEPOS IT(3, 2) • REHOVE(3, 2)} &

{DEPOSIT(1,3).DEPOSIT(2,3).DEPOSIT(3,3)} &

{REHOVE(1 ,3) • RL'10VE(2,3) • REHOVE(3,3)} &

{SKIP(3),REMOVE(l,3).CS_BEGIN(3).CS_END(3),

SKIP(3),REHOVE(2,3).CS_BEGIN(3).CS_END(3),

SKIP(3),REHOVE(3,3).CS_BEGIN(3).CS_END(3)} &

{DEPOSIT(l,3).REHOVE(l,3)} &

{DEPOSIT(2,3).REMOVE(2,3)} &

{DEPOSIT(3,3).REMOVE(3,3)} &

{SKIP(1).SKIP(2).SKIP(3),

SKIP(1).SKIP(2).CS_BEGIN(3).CS_END(3),

SKIP(1).CS_BEGIN(2).CS_END(2),

CS_BEGI~l(3) .CS_END(3) }

endcycles

4.2.3

- 269 -

The Ordered Cycle sets of the Expansion and the Expansion of

macro-Cycle Objects of Constrained Macro-Programs

In this section we shall prove that the ordered cycle sets of a basic

program obtained by the expansion of a macro program MPROG are the same

as the ordered cycle sets obtained by the expansion of the macro cycle

objects of MPROG.

THEOREM 4.3:

For any macro program MPROG produced by the constrained syntax rules

of appendix D

Cycles(expand2(MPROG»=cyc-exp(m-Cycs(MPROG»

Proof:

We shall prove it by proving the above relation for each case of

syntactic entities on which the functions "expand2" and "m-Cycs" apply.

case 1

Applying function "expand2" to a macro program and then "Cycles" we

obtain

Cycles(expand2(program MPBODY endprogram»=

Cycles(program expand2(}WBODY)endprogram)=

cycles Cycles(expand2(MPBODY»endcycles

and applying "m-Cycs" first and then "cyc-exp" we obtain

cyc-exp(m-Cycs(program MPBODY endprogram»=

cyc-exp(mcycles m-Cycs(}WBODY)endmcycles)=

mcycles cyc-exp(m-Cycs(MPBODY»endmcycles

The above two expressions are the same provided the relation

Cycles(expand2(~WBODY»=cyc-exp(m-Cycs(MPBODY»

- 270 -

holds, which may be shown by case 2.

case 2

A 1 · ft· " d2" pp ylng unc Ion expan to macro program body and then "Cycles"

we obtain

Cycles(expand2(CPBRI •.. CPBRn»=

Cycles(expand2(CPBRI) ••• expand2(CPBRn»=

Cycles(expand2(CPBRI»& ••• &Cycles(expand2(CPBRn»

The last step is justified as

expand2(CPBRi) for any i=I, ••• ,n

yields a collection of basic paths and

Cycles(CPI) & Cycles(CP2)=Cycles(CPI CP2)

where CPI and CP2 are collections of basic paths. To show the above

relation let us define CPI and CP2 as follows:

CPI=p11 ••• p1m

CP2=p Zl. .. PZk

where pli and p2j for i=I, ••. ,m and j=l, ••. ,k are basic paths. Then the

relation

Cycles(p11 p12 ••• plm) & Cycles(PZl pZ2 ••• pZk)=

Cyc(pll)&Cyc(p12)& ••• &Cyc(plm)&Cyc(PZI)&Cyc(PZ2)& ••• &Cyc(pZk)

Cycles(pli p12 ••. plm PZl pZ2 ••• p Zk)

holds. Applying "m-CYcs" first and then "cyc-exp" we obtain

cyc-exp(m-Cycs(CPBRl ••• CPBRn»=

cyc-exp(m-Cycs(CPBRl)& ••• &m-Cycs(CPBRn»=

cyc-exp(m-Cycs(CPBRl»& ••• &cyc-exp(m-Cycs(CPBRn»

- 271 -

The above expressions are the same provided the relation

Cycles(expand2(CPBRi»=cyc-exp(m-CycS(CPBRi»

holds for any i=l •••• ,n, which may be shown by case 3.

case 3

Applying function "expand2" to a single path or bodyreplicator

possibly headed by collectivisors and then "Cycles" we obtain

Cycles(expand2(COLs PBR»=

Cycles(expand2(PBR»

and applying "m-Cycs" first and then "cye-exp" we obtain

cyc-exp(m-Cycs(COLs PBR»=

cyc-exp(m-Cyes(PBR»

The above expressions are the same as may be shown by cases 4 and 6.

depending on whether PBR denotes a bodyreplicator or a macro path.

case 4

Applying function "expand2" to a bodyreplicator and then "Cycles" we

obtain

Cycles(expand2(#i:l,n,1[PBRs(i»))=

Cycles(expand2(PBRs(1» ••• expand2(PBRs(n»)=

Cycles(expand2(PBRs(1»)& ••• &Cycles(expand2(PBRs(n»)

Since the expansion of PBRs(i)

expand2(PBRs(i» for any i=l, •••• n

yields . . t' f' d as shown a collection of basic paths. the last step ~s JUs 1 ~e

in case 2.

- 27'2. -

Applying "m-Cyes" first and then "eye-exp" we obtain

cyc-exp(m-Cycs(#i:l,n,l[PBRs(i)]»=

n
cyc-exp(&[m-Cycs(PBRs(i»])=

i=l

cyc-exp(m-Cycs(PBRs(l»)& ..• &cyc-exp(m-Cycs(PBRs(n»)

The above expressions are the same provided the relation

Cycles(expand2(PBRs(i»)=cyc-exp(m-cycs(PBRs(i»)

holds for any i=l, ••• ,n, which may be shown by case 5.

case 5

Applying function "expand2" to a collection of paths and

bodyreplicators and then "Cycles" we obtain

Cycles(expand2(PBRI ••. PBRn»=

Cycles(expand2(PBRl) ••• expand2(PBRn»=

Cycles(expand2(PBRl»& •.• &Cyeles(expand2(PBRn»

Since the expansion of PBRi

expand2(PBRi) for any i=l, ••• ,n

yields a collection of basic paths, the last step is justified as was

shown in case 2.

Applying "m-Cycs" first and then "cyc-exp" we obtain

cyc-exp(m-Cycs(PBRl •.• PBRn»=

cyc-exp(m-Cycs(PBRl)& ••• &m-Cycs(PBRn»=

cyc-exp (m-Cycs(PBRI)) o. ••• o.cyc-exp (m-Cycs(PBRn))

The above expressions are the same provided the relation

Cycles(expand2(PBRi»=cyc-exp(m-Cycs(PBRi»

- 273 -

holds for any i=l, ••. ,n. which may be shown by cases 4 and 6, depending

on whether a PBRi for any i=l, •.• ,n is a bodyreplieator or a macro path.

case 6

App lying func tion "expand2" to h d h" " a macro pat an t en Cycles we

obtain

Cyc1es(expand2(path HSEQ end))=

Cye(expand2(path MSEQ end))=

Cye(path expand2(MSEQ) end)=

Cye(expand2(MSEQ))

and applying "m-Cyes" first and then "eye-exp" we obtain

eye-exp(m-Cyes(path MSEQ end))=

eye-exp(peye m-Cyes(MSEQ) endpcye)=

eye-exp(m-Cyes(MSEQ))

The above expressions are the same as may be shown by case 7.

case 7

Applying function "expand2" to a macro sequence and then "Cyc" we

obtain

Cye(expand2(SEQPRTlj ••• jSEQPRTn))=

Cye(expand2(SEQPRT1)j ••• jexpand2(SEQPRTn))=

Cye(expand2(SEQPRT1))o ••• oCye(expand2(SEQPRTn))

The last step is justified as

expand2(SEQPRTi)) for any i=l, •••• n

is a basic sequence (ef. case 2 of theorem 4.1).

first and then "eye-exp" we obtain

Applying "m-Cyes"

- 274 -

cyc-exp(m-Cycs(SEQPRT1; .•. ;SEQPRTn»=

cyc-exp(m-Cycs(SEQPRT1)o ••• Om-Cycs(SEQPRTn»=

cyc-exp(m-Cycs(SEQPRTl»o ••• Ocyc-exp(m-Cycs(SEQPRTn»

The above expressions are the same provided the relation

Cyc(expand2(SEQPRTi»=cyc-exp(m-Cycs(SEQPRTi»

holds for any i=l ••••• n. which may be shown by cases 8. 9, 10 and 13.

depending on whether a SEQPRTi for l~i~n. is a concatenator, a

distributor generating sequences. a macro orelement, or an imhricator

generating sequences respectively.

case 8

Applying function "expand2" to a concatenator generating sequences

and then "Cyc" we obtain

Cyc(expand2(#i:1.n.1[MSEQ(i);@]»=

Cyc(expand2(MSEQ(1»; ••• ;expand2(MSEQ(n»)=

Cyc(expand2(MSEQ(1»)o ••• oCyc(expand2(MSEQ(n»)

and applying "m-Cycs" first and then "cyc-exp" we obtain

cyc-exp(m-Cycs(#i:1.n.1[MSEQ(i);@]»=

n
cyc-exp(O[m-Cycs(MSEQ(i»])=

i=l

cyc-exp(m-Cycs(MSEQ(l»)o ••• ocyc-exp(m-Cycs(MSEQ(n»)

The above expressions are the same provided the relation

Cyc(expand2(MSEQ(i»)=cyc-exp(m-Cycs(MSEQ(i»)

h ld f ' 1 Whl' ch may be shown by case 7 as MSEQ(i) for o s or any 1.= ••••• n.

i=l ••••• n is a macro sequence.

- 275 -

case 9

Applying function "expand2" to a distributor generating sequences and

then "Cye" we obtain

Cye(expand2(;[MSEQ]»=

Cye(expand2(MSEQ(1»; ••• ;expand2(MSEQ(n»)

Applying "m-Cyes" fir st and then "eye-exp" we obtain

eye-exp(m-Cyes(;[MSEQ]»=

n
eye-exp£:im-Cye(MSEQ(i»])

From this point the proof follows as for case 8.

case 10

Applying function "expand2" to a macro orelement and then "Cye" we

obtain

Cye(expand2(ORPRTl, ••• ,ORPRTn»=

Cye(expand2(ORPRTl), ••• ,expand2(ORPRTn»=

Cye(expand2(ORPRTl»U ••• U Cye(expand2(ORPRTn»

The last step is justified as

expand2(ORPRTi) for any i=l, ••• ,n

is a basic orelement (ef. case 5 of theorem 4.2).

first and then "eye-exp" we obtain

Applying "m-Cyes"

eye-exp(m-Cyes(ORPRTl, ••• ,ORPRTn»=

eye-exp(m-Cyes(ORPRTl)U ••• U m-Cyes(ORPRTn»=

eye-exp(m-Cyes(ORPRTl»U ••• U eye-exp(m-Cyes(ORPRTn»

The above expressions are the same provided the relation

- 276 -

Cyc(expand2(ORPRTi))=cyc-exp(m-Cycs(ORPRTi))

ooids for any i=1, ••• ,nwhich may be shown by cas,"s 11 12 11)1 ')) , , , <-, ,

23 depending on 'whether ORPTRi for l~i~n is'} concatenat,)r :;e:1eritin,l;

orelements, a distributor generating orelc:-,,~::ts, an inbrLrttor

generating orelements, a macro stirelement, an operation or an ele~ent

of the forI:! (msequence), ro2 spec t ively.

case 11

Applying function "expand2" to concatenators generating orelements

and then "Cye" we obtain

Cyc(expand2(#i:l,n,1[MOR(i),@]))=

Cyc(expand2(MOR(1)), ••• ,expand2(MOR(n)))=

Cyc(expand2(MOR(1)))U ••• U Cyc(expand2(MOR(n)))

The last step is justified as

expand2(MOR(i)) for any i=1, ••• ,n

is a basic or element (cf. case 5 of theorem 4.2). Applying "m-Cycs"

first and then "eye-exp" we obtain

cye-exp(m-Cyes(IIi: 1, n, 1 [MOR(i) ,@]))=

n
cyc-exPl~fm-Cycs(HOR(i))])=

cyc-exp(m-Cycs(MOR(1)))U ••• U cyc-exp(m-Cycs(MOR(n)))

The above expressions are the same provided the relation

Cyc(expand2 (HOR(i)))=cye-exp (m-Cycs(MOR(i)))

holds for any i=l, ••• ,n, which may be shown by case

i=l, •.• ,n is a macro orelement.

10 as MOR(i) for

- 277 -

case 12

Applying function "expand2" to distributors generating orelements and

then "Cye" we obtain

Cye(expand2(,[MOR]»=

Cye(expand2(MOR(I», ••• ,expand2(MOR(n»)

and applying "m-Cyes" first and then "eye-exp" we obtain

eye-exp(m-Cyes(,[MOR]»=

n
eye-exp(U[m-Cye(MOR(i»])=

i=1

From this point the proof follows as for case 11.

case 13

Applying function "expand2" to an imbrieator and then "Cye" we obtain

Cye(expand2(#i:in,n,1[p(i) @t@ q(i)]»=

Cye(if in)n then expand2(t')

if in=n then expand2(p'(n) t q'(n»

if in<n then expand2(p(in) @t@ q(in»)=

if in)n then Cye(expand2(t'»

if in=n then Cye(expand2(p'(n) t q'(n»)

if in<n then Cye(expand2(p(in) @t~ q(in»)

and applying "m-Cyes" first and then "eye-exp" we obtain

eye-exp(m-Cyes(#i:in,n,l[p(i) @t@ q(i)]»=

eye-exp(~[m-cyes(p(i) @t@ q(i»/m-Cycs(p'(n) t q'(n»/m-Cycs(t')])=
i=in

if in)n then eye-exp(m-Cyes(t'»

if in=n then eye-exp(m-Cyes(p'(n) t q'(n»)

if in<n then eye-exp(m-Cycs(p(in) @t@ q(in»)

- 278 -

We now have to show that the three relations hold:

if in)n then

Cyc(expand2(t'))=exp-cyc(m-Cycs(t'))

if in=n then

Cyc(expand2(p'(n) t q'(n)))=exp-cyc(m-Cycs(p'(n) t q'(n)))

if in<n then

Cyc(expand2(p(in) @t@ q(in)))=exp-cyc(m-Cycs(p(in) @t~ q(in)))

Depending on whether the imbricator generates a sequence, an orelement,

a starelement or an element, the strings "t'" and "p'(n) t 1'(n)" will

be sequences, orelements, starelements or elements, respectively.

Therefore, for in)n and in=n the first two relations may be shown to

hold by cases 7, 10, 21, 23 respectively.

We have still to prove the third relation

Cyc(expand2(p(in) @t@ q(in)))=cyc-exp(m-Cycs(p(in) @t@ q(in)))

when in<n. In this case before "expand2" and "cyc-exp" are applied the

imbricator

#i:in+1,n,1[p(i) @t@ q(i)]

is stacked into the imbricator stack and the macro cycle set

n
t[m-Cycs(p(i) @t@ q(i))/m-Cycs(p'(n) t q'(n))/m-Cycs(t')]=

i=ln+ 1

into the macro cycle set stack. Observe that the above macro cycle set

b . stacked into the imbricator is the macro cycle set of the im r1cator

stack. We shall use this fact in case 20.

b . l·S genuine or not and whether it Depending on whether the im r1cator
starelement or an element, the generates a sequence, an orelement, a

Fl t F6 For each form Fi
string "p(in) @t@ q(in)" may be of six forms o·

1<i<6 the relation

- 279 -

Cyc(expand2(Fi»=cyc-exp(m-Cycs(Fi»

must hold. The six forms and the corresponding cases by which the above

relation may be shown to hold are as follows:

Fl. 1~~Spl(in) j ••• j 1~SPn(in) case 14

F2. AT_SP1(in)j ••• jAT_SPn(in) case 18
F3. 1M_OPl(in); ••• j1~OPn(in) case 15

F4. AT_OP1(in), ••• ,AT_OPn(in) case 19

F5. 1M EL(in)* case 16

F6. (IMBR_SEQ(in» case 17

case 14

Applying function "expand2" to the string inside "[]" of a genuine

sequence imbricator or to the string produced by the non-terminals

"orimbrseq", "starimbrseq", "elimbrseq" and then "Cyc" we obtain

Cyc(expand2(IM_SP1(k)j ••• jI~SPn(k»)=

Cyc(expand2(IM_SPl(k»j ••• jexpand2(IM_SPn(k»)=

Cyc(expand2(IM_SPl(k»)o ••• oCyc(expand2(IM_SPn(k»)

The last step is justified as

expand2(U~SPi» for any i=1, ••• ,n

is a basic sequence (cf. case 2 of theorem 4.1).

first and then "cyc-exp" we obtain

Applying "m-Cycs"

cyc-exp(m-Cycs(I:~SPl(k); ••• ; IM_ SPn(k»)=

cyc-exp(m-Cycs(IM_SP1(k»o ••• ~-Cycs(IM_SPn(k»)=

cyc-exp (m-Cycs(IM_ SP l(k))) o ... ocyc-exp (m-Cycs(1:·~ SPn(k)))

The above expressions are the same provided the relation

Cyc(expand2(IM_SPi(k»)=cyc-exp(m-Cycs(IM_SPi(k»)

- 280 -

holds for

cases 8, 9,

all i=1 •••.• n. The above relation may be shown to hold by

13 when U~SPi(k) for 1<i<n is a concatenator. distr ioutor

and imbricator respectively generating sequences, by

1M_SPi(k) is an orelement, or by case 20'when I~SPi(k)

"@t@".

case 15

case

is the

10 when

s tr ing

Applying function "expand2" to the string inside a genuine imbricator

generating orelements or to the string produced by one of the

non-terminals "star imbror", "elimbror" and

then "Cyc" we obtain

Cyc(expand2(I~OPl(k), •.• ,IM_OPn(k»)=

Cyc(expand2(I~OPl(k», ••• ,expand2(IM_OPn(k»)=

Cyc(expand2(IM_OPl(k»)U ••• U Cyc(expand2(IM_OPn(k»)

The last step is justified as

expand2(n~OPi) for any i=I, ••• ,n

is a basic orelement (cf. case 5 of theorem 4.2).

first and then "cyc-exp" we obtain

Applying "m-eycs"

cyc-exp(m-Cycs(IM_OPl(k), ••• ,IM_OPn(k»)=

cyc-exp(m-Cycs(IM_OPl(k»U ••• U m-Cycs(I~~OPn(k»)=

cyc-exp(m-Cycs(IM_OPl(k»)U ••• U cyc-exp(m-Cycs(IM_OPn(k»)

The above expressions are the same provided the relation

Cyc(expand2(IM_OPi(k»)=cyc-exp(m-Cycs(I~~OPi(k»)

for i=I, ••• ,n holds. The above relation may be shown to hold by cases

11, 12, 13 when 1M_OPi(k) for 1~i~k is a concatenator or distributor or

imbricator generating orelements, by case 21 if it is a starred element,

by cases 22 or 23 if it is an operation or an element of the form

"(msequence)" respectively, by case 16 if it is a starred element

involving "@t@", and finally by case 17 if it an element involving

"@t@".

- 281 -

case 16

Applying function "expand2" to strings produced by the non-terminals

"seqimbrstarel", "orimbrstarel", "starimbrstarel" and "elimbrstarel",

and then "Cyc" we obtain

Cyc(expand2(I~EL(k)*))=

Cyc(expand2(I~EL(k))*)=

Cyc(expand2(IM_EL(k)))*

and applying "m-Cycs" first and then "cyc-exp" we obtain

cyc-exp(m-Cycs(IM_EL(k)*))=

cyc-exp(m-Cycs(IM_EL(k))*)=

cyc-exp(m-Cycs(n~ EL(k)))*

The above expressions are the same provided the relation

Cyc(expand2(I~OPi(k)))=exp-cyc(m-Cycs(IM_OPi(k)))

holds, which may be shown by case 17.

case 17

Applying function "expand2" to the strings represented by the

syntactic entity (I:1BR_SEQ(k)), in which the syntactic variable

represents strings produced by the non-terminals "seqimbrseq",

"orimbrseq", "starimbrseq", "elimbrseq", and then "Cyc" we obtain

Cyc(expand2«IMBR_SEQ(k)))=

Cyc«expand2(IMBR_SEQ(k)))=

Cyc(expand2(IMBR_SEQ(k))

and applying "m-Cycs" first and then "cyc-exp" we obtain

The

cyc-exp(m-Cycs«IMB~SEQ(k)))=

cyc-exp«m-Cycs(IMB~SEQ(k)))=

cyc-exp(m-Cycs(IMBR_SEQ(k))

above expressions are the same

- 282 -

as may be shown by case 14 if the
"@t@" is fur ther nested inside "()" and by case 18 if the "@t@" is not

further nested inside "()11. In the special case of an imbricator
generating sequences the string "@t~" may only appear as an element

between two semicolons and the equality of the above expressions may be

shown by case 20.

case 18

Applying function "expand2" to the sequence involving "@t@" in one of

its orelements, and then "Cyc" we obtain

Cyc(expand2(AT_SPl(k); ••• ;AT_SPn(k)))=

Cyc(expand2(AT_SPl(k)); ••• ;expand2(AT_SPn(k)))=

Cyc(expand2(AT_SP1(k)))o ••• oCyc(expand2(AT_SPn(k)))

The last step is justified as

expand2(AT_SPi)) for any i=1, ••• ,n

is a basic sequence (cf. case 2 of theorem 4.1).

first and then "cyc-exp" we obtain

Applying "m-Cycs"

cyc-exp(m-Cycs(AT_SP1(k); ••• ;AT_SPn(k)))=

cyc-exp(m-Cycs(AT_SP1(k))O ••• Om-Cycs(AT_SPn(k)))=

cyc-exp(m-Cycs(AT_SP1(k)))o ••• ocyc-exp(m-Cycs(AT_Spn(k)))

The above expression are the same provided the relation

Cyc(expand2(AT_SPi(k)))=cyc-exp(m-Cycs(AT_SPi(k)))

holds for all i=I, ••• ,n. The above relation may be shown to hold by

cases 8, 9, 13 if AT SPi(k) for l<i<n is a concatenator, a distributor

or an imbricator respectively, generating sequences, by case 10 if it is

- 283 -

an orelement or by case 19 if it invoves "@t.'9" as one of its elements.

case 19

Applying function "expand2" to an orelement involving "@t@" as one of

its elements and then "Cyc" we obtain

Cyc(expand2(AT_OPl(k), ••• ,AT_OPn(k»)=

Cyc(expand2(AT_OP1(k», ••• ,expand2(AT_OPn(k»)=

Cyc(expand2(AT_OP1(k»)U ••• U Cyc(expand2(AT_OPn(k»)

The last step is justified as

expand2(AT_OPi) for any i=l, ... ,n

is a basic orelement (cL case 5 of theorem 4.2). Applying "m-Cycs"

first and then "cyc-exp" we obtain

cyc-exp(m-Cycs(AT_OP1(k), ••• ,AT_OPn(k»)=

cyc-exp(m-Cycs(AT_OPl(k»)U ••• U m-Cycs(AT_OPn(k»)=

cyc-exp(m-Cycs(AT_OPl(k»))U ••• U cyc-exp(m-Cycs(AT_OPn(k»)

The above expressions are the same provided the relation

Cyc(expand2(AT_OPi(k»)=cyc-exp(m-Cycs(AT_OPi(k»)

holds for all i=l, ... ,n. The above relation may be shown to hold by

cases 11, 12, 13 when AT OPi(k) for l<i<n is a concatenator or a

distributor or an imbricator generating orelements respectively, by

cases 16 and 17 if the "@t@" is further nested inside "()", or by case

20 if AT_OPi(k) for l<i<n is "@t@".

case 20

Applying function "expand2" to the special element "@to" and

"Cyc" we obtain

then

Cyc(expand2(AT_EL»=

Cyc(expand2(imbr-pop»

- 284 -

where imbr-pop returns the imbricator at the top of the stack which will

be denoted by Imbr. Applying "m-Cycs" first and then "cyc-exp" we

obtain

cyc-exp(m-Cycs(AT_EL»=

cyc-exp (T)=

cyc-exp(cyc-pop)

where eye-pop returns the macro cycle set at the top of the stack which

will be denoted by MCset. Since MCset is the same as m-Cycs(Imbr) (cf.

case 13) for the above expressions to be the same the relation

Cyc(expand2(Imbr»=cyc-exp(m-Cycs(Imbr»

must hold, which may be shown by case 13.

case 21

Applying function "expand2" to a starelement and then "Cyc" we obtain

Cyc(expand2(EL*»=

Cyc(expand2(EL)*)=

Cyc(expand2(EL»*

and applying "m-Cycs" first and then "cyc-exp" we obtain

cyc-exp(m-Cycs(EL*»=

cyc-exp(m-Cycs(EL)*)=

cyc-exp(m-Cycs(EL»*

The above two expressions are the same provided the relation

Cyc(expand2(EL»=cyc-exp(m-Cycs(EL»

holds, which may be shown by cases 22 or 23 when EL is an operation or

- 285 -

an element of the form (MSEQ) respectively.

case 22

Applying function "expand2" to an operation and then "Cyc" we obtain

Cyc(expand2(OP»=

Cyc(OP)=

{OP}

and applying "m-Cycs" first and then "cyc-exp" we obtain

cyc-exp(m-Cycs(OP»=

cyc-exp({OP})=

{OP}

which are the same.

case 23

Applying function "expand2" to an element of the form (MSEQ) and then

"Cye" we obtain

Cye(expand2«MSEQ»)=

Cye«expand2(MSEQ»)=

Cye(expand(MSEQ»

and applying "m-Cyes" first and then "eye-exp" we obtain

cyc-exp(m-Cycs«MSEQ»)=

cyc-exp«m-Cycs(MSEQ»)=

eyc-exp(m-Cycs(MSEQ»

The above expressions may be shown to be the same by case 7.

As we have proven the theorem for all possible cases of syntactic

. . i " d2" d" C " ent~t~es of macro programs on which the funct ons expan an m- yes

apply, we may conclude that the theorem holds for all macro programs

- 286 -

produced by the syntax of appendix D.III

In this chapter we examined two methods by which the vector firing

sequences of basic programs generated from macro programs may be derived

from the macro programs themselves. We first reduced the problem of

finding the vector firing sequences to the problem of finding the

ordered cycle sets of the basic programs directly from the macro

programs generating them.

The first method for finding the ordered cycle sets involves two

steps. In the first step all bodyreplicators are expanded and ordered

expressions are derived which yield the cycle sets of pure macro paths.

In the second step the cycle sets of basic paths are derived directly

from the pure macro paths which generate them, by expanding parts of

macro sequences and constructing their cycle sets of the strings they

generate, which are then composed together by union and concatenation

operations. What the meaningful smallest parts of macro sequences makes

sense to expand and to find their cycle sets depends on the kind of

strings macro elements generate. If the macro elements generate

syntactically strong strings, then the smallest such parts are the

elements and the macro elements of the sequences. as we have

demonstrated in section 4.1.2. If the macro elements do not generate

syntactically strong strings but matching pairs of parentheses, as macro

elements in the notation of section 3.2, then the smallest such parts

are the orelements involving starelements.

The second method for finding the ordered cycle sets may be applied

to programs the macro elements of which generate syntactically strong

regularities. According to this method macro cycle objects are

constructed from macro programs which concisely represent and precisely

generate upon expansion the ordered cycle sets of the basic program

generated by the expansion of the macro programs.

The second method has an advantage over the first. The ordered cycle

sets obtained by the first method are those of a basic program generated

by a macro program with all its integer constant parameters given

specific values. But according to the second method, macro cycle

b " 1" 1 t Of course upon the expansion of o Jects may a so lnvo ve parame ers.

- 287 -

macro cycle objects all integer constants should be given specific

values. The parametarized representation of ordered cycle sets by macro

cycle objects is very important in the verification of parametarized

macro programs, where we frequently need to argue in terms of the cycle

sets of basic paths generated by macro paths. Macro cycle objects give

the formal basis for lucid and precise arguments on the cycles of paths.

The second method has the disadvantage that it may only be applied to

constrained macro programs, which in general are not as concise as macro

programs in the notation of 3.2. In other words a macro program in the

notation of 3.2 generating the same basic program as a macro program in

the notation of 4.2.1 is in general more concise than the latter.

- 288 -

5 CONCLUSIONS

In this thesis we were mainly concerned with the macro COSy notation.

We re-examined and revised all aspects of the macro COSy notation, its

design as a specification language for asynchronous systems, the formal

syntax for macro programs, the expansion rules for macro- elements and

for complete macro programs. Various previously developed notations and

subnotations and their formal syntax were carefully examined and their

advantages and disadvantages were pointed out.

In the process of programming with these notations we came to

formulate better the properties a "good" macro notation should possess:

1. The syntactic well-formedness of a macro program should imply that

its expansion yields a syntactically well-formed basic program.

2. The notation should allow the generation of a large class of basic

programs, and their concise representation.

3. The syntax for macro COSy programs should be uniform with the syntax

for basic COSy programs.

4. The reading of macro programs should be possible without formal

expansion.

Previously developed macro notations do not in general possess all four

of these properties. The syntax rules for most of them permit macro

programs which do not expand to basic programs and meta-restrictions are

introduced to eliminate these "wide" programs. The syntax rules are not

uniform with syntax rules for basic programs and are not complete as

replicators in collectivisors are not given formal syntax rules.

In designing the new macro notation we adopted the same types of

constructs, that is collectivisors, replicators and distributors, for

representing and generating basic programs, as in previously developed

notations. In the new notation, we even incorporated and combined

f . . contr;but;ng to the generality and aspects rom var10US notat1ons, ~ ~

readability of macro programs. These aspects include the

- 289 -

bodyreplicators generating paths and processes and permitting nesting of

other bodyreplicators, the implicit and explicit lowerbound of

dimensions of rectangular arrays, etc. We have made a number of
modifications, improving the readability of macro programs, such as the
addition of the terminal symbol "endarray", the change of the form and
the position of the index specification part of replicators and the

change of the round parentheses in distributors to square ones.

Apart from the above modifications others more fundamental to the

design of the notation were made. Replicators in collectivisors were

carefully designed in relation to distributors. Replicators in

collectivisors permit subscripted operations which correspond to arrays,

not necessarily rectangular. More general shapes of arrays could be

permitted by replicators but we have restricted them in order to keep

the expansion of distributors relatively simple. Replicators in

sequences were designed to generate sequences. We have excluded all

other replicators such as the range, context and neighbourhood dependent

replicators, which are permitted in some other notations.

Finally, a number of extensions improving the generality of macro

programs were developed. These extensions include the part of the

imbricators between the two "@"s, appearing only once in the strings

obtained by their expansion, left and right replicators which are

permitted to expand to empty strings, and a number of extensions of

distributors: the relaxation of the compatibility of distributable

dimensions, the generalization of the strings they may generate and in

particular the symmetric nesting of replicators and distributors, the

subrange and the selection of distributable dimensions features.

The formal syntax of programs in this notation is according to our

requirements close-fitting, since we have avoided the use of

meta-restriction rules constraining the regularities replicators

. t t· The restr ~ctions we have imposed on generate as in prev~ous no a ~ons. L

macro programs are of a context sensitive nature. The expansion of

macro " d"· t . programs was formally defined by the function expan ~n sec ~on

3.3.3. . "1 0" In this function we used three auxilliary funct~ons, rep exp ,
first order

th~ expansion of replicators, and "gelexpO" "distrexp 0" defining

distributors and of the left and right replicators in generalized

- 290 -

elements respectively. The expansions of all replicators and

distributors were formally defined in terms of the 't' preml lve recursive

t "COpy". Th 'f d' opera or e expansion 0 lstributors was directly defined.

We proved by theorems 3.3 and 3.4 that the expansion of concatenators

and respectively imbricators yields macro sequences. Theorem 3.5 shows

that if all left and right replicators of a generalized element are

expanded the resulting string is a macro sequence, and the corollary of

theorem 3.9 that the expansion of distributors are also macro sequences.

We have used the above theorems 3.3, 3.4, 3.5 and the corollary of 3.9

in theorem 3.11 proving that the expansion of complete macro programs

produced by the syntax rules in section 3.2 yields well-formed basic

programs. These theorems show the close fittness of the syntax rules.

The syntax rules are also uniform with the rules for basic COSy,

since analogous constructs in both notations are expressed by similar

rules and various constructs of macro COSy were expressed in a style

similar to basic COSy.

The development of syntax rules for macro programs in the new

notation did not possess any difficulties, apart from the syntax rules

for imbricators. The syntax of imbricators and in particular genuine

imbricators was the reason meta-restriction rules had to be used. The

problems were twofold: to express that any number of opening parentheses

on the left of "@t@" should match with closing parentheses on the right

of "@t@" and to express it in a manner similar to basic COSy. Four

groups of syntax rules were developed. The first group (CFm) gave

context-free rules but specified a mixed precedence of ";" and ",". The

second group (CS) gave context-sensitive rules. The third (CFr) gave

context-free rules specifying the precedence of
11 II , over ";" but

required meta-restriction rules to exclude strings involving more than

two "@"S. Only the fourth group (CF) involving close fitting

context-free rules specifying the precedence of " " , over If." , satisfied

our requirements.

We proved a number of theorems which give the relation between

concatenators, imbricators and distributors. We showed by theorems 3.1

and 3.2 that for any replicator there exist a whole family of

replicators expanding to the same string as the former. We showed how a

- 291 -

replicator may be transformed into its normal form and how from a

replicator in normal form all other replicators in the same family may

be obtained. We showed by theorem 3.7 that certain imbricators, the

non-genuine imbricators, could be replaced by concatenators. By the

corollary of theorem 3.7 the syntax rules for imbricators could be

restricted to permit only genuine imbricators without restricting the

generality of the notation. As it was demonstrated, this choice would

jeopardize the conciseness and readability of macro programs. We showed

by theorem 3.8 that all concatenators could be replaced by imbricators.

A corollary of this theorem is that imbricators are sufficient and

concatenators could be eliminated altogether. But as programs would not
and readable

be as concis~this option was rejected as well. Theorem 3.7 showed that

all distributors could be replaced by concatenators and following

theorem 3.8 by imbricators also. Theorem 3.8 gave the conditions under

which concatenators and imbricators may be replaced by distributors. We

also proved theorem 3.6 which showed that wide concatenators are

sufficient to generate any str ings our imbr icator s generate. We only

indicated in section 3.4 how wide concatenators could be modified to

form macro elements permitted by our notation, but no formal result or

method was obtained regarding this direction. The following figure

shows possible replacements of sequence replicators, distributors and

wide concatenators:

wide concatenator

11))0·"'-'1 ~ \"o-n5_601 ,3 02
concatenator imbricator
~4

h. 1.~

In the above figure arcs from A to B indicate possible replacement of

macro elements of type A by type B. Arcs are labelled by the relevant

theorem. A "(c)" labelling an arc indicates that the replacement is

only possible under certain conditions.

- 292 -

In chapter 4 we explored ways by which the semantics of basic

programs generated from macro programs may be directly obtained from the

macro programs themselves. The basis for the construction of vector

firing sequences directly from macro programs is that the set of vector

operations and the set of firing sequences of basic paths may be

obtained from the ordered cycle sets of paths of a basic program, and

that these ordered cycle sets may be constructed directly from the macro

programs. Two methods were developed for constructing the ordered cycle

sets of basic programs directly from the macro programs which generate

the basic programs.

The first method may be applied to macro programs in any macro

notation, as long as the cycles of syntactically strong strings are

constructed. We demonstrated the method for two macro notations: The

notation in section 3.2 in which the syntactically strong strings are

its orelements consisting of starelements, and the restrictive notation

of section 4.1.2 in which the smaller syntactically strong strings are

its elements or macro elements. Although the latter notation is less

general than that of section 3.2 it is much more readable.

The second method may only be applied to macro programs the macro

elements of which generate syntactically strong regularities. The

syntax for such constrained programs was developed in section 4.2.1.

Programs in this notation have the disadvantage that they are less

general and less concise than programs in the notations of sections 3.2

and 4.1.2 but they have the advantage that they are much more easily

readable. h 1 th d t e that they allow the T ey a so possess e a van ag

parametarized representation of ordered cycle sets by the macro cycle

objects which is of a primary importance in the verification of

parametarized macro programs.

- 29'3 -

6 REFERENCES

[A77]

[A69]

[B79]

[B79]

[B82]

[BM41]

[BH73]

[BH74]

AGERWALA T. : Some Extended Semaphore Primitives. Acta
Informatica 8, pp. 201-220, 1977.

ARBIB M.A. : Theories of Abstract Automata. Prentice Hall,

Inc., 1969.

BACKHOUSE R.C. Syntax of Programming Languages: Theory and

Practice. ed. C.A.R. Hoare, Prentice Hall

International, 1979.

BEST E. : Adequacy of Path Programs. In: Net Theory and

Applications: Proc. of the Advanced Course on General

Net Theory of Processes and Systems, Hamburg, 1979 (Ed.

W Brauer). Lecture Notes in Computer Science 84,

Springer Verlag, 1980.

BEST E. : Adequacy Properties of Path Programs, Theoretical

Computer Science 18 (1982), pp 149-171, North-Holland

Publishing Co.

BIRKHOFF G., MacLANE S. A Survey of Modern Algebra.

MacMillan Co., New York, 1941.

BRINCH HANSEN P. Operating System Principles. Prentice

Hall, New Jersey, 1973.

BRINCH HANSEN P. : Concurrent Pascal: A Programming Language

for Operating System Design. TR No. 10, CalifornLl

Institute of Technology, April 1974.

[BH75]

[B67]

[C76]

[CH7 4]

[CL7 5]

[C80]

[CL79]

[CL81]

- 294 -

BRINCH HANSt:~ P. : The SOLO Operating System. California
Institute of Technology, 1975.

BURSTALL R.~1. : Proving Properties of Programs by Structural

Induction. Computer Journal, 12, Number 1, pp. 41-47.

CAMPBELL R.H. : Path Expressions: A technique for specifying

process synchronization. Ph.D. Thesis, Computing

Laboratory, University of Newcastle-upon-Tyne, 1976.

CAMPBELL R.H., HABER}~N A.N. : The Specification of process

synchronization by path expressions. Lecture Notes in

Computer Science ~, Springer Verlag, 1974.

CAMPBELL R.H., LAUER P.E. : A Hierarchy of Buffer Systems in

a parallel processing environment. MRM/88, Computing

Laboratory, University of Newcastle-upon-Tyne, May 1975.

COTRONIS J.Y. Defining Priorities of Activations of

Operations in Conflict in COSY. ASH/73, 1980, Computing

Laboratory, University of Newcastle-upon-Tyne.

COTRONIS J.Y., LAUER P.E. On Definitions of various

Notions of Monitors in the COSY Notation. ASM/58

Computing Laboratory, University of Newcastle-upon-Tyne,

March 1979.

COTRONIS J.Y., LAUER P.E. : A New Macro COSY Notation and

Grammar. ASM/81, Computing Laboratory, University of

Newcastle-upon-Tyne, November 81.

[CG77]

[077]

[079a]

[D79b]

[OL77]

[068]

[076]

[G71]

COURTOIS P.J.,

R.A.I.R.O.

- 295 -

GEORGES J, On Starvation

Informatique/Computer Science
Prevention.

11 , pp.
127-141, 1977.

DEV I LLERS R. Non starving solutions for the dining

philosopher's problem. ASK/3D, Computing Laboratory,

University of Newcastle-upon-Tyne, June 1977.

DEVILLERS R. A simplified Hyperfast Banker. ASK/56,

Computing Laboratory, University of Newcastle-upon-Tyne,

January 1979.

DEVILLERS R. On the Banker with Several Currencies.

ASH! 57, Computing Laboratory, University of

Newcastle-upon-Tyne, February 1979.

DEVILLERS R. , LAUER P.E. Some Solutions for the

Reader/Writer Problem. ASM/31, Computing Laboratory,

University of Newcastle-upon-Tyne, June 1977.

OlJKSTRA E. W. Cooperating Sequential Processes. In:

Programming Languages, ed. F. Genuys, Academic Press,

New York, 1968.

DlJKSTRA E. W. A Discipline of Programming. Prentice

Hall, 1976.

GRIES D. Compiler Construction fot Digital Computer s.

John Wiley and Sons, Inc., 1971.

[H75]

[HW60]

[H65]

[H72]

[H73]

[H74]

[H80]

[He70]

[HU79]

- 296 -

HABERMANN A.N. Path Expressions. Carnegie->lellon
University, Pittsburgh, June 1975.

HARDY G.H., WRIGHT E.M : An Introduction to the Theory of

Numbers. Oxford: Clarendon Press, 1960.

HARRISON :1. A. In troduc t ion to Switching and Au tom a ta

Theory. McGraw Hill Company, 1960.

HOARE .C.A.R. : Towards a Theory of Parallel Processing. In:

Operating Systems Techniques, pp. 61-72, Academic Press,

New York, 1972.

HOARE C.A.R. : A structured paging system.

1973, Number 3, pp. 209-215.

CAO! Vol. 16,

HOARE C.A.R. Monitors: An Operating System Structuring

Concept. CACM Vol. 17, 1974, Number 10, pp. 549-557.

HOARE C.A.R. : Communicating Sequential Processes. In: On

the construction of programs. (Eds. McKeag and

HacNaghten) Cambridge University Press 1980.

HOLT A.W., COMMONER P. Events and Conditions. Applied

Oata Research, New York, 1970.

HOPCROFT J.E., ULL~ J.O. Introduction to Automata

Theory, Languages and Computation. Addis Wesley, 1979.

[J81]

[KM69]

[L7 6]

[L79]

[L81]

[LBS77]

- 297 -

JA..'HCKI R. On the Design of Concurrent S h c emes.
Procedings of the 2nd Conference on Distributed

Computing Systems, Paris, 1981. IEEE Press.

KARP R. M., MILLER R. E. Parallel Program Schemata.

JCSS Vol 3, pp. 147-195, 1969.

LAUER P.E. : Toward a system specification language based on

paths and processes PART I: The Notation. ASM/19,

Computing Laboratory, University of Newcastle-upon-Tyne,

1979.

LAUER P.E. COSY Subnotations: Replicators and Basic

Notation, Part 4. ASM/62, Computing Laboratory,

University of Newcastle-upon-Tyne, June 1979.

LAUER P.E. : Synchronization of Concurrent Processes without

Globality Assumptions, SIGPLAN Notices, Vol 16, No 9,

Sept 1981. An expanded version is included in the

book: 1 New Advances in Distributed Computer Systems,

pages 341-365, Reidel Pub.

Institute Series C80.

Co., NATO Advanced Study

LAUER P.E., BEST E., SHIELDS ~l.W. On the problem of

achieving adequacy of concurrent programs. Computing

Laboratory, University of Newcastle

Report Series No. 103, 1977. Also in

upon Tyne, Tech.

the book: IFIP

TC-2 Working Conference on the Formal Description ~

Programming Concepts, St Andrews, Canada, 1977.

Nor th-Holland Pub. Co.

[LC75]

[LS77]

[LS78]

[LS80]

[LS81]

- 29~) -

LAUI':R P.E., CA.'1PBELL R.H. : Formal Ser::lafltics for a class of

high level primitives for coordinating concurrent

processes. Acta Informatica 2., pp 297-332, 1975.

LAUER P.E. and SHIELDS :!.W. : Abstract specification of

resource accessing disciplines: adequacy, starvation,

priority and interrupts. Tech. Rep. 117, Computing

Laboratory, University of ~ewcastle-upon-Tyne also ?roc.

of a workshop on Global Descr iption Hethods for

Synchronisation in Real Time

Paris,NOV. 3-4,1977.
Applications, AFCET,

LAUER P. E. , SHIELDS H. W. Abstract specification of

resource accessing disciplines: adequacy, starvation,

priority and interrupts. SIGPLAN ~lotices, Vol. 13, No.

12, December 1978.

LAUER P.E., SHIELDS H.W. COSY: An Environment for

Development and Analysis of Concurrent and Distributed

Systems. Proc. of Symposium on Software

Environments, Lahnstein, June 1980 (Ed.

North-Holland Publishing Co. 1981.

Engineering

H Hunke),

LAUER P.E., SHIELDS H.W. Interpreted COSY programs:

Programming and Verification, Proceedings 2nd

International Conference on Distributed Computing

Systems, Paris, 8-10 April 1981, IEEE Computer Society

Press, ed. E. Gelenbe, 1981.

[LSB79aj

[LSB79bj

[LSC81j

[LT78j

[LTD79]

[LTD80]

LAUER P.E., SHIELDS

certification of

- 299 -

M. W. , BEST

asynchronous

E. The

systems

design and

of processes.

Advanced Course on Abstract Software Specification,
Lyngby, Denmark, January 1979. Lecture Notes in

Computer Science 86, Springer Verlag, 1979.

LAUER P.E., SHIELDS M.W., BEST

Basic COSy ~otation.

'" . L.. •

The

Formal Theory of the

Computing Laboratory,

University of Newcastle upon Tyne, Tech. Report Series

No. 143, November 1979.

LAUER P.E., SHIELDS M.W., COTRONIS J.Y. : Formal Behavioural

Specification of Concurrent Systems without Globality

Assumptions. Tech. Rep. 162 Computing Laboratory,

University of Newcastle-upon-Tyne, also Lecture Notes in

Computer Science, Vol 107, Formalisation of Programming

Concepts.

L~UER P.E., TORRIGIANI P.R. : Toward a System Specification

Language Based on Paths and Processes. Tech. Rep. 120,

February 78, Computing Laboratory, University of

Newcastle-upon-Tyne.

LAUER P.E., TORRIGIru~I P.R., DEVILLERS R.E. : The Hyperfast

Banker. ASM/ 55, Computing Laboratory, University of

Newcastle-upon-Tyne, January 1979.

E TORRIGIANI P.R., DEVILLERS R. : A COSy Banker: LAUER P •• ,

Specification of Highly Parallel and Dis tr ibuted

Resource }~nagement, Technic~l Report ~o 151, Computing

Laboratory, University of Newcastle upon Tyne, 1980.

[LTS79]

[M77]

[M80]

[M72]

[OG76]

[P73]

[P75]

[P77]

- 300 -

LAUER P.E., TORRIGIANI P.R., SHIELDS M.W. : COSY: A Syste~

Specification Language Based on Paths and Processes.

Acta Informatica 12, 1979.

MAZURKIEWICZ A. Concurrent program schemes and their

interpretations. Proc. Aarhus Workshop on Verification

of Parallel Processes, June 13-24, Aarhus, Denmark,

1977 •

MILN"ER R. A Calculus of Communicating Systems, Lecture

Notes in Computer Science No 92, 1980. Springer Verlag.

:1INSKY ~1. COMPUTATION: Finite and Infinite Hachines.

Prentice Hall International, INC, London, 1979.

OWICKI S., GRIES D. An Axiomatic Proof Technique For

Parallel Programs. Acta Informatica Vol 6, pp. 319-340,

1976.

PETRI C.A. Concepts in Net Theory. Proc. of HFCS, High

T Math Inst. of t he Slovak Academy of Sciences, atras, •

1973.

I N t Th ry Boston Conference on Petri PETRI C.A. : Genera ,e eo.

Nets and Related Methods, HIT, 1975.

PETRI C.A. : Non-Sequential Processes. Technical Report

I SF-77-05, GMD, Bonn, 1977.

[P78]

[S73]

[S79]

[S81]

[SL77]

[S L7 8]

[SL79]

- 301 -

PETRI C.A. Concurrency as a basis of Syste,lls Thinking.

GMD Internal Report ISF-78-06, September 1978.

SALOMAA A. Formal Languages. ACM Monograph, Academic
Press, 1973.

SHIELDS M.W. : Adequate Path Expressions. Technical Report
Number 141, Computing Laboratory, University of
Newcastle-upon-Tyne, June 1979.

SHIELDS M.W. : On the non-sequential behaviour of a class of

systems satisfying a generalised free-choice property.

Technical Repor t CRS 92-81, Computer Science Dept.,

University of Edinburgh.

SHIELDS M.W., LAUER P.E. The equivalence of path

expressions and extended semaphore primitives. ASM/43,

Computing Laboratory, University of Newcastle-upon-Tyne,

November 1977.

SHIELDS M.W., LAUER P.E. On the abstract specification and

formal analysis of synchronization properties of

concurrent systems. Proc. of Int. Conf. on

Mathematical Studies of Information Processing, Aug

23-26, Kyoto, 1978. Lecture Notes in Computer Science

22, Springer Verlag 1979, pp 1-32.

SHIELDS M. W. , LAUER P. E. : A formal semantics for concurrent

systems. Proc. 6th Int. Colloq. for Automata,

Languages and Programming, Graz, July 1979, Lec ture

Notes in Computer Science 2..!., Springer Verlag, 1979, pp.

569-584.

[SL80a]

[SL80b]

[T78]

[TL77]

[ZH80]

- 302 -

SHIELDS M.W., LAUER P.E. Verifying concurrent system

specifications in COSY. Proc. 8th Symposium on

Hathematical Foundations of Computer Science, Poland,

August 1980. Lee ture Notes in Computer Science 88,

Springer Verlag 1980, pp 576-586.

SHIELDS M.W., LAUER P.E. Programming and Verifying

Concurrent Systems in COSY, Technical Report No 155,

Computing Laboratory, University of Newcastle upon Tyne,

1980.

TORRIGIANI P. R. Synchronic Aspects of Data Types:

Construction of a non-algorithmic solution of the

Banker's problem.

Methodology, Lecture

Springer-Verlag, 1978.

ECI 78, Information System

Notes in Computer Science,

TORRIGIANI P.R., LAUER P.E. : An Object Oriented Notation

for Paths and Processes. AICA Annual Conference, Pisa,

Vol. 3, pp 349-371(1977).

ZHOU CHAO CHEN, HOARE C.A.R. Partial Correctness of

Communicating

International

Sequential Processes. Proceedings 2nd

Conference on Distributed Computing

Systems Paris 8-10 April 1981, IEEE Computer Society

Press, ed. E. Gelenbe, 1981.

- 303 -

Appendix A

THE SYNTAX OF PROGR&~S IN THE BASIC COSy ~OTATION

A-l THE SYNTAX OF BASIC COSY PROGRAMS WITH SIMPLE OPERATIONS

BNl. basicprogram=program programbody endprogram

BN2. programbody={path/process}+

BN3. path=path (sequence)* end

BN4. process=process (sequence)* end

BN5. sequence={orelement 1;}+

BN6. orelement={starelement ~)}+

BN7. starelement=element/element*

BNS. element=operation/(sequence)

BN9. operation=lc-letter{lc-letter/digit/_}~

BNlO. lc-letter=a/b/ ••• /z

BNll. digit=O/l/ ••• /9

A-2 THE SYNTAX OF BASIC COSY PROGR&~S WITH SUBSCRIPTED OPERATIONS

BNl. - BNS.

BN9a. operation=simple-op/subscr-op

BN9b. simple-op=lc-letter{lc-letter/digit/_}~

BN9c. subscr-op=uc-letter{uc-letter/digit/_}~({integer ~,}+)

BNll.

BNl2. uc-letter=A/B/ ••• /Z

BNl3. integer={digit}+

A-2.l Context Sensitive Restrictions

(Brest)

S b . d . f the same collective name should u scr1pte operat10ns 0

have the same number of dimensions.

- 304 -

Appendix B

THE SY:HAX OF MACRO PROGRAMS IN THE GENERAL MACRO NOTATION

MN1. mprograrn=program rnprogrambody endprograrn

MN2. mprograrnbody={collectivisor/mpath/mprocess/bodyreplicator}+

MN3. collectivisor=array{sirnpleardecl/replardecl}+endarray

MN4. simpleardecl={arrayid}+({{iexpr:/}iexpr!,}+)

MN5. replardecl= index_spec[{replardecl/arrayid({iexpr !,}+)}+]

MN6. index_spec=#index:iexpr,iexpr,iexpr

MN7. arrayid=uc-letter{uc-letter/digit/_}~

MN8. bodyreplicator=index_spec[{mpath/mprocess/bodyreplicator}+]

MN9. mpath=path (msequence)* end

MN10. mprocess=process (msequence)* end

MNll. msequence={morelement !;}+

MN12. morelement={gelement !,}+

MN13. gelement={rreplicator}~

{starelement/sreplicator/distributor}

{lreplicator}~

MN14. starelement=element/element*

MN1S. element=operation/indexedop/(msequence)

MN16. operation=lc-letter{lc-letter/digit/_}~

MN17. indexedop=arrayid{({iexpr!,}+)/ }

MN18. sreplicator=index_spec[{concseq/imbrseq}]

° /"0 ° iexpr} [msequence] MN19. distributor={;/,}{/1expr}{ 1I1expr,1expr,

MN20. lreplicator=index_spec[{;/,}I {concseq/imbrseq}]

- 305 -

~1N2L rreplicator=index_spec[{concseq/imbrseq} I {;/,}]

MN22. concseq={morelement;}~ concor /{morelement;}+ @

MN23. concor={gelement,}+ @

MN24. imbrseq=imbr_at_seq /{morelement ;}~ imbror {; morelement}*

MN2S. imbror={gelement ,}~ imbrstarel {, gelement}*

MN26. imbrstarel=imbrel/imbrel*

~m27. imbrel=Cimbrseq)

{morelement ;}+ {@/at orif/at orim/at orlb} {; morelement}*· - - - -'

{@/at_orlf/at_orlm/at_orlb} {; morelement}+

/{morelement ;}+ {@/at_orlf/at_orim/at_orlb} {; morelement}~;

{at_orlf/at_orlm}

/{at_orim/at orlb} {; morelement}*;

{@/at_orlf/at_orlm/at_orlb} {; morelement}+

/{at_orlm/at_orlb} {; morelement}~; {at_orif/at orlm}

/{morelement;}+ {at_or2fb/at_or2fm/at_or2mm/at_or2mb}{;morelement}+

/{morelement ;}+ {at_or2fm/at_or2mm}

/{at_or2mm/at_or2mb} {; morelement}+

fat or2mm

/@ {morelement ;}~ {at_orif/at_orlm}

/@ {morelement ;}~ {@/at_orlf/at_orlm/at_orlb} {;morelement}+

/{at_orlm/at_orlb} {; morelement}~ @

/{morelement ;}+ {@/at orlf/at_orlm/at_orlb} {;morelement}~ @

/@ msequence @

MN29. at orlf=@ {,gelement}+

- 306 -

MN30. at_orlm={gelement ,}+ @ {, gelement}+

MN31. at_orlb={gelernent ,}+ @

MN32. at or2fb=@ {, gelement}* , @

MN33. at or2fm=@ {, gelement}+ , @ {, gelernent}+

MN34. at_or2mb={gelernent ,}+ @ {,gelement}* , @

MN35. at_or2mm={gelement ,}+ @ {,gelement}* , @ {, gelement}+

MN36. uc-letter=A/ ••• /Z

1'1N37. lc-letter=a/ ••• /z

MN38. digit=O/ ••• /9

MN39. iexpr={+/-/ } {term ~{+/-}}+

MN40. term={factor ~{*/DIV/MOD/EXP}}+

MN41. factor=integer/constant/index/funct_desig1i2 expr)

MN42. integer={digit}+

MN43. constant=lc-letter{lc-letter/digit/_}2

MN44. index=lc-letter{lc-letter/digit/_}2

MN45. funct_desig={ABS/FACT/SQUARE} (iexpr)

B-1 CONTEXT SENSITIVE RESTRICTIONS

(MPrest)

Collective names should be declared before any path or

process involving any of its subscripted operations.

(Crestl)

the upperbound of the dimensions of the collective names to

be greater than or equal to their corresponding implicit

explicit lowerbound.

or

- 307 -

(Crest2)

Each replicator must

index.
specify a non empty range for its

(Crest3)

All expressions indexing collective names should yield

integers for all the values which the indices they involve
r.qkp.

(Crest4)

A collectivisor involving nested replicators must be of the

form

tlkn: inn, fin, incn[••• tikI: inl, fil, ind [Y(hl, h2, ••• , hn)] •••]

wrere hi for i=l, ... ,n are expressions involving indices kj

for j=l, ••• ,n 9.lch that each ki for i=l, ••. ,n must appear in

at least one dimension, and an index ki i=l, ••• ,n may only

appear together with indices kj for j>i in a single

expression and in at most (i-I) expressions with indices kj

for, j<i.
(Irestl)

Identifiers for replicator indices should be distinct from

any identifiers used for simple operations.

(Irest2)

Repl icator indices are only defined inside" [1" of the

replicator with which they are associated. In the scope of

a replicator index no other replica tor index having the same

identifier is permitted.

(BRrest)

The range of the bodyreplicator indices should be non empty.

(Rrest)

inc#O and n=(fi-in)//inc+l>O or t' non empty.

(Rrest2)

The replicators should generate subscripted

permitted by the collectivisors.

operations

- 308 -

(Drestl)

When a subrange is defined the slices will not be required

to contain the same number of sections but at least as many

sections as specified by the subrange.

(Drest2)

Inside a k-nested distributor there must only be arrays with

at least k dimensions out of which exactly k should be

specified as their distributable dimensions.

(Drest3)

incind#O and Ns=(fiind-inind)//incind+l~l

(Drest4)

l~inind+(j-l)*incind~Ms for j=l, .•. ,Ns

(Dre stf)

The dimension selectors in distributors lIR.lst have values

which are meaningful dimensions of array slices.

(CrestS)

An array identifier may only occur once in collec tivisor s.

- 309 -

Appendix C

THE SY~HAX OF MACRO PROGRA.'1S IN THE STRICT MACRO NOTATION

MN1. mprograrn=prograrn rnprogrambody endprograrn

RN1. mprogrambody={collectivisor/mpath/bodyreplicator}+

MN3. collectivisor=array {simpleardecl/replardecl} +endarray

MN4. simpleardecl={arrayid}+({{iexpr:/}iexpr ~,}+)

MNS. replardecl=index_spec[{replardecl/arrayid({iexpr ~,}+)}+]

MN6. index_spec=#index:iexpr,iexpr,iexpr

MN7. arrayid=upper-case-letter{upper-case-letter/digit/_}~

RN2. bodyreplicator=index_spec[{mpath/bodyreplicator}+]

MN9. mpath=path (msequence)* end

RN3. msequence={seqpart 1;}+

RN4. seqpart=seqmacro/morelement

RNS. morelement={orpart 1,}+

RN6. orpart=ormacro/starmacro/mstarelement

RN7. mstarelement=element/element*

RN8. element=operation/indexedop/(msequence)/elmacro

l1N16. operation=lower-case-le tter {lower-case-letter / digiti -}~

MN17. indexedop=arrayid{({iexpr @,}+)/ }

RN9. seqmacro=seqrepl/seqdistr

RN10. seqrepl=index_spec[{seqconcseq/seqimbrseq}]

RNll. seqconcseq={seqpart;}+ {@/seqconcor}

RN12. seqconcor={orpart ,}+ @

RN13. Seqdistr=;{/iexpr}{/Oiexpr,iexpr,iexpr}[msequence]

/,{/iexpr}{/Oiexpr,iexpr,iexpr}[seqpart{;seqpart}+)

- 310 -

R~14. seqimbrseq=seqimbr atout seq/seqimbr out _seq - -

RNl5. seqimbr out seq= {seqpar t ; }+ seqimbror { ; seqpar t}* - -

/ {seqpar t ;}~ seqimbror { ; seqpart}+

{seqpart ;}+ {@/at_orlf/at_orlm/at_orlb} {; seqpart}~;

/{seqpart ;}+ {@/at_orlf/at_orlm/at_orlb} {; seqpart}~;

/{at_orlm/at orlb} {; seqpart}*;

{@/at orlf/at orlm/at_orlb} {; seqpart}+

/ {seqpart;}+ {at_or2fb/at_or2fm/at_or2mm/at_or2rnb} {; seqpart}+

/{seqpart ;}+ {at_or2fm/at_or2mm}

/{at_or2mm/at_or2mb} {; seqpart}+

/@ {seqpart ;}~ {@/at_orlf/at_orlm/at_orlb} {;seqpart}+

/{seqpart ;}+ {@/at_orlf/at_orlm/at_orlb} {;seqpart}2 ~

/@ msequence @

R~17. seqimbror={orpart ,}~ seqimbrstarel {, orpart}~

RNI8. seqimbrstarel=seqimbrel/seqimbrel*

RN20. seqimbr_in_seq={seqpart ;}2 seqimbror {; seqpart}~

RN21. seqirnbr_atin_seq=seqimbr_atout_seq

/{at_orlm/at_orlb} {; seqpart}2 ;{at_orlf/at_orlm}

fat or2mm

/@ {seqpart ;}2 {at_orlf/at_orlrn}

/{at_orlrn/at_orlb} {; seqpart}2 @

RN22. ormacro=orrepl/ordistr

- 311 -

RNZ 3. ord is tr= , {/ iexpr } {/ 1/ iexpr , iexpr , iexpr } [mor e lemen t 1

RNZ4. orrepl=index_spec[{orconcor/orimbror}]

RNZS. orconcor={orpart ,}+@

RNZ6. orimbror=orimbr atout or

/{orpart ,}+ orimbrstarel {, orpart}*

/{orpart ,}~ orimbrstarel {, orpart}+

fat or2mm

/"2 morelement @

RN28. orimbrstarel=orimbrel/orimbrel*

RN29. orimbrel=(orimbrseq)

RN30. orimbrseq={seqpart ;}~ orimbr in or {; seqpart}~

RN31. orimbr_in_or={orpart ,}~ orimbrstarel {, orpart}~

RN33.

RN34.

RN3S.

RN36.

orimbr atout or

/{seqpart;}+ {at_or2fb/at_or2fm/at_or2mm/at_or 2mb}{;seqpart}+

/ {seqpart ;}+ {at_or2fm/at_or2nun}

flat or2mm/at_or2mb} {; seqpart}+

/@ {@/at_orlf/at_orlm/at_orlb} {;seqpart}+

/{seqpart ;}+ {@/at_orlf/at_orlm/at_orlb} @

at orlf=@ {,orpar t}+
-

at_orlm={orpart ,}+ @ {, orpar t}+

at_orl b={orpar t ,}+ @

at or2fb=@ {, or par t}~ , @

- 312 -

RN37. at_or2fm=@ {, orpart}+ , @ {, orpart}+

RN38. at_or2mb={orpart ,}+ @ {,orpart}~ , (~

RN39. at_or2rnm={orpart,}+ @ {,orpart}~ ,@ {,orpart}+

RN40. starmacro=index_spec[(starimbrseq)*]

RN41. starimbrseq=starimbr_at_seq

/{seqpart ;}~ starimbror {; seqpart}*

RN42. starimbror={orpart ,}~ starimbrstarel {, orpart}~

RN43. starimbrstarel=starimbrel/starimbrel*

RN44. starimbrel=(starimbrseq)

{seqpart ;}+ @ ;{mstarelement ;/ } @ {; seqpart}+

/{seqpart ;}+

{starat orlf_one/starat_orlb_one/starat_lb_many/starat_orlm_b}

; @ {; seqpart}+

/ {seqpart ;}+ @

{starat_orlf_one/starat_orlf_many/starat_orlb_one/starat_orlm_f}

{ ;seqpart}+

/{seqpart ;}+ {@/starat_orlb one/starat_orlb_many} ;

{starat orif one/starat orlf many}
- - --

- 31'3 -

I {seqpart ;}+

{starat_or2fb/starat_or2fm/starat_or2mm/starat_or2mb}

{ ;seqpart}+

I{seqpart ;}+ {starat_or2fm/starat_or2mm}

I {starat_2mb/starat_or2mm} {; seqpart}

I starat or2mm

I@ {starat_orlf_one/starat_orlf_manY/starat_orlm_f}

1·'2 {@I s tarat_or 1 f_onel s tarat_or 1 f_ many I s tarat_or lm_ fl s tar at_or 1 b_one}

{; seq par t}+

I{starat_orlb_one/starat_orlb many/starat orlm b} @

I{seqpart ;}+

{@/starat_orlb_one/starat orlb many/starat orlm b/starat orlf one}~

I@ mstarelement @

RN46. starat orlf one=@ , mstarelement

R(~47. starat_orlf_many=:2 {, orpart}+

RN48. starat orlb one=mstarelement , @

RN49. starat_orlb_many={orpart ,}+ @

RNSO. starat orlm f=mstarelement ,@ {, orpart}+

RNS1. starat_orlm_b={orpart ,}+ @, mstarelernent

RNS2. starat or2fb=@ {,mstarelement/} @

RNS3. starat or2fm=@ { ,mstarelementj} ,@ {, orpar t}+

RNS4. starat_or2mm={orpart ,}+ @ {,mstarelernent/},

RNSS. starat or2rnb={orpart ,}+ @ {,mstarelernent/},

RNS6. elmacro=index _spec[(elimbrseq)J

RNS7. elimbrseq=elirnbr_at_seq

I{seqpart ;}~ elimbror {; seqpart}~

@

@

{, orpart}+

- 314 -

RN58. elimbror={orpart ,}~ elimbrstarel {, orpart}*

RN59. elimbrstarel=elimbrel/elimbrel*

RN60. elimbrel=(elimbrseq)

RN61. elimbr_at_seq=

{seqpart ;}+ @ ;{element ;/ } @ {; seqpart}+

/ {seqpart ;}+

{elat_orlf_one/elat_orlb_one/elat_lb_many/elat_orlm_b}

; @ {; seqpart}+

/ {seqpar t ; }+

@;{elat_orlf_one/elat_orlf_many/elat_orlb_one/elat_orlm_f}

{ ;seqpart}+

/{seqpart ;}+ {@/elat_orib one/elat orib many}

{elat orlf_one/elat_orlf_many/elat_orlrn_f}

/{elat_orlb_one/elat_orlb_many/elat_orlm_b} ;

{@/elat_orlf_one/elat_orlf_many} {; seqpart}+

/{elat_orlb_one/elat_orlb_many} ;

{elat_orlf_one/elat_orlf_many/elat_orlrn_f}

/{elat_orlb_one/elat_orlb_many/elat_orlm_b}

{elat_orlf_one/elat_orlf_many}

/{seqpart ;}+

{elat_or2fb/elat_or2fm/elat_or2mm/elat_or2mb} {;seqpart}+

/{seqpart ;}+ {elat_or2fm/elat_or2mm}

/{elat_2mb/elat_or2mm} {; seqpart}

/elat or2mm

/@ {elat or 1 f_one/ e lat_or If_many / elat_orlm_f}

- 315 -

/@ {@/elat_or1f_one/elat_or1f_many/elat_or1m_f/elat_or1b_one}

{; seqpart}+

/{elat_or1b_one/elat_or1b_many/elat_or1m_b} @

/{seqpart ;}+

{@/elat_or1b_one/elat_or1b_many/elat_or1m_b/elat_or1f_one} @

/@ element @

RN62. elat or1f_one=@ , element

RN63. elat_or1f_many=@ {, orpart}+

RN64. elat_orlb_one=element , @

RN65. elat_orlb_many={orpart ,}+ @

RN66. elat orlm f=element ,@ {, orpart}+

RN67. elat_orlm_b={orpart ,}+ @, element

RN68. elat or2fb=@ {,element/} @

RN69. elat or2fm=@ {,element/} ,@ {, orpart}+

RNlO. elat_or2mm={orpart ,}+ @ {,element/}, @ {, orpart}+

RNl1. elat_or2mb={orpart ,}+ @ {,element/}, @

MN36. uc-letter=A/ ••• /Z

MN37. lc-letter=a/ ••• /z

MN38. digit=O/ ••• /9

MN39. iexpr={+/-/ } {term @{+/-}}+

MN40. term={factor ~{*/DIV/MOD/EXP}}+

MN41. factor=integer/constant/index/funct_desig

MN42. integer={digit}+

MN43. constant=lc-letter{lc-letter/digit/_}~

}lN44. index=lc-letter{lc-letter/digit/_}~

MN45. funct_desig={ABS/FACT/SQUARE} (iexpr)

- 316 -

Appendix D

THE SYNTAX OF MACRO PROG~~S IN THE CONSTRAINED MACRO NOTATION

MNl. mprogram=program mprogrambody endprogram

RN1. mprogrambody={collectivisor/mpath/bodyreplicator}+

MN3. collectivisor=array {simpleardecl/replardecl}+ endarray

MN4. simpleardecl={arrayid}+({{iexpr:/}iexpri,}+)

MN5. replardecl=index_spec[{replardecl/arrayid({iexpr !,}+)}+1

MN6. index_spec=#index:iexpr,iexpr,iexpr

MN7. arrayid=uc-letter{uc-letter/digit/_}~

RN2. bodyreplicator=index_spec[{mpath/bodyreplicator}+1

MN9. mpath=path (msequence)* end

RN3. msequence={seqpart ~;}+

~~4. seqpart=seqmacro/morelement

RN5. morelement={orpart ~,}+

~~6. orpart=ormacro/starmacro/mstarelement

RN7. mstarelement=element/element*

RN8. element=operation/indexedop/(msequence)/elmacro

MN16. operation=lc-letter{lc-letter/digit/_}~

MNl7. indexedop=arrayid{({iexpr ~,}+)/ }

RN9. seqmacro=seqrepl/seqdistr

RNIO. seqrepl=index_spec[{seqconcseq/seqimbrseq }]

CNl. seqdistr=;{/iexpr}{/#iexpr,iexpr,iexpr} [msequencel

CN2. seqconcseq={seqpart;}+@

- 317 -

cm. seqimbrseq=seqimbr_at_seq

/{seqpart ;}+ seqimbror {; seqpart}*

/{seqpart ;}~ seqimbror {; seqpart}+

CN4. seqimbror={orpart,}~ seqimbrstarel {, orpart}*

CNS. seqimbrstarel=seqimbrel/seqimbrel*

CN6. seqimbrel=(seqimbr seq)

{seqpart;}+ {@/at_orlf} {;seqpart}~

/{seqpart ;}+ at_or2fb {; seqpart}+

/@{seqpart;}~ {@/at_orlb} {;seqpart}+

/{seqpart;}+ {@/at_orlf} {;seqpart}~@

/@ msequence @

RN22. ormacro=orrepl/ordistr

{@/at_or1b} {;seqpart}+

RN23. ordistr=,{/iexpr}{/#iexpr,iexpr,iexpr} [morelement]

RN24. orrepl=index_spec[{orconcor/orimbror}]

RN2S. orconcor={orpart ,}+@

RN26. orimbror=orimbr atout or

/{orpart -,}+ orimbrstarel {, orpart}~

/{orpart ,}~ orimbrstarel {, orpart}+

RN27. orimbr atout_or=@ {at_orlf/at_orlm}

/{at_orlm/at_orlb} @

fat or2mm

/@ morelement @

RN28. orimbrstarel=orimbrel/orimbrel*

RN29. orimbrel=(orimbrseq)

- 318 -

RN30. orimbrseq={seqpart ;}~ orimhr in or {; seqpart}*

/orimbr_atin_seq

RN31. orimbr_in_or={orpart ,}~ orimbrstarel {, orpart}*

RN32. orimbr_ati~seq=

orimbr atout or

/{seqpart;}+ {at_or2fb/at_or2fm/at_or2mm/at_or2mb}{;seqpart}+

/{seqpart ;}+ {at_or2fm/at_or2mm}

/{at_or2mm/at_or2mb} {; seqpart}+

/@ {@/ a t_ or 1 f/ a t_ or 1 m/ a t_ or 1 b} {; seqpar t}+

/{seqpart ;}+ {@/at_orlf/at_orlm/at_orlb} @

RN33. at_orlf=@ {,orpart}+

RN34. at_orlm={orpart ,}+ @ {, orpar t}+

RN35. at_or 1 b={orpar t ,}+ @

RN36. at or2fb=@ {, orpart}~ , @

RN37. at or2fm=@ {, orpart}+ , @ {, orpart}+

RN38. at_or2mb={orpart ,}+ @ {,orpart}~ , @

RN39. at or2mm={orpart,}+ @ {,orpart}~ ,@ {,orpart}+

RN40. starmacro=index_spec[(starimbrseq)*]

RN41. starimbrseq=starimbr_at_seq

/{seqpart ;}~ starimbror {; seqpart}~

RN42. starimbror={orpart ,}~ starimbrstarel {, orpart}~

RN43. starimbrstarel=starimbrel/starimbrel*

RN44. starimbrel=(starimbrseq)

RN45. starimbr_at_seq=

{seqpart ;}+ @ ;{mstarelement ;/ } @ {; seqpart}+

- 319 -

/ {seqpart ;}+

; @ {; seqpart}+

/ {seqpart ;}+ @

{ ; scqpar t}+

{starat_orif one/starat orif many/starat orim f} - - - --

/{starat orib one/starat orib many/starat orim b} .
- - - - - -'

/ {seqpart ;}+

{starat_or2fb/starat_or2fm/starat_or2mm/starat_or2mb}

{;seqpart}+

/{seqpart ;}+ {starat_or2fm/starat_or2mm}

/{starat_2mb/starat_or2mm} {; seqpart}

/starat or2mm

/@ {starat_orlf_one/starat_orlf_many/starat_orlm_f}

/@ {@/starat_orlf_one/starat_orlf_many/starat_orlm_f/starat_orlb_one}

{; seqpar t}+

/ {seqpart ;}+

{@/starat_orlb_one/starat_orlb_many/starat_orllU_b/starat_orlf_one}@

- 320 -

/(J mstClrelement ~

R~46. starat orlf one=~ , mstarelement

RN47. star at_or If_ many=@ {, orpar t}+

R~48. starat orlb one=mstarelement '" , '-

R~49. starat_orlb_many={orpart ,}+ @

R~50. starat_orlm_f=mstarelement ,@ {, orpart}+

R~51. starat_orlm_b={orpart ,}+ @, mstarelement

RN52. starat or2fb=@ {,mstarelement/} ra , '-

RN53. starat or2fm=@ {,mstarelement/} ,@ {, orpart}+

RN54. starat_or2mm={orpart ,}+ @ {,mstarelement/}, @ {, orpar t}+

R~55. starat_or2mb={orpart ,}+ @ {,mstarelement/}, @

RN56. elmacro=index_spec[(elimbrel)]

RN57. elimbrseq=elimbr_at_seq

/{seqpart ;}~ elimbror {; seqpart}~

RN58. elimbror={orpart ,}~ elimbrstarel {, orpart}~

RN59. elimbrstarel=elimbrel/elimbrel*

RN60. elimbrel=(elimbrseq)

{seqpart ;}+ @ ;{element ;/ } @ {; seqpart}+

/ {seqpart ;}+

; @ {; seqpart}+

/ {seqpar t; }+

{ ;seqpart}+

- 321 -

/{seqpart ;}+ {@/elat_orlb_one/elat orlb many}
- -

/{elat orlb one/elat orlb many} . - - - - '

/{elat orlb one/elat orlb many/elat orlm b} - - - - --

/ {seqpart ;}+

{elat_or2fb/elat_or2fm/elat or2mm/elat or2~b}

{;seqpart}+

/{seqpart ;}+ {elat_or2fm/elat or2mm}

/{elat_2mb/elat_or2mm} {; seqpart}

/elat or2mm

{; seqpart}+

/{seqpart ;}+

/@ element @

RN62. elat orlf_one=@ , element

RN63. elat_orlf_many=@ {, orpart}+

RN64. elat orlb one=element , @

RN6S. elat_orlb_many={orpart ,}+ @

RN66. elat orlm f=element ,@ {, orpart}+

- 322 -

RN67. elat_orlm_b={orpart ,}+ @, element

RN6~. elat or2fb=@ {,element/} , @

RN69. elat or2fm=@ {,element/} ,@ {, orpart}+

RNlO. elat_or2mm={orpart ,}+ @ {,element/}, @ {, orpart}+

RNll. elat_or2mb= {orpar t ,}+ @ {, element/}, @

~N36. ue-letter=A/ •.. /Z

MN37. le-letter=a/ ..• /z

~~38. digit=O/ ••• /9

~rn39. iexpr={+/-/ } {term !{+/-}}+

~~40. term={faetor Q{*/DIV/MOD/EXP}}+

MN41. faetor=integer/eonstant/index/funet_desig

'1N42. integer={digit}+

NN43. eonstant=le-le tter {ie-letter / digiti _}~

MN44. index=le-letter{le-letter/digit/_}2

MN4S. funet_desig={ABS/FACT/SQUARE} (iexpr)

	344314_0001
	344314_0002
	344314_0003
	344314_0004
	344314_0005
	344314_0006
	344314_0007
	344314_0008
	344314_0009
	344314_0010
	344314_0011
	344314_0012
	344314_0013
	344314_0014
	344314_0015
	344314_0016
	344314_0017
	344314_0018
	344314_0019
	344314_0020
	344314_0021
	344314_0022
	344314_0023
	344314_0024
	344314_0025
	344314_0026
	344314_0027
	344314_0028
	344314_0029
	344314_0030
	344314_0031
	344314_0032
	344314_0033
	344314_0034
	344314_0035
	344314_0036
	344314_0037
	344314_0038
	344314_0039
	344314_0040
	344314_0041
	344314_0042
	344314_0043
	344314_0044
	344314_0045
	344314_0046
	344314_0047
	344314_0048
	344314_0049
	344314_0050
	344314_0051
	344314_0052
	344314_0053
	344314_0054
	344314_0055
	344314_0056
	344314_0057
	344314_0058
	344314_0059
	344314_0060
	344314_0061
	344314_0062
	344314_0063
	344314_0064
	344314_0065
	344314_0066
	344314_0067
	344314_0068
	344314_0069
	344314_0070
	344314_0071
	344314_0072
	344314_0073
	344314_0074
	344314_0075
	344314_0076
	344314_0077
	344314_0078
	344314_0079
	344314_0080
	344314_0081
	344314_0082
	344314_0083
	344314_0084
	344314_0085
	344314_0086
	344314_0087
	344314_0088
	344314_0089
	344314_0090
	344314_0091
	344314_0092
	344314_0093
	344314_0094
	344314_0095
	344314_0096
	344314_0097
	344314_0098
	344314_0099
	344314_0100
	344314_0101
	344314_0102
	344314_0103
	344314_0104
	344314_0105
	344314_0106
	344314_0107
	344314_0108
	344314_0109
	344314_0110
	344314_0111
	344314_0112
	344314_0113
	344314_0114
	344314_0115
	344314_0116
	344314_0117
	344314_0118
	344314_0119
	344314_0120
	344314_0121
	344314_0122
	344314_0123
	344314_0124
	344314_0125
	344314_0126
	344314_0127
	344314_0128
	344314_0129
	344314_0130
	344314_0131
	344314_0132
	344314_0133
	344314_0134
	344314_0135
	344314_0136
	344314_0137
	344314_0138
	344314_0139
	344314_0140
	344314_0141
	344314_0142
	344314_0143
	344314_0144
	344314_0145
	344314_0146
	344314_0147
	344314_0148
	344314_0149
	344314_0150
	344314_0151
	344314_0152
	344314_0153
	344314_0154
	344314_0155
	344314_0156
	344314_0157
	344314_0158
	344314_0159
	344314_0160
	344314_0161
	344314_0162
	344314_0163
	344314_0164
	344314_0165
	344314_0166
	344314_0167
	344314_0168
	344314_0169
	344314_0170
	344314_0171
	344314_0172
	344314_0173
	344314_0174
	344314_0175
	344314_0176
	344314_0177
	344314_0178
	344314_0179
	344314_0180
	344314_0181
	344314_0182
	344314_0183
	344314_0184
	344314_0185
	344314_0186
	344314_0187
	344314_0188
	344314_0189
	344314_0190
	344314_0191
	344314_0192
	344314_0193
	344314_0194
	344314_0195
	344314_0196
	344314_0197
	344314_0198
	344314_0199
	344314_0200
	344314_0201
	344314_0202
	344314_0203
	344314_0204
	344314_0205
	344314_0206
	344314_0207
	344314_0208
	344314_0209
	344314_0210
	344314_0211
	344314_0212
	344314_0213
	344314_0214
	344314_0215
	344314_0216
	344314_0217
	344314_0218
	344314_0219
	344314_0220
	344314_0221
	344314_0222
	344314_0223
	344314_0224
	344314_0225
	344314_0226
	344314_0227
	344314_0228
	344314_0229
	344314_0230
	344314_0231
	344314_0232
	344314_0233
	344314_0234
	344314_0235
	344314_0236
	344314_0237
	344314_0238
	344314_0239
	344314_0240
	344314_0241
	344314_0242
	344314_0243
	344314_0244
	344314_0245
	344314_0246
	344314_0247
	344314_0248
	344314_0249
	344314_0250
	344314_0251
	344314_0252
	344314_0253
	344314_0254
	344314_0255
	344314_0256
	344314_0257
	344314_0258
	344314_0259
	344314_0260
	344314_0261
	344314_0262
	344314_0263
	344314_0264
	344314_0265
	344314_0266
	344314_0267
	344314_0268
	344314_0269
	344314_0270
	344314_0271
	344314_0272
	344314_0273
	344314_0274
	344314_0275
	344314_0276
	344314_0277
	344314_0278
	344314_0279
	344314_0280
	344314_0281
	344314_0282
	344314_0283
	344314_0284
	344314_0285
	344314_0286
	344314_0287
	344314_0288
	344314_0289
	344314_0290
	344314_0291
	344314_0292
	344314_0293
	344314_0294
	344314_0295
	344314_0296
	344314_0297
	344314_0298
	344314_0299
	344314_0300
	344314_0301
	344314_0302
	344314_0303
	344314_0304
	344314_0305
	344314_0306
	344314_0307
	344314_0308
	344314_0309
	344314_0310
	344314_0311
	344314_0312
	344314_0313
	344314_0314
	344314_0315
	344314_0316
	344314_0317
	344314_0318
	344314_0319
	344314_0320
	344314_0321
	344314_0322
	344314_0323
	344314_0324
	344314_0325
	344314_0326
	344314_0327
	344314_0328
	344314_0329
	344314_0330
	344314_0331

