
PROGRAMMING AND VERIFYING ASYNCHRONOUS SYSTEMS 

J. Y. COTRONIS 

University of Newcastle-upon-Tyne 

N EI,', C,', '.:'_= -j PO~-n ill E 
U;::VE:'::iTY L1B\RY 

hCC':::S'::';OiJ No, 

82-16710 

LOCATION 

t~CI'S. 

I.,.. ~~Sg-

Computing Laboratory 

July 1982 

Ph.D. Thesis 



AKNOWLEDGEMENTS 

I would like, first of all to express my thanks to my supervisor Dr. 

Pe ter Lauer for his con tinuou s cooperation dur ing the year s I have been 

a student and later a member of his research project. Peter's comments 

on early drafts of my thesis were valuable and in a great extend 

determined the contents of the thesis. In particular Peter suggested 

the four criteria for a good macro notation. His work in [L79] provided 

the guidelines for developing syntax rules for macro programs uniform 

with syntax rules for basic programs. Peter also suggested the 

elimination of the box" "in replicators and the restriction of the 

"," as far as possible in regular expressions denoting choice. Peter 

al so sugge sted po ssible theorems to be proved abou t macro programs. 

I would like to thank Brian Hamshere for his patience in reading 

through an early version of my thesis suggesting improvements and 

corrections. I would also like to thank old members of the Asynchronous 

Systems Project, Dr. Mike Shields and Dr. Eike Best for providing the 

basis for the re searc h in this thesis. 

Finally, I would like to express my warmest thanks to my parents and 

to Lily who many a time s, regre tably, took second place to this thesis, 

for their encouragement and support during the past years. 



ABSTRACT 

The basic COSY (COncurrent SYstems) notation [LSB79b] is briefly 

presented. Programs in this notation abstractly specify the 

aspects of concurrent systems and are possessed of 

synchronic 

behavioural 

semantics, which are capable of expressing concurrency and which also 

provide a firm mathematical foundation for verifying properties of 

systems. 

We are mainly concerned with the macro COSY notation [LTS79] which 

contains macro features for concisely representing and precisely 

generating by expansion similar regularities of structure of programs in 

the basic notation. We re-examine and revise all aspects of macro COSY, 

the design of the notation as a specification language, the formal 

2;rammar for producing macro COSY programs, the rules for the expansion 

of macro elements and of complete macro programs, eliminating serious 

drawbacks of previous macro COSY notations and grammars. 

We characterize the strings generated by 

elements and macro programs and we investigate 

which macro elements may generate the same 

elements. 

the expansion of macro 

the conditions under 

strings as other macro 

Finally, we give direct semantics to macro programs following two 

approaches. 
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1 INTRODUCTION 

In the past few years there has been an increasing interest in 

distributed computing systems, that is systems in which there are a 

number of autonomous but interacting computers co-operating on a common 

problem. Such systems cover a broad spectrum which includes networks of 

main-frame computers, systems containing microprocessors, novel forms of 

highly parallel computer architecture etc. Recent and continuing 

developments in component technology have initiated new ideas on system 

design, based on the decomposition of systems into a number of 

subsystems which when combined in new ways may perform the same general 

functions as earlier systems but with much greater degree of parallelism 

and distribution. These new design options have at the same time 

increased the difficulties for the precise specification, analysis and 

verification of systems. 

The COSY notation [LSB79b, LTS79], the name has been derived from 

COncurrent SYstems, is a formalism indented to simplify these t~sks by 

abstracting away from all aspects of systems, except those which have to 

do with synchronization. In the COSY methodology systems are considered 

as consisting of notionally indivisible actions or events, the 

occurrences of which may be related to other events in the system. 

Systems are also assumed to be decomposed into a collection of 

sequential subsystems each involving a subset of the events of the whole 

system. Thus the events in the system are left uninterpreted and only 

the synchronic properties of systems are considered, those which solely 

concern the ordering of occurrences of these events. That is to say, 

only properties of a behavioural nature are of interest in the COSY 

methodology. 

System behaviour is abstractly specified in COSY by programs, 

consisting of operations which correspond to events in the system, 

together with ordering relationships between their activations, 

specified in such a way that each relationship determines possible 

sequences of occurrences of subsets of these operations. These 

sequences are represented by regular expressions [CH74] which are 

incorporated in COSY [LC75, LSB79b] and are called path expressions and 

process expressions or paths and processes respectively, for short. A 
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single path or process is used for specifying the sequential constraint 

relating all the operations mentioned in the path or process. A system 

will he associated with a progra~, a grammatical type object, consisting 

of a collection of paths and processes, the "language" of which models a 

set of permitted or required behaviours. This collection of paths and 

processes determines a set of vectors of strings of operations. Vectors 

of strings of operations may be considered as a labelled partial order 

of operations, modelling a non-sequential behaviour of operation 

executions, and for this reason they have been called vector firing 

sequences [SL79]. Vector firing sequences may be shown to have the same 

modelling power as more conventional models for concurrent behaviour, 

such as occurrence graphs but have the advantage that may be manipulated 

in the same manner as strings. The vector firing sequence semantics 

does not reduce concurrency to arbitrary interleaving [18lj and provides 

a mathematical environment for the formal definition of system 

properties and for the analysis of programs, determining whether the 

system they specify possesses such properties. 

The aspects of the notation we have discussed so far constitute the 

basic COSY notation or basic COSY for short. Programs in this notation 

involve only paths and processes and are called basic programs. 

The COSY notation involves other aspects which were considered 

essential in a software design environment. Thus, two other notations 

have been developed, the macro COSY notation and the system COSY 

notation. The macro COSY notation, macro COSY for short, contains 

features for the concise representation and precise generation of 

similar regularities of structure in basic COSY programs. The macro 

notation was introduced as a matter of convenience for the programmer 

and as a facility for generalization by allowing the representation and 

generation of strings of finite but indefinite length. The system COSY 

notation is equipped with a class-like construct called system, 

permitting the expression of hierarchy and modularity. Systems allow 

the specification of levels of abstraction in a design, information 

hiding and the application of other techniques of structured 

programming. 
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In this thesis we are mainly concerned with the macro COSY notation. 

Since its introduction [L76j macro COSY has been evolved into a flexible 

and powerful tool for system specification. Three are its main 

features: the collectivi~~, the replicator and the distributor. The 

collectivisor declares arrays of indexed operations to be used in paths 

or processes. These arrays may be rectangular but also of other shapes. 

The replicator is the most general feature for representing and 

generating a variety of similar regularities of structure in basic 

programs. These structures include paths and/or processes and regular 

expressions of paths and processes and their parts. Replicators may 

generate regularities which either follow each other or are nested 

within each other. Finally, the distributor may represent and generate 

some regularities in basic COSY programs. Distributors cannot generate 

all the regularities which replicators can, but their advantage is that 

they represent regularities more concisely than replicators. 

Replicators and distributors are the macro elements of macro COSY and 

are associated with expansion rules by which they generate basic COSY 

strings. 

Collectivisors, replicators and distributors are used in macro 

programs. Macro programs do not increase the expressive power of the 

basic COSY notation as they should expand to basic programs. Macro 

programs were not given any semantics directly. 

those of the basic programs they generate. 

Their semantics are 

Although, the need for a macro COSY notation was realized and 

introduced early in the development of COSY, its development was rightly 

considered to be an "open-ended" effort. "Open-ended" in the sense that 

the aim should not be to initially produce a fixed notation, but to 

permit changes until it is precisely clear what constitutes a "good" 

macro notation. As a consequence of this approach various macro 

notations and subnotations have been developed, some being extensions of 

others or, more commonly, differing in many respects. Some of the 

differences are for example, that replicators in some notations may 

generate paths and/or processes whilst in other notations just paths or 

just processes, that replicators in some notations could be nested 

inside other replicators and in others not, etc. 
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Besides this diversity of notations there is a diversity of formal 

grammars producing macro COSY programs. The difterences in the 

notations and subnotations are certainly reflected in the grammars. In 

addition, various approaches have been adopted in defining the syntax of 

macro programs and in particular the syntax of macro elements. These 

approaches however are not equivalent, in the sense that their 

corresponding syntax rules do not produce the same classes of macro 

programs. 

The main problem with most grammars is that they may produce "macro 

programs" which when expanded do not generate basic programs. This was 

realized and some meta-restriction rules were imposed on macro programs 

which were to eliminate these "unwanted programs". However, even these 

"wide" grammars do not permit some programs we would like to write. 

Thus, grammars are too "wide" in some aspects and at the same time 

restrictive in others. The need for a context-free grammar producing 

exclusively macro programs expanding to basic programs was realized and 

some close-fitting syntax rules were suggested [L79] but overconstrained 

the class of valid macro programs. 

There are also a number of minor aspects of the macro notation and 

grammar which need to be improved such as that some symbols are awkward 

to use, that the syntax of some features of macro programs has never 

been obtained, and others. 

Another aspect of the macro notation are the expansion rules for 

replicators, distributors and of complete macro programs. Whilst the 

expansion of replicators was formally defined that of distributors was 

not formally defined directly. 

The objectives of this thesis are to re-examine and revise all 

aspects of the macro notation, its design as a specification language, 

the formal syntax of macro programs, the expansion rules of macro 

elements and of complete macro programs, alleviating or eliminating 

altogether the drawbacks of other notations and grammars; to 

characterize the strings generated by the expansion of replicators, 

distributors and of complete macro programs produced by the formal 

grammar; to investigate some aspects of programming methodology such as 
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when replicators and distributors may be replaced by other replicators 

and distributors expanding to the same string as the former; and finally 

to give direct vector firing sequence semantics to macro programs rather 

than indirectly via the basic programs generated by their expansion. 

Our guidelines for revising the macro notation and grammar were 

mainly four: 

1. The syntactic well-formedness of a macro program should imply that 

its expansion is a syntactically well-formed basic program. 

2. The notation should allow the generation of a large class of basic 

programs and their concise representation. 

3. The macro grammar should include context-free rules and should be 

uniform with the grammar of basic COSY. 

4. The reading of macro programs should be possible without formal 

expansion. 

In the design of the notation, changes of symbols and of the forms of 

the collectivisors, replicators and distributors are suggested improving 

the readability of these constructs and of the macro programs as a 

whole. Some restrictions imposed on what replicators may generate 

ensure the readability of unexpanded macro programs. But the new 

replicators may generate strings which could not be generated by a 

single replicator in previous notations. Distributors are extended to 

generate more strings more economically than replicators. Two new types 

of replicators are added generating strings which could not be generated 

by replicators in previous notations. It is precisely specified where 

distributors and each type of replicators should appear in macro 

programs. 

The new context-free syntax rules for macro programs combine some of 

the syntax rules of previous grammars, modified to be consistent with 

changes in the design of the notation. For the main features of the 

notation though, that is collectivisors, replicators and distributors 
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new syntax rules are introduced. Particular attention is given to the 

problem of obtaining a grammar uniform with the grammar for basic COSY. 

This is achieved by expressing the new grammar as an extension of the 

basic COSY grammar and by expressing the syntax of the features of macro 

programs in a style similar to that of basic COSY. 

The expansion rules for replicators are modified to deal with their 

new form and the expansion of distributors is directly defined. The 

expansion of replicators and distributors is also characterized. The 

expansion of complete macro programs is formally defined and it is 

proven that programs permitted by the new grammar generate syntactically 
too 

well-formed basic programs. Thus, the suggested grammar is notVw1de and 

no meta-restriction rules are needed to eliminate any "unwanted" 

programs, that is programs not generating basic programs. The 

conditions under which replicators and distributors may be replaced by 

other replicators or distributors are also examined. 

Finally, we give direct vector firing sequence semantics to macro 

programs and we show that the vector firing sequences of macro programs 

are the same as the vector f~ring sequences of the basic programs 

generated by their expansion. 

The rest of the thesis is structured as follows: In chapter 2 the 

basic COSY notation is briefly presented, chapter 3 deals with the 

syntax and expansion of macro COSY programs, chapter 4 deals mainly with 

the semantics of macro COSY programs, and chapter 5 contains the 

conclusions of the thesis. The contents of the main chapters 2, 3 and 4 

in more detail are as follows: 

Chapter 2 deals with the syntax and semantics of basic COSY programs 

and briefly with the nature of analysis and verification in 

COSY. In section 2.1 the syntax of basic programs is given. 

Section 2.2 gives the semantics of a single path by associating with it 

a set of str ings of operations involved in the path. The elements of 

this infinite set may be obtained from a set, the set of cycles 

of a path. Section 2.3 gives the semantics of basic programs consisting 

exclusively of paths by means of sets of vectors of str ings of 

operations involved in the programs, representing the behaviour of these 
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programs. Each of the components of these vectors relates to a path in 

the basic program and must be a possible total order of the operations 

in that path. Furthermore, all components must agree on the number and 
activation of 

order of theYiPerations they share. Besides the usual definition of 

vector firing sequences, an alternative definition is given which we 

shall use in chapter 4 where direct semantics are given to macro 

programs. In section 2.4 the semantics of a general basic program 

involving paths and processes are given by two methods. The first is 

the usual method found in the literature for COSY [LS81] and consists of 

transforming path-process programs into programs involving paths only, 

the vector firing sequences of which define the behaviour of the 

original program. The second method obtains vector firing sequences 

directly from the general basic programs without any intermediate 

transformation. It is shown that both methods are equivalent in the 

sense that they produce the same set of vectors. Finally, in section 

2.5 a brief account is given on the nature of analysis and verification 

in COSY. 

Chapter 3 is concerned with the syntax and expansion of macro 

programs. In section 3.1 we review most of macro COSY 

notations and subnotations in detail, focussing our 

attention on their formal grammars and discussing the implication of 

design choices and their drawbacks. In the subsections of 3.1 we 

examine major syntactic entities of macro programs. In section 3.2 we 

set the criteria for a "good" macro notation, we revise the macro 

notation and define the syntax of macro programs. A number of changes, 

modifications and extensions are introduced. The most important of 

these are applied to replicators and distributors. In section 3.3 we 

define the expansion of replicators and distributors and of complete 

macro programs. We prove four theorems which characterize the strings 

obtained by the expansion of replicators and distributors. We also show 

under which conditions replicators may replace distributors and 

vice-versa, and replicators may be replaced by other replicators. 

Finally, we formally define the expansion of complete macro programs and 

prove that they yield well-formed basic programs. In section 3.4 we 

evaluate the new notation and grammar and discuss certain extensions we 

could incorporate. 
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Chapter 4 is concerned with obtaining the vector firing sequences of 

basic programs generated from macro programs directly from 

the macro programs themselves. We reduce this task to the 

task of finding the cycle sets of the paths of such basic programs 

directly from the macro programs. Two approaches are followed. 

According to the first which is presented in section 4.1, the cycle sets 

are constructed by finding the cycle sets of expanded parts of macro 

programs which are then combined together. We applied the first 

approach to macro programs produced by the grammar of section 3.2 and to 

macro programs produced by a restrictive grammar introduced in section 

4.1.2. According to the second approach which is presented in section 

4.2, the cycle sets of basic paths may be found by constructing macro 

cycle objects from macro programs representing cycle sets concisely, 

which may be expanded to generate cycle sets, in the same way macro 

programs are expanded to generate basic programs. The second approach 

is applied to macro programs which are produced by the grammar of 

section 4.2.1, obtained by constraining the grammar in section 4.1.2. 
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2 THE BASIC COSY NOTATION 

In the COSY methodology systems are considered as consisting of 

notionally indivisible actions or events, the occurrences of which may 

be related to occurrences of other events in the system. Thus the 

events in the system are left uninterpreted and only the synchronic 

properties of systems are considered, those which solely concern the 

ordering of occurrences of these events. That is to say only properties 

of a behavioural nature are of interest in the COSY methodology. 

The COSY notation is a formalism which may be used to describe 

concurrent and distributed systems in their synchronic properties. The 

notation used was basically the path notation due to Campbell and 

Habermann [CH74] which was designed so that one could state the proper 

coordination of concurrent processes as the permissible order of 

execution of operations on shared system objects as part of the object 

definition. The idea behind the Campbell-Habermann path concept was put 

into a more abstract form, the path and process expressions of Lauer and 

Campbell [LC75], or paths and processes for short. Later this notation 

was named the basic COSY notation [LSB79b). System behaviour may be 

specified by programs consisting of collections of paths and processes, 

that is basic programs. Paths and processes are essentially regular 

grammars represented by regular expressions. Just as a single regular 

expression determines a set of strings, each of which may be considered 

as a labelled total order modelling a sequence of execution of 

operations which label it, so may a basic program, a collection of 

regular expressions, determine a set of vectors of strings, where each 

vector may be considered as a labelled partial order, modelling a 

non-sequential behaviour of operation executions. 

In the next section 2.1 the syntax of basic programs is given. In 

section 2.2 the semantics of a single path P are given, by means of the 
activation of 

possible sequences of theVoperations involved in its regular expression, 

the set of its firing sequences denoted by FS(P). In section 2.3 the 

semantics of a basic program consisting only of paths is defined by 

means of a mapping which associates with each program R the set of its 

vector firing sequences denoted by VFS(R) consisting of vectors of 

strings of operations in R. In section 2.4 the semantics of a general 
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basic program consisting of paths and processes are given in two ways: 

According to the first, a transformation Path is defined which 

transforms a general basic program R into a basic program denoted by 

Path(R) consisting of just paths. Then the semantics of R are defined 

in terms of the vector firing sequences of Path(R) denoted by 

VFS(Path(R». According to the second way the same semantics are 

obtained without R having to undergo any transformation. In section 2.5 

the nature of analysis and verification of COSY programs is outlined. 

2.1 THE SYNTAX OF BASIC COSY 

A basic COSY program is a string derived from the production rules 

given below. The following meta-language conventions have been used in 

the syntax rules: The symbols "=" "{", "}", "/", "*" "+", "@" have , , 
been used as meta-symbols. The symbol It=" denotes production of its 

left hand side to strings on its right hand side. The braces "{ }" are 

used to group items together, "/" indicates alternate produc tions, 

"{item}~" indicates production of "item" zero or more times, "{item}+" 
-

production of "item" one or more times. The notation 

{iteml @ item2}+ 

is used as a shorthand for 

iteml {item2 iteml}~ 

In the syntax rules for basic COSY programs "item2" may be one of the 

terminal symbols ";" and ",". Non-underlined lower case words, except 

single lower case letters and digits, are non-terminal symbols, and all 

other symbols like ";", ",", "(", ")", "*", unde1ined lower case words 

and single lower case letters and digits are terminal symbols. We shall 

additionally use the following convention: in right parts of production 

rules the catenation of terminals and non-terminals has precedence over 

alternation. Thus A B/C means either A B or C. When necessary we use 

"{ }" to override the normal precedence. Thus A {B/C} means either A B 

or A C. 



- 11 -

The syntax of a basic COSY program is given by the following rules: 

BN1. basicprogram = program programbody endprogram 

BN2. programbody = {path/process}+ 

BN3. path = path (sequence)* end 

BN4. process = process (sequence)* end 

BNS. sequence = {orelement !j}+ 

BN6. orelement = {starelement !,}+ 

BN7. starelement = element/element* 

BN8. element = operation/(sequence) 

BN9. operation 

BN10. lc-letter 

lc-letter{lc-letter/digit/_}~ 

a/b/ ••• /z 

BNll. digit = 0/1/ ••• /9 

In the regular expressions produced by the non-terminal "sequence" the 

symbols 11.11 , and " II , denote sequentialization and arbitrary choice 

respectively; the symbol "*" is the Kleene star. 

All the regular expressions in paths and processes are considered to 

be cyclic in the sense that constituent operations may be executed 

repeatedly subject to the constraints of sequentialization and arbitrary 

choice. For this reason the outermost star and parentheses are usually 

omitted, their presence being implicit. 

2.2 THE SEMANTICS OF A BASIC PATH 

The semantics of a basic path P are given in terms of its set of 

firing sequences denoted by FS(P). The infinite set FS(P) may be 

constructed from a set consisting of the cycles of P. Let us 

define the function "Cyc" by which the cycles of a basic path P may be 

constructed. The function "Cyc" will apply to syntactic entities of 

basic paths, that is to say substrings produced by non-terminals. 

Syntactic entities of paths will be denoted by syntactic variables. A 

path P will be represented by 

path (SEQ)* end 
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where SEQ denotes a sequence, which may be represented by 

ORELl ; ••• ; ORELn 

where ORELi for i=1, ••• ,n denote orelements. 

represented by 

An orelement may be 

STARELl, •.• ,STARELn 

where STARELi for i=l, ••• ,n denote starelements. A star element may be 

represented by 

ELE:·1* or ELEM 

where ELEH denotes an element which may be represented by 

(SEQ) 

when it is produced by the second option of the syntax rule for element 

BN8, or by 

OP 

when produced by the first option. The function "Cyc" is defined as 

follows: 

Cyc(e)=cases e: 

1- path (SEQ)* end -~ Cyc(SEQ) 

2. ORELl ; ••• ; ORELn ~ Cyc(OREL1) U ••• O Cyc(ORELn) 

3. STAREL1, ••• ,STARELn -7 Cyc(STARELl) V ••• V Cyc(STARELn) 

4. ELEM* ~ Cyc(ELEM)* 

5. (SEQ) ~ Cyc(SEQ) 

6. OP -~ top} 
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The function "Cyc" is defined in terms of a "case-function". A 

function f defined by cases 

f(e)=cases e: 

l.el 

2. c2 

n. en 

-~fel 

-~fc2 

-~fcn 

in which el ,c2, ••• ,en are the valid forms which expression e may take, 

has the follow ing seman tic s: 

if e is of form el then f(e)=f(cl) converts into fel else 

if e is of form c2 then f(e)=f(e2) converts into fc2 else 

if e is of form en then f(e)=f(cn) converts into fen 

In the definition of "Cyc" the symbol "U" denotes the set-union 

operator and the symbol "" the concatenation of sets of strings 



- 13 -

OrerA.tnr. The operation 

Xuy 

where X, Y are sets of strings is defined as: 

XOY={x.ylx € X,y € Y} 

where 11 " . denotes string concatenation and" € " element of a set. 

In the definition of "Cyc" a starred set X* indicates the set 

obtained by concatenation of zero or more times of the set X. 

X* is defined by 

x* X 0 U Xl U X 2 U ••• 

where X is a set of strings and Xi is defined recursively by 

Xi Xi-loX 

XO {>..} 

where "A" denotes the empty string. 

Formally 

From the set Cyc(P) we may construct the set of firing sequences of P 

denoted by FS(P) as follows: 

FS(P)=Pref(Cyc(P)*) 

where Pref(X) is defined as 

Pref(X)={xlx.y € X, for some y} 

where X is a set of strings. 

The set FS(P) is the set of sequences of operation executions 

permitted by the path P. 
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2.3 THE SEMANTICS OF PATH-PROGRAMS 

As already mentioned, to model the non-sequential behaviour of a 

basic program R consisting of paths P1 ••••• Pn partial orders of 

occurrences of operations will be constructed which are specified by 

vectors of strings. An n-vector x 

~=(xl •••• ,xn) 

is a possible behaviour of R if each xi for 1~i~n is a possible firing 

sequence of Pi for i=l ••••• n and furthermore, if the xi's agree on the 
activation of 

number and the order ofVoperations they share. 

To formally define the set of possible behaviours or histories of R. 

vectors of strings are introduced together with a composition operation 

on them. Let S1 ••••• Sn be a family of sets of strings and let 

n 
x Si*=Sl* x ••• x Sn*={(sl ••••• sn)lfor all i, si € Si*} 

i=l 

where "x" denotes the cross product operator. If the vectors x and 1.. 

belong to the above set then their composition ~01.. is defined as 

!.ox.=(xl, •.•• xn)o(yl •••• ,yn)=(xl. y1, ••• ,xn. yn) 

where "0" denotes the vector concatenation operation and the " " . denotes 

string concatenation operator. 

To each program R consisting exclusively of paths 

R=Pl. •• Pn 

we associate its set of operations Ops(R) defined by 

Ops(R)=Ops(Pl)U ••• U Ops(Pn) 

and its set of vector operations Vops(R) defined as follows: 

For each operation "a" in R we construct an n-vector a. The 
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i'th component of this vector for l<i<n denoted by [~)i is given 

by 

[~)i=1 a if a € Ops(Pi) 

I A otherwise 

where "A" denotes the null string. 

The set of vector operations of R, Vops(R) is then defined as 

Vops(R)={~la € Ops(R)} 

Let us define Vops(R)* to be the submonoid of 

n 
x Ops(Pi)* 

i=1 

generated by Vops(R) and ~=(A, ••• ,A) under the vector composition 

operation. The set of all possible behaviours or histories of R, the 

vector firing sequences of R, denoted by VFS(R) is defined by: 

VFS(R)=( ~ FS(Pi» (\ Vops(R)* 
i=1 

The set 

n 
x FS(Pi) 

i=1 

in the definition of VFS(R) guarantees that each string component of a 

history ~ € VFS(R) is a firing sequence of the corresponding path and 

the set Vops(R)* guarantees that all these firing sequences agree on the 

number and order of activations of the operations they share. 

By the construction of VFS(R) every element x of it represents 

everything that has happened in some possible period of activity of R. 

We may write x as a composition of vector operations ~, ••• ,am of 

Vops(R) as in (Vi) 
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(VI) x=a1 0 ••• Oam 

If for some operations "ak" and "al" for 1(k l( d k.11 _ ' _m an ~, [ak] He 
implies [~]i=e for i=I, ••• ,n then the composition akoal is the same as 

aloak. Such operations are said to be independent and we write 

ind(ak,al). If furthermore l=k+1 that is ak and ~ are neighbouring 

vectors in (VI), as in (V2) 

(V2) x=aIo ••• akoalo ••• am 

then x may also be written as (V3) 

(V3) x=alo ••• oaloako ••• oam 

The commutativity of vector operations in a vector firing sequence is 

interpreted to mean that the operations corresponding to these vector 

operations may execute concurrently. We say that 

two operations "a" and "b" are concurrent at a history x and we 

write 

a co b at x 

if ind(a,b) and xOa , xOb 6 VFS(R). 

This definition implies that only independent operations may execute 

concurrently. However, independent operations may not always be executable 

concurrently or may never execute concurrently at all. Let us consider 

the basic program (RI) 

(RI) 

program 

path a b end 

path b d end 

endprogram 

Although ind(a,d) and operation "a" may be executed initially, the 

operation "d" cannot be executed. However, whenever the operation "d" 
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can be executed so can the operation "a" and since they are independent 

they may be executed concurrently. For example, after the history aOb 

the operations "a" and "d" may be concurrently executed. 

It may happen that two independent operations cannot be executed 

concurrently at all. This occurs when there is not a history after 

which both operations may execute. 

program (R2) 

(R2) 

program 

path a b d end 

path b c d end 

endprogram 

Consider for example the basic 

Although operations a and c are independent that is ind(a,c) there is 

not an x 6 VFS(R2) such that 

xOa , xOc 6 VFS(R2) 

as the second path specifies that operation c occurs after b and before 

d, and operations a, band dare sequentialized in the first path. 

For the construction of the vector firing sequences of a basic 

program R, the following sets need to be constructed directly from R: 

1. the cycle sets of all paths in R, and 

2. the set of the vector operations in R, Vops(R). 

There is a modification of this construction by which the latter set is 

obtained from the sets of cycles of the paths of R and not from the 

program R. This alternative construction will be useful in the fourth 

chapter where we construct the vector firing sequences of basic programs 

generated from macro programs directly from the macro programs 

themselves. The sets of cycles of a basic program generated from a 

macro program will be constructed directly from the macro program 

itself. The set of vector operations however, cannot easily be obtained 



- 18 -

directly from the maCrl) program but may b'~ obtained, as we show below 

from the sets of cycles of paths. 

Let s be a string of concatenated symbols sl, ••• ,sn: 

s=sl. ••• • sn 

and denote by (s)i the i'th constituent symbol of s for l~i~n and by lsi 

the length of s. We may now obtain the set Ops(Cyc(P», the set of 

operations appearing in the cycle set Cyc(P) of the path P as follows: 

Ops(Cyc(P»={ala=(s)i for s € Cyc(P)and l~i~ISI} 

The two sets Ops(P) and Ops(Cyc(P» are the same since all the 

operations involved in P must appear in at least one string of the cycle 

set of P, as a single path cannot exclude any of its operations from 

executing. Having found the operations involved in each path of R we 

proceed by constructing Ops(R) and Vops(R) as before. 

2.4 THE SEMANTICS OF GENERAL BASIC PROGRAMS 

In general, a basic program R is a string of the form 

R=P1 ••• Pn Q1 ••• Qm 

where Pj for j=l, ••• ,n and Qi for i=l, ••• ,m denote paths and processes 

respectively. Although paths and processes may be intermixed in a basic 

program, in the above expressions for convenience, we assumed that all 

paths are collected before processes. 

In the COSy literature e.g [LS81] the semantics of a basic program 

involving processes is given by means of the vector firing sequences of 

an equivalent basic program R' involving just paths. The conversion of 

R into R' is denoted by Path(R) and is obtained by the following rule: 
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(Path Conversion Rule) 

1. For every a € Ops(R) construct a set 

la={ila € Ops(Qi) for l~i~m} 

and, if the cardinality of the set la denoted by Ilal is 

greater than zero, say 1=IIal>O then 

replace the operation "a" in each path it occurs,!by 

element 

(a&il, ••• ,a&il) 

where ik € Ia for k=l, ••• ,l 

the 

replace the operation "a" in processes Qik by a&ik for 

all ik € la. 

2. Replace all occurences of "process" by "path". 

Then the semantics of R are given by means of VFS(Path(R» and are 

obtained as defined in the previous section. 

Besides some differences of formulation between the way the path 

conversion ruleJ~xpressed in [LS81] and above, there is one another 

important difference. The rule in [LS81] specifies that an operation 
in 

"a" occuring in processes is replaced in each path it occurs V by the 

orelement OREL 

OREL a&il, ••• , a&il 

When however, the operation "a" is starred it should not be replaced by 

OREL but by the element 

(a&il, ••• ,a&i1) 

In the above rule we generalized this replacement to avoid considering 
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cases and we treat all the operations in the same way simplifying the 

conversion rule. 

The relation between the basic path program Path(R) and its vector 

firing sequences VFS(Path(R)) is already defined in 2.3. Here we have 

to relate the behaviour of Path(R) with that of R since R is the program 

the semantics of which we seek. Let us first introduce some 

terminology. We shall call the operations of the form 

a&ik for ik € Ia 

the descendent operations of a. The behaviours of Path(R) and Rare 

related as follows: 

If an operation "op" may be activated in Path(R) then 

1. If op is not a descendent operation of any operation in R 

then it may also be activated in R. 

2. If op is a descendent of some operation "a" in R of the form 

" a&j" for j € la, then the operation "a" may be activated in 

Rand out of all processes requiring its activation to 

progress, process Qj will be granted it. 

The set of histories VFS(Path(R)) may be obtained without R having to 

undergo any conversion, that is it may be obtained directly from R. In 

the method which follows the definition of firing sequences of paths and 

vector operations of programs defined in the previous section are 

modified and firing sequences for processes are defined. A program R is 

considered to be of the form 

R=Sl ••• Sn+m 

where Si for i=l, •••• n are paths and Sj for j=n+1, ••• ,m processes. Let 

us denote the set of histories obtained by this method by MVFS(R) 

standing for modified vector firing sequences. Let us define the set of 

the modified firing sequences of paths and processes in R by 
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MFS(Sj)=Pref(~Cyc(Sj)*) for j=l, .•• ,n+m 

where MCyc(Sj) denotes the modified cycles of Sj for j=l, .•• ,n+m. We 

shall distinguish two cases for the construction of MCyc(Sj) depending 

on whether Sj for j=l, ••• ,n+m is a path or process. 

MCyc(Sj) is defined by 

MCyc(Sj)=lpath-Cyc(Pj) if j=l, .•• ,n 
I 
Iproc-Cyc(Qj-n,j-n) if j=n+l, ••• ,n+m 

The function 

where path-Cyc(Pj) for j=l, ••• ,n denote the cycle sets of paths Pj for 

j=l, ••• ,n and proc-Cyc(Qj-n,j-n) for j=n+l, ••• ,n+m the cycle sets of 

processes Qj-n for j=n+l, ••• ,m. 

The function "path-Cyc" will be applied to the same syntactic 

entities as the function "Cyc" both yielding the same results except 

when applied to an operation OP belonging to processes. In this case 

"path-Cyc" will yield the set of descendent operations of operation OP. 

The function path-Cyc(Pj) is defined as follows: 

path-Cyc(e)=cases e: 

1- path (SEQ)* end -~ path-Cye( SEQ) --
2. ORELl; ••• ; ORELk -~ path-Cyc(ORELl) 0 ••• 0 path-Cyc(ORELk) 

3. STARELl, ••• ,STARELk -7 path-Cyc(STARELl) U ••• U path-Cyc(STARELk) 

4. ELEM* -7 path-Cyc(ELEM)* 

5. OP -7 I{OP} if Ilopl=O 
I 
I {OP&ili € lop} if IIopl>O 

6. (SEQ) -7 path-Cyc(SEQ) 

The function "proc-Cyc" will have two arguments. The first are 

syntactic entities in processes, the same as in paths. The second is 

the integer indexing processes and remains unaltered for a given 

process. The effect of "proc-Cyc" on the first argument is the same as 

that of "Cyc" with the exception of the case when the syntactic entity 

is an operation OPe In this case "proc-Cyc" yields one of the 

descendent operations of OP namely OP&j where j is second argument of 

"proc-Cyc". The function proc-Cyc(Qj,j) is defined as follows: 
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proc-Cyc(e,j)=cases e: 

1- process (SEQ)* end --
2. OREL1; ••• ;ORELk 

3. STARELl, ••• ,STARELk 

4. ELEM* 

5. OP 

6. (SEQ) 

-~ proc-Cyc(SEQ,j) 

-~ proc-Cyc(OREL1,j) 0 ••• 0 proc-Cyc(ORELk,j) 

~ proc-Cyc(STARELl,j) U ••• U proc-Cyc(STARELk,j) 

~ proc-Cyc(ELE:1, j)* 

-~ {OP&j} 

-~ proc-Cyc(SEQ,j) 

Let us define the sets of operations occurring exclusively in paths 

denoted by Pops(R) and operations occurring in processes denoted by 

Qops(R) of a program R by 

Pops(R)={ala € Ops(R),IIal=O} 

Qops(R)={a&ila € Ops(R),i € Ia} 

and the set of all operations in R denoted by Mops(R) by 

Mops(R)=Pops(R)U Qops(R) 

Let us now define two sets of vector operations of operations in Pops(R) 

and Qops(R) denoted by VPops(R) and VQops(R) respectively. The set 

Vops(R) is defined by 

VPops(R)={~la € Pops(R)} 

where a is an (n+m)-vector the j'th component of which, for l~j~n+m, 

denoted by [~]j, is given by: 

[a]j=la if l_<j~n and a € Ops(Pj) 
- I 

I A otherwise 

The set VQops(R) is defined by: 

VQops(R)={a&ila&i € Qops(R),i € Ia} 

where a&i is an (n+m)-vector the j'th component of which, for l~j~n+m, 

denoted by [a&i]j, is given by: 
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[a&i]j=la&i if l<j<n and a € Ops(Pj) or j=i+n 
- I --

If. otherwise 

Let us finally denote the set of the vector operations in R by lWops(R) 

and define it by 

HVops(R)=VPops(R)U VQops(R) 

We may now define the set of histories of R denoted by MVFS(R) by 

n+m n 
MVFS(R)=( x ~1FS(Sj» MVops(R)* 

j=1 

Having constructed MVFS(R) we need to relate its elements with execution 

of operations in R. Let us introduce some terminology first. We shall 

call the vector operations in the form a&j the descendent vector 

operations of an operation "a". 

The relation between ~NFS(R) and R is as follows: 

If a history x e XVFS(R) may be continued by the vector 

operation "op" then 

1. if ~ is not a descendent vector operation of R then 

operation "op" in R may be activated. 

2. If "op" is a descendent vector operation of operation "a" 

in R of the form a&j then operation "a" may be activated in 

R and out of all processes requiring the activation of "a" 

to progress, process Qj will be granted it. 

We next prove that the set VFS(Path(R» is the same as ~NFS(R). The 

symbol "III" will indicate "end of proof". 

THEOREM 2.1: 

For a basic program R of the form 

R=Pl ••• Pn Ql ••• Qm 
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where Pj for j=l, .•. ,n are paths and Qi for i=l ~ ,· •• ,u are processes, 

MVFS(R)=VFS(Path(R» 

Proof: 

We need to prove that 

1. n+m n+m 
x (MFS(Sj)= x (FS(P'j» 

j=l j=l 

where P' j represents the J"' th path in Path(R) for "1 +m J= , ••• , n , and 

that 

2. MVops(R)*=Vops(Path(R)* 

Proof of 1. It suffices to prove that 

MFS(Sj)=FS(P'j) for j=l, ••• ,n+m 

We will distinguish two cases: (a) when Sj is a path and (b) when it is 

a process. 

(a) Sj is a path, that is j=l, ••• , n. 

Since 

MFS(Sj)=Pref(path-Cyc(Sj)*) and 

FS(P'j)=Pref(Cyc(P'j)*) 

we have to prove that 

path-Cyc(Sj)=Cyc(P'j) 

The function "path-Cyc" is applied to the same syntactic entities as 

"Cyc". Furthermore, their definitions are exactly the same except in 

the case in which the syntactic entity is an operation. When an 

operation "op" does not appear in processes then path-Cyc(op)={op}. The 

operation "op" belongs to Ops(P'j) since it has not been replaced in Pj 
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and Cyc(op)={op}. 

When an operation "op" does belong to processes 

path-Cyc(op)={op&ili 6 lop} 

The operation "op" in path Pj is replaced by (op&il, ••• ,op&il) where 

1=1 lopl and ik € lop for l<k<l. According to the definition of "Cyc" 

Cyc«op&il, ••• ,op&il»)=Cyc(op&il, ••• ,op&il)= 

Cyc(op&il)U ••• U Cyc(op&il)= 

{op&il} U ••• U{op&il}={op&ili 6 lop} 

Therefore, MFS(Sj)=FS(P'j) for j=l, ••• ,n. 

(b) Sj is a process, i.e. j=n+l, ••• ,n-+m. 

Since 

MFS(Sj)=Pref(proc-Cyc(Sj)*) 

FS(P'j)=Pref(Cyc(P'j)*) 

we have to prove that 

proc-Cyc(Sj)=Cyc(P'j) for j=n+l, ••• ,m 

A process Qj in R for j=l, ••• ,m of the form 

Qj=process (SEQ)* end 

is converted into the path p'j+n of the form 

P'j+n=path (SEQ')* end 

in which SEQ' is obtained from SEQ by replacing each operation in SEQ by 

its name suffixed by "&j". Therefore, 

Cyc(P'j+n)=Cyc(path (SEQ')* end) 



- 26 -

is the same as 

Cyc(path (SEQ)* end) 

after replacing each operation name in all the strings in the above set 

by its operation name suffixed by "&j". 

produced by proc-Cyc(Qj,j). Therefore, 

MFS(Sj)=FS(P'j) for j=n+l, •• ,n+m 

Proof of 2. It suffices to prove that 

MVops(R)=Vops(Path(R» 

First, we observe that 

Ops(Path(R»=Mops(R)=Pops(R)U Qops(R) 

This however, is the set 

We shall show that for any a € Ops(Path(R» the vector operation 

~ € Vops(R) and ~ 6 MVops(R) are the same. If R consists of n paths and 

m processes in either case a will be an (n+m)-vector. 

We shall distinguish two cases: (a) operation a occurs only in paths 

and (b) operation a occurs in processes. 

(a) When operation "a" occurs only in paths the j'th component of 

a € Vops(Path(R» denoted by [~jj for j=l, ••• ,n+m is given by 

[ajj=la if a 6 Ops(P'j) 
- 1 

I>' otherwise 

which is the same as a 6 MVops(R) defined by 

[ajj=la if l~j~n and a 6 Ops(Sj) 
- 1 

I>' otherwise 

since for l~j~n Sj is Pj. 
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( b)when an operatl"on "a" belongs t . 0 processes, it is eliminated in 

Path(R) and descendent operations of the form "a&i" are introduced where 

i € la. The j'th component of the vector operations a&i € Vops(Path(R» 

denoted by [a&i]j for j=l, •.. ,n+m is defined by: 

[a&i]j=la&i if a&i € Ops(P'j) 
- I 

II.. otherwise 

Since "a&i" for i € Ia appears in paths P' j of Path(R) corresponding to 
paths Pj of R and in the p'i+n path of Path(R) corresponding to the 

process Qi of R, the vector operation a&i above is the same as 

a&i € MVops(R) defined as --

[a&i]j=la&i if l<j<n and a € Ops(Sj) or j=i+n 
- I --

I A otherwise 

Therefore, VFS(Path(R»=MVFS(R).111 

We may just add, for reasons of completeness, that basic programs 

were at first [LC75] given formal semantics in terms of Petri-nets 

[P73]. A construction was defined which associated any path-process 

program with a marked, labelled transition net which was intended to 

express its "meaning". The net semantics of [LC75] have since been 

modified [LSB79a] but the central idea remained the same. Each 

individual path or process, being essentially a regular expression, is 

associated with a labelled state machine. Putting paths and processes 

together into a program corresponds to a composition of their associated 

state machines. The distinction between paths and processes is 

expressed formally in the nature of the composition in each case. 

The current net semantics are based on a composition rule which takes 

two marked labelled nets Nl and N2 and produces a marked labelled net 

Nl(±)N2 by the identification of transitions with the same label. 

2.5 THE NATURE OF ANALYSIS IN COSY 

As we have mentioned, a basic COSY program descr ibes a system by 

specifying partial orders on the execution of its operations and 
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therefore, the only properties of interest are behavioural in nature. 

The formal model of behaviour, the vector firing sequences of 

path-programs permit us to speak formally of dynamic properties of a 

system specified by a path-program R. Properties of R may be 

expressed in terms of its corresponding vector firing sequences VFS(R). 

Such properties fall into two classes, the general and the specific 

properties. 

The general properties are those which apply to any program, 

properties such as absence of deadlock or starvation, which may be 

defined in terms of uninterpreted operations. 

path-program R is deadlock-free if and only if 

We say 

for every x € VFS(R) there exists an a € Ops(R):~o~ 6 VFS(R) 

that 

that is if and only if every history x may be continued. We say that 

a program R is adequate if and only if 

for every ~ 6 VFS(R) and for every operation a 6 Ops(R) 

there exists a X € Vops(R)*: ~o~o~ 6 VFS(R) 

a 

that is, if and only if every history of R may be continued activating 

eventually every operation in R. Adequacy is a property akin to absence 

of partial system deadlock. 

The specific properties involve the interpretation of a COSY program 

as a description of an actual system. The operations of a COSY program 

are interpreted as actions of a system and the behaviour of the program 

as the behaviour of the system. 

Considerable work has been done concerning the general properties of 

programs and in particular relating to adequacy [SL78, S79, LS80] and a 

number of general theorems have been obtained [S79]. For simple 

comma-free path programs there is a complete characterization of 

adequacy. Other theorems have been obtained which permit certain 

program transformations which preserve adequacy. 
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As far as specific properties of programs are concerned, various 

programs have been shown to satisfy some design requirements. The most 

involved of these is the parallel resource releasing mechanism [SL80j. 

In this short chapter we gave the syntax and the semantics of basic 

COSY programs, and we briefly outlined the nature of analysis and 

verification in COSY. The rest of the thesis deals with the macro 

notation. The next chapter deals with the syntax and expansion of macro 

programs and chapter four with their semantics. 
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3 THE MACRO COSY NOTATION 

Often in a basic COSY program we find regularities of structure 

forming various structures like collections of paths and/or processes, 

sequences, orelements, starelements and elements. For example, let us 

consider the basic paths specifying the three free frame buffer [LTS79]: 

Pl path depositl 

path deposit2 

path deposit3 

removel end 

remove2 end 

remove3 end 

in which the regularity of structure RSl 

RSl path depositi;removei end 

is repeated three times with "i" taking values 1, 2, 3. The regularity 

RSl may be used to obtain a more economical representation of Pl or to 

generalize it by parameterising the number of repetitions of RS1. For 

simple regularities, such as that of Pl, we may denote a repetition of a 

number of them implicitly by ellipses. For example Pl may be 

generalized to specify the n free frame buffer [LTS79] by 

P2 path depositl ; removel end 

path depositn ; removen end 

where the ellipses denote implicitly (n-2) repetitions of the regularity 

of structure RS1. 

When regularities appear within other regularities each having its 

own ellipses, the unambiguous characterization of the general pattern 

intended becomes an impossible task. It is apparent that a mechanism 

for the concise representation of regularities in basic COSY programs is 

needed from which these regularities may be generated unambiguously. 

The function of such a mechanism should be twofold: 

1. to use the template of a regularity, such as RS1, to make copies of 

it, differing, if at all, in the names of the operations involved, 
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and 

2. to generate the distinct operation-naQes in each copy. 

A simple way to generate names is to use common or collective names each 

denoting a collection of operations. Each of these operations may then 

be represented by a common name subscripted by a set of indices. 

~ow the task of generating names is reduced to the task of generating 

indices from an index set which may be the set of integers. By 

convention upper case letters have been used in the identifiers of 

common names. Following this approach PI may be rewritten using two 

common names "DEPOSIT" and "REXOVE" from which one obtains by 

subscripting the operations "DEPOSIT(i)" and "REHOVE(i)" which 

correspond to "depositi" and "removei" for i=1,2,3. The basic paths PI 

under this transformation become P3: 

P3 path DEPOSIT(l) 

path DEPOSIT(2) 

path DEPOSIT(3) 

REHOVE( 1) end 

RE!10VE(2) end 

REMOVE(3) end 

Strictly speaking P3 is not legal in basic COSY, since subscripted 

operations are not permitted. For this reason the syntax rule BN9 for 

the non-terminal "operation" of basic COSY will be replaced by the 

following three rules: 

BN9a. operation=simple-op/subscr-op 

BN9b. simple-op=lc-letter {lc-letter/digit/_}~ 

BN9c. subscr-op=uc-letter {uc-letter/digit/_}~({integer ~,}+) 

and the following rules 

BNl2. uc-letter=A/B/ ••• /Z 

BNl3. integer={digit}+ 

will be added 

In the above syntax rules we have used the same meta-language 

conventions as in chapter 2. From now on by a basic COSY program we 

will mean a string produced by the syntax rules BNI to BN8, BN9a, BN9b, 

BN9c, and BNIO to BNI2. Programs in this notation should satisfy the 

following context-sensitive restriction (Brest): 
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(Brest) 

Subscripted operations of the same collective name should 

have the same number of dimensions. 

The semantics of such programs are precisely the same as for programs 

produced by rules BNl to BNll of section 2.1 with the notion of 

operation extended to cover subscripted operations as well. 

The three paths in P3 may be precisely generated by the template RS2 

RS2 path DEPOSIT(i);REMOVE(i) end 

replicated three times with "i" taking values 1, 2, 3. 

This kind of a mechanism was incorporated in the COSY notation 

forming the macro COSY notation [L76, TL77]. In this notation 

collective names and their permitted sets of indices are collected by 

the collectivisors and regularities are concisely represented and 

precisely generated by replicators and distributors. 

Using the macro notation P3 would be represented by FB(3): 

FB(3) 

Cl array DEPOSIT, REHOVE(3) 

P4 [path DEPOSIT(i);REHOVE(i) end[2Jll,3,l] 

in which Cl is the collectivisor declaring the subscripted operations: 

DEPOSIT(i) and REHOVE(i) for i=l,2,3 

and P4 is the replica tor which specifies that the template RS2 is to be 

replicated and that the values index "i" takes, form a finite arithmetic 

progression which starts from 1 has upper limit 3 and difference 1, that 

is it takes the values 1, 2, 3. An n free frame buffer may be specified 

simply and concisely and generated precisely by generalising FB(3) to 

FB( n) : 
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FB( n) 

C2 array DEPOSIT,REMOVE(n) 

PS [path DEPOSIT(i);REMOVE(i) end~11,n,11 

which differs from FB(3) in that the number of operations in each 

collection of subscripted operations and the upper bound of the value 

the index takes have been parameterized by the constant n. 

Replicators may also be used to represent and generate regularities 

in sequences in paths and processes. Let us for example consider the 

basic path P6 

P6 path DEPOSIT(1);DEPOSIT(2); ••• ;DEPOSIT(n) end 

which together with FB(n) sequentializes the deposits on the frames of 

the free frame buffer. In P6 there is a regularity "DEPOSIT(i);" which 

is repeated (n-1) times with "i" taking values 1,2, ••• ,(n-l). Using the 

replicator feature of macro COSy the path P6 may be concisely 

represented avoiding the ellipses by P7 

P7 path [DEPOSIT(i);~ll,n-l,ll DEPOSIT(n) end 

Path P4 may be represented even more concisely by repeating 

"DEPOSIT(i);" n times and dropping the final ";" after "DEPOSIT(i)". 

This in macro COSY is specified by P8: 

P8 path [DEPOSIT(i)@;~ll,n,11 end 

in which the u@" is an operator which str ips the 

copy of "DEPOSIT(i);", that is when i=n. 

It. 11 , after the final 

Replicators of the form used in P8 occur so frequently that a 

shorthand has been introduced, the distributor. The distributor which 

generates P6 is simply: 

P9 path ;(DEPOSIT) end 

assuming that the collective name DEPOSIT has been previously declared 
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by the collectivisor C2. The distributors do not generate indices 

explicitly, like the replicators, but generate indices defined by the 

collectivisors. Although more complex distributors have been used in 

the notation, which we shall examine in the next section, for each of 

them there exist replicators which represent and generate the same 

regularities. The distributors cannot represent and generate all the 

regularities that replicators can and certainly they cannot represent or 

generate regularities that replicators cannot. The distributors may 

only represent and generate some special kind of regularities more 

economically than replicators. The distributor for example, cannot 

generate regularities which are nested within each other. In the 

sequence of the path P10, for example, specifying the stack of size 

three 

P10 path (UP(1);(UP(2);(UP(3);DOWN(3»*;DOWN(2»*;DOWN(1»* end 

the starelement "(UP(3);DOWN(3»*" is nested within the starelement 

"(UP( 2); ••• ; DOWN(2) )*", which in turn is nested within the starelement 

"(UP(l); ••• ;DOWN(l»*". To generate this imbrication of regularities 

another type of replicator has been used. According to it P10 may be 

generated by: 

Pll path [(UP(i)@;~;DOWN(i»*ll,3,l) end 

which may be easily parameterized to specify a stack of size n by 

P12 path [(UP(i)@;[}J;DOWN(i»*ll,n,l) end 

Replicators and distributors do not extend the descriptive power of 

basic COSY. They merely represent strings of indefinite but finite 

length of basic COSY concisely. The expansion of the replicators by 

. h sent has been which they generate the basic regularit1es t ey repre , 

defined [LS80) as follows: 

If a replicator is of the type Tl 

Tl [ P CD q lin,fi,inc] 
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where "p" and "q" are patterns involving the index i and "in", "fi", 

"inc" are integer expressions, then its expansion is given by Rulel 

(Rulel) 

lempty 
I 
I if inc=O or (fi)in and inc(O) or (in)fi and inc)O) 
I 
Isubstitute(p,i,in) [p[}Jqlin+inc,fi,inc] substitute(q,i,in) 
I 
I otherwise 

where "substitute(pattern,index,value)" indicates the string obtained 

from "pattern" by b t· t t· f " " su s ~ u ~ng every occurrence 0 the index by the 

integer value "value". If the replicator involves the "@" ,thus being 

of the form T2 

T2 [p@sl ~ q@s2 lin,fi,inc] 

where "p", "q", "in", "fi", "inc" are as in Tl, and "sl" and "s2" are 

one of the separators 

(Rule2) 

lempty 
I 

It." , or "," then its expansion is given by Rule2 

I if inc=O or (fi)in and inc(O) or (in)fi and inc)O) 
I 
Isubstitute(p,i,in) [sl p[JJq s2Iin+inc,fi,inc] substitute(q,i,in) 
I 
I otherwise 

where "substitute(pattern,index,value)" is defined as in Rulel. An 

alternative shorter way of specifying the long conditional expressions 

for the empty expansion is 

inc=O or (fi-in)*inc<O 

As we shall see in the next section the form T2 is not a valid form of 

replicators as it involves the "@" on both sides ot the index placer 

" [IJ ". Besides replicators of type Tl, two other forms of replicators 

are valid, denoted by T2a and T2b which involve the "@" on one side of 

the index placer only: 



- 36 -

T2a [ p @ s[I]q lin,ti,inc] and 

T2b [ p~q @ s lin,fi,inc] 

where "p", "q" are patterns as in Tl, and "s" one of the separators 11.11 , 
and 11 II , . The expansion of replicators of the forms Tl, T2a and T2b may 

be defined by one rule: 

(Replicator Expansion Rule) 

lif inc=O or (fi-in)*inc<O then empty 
I . 
lotherw~se 

I 
Ifor Tl :substitute(p,i,in) [p~qlin+inc,fi,inc] substitute(q,i,in) 
I 
Ifor T2a:substitute(p,i,in) [s p~qlin+inc,fi,inc] substitute(q,i,in) 
I 
Ifor T2b:substitute(p,i,in) [p~q slin+inc,fi,inc] substitute(q,i,in) 

The expansion of distributors was not formally defined directly; it 

was either described by an example or in terms of a replicator 

generating the same string. For example, in [LSB79] the expansion of 

the distributor 

csl(cs2( CNl cs3 CN2(k3, ,) cs4 CN3( ,k4,») 

where csi for i=1, ••• ,4 are either 

collectivisors defined by 

array CNl(n,m) 

array CN2(k,n,m) 

array CN3(n,k2,m) 

"." , or "," and CNj 

was defined to be the same as the string obtained from 

for j=1,2,3 are 

([([(CNl(i,j)cs3 CN2(k3,i,j) cs4 CN3(i,k4,j»@cs2[IJ11,n,1])@csl 

mll,m,l]) 

after all replicators are expanded. 

After the expansion of all the replicators and distributors in a 

d th li ' ti n of collectivisors, the resulting macro program an e e m~na LO L L 
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string should be a basic program. 

After this informal presentation of the macro notation features, we 

next review various notations and subnotations in detail, focussing our 

attention on their formal grammars and indicating which parts of the 

notation may be extended to obtain a concise representation of more 

basic programs and which parts of the grammars should be modified to 

obtain a more precise formulation of what a macro COSy program may 

generate. It is recommended that the reader, and especially when not 

familiar with the macro COSy notation, should leave the section 3.1 

until a later reading. In section 3.2 we propose a new notation and 

grammar for macro COSy which incorporates the suggestions for extensions 

and modifications of section 3.1. In section 3.3 we define and 

characterize the expansion of replicators and distributors and prove 

certain properties they possess. Some of these properties are used in 

proving that the expansion of any program produced by the grammar of 

section 3.2 may be produced from basic COSy rules as well. Finally in 

section 3.4 we evaluate the new notation and grammar. 

3.1 A REVIEW OF MACRO COSY NOTATIONS 

The macro notation has evolved considerably since it was first 

introduced [L76, LT77]. In this section we shall review the grammars 

for a number of notations and subnotations which have been used, 

concentrating our attention 

collectivisors, replicators 

mainly on the 

and distributors. 

syntax rules for 

In the syntax rules of 

this section we shall use the same meta-language conventions as in 

section 2.1. 

3.1.1 The Macro COSY Program 

A macro program consists of collectivisors, paths, processes, and 

replicators generating paths and processes, 

bodyreplicators. According to the 

which are usually called 

grammar in [L76, TL77] 

collectivisors, paths, processes and bodyreplicators appear between the 

word pair "begin" and "end". The syntax of a macro program is given by: 
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program=beg~~ {{path/process/collectivisor/bodyreplicator} l;}+ end 

Later the word-symbols "begin" and "end" were replaced by "program" and 

"endprogram" respectively [L79, LSB79, LSC81] and the ";" was eliminated 

as a delimiter between paths, processes, bodyreplicators and 

collectivisors. Some gr ammar s [LSC81 ] force the ordering that 

collectivisors should appear immediately after the word "program" 

followed by all paths and bodyreplicators generating paths which in turn 

are followed by all processes and bodyreplicators generating processes. 

This ordering restricts the ordering of paths and processes in basic 

programs obtained by expansion. The ordering of paths and processes in 

basic programs is not important. But the ordering specified in [LSC81] 

degrades the conciseness of macro programs in representing basic 

programs. Also the readability of macro programs is affected as the 

enforced ordering may not be the best way to group collectivisors, paths 

and processes, and bodyreplicators 

collectivisors were not used at all. 

together. In [L79, LSB79] 

3.1.2 The Collectivisors 

Collectivisors are used to declare subscripted operations of any 

finite number of dimensions. The collectivisor which declares 

subscripted operations corresponding to rectangular arrays the indices 

of which take consecutive positive integer values starting from 1 has 

been extensively used. Typical syntax rules may be found in [L76, TL77, 

TL78] : 

collectivisor=array {collectivename @,}+({upperbound ~,}+) 

collectivename=upper-case-letter{upper-case-letter/digit/_}~ 

upperbound=integer-expression 

The value of the integer expression "upper bound" should be greater 

or equal to 1. 

than 

In [LS80, LSC81] the explicit specification of a lower bound was 

permitted, thus increasing the class of subscripted operations which may 

be declared. The syntax of these replicators is given by: 
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collectivisor=array {arrayid ~,}+({lowerbound:upperbound ~,}+) 

where "arrayid" is defined like "collectivename" above. The value of 

the integer expression "upper bound" should be greater than or equal to 

the value of the integer expression "lowerbound". 

Subscripted operations which do not correspond to rectangular arrays 

and/or the indices of which are not consecutive integers could also be 

declared by the collectivisors. Replicators were used to specify either 

the exact set of admissible indices for each collective name or the 

exact set of admissible subscripted operations. The first approach was 

used in [LTD79]. For example, the subscripted operations 

S(1,l), 

S(3,1), S(3,2), S(3,3), 

S(5,1), S(5,2), S(5,3), S(5,4), S(5,5) 

would be declared by 

G3 array S<[[(i,j)Q]ll,i,1]011,5,2]>. 

The second approach was used more extensively [LTD80, G80 

According to it, the subscripted operations S would be declared by 

G4 array [[S(i,j)@,Wll,i,l] @,[IJll,5,2]. 

] . 

Both approaches specify equally concisely a single collection of 

subscripted operations. The advantages of the second approach become 

apparent when two or more collections of subscripted operations are to 

be declared which have the same range in some of their dimensions. In 

[LTD79], for example two collections of operations GET and GR were 

declared by G5 

in 

C5 array GET<[ [[(p,w,f)[EJ 11,m,l] [I] Iw,n, 1] G 11,n,1]> 

array GR<[[(w,f)[I]lw,n,l]G 11,n,1]> 

which GR and GET have the same index range in two dimensions but had 
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to be declared by two distinct collectivisors. In [LT[)80] though, the 
same operations were declared by a single collectivisor C6 

C6 array [[GR(w,f),[GET(p,w,f)@,C!] Il,m,l] @,[!]Iw,n,l] @,~Il,n,l] 

much more concisely. 

Although collectivisors involving replicators were used extensively, 

no formal grammar was ever given for them. 

3.1.3 The Bodyreplicators 

As we have seen in example FB(n) in the introduction of chapter 3 

specifying the n free frame buffer, replicators may generate collections 

of paths and/or processes. These replicators have been called 

"bodyreplicators" [L76, TL77, LTS79, LT78] or "replicatorprogrambody" 

[L79, LSB79] when they may generate paths and/or processes and 

"replpathprogrambody" and "replprocessprogrambody" [LSC81] when they may 

only generate paths and processes, respectively. We shall be refering 

to them as "bodyreplicators". The first syntax rule for them may be 

found in [L76, TL77]: 

bodyreplicator=[{bodypattern @ separatorlindex 

/bodypatternllindex\bodypattern2}lin,fi,inc] 

bodypattern={{path/process}~;}+ 

where "in", "fi", "inc" are integer expressions and "index" is an 

identifier distinct from any operation in the program. 

The "separator" in the first option of "bodyreplicator" should simply 

be ";" since the other separator, namely "," was never used at that 

position. Later the "." was eliminated as a delimiter between paths , 
and/or processes appearing only as the synchronization symbol for 

sequentialization of orelements in paths and processes. This option 

produces bodyreplicators generating consecutive regularities. 
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The second option of "bodyreplicator" produces bodyreplicators which 

generate imbrication of paths and processes. Since paths and processes 
simply follow each other and cannot be nested within each other, their 

imbrication was not essential and the same collection and ordering of 

generated by bodyreplicators of the 
paths and/or processes could be 

first option. For example the expansion of the bodyreplicator P13 

P13 [path DEPOSITl(i);REHOVEl(i)end[Ij 

path DEPOSIT2(i);REMOVE2(i)end Il,n,l] 

could be generated by two bodyreplicators P14, PIS 

P14 [path DEPOSITl(i);REMOVEl(i)end~11,n,l] 

PIS [path DEPOSIT2(i);REMOVE2(i)~ In,l,-l] 

or even by a single bodyreplicator P16 

P16 [path DEPOSIT1(i);REMOVE1(i)end 

path DEPOSIT2(n-H 1) ; REHOVE2( n-H 1 )end [Il11, n, 1] 

To guarantee the well-formedness of the basic program obtained after 

the expansion of a bodyreplicator the meta-restriction MRl was used: 

MRl 

"bodypattern1" and "bodypattern2" must be strings of symbols 

such that the omission of 

[ ... I index I· .. I in, fi, inc] 

yields a valid expression in basic COSY except for possible 

occurrences of indices. 

Meta-restriction MR1 does not 
~oo 

only exclude wide bodyreplicators, but 

also some which generate well-formed basic strings. The reason is that 

paths and processes in "bodypattern1" and "bodypattern2" may involve 

replicators and distributors in their sequences which are not valid 

expressions in basic COSY. The meta-restriction ~ml was not really 

necessary when the second option in the rule for "bodyreplicator" is 
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replaced by: 

bodypattern ;Iindex bodypattern 

which is precisely the syntax of the regularities in bodyreplicators 

generating imbrication. 

The above rules do not permit nesting of bodyreplicators, but any 

number of paths and/or processes could constitute a bodypattern. The 

replicators in P4 and P5 are permitted under these rules (pgs 32,33, resp.) 

In [LTS79] the ";" was eliminated as a delimiter between paths and/or 

processes. The syntax of all replicators was centred around one rule: 

&replicator= [&patternil index l&pattern2 I in, fi, inc] 

where "&" is replaced throughout by one of "body" or 

non-terminal "bodypattern" was defined as follows: 

bodypattern=body/bodyreplicator 

body=path/process 

" II The 

To guarantee the well-formedness of the expanded program a 

meta-restriction was defined which when applied to bodyreplicators 

reduces to HRI. This meta-restriction is not necessary on 

bodyreplicators when the non-terminals "bodypatternl" and "bodypattern2" 

are defined as "bodypattern". 

The above rules permit nesting of bodyreplicators. For example the 

bodyreplicator PI7 is permitted: 

PI7 [[path TR(i,j);TR(i+I,j) endm II,k+I,I] OJ 11,n,l] 

specifying n pipelines of size k. 

The grammars in [LSB79, L79] defined bodyreplicators, produced by the 

non-terminal "replicatorprogrambody" which is defined as follows: 
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replicatorprogrambody=programbody 

/[replicatorprogrambodylindex !Iin,fi,incl 

programbody=pathprogrambody processprogrambody 

pathprogrambody={path}~ 

processesprogrambody={process}~ 

According to the above rules bodyreplicators may be nested and any 

number of paths and/or processes could be in each one provided paths 

appear before processes. These replicators unlike the replicators in 

[LTS79] do not generate imbrication of paths or processes and no 

meta-restriction was necessary to be applied to them. However, the way 

"programbody" is defined permits the production of empty program bodies 

and empty regularities in bodyreplicators. Consequently, the expansion 

of macro programs may yield basic programs with empty bodies which are 

not permitted by the basic COSY syntax. This could be avoided if the 

rules for "programbody", "pathprogrambody" and "processprogrambody" are 

replaced by the rule: 

programbody={path/process}+ 

The bodyreplicators produced by the rules in [L79, LSB79] above, always 

generate well-formed basic notation strings when their expansion is not 

empty. 

In [LSC81] the syntax rules 

replpathprogrambody={path/[replpathprogrambodylindex\ lin,fi,inc]}~ 

replprocessprogrambody={ process 

/[replprocessprogrambodylindexi lin,fi,incl}~ 

produce bodyreplicators generating either paths or processes. The paths 

and bodyreplicators generating paths must appear before processes and 

bodyreplicators generating processes. Nesting of replicators generating 

paths and nesting of replicators generating processes is permitted but 
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nesting of one type inside the other is not. Similarly to the rules in 

[L79, LSB79] the above rules also permit empty program bodies and empty 

regularities in bodyreplicators. 

3.1.4 The Paths and Processes 

These differ from the paths and processes of basic COSY in that they 

may include replicators, distributors and indexed operations the indices 

of which may depend on replicator indices. Some of the grammars 

developed specify that they may appear as elements, others as 

orelements, and others as sequences. Here we examine the implications 

of each of these choices. 

The first syntax for them appeared in [L76] where the following rules 

for paths and processes were given: 

path=path pathsequence end 

pathsequence=starsequence 

starsequence=starsequence;starorelement/starorelement 

starorelement=starorelement,starelement/starelement 

starelement=pathelement*/pathelement 

pathelement=element/(pathsequence)/pathreplicator 

process=process sequence end 

sequence=sequence;orelement/orelement 

orelement=orelement,element/element 

element=operation/(sequence)/replicator/distributor 

/collectivename({{integer/integerexpression} ~,}+) 
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In this grammar the "sequence" and "pathsequence" differ in that the 

former may produce starelements. However they both may produce 

replicators, produced from "replicator" if the whole string is produced 

by "sequence", or from "pathreplicator" if the whole of the str ing is 

produced from "pathsequence". The "pathreplicator" according to the 

above syntax could be starred. We believe that this makes the notation 

confusing, since after expansion the star only applies to the rightmost 

element of the resulting string and not to the whole string. However 

this choice does not generate invalid basic COSY programs and 

furthermore it increases the power for conciseness of the replicators. 

Consider for example path P18: 

P18 path A(1);A(2);A(3)* end 

which may be generated by P19 

P19 path [A(i)@;[2Jli,3,1]* end 

which is permitted by the syntax of [L76]. In these syntax rules the 

non-terminal "operation" produces only simple operations. Subscripted 

operations 

"element". 

are produced by the last option of the non-terminal 

In the grammars of [TL77, LT78] "pathsequence" was replaced by 

"sequence" so both paths and processes may include replicators and 

distributors but no starelements. 

The syntax rules in [LTS79] for paths and processes was given by 
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path=path sequence end 

process=process sequence end 

sequence=sequence;orelement/orelement 

orelement=orelement,starelement/starelement 

starelement=element/element* 

element=operation/(sequence)/replicator/distributor 

/collectivename({indexexpression !,}+) 

According to the above rules starelements are reintroduced in the 

sequences of processes. Consequently, replicators and distributors may 

be starred as in the sequences of paths. 

In [L79j various syntax rules were developed. Some of these rules 

however, specify both the context of replicators in sequences together 

with the syntax of the replicators themselves. We feel that these are 

two distinct issues. A replicator for example, could appear in a path 

as a sequence, as an orelement or as an element but in each case it may 

generate any string be it a sequence, or an orelement, or an element 

forming in each case a well-formed basic string. We took the liberty to 

split some of the rules so that we may concentrate on one of these 

issues at a time without being distracted by the other. By doing so we 

create some new non-terminals which we super fix by "0,, to indicate that 

these were not in the original syntax of [L79j but ~Sue to our 

modifications. In the next subsection we give the original syntax rules 

and examine what strings replicators generate and \vhether these strings 

on their own are legal basic COSY and only then we examine both the 

expanded string together with its context for well-formedness. Let us 

examine the syntax of the paths and processes in [L79j: 



- 47 -

path=path {sequence/replicator O} end 

process=process {sequence/replicator O} end 

sequence={orelement ~;}+ 

orelement={starelement ~,}+ 

starelement=element/element* 

element=operation/indexedoperation/(sequence) 

As it was observed in [L79] this syntax only generates sequences in 

paths which consist of single replicators or a number of them 
individually nested within "e )". The above rules cannot produce 

replicators in other contexts as for example that of P20 

P20 path a;[ ••• ];[ ••• ];b end 

where "[ ••• ]" indicate replicators. 

The second set of syntax rules given in [L79] replaced the production 

for non-terminals "path", "process" and "sequence" by 

path=path sequence end 

process=process sequence end 

sequence={replicatororelement @;}+ 

replicatororelement={orelement/orreplicatorO} 

respectively. According to the above rules a replicator can only appear 

as an orelement in a sequence and therefore only in the following 

contexts: 

on its left 

any of 

e 

on its right 

any of 

end 

) 

This . d b t Ii ators cannot appear in the implies that P20 is perm1tte u rep c 

context of starelernents as for example in path P21 
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P 21 pa t h a, [ ••• 1 , [ ••• 1 , bend 

Certainly a sequence of the form in path P22 

P22 path a,([ ••• ]),([ ••• ]),b end 

is permitted but we should not conclude that this syntax just generates 

redundant parentheses maintaining the semantics of the path when 

expanded. It may well be that the additional parentheses change these 

semantics. It all depends on the main connective of the expanded 

string. If it is a comma then the parentheses are just redundant, but 

if it is a semicolon these may change the semantics of the path if one 

of the separators around the replicator is a " 1t , . Let us consider the 

path P23 

P23 path a,[C(i)@,IT]ll,3,1] end 

which expands to P24 

P24 path a,C(1),C(2),C(3),b end 

the cycle set of which is 

{a,C(l) ,C(2) ,C(3) ,b} 

If the replicator in P23 were nested within parentheses as in P25 

P25 path a,([C(i) @AJOll,3,1]),b end 

the cycle set of its expansion would be exactly that of P24. 

To demonstrate that additional parentheses may change 

of a path consider the path P26 

the semantics 

P26 path a,[C(i) @1J]ll,3,1],b end 

which expands to the basic path P27 
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P27 path a,C(1);C(2);C(3),b end 

the cycle set of which is 

{a.C(2).C(3),a.C(2).b,C(1).C(2).C(3),C(1).C(2).b} 

If the replicator in P26 were nested inside parentheses 

P28 path a,([C(i)@;~ll,3,lj),b end 

the cycle set of the path obtained by its expansion P29 

P29 path a,(C(1);C(2);C(3»,b end 

would be 

{a,C(1).C(2).C(3),b} 

which defines firing sequences different than those defined by the 
cycles of P27. 

In the grammar of [LSC81j the syntax of paths and processes is given 

by: 

path=path (gsequence)* end 

processes=process (gsequence)* end 

gsequence={gorelement ~;}+ 

gorelement={gelement ~,}+ 

gelement=element/replgseq/distrgseq 

element=operation/indexedoperation/(gsequence)/element* 

in which "gsequence", "gorelement", "gelement" stand for "generalized" 

sequence, orelement, element respectively as the strings they produce 

may include replicators and distributors. The non-terminals "replgseq" 

and "distrgseq" produce replicators and distributors respectively which 

appear in sequences. According to the above syntax, replicators and 

distributors appear as non-starred elements. 
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3.1.5 The Replicators in Sequences 

In section 3.1.4 we examined 

context of replicators in sequences. 

these replicators. 

the syntax rules which specify the 

Here we examl" ne th f e syntax 0 

The grammar in [L76] specified the following syntax for 

in sequences: 

&replicator=[{ &pattern @ separator I index 

/&patternl lindexl&pattern2}\in,fi,inc] 

replica tors 

where "&" is replaced throughout by either "path" or "" The 

non-terminals "pattern" ad" th t" d f" • n pa pa tern were e lned by: 

pattern=sequence 

pathpattern=pathsequence 

The restriction MRla, similar to MRl for bodyreplicators, applied to 

patterns and pathpatterns: 

MRla 

"&pattern1" and "&pattern2" must be strings of symbols such 

that the omission of "[ ••• lindex .•• \ in, fi, inc]" yields a 

valid expression corresponding to the prefix "&" of the 

patterns except for possible occurrences of indices. 

The first option of the syntax rule for replicators produces replicators 

which generate consecutive regularities. The replicators produced by 

the non-terminals "pathreplicator" and "replicator" of this type always 

generate well-formed valid strings when expanded. This may be shown 

formally in the manner demonstrated in section 3.3 where we prove 

similar results for programs produced by the grammar of section 3.2. 

Furthermore they may generate regularities forming strings which may be 

produced by the basic COSY non-terminal "sequence". The disadvantage of 

this syntax is that the separators after the "@" are treated as of equal 

precedence, thus altering the precedence of comma over semicolon 

specified in basic COSY. 
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The second option intends to prodlJce repl' t h' h lC~ ors w lC gener~te 

imbrication of regularities. Unfortunately, the replicators produced by 

this option, satisfying MRla do not generate well-formed basic COSY 

strings. This is for two reasons: 

1. Since replicators appear as elements and pathreplicators as 

pathelements in sequences, whatever they generate must be between 

one of the symbols "path", ";", ",", "(" on the left and ")", ",", 

11.11 , , "end" on the right. Any legal string between these sets of 

symbols may in general, be produced by the non-terminal "sequence" 

of basic COSY. 

2. The second reason is that the "@" does not appear in the second 

option at all, thus no separators are dropped upon expansion. 

Let us consider the path P30 

P30 path [(UP(i);RESET(i)[IJ)*ll,n,l] end 

which is permitted by the syntax of [L76] and when expanded for n=3 

generates the string 

P31 path(UP(1);RESET(1)(UP(2);RESET(1)(UP(3);RESET(3»»end 

which is not legal since there are some separators missing after 

RESET(l) and RESET(2). If we try to improve on that by putting a comma 

after RESET(i) in P30 obtaining P32 

P32 path [(UP(i);RESET(i),~)ll,n,l] end 

and expand it again for n=3 we obtain the string 

P33 path(UP(i);RESET(1),(UP(2);RESET(2),(UP(3);RESET(3),»)end 

which would be legal if it were not for the co~na after RESET(3). Only 

P30 is a legal pathreplicator according to the syntax and satisfies 

MRla, but neither P30 nor P32 generate basic sequences. There is only 

one special case when P30 generates a well-formed expansion that is when 
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n=1 i.e. when the replica tor generates one copy only 

P34 path (UP(1);RESET(1» end. 

As we have noted replicators according to the syntax of [L76] appear 

as elements in a sequence. For this reason another meta-restriction 

should be imposed on them to exclude replicators specifying empty index 

ranges which would imply empty expansions and collision of terminal 

symbols in the context of the replicators. This should apply to all 

replicators which appear as sequences, orelements and elements. For 

example, if in the path P35 

P35 path a,[C(i)@,~11,n,l] end 

the value of n were zero, the path after the expansion of the replicator 

would be P36 

P36 path a, end 

which is not legal in basic COSY, as there is a collision of the 

terminal symbols " tI , and "end". 

In [TL77] the "pathsequence" was replaced by "sequence". The syntax 

rules were simplified after the elimination of "&" standing for either 

"path" or " " but still all the previous comments regarding the grammar 

of [L76] apply to the grammar of [TL77] as well. 

be 

In [LS77] no formal grammar was given. A replicator was defined to 

"an iterative copy operator which permits the finite 

. of program text of finite but indefinite length". 
representat~on 

The general form of a replicator was defined as 

either [patternlindex! lin,fi,inc] 

or [patternl !index!pattern2I in ,fi,inc] 
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where the patterni for i=1,2 were defined to be strings. This is the 

most general replicator which may be defined Ob· 1 all 
• VlOUS Y possible 

regularities could be generated by using such replicators not 
necessarily forming well-formed basic strings. For this reason 
meta-restriction MR2 was used: 

MR2 

patterni's must be such that the resulting string after 

expansion must be a valid expression in basic COSY. 

the 

The above rule may be interpreted in two ways. The first may be that 

the expansion of each replicator must be a sequence, or an orelement, or 

an element. However, the path in page 16 of [LS77] 

P37 path 

testO* 

,( countincr 

;testl*[,(countincr;test*~;countdecr)*ln,1,-l] 

;countdecr 

)* 

end 

contradicts this interpretation since the replicator itself does not 

expand to any valid expression in basic COSY. 

The above path is consistent with the second interpretation by which 

programs may involve replicators in any context and patterni for i=1,2 

may be any strings. For the replicator to be well-formed though, the 

string obtained after the expansion of the replicators must be 

well-formed basic COSY programs. This interpretation of MR2 has some 

interesting implications. In the introduction of this chapter we 

presented the replicator P4 specifying the three free frame buffer from 

which a generalization for an n-free frame buffer was derived by just 

altering the upper limit of the values the index takes from 3 to n. The 

second interpretation of rule MR2 does not in general permit this kind 

of generalization. Consider for example, the path P38 

P38 pat~ (([A(i);B(i))@,[IJll,2,1] end 
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which is well-formed according to the second int~rpretation of ~~2. 

since after the expansion of the replicator path P39 

P39 path((A(1);B(1»,(A(2);B(2»end 

is obtained, which is well-formed in basic COSY. If we generalize the 

replicator in P38 to generate n regularities of "A(i);B(i»," by 

replacing 2 by n path P40 is obtained: 

P40 path (([A(i);B(i»@,~ll,n,l] end 

The resulting string after the expansion of the replicator in P40 will 

only be well-formed when n=2. When n<2 there will be more opening 

parentheses than closing ones and when n>2 more closing parentheses than 

opening ones. Therefore the fact that a replicator is expanded to a 

well-formed basic string for a particular index range does not 

necessarily imply that this replica tor will generate well-formed basic 

strings for any index range. We shall call this kind of replicator 

range dependent. We feel that these replicators should be avoided and 

that the macro notation should only allow replicators which when 

expanded always generate well-formed basic COSY strings for any non 

empty range of their index. 

The syntax rules in the grammar of [LTS79] producing replicators 

which generate imbrication of regularities were similar to those 

presented in [L76] but the problem of not generating well-formed basic 

COSY strings is overcome. The syntax for the replicators generating 

consecutive regularities was considered as a special case of the 

replicator generating imbrication of regularities. The rules for the 

syntax of replicators were: 

replicator=[pattern1Iindex!pattern2Iin,fi,inc] 

pattern={sequence/separator}2 /pattern @{;/,} 

separator=;/,/*/(/) 

where exactly one of patterni for i=1,2 must have the form 

"pattern @{;/,}". Similarly to [L76, LT79] a meta-restriction of the 

type of MR1 was applied to these patterns: 
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MRl' 

"pat te .... nl'" st b t i fbi L mu e s r ngs 0 sym 0 s such that the omission 

of 

P.~d~xJ I in, fi, inc] or 

li~~dex-, @{;/,}Iin,fi,inc] or 

@{;/,}Iindex lin,fi,inc] 

yields a valid expression. 

This syntax together with the meta-restriction MRl' produce replicators 

which generate well-formed basic sequences. This may be proved in the 

style we proved similar results in section 3.3. This syntax does not 

produce any range dependent replicators. The meta-restriction rule MRl' 

excludes all replicators which when expanded do not generate well-formed 

basic COSY strings. Furthermore the legal replicators may generate 

nested regularities. For example the paths 

P41 path [(DEPOSIT(i)@;~;REMOVE(i))*ll,n,l] end 

P42 path [(DEPOSIT(i);~REMOVE(i))*@;ll,n,l] end 

are both valid. However there is a class of nested regularities which 

they cannot generate. Consider for example the basic path P43 

P43 path(A(1),(A(2),(A(3);B(3)),B(2)),B(1)) end 

the sequence of which cannot be generated by any of these replicators. 

If we examine P43 we see that the element "(A(3);B(3))" is nested inside 

the element "(A(2), ••• ,A(2))" which in turn is nested inside the element 

"(A(l), ••• ,B(l))". The reason this kind of replicator cannot be written 

is not because the innermost element is not an exact copy of the other 

elements. This is true in general for any nested regularities. 

Consider for example the path P44 

P44 path(A(1),(A(2),(A(3);B(3));B(2));B(1))end 

are 
in which the innermost regularity is "(A(3) ;B(3))" whilst the others'iof 

the type "(A( ), ••• ;B( ))". However the sequence of path P44 may be 
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gener a ted by P45 

P45 path [(A(i)@,IT);B(i»ll,3,1] end 

We may characterize the class of regularities which cannot be generated 

by replicators. It is the class of regularities in which all are of the 

form 

p(i) sl ••• sl q(i) 

in which "p", "" q are patterns involving some index "i" and "sl" 

represents one of the separators 

regularity which is of the form 

p( fi) s2 q( fi) 

II " , or ";", except for the innermost 

in which the index "i" in the patterns "p", "q" is replaced by i's last 

value, namely "fi" and the separator "s2" is distinct from "sl". For a 

replicator to generate this kind of regularities, the separator after 

the "@" should not be stripped but should be replaced by another 

separator. 

We have pointed out that the syntax rules of [LTS79] together with 

MRl' produce replicators which only generate well-formed basic COSY 
too 

strings. Without MRl' though their syntax would be'lwide as the strings 

the replicators could generate would not in general be well-formed in 

basic COSY. We feel that close-fitting formal syntax rules should be 

derived producing replicators which after expansion generate well-formed 

basic COSY strings. The syntax in [L79] and [LSC81] gave some partial 

solutions to this problem. 

In [L79] the problem of more "close-fitting" rules for replicators 

was discussed and various syntax rules were developed. The approach 

followed was to start from syntax rules producing simple replicators and 

to extend them to produce replicators able to generate larger classes of 

regularities. The first replicator together with its context was 

defined by 
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path=pat~ {sequence/[element @ separatorIT]lin,fi,inc]} end 

process=process {sequence/[element ~ separator[}Jlin,fi,inc]} end 

separator=j/, 

According to this definition nesting of replicators is not permitted. 

Replicators may generate sequences if the separator after the "@" is ";" 

or orelements if this separator is a ",". Since the regularity they 

replicate is "element", redundant parentheses have to be introduced when 

orelements or sequences are replicated. Consider for example paths P46 

and P47 

P46 path A(l),B(l)jA(2),B(2);A(3),B(3) end 

P47 path A(l)jB(2)jA(2)jB(2);A(3);B(3) end 

According to the above rules the paths P48 and P49 

P48 path [(A(i),B(i»@j~ll,3,l] end 

P49 path [(A(i)jB(i»@j~ll,3,l] end 

are permitted, involving replicators which when expanded generate paths 

with the same semantics as P46 and P47 respectively, by introducing 

redundant parentheses. The above rules cannot produce replicators which 

expand to precisely the paths P46 and P47. 

The above syntax rules produce replica tors which always generate 

well-formed basic COSY strings when their expansion is not empty. 

However, they may only appear in a very limited context, namely in place 

of whole sequences between "path" and "end" or between "(" and ")". 

Thus, as it was pointed out in the example (E20) in [L79] the process 

PSO 

PSO process b;[(AB(i);AE(i»@,[Ijll,n,l];c end 

is not permitted. The syntax rules were then extended to cover at least 

this case: 
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path=path sequence end 

process=process sequence end 

sequence={ {orelement 

/[orelement 2 separator~ lin,fi,inc]}_@;}+ 

These rules also do not °t 0 f perml nestlng 0 replicators. They do not 

introduce as many redundant parentheses as the previous rules though. 

For example P46 may be exactly generated by PSI: 

PSI path [A(i),B(i)@;~ll,3,1] end 

The main limitation with both the above sets of rules in [L79] is that 

they do not permit nested replicators. As the example (E22) in [L79] 

demonstrates, the process PS2 

PS2 process b;[[(AB(i,j);AE(i,j»@,[IJll,n,l]@,Wll,k,l];c end 

is not permitted. The syntax rules were extended to permit nesting of 

replicators: 

sequence={replicatororelement ~;}+ 

replicatororelement=orelement 

/[replicatororelement J separator~lin,fi,inc] 

separator=; / , 

The replicators produced by these rules generate well-formed basic COSY 

strings. Again, redundant parentheses have to be introduced when 

sequences are replicated as in P49. The intention in [L79] was not just 

to define replicators which generate well-formed strings. In addit ion 

the syntax in [L79] was aiming to define replicators the expansion of 

which could be produced by the basic COSY non-terminal "sequence" or 

"orelement" and this expansion to appear in a sequence as a subsequence 

or as a suborelement respectively. In other words the first and the 

last element of the expansion should bind with the rest of the expansion 
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and not with other elements in the rest of the sequence. 

example the path P53: 

P53 path b;[A(i)@,[IJll,3,1];c end 

which when expanded yields P54 

P54 path a;A(1),A(2),A(3);c end 

Consider for 

The expansion of the replicator in P53 on its own yields an orelement 

and it is also an orelement in the context it appears in path P54. We 

will say that the replicator in P53 generates a syntactically strong 

string. Not all replicators generate syntactically strong strings and 

furthermore not in any context. Consider for example P55: 

P55 path b,[A(i)@;[}Jll,3,1],c end 

in which the expansion of the replicator on its own is a sequence. But 

its expansion in the context of P55 

P56 path b,A(1);A(2);A(3),c end 

is not a syntactically strong string since A(l) binds with operation b 

and A(3) with c and not with the rest of its expansion. The aim of 

[L79] was therefore to obtain syntax rules for replicators which 

generate syntactically strong strings in the context they appear. The 

previous syntax rules of [L79] do not permit path P55. 

permit path P57 

P57 path [[A(i,j)@;(I]ll,2,1]@,[IJll,2,1]end 

They however 

in which the inside replicator does not produce syntactically strong 

strings, as may be seen when both replicators are expanded: 

P58 path A(1,1);A(2,1),A(2,1);A(2,2) end 

For this reason the definition of "replicatororelement" was redefined 

as: 



- 60 -

replicatororelement=orelement 

/([replicatororelement @;[IJlin,fi,inc]) 

/[replicatororelernent @,~Iin,fi,incl 

and at the cost of redundant parentheses it was simplified to: 

replicatororelement=orelement 

/([replicatororelement @ separator~lin,fi,inc]) 

These rules produce replicators which when expanded produce well-formed 

and syntactically strong strings. Their only disadvantage is that they 

introduce reduntant parentheses in three contexts. The first is when 

they appear as orelements in a sequence as for example in P59: 

P 5 9 pa t h ([ ••• ]); ( [ ••• ] ) ; ••• end 

The parentheses are redundant for whatever strings the replicators 

generate. The second context is when replicators appear as elements in 

an orelement and the replicators generate orelements as in P60: 

P60 path ([ ••• @,OI ••• ]),([ ••• @,OI ••• ]), ••• end 

Finally, they introduce reduntant parentheses around the regularities 

they generate in the context 

P61 path ••• [ ( ••• ; ••• ; ••• ) @;O I ••• ] • •• end 

In the next chapter, where we address the problem of finding the 

semantics of a basic program generated from a macro program, directly 

from the macro program itself, we derive syntax rules for replicators 

generating syntactically strong strings without the enforcement of 

redundant parentheses. 

The rules given in [L79] which we examined up to now, produce 

replicators which generate consecutive regularities. The first rule for 

replicators generating imbrication of regularities is: 
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replicatororelement=orelement 

/«(replicatororelement @ separatorCI] 

{/separator replicatororelement}lin,fi,inc) 

/ ([replicatororelement separator OJ 
replicatororelement @ separatorlin,fi,inc) 

This rule produces all replicators produced by previous rules in [L79). 

It also produces replicators which generate some imbrication of 

regularities as for example the replicator in P62: 

P62 path ([A(i)@;~;B(i)II,3,l) end 

which expands to 

P63 path(A(1);A(2);A(3);B(3);B(2);B(1» end 

This is a special kind of imbrication. The general kind of imbrication 

of regularities is when these have opening parentheses on the left of 

the place holder 'e" and corresponding closing parentheses on the right 

of the place holder as in the stack example PII, P12. To produce this 

kind of replicator the rules for "replicatororelement" were extended to 

replicatororelement= 

orelement 

/([{rseparator}2 replicatororelement @ separatorCI] 

{/{rseparator}2 replicatororelement {rseparator}~}lin,fi,inc) 

/ ([ {rseparator}2 replicatororelement @ separator II] 
{rseparator}2 replicatororelement @ separatorlin,fi,inc) 

rseparator=separator/(/)/* 

Although these rules permit the replicators in Pll, PI2 they may also 

produce other replicators which do not generate well-formed basic COSY 

strings. For example, the number of opening parentheses on the left 
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hand side of the place holder "0" do not necessarl'ly h matc with closing 

parentheses on the right hand side of the place holder. Therefore 

together with the above rule a meta-restriction rule is needed to filter 

out all those replicators which generate invalid basic COSy strings. It 

is apparent that even more close-fitting rules are needed. 

In [LS80] the grammar for replicators was given by: 

basicsymbol 

index 

=some finite set of basic symbols 

not including the "@". 

=sorne possibly infinite set of symbols 

distinct from basic symbols 

indexexpression =integer expression involving only indices and 

integer constants 

pattern 

replicator 

={basicsymbol/index}~/replicator 

=[pattern{@{;/,}/}~pattern{@{;/,}/}I 

indexexpression,indexexpression,indexexpression] 

Since no other rule for constraining the patterns of the replicators was 

given these may generate any strings of basic symbols. We feel that 

these rules are very wide and more close fitting rules are required 

improving on the syntax of [L79]. 

In [LSC81] we presented context-free syntax rules general enough to 

produce all the macro programs in this paper involving replicators 

generating well-formed basic COSy strings. The context-free rules were: 
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replgseq=[{gseqrepll/gseqrep12}lin,fi,inc] 

gseqrepll=gsequence @ sep lindex 

gseqrep12=gsequence @ sepQiidex Jsep gsequence 

/{gsequence sep/} elementrepl {/sep gsequence} 

elementrepl=elementrepl* 

/ ({gsequence @ sep lindex 11 i~ gsequence/gseqrep12}) 

If we eliminate the middle option of the second alternative for 

"elementrepl" all replicators produced generate well-formed basic COSy 

strings. This again may be proved in the style we proved similar 

results in section 3.3. The above rules permit replicators which 

generate a large class of imbrication of regularities such as the stack 

specified by Pll and path P64: 

P64 path [( A( i)@ ; IT] ) , B( i) 11,3,1] end 

The above rules specify that any number of unmatched opening parentheses 

on the left of the place holder, match with closing parentheses on the 

right of the place holder. These rules however, cannot produce 

replicators which involve the "@" on the right of the place holder like 

the replica tor in path P65 

P65 path [SK(i),(G]A(i);B(i»@;ll,n,l] end 

The rules of [LSC81] may be extended to permit such replicators: 

replgseq=[gseqrepllin,fi,inc] 

gseqrepl=gsequence @ sep !index I 
/ !indexlgsequence @ sep 

/gsequence @ sep!indexlsep gsequence 

/gsequence sep lindex\gsequence @ sep 

/elementrepl 

elementrepl=elementrepl*/(gseqrepl) 
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Although the above rules are close-fitting and all replicators they 

produce generate well-formed basic COSY strings they specify a mixed 

precedence of ".," and ",". Th b I e a ove ru es may not produce replicators 

generating strings such as the sequence of path P43 since the "@" only 

strips and does not replace any separators by others. The need is still 

apparent for context-free rules producing more general replicators which 

expand to well-formed basic COSy strings. 

3.1.6 The Distributors 

Historically, distributors were the first macro feature to be used 

[CL76] in the path notation [LC7S] as a shorthand. The term 

"distributor" was introduced later [L76] with the rest of the macro 

notation. In [LC7S] the formal definition of the path definition was 

introduced and was extended by a SIMULA class-like construct which 

permits classes to contain both paths and processes. In [LC76] arrays 

of classes could be declared which were called sets. The shorthands 

P.(,S) and P.(;S) 

were defined, where S is a set containing k elements and P is an 

operation, called a procedurename in [LC76], in paths or processes in 

each class SCi) for i=1,2, ••• k. These shorthands denoted the strings: 

P.S(1),P.S(2), ••• ,P(k) and 

P.S(1);P.S(2); ••• ;P.S(k) respectively. 

In [L76, TL77] the notation for distributors was changed to deal with 

collective names and not with sets: 

distributor= 

separator({{collectivename 

/collectivename({{integer/indexexpression}~,}+)} 

~separator}+) 

A distributor may only generate certain types of consecutive 
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regular it ies. The indices needed in each of these regularities to 

generate subscripted operations are implicitly generated. These are the 

same as the indices in a dimension of the collective names involved in a 

distributor, as defined by the collectivisor. When a distributor 

involves collective names with more than one dimension then it is 

required to specify the dimensions over which the connectives are to be 

distributed by leaving a blank field in their index list. If a 

collective name has all its index fields blank then its index list may 

be eliminated altogether. This applies to all distributors and will be 

assumed to apply throughout this section. 

In [L76, TL77] the following constraint was imposed on distributors: 

the sets of indices corresponding to each of the dimensions over 

which collective names are to be distributed must be the same, 

otherwise the distributor is not well-formed. 

If this constraint is satisfied then we say that the dimensions to be 

distributed are compatible. Sometimes the above constraint is refered 

to as the compatibility criterion. 

criterion the distributors Dl, D2 and D3 

According to the compatibility 

Dl ; (DEPOSIT) 

D2 ,(DEPOSIT;REMOVE) 

D3 ,(A(2, )) 

are well-formed, provided the collectivisors C7 and C8 

C7 array DEPOSIT,REMOVE(n) 

C8 arr ay A( 2,2) 

have been declared. When a distributor is expanded each regularity is 

wrapped between an opening and a closing parentheses. 

Dl then expands to 

(DEPOSIT(1));(DEPOSIT(2)); ••• ;(DEPOSIT(n)) 

the distributor D2 to 

The distributor 



(DEPOSIT(l);REMOVE(l» 

,(OEPOSIT(2);REMOVE(2» 

,(OEPOSIT(n);REMOVE(n» 

and 03 to 

(A(2,1»,(A(2,2» 

- 66 -

The regularities that distributors generate may be produced by the 

non-terminal of basic COSY "sequence", but do not however include 

elements of the type "(sequence)". As may be seen in the strings 

generated by 01 and 03, the parentheses enforced around each regularity 

may be redundant. 

Later in [LTS79] nested distributors were defined such as 

D4 , ( ; (A) ) 

where A is assumed to have been declared by the collectivisor CS. 

For this distributor we must specify which separator applies to which 

dimension 

innermost 

of the collective name. The adopted convention was that the 
the 

separator will apply toVTleftmost dimension the next 

separator to the leftmost not allocated dimension etc. Obviously, a 

collectivisor must have as many dimensions to distribute over as the 

number of nested distributors it is in. The distributor 04 therefore 

expands to 

«A(1,1»;(A(2,1»),«A(1,2»;A(2,2») 

provided A has been declared by the collectivisor CS. The syntax of the 

distributor was defined in [LTS79] by: 

distributor={; /,} { distributor 

/({{collectivename 

/collectivename({{integer/indexexpression}~,}+)} 

~separator}+) 
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The syntax of [LSC81] permits the production f dO o lstr ibutors which 
generate any consecutive regularities the elements 

starred and/or which could be of type "(sequence)". 

distributors was given by: 

of which may be 

The syntax of 

distributor={j/,}[gsequence] 

In [LSC81] the lower bound of the collective names were explicitly 

specified and not implicitly fixed to 1. The "b 
compat~ ility criterion of 

[L76] was accordingly relaxed by requiring 

the sets of indices of dimensions of collective names to be 

distributed by the same collectivisor, to have the same number 

of elements. 

For example if the collective names A, B, C and D were defined by: 

C5 array A,B(2) 

array C,D(2:3) 

the distributor 

D6 ; « A; B* ; C) , D) 

would expand to 

(A(1);B(1)*;C(2»,D(2) 

;(A(2);B(2)*;C(3»,D(3) 

In this syntax replicators were permitted inside distributors as well as 

distributors inside replicators, as in the earlier grammars. 

sense distributors and replicators become symmetrical. 

In that 

The expansion of distributors, unlike the expansion of replicators, 

was never formally defined directly. Their expansion was either 

described by an example or in terms of a replicator generating the same 

string. Furthermore, the expansion of distributors was not at all 

defined when distributors involve collective names corresponding to 
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non-rectangll Lar arrays. 

3.1.7 Some More Replicators 

In the review up to now we have examined various replicators 

generating subscripted operations, paths and/or processes, sequences, 

orelements, starelements and elements. However, the values of their 

indices always formed finite arithmetic progressions. 

In macro COSY other replicators have been defined which permit the 

index to take values forming infinite arithmetic progressions and others 

which take a finite number of values but do not form arithmetic 

progressions in general. 

In [SL77. SL79] it was shown that any "program" using the extended 

semaphore primitives (ESP's) of Agerwala [A77] as its only means of 

synchronization and which is in some sense "bounded" has an equivalent 

description in the COSY formalism. It was pointed out however that to 

obtain a complete translation of a given ESP program, which may contain 

unbounded semaphores, requires a real extention of the descriptive power 

of the COSY notation as it may only describe finite systems. Such an 

extention was suggested in terms of Petri-nets [P76] in [SL77] and in 

terms of the "Cyc" operator in [SL79] but as it was pointed out, out of 

theoretical interest. After this 

extension infinite counters were defined 

P66 path [(V(s)@;~;P(s))*ll,oo,l] end 

which were given vector firing sequence semantics. 

In [LTD79, D79, LSB79, LTD80, SLBO] replicators were defined the 

index of which could take a finite number of values not necessarily 

f In [ LTD80] these were called test orming arit~metic progressions. 

replicators. Two formalisms were used, both incorporating predicates to 

select or define the range of the index. The replicators in [LTD79, 

079, LTD80] used predicates to select the range of an index out of an 

arithmetic progression. For example path P67 
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P67 path [SIEVE(i)@;'i, i is prime 12,15,1] end 

generates P68 

P68 path SIEVE(2);SIEVE(3)jSIEVE(S);SIEVE(7)jSIEVE(11);SIEVE(13) end 

filtering out the elements in the arithmetic progression 2,3, ••• ,15 

which are not prime. The standard replicators therefore may be viewed 

as a special case of the test replicators in which the value of the 

predicate P(i) is true for all values of the replicator index "i" takes. 

In [SL80] the predicates were defined outside the replicators. These 

predicates were used in place of the arithmetic progression generator 

"Iin,fi,inc" generating the integers which satisfied them. For example 

the replicator in PSO would have been written as 

predicate P(i)=(2~i~15 and i is prime) 

P69 path [SIEVE(i)@ ;!iIP(i)l] end 

This concludes the review of most macro COSY notations and 

subnotations. In the next section we introduce a new macro notation 

1 h d b ks Of the notations we which improves or eliminates a toget er raw ac 

examined in this section. 

3.2 A NEW NOTATION AND GRAMMAR FOR MACRO COSY 

In this section we make some changes to the macro COSY notation 

We extend it in such a way improving the readability of macro programs. 

included, generating classes of basic COSY 
that new replicators are 

b t d by r eplicators produced by strings which cannot e genera e 
the 

grammar s and in such a way that new reviewed in section 3.1, 
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distributors are included, generating more basl'c COSy t' s rings more 

concisely than replicators. Together with the notation we present the 

syntax rules for producing macro programs in this new macro COSy 

notation. Our general considerations in developing the new notation and 

grammar were mainly four: 

1. The syntactic well-formedness of a macro COSY program produced by 

the grammar should imply the syntactic well-formedness of the 

corresponding basic COSY program resulting from expansion. Our aim 

is to derive formal context-free rules avoiding meta-restriction 

rules on the regularities of replicators. For this reason we need 

to specify exactly what we are allowed to write in replicators and 

distributors and where these should appear in the programs. 

2. The grammar should be general, producing replicators and 

distributors able to represent a large class of regularities of 

structures concisely. 

3. The grammatical rules should be uniform with the rules for basic 

COSY and should formally show the hierarchy of the macro COSY 

notation over the basic COSY notation. 

4. The macro elements should represent the regularities they generate 

in a way as obvious as possible for the reading of macro programs to 

be possible without their formal expansion. 

The meta-language conventions which will be used in the syntax rules 

in this section will be the same as in last section. 
The subsections 

way as in the last sec tion,' in each we examine a 
are divided in the same 

major syntactic category. 

3.2.1 The Macro Program 

"endprogram". Since after expansion of a macro program all 
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collectivisors disappear, the macro program should· 1 
Inc ude at least one 

of a path, process, or bodyreplicator, f th b d 
by or e 0 y of the basic program 

obtained V expansion to be non-empty. Th f 
e syntax or macro programs is 

given by: 

MN2. 

mprogram=program mprogrambody endprogram 

mprogrambody={{collectivisor}~ {mpath/mprocess/bodyreplicator}}+ 

In the above rules, and henceforth, non-terminals of macro COSy which 

correspond to non-terminals of basic COSy have been obtained by 

prefixing the latter by "m" standing for "macro". 

According to the above rules, collectivisors, macro paths, macro 

processes and bodyreplicators may appear in any order, with the 

exception that no collectivisor may appear after all the paths, 

processes and bodyreplicators. The following restriction is imposed on 

programs: 

(l1Prest) 

Collective names should be declared before any path or 

process involving any of its subscripted operations. 

The context-sensitive restriction (MPrest) is imposed so that for the 

expansion of a macro program one pass is sufficient. It also makes 

the syntax checking more efficient as well. For otherwise, two passes 

would be required for expansion and syntax checking, since the 

collective names and the number of their dimensions have to be known in 

either case and in addition, when expanding, the bounds of the indices 

in every dimension have to be known as well. We could avoid this 

meta-restriction by forcing all collectivisors to appear before paths, 

processes and bodyreplicators. We would however need the 

context-sensitive restriction that all subscripted operations in macro 

paths and macro processes should be permitted by the collectivisors. 

When writing programs though, we find it sometimes convenient to declare 

collective names near the paths which involve indexed operations 

corresponding to these collective names. 
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3.2.2 The Collectivisors 

Pr evious notations permit declarations of collective names 

corresponding to rectangular arrays and to arrays of other shapes. In 

the new notation we shall permit both types of collective names to be 

declared. When declaring rectangular arrays two conventions have been 

followed: either the lower bound of indices in their dimensions are 

implicitly considered as having the value one, or the lower bound is 

explicitly specified. In the new macro notation we combine both 

conventions. We also follow the convention that collective names will 

be in upper case letters. When subscripts in the dimensions of arrays 

are consecutive positive integers starting from 1, the lower bound in 

these dimensions may be implicitly assumed to have the value one and 

only the upper bound has to be specified. We permit collective names 

with a different number of dimensions and/or different bounds in their 
• 

dimensions to be declared by the same collectivisor. Two notational 

changes are introduced in declaring collective names: 

1. The elimination of commas between collective names. The intention 

is to confine the use of the comma to sequences, 

synchronization symbol for "choice", as much as possible. 

as the 

2. The introduction of the word symbol "endarray" which indicates the 

end of a declaration. All declarations will now be enclosed between 

word symbol pairs "array" and "endarray" in the same way major 

syntactic entities like "programbody" and "sequence" in basic 

are enclosed between word symbol pairs. 

For example the declaration NCI 

NCI array A(k) endarray 

array B C(5) D(3,m) endarray 

declares the subscripted operations 

COSY 



A(l) ••••• A( k) • 

B(l) ••••• B(S). 

C(l) •••• • C(S). 

O(l.l) •.••• O(l.m). 

0(2.l) ••••• 0(2.m). 

0(3.l) ••••• 0(3.m) 

- n -

The "N" in front of the mnemonic names of examples in this section and 

in section 3.3 indicate that these are written in the new macro notation 

introduced in this section. The letter "c" indicates collectivisors. 

the letter "p" paths. processes or bodyreplicators and the letters "0" 

and "R" distributors and replicators in sequences. respectively. 

If the lower bound in some dimensions of collective names is not 1 

but some other fixed integer n we may specify it explicitly as in 

[LSB79, LSC8l]. To specify for example that the single dimension of 

collective name E has lower bound nand upper bound k. and that the first 

dimension of the two dimensional collective name F has lower bound m and 

upper bound n and its second dimension lower bound one and upper bound 

k. we write: 

NC2 array E(n:k) F(m:n.k) endarray 

We may also combine the declarations in NCl and NC2 in one declaration: 

NC3 array A(k) B C(5) D(m,3) E(n:k) F(m:n,k) endarray 

For the collectivisors to be well-formed we shall require all the 

declarations to satisfy the collectivisor restriction Crestl: 

(Crestl) has 
the upperbound of the dimensions of the collective names V to 

be greater than or equal to their corresponding implicit or 

explicit lowerbound. 

We permit 
h . d· f also declaration of subscripted operations t e In lces 0 

.. d d on the index of some which either are not consecutlve lntegers or epen . 
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other dimension. For example, the index in the first dimension of the 

subscripted operations: 

SO,I) 

S(3,1), S(3,2), S(3,3) 

S(5,1), S(5,2), S(5,3), S(5,4), S(5,5), 

takes values 1, 3, 5 and the index in their second dimension takes 

consecutive values from one to the value of their first dimension. We 

shall use replicators to generate the set of admissible subscripted 

operations as in [LTD79]. The subscripted operations corresponding to S 

may be declared by the collectivisor NC4 

NC4 array #i:l,5,2[#j:l,i,l[S(i,j)]] endarray 

using replicators the notation of which we have modified. We have 

changed the generator for index values "[IJlin,fi,inc" to "11i:in,fi,inc" 

and moved it in front of "[ ]". The reason for the change was more or 

less technical: the place holder "0" is not standard in size depending 

on the length of the index identifier and it is not a standard character 

symbol in any computer or typewriter. It has always to be drawn by hand 

on paper and be replaced by other symbols whenever a macro program is to 

be given as input to a computer program, for example for syntax checking 

or for expansion. The reason we moved the index generator in front of 

"[ ]" is mainly for the improvement of readability of replicators. The 

replicator may now be read from left to right as 

"index i takes values from in to fi in steps of inc which upon 

expansion are replacing index 'i' in each copy of the regularity 

inside ' [ ]' " 

Thus we have separated the index specification part which is common to 

all replicators no matter what they generate, from the regularities they 

. "[ ]". generate, which are now the only strings 1n Similar notational 

changes will be applied to bodyreplicators and replicators appearing in 

sequences. For the replicators to be well-formed they should obey the 

second collectivisor restriction Crest2: 
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(Crest2) 

Each replicator must specify a non empty range for its 

index. 

Restriction Crest2 guarantees that replicators in collectivisors declare 

at least one subscripted operation corresponding to each collective 

name. 

Subscripted operations with the same subscripts in all their 

dimensions may be declared by the same replicators and will not be 

separated by commas, simplifying the syntax of these replicators and 

eliminating the comma between subscripted operations altogether. Also 

subscripted operations with the same subscripts in some of their 

dimensions, may be groupped together in the same replicator, e.g. 

NC5 array #i:l,5,2[T(i) #j:l,i,l[S(i,j) U(i,j)]] endarray 

where the collective name T corresponds to the operations 

T(l), T(3), T(5) 

and the collective name U to the operations 

U(l,l), 

U(3,1), U(3,2), U(3,3), 

U(5,1), U(5,2), U(5,3), U(5,4), U(5,5) 

The subscripted operations in replicators may be indexed by expressions 

1 · i d· These expressions should satisfy the involving rep 1cator n 1ces. 

third collectivisor restriction Crest3: 

(Crest3) 

All expressions 11 t · es should yield indexing co ec 1ve nam 

i h th . d· es they involve integers for all the values wh c e 1n 1C 

take. 

We also permit grouping 

expressions depending 

d ti ns indexed by together subscripte opera 0 , 

i d · ther subscripted on replicator indices n eX1ng 0 
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operations, as in NC6: 

NC6 array #i:l,5,2[V(i+3)#j:l,i,I[S(i,j»)) endarray 

where V corresponds to the operations V(4), V(6), V(S). We shall 

require that collectivisors involving nested replicators, 

constrained by the fourth col1ectivisor restriction Crest4: 
(Cre st4) 

A collectivisor involving nested rep1icators must be of the 

form 

are 

itkn: inn, fin, incn[ •• • llkl: inl, fil, inel [Y( hl, h2, ••• , hn») ••• ] 

where hi for i=I, ••• ,n are expressions involving indices kj 

for j=I, ••• ,n such that each ki for i=I, ••• ,n must appear in 

at least one dimension, and an index ki i=I, ••• ,n may only 

appear together with indices kj for j>i in a single 

expression and in at most (i-I) expressions with indices kj 

for j<i. 
The restriction Crest4 is imposed to guarantee the independence of the 

indices of different dimensions of the same collective name and to avoid 

duplication of declarations of subscripted operations. The invalid 

declaration 

array iti:l,5,2[W(i,i+l)] endarray 

declares a two dimensional array W corresponding to the subscripted 

operations: 

W(l , 2), W( 3 , 4), W( 5 , 6) 

The indices in the dimensions of Ware dependent for if one index is 

known the other may be determined. This type of declaration contradicts 

the notion of dimension and for this reason is excluded. Crest4 also 

excludes duplication of declaration of subscripted operations as 

example the following invalid col1ectivisor specifies: 

array #i:l,S,2[#j:l,i,I[T(i) S(i,j)]] endarray 

for 

which declares T(3) three times and T(S) five times. There is a third 

11 "" whl."ch is excluded by Crest4 which does not type of co ect1.Vl.sor 
define 



(0) 

- 71 -

dependent dimensions nor dublicates subscripted operations such as 

array #i:O,9,l[#j:O,9,l[A(lOO*j+i)]] endarray 

The reason we have excluded this type of collectivisor is more subtle 

and has to do with the expansion of distributors. We shall discuss this 

point in section 3.4 having examined the distributors and their 

expansion. We may characterize the shapes of arrays declared by 

replicators as being finite n-dimensional arrays, the indices in each 

dimension of which 3v~ generated by an integer expression depending on 
integer variables taking values from an arithmetic progression. 

(ll) 

We may also combine the NC3 and NC6 types of declarations in a single 

declaration. The complete syntax for the collectivisors is: 

MN3. collectivisor=array {simpleardecl/replardecl}+ endarray 

MN4. simpleardecl={arrayid }+({{iexpr:/} iexpr ~,}+) 

MN5. replardecl=index_spec[{replardecl/arrayid({iexpr ~,}+)}+] 

MN6. index_spec=#index:iexpr,iexpr,iexpr 

MNl. arrayid=uc-letter{uc-letter/digit/_}~ 

where "simpleardecl" stands for a list of collective names which 

correspond to simple rectangular arrays together with their bounds and 

"replardecl" stands for the replicator generating admissible sets of 

subscripted operations. The non-terminal "index_spec" stands for the 

. d ·f·· f 1· t and ";expr" ~n ex spec~ ~cat~on part 0 a rep ~ca or ~ for an integer 

expression. The syntax of "index" is the same as that of a simple 

operation rule BN9 of basic COSY. Identifiers used for replicator 

indices though, must satisfy the index restriction Irestl: 

( Irestl) 

Identifiers for replicator indices should be distinct from 

any identifiers used for simple operations. 

and the restriction Irest2: 

The following restric tion mu st also hold: 

(CrestS) 

An array identifier may only occur once in collectivisors. 
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(Ires t2) 

Replicator indices are only defined inside"[ lIt of the 

replicator with which they are associated. In the scope of 

a replicator index no other replicator index having the same 

identifier is permitted. 

The restrictions on replicator indices (Irestl) and (Irest2) apply to 

all replicators. 

3.2.3 The Bodyreplicators 

We permit replicators, bodyreplicators as we call them, which may 

generate paths and/or processes. Bodyreplicators are permitted to 

generate consecutive regularities of paths and/or processes. vIe also 

permit nesting of bodyreplicators. The only change to the grammar of 

[LTS79] is a notational one and involves the index specification part of 

the bodyreplicator, which was changed from "1 index II in, fi, inc" to 

"tlindex:in,fi,inc" and was moved in front of "[ ]". Their syntax is 

formally given by: 

MN8. bodyreplicator=index_spec[{mpath/mprocess/bodyreplicator}+] 

No meta-restriction is needed to guarantee the well-formedness of the 

expanded programs. If each of the paths and processes they generate is 

well-formed then the whole expansion is well-formed. This will formally 

be demonstrated in section 3.3. 

The above rules permit for example, the n-free frame buffer to be 

specified by NPl: 

NPl #i:l,n,l[path DEPOSIT(i);REMOVE(i) end] 

f h · t d 1.. th a mechanism controlling and m pipelines 0 size n eac aSSOC1.a e w 

exits similar to that in the bounded delay priority queues in [LT79, 

C80] to be specified by: 
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NP2 fli:l,m,l 

[flj:l,n,l[path TR(i,j);TR(i,j+l) end] 

path TR(i,n+l);CS_END(i) end 

We impose the restriction BRrest on bodyreplicators 

(BRrest) 

The range of the bodyreplicator indices should be non empty. 

guaranteing that bodyreplicatorsgenerate at least one regularity. This 

is important, for a macro program body could consist of just 

bodyreplicators which upon expansion should generate a non-empty basic 

program body. 

3.2.4 The Paths and Processes 

Their syntax will be similar to the syntax of paths and processes of 

basic COSY: 

MN9. mpath=path (msequence)* end 

MNIO. mprocess=process (msequence)* end 

We have used "msequence" instead of "sequence" to stand for "macro 

sequence" since we will allow replicators and distributors as parts of 

them. Similarly, in the syntax rules below, "morelement" will stand for 

"macro orelement": 

MNll. msequence={morelement ~;}+ 

MN12. morelement={gelement ~,}+ 

MN13. gelement=starelement/sreplicator/distributor 

MN14. starelement=element/element* 

MNlS. elernent=operation/indexedop/(msequence) 

MN16. operation=lc-letter{lc-letter/digit/_}~ 

MN17. indexedop=arrayid({iexpr ~,}+) 

In the above rules, "gelement" stands for "generalized element" since it 
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can be any of starelement, replicator or distributor. We have used 

"sreplicator" to indicate replicators which expand to basic COSY 

sequences which we call sequence replicators. The only difference 

between the above rules and corresponding ones in basic COSY is that 

here we allow three new types of elements, sequence replicators and 

d istr ibutors, produced by "sreplicator" and "distr ibutor" respectively, 

which cannot be starred, and indexed operations, produced by 

"indexedop" • The above rules satisfy our third consideration for 

developing this grammar since it is structurally similar to the grammar 

of basic COSY. It is clear that any basic COSY program may be produced 

by the rules obtained up to now. According to these, a macro program 

could consist of just macro paths and processes the macro sequences of 

which do not involve any sequence replicators or distributors or indexed 

operations. But such a program could be produced by the basic COSY 

syntax as well. In addition "msequence" may involve any number of the 

three new types of elements. 

We did not permit replicators and distributors to be starred as the 

star will not apply to the whole of the string they would generate, but 

only to its last element. 

3.2.5 The Sequence Replicators 

As we have noted in the previous section 3.1, the syntax rules for 

replicators in sequences produced replicators which are either too wide, 

not generating well-formed basic COSY strings when expanded, and 

meta-restrictions need to be applied, or are not general enough, 

generating a class of regularities which is not as large as we would 

like it to be. On the other hand we require that the replicators should 

be readable without formal expansion. For this reason we shall exclude 

replicators generating certain types of regularities. Before we give 

any syntax rules, let us specify exactly which replicators we will 

exclude. From the discussion in the section 3.1 it is obvious that we 

avoid the production of some replicators, namely those 
would like to 

well-formed only for particular range of their index, the 
which were a 

range dependent replicators. The path P40 for example 
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p40 patl2. (([AU);BU»@,IT]11,n,1] end 

expands to a well-formed string only for n=2. We will require that when 

a replicator expands into a well-formed basic COSy string it does so for 

any non-empty range of its index. 

Sometimes we may have a choice in generating a string. Should our 

replicators be so general as to be able to generate a string in any way 

or should they be more restricted? Is the shortest replica tor always 

the "best"? To demonstrate the problem in deciding the "best" grammar 

let us consider the following example: 

P70 path 

(A(l); B(l» 

,(C(1);D(l),A(2);B(2» 

,(C(2);D(2),A(3);B(3» 

, (C(3) ; D(3) ) 

end 

We may use replicators to abbreviate the regular substructures of the 

outermost orelement in P70. Two obviously similar substructures are the 

two middle elements of the orelement of P70, which may be generated 

using the old notation by: 

P71 path 

(A(l) ; B(l» 

,[(C(i);D(i),A(i+l);B(i+l»@,[IJll,2,1] 

,(C(3);D(3» 

end 

But if we examine the orelement in P70 more carefully we see 

another regular pattern is the string 

A(i);B(i»,(C(i);D(i) for i=I,2,3. 

So P70 may be generated by: 

P72 pa t~( [A( i) ; B( i) ) ,( CCi) ; D( i)@,G 11,3,1] )end 

that 
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Although P72 is the most concise path ' generating P70 it has some 
drawbacks. The regularity of the r l' t ep lca or cannot be described 

syntactically in terms of the non-terminals used in basic COSY because 

of the unmatched opening and closing parentheses. On the other hand the 

regularity in the replicator P71 may be described as: 

(sequence)@, 

(orelementjorelementjorelement)@, 

(elementjelement,elementjelement)@, 

etc. 

Furthermore, the expansion of the replicator in P72 is only well-formed 

in the context "( ••• )" and not in any other context of any sequence 

replicator. We shall call this type of a replicator context dependent. 

As we would like our replicators to be well-formed when expanded in any 

possible context these replicators will not be permitted. 

There is yet a third kind of a replicator we will not permit, the 

expansion of which does not depend on the separators on its left and on 

its right but on other replicators nearby. Consider for example the 

stack written as: 

P73 path [(UP(i)@j[2J11,n,1]j[DOWN(i))*@j~ln,1,-1] end 

which may be produced by the grammar of [LS77]. When the replicators in 

P73 are expanded, the resulting path is well-formed in basic COSY. We 

shall call these replicators neighbourhood dependent. 

All three types of replicators we shall exclude have a common 

characteristic. They do not generate sequences themselves but only 

together with other parts of the macro sequence in which they are 

embedded. Since replicators may appear as non-starred elements in a 

macro sequence and according to our first consideration should produce 

11 f d b ' COSY h panded they should generate we - orme aS1C programs w en ex , 

basic COSY sequences. The replicators and the distributors according to 

f " th" "" "." "(" and rules MN9 to MN15 may only appear after any 0 ~, " " 

before any of "end", "" II. II ")" and what may legally be written 
" " 

d from the non-terminal between any of these is a string generate 
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"sequence" of bacic C()SY Th "f h a • e expanSion a t ese replicators should 

always be non-empty, otherwise collision of terminal symbols will arise. 

We will obtain replicators which when expanded always generate 

well-formed basic COSY strings in any context they appear in the macro 

sequences. Here we do not try to produce replicators which generate 

syntactically strong strings (cf. section 3.1.5 grammar of [L79]). A 

part of a basic sequence which is a sequence itself is said to be 

syntactically strong in its context, if no parts of it bind with parts 

in its context. Our intention is to obtain a grammar which produces 

replicators generating a large class of well-formed basic COSY strings. 

In chapter 4 we shall give alternative rules for macro sequence by which 

all replicators in sequences generate syntactically strong strings. 

Although such replicators restrict the power for conciseness of macro 

programs, they have the advantages that it is not necessary for a macro 

sequence to be completely expanded for its semantics to be understood, 

and that they improve the readability of macro sequences significantly. 

We would like to extend replicators to be able to generate 

imbrication of regularities which could not possibly be generated by any 

single replicator we examined in section 3.1, owing to the restrictive 

operational semantics of "@". These include sequences of path P43 for 

example 

P43 path (A(I),(A(2),(A(3);B(3)),B(2)),B(I)) end 

in which all regularities are of the form 

p( ) s1. •• s1 q( ) 

except the innermost which is of the form 

p( ) 52 q( ) 

"51" "s2" f "." or " " but not the same. We had where and are one 0, , 

" 3 1 5 h t t generate these kind of regularities pointed out in sectl.on •• tao 

the "@" should not only strip separators but replace them 
by others. We 

d 1 Wi" th this shall modify the replicator notation to ea 
extension and 

bring it into the same form as the rest of the replicators we have 
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developed up to now in this section. Let us first give the rules 

according to which a replicator in the old notation expanding to a basic 

COSY sequence is transformed into the new. The replicators which most 

of the grammars permit and which expand to sequences are of three types: 

A. [p(i) @ sepCDq(i)lin,fi,inc] 

B. [p(i)[]q(i) @ seplin,fi,inc] 

C. [p(i) @ sepGJlin,fi,inc] 

where "p", "q" are str ings which may involve subscr ipted operations the 

indices of which may depend on the replicator index "i". We shall 

transform A, Band C to the new notation in five simple steps. For each 

step we indicate to which type it will apply as some of the steps apply 

only to one or two types. When a step is applied the new intermediate 

forms of A, B, C will be given and will be identified by super scripting 

A, B, C by an integer denoting the number of transformations this type 

has undergone until that point. We assume that A, B, C are the same as 

AO, BO and CO respectively. The five transformation steps are: 

stepl 

applied to AO: put after "II]" the symbol "@". 

applied to BO: put before "11] II the symbol "@". 

Ai. [p(i) @ sepGJ@ q(i)lin,fi,inc] 

Bl. [p(i) @[Dq(i) I~ seplin,fi,inc] 

step2 

applied to Bl: move "@ sep" immediately after "m ". 

B2. [p(i) @[TI@ sep q(i)lin,fi,inc] 

step3 

1 ° "@"" @" applied to A ,C : change sep to sep • 

A2. [p(i) sep @GJ@ q(i) I in, fi, inc] 

C l • [p(i) sep @0Iin,fi,inc] 
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step4 

applied to ;\2, 32 , C 1: since the two "'J"s in AL and BL are 

sufficient to demarkate the patterns on the left d an on the right of 

"[}]" we may remove the place holder, change the index specification 

to "Iti:in,fi,inc" and move it in front of "[ )" as we did for 

other replicators. The same may be done for C1• 

A 3. #i:in,fi,inc[p(i) sep 2 @ q(i)] 

B 3. #i:in,fi,inc[p(i) @ @ sep q(i) ) 

C2• IIi: in, fi, inc[p(i) sep @] C is now in its final form. 

stepS 

the 

applied to A3 and B3: if q(i) in A3 is of the form "sepl q'(i)" 

and p(i) in B3 of the form "p'(i) sepl" copy the separator "sepl" 

leading q(i) and respectively terminating pO) between the two "@"s 

in A3 and B3 respectively. 

A4 #i:in,fi,inc[p(i) sep @ sepl @sepl q'(i)] 

B4 #i:in,fi,inc[p'(i) sepl @ sepl @ sep q(i)] 

A and B are now in their final form. If q(i) and p(i) in A3 and 

B3 respectively are not in the appropriate form, step 5 is not 

applied and A3 and B3 are therefore in their final form. 

Let us apply these transformations to three replicators Rl, R2 and R3 in 

the old notation corresponding to the types A, B, C respectively. In 

the expressions below Rli, R2i and R3i will correspond respectively to 

forms Ai, Bi and Ci for i=O, ••• ,4 of the above conversion rule. 

The replica tor Rl 

Rl. [(SKIP(i)@;m),DO(i)ll,n,l] 

after step 1 becomes Rll 

Rll. [(SKIP(i)@;IT!@),DO(i)ll,n,l) 

which after step 3 becomes R12 
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R1 2 , [(SKIP(i) ;@QJ@),OO(i) 11 ,n, 1] 

which finally after step 4 becomes R1 3 

R1 3, #i:l,n,I[(SKIP(i);@ @),OO(i)] 

As step 5 cannot be applied this is now in the new notation, 

The replica tor Rl 

Rl , [ (UP ( 1) ; IT] omm ( i ) ) *@; I 1 , n, 1] 

after step 1 becomes 

Rll, [(UP(i);@!Il00WN(i»*@;ll,n,1] 

which after step Z becomes Rl2 

RZ 2. [( UP ( i ) ; @ Q @ ; DOWN ( i ) ) * I 1 , n, 1] 

which after step 4 becomes R2 3 

RZ 3, #i:l,n,l[(UP(i);@ @;DOWN(i»*] 

taking its final form after step 5 

Rl4. #i:l,n,l[(UP(i);@;@;DOWN(i»*] 

The replicator R3 

R3 • [ ( A( i) ; B ( 1) ) @ , [I] I 1 , n, 1] 

after step 1 becomes R3 1 

R3 1 , [( A( i ) ; B ( i ) ) ,@ IT] I 1 , n, 1] 

taking its final form after step 4 
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R3 2. iii: 1, n, 1 [ (AU) ; B(i ) ) ,@ 1 

The replicators generating basic COSY sequences in the 

are of two types: 

the concatenator 

generating consecutive regularities and are of the form 

(Cone) #i:in,fi,inc[p(i) sep @1 and 

the imbricator 

new notation 

generating regularities nested within each other and are of the form 

(Imbr) #i:in,fi,inc[p(i) @ t @ q(i)1 

where "p", "t", "q" denote "patterns" and "sep" one of the separators 

11." , or II tt , . For concatenators and imbricators to expand to the same 

strings as replicators in the old notation of types C and A, B 

respectively, the operational semantics of "@" have to be changed. 

In the concatenator the "@" strips the separator in front of it in 

the last copy of the regularity "p(i) sep". The expansion of the 

concatenator therefore looks like: 

(concexp) 

p(in) sep p(in+inc) sep ••• sep p(fi') 

where "fi'" denotes the final value of the range of the index which may 

be different from "fi". 

In the imbricator the separators before the first "@" and after the 

"( ) ( )" will be second "@" in the last copy of the regularity p q 

replaced by "t". The expansion of the imbricator looks like: 

(imbrexp) 

p(in) p(in+inc) ••• p'(fi') t q'(fi') ••• q(in+inc) q(in) 



- 88 -

In the :J.bolJe expression "fi'" is the same ''is l'n (concexp) and "p''', "q'" 
are the same as "" "" . p, q respectIvely but with any tr il' a lng separator of 
"p" d 1 d an any ea ing separator of "q" respectively, removed. 

The reason we have specified a string "t" to be between the two "@"s 

instead of just a separator is that we would like our grammar to 

paths such as NP3 

NP3 path empty,#i:l,n,l[(UP(i);@;full*;@;DOWN(i»*] end 

permit 

which specifies a stack of size n with tests for empty and full. When 

NP3 is expanded for n=3 for example the path NP4 is obtained: 

NP4 path 

empty 

,( Up(l) 

;(UP(2);(UP(3);full*;DOWN(3»*;DOWN(2»)* 

; DOWN(l) 

)* 

end 

in which the starred operation "full*" appears only once, in the 

innermost regularity. In general we shall permit any string to appear 

at that position as long as it forms a well-formed basic COSY string 

with the rest of the expansion. 

Having specified what kind of replicators we will permit, and having 

decided on the notation of sequence replicators, we proceed to obtain 

their formal syntax rules. The approach we follow here is not to leave 

"p", "t", "q" as "patterns" but to specify more precisely what these may 

be syntactically. The syntax of the two types of replicators, 

concatenators and imbricators, shall be considered separately. The 

non-terminal "sreplicator" producing sequence replicators is defined as 

follows: 

MN18. sreplicator=index_spec[{concseq/imbrseq}] 

where the non-terminals "concseq" and "imbrseq" produce to the string 
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inside "[ j" of concatenators and imbricators respectively. We next 
give the syntax for "concseq" and "imbrseq". 

The non-terminal "concseq" 

Before 

us examine 

we give the syntax rules for the non-terminal "concseq", let 

informally what p(i) in Conc should be syntactically. Its 

expansion (concexp) has been schematically given by: 

p(in) sep p(in+inc) sep ••• sep p(fi') 

For this string to be a well-formed basic COSY sequence each of "p( )" 

may in general be a sequence as we shall formally prove in 3.3.1. 

Therefore we may define "concseq" as 

concseq=msequence sep @ 

which in principle is the syntax given in [L76, TL77]. 

According to the above rules though, '1 • " , and " 11 , in the context 

before "@" have equal precedence, whilst in the rest of the macro 

notation and in basic COSY"," has precedence over 11.11 , . To avoid this 

mixed precedence we shall consider the string produced by "concseq" as a 

regular expression with the symbol "@" appearing once as the last 

"element": 

concseq={morelement;}~ concor 

concor={gelement,}~ @ 

in which "concor" stands for the special "orelement" which contains as 

its last "element" the symbol "@". According to the above rules " " , has 

precedence over ";" as in basic COSY. However, the above rules permit 

"concseq" to produce the string consisting of just "@", and therefore 

the replicator 

lIi:in,fi,inc[@] 

may be produced which replicates the empty regularity thus generating an 
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empty expansion. To avoid the production of this empty replica tor we 

finally define "concseq" as: 

concseq={morelementj}~ concor 

/{morelementj}+ @ 

concor={gelement,}+ @ 

The path R3
3 

obtained from R3 by the conversion rule from the old to 

the new notation is permitted by the above rules. Also the replicators 

NRl and NRl: 

NRl #i:l,n,l[DEPOSIT(i)j@] 

NRl #i:l,n,l[#j:l,k,l[A(i,j),@]j@] 

In section 3.3.1 we shall formally prove that each of the replicators 

produced by these rules expand to macro sequences in general, and that 

their complete expansion forms a basic COSY sequence. 

The non-terminal "imbrseq" 

Before we give syntax rules for "imbrseq" let us examine informally 

what imbricators should generate so that when completely expanded they 

always generate well-formed basic COSy sequences. Let us first consider 

just the outermost regularity of their expansion (imbrexp): 

p(in) ••• q(in) 

Since (imbrexp) on the whole forms a sequence, p(in) must be a legal 

head of a sequence and should start with either an operation or "(". 

Similarly, q(in) must be a legal tail of a sequence and must terminate 

with an operation or ")" or ")*". Let us now examine the first and the 

second regularity of the expansion (imbrexp): 

p(in) p(in+inc) ••• q(in+inc) q(in) 

The strings "p(in)" and "p( in+inc)" must be legally connected if they 

together are to form a legal head of a sequence. Since these two 
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strings differ only in the integer expressions they involve, they start 

with the same symbols which implies that for the expansion of the 

imbricator (imbrexp) to be well-formed "p(i)" must terminate with ";" or 
I' 11 , or Applying a similar argument to "q(in)" and "q(in+inc)" we 

determine that "q(i)" lIDlst start with ";" or "," or ")". Furthermore, 

the number of unmatched opening parentheses in "p(i)" should match with 

closing parentheses in "q(i)". 

The above observations imply that the string "@ t @" appears in the 

string generated by "imbrseq" in the context in which generalized 

elements would appear. Therefore, the string generated by "imbrseq" may 

be considered as a "sequence" in which the string ",:E t @" appears once 

only as a non-starred "element". In addition "t" may be of four 

different forms depending on its immediate enclosing context, that is 

depending on whether on the left of the first n@n is any of n[", "(" or 

a separator, and whether on the right of the second If@" is any of "]'1, 

")" or a separator. If t is in the context 

1. { ; / , } @ t @ { ; / , } then t=sep{/msequence sep} 

2. {(/ [} @ t @ { ; / , } then t= {/msequence sep} 

3. { ; / , } @ t @ O/]} then t={/sep msequence} 

4. {(/ [} @ t @ O/]} then t=msequence 

where "sep" indicates of It." or 1f II and "msequence" a macro one , , 

sequence. 

Let us first give formal context-sensitive rules (CS) for "imbrseq": 

(CS) 

imbrseq={morelement ;}~ imbror {; morelement}~ 

imbror={gelement ,}~ imbrgel {, gelement}~ 

imbrgel=special_el/imbrstarel 

imbrstarel=imbrel/imbrel* 

imbrel=(imbrseq) 

{ ; / , } special_el {;/,}={;/,} 

{C/ [} special_el {;/,}={C/[} 

{ ; / , } special_el O/]}={;/ ,} 

{C/ [} special_el Oll}={(/[} 

@ 

@ 

@ 

@ 

sep {/msequence sep} @ {if,} 

{/msequence sep} @ {;/,} 

{/sep msequence} @ {)/]} 

msequence @ {)/]} 
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The string "{sl/s2}" where sl and s2 are one of ";", ",", "(", ")", "l" 
and "]" denote alternative equivalent contexts for "special el". The 

symbols "l" and "]" are possible contexts for "special_el" in spite of 

the fact that they do not appear in the first five production rules of 

(CS) since the string produced by "imbrseq" is enclosed in "l ]" CcL 

XN18), and since "imbrseq" could just produce 

"special_el" produces. 

a string which 

Let us apply the above rules CS to derive the strings inside "[ ]" of 

imbricators NR3, NR4 and NR5: 

NR3 #i:l,n,l[(UP(i);RESET(i),@@)] 

NR4 #i:l,n,l[(UP(i);@;@;DOWN(i))*] 

NRS #i:l,n,l[(SKIP(i);@@),V(i)] 

The symbol "=>" in the derivations which follow, means that the leftmost 

non-terminal to the left of "=>" is replaced using a rule of the grammar 

to yield a string to the right of "=>". We shall use the symbol "=>+" 

to denote the derivation of a simple or indexed operation from a 

non-terminal, for brevity. For example the derivation 

gelement=> starelement=> element=> indexedop=> UP(i) 

may be abbreviated to 

gelement=>+ UP(i) 

The complete derivation of the string inside "[ ]" of NR3 is: 



- 93 -

imbrseq =) irnbror =) irnbrgel =) irnbrstarel =) imbrel =) 
=) (imbrseq) 

=) (morelement ; imbror) 

=)+ (UP(i) imbror) 

=) (UP(i) gelement imbrgel) 

=)+ (UP(i) RESET(i) imbrgel) 

=) (UP( i) RESET( i) special_el) 

=) (UP( i) RESET(i) @@) 

The complete derivation of the string inside "[ ]" of NR4 is: 

imbrseq =) imbror =) imbrgel =) imbrstarel =) imbrel* 
=) (imbrseq)* 

=) (morelement ; imbror ; mor e lemen t) * 

=)+ (UPCi) imbror ; morelement)* 

=) (UPCi) @ sep @ ; morelement)* 

=) (UPCi) @ @ morelement)* 

=)+ (UP(i) @ @ DOWN(i) )* 

The complete derivation of the string inside "[ ]" of NRS is: 

imbrseq =) imbror 

=) imbrgel • gelement 

=) imbrstarel. gelement 

=) imbrel. gelement 

=) (imbrseq) • gelement 

=) (gelement 

=)+ (SKlPCi) 

=) (SKlP( i) 

=) (SKIP(i) 

=) (SKIP(i) 

=)+ (SKIP( i) 

imbror) , gelement 

imbror) • gelement 

imbrgel) • gelement 

special_el) • gelement 

@@) 

@@) 

gelement 

vCi) 

If t has its right form then when a replicator is expanded it will 

"bind" the left and the right expanded parts so that the resulting 

string may be produced by "sequence" of basic COSY. 
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The rules (CS) have two disadvantao?es', th ' e syntaK of 'imbr seq" is 

given in terms of context-sensitive rules and the "," and "" , ,are of 

mixed precedence. Let us first obtain context-free rules keeping the 

mixed precedence of 

"element" on its 

f1 " , 
own 

and ";". We will not express "@ t ;E" as an 

but together with other strings on its left and 

right so that the context of each of the four 

u orms may e expressed as: distinguishable. The fo r f b 

1 I • 

2 I • 

msequence sep @ sep{/msequence sep}@ sep msequence 

@ {/msequence sep} @ sep msequence 

3' • msequence sep @ {/sep msequence} @ 

4' • @ msequence @ 

The context-free syntax rules for "imbrseq" in which 

still mixed precedence are: 

(CFm) 

imbrseq={morelement ;}~ imbror {; morelement}* 

If." , 

forms 

and 

/msequence sep @ sep{/msequence sep} @ sep msequence 

/@ {/msequence sep} @ sep msequence 

/msequence sep @ {/sep msequence} @ 

/@ msequence @ 

imbror={gelement,}~ imbrstarel{,gelement}~ 

imbrstarel=imbrel/imbrel* 

imbrel=(imbrseq) 

become 

" .. , have 

These syntax rules guarantee the production of well-formed macro COSY 

programs which when expanded produce well-formed basic COSY programs. 

This was possible by distinguishing the four different places where "@ t 

@" could appear. The string between the two "@" may contain, as it is 

clear from the syntax rules, a macro sequence. These syntax rules also 

allow any number of opening parentheses anywhere on the left of the 

first "@" and matching closing parentheses anywhere on the right of the 

second "@". Parentheses always match since they are produced in pairs. 
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Let us derive the strings inside "[ J" of NRJ N"4 'TC , ) '" and,!{5. 
NRJ: 

imbrseq =) imbror =) imbrstarel =) imbrel 

=) (imbr seq) 

=) (msequence sep @ @) 

=) (morelement; morelement sep @ @) 

=)+ (UP( i) 

=)+ (UP(i) 

=) (UP(i) 

morelement sep @ @) 

RESET(i) sep @ @) 

RESET(i) , @ @) 

then of NR4: 

imbrseq =) imbror =) imbrstarel =) imbrel* 
=) (imbrseq)* 

=) (msequence sep @ sep @ sep msequence)* 

=)+ (UP( i) sep @ sep @ sep msequence)* 

=) (UPCi) @ sep @ sep msequence)* 

=) (UPCi) @ @ sep msequence)* 

=) (UP(i) @ @ msequence)* 

=)+ (UPCi) @ @ DOWN(i»* 

and finally of NR5: 

imbrseq =) imbror 

=) imbrstarel , gelement 

=) imbrel , gelement 

=) (imbrseq) , gelement 

=) (msequence sep @ @) , gelement 

=) (morelement sep @ @) , gelement 

=)+ (UPCi) sep @ @) , gelement 

=) (UP(i) ; @ @) , gelement 

=)+ (UP(i) ; @ @) , VCi) 

Fir st of 

In the syntax rules CFm however, the separators ";" and"," are of mixed 

precedence. The following context-free rules specify the precedence of 

" II over ";", but some meta-restriction rules are needed: 
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imbrgel=imbrstarel/distributor/sreplicator/@ 

imbrstarel=imbrel/imbrel* 

imbrel=operation/indexedop/(imbrseq) 

The above rules do not constrain the production of "@". Any number of 

"@"s . may appear ~n the strings produced by the above rules. Therefore, 

meta-restriction rules are needed to exclude certain strings: 

(MR3) 

(i) Only two "@" should be produced, and 

(ii) the string "@ ••• @" should be in its appropriate form 

according to its context. 

The above syntax rules CFr and meta-restriction rule MR3 are based on a 

different approach from other syntax rules and corresponding 

meta-restrictions. Instead of leaving the symbols free, constraining 

them by meta-restrictions MRI or MR2, we specify the "patterns" these 

symbols may form, leaving the number of "@"s free. Therefore, the 

checking of an imbricator for well-formedness is simplified, it being 

necessary only to check a substring, rather than the whole string, 

namely the substring "@ t @" and its immediate context. 

We may derive the strings inside "[ ]" of the replicator NR3, NR4 and 

NRS, applying the syntax rules of CFr as follows. Firstly, of NR3: 

imbrseq =) imbror =) imbrgel =) imbrstarel 

=) imbrel =) (imbrseq) 

=) (imbror;imbror @) 

=)+ (UPCi); imbror @) 

=) (UP(i);imbrgel,imbrgel @) 

=)+ (UP(i);RESET(i),imbrgel @) 

=) (UP(i);RESET(i),@ @) 
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then of ~R4: 

imbrseq =) imbror =) imbrgel =) imbrstarel 

=) imbrel* =) (imbrseq)* 

=) (imbror; imbror ; imbror ; imbror)* 

=)+ (UP(i) 

=) (UP(i) 

=) (UP( i) 

=)+ (UP(i) 

imbror ; imbror ; imbror)* 

@ imbror; imbror)* 

@ 

@ 

@ 

@ 

imbror )* 

DOWN(i) )* 

and finally of NRS: 

imbrseq =) imbror 

=) imbrgel , imbrgel 

=) imbrstarel , imbrgel 

=) imbrel , imbgel 

=) (imbrseq) , imbrgel 

=) (imbror , imbror @) , imbrgel 

=)+ (SKIP(i) imbror @) , imbrgel 

=) (SKIP(i) @ @) imbrgel 

=)+ (SKIP(i) @ @) V(i) 

We would like however, to avoid the use of meta-restrictions 

altogether. To accomplish this we follow the approach in (CFm) letting 

the string inside the innermost "( ••• )" which contains "@ t @" to be 

produced by a non-terminal "imbr_at_seq". 

produced by "imbrseq" will look like an 

non-terminal "imbrseq" may be defined by: 

The rest of the string 

macro sequence. The 
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(CF) 

imbrseq=imbr_at_seq 

/{morelement ,"}_* imbror {", 1 more ement}* 

imbror={gelement .}* imbrstarel {, gelement}* 

imbrstarel=imbrel/imbrel* 

imbrel=(imbrseq) 

We have to specify what "imbr_at_seq" produces. We will consider it to 

produce one of the following strings each corresponding to one of the 

forms l' to 4': 

I". A regular expression in which the two "@" are included as special 

elements. 

2". A regular expression including one "@" as a special element, headed 

by an "@". 

3". A 1 @ regu ar expression including one " " as above, followed by an 

U@". 

4". A regular expression headed and followed by "@"s. 

We need to specify where the symbols "@" in these "regular" expressions 

are to appear. They may appear on their own as single non-starred 

elements. They may also appear in "or elements" as non-starred elements. 

We shall denote the "orelements" in which they are to appear by "at_or". 

Since these may contain one or two instances of "@" we suffix "at_or" by 

either "1" or "2". Furthermore. we need to specify where in "at or" the 

"@"s are to appear. For"a t or 1" we may distinguish three cases in 

which the "@" may be in front. in the middle. or at the back and for 

"at or2" four cases in which the first "@" is in front and the second in 

the middle or the first in front and the second at the back. or the 

first in the middle and the second at the back. or both in the middle. 

Therefore we shall need seven non-terminals: "at orlf". "at orlm". 
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"at or2mb" - , "at or2mm" 

each of the "orelements" we described above. Their syntax: is: 

at_or 1 f=@ {,gelement}+ 

at_orim={gelement ,}+ @ {, gelement}+ 

at_or 1 b={gelement ,}+ @ 

at or2fb=@ {, gelement}~ , @ 

at or2fm=@ {, gelement}~ , @ {, gelement}+ 

at_or2mb={gelement ,}+ @ {,gelement}~ , @ 

at_or2mm={gelement ,}+ @ {,gelement}~ , @ {, gelement}+ 

producing 

Let us give some examples of productions of the above non-terminals: 

at orif =) @ , gelement =)+ @ , A(i) 

at orim =) gelement,@,gelement =)+ A(i),@,gelement =)+ A(i),@,B(i) 

at orib =) gelement,@ =)+ RESET(i),@ 

at or2fb =) @,gelement,@ =)+ @,ready,@ 

at or2fm =) @,@,gelement =)+ @,@,B(i) 

at or2mb =) gelement,@,@ =)+ A(i),@,@ 

at or2mm =) gelement,@,@,gelement =)+ A(i),@,@,gelement 

=)+ A(i),@,@,B(i) 

The non-terminal "imbr_at_seq" may now be defined by: 
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imbr_at_seq= 

{morelement ;}+ {@/at orlf/at orlm/at orlb} { 1 }* - - _ ; more ement ; 
{@/at_orlf/at_orlm/at_orlb} {; morelement}+ -

@/ 
/{morelement ;}+ {~t_orif/at_orim/at_orlb} {; morelement}~; 

{at_or If/at_or 1m} 

/{at_orim/at_orlb} {; morelement}~; 

{@/at_or1f/at_or1m/at_or1b} {; morelement}+ 

/{at_or1m/at_or1b} {; morelement}~; 

{at_orlf/at_or1m} 

\at_or2fb/ 

/{morelement ;}+ ~ or2fm/at_or2mm/at_or2mb} {; morelement}+ 

/{morelement ;}+ {at_or2fm/at_or2mm} 

/{at_or2mm/at_or2mb} {; morelemnt}+ 

fat or2mm 

/@ {morelement ;}~ {at_or If/at_or 1m} 

/@ {morelement ;}~ {@/at_or1f/at_or1m/at_or1b} {;morelement}+ 

/{at_or1m/at_orlb} {; morelement}~ @ 

/{morelement ;}+ {@/at_or1f/at_or1m/at_or1b} {;morelement}~ @ 

/@ msequence @ 

The above rules are certainly context-free, specify the precedence of 

" II , over ";" and as we shall formally prove in the next section, always 

produce replicators which when expanded yield macro sequences in 

general. These rules were obtained by keeping the production rules in 

(CFm) which did not involve "@" and by expressing the strings which were 

produced by productions of (CFm) involving the "@" as a "regular 

expression" with special "orelements" containing the special element 
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"@". This was necessary for the elimination of the mixed precedence of 

the two separators. The first eight of the production rules of 

"imbr_at_seq" in (CF) correspond to the form 1', the next two to 2', the 

next two to 3' and the final one to 4'. 

Let us derive the strings inside "[ l" of replicators NR3, NR4 and 

NRS from the above rules. First of NR3: 

imbrseq =) imbror =) imbrstarel =) imbrel 

=) (imbrseq) 

=) (imbr at seq) - -
=) (morelement ; at or 1 b @) 

=)+ (UP(i) at orlb @) -
=) (UP(i) gelement @ @) 

=)+ (UP(i) RESET(i) @ @) 

then of NR4: 

imbrseq =) imbror =) imbrstarel =) imbrel* 

=) (imbrseq)* =) (imbr_at_seq)* 

=) (morelement; at_orlf ; at_orlf ; morelement)* 

=)+ (UP(i) 

=) (UP(i) 

=) (Up(i) 

=)+ (UP(i) 

and finally of NR5: 

at or 1 f ; at_or 1£ ; morelement)* 

@ 

@ 

@ 

at orlf ; morelement)* 

@ morelement)* 

@ DOWN(i»* 

imbrseq =) imbror =) imbrstar , gelement 

=) imbrel, gelement 

=) (imbrseq) , gelement 

=) (imbr_at_seq) , gelement 

=) (morelement; at orlf @) , gelement 

=)+ (SKIP(i) 

=) (SKIP(i) 

=)+ (SKlP( i) 

at orlf @) , gelement 

@ @) 

@ @) 

gelement 

V(i) 

f t his subsection sequence 
As we have indicated in the introduction 0 
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replicators should not expand to empty strLngs. 

3.2.6 Some More Replicators 

One criterion for the generality of a macro COSY notation would be 

whether macro programs in this notation may represent basic programs 

which have been represented by macro programs in other macro notations. 

Although quite a number of extensions have been introduced so far in the 

notation sequence replicators have a limitation: they should not expand 

to empty strings. A replicator may generate empty strings for two 

reasons, either because its regularity is the empty string, or because 

the values of "in", "fi", "inc" are such that the range of the index is 

empty. The former situation cannot occur in replicators produced by the 

grammar introduced so far since empty regularities are not permitted by 

the syntax rules. Tnese replicators are not useful anyway. The latter 

situation is excluded by our meta-restrictions on "in", "fi" and "inc" 

imposed to avoid collision of terminal symbols. 

The only place where a replicator would sometimes expand to the empty 

string and sometimes not, is encountered in the non-starving banker in 

[LT78] where the string 

S1 (BNKRD(1)[;par;rap[]ll,n+1,-1]; 

of wh;ch had "1" as its was nested inside three replicators one L 
index, 

ranging from n+1 to 1 in steps of -1. Obviously, the replicator in the 

above string expands to non-empty when l=n+l and even then only one copy 

of"; par jr ap" is gener a ted. The string S1 in the style of the new 

notation for replicators would look like 

S2 (BNKRD(1)#i:l,n+1,-1[jpar;rap]; 

which would not be permitted by our rules in any macro COSy program. 

is not the Context of a "gelement" and the The context of the replicator 

regularity in "[ ]" cannot be produced by "concseq" 

however, S2 were rewritten as 

or "imbrseq". If 
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S3 (BNKRD(1);#i:l,n+1,-1[par;rap;@]; 

it would be a well-formed substring in a macro COSY program. When the 

replicators in S3 and Sl are expanded to non-empty t i h s r ngs t ey generate 

the same basic COSY string. When however, 1<n+1 then the expansion of 

the replicator in S3 would would yield the empty string, and S3 would 

become: 

S4 (BNKRD(l);; 

which is not a well-formed basic COSY string because of the collision of 

the two semicolons. We will permit some special kind of replicators 

which may expand to empty strings. These replicators should generate 

well-formed basic COSY strings whether expanded to empty or not. They 

should conform with our primary consideration for well-formedness after 

expansion. To permit this kind of replicators we need to extend the 

notation and modify one of our syntax rules. 

To avoid collision of separators when these replicators generate 

empty strings as in S4, their context should not be the same as that of 

generalized elements. A separator should be "missing" either on their 

left or on their right. Their expansion has to provide the extra 

separator. If the separator on their left is missing they will be 

called left replicators and will be produced by the non-terminal 

"lreplicator" and if the separator on their right is missing, they will 

be called right replicators and will be produced by the non-terminal 

"rreplicator". For their expansion to bind correctly, right replicators 

should precede and left replicators should follow starelements, sequence 

replicators and distributors. The syntax rule for "gelement", MN 13 

should be modified to 

HN 13. gelement={rreplicator}* 

{starelement/sreplicator/distributor} 

{lreplicator }~ 

The replicator s produced by the non-terminals "lreplicator" and 

" rrep licator" will generate sequences with a separator preceding and 

following respectively. We shall define their syntax by the rules: 
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lreplicator=index_spec[{;/,}I {concseq/imbrseq}) 

rreplicator=index_spec[{concseq/imbrseq}I{;/,}) 

and therefore a replicator produced by the fO lrst rule will have the 
forms: 

(Lconc) #i:in.fi.inc[seplp(i) sep @) 

(Limbr) #i:in.fi.inc[seplp(i) @ t @ q(i)] 

and by the second rule the forms: 

(Rconc) #i:in,fi,inc[p(i) sep @Isep] 

(Rimbr) #i:in,fi,inc[p(i) @ t @ q(i)lsep] 

If their index range is empty the strings generated by their expansion 

will be empty as well. Otherwise the strings generated by the expansion 

of L(conc or imbr) and R(conc or imbr) will be the same as the strings 

generated by the expansion of the sequence replicator obtained from them 

by removing "sepl" and "Isep" respectively, preceded and respectively 

followed by "sep". In the above notation S3 would be written as: 

NR6 (BNKRD(l)#i:l,n+1,-1[;lpar;rap;@]; 

Although the replicator in the string S1 was used in [LT78] it cannot be 

produced by the grammar in that paper. As we noted in section 3.1.5 the 

grammar in [LT78] specified that replicators in sequences appear in the 

context of "elements". This kind of replicators may be produced only by 

the grammars which specified their regularities as strings together with 

MR2 or by the grammars in [LS80] and [SL80]. 

In certain cases the same basic COSY string could be generated by 

another replicator more economically than by a left or right replicator. 

Indeed the replicator 

#i:l.n+l,-1[;par;rap] 

generates the same string as the replicator in NR6 for any land n. 

This is only possible when the separator before the "@" is the same as 
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the separator before "I" in left replicators or the 
separator after "I", 

which is not true in gen 1 F 
era. or example consider the left replicator: 

NR7 tli:l,n,k[; I(A(i);B(i)),@] 

and suppose it is nested within another 1" rep ~cator with index "k" 
ranging from 0 to n where n is a constant. 

expansions for NR7 would be: 
For n=3 the possible 

for k=O: empty 

for k=l: "; (A( 1); B( 1)) ,(A(2); B(2)) ,(A(3); B(3))" 

for k=2: " ; (A( 1 ) ; B ( 1 ) ) ,( A( 3) ; B ( 3) )" 

for k=3: "; (A( 1) ; B( 1) )" 

No grammar for macro COSY given in the literature may produce 
replicators which generate the above strings at all, let alone more 

economically. 

As we would like our replicators to have a fixed form we have chosen 

generality at the expense of some loss of conciseness rather choosing 

conciseness at the expense of generality. 

3.2.7 The Distributors 

As we have noted in section 3.1.9, the distributor able to generate 

the largest class of regularities was defined in [LSC81] by: 

distributor=sep[msequence] 

In the new notation we have replaced the round parentheses "(", and ")" 

around the string to be distributed by the square brackets "[" and "]" 

respectively to distinguish between basic COSY and macro COSY symbols. 

What is inside "[ ]" is specified as a macro sequence. However, 

there is a difference between a macro sequence in a distributor and a 

macro sequence in paths and processes. The operations and indexed 

operations in the former are really array-slices. By an array-slice we 
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mean an equivalence class of indexed operations corresponding to the 

same collective name the indices of which differ in at least one 

dimension. Array-slices are represented like indexed operations but 

with the index fields, corresponding to the dimensions in which their 

elements differ, left blank. We call the dimensions corresponding to 

blank fields of an array slice the distributable dimensions of the 

array-slice. An array slice could have several distributable 

dimensions. When all the dimensions of an array slice are distributable 

then these define all the operations in the array and are represented by 

the collective name itself without any index fields at all. For example 

the collective names A and B defined by the collectivisor 

NC7 array A(O:3) B(4,3) endarray 

contain several slices. The collective name A has only one dimension 

and therefore only one array slice represented by 

A( ) or A 

defining the equivalence class of all the operations in A 

[A(O) ,A( 1) ,A(2) ,A(3)] 

The collective name B has two dimensions and eight array slices: 

B(l, ) 

defining the equivalence class 

[B(1,1),B(1,2),B(1,3)] 

and 

B( 2, ), B(3, ), B( 4, ), B( ,1), B( ,2), B( ,3), B( , )=B 

i d Off between macro sequenc e i n distributors 
The only syntact c ~ erence 

is that some of the index fields of the 
and macro sequence anywhere else 
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"operations" of the former may be empty We suggest to define the 

"indexedop" in such a way that it would be s t ti 11 yo ac ca y valid for them 

to have some empty index fields. We can further restrict the 

"operations" involving blank fields to distributors by meta-restriction 

rules. The non-terminal "indexedop" will then be defined as: 

MN17. indexedop= arrayid{({{iexpr/ }~ ,}+)/ } 

Alternatively we could specify rules to distinguish the two macro 

sequences but this would almost double the number of our syntax rules. 

A distributor operates on a specific distributable dimension of each 

array-slice in its macro sequence which after the expansion of the 

distributor ceases to be distributable. We shall refer to them as the 

distributable dimensions of a distributor. The array slices will be 

replaced upon the expansion of the distributor by sections of 

array-slices. By a section £! an array slice we mean the equivalence 

subclass of operations in the array-slice which have the same index in 

one of the distributable dimensions of that slice. These sections can 

either be indexed operations or other array-slices with one 

distributable less dimension than the slice they originated from. For 

example slice A contains four sections which are indexed operations 

A( 0), A(l), A( 2), A(3 ) 

and slice B contains seven sections which are all array-slices 

B(l, ), B(2, ), B(3, ), B(4, ), B( ,1), B( ,2), B( ,3) 

The distributable dimensions on which the distributor operates are said 

to be compatible when they all contain the same number of sections and 

the distributor is said to satisfy the compatibility criterion (eel). 

Only if this compatibility criterion (eel) is satisfied is the 

d d b nded Before we specify how a 
distributor well-forme an may e expa • 

distributor is expanded we need to define a total order on sections of 

f 1 · S1·nce these sections differ distributable dimensions 0 array-s 1ces. 

from the others in the index value of one of their dimensions their 

order is natural to be defined according to these indices. The order of 
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the sections is defined to b h 
e t e order in which these indices are 

generated in the array declarations. A distributor in which all the 

distributable dimensions on which it operates contain n sections may be 
expanded as follows: 

n copies of the macro sequence in the distributor will be 
concatenated separated by th e separator associated with the 

d istr ibutor. I the f' n ~rst copy each array slice will be 

replaced by the first section in this slice. In general, the 
i'th copy (lii~n) of each array-slice will be replaced by the 

i'th section of this slice. 

According to this scheme the distributor NDI 

NDI ;[A,B( ,3)] 

where A, B are declared by NC7 expands to: 

A(O),B(1,3);A(1),B(2,3);A(2),B(3,3);A(3),B(4,3) 

The distributor implicitly introduces a total order on the sections 

of array slices, the order specified by the collectivisors. The order 

defined by the collectivisors is immaterial in a program without 

distributors. For example the substitution of NC7 by NC8 

NC8 array #i:3,O,-1[A(i)] B(4,3) endarray 

in a program MPROG would not affect at all the expansion of MPROG and 

therefore would not necessitate any changes to the rest of MPROG for its 

behaviour to remain unchanged, as long as, in general, A is not used in 

a distributor. If A were distributed then its expansion would depend on 

the collectivisor by which A was declared. With NC7 the order of the 

indices of its operations after the expansion will be ascending from 

left to right and with NC8 descending. However, we have to point out 

that although ,[A] produces different strings when A is defined by NC7 

and NC8 this would not have any effect on the behaviour of MPROG, 

because of the semantics of ",", and 11.11 , . The same of course is not 
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true for ; [A]. 

We shall extend the class of regularities which the distributors may 

generate by permitting them to distribute not only over the whole range 

of array-slices but over a subrange of them as well. We need to extend 

the notation for distributors to 

ND2 sep #inind,fiind,incind[msequence] 

in which "inind", "fiind", "incind" denote integer expressions, 

representing the subrange over which "msequence" is to be distributed. 

Using the subrange option we may restrict the expansion of a distributor 

to some selected "copies" of its regularity. The subrange defines which 

copies should be selected. The integer expressions "inind", "fiind", 

"incind" specify the first copy to be selected, the upper limit of the 

copies to be selected and the step by which the upper limit should be 

reached from "inind", respectively. Thus the copies to be selected in 

the expansion of ND2 are: 

(inind)'th,(inind+incind)'th, ••• ,(inind+(Ns-l)*incind)'th 

where Ns is the number of copies to be selected. 

For example the distributor ND3 

ND3 ;ff1, 3,1 [A] 

would expand to: 

A(O);A(l);A(2) 

of all copies O f "A" in the string generated by the 
selecting out 

d d thO d The distributor ND4 
expansion of ;[A] only the first, secon an ~r. 

ND4 ;ff1,3,2[A] 

would expand to: 
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A( 0) ; A( 2) 

selecting the fir-st and the third copies of "A" in the expansion of 

j [Aj. 

We shall require the expansion of ND4 to be non-empty and the indices 

of the operations to be in the range defined by the collectivisors. In 

view of the semantics of the subrange the compatibility criterion (CCl) 

may be somewhat relaxed. 

(Drestl) 

When a subrange is defined the slices will not be required 

to contain the same number of sections but at least as many 

sections as specified by the subrange. 

For example the distributor NUS 

NDS j/12,3,l[B(1, ),B( ,1)j 

where B is defined by NC6 or NC7 satisfies (Drest1) although B(l, ) has 

three array slices and Be ,1) four, and may be expanded to: 

B(1,2),B(2,1) 

j B(l , 3) , B(3, l) 

h t exam;ne is what interpretation will be given A final point we ave 0 ~ 

to the subrange when fiind<inind and incind<O as in ND6 

ND6 j/13,1,-l[A] 

There are three options: 

1. 

2. 

to consider it as meaning the same as N03 arguing that the subrange 

acts only as a selector and does 

copies. 

not impose any order on these 

to consider it illegal arguing that it does specify an order which 
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nevertheless condradicts the order specified by ;[AJ. 

3. to consider it as an extension of ; [AJ and expand according to the 

subrange. The distributor ; [AJ will be considered as an 

abbreviation for ;fll,4,1[AJ in which no copies of A are excluded. 

Of the three options only the third extends the power for abbreviation 

of the distributor, allowing more sequences to be generated, and for 

this reason we adopt it as the interpretation of the subrange. For 

example the sequence 

A(3);A(2);A(1);A(O) 

may be generated by the distributor ND7 by reversing the order of 

distribution of A: 

ND7 ;#4,1,-1[A] 

It is clear from the syntax of the distributors that these may be 

nested. Each of these distributors must apply to a different 

distributable dimension of each array-slice. The following restriction 

is imposed: 

(Drest2) 

Inside a k-nested distributor there must only be arrays with 

at least k dimensions out of which exactly k should be 

specified as their distributable dimensions. 

Equivalently we may say that after the expansion of the outermost 

distributor, the rest of the distributors must obey the syntax rules. 

For example ND8 

ND8 ; [ , [A] ] 

where A is defined by NC7, is not valid since after the expansion of the 

outermost distributor a non-valid distributor is generated: 
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, [A( 0) 1 ; , [A(l ) 1 ; , [A( 2) 1 ; , [A(3) 1 

The reason for this is that the macro sequences inside "[ 1" of the 

above expansion do not consist of array-slices but of operations. 

We must specify which of the nested distributors applies to which of 

the distributable dimensions of array slices. The rule adopted in the 

past is that the outermost distributor will apply to the rightmost 

distributable dimension of each slice; the second outermost to the 

rightmost not allocated distributable dimension, etc. A possible 

relaxation of the above rule would be to consider it as the default rule 

and specify explicitly which separator applies to which distributable 

dimension. The distributor ND9 for example 

ND9 ; [ , [B 11 

where B is defined by NC7 or NC8 would expand according to either rules 

to: 

B( 1 , 1) , B( 2, 1) , B( 3, 1) , B( 4, 1) 

;B(1,2),B(2,2),B(3,2),B(4,2) 

;B(1,3),B(2,3),B(3,3),B(4,3) 

with "," applying to the first dimension of Band 

But ND10 

ND10 ; 1[, [B]] 

would expand to 

B(1,1),B(1,2),B(1,3) 

;B(2,1),B(2,2),B(2,3) 

;B(3,1),B(3,2),B(3,3) 

;B(4,1),B(4,2),B(4,3) 

fI_" , to the second. 

since it is explicitly specified that ";" applies to the first dimension 

of B and implicitly that "," applies to the rightmost unallocated 

dimension of B, according to the default rule. 
The following restriction needs to be imposed on dimension selectors: 

(Drest3) 

The dirilension selectors in distributors must have values 

dimensions of array slices. 
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The complete syntax for the distributlJr would then be: 

distributor={;/,}{/iexpr}{/#iexpr,iexpr,iexpr}[msequencel 

The feature for selection of distributable dimensions is very helpful 

when both N09 and NOlO are required in the same program. Without it we 

had to use the equivalent replica tor NR8 

NR8 iii: 1,4, 1 [ , [B( i, )];@ 1 

instead of NDlO. If only one of N09 or NDlO were required then we could 

define the collectivisor in such a way as to conform to the default 

rule. This extension is also important when distributing over 

dimensions of array slices in which the indices of the operations depend 

on some other dimension, like in NC8: 

NC8 array #i:l,5,2[#j:1,i,1[S(i,j) T(j,i)]] endarray 

where the indices in the second dimension of S depend on the indices of 

its first, and the indices of the first dimension of T on the indices in 

its sedond dimension. According to the expansion rules the distributor 

NDll 

:-lDll ;[,[T]] 

expands to 

TO, 1) 

;T(1,3),T(2,3),T(3,3) 

;T(1,5),T(2,5),T(3,5),T(4,5),T(5,5). 

However we cannot expand the nested distributor ND12 

ND12 ;[, [S]] 

be dl."stributed first and the number since the second dimension of S must 

of operations in this dimension depends on the first. It will be 

required that when distributing over some dimension of collectivisors 
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which depend on other dimensions the indl'ces of th 1 e atter must be known 
since otherwis~ the expansion is not defined. 

However, our extension allows the distributor NOl3 

NDl3 ;1[,[5]] 

to be expanded instead of being obliged to write the replicator NR9: 

NR9 It i: 1, 5,2 [ , [ 5 (i, )];@] 

Both N013 and NR9 expand to: 

S(1,l) 

;S(3,1),5(3,2),S(3,3) 

;S(S,1),S(5,2),S(S,3),S(S,4),S(S,5) 

To demonstrate the use of the two new features of distributors, the 

subrange and the facility of specifying distributable sections, let us 

consider two more "realistic" examples. In the first we shall specify 

the pipeline which, using just replicators may be written as 

NP3 #i:1,n,l[path TRANSFER(i);TRANSFER(i+1) end] 

where array TRANSFER is declared by 

Ne9 array TRAN5FER(n+1) endarray 

We may replace the sequence in the above path by a distributor obtaining 

NP4 IIi: 1, n, 1 [path ;111, HI, 1 [TRANSFER] end] 

In the second example we shall specify a square matrix which is 

initially empty. Processes may read or write to any element of the 

array asynchronously, but write's and read's on any element should 

alternate, and no read's should occur before the initial write. These 
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constraints may be specified by: 

NCIO array WRITE READ(n,n) endarray 

NP5 #i:l,n,l[#j:l,n,l[path WRITE(i,j);READ(i,j) end]] 

A writer process which updates the elements of the matrix by columns may 

be specified by any of the following processes: 

NP6 process #j:l,n,l[#i:l,n,l[WRITE(i,j);@];@] end 

process #j:l,n,l[;[WRITE(,j)];~] end 

process ;[#i:l,n,l[WRITE(i,);@]] end 

process ;[;[WRITE]] end 

We now specify a number of processes each specifying reading from 

selected elements of the matrix. A process reading all the elements of 

the matrix by rows may be specified most concisely by 

NP7 process ;l[;[READ]] end 

A process reading the elements of the first r (l~r~n) rows by columns may 

be specified by 

NP8 process ;[;#l,r,l[READ]] end 

A process reading the lower left triangular matrix may be specified by 

NP9 process #i:l,n,l[#j:l,i,l[READ(i,j);@];@] end 

or by 

NPIO process #i:l,n,l[;#l,i,l[READ(i,)];@] end 

Finally a process reading the elements of the matrix forming the upper 

right triangular matrix by rows may be specified by 

NPll process ;[#j:l,n,l[#k:j,n,l[READ(,k);@];@]l end 
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or by 

NP12 process jl[#j:l,n,l[j#j,n,l[READ);@)] end 

We have now completed the development of the design and the syntax of 

the macro notation, except for the non-terminal "iexpr" producing 

integer expressions. The syntax rules for integer expressions may be 

found in appendix B together with the rest syntax rules for macro COSY. 

The syntax for "iexpr" in appendix B permits all integer expressions 

which have been used in macro programs. 

The next section 3.3 is concerned with the expansion of replicators, 

distributors and of complete macro programs. 

3.3 THE EXPANSION OF MACRO COSY PROGRAMS 

In the last section 3.2 the expansion of replicators and distributors 

was given in a schematic way. In this section the expansion of 

replicators, distributors and of complete macro programs is formally 

defined. The strings obtained from their expansion are characterized. 

In particular macro programs are shown to expand to well-formed basic 

programs. We also prove a number of theorems for the replacement of 

macro elements in macro sequences by other macro elements generating the 

same strings as the former. In the three sub-sections of this section 

we examine the expansion of replicators, distributor and macro programs 

respectively. 
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3.3.1 The Expansion of Replicators 

The replicators we developed in the previous section 3.2 are of the 

form 

#index:in,fi,inc[s(index)] 

where "index" is the replicator index, "in", "fi", "inc" are integer 

expressions and "s(l.·ndex)" at· h· h h s rl.ng w l.C may ave various forms, 

depending on the type of replicator. If, for example, a replicator is a 

bodyreplicator then "s(index)" has the form: 

p(index) 

where p represents a collection of paths, processes and bodyreplicators 

the integer expressions in which may depend on "index". If a replicator 

is an imbricator then "s(index)" has the form: 

p(index) @ t @ q(index) 

where p and q are strings, the integer expressions in which may depend 

on "index" and t a string none of the integer expressions of which may 

depend on "index". For the purposes of this section we shall consider 

the general form of "s(index)" as being 

(Gs) sep11 p(index) @ t @ q(index) I sep2 

Of course none of the strings inside "[ J" of any of our replicator has 

the general form (Gs), but all appropriate forms may be obtained from 

(Gs) by removing certain substrings. Therefore, a replica tor may be 

considered as having the general form (GR) 

(GR) #index:in,fi,inc [sep1 I p(index) @ t @ q(index) I sep2] 

The parts of "s(index)" depending on "index", namely p(index) and 

q(index), may be repeated upon the expansion of replicators. The index 

specification part "tlindex:in, fi,inc" determines how many copies of 

these parts are to be made and the~alues the index takes which 

order of the 

are to 
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be substituted in each copy for "index" upon the expansion of 

replicators. The values in the range of the index, if non-empty, form 

finite arithmetic progressions having initial value "in", difference 

"inc" and bound "fi". Under this interpratation of the index 

specification, the value for "inc" must be non-zero. Otherwise an 

infinite arithmetic progression would be formed with the value of "in" 

as the only element of the progression. If the number of copies to be 

generated is n (n)O) then the values the index takes are: 

in,in+inc,in+2*inc, ••• ,in+(n-1)*inc 

The value of n is also determined by the index specification of 

replicators and is given by the formula: 

n=(fi-in)llinc+1 

where "II" denotes integer division. The above formula is well-defined 

since inc~O. The value m=(fi-in)llinc gives the number of intervals of 

length lincl from in to fie If m is positive it indicates that fi may 

be approached from in in steps of inc and if negative that fi may be 

approached from in in steps of -inc. If m is zero it indicates that the 

distance from in to fi is less than lincl. The index is to take values 

from in to fi in steps of inc. If m(O then fi may not be aproached at 

all from in in steps of inc. In this case the index specification 

specifies an empty range for the values of index. If m)0 then fi may be 

approached from in in steps of inc and the values it may take are m+1. 

If m=O then the index takes only one value, namely the value of in. 

Therefore, the index takes m+1 values and for a non-empty range 

m+1=(fi-in)llinc+1=n)0 

we have used the phrase "fi may be approached from in" instead of the 

phrase "fi may be reached from in" to indicate that fi acts as a bound 

not to be exceeded by index and does not necessarily specify the last 

value of index. For example the index specification 

#i:1,6,2 
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specifies the values 1, 3, 5 for index, thus in that sence is equivalent 

to the index specification 

lIi:1,5,2 

The values the replicator index may take may be generated by the 

formula: 

(F) f(j)=in+(j-1)*inc for j=1,2, ... ,n. 

When a replicator is expanded the values of f(j) for j=l, ... ,n will be 

substituted in the j'th copy of p(index) and q(index) for index. 

Although the replicators generate various kinds of regularities 

produced by different syntax rules their expansion may be defined by one 

and the same formula. Let us first define the primitive-recursive 

operator COpy having three string arguments separated by "I": 

I 1 
lif l)k then P(k) COpy {P(j)/T/Q(j)} Q(k) 

1 I j=k+1 
COPY{P(j)/T/Q(j)}= I 

lif l=k then P' (k) T Q' (k) j=k 
I 

T' lif l<k then 

where P(j) and Q(j) are strings in which the integer expressions may 

depend on j. The strings P'(k) and Q'(k) are the same as P(k) and Q(k) 

respectively with the terminating and respectively leading separator,i 

removed. T is a string which does not involve integer expressions 

depending on j. The string T' is the same as T with both leading and 

trailing separators removed. Finally 1, k are integers. 

The expansion of (GR) denoted by replexpO(GR) will be given by the 

formula: 

lif inc/O and n=(fi-in)llinc+1>O or t' non empty 
I 
I n 

replexpO(GR)=lsepl COPy{p(f(j»/t/q(f(j»} sep2 
I j=l 
I 
lotherwise empty 

where p(f(j» and q(f(j» are obtained from p(index) and q(index) 
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respectively by substituting the function f(j)=in+(j-l)*inc for "index" 

and where the string t' is the same as t with its leading and trailing 

separators removed. The superscript "0,, in "replexpoll indicates that 

only GR is expanded and not any other replicators which may be generated 

by its expansion. 

Let uS apply this formula to expand some replicators. In the 

expansion of the bodyreplicator NPl2 

NPl2 #i:l,4,l[path DEPOSIT(i);REMOVE(i) end] 

the regularity inside "[ ]" will be replicated (4-1)1/1+1=4 times. In 

the symbolism of (GR) 

p(index)="path DEPOSIT(i);REMOVE(i) end" 

and t and q(index) are the empty strings. The expansion of NPl2 denoted 

by replexp o(NPl2) is given by: 

4 
}~ry{path DEPOSIT(l+(j-l)*1);REMOVE(l+(j-l)*l)endl I}= 

4 
COPY{path DEPOSIT(j);REMOVE(j) endl I} 
j=l --

which yields 

path DEPOSIT(l);REMOVE(l) end 

path DEPOSIT(2) ;REHOVE(2) end 

path DEPOSIT(3);REMOVE(3) end 

path DEPOSIT(4);REMOVE(4) end 

Consider also the macro path NPl3 

NPl3 path #i:l,4,2[DEPOSIT(i);@] end 

specifying the sequentialization of the deposits in the odd frames of 

four free frame buffer specified by NPl2. The expansion of the 

replicator in the macro sequence of the above path is given by the 



formula: 

2 
COPY{DEPOSIT(1+(j-l)*2;//}= 
j=l 
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2 
COPY{DEPOSIT(2*j-l);//}=DEPOSIT(1);DEPOSIT(3) 
j=l 

The expansion of the imbricator in the path NP14 

NP14 path empty.#i:l.k,l[(UP(i); @;full*;@ ;DOWN(l»*] end 

when k=3 is given by: 

3 
COPY{(UP(j);/;full*;/;DOWN(j»*} 
j=l 

which yields 

(UP(1);(UP(2);(UP(3);full*;DOWN(3»*;DO\m(2»*;DOWN(1»* 

In the previous section we set the restriction that a sequence 

replicator should always expand to non empty strings. From the formula 

replexpO(GR) giving the expansion of GR it may be deduced that this 

restriction is formally expressed by: 

(Rrestl) 

inciO and n=(fi-in)//inc+l>O or t' non empty. 

If k=O in NP14 its expansion is still non empty and is given by 

o 
COPY{(UP(j);/;full*;/;DOWN(j»*}=full 
j=l 

Therefore NP14 after the expansion of its replica tor for k=O becomes: 

NPlS path empty.full* end 

which specifies that a "stack" of size 0 is both empty and full. If 
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however <l stack may only be tested for empty as specified by '~C'l6 

NP16 path empty,Hi:1,k,l[(UP(i); @;@ ;DOWN(i»* end 

the expansion of the replicator in NP16 for k=O is not defined, since 

(k-l) / /1+1=0, the string t' is empty and consequently, the index 

specification does not satisfy (Rrestl). We may in this case use a left 

replicator, to which (Rrestl) does not apply, obtaining path NP17 

NPl7 path empty#i:l,k,l[,I(UP(i); @;@ ;DOWN(i»*] end 

in which the replicator when k=O, yields the empty string and path NP18 

is obtained 

NP18 path empty end 

which specifies that a stack of size ° is always empty. 

The condition n)O also implies that the expression for n in Rrest is 

well-defined. If it is not then n)O does not hold and the range of the 

replicator index is empty. Consider for example the two nested 

replicator s 

NRIO Hj:O,2,1[Hi:O,m mod j,l[A(i);@];@] 

The index j of the outer replicator takes values 0, 1, 2. For j=O the 

inner replicator becomes 

NRll Hi:O,m mod O,l[A(i);@] 

As the expression "m mod 0" is not defined the range of i is empty and 

as the replicator is a concatenator does not satisfy (Rrestl). 

The condition (Rrestl) for non-empty expansions is not the same as the 

one required in other notations. We may recall from the introduction of 

chapter 3 that the expansion of a replica tor is empty when 

inc=O or (fi-in)*inc<O 
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the complement of which 

incfO and (fi-in)*inc>O 

gives the condition a replicator expanding to non-empty strings. One 

obvious difference is that (Rrestl) could expand to non-empty when t' is 

non-empty irrespective of the values of in, fi, inc, as we demonstrated 

in the expansion of NP14 when k=O. But a more subtle difference is that 

the conditions 

incfO and n=(fi-in)//inc+l>O 

incfO and (fi-in)*inc>O 

(A) and 

(B) 

are not equivalent. Condition (B) certainly implies (A). Both require 

incfO. Condition (B) additionally requires that 

(fi-in)*inc~O =? (fi-in)/inc~O 

=? (fi-in)//inc~O 

=? (fi-in)//inc+l~l 

(incfO) 

Therefore (B) implies (A). Let us now show that (A) does not imply (B). 

n>O =? (fi-in) //inc+l~l 

=? (fi-in) /inc-e~O (-l<e<l) 

=? (fi-in)/inc~e 

=}< (fi-in)/inc>l (as r.h.s. min. when e tends to -1) 

For values of in, fi, inc satisfying 

O>(fi-in) / inc>-l (I) 

that is 

O>fi-in>-inc when inc>O 

O<fi-in<inc when inc<O 

also satisfy 
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(fi-in)*inc<O 

For values of in, fi, inc satisfying (I) the number of values the index 

takes is 

(fi-in)//inc+l=O+l=l 

namely the value of in. Therefore for in, fi, inc satisfying (I) 

replicators in the new notation do expand to non-empty strings. Thus 

more replicators expand to non-empty strings under condition (A) than 

under (B). We have relaxed condition (B) for the folowing reasons. The 

value of fi is not always the last value the index takes. 

replace fi by fi', the true final value index takes. We took 

Thus we may 

the view 

that fi' is the integer closest to fi, such that (fi'-in) is an exact 

multiple of inc and fi' is either closer to in than fi or is the same as 

fi, as no integer in the range of an index could exceed fie 

Mathematicaly fi' is defined by: 

(i) (fi'-in) mod inc=O 

( ii) I f i' - f i I < I inc I 

(iii) Ifi'-inl~..Ifi-inl 

The value of fi' may be obtained by the formula: 

fi'=in+(n-l)*inc 

where n=(fi-in)//inc+l. When in an index specification 

lIi:in,fi,inc 

fi is the true final value of index i both conditions (A) and (B) are 

equivalent as in, fi, inc cannot satisfy (I): 

O>(fi-in)/inc>-l (I) 

as (fi-in) is an exact multiple of inc, thus 

(fi-in)/inc=O 
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A final restriction has to be imposed on replicators not in collectivisors 

(Rrest2) 

The replicators should generate subscripted operations 

permitted by the collectivisors. 

Replicators however may only generate some of the subscripted operations 

permitted by the collectivisors. In the expansion formula for 

replicators the index of COpy ranges from 1 to some integer n in steps 

of I, no matter what the values of in, fi, inc are. This indicates that 

all replicators may be transformed to others the index specification of 

which has in=inc=l, expanding to the same string as the former. For 

example the replica tor inside path NP19 

NP19 path #j:l,2,l[DEPOSIT(2*j-l);@] end 

has in=inc=l and expands to the same string as the replicator inside 

path NPl3 

2 
COPY{DEPOSIT(2*j-l);//}=DEPOSIT(I);DEPOSIT(3) 
j=1 

In fact there are families of replicators which all expand to the same 

string, differing in the index specification part and in the integer 

expressions inside"[ ]". The integer expressions inside "[ J" of a 

replicator which may depend on the replicator index may be subscripting 

indexed operations, or may appear in index specifications of replicators 

and subrange specifications and dimension selection expressions. A 

replicator in which in=1 and inc=1 will be called the normal form of a 

replicator. We next prove two theorems, showing that all replicators 

may be replaced by replicators in normal form and that from replicators 

in normal form all replicators in the same family may be obtained. Let 

us first prove a lemma. The symbol ,,///" will indicate end of a proof. 

LEMMA 1: 

A string S obtained from a syntactic entity SE by replacing the 

integer expressions in SE by other integer expressions forms also 

the same syntactic entity. 
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Proof: 

A syntactic entity is a string which may be produced by a 

non-terminal of the grammar. The string S may be produced by applying 

the same syntax rules as for producing SE down to the non-terminal 

"iexpr". Then the production for S diverges from that for SE in that 

different syntax rules may be applied to obtain integer expressions. 

Therefore S forms the same syntactic entity as SE.III 

Let us now prove the theorem for the replacement of replicators by 

replicators in normal form. 

THEOREM 3.1: 

A replicator of the general form 

(GR) Uindex:in,fi,inc[sepl I p(index) @ t @ q(index) I sep2] 

expands to the same string as the replica tor in the normal form 

(GR') Uj:1,n,1[sep1 I p(f(j» @ t @ q(f(j» I sep2] 

where n=(fi-in)//inc+l and f(j)=in+(j-1)*inc. 

Proof: 

As (GR) and (GR') differ only in the integer expressions, by lemma 1, 

both may be produced by the same non-terminal. Consequently, (GR') is a 

syntactically well-formed replicator. 

The expansion of both (GR) and (GR') is given by the same formula 

namely 

lif inc#O and n=(fi-in)//inc+1>O or t' non empty 

I n 
replexp O(GR)=lsepl COPY{p(f(j»/t/q(f(j»} sep2 

I j=l 
I 
lotherwise emp ty 

Therefore, (GR) may be replaced by (GR').III 
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Le t us now prove the theorem for replacement of repl icator in normal 

form by general replicators. 

THEOREM 3.2: 

A replicator of the normal form 

(GRNF) Ifj:l,m,l[sepl I p(j) @ t .'} q(j) I sep2] 

expands to the same string as the replica tor 

(G~I) Ifi:in,fi,inc[sepl I p(g(i) @ t @ q(g(i» I sep2] 

where in, inc are integers (inc#O), fi=in+(m-l)*inc+e where 

O<e<inc 

O>e>inc 

when inc>O 

when inc<O 

or 

and g(i) the function g(i)=(i-in)//inc+l and i does not appear in p,t,c 

Proof: 

By lemma 1 the replicator (GR") is syntactically well-formed. The 

expansion of (GRNF) is given by 

if m)O or t' is non-empty then 

m 
sepl COPY{p(i)/t/q(i)} sep2 

j=l 

otherwise empty 

The condition for a non-empty expansion for (GR") is 

if inc#O and n=(fi-in)//inc+l>O or t' is non-empty 

The value of inc is by definition non-zero. The value of n is given by: 



n=( fi-in)/ / inc+1 

=«in+(m-l)*inc+e)-in)//inc+l 

=«m-l)*inc+e)//inc+l 

=m-l+l 

=m 
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(as e/ /inc=O) 

Therefore the condition for non-empty expansion of (GR") is 

if m)O or t' is non-emp ty 

The expression giving the expansion of (G~') is 

if ~l or t' is non-empty then 

m 
sepl COPY{p(g(f(j»/t/q(g(f(j»} sep2 

j=l 

otherwise emp ty 

where f(j)=in+(j-l)*inc. For the above expression to be the same as the 

expression for the expansion of (GRNF) the composite function g(f(j» 

should be 

g(f(j»=j 

Let us demonstrate the validity of the above equality: 

g(f(j»=(f(j)-in)//inc+l 

=«in+(j-l)*inc)-in)//inc+l 

=«j-l)*inc)//inc+l 

=j-l+l 

=j 

Therefore the expansion of (GR") is the same as that of (GRNF) .111 

In the previous section we claimed that the syntax rules produce 

sequence replicators which when expanded generate macro sequences. 

Having formally defined the expansion of replicators we proceed in 

proving this claim. Without loss of generality we shall prove it for 

replicators in normal form which we assume have been produced by the 

non-terminals "sreplicator", "concseq" and by the (CF) rules for 
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"imbrseq". 

Let us first prove some le®nata which we will use in proving our main 

theorems. From now on we assume without loss of generality that all 

replicators are in normal form. 

LEMMA 2: 

In a concatenator of the form 

#i:1,n,1[p(i) sep @j 

the string p(i) is a macro sequence. 

Proof: 

The string "p(i) sep @" is produced h the non-terminal "concseq" 

which produces in general, strings either of the form: 

1. morelementl morelement2 morelementn @ 

or of the form: 

2. morelement1 morelementn gelement, ••• ,gelement,@ 

If the substrings ";@" and ",@" are removed from 1 and 2 respectively 

the remaining strings correspond to p(i) and may be produced by the 

non-terminal "msequence"./// 

LEMMA 3: 

If "sl sep s2" is the string obtained by juxtaposition of two macro 

sequences sl and s2 and the separator sep as shown, then it is a 

macro sequence. 

Proof: 

Let s 1 be: 

morelement1l mor e 1 erne n t 1 2 morelement l n 
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and s2 be: 

morelement 2 l morelement 2 Z morelementLm 

If sep=; then "5 1 ;5 2" forms the macro sequence: 

morelement l l 

morelement 2 l 

morelement l Z 

morelement 2 Z 

morelement in 

morelement 2m 

If sep=, then the last macro orelement of sl, namely "morelement 1n" and 

the first macro orelement of s2, namely "morelement21" in "sl,s2" form a 

macro orelement which we denote by "morele;nentc". Then the string 

"s 1,s2" clearly forms the macro sequence: 

morelement1l morelement 1Z morelement 1 n-l 

morelementc 

morelement 2Z mor e lemen t 2m 

This completes the proof of this lemma. III 

We may now prove our first theorem, the theorem for the expansion of 

concatenators to macro sequences: 

THEOREM 3.3: 

The expansion of a concatenator of the form of 

(Conc) #i:l,n,l[p(i) sep @] 

yields a macro sequence for any n)O. 

Proof: 

The expansion of the concatenator Conc is given by replexpO(Conc) 

n 
COPY{p(i) sep/ /} 
j=l 

To prove that this yields a macro sequence for any (1)0 we shall use an 

inductive argument on n. When n=l its expansion ECl) is given by pCl). 
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According to Lemma 2, p( i) is a macro sequence, and therefore according 

to Lemma 1 the str ing p( 1) is a~~equence, as well. 
Imacro 

Assume that the expansion of Cone for a finite integer n, denoted by 

E(n) is a macro sequence which is of the form 

E(n)=p(l)sep p(2)sep ••• sep p(n) 

The expansion of Cone for n+1 denoted by E(n+l) is given by: 

E(n+1)=p(1)sep p(2)sep ••• sep p(n)sep p(n+l) 

which may be written as 

E(n+1)=E(n) sep p(n+l) 

According to lemmata 1 and 2 the string p(n+l) is a macro sequence. 

Therefore according to lemma 3 the string E(n+1) is a macro sequence 

since it is of the form "msequence sep msequence". By induction we 

deduce that Cone expands to macro sequences for any n)O./// 

Before we prove a similar result for imbricators let us prove three 

more lemmata. 

LEMMA 4: 

In an imbricator of the form 

#i:1,n,1[p(i) @ t @ q(i)] 

the string t' obtained from t by removing its leading and trailing 

separators is either empty or a macro sequence in general. 

Proof: 

The string t is the part of the string produced by "imbr_at_seq" (cf. 

section 3.2) between the two "@"s. According to the first four 

production rules for "imbr_at_seq" the string t may be of one of the 

four forms: 
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1. ,gelement, ... {; morelement}* gelement, ..• , 

2. {; morelement}~; gelement, ••• , 

3. ,gelement, ••• ;{morelement ;}~ 

4. ;{morelement ;}~ 

By removing the leading and the terminating separator the resulting 

string t' may clearly be produced by "msequence" except in case 4 in 

which it may be empty. 

According to the second group of four productions for "imbr_at_seq" 

the string t may be of two forms: 

1. ,gelement, ••• , 

2. 

When the leading and terminating commas are removed from 1 the resulting 

string t' is a macro orelement which certainly is a special case of a 

macro sequence. In the second case as t consists of just the 11 " , 
this comma is removed the resulting string t' is the empty string. 

when 

According to production options 9 and 10 for "imbr_at_seq" the string 

t may be of the forms: 

1. . Jmorelement ;}.!.. gelement, ••• , 

2. {morelement;}!. 

Clearly by removing the terminating separator from 1 and 2 either a 

macro sequence or an empty string is obtained. 

According to production options 11 and 12 for "imbr_at_seq" the 

string t may be of the forms: 

1. ,gelement, ••• {; morelement}~ 

2. {; morelement}~ 

Again, by removing the leading separator either a macro sequence or an 

empty string is obtained. 
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Finally, the last production option for "imbr_at_seq" specifie~ that 

t does not have leading or terminating separators and that it is a macro 

sequence. III 

LEMMA 5: 

If, in an imbricator of the form 

fli:1,n,1[s] 

where s is produced by "imbrseq", the two "@" s and the separators 

before the first and after the second "@" S are removed from s, then 

the resulting string is a macro sequence. 

Proof: 

The syntax rules (CF) for "imbrseq" show that it suffices to prove 

that if from a string s1 produced by "imbr_at_seq" the two "@" s and some 

separators are removed as above then the resulting string is a macro 

sequence. The reason is that s1 is either the complete string s or it 

appears as an element "(s1)" in s. The only difference between a macro 

sequence and a string produced by "imbrseq" is that the latter contains 

this special element. Therefore if s1 after the above transformation 

becomes a macro sequence, the whole string s in "[ ]" will be one as 

well. 

The first "@" in s1 may appear after 

( a 1) "[ " or " ( " 

( b 1) ";" or "," 

Similarly the second "@" may appear before 

(a 2) " ]" or " )" 

( b 2) ";" or " " 

From the production rules for "imbrseq" 

combinations of these contexts may occur. 

combination separately. 

it 

We 

may be 

shall 

seen that all 

consider each 
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Case a1-a2 

The first and the second "~" do not have any separator before and 

after them respectively. The string sl is produced by the last 

production option for "imbr_at_seq". When the two "@" are removed from 

sl the remaining string is a macro sequence. 

Case 2 al-b2 

The string sl is produced by the 9th and 10th production options for 

"imbr_at_seq" • The first "@" does not have any separator in front of 

it. When the first "@" is removed from sl the resulting string s1' is 

like a macro sequence except for one of its "orelements" which involves 

"@" either on its own or in an orelement produced by one of "at_orlf", 

"at_orlm", "at orlb". The string s1' may be of four forms: 

1 • {morelement ; }~ @,gelement, ••• ,gelement { ; morelement}~ 

2. {mor elemen t ; }.:. @ { ; morelement}+ 
• •• ,@ , ••• 

3. {morelement ; }.:. gelement: 'y-,gelement { ; morelement}* 

4. {morelement ; }.:. gelement, ••• ,@ { ; morelement}+ 

When "@," and "@;" are removed from 1, 2 and 3 respectively the 

remaining strings are macro sequences. When "@;" is removed from 4 the 

string "gelement, ••• ," together with the first macro orelement after 

"@;" is a macro orelement and therefore the whole of the remaining 

string is a macro sequence. 

Case 3 bl-a2 

The string sl is produced by the 11th and 12th production options for 

"imbr_at_seq". The second "@" is not followed by a separator. When the 

second "@" is removed from sl the resulting string sl' is like a macro 

sequence except that one of its "orelements" involves the "@" either on 

its own or in an orelement produced by one of "at_orlf", "at_orlm", 

"at or1b". The string s1' may be of the forms: 

1. {morelement ;}~ gelement, ••• ,@ {; morelement}* 

2. {morelement ;}-i- @ {; morelement}~ 
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3. {morelement ;}..:. gelement, •.• ,@,gelement {; morelement}* 

4. {morelement ;}+ @,gelement, ••• ,gelement {; morelement}* 

As in the previous case, when ",@" and ";@" are removed from 1, 2 and 3 

respectively the remaining string is a macro sequence. When ";@" is 

removed from 4 the macro orelement in front of it together with 

",gelement, ••• " is a macro orelement and therefore the whole of this 

string is a macro sequence. 

Case 4 b1-b2 

This case has two subcases: Either the two "@"S are in two separate 

special orelements either on their own or in orelements produced by one 

of "at_or If", "at_or_lm", "at or lb" when productions 1 to 4 for 

"imbr_at_seq" are applied, or both "@"s appear in the same special 

orelement produced by one of "at_or2fm", 

"at or2mb" when productions 5 to 8 for "imbr_at_seq" are applied. 

1 • 

2. 

3. 

4. 

In the first subcase we apply the same arguments as in cases 2 and 3. 

In the second subcase sl may take four forms: 

{morelement; }..:. 

{morelement; }+ 

{morelement; }..:. 

{morelement; }+ 

gelement, ••• ,@, ••• ,@, ••• ,gelement {;morelement}~ 

@,gelement, ••• ,@, ••• ,gelement {;morelement}~ 

gelement, ••• ,@, •••• ,gelement,@ {;morelement}+ 

@,gelement, ••• ,gelement,@ {;morelement}+ 

When ",@" and "@," are removed from 1 the resulting string is a macro 

sequence. When ";@" and "@," are removed from 2 the macro orelement 

before ";@" together with ",gelement, ••• ,gelement" is a macro orelement 

and therefore the whole string is a macro sequence. Similar ly, when 

",@" and "@;" are removed from 3 the string "gelement, ••• " is a macro 

orelement and therefore the whole string is a macro sequence. Finally, 

when ";@" and "@;" are removed from 4 the macro orelement in front of 

";@" together with the string ",gelement, ••• ,gelement" and the macro 

orelement after "@;" is a macro orelement and the whole of that string 

is a macro sequence. III 
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LEMMA 6: 

If in an imbricator of the form 

(Imbr) #i:l,n,l[p(i) @ t @ q(i») 

the string t is replaced by a string tl consisting of a macro 

sequence MSEQ preceded by the trailing separator of p and followed 

by the separator leading q, then the imbricator obtained may be 

produced by the syntax rules for "sreplicator" and the (CF) rules 

for "imbrseq". 

Proof: 

Let RS be the part of the string "p(i) @ t ~ q(i)" produced by the 

non-terminal "imbr_at_seq". Since t appears only in this string it 

suffices to prove that the string obtained from RS by replacing tl for t 

may be produced by "imbr_at_seq". Depending on whether p(i) terminates 

with and q(i) starts with a separator or not, the string tl may be of 

four different forms. We shall consider each case separately. 

Case 1 :p(i) does not terminate and q(i) does not start with a 

separator. 

Then RS is of the form 

@ t @ 

in which case tl is of the form 

tl=morelementl morelementn 

The string obtained by replacing tl for t in RS may be produced by the 

last production option for "imbr_at_seq". 

Case 2 :p(i) terminates but q(i) does not start with a separator. 

The string RS may be of two forms. The first one is: 
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1. {morelement ;}2 gelement ••..• @ t (j 

in which case tl is of the form 

tl=,morelementl morelementn 

By replacing t for tl in 1 the string 

{morelement;}2 gelement ••••• @,morelementl morelementn @ 

is obtained in which the substring 

gelement •••• ,@,morelement1 

may be produced by "at_or 1m" and therefore the whole string may be 

produced by the 11th and 12th production options for "imbr_at_seq". 

The string RS may also be of the form: 

2. {morelement ;}+ @ t @ 

in which case t1 is of the form 

t1= morelement1 morelementn 

By replacing t1 for t in 2 the string 

{morelement ;}+@ morelement1 morelementn @ 

is obtained which may be produced by the 12th 

"imbr _at_seq". 

production 

Case 3 :q(i) starts but p(i) does not terminate with a separator. 

Again RS may be of two forms. The first one is: 

1. @ t @,gelement, ••• ,gelement {; morelement}2 

for 
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in which case t 1 is of the form 

t l=morelemen t 1 morelementn. 

When t1 is replaced for t in 1 the substr ing of t1 "morelementn". 

together with "@,gelement, ••• " may be produced by "at or1m" and the 

whole of the string by the 9th and 10th options for "imbr_at_seq". 

The second form RS may take is 

2. @ t @{;morelement}+ 

in which case t1 is of the form 

t1=morelement morelementn; 

When t1 is replaced for t in 2 the whole string may be produced by the 

10th option for "imbr_at_seq". 

Case 4 p(i) terminates and q(i) start with a separator. 

In this case RS may take four forms. The first one is: 

1. {morelement ;}~ gelement ••••• @, ••• ,@, ••• ,gelement {;morelement}~ 

in which case t1 is of the form 

t1=,morelement1 morelementn. 

When t1 is replaced for t in 1 the string "gelement, ••• ,@" together with 

",morelementl" may be produced by "at_orlm". Similarly, "morelementn," 

together with "@, ••• ,gelement" may be produced by "at_orlm". Therefore 

the whole string may be produced by one of the production options 1 to 4 

for "imbr _at_seq", depending on whether "{morelement ; }~" and 

"{; morelement}~" in 1 represent at least one macro or element or the 

empty strings. 
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In the special case wher8 MSEQ="morelementl" then tl=",morelementl," 

and the string "gelement, •.• ,@" together with ",morelementl," and 

"@, ••• ,gelement" may be produced by "at or2mm" and the whole string by 

production options 5 to 8 for "imbr_at_seq". 

The second form RS may take is 

2. {morelement;}+ @ t J,gelement, ••• ,gelement {;morelement}~ 

in which case tl is of the form 

tl=; morelement 1 morelementn, 

When tl is replaced for t in 2 the string "morelementn," concatenated 

with "@,gelement, ••• ,gelement" may be produced by "at_or2mm" and the 

whole string by the 6'th and 7'th options of "imbr_at_seq". 

The third form RS may take is 

3. {morelement;}~ gelement, ••• , @t @ {;morelement}+ 

in which case tl is of the form 

tl=,morelement morelementn; 

By applying similar arguments as before the string obtained by replacing 

tl for t may be produced by productions 1 or 3 for "imbr_at_seq". 

Finally, RS may take the form: 

4. {morelement ;}+ @ t @ {;morelement}+ 

in which case tl is of the form 

tl=;morelementl morelementn; 

By similar arguments we may show that by replacing tl for t in 4 the 

resulting string may be produced by production option of 
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The theorem analogous to 3.3 may now be proven, the theorem for the 

expansion of imbricators ~ ~ sequences: 

THEOREM 3.4: 

The string obtained by the expansion of an imbricator 

(Imbr) #i:1,n,l[p(i) @ t @ q(i)] 

is a macro sequence. 

Proof: 

The expansion of a replicator is valid when 

n>l or t' is not the empty string 

We shall distinguish two cases: 

1. n<l and t' is non empty. 

Its expansion then is given by t' which by lemma 4 is a macro sequence. 

2. The second case is when n>l. 

To prove that the imbricator expands to a macro sequence we shall use an 

inductive argument for n. When n=l the expansion of the imbricator 

denoted by E(l), is given by 

1 
E(l)=COPY{p(i)/t/q(i)} 

i=l 

which yields 

E(l)=p'(l) t q'(l) 

which according to lemmata 5 and 1 is a macro sequence. 
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Assume that the strLng generated by the expansion of the imbicator, 

for some ~1, denoted by E(n) is a macro sequence. Its expansion E(n) 

is given by 

n 
E(n)=COPY{p(i)/t/q(i)} 

i=1 

which yields 

E(n)=p(1) p(2) ••• p'(n) t q'(n) ••• q(2) q(1) 

Consider now the expansion E(n+1) given by 

n+1 
E(n+1)=COPY{p(i)/t/q(i)} 

i=l 

which yields 

E(n+1)=p(1) p(2) ••• p(n) p'(n+1) t q'(n+1) q(n) ••• q(2) q(1) 

If E(n) is a sequence then by lemma 1 so must E'(n) 

E'(n)=p(2) p(3) ••• p'(n+1) t q'(n+l) ••• q(3) q(2) 

obtained from E(n) by replacing the integer 
and index specifications 

subscripted operationsVdepending on "i" by 

depending on "i+1" for i=1,2, ••• ,n. 

We now construct the imbricator 

(R) k:1,1,1[p(k) @ tl @ q(k)] 

expressions of the 

the same expressions 

where t1 is obtained from E'(n) prefixed by the terminating separator of 

p(i) and postfixed by the leading separator of q(i). According to lemma 

6 this replicator is syntactically well-formed and its expansion E(R) is 

E(R)=p'(1) t1 q'(1) 
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which according to lemmata 1 and 4 is a macro sequence. Therefore E(R) 

is the macro sequence: 

pel) p(2) p(3) ••• p'(n+l) t q'(n+I) ••• q(3) q(2) q(l) 

as the leading separator of tl together with p'(l) form p(l), the 

terminating separator of tl together with q'(l) form q(l) and the rest 

of tl is E(n). As E(R) is the same as E(n+l), the latter is a macro 

sequence. III 

A similar result for generalized elements is the the theorem for the 

expansion of generalized elements ~ macro sequences. A generalized 

element GEL may be represented by 

RLs M LLs 

where LLs denote left replicators LRl ••• LRm and RLs right replicators 

RRl ••. RRn and M a sequence replicator or a distributor or a starelement. 

The expansion of all the left and right replicators of GEL will be given 

by gelexpO(GEL) defined as follows: 

gelexpO(GEL)=a M b 

where a= replexpO(RRl) ••• replexpO(RRn) 

b= replexpO(LRl) ••• replexpO(LRm) 

We may now prove the theorem for the expansion of generalized elements 

~ macro sequences. 

THEOREM 3.5: 

When all left and right replicators in a generalized element GEL are 

expanded the resulting string gelexpO(GEL) is a macro sequence. 

Proof: 

A generalized element GEL has the form 
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RRl ..• RRn {strlrelement/sreplicator/distributor} LR1 ... LRm 

where RRi for i=1, ••• ,n denote right replicators and LRi for i 1 = , ••• ,m 

denote left replicators. From the definition of the expansion of left 

and right replicators and from theorems 3.3 and 3.4 it follows that the 

expansion of a right replicator is of the form 

msequence sep or empty 

and of a left replicator 

sep msequence or empty 

When all left and right replicators are expanded the generated string 

will be of the form: 

{msequence sep}~ {starelement/sreplicator/distributor} {sep msequence}~ 

Applying lemma 3 in the above string from left to right we deduce that 

this is a macro sequence. III 

The expansion rule for replicators may be applied to expand any 

replicators of the general form 

#i:l,n,l[p(i) @ t @ q(i)] 

in which "@ t @ q(i)" and lit @ q(i)" may not exist and the string inside 

"[ ]" may not necessarily have been produced by "concseq" or "imbrseq". 

Let us call these replicators, wide replicators which may be of two 

forms: wide concatenators or wide imbricators. We may now prove the 

replacement theorem of imbricators by wide concatenators. 

THEOREM 3.6: 

Wide concatenators of the form 

(Wconc) #i:l,n,l[s(i)@] 

are sufficient to generate strings generated by imbricators of the 
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type 

(Imbr) Uj:l,n,l[p(j) @ t @ q(j)] 

Proof: 

Let us transform (Imbr) to the replica tor form (RF) 

( RF) Iii: 1 , n, 1 [ P ( i) @ ] t It i : n, 1 , -1 [ q 1 ( i ) @ ] 

where ql(i) is obtained by 

ql(i)=lif q(i)=sep q'(i) then q'(i) sep 
I 
lelse q(i) 

The expansion of the replicators in (RF) is given by: 

n n 
COPY{p(i)/ /} t COPY{ql(n-i)/ /} 
i=1 i=1 

which yields E(RF) 

E(RF)=p(1) p(2) ••• p'(n) t ql(n) ••• ql(2) ql'(1) 

The expansion of (Imbr) is given by: 

n 
COPY{p(i)/t/q(i)} 
i=1 

which yields the string E(Imbr) 

E(Imbr)=p(1) p(2) ••• p'(n) t q'(n) ••• q(2) q(1) 

We will show that the strings E(RF) and E(Imbr) are the same. 

They certainly have the same head "p(l)p(2) ••• p'(n)t". Therefore it 

suffices to show that the string (s1) 
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is the same as the string (52) 

(52) q'(n) ••• q(2) q(1) 

If q(i) does not start with a separator (51) is the same with (52) for 

then q'(n) is the same as ql(n), q(l) the same as ql'(1) and each of 

q(j) is the same as ql(j) for j=2,3, ••• ,(n-l). 

Consider now the case where q(j) starts with a separator i.e. it is 

of the form 

sep q'(j) 

and therefore 

Substituting the right hand expression for ql in (sl) we obtain (sl') 

(sl') q'(n)sep ••• q'(2)sep q'(I) 

But each of tlsep q'(j)tI is the same as "q(j)" for j=1,2, ••• ,(n-l). 

Substituting these expressions in (sl') the string 

q'(n) q(n-l) ••• q(2)q(1) 

is obtained which is the same as (52)./// 

The next theorem characterizes the imbricators which when replaced by 

the transformation (RF) of the previous theorem the well-formedness of 

the macro programs is preserved. Let us first prove a lemma. 

LEMMA 7: 

If a generalized element GEL in a macro sequence MS is replaced by a 

macro sequence MSEQ the resulting string is a macro sequence. 
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Proof: 

Without loss of generality we may assume that the element GEL is not 

nested inside "()". For if it is we may consider the sequence XS' in 

the innermost element "(MS') which involves GEL. If by replacing MSEQ 

for GEL in MS' a macro sequence MSEQ' is obtained then "(MSEQ')" would 

be an element and the whole string a macro sequence. 

may be of the form 

The sequence MS 

where MSl may be either empty or in one of the forms 

morelementln; 

2. morelementll morelementln;gelement, ••• ,gelement, 

and MS Z may be either empty or in one of the forms 

1. ;morelement Zl;morelement 2 2 morelementZn 

2 1 t 1 t 1 t ZI morelementZn • ,ge emen , ••• ,ge emen ;more emen 

If MS l and MS Z are non empty it can be seen from their respective 

forms 1 and 2 that they are of the forms 

msequence l sep and 

sep msequence Z 

respectively. Therefore MS may be of the following forms 

1. msequence l sep MSEQ sep msequence Z 

2. msequence l sep MSEQ 

3. MSEQ sep msequence Z 

4. MSEQ 

Applying lemma 3 twice in 1 and once in each of 2 and 3 we prove that 

the forms in 1, 2, 3 are macro sequences. MSEQ in 4 is already a macro 
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sequence. III 

Let us now prove a theorem giving the conditions for the replacement 

of imbricators by concatenators 

THEOREM 3.7: 

The imbricators of the form 

(Imbr) #i:l,n,l[p(i) @ t @ q(i)] 

may be equivalently replaced by the concatenator forms 

(CFl) #i:l,n,l[p(i)@] t #i:n,l,-l[ql(i)@] 

when p and q are non empty, or by 

(CF2) #i:l,n,l[p(i)@] t 

when p is non empty but q is empty, or by 

(CF3) t #i:n,l,-l[ql(i)@] 

when p is empty but q is not, or finally by 

(CF4) t 

when both p and q are empty, 

where ql is obtained from q by transfering its leading separator to 

its back, 

if and only if 

p and q in (Imbr) do not contain any unmatched opening and closing 

parentheses respectively. 

Proof: 

(if) 

Since p and q do not contain any opening and respectively closing 
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unmatched parentheses "p(i) :1 t:d q(i)" is produced by "imbr_at_seq". 

We have to show that the replicators in the strings (CFi) for i=1,2,3,4 

may be produced by "concseq" and that when the whole of (CFi) for 

i=1,2,3,4 is replaced for (Imbr) the well-formedeness of the program is 

preserved. We shall consider each of the four cases separately. 

Case 1 p and q are non empty. 

From the production options 1 to 8 for "imbr_at_seq" which generate 

such strings it may be seen that p in general is of the form 

msequence sep 

the string t of the forms 

sep 
sep msequence or sep 

and q of the form 

sep msequence 

which implies that ql is of the form 

msequence sep 

The strings p and ql appended by "@" may be produced by the syntax rule 

for "concseq": 

concseq={morelement ;}+ @ 

/ {morelement ;}~ concor 

depending on whether p and ql terminate with ";" or ",". Therefore both 

replicators in (CFl) are legal. The whole string (CFl) is a macro 

sequence by lemma 3. Replacing (Imbr) for (CFl) in a macro sequence the 

new string by lemma 7 is a macro sequence as well. 
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Case 2 P is non empty, q is empty 

From the production options 11, 12 which produce such strings it may 

be seen that p is of the form 

msequence sep 

and t is either empty or of the form 

sep msequence 

Using similar arguments to those used in case 1 we may show that the 

replicator in (CF2) is legal. By lemma 3 the whole of (CF2) is a macro 

sequence, and by lemma 7, by replacing it in a macro sequence for (Imbr) 

a macro sequence is obtained. 

Case 3 P is empty, q is non-empty. 

From the production options 9, 10 for "imbr_at_seq" which produce 

such strings it may be seen that t is either empty or of the form 

msequence sep 

and q of the form 

sep msequence 

which implies that ql is of the form 

msequence sep 

Using similar arguments as in cases 1 and 2 we may prove that the 

replicator in (CF3) is legal and that when (CF3) is replaced for (Imbr) 

a macro sequence is obtained. 

Case 4 p and q are both empty. 

From the last production of "imbr_at_seq" which generates such 
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strings we deduce that t is of the form 

msequence 

By lemma 7, if t or (CF4) is replaced for (Imbr) in a macro sequence 

then the new string is a macro sequence also. 

From theorem 3.6 it follows that in each case (CFi) for i=1,2,3,4 

expands to the same string as (Imbr). 

(only if) 

For every unmatched opening bracket in p there is an unmatched 

closing bracket in q and vice-versa. By lemma 2 in a replicator 

ifi:1,n,1[p(i) Q] 

the str ing p( i) is of the form 

msequence sep 

In a macro sequence of course all parentheses are matched. There fore 

for the replicators in (CFi) for i=1,2,3 to be legal, p and q must not 

contain any un.-natched opening and respectively closing parentheses. 

The previous thc;orcm gave the conditions unde:-,:hich an in~ricfltr)r 

:lay be substituted 0:-' expr~ssions involving concate'1dtors. Obviously if 

t and nnl' <) r p or:j in (Imbr) are emp ty then (1::1'0 r) ::ld:: be repL1c,~d by a 

single cuncatenator. Under restricted conditions it it als·, possible to 

r'"i) Lace an i.-nbr ica [or in vJ hic h po ssibly all three of p, t, '1 ariO 

n,)l1ei1;J tJ b',' a single conca tena tur bo th expand in,:; the same strin~. 

The foll()..Jing theorem '3.7' for the replacement ·')f an imbricator by ~ 

singl-e concatenator gives these conditions. 

THEOREM 3.7': 

A well-formed imbricator 

lIi:l,n,1[p @ t @ q] 



- I SOo. -

may be replaced by a single concatenator if and only if 1. any 

trailing separator of p, leading separator of q and trailing and 

leading separator of t must be the same. 

2. the string p is either emp ty or of the form "p' sep", where p 

may be generated by a concatenator of the form 

j: 1 , k 1 , 1 [ s( g 1 ( i, j » sep Q] 

the string q is either empty or of the form "sep q''', where q' may 

be generated by a concatenator of the forD 

~!j: 1,k2, l[ s(g2(i,j» sep @] 

and the string t' obtained by stripping t of its leading and 

trailing separators may be empty or may be generated by a 

coneatenator of the form 

j:l,d,l[s(g3(i,j» sep @] 

where kl, k2, k3 do not depend on i, and where s(gl(i,j», 

s(g2(i,j», s(g3(i,j» denote that the indexed operations in s 

dep,~nd on expressions 61(i,j), g2(i,j), g3(i,j) respectively, ",'hiel, 

h3\'e the foca s: 

kl*(i-l)+j 

n*::l+j 

res:J~ctivcoly. If :IIlY 'If p, q, t' are e:c1:Jty then the correspunJin,~ 

Vdi.Il(~S or k1, '><.2, k3 in the correspondin6 f:l)nc(ltenators is l;-i,,-2n CiS 

zero. 

Proo £ (ske tc h) : 

( if) 
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We construct the concatenator 

Iii: I,m, 1 [s( i) sep @j 

where m=n*(kl+k:2)+k3. the values generated by 

gl(i,j) for i= 1 , ••• , n and j=l, ... ,kl 

g2(i,j) for i=l, ..• ,n and j= 1, ••• , k2 

g3(i,j) for i= 1 , ••• , n and j= 1 , ••• , k3 

are precisely the values 1, ••• ,m=n*(kl+k2)+k3. 

(only if) 

1. the separators must ne the same 

2. kl, k2, k3 must not depend on i for g1, g2, g3 to genaratelrithmetic 

p r')c;re ssion s, re spee tively. Al so, g1, 63 mu s t have the forms 

indi.::ated so that the values (;enerated by all three form one arithmetic 

prvc;ression.[.jj The nc'{c theorem deals 'with the opposite direction 

naoely the ,replacement of eoncatenators by imbricators. 

THEORE:'-! 3.8: 

..... concatenator of the foe;) 

(Cone) ifi:l,n,1[p(i) Q] 

ma': always be r",;)lacej by the in:Jrieacur 

( L l~l b r) 'Ii: 1 , n, 1 [ ! ( i) ,7 2 1 
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Proof: 

The expansion of both replicators (Conc) and (Imbr) is given by 

n 
COPY{p(i)/ /} 
i=l 

Also by lemma 7, by replacing a generalized element by a macro sequence, 

and afortiori by another generalized element a macro sequence is 

obtained. One more thing has to be proved: that "p(i) @ @" may be 

produced by "imbrseq". 

The string "p(i) @" may either be produced by 

1. {morelement ;}~ concor or by 

2. {morelement ;}+ @ 

The string "p(i) @" may therefore be of the forms 

1'. {morelement ;}~ gelement •••• ,@ 

2'. {morelement ;}+ @ 

If an "@" is appended to l' and 2' ,Le. constructing "p(i) @ .')" 
\:: . the 

new strings may be produced by applying the production options 11 or 12 

of "imbr _at_seq" .111 

Some important corollaries of the above theorem are the following: 

COROLLARY: 

At the expense of one extra symbol namely "@", all concatenators may 

be replaced by imbricators. 

COROLLARY: 

Concatenators can only generate sequences which can be generated by 

imbricators also. 

An important implication would be that the syntax rules for sequence 
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replic~tors could be simplified by eliminating production rules for 

concatenators without reducing the generality of the notation. However, 

this may only be done at the expense of some loss of conciseness, since 

an extra "@" has to be used. 

We may also constrain the syntax for imbricators to produce just 

genuine imbricators for which the conditions of theorem 3.8 do not 

apply. This could be done by forcing at least one pair of parentheses 

in "[ ]" to open before the first "@" and close after the second "@". 

Non-genuine imbricators are produced when the whole string produced by 

"imbrseq" is produced by "imbr_at_seq". We decided against that for it 

would worsen the conciseness and readability of programs. Consider for 

example the n-free frame buffer 

NPl2 #i:l,n,l[path DEPOSIT(i);REMOVE(i) end] 

which could be modified to a fill-empty last in first out queue by 

adding the path 

NP20 path #i:l,n,l[DEPOSIT(i);@;@;REMOVE(i)] end 

which involves a non-genuine imbricator which could be replaced by two 

concatenators as follows: 

NP2l path Iii :l,n,l[DEPOSIT(i);@] # i : n , 1 , -1 [ REMOVE (i ); @ ] end 

The path NP2l with the two concatenators is the least concise. The 

replacement of an imbricator by two concatenators may not be as simple 

as the above example. It could lead to long index specifications which 

are difficult to read as the following example demonstrates. Let us 

consider the bodyreplicator 

NP22 #i:l,lO,l[path #j:l,lOO,i[A(j);@;@;B(j)] end 

which generates ten paths with their sequences consisting of just a 

non-genuine imbricator. If we replace the imbricator by the two 

concatenators 
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Hjl:1,100,i[A(jl);@j Hj2:100,1,-i[B(j2);~1 

a different sequence will be generated. W "1 e can eas~ y see that when 
i=2. Then the range of index jl is 

1,3, ••• ,97,99 

but that of j2 is 

100,98, ••• ,4,2 

and not 

99,97, ••• ,3,1 

as its correct range should be. The reason for this difference is that 

the index specification of j2 should be correctly specified by 

Hj2:«100-1)//i)*i+l,I,-i 

which is quite a complicated formula. The above index specification 

gives the same range as the erroneous one when 

«100-1)//i)*i+l=100 =~ 

(100-1)//i=(100-1)/i =~ 

99//i=99/i 

that is when 

99 mod i=O 

for values of i between 1 and 10, that is for i=I,3,9. 

3.3.2 The Expansion of Distributors 

In section 3.2.7 we developed the syntax for distributors, we defined 

compatibility criteria (CCI) and (Drestl) for well defined distributors, 
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and we sketched their expansion. In this section we formally define 

their expansion and we prove that for each distributor there are 

sequence replicators which yield the same string after expansion and we 

derive necessary and sufficient conditions for obtaining sequence 

replicators from distributors yielding the same string after expansion. 

Let us first, obtain the rule for the expansion of distributors 

without specifying any subrange, i.e. distributors of the form 

NDl4 sep[p] 

where p is a macro sequence of array slices (cf. section 3.2.7). For 

the expansion of a distributor in this form to be defined, the first 

compatibility criterion (eel) must be obeyed, implying that all the 

distributable dimensions of array slices must contain the same number of 

sections, say m. In the expansion of NDl4 m copies of p will be 

generated separated by "sep" which may be formally obtained by 

m 
(El) eOPY{p sep/ /} 

j=l 

Furthermore, the array slices of the first copy must be replaced by the 

first array section of this slice, in the second copy by the second 

section etc. Therefore, the blank fields of the array slices of the p's 

in (El) must be replaced by a function of j which relates the j'th copy 

with the j'th section of each array slice. We specify that by 

m 
(E2) eOPY{p(g(j» sep/ /} 

j=l 

in which p(g(j» indicates that each of the distributable dimensions of 

ND14 must be replaced by a function g(j). 

The function g should be such that for a particular slice 

g(j) should give the index of the j'th section for j=l,2, ••• ,m 

The function g for each particular slice may only be obtained from 

collectivisors since these define the sections and their order. 

the 

The 
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collectivisors may be of two forms: those produced by h tenon-terminal 

"simpleardecl" and those produced by "replardecl". All collective names 

declared by the former are of the form: 

X(lb1 :ub1, .••• lbn:ubn) 

where "lbi" and "ubi" for i=l, •••• n denote the lower bound and upper 

bound respectively of dimension i of collective name X, may be declared 

equivalently by the latter as follows: 

#j1:1b1,ub1,1[ ••• #jn:lbn,ubn,l[X(j1 ••.. ,jn)] ••• ] 

or when all replicators are transformed into their normal form by 

if j l' : 1 , m1 , 1 [ •• • 11 jn' : 1 , mn, 1 [X( 1 b 1+ j 1 ' -1, ••• ,I bn+ jn' -1) ] ••• ] 

where mi=ubi-lbi+1 for i=1,2, •.• ,n. From now on we assume that all 

collective names are declared by collectivisors produced by "replardecl" 

in which all replicators are in their normal form. For example the 

collective names A and B declared by NC7 may be equivalently declared by 

NC11 array ifk:1,4,1[A(k-1)] 

ifk:1,4,l[#j:1,3,l[B(k,j)]] 

endarray 

or more concisely by 

NC12 array #k:1,4,1[A(k-1) #j:l,3,l[B(k,j)]]endarray 

In general the declaration of subscripted operations corresponding to 

a collective name Y of n dimensions has the form 

(NCR) #k1:1,m1,1[ ••• #kn:1,mn,1[Y(h1(k1), ••• ,hn(kn»] ••• ] 

where hi for i=1,2, ••• ,n are integer functions of ki. 
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The order of the sections of an array slice along its l'th dimension 

for i=l, ••• ,n may be easily obtained by: 

hi(j) gives the index of the j'th section for j=l, •.. ,mi 

along dimension i, for i=l, ••• n. 

This implies that hi(j) is the function by which g(j) in each of the 

operations of p in (E2) must be replaced. 

Let now us expand NDI 

ND I ; [ A, B( ,3) ] 

where A, B have been declared by NCl2 using the form (E2). To construct 

"p(g(j»" from p which in this case is "A,B( ,3)" we have to replace A 

by A(j-l) and B( ,3) by B(j,3) where the expressions j-l and j have been 

obtained from NCI2. The expansion of NDI is given by 

4 
(E3) COPY{A(j-l),B(j,3);/ /} 

j=l 

which yields 

A(O),B(1,3);A(1),B(2,3);A(2),B(3,3);A(3),B(4,3) 

Let us also expand the distributor 

NDlS ;[C] 

where C is declared by NC13 

NC13 array #j:l,4,1[C«j-l)**2)] endarray 

where "**" denotes "to the power", by which the operations 

C ( 0), C( 1 ), C( 4), C( 9 ) 

are declared. The expansion of NDIS is given by 
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4 
COPY{C«j-l)**2)'/ /} 
j=1 ' 

which yields 

C(0);C(1);C(4);C(9) 

Let us now obtain a formula for the expansion of a distr ibutor with 

subrange 

ND2 sep#inind,fiind,incind[pj 

According to the compatibility criterion (Drestl) of distributors, 

distributors are well defined when all the distributable dimensions of 

array slices on which the distributor applies contain at least Ns 

sections, where Ns=(fiind-inind)//incind+1. The expansion of ND2 will 

be given by 

in 

Ns 
(ES) COPY{p(g(l» sep/ /} 

1=1 

which p(g(l» indicates that each of the blank fields of 

distributable dimensions on which the distributor operates have been 

replaced by a function gel). This function will not in general be the 

same as in NOl since 

gel) must give the inind'th array slice, 

g(2) the (inind+incind)'th slice, 

etc. 

The order of the sections we would like to generate may be given by the 

formula 

f(1)=inind+(1-1)*incind, for 1=1,2, ••• ,Ns =(fiind-(inind»//(incind) 

Therefore the function gel) for dimension i, l<i<n in (ES) will be 

g(l)=hi(f(l» 
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where hi is obtained from the declaration of the form of (:~CR). 

Let us demonstrate this rule by expanding 

ND16 ;It2,4,2[D] 

where D is defined by NC14 

NC14 array #i:2,11,2[D(i)] endarray 

which when the replicator is transformed into its normal form (cf. 

3.3.1), is declared by 

array #i1:1,5,1[0(2+(i1-1)*2)] endarray 

or more simply by NC15 

NC15 array #il:1,5,1[0(2*il)] endarray 

defining operations 

0(2),0(4),0(6),0(8),0(10) 

The expansion of ND16 is given by: 

Ns 
COPY{0(2+(f(1)-1)*2);/ /} 
1=1 

where Ns=(4-2)//2+1=2 and f(1)=2+(1-1)*2. Therefore (E6) becomes 

2 
(E7) COPY{0(2+(2+(1-1)*2-1)*2);/ /}= 

1=1 

2 
COPY{O(2+(2*1-1)*2);/ /}= 
1=1 

2 
COPY{O(4*1);/ /}=0(4);0(8) 
1=1 

Finally, let us expand N017 



- 159 -

~m 1 7 ; 1/ 2 , 4 , 2 [ C J 

where C is declared by NC13. Its expansion is given by (E8) 

Ns 
(E8) COPY{C«f(1)-1)**2);/ /} 

1=1 

where Ns=(4-2)/ /2+1=2 and f(l)=2+(1-1)*2 which when substituted in (E8) 

we obtain (E9) 

2 
(E9) COPY{C«2+(1-1)*2-1)**2)"/ /}= 

1=1 ' 

2 
COPY{C«2*1-1)**2)"/ /}= 
1=1 ' 

C(l);C(4) 

A distributor of the form 

NDI sep[p] 

may be considered as a special case of ~2 

ND2 sep#inind,fiind,incind[p] 

,common 
in which inind=l, incind=l and fiind is the"number of sections in the 

distributable dimensions in the array slices of p. 

Then the expansion distrexpO(D) of a distributor D of the form of ND2 

in which inind, fiind, incind may be declared implicitly, is given by 

Ns 
COPY{p(g(j» sep/ /} 
j=l 

where Ns=(fiind-inind)//incind+1, p(g(j» indicates that each blank 

field of distributable dimensions on which the distributor operates, 

will be replaced by a function 

g(j)=hi(f(j» 
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where f(j) is defined by 

f(j)=inind+(j-l)*incind 

and hi is obtained from the corresponding i'th dimension of each 

collective name in the collectivisors. 

For the expansion of distributors to be non empty the following 

restriction (Drest3) must hold: 

(Drest3) 

inc indIO and Ns=(fiind-inind)//incind+l)l 

that is at least one copy of the regularity must be made. For the 

expansion of a distributor to generate subscripted operations which are 

permitted by the collectivisors the following restriction (Drest4) must 

be imposed on the values of "inind", "fiind", "incind". 

(Drest4) 

l~inind+(j-l)*incind~Ms for j=l, ••• ,Ns 

where Ms is the minimum number of slices over the number of slices of 

all the distributable dimensions of the distributor. The expression 

f(j)=inind+(j-l)*incind 

gives the array slice of ordinality j, l~j~Ns and as such must take 

values between 1 and Ms. Let us obtain restrictions on the values of 

"inind", "fiind" and "incind" independent of j. As fU) is a monotonic 

function its lower and upper values are obtained for j=l and j=Ns. As 

f(j) may be either increasing or decreasing with increasing values of j 

we may only infer that for j=l 

l~inind+( l-l)*incind~Ms 

l<inind<Ms 

and that for j=Ns 

=? 
(I) 



- 1 f) 1 -

l~inind+«fiind-inind)//incind)*incifld<as =~ 

l~inind+«fiind-inind)/incind-e)*incind<Ms (-I<e<l) =~ 

l~inind+fiind-inind-e*incind<Ms 

l<fiind-e*incind<Ms 

l+e*incind<fiind<Ms+e*incind 

=~ 

=~ 

When incind)O, the expression l+e*incind is minimum when e tends to -1 , 
and the expression Ms+e*incind is maximum when e tends to 1. Therefore, 

when incind)O l-incind<fiind<Hs+incind (IIa) 

When incind<O the the expression l+e*incind is minimum when e tends to 1 

and the the expression Ms+e*incind is maximum when e tends to -1. 

Therefore 

when incind<O l+incind<fiind<Ms-incind (IIb) 

By combining (IIa) and (lIb) we obtain: 

1-1 incindl<fiind<MS+1 incindl (II) 

A distributor may be considered as a shorthand for some replicators. 

In fact for every distributor there is a family of replicators which 

when expanded generate the same string as the string obtained from the 

expansion of the distributor. Before we formally show how to obtain 

such replicators let us prove the following lemma. 

LEMMA 8: 
If sCi) is a macro sequence involving integer expressions depending 

on some integer i then the concatenator 

#i:1,n,l[s(i) sep @] 

is syntactically well-formed. 
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Proof: 

Since sCi) is a macro sequence it may in general be of the form 

morelementl morelementm 

If sep is a semicolon the string sCi) sep @ may be produced by the secon<l 

option of "concseq"and if sep is a comma by the first option of 

"conc seq':.tli 

Let us now prove the theorem for the replacement of distributors by 

concatenators. 

THEOREM 3.9: 

The string obtained by the expansion of a distributor of the general 

form 

~D2 sep#inind,fiind,incind[p] 

may also be generated by a concatenator of the normal form 

#j:l,Ns,l[p(g(j» sep @] 

where Ns=(fiind-inind)//incind+l and p(g(j» is obtained from p by 

substituting the fields of the distributable dimensions of sections 

in ND2 by g(j) as in distrexpO. 

Proof: 

The syntax rules in 3.2.7 for distributors specify that the string p 

is produced by "msequence" in which the fields of the distributable 

dimensions on which the distributor operates are blank. When p is 

transformed to p(g(j» all these blank fields are replaced by an integer 

expression g(j). Any other blank fields in p(g(j» are in array slices 

which correspond to other distributors nested in ND2. 

and lemma 1 
By le~ma ~the replicator of the form 
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#j:I,Ns,l[p(g(j) sep @J 

is syntactically well-formed since p(g(j» is a macro 

Furthermore its expansion is given by 

Ns 
COPY{p(g(j» sep/ /} 
j=l 

sequence. 

which is the same as the formula for the expansion of ND2. If the 

values of "inind", "fi ind" and "incind" satisfy (Drest3) and (Drest4) 

then the concatenator generates only indexed operations permitted by the 

collectivisors.111 

The concatenator constructed in the above theorem is in normal form 

and from it all concatenators belonging to its family may be obtained, 

all expanding to the same string. This concatenator may by theorem 3.8 

be replaced by an imbricator generating the same strings. The 

concatenators generating the same strings as NDI, ND16, and NDl7 are 

NR12 #j:l,4,I[A(j-I),B(j,3);@] 

NRl3 #1:1,2,I[D(4*1);@] 

NR14 #1:1,2,1[C«2*1-1)**2);@] 

respectively. 

A corollary of theorems 3.3 and 3.9 is 

COROLLARY: 

All distributors expand to macro sequences. 

The reverse of theorem 3.9 that all replicators expand to strings 

which may be generated by distributors does not hold. However, under 

some conditions this is possible. The next theorem for the replacement 

of concatenators and imbricators by distributors gives these conditions. 

THEOREH 3.10: 

The string generated by the expansion of a sequence replicator of 

the form 
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(NR)IIi:1,n,1[p(i) @ t @ q(i)] 

may be generated by one distributor if and only if the following 

conditions hold: 

either t and one of p or q are empty or the conditions of theorem 3.7' 
1. 

L__ hold. 

• 
2. n> 1 

3. all operations in p and q must be subscripted by i and the index 

"i" should not be involved in expressions in replicator index 

specification or subrange specifications of replicators and 

distributors in p or q. 

4. each subscripted operation must have exactly one field depending 

on the index i by an expression say g(i). 

5. if p(i) and q(i) involve distributors, the field of subscripted 

operations depending on index "i" should be in the same position 

relative to the blank fields of the array slices of these 

distributors. 

6. the g(i) in each of the above fields must be such that it may be 

transformed into the form h(f(i» where h is the function in the 

corresponding dimension of each collective name in the 

collectivisors and f(i) is the same for all fields and is of the 

form a+(i-l)*b where a, b are integers with the restriction that 

. Proof: 

(if) 

If t and one of p or q in (NR) are empty and since ~1, the expansion 

of (NR) is nonempty and according to theorem 3.7 the expansion of (NR) 

may be obtained by a single concatenator. Sinilarly, if p, t, q satisfy 

the cond i tions of theorem 3.7' then the expansi,)n of (NR) is nonemp ty 

and may be also be obtained by a single concatenator. 
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either IIi:l,n,l[p(i) @j 

or #i:n,l,-l[ql(i) ~] 

where ql(i) is defined in theorem 3.7. Therefore it suffices to show 

that the expansion of a concatenator of the form 

(NR1) #j:l,m,l[s(g(j» sep @j 

where s(g(j» indicates that the sixth condition holds, may be obtained 

by a distributor. 

Let us construct the distributor (NO) 

(NO) sep#a,a+(m-l)*b,b[sj 

where s is obtained from s(g(j» by removing from each subscripted 

operation the integer expression g(j). Since s(g(j» is a macro 

sequence in which all operations are subscripted by condition 3, by 

lemma 2, s is a macro sequence having array slices instead of 

operations. The index i does not appear anywhere is s as it has been 

eliminated from the subscripted operations and as any other context it 

could be in, has been excluded by condition 2. By condition 3, the 

distributor NO applies to a single distributable dimension of each 

slice in s. 

If "sep" in NO does not apply to the right field of the slices of s 

then we may use the section selection feature of the distributor either 

in NO or in the distributors in p(i) and/or q(i). We know this is 

possible because of condition 5. 

Obviously its expansion is given by 

m 
COPY{s(g(j» sep/ /} 
j=l 

since the number of times s will be copied is given by 

(a+(m-l)*b-a)//b+l= 

«m-l)*b)//b+l=m 
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and g(j) is the same as h(f(j». 

expansion of (NR1). 

(only if) 

Condi tion 1 mu st be satisfied for 

The same formula gives also the 

otherwise more than one of the arguments of the COpy expression giving 

its expansion will be non empty. The COpy expression giving the 

expansion of a distributor has the second and third arguments empty. 

Condition 2 guarantees that the expansion of (NR) is non empty which 

is necessary since distributors should not generate empty expansions. 

All operations should be subscripted by expressons depending on "i", 

as condition 3 requires, for after these expressions are eliminated all 

operations inside "[ ]" of ND should be array slices. Also "i" should 

not be involved anywhere else, for the index "i" inside "[ ]" of ND, it 

will still be by context an integer constant, not controlled at all by 

the distributor and therefore undefined. 

Subscripted operations in s must have at most one field depending on 

i, as condition 4 requires, as each distributor applies only to one 

dimension of each array slice. 

Condition 5 must hold since otherwise, neither the default rule nor 

the section selection feature of distributors can specify the right 

slices to be distributed. 

Finally, g(i) must be of the specified form since the subrange of 

distributors selects sections of array slices the position ordering of 

which form arithmetic progressions. III 

Let us demonstrate how distributors may be obtained which generate 

the same strings as replicators. Consider the concatenator NR12 

NR12 II j : 1 .4. 1 [A( j-l) , B( j , 3) ; @] 

where collective names A and B have been declared by NC12. The 
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replicator NR12 satisfies the first five conditions of theorem 3.10. 

Let us demonstrate that it also satisfies the sixth condition. The 

expression (j-l) subscripting A should be possible to be re-writen as 

ha(g(j» where f(j) is of the form a+(j-1)*b and ha is the function 

subscripting A in NC12. Therefore 

ha ( f ( j ) ) = f ( j )-1 

As f(j) is of the form 

f(j)=a+(j-l)*b 

we have to find integers a and b such that 

a+(j-1)*b=j or 

a-b+b*j=j 

The only such integers are a=b=l. Therefore the expression j-1 may be 

re-writen as 

f(j)-l or as 

l+(j-l)* 1-1 

Therefore condition 6 is satisfied by A(j-1). It should also be 

satisfied by B(j,3). Simirarly, the expression j should be re-writen as 

hb(f(j» where hb is subscripting the first dimension of B in the 

collectivisor NC12. As 

hb(f( j) )=f(j) 

we have to verify that 

f(j)=l+(j-l)*l 

is the same as 

f( j )=j 
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which obviously is. Therefore condition 6 is also satisfied and the 

distributor expanding to the same string as N~12 is NU18 

NDl8 ; Ill, 4, 1 [A, B( ,3) ] 

or mor e simp ly 

NDl ;[A,B(,3)] 

as the subrange of NDl8 is redundant defining all sections of array 

slices of A and B(,3). 

Let us also examine the concatenator NRl3 

NRl3 IIl:1,2,1[D(4*1);@] 

where D is declared by NC14. The replica tor NR13 satisfies the first 

five conditions of thoerem 3.10. Let us try to transform "4*1" into the 

necessary form h(£(l». Since £(1) must be of the form a+(l-l)*b the 

relation 

g(1)=4*1 

must hold. Since h from the collectivisor NC14 is h(j)=2+(j-1)*2 the 

relation 

2+(f(1)-1)*2=4*1 

must hold which implies that 

f(1)=(4*1-2)/2+1=2*1 

Since f(l) must be of the form 

£(1)=a+(1-1)*b 

the re lat ion 
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a+(l-1)*b=2*l 

must hold, which implies that 

a=b=2 

Therefore f(l)=2+(j-1)*2 and NR13 satisfies the sixth condition of 

theorem 3.10. The distributor expanding to the same string as NR13 is 

ND16 

ND16 ;1f2,4,2[D] 

Not all g(i) may be tranformed into the appropriate form. 

for example the replica tor 

NRlS lfi:l,3,1[E(i**2);@] 

where E is declared by NC16 

NC16 array #j:l,lO,l[E(j)] endarray 

Consider 

The concatenator NRll satisfies the first five conditions. Let us try 

to transform g(i)=i**2 into the appropriate form, h(f(j». As h(j)=j 

h(f(i»=f(i) 

Therefore f(i) must be the sane as i**2 and f(i) must be of the form 

f(i)=a+(i-l)*b 

which means that 

a+(i-l)*b=i**2 

must hold. But there are no integers a and b for which this relation 

holds, as the left hand side is a linear expression of i whilst the 

right hand side a quadratic expression of i. Therefore condition 6 is 
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not satisfied and there is no distributor which may generate the string 

which NR13 generates. The reason is that NR15 generates the string 

E(l);E(4);E(9) 

that is. consisting of the first. fourth and ninth operations of E the 

ordering of which does not form arithmetic progression. 

3.3.3 The Expansion of Macro Programs 

In the previous two sections 3.3.1 and 3.3.2 we obtained expansion 

rules for replicators (replexpO) and distributors (distrexpO) and we 

proved various properties which their expansions possess. Here we 

define the complete expansion of macro programs and by using the results 

theorems 3.3 •• 3.4. 3.5 and the corollary of theorem 3.9 of the previous 

two sections we show that their expansion yields basic COSY programs. 

Let us represent a macro program schematically using syntactic 

variables to represent its syntactic entities. that is substrings 

produced by non-terminals. A macro program will be denoted by MPROG and 

represented by 

program MPBODY endprogram 

where MPBODY denotes a substring produced by 

"mprogrambody". As such MPBODY may have the form 

CPQBR1 ••• CPQBRn 

the non-terminal 

where each CPQBRi for i=l ••••• n denotes a single path or process or 

bodyreplicator possibly headed by collectivisors. 

collectivisors it may be represented by 

COLs PQBR 

If headed by 

where COLs denotes a collection of collectivisors and PQBR a single 

path. or a process or a bodyreplicator. A bodyreplicator may be 
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represented by 

II i : 1, n, 1 [PQBRs 1 

where PQBRs denotes a collection of paths, processes and 
bodyreplicators. A bodyreplicator upon expansion generates a collection 

of paths, processes and bodyreplicators represented by 

PQBRl ••• PQBRn 

where each PQBRi for i=l, ••• ,n denotes a single path or process or 

bodyreplicator. A path and a process will be represented by 

path MSEQ end 

process MSEQ end 

respectively, where MSEQ denotes a macro sequence. A macro sequence 

will be represented by 

MaRl ;"'; MORn 

where each MORi for i=l, .•. ,n denotes a macro orelement, which is 

represented by 

GELl , ••• , GELn 

where each GELi for i=l, •.• ,n denotes a generalized element. 

In general, a generalized element may involve right and left 

replicators and will be represented by 

RRs M LRs 

where RRs and LRs denote right and left replicators respectively and H 

denotes either a starelement or a sequence replicator or a distributor. 

A generalized element may be just a sequence replica tor denoted by 

SREPL. or a distributor denoted by DISTR, or a starelement represented 

by 
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EL* or EL 

where EL denotes an element which could be either an operation or an 

indexed operation denoted by OP or a macro sequence in parentheses 
represented by 

(MSEQ) 

The complete expansion of a macro program MPROG is given by 

expand(MPROG) where the function "expand" is defined as follows: 

expand(e)=cases e: 

1. program MPBODY endprogram 

2. CPQBR1 ••• CPQBRn 

3. GOLs PQBR 

4. #i:1,n,1[PQBRs] 

5. PQBR1 ••• PQBRn 

6. path MSEQ end 

7. process MSEQ end 

8. MOR1; ••• ;MORn 

9. GEL1, ••• ,GELn 

10. RRs M LRs 

11. SREPL 

12. DISTR 

13. EL* 

~ program expand(MPBODY) endprogram 

~ expand(GPQBR1) ••• expand(GPQBRn) 

~ expand(PQBR) 

~ expand(replexp O(#i:l,n,I[PQBRs]» 

~ expand(PQBRl) ••• expand(PQBRn) 

~ path expand(MSEQ) end 

~ process expand(MSEQ) end 

~ expand(MORl); ••• ;expand(HORn) 

~ expand(GEL1), ••• ,expand(GELn) 

~ expand(gelexpO (RRs H LRs» 

~ expand(replexpO(SREPL» 

~ expand(distrexpO(DISTR» 

~ expand(EL)* 

14. OP ~ OP + possible expression eval~tions 
15. (MSEQ) ~ (expand(MSEQ» 

We may now prove the theorem for the expansion ~ macro programs 

~ programs. 

THEOREM 3.11: 

to 

The expansion of a macro program MPROG produced by the syntax rules 

of section 3.2 given by 

expand(MPROG) 
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is a well-formed basic COSy program. 

Proof: 
The expansion certainly stops. 

We shall prove the theorem for each of the fifteen cases of syntactic 

entities on which function "expand" applies. 

case 1 

Applying expand to MPROG we obtain 

expand(program MPBODY endprogram)=program expand(~PBODY) endprogram 

which is a basic program since expand(~~BODY) is a basic programbody as 

may be shown by case 2. 

case 2 

Applying expand to MPBODY we obtain 

expand(CPQBRl ••• CPQBRn)= expand(CPQBRl) ••• expand(CPQBRn) 

The r.h.s. is a basic programbody since each of 

expand (CPQBRi) for i= 1, ••• , n 

is a basic programbody as may be shown by case 3. 

case 3 

Applying expand to a single path or process or bodyreplicator 

by a collectivisor we obtain 

expand(COLs PQBR)=expand(PQBR) 

which is a basic programbody as may be shown by cases 4, 6, 7. 

headed 
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case 4 

Applying expand to a bodyreplicator we obtain 

expand(#i:1,n,1[PQBRs])=expand(replexp O(#i:1,n,1[PQBRs])) 

Since 

replexpO(#i:l,n,l[PQBRs]) 

yields a collection of paths, processes and bodyreplicatorsin which the 

index "i" has been replaced by values in the range of "i", its 

expansion may be shown by case 5 to be a basic programbody. 

case 5 

Applying expand to a collection of paths, processes and 

bodyreplicators we obtain 

expand(PQBR1 ••• PQBRn)=expand(PQBR1) ••• expand(PQBRn) 

which is a basic programbody since each of 

expand(PQBRi) for i=1, •.. ,n 

is a basic programbody as may be shown by cases 4, 6, 7. 

case 6 

Applying expand to a macro path we obtain 

expand(path MSEQ end)=path expand(MSEQ) end 

which is a basic path and a basic programbody if 

expand(MSEQ) 

is a basic sequence which may be shown by case 8. 
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case 7 

Similarly, the expansion of a macro process is a basic process and 

basic programbody. 

case 8 

Applying expand to a macro sequence we obtain 

expand(MOR1; ••• ;MORn)=expand(MOR1); •.• ;expand(MORn) 

Each of 

expand(MORi) for i=I, ••• ,n 

is a basic sequence as may be shown by case 9. 

a 

Therefore, the r.h.s. is a basic sequence since if sl and s2 are 

basic sequences "sl;s2" is a basic sequence also. This may be shown by 

similar arguments to that of lemma 3. 

case 9 

Applying expand to a macro orelement we obtain 

expand(GEL1, ••• ,GELn)=expand(GELl), ••• ,expand(GELn) 

Each of 

expand(GELi) for i=I, ••• ,n 

is a basic sequence as may be shown by each of the following cases. 

Therefore, the r.h.s. is a basic sequence also since if sl and s2 are 

basic sequences "sl,s2" is a basic sequence also. Again this may be 

shown by similar arguments to those of lemma 3. 
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case 10 

Applying expand to a generalized element which involves left and/or 

right replicators we obtain 

expand(RRs M LRs)=expand(gelexpO(RRs M LRs» 

As we have shown in theorem 3.5 the expansion of a generalized element 

gelexpO(RRs M LRs) 

is a macro sequence in which all the indices of the left and right 

replicators have been replaced by integer values in their range. The 

expansion of this macro sequence may be shown to be a basic sequence by 

case 8. 

case 11 

Applying expand to a sequence replica tor we obtain 

expand(SREPL)=expand(replexpO(SREPL» 

By theorems 3.3 and 3.4 the expansion of a sequence replicator given by 

r eplexp ° (SREPL) 

yields a macro sequence in which the index "i" has been replaced by 

integer values in its range. By case 8, its expansion may be shown to 

be a basic sequence. 

case 12 

Applying expand to a distributor we obtain 

expand(DISTR)=expand(distrexpO(DISTR» 

By the corollary of theorem 3.9 the expansion of a distributor given by 
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distrexp U(DISTR) 

yields a macro sequence in which all the distributable dimensions of the 

distributor have been replaced by integer values. The expansion of this 

macro sequence may be shown to be a basic sequence by case 8. 

case 13 

Applying expand to a starelement we obtain 

expand(EL*)=expand(EL)* 

which is a basic element since expand(EL) is a basic element as may be 

shown by cases 14, 15. 

case 14 

Applying expand to a simple or a subscripted operation we obtain 

expand(OP)=OP + possible expression evaluations 

which is a basic operation. 

case 15 

Applying expand to an element of the form (MSEQ) we obtain 

expand«MSEQ»=(expand(MSEQ» 

which is a basic element since 

expand(HSEQ) 

is a basic sequence as may be shown by case 8. 

As we have considered every possible case of syntactic entities of 

h · h h ft' "expand" macro macro programs to w 1C t e unc 10n applies, we may 

conclude that the theorem is proven. III 
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In this section 3.3 we formally defined the expansl'on of replicators, 
distributors and of complete macro programs. We prove that 

concatenators, imbricators and 

upon their expansion. We 

distributors g t enera e macro sequences 

also proved that the expansion of complete 

macro programs yields well-formed basic programs. We also proved a 

number of theorems for the replacement of macro elements in macro 

sequences by other macro elements. 

3.4 EVALUATION OF THE NEW NOTATION FOR MACRO COSY 

In the previous two sections 3.2 and 3.3 we introduced a new macro 

notation and grammar, we defined 

replicators, distributors and macro 

and characterized the expansion of 

programs. In this section we 

evaluate this new notation using as criteria the four properties we set 

at the begining of section 3.2 which a "good" macro notation should 

possess. 

1. As we have proved in section 3.3.3 programs produced by the 

grammar of section 3.2 always generate well-formed basic 

programs when expanded. This grammar gives context-free rules and no 

meta-restriction rules are required to constrain the regularities of 

replica tor s. The few meta-restrictions imposed are of a 

context-sensitive nature and cannot be expressed by context-free rules. 

These include the restrictions that collective names should be declared 

before any of its corresponding subscripted operations are used in paths 

or processes; that the number of dimensions of indexed operations 

corresponding to a collective name should have the same number of 

dimensions as specified in the collectivisors, etc. The production of 

macro programs which always yield well-formed basic programs when 

expanded was considered to be a very important property of a macro 

notation. 

However, this property on its own does not justify a good macro 

notation as the macro features it involves should generate a large class 

of strings in order to represent basic COSY strings concisely. 
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2. We shall examine in detail the generality of each feature of the 

notation, the generality of the collectivisor, the 

bodyreplicator, the sequence replicators, the left and right replicators 

and the distributor. 

a. the collectivisor 

Collectivisors do not generate any basic strings as they are 

eliminated upon the expansion of macro programs, but declare permissible 

sets of subscripted operations. They are important though, since the 

expansion of distributors depends on these declarations; distributors do 

not explicitly generate indices but generate the indices defined by the 

collectivisors. 
They are also usefull as a check for the indices used in the rest of 
programs. 

Collectivisors may declare rectangular arrays of any number of 

dimensions either specifying the lower bound in each of these explicitly 

or assuming it to have the value one implicitly. By using replicators 

generating permissible sets of subscripted operations other shapes of 

arrays may be declared. Although, more complex shapes could be 

permitted to be declared we did not allow the maximum degree of 

generality possible and we imposed the restrictions (Crest3) specifying 

that there should be as many dimensions in an indexed operation in 

collectivisors as the number of replicators within it is nested and that 

indices in each dimension should depend directly on one distinct 

replicator index. These restrictions were imposed to guarantee the 

independence of the indices and to avoid duplication of declaration of 

subscripted operations. A third and more subtle reason for these 

restrictions was to avoid the declaration of collective names, one 

dimension of which either depends directly on two or more indices, or 

depends on one index which itself depends on another index on which none 

of the indices in other dimensions depend directly. These 

collectivisors would overcomplicate the expansion of distributors which 

would no longer be replaced by a single concatenator but by a number of 

them nested within each other. Consider for example the declarations 
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C array 

#i:O,9,1[#j:O,9,I[A(100*i+j»)) 

#i:O,9,1[#k:lOO*i,100*i+9,I[B(k»)) 

endarray 

which are not permitted by our restrictions. These declare 

one-dimensional arrays A and B the indices of which take the values: 

0,1, ••• ,9, 100,101, ••• ,109, , 900,901, ••• ,909 

two 

The only difference in the declarations of A and B is that the indices 

of A depend on i and j directly and the indices of B directly on k and 

indirectly on i. With the above declarations of A and B the distributor 

D j[A,B) 

would no longer be replaced by a single concatenator but by two nested 

ones as follows: 

#i:0,9,1[#j:0,9,I[A(100*i+j),B(100*i+j)j@)j@) or 

#i:0,9,1[#k:l00*i,100*i+9,I[A(k),B(k)j@)j@) 

Although, this kind of declarations increase the class of strings 

distributors could generate we have excluded them for they would 

overcomplicate the expansion rules for distributors. The above arrays A 

and B could be modified to the two dimensional arrays Al and Bl declared 

by: 

NCl7 array #i:0,9,1[#k:100*i,IOO*i+9,I[AI(i,k) Bl(i,k)]] endarray 

The above collectivisor is valid in the new notation, as the number of 

dimensions of Al and Bl are the same as the number of replicators 

defining them and each dimension depends on a single replicator index 

directly. The operations in A and B correspond to operations in Al and 

Bl as follows: 

AI(i,k) and Bl(i,k) correspond to A(k) and B(k) respectively, 

for i,k as generated by the replicators in NC17 
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Under the restrictions Crest3 on collectl'vl'sors, I tle expansion of 
distributors is reasonably simple which compensates for the loss of 
generality of the strings distr ibutor s may generate. Under the above 
correspondence of operations of A and B with operations of A1 and 81 the 
string the distributor 

D ; [A,B] 

generates, when A and B have been declared by C, may be generated by by 

the distributor ND19 

ND19 ; [ ; [Ai, Bl]] 

where AI and Bl are declared by NC17. The distributor ND19 is permitted 

in the new macro notation. 

Collectivisors contribute to the notation the option of simplifying 

macro sequences by using distributors rather than the more lengthy 

replicators. Collectivisors in a program without distributors are not 

essential and they may only serve as a means of testing that replicators 

do not generate subscripted operations not admitted by collectivisors. 

b. the bodyreplicator 

Bodyreplicators may generate paths and processes and other 

bodyreplicators. Unlike sequence replicators they are only of one form, 

generating consecutive regularities. In that respect they are analogous 

to concatenators and not to imbricators. We did not allow two types of 

bodyreplicator s "bodyconcatenators" and "bodyimbricators" for two 

reasons. The first is a pragmatic one; we have never needed or used 

bodyimbricators although some of the grammars permitted them [TL77, 

LT76]. The second is that the paths and/or processes a "bodyimbricator" 

generates may be generated by a single "bodyconcatenator", as we have 

indicated in section 3.1.3 where discussing the syntax for 

bodyreplicators of [LT76]. 
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c. the sequence replicators 

They may generate regularities which are macro sequences. We have 

distinguished two kinds of these replicators, concatenators and 

imbricators. In the expansion of concatenators all regularities follow 

each other and these only differ in the subscripts of the indexed 

operations they involve. In the expansion of imbricators regularities 

wrap or imbricate each other. All but one of these regularities differ 

in the integer expressions they involve. The innermost regularity 

however differs additionally from the rest in that instead of 

imbricating another regularity it imbricates a string, namely that 

between the two "@"s in an imbricator, dropping the separators before 

and after the two "@"s. This imbricator is a powerful extension we have 

introduced and allows generation of sequences which cannot be generated 

by a single replicator produced by any other grammar. 

We have excluded replicators which do not generate matching pairs of 

parentheses. These are the range, context and neighbourhood dependent 

replicators. Of the three only the third has been used in macro 

programs but for a very specific purpose: to specify the more general 

imbrication of regularities which our imbricators do permit. For 

example the stack with a test for "full" had to be specified by using 

two wide concatenators, which are neighbourhood dependent, as follows: 

P74 path #i:l,n,l[(UP(i);@] full* #i:n,l,-l[DOWN(i»*;@] end 

The string obtained from the expansion of the two neighbourhood 

dependent replicators may be generated by one of the new imbricators: 

NP23 path #i:l,n,l[(UP(i);@;full*;~;DOWN(i»*] end 

Since no other use was made of these replicators we have not obtained 

formal results on the limitation of our notation due to their 

elimination. We however outline how macro sequences involving these 

replicators may be transformed into macro sequences valid in our 

notation. 

expansion 

Although, these replicators do not generate sequences their 

together with their context should form sequences, parts of 

which may be generated by sequence replicators. 
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Simple range dependent replicators where "(" or ")" is the immediate 

left and respectively right context of them may be generated together 

with their context by a single imbricator. For example, the string 

«(Ui:l,3,1[A(i);D(i»,@] 

after the expansion of the replicator becomes the sequence 

«(A(l);D(l»,A(2);D(2»,A(3);D(3» 

which may be generated by the imbricator 

NRl6 #i:3,l,-l[(@@,A(i);D(i»] 

The context of the range dependent replicators could be more involved 

in that "(" and ")" are not their immediate context, as for example: 

(a;(b;(c;#i:l,3,l[D(i»,@] 

which after the expansion of the replicator becomes 

(a;(b;(c;D(1»,D(2»,D(3» 

The above sequence cannot be generated by any of our replicators since 

the regularities differ in the simple operation names and not just in 

the subscripts of indexed operations. We may however use a collective 

name, say A, corresponding to the subscripted operations A(l), A(2), 

A(3) and rename the simple operations a, b, c to A(3), A(2) and A(l) 

respectively. Thus the above string becomes 

(A(3);(A(2);(A(1);D(I»,D(2»,D(3» 

which may be generated by the imbricator 

NR17 #i:3,l,-l[(A(i);@;@,D(i»] 

Not all well-formed basic strings parts of which are generated by range 
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dependent operations may be generated by sequence replicators. 

for example the string 

(a;(b,(c;#i:l,3,1[D(i»;@] 

Consider 

in which the connectives after a and care ";" but the connective after 

b is ",". Here the mapping of operations to indexed operations is not 

sufficient to overcome the problem of constructing a sequence replicator 

expanding to the string above. 

A string s part of which is generated by a range dependent replicator 

which is a wide concatenator may be generated by an imbricator provided 

that the head of the string s not generated by the range dependent 

replicator may be generated by~range dependent replicator. Then if the 

ranges of the indices of the two wide concatenators are the same the 

string s may be generated by a single imbricator. If the substring of s 

not generated by the range dependent replica tor cannot be generated by a 

wide concatenator then s may not be generated by a sequence replicator. 

We have to point out that the syntax of such replicators has to be 

expressed by context-sensitive rules if these are to form well-formed 

basic strings after expansion. Only by context-sensitive rules we can 

specify that the number of opening or closing parentheses of their 

context must be equal to the number of regularities the replicator is to 

generate, determined by the values of "in", "fi" and "inc" of the index 

specification part of the replicator. 

If the range replicator in s is not a wide concatenator but a wide 

imbricator then s may not in general be generated by a single 

imbricator. It may however be abbreviated by generating parts of it by 

more than one sequence replicator. For this to be possible though, it 

is still necessary for the part of s not generated by the range 

dependent replicator to be generated by a wide concatenator. We shall 

discuss this case when considering neighbourhood dependent replicators 

below, since the string s may be generated by two replicators which are 

of this form. 

He may always though, generate by sequence replicators strings parts 

of which have been generated by context dependent replicators provided 
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We construct sequence they always generate more than one regularity. 

replicators out of them by rearranging parts of the regularities they 

that parentheses in each regularity match. These sequence generate so 

replicators cannot generate the complete strings which context dependent 

replicators generate but only parts of them. Consider for example the 

following str ing 

( iii: 1. n. 1 [A(i) ) • (B(i) ; @]) 

involving a context dependent replica tor which as all context dependent 

replicatocs generates the same number of opening and closing 

parentheses. though not all matching. Since upon expansion the i'th 

opening parenthesis matches with the (i+l)'th closing parenthesis for 

i=1.2 ••••• (n-1), we may modify the regularity to form the sequence 

replicator: 

NR18 #i:1,n-l,I[(B(i);A(i+I)),@] 

The strings "A(l));" and ",(B(n)" which are heading and respectively 

trailing the expansion of the context dependent replicator, and the 

opening and closing parentheses around the context dependent replicator 

are not generated by the above concatenator and have to be written 

explicitly. Thus the string 

(A(I));#i:l,n-I,I[(B(i);A(i+1)),@].(B(n)) 

abbreviates the expansion of the expression involving the context 

replicator as long as n)1 and it is valid in our notation. If n takes 

the value 1 the range of the index of the concatenator becomes empty 

which is not permitted. If n could take the value 1 we may replace the 

concatenator together with the ";" before or the 
11 11 , after it by a left 

or respectively right replicator: 

(A( I ) ) II i : 1 , n-1 , I [ ; I ( B( i) ; A( i + I) ) ,@] , ( B( n) ) 

( A(l ) ) ; iii : 1 , n-1 , I [ ( B( i) ; A( i+ 1) ) , @ I ,] ( B( n) ) 

If the context dependent replicator is of the form of imbricators we 

first transform it into wide concatenators and we then apply, from left 
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to right, the transformations we outlined above. Consider for example 
the context dependent imbricator 

( IIi: 1 , n, 1 [A(i» ; (B( i) ,@@) ; C( i) , ( 0 (i) ] ) 

Let us transform it first into wide concatenators 

(lIi:1,n,1[A(i);(B(i),@] Ui:n,1,-1[);C(i),(D(i)]) 

Then re-arrange the regularity of the leftmost replicator, transforming 

it into a concatenator 

( A(l ) ) ; iii : 1 , n-1 , 1 [ ( B(i) , A( i+ 1 ) ) ; @] ; ( B( n) II i : n, 1 , -1 [ ) ; C ( i) , ( D ( i ) ] ) 

Do the same for the other wide concatenator 

(A(l) ) 

;Ui:l,n-1,l[(B(i),A(i+l»;@] 

; ( B( n) ) 

;C(n),lIi:n-l,l,-l[(D(i»;C(i+l),@],(D(l» 

The above string is valid in our notation. We may simplify it by 

eliminating a number of redundant parentheses which could not be easily 

detected in the original expression involving the two neighbourhood 

dependent replicators: 

A(l) 

;#i:l,n-l,l[B(i),A(i+l);@] 

; B(n) 

;C(n),lIi:n-l,l,-1[D(i);C(i+l),@],(D(1» 

We may also replace the two concatenators and the string between them by 

a non-genuine imbricator thus simplifying the above expression, even 

further: 

A(1);#i:1,n-l,1[B(i),A(i+1);@;B(n);C(n),@,D(i);C(i+l)],0(1) 
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Finally, basic sequences generated by groups of neighbourhood 

dependent replicators may be generated by sequence replicators provided 

they generate more than one regularity similarly to the context 

dependent replicators. Let us abbreviate the expansion of 

iii : 1 , n, 1 [ ( A( i) ; @@) , ( B( i) ] #i:l,n,l[C(i»;(@@;D(i»] 

by sequence replicators. We first split the two replicators into wide 

concatenators as follows: 

#i:l,n,l[(A(i);@]#i:n,l,-l[),(B(i)]; 

#i:l,n,l[C(i»;(]#i:n,l,-l[D(i»;@] 

Then re-arrange parts of regularities of these replicators balancing the 

parentheses 

#i:l,n-l,l[(A(i);@]; 

(A(n»;#i:n,2,-1[(B(i»,@],(B(1);C(1»;#i:2,n,1[(C(i»;@];(D(n»; 

#i:n-l,l,-l[D(i»;@] 

We may now eliminate some redundant parentheses in the above expression, 

thus obtaining: 

#i:l,n-l,l[(A(i);@]; 

A(n);#i:n,2,-1[B(i),@],(B(1);C(1»;Ui:2,n,l[C(i);@];D(n); 

#i:n-l,l,-l[D(i»;@] 

The above expression contains two concatenators and two neighbourhood 

dependent replicators which may be replaced by one imbricator, 

follows: 

as 



NR19 Ifi:l,n-l,l 

[( AU) 

;@ 

;A(n) 
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; !Ii: n, 2, -1 [B( i) , ] , ( B( 1) ; C( 1) ) 

;#i:2,n,1[CU);] 

) 

] 

;D(n) 

;@ 

;D(i) 

which may be abbreviated by combining the two concatenators between the 

two "@"s into one non-genuine imbricator 

t/i:l,n-l,l 

[(A(i);@;A(n);#j:n,2,-1[B(i),@,(B(1);C(1»;@;C(i)];D(n);@;D(l»] 

We may easily verify by expansion that the above imbricator generates 

the same string as the two original neighbourhood dependent replicators. 

Although the above string is lenghtier than that involving the 

neighbourhood dependent replicators its advantages in understanding it 

compensates for this loss of conciseness. This is true of all three of 

the types of replicators we eliminated. 

d. left and right replica tors 

These may generate empty expansions or sequences followed or 

preceeded by a separator. Previous grammars permit replicators which 

may generate a subclass of this type of strings. Left and right 

replicators do not only generate more strings of this type but by 

specifying their context they guarantee the well-formedness of the 

expanded program. 

e. distributors 

Their contribution in the notation is not in the generality of the 

strings they generate since the same strings may be generated by 
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concatenatocs but in the conciseness in cepcesenting these stcings. We 

have extended the type of cegularities they may generate. These 

regularities may include replicators also, thus making our two macro 

features symmetrical as one may be nested within each other. We have 

also relaxed the compatibility criterion for distributable dimensions. 

In previous notations it was required that these should have the same 

set of subscripts in these dimensions. We only require that the number 

of these subscripts are the same. 

We have further extended the class of sequences which the 

distributors may generate by the introduction of two features: the 

subrange and the dimension selection. 

All these extensions greatly improve the conciseness of macro 

programs since more strings could be generated by distributors in the 

new notation than in any other macro notation used before. 

3. The readability of macro programs in the new notation is also 

greatly improved. This was mainly achieved by the following: 

a. By changing the index specification part of a replicator from 

"0Iin,fi,inc" to "I!i:in,fi,inc" and moving it in front of "[ ]" of 

the replica tor which now just encloses the regularity to be 

replicated. 

b. By changing "( )" around the regularity of the distributor to "[ ]". 

By that we have distinguished symbols not used in the basic notation 

but only in the macro notation. 

identified in a macro sequence. 

Distributors are now easily 

c. By eliminating range, context and neighbourhood dependent 

h h d b d t d l.°n conJouction with other replicators w ich a to e un ers 00 

parts of a macro sequence. 

d. By permitting replicators in sequences to genecate regular ities 

which ace sequences separated by semicolons oc commas, which means 

that their expansion consists of famil iac substrings. 
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We have to point out that this is not the best notation for 

readability of macro programs. Its weakness is that in general, the 

head and/or tail of their expansion may bind with strings before or 

after rather than with the rest of the expansion. In other words their 

expansion is not syntactically strong, in general. Also each regularity 

may not be syntactically strong in the expansion. 

In chapter 4 we give two grammars which restrict the strings 

replicators may generate. The first produces replicators and 

distributors &enerating syntactically strong expansions and the second 

produces replicators and distributors which additionally generate 

syntactically strong regularities. These two grammars greatly improve 

the readability of macro programs, particularly macro sequences as we 

shall demonstrate in chapter 4. Of course programs produced by the 

grammars of chapter 4 are not as concise in general as macro programs 

produced by the notation of section 3.2. 

4. The syntax of the notation of section 3.2 is uniform with that 

of the basic notation. Basic program bodies have been extended 

to macro program bodies by permitting collectivisors and 

bodyr eplicator s. Basic sequences in paths and processes have been 

extended to macro sequences by permitting indexed operations and 

generalized elements which may involve replicators and distributors. 

The production rules for macro sequences look very similar in 

structure as the syntax rules of basic sequences. Also the rules 

producing the strings inside "[ ]" of sequence replicators and 

distributors have been expressed in the style of a basic sequence, as 

"extended" regular expressions. 

The notation introduced in section 3.2 could be extended by other 

features and its existing features could be generalized. We shall 

discuss one new feature, distributors generating paths and/or processes 

and two generalizations of existing features, the index specification of 

. i forming arithmetic replicators not necessarily generat~ng ntegers 

progressions and a more flexible selection of distributable dimensions 

of distributors. 
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As there are 

and/or processes 

replicators, the bodyre 1" p lcators, generatin~ paths 
we may have "bodydistributors" generating some paths 

and/or processes more concisely than replicators. There is no problem 

in principle as bodyreplicators gener t a e consecutive regularities only. 
The only problem is that there is no connective between paths and 
processes and therefore there is no connective to be distr ibuted 
separating the regularities they would generate. We may not use a 
connective at all in front of bodydistributors. With this convention 
the n free frame buffer may be specified by 

[path DEPOSIT;RE~OVE end] 

where DEPOSIT and RE~OVE have been defined by NCl8 

NCl8 array DEPOSIT RE110VE(n) endarray 

When a subrange is incorporated we may write 

#l,n,2[path DEPOSIT;REMOVE end] 

to specify the odd frames of the n-free-frame buffer. 

This form however looks very similar to that of replica tors and could 

effect the readability of the programs. For this reason we were 

reluctant to include it in the notation but we only mentioned it here as 

a possible option, for further extensions of the macro notation. 

As we have seen the index specification part of replicators generates 

finite arithmetic progressions of integers in ascending or descending 

order. This kind of index generation proves to be very powerful in 

generating indices of subscripted operations. Nevertheless, the index 

specification of replicators could be extended to generate finite 

collections of integers not necessarily forming arithmetic progressions. 

The predicate or test replicator [LS80] (cf. 3.1.9) are examples of 

replicators using such generators. The predicates is a convenient and 

powerful tool for generating finite collections of integers. Another 

way to generate indices is to use generating functions which could be 

specified in some conventional programming language. The index 
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specification part as it now st~nds would be specified by a 
f or- s ta temen t. As not enough experimentation has been done to satisfy 

us for the best way to specify this general generation of index 

replicator range and as both of the above suggested methods introduce 

great complexity we did not incorporate them in the notation. 

The feature for the selection of distributable dimensions has a 

limitation, already indicated by condition 5 of theorem 3.10 giving the 

conditions for the replacement of sequence replicators by distributors. 

This condition suggests that it is not possible to generate the string 

generated by the replicators: 

NR2 0 IF i: 1 , n, 1 [ (II j : 1 , m , 1 [ A (j , i) ; B ( i , j ) ; @ ] ) , @ ] 

where A and B are defined by 

NC19 array A(m,n) B(n,m) endarray 

by two nested distributors. We may either replace the inner replicator 

by a distributor as: 

ND20 h:l,n,l[(; [A(,i);B(i,)]),@] 

or the outer one as 

ND21 ,[(lFj:l,m,l[A(j,);B(,j);@])] 

The replicators in the above two expressions may not be replaced by 

distributors in a valid way. The following expression 

,[(;[A;B])] 

involving two nested distributors is not valid 

distributor applies to the second dimensions of A and B 

since 

which 

compatible and futhermore is not what the replicators specify. 

the outer 

are not 

If however, we allow each dimension to specify the distributor to be 

applied to it then distributors may replace both the above replicators. 
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Therefore instead of specifying di~tributable dimensions by blank 

fields, we must define them by an integer, specifying the level of the 

distributor applied to it, which has to be distinguished from 

subscripts, by, say pefixing it by "II". With this convention we may 

replace the above nested replicators by 

,[(;[A(#2,#1);B(#1,#2)])] 

This feature lenghtens distributors substantially and as it is only 

useful in special cases we did not include it in the new notation. 

In this chapter we reviewed previous macro notations and grammars, we 

introduced a new macro notation and grammar and proved several syntactic 

properties which macro elements and complete macro programs possess. In 

the next chapter we address the problem of the semantics of macro 

programs. 
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4 THE SEMANTICS OF MACRO COSY PROGRAMS 

In the previous chapter we obtained fairly complete results relative 

to the syntax and expansion of macro programs, but no reference at all 
was made to their semantics. The theore 3 11 . . 3 3 3 m. ~n sect~on • • , proving 
the expansion of macro programs to basic programs allows us to define 

their semantics in terms of the vector firing sequences of the basic 

programs obtained by their expansion. The semantics of a macro prograill 

MPROG which does not include any macro processes will therefore be given 

in terms of 

VFS(expand(XPROG» 

and that of a macro program involving processes in terms of 

VFS(Path(expandOiPROG») or 

MVFS(expand(MPROG» 

where the conctruction of VFS and MVFS and the transformation Path are 

defined in chapter 2, and the function "expand" in section 3.3.3. 

In this chapter we examine ways by which the vector firing sequences 

of basic programs generated from macro programs may be obtained directly 

from the macro programs themselves. We shall restrict our discussion to 

programs involving just macro paths and bodyreplicators generating macro 

paths. 

We may recall from chapter 2 that to obtain the vector firing 

sequences of a basic path-program PROG we need two sets: 

1. the set of all vectors each component of which is a firing sequence 

of a path in PROG, and 

2. the set of vector operations in the program PROG, the set 

Vops(PROG) • 
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To construct therefore, the vectr)r fir ing sequences of the expal1sion 

of a macro program fro.n the macro program itself, we need tCJ construct 

both sets mentioned in 1 and 2 above directly from it. To obtain the 

set in 1, the cycle set of each basic path generated from a ~cro 

program should be constructed from the macro program itself. These 

cycle sets should be totally ordered and their ordering should be the 

same as the ordering of their corresponding basic paths in the expanded 

program, and will be called ordered cycle sets. If the cycle sets 

obtained from the macro program are the same as the cycle sets obtained 

from the basic paths in the basic program generated by the 

expansion of the macro program but their ordering is different, the 

vector firing sequences produced by these two collections of sets will 

in general, be different. This order of cycle sets was implicit in the 

construction of the vector firing sequences of a basic program in 

section 2.3, being the order of appearance of their corresponding paths 

in the basic program. 

The second set we have to obtain direcly from macro programs, the set 

of vector operations of corresponding expanded programs Vops(PROG) may 

be obtained from the ordered cycle sets as it was shown in section 2.3. 

Assuming that the ordered cycle sets may be obtained directly from macro 

programs, then so may the set of vector operations Vops, and 

consequently the vector firing sequences as well. 

In the rest of this chapter we concentrate on how we may find the 

ordered cycle sets of expanded programs directly from the macro programs 

themselves. We follow two approaches for constructing these sets. 

According to the first, they are constructed by finding the cycle sets 

of expanded parts of macro programs which are then juxtaposed, when 

corresponding to cycle sets of paths, or combined by the concatenation 

operation, when corresponding to cycle sets of orelements or by the 

union operation, when corresponding to cycle sets of starelements. 

According to the second approach, macro cycle objects are constructed 

from macro programs, representing concisely and generating upon 

expansion ordered cycle sets, in the same way, macro programs represent 

and generate basic programs. 
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In section 4.1 we follow the fir s t approach, "" I f g~V~l1b ru es or 
constructing the ordered cycle sets of macro programs produced by the 

g rammar of section 3.2. We also give I f b 
L ru es or 0 taining the cycle sets 

of macro programs produced by a restrictive grammar by which all macro 

elements generate syntactically strong strings. 

In section 4.2 we follow the second approach. This approach however 

may only be applied to macro programs produced by a more restrictive 

grammar than that of section 4.1.2 producing macro elements generating 

regularities which are syntactically strong strings. We first develop 

this grammar, we give expansion rules for programs produced by it and we 

outline syntactic properties which macro elements and programs produced 

by this grammar possess. Then we present a notation for representing 

ordered cycle sets concisely, we define rules for obtaining objects in 

this notation from macro programs and we give expansion rules by which 

these objects generate ordered cycle sets which are shmVQ to be the same 

as those obtained from expanded macro programs. 

4.1 CONSTRUCTING ORDERED CYCLE SETS UPON EXPANSION OF MACRO PROGRAMS 

We split the construction of ordered cycle sets into two parts. In 

the first part ordered expressions for obtaining cycle sets of 

individual macro paths are derived from macro programs upon expansion of 

their bodyreplicators. As the expansion of a single macro path is a 

single basic path, we obtain as many such expressions as basic paths in 

the expanded program. Furthermore, the order of these expressions will 

be the same as the order of corresponding basic paths in the basic 

program obtained by the the expansion of macro programs. 

In the second part of the construction of the ordered cycle sets of a 

basic program PROG generated by the expansion of a macro program ~WROG, 

we obtain cycle sets of single basic paths of PROG directly from 

f MPROG h " h fter the first part is corresponding macro paths 0 [ ,w ~c a L 

applied they do not involve any integer expressions involving 

bodyreplicator indices. We shall call these macro paths the pure macro 

paths of HPROG. 
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We construct the ordered cycle sets of macro prrJgr.im'5 involving onl, 

paths and bodyreplicators generating paths, produced by the grammar of 

section 3.2, and by a restrictive grammar which will be developed in 

section 4.1.2. The two grammars differ in the way the non-terminal 

"msequence" is defined and not in any other aspects. The first part of 

the construction of ordered cycle sets of programs will therefore be 

common to programs produced by either grammar. The second part in which 

cycle sets of individual paths produced by the two grammars are 

obtained, are treated separately in sections 4.1.1 and 4.1.2. 

Let us now define the function "exp-Cycls" by which ordered 

expressions for cycle sets of pure macro paths will be obtained from 

macro programs. The syntactic variables used in this definition denote 

the same syntactic entities of macro programs as in the definition of 

"expand" in section 3.3.3. As no processes are involved in these 

programs though, we will drop the "Q" from the syntactic variables 

"CPQBRi" for i=1, ••• ,n, "PQBR", "PQBRs", "PQBRi" for i=1, •.. ,n, which 

thus become "CPBRi" for i=I, ••• ,n, "PBR", "PBRs", "PBRi" for i=1, .•• ,n 

respectively. In addition "MP" will denote a single pure macro path. 

exp-Cycls(e)=cases e: 

1. program ~WBODY endprogram-7 cycles exp-Cycls(MPBODY) endcycles 

2. CPBR1 ••• CPBRn 

3. COLs PBR 

4. #j:1,m,1[PBRs] 

5. PBRI ••• PBRn 

6. MP 

-7 

-7 

-7 

-7 

-7 

exp-Cycls(CPBRl)& ••• &exp-Cycls(CPBRn) 

exp-Cyc1s(PBR) 

exp-Cycls(replexp O(#j:l,m,I[PBRS]» 

exp-Cycls(PBRl)& ••• &exp-Cycls(PBRn) 

if produced by grammar of section 3.2 

then exp-Cycl(MP) 

else 

if produced by grammar of section 4.1.1 

then exp-Cyc20lP) 

In the above definition the two functions introduced in case 6 

"exp-Cycl" and "exp-Cyc2", will be defined in sections 4.1.1 and 4.1.2; 

d 1 ro paths originating they yield the cycle sets of indivi ua pure mac , 

d t " ly by the grammars of sections from macro programs produce respec ~ve 

3.2 and 4.1.2. The symbol "&" on the right hand side of cases 2, 4, 5 
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is used to separate cycle sets. 

Let us also define the function "expand1" by which macro programs may 

be expanded. We have modified slightly the first six cases of the 

definition of function "expand" of section 3.3.3, adopting the above 

changes in syntactic variables; the expansion of macro paths is defined 

by two distinct functions depending on whether these are produced by the 

syntax rules of section 3.2 or that of 4.1.2. By applying the function 

"expand1" we therefore obtain expressions for the expansion of 

individual pure macro paths. The function "expandl" is defined as 

follows: 

expand1(e)=cases e: 

1. program }1PBODY endprogram-~ program expandl(HPBODY) endprogram 

2. CPBR1 ••• CPBRn 

3. COLs PBR 

4. #j: I,m, 1 [PBRs] 

s. PBRI ••• PBRn 

6. MP 

-~ 

~ 

-~ 

~ 

~ 

expandl(CPBRl) ••• expandl(CPBRn) 

expandl(PBR) 

expand1(replexp O(#j:l,m,l[PBRs])) 

expandl(PBRl) ••• expand1(PBRn) 

if produced by grammar of section 3.2 

then path-expl(}fP) 

else 

if produced by grammar of section 4.1.1 

then path-exp2(MP) 

where path-expl(XP) denotes the expansion of a pure macro path }fP of a 

macro program produced by the grammar in section 3.2 and path-exp2(MP) 

denotes the expansion of a pure macro path MP of a macro program 

produced by the grammar in section 4.1.2. 

The similarity of " " C 1" d the definitions of the funct10ns exp- yc s an 

t corre spondence between "expandl", shows that there exists an exac 

construction of the cycle sets of macro paths and construction of the 

Let us def1"ne the function "Cycles", by which expansion of macro paths. 

the ordered cycle sets of basic programs are obtained: 



Cycles(e)=cases e: 

1. program BPEODY endprogram 

2. Pi. .. Pn 

3. P 
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-~ cycles Cycles(BPBODY) endcycles 

~ Cycles(P1)& •.• &Cycles(Pn) 

-~ Cyc(P) 

where BPEODY denotes a basic path program body which is represented by 

P 1 ••• Pn 

where Pi for i=1,2, ••• ,n denote basic paths and P denotes a single basic 

path. The function "Cyc" is defined in section 2.1. We may easily show 

that for a macro program MPROG, the relation 

Cycles(expandl(MPROG)=exp-Cycls(MPROG) 

is true, provided that, if !1PROG is produced by the grammar of 3.2 then 

Cyc(path-exp l(~1P) )=exp-Cyc1 (MP) 

for any pure macro path MP of 11PROG and that, if MPROG is produced by 

the grammar of 4.1.2 then 

Cyc(path-exp2(MP»=exp-Cyc2(MP) 

for any pure macro path MP of MPROG. 

The validity of the above two equalities will be proven formally in 

the next two subsections 4.1.1 and 4.1.2 respectively, where we define 

the functions "exp-Cyc1" and " exp-Cyc2" by which the cycle set of a 

single basic path may be obtained directly from its unexpanded pure 

macro path, and where we also define the functions "path-exp1" and 

"path-exp2" by which pure macro paths are expanded. 



4.1.1 Finding the Cycle Sets of pure macro Paths 

In this subsection we define the function "exp-Cycl" by which we 

obtain the cycle sets of pure macro paths produced by the grammar of 

section 3.2. 

The function "exp-Cycl" expands parts of a macro sequence, constructs 

the cycle sets of these parts and performs concatenation or union 

operations on them until the cycle set of the whole path is constructed. 

What the smallest such parts of macro sequences should be is governed by 

the syntax of the macro path. The reason for considering some smallest 

parts is that it only makes sense to find the cycle set of a 

syntactically strong string or of macro elements generating such 

strings. Had we allowed range, context and neighbourhood dependent 

replicators in macro sequences we would in general, have to expand the 

whole of a macro sequence, to construct the cycle set of a macro path 

which involved such sequences. Consider for example the paths Pl, P2, 

P3 the macro sequences of which involve range, context and neighbourhood 

dependent replicators, respectively: 

PI path «b,#i:I,2,1[A(i»;c,@] end 

P2 path (c;#i:l,2,1[A(i»;(B(i);@]) end 

P3 path #i:l,3,1[(UP(i);@];#i:3,1,-1[DOWN(i»*;@] end 

which expand respectively to P4, PS and P6: 

P4 path «b,A(1»;c,A(2»;c end 

PS path c;(A(1»,(B(1);A(2»,(B(2» end 

P6 path(UP(1);(UP(2);(UP(3);DOllli(3»*;DOWN(2»*;DOWN(1»* end 

We cannot find the cycle sets of any parts of the macro sequences of Pl, 

P2, P3, since the replicators they involve do not generate matching 

opening and closing h and the precedence of connectives parent eses 
II 11 , 

and II." , in their context may be overuled by the generation of 

parentheses upon the expansion of the range, context and neighbourhood 

dependent replicator s, thus making it impossible to detec t the 

" "th t expandfng completely the macro syntactically strong strings Wi ou ~ 

sequences they are in. 
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The macru paths pruduced by the grammar of section 3.2 are such that 

we may break up their macro sequences into their macro orelements the 

cycle sets of which may be constructed and which may then be 

concatenated to give the cycle set of the complete macro path. The 

string generated by the expansion of the macro elements produced by this 

grammar is always syntactically strong in the context of any of "path", 

";", "(" on their left and any of ")", ";", "end" on their right. The 

reason is that the precedence of "," over ";" cannot be overuled by the 

expansion of these macro elements produced by this grammar since the 

macro elements always generate macro sequences and consequently matching 

pairs of parentheses. Therefore, to find the cycle set of a macro 

sequence, we may concatenate the cycle sets of their constituent 

orelements. If these orelements involve only starelements, we construct 

their cycle sets by the union of the cycle sets of these starelements. 

If however, the orelements involve generalized elements, all replicators 

and distributors which they involve have to have been expanded first, as 

they may generate semicolons which would transform the original macro 

orelement into a macro sequence. Let us define an auxilliary function 

"gel-exp" by which all replicators and distributors of a generalized 

element are expanded. If we represent a generalized element GEL by 

RRl. •• RRn 1-1 LRl. •• LRm 

where each of RRi for i=l, ••• ,n is a right replicator, each of LRi for 

i=l, ••• ,m is a left replicator and 1-1 a sequence replicator or a 

distributor or a starelement, then by the expansion of GEL denoted by 

gel-exp(GEL), we mean the string obtained by the expansion of the right 

replicators, the expansion of M if its a sequence replicator or a 

distributor, and by the expansion of the left replicators. The function 

"gel-exp" is defined by: gel-exp(GEL)=a b c 

where a= 

b= 

c= 

replexpO(RR1) ••• replexpO(RRn) 

if ~ is a sequence replicator then replexpO(M) else 

if M is a distributor then distrexpO(M) else 1-1 

replexpO(LR1) ••• replexpO(LRm) 

If ~1 is a starelement the function "gel-exp" is the same as "gelexpO", 

" h" h" 1 0" and "distrexpO" defined in section 3.3, the section ~n w ~c rep exp 
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have also been defined. 

We shall use this func tion when defining "pa th-exp 1" , by which macro 
paths are expanded. The difference between "path-expl" and 

corresponding cases 6 and 8 to 15 in the function "expand" of section 
3.3.3 is that when "path-expl" is applied to a syntactic entity S, it 

will not always distribute over the syntactic subentities of S but only 

if they are syntactically strong strings or macro ele~ents generating 

such strings. In particular, the expansion of a macro orelement 

consisting of generalized elements will not be defined by juxtaposition 

of the expansions of its constituent generalized elements separated by 

commas, as in general, the expansion of generalized elements are macro 

sequences which are not syntactically strong in the context of a comma 

on their left or their right. The expansion of a macro orelement will 

be defined as the expansion of the string, sequence in general, obtained 

after the function "gel-exp" is applied to all its generalized elements. 

When however, a macro orelement consists entirely of starelements the 

its expansion will be defined by the juxtaposition of the expansions of 

its constituent starelements separated by commas. Syntactic entities 

corresponding to macro sequences, orelements, generalized elements, 

starelements, elements and operations will be represented by HSEQ, MORi 

for i=I, ••• ,n, GELi for i=I, ••• ,n, STELi for i=l, .•• ,n, EL and OP 

respectively. Formally the function "path-expl" is defined by: 

path-expl(e)=cases e: 

1. path MSEQ end _~ path path-expl(MSEQ) end 

2. MORl; ••• ; MORn -7 path-exp l(MORl); ••• ; path-exp 1(~10Rn) 

3. GEL1, ••• ,GELn -7 path-expl(gel-exp(GELl), ••. ,gel-exp(GELn» 

4. STELl, ••• ,STELn _~ path-expl(STEL1), ••• , path-expl(STELn) 

5. EL* -7 path-expl(EL)* 

6. (MSEQ) -7 (path-expl(}1SEQ» 

7. OP 
-7 OP + possible express~on evaluations 

h the expansion of a macro path P, He shall not formally prove t at 

path-expl(P) yields a basic path but we only point out that it may be 

proven in the style of theorem 3.11 in section 3.3.3. 
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Let us now formally define the function "exp-Cycl" by which the cycle 

set of an expanded path may be obtained directly from the macro path. 

The function "exp-Cycl" will apply to the same syntactic entities as the 

function "path-expl" above. 

exp-Cycl(e)=cases e: 

1. path MSEQ end 

2. MaRl; ••• ;MORn 

3. GELl, ••• ,GELn 

4. STELl, ••• , STELn 

5. EL* 

6. (HSEQ) 

7. OP 

-~ exp-Cycl(~SEQ) 

~ exp-Cyc1(:!OR1) 0 ..• 0 exp-Cyc1(MORn) 

-~ exp-Cycl(gel-exp(GEL1), ••• ,gel-exp(GELn» 

-~ exp-Cycl(STEL1) U ••• U exp-Cycl(STELn) 

~ exp-Cyc1(EL)* 

-~ exp-Cycl(~SEQ) 

-~ {OP} 

Let us find the cycle set of path P7 

P7 path a,#i:l,3,1[B(i);@],c;d end 

by applying the function "exp-Cycl": 

exp-Cycl(P7)=exp-Cycl(a,#i:l,3,1[B(i);@],c;d) 

=exp-Cycl(a,#i:l,3,1[B(i);@],c)oexp-Cycl(d) 

exp-Cycl(a,#i:l,3,1[B(i);@],c)= 

exp-Cycl(a,gel-exp(#i:l,3,1[B(i);@]),c)= 

exp-Cycl(a,B(1);B(2);B(3),c)= 

exp_Cycl(a,B(1»Oexp-Cycl(B(2»Oexp-Cycl(B(3),c)= 

{a,B(1)}o{B(2)}o{B(3),c}= 

{a.B(2).B(3),a.B(2).c,B(1).B(2).B(3),B(1).B(2).c} 

exp-Cyc1(d)={d} 

Thus, 

exp-Cycl(P7)={ a.B(2).B(3).d, a.B(2).c.d, 

B(l) • B( 2) • B(3) • d, B(l). B(2) • c. d} 



The same cycle set may be obtained from the exprlnsion of P7, path P8 

P8 path a,B(1);B(2);B(3),c;d end 

by applying the func tion "Cyc" of chapter 2. 

We may formally prove the theorem 4.1 for the direct construction of 

cycle sets from pure macro paths. 

THEOREM 4.1: 

The cycle set of any pure macro path 11P of a macro program produced 

by the syntax rules in section 3.2 obtained by exp-Cycl(MP) is the 

same as the cycle set of the basic path obtained by its expansion, 

or formally 

exp-Cycl(MP)=Cyc(path-expl(MP)) 

Proof: 

We shall prove the theorem by considering separately each syntactic 

case for which "exp-Cyc1" defined comparing the results with 

corresponding results obtained by applying the function "path-exp1" and 

then "Cyc". 

case 1 

Applying "exp-Cycl" to a macro path we obtain 

exp-Cycl (path MSEQ end)=exp-Cyc1U1SEQ) 

and applying the function "path-expl" and its result to "Cyc" we obtain 

Cyc(path-expl(path MSEQ end)Y 

Cyc(path path-exp1(MSEQ) end)= 

Cyc(path-expl(MSEQ)) 
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The two results are the same as may be shown by Case 2. 

case 2 --
Applying "exp-Cycl" to a macro sequence we obtain 

exp-Cycl(~ORI; ••• ;MORn)=exp-Cycl(XORI)O ••• Qexp-Cyc(XORn) 

and the functions "path-expl" and then "Cyc" we obtain 

Cyc(path-exp I(MORI; ..• ;MORn»= 

Cyc(path-expl(MORI); ••• ;path-expl(XORn» 

Since path-expl(MORi) for i=l ••••• n yields a basic sequence in general. 

the above expression is the same as: 

Cyc(path-expl(MORI»O ••• OCyc(path-expl(~ORn» 

The last step is valid since each of path-expl(MORi) for i=l ••••• n is a 

basic sequence and if SEQI and SEQ2 are basic sequences then 

Cyc(SEQI)OCyc(SEQ2)=Cyc(SEQl;SEQ2) 

To show the above relation let 

SEQl=ORl1; ••• ;ORk 1 and 

SEQ2=OR1 2 ; ••• ;ORm 2 

where ORjl for j=l ....• n and ORi 2 for i=l •.... m are basic orelements. 

Then. 

Cyc(SEQl)=Cyc(ORl1; ••• ;ORk 1)= 

Cyc(ORl1)o ••• oCyc(ORk 1) and 

Cyc(SEQ2)=CYC(OR1 2; ••• ;ORm 2)= 

Cyc(ORI 2)o ••• oCyc(ORm 2) 

Therefore. 
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which is the same as 

Cye( SEQ 1 ; SEQ2) =Cyc (ORt 1 ; ••• ; ORk 1; ORl 2; ••• ; ORrn2 )= 

Cyc(ORl 1)o .•• OCyc(ORk 1 )OCYC(ORl 2 )o ••• OCyc(ORm 2 ) 

Therefore, if for any macro orelement XOR the relation 

exp-Cyc1 OlOR)=Cye( path-exp 1 (MOR» 

holds, then the theorem holds for case 2. The above relation may be 

shown to be true by cases 3 or 4, depending on whether ~lOR involves 

generalized elements or just starelements. 

case 3 

Applying "exp-Cyc1" to a macro orelement involving generalized 

elements we obtain 

exp-Cycl(GELl, ••• ,GELn)= 

exp-Cycl(gel-exp(GELl), ••• ,gel-exp(GELn» 

and applying the functions "path-expl" and then "Cyc" we obtain 

Cyc(path-expl(GELl, ••• ,GELn»= 

Cyc(path-expl(gel-exp(GELl), ••• ,gel-exp(GELn» 

The expression 

gel-exp(GELl), ••• ,gel-exp(GELn) 

is a macro sequence in general since each of gel-exp(GELi) for i=l, ••. ,n 

is a macro sequence in general, by lemma 3 of section 3.3.1. 

Therefore, the equality of the above expressions may be shown by case 2. 



case 4 

Applying "exp-Cycl" to an orelement consisting entirely of 
starelements we obtain 

exp-Cycl(STELl, •••• STELn)=exp-Cycl(STELl)U ••• U exp-Cycl(STELn) 

and applying "path-expl" and then "Cyc" we obtain 

Cyc(path-expl(STEL1, ••• ,STELn»= 

Cyc(path-expl(STELl), ••• ,path-expl(STELn»= 

Cyc(path-expl(STELl»U ••• U Cyc(path-expl(STELn» 

Therefore, if for any starelement STEL the relation 

exp-Cycl(STEL)=Cyc(path-expl(STEL» 

holds, then the theorem holds for case 4. The above relation may be 

shown to be true by case 5. 

case 5 

Applying "exp-Cycl" to a starelement we obtain 

exp-Cycl(EL*)=exp-Cycl(EL)* 

and applying "path-expl" and then "Cyc" we obtain 

Cyc(path-expl(EL*»=Cyc(path-expl(EL)*)=Cyc(path-expl(EL»* 

The equality of the two expressions may be shown by case 6. 

case 6 

Applying "exp-Cycl" to an element elf the form (:1SEQ) we obtain 
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exp-Cycl ( (MSr~Q) ) =exp-Cyc (>lSEI~) 

and by applying "path-expl" and then "Cyc" we obtain 

Cyc(path-expl«MSEQ»)=Cyc«path-expl(~SEQ»)=Cyc(path-expl(~SEQ» 

the equality of which may be shown by case 2. 

case 7 

Applying "exp-Cyc1" to an operation we obtain 

exp-Cycl(OP)={OP} 

and applying "path-expl" and then "Cyc" we obtain 

Cyc(path-expl(OP)=Cyc(OP)={OP} 

and as both expressions are the same the theorem is proven. III 

As we have pointed out the grammar of section 3.2 does not in general 

produce replicators which generate syntactically strong strings in all 

the contexts they appear. This occurs when one of the separators on 

their left or their right is "," and the main connective of the 

expansion is "." , , 
would be wrong 

as indeed may be seen in path P7. Consequently, it 

to construct the cycle set of a macro orelement by 

constructing the union of the cycle sets of its constituent generalized 

elements. If we define a function "exp-Cycl'" identical to "exp-Cycl" 

except for cases 3 and 4 which are replaced by 

GELl , ••• , GELn ~ exp-Cycl'(GELl)U ••• U exp-Cycl'(GELn) 

and apply it to path P7, we obtain: 

exp-Cycl'(P7)=exp-Cycl'(a,#i:l,3,l[B(i);@])Oexp-Cycl'(d) 
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exp-Cycl'(a,#1,3,1[B(i);@],c)= 

exp-Cycl'(a) U exp-Cycl'(#i:l,3,l[B(i);@]) U exp-Cycl'(c)= 

exp-Cycl'(a) U exp-Cycl'(gelexp(#i:l,3,1[B(i);@]» U exp-Cycl'(c)= 

exp-Cycl'(a) U exp-Cycl'(B(1);B(2);B(3» U exp-Cycl'(c)= 

{a} U {B(l).B(2).B(3)} U {c} 

Therefore exp-Cycl'(P7) yields 

{a,B(l) .B(2) .B(3) ,c}o{d}= 

{a.d,B(l).d,B(2).d,B(3).d,c.d} 

which of course is not the cycle set of P7 but of P9 

P9 path a,(ifi:l,3,l[B(i);@]),c;d end 

The reason the above construction failed is that we used the equality 

Cyc(A,B)=Cyc(A)U Cyc(B) 

which in general is not true unless A and Bare orelements which means 

that A and B are syntactically strong in the whole of "A,B". 

To be able to find the correct cycle set of a macro path by the above 

method, all replicators and distributors should generate syntactically 

strong strings in any context they appear. In the next subsection we 

develop syntax rules for the production of restricted macro paths 

involving only such replicators and distributors and define the function 

"path-exp2" by which these are expanded. We also define the function 

"exp-Cyc2" by which the cycle sets of pure macro paths of programs 

produced by this grammar may be constructed directly from them. 

4.1. 2 Finding the Cycle Sets of Restricted pure macro Paths 

In the grammar in this subsection the syntax rules for macro 

sequences will be modified. Left and right replicators will be 

eliminated and the rest of macro elements generating macro sequences, 
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macro orelements, macro starelements and macro elements will he produced 

by distinct syntax rules guaranteing that their expansion is always 

syntactically strong. In the syntax rules in this section we follow the 

same meta-language conventions as in chapter 3. 

Macro elements generating macro sequences will be permitted to appear 

only between any of "path", ";", "(" on their left and any of "end", 
II.1t , , ")" on their right. 

The new production rule for "rnsequence" is: 

msequence={seqpart 1;}+ 

seqpart=seqmacro/morelement 

where "seqpart" produces parts of macro sequences separated by ";" which 

may be either macro elements strictly generating macro sequences, 

produced by "seqmacro" or macro orelements, produced by "morelernent". 

The new rules for "morelement" are: 

morelement={orpart ~,}+ 

where "orpart" denotes parts 

These parts 

produced by 

may be macro 

"ormacro" , or 

of macro 

elements 

macro 

orelements separated by 11 " , . 
strictly 

elements 

generating orelements, 

strictly generating 

starelements, produced by "starmacro"; they could also be starred 

elements, produced by "mstarelement". The latter is prefixed by "m" as 

we permit certain macro elements to be starred. The syntax of "orpart" 

is given by: 

orpart=ormacro/starmacro/mstarelement 

The non-terminal "mstarelement" produces elements .Jhich could be 

starred as can be seen in the following rule: 

mstarelement=element/element* 
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where the non-terminal "element" is riefined by: 

element=indexedop/operation/(msequence)/elmacro 

where the non-terminal "elmacro" produces macro elements which generate 

elements. The syntax for "seqmacro" is: 

seqmacro=seqrepl/seqdistr 

where "seqrepl" and "seqdistr" produce replicators and distributors 

respectively, generating strictly macro sequences, and will be called 

strict sequence replicators and strict sequence distributors 

respectively. Strict sequence replicators could either be concatenators 

or imbricators. The syntax for "seqrepl" will be defined by: 

seqrepl=index_spec[{seqconcseq/seqimbrseq}] 

where "index_spec" has been defined in section 3.2, "seqconcseq" and 

"seqimbrseq" denote str ings inside "[ lIt of strict sequence 

concatenators and imbricators respectively. For strict sequence 

concatenators and distributors to generate strictly sequences, either 

the main connective of their regularities should be a "." , , or their 

regularities should be separated by";". The syntax of "seqconcseq" and 

of "seqdistr" will therefore be defined by: 

seqconcseq={seqpart;}+ {@/seqconcor} 

seqconcor={orpart ,}+ @ 

seqdistr=;{/iexpr}{/#iexpr,iexpr,iexpr} [msequence] 

/,{/iexpr}{/#iexpr,iexpr,iexpr} [{seqpart{;seqpart}+] 

As in the distributors of section 3.2 the "operations" produced by 

"msequence" and "seqpart" in the above rule, will be array slices (cL 

section 3.2.2). 

Strict sequence imbricators may be either genuine or not. As in 

either case they should strictly generate sequences, the main connective 
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of the whole expansion should be a se~icolon which implies that the main 

connective of the string produced by "seqimbrseq" should also be a 

semicolon. The syntax rule for "seqimbrseq" is: 

seqimbrseq=seqimbr_atout_seq 

/{seqpart ;}+ seqimbror {; seqpart}~ 

/{seqpart ;}~ seqimbror {; seqpart}+ 

The non-terminal "seqimbr_atout_seq" produces the string inside "[ lot of 

a non-genuine imbricator, and its syntax may be obtained from the syntax 

of "imbr_at_seq" of section 3.2 exluding productions which do not 

produce at least one t1." , . This implies that "seqimbr atout_seq" may 

produce strings which are produced by the alternative productions 1 , 2, 

3 , 5, 6, 7, 10, 12 and 13 of "imbr at _seq". The occurrences of the -
non-terminal "morelement" in these rules should be replaced by the 

non-terminal "seqpart". The complete rules may be found in appendix c. 

The second and third alternative productions for "seqimbrseq" 

guarrantee that at least one ";" is produced in the string inside "[ ]" 

of a genuine imbricator. The syntax for "seqimbror" is given by: 

seqimbror={orpart ,}~ seqimbrstarel {, orpart}~ 

seqimbrstarel=seqimbrel/seqimbrel* 

In the last rule the non-terminal "seqimbr _atin _seq" produces strings 

which involve the "@"s and "seqimbr_in_seq" strings which involve the 

"@"s but nested within "( )". As the main connective of the string 

inside "[ ]" of a strict sequence imbricator is already specified to be 

a ";", these non-terminals may produce strings which may not involve the 

";". The syntax for "seqimbr_in_seq" is given by: 

seqimbr_in_seq={seqpart ;}~ seqimbror {; seqpart}~ 

The syntax for "seqimbr _a tin_seq" 

"imbr at_seq" of section 3.2, with all the occurrences 

will be the same as the syntax for 

of "morelement" 
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replaced by "seqpart". Again the definition for 
"seqimbr_atin seq" may be found in appendix C. 

The macro elements strictly generating orelements could either be 

strict orelement replicators or strict orelement distributors produced 

by "orrepl" and "ordistr" respectively. 

given by: 

ormacro=orrepl/ordistr 

The syntax of "ormacro" is 

where the non-terminal "orrepl" produces strict or element replicators 

and "ordistr" strict orelement distributors. The definition of 

"ordistr" is: 

ordistr=,{/iexpr}{/#iexpr,iexpr,iexpr} [morelement] 

As in all syntax rules for distributors the "operations" in the string 

produced by "morelement" are array slices (cf. section 3.2). 

Strict orelement replicators may be either concatenators or 

imbr ica tor s , the string inside "[ ]" of which is produced by "orconcor" 

and "orimbror" respectively: 

orrepl=index_spec[{orconcor/orimbror}] 

For strict orelement concatenators to generate strictly orelements the 

main connective in each regularity and the connective separating 

, . The syntax of "orconcor" is given by: regularities should be If " 

orconcor={orpart ,}+@ 

For imbricators to generate strictly orelements the main connective 

f "h Id b "" Whl"ch l"mpl1."es that the main connective of o its expanslon s ou e, 

the string inside "[ ]" should be 

is given by: 

" " , also. The syntax for "or imbror" 
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orimbror=orimbr atout or 

/{orpart,}+ orimbrstarel {,orpart}* 

/{orpart,}~ orimbrstarel {,orpart}+ 

where "or imbr a tou t or" produces the 

non-genuine strict orelement imbricator. 
string inside "l J" of a 

The main connective of the 
string it produces should be ",". Its syntax may be obtained from the 
alternative productions of "imbr_at_seq" of section 3.2 'dhich do 

produce a ";", and is given by: 

or imbr _atout_or='.8 {at_or 1 f/ a t_ or 1m} 

/{at_orlm/at_orlb} @ 

fat or2mm 

/@ morelement @ 

not 

The second and third alternative productions for "orimbror" guarantee 

that at least one "," and no ";" is produced as the main connective of 

the string inside "[ ]" of a genuine imbricator strictly generating 

orelements. The syntax of the non-terminal "orimbrstarel" is given by: 

orimbrstarel=orimbrel/orimbrel* 

orimbrel=(orimbrseq) 

As the main connective of the string inside "[ ]" is a comma, the main 

connective of the string generated by "orimbrseq" could be ";", as it is 

nested within "C )" and consequently the "." cannot be the main 

connective of the string inside" [ ]". Its syntax is given by: 

orimbrseq={seqpart ;}* orimbr_in_or {; seqpart}~ 

/orimbr_atin_seq 

The non-terminal "orimbr atin_seq" produces strings which involve "']"s. 

As these strings are nested within "( )" their main connective may be a 

";". These strings however, cannot be as general as the strings 

generated by "seqimbr_atin_seq" above. 

for replicators (cf. section 3.2.1) the 

still defined when their index range 

According to the expansion rule 

expansion of imbricators is 

is empty provided the string 
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between the two "(~"s with its leading and tr'liling separators removed is 

non-emp ty. For imbr icator s produced by "ormacro" to generate orelements 

for any legal range of their indices this st' . r Lng must be a macro 
orelement. Therefore, from the alternative production rules for 

"seqimbr_atin_seq" we shall eliminate those which produce " . " , between 
the two "@"s. Because the correct rules are lengthy we give them in 

appendix c. 

The non-terminal "orimbr in or" produces strings which nest the 

"@ t @" fur ther. Its syntax is given by: 

orimbr_in_or={orpart ,}~ orimbrstarel {, orpart}~ 

The non-terminals "at or2mm" 

"at or2mb" in the syntax rules for 

from "seqimbr_atin_seq" and "seqimbr_atout_seq" are obtained 

corresponding ones in section 3.2 by replacing all occurrences of 

"gelement" by "orpart". Their complete rules may be found in appendix 

c. 

The syntax rule for "starmacro" produces macro elements strictly 

generating starelements of the form: 

(msequence)* 

As concatenators only generate such strings when they generate a single 

regularity, "starmacro" will only produce imbricators, called strict 

starelement imbricators. Furthermore, they will always be genuine. The 

syntax for "starmacro" is: 

starmacro=index_spec[(starimbrseq)*] 

where "index_spec" has been defined in section 3.2. The syntax rule for 

"s tar imbr seq" may d almost as general as the the rule pro uce sequences, 

for "seqimbr" in section 3.2. However, certain strings produced by 

alternative productions for "seqimbr" have to be excluded: those in 

which the string between the two "@"s with its leading 

separators removed form sequences or orelements. 

and terminating 

The \~hole string 
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produced by "starimbrseq" though, may be a sequence ()( an rJrelr;;nent, 

the following rules show: 

starimbrseq=starimbr_at_seq 

/{seqpart ;}~ starimbror {; seqpart}* 

starimbror={orpart ,}~ starimbrstarel {, orpart}* 

starimbrstarel=starimbrel/starimbrel* 

starimbrel=(starimbrseq) 

as 

The syntax rule for "starimbr_at_seq" produces sequences which involve 
the "@"s. Th . 1 f e prec1se ru e or it may be found in appendix c. 
Similarly to the syntax rule for "starmacro", the syntax rule for 

"elmacro" may only produce genuine imbricators, called strict element 

imbricators. Their syntax is given by: 

elmacro=index_spec[(elimbrseq)] 

where "index_spec" is defined in section 3.2. The syntax rule for 

"elimbrseq" is very similar to "starimbrseq". Their only difference is 

that, if the string between the two "@"s with the leading and 

terminating separators removed is not null then, if the string inside 

"[( ... )]" is produced by "starimbrseq" is also produced by 

"mstarelement", but if produced by "elimbrseq" it may be produced by 

"element". The precise rules may be found in appendix C. 

Every replicator and distributor produced by the above rules may be 

produced by the rules of the grammar of section 3.2. The same though is 

not true for the context of strict element imbricators which, unlike the 

replicators of section 3.2, may be starred. If strict element 

imbricators could not be starred the grammar of section 3.2 would be a 

true extension of the above. Here we permitted these replicators to be 

starred since they always generate elements when expanded and the star 

applies to the sole element generated from the expansion. 
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Since all replicators and distributors may be produced by the grammar 

of section 3.2 the same rules for their expansion given in terms of 

" 1 0" d "d' to" . 1 . rep exp an 1S rexp respect1ve y, w111 still apply. 

We may characterize the expansion of the macro elements produced by 

the grammar of this subsection as we did for replicators and 

distributors in section 3.3. Since all ~acro elements may be produced 

by the syntax of 3.2 we may use the theorems 3.3 and 3.4 of section 3.3 

for the expansion of concatenators and imbricators to macro sequences 

and the corollary of theorem 3.9 of the same section showing a similar 

result for the expansion of distributors. 

Strict sequence macro elements generate macro sequences in general. 

When they generate more than one regularity the main connective of the 

expansion is a semicolon. This is not true though, in general, when 

they generate one regularity or, in the case of imbricators, their index 

range is empty, in which case they may generate a single orelement, or 

starelement, or element. Let us consider the concatenator 

1Ii: 1 , n, 1 [A( i) ; @] 

which for n)l generates sequences. But for n=l it generates a single 

element. Let us also consider the non-genuine imbricator 

#i:l,n,l[A(i);@,c,@;B(i)] 

which for n)l it generates sequences. 

orelement 

A(l),c,B(l) 

and for n=O the element 

c 

For n=l it generates the 

Genuine imbricators always generate sequences for any non empty range, 

as the string "@ t2" is nested inside parentheses and the ";", which is 

the main connective of the string inside "[ J", is not stripped. But 
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when the range is empty, they too may generate orelements, starelements 

or elements. Whatever they generate though, is syntactically strong in 

their context. 

Strict orelement macro elements generate macro orelements. Similarly 

to the strict sequence macro elements, they may also generate 

starelements and elements. S tr ic t sequence concatenators and 

distributors may generate starelements and elements when they generate 

only one regularity. Strict sequence imbricators, whether genuine or 

not, may also generate such strings when their index range is empty. As 

str ic t orelement macro elements cannot generate sequences their 

expansion will always be syntactically strong in their context. 

Strict starelement imbricators generate starelements except when 

their index range is empty, in which case they may generate elements. 

Finally, strict element imbricators generate elements for any valid 

range of their indices. 

Let us now give some examples of macro paths produced by the above 

rules. 

PlO path f;#i:I,3,I[A(i);B(i),@];,[D],e end 

PII path ;[B,C];,[B;D];,[C,D] end 

PI2 path #i:I,3,1[(UP(i);@;full*;@;DOWN(i»*],empty end 

where collective names A, B, C, D, UP, DOWN are defined by 

array ABC D UP DOWN(3) endarray 

" h 2" f r the expansion of pure Let us define the function pat -exp 0 

macro paths of macro programs consisting of macro paths the macro 

sequences of which are produced by the rules in this section. 

. var~ables HSEQ, OP which we have used before Apart from the syntact~c ~ 

denoting macro sequences 

introduce some new ones. 

and operations respectively, we 

The syntactic variables SEQPRTi for 

need to 

i=1, ... ,n 
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denote either macro orelements or strict sequence macro elements, 

SEQREPL and SEQDISTR denote strict sequence replicators and distributors 

respectively. The syntactic variables ORPRTi for i=l, ••• ,n denote macro 

orelements or macro starelements or starelements; ORREPL and ORDISTR 

denote strict orelement replicators and distributors respectively. 

ST~~CRO and EL~CRO denote strict starelement and strict element 

imbricators respectively. Finally, EL denotes elements which could be 

starred. The function "path-exp2" may be defined by: 

path-exp2(e)=cases e: 

1 • path :lSEQ end ~ path path-exp2(HSEQ) end 

2. SEQPRT1; ••• ;SEQPRTn -7 path-exp2(SEQPRT1); ••• ;path-exp2(SEQPRTn) 

3. SEQREPL ~ path-exp2(replexp O(SEQREPL)) 

4. SEQDISTR -7 path-exp2(distrexpO(SEQDISTR)) 

5. ORPRT1, ••• ,ORPRTn -7 path-exp2(ORPRT1), ••• ,path-exp2(ORPRTn) 

6. ORREPL ~ path-exp2(replexp O(ORREPL)) 

7. ORDISTR -7 path-exp2(distrexpO(ORDISTR)) 

8. STAR...'1ACRO ~ path-exp2(replexpO(STA&~CRO)) 

9. EL* ~ path-exp2(EL)* 

10. OP ~ OP + possible expression evaluations 

1t. 01SEQ) ~ (path-exp2(HSEQ)) 

12. ELMACRO ~ path-exp2(replexpO(ELMACRO)) 

Using similar arguments to those of theorem 3.11 for the expansion of 

macro programs to basic programs, we may show that macro programs, the 

macro paths of which are produced by the syntax rules of this section, 

Let us app ly the function "path-exp2" to 
also generate basic programs. 

expand path P10: 

path-exp2(P10)= path path_exp2(f;Ui:l,3,1[A(i);B(i),@1;,[Dl,e) end 

pat h-e xp 2 (f ; II i : 1 , 3, 1 [ A ( i ) ; B ( i) , @ 1 ; , [ D 1 , e ) = 

path-exp 2( f) ; pa th-exp 2(#i: 1 ,3,1 [A( i) ; B( i) ,@ 1 ) ; pa th-exp 2( , [01 , e) 

path-exp2( f)=f 
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pa th-exp 2 ( If i : 1 .3. 1 [ A( i) ; B( i) .@ ] ) = 

pa th-exp 2( r eplexp ° (II i: 1 .3. 1 [A( i) ; BCi) .@] » = 

path-exp 2( A( 1) ; B(l) • A(2) ; B( 2) • A(3) ; B( 3) ) = 

A(1);B(1).A(2);B(2).A(3);B(3) 

path-exp2(.[D].e)=path-exp2(.[D]).path-exp2(e) 

path-exp2(.[D])=path-exp2(distrexpo(.[D]»= 

path-exp2(D(I).D(2).D(3»= 

DO) .D(2) .D(3) 

path-exp2(e)=e 

Therefore. the expansion of PIO is 

path f;A(I);B(I).A(2)jB(2).A(3);B(3);D(I).D(2).D(3).e end 

To obtain the cycle sets of pure macro paths the sequences of which 

are produced by the syntax rules of this section we define the function 

,. exp-Cyc2" as follows: 

exp-Cyc2(e)=cases e: 

1. path HSEQ end -~ exp-Cyc2(HSEQ) 

2. SEQPRTl; ••• ;SEQPRTn -~ exp-Cyc2(SEQPRTI) 0 •.• 0 exp-Cyc2(SEQPRTn) 

3. SEQREPL -7 exp-Cyc2(replexp O(SEQREPL» 

4. SEQDISTR -~ exp-Cyc2(distrexpo(SEQDISTR» 

s. ORPRTl ••••• 0RPRTn -~ exp-Cyc2 (ORPRTl) U ••• U exp-Cyc2CORPRTn) 

6. ORREPL -7 exp-Cyc2(replexpOCORREPL» 

7. ORDISTR -7 exp-Cyc2(distrexpO(ORDISTR» 

8. STA~'1ACRO -~ exp-Cyc2(repIexpOCSTARMACRO» 

9. EL* -7 exp-Cyc2(EL)* 

10. OP -~ {OP} 

11. (HSEQ) -7 exp-Cyc2(MSEQ) 

12. ELMACRO -7 exp-Cyc2(replexpO(ELMACRO» 
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Let us find the cycle set of path PlO, by applying "exp-Cyc2": 

exp-Cyc2(PIO)= 

eXP-CYC2(f)OexP-CYC2(#i:l,3,1[A(i);B(i),@)oexp_Cyc2(,[D),e) 

exp-Cyc2(f)={f} 

exp-Cyc2(#i:l,3,1[A(i);B(i),@)= 

exp-Cyc2(replexpO(#i:l,3,1[A(i);B(i),@))= 

exp-Cyc2(A(1);B(1),A(2);B(2),A(3);B(3»= 

exp-Cyc2 (A( 1 ) ) 

oexp-Cyc2(B(1),A(2» 

Oexp-Cyc2(B(4),A(3» 

Oexp-Cyc(B(3»= 
{A(1)}C{B(1),A(2)}O{B(2),A(3)}O{B(3)}= 

{A(1).B(1).B(2).B(3),A(1).B(1).A(3).B(3), 

A(1).A(2).B(2).B(3),A(1).A(2).A(3).B(3)} 

exp-Cyc2(,[D],e)= 

exp-Cyc2(,[D])U exp-Cyc2(e)= 

exp-Cyc2(distrexpO(,[D]»U exp-Cyc2(e)= 

exp-Cyc2(D(1),D(2),D(3»U exp-Cyc2(e)= 

{D(1),D(2),D(3)} U {e}= 

{D(1),D(2),D(3),e} 

Therefore, 

exp-Cyc2(PIO)={f}O{A(1).B(1).B(2).B(3), 

A( l) • B( 1) • A( 3) • B( 3) , 

A(l) .A(2) .B(2) .B(3), 

A(1).A(2).A(3).B(3)}o{D(1),D(2),D(3),e} 

We may now prove the theorem for the direct construction of cycle 

~ ~ pure macro paths. 

THEOREM 4.2: 

The cycle set of any pure macro path HP the sequence of which is 
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produced by the grammar of subsection 4.1.2, is the sa::le as the 

cycle set of the basic path generated by the expansion of :'fP, or 

formally 

Cyc(path-exp2(~P))=exp-Cyc2(XP) 

Proof: 

We shall prove the above equality by considering separately each case 

of syntactic entities on which "exp-Cyc2" and "path-exp2" apply. 

case 1 

Applying fuction "path-exp2" and then "Cye" to a macro path we obtain 

Cye(path-exp2(path MSEQ end))= 

Cyc(path path-exp2(MSEQ) end)= 

Cye(path-exp2(XSEQ)) 

and applying "exp-Cyc2" we obtain 

exp-Cyc2 (pa th :lSEQ end) =exp-Cyc2 (MSEQ) 

The equality of the above expressions may be shown by case 2. 

case 2 

Applying "path-exp2" and then "Cye" to a macro sequence we obtain 

Cyc(path-exp2(SEQPRT1; •.• ;SEQPRTn))= 

Cyc(path-exp2(SEQPRT1); ••• ;path-exp2(SEQPRTn)) 

which as we have shown in case 2 of theorem 4.1 is equal to 

Cye( path-exp 2( SEQPRTl) )0 ••• oCye(path-exp2( SEQPRTn)) 

as each path-exp2(SEQPRTi) for i=1, ••• ,n is a basic sequence. Applying 
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func t ion "exp-Cyc2" we obtain we obtain 

exp-Cyc2(SEQPRT1; ••• ;SEQPRTn)= 

exp-Cyc2(SEQPRT1)G .•. Oexp-Cyc2(SEQPRTn) 

The two expressions are the same provided that for any macro 

orelement or strict sequence macro element denoted by SEQPRT 

Cyc(path-exp2(SEQPRT»=exp-Cyc2(SEQPRT) 

holds, which may be shown by cases 3, 4, 5, depending on whether SEQPRT 

is a macro orelement, a strict sequence replicator, or a strict sequence 

distributor respectively. 

case 3 

Applying "path-exp2" and then "Cyc" to a strict sequence replicator 

we obtain 

Cyc(path-exp2(SEQREPL»=Cyc(path-exp2(replexp O(SEQREPL») 

and applying "exp-Cyc2" we obtain 

exp-Cyc2(SEQREPL)=exp-Cyc2(replexp O(SEQREPL» 

Since replexpO(SEQREPL) yields a macro sequence the equality of the 

above expressions may be shown by the previously considered case 2. 

case 4 

Applying "path-exp2" and then "Cyc" to a strict sequence 

we obtain 

distr ibutor 

Cyc(path_exp2(SEQDISTR»=cyc(path-exp2(replexpO (SEQDISTR») 

and applying "exp-Cyc2" we obtain 
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exp-CycZ (SEQDISTR)=exp-CycZ (r eplexp ° (SE(~DISTR) ) 

Since replexpO(SEQDISTR) yields a 
~acro sequence the equality of the 

above expressions may be shown by the previously considered case Z. 

case 5 

Applying "path-expZ" and then "exp-CycZ" to a macro orelement we 

obtain 

Cyc(path-expZ(ORPRT1, ••• ,ORPRTn»= 

Cyc(path-expZ(ORPRT1), ••• ,path-exp2(ORPRTn» 

Since path-exp2(ORPRTi) for i=l, ..• ,n yields an orelement, the above 

expression is the same as 

Cyc(path-expZ( ORPRTl»U ••• U Cyc(path-exp2(ORPRTn» 

In case 2 of theorem 4.1 we had to prove the relation 

Cyc(SEQ1)OCyc(SEQ2)=Cyc(SEQ1;SEQ2) 

Here we have to prove the relation 

Cyc(OR1)U Cyc(0R2)=Cyc(OR1,0R2) 

where OR1 and OR2 are basic orelements, which may be shown by similar 

arguments, as those in case Z of theorem 4.1. 

By applying "exp-CycZ" to a macro orelement we obtain 

exp-Cyc2(ORPRT1, ••• ,ORPRTn)= 

exp-Cyc2(ORPRT1)U ••• U exp-Cyc2(ORPRTn» 

The two expressions above are the same, provided that for any string 

produced by "orpart" denoted by ORPRT, the relation 
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Cyc(path-exp2(ORPRT»=exp-Cyc2(ORPRT) 

holds. This relation may be shown by the following cases, depending on 

whether ORPRT denotes a strict orelement replicator or distributor 

(cases 6 and 7 respectively), or a strict starelement imbricator (case 

8), or a macro starelement (cases 9,10,11,12). 

case 6 

Applying "path-exp2" to a strict orelement replica tor and then "Cyc" 

we obtain 

Cyc(path-exp2(ORREPL»=Cyc(path-exp2(replexp O(ORREPL») 

and applying "exp-Cyc2" we obtain 

exp-Cyc2(ORREPL)=exp-Cyc2(replexp O(ORREPL» 

The equality of the two expressions may be shown by case 5 since 

r eplexp ° (ORREPL) 

yields a macro orelement. 

case 7 

Applying "path-exp2" to a strict orelement distributor and then "Cyc" 

we obtain 

Cyc(path-exp2(ORDISTR»=Cyc(path-exp2(replexp O(ORDISTR)» 

and applying "exp-Cyc2" we obtain 

exp-Cyc2(ORDISTR)=exp-Cyc2(replexpo(ORDISTR» 
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The equality of the two expressions may be shown by CJse 5 since 

distrexpO(ORDISTR) 

yields a macro orelement. 

case 8 

Applying "path-exp2" to STARl'1ACRO and then "Cyc" we obtain 

Cyc(path-exp2(STARMACRO»=Cyc(path-exp2(replexp O(STARMACRO») 

and "exp-Cyc2" we obtain 

exp-Cyc2(STARMACRO)=exp-Cyc2(replexp O(STARMACRO») 

The equality of the two expressions is shown by case 9 since 

replexpO(STARMACRO) 

yields a starelement. 

case 9 

Applying "path-exp2" to EL* and then "Cyc" we obtain 

Cyc(path-exp2(EL*»=Cyc(path-exp2(EL)*)=Cyc(path-exp2(EL»* 

and by applying "exp-Cyc2" we obtain 

exp-Cyc2(EL*)=exp-Cyc2(EL)* 

The equality of the two expressions depend on the equality of the 

starred expressions which may be shown by any of the following cases, 

depending on whether EL denotes an operation (case 10), or an element 

(case 11), or a strict element imbricator. 
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case 10 

Applying "path-exp2" to OP and then "Cye" we obtain 

Cye(path-exp2(OP»=Cye(OP)={OP} 

and applying "exp-Cye2" we obtain 

exp-Cye2(OP)={OP} 

yielding the same result. 

ease 11 

Applying "path-exp2" to (MSEQ) and then "Cye" we obtain 

Cye(path-exp2«MSEQ»)=Cye«path-exp2(MSEQ»)=Cye(path-exp2(MSEQ» 

and "exp-Cye2" we obtain 

exp-Cye2«MSEQ»=exp-Cye(XSEQ) 

The equality of the two expressions may be shown by ease 2. 

ease 12 

Applying "path-exp2" to ELMACRO and then "Cye" we obtain 

Cye(path-exp2(ELMACRO»= 

Cye(path-exp2(replexp O(ELMACRO») 

and applying "exp-Cye2" we obtain 

exp-Cye2(ELREPL»=exp-Cye2(repl exp O(ELREPL» 
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The equality of the rtbove expressions may be shown by case 12, since 

r eplexp 0 (ELREPL) 

yields an element of the form 

(HSEQ) 

This completes the proof of the theorem. III 

The above theorem gives us a shortcut for constructing the cycle set 

of the expansion of a macro path. Instead of applying two functions 

"path-exp2" and "Cyc" we may just apply the function "exp-Cyc2" which is 

of the same order of complexity as "path-exp2". 

4.2 CONSTRUCTING ORDERED CYCLE SETS BY EXPANSION OF MACRO-CYCLE OBJECTS 

In the previous section we gave rules for constructing the ordered 

cycle sets of basic programs obtained by the expansion of macro 

programs, from the macro programs themselves. The ordered cycle sets 

were constructed in two parts. In the first part all bodyreplicators 

are expanded and ordered expressions yielding the cycle sets of 

individual pure macro paths were obtained. In the second part, the 

cycle sets of individual pure macro paths were obtained by the 

composition of cycle sets of parts of macro sequences by concatenation 

or by union operations. This approach yields correct results only when 

the constituent parts are syntactically strong strings, or, if these 

involve macro elements, generating syntactically strong strings. This 

means that by understanding the ordering of operations specified by 

small parts of a macro sequence, we may understand the ordering of 

operations specified by the whole path. For the macro paths produced by 

the grammar of section 3.2 the smallest such parts are the macro 

orelements. For the macro paths produced by the grammar of section 

4.1. 2 however, the smallest such parts are the elements or macro 

elements. Programs produced by the syntax rules of 4.1. 2 are more 

easily readable, in general, than those produced by the syntax of 3.2, 
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as it is easier to understand a lot of small parts of d macro sequence 

rather than a few larger ones. Of course, this is achieved at the 

expense of loss of power of expression, since the syntax of macro 

elements was restricted. The reading of macro elements produced by the 

grammar of 4.1.2 is not possible, in general, without them being 

expanded first, as the regularities they generate may not be 

syntactically strong and some parts of them may bind with parts of 

adjacent regularities. For example consider the replicator Rl in PI0: 

Rl #i:l,3,I[A(i);B(i),@] 

which expands to: 

A(l) ; B(l ) , A( 2) ; B( 2) , A(3) ; B(3) 

\\1e observe that the operation "B(l)" of the first 

orelement with the operation "A(2)" of the 

similarly the 

orelement with 

R1 is: 

do 

followed by 

followed by 

followed by 

operation "B(2)" of 

"A(3)" of the third 

A(l) 

B(l) or A(2), 

B(2) or A(3), 

B(3). 

the second 

regularity. 

regularity forms an 

second regularity and 

regularity forms an 

The correct reading of 

The reading of macro elements is greatly improved when they generate 

regularities which are syntactically strong strings for two reasons: 

1. each regularity may be read independently of the rest, that is no 

part of any regularity binds with parts of other regularities, and 

2. their reading is very similar. 

To demonst rate the above points let us consider few replicators 

d h · ad;ng First the replicator generating such regularities an t e~r reo ~ • 

R2: 



R2 it i: 1 , 3, 1 [A( i) , BCi) ; @ 1 

which may be read as: 

do 

followed by 

followed by 

A( 1) or B( 1 ) , 

A( 2) or B( 2 ) , 

A(3) or B(3). 

- 2)r; -

Observe that the phrase "A( 1) or B(1)" corresponds to the reading of the 

orelernent "A(1) ,B(1)" in the first regularity which R2 generates, the 

phrase "A(2) or B(2)" to the reading of "A(2),B(2)", etc. 

The replica tor R3 

R3 #i:l,3,1[(A(i);B(i)),@] 

may be read as: 

do ACl) followed by B(l), 

or A(2) followed by B(2), 

or A(3) followed by B(3). 

Similarly to R2 above, the phrase "A(l) followed by B(1)" corresponds to 

the reading of the element "(A(l);B(l))" in the first regularity which 

R3 generates, the phrase "A(2) followed by B(2)" to the reading of 

" (A( 2) ; B ( 2) )", etc. 

Imbricators are more difficult to read than concatenators and 

distributors, in general, because the regularities they generate do not 

follow each other but are nested within each other. However, the 

reading of imbricators the regularities of which are syntactically 

strong strings is easier than the reading of the rest. Consider for 

example the imbricator R4 

R4 #i:l,3,1[(SKIP(i);@@),V(i)] 

which may be read as: 



do SKIP(l) 

followed by 

or by V(2), 

or by YO). 
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SKlP( 2) 

followed by SKIP(3) 

or by YO), 

The phrase "SKIP(l) ••• or V(l)" corresponds to the reading of the 

outermost regularity "(SKIPO) ••• ),V(l)", the phrase "SKIP(2) ••• or V(2)" 

to the reading of "(SKIP(2) ••• ),V(2)" which follows "SKIP(l)", etc. 

The reading of macro elements generating regularities which are 

syntactically strong strings could be concisely represented. This 

concise representation is particularly important when the index 

specification of replicators are parametarized and the number of 

regularities which macro elements generate is not fixed. 

The reading of macro elements is an informal way of describing the 

ordering of operations they specify. The ease of reading of macro 

elements generating regularities which are syntactically strong strings 

may be formally expressed in the construction of the cycle sets of macro 

paths involving only such macro elements. These cycle sets may be 

constructed by the composition of the cycle sets of their regularities. 

For example the cycle set of RZ may be formed by the composition: 

{A(1),B(1)}O{A(2),B(2)}O{A(3),B(3)} 

We may observe that the three string sets in the above expression are 

very similar and may be obtained by replacing "i" indexing the 

operations in the string set 

by the values 1,2,3, the values in the range of the replicator index. 

The above set may be considered as the cycle set of the general 

regularity inside "[ ]" of RZ, ignoring the ";@". If all replicators 

and distributors in sequences had this property then they would not in 
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principle have to be expanded in order to find their cycle set. The 

cycle set of their general regularity would be sufficient to generate 

the cycle set of the whole replicator or distributor. Furthermore, 

since macro elements would not have to be expanded, the bodyreplicators 

would not have to be expanded as well. We cannot in general avoid the 

expansion of bodyreplicators in the approach in the previous section, 

since the range of indices of replicators in macro sequences may depend 

on bodyreplicator indices, implying that for the replicators and 

distributors in macro sequences to be expanded the bodyreplicators have 

to have been expanded first. This leads to the idea of macro cycle 

objects constructed from macro programs which represent ordered cycle 

sets of basic programs as economically as macro programs represent basic 

programs, and from which ordered cycle sets may be generated in the same 

way as basic programs are generated from macro programs. 

These macro cycle objects besides being a formal means for 

representing the ordered cycle sets of an expanded macro program, they 

also aid the verification of macro programs. Strictly speaking, all 

verification methods and techniques developed in COSY apply to basic 

programs only. This has the disadvantage that a macro program cannot be 

verified, unless it is expanded first, implying that all its parameters 

have to be given specific values. The consequence of this is that macro 

programs cannot be verified for all values of their parameters. This 

limitation was overcome by adopting informal techniques, as in [SL78], 

which made possible the verification of parametarized macro programs. 

When verifying a COSY program, we frequently argue in terms of the 

firing sequences of paths, which are constructed by their cycle sets 

(cL section 2.2). Thus, we are confronted with the task of 

representing the firing sequences of the macro paths of macro programs. 

As these paths may involve macro elements generating a finite but 

indefinite number of regularities the representation of the general 

cycle sets is fundamental. 

An informal approach for representing repetition of patterns in the 

elements of the cycle sets was followed in [SL78] using ellipses. For 

example the cycle set of the path involving the replicator R4 

path Ui:l,m,l[(SKIP(i);@@),V(i)] end 



was represented by: 

{VO) , 

SKIP(l).V(2), 

SKIP(l).SKIP(2).V(3), 

SKIP(l). 

SKIP(l). 

.SKlP(:a-l) .V(m), 

• SKIP(m)} 
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The ellipses in the above cycle set denote two kinds of repetition 

patterns. The ellipses denote repetition of operations SKIPs of the 

form: 

skip_rep(j )=SKIP(l). ••• . SKIP(j) for l~j~m 

but also denote repetition of cycles of the form: 

,skip_rep(m-l).V(m) 

Even expressing the cycles of this relative simple path by ellipses is 

cumbersome. As macro elements may in general, be nested inside other 

macro elements the precise representation of cycle sets using ellipses 

becomes an impossible task. We need a notation for the concise 

representation of ordered cycle sets of macro programs from which the 

ordered cycle sets of the expanded basic program could be generated by 

expansion. This notation should be able to represent sets of cycles or 

cycles of all macro elements be it bodyreplicators, concatenators, 

distributors or imbricators. For this representation to be possible 

though, all macro elements in macro sequences should always generate 

regularities which are syntactically strong strings. 

In the next subsection 4.2.1 we constrain some of the syntax rules of 

4.1.2 to produce macro programs the macro paths of which involve 

concatenators, distributors and imbricators the regularities of which 

are syntactically strong strings and we define the function "expand2" by 

which these programs are expanded. In subsection 4.2.2 we define a 

notation for concisely representing cycle sets of macro progLL:J.s 

produced by this grammar, we define the function "m-eycs" for obtainin,:; 
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macro cycle objects in this not8.tion from macro programs and define the 

function "exp-CYc" by which these objects are expanded yielding ordered 

cycle sets. Finally, in subsection 4.2.3 we prove that the ordered 

cycle sets of the expansion of a macro program produced by the grammar 

of 4.2.1 are the same as the ordered cycle sets we obtain from the 

expansion of the macro cycle objects of the macro program. 

4.2.1 Syntax and Expansion Rules of Constrained macro-Programs 

In the grammar of this section we constrain the production rules in 

section 4.1.2, or, to be more precise, those in appendix C, in order to 

produce concatenators, distributors and imbricators the expansion of 

which and each of their regularities are syntactically strong strings. 

This is achieved by forcing the main connective of the string generated 

by expansion to separate each regularity. Actually, the only macro 

elements the syntax of which needs to be constrained are those which 

generate sequences since the main connective of their expansion, namely 

";", does not always separate the regularities. The regularities in the 

expansion of the rest of the macro elements are orelements, starelements 

and elements and consequently are syntactically strong strings in any of 

their contexts. Therefore, we only need to constrain the production 

rules for "seqconcseq", "seqimbrseq" and "seqdistr". The non-terminals 

"seqdistr" and "seqconcseq", producing distributors generating sequences 

and strings inside "[ ]" of a sequence concatenator, respectively, will 

be redefined by: 

seqdistr=;{/iexpr}{/#iexpr,iexpr,iexpr} [msequence] 

seqconcseq={seqpartj}+@ 

The difference with corresponding rules rules of section 4.1.2 for 

"seqconcseq" and "seqdistr" is that here we eliminated the production of 

"," as the connective separating regularities generated by concatenators 

and distributors. 
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We have yet to constrain thp ;mbrlo t 
- L ca ors generating sequences 

produced by the syntax in 4.1.2 in which each regularity is a 

syntactically strong string. An imbricator 

lIi:1,n,1[p(i) @ t ~ q(i)] 

generates three kinds of regularities in general: 

1. pO) ••• qO) 

2. p'(n) t q'(n) 

3. t' 

when 1~i~n-l, 

when i=n 

when n<1 

as we may recall from sections 3.2 and 3.3. 

For imbricators generating sequences each regularity they generate is 

a sequence and for it to be syntactically strong it should be between 

any of "(", ";" and any of ")", ";". These regularities appear in the 

same context as that of"@ t @" and consequently, the string "@ t ~" 

should be between any of "c", ";", "[" and any of ")", ";", "]". The 

two extra terminal symbols "[" and "]" in the context of "@ t @" arise 

from the fact that when a replicator expands these disappear and the 

context of the expanded string is the context of the imbricator itself. 

The context of the imbricator generating sequences is any of "c", 11.11 , , 
"path" on its left and any of ") II , 11." , , "end" on its right which 

guarantee that the outermost regularity and consequently the whole 

expansion of an imbricator is syntactically strong. 

The syntax rules for "seqimbrseq" producing strings inside "[ ]" of a 

sequence replica tor then should be: 
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seqimbrseq=seqimhr_at_seq 

/{seqpart;}+ seqimbror {; seqpart}* 

/{seqpart;}":' seqimbror {; seqpart}+ 

seqimbror={orpart,}":' seqimbrstarel {, orpart}* 

seqimbrstarel=seqimbrel/seqimbrel* 

seqimbrel=(seqimbrseq) 

seqimbr _at_ seq= 

{seqpart;}+ {~/at_or1f} {;seqpart}":' 

/{seqpart ;}+ at_or2fb {; seqpart}+ 

/@{seqpart ;}~ {@/at_or1b} {; seqpart}+ 

/{seqpart ;}+ {@/at_or1f} {; seqpart}~@ 

/@ msequence @ 

{~/at_or1b} {;seqpart}+ 

For the imbricators generating orelements, starelements and elements 

each of their regularities must be orelements, starelements and elements 

respectively. These regularities are syntactically strong in any 

context the str ing ",2 t @" is in. The syntax rules for them will still 

be those of section 4.1.2 or more accuratly those of appendix C. The 

complete syntax for programs involving only these macro elements may be 

found in appendix D. Syntax rules in appendix 0 are associated with 

mnemonic names starting with "HN" to denote syntax rules developed in 

section 3.2, or with "RN" to denote syntax rules developed in section 

4 .1. 2 (appendix C), or with "0;" to denote syntax rules developed in 

this section. 

Let us now give some examples of imbricators the regularities of 

which are syntactically strong in their expansion. The imbricator is R5 

produced by "seqmacro" 

R5 lIi:1,3,1[(A(i);@@),B(i);C(i)] 

and expands to the sequence E(RS) 

E(RS) (A(1);(A(2);(A(3»,B(3);C(3»,B(2);C(2»,B(1);C(1) 
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The imbr ica tor R6 is produced by "ormacr 0" 

R6 tli: 1,3,1 [(SKIP(i) ;C~@),( CS_BEGI:;(i); CS_END(i))] 

and expands to the orelement E(R6) 

E(R6) ( SKIP(l) 

( SKIP(2) 

; (SKIP(3)) 

,(CS_BEGIN(3);CS_END(3)) 

) 

,(CS_BEGIN(2);CS_BEGIN(2)) 

) 

,(CS_BEGIN(l);CS_END(l)) 

The imbricator R7 is produced by "starmacro" 

R7 Iii: 1,3,1 [(UP(i) ;@; full*;~; DO~(i) )*] 

and expands to the star element 

E(R7) ( UPO) 

; ( UP( 2) 

; ( UP(3) 

; full* 

; DOWN(3) 

)* 

; DO\m (2) 

)* 

; DOWN (1 ) 

)* 

" 1 " Finally, the imbricator R8 is produced by e macro 

R8 lIi:l,3,1[(C(i);R(i),@@)] 

and expands to the element 
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E(R8)( C(l) 

; R( 1) 

, ( C( 2) 

; R(2) 

, (C(3) ; R(3) ) 

) 

) 

The reading of macro elements generating regularities which are 

syntactically strong strings could be concisely represented. This is 

particularly important when the index specification of replicators and 

the sizes of the arrays are parametarized and as a result the number of 

regularities to be generated is not fixed. Concatenators and 

distributors generating sequences of the form 

#i:l,n,l[p(i) ;@1 

; [p 1 

respectively, may be read as: 

for all i=l, ••• ,n do consecutively p(i) 

Concatenators and distributors generating orelements of the form 

#i:l,n,l[p(i) ,@1 

, [p 1 

respectively, may be read as 

for any i=l, ••• ,n do p(i) 

For example, R2 and R3 when the final value of their indices is 

parametarized by the integer n may be read as: 

for all i=l, ••• ,n do consecutively A(i) or B(i) 

for any i=l, •.• ,n do A(i) followed by B(i) 

and 
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respectively. L~bricators are more difficult to read than concatenators 

and distributors as regularities are nested and not following each 

other. Imbricators generating syntactically strong strings 

#i:l,n,l[p(i) @ t ~ q(i)] 

may be read recursively by defining the reading of their general 

regularity as follows: 

read_reg(i)= if i<n do p(i) read_reg(i+l) q(i) 

if i=n do p'(n) t q'(n) 

if On do t' 

Then the general reading of imbricators is given by 

When the final value of the indices of imbricators RS, RO, R7, RB is 

parametarized by the integer n, then the imbricators may be read by 

where read_reg(i) for RS is 

read_reg(i)= if i<n do A(i) followed by read_reg(i+l) or 

followed by C( i) 

B( i), 

if i=n do A(n) or B(n), followed by C(n) 

For i>n the expansion of RS is empty and consequently RS is not valid. 

The reading of the general regularity of R6 is: 

read_reg(i)= if i<n do SKIP(i) followed by read_reg(i+l), 

or CS BEGIN(i) followed by CS E~D(i) 

if i=n do SKIP(i) 

or CS BEGIN(n) followed by CS END(n) 

For i>n the expansion of R6 is empty and consequently R6 is not 

The reading of the general regularity of R7 is 

val id. 
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read _reg(i)= if i<n do repeat:UP(i) 

followed by read_reg(i+l) 

followed by DOWN(i) 

if i=n do repeat:UP(n) 

followed by repeat: full, 

followed by DOWN(n) 

if Dn do repeat: full 

The general regularity of R8 may be read as 

read_reg(i)= if i<n do C(i), followed by R(i) or by read_reg(i+l) 

if i=n do C(n) followed by R(n) 

Any program produced by the syntax rules of appendix D may also be 
r.) 

produced by the syntax rules of the section 4.1.2 and as we have 

constrained and not extended the syntax rules generate basic programs 

when expanded. Similarly to the strict sequence macro elements of 

section 4.1.2, the macro elements produced by the above syntax rules may 

also generate orelements, starelements and elements, when their index 

range consists of one value or it is empty. 

Here we will define the expansion of macro programs in an alternative 

way from that of sections 3.3 and 4.1.2 by defining a function 

"expand2". The necessity for an alternative expansion is of a technical 

nature. As we like to find the cycles of the general regularity inside 

"[ lIt of a macro element, we cannot consider this regularity as a 

string. We need to decompose regularities into their syntactic entities 

on which a function "m-Cycs" will apply yielding ultimately the macro 

cycles of these regularities. As both "expand2" and "m-Cycs" apply to 

macro programs, it would be convenient, in showing that the ordered 

cycle sets of the expansion of macro programs are the same as the 

expansion of the macro cycle objects of macro programs, if both 

functions applied to the same syntactic entities of macro programs. 

Since the functions "expand", "replexpO" and "distrexpO" of 3.3 treat 

regularities as strings and do not decompose them into their syntactic 

entities, an alternative definition for the expansion of macro programs 

will be given, in terms of the function "expand2". 

~) produ~tion rules 4.1.2 are subset of pro~uction rules in 4.1.3 
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In the definition of function "expand2" we do not' F of :ndr~e use o~ any 

the auxilliary functions "replexpO", "distrexpO", we used in "expand" of 

section 3.3.3 and "expand1" of section 4.1.2. In "expand2" the 

expansion of macro elements is defined in an alternative way. We have 

distinguished two kinds of macro elements: 

concatenators the expansion of which is defined 

imbricators the expansion of which is obtained 

expansion of distributors is obtained from the 

equivalent replicators (cf. section 3.3.2). 

bodyreplicators 

by iteration 

by recursion. 

expansion of 

and 

and 

The 

their 

\.Je have made this 

distinction between bodyreplicators and concatenators on one hand and 

imbricators on the other, since the former generate strings which would 

be produced by iterative productions of a non-terminal, whilst the 

latter generates strings which would only be produced, in general, by 

recursive productions of non-terminals, as regularities are nested 

within each other. The expansion of a bodyreplicator, for example will 

be defined by 

expand2(#i:1,n,1[PBRs(i)])=expand2(PBRs(1)) ••• expand2(PBRs(n)) 

The expansion of imbricators will be defined recursively, generating at 

each level of the recursion one regularity. The regularities are 

obtained by substituting in "p(i) @t@ q(i)" the appropriate value for 

"i". These strings are considered to be special macro "sequences", 

involving "@t@" as a special non-starred "element". The expansion of 

these macro "sequences" will be defined, similarly to the expansions of 

proper macro sequences, by expanding its syntactic sub-entities. As the 

syntactic entities of this macro sequence are expanded, the expansion of 

the element "@t@" will be eventually needed. We consider the expansion 

of this special element to be the next regularity of the imbricator. 

The problem is that when we reach that point we do not know the 

imbricator the string "@t@" corresponds to. One solution would be to 

pass together with each syntactic entity of the regularity the 

imbricator as a second argument to "expand2". But this would mean that 

for some syntactic entities "expand2" would be a one argument function 

and for others a two argument function. For this reason we decided on 

another solution. We assume the existence of a stack in which a copy of 

the imbricator is to be saved whilst syntactic entities of its 

regularities are expanded. This copy will be needed when the element 
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",~ t @" is "expanded". The re 1 son we usc> t k" h 
- u ~ ~ a s ac lS t at the regularity 

of an imbricator could involve other imbricators, each having its own 

lIra t @" t" h" h " d" dOff ~ s rlng, w lC expan to 1 erent strings. We associate two 

operations with this stack: "imbr-push" by which imbricators are pushed 

into the stack and "imbr-pop" by which they are poped out of the stack. 

We may use this stack as follows: When an imbricator is to generate 

at least one of its general regularities, determined by its index 

specification, the imbricator is pushed into the stack with the lower 

value of its index incremented by one. The expansion of this stacked 

imbricator will generate all the inner regularities to the current 

regularity of the original imbricator. After the modified imbricator is 

stacked its current regularity may be expanded. As the expansion of 

syntactic entities of this regularity are expanded, the expansion of the 

special element "@ t @" will be eventually needed. Its expansion is 

defined to be the expansion of the imbricator at the top of the stack. 

When the imbricator generates its last regularity it will not be stacked 

and as this last regularity will not contain the special element "@ t ~" 

the expansion of the original imbricator will terminate correctly. 

In the definition of "expand2" which follows the syntactic variables 

MPBODY, CPBRi for i=l, ••• ,n, COLs, PBRi for i=l, ••• ,n and PBRs denote 

the same syntactic entities as defined in section 4.1. Paths will be 

represented by: 

path l1SEQ end 

where HSEQ denotes a macro sequence which is represented by 

SEQPRT1; ••• ;SEQPRTn 

where each of SEQPRTi for i=l, ••• ,n denotes a macro element produced by 

"" I A macro orelement is represented bv seqmacro or a macro ore ement. -

ORPRTl, ••• ,ORPRTn 

where each of ORPRTi for i=l, ••• ,n denotes either a macro element 

produced by "or par t" or "s tarmacro" or d starred element. A starele:nent 
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is represented by 

EL* or EL 

where EL denotes a macro element produced by "elmacro", or an operation 

represented by 

OP 

or an element of the form (msequence) represented by 

C·1SEQ) 

Concatenators and distributors produced by "seqmacro" will be 

represented by 

Ui:l,n,l[MSEQ(i);@] 

; [MSEQ] 

respectively, where MSEQ(i) denotes a 8acro sequence some operations of 

which may depend on "i", and HSE~ denotes a macro sequence involving 

array slices instead of operations. 

Concatenators and 

represented by 

#i:l,n,l[MOR(i),@] 

, [MOR] 

distributors produced by "ormacro" will be 

respectively, where HOR(i) denotes a macro orelement some operations of 

which may depend on "i" and MOR denotes a macro orelement involving 

array slices instead of operations. 

All imbricators produced by "seqmacro", "ormacro", "starmacro" and 

"elmacro" will be represented by 

#i:l,n,l[p(i) @t@ q(i)] 



- 244 -

The string "p(i)Jt~ q(i)" in the above representation of an 

imbricator may be of four different forms each corresponding to one of 

the four types of imbricators. In order to keep the definitions of the 

functions "expand2" and "m-eycs" as short as possible we shall not 

distinguish similar syntactic entities of the four forms. In the formal 

grammar of appendix D we had to have four groups for syntax rules 

producing imbricators for two reasons: 

1. to specify that the string "t" between the two "@"s is different in 

each case. and 

2. to specify that the context of "@t@" in imbricators generating 

sequences excludes commas. 

If we regard the string "@ t ~" as one entity. the first reason for 

their distinction is not important. As for the second reason we may for 

the moment ignore it when defining syntactic entities. All syntactic 

variables except the syntactic variable representing the string "@t,~" 

will be sufficed by "(1)" to denote that integer expressions in the 

strings they represent, may depend on "i". denoting the index of 

replicators. 

We may represent the string "p(i) @t@ q(i)" of a genuine imbricator 

by 

where I~SP j( i) for j=1 ••••• n denote strings produced by "seqpart". 

except exactly one which involves the string "@t@" corresponding to the 

imbricator. which may be represented by the orelement 

I~~ op 10) •.••• Il~OPn( i) 

If an imbricator generates an orelement. a starelement or an element. 

the each of IM_OPj(i) for j=l, •••• n denotes a string produced by 

"orpart". except exactly one which involves the string "@t@" 

corresponding to this imbricator. The entity which involves "@t@" is 

the \vhole of the string "p(i) @t@ q(i)" of imbricators generating 
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starelements and elements. This entity entity may be represented by 

1M EL(i)* or I~EL(i) 

The syntactic variable I~EL(i) denotes. an element involving lira t ~" and 

may be represented by 

(IMB~SEQ(i) ) 

in which r:1BR_SEQ(i) denotes a special sequence which involves "@t@" and 

may be represented by either 

if "I,h@" is further nested inside "( )", or by 

when "@t@" is not further nested inside "( )". Each of AT_SP j(i) for 

j=l, .•• ,n denotes a string produced by "seqpart", except exactly one 

which in the case of imbricators generating sequences is "@t@", 

represented by 

AT EL 

but in the case of imbricators generating orelements, starelements and 

elements is an orelement involving "@t@" as an element and may be 

represented by 

where each of AT_OPj(i) for j=l, ••• ,n denotes strings produced by 

"orpart" except exactly one which is the special element "~t2" which we 

have represented by AT EL. 

Finally, the string "p(i) @t@ q(i)" of non-genuine imbricators 

generating sequences may be represented by 
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defined as above. The string " p (i) @t@ q(i)" of non-genuine imbricators 

generating orelements may be represented by 

as explained above. 

Let us now define the function "expand2": 
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expand2(e)=cases e: 

1. program :·1PBODY endprogram -~ progra,) expand2(~PBODY) endprogram 

2. CPBR1 ••• CPBRn -~ expand2(CPBR1) ••• expand2(CPBRn) 

3. COLs PBR -~ expand2( PBR) 

4. Iti:1,m,I[PBRs(i)] -~ expand2( PBRs(l» ... expand2(PBRs(m» 

5. PBR1 ••• PBRn -~ expand2(PBRl) ••• expand2(PBRn) 

6. path MSEQ end 

7. SEQPRTl; ••• ;SEQPRTn 

8. #i:l,n,l[~SEQ(i);@] 

9. ;[MSEQ] 

10. ORPRTl, ••• ,ORPRTn 

11. Iti:1,n,1[MOR(i),@] 

12. , [MOR] 

13. #i:in,n,l[p(i)@ t @q(i)] 

14. I!~SPl(k); ••• ; I:~SPn(k) 

15. n~OPl(k), ••• ,I~OPn(k) 

16. I~EL(k)* 

17. (IMB~SEQ(k) ) 

18. AT SPl(k); ••• ;AT_SPn(k) 

19. AT_OPl(k), ••• ,AT_OPn(k) 

20. AT EL 

21. EL* 

22. OP 

23. (MSEQ) 

-7 path expand2(~SEQ) end 

-~ expand2(SEQPRTl); ••• ;expand2(SEQPRTn) 

-~ expand2(MSEQ(1»; ••• ;expand2(MSEQ(n» 

-~ expand2(MSEQ(1»; ••• ;expand2(MSEQ(n» 

-~ expand2(ORPRTl), ••• ,expand2(ORPRTn) 

-~ expand2(~OR(1», ••• ,expand2(~OR(n» 

-7 expand2(MOR(1», ••• ,expand2(MOR(n» 

-~ if in<n then 

imbr-push(#i:in+l,n,l[p(i)@t@q(i)]) 

expand2(p(in)@ t @q(in» 

if in=n then expand2(p'(n) t q'(n» 

if in>n then expand2(t') 

-~ expand2(IM SPl(k»; ... ;expand2(HI SPn(k» - -
-~ expand2( n~OPl(k», ••• ,expand2( I~OPn(k» 

-7 expand2( Ul_EL(k»* 

-7 (expand2( H1BR_SEQ(k» 

-~ expand2(AT_SPl(k»; ••• ;expand2(AT_SPn(k» 

-~ expand2(AT_OPl(K», ••• ,expand2(AT_OPn(k» 

-7 expand2(imbr-pop) 

-7 expand2( EL)* 

-7 OP 

-7 (expand2(MSEQ) ) 
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\~e will not formally prove that the expansion of a ::ldcro program 

MPROG, given by expand2(:1PROG), is a basic progra::J. as it may be proven 

in a style we have proven theorem 3.11 of section 3.3.3. 

We have to point out a subtle operational difference between the' 

functions "expand2" and the rest of the functions defined by cases, such 

as "expand", "expandl", "Cycles", "exp-Cycls", etc., due to the use of 

the stack in "expand2". When a function applies to syntactic variables 

which themselves have as components other syntactic variables, the 

result is defined in terms of the partial results obtained by applying 

the same function on these components. The order of evaluation of these 

partial results is not important. This is true for all our functions 

defined by cases. In evaluating partial results of "expand2", however, 

some fixed order should be followed, whilst in other functions these 

evaluations could be performed concurrently. The reason for this 

difference is that "expand2" uses a common stack which should be 

accessed orderly. For otherwise, if imbricators are pushed and poped 

unorderly, an imbricator may be expanded at a wrong position. 

4.2.2 Macro Cycle Objects and their Expansion 

Let us now examine what kind of features we need to represent sets of 

cycles of macro programs concisely, and suggest a reasonable notation 

incorporating these features. 

The macro cycles of a macro program body will be wrapped between the 

word pair "mcycles" and "endmcycles" and the macro cycles of a macro 

path between "pcyc" and "endpcyc". The macro cycle sets of 

bodyreplicators and paths will be separated by "&", macro cycle sets of 

strings produced by "seqpart" will be separated by""''', and macro cycle 

sets of d b "U". strings produced by "orpart" will be separate y As "," 

has precedence over ";" in macro sequences so "u" will have precedence 

over "0" in macro cycle sets. 

We need four other features in this notation: 

1. one to represent the union of similar sets, for representing the 



- 249 -

union of cycle sets of the regularities of concatenators and 

distributors generating orelements, 

2. another to represent the concatenation of similar cycle sets, for 

representing the concatenation of cycle sets of the regularities of 

concatenators and distributors generating sequences, 

3. a third one to represent the imbrication of similar cycle sets, for 

representing the cycle sets of the regularities of imbricators, and 

finally 

4. one to represent the ordering of similar cycle sets, for 

representing ordered cycle sets of paths in the regularities of 

bodyr eplica tor s. 

As we have already used the symbol "U" for the set union operator, it 

is natural to use the notation 

B[S(i)] 
i=l 

to represent the union of the sets S(l), ••• ,S(n) 

SO) U ••• U S(n) 

where S(i) denotes a string set expression, involving sets of a single 

. d t the l·nteger expressions in which may operat1on name an macro se s, 

d f S(l·) by replacing depend on "i", and S(j) for j=l, ••• ,n is obtaine rom 

the index "i" by one of the values for j. For example the expression 

3 
i~t {DEPOSIT(i)}] 

represents the union of sets 

{DEPOSIT(1)}U{DEPOSIT(2)}U{DEPOSIT(3)} 
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As we have used the symbol "0" for the concatenation of sets of 

strings, we shall use the notation 

n 
o[S(i)] 

i=l 

to represent concatenation of the sets S(l), ••• ,S(n) 

SO) 0 ••• 0 Sen) 

where SCi) and S(j) for j=l, ... ,n are defined as above. 

the expression 

3 
i~f{DEPOSIT(i)}] 

represents the concatenation of sets 

{DEPOSIT(1)}O{DEPOSIT(2)}O{DEPOSIT(3)} 

Similarly, we shall use the notation 

n 
&[S(i)] 

i=l 

For example, 

to represent the ordering of collections of cycle sets S(l), ••• ,S(n) 

SO) & ••• & Sen) 

where SCi) and S(j) for j=l, ... ,n are defined as above. 

For example the expression 

3 
&[pcyc {DEPOSIT(i)}o{REMOVE(i)} endpcyc] 

i=l--

represents the ordering of the sets of cycles 

pcyc {DEPOSIT(l)}"{REHOVE(l)} endpcyc & 
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pcyc {DEPOSIT(2)}u{Rt:~IOVEU)} endpcyc & 

pcyc {DEPOSIT(3)} Q{RE:I0VE(3)} endpcyc 

The macro cycle sets of the paths 

path #i:l,3,1[DEPOSIT(i),@] end 

path #i:l,3,1[DEPOSIT(i);@] end 

and of the the ordering of the cycle sets of the paths generated by the 

bodyr epl ica tor 

lIi:l,3,1[path DEPOSIT(i);REHOVE(i) end] 

may be concisely represented by 

3 
pcyc U[{DEPOSIT(i)}] endpcyc 
-- i=l 

3 
pcyc i~l{DEPOSIT(i)}] endpcyc 

3 
&[pcyc {DEPOSIT(i)}o{REMOVE(i)} endpcyc] 

i=l--

respectively. 

Let us now examine what kind of a notation we need to represent 

concisely the cycle set of an imbricator. 

imbricator 

lIi:l,n,l[p(i)@ t @q(i)] 

generates either the string Expl 

Exp 1. t' 

when l>n, or the string Exp2 

Exp2. p(l) p(2) ••• p'(n) t q'(n) ••• q(2) q(l) 

We may recall that an 
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when n> 1. The string Exp2 involves t .... o kinds of r"gularities in 

general: 

p(i) ..• q(i) for i=1, ••• ,n-1 

and 

p' (n) t q' (n) 

Therefore for the concise representation of the cycles of the regularity 

of any imbricator we need in general the macro cycles of 

1. t' 

2. p' (n) t q' (n) 

3. p(i) ••• q(i) for i=l, ••• ,n-l 

Of the three of the above expressions 1 and 2 are not repeated in the 

imbricator expansion and must therefore, be considered individually; the 

regularity which is repeated in the expansion of an imbricator is of the 

form 3. This leads us to adopt the following notation for representing 

the cycles of the regularities of imbricators: 

n 
t[A(i)/B/C] 

i=l 

where A(i), B, C denote the macro cycle expressions of "p(i)@ t @q(i)", 

"p'(n) t q'(n)" and "t'" respectively. 

As the regularity of the form 3 will always imbricate other 

regularities, we must indicate in A(i) where the cycle set of the inner 

regularities are to appear. We do that by using the symbol "-1-". As the 

inner regularity is to appear in the context of "@ t @" we shall regard 

h 1 f h ' 1 1 ",'3 t ra" as 'Del'ng "-1-". t e cyc e set 0 t is spec1a e ement - ~ 

For example the macro cycle expression 
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3 
. t[({C(i)}~{R(i)}U+)/({C(3)}O{R(3)})/{A}1 
1.=1 

where "A" denotes the empty string, represents the set-expression 

({C(1)}O{R(1)}U({C(2)}O{R(2)}U({C(3)}O{R(3)}») 

which is the cycle set of the sequence 

(C(l) ; R(l) , (C( 2) ; R( 2) , (C( 3) ; R(3) ») 

which may be obtained by the expansion of the imbricator R8 

R8 #i:l,3,1[(C(i);R(i),@@)] 

The macro cycle set representing the cycles of the string obtained by 

the expansion of replicator R4 is 

n 
t[({SKIP(i)}e+) U {V(i)}/({SKIP(n)}) U {V(n)}/{A}] 

i=l 

The macro cycle object of a macro program may be constructed formally 

by the function "m-Cycs" defined below, which applies to the same 

syntactic entities as function "expand2". 
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m-Cyes(e)=eases e: 

1. program XPBODY endprogram -~ meyeies m-Cyes(HPBODY) endmeyeies 

2. CPBR1 ••• CPBRn -7 m-Cyes(CPBRl) ... m-Cyes(CPBRn) 

3. COLs PBR -7 m-Cyes(PBR) 

4. h:1,n,1[PBRs(i)] 

5. PBRI ••• PBRn 

6. path MSEQ end 

7. SEQPRTl; ••• ;SEQPRTn 

8. #i:l,n,l[MSEQ(i);@] 

9. ; [MSEQ] 

10. ORPRTl, ••• ,ORPRTn 

11. Ifi:l,n,l[MOR(i),@] 

12. ,[MOR] 

13. #i:in,n,l[p(i) @ t @ q(i)] 

14. I}~SPl(i); ••• ;I~SPn(i) 

15. IM_OPl(i), ••• ,IM_OPn(i) 

16. I~EL(i)* 

17. (IHBR_SEQ(i» 

18. AT SPl(i); ••• ;AT_SPn(i) 

19. AT_OPl(i), ••• ,AT_OPn(i) 

20. AT EL 

21. EL* 

22. OP 

23. (MSEQ) 

n 
-7 &[m-Cyes(PBRs(i»] 

i=l 

-7 m-Cyes(PBRl)& ••. &m-Cyes(PBRn) 

-7 peye m-Cyes(MSEQ)endpeye 

-7 m-Cyes(SEQPRTl)o ••• o m-Cyes(SEQPRTn) 

n 
-7 o[m-Cyes(MSEQ(i»] 

i=l 

n 
-7 O[m-Cyes(MSEQ(i»] 

i=l 

-7 m-Cyes(ORPRTl)U ••• U m-Cyes(ORPRTn) 

n 
-7 U[m-Cyes(HOR(i»] 

i=l 

n 
-7 U[m-Cyes(MOR(i»] 

i=l 

n 
-7 t[ m-Cyes(p(i) @ t @ q(i»/ 

i=in 

m-Cyes(p'(n) t q'(n»/m-Cyes(t')] 

-~ m-Cyes(IM_SPl(i»o ••• o m-Cyes(IM_SPn(i» 

-~ m-Cyes(IM_OPl(i»U ••• U m-Cyes(IM_OPn(i» 

-7 m-Cyes(IM_EL(i»* 

-7 (m-Cyes( U1B~SEQ(i» 

_~ m-Cyes(AT_SPl(i»o ••• o m-Cyes(AT_SPn(i» 

_~ m-Cyes(AT_OP1(i»U ••• U m-Cyes(AT_OPn(i» 

-? + 
-7 rn-Cyes( EL)* 

~ {OP} 

~ (m-Cyes( 11SEQ» 
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The macro cycle object of the ring buffer with one producer and one 

consumer specified by the following macro program :1PROGl 

MPROGl 

program 

array DEPOSIT REHOVE(n) endarray 

#i:l,n,l[path DEPOSIT(i);REMOVE(i) end} 

path ;[DEPOSIT} end 

path ; [REMOVE} end 

path ,[DEPOSIT} end 

path ,[REMOVE} end 

endprogram 

obtained by the function "m-eycs" is: 

mcycles 

n 
&[pcyc {DEPOSIT(i)}o{REMOVE(i)} endpcyc} & 
i=l--

n 
pcyc o[{DEPOSIT(i)}] endpcyc & 
-- i=l 

n 
pcyc o[{REMOVE(i)}] endpcyc & 
-- i=l 

n 
pcyc U[{DEPOSIT(i)}] endpcyc & 
-- i=l 

n 
pcyc U[{REMOVE(i)}] endpcyc 
-- i=l 

endmcycles 

Th 1 b ' t of the priority resource manager [LT78, LS78] e macro cyc e 0 Jec 

specified by the macro program MPROG2 



:1PROG2 

program 

array 

DEPOSIT REMOVE(n,m) 

SKIP CS BEGIN CS_END(m) 

endarray 

ilj:l,m,l 

[path ;[DEPOSIT(,j)] end 

path ;[REMOVE(,j)] end 
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lIi:l,n,l[path DEPOSIT(i,j);REHOVE(i,j) end] 

path SKIP(j), ( , [REMOVE( , j)] ; CS _BEGINU); CS_END( j» end 

] 

path IIj:l,m,l[(SKIP(j);@@),(CS_BEGIN(j);CS_END(j»] end 

endprogram 

obtained by "m-Cyes" is 

meyeles 

m n 
&[ peye Q[{DEPOSIT(i,j)}] endpeye & 

j=l --i=l 

n 
peye Q[{REMOVE(i,j)] endpeye & 
--i=l 

n 
i~t {DEPOSIT( i, j) }o{REt10VE(i, j)}] & 

n 
{SKIP(j)}U(U[{REMOVE(i,j)}]O{CS BEGIN(j)}O{CS_END(j)}) 

i=l -
endpeye 

& 

m 
t[({SKIP(j)}o+)U({CS BEGIN(j)}o{CS END(j)})! 

j=l -
({ SKIP( n)} )U( {CS _BEGIN(n)} o{CS _END(n)} ) /{ A}] 

endpeye 

endmeyeles 



- 257 -

Let us now give general concise readings for the macro cycle sets. 

Macro cycle sets of the form 

n 
~[S(i) ] 

i=l 

may be read as: 

for all i=l, ••• ,n do consecutively S(i). 

For example the macro set 

n 
°1{A(i)}U{B(i)}] 

- i=l 

may be read as 

for all i=l, ••• ,n do consecutively A(i) or B(i). 

Macro sets of the form 

n 
U[S(i)] 

i=l 

may be read as 

for any i=l, ••• ,n do S(i). 

For example the macro set 

n 
i~t({A(i)}O{B(i)})] 

may be read as 

for any i=l, ••• ,n do ACi) followed by B(i). 

Finally macro sets of the form 

n 
t[S(i)/U/T] 

i=l 



- 258 -

may be read recursively by defining the reading of the i'th regularity 
as follows: 

read_cycreg(i)= if i<n then SCi) 

if i=n then U 

if i)n then T 

where the symbol 11,11 .. must appear in 

"read_cycreg( i+ 1)". For example the cycle set 

n 
.t[({SKIP(i)}Q+)U{V(i)}/({SKIP(n)}U{V(n)}/{A}] 
~=l 

may be read as: 

read_cycreg(l) 

SCi) standing 

where the reading of the i'th regularity read_cycreg(i) is 

read_cycreg(i)= if i<n do SKIP(i) followed by read_cycreg(i+l), 

or V(i) 

if i=n do SKIP(n) or yen) 

for 

For programs involving simple macro elements there is no real 

practical advantage in reading macro cycle objects of macro programs 
than 

ratherVreading the programs themselves. However, for programs involving 

more complicated macro elements, macro cycle objects have an advantage 

and are useful in that aspect as well. In certain cases we may simplify 

the macro cycle expressions by the composition rules of "0" and "u" of 

sets of strings and by applying some relations regarding the union and 

concatenation operations on sets of strings and macro cycle sets, such 

as: 
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1 • A ~ B U C (A 0 B) U (A o C) 

B U C o A (B o A) U (C o A) 

2. A U B B U A 

3. A U (B U C) (A U B) U C A U B U C 

4. A Q (B o C) (A o B) o C A Q B 0 C 

5. (A U B) o C A U B 0 C 

where A, Band C are sets of strings, or macro cycle sets. In addition 

when A is a string set or a macro set representing union of similar 

sets, the following property holds: 

6. (A) A 

Finally when A is a set of strings the following properties hold: 

n n 
7. U[S(i)] 0 A U[S(i) U A] 

i=l i=l 

8. 

Consider for example the macro cycle of the replicator R9 

R9 #i:l,n,l[«A(i);B(i»,C(i);D(i»,~] 

in which none of the parentheses in the regularity are redundant. By 

applying the function "m-Cycs" we obtain the macro cycle set: 

n 
U[{«{A(i)}o{B(i)}) U {C(i)}o{D(i)})] 

i=l 

which is a quite complicated expression and certainly not more readable 

than the replica tor itself. The above macro set may be read as: 

for any i=l, ••• ,n do 

A(i) followed by B(i), or C(i) 

followed by D(i). 

We may apply some of the above well defined properties to simplify this 
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macro set and its reading. The cycle set of the regularity of the above 

set expression is equivalent to 

« {A(i). BCi)}) U {C(i)}o{D(i)})= by composition of "0" 

({A(i).BCi)} U {C(i)}o{D(i)})= by rule 6 

({A(i).B(i),C(i)}o{D(i)})= by composition of "u" 
({A(i).B(i).D(i),C(i).D(i)}) by composition of "0" 

{A(i).B(i).D(i),C(i).D(i)} by rule 6 

which means that the macro cycle set of R9 is simplified to the macro 

cycle set: 

n 
U[{A(i).B(i).D(i),C(i).D(i)}] 

i=1 

We believe that the above expression greatly simplifies the task of 

understanding replicator R9, which may be now read as: 

for any i=I, ... ,n 

do A(i) followed by B(i) followed by D(i), 

or C(i) followed by D(i) 

The above macro set is also the macro cycle set of the replicator 

RIO #i:l,n,I[(A(i);B(i);D(i»,(C(i);D(i»,@] 

The replicator RIO might be slightly easier to read than R9 but RIO 

involves repeated operation names which make RIO semantically more 

involved than R9 [LSB79b]. Although we could have defined an "inverse" 

function of "m-Cycs" to take us from simplified macro cycle objects to 

macro programs we did not, as this inverse function would in general 

introduce in macro programs the complexity of repeated operation names. 

We would not gain anything as the macro objects give us quite a 

coprehensive reading of the paths in macro programs anyway. 

Let us also simplify the macro cycle set of the imbricator R5: 

n 
i!{({A(i)} Q +)U{B(i)}O{C(i)}/(A(n)})U{B(n)}O{C(n)}/{A}] 
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The first set expression inside "[ )" may be simplified as follows: 

«{A(i)} o +) o {C(i)}) U ({B(i)} Q {C(i)}) by rule 1 
«{A(i)} 0 ~) o {C(i)}) U({B(i).C(i)}) by compo of "Oil 

« {AO)} 0 t) ° {C(O}) U {B(i).C(i)} by rule 6 

({A(i)} ~ + 0 {C(i)}) U {B(i).C(i)} by rule 4 

The second expression inside "[ ]" may be simplified as follows: 

by rule 6 {A(n)} U {B(n)} U {C(n)} 

{A(n),B(n)} 0 {C(n)} 

{A(n).C(n),B(n).C(n)} 

by the composition of "u" 
by the composition of "0" 

Thus the macro set representing the cycles of R5 may be simplified to 

n 
t[({A(i)}o+o{C(i)})U{B(i).C(i)}/{A(n).C(n),B(n).C(n)}/{A}) 

i=1 

Let finally simplify the macro cycle expression 

n 
{SKIP(j)}U (U[{REMOVE(i,j)}]o{CS BEGIN(j)}o{CS END(j)}) 

i=1 -

which represents the cycles of the last path in the bodyreplicator of 

MPROG2, namely the path 

path SKIP(j),(,[REMOVE(,j)];CS!EGIN(j);CS_END(j» end 

The above set expression may be simplified as follows: 

n 
{SKIP(j)}U (U[{REMOVE(i,j)}]o{CS BEGIN(j).CS_END(j)}) 

i=1 -
compo of "0" 

n 
{SKIP(j)}U (U[{REHOVE(i,j)}o{CS BEGIN(j).CS_END(j)})] 

i=1 -
rule 5 

{SKIP(j)}U i~I{REMOVE(i,j)}.CS_BEGIN(j).CS_END(j)}]) comp. of "0" 

{SKIP(j)}Ui~i{REMOVE(i,j)}.CS_BEGIN(j).CS_END(j)}] rule 6 
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To construct the vector firing sequences of a macro program, the 

ordered cycle sets of the expanded paths will be needed. Let us 

therefore define the function "cyc-exp" by which macro sets in macro 

objects are expanded. We will then be in a position to show formally 

that for a macro program ~WROG, generated by the the syntax in appendix 

D, the relation 

Cycles( expand2( HPROG) )=cyc-exp(m-Cycs(MPROG» 

holds, where the function "Cycles" yields the ordered cycle sets of 

basic programs and is defined in section 4.1. 

The function "cyc-exp" applies to macro cycle objects of macro 

programs which may be represented by 

mcycles BODY-CYCS endmcycles 

where BODY-CYCS denotes ordered macro cycle expressions representing the 

cycle sets of the paths and bodyreplicators in the body of a macro 

program and may be represented by 

BD-CYCSl & ••• & BD-CYCSn 

where each of BD-CYCSi for i=l, ••• ,n denotes a macro cycle set of a 

single bodyreplicator or a macro cycle expression representing the cycle 

set of a path. 

A macro cycle set of a bodyreplicator may be represented by 

m 
&[ BD-CYCS(i) ] 

i=l 

where BD-CYCS(i) denotes ordered macro cycle expressions representing 

the ordered cycle sets of the paths in the regularity of the 

bodyreplicator. The macro cycle expression representing the cycle set 
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of a single path may be represented by 

pcyc SEQ-CYC endpcyc 

where SEQ-CYC denotes the cycle expression representing the cycles of 

macro sequence and may be represented by 

SP-CYCI 0 ••• 0 SP-CYCn 

a 

where each of SP-CYCi for i=l, ••• ,n denotes the macro cycle expression 

representing the cycle set of a string produced by "seqpart", which 

could be a concatenator or distributor generating sequences, a macro 

orelement or an imbricator generating sequences. The macro cycle set of 

a concatenator or distributor generating sequences may be represented by 

m 
o[SEQ-CYC( i) 1 

i=l 

where SEQ-CYC(i) denotes the macro cycle expression representing the 

cycle set of the regularity of concatenators and distributors. The 

macro cycle expression representing the cycle set of a macro or element 

may be represented by 

ORP-CYCI U ••• U ORP-CYCn 

where each of ORP-CYCi for i=l, ••• , n denotes a macro cY,cle expression 

representing the cycle set of a string produced by "orpart", which could 

be a concatenator or distributor generating orelements, a starelement, 

or an imbricator generating an orelement. The macro cycle set 

representing the cycle set of a concatenator or distributor generating 

orelements may be represented by 

m 
U [ORP-CYC( i) 1 

i=l 

where ORP-CYC(i) denotes the macro cycle expression representing the 

cycle set of the regularity of the concatenator or distributor. The 

macro set expression representing the cycle set of a star element may be 

represented by 



- 264 -

EL-CYC* or EL-CYC 

where EL-CYC denotes the macro cycle expression representing the cycle 

set of an element and may be represented either by 

STRING-SET 

if the element is an operation. or by 

(SEQ-CYC) 

if the element is of the form (msequence). 

The macro cycle set representing the cycle set of an imbricator may 

be represented by 

n 
. t[SP(i)+SQ(i)/B/C] 
~=~n 

where SP(i)+SQ(i) denotes the macro cycle expression representing the 

cycle set of the repeatable regularity. B denotes the macro cycle 

expression representing the cycle set of the innermost regularity and C 

denotes the macro cycle expression representing the cycle set of the 

string between the "@"s without its leading and terminating separators. 

The macro cycle expressions Band C are of form of SEQ-CYC (cf. lemmata 

4. 5 in section 3.3). The macro cycle expression SP(i)+SQ(i) may be 

represented by 

RSEQ-CYC(i) 

which may be represented by 

RSP-CYCl(i) U ••• O RSP-CYCn(i) 

where each of RSP-CYCj(i) for j=l ••••• n denotes a macro cycle expression 

of a string produced by "seqpart". except exactly one which either 

denotes the cycle set of "@t@" represented by "+". or denotes the macro 

cycle elCpression of a string involving "@t@" and it is represented by 
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ROP-CYC1(i) U ••• U ROP-CYCn(i) 

where each of ROP-CYCj(i) for j=l, ••• ,n denotes a macro cycle expression 

of a string produced by "seqpart", except exactly one which denotes the 

macro cycle expression of "@t@" represented by "~", or the macro cycle 

expression of a starred element involving "@t@" represented by 

REL-CYC(i) or REL-CYC( i) * 

where REL-CYC(i) denotes the macro cycle expression of an element 

involving "@t@" and may be represented by 

(RSEQ-CYC(i» 

The expansion of macro cycle sets of bodyreplicators, and the macro 

cycle sets of concatenators and distributors will be defined by 

iteration, whilst the expansion of macro cycle sets of imbricators will 

be defined by recursion. For the latter we use the same technique as in 

"expand2" for defining the expansion of imbricators. Here, we assume 

the existence of a second stack in which macro cycle sets of imbricators 

are pushed, while their constituent macro cycle entities in "[ ]" are 

expanded. We unstack the stacked macro cycle sets when "cyc-exp" is 

applied to "-1-", the expansion of which is considered to be the expansion 

of the original macro cycle set to which "-I-" corresponds, '..;ith the lower 

limit of the index of the macro cycle element increased by one. \ve 

associate with this stack two operations, "cyc-push" and "cyc-pop" by 

which macro cycle sets of imbricators may be pushed in and respectively 

popped out of the stack. 

The function "cyc-exp" is defined by: 
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cyc-exp(e)=cases e: 

1. mcycles BD-CYCS endmcycles ~ cycles cyc-exp( tiD -CYCS)endcycles 

2. BD-CYCSl& ••• &BD-CYCSn -~ cyc-exp(BD-CYCSl)& ••• &cyc-exp(BD-CYCSn) 

m 
3. i~fBD-CYCS(i)] ~ cyc-exp(BD-CYCS(l»& ••• &cyc-exp(BD-CYCS(m» 

4. pcyc SEQ-CYC endpcyc 

5. SP-CYClo ••• oSP-CYCn 

m 
6. CI[SEQ-CYC( i)] 

i=l 

7. ORP-CYC1 U ••• U ORP-CYCn 

m 
8. i~iOR-CYC(i)] 

n 
9. t[SP(i)+SQ(i)/B/C] 

i=in 

10. RSEQCYC1(k)o ••• oRSEQCYCn(k) 

11. RORCYCl(k)U ••• U RORCYCn(k) 

12. RELCYC( k) * 

l3. (RSEQ-CYC(k» 

14. oj. 

15. EL-CYC* 

16. (SEQ-CYC) 

17. STRING-SET 

-~ cyc-exp(SEQ-CYC) 

~ cyc-exp(SP-CYC1)O ••• Qcyc-exp(SP-CYC) 

~ cyc-exp(SEQ-CYC(l»o ••• Qcyc-exp(SEQ-CYC(m» 

-~ cyc-exp(ORP-CYC1)U ••• U cyc-exp(ORP-CYCn) 

~ cyc-exp(OR-CYC(l»U ••• U cyc-exp(OR-CYC(m» 

-~ if n) in then 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

n 
cyc-push(t[SP(i)+SQ(i)/B/C]) 

i=in+1 

cyc-exp(SP(in)+SQ(in» 

if n=in then cyc-exp(B) 

if n)in then cyc-exp(C) 

cyc-exp(RSEQCYC1(k»o •.• ocyc-exp(RSEQCYCn(k» 

cyc-exp(RORCYC1(k»U ••. U cyc-exp(RORCYCn(k» 

cyc-exp(RELCYC(k»* 

cyc-exp(RSEQ-CYC(k) 

cyc-exp(cyc-pop) 

cyc-exp (EL-CYC) * 
cyc-exp(SEQ-CYC) 

STRING-SET 
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Let us apply the func t ion "cyc-exp" to expand the macro cycle objec t of 

the macro programs MPROGl and MPROG2. The expansion of the macro cycle 

object of MPROGl for n=3 is 

cycles 

{DEPOSIT(l).REMOVE(l)} & 

{DEPOSIT(2).REMOVE(2)} & 

{DEPOSIT(3).REMOVE(3)} & 

{DEPOSIT(1).DEPOSIT(2).DEPOSIT(3)} & 

{REMOVE( 1 ) • REMOVE (3 ) • REHOVE(3) } 

endcycles 

and the expansion of the macro cycle object of MPROG2 for m=3, n=3 is 
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cycles 

{DEPOSIT(1,1).DEPOSIT(2,1).OEPOSIT(3,1)} & 

{REMOVE(1,1).REMOVE(2,1).REMOVE(3,1)} & 

{SKIP(l),REMOVE(l,l).CS_BEGIN(l).CS_END(l), 

SKIP(1),REMOVE(2,1).CS_BEGIN(1).CS_ENO(1), 

SKIP(1),REMOVE(3,1).CS_BEGIN(1).CS_END(1) } & 

{DEPOSIT(l,l).REMOVE(l,l)} & 

{DEPOSIT(2,1).REMOVE(2,1)} & 

{DEPOSIT(3,1).REMOVE(3,l)} & 

{DEPOSIT(l,2).DEPOSIT(2,2).DEPOSIT(3,2)} & 

{REMOVE( 1,2) . REHOVE(2 , 2) • REMOVE (3 , 2)} & 

{SKIP(2),REMOVE(l,2).CS_BEGIN(2).CS_END(2), 

SKIP(2) ,REMOVE(2,2).CS_BEGIN(2).CS_END(2) , 

SKIP(2),REMOVE(3,2).CS_BEGIN(2).CS_END(2)} & 

{DEPOSIT(l,2).REHOVE(l,2)} & 

{DEPOSIT(2,2).REMOVE(2,2)} & 

{DEPOS IT(3, 2) • REHOVE(3, 2)} & 

{DEPOSIT(1,3).DEPOSIT(2,3).DEPOSIT(3,3)} & 

{REHOVE( 1 ,3) • RL'10VE( 2,3) • REHOVE( 3,3)} & 

{SKIP(3),REMOVE(l,3).CS_BEGIN(3).CS_END(3), 

SKIP(3),REHOVE(2,3).CS_BEGIN(3).CS_END(3), 

SKIP(3),REHOVE(3,3).CS_BEGIN(3).CS_END(3)} & 

{DEPOSIT(l,3).REHOVE(l,3)} & 

{DEPOSIT(2,3).REMOVE(2,3)} & 

{DEPOSIT(3,3).REMOVE(3,3)} & 

{SKIP(1).SKIP(2).SKIP(3), 

SKIP(1).SKIP(2).CS_BEGIN(3).CS_END(3), 

SKIP(1).CS_BEGIN(2).CS_END(2), 

CS_BEGI~l(3) .CS_END(3) } 

endcycles 
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The Ordered Cycle sets of the Expansion and the Expansion of 

macro-Cycle Objects of Constrained Macro-Programs 

In this section we shall prove that the ordered cycle sets of a basic 

program obtained by the expansion of a macro program MPROG are the same 

as the ordered cycle sets obtained by the expansion of the macro cycle 

objects of MPROG. 

THEOREM 4.3: 

For any macro program MPROG produced by the constrained syntax rules 

of appendix D 

Cycles(expand2(MPROG»=cyc-exp(m-Cycs(MPROG» 

Proof: 

We shall prove it by proving the above relation for each case of 

syntactic entities on which the functions "expand2" and "m-Cycs" apply. 

case 1 

Applying function "expand2" to a macro program and then "Cycles" we 

obtain 

Cycles(expand2(program MPBODY endprogram»= 

Cycles(program expand2(}WBODY)endprogram)= 

cycles Cycles(expand2(MPBODY»endcycles 

and applying "m-Cycs" first and then "cyc-exp" we obtain 

cyc-exp(m-Cycs(program MPBODY endprogram»= 

cyc-exp(mcycles m-Cycs(}WBODY)endmcycles)= 

mcycles cyc-exp(m-Cycs(MPBODY»endmcycles 

The above two expressions are the same provided the relation 

Cycles(expand2(~WBODY»=cyc-exp(m-Cycs(MPBODY» 
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holds, which may be shown by case 2. 

case 2 

A 1 · ft· " d2" pp ylng unc Ion expan to macro program body and then "Cycles" 

we obtain 

Cycles(expand2(CPBRI •.. CPBRn»= 

Cycles(expand2(CPBRI) ••• expand2(CPBRn»= 

Cycles(expand2(CPBRI»& ••• &Cycles(expand2(CPBRn» 

The last step is justified as 

expand2(CPBRi) for any i=I, ••• ,n 

yields a collection of basic paths and 

Cycles(CPI) & Cycles(CP2)=Cycles(CPI CP2) 

where CPI and CP2 are collections of basic paths. To show the above 

relation let us define CPI and CP2 as follows: 

CPI=p11 ••• p1m 

CP2=p Zl. .. PZk 

where pli and p2j for i=I, ••. ,m and j=l, ••. ,k are basic paths. Then the 

relation 

Cycles(p11 p12 ••• plm) & Cycles(PZl pZ2 ••• pZk)= 

Cyc(pll)&Cyc(p12)& ••• &Cyc(plm)&Cyc(PZI)&Cyc(PZ2)& ••• &Cyc(pZk) 

Cycles(pli p12 ••. plm PZl pZ2 ••• p Zk) 

holds. Applying "m-CYcs" first and then "cyc-exp" we obtain 

cyc-exp(m-Cycs(CPBRl ••• CPBRn»= 

cyc-exp(m-Cycs(CPBRl)& ••• &m-Cycs(CPBRn»= 

cyc-exp(m-Cycs(CPBRl»& ••• &cyc-exp(m-Cycs(CPBRn» 
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The above expressions are the same provided the relation 

Cycles(expand2(CPBRi»=cyc-exp(m-CycS(CPBRi» 

holds for any i=l •••• ,n, which may be shown by case 3. 

case 3 

Applying function "expand2" to a single path or bodyreplicator 

possibly headed by collectivisors and then "Cycles" we obtain 

Cycles(expand2(COLs PBR»= 

Cycles(expand2(PBR» 

and applying "m-Cycs" first and then "cye-exp" we obtain 

cyc-exp(m-Cycs(COLs PBR»= 

cyc-exp(m-Cyes(PBR» 

The above expressions are the same as may be shown by cases 4 and 6. 

depending on whether PBR denotes a bodyreplicator or a macro path. 

case 4 

Applying function "expand2" to a bodyreplicator and then "Cycles" we 

obtain 

Cycles(expand2(#i:l,n,1[PBRs(i»))= 

Cycles(expand2(PBRs(1» ••• expand2(PBRs(n»)= 

Cycles(expand2(PBRs(1»)& ••• &Cycles(expand2(PBRs(n») 

Since the expansion of PBRs(i) 

expand2(PBRs(i» for any i=l, •••• n 

yields . . t' f' d as shown a collection of basic paths. the last step ~s JUs 1 ~e 

in case 2. 
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Applying "m-Cyes" first and then "eye-exp" we obtain 

cyc-exp(m-Cycs(#i:l,n,l[PBRs(i)]»= 

n 
cyc-exp(&[m-Cycs(PBRs(i»])= 

i=l 

cyc-exp(m-Cycs(PBRs(l»)& ..• &cyc-exp(m-Cycs(PBRs(n») 

The above expressions are the same provided the relation 

Cycles(expand2(PBRs(i»)=cyc-exp(m-cycs(PBRs(i») 

holds for any i=l, ••• ,n, which may be shown by case 5. 

case 5 

Applying function "expand2" to a collection of paths and 

bodyreplicators and then "Cycles" we obtain 

Cycles(expand2(PBRI ••. PBRn»= 

Cycles(expand2(PBRl) ••• expand2(PBRn»= 

Cycles(expand2(PBRl»& •.• &Cyeles(expand2(PBRn» 

Since the expansion of PBRi 

expand2(PBRi) for any i=l, ••• ,n 

yields a collection of basic paths, the last step is justified as was 

shown in case 2. 

Applying "m-Cycs" first and then "cyc-exp" we obtain 

cyc-exp(m-Cycs(PBRl •.• PBRn»= 

cyc-exp(m-Cycs(PBRl)& ••• &m-Cycs(PBRn»= 

cyc-exp (m-Cycs( PBRI) ) o. ••• o.cyc-exp (m-Cycs( PBRn) ) 

The above expressions are the same provided the relation 

Cycles(expand2(PBRi»=cyc-exp(m-Cycs(PBRi» 
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holds for any i=l, ••. ,n. which may be shown by cases 4 and 6, depending 

on whether a PBRi for any i=l, •.• ,n is a bodyreplieator or a macro path. 

case 6 

App lying func tion "expand2" to h d h" " a macro pat an t en Cycles we 

obtain 

Cyc1es(expand2(path HSEQ end))= 

Cye(expand2(path MSEQ end))= 

Cye(path expand2(MSEQ) end)= 

Cye(expand2(MSEQ)) 

and applying "m-Cyes" first and then "eye-exp" we obtain 

eye-exp(m-Cyes(path MSEQ end))= 

eye-exp(peye m-Cyes(MSEQ) endpcye)= 

eye-exp(m-Cyes(MSEQ)) 

The above expressions are the same as may be shown by case 7. 

case 7 

Applying function "expand2" to a macro sequence and then "Cyc" we 

obtain 

Cye(expand2(SEQPRTlj ••• jSEQPRTn))= 

Cye(expand2(SEQPRT1)j ••• jexpand2(SEQPRTn))= 

Cye(expand2(SEQPRT1))o ••• oCye(expand2(SEQPRTn)) 

The last step is justified as 

expand2(SEQPRTi)) for any i=l, •••• n 

is a basic sequence (ef. case 2 of theorem 4.1). 

first and then "eye-exp" we obtain 

Applying "m-Cyes" 
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cyc-exp(m-Cycs(SEQPRT1; .•. ;SEQPRTn»= 

cyc-exp(m-Cycs(SEQPRT1)o ••• Om-Cycs(SEQPRTn»= 

cyc-exp(m-Cycs(SEQPRTl»o ••• Ocyc-exp(m-Cycs(SEQPRTn» 

The above expressions are the same provided the relation 

Cyc(expand2(SEQPRTi»=cyc-exp(m-Cycs(SEQPRTi» 

holds for any i=l ••••• n. which may be shown by cases 8. 9, 10 and 13. 

depending on whether a SEQPRTi for l~i~n. is a concatenator, a 

distributor generating sequences. a macro orelement, or an imhricator 

generating sequences respectively. 

case 8 

Applying function "expand2" to a concatenator generating sequences 

and then "Cyc" we obtain 

Cyc(expand2(#i:1.n.1[MSEQ(i);@]»= 

Cyc(expand2(MSEQ(1»; ••• ;expand2(MSEQ(n»)= 

Cyc(expand2(MSEQ(1»)o ••• oCyc(expand2(MSEQ(n») 

and applying "m-Cycs" first and then "cyc-exp" we obtain 

cyc-exp(m-Cycs(#i:1.n.1[MSEQ(i);@]»= 

n 
cyc-exp(O[m-Cycs(MSEQ(i»])= 

i=l 

cyc-exp(m-Cycs(MSEQ(l»)o ••• ocyc-exp(m-Cycs(MSEQ(n») 

The above expressions are the same provided the relation 

Cyc(expand2(MSEQ(i»)=cyc-exp(m-Cycs(MSEQ(i») 

h ld f ' 1 Whl' ch may be shown by case 7 as MSEQ( i) for o s or any 1.= ••••• n. 

i=l ••••• n is a macro sequence. 
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case 9 

Applying function "expand2" to a distributor generating sequences and 

then "Cye" we obtain 

Cye(expand2(;[MSEQ]»= 

Cye(expand2(MSEQ(1»; ••• ;expand2(MSEQ(n») 

Applying "m-Cyes" fir st and then "eye-exp" we obtain 

eye-exp(m-Cyes(;[MSEQ]»= 

n 
eye-exp£:im-Cye(MSEQ(i»]) 

From this point the proof follows as for case 8. 

case 10 

Applying function "expand2" to a macro orelement and then "Cye" we 

obtain 

Cye(expand2(ORPRTl, ••• ,ORPRTn»= 

Cye(expand2(ORPRTl), ••• ,expand2(ORPRTn»= 

Cye(expand2(ORPRTl»U ••• U Cye(expand2(ORPRTn» 

The last step is justified as 

expand2(ORPRTi) for any i=l, ••• ,n 

is a basic orelement (ef. case 5 of theorem 4.2). 

first and then "eye-exp" we obtain 

Applying "m-Cyes" 

eye-exp(m-Cyes(ORPRTl, ••• ,ORPRTn»= 

eye-exp(m-Cyes(ORPRTl)U ••• U m-Cyes(ORPRTn»= 

eye-exp(m-Cyes(ORPRTl»U ••• U eye-exp(m-Cyes(ORPRTn» 

The above expressions are the same provided the relation 
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Cyc(expand2(ORPRTi))=cyc-exp(m-Cycs(ORPRTi)) 

ooids for any i=1, ••• ,nwhich may be shown by cas,"s 11 12 11 )1 ')) , , , <-, ........ , 

23 depending on 'whether ORPTRi for l~i~n is'} concatenat,)r :;e:1eritin,l; 

orelements, a distributor generating orelc:-,,~::ts, an inbrLrttor 

generating orelements, a macro stirelement, an operation or an ele~ent 

of the forI:! (msequence), ro2 spec t ively. 

case 11 

Applying function "expand2" to concatenators generating orelements 

and then "Cye" we obtain 

Cyc(expand2(#i:l,n,1[MOR(i),@]))= 

Cyc(expand2(MOR(1)), ••• ,expand2(MOR(n)))= 

Cyc(expand2(MOR(1)))U ••• U Cyc(expand2(MOR(n))) 

The last step is justified as 

expand2(MOR(i)) for any i=1, ••• ,n 

is a basic or element (cf. case 5 of theorem 4.2). Applying "m-Cycs" 

first and then "eye-exp" we obtain 

cye-exp(m-Cyes( IIi: 1, n, 1 [MOR(i) ,@]))= 

n 
cyc-exPl~fm-Cycs(HOR(i))] )= 

cyc-exp(m-Cycs(MOR(1)))U ••• U cyc-exp(m-Cycs(MOR(n))) 

The above expressions are the same provided the relation 

Cyc( expand2 (HOR( i) ) )=cye-exp (m-Cycs( MOR( i) )) 

holds for any i=l, ••• ,n, which may be shown by case 

i=l, •.• ,n is a macro orelement. 

10 as MOR(i) for 
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case 12 

Applying function "expand2" to distributors generating orelements and 

then "Cye" we obtain 

Cye(expand2(,[MOR]»= 

Cye(expand2(MOR(I», ••• ,expand2(MOR(n») 

and applying "m-Cyes" first and then "eye-exp" we obtain 

eye-exp(m-Cyes(,[MOR]»= 

n 
eye-exp(U[m-Cye(MOR(i»])= 

i=1 

From this point the proof follows as for case 11. 

case 13 

Applying function "expand2" to an imbrieator and then "Cye" we obtain 

Cye(expand2(#i:in,n,1[p(i) @t@ q(i)]»= 

Cye(if in)n then expand2(t') 

if in=n then expand2(p'(n) t q'(n» 

if in<n then expand2(p(in) @t@ q(in»)= 

if in)n then Cye(expand2(t'» 

if in=n then Cye(expand2(p'(n) t q'(n») 

if in<n then Cye(expand2(p(in) @t~ q(in») 

and applying "m-Cyes" first and then "eye-exp" we obtain 

eye-exp(m-Cyes(#i:in,n,l[p(i) @t@ q(i)]»= 

eye-exp(~[m-cyes(p(i) @t@ q(i»/m-Cycs(p'(n) t q'(n»/m-Cycs(t')])= 
i=in 

if in)n then eye-exp(m-Cyes(t'» 

if in=n then eye-exp(m-Cyes(p'(n) t q'(n») 

if in<n then eye-exp(m-Cycs(p(in) @t@ q(in») 
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We now have to show that the three relations hold: 

if in)n then 

Cyc(expand2(t'))=exp-cyc(m-Cycs(t')) 

if in=n then 

Cyc(expand2(p'(n) t q'(n)))=exp-cyc(m-Cycs(p'(n) t q'(n))) 

if in<n then 

Cyc(expand2(p(in) @t@ q(in)))=exp-cyc(m-Cycs(p(in) @t~ q(in))) 

Depending on whether the imbricator generates a sequence, an orelement, 

a starelement or an element, the strings "t'" and "p'(n) t 1'(n)" will 

be sequences, orelements, starelements or elements, respectively. 

Therefore, for in)n and in=n the first two relations may be shown to 

hold by cases 7, 10, 21, 23 respectively. 

We have still to prove the third relation 

Cyc(expand2(p(in) @t@ q(in)))=cyc-exp(m-Cycs(p(in) @t@ q(in))) 

when in<n. In this case before "expand2" and "cyc-exp" are applied the 

imbricator 

#i:in+1,n,1[p(i) @t@ q(i)] 

is stacked into the imbricator stack and the macro cycle set 

n 
t[m-Cycs(p(i) @t@ q(i))/m-Cycs(p'(n) t q'(n))/m-Cycs(t')]= 

i=ln+ 1 

into the macro cycle set stack. Observe that the above macro cycle set 

b . stacked into the imbricator is the macro cycle set of the im r1cator 

stack. We shall use this fact in case 20. 

b . l·S genuine or not and whether it Depending on whether the im r1cator 
starelement or an element, the generates a sequence, an orelement, a 

Fl t F6 For each form Fi 
string "p(in) @t@ q(in)" may be of six forms o· 

1<i<6 the relation 
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Cyc(expand2(Fi»=cyc-exp(m-Cycs(Fi» 

must hold. The six forms and the corresponding cases by which the above 

relation may be shown to hold are as follows: 

Fl. 1~~Spl(in) j ••• j 1~SPn(in) case 14 

F2. AT_SP1(in)j ••• jAT_SPn(in) case 18 
F3. 1M_OPl(in); ••• j1~OPn(in) case 15 

F4. AT_OP1(in), ••• ,AT_OPn(in) case 19 

F5. 1M EL(in)* case 16 

F6. (IMBR_SEQ(in» case 17 

case 14 

Applying function "expand2" to the string inside "[ ]" of a genuine 

sequence imbricator or to the string produced by the non-terminals 

"orimbrseq", "starimbrseq", "elimbrseq" and then "Cyc" we obtain 

Cyc(expand2(IM_SP1(k)j ••• jI~SPn(k»)= 

Cyc(expand2(IM_SPl(k»j ••• jexpand2(IM_SPn(k»)= 

Cyc(expand2(IM_SPl(k»)o ••• oCyc(expand2(IM_SPn(k») 

The last step is justified as 

expand2(U~SPi» for any i=1, ••• ,n 

is a basic sequence (cf. case 2 of theorem 4.1). 

first and then "cyc-exp" we obtain 

Applying "m-Cycs" 

cyc-exp(m-Cycs(I:~SPl(k); ••• ; IM_ SPn(k»)= 

cyc-exp(m-Cycs(IM_SP1(k»o ••• ~-Cycs(IM_SPn(k»)= 

cyc-exp (m-Cycs(IM_ SP l( k) ) ) o ... ocyc-exp (m-Cycs( 1:·~ SPn( k) ) ) 

The above expressions are the same provided the relation 

Cyc(expand2(IM_SPi(k»)=cyc-exp(m-Cycs(IM_SPi(k») 
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holds for 

cases 8, 9, 

all i=1 •••.• n. The above relation may be shown to hold by 

13 when U~SPi(k) for 1<i<n is a concatenator. distr ioutor 

and imbricator respectively generating sequences, by 

1M_SPi(k) is an orelement, or by case 20'when I~SPi(k) 

"@t@". 

case 15 

case 

is the 

10 when 

s tr ing 

Applying function "expand2" to the string inside a genuine imbricator 

generating orelements or to the string produced by one of the 

non-terminals "star imbror", "elimbror" and 

then "Cyc" we obtain 

Cyc(expand2(I~OPl(k), •.• ,IM_OPn(k»)= 

Cyc(expand2(I~OPl(k», ••• ,expand2(IM_OPn(k»)= 

Cyc(expand2(IM_OPl(k»)U ••• U Cyc(expand2(IM_OPn(k») 

The last step is justified as 

expand2(n~OPi) for any i=I, ••• ,n 

is a basic orelement (cf. case 5 of theorem 4.2). 

first and then "cyc-exp" we obtain 

Applying "m-eycs" 

cyc-exp(m-Cycs(IM_OPl(k), ••• ,IM_OPn(k»)= 

cyc-exp(m-Cycs(IM_OPl(k»U ••• U m-Cycs(I~~OPn(k»)= 

cyc-exp(m-Cycs(IM_OPl(k»)U ••• U cyc-exp(m-Cycs(IM_OPn(k») 

The above expressions are the same provided the relation 

Cyc(expand2(IM_OPi(k»)=cyc-exp(m-Cycs(I~~OPi(k») 

for i=I, ••• ,n holds. The above relation may be shown to hold by cases 

11, 12, 13 when 1M_OPi(k) for 1~i~k is a concatenator or distributor or 

imbricator generating orelements, by case 21 if it is a starred element, 

by cases 22 or 23 if it is an operation or an element of the form 

"(msequence)" respectively, by case 16 if it is a starred element 

involving "@t@", and finally by case 17 if it an element involving 

"@t@". 
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case 16 

Applying function "expand2" to strings produced by the non-terminals 

"seqimbrstarel", "orimbrstarel", "starimbrstarel" and "elimbrstarel", 

and then "Cyc" we obtain 

Cyc(expand2(I~EL(k)*))= 

Cyc(expand2(I~EL(k))*)= 

Cyc(expand2(IM_EL(k)))* 

and applying "m-Cycs" first and then "cyc-exp" we obtain 

cyc-exp(m-Cycs(IM_EL(k)*))= 

cyc-exp(m-Cycs(IM_EL(k))*)= 

cyc-exp(m-Cycs( n~ EL(k)))* 

The above expressions are the same provided the relation 

Cyc(expand2(I~OPi(k)))=exp-cyc(m-Cycs(IM_OPi(k))) 

holds, which may be shown by case 17. 

case 17 

Applying function "expand2" to the strings represented by the 

syntactic entity (I:1BR_SEQ(k)), in which the syntactic variable 

represents strings produced by the non-terminals "seqimbrseq", 

"orimbrseq", "starimbrseq", "elimbrseq", and then "Cyc" we obtain 

Cyc(expand2«IMBR_SEQ(k)))= 

Cyc«expand2(IMBR_SEQ(k)))= 

Cyc(expand2(IMBR_SEQ(k)) 

and applying "m-Cycs" first and then "cyc-exp" we obtain 



The 

cyc-exp(m-Cycs«IMB~SEQ(k)))= 

cyc-exp«m-Cycs(IMB~SEQ(k)))= 

cyc-exp(m-Cycs(IMBR_SEQ(k)) 

above expressions are the same 
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as may be shown by case 14 if the 
"@t@" is fur ther nested inside "( )" and by case 18 if the "@t@" is not 

further nested inside "( )11. In the special case of an imbricator 
generating sequences the string "@t~" may only appear as an element 

between two semicolons and the equality of the above expressions may be 

shown by case 20. 

case 18 

Applying function "expand2" to the sequence involving "@t@" in one of 

its orelements, and then "Cyc" we obtain 

Cyc(expand2(AT_SPl(k); ••• ;AT_SPn(k)))= 

Cyc(expand2(AT_SPl(k)); ••• ;expand2(AT_SPn(k)))= 

Cyc(expand2(AT_SP1(k)))o ••• oCyc(expand2(AT_SPn(k))) 

The last step is justified as 

expand2(AT_SPi)) for any i=1, ••• ,n 

is a basic sequence (cf. case 2 of theorem 4.1). 

first and then "cyc-exp" we obtain 

Applying "m-Cycs" 

cyc-exp(m-Cycs(AT_SP1(k); ••• ;AT_SPn(k)))= 

cyc-exp(m-Cycs(AT_SP1(k))O ••• Om-Cycs(AT_SPn(k)))= 

cyc-exp(m-Cycs(AT_SP1(k)))o ••• ocyc-exp(m-Cycs(AT_Spn(k))) 

The above expression are the same provided the relation 

Cyc(expand2(AT_SPi(k)))=cyc-exp(m-Cycs(AT_SPi(k))) 

holds for all i=I, ••• ,n. The above relation may be shown to hold by 

cases 8, 9, 13 if AT SPi(k) for l<i<n is a concatenator, a distributor 

or an imbricator respectively, generating sequences, by case 10 if it is 
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an orelement or by case 19 if it invoves "@t.'9" as one of its elements. 

case 19 

Applying function "expand2" to an orelement involving "@t@" as one of 

its elements and then "Cyc" we obtain 

Cyc(expand2(AT_OPl(k), ••• ,AT_OPn(k»)= 

Cyc(expand2(AT_OP1(k», ••• ,expand2(AT_OPn(k»)= 

Cyc(expand2(AT_OP1(k»)U ••• U Cyc(expand2(AT_OPn(k») 

The last step is justified as 

expand2(AT_OPi) for any i=l, ... ,n 

is a basic orelement (cL case 5 of theorem 4.2). Applying "m-Cycs" 

first and then "cyc-exp" we obtain 

cyc-exp(m-Cycs(AT_OP1(k), ••• ,AT_OPn(k»)= 

cyc-exp(m-Cycs(AT_OPl(k»)U ••• U m-Cycs(AT_OPn(k»)= 

cyc-exp(m-Cycs(AT_OPl(k»))U ••• U cyc-exp(m-Cycs(AT_OPn(k») 

The above expressions are the same provided the relation 

Cyc(expand2(AT_OPi(k»)=cyc-exp(m-Cycs(AT_OPi(k») 

holds for all i=l, ... ,n. The above relation may be shown to hold by 

cases 11, 12, 13 when AT OPi(k) for l<i<n is a concatenator or a 

distributor or an imbricator generating orelements respectively, by 

cases 16 and 17 if the "@t@" is further nested inside "( )", or by case 

20 if AT_OPi(k) for l<i<n is "@t@". 

case 20 

Applying function "expand2" to the special element "@to" and 

"Cyc" we obtain 

then 
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Cyc(expand2(imbr-pop» 
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where imbr-pop returns the imbricator at the top of the stack which will 

be denoted by Imbr. Applying "m-Cycs" first and then "cyc-exp" we 

obtain 

cyc-exp(m-Cycs(AT_EL»= 

cyc-exp ( T)= 

cyc-exp(cyc-pop) 

where eye-pop returns the macro cycle set at the top of the stack which 

will be denoted by MCset. Since MCset is the same as m-Cycs(Imbr) (cf. 

case 13) for the above expressions to be the same the relation 

Cyc(expand2(Imbr»=cyc-exp(m-Cycs(Imbr» 

must hold, which may be shown by case 13. 

case 21 

Applying function "expand2" to a starelement and then "Cyc" we obtain 

Cyc(expand2(EL*»= 

Cyc(expand2(EL)*)= 

Cyc(expand2(EL»* 

and applying "m-Cycs" first and then "cyc-exp" we obtain 

cyc-exp(m-Cycs(EL*»= 

cyc-exp(m-Cycs(EL)*)= 

cyc-exp(m-Cycs(EL»* 

The above two expressions are the same provided the relation 

Cyc(expand2(EL»=cyc-exp(m-Cycs(EL» 

holds, which may be shown by cases 22 or 23 when EL is an operation or 
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an element of the form (MSEQ) respectively. 

case 22 

Applying function "expand2" to an operation and then "Cyc" we obtain 

Cyc(expand2(OP»= 

Cyc(OP)= 

{OP} 

and applying "m-Cycs" first and then "cyc-exp" we obtain 

cyc-exp(m-Cycs(OP»= 

cyc-exp( {OP})= 

{OP} 

which are the same. 

case 23 

Applying function "expand2" to an element of the form (MSEQ) and then 

"Cye" we obtain 

Cye(expand2«MSEQ»)= 

Cye«expand2(MSEQ»)= 

Cye(expand(MSEQ» 

and applying "m-Cyes" first and then "eye-exp" we obtain 

cyc-exp(m-Cycs«MSEQ»)= 

cyc-exp«m-Cycs(MSEQ»)= 

eyc-exp(m-Cycs(MSEQ» 

The above expressions may be shown to be the same by case 7. 

As we have proven the theorem for all possible cases of syntactic 

. . i " d2" d" C " ent~t~es of macro programs on which the funct ons expan an m- yes 

apply, we may conclude that the theorem holds for all macro programs 



- 286 -

produced by the syntax of appendix D.III 

In this chapter we examined two methods by which the vector firing 

sequences of basic programs generated from macro programs may be derived 

from the macro programs themselves. We first reduced the problem of 

finding the vector firing sequences to the problem of finding the 

ordered cycle sets of the basic programs directly from the macro 

programs generating them. 

The first method for finding the ordered cycle sets involves two 

steps. In the first step all bodyreplicators are expanded and ordered 

expressions are derived which yield the cycle sets of pure macro paths. 

In the second step the cycle sets of basic paths are derived directly 

from the pure macro paths which generate them, by expanding parts of 

macro sequences and constructing their cycle sets of the strings they 

generate, which are then composed together by union and concatenation 

operations. What the meaningful smallest parts of macro sequences makes 

sense to expand and to find their cycle sets depends on the kind of 

strings macro elements generate. If the macro elements generate 

syntactically strong strings, then the smallest such parts are the 

elements and the macro elements of the sequences. as we have 

demonstrated in section 4.1.2. If the macro elements do not generate 

syntactically strong strings but matching pairs of parentheses, as macro 

elements in the notation of section 3.2, then the smallest such parts 

are the orelements involving starelements. 

The second method for finding the ordered cycle sets may be applied 

to programs the macro elements of which generate syntactically strong 

regularities. According to this method macro cycle objects are 

constructed from macro programs which concisely represent and precisely 

generate upon expansion the ordered cycle sets of the basic program 

generated by the expansion of the macro programs. 

The second method has an advantage over the first. The ordered cycle 

sets obtained by the first method are those of a basic program generated 

by a macro program with all its integer constant parameters given 

specific values. But according to the second method, macro cycle 

b " 1" 1 t Of course upon the expansion of o Jects may a so lnvo ve parame ers. 
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macro cycle objects all integer constants should be given specific 

values. The parametarized representation of ordered cycle sets by macro 

cycle objects is very important in the verification of parametarized 

macro programs, where we frequently need to argue in terms of the cycle 

sets of basic paths generated by macro paths. Macro cycle objects give 

the formal basis for lucid and precise arguments on the cycles of paths. 

The second method has the disadvantage that it may only be applied to 

constrained macro programs, which in general are not as concise as macro 

programs in the notation of 3.2. In other words a macro program in the 

notation of 3.2 generating the same basic program as a macro program in 

the notation of 4.2.1 is in general more concise than the latter. 
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5 CONCLUSIONS 

In this thesis we were mainly concerned with the macro COSy notation. 

We re-examined and revised all aspects of the macro COSy notation, its 

design as a specification language for asynchronous systems, the formal 

syntax for macro programs, the expansion rules for macro- elements and 

for complete macro programs. Various previously developed notations and 

subnotations and their formal syntax were carefully examined and their 

advantages and disadvantages were pointed out. 

In the process of programming with these notations we came to 

formulate better the properties a "good" macro notation should possess: 

1. The syntactic well-formedness of a macro program should imply that 

its expansion yields a syntactically well-formed basic program. 

2. The notation should allow the generation of a large class of basic 

programs, and their concise representation. 

3. The syntax for macro COSy programs should be uniform with the syntax 

for basic COSy programs. 

4. The reading of macro programs should be possible without formal 

expansion. 

Previously developed macro notations do not in general possess all four 

of these properties. The syntax rules for most of them permit macro 

programs which do not expand to basic programs and meta-restrictions are 

introduced to eliminate these "wide" programs. The syntax rules are not 

uniform with syntax rules for basic programs and are not complete as 

replicators in collectivisors are not given formal syntax rules. 

In designing the new macro notation we adopted the same types of 

constructs, that is collectivisors, replicators and distributors, for 

representing and generating basic programs, as in previously developed 

notations. In the new notation, we even incorporated and combined 

f . . contr;but;ng to the generality and aspects rom var10US notat1ons, ~ ~ 

readability of macro programs. These aspects include the 
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bodyreplicators generating paths and processes and permitting nesting of 

other bodyreplicators, the implicit and explicit lowerbound of 

dimensions of rectangular arrays, etc. We have made a number of 
modifications, improving the readability of macro programs, such as the 
addition of the terminal symbol "endarray", the change of the form and 
the position of the index specification part of replicators and the 

change of the round parentheses in distributors to square ones. 

Apart from the above modifications others more fundamental to the 

design of the notation were made. Replicators in collectivisors were 

carefully designed in relation to distributors. Replicators in 

collectivisors permit subscripted operations which correspond to arrays, 

not necessarily rectangular. More general shapes of arrays could be 

permitted by replicators but we have restricted them in order to keep 

the expansion of distributors relatively simple. Replicators in 

sequences were designed to generate sequences. We have excluded all 

other replicators such as the range, context and neighbourhood dependent 

replicators, which are permitted in some other notations. 

Finally, a number of extensions improving the generality of macro 

programs were developed. These extensions include the part of the 

imbricators between the two "@"s, appearing only once in the strings 

obtained by their expansion, left and right replicators which are 

permitted to expand to empty strings, and a number of extensions of 

distributors: the relaxation of the compatibility of distributable 

dimensions, the generalization of the strings they may generate and in 

particular the symmetric nesting of replicators and distributors, the 

subrange and the selection of distributable dimensions features. 

The formal syntax of programs in this notation is according to our 

requirements close-fitting, since we have avoided the use of 

meta-restriction rules constraining the regularities replicators 

. t t· The restr ~ctions we have imposed on generate as in prev~ous no a ~ons. L 

macro programs are of a context sensitive nature. The expansion of 

macro " d"· t . programs was formally defined by the function expan ~n sec ~on 

3.3.3. . "1 0" In this function we used three auxilliary funct~ons, rep exp , 
first order 

th~ expansion of replicators, and "gelexpO" "distrexp 0" defining 

distributors and of the left and right replicators in generalized 
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elements respectively. The expansions of all replicators and 

distributors were formally defined in terms of the 't' preml lve recursive 

t "COpy". Th 'f d' opera or e expansion 0 lstributors was directly defined. 

We proved by theorems 3.3 and 3.4 that the expansion of concatenators 

and respectively imbricators yields macro sequences. Theorem 3.5 shows 

that if all left and right replicators of a generalized element are 

expanded the resulting string is a macro sequence, and the corollary of 

theorem 3.9 that the expansion of distributors are also macro sequences. 

We have used the above theorems 3.3, 3.4, 3.5 and the corollary of 3.9 

in theorem 3.11 proving that the expansion of complete macro programs 

produced by the syntax rules in section 3.2 yields well-formed basic 

programs. These theorems show the close fittness of the syntax rules. 

The syntax rules are also uniform with the rules for basic COSy, 

since analogous constructs in both notations are expressed by similar 

rules and various constructs of macro COSy were expressed in a style 

similar to basic COSy. 

The development of syntax rules for macro programs in the new 

notation did not possess any difficulties, apart from the syntax rules 

for imbricators. The syntax of imbricators and in particular genuine 

imbricators was the reason meta-restriction rules had to be used. The 

problems were twofold: to express that any number of opening parentheses 

on the left of "@t@" should match with closing parentheses on the right 

of "@t@" and to express it in a manner similar to basic COSy. Four 

groups of syntax rules were developed. The first group (CFm) gave 

context-free rules but specified a mixed precedence of ";" and ",". The 

second group (CS) gave context-sensitive rules. The third (CFr) gave 

context-free rules specifying the precedence of 
11 II , over ";" but 

required meta-restriction rules to exclude strings involving more than 

two "@"S. Only the fourth group (CF) involving close fitting 

context-free rules specifying the precedence of " " , over If." , satisfied 

our requirements. 

We proved a number of theorems which give the relation between 

concatenators, imbricators and distributors. We showed by theorems 3.1 

and 3.2 that for any replicator there exist a whole family of 

replicators expanding to the same string as the former. We showed how a 
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replicator may be transformed into its normal form and how from a 

replicator in normal form all other replicators in the same family may 

be obtained. We showed by theorem 3.7 that certain imbricators, the 

non-genuine imbricators, could be replaced by concatenators. By the 

corollary of theorem 3.7 the syntax rules for imbricators could be 

restricted to permit only genuine imbricators without restricting the 

generality of the notation. As it was demonstrated, this choice would 

jeopardize the conciseness and readability of macro programs. We showed 

by theorem 3.8 that all concatenators could be replaced by imbricators. 

A corollary of this theorem is that imbricators are sufficient and 

concatenators could be eliminated altogether. But as programs would not 
and readable 

be as concis~this option was rejected as well. Theorem 3.7 showed that 

all distributors could be replaced by concatenators and following 

theorem 3.8 by imbricators also. Theorem 3.8 gave the conditions under 

which concatenators and imbricators may be replaced by distributors. We 

also proved theorem 3.6 which showed that wide concatenators are 

sufficient to generate any str ings our imbr icator s generate. We only 

indicated in section 3.4 how wide concatenators could be modified to 

form macro elements permitted by our notation, but no formal result or 

method was obtained regarding this direction. The following figure 

shows possible replacements of sequence replicators, distributors and 

wide concatenators: 

wide concatenator 

11))0·"'-'1 ~ \"o-n5_601 ,3 02 
concatenator imbricator 
~4 

h. 1.~ 

In the above figure arcs from A to B indicate possible replacement of 

macro elements of type A by type B. Arcs are labelled by the relevant 

theorem. A "(c)" labelling an arc indicates that the replacement is 

only possible under certain conditions. 
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In chapter 4 we explored ways by which the semantics of basic 

programs generated from macro programs may be directly obtained from the 

macro programs themselves. The basis for the construction of vector 

firing sequences directly from macro programs is that the set of vector 

operations and the set of firing sequences of basic paths may be 

obtained from the ordered cycle sets of paths of a basic program, and 

that these ordered cycle sets may be constructed directly from the macro 

programs. Two methods were developed for constructing the ordered cycle 

sets of basic programs directly from the macro programs which generate 

the basic programs. 

The first method may be applied to macro programs in any macro 

notation, as long as the cycles of syntactically strong strings are 

constructed. We demonstrated the method for two macro notations: The 

notation in section 3.2 in which the syntactically strong strings are 

its orelements consisting of starelements, and the restrictive notation 

of section 4.1.2 in which the smaller syntactically strong strings are 

its elements or macro elements. Although the latter notation is less 

general than that of section 3.2 it is much more readable. 

The second method may only be applied to macro programs the macro 

elements of which generate syntactically strong regularities. The 

syntax for such constrained programs was developed in section 4.2.1. 

Programs in this notation have the disadvantage that they are less 

general and less concise than programs in the notations of sections 3.2 

and 4.1.2 but they have the advantage that they are much more easily 

readable. h 1 th d t e that they allow the T ey a so possess e a van ag 

parametarized representation of ordered cycle sets by the macro cycle 

objects which is of a primary importance in the verification of 

parametarized macro programs. 
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Appendix A 

THE SYNTAX OF PROGR&~S IN THE BASIC COSy ~OTATION 

A-l THE SYNTAX OF BASIC COSY PROGRAMS WITH SIMPLE OPERATIONS 

BNl. basicprogram=program programbody endprogram 

BN2. programbody={path/process}+ 

BN3. path=path (sequence)* end 

BN4. process=process (sequence)* end 

BN5. sequence={orelement 1;}+ 

BN6. orelement={starelement ~)}+ 

BN7. starelement=element/element* 

BNS. element=operation/(sequence) 

BN9. operation=lc-letter{lc-letter/digit/_}~ 

BNlO. lc-letter=a/b/ ••• /z 

BNll. digit=O/l/ ••• /9 

A-2 THE SYNTAX OF BASIC COSY PROGR&~S WITH SUBSCRIPTED OPERATIONS 

BNl. - BNS. 

BN9a. operation=simple-op/subscr-op 

BN9b. simple-op=lc-letter{lc-letter/digit/_}~ 

BN9c. subscr-op=uc-letter{uc-letter/digit/_}~({integer ~,}+) 

BNll. 

BNl2. uc-letter=A/B/ ••• /Z 

BNl3. integer={digit}+ 

A-2.l Context Sensitive Restrictions 

(Brest) 

S b . d . f the same collective name should u scr1pte operat10ns 0 

have the same number of dimensions. 
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Appendix B 

THE SY:HAX OF MACRO PROGRAMS IN THE GENERAL MACRO NOTATION 

MN1. mprograrn=program rnprogrambody endprograrn 

MN2. mprograrnbody={collectivisor/mpath/mprocess/bodyreplicator}+ 

MN3. collectivisor=array{sirnpleardecl/replardecl}+endarray 

MN4. simpleardecl={arrayid}+({{iexpr:/}iexpr!,}+) 

MN5. replardecl= index_spec[{replardecl/arrayid({iexpr !,}+)}+] 

MN6. index_spec=#index:iexpr,iexpr,iexpr 

MN7. arrayid=uc-letter{uc-letter/digit/_}~ 

MN8. bodyreplicator=index_spec[{mpath/mprocess/bodyreplicator}+] 

MN9. mpath=path (msequence)* end 

MN10. mprocess=process (msequence)* end 

MNll. msequence={morelement !;}+ 

MN12. morelement={gelement !,}+ 

MN13. gelement={rreplicator}~ 

{starelement/sreplicator/distributor} 

{lreplicator}~ 

MN14. starelement=element/element* 

MN1S. element=operation/indexedop/(msequence) 

MN16. operation=lc-letter{lc-letter/digit/_}~ 

MN17. indexedop=arrayid{({iexpr!,}+)/ } 

MN18. sreplicator=index_spec[{concseq/imbrseq}] 

° /"0 ° iexpr} [msequence] MN19. distributor={;/,}{/1expr}{ 1I1expr,1expr, 

MN20. lreplicator=index_spec[{;/,}I {concseq/imbrseq}] 
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~1N2L rreplicator=index_spec[ {concseq/imbrseq} I {;/,}] 

MN22. concseq={morelement;}~ concor /{morelement;}+ @ 

MN23. concor={gelement,}+ @ 

MN24. imbrseq=imbr_at_seq /{morelement ;}~ imbror {; morelement}* 

MN2S. imbror={gelement ,}~ imbrstarel {, gelement}* 

MN26. imbrstarel=imbrel/imbrel* 

~m27. imbrel=Cimbrseq) 

{morelement ;}+ {@/at orif/at orim/at orlb} {; morelement}*· - - - -' 

{@/at_orlf/at_orlm/at_orlb} {; morelement}+ 

/{morelement ;}+ {@/at_orlf/at_orim/at_orlb} {; morelement}~; 

{at_orlf/at_orlm} 

/{at_orim/at orlb} {; morelement}*; 

{@/at_orlf/at_orlm/at_orlb} {; morelement}+ 

/{at_orlm/at_orlb} {; morelement}~; {at_orif/at orlm} 

/{morelement;}+ {at_or2fb/at_or2fm/at_or2mm/at_or2mb}{;morelement}+ 

/{morelement ;}+ {at_or2fm/at_or2mm} 

/{at_or2mm/at_or2mb} {; morelement}+ 

fat or2mm 

/@ {morelement ;}~ {at_orif/at_orlm} 

/@ {morelement ;}~ {@/at_orlf/at_orlm/at_orlb} {;morelement}+ 

/{at_orlm/at_orlb} {; morelement}~ @ 

/{morelement ;}+ {@/at orlf/at_orlm/at_orlb} {;morelement}~ @ 

/@ msequence @ 

MN29. at orlf=@ {,gelement}+ 
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MN30. at_orlm={gelement ,}+ @ {, gelement}+ 

MN31. at_orlb={gelernent ,}+ @ 

MN32. at or2fb=@ {, gelement}* , @ 

MN33. at or2fm=@ {, gelement}+ , @ {, gelernent}+ 

MN34. at_or2mb={gelernent ,}+ @ {,gelement}* , @ 

MN35. at_or2mm={gelement ,}+ @ {,gelement}* , @ {, gelement}+ 

MN36. uc-letter=A/ ••• /Z 

1'1N37. lc-letter=a/ ••• /z 

MN38. digit=O/ ••• /9 

MN39. iexpr={+/-/ } {term ~{+/-}}+ 

MN40. term={factor ~{*/DIV/MOD/EXP}}+ 

MN41. factor=integer/constant/index/funct_desig1i2 expr) 

MN42. integer={digit}+ 

MN43. constant=lc-letter{lc-letter/digit/_}2 

MN44. index=lc-letter{lc-letter/digit/_}2 

MN45. funct_desig={ABS/FACT/SQUARE} (iexpr) 

B-1 CONTEXT SENSITIVE RESTRICTIONS 

(MPrest) 

Collective names should be declared before any path or 

process involving any of its subscripted operations. 

(Crestl) 

the upperbound of the dimensions of the collective names to 

be greater than or equal to their corresponding implicit 

explicit lowerbound. 

or 
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(Crest2) 

Each replicator must 

index. 
specify a non empty range for its 

( Crest3) 

All expressions indexing collective names should yield 

integers for all the values which the indices they involve 
r.qkp. 

(Crest4) 

A collectivisor involving nested replicators must be of the 

form 

tlkn: inn, fin, incn[ ••• tikI: inl, fil, ind [Y( hl, h2, ••• , hn)] ••• ] 

wrere hi for i=l, ... ,n are expressions involving indices kj 

for j=l, ••• ,n 9.lch that each ki for i=l, ••. ,n must appear in 

at least one dimension, and an index ki i=l, ••• ,n may only 

appear together with indices kj for j>i in a single 

expression and in at most (i-I) expressions with indices kj 

for, j<i. 
( Irestl) 

Identifiers for replicator indices should be distinct from 

any identifiers used for simple operations. 

(Irest2) 

Repl icator indices are only defined inside" [ 1" of the 

replicator with which they are associated. In the scope of 

a replicator index no other replica tor index having the same 

identifier is permitted. 

(BRrest) 

The range of the bodyreplicator indices should be non empty. 

(Rrest) 

inc#O and n=(fi-in)//inc+l>O or t' non empty. 

(Rrest2) 

The replicators should generate subscripted 

permitted by the collectivisors. 

operations 
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(Drestl) 

When a subrange is defined the slices will not be required 

to contain the same number of sections but at least as many 

sections as specified by the subrange. 

(Drest2) 

Inside a k-nested distributor there must only be arrays with 

at least k dimensions out of which exactly k should be 

specified as their distributable dimensions. 

(Drest3) 

incind#O and Ns=(fiind-inind)//incind+l~l 

(Drest4) 

l~inind+(j-l)*incind~Ms for j=l, .•. ,Ns 

(Dre stf) 

The dimension selectors in distributors lIR.lst have values 

which are meaningful dimensions of array slices. 

(CrestS) 

An array identifier may only occur once in collec tivisor s. 
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Appendix C 

THE SY~HAX OF MACRO PROGRA.'1S IN THE STRICT MACRO NOTATION 

MN1. mprograrn=prograrn rnprogrambody endprograrn 

RN1. mprogrambody={collectivisor/mpath/bodyreplicator}+ 

MN3. collectivisor=array {simpleardecl/replardecl} +endarray 

MN4. simpleardecl={arrayid}+({{iexpr:/}iexpr ~,}+) 

MNS. replardecl=index_spec[{replardecl/arrayid({iexpr ~,}+)}+] 

MN6. index_spec=#index:iexpr,iexpr,iexpr 

MN7. arrayid=upper-case-letter{upper-case-letter/digit/_}~ 

RN2. bodyreplicator=index_spec[{mpath/bodyreplicator}+] 

MN9. mpath=path (msequence)* end 

RN3. msequence={seqpart 1;}+ 

RN4. seqpart=seqmacro/morelement 

RNS. morelement={orpart 1,}+ 

RN6. orpart=ormacro/starmacro/mstarelement 

RN7. mstarelement=element/element* 

RN8. element=operation/indexedop/(msequence)/elmacro 

l1N16. operation=lower-case-le tter {lower-case-letter / digiti -}~ 

MN17. indexedop=arrayid{({iexpr @,}+)/ } 

RN9. seqmacro=seqrepl/seqdistr 

RN10. seqrepl=index_spec[{seqconcseq/seqimbrseq}] 

RNll. seqconcseq={seqpart;}+ {@/seqconcor} 

RN12. seqconcor={orpart ,}+ @ 

RN13. Seqdistr=;{/iexpr}{/Oiexpr,iexpr,iexpr}[msequence] 

/,{/iexpr}{/Oiexpr,iexpr,iexpr}[seqpart{;seqpart}+) 
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R~14. seqimbrseq=seqimbr atout seq/seqimbr out _seq - -

RNl5. seqimbr out seq= {seqpar t ; }+ seqimbror { ; seqpar t}* - -

/ {seqpar t ;}~ seqimbror { ; seqpart}+ 

{seqpart ;}+ {@/at_orlf/at_orlm/at_orlb} {; seqpart}~; 

/{seqpart ;}+ {@/at_orlf/at_orlm/at_orlb} {; seqpart}~; 

/{at_orlm/at orlb} {; seqpart}*; 

{@/at orlf/at orlm/at_orlb} {; seqpart}+ 

/ {seqpart;}+ {at_or2fb/at_or2fm/at_or2mm/at_or2rnb} {; seqpart}+ 

/{seqpart ;}+ {at_or2fm/at_or2mm} 

/{at_or2mm/at_or2mb} {; seqpart}+ 

/@ {seqpart ;}~ {@/at_orlf/at_orlm/at_orlb} {;seqpart}+ 

/{seqpart ;}+ {@/at_orlf/at_orlm/at_orlb} {;seqpart}2 ~ 

/@ msequence @ 

R~17. seqimbror={orpart ,}~ seqimbrstarel {, orpart}~ 

RNI8. seqimbrstarel=seqimbrel/seqimbrel* 

RN20. seqimbr_in_seq={seqpart ;}2 seqimbror {; seqpart}~ 

RN21. seqirnbr_atin_seq=seqimbr_atout_seq 

/{at_orlm/at_orlb} {; seqpart}2 ;{at_orlf/at_orlm} 

fat or2mm 

/@ {seqpart ;}2 {at_orlf/at_orlrn} 

/{at_orlrn/at_orlb} {; seqpart}2 @ 

RN22. ormacro=orrepl/ordistr 
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RNZ 3. ord is tr= , {/ iexpr } {/ 1/ iexpr , iexpr , iexpr } [mor e lemen t 1 

RNZ4. orrepl=index_spec[{orconcor/orimbror}] 

RNZS. orconcor={orpart ,}+@ 

RNZ6. orimbror=orimbr atout or 

/{orpart ,}+ orimbrstarel {, orpart}* 

/{orpart ,}~ orimbrstarel {, orpart}+ 

fat or2mm 

/"2 morelement @ 

RN28. orimbrstarel=orimbrel/orimbrel* 

RN29. orimbrel=(orimbrseq) 

RN30. orimbrseq={seqpart ;}~ orimbr in or {; seqpart}~ 

RN31. orimbr_in_or={orpart ,}~ orimbrstarel {, orpart}~ 

RN33. 

RN34. 

RN3S. 

RN36. 

orimbr atout or 

/{seqpart;}+ {at_or2fb/at_or2fm/at_or2mm/at_or 2mb}{;seqpart}+ 

/ {seqpart ;}+ {at_or2fm/at_or2nun} 

flat or2mm/at_or2mb} {; seqpart}+ 

/@ {@/at_orlf/at_orlm/at_orlb} {;seqpart}+ 

/{seqpart ;}+ {@/at_orlf/at_orlm/at_orlb} @ 

at orlf=@ {,orpar t}+ 
-

at_orlm={orpart ,}+ @ {, orpar t}+ 

at_orl b={orpar t ,}+ @ 

at or2fb=@ {, or par t}~ , @ 
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RN37. at_or2fm=@ {, orpart}+ , @ {, orpart}+ 

RN38. at_or2mb={orpart ,}+ @ {,orpart}~ , (~ 

RN39. at_or2rnm={orpart,}+ @ {,orpart}~ ,@ {,orpart}+ 

RN40. starmacro=index_spec[(starimbrseq)*] 

RN41. starimbrseq=starimbr_at_seq 

/{seqpart ;}~ starimbror {; seqpart}* 

RN42. starimbror={orpart ,}~ starimbrstarel {, orpart}~ 

RN43. starimbrstarel=starimbrel/starimbrel* 

RN44. starimbrel=(starimbrseq) 

{seqpart ;}+ @ ;{mstarelement ;/ } @ {; seqpart}+ 

/{seqpart ;}+ 

{starat orlf_one/starat_orlb_one/starat_lb_many/starat_orlm_b} 

; @ {; seqpart}+ 

/ {seqpart ;}+ @ 

{starat_orlf_one/starat_orlf_many/starat_orlb_one/starat_orlm_f} 

{ ;seqpart}+ 

/{seqpart ;}+ {@/starat_orlb one/starat_orlb_many} ; 

{starat orif one/starat orlf many} 
- - --
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I {seqpart ;}+ 

{starat_or2fb/starat_or2fm/starat_or2mm/starat_or2mb} 

{ ;seqpart}+ 

I{seqpart ;}+ {starat_or2fm/starat_or2mm} 

I {starat_2mb/starat_or2mm} {; seqpart} 

I starat or2mm 

I@ {starat_orlf_one/starat_orlf_manY/starat_orlm_f} 

1·'2 {@I s tarat_or 1 f_onel s tarat_or 1 f_ many I s tarat_or lm_ fl s tar at_or 1 b_one} 

{; seq par t}+ 

I{starat_orlb_one/starat_orlb many/starat orlm b} @ 

I{seqpart ;}+ 

{@/starat_orlb_one/starat orlb many/starat orlm b/starat orlf one}~ 

I@ mstarelement @ 

RN46. starat orlf one=@ , mstarelement 

R(~47. starat_orlf_many=:2 {, orpart}+ 

RN48. starat orlb one=mstarelement , @ 

RN49. starat_orlb_many={orpart ,}+ @ 

RNSO. starat orlm f=mstarelement ,@ {, orpart}+ 

RNS1. starat_orlm_b={orpart ,}+ @, mstarelernent 

RNS2. starat or2fb=@ {,mstarelement/} @ 

RNS3. starat or2fm=@ { ,mstarelementj} ,@ {, orpar t}+ 

RNS4. starat_or2mm={orpart ,}+ @ {,mstarelernent/}, 

RNSS. starat or2rnb={orpart ,}+ @ {,mstarelernent/}, 

RNS6. elmacro=index _spec[ (elimbrseq)J 

RNS7. elimbrseq=elirnbr_at_seq 

I{seqpart ;}~ elimbror {; seqpart}~ 

@ 

@ 

{, orpart}+ 



- 314 -

RN58. elimbror={orpart ,}~ elimbrstarel {, orpart}* 

RN59. elimbrstarel=elimbrel/elimbrel* 

RN60. elimbrel=(elimbrseq) 

RN61. elimbr_at_seq= 

{seqpart ;}+ @ ;{element ;/ } @ {; seqpart}+ 

/ {seqpart ;}+ 

{elat_orlf_one/elat_orlb_one/elat_lb_many/elat_orlm_b} 

; @ {; seqpart}+ 

/ {seqpar t ; }+ 

@;{elat_orlf_one/elat_orlf_many/elat_orlb_one/elat_orlm_f} 

{ ;seqpart}+ 

/{seqpart ;}+ {@/elat_orib one/elat orib many} 

{elat orlf_one/elat_orlf_many/elat_orlrn_f} 

/{elat_orlb_one/elat_orlb_many/elat_orlm_b} ; 

{@/elat_orlf_one/elat_orlf_many} {; seqpart}+ 

/{elat_orlb_one/elat_orlb_many} ; 

{elat_orlf_one/elat_orlf_many/elat_orlrn_f} 

/{elat_orlb_one/elat_orlb_many/elat_orlm_b} 

{elat_orlf_one/elat_orlf_many} 

/{seqpart ;}+ 

{elat_or2fb/elat_or2fm/elat_or2mm/elat_or2mb} {;seqpart}+ 

/{seqpart ;}+ {elat_or2fm/elat_or2mm} 

/{elat_2mb/elat_or2mm} {; seqpart} 

/elat or2mm 

/@ {elat or 1 f_one/ e lat_or If_many / elat_orlm_f} 
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/@ {@/elat_or1f_one/elat_or1f_many/elat_or1m_f/elat_or1b_one} 

{; seqpart}+ 

/{elat_or1b_one/elat_or1b_many/elat_or1m_b} @ 

/{seqpart ;}+ 

{@/elat_or1b_one/elat_or1b_many/elat_or1m_b/elat_or1f_one} @ 

/@ element @ 

RN62. elat or1f_one=@ , element 

RN63. elat_or1f_many=@ {, orpart}+ 

RN64. elat_orlb_one=element , @ 

RN65. elat_orlb_many={orpart ,}+ @ 

RN66. elat orlm f=element ,@ {, orpart}+ 

RN67. elat_orlm_b={orpart ,}+ @, element 

RN68. elat or2fb=@ {,element/} @ 

RN69. elat or2fm=@ {,element/} ,@ {, orpart}+ 

RNlO. elat_or2mm={orpart ,}+ @ {,element/}, @ {, orpart}+ 

RNl1. elat_or2mb={orpart ,}+ @ {,element/}, @ 

MN36. uc-letter=A/ ••• /Z 

MN37. lc-letter=a/ ••• /z 

MN38. digit=O/ ••• /9 

MN39. iexpr={+/-/ } {term @{+/-}}+ 

MN40. term={factor ~{*/DIV/MOD/EXP}}+ 

MN41. factor=integer/constant/index/funct_desig 

MN42. integer={digit}+ 

MN43. constant=lc-letter{lc-letter/digit/_}~ 

}lN44. index=lc-letter{lc-letter/digit/_}~ 

MN45. funct_desig={ABS/FACT/SQUARE} (iexpr) 
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Appendix D 

THE SYNTAX OF MACRO PROG~~S IN THE CONSTRAINED MACRO NOTATION 

MNl. mprogram=program mprogrambody endprogram 

RN1. mprogrambody={collectivisor/mpath/bodyreplicator}+ 

MN3. collectivisor=array {simpleardecl/replardecl}+ endarray 

MN4. simpleardecl={arrayid}+({{iexpr:/}iexpri,}+) 

MN5. replardecl=index_spec[{replardecl/arrayid({iexpr !,}+)}+1 

MN6. index_spec=#index:iexpr,iexpr,iexpr 

MN7. arrayid=uc-letter{uc-letter/digit/_}~ 

RN2. bodyreplicator=index_spec[{mpath/bodyreplicator}+1 

MN9. mpath=path (msequence)* end 

RN3. msequence={seqpart ~;}+ 

~~4. seqpart=seqmacro/morelement 

RN5. morelement={orpart ~,}+ 

~~6. orpart=ormacro/starmacro/mstarelement 

RN7. mstarelement=element/element* 

RN8. element=operation/indexedop/(msequence)/elmacro 

MN16. operation=lc-letter{lc-letter/digit/_}~ 

MNl7. indexedop=arrayid{({iexpr ~,}+)/ } 

RN9. seqmacro=seqrepl/seqdistr 

RNIO. seqrepl=index_spec[{seqconcseq/seqimbrseq }] 

CNl. seqdistr=;{/iexpr}{/#iexpr,iexpr,iexpr} [msequencel 

CN2. seqconcseq={seqpart;}+@ 
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cm. seqimbrseq=seqimbr_at_seq 

/{seqpart ;}+ seqimbror {; seqpart}* 

/{seqpart ;}~ seqimbror {; seqpart}+ 

CN4. seqimbror={orpart,}~ seqimbrstarel {, orpart}* 

CNS. seqimbrstarel=seqimbrel/seqimbrel* 

CN6. seqimbrel=( seqimbr seq) 

{seqpart;}+ {@/at_orlf} {;seqpart}~ 

/{seqpart ;}+ at_or2fb {; seqpart}+ 

/@{seqpart;}~ {@/at_orlb} {;seqpart}+ 

/{seqpart;}+ {@/at_orlf} {;seqpart}~@ 

/@ msequence @ 

RN22. ormacro=orrepl/ordistr 

{@/at_or1b} {;seqpart}+ 

RN23. ordistr=,{/iexpr}{/#iexpr,iexpr,iexpr} [morelement] 

RN24. orrepl=index_spec[{orconcor/orimbror}] 

RN2S. orconcor={orpart ,}+@ 

RN26. orimbror=orimbr atout or 

/{orpart -,}+ orimbrstarel {, orpart}~ 

/{orpart ,}~ orimbrstarel {, orpart}+ 

RN27. orimbr atout_or=@ {at_orlf/at_orlm} 

/{at_orlm/at_orlb} @ 

fat or2mm 

/@ morelement @ 

RN28. orimbrstarel=orimbrel/orimbrel* 

RN29. orimbrel=(orimbrseq) 
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RN30. orimbrseq={seqpart ;}~ orimhr in or {; seqpart}* 

/orimbr_atin_seq 

RN31. orimbr_in_or={orpart ,}~ orimbrstarel {, orpart}* 

RN32. orimbr_ati~seq= 

orimbr atout or 

/{seqpart;}+ {at_or2fb/at_or2fm/at_or2mm/at_or2mb}{;seqpart}+ 

/{seqpart ;}+ {at_or2fm/at_or2mm} 

/{at_or2mm/at_or2mb} {; seqpart}+ 

/@ {@/ a t_ or 1 f/ a t_ or 1 m/ a t_ or 1 b} {; seqpar t}+ 

/{seqpart ;}+ {@/at_orlf/at_orlm/at_orlb} @ 

RN33. at_orlf=@ {,orpart}+ 

RN34. at_orlm={orpart ,}+ @ {, orpar t}+ 

RN35. at_or 1 b={orpar t ,}+ @ 

RN36. at or2fb=@ {, orpart}~ , @ 

RN37. at or2fm=@ {, orpart}+ , @ {, orpart}+ 

RN38. at_or2mb={orpart ,}+ @ {,orpart}~ , @ 

RN39. at or2mm={orpart,}+ @ {,orpart}~ ,@ {,orpart}+ 

RN40. starmacro=index_spec[(starimbrseq)*] 

RN41. starimbrseq=starimbr_at_seq 

/{seqpart ;}~ starimbror {; seqpart}~ 

RN42. starimbror={orpart ,}~ starimbrstarel {, orpart}~ 

RN43. starimbrstarel=starimbrel/starimbrel* 

RN44. starimbrel=(starimbrseq) 

RN45. starimbr_at_seq= 

{seqpart ;}+ @ ;{mstarelement ;/ } @ {; seqpart}+ 
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/ {seqpart ;}+ 

; @ {; seqpart}+ 

/ {seqpart ;}+ @ 

{ ; scqpar t}+ 

{starat_orif one/starat orif many/starat orim f} - - - --

/{starat orib one/starat orib many/starat orim b} . 
- - - - - -' 

/ {seqpart ;}+ 

{starat_or2fb/starat_or2fm/starat_or2mm/starat_or2mb} 

{;seqpart}+ 

/{seqpart ;}+ {starat_or2fm/starat_or2mm} 

/{starat_2mb/starat_or2mm} {; seqpart} 

/starat or2mm 

/@ {starat_orlf_one/starat_orlf_many/starat_orlm_f} 

/@ {@/starat_orlf_one/starat_orlf_many/starat_orlm_f/starat_orlb_one} 

{; seqpar t}+ 

/ {seqpart ;}+ 

{@/starat_orlb_one/starat_orlb_many/starat_orllU_b/starat_orlf_one}@ 
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/(J mstClrelement ~ 

R~46. starat orlf one=~ , mstarelement 

RN47. star at_or If_ many=@ {, orpar t}+ 

R~48. starat orlb one=mstarelement '" , '-

R~49. starat_orlb_many={orpart ,}+ @ 

R~50. starat_orlm_f=mstarelement ,@ {, orpart}+ 

R~51. starat_orlm_b={orpart ,}+ @, mstarelement 

RN52. starat or2fb=@ {,mstarelement/} ra , '-

RN53. starat or2fm=@ {,mstarelement/} ,@ {, orpart}+ 

RN54. starat_or2mm={orpart ,}+ @ {,mstarelement/}, @ {, orpar t}+ 

R~55. starat_or2mb={orpart ,}+ @ {,mstarelement/}, @ 

RN56. elmacro=index_spec[(elimbrel)] 

RN57. elimbrseq=elimbr_at_seq 

/{seqpart ;}~ elimbror {; seqpart}~ 

RN58. elimbror={orpart ,}~ elimbrstarel {, orpart}~ 

RN59. elimbrstarel=elimbrel/elimbrel* 

RN60. elimbrel=(elimbrseq) 

{seqpart ;}+ @ ;{element ;/ } @ {; seqpart}+ 

/ {seqpart ;}+ 

; @ {; seqpart}+ 

/ {seqpar t; }+ 

{ ;seqpart}+ 
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/{seqpart ;}+ {@/elat_orlb_one/elat orlb many} 
- -

/{elat orlb one/elat orlb many} . - - - - ' 

/{elat orlb one/elat orlb many/elat orlm b} - - - - --

/ {seqpart ;}+ 

{elat_or2fb/elat_or2fm/elat or2mm/elat or2~b} 

{;seqpart}+ 

/{seqpart ;}+ {elat_or2fm/elat or2mm} 

/{elat_2mb/elat_or2mm} {; seqpart} 

/elat or2mm 

{; seqpart}+ 

/{seqpart ;}+ 

/@ element @ 

RN62. elat orlf_one=@ , element 

RN63. elat_orlf_many=@ {, orpart}+ 

RN64. elat orlb one=element , @ 

RN6S. elat_orlb_many={orpart ,}+ @ 

RN66. elat orlm f=element ,@ {, orpart}+ 
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RN67. elat_orlm_b={orpart ,}+ @, element 

RN6~. elat or2fb=@ {,element/} , @ 

RN69. elat or2fm=@ {,element/} ,@ {, orpart}+ 

RNlO. elat_or2mm={orpart ,}+ @ {,element/}, @ {, orpart}+ 

RNll. elat_or2mb= {orpar t ,}+ @ {, element/}, @ 

~N36. ue-letter=A/ •.. /Z 

MN37. le-letter=a/ ..• /z 

~~38. digit=O/ ••• /9 

~rn39. iexpr={+/-/ } {term !{+/-}}+ 

~~40. term={faetor Q{*/DIV/MOD/EXP}}+ 

MN41. faetor=integer/eonstant/index/funet_desig 

'1N42. integer={digit}+ 

NN43. eonstant=le-le tter {ie-letter / digiti _}~ 

MN44. index=le-letter{le-letter/digit/_}2 

MN4S. funet_desig={ABS/FACT/SQUARE} (iexpr) 
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