PROGRAMMING AND VERIFYING ASYNCHRONOUS SYSTEMS

J. Y.

University of Newcastle-upon-Tyne

COTRONIS

ACCES3i0i¢ No.

82-16710

NEV.C 270 JPON TYNE

LOCATION
T[I\Q-D'\ g

- »6S&

Computing Laboratory
July 1982

Ph.D.

Thesis

wers
0(\\ <&

NEWCAST
UPON TY

{ibrary

AKNOWLEDGEMENTS

I would like, first of all to express my thanks to my supervisor Dr.
Peter Lauer for his continuous cooperation during the years I have been
a student and later a member of his research project. Peter’s comments
on early drafts of my thesis were valuable and in a great extend
determined the contents of the thesis. In particular Peter suggested
the four criteria for a good macro notation. His work in [L79] provided
the guidelines for developing syntax rules for macro programs uniform
with syntax rules for basic programs. Peter also suggested the
elimination of the box " " in replicators and the restriction of the
"," as far as possible in regular expressions denoting choice. Peter

also suggested possible theorems to be proved about macro programs.

I would like to thank Brian Hamshere for his patience in reading
through an early version of my thesis suggesting improvements and
corrections. I would also like to thank old members of the Asynchronous
Systems Project, Dr. Mike Shields and Dr. Eike Best for providing the

basis for the research in this thesis.

Finally, I would like to express my warmest thanks to my parents and
to Lily who many a times, regretably, took second place to this thesis,

for their encouragement and support during the past years.

ABSTRACT

The basic COSY (COncurrent SYstems) notation [LSB79b] is briefly
presented. Programs in this notation abstractly specify the synchronic
aspects of concurrent systems and are possessed of behavioural
semantics, which are capable of expressing concurrency and which also

provide a firm mathematical foundation for verifying properties of

systems.

We are mainly concerned with the macro COSY notation [LTS79] which
contains macro features for concisely representing and precisely
generating by expansion similar regularities of structure of programs in
the basic notation. We re—examine and revise all aspects of macro COSY,
the design of the notation as a specification language, the formal
grammar for producing macro COSY programs, the rules for the expansion
of macro elements and of complete macro programs, eliminating serious

drawbacks of previous macro COSY notations and grammars.

We characterize the strings generated by the expansion of macro
elements and macro programs and we investigate the conditions under
which macro elements may generate the same strings as other macro

elements.

Finally, we give direct semantics to macro programs following two

approaches.

1 INTRODUCTION

2 THE BASIC

2.1

2.2

2.3

CONTENTS

COSY NOTATION « e e e e .

The Syntax of Basic COSY . . .

The Semantics of a Basic Path

The Semantics of Path-programs

The Semantics

The Nature of Analysis in COSY

3 THE MACRO COSY NOTATION o e s e s

3.1

3.2

A Review of Macro COSY Notations

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.1.7

A New

3.2.1

The Macro COSY Program .
The Collectivisors . . .
The Bodyreplicators . .

The Paths and Processes

The Replicators in Sequences

The Distributors . « .+ &

Some More Replicators .

-

)

of General Basic programs

Notation and Grammar for Macro COSY

The Macro Program o e e
The Collectivisors . . .

The Bodyreplicators .o .

10

11

14

18

27

30

37

37

38

40

44

50

64

68

69

70

72

78

3.2.4 The Paths and Processes « e e e .
3.2.5 The Sequence Replicators
3.2.6 Some More Replicators e e e e e
3.2.7 The Distributors =« .« « « o ¢ « o« &
3.3 The Expansion of Macro COSY Programs . .
3.3.1 The Expansion of Replicators . . .
3.3.2 The Expansion of Distributors . .

3.3.3 The Expansion of Macro Programs .

3.4 Evaluation of the New Notation for Macro COSY

4 THE SEMANTICS OF MACRO COSY PROGRAMS

5

4.1 Constructing Ordered Cycle Sets upon Expansion of

4.1.1 Finding the Cycle Sets of pure macro Paths

Macro

4.1,2 Finding the Cycle Sets of Restricted pure macro Paths . .

4.2 Constucting Ordered Cycle Sets by Expansion of Macro-Cycle

Objects o o o ¢« o o o« o o o o o o o e e e

-

4,2.1 Syntax and Expansion Rules of Constrained macro-Programs .

4.2.2 Macro Cycle Objects and their Expansion

4.2.3 The Ordered Cycle sets of the Expansion and the Expansion

of macro-~Cycle Objects of Constrained Macro-Programs

CONCLUSIONS o o e o e 6 e s e s e s e e e e .

79

80

102

105

116

117

153

170

178

194

196

200

209

228

234

248

269

288

6 REFERENCES

Appendix A :

Appendix B :

Appendix C

Appendix D :

NOTATION

THE SYNTAX OF

THE SYNTAX OF

THE SYNTAX OF

THE SYNTAX OF

PROGRAMS IN THE BASIC

MACRO PROGRAMS IN THE

MACRO PROGRAMS IN THE

MACRO PROGRAMS IN THE

COSY NOTATION .

GENERAL MACRO NOTATION

STRICT MACRO

CONSTRAINED

NOTATION

MACRO

. 293

303

304

309

316

1 INTRODUCTION

In the past few years there has been an increasing interest in
distributed computing systems, that is systems in which there are a
number of autonomous but interacting computers co-operating on a common
problem. Such systems cover a broad spectrum which includes networks of
main-frame computers, systems containing microprocessors, novel forms of
highly parallel computer architecture etc. Recent and continuing
developments in component technology have initiated new ideas on system
design, based on the decomposition of systems into a number of
subsystems which when combined in new ways may perform the same general
functions as earlier systems but with much greater degree of parallelism
and distribution. These new design options have at the same time
increased the difficulties for the precise specification, analysis and

verification of systems.

The COSY notation [LSB79b, LTS79], the name has been derived from
COncurrent SYstems, 1is a formalism indented to simplify these tasks by
abstracting away from all aspects of systems, except those which have to
do with synchronization. 1In the COSY methodology systems are considered
as consisting of notionally indivisible actions or events, the
occurrences of which may be related to other events in the system.
Systems are also assumed to be decomposed into a collection of
sequential subsystems each involving a subset of the events of the whole
system. Thus the events in the system are left uninterpreted and only
the syanchronic properties of systems are considered, those which solely
concern the ordering of occurrences of these events. That is to say,
only properties of a behavioural nature are of interest in the COoSY

methodology.

System behaviour is abstractly specified in COSY by programs,
consisting of operations which correspond to events in the system,

together with ordering relationships between their activations,

specified in such a way that each relationship determines possible
sequences of occurrences of subsets of these operations. These
sequences are represented by regular expressions [CH74] which are

incorporated in COSY [LC75, LSB79b] and are called path expressions and

process expressions or paths and processes respectively, for short. A

single path or process 1is used for specifying the sequential constraint
relating all the operations mentioned in the path or process. A system
will be associated with a program, a grammatical type object, consisting
of a collection of paths and processes, the '"language'" of which models a
set of permitted or required behaviours. This collection of paths and
processes determines a set of vectors of strings of operations. Vectors
of strings of operations may be considered as a labelled partial order
of operations, modelling a non-sequential behaviour of operation

executions, and for this reason they have been called vector firing

sequences [SL79]. Vector firing sequences may be shown to have the same
modelling power as more conventional models for concurrent behaviour,
such as occurrence graphs but have the advantage that may be manipulated
in the same manner as strings. The vector firing sequence semantics
does not reduce concurrency to arbitrary interleaving [L81} and provides
a mathematical environment for the formal definition of system
properties and for the analysis of programs, determining whether the

system they specify possesses such properties.

The aspects of the notation we have discussed so far constitute the

basic COSY notation or basic COSY for short. Programs in this notation

involve only paths and processes and are called basic programs.

The COSY notation involves other aspects which were considered
essential in a software design environment. Thus, two other notations

have been developed, the macro COSY notation and the system COSY

notation. The macro COSY notation, macro COSY for short, contains
features for the concise representation and precise generation of
similar regularities of structure in basic COSY programs. The macro
notation was introduced as a matter of convenience for the programmer
and as a facility for generalization by allowing the representation and
generation of strings of finite but indefinite length. The system COSY
notation 1is equipped with a «class-like construct called system,
permitting the expression of hierarchy and modularity. Systems allow
the specification of levels of abstraction in a design, information
hiding and the application of other techniques of structured

programming.

- 3 -

In this thesis we are mainly concerned with the macro COSY notation.
Since its introduction [L76] macro COSY has been evolved into a flexible
and powerful tool for system specification. Three are its main
features: the collectivisor, the replicator and the distributor. The
collectivisor declares arrays of indexed operations to be used in paths
or processes. These arrays may be rectangular but also of other shapes.
The replicator 1is the most general feature for representing and
generating a variety of similar regularities of structure in basic
programs. These structures include paths and/or processes and regular
expressions of paths and processes and their parts. Replicators may
generate regularities which either follow each other or are nested
within each other. Finally, the distributor may represent and generate
some regularities in basic COSY programs. Distributors cannot generate
all the regularities which replicators can, but their advantage is that
they represent regularities more concisely than replicators.

Replicators and distributors are the macro elements of macro COSY and

are associated with expansion rules by which they generate basic COSY

strings.

Collectivisors, replicators and distributors are used in macro
programs. Macro programs do not increase the expressive power of the
basic COSY notation as they should expand to basic programs. Macro
programs were not given any semantics directly. Their semantics are

those of the basic programs they generate.

Although, the need for a macro COSY notation was realized and
introduced early in the development of COSY, its development was rightly
considered to be an "open-ended" effort. "Open-ended" in the sense that
the aim should not be to initially produce a fixed notation, but to
permit changes until it is precisely clear what constitutes a "good"
macro notation. As a consequence of this approach various macro
notations and subnotations have been developed, some being extensions of
others or, more commonly, differing in many respects. Some of the
differences are for example, that replicators in some notations may
generate paths and/or processes whilst in other notations just paths or
just processes, that replicators 1in some notations could be nunested

inside other replicators and in others not, etc.

Besides this diversity of notations there is a diversity of formal
grammars producing macro COSY programs. The difterences in the
notations and subnotations are certainly reflected in the grammars. In
addition, various approaches have been adopted in defining the syntax of
macro programs and in particular the syntax of macro elements. These
approaches however are not equivalent, in the sense that their

corresponding syntax rules do not produce the same classes of macro

programs.

The main problem with most grammars is that they may produce 'macro
programs' which when expanded do not generate basic programs. This was
realized and some meta-restriction rules were imposed on macro programs

which were to eliminate these '

'unwanted programs'". However, even these
"wide" grammars do not permit some programs we would 1like to write.
Thus, grammars are too '"wide" in some aspects and at the same time
restrictive in others. The need for a context-free grammar producing
exclusively macro programs expanding to basic programs was realized and
some close-fitting syntax rules were suggested [L79] but overconstrained

the class of valid macro programs.

There are also a number of minor aspects of the macro notation and
grammar which need to be improved such as that some symbols are awkward
to use, that the syntax of some features of macro programs has never

been obtained, and others.

Another aspect of the macro notation are the expansion rules for
replicators, distributors and of complete macro programs. Whilst the
expansion of replicators was formally defined that of distributors was

not formally defined directly.

The objectives of this thesis are to re-examine and revise all
aspects of the macro notation, its design as a specification language,
the formal syntax of macro programs, the expansion rules of macro
elements and of complete macro programs, alleviating or eliminating
altogether the drawbacks of other notations and grammars; to
characterize the strings generated by the expansion of replicators,
distributors and of complete wacro programs produced by the formal

grammar; to investigate some aspects of programming methodology such as

when replicators and distributors may be replaced by other replicators
and distributors expanding to the same string as the former; and finally
to give direct vector firing sequence semantics to macro programs rather

than indirectly via the basic programs generated by their expansion.

Our guidelines for revising the macro notation and grammar were

mainly four:

1. The syntactic well-formedness of a macro program should imply that

its expansion is a syntactically well-formed basic program.

2. The notation should allow the generation of a large class of basic

programs and their concise representation.

3. The macro grammar should include context-free rules and should be

uniform with the grammar of basic COSY.

4. The reading of macro programs should be possible without formal

expansion.

In the design of the notation, changes of symbols and of the forms of
the collectivisors, replicators and distributors are suggested improving
the readability of these constructs and of the wmacro programs as a
whole. Some restrictions imposed on what replicators may generate
ensure the readability of unexpanded macro programs. But the new
replicators may generate strings which could not be generated by a
single replicator in previous notations. Distributors are extended to
generate more strings more economically than replicators. Two new types
of replicators are added generating strings which could not be generated
by replicators in previous notations. It is precisely specified where
distributors and each type of replicators should appear in macro

programs.

The new context-free syntax rules for macro programs combine some of
the syntax rules of previous grammars, modified to be consistent with
changes in the design of the notation. For the main features of the

notation though, that 1is collectivisors, replicators and distributors

new syntax rules are introduced. Particular attention is given to the
problem of obtaining a grammar uniform with the grammar for basic COSY.
This is achieved by expressing the new grammar as an extension of the
basic COSY grammar and by expressing the syntax of the features of macro

programs in a style similar to that of basic COSY.

The expansion rules for replicators are modified to deal with their
new form and the expansion of distributors is directly defined. The
expansion of replicators and distributors is also characterized. The
expansion of complete macro programs is formally defined and it is
proven that programs permitted by the new grammar generate syntactically
well-formed basic programs. Thus, the suggested grammar is not&gfde and
no meta-restriction rules are needed to eliminate any '"unwanted"
programs, that 1is programs not generating basic programs. The
conditions wunder which replicators and distributors may be replaced by

other replicators or distributors are also examined.

Finally, we give direct vector firing sequence semantics to macro
programs and we show that the vector firing sequences of macro programs
are the same as the vector firing sequences of the basic programs

generated by their expansion.

The rest of the thesis is structured as follows: In chapter 2 the
basic COSY notation is briefly presented, chapter 3 deals with the
syntax and expansion of macro COSY programs, chapter 4 deals mainly with
the semantics of macro COSY programs, and chapter 5 contains the
conclusions of the thesis. The contents of the main chapters 2, 3 and 4

in more detail are as follows:

Chapter 2 deals with the syntax and semantics of basic COSY programs

and briefly with the nature of analysis and verification in

COSY. In section 2.1 the syntax of basic programs is given.
Section 2.2 gives the semantics of a single path by associating with it
a set of strings of operations involved in the path. The elements of
this 1infinite set may be obtained from a set, the set of cycles
of a path. Section 2.3 gives the semantics of basic programs consisting
exclusively of paths by means of sets of vectors of strings of

operations involved in the programs, representing the behaviour of these

programs. Each of the components of these vectors relates to a path in
the basic program and must be a possible total order of the operations
in that path. Furthermore, all components must agree on the number and
activation o
order of theVﬁberations they share. Besides the wusual definition of
vector firing sequences, an alternative definition is given which we
shall use in chapter 4 where direct semantics are given to macro
programs. In section 2.4 the semantics of a general basic program
involving paths and processes are given by two methods. The first is
the usual method found in the literature for COSY [LS81] and consists of
transforming path-process programs into programs involving paths only,
the vector firing sequences of which define the behaviour of the
original program. The second method obtains vector firing sequences
directly from the general basic programs without any intermediate
transformation. It is shown that both methods are equivalent in the
sense that they produce the same set of vectors. Finally, in section
2.5 a brief account is given on the nature of analysis and verification

in COSY.

Chapter 3 is concerned with the syntax and expansion of macro
programs. In section 3.1 we review most of macro COSY
notations and subnotations in detail, focussing our

attention on their formal grammars and discussing the implication of

design choices and their drawbacks. In the subsections of 3.1 we
examine major syntactic entities of macro programs. In section 3.2 we
set the criteria for a "good" macro notation, we revise the macro
notation and define the syntax of macro programs. A number of changes,
modifications and extensions are introduced. The most important of
these are applied to replicators and distributors. In section 3.3 we
define the expansion of replicators and distributors and of complete
macro programs. We prove four theorems which characterize the strings
obtained by the expansion of replicators and distributors. We also show
under which conditions replicators may replace distributors and
vice-versa, and replicators may be replaced by other replicators.

Finally, we formally define the expansion of complete macro programs and

prove that they yield well-formed basic programs. In section 3.4 we

evaluate the new notation and grammar and discuss certain extensions we

could incorporate.

Chapter 4 is concerned with obtaining the vector firing sequences of
basic programs generated from macro programs directly from
the macro programs themselves. We reduce this task to the

task of finding the cycle sets of the paths of such basic programs

directly from the macro programs. Two approaches are followed.

According to the first which is presented in section 4.1, the cycle sets

are constructed by finding the cycle sets of expanded parts of macro

programs which are then combined together. We applied the first
approach to macro programs produced by the grammar of section 3.2 and to
macro programs produced by a restrictive grammar introduced 1in section

4.1.2. According to the second approach which is presented in section

4.2, the cycle sets of basic paths may be found by constructing macro

cycle objects from macro programs representing cycle sets concisely,

which may be expanded to generate cycle sets, in the same way macro
programs are expanded to generate basic programs. The second approach
is applied to macro programs which are produced by the grammar of

section 4.2.1, obtained by constraining the grammar in section 4.1.2.

2 THE BASIC COSY NOTATION

In the COSY methodology systems are considered as consisting of
notionally indivisible actions or eveuts, the occurrences of which may
be related to occurrences of other events in the system. Thus the
events 1in the system are left uninterpreted and only the synchronic
properties of systems are considered, those which solely concera the
ordering of occurrences of these events. That is to say only properties

of a behavioural nature are of interest in the COSY methodology.

The COSY notation 1is a formalism which may be used to describe
concurrent and distributed systems in their synchronic properties. The

notation used was basically the path notation due to Campbell and

Habermann [CH74] which was designed so that one could state the proper
coordination of concurrent processes as the permissible order of
execution of operations on shared system objects as part of the object
definition. The idea behind the Campbell-Habermann path concept was put

into a more abstract form, the path and process expressions of Lauer and

Campbell [LC75], or paths and processes for short. Later this notation

was named the basic COSY notation [LSB79b]. System behaviour may be

specified by programs consisting of collections of paths and processes,

that is basic programs. Paths and processes are essentially regular

grammars represented by regular expressions. Just as a single regular
expression determines a set of strings, each of which may be considered
as a labelled total order modelling a sequence of execution of
operations which label it, so may -a basic program, a collection of
regular expressions, determine a set of vectors of strings, where each
vector may be considered as a labelled partial order, modelling a

non-sequential behaviour of operation executions.

In the next section 2.1 the syntax of basic programs is given. In

section 2.2 the semantics of a single path P are given, by wmeans of the
activation of A .

possible sequences of theVoperations involved in its regular expression,

the set of 1its firing sequences denoted by FS(P). In section 2.3 the

semantics of a basic program consisting only of paths is defined by
means of a mapping which associates with each program R the set of its

vector firing sequences denoted by VFS(R) consisting of vectors of

strings of operations in R. In section 2.4 the semantics of a general

10

basic program consisting of paths and processes are given in two ways:
According to the first, a transformation Path 1is defined which
transforms a general basic program R into a basic program denoted by
Path(R) consisting of just paths. Then the semantics of R are defined
in terms of the vector firing sequences of Path(R) denoted by
VFS(Path(R)). According to the second way the same semantics are
obtained without R having to undergo any transformation. In section 2.5

the nature of analysis and verification of COSY programs is outlined.

2.1 THE SYNTAX OF BASIC COSY

A Dbasic COSY program is a string derived from the production rules
given below. The following meta-language conventions have been used in
the syntax rules: The symbols "=", "{'", "}, /", nanoongh, "@" have
been used as meta-symbols. The symbol "=" denotes production of its
left hand side to strings on its right hand side. The braces "{ }" are
used to group items together, "/" indicates alternate productions,
"{item}*" indicates production of "item" zero or more times, "{item}+"

production of "item" one or more times. The notation-

{iteml @ item2}+
is used as a shorthand for
iteml {item2 iteml}*

In the syntax rules for basic COSY programs "item2" may be one of the
terminal symbols ";" and ",". Non—underlined lower case words, except
single lower case letters and digits, are non—-terminal symbols, and all
other symbols 1like ";', ",", "(", "™)", "*", undelined lower case words
and single lower case letters and digits are terminal symbols. We shall
additionally use the following convention: in right parts of production
rules the catenation of terminals and non-terminals has precedence over
alternation. Thus A B/C means either A B or C. When necessary we use
"{ }" to override the normal precedence. Thus A {B/C} means either A B

or A C.

11
The syntax of a basic COSY program is given by the following rules:

BNl. basicprogram = program programbody endprogram
BN2. programbody = {path/process}+

BN3. path = path (sequence)* end

BN4. process = process (sequence)* end

BN5. sequence = {orelement @;}+

BN6. orelement = {starelement @,}+

BN7. starelement = element/element*

BN8. element = operation/(sequence)

BN9. operation = lc-letter{lc-letter/digit/ }*
BN10. lc-letter = a/b/.../z

BNLl. digit = 0/1/.../9

In the regular expressions produced by the non-terminal '"sequence'" the
symbols '";" and "," denote sequentialization and arbitrary choice

respectively; the symbol "#*" is the Kleene star.

All the regular expressions in paths and processes are considered to
be cyclic in the sense that constituent operations may be executed
repeatedly subject to the constraints of sequentialization and arbitrary
choice. TFor this reason the outermost star and parentheses are usually

omitted, their presence being implicit.

2.2 THE SEMANTICS OF A BASIC PATH

The semantics of a basic path P are given in terms of its set of
firing sequences denoted by FS(P). The infinite set FS(P) may be
constructed from a set consisting of the cycles of P. Let us
define the function "Cyc" by which the cycles of a basic path P may be
constructed. The function "Cyc" will apply to syntactic entities of
basic paths, that is to say substrings produced by non-terminals.
Syntactic entities of paths will be denoted by syntactic variables. A

path P will be represented by

path (SEQ)* end

- 12 -

where SEQ denotes a sequence, which may be represented by

ORELl;...;ORELn

where ORELi for 1i=1,...,n denote orelements. An orelement may be

represented by

STARELI, ...,STARELn

where STARELi for i=1,...,n denote starelements. A starelement may be

represented by

ELEM* or ELEM

where ELEM denotes an element which may be represented by

(SEQ)

when it is produced by the second option of the syntax rule for element

BN8, or by

10)

when produced by the first option. The function "Cyc'" is defined as

follows:

Cyc(e)=cases e:

1. path (SEQ)* end -> Cyc(SEQ)

2. ORELL;...;ORELn - Cyc(OREL1) ©...® Cyc(ORELn)

3. STAREL1,...,STARELn —> Cyc(STAREL1) U...U Cyc(STARELn)
4. ELEM* -> Cyc(ELEM)*

5. (SEQ) —> Cyc(SEQ)

6. OP ~-> {OP}

- 12a -

The function "Cye" 1is defined in terms of a "case-function". A

function f defined by cases

f(e)=cases e:

1. cl ->fecl
2. c2 ->fc2
n. cn ->fcn

in which cl,c2,...,cn are the valid forms which expression e may take,

has the following semantics:

if e is of form cl then f(e)=f(cl) converts into fcl else
if e is of form c2 then f(e)=f(c2) converts into fc2 else

if e is of form cn then f(e)=f(cn) converts into fcn

In the definition of "Cyc" the symbol "U" denotes the set-union

operator and the symbol " " the concatenation of sets of strings

oPerator. The operation

Xoy

where X, Y aresets of strings is defined as:

Xoy={x.y|x € X,y € Y}

where "." denotes string concatenation and " € " element of a set.

In the definition of '"Cyc" a starred set X* indicates the set

obtained by concatenation of zero or more times of the set X. Formally
X* is defined by

x* =x0uxlyux2u...

where X is a set of strings and Xi is defined recursively by

Xi
x 0

Xi-1 o X
{A}

where "\" denotes the empty string.

From the set Cyc(P) we may construct the set of firing sequences of P
denoted by FS(P) as follows:

FS(P)=Pref(Cyc(P)*)
where Pref(X) is defined as
Pref(X)={x|x.y € X, for some y}
where X is a set of strings.

The set FS(P) is the set of sequences of operation executions
permitted by the path P.

2.3 THE SEMANTICS OF PATH-PROGRAMS

As already mentioned, to model the non-sequential behaviour of a
basic program R consisting of paths Pl,...,Pn partial orders of
occurrences of operations will be constructed which are specified by

vectors of strings. An n-vector x
x=(x1,...,xn)

is a possible behaviour of R if each xi for 1<i<n is a possible firing
sequence of Pi for i=l,...,n and furthermore, if the xi’s agree on the

activation of
aumber and the order ofVoperations they share.

To formally define the set of possible behaviours or histories of R,

vectors of strings are introduced together with a composition operation

on them. lLet Sl,...,Sn be a family of sets of strings and let

lSi*=Sl* X.evoX Sn*={(sl,.s.,sn)|for all i, si € Si*}

I x=

i

where "x" denotes the cross product operator. If the vectors X and Yy

belong to the above set then their composition xOy is defined as

zozf(xl,...,xn)O(yl,...,yn)=(xl.y1,...,xn.yn)

where "o" denotes the vector concatenation operation and the "." denotes

string concatenation operator.

To each program R consisting exclusively of paths

R=Pl...Pn

we associate its set of operations Ops(R) defined by

0ps(R)=0ps(P1)U...U Ops(Pn)

and its set of vector operations Vops(R) defined as follows:

For each operation "a" in R we construct an n-vector a. The

- 15 -

i’th component of this vector for 1<i<n denoted by f{a]i is given

by

[gji=| a if a € Ops(Pi)
|

A otherwise
where "A" denotes the null string.
The set of vector operations of R, Vops(R) is then defined as

Vops(R)={ala € Ops(R)}

Let us define Vops(R)* to be the submonoid of

0 xg

1Ops(Pi)*

1

generated by Vops(R) and _5=(x,...,x) under the vector composition
operation. The set of all possible behaviours or histories of R, the

vector firing sequences of R, denoted by VFS(R) is defined by:

VFS(R)=('EIFS(Pi)) N vops(R)*
l=

The set

n -
x FS(Pi)
i=1

in the definition of VFS(R) guarantees that each string component of a
history x € VFS(R) is a firing sequence of the corresponding path and
the set Vops(R)* guarantees that all these firing sequences agree on the

number and order of activations of the operations they share.

By the construction of VFS(R) every element x of it represents
everything that has happened in some possible period of activity of R.

We may write x as a composition of vector operations al,...,am of

Vops(R) as in (V1)

(vl) x=alo...0am
If for some operations "ak" and "al" for 1<k,1<m and k#1, [ak]itfe
implies [al]i=e for i=1,...,n then the composition akoal is the same as
aloak. Such operations are said to be independent and we write
ind{ak,al). If furthermore 1=k+l that is ak and al are neighbouring

vectors in (V1), as in (V2)
(V2) x=al©...akoalo...an
then x may also be written as (V3)

(V3) x=alo...caloako...oan
The commutativity of vector operations in a vector firing sequence 1is
interpreted to mean that the operations corresponding to these vector

operations may execute concurrently. We say that

two operations "a" and '"b" are concurrent at a history x and we

write
a co b at x
if ind(a,b) and xca , x°b & VFS(R).

This definition implies that only independent operations may execute
concurrently. However, independent operations may not always be executable
concurrently or may never execute concurrently at all. Let us consider

the basic program (R1)

(R1)
program
path a ; b end
path b ; d end
endprogram
Although ind(a,d) and operation "a" may be executed 1initially, the

: gt
operation '"d" cannot be executed. However, whenever the operation 'd

- 17 -

can be executed so can the operation "a" and since they are independent
they may be executed concurrently. For example, after the history aob

the operations "a" and "d" may be concurrently executed.

It may happen that two independent operations cannot be executed

concurrently at all. This occurs when there 1is not a history after

which both operations may execute. Consider for example the basic

program (R2)

(R2)

program
path a ; b ; d end
path b 5 ¢ ; d end

endprogram

Although operations a and c are independent that is 1ind(a,c) there is

not an x € VFS(R2) such that

X% , xOc € VFS(R2)
as the second path specifies that operation ¢ occurs after b and before

d, and operations a, b and d are sequentialized in the first path.

For the construction of the wvector firing sequences of a basic

program R, the following sets need to be constructed directly from R:

l. the cycle sets of all paths in R, and
2. the set of the vector operations in R, Vops(R).

There 1is a modification of this construction by which the latter set is
obtained from the sets of cycles of the paths of R and not from the
program R. This alternative construction will be useful in the fourth
chapter where we construct the vector firing sequences of basic programs
generated from macro programs directly from the macro programs
themselves. The sets of cycles of a basic program generated from a
macro program will be constructed directly from the macro program

itself. The set of vector operations however, cannot easily be obtained

- 18 -

directly from the macro program but may be obtained, as we show below

from the sets of cycles of paths.
Let s be a string of concatenated symbols sl,...,sn:

S$=8l.s oo oSN

and denote by (s)i the i’th constituent symbol of s for 1<in and by |s]|
the length of s. We may now obtain the set Ops(Cyc(P)), the set of

operations appearing in the cycle set Cyc(P) of the path P as follows:
Ops(Cyc(P))={ala=(s)i for s € Cyc(P)and 1<i<|s]}

The two sets Ops(P) and Ops(Cyc(P)) are the same since all the
operations involved in P must appear in at least one striang of the cycle
set of P, as a single path cannot exclude any of its operations from
executing. Having found the operations involved in each path of R we

proceed by constructing Ops(R) and Vops(R) as before.

2.4 THE SEMANTICS OF GENERAL BASIC PROGRAMS

In general, a basic program R is a string of the form
R=Pl...Pn Ql...Qm

where Pj for j=l,...,n and Qi for i=l,...,m denote paths and processes
respectively. Although paths and processes may be intermixed in a basic
program, in the above expressions for convenience, we assumed that all

paths are collected before processes.

In the COSY literature e.g [LS81] the semantics of a basic program
involving processes is given by means of the vector firing sequences of
an equivalent basic program R’ involving just paths. The conversion of

R into R’ is denoted by Path(R) and is obtained by the following rule:

(Path Conversion Rule)
L. For every a € Ops(R) construct a set
Ila={ija € Ops(Qi) for 1<i<m}

and, 1if the cardinality of the set Ia denoted by }la| is

greater than zero, say 1=|Ia|>0 then

i
- replace the operation "a" in each path it oecursVﬁy the

element
(a&il,...,a&il)
where ik € Ia for k=1,...,1

- replace the operation "a" in processes Qik by a&ik for

all ik € Ia.
2. Replace all occurences of "process' by '"path".

Then the semantics of R are given by means of VFS(Path(R)) and are

obtained as defined in the previous section.

Besides some differences of formulation between the way the path
conversion rule&gxpressed in [LS81] and above, there is one another
important difference. The rule in [LS81] specifies that an operation
"n_u

. in
a" occuring in processes is replaced in each path it occursy by the

orelement OREL
OREL a&il,«..,a&il

When however, the operation "a" is starred it should not be replaced by

OREL but by the element
(a&il,...,a&il)

In the above rule we generalized this replacement to avoid considering

~ 20 -

cases and we treat all the operations in the same way simplifying the

conversion rule.

The relation between the basic path program Path(R) and its vector
firing sequences VFS(Path(R)) is already defined in 2.3. Here we have
to relate the behaviour of Path(R) with that of R since R is the program
the semantics of which we seek. Let wus first introduce some

terminology. We shall call the operations of the form

a&ik for ik € Ia

the descendent operations of a. The behaviours of Path(R) and R are

related as follows:

If an operation "op" may be activated in Path(R) then

l. If op 1is not a descendent operation of any operation in R

then it may also be activated in R.

2. If op is a descendent of some operation "a" in R of the form
"a&j" for j € Ia, then the operation "a" may be activated in
R and out of all processes requiring its activation to

progress, process Qj will be granted it.

The set of histories VFS(Path(R)) may be obtained without R having to
undergo any conversion, that is it may be obtained directly from R. 1In
the method which follows the definition of firing sequences of paths and
vector operations of programs defined in the previous section are
modified and firing sequences for processes are defined. A program R is

considered to be of the form

R=S1l...Sn+m

where Si for i=1l,...,n are paths and Sj for j=n+l,...,m processes. Let
us denote the set of histories obtained by this method by MVFS(R)
standing for modified vector firing sequences. Let us define the set of

the modified firing sequences of paths and processes in R by

- 21 -
MFS(Sj)=Pref(MCyc(Sj)*) for j=l,...,n+m

where MCyc(Sj) denotes the modified cycles of Sj for j=1,...,n+m. We
shall distinguish two cases for the construction of MCyc(Sj) depending
on whether Sj for j=l,...,ntm 1is a path or process. The function

MCyc(Sj) is defined by

MCyc(Sj)=|path-Cyc(Pj) if j=1,...,n
Iproc-Cyc(Qj-n, j-n) if j=n+l,...,n+m

where path-Cyc(Pj) for j=1l,...,n denote the cycle sets of paths Pj for
j=l,+.+,n and proc-Cyc(Qj-n,j-n) for j=n+l,...,n+m the cycle sets of

processes Qj-n for j=n+l,...,m.

The function 'path-Cyc" will be applied to the same syntactic

entities as the function '"Cyc"

both yielding the same results except
when applied to an operation OP belonging to processes. In this case
"path~Cyc" will yield the set of descendent operations of operation OP.

The function path-Cyc(Pj) is defined as follows:
path-Cyc(e)=cases e:

1. path (SEQ)* end —> path-Cyc(SEQ)
2. ORELl;...;ORELk ->» path-Cyc(OREL1) ®...0 path-Cyc(ORELk)
3. STARELl,...,STARELk —-> path-Cyc(STARELL) U...U path-Cyc(STARELk)
4, ELEM* —> path-Cyc(ELEM)*
5. OP —> | {oP} if |Iop|=0
| {oP&i|i € Iop} if |Iop|>0

6. (SEQ) path-Cyc(SEQ)

N2

The function "proc-Cyc" will have two arguments. The first are
syntactic entities 1in processes, the same as in paths. The second is
the integer 1indexing processes and remains unaltered for a given
process. The effect of "proc—Cyc" on the first argument is the same as
that of "Cyc'" with the exception of the case when the syntactic entity
is an operation OP. In this case ''proc-Cyc" yields one of the
descendent operations of OP namely OP&j where j is second argument of

"proc-Cyc". The function proc—-Cyc(Qj,j) is defined as follows:

22
proc-Cyc(e, j)=cases e:

1. process (SEQ)* end -> proc-Cyc(SEQ, j)

2. ORELl;...;O0RELk -» proc-Cyc(OREL1, j) ©...0 proc-Cyc(ORELKk,j)

3. STARELL,...,STARELk —> proc-Cyc(STARELL,j) U...U proc—Cyc(STARELK, j)
4. ELEM#* —> proc—Cyc(ELEH, j)*

5. OP -> {0P&j}

6. (SEQ) —> proc—Cyc(SEQ, j)

Let us define the sets of operations occurring exclusively in paths
denoted by Pops(R) and operations occurring in processes denoted by

Qops(R) of a program R by

Pops{(R)={ala € Ops(R),|Ia]|=0}
Qops(R)={a&ija € Ops(R),i € Ia}

and the set of all operations in R denoted by Mops(R) by
Mops(R)=Pops(R)U Qops(R)

Let us now define two sets of vector operations of operations in Pops(R)

and Qops(R) denoted by VPops(R) and VQops(R) respectively. The set

Vops(R) is defined by

VPops(R)={ala € Pops(R)}

where a is an (n+m)-vector the j“th component of which, for I{j<n+m,

denoted by [a]j, is given by:

[alj=]a if 1<{j<n and a € Ops(Pj)

| A otherwise
The set VQops(R) is defined by:
VQops(R)={a&ila&i € Qops(R),1 &€ Ia}

where a&i 1is an (n+m)-vector the j"th component of which, for 1{j<nt+m,

denoted by [a&ilj, is given by:

- 23 -

[a&i]j={a&i if 1<j<n and a € Ops(Pj) or j=i+n

| A otherwise

Let us finally denote the set of the vector operations in R by MvVops(R)

and define it by
MVops(R)=VPops(R)U VQops(R)
We may now define the set of histories of R denoted by MVFS(R) by

n+m
MVFS(R)=(_leFS(Sj))f\ MVops(R)*
J:

Having constructed MVFS(R) we need to relate its elements with execution
of operations in R. Let us introduce some terminology first. We shall

call the vector operations in the form a&j the descendent vector

operations of an operation "a.

The relation between MVFS(R) and R is as follows:

If a history x € MVFS(R) may be continued by the vector

operation "op" then

1. if op 1is not a descendent vector operation of R then

operation "op" in R may be activated.

2. If "op" is a descendent vector operation of operation "a"

in R of the form a&j then operation "a" may be activated in

R and out of all processes requiring the activation of "a"

to progress, process Qj will be granted it.

We next prove that the set VFS(Path(R)) is the same as MVFS(R). The

symbol "V¥¥¥Y" will indicate "end of proof".

THEOREM 2.1:

For a basic program R of the form

R=Pl...Pn Ql...Qm

- 24 -
where Pj for j=1,...,n are paths and Qi for i=l,...,m are processes,
MVFS(R)=VFS(Path(R))

Proof:

We need to prove that

1. n+m ntm ,
X (MFS(S3))=_x (FS(P’ 1))
j=1 j=1
where P’j represents the j’th path in Path(R) for j=l,...,n+m, and
that
2. MVops(R)*=Vops(Path(R))*

Proof of 1. It suffices to prove that

MFS(Sj)=FS(P’j) for j=1,...,n+m

We will distinguish two cases: (a) when Sj is a path and (b) when it is

a process.

(a) Sj is a path, that is j=1,...,n.

Since

MFS(Sj)=Pref(path-Cyc(Sj)*) and
FS(P’j)=Pref(Cyc(P’j)*)

we have to prove that

path-Cyc(8j)=Cyc(P’j)

The function ‘'path-Cyc" is applied to the same syntactic entities as

"Cyc". Furthermore, their definitions are exactly the same except in

the case in which the syntactic entity 1is an operation. When an
" "

operation "op'" does not appear in processes then path-Cyc(op)={op}. The

operation '"op" belongs to Ops(P’j) since it has not been replaced in Pj

- 25 -

and Cyc(op)={op}.
When an operation "op" does belong to processes
path-Cyc(op)={op&iji € Iop}

" "

The operation op in path Pj is replaced by (op&il,...,op&il) where
1=|1Iop| and ik € Iop for 1<k<1l. According to the definition of "Cyc"

Cyc((op&il,...,0p&il))=Cyc(op&il,...,op&il)=
Cyc(op&il)U...U Cyc(opé&il)=
{op&il} U... U{op&il}={op&ili € Iop}

Therefore, MFS(Sj)=FS(P’"j) for j=1,...,n.

(b) Sj is a process, i.e. j=n+l,...,ntm.

Since

MFS(Sj)=Pref(proc-Cyc(Sj)*)
FS(P’ j)=Pref(Cyc(P’j)*)

we have to prove that

proc~-Cyc(Sj)=Cyc(P’j) for j=n+l,...,m

A process Qj in R for j=l,...,m of the form

Qj=process (SEQ)* end

is converted into the path P’ j+n of the form

P’ j+n=path (SEQ’)* end

in which SEQ’ is obtained from SEQ by replacing each operation in SEQ by

its name suffixed by "&j". Therefore,

Cyc(P’ j+n)=Cyc(path (SEQ’)* end)

- 26 -
is the same as
Cyc(path (SEQ)* end)
after replacing each operation name in all the strings in the above set
by its operation name suffixed by "&j". This however, is the set

produced by proc-Cyc(Qj,j). Therefore,

MFS(Sj)=FS(P’j) for j=n+l,..,n+m

Proof of 2. It suffices to prove that
MVops(R)=Vops(Path(R))
First, we observe that
Ops(Path(R))=Mops(R)=Pops(R)U Qops(R)
We shall show that for any a € Ops(Path(R)) the vector operation

a € Vops(R) and a 6 MVops(R) are the same. If R consists of n paths and

m processes in either case a will be an (nt+m)-vector.

We shall distinguish two cases: (a) operation a occurs only in paths

and (b) operation a occurs in processes.
(a) When operation "a'" occurs only in paths the j’th component of
a € Vops(Path(R)) denoted by [a]j for j=l,...,ntm is given by
[alj=1a if a 6 Ops(P’j)
| A otherwise
which is the same as a 6 MVops(R) defined by
[a]lj=la if 1<j<n and a 6 Ops(Sj)

|A otherwise

since for 1<{j<n Sj is Pj.

- 27 -

(b)when an operation "a" belongs to processes, it is eliminated in
Path(R) and descendent operations of the form "a&i" are introduced where
i € Ia. The j’th component of the vector operations a&i € Vops(Path(R))
denoted by [a&i]j for j=1,...,n+m is defined by:

[a&i] j=la&i if a&i € Ops(P’j)
|

| A otherwise

Since "a&i" for i € Ia appears in paths P’j of Path(R) corresponding to
paths Pj of R and 1in the P’i+n path of Path(R) corresponding to the
process Qi of R, the vector operation a&i above is the same as

a&ki € MVops(R) defined as

[a&i]j=:a&i if 1<j<n and a 6 Ops(Sj) or j=i+n

| X otherwise
Therefore, VFS(Path(R))=MVFS(R).YYY

We may just add, for reasons of completeness, that basic programs
were at first [LC75] given formal semantics in terms of Petri-nets
[P73]. A construction was defined which associated any path-process
program with a marked, labelled transition net which was intended to
express its '"meaning". The net semantics of [LC75] have since been
modified [LSB79a] but the central idea remained the same. Each
individual path or process, being essentially a regular expression, 1is
associated with a labelled state machine. Putting paths and processes
together into a program corresponds to a composition of their associated
state machines. The distinction between paths and processes 1is

expressed formally in the nature of the composition in each case.
The current net semantics are based on a composition rule which takes

two marked labelled nets Nl and N2 and produces a marked labelled net

Nl(:)NZ by the identification of transitions with the same label.

2.5 THE NATURE OF ANALYSIS IN COSY

As we have mentioned, a basic COSY program describes a system by

specifying partial orders on the execution of 1its operations and

28
therefore, the only properties of interest are behavioural in nature.

The formal model of behaviour, the vector firing sequences of
path-programs permit us to speak formally of dynamic properties of a
system specified by a path-program R. Properties of R may be
expressed in terms of its corresponding vector firing sequences VFS(R).
Such properties fall into two classes, the general and the specific

properties.

The general properties are those which apply to any program,
properties such as absence of deadlock or starvation, which may be
defined 1in terms of wuninterpreted operations. We say that a

path-program R is deadlock-free if and only if

for every x € VFS(R) there exists an a € Ops(R):x0a € VFS(R)
that is if and only if every history x may be continued. We say that
a program R is adequate if and only if

for every x € VFS(R) and for every operation a 6 Ops(R)
there exists a y € Vops(R)*: xOy%a 6 VFS(R)

that is, if and only if every history of R may be continued activating
eventually every operation in R. Adequacy is a property akin to absence

of partial system deadlock.

The specific properties involve the interpretation of a COSY program
as a description of an actual system. The operations of a COSY progranm
are interpreted as actions of a system and the behaviour of the program

as the behaviour of the system.

Considerable work has been done concerning the general properties of
programs and in particular relating to adequacy [SL78, $79, LS80] and a
number of general theorems have been obtained {s791}. For simple
comma—-free path programs there 1is a complete characterization of
adequacy. Other theorems have been obtained which permit certain

program transformations which preserve adequacy.

- 29 -

As far as specific properties of programs are concerned, various

programs have been shown to satisfy some design requirements. The most

involved of these is the parallel resource releasing mechanism [SL80].

In this short chapter we gave the syntax and the semantics of basic
COSY programs, and we briefly outlined the nature of analysis and
verification 1in COSY. The rest of the thesis deals with the macro
notation. The next chapter deals with the syntax and expansion of macro

programs and chapter four with their semantics.

3 THE MACRO COSY NOTATION

Often in a basic COSY program we find regularities of structure
forming wvarious structures like collections of paths and/or processes,
sequences, orelements, starelements and elements. For example, let us

consider the basic paths specifying the three free frame buffer [LTS79]:

Pl path depositl ; removel end

path deposit2 ; remove2 end

path deposit3 ; remove3 end
in which the regularity of structure RSl

RSl path depositij;removei end

is repeated three times with "i" taking values 1, 2, 3. The regularity

RSl may be used to obtain a more economical representation of P1 or to

generalize it by parameterising the number of repetitions of RSl. For
simple regularities, such as that of Pl, we may denote a repetition of a
number of them implicitly by ellipses. For example Pl may be

generalized to specify the n free frame buffer [LTS79] by

P2 path depositl ; removel end

path depositn ; removen end

where the ellipses denote implicitly (n—-2) repetitions of the regularity

of structure RSl.

When regularities appear within other regularities each having its
own ellipses, the unambiguous characterization of the general pattern
intended becomes an impossible task. It is apparent that a mechanism
for the concise representation of regularities in basic COSY programs is
needed from which these regularities may be generated unambiguously.

The function of such a mechanism should be twofold:

l. to use the template of a regularity, such as RSl, to make copies of

it, differing, if at all, in the names of the operations involved,

and
2. to generate the distinct operation-names in each copy.

A simple way to generate names is to use common or collective names each
denoting a collection of operations. Each of these operations may then
be represented by a common name subscripted by a . set of indices.
Now the task of generating names is reduced to the task of generating
indices from an index set which may be the set of integers. By
convention upper case letters have been wused in the identifiers of
common names. Following this approach Pl may be rewritten using two
common names "DEPOSIT" and "REMOVE" from which one obtains by
subscripting the operations '"DEPOSIT(i)" and "REMOVE(i)" which
correspond to 'depositi" and "removei" for i=1,2,3. The basic paths Pl

under this transformation become P3:

P3 path DEPOSIT(1) ; REMOVE(1l) end
path DEPOSIT(2) ; REMOVE(2) end
path DEPOSIT(3) ; REMOVE(3) end

Strictly speaking P3 is not legal in basic COSY, since subscripted
operations are not permitted. For this reason the syntax rule BN9 for

the non-terminal "operation" of basic COSY will be replaced by the

following three rules:

BN9a. operation=simple-op/subscr—op
BN9b. simple-op=lc-letter {lc-letter/digit/ }*
BN9c. subscr-op=uc-letter {uc-letter/digit/ }*({integer @,}+)

and the following rules will be added

BN12. uc-letter=A/B/.../Z

BN13. integer={digit}+

In the above syntax rules we have used the same meta-language
conventions as in chapter 2. From now on by a basic COSY program we
will mean a string produced by the syntax rules BNl to BN8, BN9a, BN9b,
BN9¢, and BNLO to BN12. Programs in this notation should satisfy the

following context-sensitive restriction (Brest):

- 32 -

(Brest)
Subscripted operations of the same collective name should

have the same number of dimensions.

The semantics of such programs are precisely the same as for prograns
produced by rules BNl to BN1l of section 2.1 with the notion of

operation extended to cover subscripted operations as well.
The three paths in P3 may be precisely generated by the template RS2
RS2 path DEPOSIT(i);REMOVE(i) end
1in

replicated three times with "i" taking values 1, 2, 3.

This kind of a mechanism was 1incorporated in the COSY notation

forming the macro COSY notation ([L76, TL77]. In this notation

collective names and their permitted sets of indices are collected by

the collectivisors and regularities are concisely represented and

precisely generated by replicators and distributors.
Using the macro notation P3 would be represented by FB(3):

FB(3)
Cl array DEPOSIT,REMOVE(3)
P4 [path DEPOSIT(i);REMOVE(i) endll,3,l]

in which Cl is the collectivisor declaring the subscripted operations:
DEPOSIT(i) and REMOVE(i) for i=1,2,3

and P4 is the replicator which specifies that the template RS2 is to be
replicated and that the values index "i" takes, form a finite arithmetic

progression which starts from 1 has upper limit 3 and difference 1, that

is it takes the values 1, 2, 3. An n free frame buffer may be specified
simply and concisely and generated precisely by generalising FB(3) to

FB(n):

- 33 -

FB(n)
C2 array DEPOSIT,REMOVE(n)
P5 [path DEPOSIT(i);REMOVE(i) end[i]i1,n,1]

which differs from FB(3) in that the number of operations in each
collection of subscripted operations and the upper bound of the value

the index takes have been parameterized by the constant n.

Replicators may also be used to represent and generate regularities

in sequences in paths and processes. Let us for example consider the

basic path P6

P6 path DEPOSIT(1);DEPOSIT(2);...;DEPOSIT(n) end
which together with FB(n) sequentializes the deposits on the frames of
the free frame buffer. 1In P6 there is a regularity "DEPOSIT(i);" which
is repeated (n-1) times with "i" taking values 1,2,...,(n-1). Using the

replicator feature of macro COSY the path P6 may be concisely

represented avoiding the ellipses by P7
P7 path [DEPOSIT(i);[i]l1,n~1,1] DEPOSIT(n) end
Path P4 may be represented even more concisely by repeating

"DEPOSIT(i);" n times and dropping the final ";" after "DEPOSIT(i)".
This in macro COSY is specified by P8:

P8 path [DEPOSIT(i)@;[i]i1,n,1] end

in which the "@" is an operator which strips the '";" after the final

copy of "DEPOSIT(i);", that is when i=n.

Replicators of the form wused in P8 occur so frequently that a
shorthand has been introduced, the distributor. The distributor which
generates P6 is simply:

P9 path ;(DEPOSIT) end

assuming that the collective name DEPOSIT has been previously declared

- 34 -

by the collectivisor C2. The distributors do not generate indices

explicitly, like the replicators, but generate indices defined by the
collectivisors. Although more complex distributors have been used in
the notation, which we shall examine in the next section, for each of

them there exist replicators which represent and generate the same
regularities. The distributors cannot represent and generate all the
regularities that replicators can and certainly they cannot represent or
generate regularities that replicators cannot. The distributors may
only represent and generate some special kind of regularities more
economically than replicators. The distributor for example, cannot
generate regularities which are nested within each other. In the
sequence of the path P10, for example, specifying the stack of size

three
P10 path (UP(1);(UP(2);(UP(3);DOWN(3))*;DOWN(2))*;DOWN(1))* end

the starelement "(UP(3);DOWN(3))*" is nested within the starelement
"(UP(2);...;DOWN(2))*", which in turn is nested within the starelement
"(UP(1);..0;DOWN(L))*". To generate this imbrication of regularities
another type of replicator has been used. According to it P10 may be

generated bx:

P11 path [(UP(i)@;[i];DOWN(i))*11,3,1] end
which may be easily parameterized to specify a stack of size n by

P12 path [(UP(i)@;[i];DOWN(i))*I1,n,1] end

Replicators and distributors do not extend the descriptive power of
basic COSY. They merely represent strings of indefinite but finite
length of basic COSY concisely. The expansion of the replicators by
which they generate the basic regularities they represent, has been

defined [LS80] as follows:

If a replicator is of the type Tl

TL [p q lin,fi,inc]

- 35 ~

where "p" and "q" are patterns involving the index i and '"in", "fi",

"inc" are integer expressions, then its expansion is given by Rulel

(Rulel)

empty
if ine=0 or (fi>in and inc<0) or (in>fi and inc>0)

substitute(p,i,in) [pql intine, fi,inc] substitute(q,i,in)

|
|
J
|
|
!)
| otherwise

where "substitute(pattern,index,value)" indicates the string obtained
from 'pattern" by substituting every occurrence of the "index" by the
integer value "value". If the replicator involves the "@" , thus being

of the form T2

T2 [p@sl q@s2 |in,fi,inc]

where "p", "q", '"in", "fi", "inc" are as in Tl, and "sl" and "s2" are

one of the separators ";" or ","

then its expansion is given by Rule2

(Rule2)

if inec=0 or (fi>in and inc<0) or (ind>fi and inc>0)
substitute(p,i,in) [sl pq s2]intinc, fi,inc] substitute(q,i,in)

otherwise

where '"substitute(pattern,index,value)" is defined as in Rulel. An
alternative shorter way of specifying the long conditional expressions

for the empty expansion is
inc=0 or (fi-in)*inc<0

As we shall see in the next section the form T2 is not a valid form of
replicators as it involves the "@" on both sides of the index placer
" ". Besides replicators of type Tl, two other forms of replicators
are valid, denoted by T2a and T2b which involve the "@" on one side of

the index placer only:

- 36 -

T2a [p @ s[zjq [in, fi, inc] and
T2b [pq @ s |in, fi,inc]

where '"p", 'q" are patterns as in Tl, and "s" one of the separators '";"

and s The expansion of replicators of the forams Tl, T2a and T2b may

be defined by one rule:
(Replicator Expansion Rule)

jif inc=0 or (fi-in)*inc<0 then empty

jotherwise

I|for Tl :substitute(p,i,in) [p!qlin—i—inc,fi,inc] substitute(q,i,in)
llfor T2a:substitute(p,i,in) [s pq]in+inc,fi,inc] substitute(q,i,in)
||for T2b:substitute(p,i,in) [pq s{intinc,fi,inc] substitute(q,i,in)

The expansion of distributors was not formally defined directly; it
was either described by an example or in terms of a replicator
generating the same string. For example, in [LSB79] the expansion of

the distributor
csl{(cs2(CN1 cs3 CN2(k3, ,) cs4 CN3(,k4,)))

where csi for i=1l,...,4 are either ";" or "," and CNj for j=1,2,3 are

collectivisors defined by

array CNl(n,m)
array CN2(k,n,m)
array CN3(n,k2,m)

was defined to be the same as the string obtained from

(1C(I(CN1(i,3)cs3 CN2(k3,i,j) csé CN3(i,k4,3))@s2[1]11,n,1])€Ccsl

|1’m’1])

after all replicators are expanded.

After the expansion of all the replicators and distributors in a

macro program and the elimination of collectivisors, the resulting

- 37 -

string should be a basic progran.
After this informal presentation of the macro notation features, we
next review various notations and subnotations in detail, focussing our

attention on their formal grammars and indicating which parts of the

notation may be extended to obtain a concise representation of more

basic programs and which parts of the grammars should be modified to
obtain a more precise formulation of what a macro COSY program may
generate. It is recommended that the reader, and especially when not
familiar with the macro COSY notation, should leave the section 3.1
until a later reading. In section 3.2 we propose a new notation and
grammar for macro COSY which incorporates the suggestions for extensions
and modifications of section 3.1. In section 3.3 we define and
characterize the expansion of replicators and distributors and prove
certain properties they possess. Some of these properties are wused in
proving that the expansion of any program produced by the grammar of
section 3.2 may be produced from basic COSY rules as well. Finally in

section 3.4 we evaluate the new notation and grammar.

3.1 A REVIEW OF MACRO COSY NOTATIONS

The macro notation has evolved considerably since it was first
introduced [L76, LT77]. In this section we shall review the grammars
for a number of notations and subnotations which have been used,
concentrating our attention mainly- on the syntax rules for
collectivisors, replicators and distributors. In the syntax rules of
this section we shall use the same meta-language conventions as in

section 2.1.

3.1.1 The Macro COSY Program

A macro program consists of collectivisors, paths, processes, and
replicators generating paths and processes, which are wusually called

bodyreplicators. According to the grammar in [L76, TL77]}

collectivisors, paths, processes and bodyreplicators appear between the

word pair "begin" and "end". The syntax of a macro program is given by:

- 38 -

program=begin {{path/process/collectivisor/bodyreplicator} 7; 1+ end
Later the word-symbols '"begin" and "end" were replaced by "program" and
"endprogram' respectively [L79, LSB79, LSC8l] and the ";" was eliminated
as a delimiter between paths, processes, bodyreplicators and
collectivisors. Some grammars [LSC81] force the ordering that
collectivisors should appear immediately after the word "program"
followed by all paths and bodyreplicators generating paths which in turn
are followed by all processes and bodyreplicators generating processes.
This ordering restricts the ordering of paths and processes in basic
programs obtained by expansion. The ordering of paths and processes in
basic programs is not important. But the ordering specified in [LSC81]
degrades the conciseness of macro programs in representing basic
programs. Also the readability of macro programs is affected as the
enforced ordering may not be the best way to group collectivisors, paths
and processes, and bodyreplicators together. In [L79, LSB79]

collectivisors were not used at all.

3.1.2 The Collectivisors

Collectivisors are used to declare subscripted operations of any
finite number of dimensions. The collectivisor which declares
subscripted operations corresponding to rectangular arrays the indices
of which take consecutive positive integer values starting from 1 has
been extensively used. Typical syntax rules may be found in [L76, TL77,

TL78]:

collectivisor=array {collectivename @)}+({upperbound @,
collectivename=upper—case—letter{upper—case—letter/digit/_}i

upperbound=integer-expression

The value of the integer expression "upperbound' should be greater than

or equal to 1.

In [LS80, LSC81] the explicit specification of a lowerbound was
permitted, thus increasing the class of subscripted operations which may

be declared. The syntax of these replicators is given by:

- 39 -
collectivisor=array {arrayid 3,}+({lowerbound:upperbound @,}+)

where "arrayid" is defined like "collectivename" above. The value of

the integer expression "upperbound" should be greater than or equal to

the value of the integer expression '"lowerbound".

Subscripted operations which do not correspond to rectangular arrays
and/or the indices of which are not consecutive integers could also be
declared by the collectivisors. Replicators were used to specify either
the exact set of admissible indices for each collective name or the
exact set of admissible subscripted operations. The first approach was

used in [LTD79]. For example, the subscripted operations

s(1,1),
s(3,1), s8(3,2), S(3,3),
s(5,1), s(5,2), S(5,3), s8(5,4), S(5,5)

would be declared by

C3 array S<[[(i,j)ll,i,l]ll,5,2]>.

The second approach was used more extensively [LTD80, C80 IB

According to it, the subscripted operations S would be declared by

C4 array [[5(i,3)8,[3]11,1,1] @ [i]i1,5,2].

Both approaches specify equally concisely a single collection of
subscripted operations. The advantages of the second approach becone
apparent when two or more collections of subscripted operations are to
be declared which have the same range in some of their dimensions. In
[LTD79], for example two collections of operations GET and GR were

declared by C5

C5 array GET<[[[(p,w,)[p]11,m,11[E]1w,n,11[w]11,n,11>
array GR([[(w,f)lW,ﬂ,l]|1,n,1]>

in which GR and GET have the same index range in two dimensions but had

- 40 -

to be declared by two distinct collectivisors. In [LTD80] though, the

same operations were declared by a single collectivisor Cé
C6 array [{GR(w,f),[GET(p,w,£)Q,[p}I11,m,1] € [£]iw,n,1] €, [w]iL,n,1]
much more concisely.

Although collectivisors involving replicators were used extensively,

no formal grammar was ever given for them.

3.1.3 The Bodyreplicators

As we have seen 1in example FB(n) in the introduction of chapter 3
specifying the n free frame buffer, replicators may generate collections
of paths and/or processes. These replicators have been called
"bodyreplicators'" [L76, TL77, LTS79, LI78] or 'replicatorprogrambody"
[L79, LSB79] when they may generate paths and/or processes and
"replpathprogrambody'" and 'replprocessprogrambody" [LSC81] when they may
only generate paths and processes, respectively. We shall be refering
to them as "bodyreplicators'". The first syntax rule for them may be

found in [L76, TL77}:

bodyreplicator={{bodypattern @ separator

/bodypatternllindex bodypattern2}|in, fi,inc]
bodypattern={{path/process}@;}+

. 0 " :
where "in", "fi", "inc" are integer expressions and "index" is an

identifier distinct from any operation in the program.

The "separator'" in the first option of "podyreplicator" should simply
be ";" since the other separator, namely "," was never used at that
position. Later the ";" was eliminated as a delimiter between paths
and/or processes appearing only as the synchronization symbol for
sequentialization of orelements in paths and processes. This option

produces bodyreplicators generating consecutive regularities.

- 4] -

The second option of "bodyreplicator" produces bodyreplicators which

generate imbrication of paths and processes. Since paths and processes

simply follow each other and cannot be nested within each other, their

imbrication was not essential and the sape collection and ordering of
paths and/or processes could be generated by bodyreplicators of the

first option. For example the expansion of the bodyreplicator P13

P13 [path DEPOSITI(1);REMOVEI(i)end[1]
path DEPOSIT2(i);REMOVE2(i)end |1,n,1]

could be generated by two bodyreplicators Pl4, P15

P14 [path DEPOSITI(1);REMOVEL(i)end[1](1,n,1]
P15 [path DEPOSITZ(i);REMOVEZ(i)end. n,1,-1]

or even by a single bodyreplicator P16

P16 [path DEPOSITI(i);REMOVEI(i)end
path DEPOSIT2(n-i+1) ;REMOVEZ(n—i+l)end 1,n,1]

To guarantee the well-formedness of the basic program obtained after

the expansion of a bodyreplicator the meta-restriction MRl was used:

MR1
"bodypatternl" and "bodypattern2' must be strings of symbols

such that the omission of

[...[index]...|1n, f1,inc]

yields a valid expression in basic COSY except for possible
occurrences of indices.
Meta-restriction MRl does not only exclude Sgde bodyreplicators, but
also some which generate well-formed basic strings. The reason is that
paths and processes in '"bodypatternl" and "bodypattern2" may involve
replicators and distributors in their sequences which are not valid
expressions in Dbasic COSY. The meta-restriction MRl was not really

necessary when the second option in the rule for "bodyreplicator" is

- 47 -
replaced by:

bodypattern ;Iindexi bodypattern

which 1is precisely the syntax of the regularities in bodyreplicators

generating imbrication.

The above rules do not permit nesting of bodyreplicators, but any
number of paths and/or processes could constitute a bodypattern. The

replicators in P4 and P5 are permitted under these rules (pgs 32,33, feSp-)

In [LTS79] the ";'" was eliminated as a delimiter between paths and/or

processes. The syntax of all replicators was centred around one rule:

&replicator=[&patternl &patternz Jin, fi,inc}

where "&" is replaced throughout by one of '"body" or " '". The

non-terminal "bodypattern" was defined as follows:

bodypattern=body/bodyreplicator
body=path/process

To guarantee the well-formedness of the expanded program a
meta-restriction was defined which when applied to Dbodyreplicators
reduces to MR1. This meta-restriction is not necessary on

bodyreplicators when the non-terminals "bodypatternl' and "bodypattern2"

are defined as "bodypattern".

The above rules permit nesting of bodyreplicators. For example the

bodyreplicator P17 is permitted:
P17 [[path TR(i,j);TR(i+l,j) end[i]Il,k+1,1] [§]I1,n,1]
specifying n pipelines of size k.

The grammars in [LSB79, L79] defined bodyreplicators, produced by the

non-terminal "replicatorprogrambody'" which is defined as follows:

- 43 -

replicatorprogrambody=programbody

/[replicatorprogrambody[EEEEE]]in,fi,inc]
programbody=pathprogrambody processprogrambody
pathprogrambody={path)i
processesprogrambody={process}i

According to the above rules bodyreplicators may be nested and any
number of paths and/or processes could be in each one provided paths
appear before processes. These replicators unlike the replicators in
[LTS79] do not generate imbrication of paths or processes and no
meta-restriction was necessary to be applied to them. However, the way
"programbody" is defined permits the production of empty program bodies
and empty regularities in bodyreplicators. Consequently, the expansion
of macro programs may yield basic programs with empty bodies which are
not permitted by the basic COSY syntax. This could be avoided if the
rules for “programbody", 'pathprogrambody" and "processprogrambody'" are

replaced by the rule:
programbody={path/process}+

The bodyreplicators produced by the rules in [L79, LSB79] above, always

generate well-formed basic notation strings when their expansion is not

empty.
In [LSC81] the syntax rules
replpathprogrambody={path/[replpathprogrambody lin, fi,inc]}*

replprocessprogrambody={ process
/[replprocessprogrambodyIindex lin, fi,inc]}*

produce bodyreplicators generating either paths or processes. The paths
and bodyreplicators generating paths must appear before processes and
bodyreplicators generating processes. Nesting of replicators generating

paths and nesting of replicators generating processes is permitted but

- 44 -

nesting of one type inside the other is not. Similarly to the rules 1in
[L79, LSB79] the above rules also permit empty program bodies and empty

regularities in bodyreplicators.

3.1.4 The Paths and Processes

These differ from the paths and processes of basic COSY in that they
may include replicators, distributors and indexed operations the indices
of which may depend on replicator indices. Some of the grammars
developed specify that they may appear as elements, others as
orelements, and others as sequences. Here we examine the implications

of each of these choices.

The first syntax for them appeared in [L76} where the following rules

for paths and processes were given:
path=path pathsequence end
pathsequence=starsequence
starsequence=starsequence;starorelement/starorelement
starorelement=starorelement,starelement/starelement
starelement=pathelement*/pathelement
pathelement=element/(pathsequence)/pathreplicator
process=process sequence end
sequence=sequence;orelement/orelement
orelement=orelement,element/element

element=operation/(sequence)/replicator/distributor

/collectivename({{integer/integerexpression} @,}+)

- 45 -

In this grammar the '"sequence'" and '"pathsequence" differ in that the
former may produce starelements. However they both may produce
replicators, produced from "replicator" if the whole string is produced
by "sequence", or from "pathreplicator" if the whole of the string is
produced from 'pathsequence'. The ‘''pathreplicator" according to the
above syntax could be starred. We believe that this makes the notation
confusing, since after expansion the star only applies to the rightmost

element of the resulting string and not to the whole string. However
this choice does not generate invalid basic COSY programs and
furthermore it increases the power for conciseness of the replicators.

Consider for example path P18:
P18 path A(1);A(2);A(3)* end
which may be generated by P19
P19 path [A(1)@;[1]11,3,1]* end
which 1is permitted by the syntax of [L76]. In these syntax rules the
non-terminal "operation'" produces only simple operations. Subscripted

operations are produced by the last option of the non-terminal

"element".

In the grammars of [TL77, LT78] ‘"pathsequence" was replaced by
"sequence" so both paths and processes may include replicators and

distributors but no starelements.

The syntax rules in [LTS79] for paths and processes was given by

path=path sequence end

process=process sequence end
sequence=sequence;orelement/orelement
orelement=orelement,starelement/starelement

starelement=element/element*

element=operation/(sequence)/replicator/distributor

/collectivename({indexexpression.g,}+)

According to the above rules starelements are reintroduced in the
sequences of processes. Consequently, replicators and distributors may

be starred as in the sequences of paths.

In ([L79] various syntax rules were developed. Some of these rules
however, specify both the context of replicators in sequences together
with the syntax of the replicators themselves. We feel that these are
two distinct issues. A replicator for example, could appear in a path
as a sequence, as an orelement or as an element but in each case it may
generate any string be it a sequence, or an orelement, or an element
forming in each case a well-formed basic string. We took the liberty to
split some of the rules so that we may concentrate on one of these
issues at a time without being distracted by the other. By doing so we
create some new non-terminals which we superfix by "O" to indicate that
these were not in the original syntax of [L79] bute;ghe to our
modifications. In the next subsection we give the original syntax rules
and examine what strings replicators generate and whether these strings
on their own are legal basic COSY and only then we examine both the
expanded string together with its context for well-formedness. Let us

examine the syntax of the paths and processes in [L79]:

- 47 -

path=path {sequence/replicatoro} end
process=process {sequence/replicatoro} end
sequence={orelement @;}+ o
orelement={starelement @,}+
starelement=element/elemnent*

element=operation/indexedoperation/(sequence)

As 1t was observed in [L79] this syntax only generates sequences in
paths which consist of single replicators or a number of them
individually nested within "()". The above rules cannot produce

replicators in other contexts as for example that of P20
P20 path a;[...];[...1;b end
where "[...]" indicate replicators.

The second set of syntax rules given in [L79] replaced the production

for non-terminals "path", "process" and "sequence" b
p P q y

path=path sequence end
process=process sequence end
sequence={replicatororelement &;}+

replicatororelement={orelement/orreplicator?}

respectively. According to the above rules a replicator can only appear

as an orelement in a sequence and therefore only in the following

contexts:
on its left on its right
any of any of
path end
> H
()

This 1implies that P20 is permitted but replicators cannot appear in the

context of starelements as for example in path P2l

- 48 -
P21 path a,[...],[...],b end

Certainly a sequence of the form in path P22
P22 path a,([...]1),([...]),b end

is permitted but we should not conclude that this syntax just generates
redundant parentheses maintaining the semantics of the path when
expanded. It may well be that the additional parentheses change these
semantics. It all depends on the wmain connective of the expanded
string. If it is a comma then the parentheses are just redundant, but
if it 1is a semicolon these may change the semantics of the path if one
of the separators around the replicator is a ",". Llet us consider the
path P23

P23 path a,[C(i)@,[i]I1,3,1] end
which expands to P24
P24 path a,C(1),C(2),C(3),b end
the cycle set of which is
{a,C(1),C(2),C(3),b}
If the replicator in P23 were nested within parentheses as in P25
P25 path a,([C(i) @[1]1,3,1]),b end
the cycle set of its expansion would be exactly that of P24.

To demonstrate that additional parentheses may change the semantics

of a path consider the path P26
P26 path a,[C(1) @|1,3,1],b end

which expands to the basic path P27

- 49 -

P27 path a,C(1);C(2);C(3),b ead

the cycle set of which 1is
{a.C(2).C(3),a.C(Z).b,C(1).C(2).C(3),C(l).C(2).b}

If the replicator in P26 were nested inside parentheses
P28 path a,([C(i)@;|1,3,l]),b end

the cycle set of the path obtained by its expansion P29
P29 path a,(C(1);C(2);C(3)),b end

would be
{a,C(1).C(2).C(3),b}

which defines firing sequences different than those defined by the
cycles of P27.

In the grammar of [LSC81] the syntax of paths and processes is given

by:

path=path (gsequence)* end

processes=process (gsequence)%* end

gsequence={gorelement @;}+

gorelement={gelement @,}+

gelement=element/replgseq/distrgseq

element=operation/indexedoperation/(gsequence)/element*
in which "gsequence", "gorelement", '"gelement" stand for ''generalized"
sequence, orelement, element respectively as the strings they produce
may include replicators and distributors. The non-terminals ''replgseq"
and '"distrgseq" produce replicators and distributors respectively which
appear in sequences. According to the above syntax, replicators and

distributors appear as non-starred elements.

3.1.5 The Replicators in Sequences

In section 3.1.4 we examined the syntax rules which specify the
context of replicators in sequences. Here we examine the syntax of

these replicators.

The grammar in [L76] specified the following syntax for replicators

in sequences:

&replicator=[{ &pattern @ separator
/&patternl &patternZ} jin, fi,inc]

where "&" is replaced throughout by either "path" or " ", The

non-terminals "pattern'" and "pathpattern'" were defined by:

pattern=sequence

pathpattern=pathsequence

The restriction MRla, similar to MRl for bodyreplicators, applied to

patterns and pathpatterns:

MRla

"§patternl" and "&pattern2" must be strings of symbols such

that the omission of "[...'index

valid expression corresponding to the prefix "&" of the

ceolin, fi,inc]" yields a

patterns except for possible occurrences of indices.

The first option of the syntax rule for replicators produces replicators

which generate consecutive regularities. The replicators produced by

the non-terminals "pathreplicator" and '"replicator'" of this type always

generate well-formed valid strings when expanded. This may be shown

formally in the manner demonstrated in section 3.3 where we prove

similar results for programs produced by the grammar of section 3.2.

Furthermore they may generate regularities forming strings which may be
produced by the basic COSY non-terminal "sequence'". The disadvantage of

this syntax is that the separators after the "@'" are treated as of equal

precedence, thus altering the precedence of comma over semicolon

specified in basic COSY.

- 51 -

The sccond option 1intends to produce replicators which generate
imbrication of regularities. Unfortunately, the replicators produced by

this option, satisfying MRla do not generate well-formed basic COSY

strings. This is for two reasons:

1. Since replicators appear as elements and pathreplicators as
pathelements in sequences, whatever they generate must be between

one of the symbols "path", ";", ", "(" on the left and ")", ","

»
",n
»

"end" on the right. Any legal string between these sets of

symbols may 1in general, be produced by the non-terminal "sequence"

of basic COSY.

2. The second reason is that the "@" does not appear in the second

option at all, thus no separators are dropped upon expansion.
Let us consider the path P30
P30 path [(UP(1);RESET(i)[1])*I1,n,1] end

which is permitted by the syntax of [L76] and when expanded for n=3

generates the string
P31 path(UP(l);RESET(i)(UP(Z);RESET(l)(UP(3);RESET(B))))EEQ

which 1is not legal since there are some separators missing after
RESET(1) and RESET(2). If we try to improve on that by putting a comma
after RESET(i) in P30 obtaining P32

P32 path [(UP(i);RESET(1),[i])11,n,1] end
and expand it again for n=3 we obtain the string

P33 BEEE(UP(i);RESET(l),(UP(Z);RESET(Z),(UP(3);RESET(3),)))§EQ
which would be legal if it were not for the comma after RESET(3). Only
P30 is a legal pathreplicator according to the syntax and satisfies

MRla, but neither P30 nor P32 generate basic sequences. There is only

one special case when P30 generates a well-formed expansion that is when

n=1 i.e. when the replicator generates one copy only

P34 path (UP(1l);RESET(1l)) end.

As we have noted replicators according to the syntax of [L76] appear
as elements in a sequence. For this reason another meta-restriction
should be imposed on them to exclude replicators specifying empty index
ranges which would imply empty expansions and collision of terminal
symbols in the context of the replicators. This should apply to all
replicators which appear as sequences, orelements and elements. For

example, if in the path P35

P35 path a,[C(i)@,ll,n,l] end

the value of n were zero, the path after the expansion of the replicator

would be P36
P36 path a, end

which is not legal in basic COSY, as there 1is a collision of the

terminal symbols "," and "end".

In [TL77] the "pathsequence' was replaced by "sequence". The syntax
rules were simplified after the elimination of "g§" standing for either
"path" or " " but still all the previous comments regarding the grammar

of [L76] apply to the grammar of [TL77] as well.

In [LS77] no formal grammar was given. A replicator was defined to

be

"an iterative copy operator which permits the finite

representation of program text of finite but indefinite length'.
The general form of a replicator was defined as

either [patternlindex |in, fi,1inc]
or [patternllindex{patternZlin,fi,inc]

- 53 -

where the patterni for i=1,2 were defined to be strings. This is the

most general replicator which may be defined. Obviously all possible

regularities could be generated by wusing such replicators not

necessarily forming well-formed basic strings. For this reason the

meta-restriction MR2 was used:

MR2
patterni’s must be such that the resulting string after

expansion must be a valid expression in basic COsY.

The above rule may be interpreted in two ways. The first may be that
the expansion of each replicator must be a sequence, or an orelement, or

an element. However, the path in page 16 of [LS77]

P37 path

test(O*

,(countiner
;testl*] ,(countincr;test* ;countdecr)*|n,1,-1]
;countdecr

)*

end
contradicts this 1interpretation since the replicator itself does not

expand to any valid expression in basic COSY.

The above path is consistent with the second interpretation by which
programs may involve replicators in any context and patterni for i=1,2
may be any strings. For the replicator to be well-formed though, the
string obtained after the expansion of the replicators must be
well-formed basic COSY programs. This interpretation of MRZ has some
interesting implications. In the introduction of this chapter we
presented the replicator P4 specifying the three free frame buffer from
which a generalization for an n-free frame buffer was derived by just
altering the upper limit of the values the index takes from 3 to n. The
second interpretation of rule MR2 does not in general permit this kind

of generalization. Consider for example, the path P38

P38 path (([A(1);B(i))@,[i]11,2,1] end

- 54 -

which 1is well-formed according to the second interpretation of MR2,

since after the expansion of the replicator path P3y
P39 path((A(L1);B(1)),(A(2);B(2))end

is obtained, which is well-formed in basic COSY. 1If we generalize the
replicator in P38 to generate n regularities of "A(i);B(i))," by

replacing 2 by n path P40 is obtained:
P40 path (([A(1);B(1))@,[i]I11,n,1] end

The resulting string after the expansion of the replicator in P40 will
only be well-formed when n=2. When n<2 there will be more opening
parentheses than closing ones and when n>2 more closing parentheses than
opening ones. Therefore the fact that a veplicator is expanded to a
well-formed basic string for a particular index range does not
necessarily imply that this replicator will generate well-formed basic
strings for any index range. We shall call this kind of replicator

range dependent. We feel that these replicators should be avoided and

that the macro notation should only allow replicators which when
expanded always generate well-formed basic COSY strings for any non

empty range of their index.

The syntax rules in the grammar of [LTS79] producing replicators
which generate imbrication of regularities were similar to those
presented in [L76] but the problem of not generating well-formed basic
COSY strings is overcome. The syntax for the replicators generating
consecutive regularities was considered as a special case of the
replicator generating imbrication of regularities. The rules for the

syntax of replicators were:

replicator=[patternllindex pattern2}in, fi,inc]
pattern={sequence/separator}f_/pattern @{;/,}

separator=;/,/*/(/)

where exactly one of patterni for i=1,2 must have the form
"pattern @{;/,}". Similarly to [L76, LT79] a meta-restriction of the

type of MRl was applied to these patterns:

- 55 -

MRL’

"patterni' must be strings of symbols such that the omission
of

[Eﬁdéxllin,fi,inc] or

[iﬁ&é;ﬂ @{;/,}1in,fi,inc] or

[@{;/,jlindexl lin, fi,inc]

yields a valid expression.

This syntax together with the meta-restriction MR1’ produce replicators
which generate well-formed basic sequences. This may be proved in the
style we proved similar results in section 3.3. This syntax does not
produce any range dependent replicators. The meta-restriction rule MR1’
excludes all replicators which when expanded do not generate well-formed
basic COSY strings. Furthermore the 1legal replicators may generate

nested regularities. For example the paths

P41 path [(DEPOSIT(i)@;[i];REMOVE(i))*|1,n,1] end
P42 path [(DEPOSIT(i);REMOVE(i))*@;ll,n,l] end

are both valid. However there is a class of nested regularities which

they cannot generate. Consider for example the basic path P43
P43 path(A(1),(A(2),(A(3);B(3)),B(2)),B(1)) end

the sequence of which cannot be generated by any of these replicators.
If we examine P43 we see that the element "(A(3);B(3))" is nested inside
the element "(A(2),...,A(2))" which in turn is nested inside the element
"(A(1),...,B(1))". The reason this kind of replicator cannot be written
is not Dbecause the innermost element is not an exact copy of the other
elements. This 1is true in general for any nested regularities.

Consider for example the path P44

P44 path(A(1),(A(2),(A(3);B(3));B(2));B(1))end

are
in which the innermost regularity is "(A(3);B(3))" whilst the othersVof

the type "(A(),...;B())". However the sequence of path P44 may be

- 56 —-
generated by P45
P45 path [(A(i)@,;B(i))|1,3,1] end

We may characterize the class of regularities which cannot be generated
by replicators. It is the class of regularities in which all are of the

form

p(i) sl ... sl q(i)
in which "p", "q" are patterns involving some index "i" and "s1"
represents one of the separators "," or ";", except for the innermost

regularity which is of the form
p(fi) s2 q(fi)

in which the index "i" in the patterns "p", "q'" is replaced by i’s last
value, namely "fi" and the separator "s2" is distinct from "sl". For a
replicator to generate this kind of regularities, the separator after
the "@" should not be stripped but should be replaced by another

separator.

We have pointed out that the syntax rules of [LTS79] together with
MR1® produce replicators which only generate well-formed basic COSY
strings. Without MR1’ though their syntax would begggde as the strings
the replicators could generate would not in general be well-formed in
basic COSY. We feel that close—fitting formal syntax rules should be
derived producing replicators which after expansion generate well-formed
basic COSY strings. The syntax in [L79] and [LSC81l] gave some partial

solutions to this problem.

In [L79] the problem of more '"close-fitting" rules for replicators
was discussed and various syntax rules were developed. The approach
followed was to start from syntax rules producing simple replicators and
to extend them to produce replicators able to generate larger classes of
regularities. The first replicator together with 1its context was

defined by

- 57 -

path=path {sequence/[element @ separator lin,fi,inc]} end

process=process {sequence/[element % separatorlin,fi,inc]} end

separator=;/,

According to this definition nesting of replicators is not permitted.
Replicators may generate sequences 1f the separator after the "@" is "
or orelements 1if this separator is a ",". Since the regularity they
replicate is "element", redundant parentheses have to be introduced when

orelements or sequences are replicated. Consider for example paths P46
and P47

P46 path A(1),B(1);A(2),B(2);A(3),8(3) end
P47 path A(1);B(2);A(2);B(2);A(3);B(3) end

According to the above rules the paths P48 and P49

P48 path [(A(i),B(1))€;[1]11,3,1] end
P49 path [(A(1);B(1))@;[1]11,3,1] end

0]

are permitted, involving replicators which when expanded generate paths
with the same semantics as P46 and P47 respectively, by introducing
redundant parentheses. The above rules cannot produce replicators which

expand to precisely the paths P46 and P47.

The above syntax rules produce replicators which always generate
well-formed basic COSY strings when their expansion 1s not empty.
However, they may ounly appear in a very limited context, namely in place
of whole sequences between 'path" and "end" or between "(" and ")".
Thus, as it was pointed out in the example (E20) in [L79] the process

P50
P50 process b;[(AB(i);AE(i))@,|l,n,1];c end

is not permitted. The syntax rules were then extended to cover at least

this case:

path=path sequence end
process=process sequence end

sequence={ {orelement

/lorelement 3 separator|in,fi,inc]} a; 1+

These rules also do not permit nesting of replicators. They do not

introduce as many redundant parentheses as the previous rules though.

For example P46 may be exactly generated by P51:
P51 path [A(i),B(i)@;ll,B,l] end

The main limitation with both the above sets of rules in {L79] is that
they do not permit nested replicators. As the example (E22) in [L79]

demonstrates, the process P52

P52 process b;[[(AB(i,j);AE(i,j))@,ll,n,l]@,ll,k,l];c end

is not permitted. The syntax rules were extended to permit nesting of

replicators:
sequence={replicatororelement @+

replicatororelement=orelement

/[replicatororelement & separatorlin,fi,inc]
separator=;/,

The replicators produced by these rules generate well-formed basic COSY
strings. Again, redundant parentheses have to be introduced when
sequences are replicated as in P49. The intention in [L79] was not just
to define replicators which generate well-formed strings. In addition
the syntax in [L79] was aiming to define replicators the expansion of
which could be produced by the basic COSY non-terminal ''sequence" or
"orelement'" and this expansion to appear in a sequence as a subsequence
or as a suborelement respectively. In other words the first and the

last element of the expansion should bind with the rest of the expansion

- 59 -

and not with other elements in the rest of the sequence, Consider for

example the path P53:
PS3 path b; [A()@,[1]11,3,1];¢c end
which when expanded yields P54
P54 path a;A(1),A(2),A(3);c end
The expansion of the replicator in P53 on its own yields an orelement

and it is also an orelement in the context it appears in path PS4. We

will say that the replicator in P53 generates a syntactically strong

string. Not all replicators generate syntactically strong strings and

furthermore not in any context. Consider for example P55:
P55 path b, [A(i)€;[1]11,3,1],c end

in which the expansion of the replicator on its own is a sequence. But

its expansion in the context of P55
P56 path b,A(1);A(2);A(3),c end

is not a syntactically strong string since A(l) binds with operation b
and A(3) with ¢ and not with the rest of its expansion. The aim of
[L79] was therefore to obtain syntax rules for replicators which
generate syntactically strong strings in the context they appear. The
previous syntax rules of [L79] do not permit path P55. They however

permit path P57

PS7 path [[a(1,3)€;[1]11,2,11¢,[3]11,2,1]end

in which the inside replicator does not produce syntactically strong

strings, as may be seen when both replicators are expanded:
P58 path A(1l,1);A(2,1),A(2,1);A(2,2) end

For this reason the definition of "replicatororelement" was redefined

as:

- 60 -

replicatororelement=orelement
/([replicatororelement @;[E]]in,fi,inc])
/[replicatororelement @, jin,fi,inc]

and at the cost of redundant parentheses it was simplified to:

replicatororelement=orelement

/([replicatororelement @ separatorlin,fi,inc])

These rules produce replicators which when expanded produce well-formed
and syntactically strong strings. Their only disadvantage is that they
introduce reduntant parentheses in three contexts. The first is when

they appear as orelements in a sequence as for example in P59:
P59 path ({...]);(leee]);eceend

The parentheses are redundant for whatever strings the replicators
generate. The second context is when replicators appear as elements in

an orelement and the replicators generate orelements as in P60:

P60 path ([.+.@,[J1eee1),([++.@[J1cce]), v end

Finally, they introduce reduntant parentheses around the regularities

they generate in the context
P61l path ...[(...;...;...)@;[]]...]... end

In the next chapter, where we address the problem of finding the
semantics of a basic program generated from a macro program, directly
from the macro program itself, we derive syntax rules for replicators
generating syntactically strong strings without the enforcement of

redundant parentheses.

The rules given in [L79] which we examined up to now, produce

replicators which generate consecutive regularities. The first rule for

replicators generating imbrication of regularities 1is:

61

replicatororelement=orelement

/({replicatororelement @ separator

{/separator replicatororelement}|in, fi,inc])

/ ([replicatororelement separator []

replicatororelement @ separator|in,fi,inc])

This rule produces all replicators produced by previous rules in [L79].
It also produces replicators which generate some imbrication of

regularities as for example the replicator in P62:
P62 path ([A(1)@;[1i];B(i)i1,3,1]) end

which expands to
P63 path(A(1);A(2);A(3);B(3);5B(2);B(1)) end

This 1is a special kind of imbrication. The general kind of imbrication
of regularities is when these have opening parentheses on the left of
the place holder ']:” and corresponding closing parentheses on the right
of the place holder as in the stack example Pll, P12. To produce this

kind of replicator the rules for 'replicatororelement" were extended to

replicatororelement=

orelement

/([{rseparator}* replicatororelement @ separator

{/{rseparator}* replicatororelement {rseparator}i}|in,fi,inc])

/({{rseparator}* replicatororelement @ separator

{rseparator}* replicatororelement @ separator|in, fi,inc])

rseparator=separator/(/)/*

Although these rules permit the replicators in P11, P12 they may also

produce other replicators which do not generate well-formed basic COSY

strings. For example, the number of opening parentheses on the left

- 62 -

hand side of the place holder "O" do not necessarily match with closing
parentheses on the right hand side of the place holder. Therefore
together with the above rule a meta-restriction rule is needed to filter
out all those replicators which generate invalid basic COSY strings. 1t

is apparent that even more close-fitting rules are needed.
In [LS80] the grammar for replicators was given by:

basicsymbol =some finite set of basic symbols

not including the "@",

index =some possibly infinite set of symbols

distinct from basic symbols

indexexpression =integer expression involving only indices and

integer constants
pattern ={basicsymbol/index}*/replicator

replicator =[pattern{@{;/,}/}pattern{@{;/,}/} |

indexexpression, indexexpression,indexexpression]

Since no other rule for constraining the patterns of the replicators was
given these may generate any strings of basic symbols. We feel that

these rules are very wide and more close fitting rules are required

improving on the syntax of [L79].

In [LSC81] we presented context-free syntax rules general enough to
produce all the macro programs in this paper involving replicators

generating well-formed basic COSY strings. The context-free rules were:

- 63 -

replgseq=[{gseqrepll/gseqreplZ}|in,fi,inC]

gseqrepll=gsequence @ sep

gseqrepl2=gsequence @ sep|inde;Vsep gsequence

/{gsequence sep/} elementrepl {/sep gsequence}

elementrepl=elementrepl%*

/({gsequence @ sepiindexl/{index{gsequence/gseqreplZ})

If we eliminate the middle option of the second alternative for
"elementrepl" all replicators produced generate well-formed basic COSY

strings. This again may be proved in the style we proved similar
results in section 3.3. The above rules permit replicators which

generate a large class of imbrication of regularities such as the stack
specified by Pll and path P64:

P64 path [(A(1)@ ;[i]),B(1)11,3,1] end

The above rules specify that any number of unmatched opening parentheses

on the left of the place holder, match with closing parentheses on the

right of the place holder. These rules however, cannot produce
replicators which involve the "@" on the right of the place holder like

the replicator in path P65
P65 path [SK(i),([1]A(i);B(i))@;11,n,1] end
The rules of [LSC81] may be extended to permit such replicators:

replgseq={gseqrepli{in, fi,inc]

gseqrepl=gsequence @ seplindex‘

/ gsequence @ sep
/ gsequence @ sepsep gsequence
/gsequence sep'index\gsequence @ sep

/elementrepl

elementrepl=elementrepl*/(gseqrepl)

- 64 -

Although the above rules are close-fitting and all replicators they
produce generate well-formed basic COSY strings they specify a mixed
precedence of ";" and ",". The above rules may not produce replicators
generating strings such as the sequence of path P43 since the "@" only
strips and does not replace any separators by others. The need is still
apparent for context-free rules producing more general replicators which

expand to well-formed basic COSY strings.

3.1.6 The Distributors

Historically, distributors were the first macro feature to be used
[cL76] in the path notation [LC75] as a shorthand. The term
"distributor" was introduced 1later [L76] with the rest of the macro
notation. In [LC75] the formal definition of the path definition was
introduced and was extended by a SIMULA class-like comnstruct which
permits classes to contain both paths and processes. In [LC76] arrays

of classes could be declared which were called sets. The shorthands
P.(,S) and P.(;S)

were defined, where S 1is a set coantaining k elements and P is an
operation, called a procedurename in [LC76], in paths or processes in

each class S(i) for i=1,2,...k. These shorthands denoted the strings:

P.S(1),P.S(2),...,P(k) and
P.S(1);P.S(2);+..;P.S(k) respectively.

In [L76, TL77] the notation for distributors was changed to deal with

collective names and not with sets:

distributor=
separator ({{collectivename
/collectivename({{integer/indexexpression}g)}+)}

@separator}+)

A distributor may only generate certain types of consecutlve

65

regularities. The indices needed in each of these regularities to

generate subscripted operations are implicitly generated. These are the
same as the indices in a dimension of the collective names involved in a
distributor, as defined by the collectivisor. When a distributor
involves collective names with more than one dimension then 1t is
required to specify the dimensions over which the connectives are to be
distributed by leaving a blank field in their index 1list. If a
collective name has all its index fields blank then its index 1list may
be eliminated altogether. This applies to all distributors and will be

assumed to apply throughout this section.
In [L76, TL77] the following constraint was imposed on distributors:

the sets of indices corresponding to each of the dimensions over
which collective names are to be distributed must be the same,

otherwise the distributor is not well-formed.

If this constraint 1is satisfied then we say that the dimensions to be
distributed are compatible. Sometimes the above constraint 1is refered

to as the compatibility criterion. According to the compatibility

criterion the distributors D1, D2 and D3

D1 ;(DEPOSIT)
D2 ,(DEPOSIT;REMOVE)
D3 ,(A(2,))

are well-formed, provided the collectivisors C7 and C8

C7 array DEPOSIT,REMOVE(n)
C8 array A(2,2)

have been declared. When a distributor is expanded each regularity is

wrapped between an opening and a closing parentheses. The distributor

D1 then expands to
(DEPOSIT(1));(DEPOSIT(2));...;(DEPOSIT(n))

the distributor D2 to

- 66 -

(DEPOSIT(1);REMOVE(1))
, (DEPOSIT(2) ; REMOVE(2))

, (DEPOSIT(n) ; REMOVE(n))
and D3 to
(A(2,1)),(A(2,2))

The regularities that distributors generate may be produced by the
non-terminal of basic COSY '"sequence", but do not however include
elements of the type "(sequence)'. As may be seen in the strings
generated by Dl and D3, the parentheses enforced around each regularity

may be redundant.
Later in [LTS79] nested distributors were defined such as
D4 ,(;(A))
where A is assumed to have been declared by the collectivisor C8.

For this distributor we must specify which separator applies to which
dimension of the collective name. The adopted convention was that the
innermost separator will apply to5hfeftmost dimension , the next
separator to the leftmost not allocated dimension etc. Obviously, a
collectivisor must have as many dimensions to distribute over as the
number of nested distributors it is in. The distributor D4 therefore

expands to
((A(L1,1));(A(2,1))),((A(1,2));A(2,2)))

provided A has been declared by the collectivisor C8. The syntax of the

distributor was defined in [LTS79] by:

distributor={;/,} { distributor
/({{collectivename
/collectivename({{integer/indexexpression}g,}+)}

@separator }+)

- 67 -

The syntax of [LSC81] permits the production of distributors which

generate any consecutive regularities the ‘elements of which may be

starred and/or which could be of type '"(sequence)". The syntax of

distributors was given by:
distributor={;/,}[gsequence]

In [LSC8l] the 1lower bound of the collective names were explicitly

specified and not implicitly fixed to 1. The compatibility criterion of

[L76] was accordingly relaxed by requiring

the sets of indices of dimensions of collective names to be
distributed by the same collectivisor, to have the same number

of elements.
For example if the collective names A, B, C and D were defined by:

C5 array A,B(2)
array C,D(2:3)

the distributor
D6 ;((A;B*;C),D)
would expand to

(A(1);B(1)*;C(2)),D(2)
3 (A(2)3B(2)*;C(3)),D(3)

In this syntax replicators were permitted inside distributors as well as
distributors inside replicators, as in the earlier grammars. In that

sense distributors and replicators become symmetrical.

The expansion of distributors, unlike the expansion of replicators,
was never formally defined directly. Their expansion was either
described by an example or in terms of a replicator generating the same
string. Furthermore, the expansion of distributors was not at all

. i to
defined when distributors involve collective names corresponding

- 8 -

non-rectangular arrays.

3.1.7 Some More Replicators

In the review up to now we have examined various replicators

generating subscripted operations, paths and/or processes, sequences,

orelements, starelements and elements. However, the values of their

indices always formed finite arithmetic progressions.

In macro COSY other replicators have been defined which permit the
index to take values forming infinite arithmetic progressions and others
which take afinite number of values but do not form arithmetic

progressions in general.

In [SL77, SL79] it was shown that any '"program" using the extended
semaphore primitives (ESP’s) of Agerwala [A77] as its only means of
synchronization and which is in some sense "bounded" has an equivalent
description in the COSY formalism. It was pointed out however that to
obtain a complete tramslation of a given ESP program, which may contain
unbounded semaphores, requires a real extention of the descriptive power
of the COSY notation as it may ounly describe finite systems. Such an
extention was suggested in terms of Petri~nets [P76] in [SL77] and in
terms of the "Cyc'" operator in [SL79] but as it was pointed out, out of
theoretical interest, After this

extension infinite counters were defined

P66 path [(V(s)@;;P(s))*|1,°°,l] end
which were given vector firing sequence semantics.

In [LTD79, D79, LSB79, LTD80, SL80] replicators were defined the

index of which could take a finite number of values not necessarily

forming arithmetic progressions. In [LTD80] chese were called test

replicators. Two formalisms were used, both incorporating predicates to
select or define the range of the index. The replicators in [LTD79,
D79, LTD80] used predicates to select the range of an index out of an

arithmetic progression. For example path P67

- 659 -
P67 path [SIEVE(i)@; i,i is prime }2,15,1] end
generates P68

P68 path SIEVE(2);SIEVE(3);SIEVE(S5);SIEVE(7);SIEVE(LL);SIEVE(13) end

filtering out the elements in the arithmetic progression 2,3,...,15
which are not prime. The standard replicators therefore may be viewed
as a special case of the test replicators in which the value of the

predicate P(i) is true for all values of the replicator index "i" takes.

In {SL80] the predicates were defined outside the replicators. These
predicates were wused in place of the arithmetic progression generator
"|in,fi,inc" generating the integers which satisfied them. For example

the replicator in P50 would have been written as

predicate P(i)=(2<i<15 and i is prime)
P69 path [SIEVE(i)@ ;{11P(i)]] end

This concludes the review of most macro COSY notations and
subnotations. In the next section we introduce a new macro notation
which improves or eliminates altogether drawbacks of the notations we

examined in this section.

3.2 A NEW NOTATION AND GRAMMAR FOR MACRO COSY

In this section we make some changes to the macro COSY notation

improving the readability of macro programs. We extend it in such a way

that new replicators are included, generating classes of basic COSY

strings which cannot be generated by replicators produced by the

. : i that new
grammar s reviewed in section 3.1, and in such a way

- 70 -

distributors are included, generating more basic COSY strings nor
s e

concisely than replicators. Together with the notation we present the
syntax rules for producing macro programs in this new macro COSY
notation. Our general counsiderations in developing the new notation and

grammar were mainly four:

1. The syntactic well-formedness of a macro COSY program produced by

the grammar should dimply the syntactic well-formedness of the

corresponding basic COSY program resulting from expansion. Our aim
is to derive formal context-free rules avoiding meta-restriction
rules on the regularities of replicators. For this reason we need
to specify exactly what we are allowed to write in replicators and

distributors and where these should appear in the programs.

2. The grammar should be general, producing replicators and
distributors able to represent a large class of regularities of

structures concisely.

3. The grammatical rules should be uniform with the rules for Dbasic
COSY and should formally show the hierarchy of the macro COoSsY

notation over the basic COSY notation.

4. The macro elements should represent the regularities they generate
in a way as obvious as possible for the reading of macro programs to

be possible without their formal expansion.

The meta-language conventions which will be used in the syntax rules
in this section will be the same as in last sectiom. The subsections
are divided in the same way as in the last section; in each we examine a

major syntactic category.

3.2.1 The Macro Program

A macro COSY program will consist of collectivisors, paths, Processes

- "
and bodyreplicators appearing between the word pair 'program and
"endprogram". Since after expansion of a macro program all 1S

- 71 -

collectivisors disappear, the macro program should include at least one
of a pat?; process, or bodyreplicator, for the body of the basic program
obtained\ﬁgxpanSion to be non-empty. The syntax for macro programs is
given by:

MNl. mprogram=program mprogrambody endprogram

MN2. mprogrambody={{collectivisor}j_{mpath/mprocess/bodyreplicator}}+

In the above rules, and henceforth, non-terminals of macro COSY which
correspond to non-terminals of basic COSY have been obtained by

prefixing the latter by "m" standing for "macro".

According to the above rules, collectivisors, macro paths, macro
processes and bodyreplicators may appear in any order, with the
exception that no collectivisor may appear after all the paths,
processes and bodyreplicators. The following restriction is imposed on

programs:

(MPrest)
Collective names should be declared before any path or

process involving any of its subscripted operations.

The context-sensitive restriction (MPrest) is imposed so that for the
expansion of a macro program one pass is sufficient. It also makes
the syntax checking more efficient as well. For otherwise, two passes
would be required for expansion and syntax checking, since the
collective names and the number of their dimensions have to be known in
either case and in addition, when expanding, the bounds of the indices
in every dimension have to be known as well. We could avoid this
meta-restriction by forcing all collectivisors to appear before paths,
processes and bodyreplicators. We would however need the
context-sensitive restriction that all subscripted operations in macro
paths and macro processes should be permitted by the collectivisors.
When writing programs though, we find it sometimes convenient to declare
collective names near the paths which involve indexed operations

corresponding to these collective names.

3.2.2 The Collectivisors

Previous notations permit declarations of collective names

corresponding to rectangular arrays and to arrays of other shapes. In
the new notation we shall permit both types of collective names to be
declared. When declaring rectangular arrays two conventions have been
followed: either the lower bound of indices in their dimensions are
implicitly considered as having the value one, or the lower bound is

explicitly specified. In the new macro notation we combine both
conventions. We also follow the convention that collective names will
be in wupper case letters. When subscripts in the dimensions of arrays
are consecutive positive integers starting from 1, the 1lower bound in
these dimensions may be implicitly assumed to have the value one and
only the upper bound has to be specified. We permit collective names
with a different number of dimensions and/or different bounds in their

[
dimensions to be declared by the same collectivisor. Two notational

changes are introduced in declaring collective names:

1. The elimination of commas between collective names. The intention
is to confine the use of the comma to sequences, as the

synchronization symbol for 'choice', as much as possible.

2. The introduction of the word symbol "endarray" which indicates the
end of a declaration. All declarations will now be enclosed between
word symbol pairs 'array" and "endarray" in the same way major
syntactic entities like "programbody" and "sequence" in basic Ccosy

are enclosed between word symbol pairs.
For example the declaration NCl

NCl array A(k) endarray
array B C(5) D(3,m) endarray

declares the subscripted operations

- 73 -

ACL), .., ACK),
B(1),...,B(5),
C(1),+..,C(5),
D(1,1),...,D(1l,m),
D(2,1),++.,D(2,m),
D(3,1),...,D(3,m)

The "N' in front of the mnemonic names of examples in this section and
in section 3.3 indicate that these are written in the new macro notation
introduced in this section. The letter "C" 1indicates collectivisors,
the letter "P" paths, processes or bodyreplicators and the letters "D"

and "R" distributors and replicators in sequences, respectively.

If the 1lower bound in some dimensions of collective names is not 1
but some other fixed integer n we may specify it explicitly as in
[LSB79, LScC8l1]. To specify for example that the single dimension of
collective name E has lower bound n and upperbound k, and that the first
dimension of the two dimensional collective name F has lower bound m and
upper bound n and its second dimension lower bound one and upper bound

k, we write:
NC2 array E(n:k) F(m:n,k) endarray

We may also combine the declarations in NCl and NC2 in one declaration:
NC3 array A(k) B C(5) D(m,3) E(n:k) F(m:n,k) endarray

For the collectivisors to be well-formed we shall require all the

declarations to satisfy the collectivisor restriction Crestl:

(Crestl) has

the upperbound of the dimensions of the collective namesV to
be greater than or equal to their corresponding implicit or

explicit lowerbound.

We permit also declaration of subscripted operations the indices of

. . i f some
which either are not consecutive integers or depend on the index o

other dimension. For example, the index in the first dimension of the

subscripted operations:

s(1,1)
S(3,1), 8(3,2), S(3,3)
5(5,1), $(5,2), s(5,3), S(5,4), S(5,5),

takes values 1, 3, 5 and the index 1in their second dimension takes
consecutive values from one to the value of their first dimension. We
shall use replicators to generate the set of admissible subscripted

operations as in [LTD79]. The subscripted operations corresponding to S

may be declared by the collectivisor NC4
NC4 array #i:1,5,2[#3:1,1,1[S(i,3)]] endarray

using replicators the notation of which we have modified. We have
changed the generator for index values "lin,fi,inc" to "#i:in,fi,inc"
and moved it in front of "[]". The reason for the change was more or
less technical: the place holder "[:]” is not standard in size depending
on the length of the index identifier and it is not a standard character
symbol in any computer or typewriter. It has always to be drawn by hand
on paper and be replaced by other symbols whenever a macro program is to
be given as input to a computer program, for example for syntax checking
or for expansion. The reason we moved the index generator in froat of
"[1" is mainly for the improvement of readability of replicators. The

replicator may now be read from left to right as

“"ijndex i takes values from in to fi in steps of inc which upon
expansion are replacing index 1’ in each copy of the regularity

inside ‘[]° ".

Thus we have separated the index specification part which is common to

all replicators no matter what they generate, from the regularities they

generate, which are now the only strings in "[[". Similar notational

changes will be applied to bodyreplicators and replicators appearing in

sequences. For the replicators to be well-formed they should obey the

second collectivisor restriction Crest2:

- 75 -

(Crest2)
Each replicator mwmust specify a

non empty range for its
index.

Restriction Crest2 guarantees that replicators in collectivisors declare

at least one subscripted operation corresponding to each collective

name.

Subscripted operations with the same subscripts in all their

dimensions may be declared by the same replicators and will not be
separated by commas, simplifying the syntax of these replicators and
eliminating the comma between subscripted operations altogether. Also
subscripted operations with the same subscripts in some of their

dimensions, may be groupped together in the same replicator, e.g.
NC5 array #i:1,5,2[T(i) #3j:1,1,1[S(i,3) U(i,j)]] endarray
where the collective name T corresponds to the operations
T(1), T(3), T(5)
and the collective name U to the operations

u(1,1),
U(3,1), U(3,2), U(3,3),
u(5,1), U(5,2), U(5,3), U(5,4), U(5,5)

The subscripted operations in replicators may be indexed by expressions
involving replicator indices. These expressions should satisfy the

third collectivisor restriction Crest3:

(Crest3)
All expressions indexing collective names should yield
integers for all the values which the indices they involve

take.

We also permit grouping together subscripted operatious, indexed by

expressions depending on replicator indices indexing other subscripted

- 76 —
operations, as in NC6:
NC6 array #1:1,5,2[V(i+3)#3:1,1,1[S(1,j)]] endarray

where V corresponds to the operations V(4), v(6), V(8). We shall
require that collectivisors involving nested replicators, are

constrained by the fourth collectivisor restriction Cresté:
(Cresté)

A collectivisor involving nested replicators must be of the
form

#kn: inn, fin, inen[...#k1l:inl, fil, incl{Y(hl,R2,...,)]...]
where hi for i=l,...,n are expressions involving indices kj
for j=l,...,n such that each ki for i=l,...,n must appear in
at least one dimension, and an index ki i=l,...,n may only.
appear together with indices kj for j>i in a single
expression and in at most (i-1) expressions with indices kj

for j<i.
The restriction Crest4 (s imposed to guarantee the independence of the

indices of different dimensions of the same collective name and to avoid
duplication of declarations of subscripted operations. The invalid

declaration
array #i:1,5,2[W(i,i+1)] endarray

declares a two dimensional array W corresponding to the subscripted

operations:
W(1,2), W(3,4), W(5,6)

The indices in the dimensions of W are dependent for if one index is
known the other may be determined. This type of declaration contradicts
the notion of dimension and for this reason is excluded. Cresté4 also
excludes duplication of declaration of subscripted operations as for

example the following invalid collectivisor specifies:

array #i:1,5,2[#j:1,1,1[T(1) S(i,j)]] endarray

which declares T(3) three times and T(5) five times. There is a third

type of collectivisor which is excluded by Crest4 which does not define

7']
dependent dimensions nor dublicates subscripted operations such as
array #i:0,9,1[#3:0,9,1[A(100*%j+1)]] endarray

The reason we have excluded this type of collectivisor is more subtle
and has to do with the expansion of distributors. We shall discuss this
point 1in section 3.4 having examined the distributors and their
expansion. We may characterize the shapes of arrays declared by
replicators as being finite n-dimensional arrays, the indices in each

dimension of which aye. generated by an integer expression depending on

infiger variables taking values from an arithmetic progression.
*

We may also combine the NC3 and NC6 types of declarations in a single

declaration. The complete syntax for the collectivisors is:

MN3. collectivisor=array {simpleardecl/replardecl}+rendarray
MN4. simpleardecl={arrayid }+({{ieXbr:/} iexpr @,}+)

MN5. replardecl=index_$pec[{replardecl/arrayid({iexpr @,}+) }+]
MN6. index spec=#index:iexpr,iexpr,iexpr

MN7. arrayid=uc-letter{uc-letter/digit/ }*

where "simpleardecl" stands for a list of collective names which
correspond to simple rectangular arrays together with their bounds and
"replardecl" stands for the replicator generating admissible sets of
subscripted operations. The non-terminal "index_spec" stands for the
index specification part of a replicator and "jexpr" for an integer
expression. The syntax of '"index" 1is the same as that of a simple
operation rule BN9 of basic COSY. Identifiers used for replicator

indices though, must satisfy the index restriction Irestl:
(Irestl)
Identifiers for replicator indices should be distinct from

any identifiers used for simple operations.

and the restriction Irest2:

e ——— e

{+)

The following restriction must also hold:

(Crest5)

An array identifier may only occur once in collectivisors.

- 78 -

(Irest2)

Replicator indices are only defined inside "[]" of the

replicator with which they are associated. In the scope of
a replicator index no other replicator index having the same

identifier is permitted.

The restrictions on replicator indices (Irestl) and (Irest2) apply to

all replicators.

3.2.3 The Bodyreplicators

We permit replicators, bodyreplicators as we call them, which nay
generate paths and/or processes. Bodyreplicators are permitted to
generate consecutive regularities of paths and/or processes. We also
permit nesting of bodyreplicators. The only change to the grammar of

[LTS79] is a notational one and involves the index specification part of
the bodyreplicator, which was changed from " 1in,fi,inc" to

"#index:in, fi,inc" and was moved in fromt of "[]". Their syntax 1is

formally given by:
MN8. bodyreplicator=index spec[{mpath/mprocess/bodyreplicator}+]

No meta-restriction 1is needed to guarantee the well-formedness of the
expanded programs. If each of the paths and processes they generate 1is
well-formed then the whole expansion is well-formed. This will formally

be demonstrated in section 3.3.

The above rules permit for example, the n-free frame buffer to be

specified by NPL:

NP1 #i:1,n,1[path DEPOSIT(i);REMOVE(i) end]
and m pipelines of size n each associated with a mechanism controlling
exits similar to that in the bounded delay priority queues in [LT79,

C80] to be specified by:

- 79 -

NP2 #i:1,m,1
[#j:l,n,l[path TR(i,j);TR(i,j+l) end]
path TR(i,n+1);CS END(i) end
]

We impose the restriction BRrest on bodyreplicators

(BRrest)

The range of the bodyreplicator indices should be non empty.

guaranteing that bodyreplicatorsgenerate at least one regularity. This
is important, for a macro program body could consist of just

bodyreplicators which upon expansion should generate a non-empty basic

program body.

3.2.4 The Paths and Processes

Their syntax will be similar to the syntax of paths and processes of

basic COSY:

MN9. mpath=path (msequence)* end

MN10Q. mprocess=process (msequence)* end

We have used 'msequence" instead of 'sequence" to stand for "macro
sequence" since we will allow replicators and distributors as parts of
them. Similarly, in the syntax rules below, "morelement" will stand for

"macro orelement":

MNl1l. msequence={morelement @;}+

MN12. morelement={gelement @,}+

MN13. gelement=stare1ement/sreplicator/distributor
MNl4. starelement=element/element*

MN15. element=operation/indexedop/(msequence)
MN16. operation=lc~letter{lc-letter/digit/_}*
MN17. indexedop=arrayid({iexpr @,}+)

. " 3 >
In the above rules, "gelement" stands for 'generalized element” since it

- 80 -

can be any of starelement, replicator or distributor. We have used

"sreplicator" to 1indicate replicators which expand to basic COSY

sequences which we call sequence replicators. The only difference

between the above rules and corresponding ones in basic COSY 1is

that

here we allow three new types of elements, sequence replicators and
distributors, produced by "sreplicator" and "distributor" respectively,

which cannot be starred, and indexed operations, produced by
"indexedop" . The above rules satisfy our third consideration for
developing this grammar since it 1is structurally similar to the grammar
of basic COSY. It is clear that any basic COSY program may be produced
by the rules obtained up to now. According to these, a macro program
could consist of just macro paths and processes the macro sequences of
which do not involve any sequence replicators or distributors or indexed
operations. But such a program could be produced by the basic COSY
syntax as well. 1In addition "msequence" may involve any number of the

three new types of elements.
We did not permit replicators and distributors to be starred as the

star will not apply to the whole of the string they would generate, but

only to its last element.

3.2.5 The Sequence Replicators

As we have noted in the previous section 3.1, the syntax rules for
replicators in sequences produced replicators which are either too wide,
not generating well-formed basic COSY strings when expanded, and
meta-restrictions need to be applied, or are not general enough,
generating a class of regularities which is not as large as we would
like it to be. On the other hand we require that the replicators should
be readable without formal expansion. For this reason we shall exclude
replicators generating certain types of regularities. Before we give
any syntax rules, let us specify exactly which replicators we will
exclude. From the discussion in the section 3.1 it is obvious that we
would 1like to avoid the production of some replicators, namely those
which were well-formed only for a particular range of their index, the

range dependent replicators. The path P40 for example

- 8] -
P40 path (([A(i);B(i))@,ll,n,l] end

expands to a well-formed string only for n=2. We will require that when

a replicator expands into a well-formed basic COSY string it does so for

any non—-empty range of its index.

Sometimes we may have a choice in generating a string. Should our
replicators be so general as to be able to generate a string in any way

or should they be more restricted? 1Is the shortest replicator always

the "best"? To demonstrate the problem in deciding the "best" grammar

let us consider the following example:

P70 path
(A(1);B(1))
»(C(1);D(1),A(2);B(2))
»(C(2);D(2),A(3);B(3))
,(C(3);D(3))

end

We may wuse replicators to abbreviate the regular substructures of the
outermost orelement in P70. Two obviously similar substructures are the
two middle elements of the orelement of P70, which may be generated

using the old notation by:

P71 path
(A(1);B(1))
,1(C(1);D(i),ACi+1);B(i+1))@,[i]i1,2,1]
»(C(3);D(3))

end

But if we examine the orelement in P70 more carefully we see that

another regular pattern is the string
A(1);B(1)),(C(1);D(i) for i=1,2,3.
So P70 may be generated by:

P72 path([A(1);B(1)),(C(1);D(1)@,[i]11,3,1])end

- 82 -

Although P72 1is the most concise path generating P70 it has some

drawbacks. The regularity of the replicator cannot be described
syntactically 1in terms of the non-terminals used in basic COSY because
of the unmatched opening and closing parentheses. On the other hand the

regularity in the replicator P71 may be described as:

(sequence)@,
(orelement;orelement;orelement)@,
(element;element,element;element)@,

etc.

Furthermore, the expansion of the replicator in P72 is only well-formed
in the context "(...)" and not in any other context of any sequence

teplicator. We shall call this type of a replicator context dependent.

As we would like our replicators to be well-formed when expanded in any

possible context these replicators will not be permitted.

There 1is yet a third kind of a replicator we will not permit, the
expansion of which does not depend on the separators on its left and on
its right but on other replicators nearby. Consider for example the

stack written as:

P73 path [(UP(1)&;[i]11,n,1];[DOWN(1))*@;[1]In,1,-1] end

which may be produced by the grammar of [LS77]. When the replicators in
P73 are expanded, the resulting path is well-formed in basic COSY. We

shall call these replicators neighbourhood dependent.

All three types of replicators we shall exclude have a common
characteristic. They do not generate sequences themselves but only
together with other parts of the macro sequence in which they are
embedded. Since replicators may appear as non-starred elements in a
macro sequence and according to our first consideration should produce
well-formed basic COSY programs when expanded, they should generate
basic COSY sequences. The replicators and the distributors according to
oo, (" and

y

rules MN9 to MN15 may only appear after any of "path",

before any of "end", ",", ';", ")" and what may legally be written

between any of these 1s a string generated from the non—-terminal

- 83 -~

"sequence'" of basic COSY. The expansion of these replicators should

always be non-empty, otherwise collision of terminal symbols will arise

We will obtain replicators which when expanded always generate

well-formed basic COSY strings in any context they appear in the macro

sequences. Here we do not try to produce replicators which generate

syntactically strong strings (cf. section 3.1.5 grammar of [L79}). A

part of a basic sequence which 1is a sequence itself is said to be

syntactically strong in its context, if no parts of it bind with parts

in 1its context. Our intention is to obtain a grammar which produces
replicators generating a large class of well-formed basic COSY strings.
In chapter 4 we shall give altermative rules for macro sequence by which
all replicators in sequences generate syntactically stroag strings.
Although such replicators restrict the power for conciseness of macro
programs, they have the advantages that it is not necessary for a macro
sequence to be completely expanded for its semantics to be understood,

and that they improve the readability of macro sequences significantly.

We would 1like to extend replicators to be able to generate
imbrication of regularities which could not possibly be generated by any
single replicator we examined in section 3.1, owing to the restrictive
operational semantics of "@". These include sequences of path P43 for

example
P43 path (A(1),(A(2),(A(3);B(3)),B(2)),B(1)) end
in which all regularities are of the form

p() sl...sl q()

except the innermost which is of the form

p() s2 q()

where "s1" and "s2" are one of '";" or "," but mnot the same. We had

pointed out in section 3.1.5 that to generate these kind of regularities
the "@" should not only strip separators but replace them by others. We
shall modify the replicator notation to deal with this extension and

bring it into the same form as the rest of the replicators we have

developed up to now in this section. Let us first give the rules

according to which a replicator in the old notation expanding to a basic

COSY sequence 1is transformed into the new. The replicators which wmost

of the grammars permit and which expand to sequences are of three types:

A. [p(i) @ sepq(i)lin,fi,inc]

B. [p(i)[1]q(1) @ sepiin,fi,inc]

C. [p(i) @ seplin,fi,inc]
where "p", "q" are strings which may involve subscripted operations the
indices of which may depend on the replicator index "i". We shall
transform A, B and C to the new notation in five simple steps. For each
step we indicate to which type it will apply as some of the steps apply
only to omne or two types. When a step is applied the new intermediate
forms of A, B, C will be given and will be identified by superscripting
A, B, C by an integer denoting the number of transformations this type
has undergone until that point. We assume that A, B, C are the same as

AO, BY and €Y respectively. The five transformation steps are:
stepl

applied to A%: put after "" the symbol '"@".
applied to BY: put before "[i]" the symbol "@".

Al. [p(i) @ sep@ q(i)lin, fi,inc]
Bl. [p(i) @q(i) @ sep|in,fi,inc]

step?2
applied to B!: move "@ sep" immediately after i,

BZ. [p(i) @@ sep q(i)lin,fi,inc]

step3
applied to Al,c%: change "@ sep" to "sep @".

AZ. [p(i) sep @@ q(i){in, fi,inc)
cl. [p(i) sep @lin,fi,inc]

- 85 -

stepé
applied to A2, B2, Cl!: since the two "1"s in A% and B? are

sufficient to demarkate the patterns on the left and on the right of

11" : u . .
we may remove the place holder, change the index specification

to "#i:in,fi,inc" and move it in front of "[]" as we did for the

other replicators. The same may be done for Cl.

A3, #itin,fi,inc(p(i) sep 3 8 q(i)]
B3. #i:in,fi,inc[p(i) @ @ sep q(i)]

c2. #i:in, fi,inc[p(i) sep @] C is now in its final form.

step>
applied to A3 and B3: if q(i) in A3 is of the form "sepl q’(i)"
and p(i) in B3 of the form "p’ (i) sepl" copy the separator "sepl"

leading q(i) and respectively terminating p(i) between the two "@"s

in A3 and B3 respectively.

A% #i:in,fi,inc[p(i) sep @ sepl @sepl q’(i)]
B4 #i:in,fi,inc[p’ (i) sepl @ sepl @ sep q(i)]

A and B are now in their final form. If q(i) and p(i) in A3 and
B3 respectively are not 1in the appropriate form, step 5 is not

applied and A3 and B3 are therefore in their final form.

Let us apply these transformations to three replicators Rl, R2 and R3 in
the old notation corresponding to the types A, B, C respectively. In
the expressions below Rli, R2i and R31i will correspond respectively to

forms Ai, Bi and Ci for i=0,...,4 of the above conversion rule.
The replicator Rl
Rl. [(SKIP(i)@;[i]),DO(i)il,n,1]
after step 1 becomes Rl !
rR1 1, [(skip(i)@;[i]J@),p0(i)|l,n,1]

which after step 3 becomes R12

—_ 86 -
RLZ. [(SKIP(1);@[1]@),D0(1)|1,n,1]
which finally after step 4 becomes Rl3
R13. #i:1,n,1[(SKIP(i);@ @),D0(i)]
As step 5 cannot be applied this is now in the new notation.

The replicator R2

R2. [(UP(i);[1]DOWN(1))*@;11,n,1]
after step 1l becomes

rR21L. [(UP(i);@DOWN(i))*@;|I,n,1]
which after step 2 becomes R22

R22. [(UP(i);@[1]@;DOWN(i))*|1,n,1]
which after step 4 becomes rR23

R23. #i:1,n,1[(UP(i);@ @;DOWN(i))*]
taking its final form after step 5

R2%. #i:1,n,1[(UP(i);@;@;DOWN(i))*]

The replicator R3

R3. [(A(1);B(i))@,[1]11,n,1]

after step 1 becomes R3!

R3L. [(AC1);B(i)),@[1]i1,n,1]

taking its final form after step 4

- 87 -

R32. #i:l,n, 1[(A(i);B(i)),@]

The replicators generating basic COSY sequences in the new notation

are of two types:

the concatenator

generating consecutive regularities and are of the form

(Conc) #iiin,fi,inc[p(i) sep @] and

the imbricator

generating regularities nested within each other and are of the form

(Imbr) #i:in,fi,inc[p(i) @ ¢t @ q(i)]

where "p", "t", "q" denote 'patterns" and "sep" one of the separators

."oor M,". For concatenators and imbricators to expand to the same
strings as replicators in the old notation of types C and A, B

respectively, the operational semantics of "@" have to be changed.

In the concatenator the "@" strips the separator in front of it in
1"

the 1last copy of the regularity "p(i) sep". The expansion of the

concatenator therefore looks like:

(concexp)

p(in) sep p(in+inc) sep ...sep p(£fi’)

where "fi’" denotes the final value of the range of the index which may

be different from "fi".

In the imbricator the separators before the first "@" and after the
second "@' in the last copy of the regularity "p()q()" will be

replaced by "t". The expansion of the imbricator looks like:

(imbrexp)
p(in) p(in+inc)...p ' (fi") t q’(fi’)...q(intinc) q(in)

- 88 -

In the above expression "fi’" is the same as in (concexp) and "p’", "qm

are the same as "p", "q" respectively but with any trailing separator of

p' and any leading separator of "q" respectively, removed.

The reason we have specified a string "t" to be between the two "@"g

instead of just a separator is that we would like our grammar to

paths such as NP3

permit

NP3 path empty,#i:l,n,1[(UP(i);@;full*;@;DOWN(i))*] end

which specifies a stack of size n with tests for empty and full. When

NP3 is expanded for n=3 for example the path NP4 is obtained:

NP4 path
empty
»(UP(1)
; (UP(2); (UP(3);full*;DOWN(3))*;DOWN(2))*
s DOWN(1)
y*
end
in which the starred operation "full*" appears only once, in the
innermost regularity. In general we shall permit any string to appear

at that position as long as it forms a well-formed basic COSY string

with the rest of the expansion.

Having specified what kind of replicators we will permit, and having
decided on the notation of sequence replicators, we proceed to obtain
their formal syntax rules. The approach we follow here is not to leave
"p", "t'", "q" as "patterns'" but to specify more precisely what these may
be syntactically. The syntax of the two types of replicators,
concatenators and imbricators, shall be considered separately. The
non-terminal "sreplicator" producing sequence replicators is defined as

follows:
MN18. sreplicator=index spec[{concseq/imbrseq}]

. . in
where the non-terminals 'concseq" and '"imbrseq' produce to the string

- 89 -

inside "[]" of concatenators and imbricators respectively, We next

give the syntax for "concseq" and "imbrseq".

The non-terminal "concseq"

Before we give the syntax rules for the non-terminal "concseq", let
us examine informally what p(i) in Conc should be syntactically. Its

expansion (concexp) has been schematically given by:
p(in) sep p(int+inc) sep...sep p(fi’)

For this string to be a well-formed basic COSY sequence each of "p()"

may in general be a sequence as we shall formally prove in 3.3.1.

Therefore we may define "concseq" as
concseq=msequence sep @
which in principle is the syntax given in [L76, TL77].

According to the above rules though, ";" and "," in the context
before "@" have equal precedence, whilst in the rest of the macro

notation and in basic COSY "," has precedence over "; To avoid this

"concseq" as a

mixed precedence we shall consider the string produced by
regular expression with the symbol "@" appearing once as the last

"element':

concseq={morelement;}* concor

concor={gelement,}* @

in which "concor" stands for the special "orelement" which contains as
its last "element" the symbol "@". According to the above rules "," has
precedence over ";" as in basic COSY. However, the above rules permit

"concseq" to produce the string consisting of just "@", and therefore

the replicator
#i:in, fi,inc[@]

may be produced which replicates the empty regularity thus generating an

- 90 -

empty expansion. To avoid the production of this empty replicator we

finally define "concseq" as:

concseq={morelement;}* concor

/{morelement;}+ @
concor={gelement,}+ @

The path R33 obtained from R3 by the conversion rule from the old to

the new notation is permitted by the above rules. Also the replicators
NR1 and NR2:

NRL #i:1,n,1[DEPOSIT(i);@]
NR2 #i:1l,n,1[#j:1,k,1[A(i,]),Q@];@Q)

In section 3.3.1 we shall formally prove that each of the replicators
produced by these rules expand to macro sequences in general, and that

their complete expansion forms a basic COSY sequence.

The non—terminal "imbrseq"

Before we give syntax rules for "imbrseq" let us examine informally
what imbricators should generate so that when completely expanded they
always generate well-formed basic COSY sequences. Let us first consider

just the outermost regularity of their expansion (imbrexp):

p(in)...q(in)

Since (imbrexp) on the whole forms a sequence, p(in) must be a legal
head of a sequence and should start with either an operation or .
Similarly, q(in) must be a legal tail of a sequence and must terminate

with an operation or ")" or ")*". Let us now examine the first and the

second regularity of the expansion (imbrexp):
p(in) p(intinc)...q(in+inc) q(in)

The strings "p(in)" and "p(in+tinc)" must be legally connected if they

together are to form a legal head of a sequence. Since these two

- 91 -

strings differ only in the integer expressions they involve, they starc

with the same symbols which implies that for the expansion of the

imbricator (imbrexp) to be well-formed "p(i)" must terminate with ";'" or

", or "(". Applying a similar argument to "q(in)" and "q(in+inc)" we

determine that "q(i)" must start with ";" or "," or 'M)".

> Furthermore,

the number of unmatched opening parentheses in "p(i)" should match with

closing parentheses in "q(i)".

The above observations imply that the string "@ t @" appears in the
string generated by "imbrseq" in the context in which generalized
elements would appear. Therefore, the string generated by "imbrseq'" may
be considered as a 'sequence" in which the string "@ t @' appears once
only as a non-starred 'element". In addition '"t" may be of four
different forms depending on its immediate enclosing context, that is
depending on whether on the left of the first "@" is any of "[", "(" or
a separator, and whether on the right of the second "@" is any of "]",

"Y' or a separator. If t is in the context

1. {;/,} @t @ {;/,} then t=sep{/msequence sep}
2. {(/[}y @t @ {;/,} then t={/msequence sep}
3. {;/,} @t @ {)/]} then t={/sep msequence}
4. {(/[} @ £ @ {)/]} then t=msequence
where "sep'" indicates one of ";" or ", and "msequence' a macro

sequence.
Let us first give formal context—sensitive rules (CS) for "imbrseq'":
(cs)

imbr seq={morelement ;}* imbror {; morelement}*
imbror={gelement ,}* imbrgel {, gelement}*

imbrgel=special el/imbrstarel

imbrstarel=imbrel/imbrel*

imbrel=(imbrseq)

{;/,} special el {;/,}={;/,} @ sep {/msequence sep} @ {;/,}
{(/[} special el {;/,}={(/{} @ {/msequence sep} e {;/,}
{;/,} special el {)/1}={;/,} @ {/sep msequence} @ {)/1}
{(/{} special el {)/1}={(/[} @ msequence @ O/1}

92

The string "{s1/s2}" where sl and s2? are one of ".u, 1 nooer, oy e
’ b) ’

and "]" denote alternative equivalent contexts for "special el". The

symbols "[" and "]" are possible contexts for "special el" in spite of

the fact that they do not appear in the first five production rules of

(CS) since the string produced by "imbrseq" is enclosed in " 1" (cf.
MN18), and since "imbrseq" could Jjust produce a string which

"special el" produces.

Let us apply the above rules CS to derive the strings inside "[]" of
imbricators NR3, NR4 and NRS:

NR3 #i:1,n,l1[(UP(i);RESET(i),@@)]

NR4 #i:1,n,1[(UP(i);@;@;DOWN(Li))*]

NRS #i:l,n,l1[(SKIP(i);@@),v(i)]
The symbol "=>" in the derivations which follow, means that the leftmost
non—-terminal to the left of "=>" is replaced using a rule of the grammar
to yield a string to the right of "=>". We shall use the symbol "=>+"

to denote the derivation of a simple or indexed operation from a

non-teruinal, for brevity. For example the derivation
gelement=> starelement=> element=> indexedop=> UP(1)
may be abbreviated to
gelement=>+ UP(1)

The complete derivation of the string inside "[]'" of NR3 is:

- 93 =

imbrseq => imbror => imbrgel => imbrstarel =) imbrel =>

=> (imbrseq)
=> (morelement ; imbror)

=>+ (UP(i) ; imbror)

=> (UP(i) ; gelement , imbrgel)
=>+ (UP(i) ; RESET(i) , imbrgel)

=> (UP(i) ; RESET(i) , special el)
=> (UP(i) ; RESET(i) , @@)

The complete derivation of the string inside "[]" of NR4 is:

imbrseq => imbror => imbrgel => imbrstarel => imbrel*

=> (imbrseq)*

=> (morelement ; imbror ; morelement)*
=>+ (UP(i) ; imbror ; morelement)*

=> (UP(i) ; @ sep @ ; morelement)*

=> (UP(i) ; @ ; @ ; morelement)*

=>+ (UP(i) ; @ ; @ ; DOWN(i))=*

The complete derivation of the string inside '"[]" of NRS is:

imbrseq => imbror
=> 1imbrgel , gelement
=> 1imbrstarel , gelement
=> imbrel , gelement
=> (imbrseq) , gelement
=> (gelement ; imbror) , gelement
=>+ (SKIP(i) ; imbror) , gelement
=> (SKIP(i) ; imbrgel) , gelement
=> (SKIP(i) ; special el) , gelement
=> (SKIP(i) ; @@) , gelement
=>+ (SKIP(i) ; @€@) , v(i)

If t has its right form then when a replicator is

expanded

it

will

"bind" the left and the right expanded parts so that the resulting

string may be produced by "sequence" of basic COSY.

- 94 -

The rules (CS) have two disadvantages: the syntax of "imbrseq" is

given in terms of context-sensitive rules and the ";" and "," are of

us first obtain context-free rules keeping the
mixed precedence of "," and '";". We will not express "@

mixed precedence. Let

t 3 as an

"element" on its own but together with other strings on its left and

right so that the context of each of the four forms become

distinguishable. The four forms may be expressed as:

1’. msequence sep @ sep{/msequence sep}@ sep msequence
2°. @ {/msequence sep} @ sep msequence
3‘. msequence sep @ {/sep msequence} @

4’. @ msequence @

The context-free syntax rules for "imbrseq" in which ";" and "," have

still mixed precedence are:
(CFm)

imbr seq={morelement ;}* imbror {; morelement}*
/msequence sep @ sep{/msequence sep} @ sep msequence
/@ {/msequence sep} @ sep msequence
/msequence sep & {/sep msequence} @

/@ msequence @
imbror={gelement,}* imbrstarel{,gelement}*
imbrstarel=imbrel/imbrel*
imbrel=(imbrseq)

These syntax rules guarantee the production of well-formed macro COSY

programs which when expanded produce well-formed basic COSY programs.
"

This was possible by distinguishing the four different places where @t

@" could appear. The string between the two "@" may contain, as 1t 1S

These syntax rules also

left of the

clear from the syntax rules, a macro sequence.
allow any number of opening parentheses anywhere on the
first "@" and matching closing parentheses anywhere on the right of the

. i airs.
second "@". Parentheses always match since they are produced in p

- 95 -

let us derive the strings inside " 9" of NR3,
NR3:
imbrseq => imbror => imbrstarel => imbrel
=> (imbrseq)
=> (msequence sep @ @)
=> (morelement ; morelement sep @ @)
=>+ (UP(1i) ; morelement sep @ @)
=>+ (UP(i) ; RESET(i) sep @ @)
=> (UP(i) ; RESET(i) , @ @)
then of NR4:
imbrseq => imbror =)> imbrstarel => imbrel*
=> (imbrseq)*
=> (msequence sep @ sep @ sep msequence)*
=>+ (UP(i) sep @ sep @ sep msequence)*
=> (UP(i) ; @ sep @ sep msequence)*
=> (UP(i) ; @ ; @ sep msequence)*
=> (UP(i) ; @ ; @ ; msequence)*
=>+ (UP(i) ; @ ; @ ; DOWN(i))*

and finally

imbr

seq

of NR5:

=> imbror

=> imbrstarel , gelement

=> 1imbrel , gelement

=> (imbrseq) , gelement

=> (msequence sep @ @) , gelement

=> (morelement sep @ @) , gelement

=>+ (UP(i) sep @ @) , gelement
=> (UP(1i)
=>4+ (UP(1i)

; @ @) , gelement
; @@, V(i)

NR4 and

NRS.

First of

rn <
In the syntax rules CFm however, the separators '";'" and "," are of mixed

precedence.

" on
»

over

The following context-free rules specify the precedence

but some meta-restriction rules are needed:

of

96
(CFr)

imbrseq={@/ } {imbror @;}+ {@/ }
imbror={imbrgel @)+
imbrgel=imbrstarel/distributor/sreplicator/@
imbrstarel=imbrel/imbrel*

imbrel=operation/indexedop/(imbrseq)

The above rules do not constrain the production of "@". Any number of
"@'s may appear in the strings produced by the above rules. Therefore,

meta-restriction rules are needed to exclude certain strings:

(MR3)
(i) Only two "@" should be produced, and

(ii) the string "@...@" should be 1in its appropriate form

according to its context.

The above syntax rules CFr and meta-restriction rule MR3 are based on a
different approach from other syntax rules and corresponding
meta-restrictions. Instead of 1leaving the symbols free, constraining
them by meta-restrictions MRl or MR2, we specify the ‘'patterns'" these
symbols may form, leaving the number of "@'s free. Therefore, the
checking of an imbricator for well-formedness is simplified, it being
necessary only to check a substring, rather than the whole string,

namely the substring @ t @' and its immediate context.

We may derive the strings inside "[]" of the replicator NR3, NR4 and

NR5, applying the syntax rules of CFr as follows. Firstly, of NR3:

imbrseq => imbror => imbrgel => imbrstarel
=> imbrel => (imbrseq)
=> (imbror ;imbror @)
=>+ (UP(i);imbror @)
=> (UP(i);imbrgel,imbrgel @)
=>+ (UP(i);RESET(i),imbrgel @)
=> (UP(i);RESET(i),@ @)

- 97 -

then of NR4:

imbrseq => imbror =) imbrgel => imbrstarel
=> 1mbrel* => (imbrseq)*
=> (imbror ; imbror ; imbror ; imbror)=*
=>+ (UP(i) ; imbror ; imbror 3 lmbror)=*
=> (UP(i) ; @ ; imbror ; imbror)*
=> (Up(i) ; @ ; @ ; imbror)=
=>+ (UP(i) ; @ ; @ ; DOWN(i))=

and finally of NRS:

imbrseq => imbror
=> imbrgel , imbrgel
=> 1imbrstarel , imbrgel
=> dimbrel , imbgel
=> (imbrseq) , imbrgel
=> (imbror , imbror @) , imbrgel
=>+ (SKIP(i) ; imbror @) , imbrgel
=> (SKIP(i) ; @ @) , imbrgel
=>+ (SKIP(i) ; @ @) , V(i)

We would 1like however, to avoid the use of meta-restrictions
altogether. To accomplish this we follow the approach in (CFm) letting
the string inside the innermost "(...)" which contains "@ t @' to be
produced by a non-terminal "imbr_ at seq". The rest of the string
produced by "imbrseq" will look 1like amn macro sequence. The

non-terminal "imbrseq" may be defined by:

()8

(CF)

imbrseq=imbr_at seq

/{morelement ;1% imbror {; morelement}*
imbror={gelement »}* imbrstarel {, gelement}*
imbrstarel=imbrel/imbrel*

imbrel=(imbrseq)

We have to specify what ”imbr_gt_geq" produces. We will consider it to

produce one of the following strings each corresponding to one of the
forms 1° to 47:

1"+ A regular expression in which the two "@" are included as special

elements.

2". A regular expression including one "@" as a special element, headed
by an "@".

3". A regular expression including one "@" as above, followed by an

ll@l' .
4". A regular expression headed and followed by "@"s.

We need to specify where the symbols "@" in these 'regular" expressions
are to appear. They may appear on their own as single non-starred
elements. They may also appear in "orelements'" as non-starred elements.
We shall denote the "orelements'" in which they are to appear by "at or'".
Since these may contain one or two instances of "@" we suffix "at or" by
either "1" or "2". Furthermore, we need to specify where in "at or" the
"@"s are to appear. For "at orl'" we may distinguish three cases in
which the "@" may be in front, in the middle, or at the back and for
"at or2" four cases in which the first "@" is in front and the second in
the middle or the first in front and the second at the back, or the
first in the middle and the second at the back, or both in the middle.

. " " "
Therefore we shall need seven non-terminals: '"at orlf", "at orlm”,

- 99 -

"at_orlb" and "at or2fm", "at or2fb", "at or2mb”, "at or2mm" producing

each of the "orelements" we described above. Their syntax 1is:

at orlf=@ {,gelement}+

at orlm={gelement ,}+ @ {, gelement}+

at orlb={gelement ,}+ @
at or2fb=@ {, gelement}* , @
at or2fm=@ {, gelement}* , @ {, gelement}+
at_or2mb={gelement ,}+ @ {,gelement}* , @
at_or2mm={gelement ,}+ @ {,gelement}* , @ {, gelement}+
Let us give some examples of productions of the above non-terminals:
at orlf => @ , gelement =D+ @ , A(i)
at orlm => gelement,@,gelement =>+ A(i),@,gelement =>+ A(1),@,B(i)

at orlb => gelement,@ =>+ RESET(i),@

at or2fb => @,gelement,@ =>+ @,ready,@

at or2fm => @,@,gelement =>+ @,@,B(1)

]
v

at_or2mb gelement,@,@ =>+ A(L),@Q,0E

at or2mm => gelement,@,@,gelement =>+ A(i),@,@8,gelement

=>+ A(i);@,@)B(i)

The non-terminal "imbr_at seq" may now be defined by:

- 100 -

imb(_ag_seq=
{morelement ;}+ {@/at_prlf/a;_prlm/at orlb} {; morelement}*:

{@/at_prlf/aq_prlm/aq_orlb} {; morelement}+

@/

Vs
/{morelement ;}+ {a;_orlf/aq_prlm/at_prlb} {; morelement}*;

{at_orlf/at_orim}

/{aq_orlm/ag_orlb} {; morelement}*;

{@/a;_prlf/a;_prlm/ag_orlb} {; morelement}+

/{a;_prlm/a;_prlb} {; morelement}*;

{a;_orlf/a;_prlm}

\at_perb/
/{morelement ;}+ TEE;oerm/ap_perm/a;_pr2mb} {; morelement}+
/ {morelement ;}+ {aq_oerm/aq_oerm}
/{aq_oerm/aq_perb} {; morelemnt}+
/at_or2mm
/@ {morelement ;}* {at_orlf/at orlm}

/@ {morelement ;}* {@/at orlf/at orlm/at orlb} {;morelement}+

/{at_orlm/at_orlb} {; morelement}* @

/{morelement ;}+ {@/at_orlf/at orlm/at orlb} {;morelement}* @

/@ msequence @

The above rules are certainly context-free, specify the precedence of
"," over ";" and as we shall formally prove in the next section, always
produce replicators which when expanded yield macro sequences in
general. These rules were obtained by keeping the production rules in
(CFm) which did not involve "@'" and by expressing the strings which were
produced by productions of (CFm) involving the "@' as a ‘''regular

expression" with special ‘'orelements" containing the special element

H@H .

the two separators. The first

"imbr_at seq" in (CF) correspond to
next two to 3° and the final one to

Let us derive the strings inside

This was necessary for the elimination of the mixed precedence

101 -

of

eight of the production rules of

the form 1°, the next two to 2’, the
4" .

"[1" of replicators NR3, NR4 and
NR5 from the above rules. First of NR3:
imbrseq => imbror =) imbrstarel => imbrel
=> (imbrseq)
=> (imbr_gt_seq)
=> (morelement ; at orlb @)
=>+ (UP(i) ; at _orldb @)
=> (UP(i) ; gelement , @ @)
=>+ (UP(i) ; RESET(i) , @ @)
then of NR&4:
imbrseq => imbror => imbrstarel => imbrel*
=> (imbrseq)* => (imbr_at_seq)*
=> (morelement ; at orlf ; at orlf ; morelement)*
=>+ (UP(1i) ; at orlf ; at orlf ; morelement)*
=> (UP(i) ; @ ; at orlf ; morelement)¥*
=> (UP(i) ; @ ; @ ; morelement)*
=>+ (UP(i) ; @ ; @ ; DOWN(i))*
and finally of NR5:
imbrseq => imbror => imbrstar , gelement
=> imbrel , gelement
=> (imbrseq) , gelement
=> (imbr_@p_seq) , gelement
=> (morelement ; at orlf @) , gelement
=>+ (SKIP(i) ; at orlf @) , gelement
=> (SKIP(i) ; @ @) , gelement
=>+ (SKIP(i) ; @ @) , V(i)
As we have indicated in the introduction of this subsection sequence

- 102 -

replicators should not expand to empty strings.

3.2.6 Some More Replicators

One criterion for the generality of a macro COSY notation would be

whether macro programs in this notation may represent basic programs
which have been represented by macro programs in other macro notations.
Although quite a number of extensions have been introduced so far in the
notation sequence replicators have a limitation: they should not expand
to empty strings. A replicator way generate empty strings for two
reasons, elither because its regularity is the empty string, or because
the values of "in", "fi", "inc" are such that the range of the index 1is
empty. The former situation cannot occur iIn replicators produced by the
grammar introduced so far since empty regularities are not permitted by
the syntax rules. These replicators are not useful anyway. The latter
situation is excluded by our meta-restrictions on "in", "fi" and "inc"

imposed to avoid collision of terminal symbols.

The only place where a replicator would sometimes expand to the empty
string and sometimes not, is encountered in the non-starving banker in

[LT78] where the string

S1 (BNKRD(1)[;par;rap|i]il,n+1,-1];

was nested inside three replicators one of which had "1M as its index,
ranging from nt+l to l in steps of -1. Obviously, the replicator in the
above string expands to non—empty when 1=n+1 and even then only one copy
of ";par;rap" is generated. The string Sl in the style of the new

notation for replicators would look like
S2 (BNKRD(l)#i:l,n+1,-1[;par;rap];

which would not be permitted by our rules in any macro COSY program.
The context of the replicator is not the context of a "gelement" and the
regularity in "[}" cannot be produced by "econeseq'! or "imbrseq". 1f

however, S2 were rewritten as

- 103 -

S3 (BNKRD(L);#i:1,n+l,-1[par;rap;@];

it would be a well-formed substring in a macro COSY program. When the

replicators in 53 and Sl are expanded to non-empty strings they generate

the same basic COSY string. When however, 1<n+! then the expansion of

the replicator in S3 would would yield the empty string, and S3 would

become:
S4 (BNKRD(1);;

which is not a well-formed basic COSY string because of the collision of
the two semicolons. We will permit some special kind of replicators
which wmay expand to empty strings. These replicators should generate
well-formed basic COSY strings whether expanded to empty or not. They
should conform with our primary consideration for well-formedness after
expansion. To permit this kind of replicators we need to extend the

notation and modify one of our syntax rules.

To avoid collision of separators when these replicators generate
empty strings as in S4, their context should not be the same as that of
generalized elements. A separator should be "missing'" either on their
left or on their right. Their expansion has to provide the extra
separator. If the separator on their left is missing they will be

called left replicators and will be produced by the non-terminal

"lreplicator" and if the separator om their right is missing, they will

be called right replicators and will be produced by the non-terminal

"rreplicator". For their expansion to bind correctly, right replicators
should precede and left replicators should follow starelements, sequence
replicators and distributors. The syntax rule for 'gelement", MNI13

should be modified to

MN 13, gelement={rreplicator}*
{starelement/sreplicator/distributor}

{lreplicator}*

The replicators produced by the non-terminals 'lreplicator' and
"rreplicator" will generate sequences with a separator preceding and

following respectively. We shall define their syantax by the rules:

- 104 -

lreplicator=index_spec({;/,}|{concseq/imbrseq}]

rreplicator=index_spec[{concseq/imbrseq}|{;/,}]

and therefore a replicator produced by the first rule will have the

forms:

(Lcone) #i:in,fi,inc[seplp(i) sep @]
(Limbr) #i:in,fi,inc[seplp(i) @ t @ q(i)]

and by the second rule the forms:

(Recone) #iin,fi,inc[p(i) sep @)sep]
(Rimbr) #i:in,fi,inc[p(i) @ t @ q(i)[sep]

If their index range is empty the strings generated by their expansion
will be empty as well. Otherwise the strings generated by the expansion
of L(conc or imbr) and R(conc or imbr) will be the same as the strings
generated by the expansion of the sequence replicator obtained from them
by removing '"sep|" and "|sep" respectively, preceded and respectively

followed by "sep". 1In the above notation 83 would be written as:
NR6 (BNKRD(1)#i:1,n+l,-1[;|par;rap;@];

Although the replicator in the string Sl was used in [LT78] it cannot be
produced by the grammar in that paper. As we noted in section 3.1.5 the
grammar in [LT78] specified that replicators in sequences appear in the
coatext of "elements". This kind of replicators may be produced only by
the grammars which specified their regularities as strings together with

MR2 or by the grammars in [LS80] and [SL80].

In certain cases the same basic COSY string could be generated by
another replicator more economically than by a left or right replicator.

Indeed the replicator

#i:1,n0+1,-1[;par;rap]

generates the same string as the replicator in NR6 for any 1 and n.

This 1is only possible when the separator before the "@" is the same as

- 105 -

the separator before "|" in left replicators or the separator after '|"
’

which 1s not true in general. For example consider the left replicator:

NR7 #i:l,n,k[;|(A(i);B(i)),@]

and suppose it 1is nested within another replicator with index "k"
ranging from O to n where n is a constant. For n=3 the possible
expansions for NR7 would be:

for k=0: empty

for k=1: ";(A(1);B(1)),(A(2);B(2)),(A(3);B(3))"
for k=2: ";(A(1);B(1)),(A(3);B(3))"

for k=3: ";(A(1l);B(1))"

No grammar for macro COSY given in the literature may produce
replicators which generate the above strings at all, let alone more

economically.
As we would like our replicators to have a fixed form we have chosen

generality at the expense of some loss of conciseness rather choosing

conciseness at the expense of generality.

3.2.7 The Distributors

As we Thave noted in section 3.1.9, the distributor able to generate

fhe largest class of regularities was defined in [LSC81] by:
distributor=sep[msequence]

In the new notation we have replaced the round parentheses "(", and ")"
around the string to be distributed by the square brackets "[" and "]"

respectively to distinguish between basic COSY and macro COSY symbols.

What 1is 1inside "[]" is specified as a macro sequence. However,

there is a difference between a macro sequence in a distributor and a

macro sequence 1in paths and processes. The operations and indexed

operations in the former are really array-slices. By an array-slice we

- 106 -

mean an equivalence class of indexed operations corresponding to the

same collective name the 1indices of which differ in at 1least one

dimension. Array-slices are represented like indexed operations but

with the index fields, corresponding to the dimensions in which their

glements differ, left blank. We call the dimensions corresponding to

blank fields of an array slice the distributable dimensions of the

array-slice. An array slice could have several distributable
dimensions. When all the dimensions of an array slice are distributable
then these define all the operations in the array and are represented by

the collective name itself without any index fields at all. For example

the collective names A and B defined by the collectivisor
NC7 array A(0:3) B(4,3) endarray

contain several slices. The collective name A has only one dimension

and therefore only one array slice represented by
A() or A

defining the equivalence class of all the operations in A
[A(0),A(1),A(2),A(3)]

The collective name B has two dimensions and eight array slices:
B(1,)

defining the equivalence class
[B(l,l),B(l,Z),B(1,3)]

and

B(2,), B(3,), B(4,), B(,1), B(,2), B(,3), B(,)=B

The only syntactic difference between macro sequence in distributors

and macro sequence anywhere else is that some of the index fields of the

- 107 -

"operations" of the former may be empty . We suggest to define the

in such a way that it would be syntactically valid for them
to have some empty index fields. We can

"indexedop"

further restrict the
"operations" involving blank fields to distributors by meta-restriction

rules. The non-terminal "indexedop" will then be defined as:
MN17. indexedop= arrayid{({{iexpr/ }@ ,}+)/ }

Alternatively we could specify rules to distinguish the two macro

sequences but this would almost double the number of our syntax rules.

A distributor operates on a specific distributable dimension of each
array-slice in 1its macro sequence which after the expansion of the
distributor ceases to be distributable. We shall refer to them as the

distributable dimensions of a distributor. The array slices will be

replaced upon the expansion of the distributor by sections of

array-slices. By a section of an array slice we mean the equivalence

subclass of operations in the array-slice which have the same index in
one of the distributable dimensions of that slice. These sections can
either be indexed operations or other array-slices with one
distributable less dimension than the slice they originated from. For

example slice A contains four sections which are indexed operations
AC0), A(l), A(2), A(3)

and slice B contains seven sections which are all array-slices
B(1,), B(2,), B(3,), B(4,), B(,1), B(,2), B(,3)

The distributable dimensions on which the distributor operates are said

to be compatible when they all coantain the same number of sections and

the distributor is said to satisfy the compatibility criterion (ccu).

Only if this compatibility criterion (cCcl) is satisfied 1is the
distributor well-formed and may be expanded. Before we specify how a
distributor 1is expanded we need to define a total order on sections of
distributable dimensions of array-slices. Since these sections differ
from the others 1in the index value of one of their dimensions their

order is natural to be defined according to these indices. The order of

- 108 -

the sections is defined to be the order in which these indices are

generated in the array declarations. A distributor in which all th
e

distributable dimensions on which it operates contain n sections may be

expanded as follows:

n copies of the macro sequence 1in the distributor will be
concatenated separated by the separator associated with the
distributor. In the first copy each array slice will be
replaced by the first section in this slice. In general, the

i’th copy (1<in) of each array-slice will be replaced by the

i“th section of this slice.

According to this scheme the distributor NDI
NDLI ;[A,BC ,3)]

where A, B are declared by NC7 expands to:

A(0),B(1,3);A(1),B(2,3);A(2),B(3,3);A(3),B(4,3)

The distributor implicitly introduces a total order on the sections
of array slices, the order specified by the collectivisors. The order
defined by the collectivisors 1is immaterial in a program without

distributors. For example the substitution of NC7 by NC8
NC8 array #i:3,0,-1[A(i)] B(4,3) endarray

in a program MPROG would not affect at all the expansion of MPROG and
therefore would not necessitate any changes to the rest of MPROG for its
behaviour to remain unchanged, as long as, in general, A is not used in
a distributor. If A were distributed then its expansion would depend on
the collectivisor by which A was declared. With NC7 the order of the
indices of its operations after the expansion will be ascending from
left to right and with NC8 descending. However, we have to point out
that although ,[A] produces different strings when A is defined by NC7
and NC8 this would not have any effect on the behaviour of MPROG,

because of the semantics of ",", and ";". The same of course is not

- 109 -

true for ;[A].

We shall extend the class of regularities which the distributors may
generate by permitting them to distribute not only over the whole range

of array-slices but over a subrange of them as well. We need to extend

the notation for distributors to
ND2 sep #inind,fiind,incind[msequence]

in which "inind", "fiind", "incind" denote integer expressions,
representing the subrange over which "msequence" is to be distributed.
Using the subrange option we may restrict the expansion of a distributor
to some selected 'copies" of its regularity. The subrange defines which
copies should be selected. The integer expressions "inind", '"fiind",
"incind" specify the first copy to be selected, the upper limit of the
copies to be selected and the step by which the upper 1limit should be

reached from '"inind", respectively. Thus the copies to be selected in

the expansion of ND2 are:
(inind)’th,(inind+incind)’th,...,(inind+(Ns-1)*incind) th
where Ns is the number of copies to be selected.
For example the distributor ND3
ND3 ;#1,3,1[A]
would expand to:

A(0);A(1);A(2)

selecting out of all copies of "A" in the string generated by the

expansion of ;[A] only the first, second and third. The distributor ND4

ND4 ;#1,3,2[A]

would expand to:

- 110 -
A(0);A(2)

selecting the first and the third copies of "A" in the expansion of

;[A].

We shall require the expansion of ND4 to be non-empty and the indiées
of the operations to be in the range defined by the collectivisors. 1In
view of the semantics of the subrange the compatibility criterion (CCl)

may be somewhat relaxed.

(Drestl)
When a subrange is defined the slices will not be required
to contain the same number of sections but at least as many

sections as specified by the subrange.
For example the distributor ND5

ND5 ;#2,3,1[B(1,),B(,1)]

where B is defined by NC6 or NC7 satisfies (Drestl) although B(1l,) has

three array slices and B(,1) four, and may be expanded to:

B(1,2),B(2,1)
;B(1,3),B(3,1)

A final point we have to examine is what interpretation will be given

to the subrange when fiind<inind and incind<0 as in ND6

ND6 ;#3,1,-1[A]

There are three options:

1. to consider it as meaning the same as ND3 arguing that the subrange

acts only as a selector and does not impose any order on these

copies.

2. to consider it illegal arguing that it does specify an order which

- 111 -

nevertheless condradicts the order specified by ;[A]
3. to consider it as an extenslon of ;[A] and expand according to the
subrange. The distributor ;[A] will be considered as an
abbreviation for ;#1,4,1[A] in which no copies of A are excluded.

O0f the three options only the third extends the power for abbreviation
of the distributor, allowing more sequences to be generated, and for

this reason we adopt it as the interpretation of the subrange. For

example the sequence
A(3);a(2);A(1);A00)

may be generated by the distributor WND7 by reversing the order of

distribution of A:

ND7 ;#4,1,-1[A]

It is clear from the syntax of the distributors that these may be
nested. Each of these distributors must apply to a different
distributable dimension of each array-slice . The following restriction

is imposed:

(Drest2)
Inside a k-nested distributor there must only be arrays with
at least k dimensions out of which exactly k should be

specified as their distributable dimensions.

Equivalently we may say that after the expaansion of the outermost

distributor, the rest of the distributors must obey the syntax rules.

For example ND8

ND8 ;[,[A]]

where A is defined by NC7, is not valid since after the expansion of the

outermost distributor a non-valid distributor 1is generated:

- 112 -
y [AC0) 15, [ACL))5, [AC2))5, [A(3)]

The reason for this is that the macro sequences inside "[1" of the

above expansion do not consist of array-slices but of operations.

We must specify which of the nested distributors applies to which of
the distributable dimensions of array slices. The rule adopted in the
past is that the outermost distributor will apply to the rightmost
distributable dimension of each slice; the second outermost to the
rightmost not allocated distributable dimension, etc. A possible
relaxation of the above rule would be to consider it as the default rule
and specify explicitly which separator applies to which distributable

dimension. The distributor ND9 for example
ND9 ;[,(B]]

where B is defined by NC7 or NC8 would expand according to either rules

to:

B(1,1),B(2,1),B(3,1),B(4,1)
;B(1,2),B(2,2),B(3,2),B(4,2)
;B(1,3),8(2,3),B(3,3),8(4,3)
with "," applying to the first dimension of B and "." to the second.

But ND1O
ND10 ;1[,[B]]
would expand to :

B(1,1),B(1,2),B(L,3)
;B(2,1),B(2,2),B(2,3)
:B(3,1),B(3,2),B(3,3)
;B(4,1),B(4,2),B(4,3)

since it is explicitly specified that “;" applies to the first dimension

of B and implicitly that " " applies to the rightmost unallocated

dimension of B, according to the default rule. . . -
The following restriction needs to be imposed on dimension selec tors:

(Drest3)

The dimension selectors in distributors must have values

S PN . dimensions of array slices.

- 113 -
The complete syntax for the distributor would then be:
distributor={;/,}{/iexpr}{/#iexpr,iexpr,iexpr}[msequence]

The feature for selection of distributable dimensions is very helpful
when both ND9 and ND1O are required in the same program. Without it we

had to use the equivalent replicator NR8
NR8 #i:1,4,1[,[B(i,)];@]

instead of ND1O. If only one of ND9 or NDIO were required then we could
define the collectivisor in such a way as to conform to the default
rule. This extension is also important when distributing over
dimensions of array slices in which the indices of the operations depend

on some other dimension, like in NC8:

NC8 array #i:1,5,2[#3:1,1,1[S(i,3) T(j,1)]] endarray
where the indices in the second dimension of S depend on the indices of
its first, and the indices of the first dimension of T on the indices in

its sedond dimension. According to the expansion rules the distributor
NDL1

np1l 5[, ([T]]
expands to
T(1,1)
;T(IQB)QT(293),T(3’3)
;T(1,5),T(2,5),T(3,5),T(4,5),T(5,5) -
However we cannot expand the nested distributor NDI12
ND12 ;[,{S]]
since the second dimension of S must be distributed first and the number

of operations in this dimension depends on the first. It will be

required that when distributing over some dimension of collectivisors

which depend on other dimensions the indices of the latter must be known

since otherwise the expansion is not defined.
However, our extension allows the distributor NDI3
ND13 ;1[,[S]]
to be expanded instead of being obliged to write the replicator NR9:
NR9 #i:l,5,2[,[S(i,)];@]
Both ND13 and NR9 expand to:
S(1,1)

38(3,1),8(3,2),8(3,3)
;8(5,1),5(5,2),8(5,3),5(5,4),5(5,5)

To demonstrate the use of the two new features of distributors, the
subrange and the facility of specifying distributable sections, 1let us
consider two more '"realistic" examples. In the first we shall specify
the pipeline which, using just replicators may be written as

NP3 #i:1,n,1[path TRANSFER(i);TRANSFER(i+l) end]
where array TRANSFER is declared by
NC9 array TRANSFER(n+l) endarray

We may replace the sequence in the above path by a distributor obtaining

NP4 #i:l,n,1{path ;#i,i+1,1[TRANSFER] end]

In the second example we shall specify a square matrix which is
initially empty. Processes may read or write to any element of the
array asynchronously, but write’s and read’s on any element should

alternate, and no read’s should occur before the initial write. These

- 115 -

constraints may be specified by:

NC10 array WRITE READ(n,n) endarray
NP5 #i:1,n,1[#j:1,n,1[path WRITE(1i, j);READ(i,j) end]]

A writer process which updates the elements of the matrix by columns may
be specified by any of the following processes:
NP6 process #j:1,n,1[#1:1,n,1[WRITE(1,j);@];@] end
process #j:1,n,1[;[WRITE(,3)];%] end

process ;{#i:l,n,1[WRITE(i,);@]] end
process ;[;[WRITE]] end

We now specify a number of processes each specifying reading from
selected elements of the matrix. A process reading all the elements of
the matrix by rows may be specified most concisely by

NP7 process ;1[;[READ]] end

A process reading the elements of the first r (1<r<n) rows by columns may

be specified by
NP8 process ;[;#1,r,1{READ]] end

A process reading the lower left triangular matrix may be specified by
NP9 process #i:1,n,l[#j:l,i,l[READ(i,j);@];@] end

or by
NP10 process #i:1,n,1[;#1,1i,1[READ(1,)];@] end

Finally a process reading the elements of the matrix forming the wupper

right triangular matrix by rows may be specified by

NP1l process s[#3:1,n,1[#kz],n, L[READ(,K);@]5€]] end

- 116 -

or by

NP12 process ;1[#j=l,n,1[;#j,n,1[READ];@]] end

We have now completed the development of the design and the syntax of
the macro notation, except for the non-terminal "iexpr" producing
integer expressions. The syntax rules for integer expressions may be
found in appendix B together with the rest syntax rules for macro COSY.
The syntax for "iexpr" in appendix B permits all integer expressions

which have been used in macro programs.

The next section 3.3 is concerned with the expansion of replicators,

distributors and of complete macro programs.

3.3 THE EXPANSION OF MACRO COSY PROGRAMS

In the last section 3.2 the expansion of replicators and distributors
was given 1in a schematic way. In this section the expansion of
replicators, distributors and of complete macro programs 1is formally
defined. The strings obtained from their expansion are characterized.
In particular macro programs are shown to expand to well-formed basic
programs. We also prove a number of theorems for the replacement of
macro elements in macro sequences by other macro elements generating the
same strings as the former. In the three sub-sections of this section

we examine the expansion of replicators, distributor and macro programs

respectively.

- 117 -

3.3.1 The Expansion of Replicators

The replicators we developed in the previous section 3.2 are of the

form
#index:in, fi,inc[s(index)]

where "index" is the replicator index, "in", "fi", 'inc" are integer
expressions and "s(index)" a string which may have various forms,
depending on the type of replicator. If, for example, a replicator is a

bodyreplicator then "s(index)" has the form:
p(index)

where p represents a collection of paths, processes and bodyreplicators
the integer expressions in which may depend on "index". If a replicator

is an imbricator then "s(index)" has the form:
p(index) @ t @ q(index)

where p and q are strings, the integer expressions in which may depend
on "index" and t a string none of the integer expressions of which may
depend on '"index'". For the purposes of this section we shall consider

the general form of "s(index)" as being
(Gs) sepl) p(index) @ t @ gq(index) | sep2

Of course none of the strings inside "[]" of any of our replicator has
the general form (Gs), but all appropriate forms may be obtained from
(Gs) by removing certain substrings. Therefore, a replicator may be

considered as having the general form (GR)
(GR) #index:in,fi,inc [sepl | p(index) @ t @ q(index) | sep2]

The parts of "s(index)" depending on '"index", namely p(index) and
q(index), may be repeated upon the expansion of replicators. The iadex
specification part "#index:in,fi,inc" determines how many copies of

these parts are to be made and the values the index takes which are to

order of the

- 118 -

be substituted 1in each copy for "index" upon the expansion of

replicators. The values in the range of the index, if non-empty, form

finite arithmetic progressions having initial value "in", difference
"inc" and bound "fi". Under this interpratation of the index
specification, the wvalue for "inc" must be non-zero. Otherwise an
infinite arithmetic progression would be formed with the value of "in"
as the only element of the progression. If the number of copies to be

generated is n (n>0) then the values the index takes are:
in, intinc, int2*inc,...,int(n-1)*inc

The value of n is also determined by the index specification of

replicators and is given by the formula:
n=(fi-in)//inc+1

where '"//" denotes integer division. The above formula is well-defined
since inc#0. The value m=(fi-in)//inc gives the number of intervals of
length |inc| from in to fi. If m is positive it indicates that fi may
be approached from in in steps of inc and if negative that fi may be
approached from in in steps of —-inc. If m is zero it indicates that the
distance from in to fi is less than |inc|. The index is to take wvalues
from in to fi in steps of inc. If w0 then fi may not be aproached at
all from in in steps of inc. In this case the index specification
specifies an empty range for the values of index. 1If m>0 then fi may be
approached from in in steps of inc and the values it may take are wtl.
If m=0 then the index takes only one value, namely the value of in.

Therefore, the index takes wtl values and for a non—empty range
m+i=(fi-in)//inc+1=n>0

we have used the phrase "fi may be approached from in" instead of the

phrase "fi may be reached from in" to indicate that fi acts as a bound

not to be exceeded by index and does not necessarily specify the last

value of index. For example the index specification

#1:1,6,2

- 119 -

specifies the values 1, 3, 5 for index, thus in that sence is equivalent

to the index specification
#i:1,5,2

The values the replicator index way take may be generated by the

formula:
(F) f(j)=in+(j-1)*inc for j=1,2,...,n.

When a replicator 1is expanded the values of f(j) for j=1,...,n will be

substituted in the j’th copy of p(index) and q(index) for index.

Although the replicators generate wvarious kinds of regularities
produced by different syntax rules their expansion may be defined by one
and the same formula. Let wus first define the primitive-recursive

operator COPY having three string arguments separated by '"/":

1
if 1>k then P(k) gogzl{P(j)/T/Q(j)} Qk)

1 =
coprPY{P(j)/T i) =
j=k (P(/T/D)} |if 1=k then P'(k) T Q' (k)

|
]if 1<k then T’

I
!
|
!

where P(j) and Q(j) are strings in which the integer expressions may
depend on j. The strings P“(k) and Q'(k) are the same as P(k) and Q(k)
respectively with the terminating and respectively leading separator,i
removed. T is a string which does not involve integer expressions
depending on j. The string T’ is the same as T with both leading and

trailing separators removed. Finally 1, k are integers.
The expansion of (GR) denoted by replexp?(GR) will be given by the
formula:
|if inc#0 and n=(fi-in)//inc+1>0 or t’ non empty
|

replexpO(GR)=isepl QBEY{p(f(j))/t/Q(f(j))} sep2
J:

!
lotherwise empty

where p(f(j)) and q(f(j)) are obtained from p(index) and q(index)

- 120 -

respectively by substituting the function f(j)=in+(j-1)*inc for "index"
and where the string t” is the same as t with its leading and trailing
separators removed. The superscript O 4p "replexp®" indicates that
only GR is expanded and not any other replicators which may be generated

by its expansion.

Let wus apply this formula to expand some replicators. 1In the

expansion of the bodyreplicator NPi2
NP12 #i:1,4,1[path DEPOSIT(i);REMOVE(i) end]

the regularity inside "[]" will be replicated (4-1)//1+l=4 times. In
the symbolism of (GR)

p(index)="path DEPOSIT(i);REMOVE(i) end"

and t and q(index) are the empty strings. The expansion of NP12 denoted

by replexpO(NPIZ) is given by:

4
(;OllDY{path DEPOSIT(14+(j-1)*1); REMOVE(1+(j-1)*1)end/ /}=
J=

4
QO?Y{path DEPOSIT(j);REMOVE(j) end/ /}
J:

which yields

path DEPOSIT(1);REMOVE(1) end
path DEPOSIT(2);REMOVE(2) end
path DEPOSIT(3);REMOVE(3) end
path DEPOSIT(4);REMOVE(4) end

Consider also the macro path NP13
NP13 path #i:1,4,2[DEPOSIT(i);@] end
specifying the sequentialization of the deposits in the odd frames of

four free frame buffer specified by NP12. The expansion of the

replicator in the macro sequence of the above path 1is given by the

- 121 -

formula:

2
ggEY{DEPOSIT(1+(j—1)*2;//}=

2
QOEY{DEPOSIT(Z*j—l);//}=DEPOSIT(1);DEPOSIT(3)
J=

The expansion of the imbricator in the path NPl4
NPl4 path empty,#i:1,k,1[(UP(i); @;full*;Q@ ;DOWN(i))*] end
when k=3 is given by:

3
Q0§Y{(UP(j);/;full*;/;DOWN(j))*}
J=

which yields
(UP(1);(UP(2);(UP(3);full*;DOWN(3))*;DOWN(2))*; DOWN(1))*
In the previous section we set the restriction that a sequence
replicator should always expand to non empty strings. From the formula
replexpO(GR) giving the expansion of GR it may be deduced that this

restriction is formally expressed by:

(Rrestl)

inc#0 and n=(fi-in)//inc+1>0 or t’ non empty.
If k=0 in NPl4 its expansion is still non empty and is given by

0
Q0§Y{(UP(j);/;full*;/;DOWN(j))*}=fu11
J:

Therefore NPl4 after the expansion of its replicator for k=0 becomes:
NPl5 path empty,full* end

which specifies that a "stack'" of size 0 is both empty and full. Lf

- 122 -
however a stack may only be tested for empty as specified by NP16
NP16 path empty,#i:l,k,1[(UP(i); @;@ ;DOWN(i))* end

the expansion of the replicator in NP16 for k=0 is not defined, since
(k-1)//1+1=0, the string t° 1is empty and consequently, the index
specification does not satisfy (Rrestl). We may in this case use a left

replicator, to which (Rrestl) does not apply, obtaining path NP17
NP17 path empty#i:l,k,1[,1(UP(i); @;@ ;DOWN(i))*] end

in which the replicator when k=0, yields the empty string and path NP18

is obtained
NP18 path empty end
which specifies that a stack of size 0 is always empty.

The condition n>0 also implies that the expression for n in Rrest 1is
well-defined. If it is not then n>0 does not hold and the range of the

replicator index 1is empty. Consider for example the two nested

replicators
NRIO #3j:0,2,1[#i:0,m mod j,1[A(i);@];€@]

The index j of the outer replicator takes values 0, 1, 2. For j=0 the

inner replicator becomes
NR11 #i:0,m mod 0,1[A(i);@]

As the expression "m mod 0" is not defined the range of i is empty and

as the replicator is a concatenator does not satisfy (Rrestl).

The condition (Rrestl) for non—empty expansions is not the same as the

one required in other notations. We may recall from the introduction of

chapter 3 that the expansion of a replicator is empty when

inc=0 or (fi-in)*inc<O

- 123 -
the complement of which
inc#0 and (fi-in)*inc>0

gives the condition a replicator expanding to non-empty strings. One
obvious difference is that (Rrestl) could expand to non-empty Qhen t’ is
non-empty irrespective of the values of in, fi, inc, as we demonstrated
in the expansion of NPl4 when k=0. But a more subtle difference is that

the conditions

inc#0 and n=(fi-in)//inc+1>0 (A) and
inc#0 and (fi-in)*inc>0 (B)

are not equivalent. Condition (B) certainly implies (A). Both require

inc#0. Condition (B) additionally requires that

(fi-in)*inc>0 = (fi-in)/inc>0 (inc#0)
=» (fi-in)//inc>0
=3 (fi—in)//inc+12}

Therefore (B) implies (A). Let us now show that (A) does not imply (B).
>0 =» (fi-in)//inc+1>1
=3 (fi-in)/inc-e>0 (-1<e<1)
=» (fi-in)/incde

=» (fi-in)/inc>l (as r.h.s. min. when e tends to -1)

For values of in, fi, inc satisfying

0>(fi-in)/inc>-1 (1)
that is

0>fi-ind>-inc when inc>0

0<fi-in<inc when inc<0

also satisfy

(fi-in)*inc<0

For values of in, fi, inc satisfying (I) the number of values the index

takes is
(fi-in)//inc+1=0+1=1

namely the wvalue of in. Therefore for 1in, fi, inc satisfying (1)
replicators in the new notation do expand to non-empty strings. Thus
more replicators expand to non-empty strings under condition (A) than
under (B). We have relaxed condition (B) for the folowing reasons. The
value of fi is not always the last value the index takes. Thus we may
replace fi by fi’, the true final value index takes. We took the view
that fi" 1is the integer closest to fi, such that (fi’-in) is an exact
nultiple of inc and fi” is either closer to in than fi or is the séﬁe as
fi, as no integer in the range of an index could exceed fi.

Mathematicaly fi’ is defined by:
(i) (fi’-in) mod ine=0
(ii) Jfi"=fi|<{}inc]
(iii) (fi'-in|<Ifi-in|
The value of fi’ may be obtained by the formula:
fi’=in+(n-1)*inc
where n=(fi-in)//inc+l. When in an index specification

#i:in,fi, inc

fi is the true final value of index i both conditions (A) and (B) are

equivalent as in, fi, inc cannot satisfy (I):
0>(fi-in)/inc>-1 (1
as (fi-in) is an exact multiple of inc, thus

(fi-in)/inc=0

- 125 -
A final restriction has to be imposed on replicators not in collectivisors

(Rrest?)
The replicators should generate subscripted operations

permitted by the collectivisors.

Replicators however may only generate some of the subscripted operations
permitted by the collectivisors. In the expansion formula for
replicators the 1index of COPY ranges from 1 to some integer n in steps
of 1, no matter what the values of in, fi, inc are. This indicates that
all replicators may be transformed to others the index specification of
which has in=inc=1, expanding to the same string as the former. For

example the replicator inside path NP19
NP19 path #j:1,2,1[DEPOSIT(2%3j-1);@] end

has in=ine=1 and expands to the same string as the replicator inside

path NP13

2
COPY{DEPOSIT(2*j-1);//}=DEPOSIT(1);DEPOSIT(3)
j=1

In fact there are families of replicators which all expand to the same
string, differing in the 1index specification part and in the integer
expressions inside "[]". The integer expressions inside "[]" of a
replicator which may depend on the replicator index may be subscripting
indexed operations, or may appear in index specifications of replicators
and subrange specifications and dimension selection expressions. A
replicator in which in=1 and inc=1 will be called the normal form of a
replicator. We next prove two theorems, showing that all replicators
may be replaced by replicators in normal form and that from replicators
in normal form all replicators in the same family may be obtained. ILet

us first prove a lemma. The symbol "V/vV¥" will indicate end of a proof.

LEMMA 1:
A string S obtained from a syntactic entity SE by replacing the

integer expressions in SE by other integer expressions forms also

the same syntactic entity.

- 126 -

Proof:

A syntactic entity is a string which may be produced by a
non—terminal of the grammar. The string S may be produced by applying
the same syntax rules as for producing SE down to the non-terminal
"iexpr". Then the production for S diverges from that for SE in that
different syntax rules may be applied to obtain integer expressions.

Therefore S forms the same syntactic entity as SE./YY

Let us now prove the theorem for the replacement of replicators by

replicators in normal form.

THEOREM 3.1:

A replicator of the general form
(GR) #index:in,fi,inc[sepl | p(index) @ t @ q(index) | sep2]
expands to the same string as the replicator in the normal form
(GR") #3:1,n,1[sepl | p(£(3)) @ t @ q(£(j)) | sep2]
where n=(fi-in)//inc+1 and £(j)=in+(j-1)*inc.
Proof:
As (GR) and (GR’) differ only in the integer expressions, by lemma 1,
both may be produced by the same non-terminal. Consequently, (GR") is a

syntactically well-formed replicator.

The expansion of both (GR) and (GR’) is given by the same formula
namely
if inc#0 and n=(fi-in)//inc+1>0 or t’ non empty

j=1

| n
replexp“(GR>==sep1 COPY{p(£(j))/t/qa(£(3))} sep2
{otherwise empty

Therefore, (GR) may be replaced by (GR’).VVY

- 127 -

Let us now prove the theorem for replacement of replicator in normal

form by general replicators.

THEOREM 3.2:

A replicator of the normal form

(GRNF) #j:1,m,1[sepl | p(3) @ £ 2 q(j) | sep2]
expands to the same string as the replicator

(GR") #i:in,fi,inc[sepl | p(g(i)) @ t @ q(g(i)) | sep2?]
where in, inc are integers (inc#0), fi=int+(m-1)*inc+e where

0<e<inc when inc>0 or

0>e>inc when inc<0
and g(i) the function g(i)=(i-in)//inc+l and i does not appear in p,t,:
Proof:

By lemma 1 the replicator (GR") is syntactically well-formed. The

expansion of (GRNF) is given by

if 0 or t’ is non—empty then
m
sepl @OE’Y{p(i)/t/q(i)} sep2
J:
otherwise empty
The condition for a non-empty expansion for (GR") is
if inc#0 and n=(fi-in)//inc+1>0 or t’ is non-empty

The value of inc is by definition non-zero. The value of n is given by:

- 128 -

n=(fi-in)//inc+l

=((in+(m-1)*inc+e)-in)//inc+l

=((m-1)*inc+e)//inc+l

=m-1+1 (as e//inc=0)

=m
Therefore the condition for non—empty expansion of (GR") is
if m>0 or t° is non-empty

The expression giving the expansion of (GR") is

if m>1 or t” is non-empty then
m

sepl GOEY{p(g(f(j))/t/q(g(f(j))} sep2
J:

otherwise empty

where f(j)=in+(j-1)*inc. For the above expression to be the same as the
expression for the expansion of (GRNF) the composite function g(£f(j))

should be
g(£(3))=]
Let us demonstrate the validity of the above equality:

g(£(3))=(£(j)-in)//inc+l
=((in+(j-1)*inc)-in)//inc+1
=((j-1)*inc)//inc+l
=j-1+1
=]

Therefore the expansion of (GR") is the same as that of (GRNF).VVV

In the previous section we claimed that the syntax rules produce
sequence replicators which when expanded generate macro sequences.
Having formally defined the expansion of replicators we proceed in
proving this claim. Without loss of generality we shall prove it for
replicators in normal form which we assume have been produced by the

non—-terminals 'sreplicator'", 'concseq" and by the (CF) rules for

- 129 -

"imbrseq".

Let us first prove some lemmata which we will use in proving our main
theorems. From now on we assume without loss of generality that all

replicators are in normal form.

LEMMA 2:

In a concatenator of the form

#i:1,n,1{p(i) sep @]

the string p(i) is a macro sequence.

Proof:

The string '"p(i) sep @" is produced bt the non-terminal "concseq"

which produces in general, strings either of the form:

1. morelementl ; morelement2 ; ... ; morelementn ; @

or of the form:

2. morelementl ; ... ; morelementn ; gelement,...,gelement,@

If the substrings ";@" and ",@" are removed from 1 and 2 respectively
the remaining strings correspond to p(i) and may be produced by the

non-terminal 'msequence'.YvVY

LEMMA 3:

If "s! sep s2" is the string obtained by juxtaposition of two macro

1

sequences s and s? and the separator sep as shown, then it is a

macro sequence.

Proof:

Let s! be:

1

morelement!l ; morelement 12 ; ... ; morelement'n

and s? be:

morelement?1 5 morelement?2 S eee morelement?m

If sep=; then "sl;s2" forms the macro sequence:

morelement !l ; morelement !2 ; ++. ; morelementln

; morelement?] ; morelement?2 ; +e. ; morelement?nm

If sep=, then the last macro orelement of s!, namely "morelementln" and

the first macro orelement of s?, namely "morelement?1" in "s!,s?" form a

macro orelement which we denote by '"morelementc'". Then the string

"y 1 2n

»S clearly forms the macro sequence:
morelement !l ; morelement!2 ; ... ; morelement!n-1
; morelementc

2

; morelement?2 ; morelement?23 5 .+ ; morelement‘m

This completes the proof of this lemma./vvY

We may now prove our first theorem, the theorem for the expansion of

concatenators to macro sequences:

THEOREM 3.3:

The expansion of a concatenator of the form of
(Conc) #i:l,n,1l{p(i) sep @]
yields a macro sequence for any n>0.
Proof:
The expansion of the concatenator Conc is given by replexpO(Conc)

CSPY{p(i) sep/ /}
j=1

To prove that this yields a macro sequence for any n>0 we shall use an

inductive argument on n. When n=1 its expansion E(1) is given by p(l).

- 131 -~

According to Lemma 2, p(i) is a macro sequence, and therefore according

to Lemma 1 the string p(l) is %/§equence, as well.
macro

Assume that the expansion of Conc for a finite integer n, denoted by

E(n) is a macro sequence which is of the form
E(n)=p(l)sep p(2)sep ...sep p(n)
The expansion of Conc for nt+l denoted by E(n+l) is given by:
E(nt+1)=p(l)sep p(2)sep ...sep p(n)sep p(n+l)
which may be written as
E(n+1)=E(n) sep p(n+l)
According to lemmata 1 and 2 the string p(n+l) is a macro sequence.
Therefore according to lemma 3 the string E(n+l) 1is a macro sequence
since it is of the form "msequence sep msequence'. By induction we

deduce that Conc expands to macro sequences for any n>0.vvY

Before we prove a similar result for imbricators let us prove three

more lemmata.

LEMMA 4:

In an imbricator of the form
#i:l,n,1[p(i) @ t @ q(i)]

the string t’ obtained from t by removing its leading and trailing

separators is either empty or a macro sequence in general.
Proof:

The string t is the part of the string produced by "imbr at seq" (cf.
section 3.2) between the two "@"s. According to the first four
production rules for "imbr at seq" the string t may be of one of the

four forms:

- 132 -

l. ,gelement,...{; morelement}* ; gelement,...,

2. {; morelement}* ; gelement,...,

3. ,gelement,...;{morelement ;}*

4. ;{morelement ;}*

By removing the 1leading and the terminating separator the resulting
string t° may clearly be produced by "msequence' except in case 4 in

which it may be empty.

According to the second group of four productions for "imbr at seq"

the string t may be of two forms:

1. ,gelement,...,

2.

When the leading and terminating commas are removed from 1 the resulting

string t° is a macro orelement which certainly is a special case of a

m o
b

macro sequence. In the second case as t consists of just the when

this comma is removed the resulting string t° is the empty string.

According to production options 9 and 10 for "imbr at seq" the string

t may be of the forms:

l. ‘{morelement ;}% gelement,...,

2. {morelement ;}*

Clearly by removing the terminating separator from 1 and 2 either a

macro sequence or an empty string is obtained.

According to production options 11 and 12 for '"imbr at seq" the

string t may be of the forms:

l. ,gelement,...{; morelement}*

2. {; morelement}*

Again, by removing the leading separator either a macro sequence or an

empty string is obtained.

- 133 -

Finally, the last production option for ”imbr_gg_seq“ specifies that

t does not have leading or terminating separators and that it is a macro

sequence.yvY

LEMMA 5:

If, in an imbricator of the form
#i:1,n,1{[s]

where s is produced by "imbrseq'", the two "@"s and the separators
before the first and after the second "@"s are removed from s, then

the resulting string is a macro sequence.
Proof:

The syntax rules (CF) for "imbrseq" show that it suffices to prove
that if from a string sl produced by "imbr at seq" the two "@"s and some
separators are removed as above then the resulting string 1is a macro
sequence. The reason is that sl is either the complete string s or it
appears as an element "(sl1)" in s. The only difference between a wacro
sequence and a string produced by "imbrseq" is that the latter contains
this special element. Therefore if sl after the above transformation

becomes a macro sequence, the whole string s in "[]" will be one as
well.

The first "@" in sl may appear after

(al) Il[ll or II(II
(bl) Il;ll or ll’H

Similarly the second "@" may appear before

(az) Il]ll or II)H
(bz) ll;ll or Il’ll

From the production rules for '"imbrseq" it may be seen that all
combinations of these contexts may occur. We shall consider each

combination separately.

- 134 -

Casg l : al-a?

The first and the second "%?'" do not have any separator before and
after them respectively. The string sl 1is produced by the last
production option for "imbr at seq". When the two "@" are removed from

sl the remaining string is a macro sequence.
Case 2 : al-b2

The string sl is produced by the 9th and 10th production options for
"imbr at seq". The first "@" does not have any separator in front of
it. When the first "@" is removed from sl the resulting string sl’ 1is
like a macro sequence except for one of its "orelements" which involves
"@" either on its own or in an orelement produced by one of "at orlf",

"at orlm", "at _orlb". The string sl’ may be of four forms:

1. {morelement ;}* @,gelement,...,gelement {; morelement}*
2. {morelement ;}* @ {; morelement}+
3. {morelement ;}* gelemencpc,lféélement {; morelement}*

4. {morelement ;}* gelement,...,@ {; morelement}+

When "@," and "@;" are removed from 1, 2 and 3 respectively the
remaining strings are macro sequences. When "@;" is removed from 4 the
string "gelement,...," together with the first macro orelement after
"@;" is a macro orelement and therefore the whole of the remaining

string is a macro sequence.
Case 3 : bl-a2

The string sl is produced by the llth and 12th production options for
"imbr at seq". The second "@" is not followed by a separator. When the
second "@" is removed from sl the resulting string sl” is like a wmacro
sequence except that one of its "orelements'" involves the "@" either on
its own or in an orelement produced by one of "at orlf", "at orlm",

"at orlb". The string sl’ may be of the forms:

l. {morelement ;}* gelement,...,@ {; morelement}*

2. {morelement ;}+ @ {; morelement}*

- 135 ~

3. {morelement ;1* gelement,...,@,gelement {; morelement}*

4. {morelement ;}+ @,gelement,...,gelement {; morelement}*

As in the previous case, when ",@" and ";@" are removed from 1, 2 and 3
respectively the remaining string 1is a macro sequence. When ";@" is
removed from 4 the macro orelement 1n front of it together with

",gelement,..." is a macro orelement and therefore the whole of this

string is a macro sequence.
Case 4 : bl-b2

This case has two subcases: Either the two "@"s are in two separate
special orelements either on their own or in orelements produced by one
of "at orlf", Mat or Im", 'at or Ib" when productions 1 to 4 for
"imbr at seq" are applied, or both "@"s appear in the same special
orelement produced by one of "at or2fm", "at or2fb", "at_or2mm",

"at_or2mb" when productions 5 to 8 for "imbr at seq" are applied.
In the first subcase we apply the same arguments as in cases 2 and 3.
In the second subcase sl may take four forms:

l. {morelement;}* gelement,...,@,...,@,...,gelement {;morelement}*
2. {morelement;}+ @,gelement,...,@,...,gelement {;morelement}*
3. {morelement;}* gelement,...,@,....,gelement,@ {;morelement}+

4. {morelement;}+ @,gelement,...,gelement,@ {;morelement}+

When ",@" and "@," are removed from ! the resulting string is a wacro
sequence. When ";@" and "@," are removed from 2 the macro orelement
before ";@" together with ",gelement,...,gelement" is a macro orelement
and therefore the whole string is a macro sequence. Similarly, when
",@" and "@;" are removed from 3 the string 'gelement,..." 1is a macro
orelement and therefore the whole string is a macro sequence. Finally,
when ";@" and "@;" are removed from 4 the macro orelement in front of
";@" together with the string ",gelement,...,gelement" and the macro
orelement after "@;" is a macro orelement and the whole of that string

is a macro sequence.YvY

- 136 -

LEMMA 6:

If in an imbricator of the form

(Imbr) #i:1,n,l{p(i) @ t @ q(i)]
the string t 1is replaced by a string tl consisting of a macro
sequence MSEQ preceded by the trailing separator of p and followed
by the separator leading q, then the imbricator obtained may be
produced by the syntax rules for "sreplicator'" and the (CF) rules
for "imbrseq".

Proof:

Let RS be the part of the string "p(i) @ t 3 q(i)" produced by the
non-terminal "imbr at seq". Since t appears only in this string it
suffices to prove that the string obtained from RS by replacing tl for t
may be produced by "imbr at seq'. Depending on whether p(i) terminates
with and q(i) starts with a separator or not, the string tl may be of

four different forms. We shall consider each case separately.

Case 1 :p(i) does not terminate and q(i) does not start with a

separator.
Then RS is of the form
@c@
in which case tl is of the form
tl=morelement! ; ... ; morelementn

The string obtained by replacing tl for t in RS may be produced by the

last production option for "imbr at seq".
Case 2 :p(i) terminates but q(i) does not start with a separator.

The string RS may be of two forms. The first one is:

- 137 -

1. {morelement ;}* gelement,...,@ t 4
in which case tl is of the form

tl=,morelement]l ; ... ; morelementn
By replacing t for tl in 1 the string

{morelement;}:_gelement,...,@,morelementl ; v+« ; morelementn @
is obtained in which the substring

gelement,...,@,morelementl

may be produced by "at orlm" and therefore the whole string may be

produced by the llth and 12th production options for "imbr_at seq".
The string RS may also be of the form:
2., {morelement ;}+ @ t @
in which case tl is of the form
tl= ; morelementl ; ... ; morelementn
By replacing tl for t in 2 the string
{morelement ;}+@ ; morelementl ; ... ; morelementn @

is obtained which may be produced by the 12th production for

"imbr_at seq".
Case 3 :q(i) starts but p(i) does not terminate with a separator.
Again RS may be of two forms. The first one is:

1. @ t @,gelement,...,gelement {; morelement}*

- 138 -

in which case tl is of the form

tl=morelementl ; ... ; morelementn,
When tl is replaced for t in 1 the substring of tl "morelementn",
together with "@,gelement,..." may be produced by M"at orlm" and the
whole of the string by the 9th and 10th options for "imbr_at seq".

The second form RS may take is

2. @ t @{;morelement}+

in which case tl is of the form

tl=morelement ; ... ; morelementn;

When tl is replaced for t in 2 the whole string may be produced by the

10th option for "imbr at seq".
Case 4 : p(i) terminates and q(i) start with a separator.
In this case RS may take four forms. The first one is:

1. {morelement ;}* gelement,...,@,...,@,...,gelement {;morelement}*
in which case tl is of the form

tl=,morelementl ; ... ; morelementn,
When tl is replaced for t in 1 the string '"gelement,...,@" together with
",morelementl" may be produced by "at orlm". Similarly, 'morelementn,"
together with "@,...,gelement" may be produced by "at orlm". Therefore
the whole string may be produced by one of the production options 1 to 4
for "imbr at seq", depending on whether '"{morelement ;}*" and

"{; morelement}*" in 1 represent at least one macro orelement or the

empty strings.

- 139 -

In the special case where MSEQ="morelementl" then tl=" ,morelementti,"

and the string 'gelement,...,@" together with ' morelementl," and

"@,...,gelement" may be produced by "at_or2mm" and the whole string by
production options 5 to 8 for "imbr_at seq".
The second form RS may take is
2. {morelement;}+ @ t 23,gelement,...,gelement {;morelement}*
in which case tl is of the form
tl=;morelementl ; ... ; morelementn,
When tl is replaced for t in 2 the string 'morelementn," concatenated
with "@,gelement,...,gelement” may be produced by "at or2mm" and the
whole string by the 6°th and 7°th options of "imbr_at seq.
The third form RS may take is
3. {morelement;}* gelement,..., @ @ {;morelement}+
in which case tl is of the form

tl=,morelement ; ... ; morelementn;

By applying similar arguments as before the string obtained by replacing

tl for t may be produced by productions 1 or 3 for "imbr_at seq".
Finally, RS may take the form:
4. {morelement ;}+ @ t @ {;morelement}+
in which case tl is of the form
tl=;morelementl ; ... ; morelementn;

By similar arguments we may show that by replacing tl for t in 4 the

resulting string may be produced by production option 1 of

- 140 -
"imbr at seq".vVY

The theorem analogous to 3.3 may now be proven, the theorem for the

expansion of imbricators to macro sequences:

THEOREM 3.4:

The string obtained by the expansion of an imbricator
(Imbr) #i:l,n,1{p(i) @ t @ q(i)]
is a macro sequence.

Proof:

The expansion of a replicator is valid when

n>1 or t’ is not the empty string
We shall distinguish two cases:
1. n<l and t’ is non empty.
Its expansion then is given by t’ which by lemma 4 is a macro sequence.
2. The second case is when n>l.
To prove that the imbricator expands to a macro sequence we shall use an
inductive argument for n. When n=1 the expansion of the imbricator

denoted by E(l), is given by

1
B(1)=COPY{p(1)/t/a(1)}
1=

which yields

E(L)=p’ (1) t q'(1)

which according to lemmata 5 and ! is a macro sequence.

- 141 -

Assume that the string generated by the expansion of the imbicator
)

for some n>l, denoted by E(n) is a macro sequence. Its expansion E(n)

is given by

E(n)=g§fY{p(i)/t/q(i)}

which yields

E(n)=p(1l) p(2)...p"(n) t q'(n)...q(2) q(l)

Consider now the expansion E(n+l) given by

n+l
E(n+1)=QO§Y{p(i)/t/q(i)}
l=

which yields
E(n+1)=p(1) p(2)...p(n) p’(n+l) t q"(n+l) q(n)...q(2) q(1)
If E(n) is a sequence then by lemma 1 so must E’(n)
E“(n)=p(2) p(3)...p"(n+1) t q’'(n+1)...q(3) q(2)

obtained from E(n) by replacing the integer expressions of the
. and index specifications)
subscripted operations¥v depending on "i" by the same expressions

depending on "i+1" for i=1,2,...,n.
We now construct the imbricator
(R) k:l,1,1[p(k) @ t1 @ q(k)]
where tl is obtained from E’(n) prefixed by the terminating separator of

p(i) and postfixed by the leading separator of q(i). According to lemma

6 this replicator is syntactically well-formed and its expansion E(R) is

E(R)=p” (1) ¢l q"(1)

which according to lemmata 1 and 4 is a macro sequence. Therefore E(R)

is the macro sequence:
p(1) p(2) p(3)e.ep’(nt+l) t q'(n+l)...q(3) q(2) q(1)
as the leading separator of tl together with p’(l) form p(l), the

terminating separator of tl together with q’(l) form q(l) and the rest

of tl is E(n). As E(R) is the same as E(n+l), the latter 1is a macro

sequence. VY

A similar result for generalized elements 1s the the theorem for the

expansion of generalized elements to macro sequences. A generalized

element GEL may be represented by

RLs M LLs

where LLs denote left replicators LRl...LRm and RLs rtight replicators
RRl...RRn and M a sequence replicator or a distributor or a starelement.
The expansion of all the left and right replicators of GEL will be given
by gelexpO(GEL) defined as follows:

gelexp°(GEL)=a M b

where a= replexpO(RRl)...replexpO(RRn)

replexpO(LRl)...replexpO(LRm)

o
0

We may now prove the theorem for the expansion of generalized elements

to macro sequences.

THEOREM 3.5:
When all left and right replicators in a generalized element GEL are

expanded the resulting string gelexpO(GEL) is a macro sequence.
Proof:

A generalized element GEL has the form

- 143 -
RRI...RRn {starelement/sreplicator/distributor} LRl...LRm

where RRi for i=1,...,n denote right replicators and LRi for i=1,¢¢.,m
denote left replicators. From the definition of the expansion of left
and right replicators and from theorems 3.3 and 3.4 it follows that the

expansion of a right replicator is of the form
msequence sep Or empty

and of a left replicator
sep msequence or empty

When all left and right replicators are expanded the generated string

will be of the form:
{msequence sep}* {starelement/sreplicator/distributor} {sep msequence}*

Applying lemma 3 in the above string from left to right we deduce that

this is a macro sequence.vvyvY

The expansion rule for replicators may be applied to expand any

replicators of the general form
#i:l,n,1[p(i) @ £ @ q(i)]

in which "@ t @ q(i)" and "t @ q(i)" may not exist and the string inside

"[1" may not necessarily have been produced by "concseq" or "imbrseq".

Let wus call these replicators, wide replicators which may be of two

forms: wide concatenators or wide imbricators. We may now prove the

replacement theorem of imbricators by wide concatenators.

THEOREM 3.6:

Wide concatenators of the form

(Weonc) #i:1,n,1[s(i)@]

are sufficient to generate strings generated by imbricators of the

- l44 -
type
(Imbr) #3:1,n,1[p(j) @ £ @ q(j)]
Proof:
Let us transform (Imbr) to the replicator form (RF)
(RF) #i:1,n,1[p(i)@] t #i:n,1,-1[ql(i)@]

where ql(i) is obtained by

ql(i)=1if q(i)=sep q’(i) then q’ (1) sep
lelse q(i)

The expansion of the replicators in (RF) is given by:

COPY{p(1)/ /} t COPY{q (n-1)/ /}
i=1 i=1

which yields E(RF)
E(RF)=p(1) p(2)...p"(n) t ql(n)...q!(2) ¢! (D)
The expansion of (Imbr) is given by:

g%EY{p<i>/t/q<i>}
l=

which yields the string E(Imbr)
E(Imbr)=p(l) p(2)...p"(n) t q'(n)...q(2) q(l)
We will show that the strings E(RF) and E(Imbr) are the same.

They certainly have the same head "5(1)p(2)...p ' (n)t". Therefore

suffices to show that the string (sl)

(s1) qi(n)...q!(2) g’ (1)

it

- 145 -
is the same as the string (s2)
(s2) q°(n)...q(2) q(1)
If q(i) does not start with a separator (sl) is the same with (s2) for
then q°(n) is the same as ql(n), q(1) the same as q!‘(l) and each of

q(j) is the same as q!(j) for j=2,3,...,(n-1).

Consider now the case where q(j) starts with a separator i.e. it is

of the form
sep q’(3)

and therefore
q1(3)=q"(]) sep

Substituting the right hand expression for gq! in (sl) we obtain (s1”)
(s1”) q"(n)sep...q"(2)sep q'(1)

But each of "sep q’(j)" 1is the same as "q(j)" for j=1,2,...,(n-1).

Substituting these expressions in (sl1’) the string

q°(n) q(n-1)...q(2)q(1)
is obtained which is the same as (s2).V7Y

The next theorem characterizes the imbricators which when replaced by
the transformation (RF) of the previous theorem the well-formedness of

the macro programs is preserved. Let us first prove a lemma.

LEMMA 7:
1f a generalized element GEL in a macro sequence MS is replaced by a

macro sequence MSEQ the resulting string is a macro sequence.

- 146 -

Proof:

Without loss of generality we may assume that the element GEL is not
nested inside '()". For if it is we may consider the sequence MS’ in
the innermost element "(MS’) which involves GEL. 1If by replacing MSEQ
for GEL 1in MS’ a macro sequence MSEQ’ is obtained then "(MSEQ’)" would
be an element and the whole string a macro sequence. The sequence MS

may be of the form
MS! GEL Ms2

where MS! may be either empty or in one of the forms

1. morelement11;morelement12 3 eee 3 morelementln;

2. morelement!l 3 e 3 morelementln;gelement,...,gelement,
and MS2 may be either empty or in one of the forms
1. ;morelement21;morelementzz 3 ees morelement?n
2. ,gelement,...,gelement;morelementZI 3 oees morelement?n

If MS! and MS? are non empty it can be seen from their respective

forms 1 and 2 that they are of the forms

1

msequence- sep and

sep msequence?

respectively. Therefore MS may be of the following forms
1. msequencel sep MSEQ sep msequence2
2. msequence1 sep MSEQ

3. MSEQ sep msequence2

4. MSEQ

Applying lemma 3 twice in 1 and once in each of 2 and 3 we prove that

the forms in 1, 2, 3 are macro sequences. MSEQ in 4 is already a macro

- 147 -

sequence. 7YY

let wus now prove a theorem giving the conditions for the replacement

of imbricators by concatenators

THEOREM 3.7:

The imbricators of the form
(Imbr) #i:l,n,1[p(i) @ t @ q(i))
may be equivalently replaced by the concatenator forms
(CF1) #i:1,n,1{p(i)@] t #i:n,1,-1[ql(i)@)
when p and q are non empty, or by
(CF2) #i:1,n,1[p(i)@] ¢t
when p is non empty but q is empty, or by
(CF3) t #i:n,1,-1{ql(i)@]
when p is empty but q is not, or finally by
(CF4) ¢
when both p and q are empty,
where ql is obtained from q by transfering its leading separator to

its back,

if and only if

p and q in (Imbr) do not contain any unmatched opening and closing

parentheses respectively.

Proof:

(if)

Since p and q do not contain any opening and respectively closing

unmatched parentheses "p(i) 3 ¢t & q(i)" is produced by "imbr_at_seq”.

We have to show that the replicators in the strings (CFi) for 1i=1,2,3,4

may be produced by 'concseq" and that when the whole of (CFi) for
i=1,2,3,4 is replaced for (Imbr) the well-formedeness of the program 1is
preserved. We shall counsider each of the four cases separately.

Case 1 : p and q are non empty.

From the production options 1 to 8 for "imbr_at seq" which generate

such strings it may be seen that p in general is of the form
msequence sep
the string t of the forms
sep
sep msequence or sep
and q of the form
sep msequence
which implies that ql is of the form

msequence sep

The strings p and q! appended by "@" may be produced by the syntax rule

for "concseq":

concseq={morelement ;}+ @

/{morelement ;}* concor

depending on whether p and q! terminate with ";" or ",". Therefore both
replicators in (CFl) are 1legal. The whole string (CFl) is a macro
sequence by lemma3. Replacing (Imbr) for (CFl) in a macro sequence the

new string by lemma 7 is a macro sequence as well.

- 149 -
Case 2 : p is non empty, q is empty

From the production options 11, 12 which produce such strings it may

be seen that p is of the form

msequence sep
and t is either empty or of the form

sep msequence
Using similar arguments to those used in case 1 we may show that the
replicator in (CF2) is legal. By lemma 3 the whole of (CF2) is a macro
sequence, and by lemma 7, by replacing it in a macro sequence for (Imbr)
a macro sequence is obtained.

Case 3 : p is empty, q is non—empty.

From the production options 9, 10 for "imbr at seq" which produce

such strings it may be seen that t is either empty or of the form
msequence sep

and q of the form

sep msequence
which implies that ql is of the form
msequence Sep

Using similar arguments as in cases 1 and 2 we may prove that the

replicator in (CF3) is legal and that when (CF3) is replaced for (Imbr)

a macro sequence is obtained.
Case 4 : p and q are both empty.

From the last production of "imbr at seq" which generates such

—~ 150~

strings we deduce that t is of the form
msequence

By lemma 7, if t or (CF4) is replaced for (Imbr) in a macro sequence

then the new string is a macro sequence also.

From theorem 3.6 it follows that in each case (CFi) for i=1,2,3,4

expands to the same string as (Imbr).
(only if)

For every unmatched opening bracket in p there is an unmatched

closing bracket in q and vice-versa. By lemma 2 in a replicator
#irl,n,1[{p(i) Q]

the string p(i) is of the form
msequence sep

In a macro sequence of course all parentheses are matched. Therefore
for the replicators in (CFi) for i=1,2,3 to be legal, p and q must not

contain any unmatched opening and respectively closing parentheses.

The previous theorem gave the conditions under which an imbricater
may be substituted bv expressions involving concatenators. Obviously if
t and one of p or i in (Imbr) are cmpty then (Imbr) mar be replaced by a
single concatenator. Under restricted conditions it it also possible to
replace an imbricator in which possibly all three of p, t, q arec
nonenp tv by a single concatenatur both expandinz =5 the same string.

The following theorem 3.7° for the replacement of an imbricator by a

single concatenator gives these conditions.

b

THEOREM 3.77:

A well-formed imbricator

#i:1,n,1[p @ t @ q]

— 1S0a -

may be replaced by a single concatenator if and only if 1. any
trailing separator of p, leading separator of gq and trailing and

leading separator of t must be the same.

2. the string p is either empty or of the form "p’ sep", where p’

may be generated by a concatenator of the form
jel,kl,1[s(gi(i,j)) sep @]

the string q is either empty or of the form "sep q’'", where q° may

be generated by a concatenator of the form
#3:1,k2,1[s(g2(1,3)) sep @]

and the string t° obtained by stripping t of its leading and
trailing separators may be empty or may be generated by a

concatenator of the form

3:1,x3,1[s(g3(i,3)) sep @]

where k1, k2, k3 do not depend on i, and where s(gl(i,j)),
s(g2(i,3)), s(g3(i,j)) denote that the indexed operations in s
depend on expressions z1(i,3), 22(i,3), 23(i,]j) respectively, which
have the foras:

k1*x(i-1)+]

N L+ 5 Fe 2% (n=1)]

n*:1+j

respectively. If any of p, 4, t’ are emnty then the corresponding
values of kl, 2, k3 in the corresponding concatenators is taken as

ZCro.
Proof (sketch):

(if)

- 150@ -

We construct the concatenator
#izl,m,1[s(i) sep @]

where m=n*(kl+k2)+k3. the values generated by
gl(i,j) for i=1,...,n and j=1,...,kl
g2(i,j) for i=1,...,n and j=1l,...,k2
g3(i,j) for i=l,...,n and j=1,...,k3

are precisely the values 1l,...,m=n*(kl+k2)+k3.
(onlv if)

l. the separators must ne the same
2. kl, k2, k3 must not depend on i for gl, g2, g3 to genarate arithmetic
progressions, respectively. Also, gl, 22, 23 must have the forms
indicated so that the values generated by all three form one arithmetic
progression.f%/ The next theorem deals with the opposite direction

nanely the replacement of concatenators by imbricators.

THEOREM 3.8:

A concatenator of the fornm

(Cone) #i:1,n,1[p(i) <)

mav alwavs be replaced by the inbricator

(imbr) #i:l,n,1[>(i) @ 3]

- 151 -

Proof:

The expansion of both replicators (Conc) and (Imbr) is given by

COPY{p(i)/ /}
i=1

Also by lemma 7, by replacing a generalized element by a macro sequence,
and afortiori by another generalized element a macro sequence is

obtained. One more thing has to be proved: that "p(i) @ @' may be

produced by "imbrseq".
The string "p(i) @" may either be produced by

1. {morelement ;}* concor or by

2. {morelement ;}+ @
The string "p(i) @" may therefore be of the forms

1. {morelement ;1* gelement,...,@

2. {morelement ;}+ @

If an "@" is appended to 1’ and 2’ ,i.e. constructing "p(i) @ @", the
new strings may be produced by applying the production options 11 or 12

of "imbr at seq"./vY
Some important corollaries of the above theorem are the following:

COROLLARY:
At the expense of one extra symbol namely "@", all concatenators may

be replaced by imbricators.

COROLLARY :

Concatenators can only generate sequences which can be generated by

imbricators also.

An important implication would be that the syntax rules for sequence

- 152 -

replicators could be simplified by eliminating production rules for

concatenators without reducing the generality of the notation. However,

this may only be done at the expense of some loss of conciseness, since

an extra "@" has to be used.

We may also constrain the syatax for imbricators to produce just

genuine imbricators for which the conditions of theorem 3.8 do not

apply. This could be done by forcing at least one pair of parentheses
in "[]" to open before the first "@" and close after the second "@".
Non-genuine imbricators are produced when the whole striang produced by
"imbrseq" is produced by "imbr at seq". We decided against that for it
would worsen the conciseness and readability of programs. Consider for

example the n-free frame buffer
NPi2 #i:1,n,1[path DEPOSIT(i);REMOVE(i) end]

which could be modified to a fill-empty 1last 1in first out queue by

adding the path
NP20 path #i:1,n,1[DEPOSIT(i);@;@;REMOVE(i)] end

which involves a non-genuine imbricator which could be replaced by two

concatenators as follows:
NP21 path #i :1,n,1[DEPOSIT(i .);@] ; #i :n,1,-1[REMOVE(i);@] end

The path NP21 with the two concatenators is the least concise. The
replacement of an imbricator by two concatenators may not be as simple
as the above example. It could lead to long index specifications which
are difficult to read as the following example demonstrates. Let us

consider the bodyreplicator
NP22 #i:1,10,1[path #3j:1,100,i[A(3);@;@;B(j)] end

which generates ten paths with their sequences counsisting of just a

non-genuine imbricator. If we replace the 1imbricator by the two

concatenators

- 153 -
#31:1,100,1[AC31);2] 5 #32:100,1,-1[B(32) ;2]

a differeat sequence will be generated. We can easily see that when

i=2. Then the range of index jl is
1,3,++.,97,99

but that of j2 is
100,98,...,4,2

and not
99,97,...,3,1

as its correct range should be. The reason for this difference is that

the index specification of j2 should be correctly specified by
#32:((100-1)//i)*i+1,1,-1

which is quite a complicated formula. The above index specification

gives the same range as the erroneous one when

((100-1)//i)*i+1=100 =>
(100-1)//i=(100-1)/1 =
99//i=99/1

that is when

99 mod i=0

for values of i between 1l and 10, that is for i=1,3,9.

3.3.2 The Expansion of Distributors

In section 3.2.7 we developed the syntax for distributors, we defined

compatibility criteria (CCl) and (Drestl) for well defined distributors,

- 154 -

and we sketched their expansion. In this section we formally define

their expansion and we prove that for each distributor there are
sequence replicators which yield the same string after expansion and we
derive necessary and sufficient conditions for obtaining sequence

replicators from distributors yielding the same string after expansion.

Let us first, obtain the rule for the expansion of distributors

without specifying any subrange, i.e. distributors of the form

NDLl4 sep[p]

where p 1is a macro sequence of array slices (cf. section 3.2.7). For
the expansion of a distributor in this form to be defined, the first
compatibility criterion (CCl) must be obeyed, implying that all the
distributable dimensions of array slices must contain the same number of
sections, say m. In the expansion of NDl4 m copies of p will be

generated separated by '"sep" which may be formally obtained by

(E1) Q%{Y{p sep/ /}
J=

Furthermore, the array slices of the first copy must be replaced by the
first array section of this slice, in the second copy by the second
section etc. Therefore, the blank fields of the array slices of the p’s
in (El) must be replaced by a function of j which relates the j’th copy

with the j’th section of each array slice. We specify that by

(E2) COPY(p(8(1)) sep/ /}
J:

in which p(g(j)) indicates that each of the distributable dimensions of

NDl4 must be replaced by a function g(j).
The function g should be such that for a particular slice
g(j) should give the index of the j’th section for j=1,2,¢e.,m

The function g for each particular slice may only be obtained from the

collectivisors since these define the sections and their order. The

- 155 -

collectivisors may be of two forms: those produced by the non-terminal

"simpleardecl" and those produced by "replardecl". ALl collective aames

declared by the former are of the form:
X(1bl:ubl,...,lbn:udbn)

where "1bi" and "ubi' for i=1,...,n denote the lower bound and upper
bound respectively of dimension 1 of collective name X, may be declared

equivalently by the latter as follows:

#31:1bl,ubl,1{...#jn:1bn,ubn, 1{X(jl,...,in)]e..]
or when all replicators are transformed into their normal form by

#3j17:1,ml,1[...#3n" :1,mn, L[X(1b14+j1°=1,...,1bn+jn" =1)]...]
where mi=ubi-1bi+! for i=1,2,...,n. From now on we assume that all
collective names are declared by collectivisors produced by 'replardecl"
in which all replicators are in their normal form. For example the
collective names A and B declared by NC7 may be equivalently declared by

NCll array #k:1,4,1[A(k-1)]

#kel,4,1[#5:1,3,1[B(k,j)]1]
endarray

or more concisely by

NC12 array #k:1,4,1[A(k-1) #3j:1,3,1[B(k,j)]]endarray

In general the declaration of subscripted operations corresponding to

a collective name Y of n dimensions has the form

(NCR) #kl1:1,ml,1[...#kn:1,mn,1{¥(h1(kl),...,bn(kn))]...]

where hi for 1=1,2,...,n are integer functions of ki.

- 156 -

The order of the sections of an array slice along its i’th dimension

for i=l,...,n may be easily obtained by:

hi(j) gives the index of the j’th section for j=1,...,mi

along dimension i, for i=1,...n.

This implies that hi(j) dis the function by which g(j) in each of the

operations of p in (E2) must be replaced.

Let now us expand NDI

NDL ;[A,B(,3)]
where A, B have been declared by NC12 using the form (E2). To construct
"p(g(3))" from p which in this case is "A,B(,3)" we have to replace A
by A(j-1) and B(,3) by B(j,3) where the expressions j-1 and j have been

obtained from NCl12. The expansion of NDl is given by

4
(E3) COPY{A(3-1),B(3,3)3/ /)
J=

which yields
A(0),B(1,3);A(1),8(2,3);A(2),B(3,3);A(3),B(4,3)

Let us also expand the distributor
ND15 ;[C]}

where C is declared by NC13
NC13 array #j:1,4,1[C((j-1)**2)] endarray

where "**" denotes 'to the power", by which the operations
€(0), c(1), Cc(4), C(9)

are declared. The expansion of NDI5 is given by

- 157 -

/,

c;asz{C((j-l)**Z);/ /y
J:

which yields

C(0);C(1);C(4);C(9)

Let us now obtain a formula for the expansion of a distributor with

subrange
ND2 sep#inind,fiind,incind[p]

According to the compatibility criterion (Drestl) of distributors,
distributors are well defined when all the distributable dimensions of
array slices on which the distributor applies contain at least Ns
sections, where Ns=(fiind-inind)//incind+l. The expansion of ND2 will

be given by

N
(E5) fg?Y{p(g(l)) sep/ [/}

in which plg(1)) indicates that each of the blank fields of
distributable dimensions on which the distributor operates have been
replaced by a function g(l). This function will not in general be the

same as in ND1 since
g(l) must give the inind’th array slice,
g(2) the (inind+incind)’th slice,

etc.

The order of the sections we would like to generate may be given by the

formula
£f(1)=inind+(1-1)*incind, for 1=1,2,...,Ns =(fiind-(inind))//(incind)
Therefore the function g(1l) for dimension i, 1<i<n in (E5) will be

g(1)=hi(£(1))

- 158 -
where hi is obtained from the declaration of the form of (NCR).
Let us demonstrate this rule by expanding
ND16 ;#2,4,2([D]
where D is defined by NCl4
NCl4 array #i:2,11,2[D(i)] endarray

which when the replicator is transformed 1into its normal form (cf.
3.3.1), is declared by

array #il:1,5,1{D(2+(i1-1)*2)] endarray
or more simply by NCI15

NC15 array #il:1,5,1[D(2*il)] endarray
defining operations

D(2), D(4), D(6), D(8), D(10)
The expansion of ND16 is given by:

N
gg%Y{D(2+(f(l)—l)*2);/ /}

where Ns=(4-2)//2+1=2 and £(1)=2+(1-1)*2. Therefore (E6) becomes

2
(E7) EOEY{D(2+(2+(1—1)*2—1)*2);/ /1=
2
%9?Y{D(2+(2*l-1)*2);/ /}=
COPY(D(4#1);/ /}=D(4);D(8)

Finally, let us expand ND17

- 159 -
D17 ;#2,4,2(C]
where C is declared by NC13. 1Its expansion is given by (ES8)

N
(E8) COPH{C((E(L)=1)*¥2)5/ /)

where Ns=(4-2)//2+1=2 and £(1)=2+(1-1)*2 which when substituted in (E8)
we obtain (E9)

2
(E9) fg?Y{C((2+(1—1)*2-1)**2);/ /}=

2
§9§Y{C((2*1-1)**2);/ /}=

C(1);¢C(4)

A distributor of the form
NDl sep[p]
may be considered as a special case of ND2
ND2 sep#inind, fiind,incind[p]

‘common
: . .. - NG . .
in which inind=1, incind=1 and fiind is the number of sections in the

distributable dimensions in the array slices of p.

Then the expansion distrexp?(D) of a distributor D of the form of ND2

in which inind, fiind, incind may be declared implicitly, is given by

Ns
SSEY{p(g(j)) sep/ /}

where Ns=(fiind-inind)//incind+l, p(g(j)) indicates that each blank
field of distributable dimensions on which the distributor operates,

will be replaced by a function

g(3)=hi(£(3))

- 160 -
where f(j) is defined by
f(j)=inind+(j-1)*incind

and hi 1is obtained from the corresponding i‘th dimension of each

collective name in the collectivisors.

For the expansion of distributors to be non empty the following

restriction (Drest3) must hold:

(Drest3)
incind#0 and Ns=(fiind-inind)//incind+12}

that is at least one copy of the regularity must be made. For the
expansion of a distributor to generate subscripted operations which are
permitted by the collectivisors the following restriction (Drest4) must

be imposed on the values of "inind", "fiind", "incind".

(Drest4)
Liinind+(j—l)*incind5ﬂs for j=1,...,Ns

where Ms is the minimum number of slices over the number of slices of

all the distributable dimensions of the distributor. The expression
f(j)=inind+(j-1)*incind

gives the array slice of ordinality j, 1{j<Ns and as such must take
values between 1 and Ms. Let us obtain restrictions on the values of
"inind", "fiind" and "incind" independent of j. As f(j) is a monotonic
function its lower and upper values are obtained for j=1 and j=Ns. As
f(j) may be either increasing or decreasing with increasing values of j

we may only infer that for j=1

I<inind+(1-1)*incind<{Ms =3
1<inind<{Ms (D)

and that for j=Ns

- 161 -

I<{inind+((fiind-inind)//incind)*incind<is =3
1<{inind+((fiind-inind)/incind-e)*incind<{Ms (-1<e<1) =»
1<{inind+fiind-inind-e*incind<{Ms =>
I{fiind-e*incind<{Ms =>

1+e*incin@ﬁfiindﬁﬂs+e*incind

When 1incind>0, the expression l+e*incind is minimum when e tends to -1,

and the expression Mste*incind is maximum when e tends to l. Therefore,
when incind>0 : l-incind<fiind{Ms+incind (11a)
When incind<0 the the expression l+e*incind is minimum when e tends to 1

and the the expression Ms+e*incind is maximum when e tends to -l.

Therefore

when incind<0 : l+incind<fiind<{Ms-incind (I1b)
By combining (IIa) and (IIb) we obtain:

l1-lincind|<fiind{Ms+|incind| (1D)

A distributor may be considered as a shorthand for some replicators.

In fact for every distributor there is a family of replicators which
when expanded generate the same string as the string obtained from the
expansion of the distributor. Before we formally show how to obtain

such replicators let us prove the following lemma.

LEMMA 8:
If s(i) is a macro sequence involving integer expressions depending

on some integer i then the concatenator
#i:1,n,1[s(i) sep @]

is syntactically well-formed.

- 162 -
Proof:
Since s(i) is a macro sequence it may in general be of the form
morelementl ; ... ; morelementm
If sep is a semicolon the string s(i) sep @ may be produced by the second
option of "concseq"and if sep 1is a comma by the first option of

"conc seq't/VY

Let us now prove the theorem for the replacement of distributors by

concatenatorse.

THEOREM 3.9:
The string obtained by the expansion of a distributor of the general

form
ND2 sep#inind, fiind,incind[p]

may also be generated by a concatenator of the normal form
#3:1,Ns,1[p(g(3j)) sep @]

where Ns=(fiind-inind)//incind+! and p(g(j)) is obtained from p by
substituting the fields of the distributable dimensions of sections

in ND2 by g(j) as in distrexpl.
Proof:

The syntax rules in 3.2.7 for distributors specify that the string p
is produced by 'msequence" in which the fields of the distributable
dimensions on which the distributor operates are blank. When p 1s
transformed to p(g(j)) all these blank fields are replaced by an integer
expression g(j). Any other blank fields in p(g(j)) are in array slices
which correspond to other distributors nested in ND2.

and lemma 1
By lemma érthe replicator of the form

#3:1,Ns,1[p(g(j)) sep 2]

is syntactically well-formed since p(g(j)) is a macro sequence.

Furthermore its expansion is given by

I O=

c ?Y{p(g(j)) sep/ /)

which is the same as the formula for the expansion of ND2. If the
values of "inind", "fiind" and "incind" satisfy (Drest3) and (Drest4)
then the concatenator generates only indexed operations permitted by the

collectivisors.vvY

The concatenator constructed in the above theorem is in normal form
and from it all concatenators belonging to its family may be obtained,
all expanding to the same string. This concatenator may by theorem 3.8
be replaced by an imbricator generating the same strings. The

concatenators generating the same strings as NDl, ND16, and ND17 are
NR12 #j:1,4,1[A(§-1),B(j,3);@]
NR13 #1:1,2,1[D(4*1);@]
NRI4 #1:1,2,1[C((2*1-1)**2);@]

respectively.

A corollary of theorems 3.3 and 3.9 is

COROLLARY :

All distributors expand to macro sequences.

The reverse of theorem 3.9 that all replicators expand to strings

which may be generated by distributors does not hold. However, under

some conditions this is possible. The next theorem for the replacement

of concatenators and imbricators by distributors gives these conditions.

THEOREM 3.10:
The string generated by the expansion of a sequence replicator of

the form

- 164 -

(NR)#i:l,n,1{p(i) @ t @ q(i)]

may be generated by one distributor if and only if the following

conditions hold:

either t and one of p or q are empty or the conditions of theorem 3.7’

L hold.

2. n>l

3. all operations in p and q must be subscripted by i and the index
"i" should not be involved in expressions in replicator index
specification or subrange specifications of replicators and

distributors in p or q.

4. each subscripted operation must have exactly one field depending

on the index 1 by an expression say g(i).

5. if p(i) and q(i) involve distributors, the field of subscripted
operations depending on index "i" should be in the same position
relative to the blank fields of the array slices of these

distributors.

6. the g(i) in each of the above fields must be such that it may be
transformed into the form h(f(i)) where h is the function in the
corresponding dimension of each collective name in the
collectivisors and f(i) is the same for all fields and is of the

form a+(i-1)*b where a, b are integers with the restriction that

b#0.
. Proof:

(1f)

If t and one of p or q in (NR) are empty and since n>l, the expansion
of (NR) 1is nonempty and according to theorem 3.7 the expansion of (NR)
may be obtained by a single concatenator. Similarly, if p, t, q satisry
the conditions of theorem 3.7° then the expansion of (NR) is nonempty

and may be also be obtained by a single concatenator.

- 165 =

either #i:l,n,1[p(i) @]
or #iin,1,-1[ql(i) 2]

where ql(i) is defined in theorem 3.7. Therefore it suffices to show

that the expansion of a concatenator of the form
(NRL) #3:1,m,1{s(g(])) sep @]

where s(g(j)) indicates that the sixth condition holds, may be obtained

by a distributor.
Let us construct the distributor (ND)
(ND) sep#a,a+(m-1)*b,b[s]

where s 1s obtained from s(g(j)) by removing from each subscripted
operation the integer expression g(j). Since s(g(j)) is a nmacro
sequence in which all operations are subscripted by condition 3, by
lemma 2, s 1is a macro sequence having array slices instead of
operations. The 1index i does not appear anywhere is s as it has been
eliminated from the subscripted operations and as any other context it
could be 1in, has been excluded by condition 2. By condition 3, the
distributor ND applies to a single distributable dimension of each

slice in s.

If "sep" in ND does not apply to the right field of the slices of s
then we may use the section selection feature of the distributor either
in ND or in the distributors in p(i) and/or q(i). We know this is

possible because of condition 5.

Obviously its expaansion is given by

g%%Y{s(g(j)) sep/ /}

since the number of times s will be copied is given by

(a+(m-1)*b-a)//b+l=
((m=1)*b)//b+1l=m

- 166 -

and g(j) 1is the same as h(f(j)). The same formula gives also the

expansion of (NRI).
(only if)

Condition 1 must be satisfied for

otherwise more than one of the arguments of the COPY expression giving
its expansion will be non emptv. The COPY expression giving the

expansion of a distributor has the second and third arguments empty.

Condition 2 guarantees that the expansion of (NR) is non empty which

is necessary since distributors should not generate empty expansions.

All operations should be subscripted by expressons depending on "i",
as condition 3 requires, for after these expressions are eliminated all
operations inside "[]" of ND should be array slices. Also "i" should
not be involved anywhere else, for the index "i'" inside "[]" of ND, it
will still be by context an integer constant, not controlled at all by

the distributor and therefore undefined.

Subscripted operations in s must have at most one field depending on
i, as condition 4 requires, as each distributor applies only to one

dimension of each array slice.

Condition 5 must hold since otherwise, neither the default rule nor
the section selection feature of distributors can specify the right
slices to be distributed.

Finally, g(i) must be of the specified form since the subrange of
distributors selects sections of array slices the position ordering of

which form arithmetic progressions.vVvY

Let us demonstrate how distributors may be obtained which generate

the same strings as replicators. Consider the concatenator NR12
NR12 #j:1,4,1[A(j-1),B(j,3);@]

where collective names A and B have been declared by NC12. The

- 167 -

replicator NRI2 satisfies the first five conditions of theorem 3.10.

Let us demonstrate that it also satisfies the sixth condition. The

expression (j-1) subscripting A should be possible to be re-writen as

ha{(g(j)) where f(j) is of the form a+(j-1)*b and ha 1is the function

subscripting A in NCl2. Therefore
ha(£(3))=£(j)~1

As f(j) is of the form
£(3)=a+(j-1)*b

we have to find integers a and b such that

at+(j-1)*b=j or
a-b+b* j=j

The only such integers are a=b=1. Therefore the expression j-1 may be

re-writen as

f(j)-1 or as
I+(j-1)*1~1

Therefore condition 6 is satisfied by A(j-1). It should also be
satisfied by B(j,3). Simirarly, the expression j should be re-writen as

hb(f(j)) where hb is subscripting the first dimension of B in the

collectivisor NCl12. As
hb(£(3))=£(3)

we have to verify that
£(§)=1+(j-1)*1

is the same as

£(3)=3]

- 168 -

which obviously is. Therefore condition 6 is also satisfied and the

distributor expanding to the same string as NRl2 ig ND18
NDI8 ;#1,4,1[A,B(,3)]

or more simply
NDL ;[A,B(,3)]

as the subrange of NDI8 is redundant defining all sections of array

slices of A and B(,3).

Let us also examine the concatenator NRI13

NR13 #1:1,2,1[D(4*1);Q]
where D is declared by NCl4. The replicator NR13 satisfies the first
five conditions of thoerem 3.10. Let us try to transform "4*1" into the
necessary form h(£(1)). Since f(1) must be of the form at+(l-1)*b the
relation

g(l)=4*1

must hold. Since h from the collectivisor NCl4 is h(j)=2+(j-1)*2 the

relation
24+(£(1)-1)*2=4*1

must hold which implies that
f(1)=(4*1-2)/2+1=2*1

Since f(1) must be of the form
f(1l)=a+(1-1)*b

the relation

- 169 -

at(1l-1)*b=2*1

must hold, which implies that

a=b=2

Therefore f£(1)=2+(j-1)*2 and NRI3 satisfies the sixth condition of
theorem 3.10. The distributor expanding to the same striag as NR13 is
ND16

ND16 ;#2,4,2[D]

Not all g(i) may be tranformed into the appropriate form. Consider

for example the replicator

NR15 #i:1,3,1[E(i**2);@]
where E is declared by NCl6

NCl6 array #3j:1,10,1[E(j)] endarray

The concatenator NRll satisfies the first five conditions. Let us try

to transform g(i)=i**2 into the appropriate form, h(f(j)). As h(j)=j
h(£(1))=£(1)

Therefore f(i) must be the sane as i**2 and f(i) must be of the form
f(i)=a+(i-1)*b

which means that
at+(i-~1)*b=1**2

must hold. But there are no integers a and b for which this relation

holds, as the left hand side is a linear expression of i whilst the

right hand side a quadratic expression of i. Therefore condition 6 is

~ 170 -

not satisfied and there is no distributor which may generate the string

which NR13 generates. The reason is that NR15 generates the string
E(1);E(4);E(9)

that is, consisting of the first, fourth and ninth operations of E the

ordering of which does not form arithmetic progression.

3.3.3 The Expansion of Macro Programs

In the previous two sections 3.3.1 and 3.3.2 we obtained expansion
rules for replicators (replexpl) and distributors (distrexpY) and we
proved various properties which their expansions possess. Here we
define the complete expansion of macro programs and by using the results
theorems 3.3., 3.4, 3.5 and the corollary of theorem 3.9 of the previous

two sections we show that their expansion yields basic COSY programs.
Let us represent a macro program schematically using syntactic
variables to represent 1its syntactic entities, that is substrings

produced by non-terminals. A macro program will be denoted by MPROG and

represented by
program MPBODY endprogram

where MPBODY denotes a substring produced by the non-terminal

"mprogrambody". As such MPBODY may have the form

CPQBR! ... CPQBRn
where each CPQBRi for i=l,...,n denotes a single path or process or
bodyreplicator possibly headed by collectivisors. If headed by
collectivisors it may be represented by

COLs PQBR

where COLs denotes a collection of collectivisors and PQBR a single

path, or a process or a bodyreplicator. A Dbodyreplicator may be

- 171 -
represented by
#i:1,n, 1[PQBRs]

where PQBRs denotes a collection of paths, processes and
bodyreplicators. A bodyreplicator upon expansion generates a collection

of paths, processes and bodyreplicators represented by
PQBR1 ... PQBRn

where each PQBRi for 1i=l,...,n denotes a single path or process or

bodyreplicator. A path and a process will be represented by

path MSEQ end
process MSEQ end

respectively, where MSEQ denotes a macro sequence. A macro sequence

will be represented by
MORl ;...; MORn

where each MORi for i=1,...,n denotes a macro orelement, which is

represented by
GELl ,..., GELn
where each GELi for i=1l,...,n denotes a generalized element.

In general, a generalized element may involve right and left

replicators and will be represented by
RRs M LRs

where RRs and LRs denote right and left replicators respectively and M
denotes either a starelement or a sequence replicator or a distributor.
A generalized element may be just a sequence replicator denoted by
SREPL, or a distributor denoted by DISTR, or a starelement represented

by

- 172 -

EL* or EL

where EL denotes an element which could be either an operation or an

indexed operation denoted by OP or a agmacro Ssequence 1ia parentheses

represented by

(MSEQ)

The complete expansion of a wmacro program MPROG is given by
expand(MPROG) where the function "expand" is defined as follows:

expand(e)=cases e:

l. program MPBODY endprogram —-> program expand(MPBODY) endprogram
2. CPQBRI ... CPQBRn —> expand(CPQBR1) ... expand(CPQBRna)
3. COLs PQBR —> expand(PQBR)

4. #i:1,n,1{PQBRs] - expand(replexpo(#izl,n,l[PQBRs]))
5. PQBRl ... PQBRn —-> expand(PQBR1) ... expand(PQBRn)
6. path MSEQ end —> path expand(MSEQ) end

7. process MSEQ end —> Pprocess expand(MSEQ) end

8. MORILl;...;MORn — expand(MOR1);...;expand(MORn)

9. GELl,...,GELn — expand(GELl),...,expand(GELn)

10. RRs M LRs - expand(gelexp?(RRs M LRs))

11. SREPL -> expand(replexp?(SREPL))

12. DISTR —> expand(distrexp?(DISTR))

13. EL* —> expand(EL)*

14, OpP —> OP + possible expression evaluations
15. (MSEQ) - (expand(MSEQ))

We may now prove the theorem for the expansion of macro programs to

basic programs.

THEOREM 3.11:
The expansion of a macro program MPROG produced by the syntax rules

of section 3.2 given by

expand (MPROG)

- 173 -

is a well-formed basic COSY program.

Proof:
The expansion certainly stops.

We shall prove the theorem for each of the fifteen cases of syntactic

entities on which function "expand" applies.

case 1

Applying expand to MPROG we obtain

expand(program MPBODY endprogram)=program expand(MPBODY) endprogram

which 1is a basic program since expand(MPBODY) is a basic programbody as

may be shown by case 2.
case 2
Applying expand to MPBODY we obtain

expand(CPQBRl ... CPQBRn)= expand(CPQBRl) ... expand(CPQBRn)
The r.h.s. is a basic programbody since each of

expand(CPQBRi) for i=l,...,n
is a basic programbody as may be shown by case 3.
case 3

Applying expand to a single path or process or bodyreplicator

by a collectivisor we obtain

expand (COLs PQBR)=expand(PQBR)

which is a basic programbody as may be shown by cases 4, 6, 7.

headed

case 4

Applying expand to a bodyreplicator we obtain
expand(#izl,n,l[PQBRs])=expand(replexp0(#i:l,n,I[PQBRS]))
Since

replexpo(#i:l,n,l[PQBRs])

yields a collection of paths, processes and bodyreplicators in which the

index "i" has been replaced by values in the vrange of "i",

expansion may be shown by case 5 to be a basic programbody.

case 5

Applying expand to a collection of paths, processes

bodyreplicators we obtain

expand(PQBRl ... PQBRn)=expand(PQBRl) ... expand(PQBRn)

which is a basic programbody since each of

expand(PQBRi) for i=l,...,n

is a basic programbody as may be shown by cases 4, 6, 7.

case 6

Applying expand to a macro path we obtain
expand(path MSEQ end)=path expand (MSEQ) end
which is a basic path and a basic programbody if

expand (MSEQ)

is a basic sequence which may be shown by case 8.

its

and

- 175 -
case l

Similarly, the expansion of a macro process is a basic process and a

basic programbody.

case §

Applying expand to a macro sequence we obtain
expand(MOR1;...;MORn)=expand(MOR1);...;expand(MORn)
Each of
expand(MORi) for i=l,...,n
is a basic sequence as may be shown by case 9.

Therefore, the r.h.s. is a basic sequence since if sl and s2 are
basic sequences '"'sl;s2" is a basic sequence also. This may be shown by
similar arguments to that of lemma 3.
case 9

Applying expand to a macro orelement we obtain

expand(GELl,...,GELn)=expand(GELl),...,expand(GELn)
Each of
expand(GELi) for i=l,...,n

is a basic sequence as may be shown by each of the following cases.

Therefore, the r.h.s. is a basic sequence also since if sl and s2 are

basic sequences "sl,s2" is a basic sequence also. Again this may be

shown by similar arguments to those of lemma 3.

- 176 -

case ig

Applying expand to a generalized element which involves left aand/or

right replicators we obtain
expand(RRs M LRs)=expand(gelexp0(RRs M LRs))
As we have shown in theorem 3.5 the expansion of a generalized element
gelexpO(RRs M LRs)
is a macro sequence in which all the indices of the 1left and right
replicators have been replaced by integer values in their range. The
expansion of this macro sequence may be shown to be a basic sequence by

case 8.

case 11

Applying expand to a sequence replicator we obtain
expand (SREPL)=expand(replexp(SREPL))

By theorems 3.3 and 3.4 the expansion of a sequence replicator given by
replexpO(SREPL)

yields a wmacro sequence in which the index ""i" has been replaced by

integer values in its range. By case 8, its expansion may be shown to

be a basic sequence.

case 12
Applying expand to a distributor we obtain
expand (DISTR)=expand(distrexp(DISTR))

By the corollary of theorem 3.9 the expansion of a distributor given by

- 177 -
distrexpY(DISTR)

yields a macro sequence in which all the distributable dimensions of the
distributor have been replaced by integer values. The expansion of this

macro sequence may be shown to be a basic sequence by case 8.

case lé

Applying expand to a starelement we obtain
expand(EL*)=expand(EL)*

which 1is a basic element since expand(EL) is a basic element as may be

shown by cases 14, 15.
case 14

Applying expand to a simple or a subscripted operation we obtain

expand(OP)=0P + possible expression evaluations
which is a basic operation.
case 15

Applying expand to an element of the form (MSEQ) we obtain

expand ((MSEQ))=(expand (MSEQ))
which is a basic element since

expand (MSEQ)

is a basic sequence as may be shown by case 8.

As we have considered every possible case of syatactic entitles of

. " .
macro macro programs to which the function "expand" applies, we may

conclude that the theorem is proven.vvv

- 178 -

In this section 3.3 we formally defined the expansion of replicators
b4

distributors and of complete macro programs. We prove that

concatenators, imbricators and distributors generate macro sequences

upon their expansion. We also proved that the expansion of complete
macro programs ylelds well-formed basic programs. We also proved a
number of theorems for the replacement of macro elements ian macro

sequences by other macro elements.

3.4 EVALUATION OF THE NEW NOTATION FOR MACRO COSY

In the previous two sections 3.2 and 3.3 we introduced a new macro
notation and grammar, we defined and characterized the expansion of
replicators, distributors and macro programs. In this section we
evaluate this new notation using as criteria the four properties we set
at the begining of section 3.2 which a 'good" macro notation should

possess.

l. As we have proved in section 3.3.3 programs produced by the

grammar of section 3.2 always generate well-formed basic
programs when expanded. This grammar gives context-free rules and no
meta-restriction rules are required to constrain the regularities of
replicators. The few meta-restrictions imposed are of a
context-sensitive nature and cannot be expressed by context-free rules.
These include the restrictions that collective names should be declared
before any of its corresponding subscripted operations are used in paths
or processes; that the number of dimensions of indexed operations
corresponding to a collective name should have the same number of
dimensions as specified in the collectivisors, etc. The production of
macro programs which always yield well-formed basic programs when
expanded was considered to be a very important property of a macro

notation.

However, this property on its own does not justify a good macro
notation as the macro features it involves should generate a large class

of strings in order to represent basic COSY strings concisely.

- 179 -

2. We shall examine in detail the generality of each feature of the
notation, the generality of the collectivisor, the

bodyreplicator, the sequence replicators, the left and right replicators

and the distributor.

a. the collectivisor

Collectivisors do not generate any basic strings as they are
eliminated upon the expansion of macro programs, but declare permissible
sets of subscripted operations. They are important though, since the
expansion of distributors depends on these declarations; distributors do
not explicitly generate indices but generate the indices defined by the

collectivisors.
They are also usefull as a check for the indices used in the rest of
programs.

Collectivisors may declare rectangular arrays of any number of
dimensions either specifying the lower bound in each of these explicitly
or assuming it to have the value one implicitly. By wusing replicators
generating permissible sets of subscripted operations other shapes of
arrays may be declared. Although, more complex shapes could be
permitted to be declared we did not allow the wmaximum degree of
generality possible and we imposed the restrictions (Crest3) specifying
that there should be as many dimensions in an indexed operation in
collectivisors as the number of replicators within it is nested and that
indices in each dimension should depend directly on one distinct
replicator index. These restrictions were imposed to guarantee the
independence of the indices and to avoid duplication of declaration of
subscripted operations. A third and more subtle reason for these
restrictions was to avoid the declaration of collective names, one
dimension of which either depends directly on two or more indices, or
depends on one index which itself depends on another index on which none
of the 1indices in other dimensions depend directly. These
collectivisors would overcomplicate the expansion of distributors which
would no longer be replaced by a single concatenator but by a number of

them nested within each other. Consider for example the declarations

- 180 -

C array
#1:0,9,l[#j:O,9,l[A(100*i+j)]]
#1:0,9,1[#k:lOO*i,lOO*i+9,l[B(k)]]

endarray

which are not permitted by our restrictions. These declare two

one-dimensional arrays A and B the indices of which take the values:
0,1,...,9, 100,101,...,109, cen » 900,901,...,909

The only difference in the declarations of A and B is that the indices
of A depend on i and j directly and the indices of B directly on k and

indirectly on i. With the above declarations of A and B the distributor
D ;[A,B]

would no longer be replaced by a single concatenator but by two nested

ones as follows:

#1:0,9,1[#3:0,9,1[A(100%i+j),B(100%i+j);@] ;@) or
#1:0,9,1[#k:100*i,100%i+9, 1[A(k),B(k);@];@Q]

Although, this kind of declarations increase the class of strings

distributors could generate we have excluded them for they would

overcomplicate the expansion rules for distributors. The above arrays A

and B could be modified to the two dimensional arrays Al and Bl declared

by:
NCl7 array #i:0,9,1[#k:100%i,100%i+9,1[Al(i,k) Bl(i,k)]] endarray

The above collectivisor is valid in the new notation, as the number of

dimensions of Al and Bl are the same as the number of replicators

defining them and each dimension depends on a single replicator index

directly. The operations in A and B correspond to operations in Al and

Bl as follows:

Al(i,k) and Bl(i,k) correspond to A(k) and B(k) respectively,
for i,k as generated by the replicators in NC17

- 181 -

Under the restrictions Crest3 on collectivisors, the expansion of

distributors 1is reasonably simple which compensates for the loss of

generality of the strings distributors may generate, Under the above
correspondence of operations of A and B with operations of Al and B! the

string the distributor
D ;{A,B]

generates, when A and B have been declared by C, may be generated by by
the distributor NDI19

ND19 ;[;[Al,B1]]

where Al and Bl are declared by NCl7. The distributor ND19 is permitted

in the new macro notation.

Collectivisors contribute to the notation the option of simplifying

macro sequences by using distributors rather than the more lengthy
replicators. Collectivisors 1in a program without distributors are not
essential and they may only serve as a means of testing that replicators

do not generate subscripted operations not admitted by collectivisors.

b. the bodyreplicator

Bodyreplicators may generate paths and processes and other
bodyreplicators. Unlike sequence replicators they are only of one form,
generating consecutive regularities. In that respect they are analogous
to concatenators and not to imbricators. We did not allow two types of
bodyreplicators 'bodyconcatenators" and 'bodyimbricators'" for two
reasons. The first is a pragmatic one; we have never needed or used
bodyimbricators although some of the grammars permitted them [TL77,
LT76]. The second is that the paths and/or processes a "bodyimbricator"
generates may be generated by a single "bodyconcatenator', as we have
for

indicated in section 3.1.3 where discussing the syntax

bodyreplicators of [LT76].

- 1382 -

c. the sequence replicators

They may generate regularities which are macro sequences. We have
distinguished two kinds of these replicators, concatenators and
imbricators. In the expansion of concatenators all regularities follow
each other and these only differ 1in the subscripts of the indexed
operations they involve. 1In the expansion of imbricators regularities
wrap or imbricate each other. All but one of these regularities differ
in the 1integer expressions they involve. The innermost regularity
however differs additionally from the rest in that instead of
imbricating another regularity it dimbricates a string, namely that
between the two "@"s in an imbricator, dropping the separators before
and after the two "@"s. This imbricator is a powerful extension we have
introduced and allows generation of sequences which cannot be generated

by a single replicator produced by any other grammar.

We have excluded replicators which do not generate matching pairs of
parentheses. These are the range, context and neighbourhood dependent
replicators. Of the three only the third has been used in macro
programs but for a very specific purpose: to specify the more general
imbrication of regularities which our imbricators do permit. For
example the stack with a test for "full" had to be specified by using

two wide concatenators, which are neighbourhood dependent, as follows:
P74 path #i:1,n,1[(UP(i);@) ; full* ; #i:n,1,-1[{DOWN(i))*;Q@] end

The string obtained from the expansion of the two neighbourhood

dependent replicators may be generated by one of the new imbricators:

NP23 path #i:1,n,1[(UP(i);@;full*;3;DOWN(i))*] end

Since no other use was made of these replicators we have not obtained

formal results on the 1limitation of our notation due to their

elimination. We however outline how macro sequences involving these

replicators may be transformed into macro sequences valid 1in our
notation. Although, these replicators do not generate sequences their
expansion together with their context should form sequences, parts of

which may be generated by sequence replicators.

- 183 -

Simple range dependent replicators where "(" or ™" is the immediate
left and respectively right context of them may be generated together

with their context by a single imbricator. For example, the string
(((#1:1,3,1[A(1);D(4)),€]

after the expansion of the replicator becomes the sequence
((CA(1);D(1)),A(2);D(2)),A(3);D(3))

which may be generated by the imbricator
NR16 #i:3,1,-1[(@@,A(i);D(i))]

The context of the range dependent replicators could be more involved

in that "(" and ")" are not their immediate context, as for example:
(a;(b;(c;#i:1,3,1[D(1)),@]
which after the expansion of the replicator becomes

(a;(b;(c;D(1)),D(2)),D(3))

The above sequence cannot be generated by any of our replicators since
the regularities differ in the simple operation names and not just in

the subscripts of indexed operations. We may however use a collective

name, say A, corresponding to the subscripted operations A(Ll), A(2),

A(3) and rename the simple operations a, b, ¢ to A(3), A(2) and A(1)

respectively. Thus the above string becomes
(A(3);(A(2);(A(1);D(1)),D(2)),D(3))

which may be generated by the imbricator
NRL7 #i:3,1,-1[(A(1);@;@,D(i))]

Not all well-formed basic strings parts of which are generated by range

dependent operations may be generated by sequence replicators.

Consider
for example the string
(a;(b,(c;#1:1,3,1[D(1i));@]
in which the connectives after a and ¢ are ";" but the connective after

b is "," Here the mapping of operations to indexed operations 1is not
sufficient to overcome the problem of constructing a sequence replicator

expanding to the string above.

A string s part of which is generated by a range dependent replicator
which is a wide concatenator may be generated by an imbricator provided
that the head of the string s not generated by the range dependent
replicator may be generated byarange dependent replicator. Then if the
ranges of the indices of the two wide concatenators are the same the
string s may be generated by a single imbricator. If the substring of s
not generated by the range dependent replicator cannot be generated by a
wide concatenator then s may not be generated by a sequence replicator.
We have to point out that the syntax of such replicators has to be
expressed by context-sensitive rules if these are to form well-formed
basic strings after expansion. Only by context-sensitive rules we can
specify that the number of opening or «closing parentheses of their
context must be equal to the number of regularities the replicator is to

generate, determined by the values of "in", "fi" and "inc" of the index

specification part of the replicator.

If the range replicator in s is not a wide concatenator but a wide

imbricator then s may not 1in general be generated by a single

imbricator. It may however be abbreviated by generating parts of it by

more than one sequence replicator. For this to be possible though, it

is still necessary for the part of s not generated by the range
dependent replicator to be generated by a wide concatenator. We shall

discuss this case when considering neighbourhood dependent replicators

below, since the string s may be generated by two replicators which are

of this form.

We may always though, generate by sequence replicators strings parts

of which have been generated by context dependeant replicators provided

- 185 -

they always generate more than one regularity. We construct sequence
replicators out of them by rearranging parts of the regularities they
generate so that parentheses in each regularity match. These sequence
replicators cannot generate the complete strings which context dependent

replicators generate but only parts of them. Consider for example the

following string
(#i:1,n,1{A(1)),(B(1);@))

involving a context dependent replicator which as all context dependent

replicators generates the same number of opening and closing
parentheses, though not all matching. Since wupon expansion the 1i’th
opening parenthesis matches with the (i+l)“th closing parenthesis for
i=1,2,++.,(n-1), we may modify the regularity to form the sequence

replicator:
NR18 #i:1,n-1,1[(B(i);A(i+1)),@]

The strings "A(1));" and ",(B(n)" which are heading and respectively
g

trailing the expansion of the context dependent replicator, and the
opening and closing parentheses around the context depeandent replicator
are not generated by the above concatenator and have to be written

explicitly. Thus the string
(AC1));#isl,n=1,1[(B(1);A(i+1)),@],(B(n))

abbreviates the expansion of the expression involving the context
replicator as long as n>l and it is valid in our notation. If n takes
the value 1 the range of the index of the concatenator becomes empty
which is not permitted. If n could take the value 1 we may replace the
concatenator together with the ';" before or the " " oafter it by a left

or respectively right replicator:

(AC1))#i:1,n~1,1[;1(B(1);A(i+1)),@],(B(n))
(A(1));#i:1,n=1,1[(B(1i);A(i+1)),@1,]1(B(n))

If the context dependent replicator is of the form of imbricators we

first transform it into wide concatenators and we then apply, from left

- 186 -

to right, the transformations we outlined above. Consider for example

the context dependent imbricator
(#i:1,n,1[A(1));(B(1),8@);C(1),(D(1)])

Let us transform it first into wide concatenators
(#i:1,n, 1[A(1); (B(1),8@] #i:n,1,-1[);C(1),(D(i)])

Then re—arrange the regularity of the leftmost replicator, transforming

it into a concatenator
(ACL));#1:1,n=1,1[(B(i),A(i+1));@];(B(n)#i:n,1,-1[);C(i),(D(i)])
Do the same for the other wide concatenator

(A(1))
;#i:1,0-1,1[(B(i),A(i+1));@]

; (B(n))
;C(n),#1i:n-1,1,-1[(D(1));C(i+1),@],(D(1))

The above string is valid in our notation. We may simplify it by
eliminating a number of redundant parentheses which could not be easily

detected in the original expression involving the two neighbourhood

dependent replicators:

A(L)
s#isl,n-1,1[B(i),A(i+1);@]

; B(n)
;C(n),#i:n-1,1,-1[D(i);C(i+1),R@],(D(1))

We may also replace the two concatenators and the string between them by
a non-genuine imbricator thus simplifying the above expression, even

further:

A(1);#i:1,n=1,1[B(i),A(i+1);@;B(n);C(n),@,D(i);C(i+1)],D(1)

- 187 -

Finally, basic sequences generated by groups of neighbourhood
dependent replicators may be generated by sequence replicators provided

they generate more than one regularity similarly to the context

dependent replicators. Let us abbreviate the expansion of
#1i:1,n, 1[(A(1);@Q),(B(1)] 5 #i:1,n,1[C(1));(@@;D(1i))]

by sequence replicators. We first split the two replicators into wide

concatenators as follows:

#1:1,0, 1 [(ACL)3@)#in,1,~1[),(B(i)];
#i:l,n,l[C(i));(]#i:n,l,-l[D(i));@]

Then re—arrange parts of regularities of these replicators balancing the

parentheses

#i:l,n-1,1[(A(i);@]:
(A(n));#i:n,2,-1[(B(1)),@],(B(1);C(1));#1:2,n,1[(C(1));@];(D(n));
#i:n-1,1,-1[D(i));@]

We may now eliminate some redundant parentheses in the above expression,

thus obtaining:

#i:l,n-1,1[(AC1);@);
A(n);#i:n,2,-1[B(1),@],(B(1);C(1));#i:2,n,1[C(i);@];D(n);
#i:n-1,1,-1[D(i));@]

The above expression contains two concatenators and two neighbourhood

dependent replicators which may be replaced by one Iimbricator, as

follows:

- 188 -

NR19 #i:l,n-1,1

[C A(L)
.@
;A(n)
;#i:n,2,-1[B(1),]1,(B(1);C(1))
;#i:2,n,1[C(1);]
;D(n)
; @
;D(1)

which may be abbreviated by combining the two concatenators between the

two "@"s into one non-genuine imbricator

#i:l,n-1,1
[C(A(1);@;A(n);#3:n,2,-1{B(1),@,(B(1);C(L));@;C(1)]1;D(n);@;D(i))]

We may easily verify by expansion that the above imbricator generates

the same string as the two original neighbourhood dependent replicators.
Although the above string 1is lenghtier than that involving the
neighbourhood dependent replicators its advantages in understanding it
compensates for this loss of conciseness. This is true of all three of

the types of replicators we eliminated.
d. left and right replicators

These may generate empty expansions or sequences followed or
preceeded by a separator. Previous grammars permit replicators which
may generate a subclass of this type of strings. Left and right
replicators do not only generate more strings of this type but by
specifying their context they guarantee the well-formedness of the

expanded program.
e. distributors

Their contribution 1in the notation is not in the generality of the

strings they generate since the same strings may be generated by

- 189 -

concatenators but in the conciseness in represeating these strings. We
have extended the type of regularities they may generate. These
regularities may include replicators also, thus making our two macro
features symmetrical as one may be nested within each other. We have
also relaxed the compatibility criterion for distributable dimensions.
In previous notations it was required that these should have the same

set of subscripts in these dimensions. We only require that the number

of these subscripts are the same.

We have further extended the class of sequences which the

distributors may generate by the introduction of two features: the

subrange and the dimension selection.

All these extensions greatly improve the conciseness of macro
programs since more strings could be generated by distributors in the

new notation than in any other macro notation used before.

3. The readability of macro programs in the new notation 1is also

greatly improved. This was mainly achieved by the following:

a. By changing the index specification part of a replicator from
"|in,fi,inc" to "#i:in,fi,inc" and moving it in fromt of "[]" of
the replicator which now just encloses the regularity to be

replicated.

b. By changing "()" around the regularity of the distributor to "[]".
By that we have distinguished symbols not used in the basic notation

but only in the macro notation. Distributors are now easily

identified in a macro sequence.

c. By eliminating range, context and neighbourhood dependent
replicators which had to be understood in conjuction with other

parts of a macro sequence.

d. By permitting replicators in sequences to generate regularities

which are sequences separated by semicolons or commas, which means

that their expansion consists of familiar substrings.

- 190 -

We have to point out that this 1is not the best notation for
readability of macro programs. Its weakness is that in general, the
head and/or tail of their expansion may bind with strings before or
after rather than with the rest of the expansion. In other words their
expansion is not syntactically strong, in general. Also each regularity

may not be syntactically strong in the expansion.

In chapter 4 we give two grammars which restrict the strings
replicators may generate. The first produces replicators and
distributors generating syntactically strong expansions and the second
produces replicators and distributors which additionally generate
syntactically strong regularities. These two grammars greatly {improve
the readability of wmacro programs, particularly macro sequences as we
shall demonstrate in chapter 4. Of course programs produced by the

grammars of chapter 4 are not as concise in general as macro programs

produced by the notation of section 3.2.

4, The syntax of the notation of section 3.2 is uniform with that

of the basic notation. Basic program bodies have been extended
to macro program bodies by permitting collectivisors and
bodyreplicators. Basic sequences in paths and processes have been
extended to macro sequences by permitting indexed operations and

generalized elements which may involve replicators and distributors.

The production rules for macro sequences look very similar in
structure as the syntax rules of basic sequences. Also the rules
producing the strings inside "[]" of sequence replicators and

distributors have been expressed in the style of a basic sequence, as

"extended" regular expressions.

The notation introduced in section 3.2 could be extended by other

features and its existing features could be generalized. We shall

discuss one new feature, distributors generating paths and/or processes
and two generalizations of existing features, the index specification of
replicators not necessarily generating integers forming arithmetic
progressions and a more flexible selection of distributable dimensions

of distributors.

- 191 -

As there are replicators, the bodyreplicators, generating paths

and/or processes we may have "bodydistributors" generating some paths

and/or processes more concisely than replicators. There is no problem
in principle as bodyreplicators generate consecutive regularities only.
The only problem is that there is no connective between paths and
processes and therefore there 1is no connectiQe to be distributed
separating the regularities they would generate, We may not use a
connective at all in front of bodydistributors. With this convention

the n free frame buffer may be specified by
LEEEE DEPOSIT; REMOVE Eﬂi]

where DEPOSIT and REMOVE have been defined by NC18
NC18 array DEPOSIT REMOVE(n) endarray

When a subrange is incorporated we may write
#1,n,2[path DEPOSIT;REMOVE end]

to specify the odd frames of the n-free-frame buffer.

This form however looks very similar to that of replicators and could
effect the readability of the programs. For this reason we were
reluctant to include it in the notation but we only mentioned it here as

a possible option, for further extensions of the macro notation.

As we have seen the index specification part of replicators generates
finite arithmetic progressions of integers in ascending or descending
order. This kind of index generation proves to be very powerful in
generating indices of subscripted operations. Nevertheless, the index
specification of replicators could be extended to generate finite
collections of integers not necessarily forming arithmetic progressions.

The predicate or test replicator [LS80] (cf. 3.1.9) are examples of
convenient and

Another

replicators using such generators. The predicates is a

power ful tool for generating finite collections of integers.

; ; ions i be
way to generate indices is to use generating functions which could

i i . index
specified in some conventional programming language The

- 192 -~

specification part as it now stands would be specified by a
for-statement. As not enough experimentation has been done to satisfy
us for the best way to specify this general generation of index
replicator range and as both of the above suggested methods introduce

great complexity we did not incorporate them in the notation.

The feature for the selection of distributable dimensions has a
limitation, already indicated by condition 5 of theorem 3.10 giving the
conditions for the replacement of sequence replicators by distributors.
This condition suggests that it is not possible to generate the string

generated by the replicators:

NR20 #i:1,n,1{(#j:1,m,1{ACj,1);B(i,]3);@]),Q]
where A and B are defined by

NC19 array A(m,n) B(n,m) endarray

by two nested distributors. We may either replace the inner replicator

by a distributor as:

ND20 #i:1,n,1[(;[A(,1);B(i,)]),@]
or the outer one as

ND21 ,[(#j:1,m,1[A(F,);B(,3);@1)]

The replicators in the above two expressions may not be replaced by

distributors in a valid way. The following expression

» [G[ABY)]

involving two nested distributors is not wvalid since the outer
distributor applies to the second dimensions of A and B which are not
compatible and futhermore is not what the replicators specify.

I1f however, we allow each dimension to specify the distributor to Dbe

applied to it then distributors may replace both the above replicators.

- 193 -

Therefore instead of specifying distributable dimensions by blank
fields, we must define them by an integer, specifying the level of the
distributor applied to it, which has to be distinguished from

subscripts, by, say pefixing it by "#", With this convention we may

replace the above nested replicators by
LG A2, #1) 5B(#1,#2) 1))

This feature lenghtens distributors substantially and as it is only

useful in special cases we did not include it in the new notation.

In this chapter we reviewed previous macro notations and grammars, we
introduced a new macro notation and grammar and proved several syntactic
properties which macro elements and complete macro programs possess. In
the next chapter we address the problem of the semantics of macro

programs.

- 194 -

4 THE SEMANTICS OF MACRO COSY PROGRAMS

In the previous chapter we obtained fairly complete results relative
to the syntax and expansion of macro programs, but no reference at all
was made to their semantics. The theorem 3.11 in section 3,3.3, proving
the expansion of macro programs to basic programs allows us to define
their semantics in terms of the vector firing sequences of the basic

programs obtained by their expansion. The semantics of a macro program

MPROG which does not include any macro processes will therefore be given

in terms of
VFS(expand (MPROG))
and that of a macro program involving processes in terms of

VFS(Path(expand(MPROG))) or
MVFS(expand (MPROG))

where the conctruction of VFS and MVFS and the transformation Path are

defined in chapter 2, and the function "expand" in section 3.3.3.

In this chapter we examine ways by which the vector firing sequences
of basic programs generated from macro programs may be obtained directly
from the macro programs themselves. We shall restrict our discussion to
programs involving just macro paths and bodyreplicators generating macro

paths.

We may recall from chapter 2 that to obtain the vector firing

sequences of a basic path-program PROG we need two sets:

l. the set of all vectors each component of which is a firing sequence

of a path in PROG, and

2. the set of vector operations 1in the program PROG, the set

Vops(PROG).

- 195 -

To construct therefore, the vector firing sequences of the expaasion

of a macro program from the macro program itself, we need to construct

both sets mentioned in 1 and 2 above directly from it. To obtain the

set in 1, the cycle set of each basic path generated from a macro
program should be constructed from the macro program itself. These
cycle sets should be totally ordered and their ordering should be the
same as the ordering of their corresponding basic paths in the expanded

program, and will be called ordered cycle sets. If the cycle sets

obtained from the macro program are the same as the cycle sets obtained
from the basic paths in the basic program generated by the
expansion of the macro program but their ordering is different, the
vector firing sequences produced by these two collections of sets will
in general, be different. This order of cycle sets was implicit in the
construction of the vector firing sequences of a basic program in

section 2.3, being the order of appearance of their corresponding paths

in the basic program.

The second set we have to obtain direcly from macro programs, the set
of vector operations of corresponding expanded programs Vops(PROG) may
be obtained from the ordered cycle sets as it was shown in section 2.3.
Assuming that the ordered cycle sets may be obtained directly from macro
programs, then so may the set of vector operations Vops, and

consequently the vector firing sequences as well.

In the rest of this chapter we concentrate on how we may find the
ordered cycle sets of expanded programs directly from the macro programs
themselves. We follow two approaches for constructing these sets.

According to the first, they are constructed by finding the cycle sets

of expanded parts of macro programs which are then juxtaposed, when

corresponding to cycle sets of paths, or combined by the concatenation

operation, when corresponding to cycle sets of orelements or by the

union operation, when corresponding to cycle sets of starelements.

According to the second approach, macro cycle objects are constructed

from macro programs, representing concisely and generating upon

expansion ordered cycle sets, in the same way, macro programs represent

and generate basic programs.

- 196 -

In section 4.1 we follow the first approach, giving rules for
o

constructing the ordered cycle sets of macro programs produced by the

grammar of section 3.2. We also give rules for obtaining the cycle sets

of macro programs produced by a restrictive grammar by which all macro

elements generate syntactically strong strings.

In section 4.2 we follow the second approach. This approach however
may only be applied to macro programs produced by a more restrictive
grammar than that of section 4.1.2 producing macro elements generating
regularities which are syntactically strong strings. We first develop
this grammar, we give expansion rules for programs produced by it and we
outline syntactic properties which macro elements and programs produced
by this grammar possess. Then we present a notation for representing

ordered cycle sets concisely, we define rules for obtaining objects in

this notation from macro programs and we give expansion rules by which

these objects generate ordered cycle sets which are shown to be the same

as those obtained from expanded macro programs.

4.1 CONSTRUCTING ORDERED CYCLE SETS UPON EXPANSION OF MACRO PROGRAMS

We split the construction of ordered cycle sets into two parts. In
the first part ordered expressions for obtaining cycle sets of
individual macro paths are derived from macro programs upon expansion of
their bodyreplicators. As the expansion of a single macro path is a
single basic path, we obtain as many such expressions as basic paths in
the expanded program. Furthermore, the order of these expressions will
be the same as the order of corresponding basic paths in the basic

program obtained by the the expansion of macro programs.

In the second part of the construction of the ordered cycle sets of a
basic program PROG generated by the expansion of a macro program MPROG,
we obtain cycle sets of single basic paths of PROG directly from
corresponding macro paths of MPROG, which after the first part 1is
applied they do not involve any integer expressions involving
bodyreplicator indices. We shall call these macro paths the pure macro

paths of MPROG.

- 197 -

We construct the ordered cycle sets of macro programs involving only
paths and bodyreplicators generating paths, produced by the grammar of
section 3.2, and by a restrictive grammar which will be developed in
section 4.1.2. The two grammars differ in the way the non-terminal
"msequence" is defined and not in any other aspects. The first part of
the construction of ordered cycle sets of programs will therefore be
common to programs produced by either grammar. The second part in which
cycle sets of individual paths produced by the two grammars are

obtained, are treated separately in sectiomns 4.1.1 and 4.1.2.

Let us now define the function "exp~Cycls" by which ordered
expressions for cycle sets of pure macro paths will be obtained from
macro programs. The syntactic variables used in this definition denote
the same syntactic entities of macro programs as in the definition of
"expand" in section 3.3.3. As no processes are involved in these
programs though, we will drop the "Q" from the syntactic variables
"CPQBRi" for i=1,...,n, "PQBR", "PQBRs", "PQBRi" for i=l,...,n, which
thus become "CPBRi" for i=1l,...,n, "PBR", "PBRs", "PBRi" for i=l,...,n

respectively. In addition '"MP" will denote a single pure macro path.
exp-Cycls(e)=cases e:

1. program MPBODY endprogram—» cycles exp-Cycls(MPBODY) endcycles

2. CPBRl...CPBRn -> exp-Cycls(CPBR1)&...&exp-Cycls(CPBRn)
3. COLs PBR -> exp-Cycls(PBR)
4, #j:1,m,1[PBRs] -> exp—Cycls(replexpO(#j:l,m,l[PBRs]))

5. PBRl...PBRn -> exp—Cycls(PBRl)&...&exp—Cycls(PBRn)
6. MP -> if produced by grammar of section 3.2

then exp-Cycl(MP)

else

if produced by grammar of section 4.1.1

then exp-Cyc2(MP)

In the above definition the two functions introduced in case 6

"exp-Cycl" and "exp-Cyc2", will be defined in sections 4.1.1 and 4.1.2

they yield the cycle sets of individual pure macro paths, originating
from macro programs produced respectively by the grammars of sections

3.2 and 4.1.2. The symbol "&" on the right hand side of cases 2, 4, 5

- 198 -
is used to separate cycle sets.

Let us also define the function "expandl" by which macro programs may
be expanded. We have modified slightly the first six cases of the
definition of function "expand" of section 3.3.3, adopting the above
changes 1in syntactic variables; the expansion of macro paths is defined
by two distinct functions depending on whether these are produced by the
syntax rules of section 3.2 or that of 4.1.2. By applying the function
"expandl" we therefore obtain expressions for the expansion of
individual pure macro paths. The function '"expandl'" is defined as

follows:
expandl(e)=cases e:

1. program MPBODY endprogram—>» program expandl(}MPBODY) endprogram

2. CPBRl...CPBRn -> expandl(CPBR1)...expandl(CPBRn)

3. COLs PBR -> expandl(PBR)

4. #j:1,m,1[PBRs] -> expandl(replexpY(#j:1,m,1[PBRs]))

5. PBRl...PBRn —> expandl(PBRl)...expandl(PBRn)

6. MP —> if produced by grammar of section 3.2

then path—expl(MP)
else
if produced by grammar of section 4.1.l

then path—exp2(MP)

where path-expl(MP) denotes the expansion of a pure macro path MP of a
macro program produced by the grammar in section 3.2 and path-exp2(MP)
denotes the expansion of a pure macro path MP of a macro program

produced by the grammar in section 4.1.2.

The similarity of the definitions of the functions "exp-Cycls" and

"expandl"™, shows that there exists an exact correspondence between

construction of the cycle sets of macro paths and construction of the

expansion of macro paths. Let us define the function "Cycles'", by which

the ordered cycle sets of basic programs are obtained:

- 199 -

Cycles(e)=cases e:

1. program BPBODY endprogram —> cycles Cycles(BPBODY) endcycles
2., Pl...Pn —> Cycles(P1l)&...&Cycles(Pn)
3. P - Cyc(P)

where BPBODY denotes a basic path program body which is represented by
Pl...Pn

where Pi for i=1,2,...,n denote basic paths and P denotes a single basic
path. The function "Cyc" is defined in section 2.1. We may easily show

that for a macro program MPROG, the relation
Cycles(expand 1 (MPROG)=exp-Cycls(MPROG)

is true, provided that, if MPROG is produced by the grammar of 3.2 then
Cyc{path-expl1(MP))=exp-Cycl(MP)

for any pure macro path MP of MPROG and that, if MPROG is produced by

the grammar of 4.1.2 then
Cyc(path-exp2(MP))=exp~Cyc2(MP)
for any pure macro path MP of MPROG.

The wvalidity of the above two equalities will be proven formally in
the next two subsections 4.1.1 and 4.1.2 respectively, where we define
the functions "exp-Cycl"™ and ‘'exp-Cyc2'" by which the cycle set of a
single basic path may be obtained directly from its wunexpanded pure
macro path, and where we also define the functions 'path—expl" and

"path-exp2" by which pure macro paths are expanded.

- 200 -

bolol Finding the Cycle Sets of pure macro Paths

In this subsection we define the function "exp-Cycl" by which we
obtain the cycle sets of pure macro paths produced by the grammar of

section 3.2.

The function "exp-Cycl" expands parts of a macro sequence, constructs
the cycle sets of these parts and performs concatenation or union
operations on them until the cycle set of the whole path is constructed.
What the smallest such parts of macro sequences should be is governed by
the syntax of the macro path. The reason for considering some smallest
parts is that 1t only makes sense to find the cycle set of a
syntactically strong string or of macro elements generating such
strings. Had we allowed range, context and neighbourhood dependent
replicators 1in macro sequences we would in general, have to expand the
whole of a macro sequence, to construct the cycle set of a macro path
which involved such sequences. Consider for example the paths Pl, P2,
P3 the macro sequences of which involve range, context and neighbourhood

dependent replicators, respectively:

Pl path ((b,#i:1,2,1[{A(i));c,@] end
P2 path (c;#i:1,2,1[A(1));(B(1);@]) end
P3 path #i:1,3,1{(UP(i);@];#4i:3,1,~1[DOWN(i))*;@] end

which expand respectively to P4, P5 and P6:

P4 path ((b,A(1));c,A(2));c end
P5 path c;(A(1)),(B(1);A(2)),(B(2)) end
P6 path(UP(L);(UP(2);(UP(3);DOWN(3))*;DOWN(2))*;DOWN(1))* end

We cannot find the cycle sets of any parts of the macro sequences of P1,
P2, P3, since the replicators they involve do not generate matching
o

opening and closing parentheses and the precedence of connectives 7,

and ";" in their coutext may be overuled by the generation of
parentheses upon the expansion of the range, context and neighbourhood
dependent replicators, thus making it impossible to detect the
syntactically strong strings without expanding completely the macro

sequences they are in.

- 201 -

The macro paths produced by the grammar of section 3.2 are such that

we may break up their macro sequences into their macro orelements the

cycle sets of which may be constructed and which may then be

concatenated to give the cycle set of the complete macro path. The

string generated by the expansion of the macro elements produced by this

grammar is always syntactically strong in the context of any of "path",

1, n(u

" on their left and any of ")", ";", "end" on their right. The

reason is that the precedence of ",”" over ";" cannot be overuled by the
expansion of these macro elements produced by this grammar since the
macro elements always generate macro sequences and consequently matching

pairs of parentheses. Therefore, to find the cycle set of a macro
sequence, we may concatenate the «cycle sets of their constituent
orelements. 1If these orelements inveolve only starelements, we construct
their cycle sets by the union of the cycle sets of these starelements.

If however, the orelements involve generalized elements, all replicators

and distributors which they involve have to have been expanded first, as

they may generate semicolons which would transform the original macro

orelement into a macro sequence. Let us define an auxilliary function

"gel-exp" by which all replicators and distributors of a generalized

element are expanded. If we represent a generalized element GEL by
RRl...RRn M LRl...LRm

where each of RRi for i=l,...,n is a right replicator, each of LRi for
i=l,...,m is a left replicator and M a sequence replicator or a
distributor or a starelement, then by the expansion of GEL denoted by
gel-exp(GEL), we mean the string obtained by the expansion of the right
replicators, the expansion of M if its a sequence replicator or a
distributor, and by the expansion of the left replicators. The function

"gel-exp" is defined by: gel-exp(GEL)=a b ¢

where a= replexpO(RRl)...replexpO(RRn)
b= if M is a sequence replicator then replexpo(M) else

if M is a distributor then distrexp?(M) else M

c= replexpO(LRl)...replexpO(LRm)

- :) " O
If M is a starelement the function "gel-exp'" is the same as gelexp”",

: "y On
defined in section 3.3, the section in which "replexpo" and ''distrexp

have also been defined.

We shall use this function when defining "path-expl", by which macro

paths are expanded. The difference between 'path-expl" and
corresponding cases 6 and 8 to 15 in the function "expand" of section
3.3.3 is that when "path-expl" is applied to a syntactic entity S, it
will not always distribute over the syntactic subentities of § but only
if they are syntactically strong strings or macro elements generating
such strings. In particular, the expansion of a macro orelement
consisting of generalized elements will not be defined by juxtaposition
of the expansions of its constituent generalized elements separated by
commas, as in general, the expansion of generalized elements are macro
sequences which are not syntactically strong in the context of a comma
on their left or their right. The expansion of a macro orelement will
be defined as the expansion of the string, sequence in general, obtained
after the function '"'gel-exp" is applied to all its generalized elements.
When however, a macro orelement consists entirely of starelements the
its expansion will be defined by the juxtaposition of the expansions of
its constituent starelements separated by commas. Syntactic entities
corresponding to macro sequences, orelements, generalized elements,
starelements, elements and operations will be represented by MSEQ, MORi
for i=l,...,n, GELi for i=l,...,n, STELi for 1i=1,...,n, EL and OP

respectively. Formally the function 'path-expl" is defined by:

path-expl(e)=cases e:

path path—expl(MSEQ) end)
path—expl(MORl);...;path—expl(MORn)

1. path MSEQ end
2. MORl;...;MORn
3.

Vb

GELl,...,GELn path—expl(gel—exp(GELl),...,gel—exp(GELn))

4, STELl,...,STELn -> path-expl(STEL1l),..., path-exp 1 (STELn)

5. EL* ~> path-expl(EL)*
6. (MSEQ) -> (path—expl(MSEQ))
7. 0P —> op + possible expression evaluations

We shall not formally prove that the expansion of a macro path P,

path-expl(P) yields a basic path but we only point out that it may be

proven in the style of theorem 3.11 in section 3.3.3.

- 203 -

Let us now formally define the function "exp-Cycl™ by which the cycle

set of an expanded path may be obtained directly from the macro path.

The function "exp-Cycl" will apply to the same syntactic entities as the

function "path-expl" above.

exp-Cycl(e)=cases e:

1. path MSEQ end -> exp-Cycl(MSEQ)

2, MORl;...;MORn ~> exp-Cycl(MOR1) o...0 exp-Cycl(MORn)

3. GELl,...,GELn -> exp—-Cycl(gel-exp(GELl),...,gel-exp(GELn))
4. STELl,«...,STELn -> exp-Cycl(STELl) U...U exp-Cycl(STELn)

5. EL* -> exp-Cycl(EL)*

6. (MSEQ) -> exp-Cycl(MSEQ)

7. OP -> {opP}

Let us find the cycle set of path P7
P7 path a,#i:1,3,1[B(i);@],c;d end
by applying the function '"exp-Cycl":

exp—Cycl(P7)=exp—Cycl(a,#i:1,3,1[B(i);@],c;d)
=exp—Cyc1(a,#i:1,3,1[B(i);@],c)Oexp—Cycl(d)

exp-Cycl(a,#i:1,3,1[B(1);@],c)=
exp—Cycl(a,gel—exp(#i:1,3,l[B(i);@]),c)=
exp-Cycl(a,B(1);B(2);B(3),c)=
exp—Cycl(a,B(1))0exp—Cycl(B(2))Oexp—Cycl(B(B),c)=
{a,B(1)}o{B(2)}9{B(3),c}=
{a.B(Z).B(3),a.B(Z).c,B(l).B(Z).B(3),B(l)-B(Z)oC}

exp—-Cycl(d)={d}
Thus,

exp-Cycl(P7)={ a.B(2).B(3).d, a.B(2).c.d,
B(1).B(2).B(3).d, B(1).B(2).c.d}

- 204 -~
The same cycle set may be obtained from the expansion of P7, path P8
P8 path a,B(1);B(2);B(3),c;d end
by applying the function "Cyc" of chapter 2.

We may formally prove the theorem 4.1 for the direct construction of

cycle sets from pure macro paths.

THEOREM 4.1:
The cycle set of any pure macro path MP of a macro program produced
by the syntax rules in section 3.2 obtained by exp-Cycl(MP) is the
same as the cycle set of the basic path obtained by 1its expansion,

or formally
exp-Cycl(MP)=Cyc(path—expl(MP))
Proof:

We shall prove the theorem by considering separately each syntactic
case for which "exp-Cycl" defined comparing the results with
corresponding results obtained by applying the function "path-expl” and

then "Cyc".
case 1
Applying "exp-Cycl' to a macro path we obtain
exp—Cycl(path MSEQ EEQ)=exp—Cycl(MSEQ)
and applying the function "path-expl" and its result to "Cyc" we obtain
Cyc(path-expl(path MSEQ_gg1»=

Cyc(path path-expl(MSEQ) end)=
Cyc(path-exp1(MSEQ))

- 205 -

The two results are the same as may be shown by case 2.

case 2

Applying '"exp-Cycl" to a macro sequence we obtain
exp—Cycl(MORI;...;MORn)=exp-Cycl(MORl)°...Oexp-Cyc(MORn)
and the functions "path-expl" and then "Cyc" we obtain

Cyc(path-expl(MORl;...;MORn))=
Cyc(path—-expl(MORl);...;path-expl(MORn))

Since path-expl(MORi) for i=l,...,n yields a basic sequence in general,

the above expression is the same as:
Cyc(path-expl1(MORl))o0...9Cyc(path~expl(MORn))

The 1last step is valid since each of path-expl(MORi) for i=1,...,n is a

basic sequence and if SEQl and SEQ2 are basic sequences then
Cyc(SEQ1l)oCyc(SEQ2)=Cyc(SEQL;SEQ2)
To show the above relation let

SEQ1=OR1l;...;ORk! and
SEQ2=0R12;...;0Rm?

where Ole for j=l,...,n and ORi2 for i=l,...,m are basic orelements.

Then,

Cyc(SEQL)=Cyc(ORLY;...;0RKk!)=
Cyc(OR11)e...0Cyc(ORk!) and

Cyc(SEQ2)=Cyc(OR12;...;ORm2)=
Cyc(OR12)o. . .0Cyc(ORm?)

There fore,

- 206 -
Cyc(SEQL)9Cyc(SEQ2)=Cyc (ORIl 1)0. «.0Cyc(ORk! yoCyc (ORL %) e., . oCyc(ORm?)
which is the same as

Cyc(SEQL;SEQ2)=Cyc(ORi ;.. .;0Rk};0R12;. . .;0Rm2)=
CYC(OR11)°--°°CYC(ORK1)°Cyc(OR12)0...oCyc(ORmz)

Therefore, if for any macro orelement MOR the relation
exp-Cycl(MOR)=Cyc(path—expl(MOR))

holds, then the theorem holds for case 2. The above relation may be

shown to be true by cases 3 or 4, depending on whether MOR involves

generalized elements or just starelements.
case 3

Applying "exp-Cycl" to a macro orelement involving generalized

elements we obtain

exp-Cycl(GELl,...,GELn)=
exp-Cycl(gel-exp(GELl),...,gel-exp(GELn))

and applying the functions "path-expl" and then "Cyc" we obtain

Cyc(path-expl(GELl,...,GELn))=
Cyc(path—expl(gel—exp(GELl),...,gel—exp(GELn))

The expression

gel-exp(GELl),...,gel—exp(GELn)

is a macro sequence in general since each of gel-exp(GELi) for i=l,...,n

is a macro sequence in general, by lemma 3 of section 3.3.1.
5

.

Therefore, the equality of the above expressions may be shown by case

- 207 -

case 4

Applying '"exp-Cycl" to an orelement consisting entirely of

starelements we obtain

exp—Cycl(STELl,...,STELn)=exp-Cycl(STELI1)U...U exp-Cycl(STELn)

and applying '"path-expl" and then "Cyc'" we obtain
Cyc(path-expl(STELl,...,STELn))=
Cyc(path-expl(STELl),...,path-expl(STELn))=
Cyc(path-expl(STEL1))U...U Cyc(path-expl(STELn))
Therefore, if for any starelement STEL the relation

exp-Cycl (STEL)=Cyc(path-exp1(STEL))

holds, then the theorem holds for case 4. The above relation

shown to be true by case 5.

case 5
Applying "exp-Cycl" to a starelement we obtain
exp-Cycl (EL*)=exp~Cycl(EL)*

and applying "path-expl" and then '"Cyc" we obtain

Cyc(path—expl(EL*))=Cyc(path—exp1(EL)*)=Cyc(path—exp1(EL))*

The equality of the two expressions may be shown by case 6.

case b

Applying "exp-Cycl" to an element of the form (MSEQ) we obtain

may be

- 208 -
exp-Cycl ((MSEQ))=exp-Cyc(SEQ)
and by applying "path-expl" and then "Cyc" we obtain
Cyc(path—expl((MSEQ)))=Cyc((path—expl(MSEQ)))=Cyc(path—expl(MSEQ))
the equality of which may be shown by case 2.

case 7

Applying "exp-Cycl" to an operation we obtain
exp-Cycl (OP)={0P}
and applying "path-expl" and then "Cyc" we obtain
Cyc(path-expl(OP))=Cyc(0OP)={0P}
and as both expressions are the same the theorem is proven.vyvY

As we have pointed out the grammar of section 3.2 does not in general
produce replicators which generate syntactically strong strings in all
the contexts they appear. This occurs when one of the separators on
their left or their right 1is "," and the main connective of the

expansion is ";'", as indeed may be seen in path P7. Consequently, it

would be wrong to construct the cycle set of a macro orelement by

constructing the union of the cycle sets of its constituent generalized

elements. If we define a function "exp-Cycl’'" identical to "exp-Cycl"

except for cases 3 and 4 which are replaced by
GELl,...,GELn -> exp-Cycl’(GEL1)U...U exp-Cycl’(GELn)

and apply it to path P7, we obtain:

exp—Cycl’(P7)=exp—Cyc1'(a,#i:1,3,1[B(i);@])°6XP‘CYC1'(d)

- 209 -

exp-Cycl’(a,#1,3,1[B(1);@]),c)=

exp-Cycl’(a) U exp=Cycl”(#1i:1,3,1[B(i);@]) u exp-Cycl’ (c)=
exp—-Cycl’(a) U exp—Cycl’(gelexp(#i:1,3,1[3(i);@])) U exp-Cycl’(c)=
exp-Cycl’(a) U exp-Cycl’(B(1);B(2);B(3)) U exp-Cycl’ (c)=

{a} U {B(1).B(2).B(3)} U {c}

Therefore exp-Cycl’(P7) yields

{a,B(1).B(2).B(3),c}o{d}=
{a.d,B(1).d,B(2).d,B(3).d,c.d}

which of course is not the cycle set of P7 but of P9

P9 path a,(#1i:1,3,1[B(i);@]),c;d end

The reason the above construction failed is that we used the equality
Cyc(A,B)=Cyc(A)U Cyc(B)

which in general is not true unless A and B are orelements which means

that A and B are syntactically strong in the whole of "A,B".

To be able to find the correct cycle set of a macro path by the above

method, all replicators and distributors should generate syntactically

strong strings in any context they appear. In the next subsection we

develop syntax rules for the production of restricted macro paths

involving only such replicators and distributors and define the function

"path-exp2" by which these are expanded. We also define the function

"exp-Cyc2" by which the cycle sets of pure macro paths of programs

produced by this grammar may be constructed directly from them.

4.1.2 Finding the Cycle Sets of Restricted pure macro Paths

In the grammar 1in this subsection the syntax rules for macro

sequences will be modified. Left and right replicators will be

eliminated and the rest of macro elements generating macro sequences,

- 210 -

macro orelements, macro starelements and macro elements will bhe produced

by distinct syntax rules guaranteing that their expansion 1is always

syntactically strong. In the syntax rules in this section we follow the

same meta-language conventions as in chapter 3.

Macro elements generating macro sequences will be permitted to appear

only between any of "path", ";", "(" on their left and any of "end",

"w,n

;", """ on their right.

The new production rule for "msequence' is:

msequence={seqpart J;}+
seqpar t=seqmacro/morelement

where ''seqpart" produces parts of macro sequences separated by ";'" which
may be either macro elements strictly generating macro sequences,

produced by '"seqmacro' or macro orelements, produced by "morelement'.
The new rules for "morelement" are:

morelement={orpart &, }+
where "orpart" denotes parts of macro orelements separated by ",".
These parts may be macro elements strictly generating orelements,
produced by ‘"ormacro", or macro elements strictly generating
starelements, produced by 'starmacro'; they could also be starred
elements, produced by "mstarelement". The latter is prefixed by "m" as

"

we permit certain macro elements to be starred. The syntax of "orpart”

is given by:
orpart=ormacro/starmacro/mstarelement
The non-terminal "mstarelement" produces elements which could be
starred as can be seen in the following rule:

mstarelement=element/element®*

- 211 -
where the non-terminal "element" is defined by:

element=indexedop/operation/(msequence)/elmacro

: 1"
where the non-terminal "elmacro" produces macro elements which generate

elements. The syntax for "seqmacro" is:
seqmacro=seqrepl/seqdistr
where "seqrepl" and 'seqdistr" oproduce replicators and distributors

respectively, generating strictly macro sequences, and will be called

strict sequence replicators and strict sequence distributors

respectively. Strict sequence replicators could either be concatenators

or imbricators. The syntax for '"seqrepl" will be defined by:
seqrepl=index spec|{seqconcseq/seqimbrseq}]

where '"index spec" has been defined in section 3.2, 'seqconcseq" and

"seqimbrseq"” denote strings inside "[" of strict sequence

concatenators and imbricators respectively. For strict sequence
concatenators and distributors to generate strictly sequences, either

the main connective of their regularities should be a ";'", or their

regularities should be separated by '";". The syntax of '"seqconcseq" and

of "seqdistr'" will therefore be defined by:
seqconcseq={seqpart;}+ {@/seqconcor}
seqconcor={orpart ,}+ @

seqdistr=;{/iexpr}{/#iexpr,iexpr,iexpr}[msequence]

/,{/iexpr}{/#iexpr,iexpr,iexpr}[{seqpart{;seqpart}+]

As in the distributors of section 3.2 the "operations'" produced by

"msequence" and "seqpart" in the above rule, will be array slices (cf.

section 3.2.2).

Strict sequence imbricators may be either genuine or not. As in

either case they should strictly generate sequences, the main connective

- 212 -

of the whole expansion should be a seaicolon which implies that the main
connective of the string produced by 'seqimbrseq" should also be a

semicolon. The syntax rule for '"seqimbrseq" is:

seqimbrseq=seqimbr_atout seq
/{seqpart ;}+ seqimbror {; seqpart}*

/{seqpart ;}* seqimbror {; seqpart}+

The non-terminal "seqimbr atout seq" produces the string inside "[]" of
a non-genuine imbricator, and its syntax may be obtained from the syntax
of "imbr at seq" of section 3.2 exluding productions which do not
produce at least ome ";". This implies that "seqimbr atout seq" may
produce strings which are produced by the alternative productions 1, 2,
3, 5, 6, 7, 10, 12 and 13 of "imbr_gt_geq". The occurrences of the
non-terminal "morelement" in tﬁese rulés should be replaced by the

non~-terminal ''seqpart'". The complete rules may be found in appendix C.

The second and third alternative productions for "seqimbrseq"
guarrantee that at least one '";" is produced in the string inside "[]"

of a genuine imbricator. The syntax for 'seqimbror" is given by:
seqimbror={orpart ,}* seqimbrstarel {, orpart}*
seqimbrstarel=seqimbrel/seqimbrel*
seqimbrel=({seqimbr_@tin_seq/seqimbp_iq_seq})

In the last rule the non—terminal ''seqimbr atin seq" produces strings
which involve the "@"s and "seqimbr in seq" strings which involve the

"@'s but nested within "()". As the main connective of the string

inside "[]" of a strict sequence imbricator is already specified to be

produce strings which may not involve the
b b

a these non-terminals may

“;". The syntax for "seqimbr in seq" is given by:
seqimbr_in seq={seqpart ;}* seqimbror {; seqpart}*

i i 5 ax for
The syntax for “"seqimbr atin_seq’ will be the same as the syntax fo

1" "
"imbr at seq" of section 3.2, with all the occurrences of '"morelement

- 213 -

replaced by ""'seqpart". Again the complete definition for

"seqimbr_atin seq" may be found in appendix C.

The macro elements strictly generating orelements could either be

strict orelement replicators or strict orelement distributors produced

by "orrepl" and "ordistr" respectively. The syntax of "ormacro" is

given by:
ormacro=orrepl/ordistr

where the non-terminal "orrepl" produces strict orelement replicators
and "ordistr" strict orelement distributors. The definition of

"ordistr" is:
ordistr=,{/iexpr}{/#iexpr,iexpr,iexpr}[morelement]

As in all syntax rules for distributors the "operations'" in the string

produced by 'morelement" are array slices (cf. section 3.2).

Strict orelement replicators may be either concatenators or

imbricators, the string inside "[]" of which is produced by "orconcor"

and "orimbror'" respectively:
orrepl=index_§pec[{orconcor/orimbror}]

For strict orelement concatenators to generate strictly orelements the

main connective in each regularity and the connective separating

regularities should be ",". The syntax of "orconcor'" is given by:

orconcor={orpart ,}+d

For imbricators to generate strictly orelements the main connective
of its expansion should be "," which implies that the main connective of
the string inside "[]" should be "," also. The syntax for "orimbror"

is given by:

- 214 -

orimbror=orimbr atout or
/{orpart,}+ orimbrstarel {,orpart}*

/{orpart,}i_orimbrstarel {,orpart}+

" 3
where orimbr_atout or" produces the string inside "[|" of a

non—genuine strict orelement imbricator. The main connective of the
string it produces should be ",". 1Its syntax may be obtained from the

alternative productions of "imbr_at seq" of section 3.2 which do not

produce a ";", and is given by:

orimbr_atout or=3 {at_orlf/at orlm}
/{aq_orlm/aq_orlb} @
/at_or2mm

/2 morelement @

The second and third alternative productions for "orimbror" guarantee

that at least one "," and no ";" is produced as the main connective of

the string inside "[|" of a genuine imbricator strictly generating

orelements. The syntax of the non-terminal "orimbrstarel" is given by:
orimbrstarel=orimbrel/orimbrel#*
orimbrel=(orimbrseq)

As the main connective of the string inside '"[]" is a comma, the main
o

connective of the string generated by "orimbrseq" could be ";", as it is

";" cannot be the main

nested within "()" and consequently the

connective of the string inside "[]". 1Its syntax is given by:

orimbrseq={seqpart ;}* orimbr_in or {; seqpart}*
/orimbr_ atin seq
. . - At
The non-terminal "orimbr atin seq" produces strings which involve "3"s.
As these strings are nested within "()" their main connective may be a

won general as the strings

;"'e These strings however, cannot be as
generated by "seqimbr atin seq" above. According to the expansion rule
for replicators (cf. section 3.2.1) the expansion of imbricators 1is

still defined when their index range is empty provided the string

- 215 -

17 : . n
between the two "d"s with its leading and trailing separators removed is

non-empty. For imbricators produced by "ormacro" to generate orelements

for any legal range of their 1indices this string must be a macro

orelement. Therefore, from the alternative production rules for

"seqimbr_atin seq" we shall eliminate those which produce ";" Dbetween

the two "@"s. Because the correct rules are lengthy we give them in

appendix C.

The non-terminal "orimbr_in or" produces strings which nest the

"@ t @" further. 1Its syntax is given by:

orimbr_ in or={orpart ,}* orimbrstarel {, orpart}*

The non-terminals "at orlf", "at orlm", "at orlb", "at or2mm"
"at _or2fm", "at or2fb", "at or2mb" in the syntax rules for
"seqimbr_atin seq" and '"seqimbr atout seq" are obtained from

corresponding ones in section 3.2 by replacing all occurrences of
"gelement" by "orpart'". Their complete rules may be found in appendix

C.

The syntax rule for ‘'starmacro" produces macro elements strictly

generating starelements of the form:
(msequence)*

As concatenators only generate such strings when they generate a single
regularity, "starmacro™ will only produce imbricators, called strict

starelement imbricators. Furthermore, they will always be genuine. The

syntax for "starmacro' is:

starmacro=index_§pec[(starimbrseq)*]

where "index spec'" has been defined in section 3.2. The syntax rule for

"starimbrseq" may produce sequences, almost as general as the the rule

for "seqimbr" in section 3.2. However, certain strings produced by

. : : in
alternative productions for 'seqimbr" have to be excluded: those

which the string between the two "@"s with its leading and terminating

- in
separators removed form sequences OT orelements. The whole string

- 216 -

produced by "starimbrseq" though, may be a Séquence or an orelement, ag

the following rules show:

starimbrseq=starimbr at seq

/{seqpart ;}* starimbror {; seqpart}*
starimbror={orpart »}* starimbrstarel {, orpart}*
starimbrstarel=starimbrel/starimbrel*
starimbrel=(starimbrseq)
The syntax rule for "starimbr_pt_ﬁeq" produces sequences which involve

the "@"s. The precise rule for it may be found in appendix C.

Similarly to the syntax rule for "starmacro", the syntax rule for

"elmacro" may only produce genuine imbricators, called strict element

imbricators. Their syntax is given by:
elmacro=index_§pec[(elimbrseq)]

where 'index spec" is defined in section 3.2. The syntax rule for
"elimbrseq" is very similar to "starimbrseq". Their only difference is
that, if the string between the two "@"s with the leading and
terminating separators removed is not null then, if the string inside
"[(«.)]" is produced by ‘"starimbrseq" is also produced by
"mstarelement", but if produced by "elimbrseq" it may be produced by

"element". The precise rules may be found in appendix C.

Every replicator and distributor produced by the above rules may be
produced by the rules of the grammar of section 3.2. The same though is
not true for the context of strict element imbricators which, unlike the
replicators of section 3.2, may be starred. If strict element
imbricators could not be starred the grammar of section 3.2 would be a
true extension of the above. Here we permitted these replicators to be
starred since they always generate elements when expanded and the star

applies to the sole element generated from the expansion.

- 217 -

Since all replicators and distributors may be produced by the grammar
of section 3.2 the same
On

rules for their expansion given in terms of

"replexpo' and '"distrexp

respectively, will still apply.

We may characterize the expansion of the macro elements produced by

the grammar of this subsection as we did for replicators and
distributors in section 3.3. Since all macro elements may be produced
by the syntax of 3.2 we may use the theorems 3.3 and 3.4 of section 3.3
for the expansion of concatenators and imbricators to macro sequences
and the corollary of theorem 3.9 of the same section showing a similar

result for the expansion of distributors.

Strict sequence macro elements generate macro sequences in general.
When they generate more than one regularity the main connective of the
expansion is a semicolon. This is not true though, in general, when
they generate one regularity or, in the case of imbricators, their index

range is empty, in which case they may generate a single orelement, or

starelement, or element. Iet us consider the concatenator
#i:1,n,1[A(1);Q]

which for mn>l generates sequences. But for n=l it generates a single

element. Let us also consider the non-genuine imbricator
#i:1,n,1[A(i);8,c,@;B(1)]

which for >l it generates sequences. For n=1 it generates the

orelement
A(1),c,B(L)

and for n=0 the element

nge
Genuine imbricators always generate sequences for any non empty range,

i insi v, which is
as the string "@ t 3" is nested inside parentheses and the ";", wh

. . . : i . But
the main connective of the string inside """, is not stripped u

- 213 -

when the range is empty, they too may generate orelements, starelements
or elements. Whatever they generate though, is syntactically strong in

their context.

Strict orelement macro elements generate macro orelements.

Similarly
to the strict sequence macro elements, they may also generate
starelements and elements. Strict sequence concatenators and

distributors may generate starelements and elements when they generate
only one regularity. Strict sequence imbricators, whether genuine or
not, may also generate such strings when their index range is empty. As
strict orelement macro elements cannot generate sequences their

expansion will always be syntactically strong in their context.

Strict starelement imbricators generate starelements except when

their index range is empty, in which case they may generate elements.

Finally, strict element imbricators generate elements for any valid

range of their indices.

Let us now give some examples of macro paths produced by the above

rules.

P10 path f;#i:1,3,1[A(4);B(i),@];,[D],e end
P11 path ;[B,C];,[B;D];,[C,D] end
P12 path #1:1,3,1[(UP(i);@;full*;@;DOWN(i))*],empty end

where collective names A, B, C, D, UP, DOWN are defined by

array A B C D UP DOWN(3) endarray

Let us define the function "path-exp2" for the expansion of pure
macro paths of macro programs consisting of macro paths the macro

sequences of which are produced by the rules in this sectlon.

Apart from the syntactic variables MSEQ, OP which we have used betore

. i to
denoting macro sequences and operations respectively, we need

introduce some new ones. The syntactic variables SEQPRTi for i=l,...,n

- 219 -

denote either macro orelements or strict sequence macro elements,
SEQREPL and SEQDISTR denote strict sequence replicators and distributors
respectively. The syntactic variables ORPRTi for i=1l,...,n denote macro
orelements or macro starelements or starelements; ORREPL and ORDISTR
denote strict orelement replicators and distributors respectively.
STARMACRO and ELMACRO denote strict starelement and strict element

imbricators respectively. Finally, EL denotes elements which could be

starred. The function "path-exp2" may be defined by:

path-exp2(e)=cases e:

1. path MSEQ end -> path path-exp2(MSEQ) end

2. SEQPRTl;...;SEQPRTn -> path-exp2(SEQPRTL);...;path—-exp2(SEQPRTn)
3. SEQREPL -> path-exp2(replexp?(SEQREPL))

4. SEQDISTR -> path-exp2(distrexp?(SEQDISTR))

5. ORPRTl,...,ORPRTn -> path-exp2(ORPRTL),...,path-exp2(ORPRTn)
6. ORREPL - path—epo(replexpO(ORREPL))

7. ORDISTR -> path—epo(distrexpo(ORDISTR))

8. STARMACRO - path—epo(replexpO(STARMACRO))

9. EL* -> path—exp2(EL)*

10. OP —> OP + possible expression evaluations
11. (MSEQ) - (path-exp2(*SEQ))

12. ELMACRO —> path-exp2(replexp’(ELMACRO))

Using similar arguments to those of theorem 3.11 for the expansion of

macro programs to basic programs, we may show that macro programs, the

macro paths of which are produced by the syntax rules of this section,
- "

also generate basic programs. Let us apply the function "path—exp2"” to

expand path P10:
path-exp2(P10)= path path-exp2(£;#i:1,3,1[A(1);B(1),81;,(D1,e) end

path—epo(f;#i:l,B,1[A(i);B(i),@];,[D]’e)=
path—epo(f);path—epo(#i:1,3,1[A(i);3(i)»@]);Path‘eXPZ(’[D]’e)

path-exp2(f)=f

Therefore,

- 220 -

path-exp2(#i:1,3,1[A(i);B(i),@])=
path-exp2(replexp®(#i:1,3,1[A(i);B(1),3]))=
path-exp2(A(1);B(1),A(2);B(2),A(3);B(3))=
A(1);B(1),A(2);B(2),A(3);B(3)

path-exp2(,[D],e)=path-exp2(,[D]),path~exp2(e)

path-epo(,[D])=path—exp2(distrexp0(,[D]))=
path-exp2(D(1),D(2),D(3))=

D(1),D(2),D(3)

path-exp2(e)=e

the expansion of P10 is

path f;A(1);B(1),A(2);B(2),A(3);B(3);D(1),D(2),D(3),e end

To obtain the cycle sets of pure macro paths the sequences of which

are produced by the syntax rules of this section we define the function

"exp-Cyc2" as follows:

exp-Cyc2(e)=cases e:

L.
2.
3.
4,
5.
6.
7.
8.
9.
10.
11.
12.

path MSEQ end

SEQPRTI ;. ..; SEQPRTn
SEQREPL

SEQDISTR
ORPRTI, . ..,O0RPRTn
ORREPL

ORDISTR

STARMACRO

EL*

oP

(MSEQ)

ELMACRO

exp-Cyc2(MSEQ)

exp-Cyc2(SEQPRT1) ©...0 exp-Cyc2(SEQPRTn)
exp—Cch(replexpO(SEQREPL))
exp-Cch(distrexpo(SEQDISTR))
exp-Cyc2(ORPRT1) U...U exp-Cyc2(ORPRTn)
exp—Cch(replexpO(ORREPL))
exp—Cch(distrexpO(ORDISTR))
exp-Cch(replexpO(STARMACRO))
exp-Cyc2(EL)*

{or}

exp—-Cyc2(MSEQ)
exp—Cch(replexpO(ELMACRO))

- 221 -
Let us find the cycle set of path PlO, by applying "exp—Cch”:

exp-Cyc2(P10)=
eXP'CyCZ(f)°eXP“CyC2(#i:1,3,1[A(i);B(i),@])oexp_cycz(,[D],e)

exp-Cyc2(f)={f}

exp—Cch(#i:1,3,1[A(i);B(i),@])=
exp—Cch(replexpO(#i:1,3,l[A(i);B(i),@]))=
exp=Cyc2(A(1);B(1),A(2);B(2),A(3);B(3))=
exp-Cyc2(A(1))
9exp-Cyc2(B(1),A(2))
®exp-Cyc2(B(4),A(3))
Oexp~Cyc(B(3))=

{A(1)}o{B(1),A(2)}o{B(2),A(3)}0{B(3)}=
{A(1).B(1).B(2).B(3),A(1).B(1).A(3).B(3),

A1) «A(2).B(2).B(3),4a(1).A(2).A(3).B(3)}

exp-Cyc2(,[D],e)=

exp—Cyc2(, [D])U exp-Cyc2(e)=
exp-Cyc2(distrexp?(,[D]))U exp=-Cyc2(e)=
exp-Cyc2(D(1),D(2),D(3))U exp-Cyc2(e)=
{D(1),D(2),D(3)} U {e}=
{Dp(1),D(2),D(3),e}

Therefore,

exp-Cyc2(P10)={£f}o{A(1).B(1).B(2).B(3),
A(1).B(1).A(3).B(3),
A(1).A(2).B(2).B(3),
A(1).A(2).A(3).B(3)}e{D(1),D(2),D(3),e}

We may now prove the theorem for the direct construction of cycle

sets of pure macro paths.

THEOREM 4.2:

The cycle set of any pure macro path MP the sequence of which is

- 222 -

produced by the grammar of subsection 4.1.2, is the same as the

cycle set of the basic path generated by the expansion of MP, or

formally
Cyc(path—exp2(MP))=exp-Cyc2(MP)
Proof:

We shall prove the above equality by considering separately each case

of syntactic entities on which "exp-Cyc2" and "path-exp2" apply.

case 1

Applying fuction "path-exp2" and then "Cyc" to a macro path we obtain
Cyc(path—exp2(path MSEQ end))=

Cyc(path path-exp2(MSEQ) end)=

Cyc(path-exp2(MSEQ))

and applying "exp-Cyc2" we obtain

exp-Cyc2(path MSEQ end)=exp-Cyc2(MSEQ)

The equality of the above expressions may be shown by case 2.
case 2
Applying "path-exp2'" and then "Cyc" to a macro sequence we obtain

Cyc(path—epo(SEQPRTl;...;SEQPRTn))=
Cyc(path—epo(SEQPRTl);...;path—epo(SEQPRTn))

which as we have shown in case 2 of theorem 4.1 1is equal to
Cyc(path—epo(SEQPRTl))0...OCyc(path—expz(SEQPRTH))

as each path—exp2(SEQPRTi) for i=1,...,n is a basic sequence. Applying

- 223 -

function "exp-Cyc2'" we obtain we obtain

exp—-Cyc2(SEQPRT!;...;SEQPRTn)=

exp—~Cyc2(SEQPRT1)®...0exp~-Cyc2(SEQPRTn)

The two expressions are the same provided that for any macro
orelement or strict sequence macro element denoted by SEQPRT

Cyc(path-exp2(SEQPRT))=exp-Cyc2(SEQPRT)
holds, which may be shown by cases 3, 4, 5, depending on whether SEQPRT
is a macro orelement, a strict sequence replicator, or a strict sequence
distributor respectively.

case 3

Applying "path~exp2" and then "Cyc" to a strict sequence replicator

we obtain
Cyc(path—epo(SEQREPL))=Cyc(path—exp2(replexpO(SEQREPL)))
and applying "exp-Cyc2" we obtain
exp—Cch(SEQREPL)=exp—Cyc2(replexpO(SEQREPL))
Since replexpO(SEQREPL) yields a macro sequence the equality of the
above expressions may be shown by the previously considered case 2.
case &

Applying "path—exp2" and then "Cyc" to & strict sequence distributor

we obtain
Cyc(path-expz(saQDISTR))=Cyc(path—exp2(repleXP°(SEQDISTR)))

and applying "exp-Cyc2" we obtain

- 224 -

exp=Cyc2(SEQDISTR)=exp-Cyc2(replexp?(SEQDISTR))

Since replexp%(SEQDISTR) yields a macro sequence the equality of the

above expressions may be shown by the previously considered case 2.

case 5

Applying "path-exp2" and then "exp-Cyc2" to a macro orelement we

obtain

Cyc(path-exp2(ORPRT!,...,ORPRTn))=

Cyc(path-exp2(ORPRT1),...,path-exp2(ORPRTn))

Since path-exp2(ORPRTi) for i=l,...,n yields an orelement, the

expression is the same as

Cyc{path-exp2(ORPRT1))U...U Cyc(path—-exp2(ORPRIn))

In case 2 of theorem 4.1 we had to prove the relation

Cyc(SEQL)oCyc(SEQ2)=Cyc(SEQl;SEQ2)

Here we have to prove the relation

Cyc(OR1)U Cyc(OR2)=Cyc(OR1l,0R2)

above

where ORl and OR2 are basic orelements, which may be shown by similar

arguments, as those in case 2 of theorem 4.1.

By applying "exp-Cyc2" to a macro orelement we obtain
exp-Cyc2(ORPRTI, . . . ,ORPRTR) =

exp-Cyc2(ORPRT1)U...U exp-Cyc2(ORPRTn))

The two expressions above are the same, provided that for any

produced by "orpart" denoted by ORPRT, the relation

string

Cyc(path—exp2(ORPRT))=exp-Cyc2(ORPRT)

holds. This relation may be shown by the following cases, depending on

whether ORPRT denotes a strict orelement replicator or distributor

(cases 6 and 7 respectively), or a strict starelement imbricator (case

8), or a macro starelement (cases 9, 10, 11, 12).

case b

Applying "path-exp2" to a strict orelement replicator and then "Cyc"

we obtain

Cyc(path-epo(ORREPL))=Cyc(path—exp2(replexp0(ORREPL)))

and applying "exp-Cyc2" we obtain

exp-Cyc2(ORREPL)=exp—-Cyc2(replexp Y(ORREPL))

The equality of the two expressions may be shown by case 5 since

replexpo(ORREPL)

yields a macro orelement.

case 7

Applying "path-exp2" to a strict orelement distributor and then "Cyc"

we obtain
Cyc(path—epo(ORDISTR))=Cyc(path—exp2(replexp0(ORDISTR)))
and applying "exp-Cyc2" we obtain

exp—Cyc2(ORDISTR)=exp—Cyc2(replexpO(ORDISTR))

- 226 -
The equality of the two expressions may be shown by case 5 since
distrexp9(ORDISTR)
yields a macro orelement.

case §

Applying "path-exp2'" to STARMACRO and then "Cyc'" we obtain
Cyc(path—epo(STARMACRO))=Cyc(path—exp2(replexp0(STARMACRO)))

and "exp-Cyc2" we obtain

exp-Cyc2(STARMACRO)=exp~Cyc2(replexp(STARMACRO)))

The equality of the two expressions is shown by case 9 since
replexp Y (STARMACRO)
yields a starelement.
case 9
Applying "path-exp2" to EL* and then "Cyc'" we obtain
Cyc(path-exp2(EL*))=Cyc(path-exp2(EL)*)=Cyc(path-exp2(EL))*
and by applying "exp-Cyc2" we obtain

exp-Cyc2(EL*)=exp-Cyc2(EL)*

The equality of the two expressions depend on the equality of the

starred expressions which may be shown by any of the following cases,

depending on whether EL denotes an operation (case 10), or an element

(case 11), or a strict element imbricator.

- 227 -

case 10

Applying "path-exp2'" to OP and then "Cyc" we obtain

Cyc(path-exp2(0P))=Cyc(0P)={0P}
and applying "exp-Cyc2" we obtain

exp—-Cyc2(0P)={0P}
yielding the same result.
case 11

Applying "path-exp2" to (MSEQ) and then "Cyc" we obtain

Cyc(path-exp2((MSEQ)))=Cyc((path-exp2(MSEQ)))=Cyc(path-exp2(MSEQ))

and "exp-Cyc2'" we obtain

exp-Cyc2((MSEQ))=exp-Cyc(MSEQ)

The equality of the two expressions may be shown by case 2.
case 12
Applying "path-exp2" to ELMACRO and then '"Cyc' we obtain

Cyc(path~exp2(ELMACRO))=
Cyc(path—epo(replexpO(ELMACRO)))

and applying "exp-Cyc2'" we obtain

exp—Cch(ELREPL))=exp—Cyc2(replexpO(ELREPL))

- 228 -
The equality of the above expressions may be shown by case 12, since
replexp (ELREPL)

yields an element of the form

(MSEQ)

This completes the proof of the theorem.r/vV

The above theorem gives us a shortcut for constructing the cycle set

of the expansion of a macro path. 1Instead of applying two functions
"path-exp2" and "Cyc" we may just apply the function "exp-Cyc2" which is

of the same order of complexity as "path-exp2".

4.2 CONSTRUCTING ORDERED CYCLE SETS BY EXPANSION OF MACRO-CYCLE OBJECTS

In the previous section we gave rules for constructing the ordered
cycle sets of basic programs obtained by the expansion of macro
programs, from the macro programs themselves. The ordered cycle sets
were constructed in two parts. In the first part all bodyreplicators
are expanded and ordered expressions yielding the cycle sets of
individual pure macro paths were obtained. In the second part, the
cycle sets of individual pure macro paths were obtained by the
composition of cycle sets of parts of macro sequences by concatenation
or by union operations. This approach yields correct results only when
the constituent parts are syntactically strong strings, or, if these
involve macro elements, generating syntactically strong strings. This
means that by understanding the ordering of operations specified by

small parts of a macro sequence, we may understand the ordering of

operations specified by the whole path. For the macro paths produced by
the grammar of section 3.2 the smallest such parts are the macro
orelements. For the macro paths produced by the grammar of section
4.1.2 however, the smallest such parts are the elements or macro
elements. Programs produced by the syntax rules of 4.1.2 are more

easily readable, in general, than those produced by the syntax of 3.2,

as 1t 1is easier to understand a lot of spmall parts of a macro sequence

rather than a few larger ones. Of course, this is achieved at the

expense of loss of power of expression, since the syntax of macro
elements was restricted. The reading of macro elements produced by the
grammar of 4.1.2 is not possible, in general, without them being
expanded first, as the regularities they generate may not be
syntactically strong and some parts of them may bind with parts of

adjacent regularities. For example consider the replicator Rl in Pl0:
Rl #i:1,3,1[A(i);B(i),8]

which expands to:
A(1);B(1),A(2);3B(2),A(3);B(3)

We observe that the operation "B(1)" of the first regularity forms an
orelement with the operation "A(2)" of the second regularity and
similarly the operation "B(2)" of the second regularity forms an
orelement with "A(3)" of the third regularity. The correct reading of

Rl is:

do A(D)
followed by B(1) or A(2),
followed by B(2) or A(3),
followed by B(3).

The reading of macro elements is greatly improved when they generate

regularities which are syntactically strong strings for two reasons:

1. each regularity may be read independently of the rest, that 1is no

part of any regularity binds with parts of other regularities, and

2. their reading is very similar.

To demonst rate the above points let wus consider few replicators

generating such regularities and their reading. First the replicator

R2:

R2 #i:1,3,1[A(1),8(1i);@]

which may be read as:

do A(1l) or B(1),
followed by A(2) or B(2),
followed by A(3) or B(3).

Observe that the phrase "A(1l) or B(l)" corresponds to the reading of the
orelement "A(1),B(1)" in the first regularity which R2 generates, the
phrase "A(2) or B(2)" to the reading of "A(2),B(2)", etc.

The replicator R3
R3 #1:1,3,1[(A(1);B(i)),@Q]
may be read as:

do A(l) followed by B(l),
or A(2) followed by B(2),

or A(3) followed by B(3).

Similarly to R2 above, the phrase "A(1l) followed by B(1)" corresponds to
the reading of the element "(A(1);B(1))" in the first regularity which
R3 generates, the phrase "A(2) followed by B(2)" to the reading of
"(A(2);B(2))", etc.

Imbricators are more difficult to read than concatenators and

distributors, in general, because the regularities they generate do not

follow each other but are nested within each other. However, the

reading of imbricators the regularities of which are syntactically

strong strings is easier than the reading of the rest. Consider for

example the imbricator R4
R4 #i:1,3,1[(SKIP(i);@@),v(i)]

which may be read as:

- 231 -

do SKIP(1)
followed by SKIP(2)
followed by SKIP(3)
or by v(3),
or by v(2),

or by v(l).

The phrase "SKIP(l)...or V(1)" corresponds to the reading of the

outermost regularity "(SKIP(1)...),V(1)", the phrase "SKIP(2)...or V(2)"
to the reading of "(SKIP(2)...),V(2)" which follows "SKIP(1)", etc.

The reading of wmacro elements generating regularities which are
syntactically strong strings could be concisely represented. This
concise representation is particularly important when the index
specification of replicators are parametarized and the number of

regularities which macro elements generate is not fixed.

The reading of macro elements is an informal way of describing the
ordering of operations they specify. The ease of reading of wmacro
elements generating regularities which are syntactically strong strings
may be formally expressed in the construction of the cycle sets of macro
paths involving only such macro elements. These cycle sets may be
constructed by the composition of the cycle sets of their regularities.

For example the cycle set of R2 may be formed by the composition:
{A(1),B(1)}o{A(2),B(2)}o{A(3),B(3)}

We may observe that the three string sets in the above expression are
very similar and may be obtained by replacing "i" indexing the

operations in the string set
{A(1),B(1)}

by the wvalues 1,2,3, the values in the range of the replicator index.

The above set may be considered as the cycle set of the general

regularity inside "[" of R2, ignoring the ";@". If all replicators

and distributors in sequences had this property then they would not in

- 232 -

principle have to be expanded in order to find their cycle set. The
cycle set of their general regularity would be sufficient to generate
the cycle set of the whole replicator or distributor. Furthermore,
since macro elements would not have to be expanded, the bodyreplicators
would not have to be expanded as well. We cannot in general avoid the
expansion of bodyreplicators in the approach in the previous section,
since the range of indices of replicators in macro sequences may depend
on bodyreplicator indices, 1implying that for the replicators and
distributors 1in macro sequences to be expanded the bodyreplicators have
to have been expanded first. This leads to the idea of macro cycle
objects constructed from macro programs which represent ordered cycle
sets of basic programs as economically as macro programs represent basic
programs, and from which ordered cycle sets may be generated in the same

way as basic programs are generated from macro programs.

These macro cycle objects besides being a formal means for
representing the ordered cycle sets of an expanded macro program, they
also aid the verification of macro programs. Strictly speaking, all
verification methods and techniques developed in COSY apply to basic
programs only. This has the disadvantage that a macro program cannot be
verified, unless it is expanded first, implying that all its parameters
have to be given specific values. The coansequence of this is that macro
programs cannot be verified for all values of their parameters. This
limitation was overcome by adopting informal techniques, as in [SL78},
which made possible the verification of parametarized macro programs.
When verifying a COSY program, we frequently argue in terms of the
firing sequences of paths, which are constructed by their cycle sets
(cf. section 2.2). Thus, we are confronted with the task of
representing the firing sequences of the macro paths of macro programs.
As these paths may involve macro elements generating a finite but
indefinite number of regularities the representation of the general

cycle sets is fundamental.
An informal approach for representing repetition of patterns in the
elements of the cycle sets was followed in [SL78] using ellipses. For

example the cycle set of the path involving the replicator R4

path #i:1,m,1[(SKIP(i);@@),v(i)] end

- 233 -~
was represented by:

{v(L),

SKIP(1).V(2),
SKIP(1).SKIP(2).V(3),
SKIP(l). ... «SKIP(a-1).V(m),
SKIP(1l).SKIP(m)}

The ellipses in the above <cycle set denote two kinds of repetition
patterns. The ellipses denote repetition of operations SKIPs of the

form:
skip rep(j)=SKIP(l).SKIP(j) for 1< j<m
but also denote repetition of cycles of the form:
skip rep(1).V(2),skip rep(2).v(3), ... ,skip rep(m-1).V(m)

Even expressing the cycles of this relative simple path by ellipses is
cumbersome. As macro elements may in general, be nested inside other

macro elements the precise representation of cycle sets using ellipses

becomes an impossible task. We need a notation for the concise

representation of ordered cycle sets of macro programs from which the

ordered cycle sets of the expanded basic program could be generated by

expansion. This notation should be able to represent sets of cycles or

cycles of all macro elements be it bodyreplicators, concatenators,

distributors or imbricators. For this representation to be possible

though, all macro elements in macro sequences should always generate

regularities which are syntactically strong strings.

In the next subsection 4.2.1 we constrain some of the syntax rules of

4.1.2 to produce macro programs the macro paths of which involve

concatenators, distributors and imbricators the regularities of which

are syntactically strong strings and we define the function "expand2" by

which these programs are expanded. 1In subsection 4,2.2 we define a

notation for concisely representing cycle sets of wmacro programs

. N1 Ainins
produced by this grammar, we define the function "m—-Cycs'" for obtaining

macro cycle objects in this notation from macro programs and define the

function "exp-Cyc"

by which these objects are expanded yielding ordered
cycle sets. Finally, in subsection 4.2.3 we prove that the ordered
cycle sets of the expansion of a macro program produced by the grammar
of 4.2.1 are the same as the ordered cycle sets we obtain from the

expansion of the macro cycle objects of the macro program.

bo2.1 Syntax and Expansion Rules of Constrained macro-Programs

In the grammar of this section we constrain the production rules in
section 4.l1.2, or, to be more precise, those in appendix C, in order to
produce concatenators, distributors and imbricators the expansion of
which and each of their regularities are syntactically strong strings.
This is achieved by forcing the main connective of the string generated
by expansion to separate each regularity. Actually, the only macro
elements the syntax of which needs to be constrained are those which
generate sequences since the main connective of their expansion, namely
";", does not always separate the regularities. The regularities in the
expansion of the rest of the macro elements are orelements, starelements
and elements and consequently are syntactically strong strings in any of
their contexts. Therefore, we only need to constrain the production
rules for '"seqconcseq", ''seqimbrseq" and "seqdistr". The non-terminals
"seqdistr" and "seqconcseq", producing distributors generating sequences
and strings inside "[]" of a sequence concatenator, respectively, will

be redefined by:
seqdistr=;{/iexpr}{/#iexpr,iexpr,iexpr}[msequence]

seqconcseq={seqpart;}+@

The difference with corresponding rules rules of section 4.1.2 for

"seqconcseq" and "seqdistr" is that here we eliminated the production of
"," as the connective separating regularities generated by concatenators

and distributors.

- 235 -

We have yet to constrain the imbricators generating sequences

produced by the syntax in 4.1.2 1in which each regularity 1is a

syntactically strong string. An imbricator
#i:1,n,1{p(i) @ t @ q(i)]
generates three kinds of regularities in general:

1o p(i)...q(i) when 1<i<n-1,
2. p’(n) t q"(n) when i=n

3. t7 when n<l

as we may recall from sections 3.2 and 3.3.

For imbricators generating sequences each regularity they generate is
a sequence and for it to be syntactically strong it should be between

any of "(", and any of ")", These regularities appear in the
same context as that of "@ t @" and consequently, the string "@ ¢ &
s |'[|' and any Of l’)ll’ I';|" ‘|]||. The

two extra terminal symbols "[" and "]" in the context of "@ t @" arise

should be between any of "(', ;"

from the fact that when a replicator expands these disappear and the

context of the expanded string is the context of the imbricator itself.

The context of the imbricator generating sequences is any of "(", ";",

"path" on its 1left and any of '")", '";", "end" on its right which

guarantee that the outermost regularity and consequently the whole

expansion of an imbricator is syntactically strong.

The syntax rules for "seqimbrseq" producing strings inside "[]" of a

sequence replicator then should be:

- 236 -

seqimbrseq=seqimbr_at seq
/{seqpart;}+ seqimbror {; seqpart}*

/{seqpart;}* seqimbror {; seqpart}+
seqimbror={orpart,}* seqimbrstarel {, orpart}*
seqimbrstarel=seqimbrel/seqimbrel*
seqimbrel=(seqimbrseq)

seqimbr_at seq=
{seqpart;}+ {3/at_orlf} {;seqpart}* ; {3/at orlb} {;seqpart}+
/{seqpart ;}+ at or2fb {; seqpart}+
/@{seqpart ;}* {@/at orlb} {; seqpart}+
/{seqpart ;}+ {@/aﬁ_prlf} {; seqpart}*d

/@ msequence @

For the imbricators generating orelements, starelements and elements

each of their regularities must be orelements, starelements and elements
respectively. These regularities are syntactically strong in any
context the string "2 t 3" is in. The syntax rules for them will still
be those of section 4.1.2 or more accuratly those of appendix C. The
complete syntax for programs involving only these macro elements may be
found in appendix D. Syntax rules in appendix D are associated with
mnemonic names starting with '"MN" to denote syntax rules developed in
section 3.2, or with "RN" to denote syntax rules developed in section
4.1.2 (appendix C), or with "CN" to denote syntax rules developed in

this section.

Let us now give some examples of imbricators the regularities of
which are syntactically strong in their expansion. The imbricator is RS

produced by "seqmacro"
RS #i:1,3,1[(A(i);@Q),B(i);C(1)]
and expands to the sequence E(R5)

E(RS) (A(1);(A(2);5(A(3)),B(3);C(3)),B(2);C(2)),8(1);C(1)

- 237 -
The imbricator R6 1is produced by "ormacro"
R6 #i:1,3,1[(SKIP(1);28),(CS_BEGL:(i);CS END(i))]
and expands to the orelement E(R6)

E(R6) (SKIP(L)
; (SKIP(2)
; (SKIP(3))
,(CS_BEGIN(3);CS END(3))
)
,(CS_BEGIN(2);CS BEGIN(2))

)
,(CS_BEGIN(1);CS END(1))

The imbricator R7 is produced by "starmacro"
R7 #i:1,3,1[(UP(i);@;full*;3;DOWN(i))*]
and expands to the starelement

E(R7)(UP(L)
;C UP(2)
; C UP(3)
; full*
s DOWN(3)
)*
; DOWN(2)
)*
; DOWN(1)
)*

Finally, the imbricator R8 is produced by "elmacro'
R8 #i:1,3,1[(C(i);R(1),CQ)]

and expands to the element

- 238 -

E(R8)(C(1)
; R(L)
, (C(2)
; R(2)
», (C(3);R(3))

The reading of macro elements generating regularities which are

syntactically strong strings could be concisely represented.

This

is

particularly important when the index specification of replicators and

the sizes of the arrays are parametarized and as a result the number

regularities to be generated 1is not fixed. Concatenators

distributors generating sequences of the form

#i:1,n,1[p(i) ;@]
; el

respectively, may be read as:

for all i=l,...,n do consecutively p(i)

Concatenators and distributors generating orelements of the form

#i:1,n,1[p(i) ,@]
» vl

respectively, may be read as
for any i=l,...,n do p(i)

For example, R2 and R3 when the final value of their

parametarized by the integer n may be read as:

for all i=l,...,n do consecutively A(i) or B(i)

for any i=l,...,n do A(i) followed by B(1i)

indices

and

of

and

is

~ 239 -

respectively. Imbricators are more difficuit to read than concatenators
and distributors as regularities are nested and not following each

other. Imbricators generating syntactically strong strings
#izl,n,1[p(i) @ t 3 q(i)]

may be read recursively by defining the reading of their general

regularity as follows:

read reg(i)= if i<n do p(i) read reg(i+l) q(i)
if i=n do p’(n) t q’'(n)

if idn do t”’
Then the general reading of imbricators is given by

read reg(l)

When the final wvalue of the indices of imbricators R5, R6, R7, R8 is

parametarized by the integer n, then the imbricators may be read by
read reg(l)
where read reg(i) for R5 is

read reg(i)= if i<n do A(i) followed by read reg(i+l) or B(i),
followed by C(i)
if i=n do A(n) or B(n), followed by C(n)

For i>n the expansion of R5 is empty and consequently R5 is not wvalid.

The reading of the general regularity of R6 is:

read reg(i)= if i<n do SKIP(i) followed by read reg(i+l),
or CS BEGIN(i) followed by CS END(1i)
if i=n do SKIP(i)
or CS BEGIN(n) followed by CS END(n)
For i>n the expansion of R6 is empty and consequently R6 is not valid.

The reading of the general regularity of R7 is

read reg(i)= if i<n do repeat:UP(i)
followed by read reg(i+l)
followed by DOWN(i)
if i=n do repeat:UP(n)
followed by repeat: full,
followed by DOWN(n)
if i>n do repeat:full

The general regularity of R8 may be read as

read reg(i)= if i<n do C(i), followed by R(i) or by read reg(i+l)
if i=n do C(n) followed by R(n)

Any program produced by the syntax rules of appendix D may also be
produced by the syntax rules of the section 4.l.£‘gnd as we have
constrained and not extended the syntax rules generate basic programs
when expanded. Similarly to the strict sequence macro elements of
section 4.1.2, the macro elements produced by the above syntax rules may
also generate orelements, starelements and elements, when their index

range consists of one value or it is empty.

Here we will define the expansion of macro programs in an alternative
way from that of sections 3.3 and 4.1.2 by defining a function
"expand2". The necessity for an alternative expansion is of a technical
nature. As we like to find the cycles of the general regularity inside
"l 1" of a macro element, we cannot consider this regularity as a

string. We need to decompose regularities into their syntactic entities

on which a function "m-Cycs'" will apply yielding ultimately the macro

cycles of these regularities. As both "expand2" and "m-Cycs" apply to
macro programs, it would be convenient, in showing that the ordered
cycle sets of the expansion of macro programs are the same as the
expansion of the macro cycle objects of macro programs, if both
functions applied to the same syntactic entities of macro programs.
Since the functions "expand", "replexp?" and "distrexp®" of 3.3 treat
regularities as strings and do not decompose them into their syntactic
entities, an alternative definition for the expaansion of macro programs

will be given, in terms of the function "expand2".

v) production rules 4.1.2 are subset of production rules in 4.1.3

In the definition of function "expand2" we do not make use of any of

the auxilliary functions "replexp(", "distrexp?", we used in "expand" of
section 3.3.3 and '"expandl" of section 4.1.2. In "expand2" the
expansion of macro elements is defined in an alternative way. We have
distinguished two kinds of macro elements: bodyreplicators and
concatenators the expansion of which 1is defined by iteration and
imbricators the expansion of which is obtained by recursion. The
expansion of distributors is obtained from the expansion of their
equivalent replicators (cf. section 3.3.2). We have made this
distinction between bodyreplicators and concatenators on one hand and
imbricators on the other, since the former generate strings which would
be produced by iterative productions of a non-terminal, whilst the
latter generates strings which would only be produced, in general, by

recursive productions of non-terminals, as regularities are nested

within each other. The expansion of a bodyreplicator, for example will
be defined by

expand2(#i:1,n,1{PBRs(i)])=expand2(PBRs(1))...expand2(PBRs(n))

The expansion of imbricators will be defined recursively, generating at
each level of the recursion one regularity. The regularities are
obtained by substituting in "p(i) @t@ q(i)" the appropriate value for
iv, These strings are considered to be special macro '"sequences'",
involving "@t@" as a special non-starred "element". The expansion of
these macro "sequences'" will be defined, similarly to the expansions of
proper macro sequences, by expanding its syntactic sub—entities. As the
syntactic entities of this macro sequence are expanded, the expansion of
the element "@t@" will be eventually needed. We consider the expansion
of this special element to be the next regularity of the imbricator.
The problem is that when we reach that point we do not know the

imbricator the string "@t@" corresponds to. One solution would be to
pass together with each syntactic entity of the regularity the
imbricator as a second argument to "expand2'". But this would mean that
for some syntactic entities "expand2" would be a one argument function
and for others a two argument function. For this reason we decided on
another solution. We assume the existence of a stack in which a copy of
the imbricator 1is to be saved whilst syntactic entities of its

regularities are expanded. This copy will be needed when the element

- 240 -

"@ t @" is "expanded'". The reason we use a stack is that the regularity
[=]

of an imbricator could involve other imbricators, each having 1its own

"@ t @" string, which "expand" to different strings. We associate two

operations with this stack: "imbr-push" by which imbricators are pushed

into the stack and "imbr-pop" by which they are poped out of the stack.

We may use this stack as follows: When an imbricator is to generate
at least one of its general regularities, determined by its index
specification, the imbricator is pushed into the stack with the lower
value of 1its index incremented by one. The expansion of this stacked
imbricator will generate all the 1inner regularities to the curreat
regularity of the original imbricator. After the modified imbricator is
stacked its current regularity may be expanded. As the expansion of
syntactic entities of this regularity are expanded, the expansion of the

special element "@ t @" will be eventually needed. Its expansion is

defined to be the expansion of the imbricator at the top of the stack.

When the imbricator generates its last regularity it will not be stacked
and as this last regularity will not contain the special element "@ ¢ 3"
the expansion of the original imbricator will terminate correctly.

In the definition of "expand2'" which follows the syntactic variables
MPBODY, CPBRi for i=1,...,n, COLs, PBRi for i=l,...,n and PBRs denote
the same syntactic entities as defined in section 4.1. Paths will be
represented by:

path MSEQ end
where MSEQ denotes a macro sequence which is represented by

SEQPRT1;...;SEQPRTn

where each of SEQPRTi for i=l,...,n denotes a macro element produced by

"seqmacro'" or a macro orelement. A macro orelement is represented by
ORPRTI,...,0ORPRTn

where each of ORPRTL for i=l,...,n denotes either a macro element

produced by "orpart'" or "starmacro" or a starred element. A starelement

- 243 -~
is represented by
EL* or EL

where EL denotes a macro element produced by "elmacro", or an operation

represented by
op
or an element of the form (msequence) represented by

(MSEQ)

Concatenators and distributors produced by ‘'seqmacro" will be

represented by

#i:1,n,1[MSEQ(i);@]
; [MSEQ]

respectively, where MSEQ(i) denotes a macro sequence some operations of

which ma depend on "i', and MSEQ denotes a macro sequence involving
y p

array slices instead of operations.

Concatenators and distributors produced by ‘'ormacro" will be

represented by

#i:l,n, 1[MOR(i),@]
» [MOR]

respectively, where MOR(i) denotes a macro orelement some operations of

which may depend on "i" and MOR denotes a macro orelement involving

array slices instead of operations.

: . 1] " " "
All imbricators produced by 'seqmacro', ormacro , starmacro’ and

"elmacro" will be represented by

#il,n,1[p(i) @@ q(i)]

The string "p(i) 3t? q(i)" in the above representation of an
imbricator may be of four different forms each corresponding to one of
the four types of imbricators. In order to keep the definitions of the
functions "expand2" and "m-Cycs" as short as possible we shall not
distinguish similar syntactic entities of the four forms. 1In the formal
grammar of appendix D we had to have four groups for syntax rules

producing imbricators for two reasons:

l. to specify that the string "t" between the two "@"s is different in

each case, and

2. to specify that the context of "@t@" in imbricators generating

sequences excludes commas.

If we regard the string "@ t 2" as one entity, the first reason for
their distinction is not important. As for the second reason we may for
the moment ignore it when defining syntactic entities. All syntactic
variables except the syntactic variable representing the string "@td"
will be sufficed by "(i)" to denote that integer expressions in the

Mnen
3

strings they representy; may depend on i denoting the index of

replicators.

We may represent the string "p(i) @t@ q(i)" of a genuine imbricator

by
IM SP1(i);...;IM SPn(i)

where IM SPj(i) for j=1,...,n denote strings produced by "seqpart',
except exactly one which involves the string "@t@" corresponding to the

imbricator, which may be represented by the orelement
IM OP1(i),...,IM OPn(i)

If an imbricator generates an orelement, a starelement or an element,
the each of 1IM OPj(i) for j=1,...,n denotes a string produced by
"orpart'", except exactly one which involves the string "@ca”
corresponding to this imbricator. The entity which involves "@td" is

the whole of the string '"p(i) @t@ q(i)" of imbricators generating

- 245 -
starelements and elements. This entity entity may be represented by
IM EL(1)* or IM EL(i)

The syntactic variable IM EL(i) denotes an element involving "2 t 2" and

may be represented by
(IMBR SEQ(i))

in which IMBR SEQ(i) denotes a special sequence which involves "@t@" and

may be represented by either
IM SP1(i);...;IM SPa(i)
if "3c@" is further nested inside "()", or by
AT SP1(i);...;AT SPn(i)
when "@t@" is not further nested inside "()". Each of AT SPj(i) for
j=1,...,n denotes a string produced by '"seqpart', except exactly one

which in the case of 1imbricators generating sequences is "@t@",

represented by
AT EL

but in the case of imbricators generating orelements, starelements and
elements is an orelement involving "@t@' as an element and may be

represented by
AT OP1(i),...,AT OPn(i)

where each of AT O0Pj(i) for j=l,...,n denotes strings produced by
"orpart" except exactly one which is the special element "3c3@" which we

have represented by AT EL.

Finally, the string '"p(i) @t@ q(i)" of non-genuine imbricators

generating sequences may be represented by

- 246 -

AT SP1(i);....;AT SPn(i)

defined as above. The string "p(i) @t@ q(i)" of non-genuine

generating orelements may be represented by

AT OP1(i),+..,AT 0Pn(i)

as explained above.

Let us now define the function "expand2":

imbricators

expand2(e)=cases e:

2.
3.

5.
6.
7.
8.
9.

10.
11.

12.

13.

14,
15.
16.
17.
18.
19.
20.
21.
22.
23,

program MPBODY endprogram

CPBRl...CPBRn

COLs PBR
#i:1,m,1[PBRs(i)]
PBR1l...PBRn

path MSEQ end
SEQPRTL;...; SEQPRTn
#i:l,n,1[MSEQ(1);@]
; [MSEQ]
ORPRTl,...,ORPRTn
#i:1,n,1[MOR(i),@]
, [MOR]

#i:in,n, 1{p(i)@ t 8q(i)]

IM SP1(k);...; 1M SPa(k)
IM_QPl(k),...,IM_QPn(k)
IM EL(K)*

(IMBR SEQ(K))

AT SP1(k);...;AT SPn(k)
AT_QPI(k),...,AI_QPn(k)
AT EL

EL*

op

(MSEQ)

|
£ %

NN 2NN

- 247 -

progran expand2(MPBODY) endprogram

expandZ(CPBRl)...expandZ(CPBRn)

expand2(PBR)

expand2(PBRs(1))...expand2(PBRs(m))

expand2(PBRl)...expand2(PBRn)

path expand2(MSEQ) end

expand2(SEQPRT1);...;expand2(SEQPRTn)

expand2(MSEQ(1));...;expand2(MSEQ(n))

expand2(MSEQ(1));...;expand2(MSEQ(n))

expand2(ORPRT1),...,expand2(ORPRTn)

expand2(MOR(1)),...,expand2(MOR(n))

expand2(MOR(1)),...,expand2(MOR(n))
if in<n then

imbr-push(#i:in+l,n,1[p(i)@tQq(i)])

expand2(p(in)@ t @q(in))

if in=n then expand2(p’(n) t q'(n))

if in>n then expand2(t’)

expand2(IM SP1(k));...;expand2(IM_SPn(k))

expandZ(IM_QPl(k)),...,expandZ(IM_an(k))

expandZ(IM_EL(k))*

(expand2(IMBR SEQ(k))

expandZ(AT_SPl(k));...;expandZ(AI_SPn(k))

expandZ(AT_pPl(K)),...,expandZ(AT_QPn(k))

expand2(imbr-pop)

expand2(EL)*

opP

(expand2(MSEQ))

- 248 -

We will not formally prove that the expansion of a macro program
MPROG, given by expand2(:MPROG), is a basic progran as it may be proven

in a style we have proven theorem 3.1l of section 3.3.3.

We have to point out a subtle operational difference between the
functions "expand2" and the rest of the functions defined by cases, such
as "expand", "expandl", "Cycles", "exp-Cycls", etc., due to the use of
the stack in "expand2". When a function applies to syntactic variables
which themselves have as components other syntactic variables, the
result is defined in terms of the partial results obtained by applying
the same function on these components. The order of evaluation of these
partial results 1is not important. This is true for all our functions
defined by cases. In evaluating partial results of "expand2", however,
some fixed order should be followed, whilst in other functions these
evaluations could be performed concurrently. The reason for this
difference 1is that ‘"expand2" wuses a common stack which should be
accessed orderly. For otherwise, if imbricators are pushed and poped

unorderly, an imbricator may be expanded at a wrong position.

4.2.2 Macro Cycle Objects and their Expansion

Let us now examine what kind of features we need to represent sets of
cycles of macro programs concisely, and suggest a reasonable notation

incorporating these features.

The macro cycles of a macro program body will be wrapped between the
word pair 'mcycles" and "endmcycles" and the macro cycles of a macro
path between ‘''pcyc" and 'endpcyc". The macro cycle sets of
bodyreplicators and paths will be separated by "&", macro cycle sets of
strings produced by "seqpart” will be separated by "e", and macro cycle
sets of strings produced by "orpart" will be separated by "g'. As ",V
has precedence over ";" in macro sequences so "U" will have precedence

over "o" in macro cycle sets.
We need four other features in this notation:

l. one to represent the union of similar sets, for representing the

union of cycle sets of the regularities of concatenators and

distributors generating orelements,

2. another to represent the concatenation of similar cycle sets, for
representing the concatenation of cycle sets of the regularities of

concatenators and distributors generating sequences,

3. a third one to represent the imbrication of similar cycle sets, for

representing the cycle sets of the regularities of imbricators, and

finally

4, one to represent the ordering of similar cycle sets, for

representing ordered cycle sets of paths in the regularities of

bodyreplicators.

As we have already used the symbol "U" for the set union operator, it

is natural to use the notation

Brs(i)]
i=1

to represent the union of the sets S(1),+..,5(n)

S(1) U ... U S(n)
where S(i) denotes a string set expression, involving sets of a single
operation name and macro sets, the integer expressions in which may

depend on "i", and S(j) for j=l,...,n is obtained from S(i) by replacing

the index "i" by one of the values for j. For example the expression

1

aw

&{DEPOSIT(i)}]

represents the union of sets

{DEPOSIT(I)}U{DEPOSIT(Z)}U{DEPOSIT(3)}

As we have wused the symbol

strings, we shall use the notation

S(1i)]

1

o=

[
1

- 250 -

"0" for the concatenation of sets of

to represent concatenation of the sets S(1),...,S(n)

s(1) o...0 S(n)

where S(i) and S(j) for j=1,...,n are defined as

the expression

Il ow

{{DEPOSIT(i)}]

1

represents the concatenation of sets

above. For example,

{DEPOSIT(1)}o{DEPOSIT(2) }®{DEPOSIT(3)}

Similarly, we shall use the notation

s(1)]

1

[l -gl=]

[
1

to represent the ordering of collections of cycle sets S(1),...,S(n)

S(1) &...& S(n)

where S(i) and S(j) for j=1,...,n are defined as above.

For example the expression

1

Il W

[
I

pcyc {DEPOSIT(i)}©{REMOVE(i)} endpcyc]

represents the ordering of the sets of cycles

pcyc {DEPOSIT(1)}9{REMOVE(l)} endpcyc &

- 251 -

pcyc {DEPOSIT(2)}@{REMOVE(2)} endpcyc &
peyc {DEPOSIT(3)}e{REMOVE(3)} endpecyc

The macro cycle sets of the paths

path #i:1,3,1[DEPOSIT(i),@] end
end

path #i:1,3,1[DEPOSIT(i);@]
cycle sets of the paths generated by the

and of the the ordering of the

bodyreplicator

#i:1,3,1{path DEPOSIT(i);REMOVE(i) end]

may be concisely represented by

3
pcyce _U%{DEPOSIT(i)}] endpcyc
l=
3
pcyce _OE{DEPOSIT(i)}] endpcyc
— i= E—
3
_&[pcyc {DEPOSIT(i)}9{REMOVE(i)} endpcyc]
l=

respectively.
of a notation we need to represent

what kind
that an

imbricator. We may recall

Let us now examine

concisely the cycle set of an

imbricator

#i:1,n,1[p(i)@ t @q(i)]

either the string Expl

generates
Expl. t’
when 1>n, or the string Exp2

Exp2. p(l) p(2)...p"(n) t q’(n)...q(2) a(l)

- 252 -

when m>l. The string Exp2 involves two kinds of regularities in

general:

p(i)...q(i) for i=1,...,n-1
and

p'(n) t q’'(n)

Therefore for the concise representation of the cycles of the regularity

of any imbricator we need in general the macro cycles of

2. p’(n) t q"(n)
3. p(i)...q(i) for i=1,...,n-1

Of the three of the above expressions 1 and 2 are not repeated in the
imbricator expansion and must therefore, be considered individually; the
regularity which is repeated in the expansion of an imbricator is of the
form 3. This leads us to adopt the following notation for representing

the cycles of the regularities of imbricators:

>3

fa(i)/B/c]

i=1

where A(i), B, C denote the macro cycle expressions of "o (1)@ ¢ @q(i)",

"p’(n) t q@°(n)" and "t’" respectively.

As the regularity of the form 3 will always imbricate other
regularities, we must indicate in A(i) where the cycle set of the inner
regularities are to appear. We do that by using the symbol "y". As the
inner regularity is to appear in the context of "@ t &' we shall regard

the cycle set of this special element " t @' as being "+'".

For example the macro cycle expression

I >w

({CCL)}O{R(L)IUF)/({C(3)}o{R(3)})/ {A}]

[
i=]

where "X" denotes the empty string, represents the set-expression
({C(1) }o{R(1)}UC{C(2)}o{R(2) }U({C(3)}0{R(3)})))

which is the cycle set of the sequence
(C(1);R(1),(C(2);R(2),(C(3);R(3))))

which may be obtained by the expansion of the imbricator R8
R8 #i:1,3,1[(C{(i);R(i),@A)]

The macro cycle set representing the cycles of the string obtained by

the expansion of replicator R4 is

({SKIP(1)}e+) U {V(1i)}/({SKIP(n)}) U {V(n)}/{A}]

n
1.
1=

[
1

The macro cycle object of a macro program may be constructed formally

by the function 'm-Cycs" defined below, which applies to the same

syntactic entities as function "expand2".

10.

11.

12.

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

m-Cycs(e)=cases e:

- 254 -

n~Cycs(p’(n) t q'(n))/m-Cycs(t’)]

m-Cycs(IM SPn(i))
m—-Cycs(IM OPn(1i))

m~Cycs(AT SPn(i)})
m—Cycs(AT_QPn(i))

program MPBODY endprogram —> mcycles m-Cycs(MPBODY) endmcycles
CPBRl...CPBRn —> m-Cycs(CPBR1)...n-Cycs(CPBRn)
COLs PBR —> m—-Cycs(PBR)
) n
#i:1,n,1[PBRs(i)] -> ,&{m-Cycs(PBRs(i))]
l:
PBRl...PBRn - m-CyCS(PBRl)&...&m—CyCS(PBRn)
path MSEQ end — pcyc m—Cycs(MSEQ)endpceyc
SEQPRT1;...;SEQPRTn —> m-Cycs(SEQPRT1)®...0 m-Cycs(SEQPRTn)
n
#i:1,n, L[MSEQ(i);@] N _O{m—Cycs(MSEQ(i))]
i=
n
; IMSEQ] - _°£m-CyCS(MSEQ(i))]
l=
ORPRT1,...,0RPRTn -~> m-Cycs(ORPRT1)U...U m-Cycs(ORPRTn)
n
#i:1,n,1[MOR(1),Q] -> .U£m—Cycs(MOR(i))]
1=
n
,[MOR] - _U{m—Cycs(MOR(i))]
l:
n .
#izin,n,1{p(i) @ t @ q(i)] => 4[m-Cycs(p(i) @ t @ q(1))/
i=in
IM SPI(i);...;IM SPn(i) -> m-Cycs(IM SP1(i))9...0
IM OP1(i),...,IM OPn(i) -> m-Cycs(IM OP1(i))U...U
IM EL(1)* — m-Cycs(IM EL(i))*
(IMBR SEQ(i)) - (m~Cycs(IMBR SEQ(i))
AT SP1(i);.+..;AT SPn(i) -> m-Cycs(AT_SP1(i))9...¢
AT OP1(i),...,AT OPn(i) -> m-Cycs(AT OP1(i))U...U
AT_EL -> ¥
EL* —> m-Cycs(EL)*
op -> {OP}
(MSEQ) ~> (m~Cycs(11SEQ))

- 255 -

The macro cycle object of the ring buffer with one producer and one

consumer specified by the following macro program MPROG1

MPROG1

program
array DEPOSIT REMOVE(n) endarray
#i:l,n,l[ggED_DEPOSIT(i);REMOVE(i) Eﬂgl
path ;[DEPOSIT] end
path ;[REMOVE] end

path ,[{DEPOSIT] end

path ,[REMOVE] end

endprogram

obtained by the function "m-Cycs" is:

mcycles

(3 -gl=]

pcyc {DEPOSIT(i)}o{REMOVE(i)} endpcyc] &

1

[
1

peye
i

{DEPOSIT(i)}] endpcyc &

o3

[
1

=]

pcyc ©[{REMOVE(i)}] endpcyc &

i=1

n
pcyce U[{DEPOSIT(i)}] endpcyc &
PEYE Lo enapeyc

n
pcyc .Ug{REMOVE(i)}] endpcyc
1=

endmcycles

The macro cycle object of the priority resource manager [LT78, LS78]

specified by the macro program MPROG2

- 256 -
IPROG2

prograam
array
DEPOSIT REMOVE(n,m)
SKIP CS BEGIN CS_END(m)
endarray
#j:1,m,1
[path ;[DEPOSIT(,j)] end
path ;[REMOVE(,j)] end
#i:1,n,1[path DEPOSIT(i,j);REMOVE(i,j) end]
path SKIP(J),(,[REMOVE(,]j)];CS BEGIN(j);CS END(j)) end
]
path #3:1,m,1[(SKIP(3);@@),(CS BEGIN(j);CS_END(j))] end

endprogram

obtained by '"m-Cycs" is

mcycles

m n
&[peye 0[{DEPOSIT(1,J)}] endpcyc &

[
j=1

peye 0[{REWOVE(1 j)] endpcyc &
l—

IIQ‘D

E{DEPOSIT(I,J)}O{REAOVE(l,J)}] &
i

peyce
{SKIP(J)}U(U[{REWOVE(I,J)}]°{CS BEGIN(j)}e{CS END(j)})

endpcyc
] &

peyc

[({SKIP(J)}O+)U({CS BEGIN(j)}e{CS END(j)})/
({SKIP(n)})U({CS BEGIN(n)}o{CS_! END(n)})/{*}]

e
||—>B

endpcyc

endmcycles

- 257 -

Let us now give general concise readings for the macro cycle sets.

Macro cycle sets of the form

n
o[s(1)]
i=1

may be read as:
for all i=l,...,n do consecutively S(i).
For example the macro set

n
o[{A(1)}U{B(i)}]
-i=1
may be read as
for all i=l,...,n do consecutively A(i) or B(i).

Macro sets of the form

n
U[s(i)]
i=1

may be read as
for any i=1l,...,n do S(i).
For example the macro set

RICCUCHTILICIIPY

may be read as
for any i=1,...,n do A(i) followed by B(i).
Finally macro sets of the form

n
'fgs(i)/U/T]

1

- 253 -

may be read recursively by defining the reading of the i’th regularity
as follows:

read cycreg(i)= if i<n then S(1)
if i=n then U
if idn then T

1m.”n
Y

where the symbol must appear in S(i) standing for

“"read cycreg(i+1)". For example the cycle set

?{HSKIP(i)}W)U{V(i)}/({SKIP(n)}U{V(n)}/{A}]
i=

may be read as:
read cycreg(l)
where the reading of the i’th regularity read cycreg(i) is

read cycreg(i)= if id<n do SKIP(i) followed by read cycreg(i+l),
or V(i)
if i=n do SKIP(n) or V(n)

For programs involving simple macro elements there is no real
practical advantage in reading macro cycle objects of macro programs
ratheﬁﬁ?::ding the programs themselves. However, for programs involving
more complicated macro elements, macro cycle objects have an advantage
and are useful in that aspect as well. In certain cases we may simplify
the macro cycle expressions by the composition rules of "o" and "U" of
sets of strings and by applying some relations regarding the union and
concatenation operations on sets of strings and macro cycle sets, such

as:

1. A9BUC=(A9B) U(AO©C
BUCOA=(Bo9A) U(CoA)

2. AUB=BUA

3. AU(BUC) =(AUB)UC=AUBUC

4, A0 (BoC) =(A©B)e®C=A@BocC

5. (AUB) ©oC=AUBO®C

where A, B and C are sets of strings, or macro cycle sets. In addition

when A 1s a string set or a macro set representing union of similar

sets, the following property holds:

6. (A) = A

Finally when A is a set of strings the following properties hold:

7.

i=1

i=1

=t

[S(1)] © A = U[S(i) o A]

n n
8. A °_U§S(i)] =_U[A ° 5(1)]
i= i=

Consider for example the macro cycle of the replicator R9
R9 #i:l,n,1[((A(i);B(i)),C(i);D(1)),q]

in which none of the parentheses in the regularity are redundant. By

applying the function "m-Cycs" we obtain the macro cycle set:

{(({A(i)}o{B(i)}) U {C(1)}e{D(i)})]

1

[evi=)

{
1
which is a quite complicated expression and certainly not more readable

than the replicator itself. The above macro set may be read as:

for any i=l,...,n do
A(i) followed by B(i), or C(1)
followed by D(i).

We may apply some of the above well defined properties to simplify this

- 260 -

macro set and its reading. The cycle set of the regularity of the above

set expression is equivalent to

(({A(1).B(1)}) U {C(i)}o{D(i)})= by composition of "o"
({A(1).B(1)} U {C(i)}eo{D(i)})= by rule 6
({a(i).B(i),C(i)}e{D(i)})= by composition of "U"
({A(i).B(i).D(1),C(i).D(i)}) by composition of "o"
{A(1).B(1).D(1),C(1).D(1)} by rule 6

which means that the macro cycle set of R9 is simplified to the macro

cycle set:

[eg=)

JU[{A(1).B(1).D(1),C(i).D(1)}}

i=1

We Dbelieve that the above expression greatly simplifies the task of

understanding replicator R9, which may be now read as:

for any i=l,...,n
do A(i) followed by B(i) followed by D(i),
or C(i) followed by D(i)

The above macro set is also the macro cycle set of the replicator
R10 #i:1,n,1[(ACi);B(1);D(1)),(C(1);D(1)),E]

The replicator R10 might be slightly easier to read than RI but R10
involves repeated operation names which make RIO semantically more
involved than R9 [LSB79b]. Although we could have defined an "inverse"
function of '"m-Cycs'" to take us from simplified macro cycle objects to
macro programs we did not, as this inverse function would in general
introduce 1in macro programs the complexity of repeated operation names.
We would not gain anything as the macro objects give us quite a

coprehensive reading of the paths in macro programs anyway.

Let us also simplify the macro cycle set of the imbricator R5:

-5

[({A(i)} o HU{B(i)}o{C(i)}/(A(n)})U{B(n)}e{C(n)}/{A}]

i

- 261 -
The first set expression inside "[|" may be simplified as follows:

(({A(1)} o +) o {C(i)}) U ({B(i)} o {c(i)}) by rule 1

(({a(i)} © #) o {C(i)}) U({B(i).C(i)}) by comp. of "o"
(({A(i)} @ +) o {C(i)}) U {B(i).C(i)} by rule 6
({a(i)} @ v o {C(1)}) U {B(i).C(i)} by rule 4

The second expression inside "[]" may be simplified as follows:

{A(n)} U {B(n)} o {C(n)} by rule 6
{A(n),B(n)} © {C(n)} by the composition of "U"
{A(n).C(n),B(n).C(n)} by the composition of "e"

Thus the macro set representing the cycles of R5 may be simplified to

>3

{({A(i)}°+°{C(i)})U{B(i)-C(i)}/{A(n)-C(n),B(n)—C(n)}/{X}]

1

Let finally simplify the macro cycle expression

{SKIP(j)}U §3£{REMOVE(i,j)}]O{CS_BEGIN(j)}O{CS_END(j)})
i=

which represents the cycles of the last path in the bodyreplicator of
MPROG2, namely the path

path SKIP(j),(,[REMOVE(,j)];CSBEGIN(j);CS END(j)) end
The above set expression may be simplified as follows:

{REMOVE(i,j)}]o{CS BEGIN(j).CS END(j)}) comp. of "o"

[egel

{SKIP(3)}U (U[
i=]

2

{SKIP(j)}U (U[{REMOVE(i,j)}®{CS_BEGIN(j).CS_END(j)})] rule 5
i=]

{SKIP(j)}U QSI{REMOVE(i,j)}.CS_BEGIN(j)-CS_END(j)}]) comp. of "o"
1:

{SKIP(j)}U_%{{REMOVE(i,j)}.CS_BEGIN(j)-CS_END(j)}] rule 6
l=

- 262 -

To construct the vector firing sequences of a macro program, the

ordered cycle sets of the expanded paths will be needed. let us

therefore define the function "cyc-exp" by which macro sets in macro

objects are expanded. We will then be in a position to show formally
that for a macro program MPROG, generated by the the syntax in appendix
D, the relation

Cycles(expand2(MPROG))=cyc-exp(m—Cycs{MPROG))

holds, where the function "Cycles" yields the ordered cycle sets of

basic programs and is defined in section 4.1.

The function 'cyc-exp" applies to macro cycle objects of macro

programs which may be represented by

mcycles BODY-CYCS endmcycles
where BODY-CYCS denotes ordered macro cycle expressions representing the
cycle sets of the paths and bodyreplicators in the body of a macro
program and may be represented by

BD-CYCS1 &...& BD-CYCSn
where each of BD-CYCSi for i=l,...,n denotes a macro cycle set of a
single bodyreplicator or a macro cycle expression representing the cycle
set of a path.

A macro cycle set of a bodyreplicator may be represented by

BD-CYCS(1i)]

B

(
1

1

where BD-CYCS(i) denotes ordered macro cycle expressions representing

the ordered cycle sets of the paths in the regularity of the

bodyreplicator. The macro cycle expression representing the cycle set

of a single path may be represented by

pcyc SEQ-CYC endpcyc

where SEQ-CYC denotes the cycle expression representing the cycles of a

macro sequence and may be represented by

SP-CYCl ©...0 SP-CYCn

where each of SP-CYCi for i=1l,...,n denotes the macro cycle expression
representing the cycle set of a string produced by 'seqpart", which
could be a concatenator or distributor generating sequences, a macro
orelement or an imbricator generating sequences. The macro cycle set of

a concatenator or distributor generating sequences may be represented by

N eB

[SEQ-CYC(1)]
i=1

where SEQ-CYC(i) denotes the macro cycle expression representing the
cycle set of the regularity of concatenators and distributors. The
macro cycle expression representing the cycle set of a macro orelement

may be represented by
ORP-CYC! U...U ORP-CYCn

where each of ORP-CYCi for i=l,...,n denotes a macro cycle expression
representing the cycle set of a string produced by "orpart", which could
be a concatenator or distributor generating orelements, a starelement,
or an imbricator generating an orelement. The macro cycle set
representing the cycle set of a concatenator or distributor generating

orelements may be represented by

ﬁ[ORP—CYC(i)]
i=1

where ORP-CYC(i) denotes the macro cycle expression representing the
cycle set of the regularity of the concatenator or distributor. The
macro set expression representing the cycle set of a starelement may be

represented by

- 264 -
EL-CYC* or EL-CYC

where EL-CYC denotes the macro cycle expression representing the cycle

set of an element and may be represented either by
STRING-SET

if the element is an operation, or by
(SEQ-CYC)

if the element is of the form (msequence).

The macro cycle set representing the cycle set of an imbricator may

be represented by

A [SP(1)+5Q(1)/B/C]
1=1n

where SP(i)+SQ(i) denotes the macro cycle expression representing the
cycle set of the repeatable regularity, B denotes the macro cycle
expression representing the cycle set of the innermost regularity and C
denotes the macro cycle expression representing the cycle set of the
string between the "@"s without its leading and terminating separators.
The macro cycle expressions B and C are of form of SEQ-CYC (cf. lemmata
4, S5 1in section 3.3). The macro cycle expression SP(i)+SQ(i) may be

represented by
RSEQ-CYC(1i)

which may be represented by
RSP-CYC1(i) ®©...0 RSP-CYCn(i)

where each of RSP-CYCj(i) for j=1,...,n denotes a macro cycle expression

of a string produced by 'seqpart', except exactly one which either
denotes the cycle set of "@t@" represented by "+'", or denotes the macro

cycle expression of a string involving "@t@" and it is represeated by

- 265 -
ROP-CYCL(1) U...U ROP-CYCn(i)

where each of ROP-CYCj(i) for j=l,«..,n denotes a macro cycle expression
of a string produced by "segpart", except exactly one which denotes the
macro cycle expression of "@t@" represented by "+", or the macro cycle

expression of a starred element involving "@t@" represented by
REL-CYC(1i) or REL-CYC(i)*

where REL-CYC(i) denotes the macro cycle expression of an element

involving "@t@" and may be represented by

(RSEQ-CYC(i))

The expansion of macro cycle sets of bodyreplicators, and the macro
cycle sets of concatenators and distributors will be defined by
iteration, whilst the expansion of macro cycle sets of imbricators will
be defined by recursion. For the latter we use the same technique as in
"expand2" for defining the expansion of imbricators. Here, we assume
the existence of a second stack in which macro cycle sets of imbricators
are pushed, while their constituent macro cycle entities in "[]" are
expanded. We unstack the stacked macro cycle sets when 'cyc-exp'" 1is
applied to "+¥", the expansion of which is considered to be the expansion
of the original macro cycle set to which '"+" corresponds, with the lower
limit of the index of the macro cycle element increased by one. We
associate with this stack two operations, 'cyc—push" and 'cyc—-pop'" by
which wmacro cycle sets of imbricators may be pushed in and respectively

popped out of the stack.

The function "cyc—-exp" is defined by:

cyc-exp(e)=cases e:

1.
2.

10.
11.
12.
13.
14.
15.
16.
17.

mcycles BD-CYCS endmcycles

-

- 266 -

cycles cyc-exp(BD -CYCS)endcycles

BD-CYCS1&...&BD-CYCSn

[y
nepB

}BD—CYCS(i)]
peye SEQ-CYC endpcyc
Sp-CYCio...05P-CYCn

SISEQ-CYC(1)]
i=1

ORP-CYCl U...U ORP-CYCn

[K ef=]

iOR—CYC(i)]

1

spi)¥sa(i)/B/c)
1=1n

RSEQCYC1(k)©...9RSEQCYCn(k)
RORCYC1(k)U...U RORCYCn(k)

RELCYC(k)*
(RSEQ-CYC(Kk))
+

EL-CYC*
(SEQ-CYC)
STRING-SET

N I 2 A A 2

cyc-exp(BD-CYCS1)&...&cyc—exp(BD-CYCSn)
cyc-exp(BD-CYCS(1))&...&cyc—exp(BD-CYCS(m))
cyc—exp(SEQ-CYC)
cyc~exp{SP-CYCL)9...0cyc~exp{SP-CYC)

cyc—exp(SEQ-CYC(1))e...9cyc-exp(SEQ-CYC(m))

cyc—exp(ORP-CYC1)U...U cyc~exp(ORP-CYCn)

cyc~-exp(OR-CYC(1))U...U cyc-exp(OR-CYC(m))

if n>in then
cyc—push(?[SP(i)+SQ(i)/B/C])
i=intl
cyc—exp(SP(in)+SQ(in))

if n=in then cyc-exp(B)

if n>in then cyc—-exp(C)

cyc—exp(RSEQCYCl(k))o...Ocyc—exp(RSEQCYCn(k))
cyc—exp(RORCYC1(k))U...U cyc—exp(RORCYCn(k))
cyc—exp(RELCYC(k))*

cyc~exp (RSEQ-CYC(k)

cyc—exp(cyc—pop)

cyc—exp (EL-CYC)*

cyc—exp(SEQ-CYC)

STRING-SET

- 267 -

Let us apply the function "cyc-exp" to expand the macro cycle object
the macro programs MPROGl and MPROG2.

of

The expansion of the macro cycle
object of MPROGl for n=3 is

cycles
{DEPOSIT(1l).REMOVE(1)} &
{DEPOSIT(2).REMOVE(2)} &
{DEPOSIT(3).REMOVE(3)} &

{DEPOSIT(1).DEPOSIT(2).DEPOSIT(3)} &
{REMOVE(1) .REMOVE(3) .REMOVE(3)}

endcycles

and the expansion of the macro cycle object of MPROG2 for m=3, n=3 is

- 268 -

cycles

{DEPOSIT(1,1).DEPOSIT(2,1).DEPOSIT(3,1)} &
{REMOVE(1, 1) .REMOVE(2,1) .REMOVE(3, 1)} &
{SKIP(1),REMOVE(1,1).CS_BEGIN(1).CS END(1),
SKIP(1),REMOVE(2,1).CS BEGIN(1).CS END(1),
SKIP(l),REMOVE(3,1).Cs_BEGIN(1).cs:ﬁND(1) } &
{DEPOSIT(1l,1).REMOVE(l,1)} &
{DEPOSIT(2,1).REMOVE(2,1)} &
{DEPOSIT(3,1).REMOVE(3,1)} &

{DEPOSIT(1,2).DEPOSIT(2,2) .DEPOSIT(3,2)} &
{REMOVE(1,2) .REMOVE(2,2) .REMOVE(3,2)} &
{SKIP(2),REMOVE(1,2).CS BEGIN(2).CS END(2),
SKIP(2),REMOVE(2,2).CS BEGIN(2).CS END(2),
SKIP(2),REMOVE(3,2).CS BEGIN(2).CS END(2) } &
{DEPOSIT(1,2) .REMOVE(1,2)} &

{DEPOSIT(2,2) .REMOVE(2,2)} &

{DEPOSIT(3,2) .REMOVE(3,2)} &

{DEPOSIT(1,3).DEPOSIT(2,3) .DEPOSIT(3,3)} &
{REMOVE(1, 3) .REMOVE(2,3) .REMOVE(3,3)} &
{SKIP(3),REMOVE(1,3).CS BEGIN(3).CS _END(3),
SKIP(3),REMOVE(2,3).CS BEGIN(3).CS END(3),
SKIP(3),REMOVE(3,3).CS BEGIN(3).CS END(3) } &
{DEPOSIT(1,3).REMOVE(1,3)} &

{DEPOSIT(2,3) .REMOVE(2,3)} &

{DEPOSIT(3,3) .REMOVE(3,3)} &

{SKIP(1).SKIP(2).SKIP(3),
SKIP(l).SKIP(Z).CS_&EGIN(3).CS_END(3),
SKIP(I).CS_BEGIN(Z).CS_ﬁND(Z),

CS BEGIN(3).CS_END(3) }

endcycles

- 269 -

4,2.3 The Ordered Cycle sets of the Expansion and the Expansion of

macro—Cycle Objects of Constrained Macro-Programs

In this section we shall prove that the ordered cycle sets of a basic

program obtained by the expansion of a macro program MPROG are the same
as the ordered cycle sets obtained by the expansion of the macro cycle
objects of MPROG.

THEOREM 4.3:

For any macro program MPROG produced by the constrained syntax rules

of appendix D
Cycles(expand2(MPROG))=cyc-exp(m-Cycs(MPROG))
Proof:

We shall prove it by proving the above relation for each case of

syntactic entities on which the functions "expand2" and "m-Cycs" apply.
case 1

Applying function "expand2'" to a macro program and then "Cycles" we

obtain
Cycles(expand2(program MPBODY endprogram))=
Cycles(program expand2(MPBODY)endprogram)=
cycles Cycles(expand2(MPBODY))endcycles

and applying "m-Cycs" first and then '"cyc-exp" we obtain
cyc—exp(m—-Cycs(program MPBODY endprogram))=
cyc-exp(meycles m-Cycs(MPBODY)endmcycles)=
mcycles cyc-exp(m—Cycs(MPBODY))endmcycles

The above two expressions are the same provided the relation

Cycles(expandz(MPBODY))=cyc—exp(m—CyCS(MPBODY))

- 270 -
holds, which may be shown by case 2.
case 2

Applying function "expand2" to macro program body and then '"Cycles"

we obtain

Cycles(expand2(CPBRl...CPBRn))=

Cycles(expand2(CPBRl)...expand2(CPBRn))=
Cycles(expand2(CPBRL))&...&Cycles(expand2(CPBRn))

The last step is justified as
expand2(CPBRi) for any i=l,...,n

yields a collection of basic paths and
Cycles(CPl) & Cycles(CP2)=Cycles(CPl CP2)

where CPl and CP2 are collections of basic paths. To show the above

relation let us define CPl and CP2 as follows:

cPl=P!l...Pln
CP2=P?%1...P%

where Pli and sz for i=l,...,m and j=l,...,k are basic paths. Then the

relation

Cycles(P!l pPl2...Plm) & Cycles(le P22...P%k)=
Cye(Pl1)aCyc(P12)&. . .&Cyc (P lm)&Cyc(P21)&Cyc(P?2)&. . .&Cyc(P?k) =
Cycles(Pll Pl2...plm P21 P22...P%)

holds. Applying "m-Cycs" first and then "cyc-exp' we obtain
cyc—exp(m-Cycs(CPBRl...CPBRn))=

cyc-exp(m~Cycs(CPBRl)&. ..&m-Cycs(CPBRn))=
cyc-exp(m-Cycs(CPBR1))&. . .&cyc—exp(m-Cycs(CPBRn))

- 271 -
The above expressions are the same provided the relation
Cycles(expandZ(CPBRi))=cyc—exp(m—Cycs(CPBRi))
holds for any i=l,...,n, which may be shown by case 3.
case 3

Applying function 'expand2" to a single path or bodyreplicator

possibly headed by collectivisors and then "Cycles" we obtain

Cycles(expand2(COLs PBR))=
Cycles(expand2(PBR))

and applying "m-Cycs" first and then "cyc-exp" we obtain

cyc-exp(m-Cycs(COLs PBR))=
cyc—exp(m-Cycs(PBR))

The above expressions are the same as may be shown by cases 4 and 6,

depending on whether PBR denotes a bodyreplicator or a macro path.
case 4

Applying function “expand2" to a bodyreplicator and then "Cycles" we

obtain

Cycles(expand2(#i:1,n,1[PBRs(i)]))=
Cycles(expand2(PBRs(1))...expand2(PBRs(n)))=
Cycles(expand2(PBRs(1)))&...&Cycles(expand2(PBRs(n)))

Since the expansion of PBRs(i)

expand2(PBRs(i)) for any i=l,...,n

yields a collection of basic paths, the last step is justified as shown

in case 2.

- 272 -

Applying "m-Cycs'" first and then "cyc-exp" we obtain

cyc—exp(m-Cycs(#i:1,n,1[PBRs(i)]))=
n
cyc—exp(&{m—Cycs(PBRs(i))])=
l=
cyc—exp(m-Cycs(PBRs(1)))&...&cyc—exp(m—-Cycs(PBRs(n)))
The above expressions are the same provided the relation
Cycles(expand2(PBRs(i)))=cyc-exp(m—cycs(PBRs(i)))
holds for any i=1l,...,n, which may be shown by case 5.
case 5

Applying function "expand2" to a collection of paths and

bodyreplicators and then '"Cycles" we obtain
Cycles(expand2(PBRl...PBRn))=
Cycles(expand2(PBRl)...expand2(PBRn))=
Cycles(expand2(PBR1))&...&Cycles(expand2(PBRn))
Since the expansion of PBRi

expand2(PBRi) for any i=l,...,n

yields a collection of basic paths, the last step is justified as was

shown in case 2.
Applying "m-Cycs" first and then '"cyc-exp" we obtain
cyc—exp(m-Cycs(PBR1l...PBRn))=
cyc-exp(m-Cycs(PBR1)&...&m-Cycs(PBRn))=
cyc-exp(m-Cycs(PBRl))&...&cyc—exp(m—Cycs(PBRn))

The above expressions are the same provided the relation

Cycles(expand2(PBRi))=cyc—exp(m-Cycs(PBRi))

- 273 -

holds for any i=1,...,n, which may be shown by cases 4 and 6, depending

on whether a PBRi for any i=1,...,n is a bodyreplicator or a macro path.

case 6

Applying function "expand2" to a macro path and then "Cycles" we

obtain
Cycles(expand2(path MSEQ end))=
Cyc(expand2(path MSEQ end))=
Cyc(path expand2(MSEQ) end)=
Cyc(expand2(MSEQ))
and applying "m~Cycs'" first and then "cyc—exp'" we obtain
cyc-exp(m-Cycs(path MSEQ end))=
cyc—exp{pcyc m-Cycs(MSEQ) endpcyc)=
cyc—exp(m-Cycs(MSEQ))

The above expressions are the same as may be shown by case 7.

case 7

Applying function "expand2" to a macro sequence and then "Cyc" we

obtain

Cyc(expand2(SEQPRTL;...; SEQPRTn))=
Cyc(expand2(SEQPRT1);...;expand2(SEQPRTn))=
Cyc(expand2(SEQPRT1))®...0Cyc(expand2(SEQPRTn))

The last step is justified as

expand2(SEQPRTi)) for any i=l,...,n

is a basic sequence (cf. case 2 of theorem 4.1). Applying '"m-Cycs"

first and then "cyc-exp" we obtain

- 274 -
cyc—exp(m-Cycs(SEQPRTL;...; SEQPRTn))=
cyc-exp(m-Cycs(SEQPRTL) ¢...0om~Cycs(SEQPRTn))=
cyc-exp(m=Cycs(SEQPRTL))®...0cyc-exp(m~Cycs(SEQPRTn))
The above expressions are the same provided the relation
Cyc(expand2(SEQPRTi))=cyc—exp(m-Cycs(SEQPRTi))
holds for any i=1l,...,n, which may be shown by cases 8, 9, 10 and 13,
depending on whether a SEQPRTi for 1<i<m, 1is a concatenator, a
distributor generating sequences, a macro orelement, or an imbricator
generating sequences respectively.

case 8

Applying function "expand2" to a concatenator generating sequences

and then "Cyc" we obtain
Cyc(expand2(#i:1,n,1[MSEQ(i);@]))=
Cyc(expand2(MSEQ(1));...;expand2(MSEQ(n)))=

Cyc(expand2(MSEQ(1)))®...oCyc(expand2(MSEQ(n)))

and applying "m-Cycs" first and then '"cyc-exp' we obtain

cyc-exp(m—-Cycs(#i:1,n,1[MSEQ(1);@]))=
n
cyc—expgogm—Cycs(MSEQ(i))])=
l=
cyc—exp(m—Cycs(MSEQ(1)))0...0cyc—exp(m—Cycs(MSEQ(n)))
The above expressions are the same provided the relation
Cyc(expandZ(MSEQ(i)))=cyc—exp(m—Cycs(MSEQ(i)))

holds for any i=l,...,n, which may be shown by case 7 as MSEQ(i) for

i=l,...,n is a macro sequence.

case 9

Applying function "expand2" to a distributor generating sequences and

then "Cyc" we obtain

Cyc(expand2(; [MSEQ]))=
Cyc(expand2(MSEQ(1));...;expand2(MSEQ(n)))

Applying "m-Cycs" first and then "cyc—exp" we obtain

cyc—exp(m-Cycs(; [MSEQ]))=

n
cyc—expggim—Cyc(MSEQ(i))])

From this point the proof follows as for case 8.

case lg

Applying function ‘"expand2" +to a macro orelement and then "Cyc" we

obtain
Cyc(expand2(ORPRT1l, ...,ORPRTn))=
Cyc(expand2(ORPRT1),...,expand2(ORPRTn))=
Cyc(expand2(ORPRT1))U...U Cyc(expand2(ORPRTn)})
The last step is justified as

expand2 (ORPRTi) for any i=l,...,n

is a basic orelement (cf. case 5 of theorem 4.2). Applying "m-Cycs"

first and then "cyc-exp" we obtain
cyc-exp(m—Cycs(ORPRTL, ...,0RPRTR))=
cyc—exp(m-Cycs(ORPRTL)U. ..U m—Cycs(ORPRTn))=

cyc—exp(m-Cycs(ORPRTL))U. ..U cyc-exp(m-Cycs(ORPRTn))

The above expressions are the same provided the relation

- 276 -

Cyc(expand2(ORPRTi))=cyc-exp(m-Cycs(ORPRTi))
holds for any i=1,...,n which may be shown by cascs 11, 12, 13, 21 ay

- : ,) L)
23 depending on whether ORPTRi for I<i<n is a2 concatenator sener:tins

orelements, a distributor generating orelcnantsy an imbri-ator
cTos 1 . A

generating orelements, a macro stiarelement, an operation or an element

of the form (msequence), respectively.

case 11

Applying function '"expand2" to concatenators generating orelements

and then "Cyc" we obtain
Cyc(expand2(#i:1,n,1[MOR(1),@)))=
Cyc(expand2(MOR(1)),...,expand2(MOR(n)))=
Cyc(expand2(MOR(1)))U...U Cyc(expand2(MOR(n)))
The last step is justified as

expand2(MOR(i)) for any i=l,...,n

is a basic orelement (cf. case 5 of theorem 4.2). Applying "m-Cycs"

first and then "cyc—exp" we obtain

cyc—exp(m-Cycs(#i:1,n,1[MOR(1),@]))=
n
cyc—exp(U{m—Cycs(MOR(i))])=
l=
cyc-exp{(m-Cycs(MOR(1)))U...U cyc-exp(m-Cycs(MOR(n)))
The above expressions are the same provided the relation
Cyc(expandZ(MOR(i)))=cyc—exp(m-CYCS(MOR(i)))

holds for any i=l,...,n, which may be shown by case 10 as MOR(i) for

i=1l,...,n is a macro orelement.

- 277 -

case lg

Applying function "expand2" to distributors generating

then "Cyc'" we obtain

orelements and

Cyc(expand2(,[MOR]))=
Cyc(expand2(MOR(1)),...,expand2(MOR(n)))

and applying '"m~Cycs" first and then "cyc-exp" we obtain

cyc~exp(m-Cycs(,[MOR]))=

cyc-exp(agm-CYC(MOR(i))])=
1=

From this point the proof follows as for case 11.

case ll

Applying function "expand2" to an imbricator and then "Cyc" we obtain

Cyc(expand2(#i:in,n,1[p(i) @c@ q(i)}]))=
Cyc(if in>n then expand2(t’)

if in=n then expand2(p’(n) t q"(n))

if in<n then expand2(p(in) @t@ q(in)))=

if indn then Cyc(expand2(t’))

|
I 4
if in=n then Cyc(expand2(p’(n) t q'(n)))

| if in<n then Cyc(expand2(p(in) @t@ q(in)))

and applying "m-Cycs" first and then '"cyc~-exp" we obtain

cyc-exp(m-Cycs(#i:in,n, 1[p(i) @t@ q(i)]))=

Cyc—exp(?[m—Cycs(p(i) @t@ q(i))/m-Cycs(p’(n) t q’ (n))/m-Cycs(t’)])=
i=in

| if i>n then cyc—exp(m-Cycs(t’))

{ if in=n then cyc—exp(m—-Cycs(p’(n) t g’ (n)))

} if in<n then cyc-exp(m-Cycs(p(in) @t8 q(in)))

- 278 -
We now have to show that the three relations hold:

if in>n then

Cyc(expand2(t’))=exp~cyc(m-Cycs(t’))

if in=n then

Cyc(expand2(p’(n) t q"(n)))=exp-cyc(m-Cycs(p’(n) t q’(n)))

if in<n then

Cyc(expand2(p(in) @t@ q(in)))=exp-cyc(m-Cycs(p(in) @t@ q(in)))

Depending on whether the imbricator generates a sequence, an orelenment,

a starelement or an element, the strings "t’" and "p’(n) t 4q'(n)" will
be sequences, orelements, starelements or elements, respectively.

Therefore, for indn and in=n the first two relations may be shown to

hold by cases 7, 10, 21, 23 respectively.
We have still to prove the third relation
Cyc(expand2(p(in) @t@ q(in)))=cyc-exp(m-Cycs(p(in) Q@t@ q(in)))

when indn. 1In this case before "expand2" and '"cyc—exp" are applied the

imbricator
#izin+l,n,1[p(i) @@ q(i)]
is stacked into the imbricator stack and the macro cycle set

2[m-Cycs(p(i) @@ q(i))/m-Cycs(p’(n) t q’(n))/w-Cyecs(t’)]=
i=in+1

into the macro cycle set stack. Observe that the above macro cycle set

is the macro cycle set of the imbricator stacked into the imbricator

stack. We shall use this fact in case 20.

Depending on whether the imbricator is genuine or not and whether it

nt, the
generates a sequence, an orelement, a starelement or an element,

string "p(in) @t@ q(in)" may be of six forams Fl to F6. For each form Fi

lS}Sﬁ the relation

must hold.

- 279 -

Cyc(expand2(Fi))=cyc—exp(m~Cycs(Fi))

relation may be shown to hold are as follows:

Fl. IM SPi(in);...;IM SPn(in)
F2. AT SP1(in);...;AT SPn(in)
F3. IM OPi(in);...;IM OPn(in)
F4. AT OPl(in),...,AT OPn(in)
F5. IM EL(in)*

F6. (IMBR SEQ(in))

case l4

sequence imbricator or to

case

case

case

case

case

case

14
18
15

19
16

17

Applying function "expand2" to the string inside "{]" of

a

The six forms and the corresponding cases by which the above

genuine

the string produced by the non-terminals

"orimbrseq", "starimbrseq', "elimbrseq" and then "Cyc" we obtain

The

Cyc(expand2(IM SP1(k);...;IM SPa(k)))=

Cyc(expand2(IM SP1(k));...;expand2(IM SPn(k)))=
Cyc(expand2(IM SP1(k)))o...eCyc(expand2(IM SPn(k)))

last step is justified as

expand2(IM SPi)) for any i=l,...,n

is a basic sequence (cf. case 2 of theorem 4.1).

first and then "cyc-exp" we obtain

cyc—exp(m—Cycs(I@_SPl(k);...;IM_SPn(k)))=
cyc—exp(m—Cycs(Iﬁ_SPl(k))0...Om—Cycs(IM_SPn(k)))=

Applying

cyc-exp(m~Cycs(IM SP1(k)))@...ocyc-exp(m-Cycs(Id SPn(k)))

The above expressions are the same provided the relation

Cyc(expandZ(IM_SPi(k)))=cyc—exp(m—Cst(IM_SPi(k)))

"m_CyCSII

- 280 -

holds for all 1i=1,...,n. The above relation may be shown to hold by

cases 8, 9, 13 when IM SPi(k) for 1<i<n is a concatenator, distributor

and imbricator respectively generating sequences, by case 10 when

IM SPi(k) is an orelement, or by case 20°when IM SPi(k) 1is the string
"@e@".

case 15

Applying function "expand2" to the string inside a genuine imbricator
generating orelements or to the string produced by one of the
non-terminals 'seqimbror", "orimbr in or", "starimbror", "elimbror'" and

then "Cyc" we obtain

Cyc(expandZ(In_QPl(k),...,IM_OPn(k)))=
Cyc(expandZ(IM_QPl(k)),...,expand2(I&_OPn(k)))=
Cyc(expand2(IM OPi(k)))U...U Cyc(expand2(IM OPn(k)))

The last step is justified as
eXpandZ(IM_OPi) for any i=l,...,n

is a basic orelement (cf. case 5 of theorem 4.2). Applying '"m-Cycs"

first and then "cyc—-exp'" we obtain

cyc-exp(m-Cycs(IM OP1(k),...,IM OPn(k)))=
cyc—exp(m-Cycs(IM OP1(k))U...U m-Cycs(IM OPn(k)))=
cyc—exp(m~Cycs(IM OP1(k)))U...U cyc—exp(m-Cycs(IM OPn(k)))

The above expressions are the same provided the relation
Cyc(expandZ(I&_OPi(k)))=cyc—exp(m—Cycs(IM_QPi(k)))

for i=1,...,n holds. The above relation may be shown to hold by cases

11, 12, 13 when IM OPi(k) for 1<i<k is a concatenator or distributor or

imbricator generating orelements, by case 21 if it is a starred element,

by cases 22 or 23 if it is an operation or an element of the form

"(msequence)" respectively, by case 16 if it 1is a starred element
involving "@t@", and finally by case 17 if it an element

"@t@" .

involving

- 281 -

case 16

Applying function "expand2" to strings produced by the non-terminals

"seqimbrstarel", "orimbrstarel", 'starimbrstarel” and "elimbrstarel”,

and then "Cyc" we obtain
Cyc(expand2(IM EL(k)*))=
Cyc(expand2(IM EL(k))*)=
Cyc(expand2(IM EL(k)))*
and applying "m-Cycs" first and then "cyc-exp' we obtain
cyc—exp(m—Cycs(IM EL(k)*))=
cyc—exp(m—-Cycs(IM EL(k))*)=
cyc-exp(m-Cycs(IM EL(k)))*
The above expressions are the same provided the relation
Cyc(expand2(IM OPi(k)))=exp-cyc(m~Cycs(IM OPi(k)))

holds, which may be shown by case 17.

case ll

Applying function '"expand2" to the strings represented by the
syntactic entity (IMBR SEQ(k)), inm which the syantactic variable
represents strings produced by the non-terminals '"seqimbrseq",

"orimbrseq", "starimbrseq", "elimbrseq", and then "Cyc" we obtain
Cyc(expand2((IMBR SEQ(k)))=
Cyc((expandZ(IMBR_SEQ(k)))=

Cyc(expand2(IMBR SEQ(k))

and applying "m-Cycs" first and then "cyc-exp'' we obtain

- 282 -

cyc-exp(m-Cycs((IMBR SEQ(k)))=
cyc—exp((m-Cycs(IMBR SEQ(k)))=
cyc-exp(m—-Cycs(IMBR SEQ(k))

The above expressions are the same as may be shown by case 14 if the

"@@" is further nested inside "()" and by case 18 if the "@t@" is not

further nested inside "()". 1In the special case of an imbricator
generating sequences the string "@tl8" may only appear as an element

between two semicolons and the equality of the above expressions may be

shown by case 20.
case 18

Applying function "expand2" to the sequence involving "@t@" in one of

its orelements, and then '"Cyc'" we obtain

Cyc(expandZ(AT_SPl(k);...;AT_§Pn(k)))=
Cyc(expand2(AT SP1(k));...;expand2(AT_SPn(k)))=
Cyc(expandZ(AI_SPl(k)))0...OCyc(expandZ(AT_SPn(k)))

The last step is justified as
expand2(AT SPi)) for amy i=l,...,n

is a basic sequence (cf. case 2 of theorem 4.1). Applying '"m-Cycs"

first and then "cyc-exp' we obtain

cyc—exp(m-Cycs(AI_SPl(k);...;AI_SPn(k)))=
cyc-exp(m-Cycs(AI_SPl(k))0...Om-Cycs(A?_SPn(k)))=
cyc—exp(m-Cycs(AI_SPl(k)))0...Ocyc—exp(m—Cycs(AT_SPn(k)))

The above expression are the same provided the relation
Cyc(expandZ(AI_SPi(k)))=cyc—exp(m—CyC5(AI_sPi(k)))

holds for all i=1,...,n. The above relation may be shown to hold by

cases 8, 9, 13 if AT SPi(k) for ICi<n is a concatenator, a distributor

or an imbricator respectively, generating sequences, by case 10 if it is

- 283 -

P2 i i 7 na. .
an orelement or by case 19 if it invoves @t?" as one of its elements.

case 12

Applying function "expand2" to an orelement involving "@t@" as one of

its elements and then '"Cyc" we obtain

Cyc(expandZ(AT_pPl(k),...,AI_QPn(k)))=
Cyc(expandZ(AI_QPl(k)),...,expandZ(AT_an(k)))=
Cyc(expandZ(AT_pPl(k)))U...U Cyc(expandZ(AT_an(k)))

The last step is justified as
expand2(AT OPi) for any i=l,...,n

is a basic orelement (cf. case 5 of theorem 4.2). Applying "m-Cycs"

first and then "cyc-exp" we obtain

cyc-exp(m~Cycs(AT OP1(k),...,AT OPn(k)))=
cyc-exp(m—Cycs(AT OPi(k))U...U m~Cycs(AT OPn(k)))=
cyc—exp(m-Cycs(AT OP1(k)))U...U cyc-exp(m-Cycs(AT _OPn(k)))

The above expressions are the same provided the relation
Cyc(expandZ(AI_QPi(k)))=cyc—exp(m—Cycs(AT_QPi(k)))

holds for all i=l,...,n. The above relation may be shown to hold by

cases 11, 12, 13 when AT Opi(k) for 1<i<n is a concatenator or a

distributor or an imbricator generating orelements respectively, by

cases 16 and 17 if the "@t@" is further nested inside "()", or by case

20 if AT OPi(k) for I<i<n is @@,

case Zg

|If3

Applying function "expand2' to the special element dc@" and then

"Cyc" we obtain

- 284 -

Cyc(expand2(AT EL))=
Cyc(expand2(imbr-pop))

where imbr-pop returns the imbricator at the top of the stack which will

be denoted by Imbr. Applying ‘'m-Cycs" first and then "cyc-exp" we

obtain
cyc—exp(m—Cycs(AT_ﬁL))=
cyc-exp(v)=
cyc—exp(cyc-pop)
where cyc-pop returns the macro cycle set at the top of the stack which
will be denoted by MCset. Since MCset is the same as m—Cycs(Imbr) (cf.
case 13) for the above expressions to be the same the relation
Cyc(expand2(Imbr))=cyc-exp(m—-Cycs(Imbr))
must hold, which may be shown by case 13.
case 21
Applying function "expand2" to a starelement and then "Cyc" we obtain
Cyc(expand2(EL*))=
Cyc(expand2(EL)*)=
Cyc(expand2(EL))*
and applying "m-Cycs" first and then "eyc-exp' we obtain
cyc-exp(m—-Cycs(EL*))=
cyc—exp(m—-Cycs(EL)*)=
cyc~exp(m-Cycs(EL))*
The above two expressions are the same provided the relation

Cyc(expandZ(EL))=cyc—exp(m—Cycs(EL))

holds, which may be shown by cases 22 or 23 when EL is an operation or

- 285 -~

an element of the form (MSEQ) respectively.

case 22

Applying function "expand2" to an operation and then "Cyc" we obtain
Cyc(expand2(0P))=
Cyc(0OP)=
{oP}
and applying "m-Cycs" first and then "cyc-exp" we obtain
cyc—exp(m-Cycs(0OP))=
cyc—exp({0OP})=
{oP}

which are the same.

case 23

Applying function "expand2" to an element of the form (MSEQ) and then

"Cyc" we obtain

Cyc(expand2((MSEQ)))=

Cyc((expand2(MSEQ)))=
Cyc(expand (MSEQ))

and applying "m—Cycs" first and then "cyc-exp' we obtain

cyc-exp{m-Cycs((MSEQ)))=
cyc—exp((m—Cycs(MSEQ)))=
cyc-exp(m—Cycs(MSEQ))

The above expressions may be shown to be the same by case 7.

As we have proven the theorem for all possible cases of syntactic

" 1" "m- "
entities of macro programs on which the functions "expand2" and "m-Cycs

apply, we may conclude that the theorem holds for all macro programs

- 286 -
produced by the syntax of appendix D./vVY

In cthis chapter we examined two methods by which the vector firing
sequences of basic programs generated from macro programs may be derived

from the macro programs themselves. We first reduced the problem of

finding the vector firing sequences to the problem of finding the

ordered cycle sets of the basic programs directly from the macro
programs generating them.

The first method for finding the ordered cycle sets involves two
steps. In the first step all bodyreplicators are expanded and ordered
expressions are derived which yield the cycle sets of pure macro paths.
In the second step the cycle sets of basic paths are derived directly
from the pure macro paths which generate them, by expanding parts of
macro sequences and constructing their cycle sets of the strings they
generate, which are then composed together by union and concatenation
operations. What the meaningful smallest parts of macro sequences makes
sense to expand and to find their cycle sets depends on the kind of
strings macro elements generate. If the macro elements generate
syntactically strong strings, then the smallest such parts are the
elements and the macro elements of the sequences. as we have
demonstrated in section 4.1.2. If the macro elements do not generate
syntactically strong strings but matching pairs of parentheses, as macro
elements in the notation of section 3.2, then the smallest such parts

are the orelements involving starelements.

The second method for finding the ordered cycle sets may be applied
to programs the macro elements of which generate syntactically strong
regularities. According to this method macro cycle objects are
constructed frém macro programs which concisely represent and precisely
generate upon expansion the ordered cycle sets of the basic progranm

generated by the expansion of the macro programs.

The second method has an advantage over the first. The ordered cycle

sets obtained by the first method are those of a basic program generated

by a macro program with all its integer constant parameters given

specific values. But according to the second method, macro cycle

objects may also involve parameters. Of course upon the expansion of

- 287 -

macro cycle objects all 1integer constants should be given specific
values. The parametarized representation of ordered cycle sets by macro

cycle objects is very important in the verification of parametarized

macro programs, where we frequently need to argue in terms of the cycle
sets of basic paths generated by macro paths. Macro cycle objects give

the formal basis for lucid and precise arguments on the cycles of paths.

The second method has the disadvantage that it may only be applied to

constrained macro programs, which in general are not as concise as macro
programs in the notation of 3.2. 1In other words a macro program in the
notation of 3.2 generating the same basic program as a macro program in

the notation of 4.2.1 is in general more concise than the latter.

- 288 -

5 CONCLUSIONS

In this thesis we were mainly concerned with the macro COSY notation.

We re-examined and revised all aspects of the macro COSY notation, its

design as a specification language for asynchronous systems, the formal

syntax for macro programs, the expansion rules for macro elements and

for complete macro programs. Various previously developed notations and

subnotations and their formal syntax were carefully examined and their

advantages and disadvantages were pointed out.

In the process of programming with these notations we came to

formulate better the properties a '"good" macro notation should possess:

1. The syatactic well-formedness of a macro program should imply that

its expansion yields a syntactically well-formed basic program.

2. The notation should allow the generation of a large class of basic

programs, and their concise representation.

3. The syntax for macro COSY programs should be uniform with the syntax

for basic COSY programs.

4. The reading of macro programs should be possible without formal

expansion.

Previously developed macro notations do not in general possess all four

of these properties. The syntax rules for most of them permit macro

programs which do not expand to basic programs and meta-restrictions are

introduced to eliminate these "wide" programs. The syntax rules are not

uniform with syntax rules for basic programs and are not complete as

replicators in collectivisors are not given formal syntax rules.

In designing the new macro notation we adopted the same types of

constructs, that is collectivisors, replicators and distributors, for

representing and generating basic programs, as in previously developed

notations. In the new notation, we even incorporated and combined

aspects from various notations, contributing to the generality and

readability of wmacro programs. These aspects include the

- 289 -

bodyreplicators generating paths and processes and permitting nesting of
other bodyreplicators, the implicit and explicit lowerbound of

dimensions of rectangular arrays, etc. We have made a number of
modifications, improving the readability of macro programs, such as the
addition of the terminal symbol "endarray", the change of the form and
the position of the index specification part of replicators and the

change of the round parentheses in distributors to square ones.

Apart from the above modifications others more fundamental to the
design of the notation were made. Replicators in collectivisors were
carefully designed in relation to distributors. Replicators in
collectivisors permit subscripted operations which correspond to arrays,
not necessarily rectangular. More general shapes 6f arrays could be

permitted by replicators but we have restricted them in order to keep
the expansion of distributors relatively simple. Replicators in
sequences were designed to generate sequences. We have excluded all

other replicators such as the range, context and neighbourhood dependent

replicators, which are permitted in some other notations.

Finally, a number of extensions improving the generality of macro

programs were developed. These extensions include the part of the

imbricators between the two "@"s, appearing only once in the strings

obtained by their expansion, left and right replicators which are

permitted to expand to empty strings, and a number of extensions of

distributors: the relaxation of the compatibility of distributable

dimensions, the generalization of the strings they may generate and in

particular the symmetric nesting of replicators and distributors, the

subrange and the selection of distributable dimensions features.

The formal syntax of programs in this notation is according to our

requirements close~fitting, since we have avoided the use of

meta-restriction rules constraining the regularities replicators

generate as in previous notations. The restrictions we have imposed on

- ion of
macro programs are of a context sensitive nature. The expaasio

. " : 3
macro programs was formally defined by the function "expand" in section
. On
3.3.3. In this function we used three auxilliary fgn;tlons, "replexp”",
first orde ;
"distrexp 9" and "gelexpY" defining théy expansion of replicators,

distributors and of the left and right replicators in generalized

- 290 -

elements respectively. The expansions of all replicators and

distributors were formally defined in terms of the premitive Trecursive
operator ''COPY". The expansion of distributors was directly defined.
We proved by theorems 3.3 and 3.4 that the expansion of concatenators
and respectively imbricators yields macro sequences. Theorem 3.5 shows

that if all left and right replicators of a generalized element are

expanded the resulting string is a macro sequence, and the corollary of
theorem 3.9 that the expansion of distributors are also macro sequences.
We have wused the above theorems 3.3, 3.4, 3.5 and the corollary of 3.9

in theorem 3.1l proving that the expansion of complete macro programs

produced by the syntax rules in section 3.2 yields well-formed basic

programs. These theorems show the close fittness of the syntax rules.

The syntax rules are also uniform with the rules for basic COSY,

since analogous constructs in both notations are expressed by similar

rules and various constructs of macro COSY were expressed in a style

similar to basic COSY.

The development of syntax rules for macro programs in the new

notation did not possess any difficulties, apart from the syntax rules

for imbricators. The syntax of imbricators and in particular genuine

jmbricators was the reason meta-restriction rules had to be wused. The

problems were twofold: to express that any number of opening parentheses

on the left of "@t@" should match with closing parentheses on the right

of "@t@" and to express it in a manner similar to basic COSY. Four

groups of syntax rules were developed. The first group (CFm) gave

context-free rules but specified a mixed precedence of ";" and ",". The

second group (CS) gave context-sensitive rules. The third (CFr) gave

o
context—free rules specifying the precedence of " over ;" but
required meta-restriction rules to exclude strings involving more than

two "@"s. Only the fourth group (CF) involving close fitting

[T : :
context—free rules specifying the precedence of "," over satisfied

our requirements.

We proved a number of theorems which give the relation between

concatenators, imbricators and distributors. We showed by theorems 3.1

and 3.2 that for any replicator there exist a whole family of

replicators expanding to the same string as the former. We showed how a

- 291 -

replicator may be transformed into its normal form and how from a
replicator in normal form all other replicators in the same family may
be obtained. We showed by theorem 3.7 that certain imbricators, the
non-genuine 1imbricators, could be replaced by concatenators. By the
corollary of theorem 3.7 the syntax rules for imbricators could be
restricted to permit only genuine imbricators without restricting the
generality of the notation. As it was demonstrated, this choice would
jeopardize the conciseness and readability of macro programs. We showed
by theorem 3.8 that all concatenators could be replaced by imbricators.

A corollary of this theorem is that imbricators are sufficient and
concatenators could be eliminated altogether. But as programs would not

and readable
be as conciseVthis option was rejected as well. Theorem 3.7 showed that

all distributors could be replaced by concatenators and following
theorem 3.8 by imbricators also. Theorem 3.8 gave the coanditions under
which concatenators and imbricators may be replaced by distributors. We
also proved theorem 3.6 which showed that wide concatenators are
sufficient to generate any strings our imbricators generate. We only
indicated in section 3.4 how wide concatenators could be modified to
form macro elements permitted by our notation, but no formal result or
method was obtained regarding this direction. The following figure

shows possible replacements of sequence replicators, distributors and

wide concatenators:

wide concatenator
Th 3.6
Ths 31,32 Th- 3.7 (¢) Ths 3.1.3.2

concatenator im?ricator

—Th- 38

Th3qo Ths 3, -2
)

distributor

In the above figure arcs from A to B indicate possible replacement of
macro elements of type A by type B. Arcs are labelled by the relevant
theorem. A "(c)" labelling an arc indicates that the replacement is

only possible under certain conditions.

- 292 -

In chapter 4 we explored ways by which the semantics of basic

programs generated from macro programs may be directly obtained from the
macro programs themselves., The basis for the construction of vector
firing sequences directly from macro programs is that the set of vector
operations and the set of firing sequences of basic paths may be
obtained from the ordered cycle sets of paths of a basic program, and
that these ordered cycle sets may be constructed directly from the macro
programs. Two methods were developed for constructing the ordered cycle

sets of basic programs directly from the macro programs which generate

the basic programs.

The first method may be applied to macro programs in any macro
notation, as long as the cycles of syntactically strong strings are
constructed. We demonstrated the method for two macro notations: The
notation in section 3.2 in which the syntactically strong strings are
its orelements consisting of starelements, and the restrictive notation

of section 4.1.2 in which the smaller syntactically strong strings are

its elements or macro elements. Although the latter notation is less

general than that of section 3.2 it is much more readable.

The second method may only be applied to macro programs the macro
elements of which generate syntactically strong regularities. The
syntax for such constrained programs was developed in section 4.2.1.
Programs in this notation have the disadvantage that they are less
general and less concise than programs in the notatiouns of sections 3.2
and 4.1.2 but they have the advantage that they are much more easily
readable. They also possess the advantage that they allow the
parametarized representation of ordered cycle sets by the macro cycle
objects which is of a primary importance in the verification of

parametarized macro programs.

6 REFERENCES

[A77]

(469]

[B79]

[(B79]

[B82]

[BM41]

[BH73]

[BH74)

AGERWALA T. : Some Extended Semaphore Primitives. Acta

Informatica 8, pp. 201-220, 1977.

ARBIB M.A. : Theories of Abstract Automata. Prentice Hall,
Inc., 1969.

BACKHOUSE R.C. : Syntax of Programming Languages: Theory and

Practice. ed. C.A.R. Hoare, Prentice Hall

International, 1979.

BEST E. : Adequacy of Path Programs. In: Net Theory and

Applications: Proc. of the Advanced Course on General

Net Theory of Processes and Systems, Hamburg, 1979 (Ed.

W Brauer). Lecture Notes iﬂ Computer Science §i,

Springer Verlag, 1980.

BEST E. : Adequacy Properties of Path Programs, Theoretical
Computer Science 18 (1982), pp 149-171, Nor th~Holland

Publishing Co.

BIRKHOFF G., MacLANE S. : A Survey of Modern Algebra.
MacMillan Co., New York, 194l.

BRINCH HANSEN P. : Operating System Principles. Prentice
Hall, New Jersey, 1973.

BRINCH HANSEN P. : Concurrent Pascal: A Programming Language

for Operating System Design. TR No. 10, California

Institute of Technology, April 1974.

[BH75]

(B67]

{c76]

[CH74]

[CL75]

[C80]

[CL79]

[CL81]

- 294 -

BRINCH HANSEN P. : The SOLO Operating Systen. California

Institute of Technology, 1975.

BURSTALL R.M. : Proving Properties of Programs by Structural

Induction. Computer Journal, 12, Number 1, PP. 41-47.

CAMPBELL R.H. : Path Expressions: A technique for specifying
process synchronization. Ph.D. Thesis, Computing

Laboratory, University of Newcastle-upon-Tyne, 1976.

CAMPBELL R.H., HABERMANN A.N. : The Specification of process

synchronization by path expressions. Lecture Notes in

Computer Science 16, Springer Verlag, 1974.

CAMPBELL R.H., LAUER P.E. : A Hierarchy of Buffer Systems in
a parallel processing environment. MRM/88, Computing

Laboratory, University of Newcastle-upon-Tyne, May 1975.

COTRONIS J.Y. : Defining Priorities of Activations of
Operations in Conflict in COSY. ASM/73, 1980, Computing

Laboratory, University of Newcastle-upon-Tyne.

COTRONIS J.Y., LAUER P.E. : On Definitions of wvarious
Notions of Monitors in the COSY Notation. ASM/58

Computing Laboratory, University of Newcastle-upon-Tyne,

March 1979.

COTRONIS J.Y., LAUER P.E. : A New Macro COSY Notation and
Grammar. ASM/81, Computing Laboratory, University of

Newcastle-upon-Tyne, November 81l.

(CG77]

[D?7]

[D79a]

{D79b]

[DL77]

[D68]

{D76]

(G71]

- 295 -

COURTOLS P.J., GEORGES J, : On Starvation Prevention.
R.A.I.R.O. Informatique/Computer Science 11, PP-
127-141, 1977.

DEVILLERS R. : Non starving solutions for the dining

philosopher’s problem. ASM/30, Computing Laboratory,

University of Newcastle-upon-Tyne, June 1977.

DEVILLERS R. : A simplified Hyperfast Banker. ASM/56,
Computing Laboratory, University of Newcastle-upon-Tyne,

January 1979.

DEVILLERS R. : On the Banker with Several Currencies.

ASM/57, Computing Laboratory, University of
Newcastle-upon-Tyne, February 1979.

DEVILLERS R., LAUER P.E. : Some Solutions for the
Reader/Writer Problem. ASM/31, Computing Laboratory,

University of Newcastle-upon-Tyne, June 1977.

DIJKSTRA E. W. : Cooperating Sequential Processes. In:

Programming Languages, ed. F. Genuys, Academic Press,

New York, 1968.

DIJKSTRA E. W. : A Discipline of Programming. Prentice
Hall, 1976.

GRIES D. : Compiler Construction fot Digital Computers.

John Wiley and Sons, Inc., 1971.

[H75]

[HW60]

{H65]

(H72]

{H73]

[H74]

[H80]

[HC70]

[HU79]

- 296 -

HABERMANN A.N. : Path Expressions. Carnegie-fellon

University, Pittsburgh, June 1975.

HARDY G.H., WRIGHT E.M : An Introduction to the

Theory of
Numbers. Oxford: Clarendon Press, 1960.
HARRISON M.A. : 1Introduction to Switching and Automata

Theory. McGraw Hill Company, 1960.

HOARE C.A.R. : Towards a Theory of Parallel Processing. 1In:
Operating Systems Techniques, pp. 61-72, Academic Press,
New York, 1972.

HOARE C.A.R. : A structured paging system. CACM Vol. 16,
1973, Number 3, pp. 209-215.

HOARE C.A.R. : Monitors: An Operating System Structuring
Concept. CACM Vol. 17, 1974, Number 10, pp. 549-557.

HOARE C.A.R. : Communicating Sequential Processes. In: On

the construction of programs. (Eds. McKeag and

MacNaghten) Cambridge University Press 1980.

HOLT A.W., COMMONER P. : Eveants aund Conditions. Applied
Data Research, New York, 1970.

HOPCROFT J.E., ULLMAN J.D. Introduction to Automata

Theory, Languages and Computation. Addis Wesley, 1979.

[J81]

{KM69]

[L76]

[L79]

[L81]

[LBS77]

- 297 -

JANICKI R. @ On the Design of Concurrent Schemes.

Procedings of the 2nd Conference on Distributed

Computing Systems, Paris, 1981. IEEE Press.

KARP R. M., MILLER R. E. : Parallel Program Schemata.

JCSS Vol 3, pp. 147-195, 1969.

LAUER P.E. : Toward a system specification language based on

paths and processes PART I: The Notation. ASM/19,

Computing Laboratory, University of Newcastle-upon-Tyne,

1979.

LAUER P.E. : COSY Subnotations: Replicators and Basic

Notation, Part 4, ASM/62, Computing Laboratory,

University of Newcastle-upon-Tyne, June 1979.

LAUER P.E. : Synchronization of Concurrent Processes without

Globality Assumptions, SIGPLAN Notices, Vol 16, No 9,

Sept 198l. An expanded version is included in the

book: 1 New Advances 1in Distributed Computer Systems,

pages 341-365, Reidel Pub. Co., NATO Advanced Study

Institute Series C80.

LAUER P.E., BEST E., SHIELDS M.W. : On the problem of
achieving adequacy of concurrent programs. Computing
Laboratory, University of Newcastle upon Tyne, Tech.
Report Series No. 103, 1977. Also 1im the book: IFIP

TC~2 Working Conference on the Formal Description of
1977.

Programming Concepts, St Andrews, Canada,

Nor th-Holland Pub. Co.

- 295 -

(LC75] LAUER P.E., CAMPRELL R.H. Formal Semantics for a class of

high 1level primitives for coordinating concurrent

processes. Acta Informatica 5, pp 297-332, 1975.

[LS77] LAUER P.E. and SHIELDS :f.W. : Abstract specification of

resource accessing disciplines: adequacy, starvation,
priority and interrupts. Tech. Rep. 117, Computing
Laboratory, University of Newcastle~upon-Tyne also Proc.

of a workshop on Global Description Methods for

Synchronisation in Real Tinme Applications, AFCET,
Paris,NOV. 3-4,1977.

[LS78] LAUER P.E., SHIELDS M.W. : Abstract specification of

resource accessing disciplines: adequacy, starvation,

priority and interrupts. SIGPLAN Notices, Vol. 13, No.
12, December 1978.

[LS80] LAUER P.E., SHIELDS M.W. : COSY: An Environament for

Development and Analysis of Concurrent and Distributed

Systems. Proc. of Symposium on Software Engineering

Environments, Lahnstein, June 1980 (Ed. H Hunke),

North-Holland Publishing Co. 1981.

[Ls81] LAUER P.E., SHIELDS M.W. : Interpreted COSY programs:
Programming and Verification, Proceedings 2nd
International Conference on Distributed Computing
Systems, Paris, 8-10 April 1981, IEEE Computer Society
Press, ed. FE. Gelenbe, 1981.

[LSB79a]

[LSB79b]

[LsC81]

[LT78]

[LTD79]

[LTD8O]

LAUER P.E., SHIELDS M.W., BEST E. : The

- 299 -

design and
certification of asynchronous systems of processes.
Advanced Course on Abstract Software Specification,

Lyngby, Denmark, January 1979. Lecture Notes in

Computer Science 86, Springer Verlag, 1979.

LAUER P.E., SHIELDS M.W., BEST E. : Formal Theory of the

Basic Cosy Notation. The Computing Laboratory,
University of Newcastle upon Tyne, Tech. Report Series

No. 143, November 1979.

LAUER P.E., SHIELDS M.W., COTRONIS J.Y. : Formal Behavioural

Specification of Concurrent Systems without Globality

Assumptions. Tech. Rep. 162 Computing Laboratory,

University of Newcastle~upon-Tyne, also Lecture Notes in

Computer Science, Vol 107, Formalisation of Programming

Concepts.

LAUER P.E., TORRIGIANI P.R. : Toward a System Specification

Language Based on Paths and Processes. Tech. Rep. 120,
February 78, Computing Laboratory, University of

Newcastle-upon-Tyne.

LAUER P.E., TORRIGIANI P.R., DEVILLERS R.E. : The Hyperfast

Banker. ASM/55, Computing Laboratory, University of

Newcastle-upon-Tyne, January 1979.

LAUER P.E., TORRIGIANI P.R., DEVILLERS R. : A COSY Banker:

Specification of Highly parallel and Distributed

Resource Management, Technical Report No 151, Computing

Laboratory, University of Newcastle upon Tyne, 1980.

[LTS79]

[M77]

[M80]

[M72]

[0G76]

[P73]

[P75]

{P77]

- 300 -

LAUER P.E., TORRIGIANI P.R., SHIELDS M.W. : COSY: A Systen

Specification Language Based on Paths and Processes.

Acta Informatica 12, 1979.

MAZURKIEWICZ A. : Concurrent program schemes and their

interpretations. Proc. Aarhus Workshop on Verification
of Parallel Processes, June 13-24, Aarhus, Denmark,
1977.

MILNER R. : A Calculus of Communicating Systems, Lecture

Notes in Computer Science No 92, 1980. Springer Verlag.

MINSKY M. ¢ COMPUTATION: Finite and Infinite Machines.

Prentice Hall International, INC, London, 1979.

OWICKI S., GRIES D. : An Axiomatic Proof Technique For

Parallel Programs. Acta Informatica Vol 6, pp. 319-340,
1976.

PETRI C.A. : Concepts in Net Theory. Proc. of MFCS, High
Tatras, Math. Inst. of the Slovak Academy of Sciences,

1973.

PETRI C.A. : General Net Theory. Boston Conference on Petri

Nets and Related Methods, MIT, 1975.

PETRI C.A. : Non-Sequential Processes. Technical Report

ISF-77-05, GMD, Bonn, 1977.

- 301 -

(p78] PETRL C.A. Concurrency as a basis of Systeas Thinking.

GMD Internal Report ISF-78-06, September 1978.

[s73] SALOMAA A. : Formal Languages. ACM Monograph, Acadenmic
Press, 1973.

[879] SHIELDS M.W. : Adequate Path Expressions. Technical Report
Number 141, Computing Laboratory, University of

Newcastle-upon-Tyne, June 1979.

[s81] SHIELDS M.W. : On the non-sequential behaviour of a class of

systems satisfying a generalised free-choice property.

Technical Report CRS 92-81, Computer Science Dept.,

University of Edinburgh.

[SL77] SHIELDS M.W., LAUER P.E. : The equivalence of path

expressions and extended semaphore primitives. ASM/43,

Computing Laboratory, University of Newcastle-upon-Tyne,

November 1977.

[SL78] SHIELDS M.W., LAUER P.E. : On the abstract specification and
formal analysis of synchronization properties of
concurrent systems. Proc. of Int. Conf. on

Mathematical Studies of Information Processing, Aug

23-26, Kyoto, 1978. Lecture Notes in Computer Science

75, Springer Verlag 1979, pp 1-32.

[SL79] SHIELDS M.W., LAUER P.E. : A formal semantics for concurrent
systems. Proc. 6th Int. Colloq. for Automata,
Languages and Programming, Graz, July 1979, Lecture
Notes in Computer Science 71, Springer Verlag, 1979, pp.

569-584.

[SL80a)

[SL8Ob]

[T78]

[TL77]

[ZH80]

SHIELDS M.W., LAUER P.E. : Verifying concurrent

- 302 -

system
specifications in cosy. Proc. 8th Symposium on

Mathematical Foundations of Computer Science, Poland
3

August 1980. Lecture Notes in Computer Science 88,

Springer Verlag 1980, pp 576-586.

SHIELDS M.W., LAUER P.E. : Programming and Verifying

Concurrent Systems in COSY, Technical Report No 155,

Computing Laboratory, University of Newcastle upon Tyne,

1980.

TORRIGIANI P.R. : Synchronic Aspects of Data Types:

Construction of a non-algorithmic solution of the
Banker’s problem. ECI 78, Information System
Methodology, Lecture Notes in Computer Science,

Springer—~Verlag, 1978.

TORRIGIANI P.R., LAUER P.E. : An Object Oriented Notation

for Paths and Processes. AICA Annual Conference, Pisa,

Vol. 3, pp 349-371(1977).

7ZHOU CHAO CHEN, HOARE C.A.R. Partial Correctness of

Communicating Sequential Processes. Proceedings 2nd
International Conference on Distributed Computing
Systems Paris 8-10 April 1981, IEEE Computer Society
Press, ed. E. Gelenbe, 1981.

- 303 -
Appendix A

THE SYNTAX OF PROGRAMS IN THE BASIC COSY NOTATION

A-1 THE SYNTAX OF BASIC COSY PROGRAMS WITH SIMPLE OPERATIONS

BNl. basicprogram=program programbody endprogram
BN2. programbody={path/process}+

BN3. path=path (sequence)* end

BN4. process=process (sequence)* end

BN5. sequence={orelement J;}+

BN6. orelement={starelement @,}+
BN7. starelement=element/element#*
BN8. element=operation/(sequence)

BN9. operation=lc-letter{lc-letter/digit/ }*
BN10. lec-letter=a/b/.../z

BN1l. digit=0/1/.../9

A-2 THE SYNTAX OF BASIC COSY PROGRAMS WITH SUBSCRIPTED OPERATIONS

BNl. - BNS8.

BN9a. operation=simple-op/subscr-op
BN9b. simple-op=lc-letter{lc—~letter/digit/ }*

BN9c. subscr-op=uc-letter{uc-letter/digit/ }*({integer @,}+)
BNl1.

BN12. uc-letter=A/B/.../Z

BN13. integer={digit}+

A-2.1 Context Sensitive Restrictions

(Brest)

Subscripted operations of the same collective name should

have the same number of dimensions.

- 304 -
Appendix B

THE SYNTAX OF MACRO PROGRAMS IN THE GENERAL MACRO NOTATION

MNl. mprogram=program mprogrambody endprogram

MN2. mprogrambody={collectivisor/mpath/mprocess/bodyreplicator}+
MN3. collectivisor=array{simpleardecl/replardecl}+endarray

MN& . simpléardecl={arrayid}+({{iexpr:/}iexpr@)}+)

MN5. replardecl= index spec[{replardecl/arrayid({iexpr &,}+)}+]
MN6. index spec=#index:iexpr,iexpr,iexpr

MN7. arrayid=uc-letter{uc-letter/digit/ }*

MN8. bodyreplicator=index_§pec[{mpath/mprocess/bodyreplicator}+]
MN9. mpath=path (msequence)* end

MN10. mprocess=process (msequence)* end

MN11. msequence={morelement @;}+

MN12. morelement={gelementlg,}+

MN13. gelement={rreplicator}*
{starelement/sreplicator/distributor}

{lreplicator}*

MN14. starelement=element/element*

MN15. element=operation/indexedop/(msequence)

MN16. operation=lc—letter{lc-letter/digit/_)j

MN17. indexedop=arrayid{({iexpr§3}+)/ }

MN18. sreplicator=index_§pec[{concseq/imbrseq}]

MN19. distributor={;/,}{/iexpr}{/#iexpr,iexPr,ieXPf}[msequence]

MN20. lreplicator=index_§pec[{;/,}|{concseq/1mbfseq}]

- 305 -
MN21. rreplicator=index spec| {concseq/imbrseq}{ s/, 1]
MN22. concseq={morelement;}: concor /{morelement;}+ €
MN23. concor={gelement,}+ @
MN24. imbrseq=imbr_at seq /{morelement ;1% dimbror {; morelement}*
MN25. imbror={gelement »}* imbrstarel {, gelement}*
MN26. imbrstarel=imbrel/imbrel%*

MN27. imbrel=(imbrseq)

MN28. imbr_at seqg=
{morelement ;}+ {@/at_orlf/at_or1m/at_or1b} {; morelement}*;

{@/at__orlf/at_orlm/at_orlb} {; morelement}+
/ {morelement ;}+ {@/at_orlf/at_orlm/at__orlb} {; morelement}*;

{at_orlf/at orlm}

/{at_orlm/at_orlb} {; morelement}*;

{@/at_orlf/at orlm/at orlb} {; morelement}+
/{at_orlm/at_orlb} {; morelement}*; {at orlf/at orlm}
/{morelement;}+ {at or2fb/at or2fm/at or2mm/at_or2mb}{;morelement}+
/{morelement ;}+ {at or2fm/at or2mm}

/{at_or2mm/at or2mb} {; morelement}+

/at_or2mm

/@ {morelement ;}* {at_orlf/at orlm}

/@ {morelement ;}* {@/at__orlf/at_orlm/at_orlb} {;morelement}+
/{at_orlm/at orlb} {; morelement}* @

/ {morelement ;}+ {@/at_orlf/at__orlm/at_orlb} {;morelement}* @
/@ msequence @

MN29. at_orlf=@ {,gelement}+

~ 306 -

MN30. at orim={gelement ,}+ @ {, gelement}+
MN31. at orlb={gelement ,}+ @
MN32. at or2fb=@ {, gelement}* | @
MN33. at or2fm=@ {, gelement}+ , @ {, gelement}+
MN34. at or2mb={gelement ,}+ @ {,gelement}: , @
MN35. at or2mm={gelement ,}+ @ {,gelement}i » @ {, gelement}+
MN36. uc-letter=A/.../Z
MN37. lc-letter=a/.../z
MN38. digit=0/.../9
MN39. iexpr={+/-/ } {term Q{+/-}}+
MN4O. term={factor @{*/DIV/MOD/EXP}}+
MN41. factor=integer/constant/index/funct_ﬁesigli}expr)
MN42. integer={digit}+
MN43. constant=lc-letter{lc-letter/digit/ }*
MN44. index=lc-letter{lc-letter/digit/ }*
MN45. funct desig={ABS/FACT/SQUARE}(iexpr)
B-1 CONTEXT SENSITIVE RESTRICTIONS
(MPrest)
Collective names should be declared before any path or
process involving any of its subscripted operationms.
(Crestl)

the upperbound of the dimensions of the collective names to

be greater than or equal to their corresponding implicit or

explicit lowerbound.

- 307 -

(Crest2)
Each replicator must specify

8 non empty range for its
index.

(Crest3)

All expressions indexing collective names should yield

integers for all the values which the indices they involve

trake.
(Crests)

A collectivisor involving nested replicators must be of the
form

#kn: inn, fin, incn[...#k1:inl, fil, incl[Y(hl,R2,...,m)]...]
where hi for i=1,...,n are expressions involving indices kj
for j=1,...,n such that each ki for i=1l,...,n must appear in
at least one dimension, and an index ki i=l,...,n may only
appear together with indices kj for j>i in a single
expression and in at most (i-1) expressions with indices kj

for. j<i.
(Irestl

Identifiers for replicator indices should be distinct from

any identifiers used for simple operations.

(Irest2)

Replicator indices are only defined inside "[]" of the

replicator with which they are associated. 1In the scope of

a replicator index no other replicator index having the same

identifier is permitted.

(BRrest)

The range of the bodyreplicator indices should be non empty.

(Rrest)

inc#0 and n=(fi-in)//inc+1>0 or t’ non empty.

(Rrest?2)

The replicators should generate subscripted operations

permitted by the collectivisors.

- 308 -

(Drestl)
When a subrange is defined the slices will not be required

to contain the same number of sections but at least as many

sections as specified by the subrange.

(Drest2)

Inside a k-nested distributor there must only be arrays with
at least k dimensions out of which exactly k should be

specified as their distributable dimensions.

(Drest3)

incind#0 and Ns=(fiind-inind)//incind+1>1

(Drest4)

15}nind+(j—l)*incind5ﬂs for j=1,...,Ns

(Drest¥)
The dimension selectors in distributors must have values

which are meaningful dimensions of array slices.

(Crest5)

An array identifier may only occur once in collectivisors.

MN1.

RN1.

MN3.

MN4.

MN5.

MN6 .

MN7 .

RN2.

MN9.

RN3.

RN4.

RN5.

RN6 .

RN7.

RN8.

MN16.

MN17.

RN9.

RN10.

RN11.

RNL2.

RN13.

- 309 -
Appendix C

THE SYNTAX OF MACRO PROGRAMS IN THE STRICT MACRO NOTATION

nmprogram=program mprogrambody endprogram
mprogrambody={collectivisor/mpath/bodyreplicator}+
collectivisor=array {simpleardecl/replardecl} +endarray
simpleardecl={arrayid}+({{iexpr:/}iexpr @,}+)
replardecl=index_§pec[{replardecl/arrayid({iexpr @,}+) 1+]
index_§pec=#index:iexpr,iexpr,iexpr
arrayid=upper—case—letter{upper—case-letter/digit/_)i
bodyreplicator=index_§pec[{mpath/bodyreplicator}+]
mpathégggb_(msequence)* end

msequence={seqpart &;}+

seqpar t=seqmacro/morelement

morelement={orpart I,}+
orpart=ormacro/starmacro/mstarelement
mstarelement=element/element*
element=operation/indexedop/(msequence)/elmacro
operation=lower—case—letter{lower—case—letter/digit/_}i
indexedop=arrayid{({iexpr.g,}+)/ }
seqmacro=seqrepl/seqdistr
seqrepl=index_§pec[{seqconcseq/seqimbrseq}]
seqconcseq={seqpart;}+ {@/seqconcor}

seqconcor={orpart L3+ @
seqdistr=;{/iexpr}{/#iexpr,iexpr,iexpr}[msequence]

/,{/iexpr}{/#iexpr,iexpr,iexpr} [seqpart{;seqpart}¥]

- 310 -
RNL 4. seqimbrseq=seqimbr_atou;_seq/seqimbr_put_seq
RNL5. seqimbr_out seq={seqpart ;}+ seqimbror {; seqpart}*
/{seqpart ;}* seqimbror {; seqpart}+
RN16. seqimbr_atout seq=
{seqpart ;}+ {@/at_prlf/at_prlm/at_prlb} {; segpart}x*;
{@/at_orlf/at orlm/at orlb} {; seqpart}+
/ {seqpart ;}+ {@/a;_orlf/ap_orlm/ap_prlb} {; segpart}*;
{at_orlf/at orlm}
/{at_orlm/at_orlb} {; seqgpart}*;
{@/at _orlf/at orlm/at orlb} {; seqpart}+
/ {seqpart;}+ {at or2fb/at or2fm/at or2mm/at _or2mb}{;seqpart}+
/ {seqpart ;}+ {at _or2fm/at_or2mm}
/{at_or2mm/at_or2mb} {; seqpart}+
/@ {seqpart ;}j.{@/at_pr1f/at_pr1m/a;_pr1b} {;seqpart}+
/{seqpart ;}+ {@/at orlf/at orlm/at orlb} {;seqpart}* 3
/@ msequence @
RN17. seqimbror={orpart ,}* seqimbrstarel {, orpart}*
RN18. seqimbrstarel=seqimbrel/seqimbrel*
RN19. seqimbrel=({seqimbr_gtiq_seq/seqimbp_iq_seq})
RN20. seqimbr in seq={segpart ;}1* seqimbror {; seqpart}*
RN21. seqimbr_atin seq=seqimbr_atout_ seq
/{at_orlm/at_orlb} {; seqpart}* ;{at_orlf/at_orlm}
/at _or2mm
/@ {seqpart ;}* {at_prlf/a;_prlm}
/{at_orlm/at_orlb} {; seqpart}* @

RN22. ormacro=orrepl/ordistr

- 311 -
RN23. ordistr=,{/iexpr}{/#iexpr,iexpr,iexpr}[morelement]
RN24. orrepl=index spec|{orconcor/orimbror}]
RN25. orconcor={orpart ,}+@
RN26. orimbror=orimbr_ atout or
/{orpart ,}+ orimbrstarel {, orpart}*
/{orpart ,}* orimbrstarel {, orpart}+
RN27. orimbr_ atout or=8 {at orlf/at_orlu}
/{at _orlm/at orlb} @
/at_or2mm
/2 morelement @
RN28. orimbrstarel=orimbrel/orimbrel*
RN29. orimbrel=(orimbrseq)
RN30. orimbrseq={seqpart ;}* orimbr_in or {; seqpart}*
/orimbr_atin seq
RN31. orimbr_in_or={orpart 5l orimbrstarel {, orpart}*
RN32. orimbr_atin_ seg=
orimbr_atout_or
/{seqpart;}+ {at_orZfb/at_or?_fm/at_or2mm/at_or2mb} {;seqpart}+
/{seqpart ;}+ {at_oerm/at_oerm}
/{at_or2mm/at__or2mb} {; seqpart}+
/@ {@/at_orlf/at_orlm/at_orlb} {;seqpart}+
/ {seqpart ;}+ {@/at__orlf/at__orlm/at_orlb} @
RN33. at_or1f=@ {,orpart}+
RN34. at orlm={orpart ,}+ @ {, orpart}+
RN35. at_orlb={orpart 1+ @

RN36. at or2fb=E {, orpart}* , @

- 312 -
RN37. at_or2fm=3 {, orpart}+ , @ {, orpart}+
RN38. at orZmb={orpart ,}+ @ {,orpart}i , @
RN39. at or2mm={orpart,}+ @ {,orpart}i »@ {,orpart}+
RN4O. starmacro=index_spec|[(starimbrseq)*]
RN41. star imbrseq=starimbr at seq
/{seqpart ;}* starimbror {; seqpart}*
RN42. starimbror={orpart »}* starimbrstarel {, orpart}*
RN43. starimbrstarel=starimbrel/star imbrel#*
RN44. starimbrel=(starimbrseq)
RN4S5. starimbr_at_ seq=
{seqpart ;}+ @ ;{mstarelement ;/ } @ {; seqpart}+

/ {seqpart ;}+

{starat orl f _one/starat or 1b one/starat 1b many/starat or lm b}

; @ {; seqpart}+
/{seqpart ;}+ @

; {starat orlf one/starat_orlf__many/starat_orlb_one/starat_orlm_f}

{;seqpart}+
/{seqpart ;}+ {@/starat_orlb_one/starat_orlb_many} ;
{starat orlf one/starat orlf many/starat or lm_f}
/{starat_orlb_one/starat_orlb__many/starat_orlm_b} 3
{@/starat orlf one/starat orlf many} {; seqpart}+
/{starat_orlb_one/starat_orlb__many} ;
{starat__or1f_one/starat_orlf_many/starat_or1m_f}
/{starat_orlb_one/starat_or1b__many/starat_orlm_b} ;

{starat orlf one/starat orl f_many}

- 313 -
/{seqpart ;}+
{starat_oerb/starat_orZfm/starat_oerm/starat_oerb}
{;seqpart}+
/{seqpart ;}+ {starat or2fm/starat or2mm}
/{starat 2mb/starat or2mm} {; segpart}
/starat or2mm
/@ {starat_orlf ome/starat_orlf many/starat orlm f}
/2 {@/starat_orlf_one/starat_or1f_many/starat__orlm__f/starat__or1b_one}
{; seqpart}+
/{starat_orlb one/starat orlb many/starat orlm b} @
/ {seqpart ;}+
{@/starat_orlb_one/starat__orlb_many/starat_orlm_b/starat_orlf_one}@
/@ mstarelement @
RN46. starat orlf one=@ , mstarelement
RN47. starat orlf many=¢ {, orpart}+
RN48. starat orlb one=mstarelement , @
RN49. starat orlb many={orpart L1+ @
RN50. starat orlm_ f=mstarelement ,@ {, orpart}+
RN51. starat orlm b={orpart ,}+ @, mstarelement
RN52. starat or2fb=@ {,mstarelement/} @
RN53. starat or2fm=@ {,mstarelement/} ,@ {, orpart}+
RN54. starat or2mm={orpart 1+ @ {,mstarelement/}, & {, orpart}+
RNSS5. starat or2mb={orpart ,}+ @ {,mstarelement/}, @
RN56. elmacro=index_spec[(elimbrseQ)]

RN57. elimbrseq=elimbr at_seq

/ {seqpart ;}* elimbror {; segpartl*

- 314 -
RN58. elimbror={orpart ,}* elimbrstarel {, orpart}*
RN59. elimbrstarel=elimbrel/elimbrel*
RN60. elimbrel=(elimbrseq)
RN61. elimbr at seq=
{seqpart ;}+ @ ;{element ;/ } @ {; seqpart}+
/ {seqpart ;}+
{ela;_pr1f_pne/elap_or1b_pne/elap_lb_pany/ela;_prIm_b}
; @ {; seqpart}+
/{seqpart;}+
@;{elat orlf one/elat orlf many/elat orlb one/elat orlm_f}
{;seqpart}+
/{seqpart ;}+ {@/elat orlb one/elat_orlb many} ;
{elap_orlf_pne/elaq_orlf_many/elaq_orlm_ﬁ}
/{elat orlb one/elat _orlb many/elat orlm b} ;
{@/elap_or1f_one/ela§_or1f_many} {; seqpart}+
/{ela;_prlb_pne/elap_orlb_many} ;
{elap_orlf_pne/ela;_prlf_many/elat_prlm_f}
/{ela;_orlb_pne/elaq_orlb_many/elag_prlm_p} ;
{elat_pr1f_pne/e1a§_prlf_many}
/ {seqpart ;}+
{ela;_orZfb/elap_prZfm/ela;_prme/elat_perb} [;seqpart}+
/{seqpart ;}+ {elat_perm/ela;_perm}
/{elat 2mb/elat_or2mm} {; seqpart}
/elat or2mm

/@ {ela;_orlf_pne/ela;_orlf_pany/elag_prlm_f}

- 315 -
/@ {@/elaq_orlf_one/elag_orlf_many/elat_prlm_f/elat_prlb_pne}
{; seqpart}+
/{elaq_orlb_one/elag_orlb_many/elap_prlm_p} @
/ {seqpart ;}+
{@/ela;_prlb_pne/elap_prlb_pany/elat_pr1m_p/elat_pr1f_pne} @

/@ element @
RN62. elat orlf one=@ , element
RN63. elat orlf many=@ {, orpart}+
RN64. elat orlb one=element , @
RN65. elat orlb many={orpart ,}+ @
RN66. elat orlm f=element ,@ {, orpart}+
RN67. elat orlm b={orpart ,}+ @, element
RN68. elat or2fb=Q@ {,element/} @
RN69. elat or2fm=@ {,element/} ,@ {, orpart}+
RN70. elat or2mm={orpart ,}+ @ {,element/}, @ {, orpart}+
RN71. elat or2mb={orpart ,}+ @ {,element/}, @
MN36. uc—letter=A/.../Z
MN37. lc-letter=a/.../z
MN38. digit=0/.../9
MN39. iexpr={+/-/ } {term @{+/-}}+
MN4O. term={factor @{*/DIV/MOD/EXP}}+
MN41. factor=integer/constant/index/funct desig
MN42. integer={digit}+
MN43. constant=lc-letter{lc-letter/digit/_}*
MN44. index=lc-letter{lc-letter/digit/_}*

MN45. funcp_desig={ABS/FACT/SQUARE}(iexpr)

- 316 -
Appendix D

THE SYNTAX OF MACRO PROGRAMS IN THE CONSTRAINED MACRO NOTATION

MNi. mprogram=program mprogrambody endprogram

RNl. mprogrambody={collectivisor/mpath/bodyreplicator}+

MN3. collectivisor=array {simpleardecl/replardecl}+ endarray
MN4. simpleardecl={arrayid}+({{iexpr:/}iexppg,}+)

MN5. replardecl=index_spec[{replardecl/arrayid({iexpr @,}4) 1+l
MN6. index spec=#index:iexpr,iexpr,iexpr

MN7. arrayid=uc-letter{uc-letter/digit/ }*

RN2. bodyreplicator=index_§pec[{mpath/bodyreplicator}+]

MN9. mpath=path (msequence)* end

RN3. msequence={seqpart @;}+

RN4. seqpart=seqmacro/morelement

RN5. morelement={orpart @, }+

RN6. orpart=ormacro/starmacro/mstarelement

RN7. mstarelement=element/element*

RNS. element=operation/indexedop/(msequence)/elmacro

MN16. operation=lc—letter{lc—letter/digit/_}i

MN17. indexedop=arrayid{({iexpr @,}+)/ }

RN9. seqmacro=seqrepl/seqdistr

RN10. seqrepl=index_§pec[{seqconcseq/seqimbrseq}]

CNl. seqdistr=;{/iexpr}{/#iexpr,iexpr,iexpf}[mSEquence]

CN2. seqconcseq={seqpart;}+@

- 317 -
CN3. seqimbrseq=seqimbr_a;_seq
/{seqpart ;}+ seqimbror {; seqpart}*
/ {seqpart ;}* seqimbror {; seqpart}+
CN4. seqimbror={orpart,}* seqimbrstarel {, orpart}*
CN5. seqimbrstarel=seqimbrel/seqimbrel%*
CN6. seqimbrel=(seqimbrseq)
CN7. seqimbr_at seq=
{seqpart;}+ {@/ap_orlf} {;seqpart}* ; {@/at_orlb} {;seqpart}+
/{seqpart ;}+ at or2fb {; seqpart}+
/@{seqpart;}j_{@/ac_prlb} {;seqpart}+
/{seqpart;}+ {@/at orlf} {;seqpart}*@
/@ msequence @
RN22. ormacro=orrepl/ordistr
RN23. ordistr=,{/iexpr}{/f#iexpr,iexpr,iexpr}[morelement]
RN24. orrepl=index spec[{orconcor/orimbror}]
RN25. orconcor={orpart ,}+@
RN26. orimbror=orimbr atout or
/{orpart ,}+ orimbrstarel {, orpart}*
/{orpart ,}* orimbrstarel {, orpart}+
RN27. orimbr atout or=@ {at orlf/at orlm}
/{at_orlm/at_orlb} @
/at_or2mm
/@ morelement @
RN28. orimbrstarel=orimbrel/orimbrel%*

RN29. orimbrel=(orimbrseq)

- 318 -
RN30. orimbrseq={seqpart ;}j_orimbr_}n_pr {; Seqpart}t
/orimbp_atiq_seq
RN31. orimbr in or={orpart »}* orimbrstarel {, orpart}=
RN32. orimbr_atin seq=
orimbr_atou;_or
/{seqpart;}+ {ap_orZfb/ap_or2fm/a;_or2mm/a§_pr2mb}{;seqpart}+
/{seqpart ;}+ {ap_oerm/ap_oerm}
/{aQ_oerm/ap_oerb} {; seqpart}+
/@ {@/aq_orlf/aq_orlm/ag_orlb} {;seqpart}+
/ {seqpart ;}+ {@/aq_orlf/aq_orlm/aq_orlb} @
RN33. at orlf=Q@ {,orpart}+
RN34. at orlm={orpart ,}+ @ {, orpart}+
RN35. at orlb={orpart ,}+ @
RN36. at or2fb=8 {, orpart}* , @
RN37. at or2fm=@ {, orpart}+ , @ {, orpart}+
RN38. at or2mb={orpart ,}+ @ {,orpart}* , @
RN39. at or2mm={orpart,}+ @ {,orpart}* ,@ {,orpart}+
RN4O. starmacro=index spec[(starimbrseq)*]
RM41. starimbrseq=starimbr at seq
/{seqpart ;}* starimbror {; seqpart}*
RN42. starimbror={orpart ,}* starimbrstarel {, orpart}*
RN43. starimbrstarel=starimbrel/starimbrel#*
RN44, starimbrel=(starimbrseq)
RN4S. starimbp_ap_seq=

{seqpart ;}+ @ ;{mstarelement ;/ } @ {; segpart}+

- 319 -
/ {seqpart ;}+
{starat_orlf_one/starat_or1b_one/starat__lb_many/starat_orlm_b}
; @ {; seqpart}+
/{seqpart ;}+ @
; {starat_orlf_one/starat_orlf_many/starat_or1b__one/starat_or1m_f}
{;scqpart}+
/ {seqpart ;}+ {@/starat_orlb_one/starat_or1b_many} R
{starat_orlf_one/starat_orlf__many/starat_orlm_f}
/{starat_orlb_one/starat_or1b_many/starat:_or1m__b} ;
{@/starat_orlf_one/starat_orlf_many} {; seqpart}+
/{starat_orlb one/starat orlb many} ;
{starat_orlf one/starat orlf many/starat orlm f}
/{starat orlb one/starat orlb many/starat orlm b} ;
{starat orlf one/starat orlf many}
/ {seqpart ;}+
{starat_orzfb/starat__oerm/starat_oerm/starat_or2mb}
{;seqpart}+
/{seqpart ;}+ {starat_oerm/starat_oerm}
/ {starat 2mb/starat or2mm} {; seqpart}
/starat or2mm
/@ {starat_orlf_one/starat_orlf_many/starat_or1m_f}
/@ {@/starat_orlf_one/starat_orlf_many/starat__orlm_f/stafaC_Of1b_°ne}
{; seqpart}+
/{starat_orlb__one/starat_orlb_many/starat_or1m_b} @
/ {seqpart ;}+

{@/starat orlb_one/starat_orlb_many/starat_orlm_b/Stafat_Of1f_°“e}@

- 320 -

/2 mstarelement 2
RN46. starat orlf one=¥ , mstarelement
RN47. starat orlf many=Q@ {, orpart}+
RNA8. starat orlb one=mstarelement , @
RN49. starat orlb many={orpart ,}+ @
RN50. starat orlm f=mstarelement ,8 {, orpart}+
RN51. starat orlm b={orpart ,}+ @, mstarelement
RN52. starat or2fb=0 {,mstarelement/} , @
RN53. starat or2fm=@ {,mstarelement/} ,@ {, orpart}+
RNS4. starat or2mm={orpart ,}+ @ {,mstarelement/}, @ {, orpart}+
RN55. starat or2mb={orpart ,}+ @ {,mstarelement/}, @
RN56. elmacro=index spec[(elimbrel)]
RN57. elimbrseq=elimbr at seq

/{seqpart ;}* elimbror {; segpart}*
RN58. elimbror={orpart ,}* elimbrstarel {, orpart}*
RN59. elimbrstarel=elimbrel/elimbrel*
RN60. elimbrel=(elimbrseq)
RN61. elimbr at seq=
{seqpart ;}+ @ ;{element ;/ } @ {; seqpart}+
/ {seqpart ;}+
{elap_pr1f_pne/ela;_or1b_pne/elat_lb_pany/elat_prlm_b}
; @ {; segpart}+
/ {seqpart;}+
@;{ela;_pr1f_pne/ela;_prlf_many/elap_orlb_pne/elaq_orlm_f}

{;seqpart}+

- 321 -

/ {seqpart ;}+ {@/elat orlb one/elat orlb many}

/{elat_or1b_one/elat_orlb_many/elat orlm b}

{elat orlf one/elat orlf many/elat orlm f}

{@/elat orlf one/elat orlf many} {; seqpart}+

/{elat orlb one/elat orlb many} ;

{elat_orlf one/elat orlf many/elat orlm f}

/{elat orlb one/elat orlb many/elat orlm b} ;

{elat orlf one/elat orlf many}

/ {seqpart ;}+

{elat or2fb/elat or2fm/elat or2mm/elat_or2ub}

{;seqpart}+

/{seqpart ;}+ {elat or2fm/elat or2mm}

/{elat 2mb/elat_or2mm} {; seqpart}

/elat or2mm

/@

/@

{elat orl f one/elat orl f many/elat_or lm f}
{@/elat orl f one/elat orl f many/elat_or lm_f/elat_or 1b one}

{; seqpart}+

/{elat or lb_one/elat_or lb_many/elat_or lm b} a

/ {seqpart ;}+

/@
RN62.
RN63.
RN64.
RN65.

RN66 .

{@/elat_orIb_one/e].at_or1b_many/elat__orlm_b/elat_orlf_one} @
element @

elat orlf one=@ , element

elat__orlf__many=@ {, orpart}+

elat orlb one=element , @

elat_orlb many={orpart ,}+ @

elat orlm f=element ,@ {, orpart}+

~ 322 -
RN67. elat orlm b={orpart ,}+ @, element
RN68. elat or2fb=@ {,element/} , @
RN69. elat or2fm=@ {,element/} ,@ {, orpart}+
RN70. elat_or2mm={orpart ,}+ @ {,element/}, @ {, orpart}+
RN71. elat or2mb={orpart ,}+ @ {,element/}, @

MN36. uc-letter=A/.../2

MN37. lc-letter=a/.../z

MN38. digit=0/.../9

MN39. iexpr={+/-/ } {term @{+/-}}+

MN4Q. term={factor @{*/DIV/MOD/EXP}}+

MN41. factor=integer/constant/index/funct desig
MN42. integer={digit}+

MN43. constant=lc-letter{lc-letter/digit/ }*
MN44. index=lc-letter{lc-letter/digit/ }*

MN45. funct desig={ABS/FACT/SQUARE}(iexpr)

	344314_0001
	344314_0002
	344314_0003
	344314_0004
	344314_0005
	344314_0006
	344314_0007
	344314_0008
	344314_0009
	344314_0010
	344314_0011
	344314_0012
	344314_0013
	344314_0014
	344314_0015
	344314_0016
	344314_0017
	344314_0018
	344314_0019
	344314_0020
	344314_0021
	344314_0022
	344314_0023
	344314_0024
	344314_0025
	344314_0026
	344314_0027
	344314_0028
	344314_0029
	344314_0030
	344314_0031
	344314_0032
	344314_0033
	344314_0034
	344314_0035
	344314_0036
	344314_0037
	344314_0038
	344314_0039
	344314_0040
	344314_0041
	344314_0042
	344314_0043
	344314_0044
	344314_0045
	344314_0046
	344314_0047
	344314_0048
	344314_0049
	344314_0050
	344314_0051
	344314_0052
	344314_0053
	344314_0054
	344314_0055
	344314_0056
	344314_0057
	344314_0058
	344314_0059
	344314_0060
	344314_0061
	344314_0062
	344314_0063
	344314_0064
	344314_0065
	344314_0066
	344314_0067
	344314_0068
	344314_0069
	344314_0070
	344314_0071
	344314_0072
	344314_0073
	344314_0074
	344314_0075
	344314_0076
	344314_0077
	344314_0078
	344314_0079
	344314_0080
	344314_0081
	344314_0082
	344314_0083
	344314_0084
	344314_0085
	344314_0086
	344314_0087
	344314_0088
	344314_0089
	344314_0090
	344314_0091
	344314_0092
	344314_0093
	344314_0094
	344314_0095
	344314_0096
	344314_0097
	344314_0098
	344314_0099
	344314_0100
	344314_0101
	344314_0102
	344314_0103
	344314_0104
	344314_0105
	344314_0106
	344314_0107
	344314_0108
	344314_0109
	344314_0110
	344314_0111
	344314_0112
	344314_0113
	344314_0114
	344314_0115
	344314_0116
	344314_0117
	344314_0118
	344314_0119
	344314_0120
	344314_0121
	344314_0122
	344314_0123
	344314_0124
	344314_0125
	344314_0126
	344314_0127
	344314_0128
	344314_0129
	344314_0130
	344314_0131
	344314_0132
	344314_0133
	344314_0134
	344314_0135
	344314_0136
	344314_0137
	344314_0138
	344314_0139
	344314_0140
	344314_0141
	344314_0142
	344314_0143
	344314_0144
	344314_0145
	344314_0146
	344314_0147
	344314_0148
	344314_0149
	344314_0150
	344314_0151
	344314_0152
	344314_0153
	344314_0154
	344314_0155
	344314_0156
	344314_0157
	344314_0158
	344314_0159
	344314_0160
	344314_0161
	344314_0162
	344314_0163
	344314_0164
	344314_0165
	344314_0166
	344314_0167
	344314_0168
	344314_0169
	344314_0170
	344314_0171
	344314_0172
	344314_0173
	344314_0174
	344314_0175
	344314_0176
	344314_0177
	344314_0178
	344314_0179
	344314_0180
	344314_0181
	344314_0182
	344314_0183
	344314_0184
	344314_0185
	344314_0186
	344314_0187
	344314_0188
	344314_0189
	344314_0190
	344314_0191
	344314_0192
	344314_0193
	344314_0194
	344314_0195
	344314_0196
	344314_0197
	344314_0198
	344314_0199
	344314_0200
	344314_0201
	344314_0202
	344314_0203
	344314_0204
	344314_0205
	344314_0206
	344314_0207
	344314_0208
	344314_0209
	344314_0210
	344314_0211
	344314_0212
	344314_0213
	344314_0214
	344314_0215
	344314_0216
	344314_0217
	344314_0218
	344314_0219
	344314_0220
	344314_0221
	344314_0222
	344314_0223
	344314_0224
	344314_0225
	344314_0226
	344314_0227
	344314_0228
	344314_0229
	344314_0230
	344314_0231
	344314_0232
	344314_0233
	344314_0234
	344314_0235
	344314_0236
	344314_0237
	344314_0238
	344314_0239
	344314_0240
	344314_0241
	344314_0242
	344314_0243
	344314_0244
	344314_0245
	344314_0246
	344314_0247
	344314_0248
	344314_0249
	344314_0250
	344314_0251
	344314_0252
	344314_0253
	344314_0254
	344314_0255
	344314_0256
	344314_0257
	344314_0258
	344314_0259
	344314_0260
	344314_0261
	344314_0262
	344314_0263
	344314_0264
	344314_0265
	344314_0266
	344314_0267
	344314_0268
	344314_0269
	344314_0270
	344314_0271
	344314_0272
	344314_0273
	344314_0274
	344314_0275
	344314_0276
	344314_0277
	344314_0278
	344314_0279
	344314_0280
	344314_0281
	344314_0282
	344314_0283
	344314_0284
	344314_0285
	344314_0286
	344314_0287
	344314_0288
	344314_0289
	344314_0290
	344314_0291
	344314_0292
	344314_0293
	344314_0294
	344314_0295
	344314_0296
	344314_0297
	344314_0298
	344314_0299
	344314_0300
	344314_0301
	344314_0302
	344314_0303
	344314_0304
	344314_0305
	344314_0306
	344314_0307
	344314_0308
	344314_0309
	344314_0310
	344314_0311
	344314_0312
	344314_0313
	344314_0314
	344314_0315
	344314_0316
	344314_0317
	344314_0318
	344314_0319
	344314_0320
	344314_0321
	344314_0322
	344314_0323
	344314_0324
	344314_0325
	344314_0326
	344314_0327
	344314_0328
	344314_0329
	344314_0330
	344314_0331

