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Abstract

Functional programming languages such as Haskell allow numerical algorithms to be expressed in a
concise, machine-independent manner that closely reflects the underlying mathematical notation in
which the algorithm is described. Unfortunately the price paid for this level of abstraction is usually
a considerable increase in execution time and space usage.

This thesis presents a three-part study of the use of modern purely-functional languages to
develop numerical software.

o In Part I the appropriateness and usefulness of language features such as polymorphism, pat-
tern matching, type-class overloading and non-strict semantics are discussed together with the
limitations they impose. Quantitative statistics concerning the manner in which these features
are used in practice are also presented.

o In Part II the information gathered from Part I is used to design and implement FSC, an
experimental functional language tailored to numerical computing, motivated as much by
pragmatic as theoretical issues. This language is then used to develop numerical software and
its suitability assessed via benchmarking it against C'//C++ and Haskell under various metrics.

e In Part IIT the work is summarised and assessed.



Acknowledgements

Many thanks to Dr Chris Phillips and Dr Dave Harrison for their support and guidance over the
past three years. Personal thanks go to my family, friends and especially Tor and Rob. This work
was supported by EPSRC grant number 94313569.



Contents

1 Introduction

1.1 The Problem . . . . . .
1.2 Summary of Original Work . . . . . ... ...
1.3 Overview of Thesis . . . . . . ... .
1.4 Notational Conventions . . . .. . . . .. .. ...,
1.5 Chapter Notes . . . . . . . . .. . e

Functional Implementations of Numerical Methods

Functional Programming

2.1 Introduction . . . . . . ..ol e e
2.2 What is Functional Programming? . . . . . .. ... ... ... ... ... ... ...
2.3  Features of Modern Functional Languages . . . . . ... .. ... ... ... . ...
2.4 Classifications of Functional Languages . . . . . . ... ... ... ... ... . .
2.5 Advantages of Non-Strict Semantics . . . . .. ...
2.6 Functional Language Implementations . . . . . .. .. ... ... . ... ... .
2.7 Chapter Notes . . . . . . . e

Numerical Methods

3.1 Introduction . . . . . . ..
3.2 Systems of Equations - . . Lo
3.3 Approximation of Functions . . . . ... ... Lo
3.4 Numerical Differentiation . . . . . .. ..ol Lo
3.5 Numerical Integration and Quadrature . . . ... ... oo oL
3.6 Root Finding . . . . . . . .. e e
3.7 OptimIsation . . . . . . .t L e e e e e e e e e e e e e e e e
3.8 Differential Equations . . . . . .. ... L
3.9 Symbolic Manipulation . . .. . . .. L

[y

! o e NOBS

@]



CONTENTS CONTENTS

4 Use of Haskell 39
4.1 PlanofStudy . . . . . . . .. e 39
4.2 Choiceof Language . . . . . . . . . . . . . e e e e e e 39
4.3 Choiceof Style . . . . . . . . e e 41
4.4 Denotation of Numerical Methods . . . . . ... ... ... .. ... ... ... 12
4.5 Case Study: LU Factorisation . . . . . . . . .. .. ... ... ... ... ... 53
4.6 SUMMALY . . . o ¢ et et et e e e e e e e e e e e e e 70

5 Efficiency and Empirical Analysis 73
5.1 Chapter Overview . . . . . . . . . . .. e e 73
5.2 Efficiency Issues. . . . . . . . . . .. e e T4
5.3 Highlighting Areas of Inefficiency . . . . . ... .. .. ... ... .. ......... 82
5.4 Lessons Learned . . . . . . . . . . . . . e 97
5.5 Chapter Notes . . . . . . . . . . . e 98

6 Related Work 99
6.1 Use of Functional Languages . . . .. ... ... ... ... ... ... ... ... 99
6.2 SUMIMATY . . . . . ot e e e e e e 101

II The FSC Language 102

7 Language Design 103
7.1 Introduction . . . . . . . . o i i i e e e e 103
7.2 SimpleI/O . . . . . e 105
7.3 ATay SUGATINE . . . . .« v ot e i e e e e 109
7.4 Recursively Defined Arrays . . . . . . . . ... . 110
7.5 Support for partial application . . . . .. ... ..o oo 118
7.6 Example: Cyclic Reduction . . . . . ... ... ... ... 120
77 Array SEHPPING . -« o o o v o e i e e e e 121
7.8 Summary of FSCarrays . . . . . . . . . oo 124
7.9 Parametric Overloading . . . . . . . . . . . .o 127
7.10 Overlapping Type Class Instances . . . . . . . . ... .. oo 133
T11 SUMIMALY .« o v o o e o e e e e e e e e e e e e e e e e e e e e 135

8 Definition of FSC 140
8.1 Introduction . . . . . . o o i e e e e e e e e e e e e 140
8.2 Program Structure . . . . . . . . . ...t it 142
8.3 Lexical StruUCtUIe . . « o v v v e e e e e e e e e e e e e e e e e 147
8.4 EXPIessions . . . . . . o i e e e 149
8.5 Declarations and Bindings . . . . . . . .. ... oo 167
8.6 ModUles . . o v v v e e e e e e e e e e e e e e e e e e e 175

i



CONTENTS CONTENTS
9 Implementation of FSC 178
9.1 2"dorder LambdaCalculus . . . . ... ... ... ... ... ... 173
9.2 Target Language . . . . . . . . . . . ... .. e 180
9.3 Inmput/Output . . . . . . . ... e 180
9.4 Parallelism . . . . . . .. e e e 181
9.5 Higher Order Functions . . .. .. ... . ... ... ... ... ... .. .. ... 182
9.6 Specialisation and Separate Compilation . . . . . . .. .. ... ..o, 182
9.7 Library-Based Separate Compilation . . . . .. . ... ... ... ... ... .. 184
9.8 Transformations and Derivations . . . . . . . . . ... ... ... 0. 184
9.9 Application of Transformations . . . . ... ... ... ... ... .. .. .. .. 194
9.10 Syntax of Transformations . . . . . . . . . .. ... ... L. 196
0.11 SUMIMATY . - - -« o« o o e e e e e e e e e e e e e e 196
10 Use of FSC in Practice 197
10.1 Functional Programming for Finite Elements . . . . . .. .. ... ... ....... 197
10.2 Summed aXpyS . . -+ e v b e e e e e e e e e e e e e 205
10.3 Argument Domains . . . . . . . . . ... e e 208
10.4 Dot Products . . . . . . . . . e e e e e e e e 209
10.5 Gaussian Quadrature . . . . . . . . . ... 210
10.6 Normal CDFs : Extended Example . . . . . . . .. .. ... ... ... ........ 211
10.7 Cyclic Reduction: Extended Example . . ... .. .. ... ... ... ....... 212
10.8 SUIMMATY . .« o o o o e e e e e e e e e e e e e e 218
11 Related Work 219
11.1 Use of Multi-Parameter Type Classes . . . . . . . . .. . ... .. 219
11.2 Use of Transformation Systems . . . . . . . . . .. .. .. oo 220
11.3 Use of Recursively Defined Monolithic Arrays . . . . . ... .. ... ... .. ... 220
IIT Conclusions 221
12 Conclusions 222
12.1 ASSESSIMENt - « o o o o e e e e e e e e e e e e e e e e e e e e 223
12.2 DISCUSSION « - « « + v o e et e e e e e e e e e e e e e e e e e e e e e 223
12.3 Further Work . . . . . . o o o e e e e e e 224
12.4 Concluding Remarks . . . . . . .. ... ... 227
Appendices 229
A FSC: Syntax and Kernel semantics 229
A1 Lexical Structure . . . . . . o o i i e e e e e e e e e e 229
A2 EXPreSSIONS . . . ¢ o v v v e e e e e e e e 234
A3 Declarationsand Bindings . . . . . . . ... 239

11



v

CONTENTS CONTENTS
A4 Modules . . . . . . L e e e e e e e e e 241
B normalCDF: C implementation 243
C Lambda Calculus 246
C.1 Introduction . . . . . . . . . . e e 246
C.2 Definitions. . . . . . . . . e e e e 246
C.3 The Pure Untyped Lambda Calculus . . . . . . .. ... ... ... ... ..... 247
C.4 Rewrite Rules . . . . . . . . . . . . e 247
C.5 Reductions and Conversions . . . . . . . . . v vt e e e e e e e e e e 248
C.6 Normal Forms and Confluence of Reductions . . . . . . ... ... ... ... .... 249
C.7 Order of Reduction . . . . . . . . . . . e 250
C.8 Strictness and Laziness . . . . . . . . . . oL 250
D Polymorphic Type Inference 252
D.1 Polymorphic Type Inference . . . . . .. . ... .. . oo 252
D.2 Notation for TyPes . . . . .« o v v i i i e e e e e 252
D.3 Polymorphism. . . . . . . ... 253
D4 Typelnference . . .. . .. . . .. .. ... 254
D5 TypeRules . . . . .. .. . 255
E Monads and Imperative Functional Programming 257
F Finite Element Code 260
G FSC Code Examples 263
G.1 JacobiIteration . . . . . . . . . . o e e e e 263
G.2 Gauss-Seidel Tteration . . . . . . . . o o i e e e e e e 263
G.3 Gaussian Quadrature . . . . . .. ... 263
G.4 Matrix-Vector Operations . . . . . . . . . o oo 263
G.5 LU DecompoSition . . . . . . o v it e e e e 264
G.6 Newton’s Method for Systems of Non-Linear Equations . . . ... ... ..... .. 264
H FSC Standard Prelude 267
I Domain Theory 275
L1 Introduction . . . . o o vt i e e e e e e e e e e e e e e 275
L2 TermiNoOlOY . « « v v ¢ v e e e i e e e e e e e e 275
1.3 Domains Versus Sets . . . . o o v o v i e e e e e e e e e e e e e e e 275
L4 SUMIMAIY . . o v v o v et e e e e e e e e e e e e 276
J Denotational Semantics 277
J1 Introduction . . . o v v v o e e e e e e e e e e e e e e e e e e e e 277
J9 The EVALFunction . . . . . . . . o v o i i i i et i e e e e e 277
J3 LambdaCalculus . . . . . . .« oo e e e e e e 278



CONTENTS CONTENTS
J.4 Summary . . ... .. 278
K Mathematical Notation 279



Chapter 1

Introduction

The theme of this thesis is the development of efficient numerical software using modern functional
languages together with the design decisions, pragmatic considerations and techniques required from
a modern functional language specialised to this area.

Typically, numerical software is based on algorithms associated with discrete approximation and
linear algebra. These algorithms often have high computational requirements and dominate the
field of scientific computing.

An efficient implementation of an algorithm expressed in a procedural language is often very differ-
ent from the underlying mathematical definition.

The use of functional programming languages for scientifically-significant computations offers the
advantages over procedural languages of modularity, conciseness, clarity. ease of proof, ease of in-
troducing problem-oriented notation and independence from hardware peculiarities [15].

In the field of scientific computing, domain-specific knowledge also plays a vital role as improve-
ments in efficiency are often possible when problem properties are known. This thesis discusses how
many of the ideas and techniques available in modern functional languages may be used in the con-
text of numerical software development without suffering the lack of efficiency normally associated
with functional languages; how domain specific knowledge may be expressed within this framework;
and the necessary pragmatic concessions which must be made to achieve these goals.

The test-bed for these concepts is the development of numerical software in an experimental func-
tional language, FSC. FSC is essentially a Haskellesque[49, 50] language specialised for numerical
computation compiling to SISAL[19] .



1. Introduction 1.1. The Problem

1.1 The Problem

Since computer performance is increasing all the time we are now in the position of being able to
solve problems of greater complexity than was previously possible. Unfortunately it is a sad fact
that as problem complexity increases, program complexity often increases also!. It is for exactly this
reason that clarity, conciseness and correctness of code are important. A “functional (or applicative)
style is necessary to realise the promise of general-purpose parallel programming™ [105]. This promise
draws on the fact that there is no underlying concept of a physical machine, store or sequencing,
and although implicit parallel functional programming has often been promised, and to an extent
delivered, we believe that in the area of scientific programming this promise can be achieved®. with
applicative languages such as SISAL [18, 19] substantiating this claim.

1.1.1 Functional Programming and Scientific Computing.

The main advantages of using a functional language in this application domain are clear; programs
can be written more quickly, more concisely, at a higher level (resembling more closely traditional
mathematical notation) and are more amenable to formal reasoning, analysis and transformation-
based compilation. Some of the disadvantages in this area are also clear; 1/O is not as straightforward
as in imperative languages®; low-level machine actions are hard to program; often the price paid
for the level of abstraction is an increased execution time and space usage (especially for lazy
functional languages). We also need to consider issues relating to numerical analysis; execution
efficiency is paramount; legacy code exists and will continue to do so for many years to come?. In
the design of any realistic tool for work in this area each of these points should be taken into account,
maximising the advantages and minimising the disadvantages while still respecting the numerical
analysis aspects, making necessary compromises along the way between mathematical/theoretical
elegance and pragmatic considerations.

1.2 Summary of Original Work

The original work reported in this thesis consists of:

e A study of the suitability and use of the purely functional language Haskell[49, 50] to implement
numerical algorithms.

o An investigation of the development of algorithms in a style differing from the usual array-
intensive definition.

o A non-pivoting version of LU factorisation which does not require all leading left submatrices
to be non-singular and which does not introduce fill-in.

1 Picking through a PVM or MPI message-passing code should convince the reader of this.

2Given that the algorithm is not strictly sequential.

3This is as much a matter of unfamiliarity as conceptual difficulty especially with the increasing use of monads
(see later).

4 Asking practitioners to re-do 40+ years of work is not feasible.



1. Introduction 1.3. Overview of Thesis

Quantitative statistics regarding the manner and frequency with which specific functional-
language features are used in practice.

e The design, development and evaluation of FSC, a strict, Haskell-like functional language
specialised to scientific computing.

o The definition of a user-defined transformation language enabling domain-specific knowledge
and optimisations to be embedded in a program script and a monadic translation scheme for
the interpretation of such transformations.

e The development of a purely functional I/O system, suited to this area.

e The development of an array abstract datatype which may be used in conjunction with
pattern-matching expressions, translation schemes for syntactic sugarings of array opera-
tions/definitions and optimisations based on the GCD3-test avoiding the need for intermediate-
array building.

o A scheme for efficiently constructing recursively-defined arrays.

¢ The development and evaluation of an efficient multi-parameter type-class system suited to
the area of scientific computing.

1.3 Overview of Thesis

The central theme of this thesis is the use of techniques from modern functional programming to
produce clear efficient implementations of numerical algorithms in a manner that preserves as much
of the spirit of functional programming as possible.

This thesis is organised in three parts. Part I acts as an introduction to functional scientific com-
puting and describes work carried out using existing modern functional languages. In Part II the
language FSC is introduced and used to construct numerical software. Part III offers conclusions
and suggests further work.

PART I: Functional Implementations of Numerical Methods

Chapter 2: Functional Programming
The main concepts and idioms behind functional programming are introduced together
with a discussion of commonly used functional (or mostly functional) programming lan-
guages.

Chapter 3: Numerical Methods
The problem domain we are working in is introduced and a brief overview of scientific

computing is presented.

5GCD-test: A dependence test used in parallelising compilers based around use of the greatest common divisor.
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Chapter 4: Use of Haskell to Implement Numerical Algorithms.
In this chapter, use of the purely functional language Haskell to implement numerical
algorithms is described, the development of numerical algorithms in styles other than the
usual array intensive definition is investigated and the impact of non-strict semantics on
this area is discussed.

Chapter 5: Efficiency and Empirical Analysis
In this chapter initial conclusions are presented as to the suitability of Haskell's language
features to scientific computing.

Chapter 6: Related work
Part I is concluded with a survey of the previous work in the area of functional scientific
computing.

PART II: The FSC Language

Chapter 7: Design of FSC
In this chapter the necessary features for a functional language specialised to numerical
analysis are discussed.

Chapter 8: Definition of FSC
A formal definition of FSC is presented.

Chapter 9: Implementation of FSC
A discussion of the pragmatic implementation details is given.

Chapter 10: Use of FSC in practice
Extended examples in FSC are presented and the efficiency of these examples discussed.

Chapter 11: Related work
A survey of work related to techniques used in Part I is presented.

PART III: Conclusions

Chapter 12: Conclusions
The work presented is summarised and assessed.

1.4 Notational Conventions

Footnotes are used to add minor points of non-essential information to the body of the text; footnotes
are denoted by Arabic numerals®. More extensive notes are collected at the end of each chapter and
are indicated by Roman numerals(). Both footnotes and chapter notes may be ignored on a first

reading.

References to other work are indicated by a series of numbers in square brackets. e.g. [1,2].

8 A footnote.



1. Introduction 1.5. Chapter Notes

Mathematical expressions are written in italic font: id = Az.x.

Program code fragments are displayed in typewriter font: x = y and, unless specified as other-
wise, larger Haskell, FSC and Miranda[96] code sections are written as literate scripts [60] using
the Haskell offside rule, i.e. code is commented in rather than out and its column placement has
meaning.

A variation on a familiar program in FSC
> main :: I0 ()

> main do I0 w where
> w = print x

due to its column placing the
definition below is local to
main and not global

> x = "hello world" ++ endl

1.5 Chapter Notes

i (page 4) :
Chapter notes are cross-referenced with the page to which the note refers.
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Chapter 2

Functional Programming

2.1 Introduction

It has often been claimed that the use of functional programming languages for scientifically-
significant computations offers the advantages over procedural languages of modularity, conciscness.
clarity, ease of proof, ease of introducing problem-oriented notation and independence from hard-
ware peculiarities [15]. However. before discussing how functional programming relates to numerical
methods, we introduce some of the features found in modern functional languages and the common
classification of these languages according to their function invocation disciplines. Unless stated
otherwise, all examples are given in Haskell-style syntax [49, 50].

2.2  What is Functional Programming?

Functional programs are so called because at the highest level a program is considered as a function
from the program input to the program output. Pure functional programs do not possess an implicit
state and so preserve referential transparency. All values are static, and re-assignment is disallowed.
Referential transparency is the feature of programs where equals may replace equals such that in the
expression

.o.x+x.. . wherer = f(a)

the function application f(a) may be substituted for any free occurrence! of r in the scope created
by the where expression (such as the sub-expression r + ). Referential transparency implies that
there is no implicit underlyving context to an expression and subexpressions may be evaluated in any
order. Referential transparency is important in the field of mathematical programming, it encourages
equational reasoning and modular methods of proof can be utilised whereby statements about whole
constructs may be proved by proving sub-theorems (or lemmas) about their constituents.

Ifree occurrence: See Appendix C
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2.3 Features of Modern Functional Languages

One of the features common to many functional programming languages is strong static typing.
Although strong static typing is not restricted to functional languages it has become one of the
features that tends to characterise them. Each expression in a program has a type associated with it
and hence has a type expression (or signature) that describes it. For example if we consider Peano’s
successor function [57]:

> succ :: Int -> Int

it can be seen from the signature that the function succ is of type Int -> Int (i.e. succ maps one
integer to another). This is very similar to the mathematical notation of a function signature. We
could define succ as

succ is a function from Nto Nsuch that succ(z) =z +1

and define succ as

> ' succ :: Int -> Int
> succ x = x+1

Although we do not need the type definition (as the language can often infer this for us) it is useful
as it improves the readability of programs and often brings sources of error to light. The advantages
of statically-typed languages are well known, all type errors are detectable at compile time and a
compiler is able to produce efficient code as no runtime tags are needed.

2.3.1 User-Defined Datatypes and Pattern Matching

User-defined datatypes are defined using a notation resembling BNF [5]. For instance the type
Boolean could be written

> data Boolean = TRUE | FALSE
and a list of elements of type a as(*)
> data List a = Empty | Cons a (List a)

One of the techniques that is used extensively in functional programming is pattern matching: the
writing of many different equations to define a function where in each case only one is applicable.

> length :: List a -> Int
> length Empty = 0
> length (Cons a b) = 1 + (length b)

Pattern matching is important because it supports clear, concise definitions, structural induction,
and encourages equational reasoning about programs.
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2.3.2 Partial Application and Sections

Partially applicable, or Curried, functions are arity n functions which, when applied to a single
argument, return functions of arity (n — 1). For example addition can be thought of as a function

(+)tuple b (G,C!) —

which sums pairs of numbers, or as a function

(+H)curried @ — (@ — a)

which takes one parameter and yields a function which increments its argument by the value of that
parameter. The function-space constructor (—) is assumed to be right associative so we may omit
the parentheses and write

(+)Curried Lo —

A Curried function is applied to an argument by juxtaposing the function and the argument. For
example if add is a Curried addition function then we could define the value three as the sum of 1
and 2 via

> three :: Int
> three = (add 1) 2

but since function application is taken to be left associative we may again omit the parentheses and
write

> three :: Int
> three = add 1 2

An application of Currying is differentiation:
> differentiate :: Function -> EvaluationPoint -> Value

since differentiate f constructs the function f' and differentiate f k constructs the value
£(k).

A feature closely associated with Currying is sectioning. A section is a mechanism that forms
prefix functions from infix operators allowing such operators to be partially applied to their left or
right arguments:

> (+) <=> fwheref ab=a+b
> (at) <=> g where gb=a+b
> (+b) <=> h where ha=a+b

where free occurrences of a,b have bindings in the surrounding environment. The use of partial
application is important as it cuts down on unnecessary brackets and also increases the usefulness

of higher order functions.
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2.3.3 Higher Order Functions

The existence of higher order functions stems from the argument that functions are values just like
any other and, as such, should be given first class status, i.e. allowed to be stored in data structures,
passed as arguments and returned as results. Since functions are the main abstraction mechanism
over values, allowing functions to be higher order increases this form of abstraction. Another equally
valid argument for higher order functions is that recurring patterns of computation can be ident.iﬁe;i
and parameterised to allow complicated functions to be expressed simply using function composition.
For example a function to compute the L, norm of a vector x having elements ry, ra,....rx

llxl2 =
may be written as
> 12_norm :: [Double] -> Double
> 12_norm = sqrt.sum.(map ("2))

where f.g denotes function composition f o g and map applies a given function f to each element in
a list, so map (+1) [1,2,3] = [2,3,4]. The function map is defined using pattern matching as

> map :: (a -> b) -> [al -> [b]
> map f (] =[]
> map f (x:xs) = £ x:(map £ xs)

and exhibits parametric polymorphism since it acts uniformly over lists of various component types.
Higher order functions are essential for mathematical programming since they allow modular speci-
fications of functionals such as integration.

2.3.4 List Comprehensions

In functional programming there is a very common notation called the list comprehension. This is
similar to notation in set theory. For instance we can write

filterSet PY ={yl(y€Y) A P(y)}

to define the subset of Y satisfying some predicate P. In functional programming we have the similar
notation

> filter :: (a —> Bool) —> [a]l -> [al
> filter p ys = [yl y<-ys,p vl

which may be read as ‘The list zs of elements drawn from the list ys such that for each z in 75, r
satisfies the predicate p’. We may use this notation to define map

> map :: (a -> b) -> [al —> [b]
> map f xs = [f x | x<-xs]

10



2. Functional Programming 2.3. Features of Modern Functional Languages

vfrhich may l')e read as ‘The list defined by applying the function f to each z where r is drawn from the
list zs’. A list comprehension preserves order and can be considered as the functional-programming
equivalent of a for loop.

Alth(.)ugh list comprehensions could be viewed as mere notational convenience or syntactic sugar,
the ability to express algorithms concisely and clearly with them makes them very useful. For
example ‘Quicksort’ could be defined [91] as

++ [a] ++
gSort [yly<-x,y>al

> qSort [Int] -> [Int]

> gSort [] = 0

> gSort (a:x) = gSort [yly<-x,y<=al
>

>

2.3.5 Type classes and Ad-Hoc Polymorphism

Recently, the notion of type classes[97] has appeared in functional languages. Type classes provide
a system where identifiers may be incrementally overloaded. Consider the function min defined as

> min x y = if x <y
> then x
> else vy

The most general type of min is
min:a — o — o

for all types a with the operator < defined on them. In Haskell this is written
> min::0rd(a) => a -> a -> a

where 0rd is the class of types admitting the operator <. Type classes capture the behaviour of
a collection of overloaded functions in a consistent manner. To overload (+) on both integers and
floats we declare the class admitting the operator (+)

> class Num a where
> (#) :: a->a->a

and declare integers and floats as instances? of this class

addInts x y
addFloats

> instance Num Int where X +y
> instance Num Float where (+)

where addInts and addFloats are primitive addition functions specialised to integers and floating
point numbers. If we now define a function sum which sums the elements in a non-empty list

> sum :: Num a => [a] -> a
> sum [x] = x
> sum (x:xs) = x + sum Xs

2Note: the definition x + y = £ x y is equivalent to (+) = £.

11
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we may apply the function sum both to lists of integers and to lists of floats or indeed lists of any
type which is a member of the class Num. In this way the domain of applicability of the function sum
and all functions defined in terms of it may be extended at a later date via the inclusion of extra
types in class Num.

2.4 Classifications of Functional Languages

Functional languages are often classified according to the method used to evaluate expressions:

Strict (call by value) languages evaluate the arguments of a function before attempting to eval-
uate the body of the function itself in a style analogous to applicative order reduction [21] in
the lambda calculus (see Appendix C). Examples of such languages include SISAL [19] and
SML [67].

Lenient (eager non strict) languages do not impose an a priori order of evaluation between the
function body and its arguments. This means that values arising from functions applied to
undefined arguments may themselves be defined. This is what is meant by a function being
non-strict in an argument. The only condition on the ordering of the evaluation is that when
an argument is needed, evaluation of the function body must be suspended until the required
argument becomes available [93]. An example of a lenient language is Id [71].

Lazy (call by need) languages are non-strict languages in which arguments to function calls are
evaluated once only, if at all, and only evaluate values which contribute to required results. This
makes it possible to define and manipulate potentially infinite objects within this framework,
allowing elegant solutions to certain types of problems (see Section 2.6). Examples of such
languages include Haskell and Miranda.

Call by name evaluation also exists although this is extremely rare. Call by name is non-strict
evaluation in which no sharing occurs. This is analogous to normal reduction in the lambda
calculus (See Appendix C.).

To appreciate the difference between strict, non-strict and lenient semantics consider the function £
x y = x+x which depends only on its first argument. In a non-strict language £ 1 L evaluates to 2
whereas in a strict language £ 1 L evaluates to L, where L is the value assigned to an expression
without a normal form, or to a non-terminating computation. In a lenient language £ 1 L will
evaluate to 2 as long as partial evaluation of L does not explicitly halt the computation.

2.5 Advantages of Non-Strict Semantics

One advantage of non-strict languages is their ability to manipulate potentially infinite structures.
Programs may be modularized further by decoupling the process of producing a structure from the
process consuming it [52].

12
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2.5.1 Infinite Structures

An example of an infinite structure is an infinite sequence of approximations to a value defined by
an iteration. Taking square roots as an example, we can define the method of producing the next
value in a Newton iteration by the function

> newton :: Double -> Double -> Double
> newton a x = (x+a/x)/2

which, given a number a and an initial estimate z, produces a closer estimate of the square root of
@. We may now use the higher-order function #terate which produces an infinite list of values such
that iterate fa = [a, f(a), f*(a),.. ], given the initial value a and function f:

> iterate (a -> b) —> a -> [b]
> iterate £ a = a:iterate f (f a)

The function within, returning the approximate limit of a sequence deemed to have converged on a
value to within eps, may be defined as

> within :: Double -> [Double] -> Double
> within eps (a:b:rest) | abs (a-b) < eps = b
> | otherwise = within eps (b:rest)

Finally the square root

> sqrt :: Double —-> Double —> Double -> Double
> sqrt x eps a = within eps (iterate (newton a) x)

may be constructed from reusable components.

2.5.2 Recursive Structures

Another advantage of non-strict languages is the ability to consume structures before they are
completely defined. This allows the recursive definition of data structures. For example, back
substitution(*?) is often defined as

n
b,’— E UijLj
j=i4+l .
gi= —I i=12,...
Ui

and may be expressed in Haskell similarly as

> type Matrix = Array (Int,Int) Double

> type Vector = Array Int Double

> back_subst :: Matrix -> Vector —> Vector

> back_subst u b = x

> where x = array bnds [(b'i - £ i)/u!(i,i)]i<- range bnds]
> £ i = sumfu!(i,j)*x!jlj <- range (i+1,n)]

> bnds@(1,n) = bounds b

13
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where the vector x is defined in terms of itself. This recursive definition is not allowed in a strict
language as any value defined as v = f(v) for some function f results in non-termination analogous
to writing )

int £(){return ('f());}

in the imperative language C[58].

cher forms of non-strictness occur in programs such as functional and conditional non-strictness[85)
but in the context of this thesis these are of little practical benefit and, as such, will not be discussed
further.

2.5.3 Simulating Non-Strict Behaviour in Strict Languages

As mentioned earlier, one of the advantages of lazy languages is the ability to manipulate potentially
infinite structures. If written verbatim in a strict language such expressions would result in non-
termination. It is straightforward, however, to simulate this behaviour in a strict language (SML),
and a lazy list(¥) may be defined as follows:

datatype ’a lazyList = Nil
| Cons of 'a * (unit -> ’a lazyList);

Our square root function can be written in SML in a style similar to that used before:

fun newton a x = (x+a/x)/2.0;
fun iterate f a = Cons(a,fun()=>iterate f (f a));

fun within (eps:real) Cons(al,as) =
let val (Cons(a2,rest)) = as();
in if
(a1-a2) < eps
then
a2
else
within eps (Cons(a2,rest))
end;

fun sqrt x eps a = within eps (iterate (newton a) x);

where we manually insert our own closures. In this way it can be seen that the modularity of
the previous lazy program can be achieved within a strict framework. In the above example a list
is represented by a value/function pair (a,as), which can be viewed as being analogous to a list
element together with a pointer or link to the next value/function pair in an imperative language.
Unfortunately, in general, this method may not be used to define recursive structures such as the
vector x in a back substitution algorithm as the exements must be evaluated in a head to tail order.

14
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Figure 2.1: Functional language history and lineage

2.6 Functional Language Implementations

In this section common functional languages and implementations are introduced and briefly de-
scribed. The lineage of these langauges is shown in Fig. 2.1, a diagram which will be extended later
to include FSC.

2.6.1 GoFER

The GoFER (Good For Equational Reasoning)[54] system provides an interpreter for a small lan-
guage based closely on version 1.2 of the Haskell report [50]. In particular, GoFER supports lazy
evaluation, higher-order functions, polymorphic typing, pattern-matching, and support for overload-
ing. GoFER was the first language to provide constructor classes [54] which allow functions such as
map to be overloaded to operate over container types such as lists and trees. The notable feature of
GoFER, which distinguishes it from similar languages such as Haskell, is its multi-parameter type
class mechanism which is discussed in greater depth later. Matrix multiplication in GoFER may be
written as either of the following definitions®

*The GoFER definitions are not strictly permissible as synonyms are not allowed as class members. We ignore
this fact as this permits a clearer presentation.
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> instance Num List2D where

> a*b = [[ sum[a_ik* b_kjl(a_ik,b_kj) <- zip a_i_ b__j]

> | b__j <= b_T ]

> | a_i_ <~ a ] where b_T = transpose b

> instance Num Array2D where

> a* b= array ((1,m1),(1,n2)) [(i,j):=f i jli<-[1..m1],j<-[1..n2]]
> where

> fij=suml at(i,k) * b!'(k ,j) | k <~ [1..n1]]

> ((1,m1),(1,n1)) = bounds a

> ((1,m2),(1,n2)) = bounds b

depending on whether we view a matrix as a list of lists or as an array.

2.6.2 Haskell

The Haskell language is the result of the language-design committee set up in 1937 to alleviate the
proliferation of similar languages and create a standard non-strict functional programming language.
The definition of Haskell is frequently revised to add new features with the effect that the current
version (1.4) of Haskell is certainly not a small language although there is currently an effort to
provide a standard Haskell[51]. Haskell provides features similar to GoFER with the addition of a
module system. From the view of expressiveness, readability and conciseness it is very attractive.
However, the lack of efficiency with which it executes and the storage it currently requires are much
more costly than with strict or imperative languages [50, 49]. Matrix multiplication in Haskell is
exactly the same as for the GoFER example.

2.6.3 Hope

Hope [17] is a small polymorphically-typed functional language that can be considered as one of
the forerunners to Haskell/SML. Hope was the first language to use pattern matching and was
originally strict. To a large extent, Hope has fallen into disuse now but is worthy of mention as
one of the features of Hope is its besi-fit pattern matching whereby patterns need not be read in a
top-to-bottom manner but must be collectively unambiguous. Matrix multiplication in Hope may
be written in a very similar manner to the algorithm in GoFER.

2.6.4 Hugs

Hugs [55], the Haskell User’s GoFER System, is an interpreted implementation of Haskell with an
interactive development environment much like that of GoFER.

2.6.5 1Id

The core of Id [71] is a non-strict functional language with implicit parallelism targeted at dataflow
architectures such as the Monsoon[74]. 1d supports polymorphic typing. algebraic types and defi-
nitions with clauses and pattern matching, and list comprehensions. Since the syntax of Id closely

16



2. Functional Programming 2.6. Functional Language Implementations

resembles that of Haskell, Id researchers have recently switched their attention to transforming Id
to pH (parallel Haskell) which will have the same semantics as Haskell (up to program termination).
Id works on the basis of lenient execution (as mentioned earlier) but also allows non-functional side
effects in the form of I-structures and M-structures. I-structures are structures that may be defined
only once and all attempts to read an undefined element will block until it is defined. M-structures
are completely mutable and allow non-determinism, the only provisos being that a process cannot
write to a full cell, or read from an empty cell, and the act of reading empties a cell. Matrix
multiplication in Id may be written

def mmult A B = {(loal,m1),(1loa2,nl1) = matrix-bounds A
(lob1,m2),(lob2,n2) = matrix-bounds B
in
{matrix ((loal,m1),(lob2,n2))
| [i,j] = sum {: A[i,k])*B[k,j] || k <- lobl to m2}
[| i <- loat to m1 & j <- lob2 to n2};

2.6.6 Miranda

Miranda® [96] is a strongly-typed, higher-order lazy functional language designed in 1985 as the
successor to SASL [94] and KRC [95).

Miranda was the first widely disseminated language with non-strict semantics and polymorphic
strong typing, and was one of the main influences on the later design of Haskell. Points differing
from Haskell include the fact that overloading is performed over numeric types by having a single
type num, and pattern matching in equations need not be linear®. Matrix multiplication in Miranda
may be expressed in a form almost identical to that of GoFER, differing only in that Miranda does
not support overloading.

2.6.7 ML

MLS [67] is a family of programming languages with (usually) functional control structures, strict
semantics, a strict polymorphic type system, and parameterised modules [30]. The family includes
Standard ML, Lazy ML, CAML, CAML Light, and various experimental languages. Matrix multi-
plication may be expressed as [75)

fun dotprod([1,[]1) = 0.0
| dotprod(x::xs,y::ys) = x*y + dotprod(xs,ys);

fun rowprod(row,[1) = []
| rowprod(row,col::cols) =
dotprod(row,col) :: rowprod(row,cols);

4Miranda is a trademark of Research Software Ltd. )
5 A non-linear pattern is a pattern which implies an equality between arguments. The function equal x x = True

is non-linear
6Meta-Language.
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fun rowlistprod([],cols) = []
| rowlistprod(row: :rows,cols) =
rowprod(row,cols) :: rowlistprod(rows,cols);

fun matprod(A,B) = rowlistprod(4, transp B)

where transp transposes a matrix stored as a list of lists.

2.6.8 NESL

NESL [10] is a fine-grained, mostly-functional, nested data-parallel language based loosely on ML
with implementations for workstations, the Connection Machines CM2 and CM5, the Cray Y-MP
and the MasPar MP2. NESL includes a built-in parallel datatype of polymorphic sequences. strict
semantics, polymorphic typing and a limited use of higher-order functions. Currently it does not
have support for modules and its datatype definition is limited. The compiler is based around
delayed compilation and specialised polymorphic functions, avoiding the need for uniform represen-
tation/calling convention. Matrix multiplication in NESL may be written as

function matrix_multiply(a,B) =
{{sum({x*y: x in rowd; y in columnB})
: columnB in transpose(B)}
: rowA in A} $

2.6.9 SISAL

SISAL? [19] is a first order applicative language designed “to support clear, efficient expression of
scientific programs; to free application programmers from details irrelevant to their endeavours; and
to allow automatic detection and exploitation of the parallelism expressed in source programs”™ [30].

The SISAL language is currently implemented on several shared memory and vector systems
running Unix, including the Sequent Balance and Symmetry, the Cray X/MP and Y/MP, Cray 2,
and a few other less well-known machines [19, 18]. The newer SISAL90, which is still under devel-
opment allows user-defined reductions, limited polymorphism via typesets, higher-order functions
and array operations resembling the vector operations of FORTRAN90. SISALI0 still lacks support
for datatypes, type inference, an 1/O system, and many of the characteristic features of modern
functional languages [31, 86]. SISAL has been shown to outperform handwritten FORTRAN and
is currently benchmarked as the most efficient functional language implementation [45]. Matrix
multiplication in SISAL may be written as

type OneDim = array[ real ];
type TwoDim = array[ OneDim ];

function Matmult( 4,B:TwoDim; M,N,Linteger returns TwoDim)

"Streams and Iteration in a Single Assignment Language
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for i in 1, M cross j in 1, L
S :=for k in 1, N
returns value of sum A[i,k] #B[k,j]
end for
returns array of S
end for
end function

2.6.10 UFO (United Functions & Objects)

UFO (83, 82] is an attempt to reconcile the functional and object-oriented worlds by providing a
language whose core is functional (in the style of SISAL ) but which also resembles object-oriented
languages such as Eiffel [66]. The motivation behind UFQ is the desire to provide a general purpose
parallel language for both numerical and symbolic computations which may require state. Matrix
multiplication in UFO may be written

typevar Num <- Numeric

matmult(a, b : Array[Num]) : Array([Num] is

{
for i in [lower(a,1) to upper(a,1)]
cross j in [lower(b,2) to upper(b,2)] do
cij =
for a_element in ali,.. dot b_element in b[..,j] do
c_element = a_element * b_element
return sum(c_element)
od
return cij
od
}

This concludes our introduction to functional programming and description of various functional
programming languages. The review is not exhaustive but offers an overview of the functional
language spectrum. The interested reader is referred to [48] for a more complete but less recent
discussion.

2.7 Chapter Notes

1 (page 8):
Although

> data List a = Empty | Cons a (List a)
is a perfectly valid definition of a list it is more common to write Empty as []. Cons as

(:), List a as [a] and to think of lists as being defined as
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> data [a] = [] | a:[a]

Although this is not valid Haskell syntax.

ii (page 13):
Back substitution is the solution of the linear system in n unknowns

un1Z1+ U2+ uUnZn = b
ug2r2 +---+ U, = by
UnnZn = by

usually written as Ux = b where U is an upper triangular matrix. The back substitution
method works by solving the final equation for z,, substituting this value into the first
n — 1 equations, and so reducing the original system to a system with (n — 1) unknowns

U1+ U122+ + U1 p-1Tn-1 = b —ujpZn
uzaLa -+ Uzn_1Tn-1 = by —uzn
Un—1,n-1Tn-1 = bn-1— Un—-1,nTn

The back substitution algorithm is then applied to this reduced system.

iii (page 14):
In Section 2.6.3 we referred to the datatype lazylist as a lazy list. This is actually a
misnomer as no sharing occurs and repeatedly used tails are recomputed since they are
explicitly represented as closures. A more accurate description would be a call by name
list. The term lazy list is used since this is its title in [75] where the example originates.
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Chapter 3

Numerical Methods

In this chapter we present a background to the numerical methods considered later in this thesis.
For a simple background to numerical analysis see [39]. For readers unfamiliar with the notation
used, Mathematical notation is explained in Appendix K.

3.1 Introduction

Numerical methods are techniques employed by engineers and scientists to solve mathematical cqua-
tions. A major advantage of numerical methods over analytical methods is that a numerical answer
can often be obtained even when a problem has no analytical solution. For example, the following
integral taken from [39], which gives the length of one arc of the curve of y = sin(r), has no closed

form, analytic, solution:
T
/ V'1+ cos?(z)dr.
0

However, the length of this curve may be computed by standard numerical methods that apply to
essentially any integrand; there is never a need to make special substitutions or to apply Greens
theorem! to obtain a result. Moreover, the only operations required are addition, subtraction,
multiplication, division and comparisons. It is this fact that makes a computer so suited to the task
of number crunching.

Important distinctions between analytical and numerical solutions to problems are:

e A numerical solution is an approximation to the true solution which, in theory, may be made
arbitrarily accurate (up to machine arithmetic).

o The behaviour and properties of numerical solutions are not as apparent as they often are in an-
alytical solutions, precisely because they are purely numerical. Numerical methods frequently
simply yield tables of values which must be analysed further, using visualisation techniques,
before such properties may be determined.

1Greens theorem: A generalisation of integration by parts
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3. Numerical Methods 3.2. Systems of Equations

In the remainder of this thesis we consider systems of equations, approximation of functions. numer-
ical differentiation, numerical integration and quadrature, root finding / optimisation, differential
equations, and symbolic manipulation, and so here very briefly introduce each of these areas. These
topics are introduced because

e They are typical scientific computations.

o We later present the limitations of certain styles of programming in terms of these examples.
o Quantitative statistics for codes are given in terms for these topics.

e They are particularly good at demonstrating the suitability of later solutions.

Frequently used notation is given in Appendix K.

3.2 Systems of Equations

The simplest systems of equations are linear algebraic equations (LAEs). A set of n LAEs in n
unknowns has the form:

anzy + appra + - 4+ ez + -+ aIn = b
ag1zy + aszy + - 4+ aziry; + - + aspr, = ba
apr1 + appre + -+ airy + -+ GinZn = b;
p1Z1 + ap2Zz + 0+ AnjiT; + - 4+ @parp = by

where the z; are the unknowns and the aj; and b; are known. For convenience this is written in
matrix notation as

Ax=Db
where A is the coefficient matrix
a;; - Qin
A= [a,'j] =
an1 - Qnn
and x, b are vectors
I bl
x:[:L‘,‘]: b:[b,']:
In bn

We assume that the matrix A is non-singular, that is Ax = b has a unique solution.
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3.2.1 Direct Methods

One of the simplest methods for solving the linear system Ax = b is Gaussian Elimination. This
involves the systematic subtraction of multiples of one equation from others to obtain an upper
triangular system

U1 U2 - Ulp I A
Uy - Uzp zy Ja
Unn I'n In

where the u;; and the f3; are linear combinations of the a;; and the b; respectively such that this
reduced system is equivalent to the original. Since the last equation has only one unknown it can
be solved for z,,. This value can then be substituted into the penultimate equation to determine
the value of z,_1. This back-substitution process continues until the values of all the x; have been
determined.

This is an example of a direct method since the solution is obtained in a fired finite number
of operations dependent only on n. One of the major drawbacks of the method is that the right-
hand side vector, b must be altered along with A causing difficulties if we have multiple right-hand
sides which are not available simultaneously?. This problem may be overcome via the use of LU
decomposition.

3.2.2 LU Decomposition

Since triangular systems of equations may be solved easily using back substitution we may decompose
a linear system into the product LU = A where L is an n x n lower triangular matrix and U is an
n x n upper triangular matrix. Since there is more than one possible factorisation we often take the
diagonal elements of L to be 1 (/;; = 1) and by omitting this diagonal store the factorisation in the
same amount of space required to store A.

aj; @iz - Gia 1 Ul U2 Uin
as1 Q22 - Q2n Iy 1 Ua2 Uap
anl1 @p2 *°° Qnn Ipp lpy -+ 1 Unn

We may now use these matrices to solve Ax = b or (LU)x = b by solving the two sets of linear
equations

Ly=>b Ux=y
We may solve Ly = b using forward substitution and then solve Ux = y using back substitution
and solve the system without altering b. In the method the u;; are the original u;; from Gaussian
elimination and the I;; are the multipliers computed at each stage.

2This situation arises in the case of iterative refinement.
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3.2.3 Stability

Before leaving direct methods we discuss pivoting. In both LU factorisation and Gaussian elimination
we observe that if at the k** stage® the element ayy is zero then the method breaks down, possibly
because the matrix is singular but not necessarily so (as this condition may arise due to a row-wise
permutation P of A). For example if A = I3;

1 00 010
Pi0O 1 0|x=]10 0}x=Pb
0 01 0 01

The row-wise permutation shown above would yield a system which although non-singular would
cause Gaussian elimination to fail. However, as long as at least one of the sub-diagonal elements
in ag’s column (the pivotal column) is non-zero at the k'* stage of elimination, the process may
continue by interchanging rows. Even if this element is not identically zero, it may be so small
compared to other elements in that column that the multipliers which are generated are very large,
resulting in the whole process becoming unstable and highly inaccurate due to roundofl-errors being
amplified.

This row-exchange process is usually performed by searching down the pivotal column for the
element with largest magnitude, exchanging row & with its row and continuing as before. This is
known as partial pivoting. An alternative is complete pivoting in which the whole lower submatrix is
searched for the element of greatest magnitude, causing row and column exchanges to be carried out,
and therefore additional book-keeping. Since partial pivoting is usually deemed sufficient, subsequent
references to pivoting will refer to partial pivoting unless otherwise qualified.

Other direct methods such as Choleski decomposition, cyclic reduction or QR factorisation work
in a similar manner to Gaussian elimination and LU factorisation in that they transform the system
into an equivalent one which may be solved trivially. An interesting direct (but often used as an
indirect) method which is not of this form is the conjugate-gradient method which is discussed later.

3.2.4 Cyeclic reduction

Cyclic reduction [36] (or odd-even reduction) is a method of solving a tridiagonal system of equations
which may be performed in parallel. We focus on this method as we shall use it as an extended
example later. The variation of cyclic reduction we choose to implement proceeds as follows:

F b5 a 1€ €1 ] n

as bg

Cn—-1
L an by In

| Yn ]

3We define the kt? stage as the stage in the computation which determines the value of uk.
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A tridiagonal system of equations Az = y 1s transformed into an equivalent pentadiagonal system
with zero sub- and super-diagonals. )

M (1) (1) T . b
b; 0 ¢ ( £ ( y(lx)
0 b(zl) .

(1) (1 - —
03 C(n)—2) : =
. . 0 : :
i a? 0 ) Jla ] |y ]

This system is then reordered so that it is expressed as two sub-problems of half the dimension.
That is, if we assume that n is even we renumber the equations in the order 1,3. ..., n=1,2,1.. .. n
and renumber the unknowns in a similar way.

R ] i
(1)

ay . :
(1) ' 1
bn—l Tn-1 — yfl_)l
@ . 2 ()
b, . ' Ya
(1) :
° Cﬂ—2 1
ORI I J [ o

Since we now have two tridiagonal systems we may apply recursively and in parallel the above
transformation process to the two non-zero quadrants of the matrix until we reach a set of trivial
equations. The transformation step to create the pentadiagonal system described above is given

below
(1 _

a; = a;q;1

bfl) = bt aicio + Jigiq
C,(-l) Biciy1

¥ = gt e+ divin
Q; = —a;/bi_,

Bi = —cifbin

After solving each final equation (in parallel) the vector of solutions may be reordered to yield the
solution vector.

3.2.5 Iterative Methods

In the last section we considered the solution of linear systems in a fixed, finite number of steps.
We now consider an iterative approach where we make an initial guess x'% at the solution and use
this to form a better approximation x(!), which in turn we use to form x'*!, etc. The aim is that
the sequence of vectors {x(f)},k = 1,2,... converges to the exact solution x of the system. i.e.

x¥) 5 A-1b as k — co.
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Figure 3.1: Partitioning of a matrix for the Jacobi/Gauss-Seidel methods

3.2.6 Gauss-Seidel and Jacobi Methods

If A is an n x n non-singular matrix and Ax = b is the linear system to be solved, then the Jacobi
iteration is

1
g = = [ _S a4 ij=12..n
T
This may be written in matrix form by splitting A into three sections, the diagonal D and the
sub/superdiagonal elements L/U (Fig. 3.1). Our iteration may now be rewritten as

x+D) = D=1 [—(L + U)]x"*’ + D~ 'b.
Convergence to a fixed point* x satisfies

x=D"![-(L+U)x+D™'b

that is
Dx = —(L+U)X+b
or
(D+L+ U)x=Db
or

Ax=b

and hence would solve our system of equations. With iterative methods, convergence to a fixed
point is not guaranteed although, depending on the method used, there are conditions for which
convergence is guaranteed. For example Jacobi’s method converges if A is diagonally dominant
(Vi, |aii| > Zj;si |ai;])-

A method related to Jacobi’s method is the Gauss-Seidel iteration

i1 n
. 1 X k . .
J?SH'I): — |- E a,-j.c_(ikﬂ)— E aijr§ )+bi ) i=12....n
i i=1 j=i+l

4A fixed point x in the sequence x(0), Tx(®), T2x(0) T3x(0} .. satisfies x = Tx.
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or in matrix form
x*+1) = D71 [—Lx*+D) — Ux®) 4 b]

which converges to a solution more rapidly. With iterative methods the degree of accuracy of the
solution may be defined by specifying the value of the residual r¥) = b — Ax'¥) at which the
iteration is deemed to be a close enough approximation to the true solution. or by examining the
difference between successive estimates. This is usually done by determining whether a particular
norm is sufficiently small.

3.2.7 Non-Linear Equations

So far we have only considered systems of linear equations. However, systems of non-linear equations
frequently arise such as

cos(2z,) — cos(2z2) = 04
2(zy — 1) + sin(2r3) —sin(2r;) = 1.2
Generally we write these systems as
fl(l'l,l'g,‘..,.l‘n) = 0
fa(xy,z2,...,20) = 0
Jalz1.22....,20) = 0
or more compactly as
f(x)=0
where f is the vector of functions {fi, fo, .- ., fa)¥ and x the vector of variables [z1, L2, .. o L

and use root-finding or optimisation techniques to solve these systems iteratively. Such iterative
methods may themselves generate and solve a lincar system at each iteration. Further discussion is
left to Section 3.6.

3.3 Approximation of Functions

The computational procedure used in computer software for the evaluation of a library function
such as sin(z), cos(z), or e involves polynomial approximation. The simplest method of polynomial
approximation is a truncated Taylor Series where, if we assume that f is continuously (:V' +1)-times
differentiable over the interval [a, 8], then

f(z) = Px(z) + Ex(2)

where Py(z) is an Nth_degree polynomial approximation to f(z)

YL ) (z
f(zx) ~ Pn(z) =) (=) k(' o) (z — zo)*
k=0 )
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zo is an arbitrary point within the inteval and Ex(z) is the error term

f(NH)(C)

EN(.’B) = m

(2 = o) ¥+

for some c lying between zo and z. Hence, the function sin(r) may be approximated using the
Taylor series expansion around the point (ro = 0)
_ B3 p T
sm(:c)_.‘c—3'+ —Fﬁ-v--

Before continuing we briefly note that this approximation may be reduced by economising the power
series. Economisation perturbs the coefficients in a power series such that much of the accuracy of
an N'h-degree polynomial approximation is captured as an (.\ — 1)**-degree approximation, usually
via the subtraction of a weighted Chebyshev polynomial (for further discussion see [64]).

3.3.1 Evaluation

The method used to evaluate a polynomial is crucial if execution efficiency is to be maintained. One
method of evaluating a polynomial is Horner's Method where the polynomial

N-1

g(z):rN+aN_11" 4+ --+ajx+agp

is rewritten
g(z)=(((---(((t+an-1)x+an—r)z+ - -t a)x +ao

requiring (N — 1) multiplications and N additions. Similar methods may be used to evaluate a
Taylor series expansions

o~ £ (0) -
f(:l,‘) 22 X .’L‘—.L'o Z .’L‘o)PL-
k=0 k=0
where the P; are defined as
P, = 1
P = r—uxo
P = PPy

and are evaluated P; to Py with common terms being shared.

3.3.2 Fourier Series

Polynomials are not the only functions which may be used to approximate known functions. A
Fourier Series approximation may be formed via a sum of sine and cosine terms:

f(x) 2—2—(1 Zj: [An cos(nz) + B sin(nr))
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where A, and B,, are defined as

A, = %/j) f(z)cos (%) dz, B, = %/;I; f(z)sin (n}#) dr

creating an approximation to f(z) with a period of 2P. The act of computing the coefficients
in a Fourier series is sometimes called harmonic analysis since if f is a time-dependent periodic
function, its Fourier series represents an equivalent function of frequencies, and knowledge of the
most significant coefficients in a Fourier series provides information on the fundamental frequencies
of a system. This knowledge is important if phenomena such as resonance are to be avoided. Another
name for this procedure is the Fourier transform.

3.4 Numerical Differentiation

Numerical differentiation involves the estimation of derivatives at certain specific points over the
domain of a function f. To see how % may be estimated we expand f(r) in a Taylor series about
(x=z,+h)

h'.!
2!

f(xn+h):fn+1:fn+hfn,+ fn"+"'

which, when truncated at the 2"¢ term, gives:

hf;:fn+l‘fn:-3fn:> rlzzép{l

and the first derivative may be approximated by the quotient of the forward difference and step
length. Similarly, expanding around (z = z, — h)

flon = D)= facr = fa— hfyt et =

gives | fl ~ Z;lh . These approximations may be combined to form a more accurate approximation:

h? A _
Frog1 = fac1 = fo = fa + hff — (=hfy) + .2—,fr’,' - V| Lot ‘2hj"—l

since it involves truncation at the third term rather than the second. This is known as the cen-
tral difference approximation to the first derivative. Adding truncated Taylor series expanded
around (z = z, + h) and (z = r, — h) leads to an approximation for the second derivative

Jll ~ f"—“%f;'wﬁ'—‘— | Further discussion of differentiation and differences is left until later sec-

tions where difierential equations are introduced.

3.5 Numerical Integration and Quadrature

Just as numerical differentiation estimates values of a function’s derivative evaluated at a specific
point, numerical integration estimates the value of an integral over a specific interval [a,b]. The
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3. Numerical Methods 3.5. Numerical Integration and Quadrature

Figure 3.2: The trapezoidal rule

simplest approach to numerical integration is to sum the area under a piecewise-linear approximation
to the curve as in Fig.3.2. This is called the trapezoidal rule and may be formulated as:

N-1

/ f(I)dl"—‘I‘\iZ‘%Z(fi+fi+l)

1=0

where (z;41—;) is constant. By estimating the data using a piecewise-quadratic or a piecewise-cubic
curve we obtain Simpson’s % and % Rules:
. N N/2-1
N
/ f(f)dIZT (foi + 4faig1 + frit2)
To o 1=0
N/3-1
e 3(xn — x0)
flajdser ———— Z (f3i + 3faiv1 + 3f3i42 + fai43)
i 8N s
These methods are all examples of Newton-Cotes integration formulae and, in general, formulae
may be derived to approximate an integral using a piecewise-n'" degree polynomial, although higher
order methods are not much use in general. For further information see [39].

3.5.1 Gaussian Quadrature

The previous formulae for numerical integration all require that the value of a function be evalu-
ated at evenly-spaced x—values. An alternative approach is to use a method known as Gaussian
Quadrature. Gaussian Quadrature symmetrically places N z-values around the interval midpoint
and approximates the definite integral
b
= / f(z)dx
a

by transforming f into a function ¢:

o(x) = f5(b—a)z + L(b+a)]

1|
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3. Numerical Methods 3.6. Root Finding

allowing I to be expressed as an integral between limits —1 and +1:

1
I= %(b— a)/_1 o(z)dz

This integral may be approximated as follows:

N

1
/_1 ¢(z)dr = Z w;o(x;)

i=1
where w; and z; represent tabulated values of the weight functions and the abscissae (or integration
poinis) associated with the N points in the interval (—1,1). Thus the result is

b N
I= / f(z)dz ~ 1(b - a)'Z:; w;id(z;)

which, for appropriate weights and abscissae (which may be calculated), will exactly integrate a
polynomial of degree (2N — 1) [1].

3.6 Root Finding

As mentioned earlier, root-finding techniques are often used to find a solution to a system of non-
linear equations

f](.l‘l,l'g,...,l‘n) = 0

fg(l‘l,r-_), RN .l‘n)

I
o

often written

flx)=0
where f is the vector of functions [fy, fo,. ..,f,,]T and x is the vector of independent variables
[€1,Z2,...,2,)T. In this area, no general method exists leading to a solution of the non-linear

system f(x) = 0 in a predefined number of steps, even when NV = 1!

3.6.1 Bisection

In the case where the ‘system’ consists of a single non-linear equation the method of bisection may be
used to find a solution to f(z) = 0 in the interval [a, b} if f is continuous and if f(a)f(b) < 0. Having
taken up positions on either side of a root, one of the bounds is replaced with the midpoint b?_,“ such
that the root is still straddled. This process is repeated until the interval is sufficiently small, or until
a zero has been discovered (Fig. 3.3). Rather than using the midpoint in a comparison, the method
may be improved on by using the root of a linear approximation to the function, f%%(_af—_(:%, and the

method is called the rule of false position. Replacing the upper bound, b, with this approximate
root and replacing the lower bound @ with the previous upper-bound is known as the Secant Method.
which does not need to straddle a root although convergence to a solution is not always guaranteed.

31



3. Numerical Methods 3.6. Root Finding

fix)
-
X
Figure 3.3: Root finding via bisection
fix)
» L
a - flaff '(a) x

Figure 3.4: Newtons method for root finding

3.6.2 Newton’s Method

By assuming an initial approximation, a, to a rooi, Newton’s method proceeds by calculating the
next approximation as the intercept of %I with the z axis, i.e. a — ff}(&)) (Fig. 3.4). This method

is often referred to as the Newton-Raphson method, but since we deal with its extension (Newton’s
method) solving systems of equations we abbreviate its title.

3.6.3 Newton’s Method for Systems of Non-Linear Equations

The iteration step in the Newton-Raphson method

f(zr-1)
f,(zr—l)

may be readily generalised to the multivariate case, leading to the iteration

Iyr = Ip_1—

Xp = Xp—1 — J(%r1) T H(%r21)
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where J(x) is the n x n Jacobian matrix of partial derivatives evaluated at x having the form

on ... 8h
oz, or,
J(x) = : ... :
8n .. 2fn
dz, T,

To avoid having to compute an inverse Jacobian at each step the iteration is rewritten
J(xr—l)xr = J(xr-l)xr'—l - f(xr—l)

That is, at each stage we solve a linear system A,x, = b, where A, = J(x,-1) and b, =
J(%,;-1)%r—1 — £(x,—1) using techniques described in Sections 3.2/3.3. In practice this system may
be solved more economically via the solution of

J(x,_l)éx,. = —f(x,-_l)

where 6x, = x, — x,_1.

3.7 Optimisation

Optimisation involves finding an x at which a function f(x) has its minimum value®. For an equation
in one dimension a simple method is the Golden Section Search where in an interval {a, b] two internal
points 1 = b —r(b—a) and z» = a+ (b — a) are calculated and at each step either a is replaced by
zy or b is replaced by 3, depending on which causes the updated interval to straddle the minimum
value. If r satisfies  : (1—7) = 1 : r (the Golden Ratio) only one new function invocation is required
at each stage.

3.7.1 Method of Steepest Descent

If the first derivatives of f are known then an obvious choice of method is that of Steepest Descent

in which the iteration step is
VE(xr-1)

IVE(x--1)]

Xr =Xp_] — &

where V is defined as Vf = %ﬁi+ %j + %sz and a is computed via a one-dimensional minimisation

of p(t) =1 (xr_l —1 Ilgf(::::;ll)' One problem with using the method of steepest descent is that a

minimum along a line has a gradient which is orthogonal to that line and hence the path taken by
successive estimates is full of right angles! A better choice for minimisation directions makes use of
conjugate directions and leads to the conjugate gradient method which was mentioned briefly earlier.

5We do not consider maximising a function since a maximum value of f is a minimum value of — f.
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3. Numerical Methods 3.7. Optimisation

3.7.2 Conjugate Gradients

Although the conjugate gradient method minimises a non-linear function, for the purpose of this
thesis we only consider its use as a linear system solver. To understand how a linear system may be
solved via the minimisation of a non-linear system, consider the equations )

2
Ey:102=20, E,:y= 10; - 20z
Solving E) is equivalent to minimising E, since %M = 10z — 20. Similarly. solving the

symmetric, positive definite® linear system
Ax=b

is equivalent to minimising the quadratic
1
Q(z) = ExTAx -bTx

since Ax— b=V (%xTAx - bTx). Like the steepest descent method, iterations are of the form

Xk+1 = Xg — @pPk

where the p; are direction vectors and the oy are scalars specifying distance moved. The a; are
chosen so that @) is minimised in the direction of p; which can be shown to be when

_ Pi(Ax; —b)
O = T A -
Pr AP;
If we choose pg,...,pn_1 such that they are conjugate with respect to A, i.e. they satisly Vi # j:

p,TApJ- then we have a conjugate direction method and the iteration is guaranteed to converge in
no more than n steps [40]. The most efficient way, in general, to obtain the direction vectors to be
used in solving Ax=Db 1is via the conjugate gradient method, a conjugate direction method which
calculates the k** direction vector at the (k — 1)!* iteration. The iteration step of one formulation
of the conjugate gradient method is as follows:

Xk+1 = X — Pk
vyl = Tp—apAp;
Pk+1 = Teg1 — BrAD;
where
ar = — <711 >/ <Pr, AP >
Br = <Tpy1,Thg1 >/ <rTp, Tk >

where the r; are the residuals rp = Ax; — b, po = rp, and < x.y >= xTy. An advantage of the
conjugate gradient method is that the coefficient matrix, A, need not be explicitly formed, the only
requirement being that its representation must support multiplication by an arbitrary vector.

6 A is positive definite: = Vx : xTAx > 0.
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3. Numerical Methods 3.8. Differential Equations

3.8 Differential Equations

Although we mainly concentrate on partial differential equations (PDEs) (differential equations
involving more than one independent variable) we also briefly mention ordinary differential equations
(ODEs) and so briefly introduce methods used to solve these. An n'”-order ODE has the general

form p )
dry dy d’y d"y
dr"_f(r’y’d:c’d_z?"”’ﬁ

with the useful property that an n** order ODE may always be transformed into a system of n first
order ODEs. ODEs of the form dy/dr = f(z,y) are often solved by advancing a solution, i.e. if
yr = y(zx) is known then yr+1 = y((1 + A)zi) may be calculated via

N

Vi1 = Yk + Y wi f(gi( 2k, vi)

i=0

with the parameter values being derived from a Taylor series expansion, leading to Euler's method
and N**-order Runge-Kutta Methods which may be straightforwardly applied to systems of ODEs
and hence to higher-order ODEs. Although this introduction does not do justice to solution methods
for ODEs it is a sufficient introduction for our purpose as we only mention ODE solution methods
when discussing quantitative statistics derived from software developed elsewhere. VWe move on to
solution methods for PDEs which, of course, may be applied to ODEs.

3.8.1 Partial Differential Equations

The two methods that we discuss for the solution of PDEs are the finite difference and finite element
methods.

3.8.2 The Finite Difference Method

In the finite difference method, the domain of a function u(z,y) is discretised (usually at regular
intervals [see Fig. 3.5]) into a set of points of interest. For example, the Poisson equalion

2 T = p(z,y)

+
with known values on the boundary of a region is rewritten as a difference equation, where h is
defined to be the distance between adjacent mesh points, using techniques from Section 3.4:

Uit = Quij Wiz Wiy = 205 Ui
B h

If the points of interest are arranged as a vector x then this forms a linear system which may
be solved via techniques from Section 3.1, or by special fact forms of Gaussian elimination if the
resulting system is tridiagonal. Iterative techniques such as J acobi or Gauss-Seidel are often used
on these problems as they may be easily formulated in terms of a point in the discretised domain
and its local neighbours, and the matrix-vector representation need not be explicitly formed.

=~ pij
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u(x,y)=d(x)

ONONONONONONS
O O
u(x,y)=c(y) u(x,y)=a(y) O O
u(x,y)=b(x) ONONONONONONO

Figure 3.5: Discretisation of a 2D region

3.8.3 The Finite Element Method

The Finite Element Method (FEM) approximates the solution to a PDE over a region of interest by
discretising the domain using an element mesh and computing the solution of the PDE at the nod«
points of these elements. This is usually done by representing the solution of the PDE at the node
points as the solution of the linear system Ax = b. The stiffness matriz A and the force vector b
are constructed by performing integrations over each element and summing these confributions (Fig.
3.6). The solution of the PDE over the region is then approximated using interpolation functions
that depend on the values at neighbouring node points. A typical FEM domain discretisation is
shown in Fig. 3.7. The stiffness matrix that typically arises is symmetric, positive definite and hence
the conjugate gradient method may be used for the system’s solution. This very simple explanation
of the FEM does not do justice to the method and is only meant to form the context for the following
material, rather than an introduction to the method. For a more in-depth introduction see (69, 1].

3.9 Symbolic Manipulation

Symbolic manipulation, sometimes called computer algebra, is an area of scientific computing which
is concerned with the manipulation of expressions in an analytical style. For instance, in a Computer
Algebra System (CAS) differentiation of the function

y = sin®(z) + cos®(z) + z*

would yield

(—12 =2r

dz
The advantage of symbolic manipulation is that it allows problems to be solved which might other-
wise prove troublesome. For instance, simple evaluation of the expression

r

P(z) = sin(x)
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Figure 3.6: Structural finite element assembly calculations
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Figure 3.7: 2D finite element mesh
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at the point x=0 would result in a division by zero. But we may easily work out the limitat r = 0
with I’Hépitals rule” via symbolic manipulation and use the formula:

p(:c):{l ifr=0

#(I) otherwise

TL*HOPITAL’S RULE [81](p. 94): .
! I
if'; ;) — Aasz —aand g(r) — 0 and f(z) — 0 as £ — a , then & — Aasz—a.
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Chapter 4

Use of Haskell

In this chapter we discuss the use of purely functional languages to implement numerical algorithms.
We consider how functional languages may be used to denote these algorithms concisely. the relative
efficiency with which the algorithms may be executed, and identify factors within these programs
which affect this efficiency.

4.1 Plan of Study

The organisation of the chapter is shown in Fig. 4.1. We initially discuss the choice of language/style
and present motivating examples written without regard for execution efficiency. e use LU fac-
torisation as a case study of some of the difficulties associated with the lack of mutable state and
offer solutions to these problems in two distinct ways:

e We use alternative data structures to arrays, including quadtrees which have the advantage
of providing an efficient sparse matrix representation and encouraging implicit parallel divide
and conquer-style algorithms.

o We use alternative mathematical techniques to circumvent the need for updateable state.

We also demonstrate how these techniques can be combined. In addition, we discuss how other
common numerical algorithms, such as successive over-relaxation (SOR) and cyclic reduction, may
be expressed efficiently in terms of quadtrees and compare these formulations with related work.

4.2 Choice of Language
The languages which we concentrate on are non-strict and purely functional.

o Non-strict languages are more expressive than strict languages,

1.e. VC . EVALStricl HC]] j EVALNon-SuictIIe]]
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1.2

Choice of Language

Language choice

Style choice

Motivating Examples

[

Consequences of lack

of mutable state

¥

Althernative

data strcutures to arrays

Alternative Agorithms

Alternative

Formulations

Y

Combined Approaches

Figure 4.1: Plan of study
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4. Use of Haskell 4.3. Choice of Style

e Structures may be defined recursively, i.e. £ = f(z) /&~ EVAL[z] = L. A consequence of this
is that arrays may be defined recursively.

e Purely functional languages do not allow side effects of any form. and hence equational rea-
soning is everywhere valid.

This severely limits our possible choice of languages. From the remaining possibilities we choose

Haskell (GHC 0.26) because:

o Haskell is the standard non-strict functional programming language.

o Haskell implementations are much more efficient than other non-strict functional languages

[45].
o Haskell compilers exist and are freely available.
Although the current version of Haskell is 1.4, the version of Haskell we use is version 1.2 since
o This was the de-facto standard at the beginning of this work.

¢ The differences between versions 1.2 and 1.4 are concerned mainly with 1/O and GoFER-style
constructor classes (two features which this thesis does not rely on).

o At the time of writing, implementations of versions 1.3/1.4 are still error-prone and the greater
functionality provided by the later language definition causes major inefficiencies.

e Many people have claimed that versions 1.3/1.4 are too complex to use in practice [31] and there
is a move to limit some of these features as Haskell approaches standardisation to Standard
Haskell.

4.3 Choice of Style

The style of functional programming we adopt is elementary. By elementary we mean programs
where there is no hidden state. This idea of state may seem strange since functional programs are
stateless, but many techniques exist for modelling state in a purely functional manner. For example,
the contrived imperative example

w = X;
w+=s y;
w ¥= W,

represents the computation w = (r + y) * (z + y). In a functional language this could either be
written as

> let
zZ * 2
z=x+ty

=
1]

in

vV V. V V
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or expressed, with appropriate functions incBy and mulBy, as

do
w <- return x
w <- incBy y
¥ <- mulBy w

VvV V V V V

where great effort has been taken to model an imperative flow of control. The above fragment is a
syntactically sugared version of

> return x >>= (\w >
> incBy y >>= (\w —>
> mulBy w ))

>

where (>>=) is a higher-order infix-combining function that models the flow of control in an imper-
ative program, and Currying is used to carry the current state of the machine around as an extra
hidden parameter. The advantages of this kind of imperafive functional programming is that it can
often be compiled into its imperative equivalent and imperative algorithms may be expressed in a
functional language very easily. Hence FORTRAN-style array algorithms could be transliterated
into functional languages given a library of combining functions which model FORTRAN features.
However, we reject this style of functional programming as it suffers from the same drawback as im-
perative programming, i.e. it imposes a serial control flow that is difficult to reason about. The style
of functional programming we adopt could be considered applicative functional programming as op-
posed to imperative functional programming, where we specifically avoid the use of state-modelling
combinators and hidden parameters.

4.4 Denotation of Numerical Methods

In this section we discuss functional denotations of numerical methods. We use the phrase denota-
tions rather than implementations to stress the fact that each script is written in terins of abstract
values, rather than as a mapping onto a physical machine. Initially, we concentrate on the expres-
siveness of Haskell via the use of motivating examples before proceeding with a discussion of points
arising from using Haskell as an implementation tool.

4.4.1 Linear Systems

A significant component of numerical problem solving is concerned with the solution of (dense) linear
systems. In this area we find that algorithms such as LU factorisation can be expressed in a manner
that matches, very closely, their mathematical definition. The array comprehensions of Haskell lend
themselves naturally to this area.

As mentioned in Chapter 3, the LU factorisation of an n x n matrix A consists of two matrices
L and U such that A is expressed as the product A = LU. U being an n x n upper-triangular
matrix and L being an n x n lower-triangular matrix. Since both L and U are triangular, (LU)x =
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L(Ux) = b can be solved via forward and back substitution. If we are to perform this factorisation
we must decide which form of L and U to take as more than one possibility exists. If we set [;; = 1.
then by omitting explicit representation of this diagonal, we can store the factorisation in the same
amount of space as A. The mathematical formulation for this can be expressed as

ji-1

lij = (%’ - Zlikw:) /u,—,- (i>J)
k=1
i—1

wij = ai; — 3 likwrj (i <))
k=1

and a Haskell implementation as

type Matrix = Array (Int,Int) Double
lu :: Matrix -> Matrix
lu a = luf where
luf = array bnds [(i,j) := £ i j | (i,j) <- range bnds]
bnds = bounds a
£ij | (i>j) = (a'(i,j)-sum[luf!(i,k)*luf!(k,j)
Ik<-[1..(j-1)11)/1uf!(j,])
| (i<=j) = a!(i,j)-sum[luf!(i,k)*Lluf!(k,j)
Ik<-[1..(i-1)1]

VvV VVV V V V VYV

Because Haskell is lazy the array elements are evaluated as they are demanded, guaranteeing that the
operations occur in the correct order. The 1-1 relationship between the mathematical specification
and the Haskell implementation is valuable as it allows direct correspondence of functional code
with the mathematical equations, which makes the code easy to develop, wrile, read and modify
[24], meaning textbook matrix algebra can often be translated almost verbatim into a non-strict
functional language. It is interesting to note that this definition of LU factorisation is not possible
in a strict language, such as ML or SISAL, as it would lead to an infinite recursion. The formulation
is referred to as a compact scheme since the elements in the final triangular form are obtained
by accumulation, dispensing with the computation and recording of intermediate coefficients and
reducing roundoff errors [101]. The formulation is known as the Doolittle (Black) [11, 35, 63, 34]
method of LU factorisation but other compact factorisation schemes such as Crout (Banachiewicz,
General Cholesky) [12, 27, 35, 46, 47, 63, 34]

;=1 (implicit)
i—1
ujj = (aij - Zl,‘kukj) /Ij' (i < ])
k=1
i—1
lij = aij — Zlikukj (i>17)
k=1

or symmetric Cholesky (Square-Root Method, Banachiewicz) [11, 27, 35. 34]

43



4. Use of Haskell 4.4. Denotation of Numerical Methods

i = ui =

i—1

2

ai; — E Uy,
k=1

i—1
lji = Uj; = (aij - Zuk,-ukj> /u,',' (i< ])
k=1

may also be expressed in Haskell equally as easily.

4.4.2 Symbolic and Analytic Methods

In Haskell it is almost trivial to write a function to perform analytic differentiation over expressions.
For example, [87] (p. 53) includes the following formulae:

132 £(c)=0

13.3 di(c:r) =c

134 Fce” =nez"!

13.5 %@iviwi~j:%i%i%ﬁb~

Given an appropriate datatype this may be written as

> diff :: Expr -> Expr

diff (CON ¢)

diff ((CON c¢) ‘MUL‘ VAR)

diff ((CON c¢) ‘MUL‘ VAR ‘POW‘ (CON n))
diff (u ‘ADD¢ v)

diff (u ‘SUB‘ v)

(CON 0)

(CON ¢)

CON (n*c) ‘MUL‘ VAR ‘POW‘ COR (n-1)
diff u ‘ADD® diff v

diff u ‘SUB* diff v

vV V.V Vv vV

and again the close relationship between the textbook description and the functional specification is
preserved. This form of manipulation may be extended so that the input to a differential equation
solver may be written in terms of an ezpression datatype rather than as a series of constants and
flags. For instance, by considering the variables u,t, r as variables Uy, Uy, U3 the parabolic equation

ou _ ot
ot~ oz
may be be written as
D(WO) (U1 :=:D:":2(WO) (U?2)

and the first stage of the computation could dis-assemble this via pattern matching and derive an
appropriate finite-difference representation. As the required solution’s accuracy increases (i.e. more
computational power is required) this overhead becomes negligible. With a parser and a pretty
printer placed at each end we may easily construct a rudimentary computer algebra system.
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4.4.3 n-point Gaussian Quadrature

Another significant component of numerical problem solving is the area of numerical quadrature.
where an analytic integral is approximated via one of a variety of methods. The applicative code
to carry out an algorithm such as Gaussian quadrature is also as terse, vet expressive, as the
mathematical specification. The use of lists greatly increases our ability to imnplement very general
n-point quadrature: simply by passing the appropriate weights and abscissae to the integration
algorithm.

The method we consider estimates a definite integral

I= /ab f(z)dz

by approximating f using a polynomial and integrating analytically the approximating function.
The estimate is of the form
n
R= Z w; fi
i=1

where f; = f(z;), and the z; are the abscissae, or integration points, with corresponding weights w,.
The formulation given below is a symmetric n-point Gaussian quadrature:

b n
[ 101y = 5 3 il 1o + ) + o = ezi)
a i=1

where pp, = 42
b

pr ="

ll\’

and a Haskell implementation is given by

> type IntegrationRoutine =

> (Double -> Double) -> (Double,Double) -> Double
> gq :: [Double]l->[Double]l-> IntegrationRoutine

> gqg x w £ (a,b) = pr * sum (zipWith f1 w x)

> where f1 wi xi = wi * (£ (pm+pr*xi) + £ (pm-pr*xi))
> pm = (b+a)/2.0
> pr = (b-a)/2.0

where zipWith is a higher-order function which applies a function £ elementwise to two lists such
that, for example, zipWith (+) [1,2] [3,4] = [4,6].

4.4.4 Multidimensional Integration

The use of quadrature can very easily be extended to encompass multidimensional integration using
the higher-order nature of functional languages to write a general n-dimensional integration routine,
passing an arbitrary 1-dimensional quadrature function as an argument to a higher-order multiple
integrating function:
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> type Limit = Point->(Double,Double)

> type Fn = Point -> Double

> type Point = [Double]

> multipleIntegral :: IntegrationRoutine -> [Limit] -> Fn -> Double
> multipleIntegral int limits f = mi int [] limits f

> where

> mi int g [ab] f = int f1 (ab g)

> where f1 x = £ (g++[x])

> mi int g (ab:lims) f = int f1 (ab g)

> where f1 x = mi int (g++[x]) lims £

Thus, to evaluate

2 pya(z) pa(zy)
I :/ / / flr y, 2)dzdydz
Z1 yi(z) z1(r,y)

we integrate a 1-D function H(z) as

1= /IJH(z)dr

I

using our quadrature scheme, where H(z) is defined as

y2(z) 22(z,y)
H(z) = / ] F(z, v, 2)dzdy
y z

1(z) 1(z.y)

which may be evaluated for each abscissae r; of [ H(x)dz via the above method.

The simplicity and terseness of this formulation is apparent when this is compared with a com-
parable but less general algorithm [79] expressed in Pascal taking 50+ lines!. This terseness is due
directly to the ability to create functions on the fly, a motivating argument for functions being first
order.

4.4.5 Example

As an example of this in use we can define the function integrate by combining our multi-
dimensional integration function multipleIntegral and our Gaussian quadrature function gq with
appropriate abscissae and weights.

VvV V V V

integrate :: [Limit] -> Fn -> Double

integrate limits f

= multipleIntegral (gq abscissae weights) limits f

where abscissae = ...
weights = ...

1 The figure 50+ relates to the fact that some Pascal procedures were not implemented, only described, in [79)].
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Using these functions we can very simply compute the volume of a sphere, or area of a circle. by
specifying appropriate limits. The required formulae are ’

r Vr2-z2
area, = / / dyd:c
~rJ-r7 72

,. VrZi-z2 \/,.z_yz_:z
volume, = / / / dzdydr
—rJr2 ;2 _\/rz_yz_zz

and the integration limits can be expressed as

> circle_lims :: Double -> [Limit]

> circle_lims r = [1lim1,1im2]

> where lim1 _ = (-r,r)

> lim2 (x:_) = (-sq,sq)

> where sq = sqrt(r*r - x*x)

> sphere_lims :: Double -> [Limit]

> sphere_lims r

> = circle_lims r ++ [1im3]

> where 1im3 (x:y:_) = (-sq,sq)

> where sq = sqrt(r*r - y*y - x*x)

We can now express the final computation as tersely as we would expect it to appear in text. i.e.
fcircle dyd:c

> area, volume :: Double -> Double
> area r = integrate (circle_lims r) (const 1)
> volume r = integrate (sphere_lims r) (const 1)

where const may be defined as

> const :: a ->b -> a
> const k x = k

4.4.6 Basis Functions for Finite Element Analysis

These ideas can be extended to the specification of interpolation functions for finite element analysis,
where we can very generally state facts about iso-parametric basis functions. The essence of the
finite element method (FEM) is to partition the domain of a problem into non-overlapping elements
and provide an approximate solution which has a simple form within each element. The local
representations are then patched together to form a global solution. The approximate solution is
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calculated using basis, or interpolation, functions dependent on the values at neighbouring node
points. The simplest approach is to interpolate linearly within an element:

In Haskell we can write this as

> type Element = ([Interpolation], [Limit],(Int,Int))
> simplex_2D :: Element

> simplex_2D = (interpolations,limits,(dimensions,nodes))
> where interpolations = [i1,i2,i3]

> where i1 (r:s:_.) =1 -r - s

> i2 (r:s:_ ) = r

> i3 (r:s:_.) = s

> limits = [11,12]

> where 11 _ =(0, 1)

> 12 (x:_) =(C0, 1-x )

> nodes = 3

> dimensions = 2

allowing us to model simplex elements very naturally, since the interpolation functions for a 1D
simplex are

Hi(r)= 1-—r

Hy(r) = r

and the interpolation functions for a 2D simplex are

Hy(r,s)= 1-r —s
Ho(r,s) = r
H3z(r,s) = s

This explains our use of (x:y:_) rather than (x,y) in that we express functions in a form that
allows us to speak more generally later about the dimensionality.

Now that an element has been specified, one of the things we need to do is to integrate a function
over its limits, which can also be specified very tersely via the definition of the projection getLimits?.

2In Haskell £.g = f o g denotes function composition.
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> getLimits :: Element -> [Limit]

> getLimits (_,limits,_) = limits

> integrateOverElement :: Element -> Fn -> Double
> integrateOverElement = integrate.getLimits

We can now integrate any function f over the element via

> integrateOverElement simplex_2D f

4.4.7 Finite Element Analysis

The techniques described in the previous sections were brought together to form a simple finite
element package implemented in Haskell. One of the requirements was that it should work in an
arbitrary number of dimensions with plug-in basis functions and a plug-in linear system solver.

The notation provided by Haskell was found to be very useful in the development of this system,
often making the problem description clear. For example, in the FEM we establish the element
equations for each element. Generally this is done by substituting the interpolation functions into
the governing integral form. Historically these matrices have been called the element stiffness matriz
and load (or force) vector, respectively®. Once the element equations have been established the
contributions from each element are summed to form the system of equations Sx = F. This can be
expressed in Haskell as

> linear_system :: Mesh -> Basis_Fn -> Linear_System

> linear_system mesh shape = MkLinear_System sm fv

> where sm = sum [contrib_to_sm shape e | e <- elements]
> fv = sum [contrib_to_fv shape e | e <- elements]
> elements = getElements mesh

where the element stiffness matrix and force vector depend on the interpolating function shape and
the particular element being considered®.

By using Haskell’s type class mechanism to define instances over an Erpression datatype (sec
Section 4.4.2), high level descriptions of problems can be specified very naturally.

4.4.8 Example

Consider the simple 1-D linear slider bearing shown in Fig. 4.2, which is assumed to extend to
infinity out of the plane of the figure [1] (p. 207). It consists of a rigid bearing and a slider moving
relative to the bearing with velocity .

3This naming scheme relates to a time when the FEM was predominately used by engineers for structural analysis.
4The types Mesh and LinearSystemhave not been defined explicitly as any representation of a finite element mesh
and Matrix-Vector would do.
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Figure 4.2: Linear slider bearing

The extremely thin gap between the bearing and the slider is filled with an incompressible
lubricant having viscosity v. For the one-dimensional case the governing Reynolds equation reduces

2 d [(h3d
P ah
o (e‘@) e = )

where P(z) denotes the pressure and h(z) the distance between the slider and the bearing. The
boundary conditions are that P must equal the known external pressures (usually zero) at the two
ends of the bearing. Considering the governing differential equation as

L(P)=Q
we may use a weighted residual method by assuming an approximate solution
P (y) = 2161(y) + 2202(y) + -+ n0n(y)

where the ¢;(z) are basis functions satisfying our boundary conditions, and define a residual error
term

R=L(P")-Q
Although we cannot force this term to vanish we can force a weighted integral, over the solution
domain, of the residual to vanish. That is, the integral over the solution domain (£2) of the product
of the residual term and some weighting function is set equal to zero:

L= / w;i(z)RdQ = 0, ti=12 n
Q

In the above example we have

L 3 *

d (h®>dP d :
;= ol S T e —(UR)| dz = 0, — 1 [
I; /0 wi(x) [dr <6v dr)+dI(D )] =0, 1 B

which, after integration by parts, gives

3 * L L o 3 * )
e [wi(ac){g;dp +Uh-}] -/ o) (h—gi—)—+(/‘h> dz =0, =12, n.
v 0 0

dx dr 6v dr
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Selecting w;(z) = ¢i(z) allows us to simplify this to®

L
déi(z) (h3 dP*
Ii = i — . )

/(; dz (61} dz +Uh)dx 0, 1=1.2,....n

Writing the basis functions as a vector [¢1,¢2,...,4,]T and P~ as a dot product

Pr = [¢1,¢2,...,¢n][xl,l'g,...,1'n]T

defines our global stiffness matrix and force vector Sz = F:

1 Ty o}
1 E o, 5 T2 L o
6_ h - [¢I),’¢/271¢:1]d1' . = _(’r/ h . dr
vJo : : 0 :
¢;1 In O:,
~~ N—— ~
5 r F

where the H; are the element interpolation functions.
The element stiffness matrices and force vectors can be written in Haskell using an Erpression
datatype as®

> element_sm_and_fv :: Bas -> Bas -> Point -> Representation
> element_sm_and_fv £ g (x:_)

> = ((h*h *h)/(6.0 xv)) * g’ *f" :=: -u=*h=*g’

> where

> g’ =Dg (U 1)

> f> =D f (U 1)

> u=20.0 -- velocity = 20 ft/s

> v = 0.002 -- viscosity = 0.002 1b s/ft"2
> = thickness x -- thickness at point x

> thickness x | x < 0.125 = 0.0250 —- ft

> | x > 0.125 = 0.0360 -- ft

5Since Vi : $:(0) = ¢;(L) = 0. Setting w; (x) = ¢:(z) gives rise to the Galerkin [29] method.
6 D £ (U n) is taken to mean differentiate £ with respect to the nth variable and § :=: F is taken to mean that
after integration S and F form the stiffness matrix and force vector for a general element.
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0.x72) R22)

©0 ¥

Figure 4.3: Domain of Poisson problem

where Bas and Representation are simply a suitable coding of Erpressions. Similarly, for a 2-D
Poisson problem (Fig. 4.3) taken from [69] (p.82)

d?u  d?u

@+3?_2=0

whose Galerkin equations become:

v f [ (5) () () o

k=1

+//2<;),-‘jdr(1y:O, (i.y=1,2,...,7)
R

where the ¢;;(z,y) are the basis functions, and R is the region of interest divided into (T + 1)?
square elements, the element stiffness matrices and force vectors can be expressed as :

> element_sm_and_£fv :: Bas -> Bas -> Point -> Representation
> element_sm_and_fv f g (x:y:_)

> = (fx * gx + fy * gy :=: -2.0 * g)

> where

> gx =D g (U 1)

> fx =D £ (U 1)

> gy =D g (U2

> fy =D £ (U 2)

4.4.9 Summary

The above examples provide the motivation behind the use of functional programming languages to
express numerical methods. Unfortunately, their lack of direct handling of state often makes some
programs run very inefficiently, as shown in the rest of this chapter.
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Figure 4.4: A non-singular matrix which causes naive LU factorisation to break down
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Figure 4.5: Dependencies for LU decomposition without and with partial pivoting

4.5 Case Study: LU Factorisation

In Section 4.4.1 we presented a compact formulation of LU factorisation. Unfortunately, since this
formulation does not store intermediate results we cannot perform pivoting in the usual way to
retain numerical stability”. Even if numerical stability is not an issue, a non-singular matrix such
as Fig. 4.4 can still cause this method to fail if one of the pivots is zero. Since the use of compact
methods encourages numerical stability it is this approach we concentrate on.

4.5.0.1 Compact Pivoting

The compact methods described earlier may admit pivoting if a permutation matrix is built at the
same time as L and U and all accesses to A are performed in terms of this (Fig. 4.5). Unfortunately
this involves storing N(N +1)/2 intermediate values, or massive recalculation, and so we reject this
scheme.

4.5.0.2 Non-Compact Pivoting

To allow pivoting we must express the algorithm in terms of elimination steps:

> 1u2 :: Matrix -> Matrix
> 1u2 a = eliminate a 1 n where (_,{(n,_)) = bounds a

> eliminate :: Matrix -> Int -> Int —> Matrix
> eliminate a i n

"This lack of pivoting is not as drastic as it first seems since compact methods are inherently more stable than
algorithms involving the storage of intermediate results [101] (p. 10).
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Figure 4.6: Timings(Unix time) for monolithic, incremental array versions of LU factorisation

++
[(k,j):= at(k,j)-a!(d,j)*kmul
lj <= [i+1..n]])
| k <- [i+1..n]]
pivot = a!(i,i)

> | i > n=a

> | otherwise

> = eliminate (a // submatrix ) (i+1) n
> where submatrix

> = concat[let

> kmul = a!(k,i)/pivot
> in

> ([(k,i):= kmul]
>

>

>

>

>

where the algorithm is obscured to ensure that the division by the pivot is shared. If this algorithm
were to include pivoting we would calculate kmul by searching down the column i of a for the
maximum element and include the row swapping in the association list. Unfortunately. when this
technique is used, copying of intermediate arrays causes the program to be unacceptably slow, as
can be seen from Fig. 4.6, where the previous compact scheme admits a monolithic array definition
and the elimination implies an incremental array definition. This efficiency loss is due to the fact
that, at each elimination step, the array update operation (//) causes the whole array to be copied.
The reason for this copying can be explained via the following example, where f acts as a datatype
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4.5.

Case Study:

LU Factorisation
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Figure 4.7: Graph transitions for f (access a i) (replace a i p)

constructor with two fields, initially neither argument to f is evaluated,

> x = £ (ati) (a // [i := p])

and each argument holds a reference to a. An internal representation is shown in Fig. 4.7.
left argument is evaluated first then no array copying is necessary (Fig. 4.7:
as its reference has been freed. However if the right argument is evaluated first (Fig. 4.7:

If the

path 1 — 2a — 3)

path

1 — 2b — 3) then we must copy the array as the left argument still refers to a. Since we are using
non-strict languages we cannot perform all reads before writes as the computation must be demand
driven to allow recursive definition.

4.5.1 Strategies

In order to avoid this efficiency loss we investigate:

1. The use of non-array datatypes which may be decomposed and their constituent parts shared,
such as trees and lists.
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2. Alternative mathematical methods which eschew the need for pivoting.

4.5.2 Non-Array-Based Matrix Methods

In this section we examine how we may efficiently express algorithms common to linear algebra if we
no longer have efficient array access/replacement and are forced to use an alternative approach. This
is the case for many functional languages as often if arrays are available they may not be efficient.
or they may exhibit prohibitive access/update costs.

The structure which is most prevalent in functional programming is the list. Lists are very
efficient for operations such as vector addition, matrix addition or scalar multiplication. These
operations may be specified as

> vectoradd [Double] -> [Double] -> [Double]
vectoradd [] (1 =0
> vectoradd (x:xs) (y:ys) = (x+y) : vectoradd xs ys

\'4

> scalarmult :: Double -> [Doublel -> [Double]
> scalarmult a xs = [a * x | x <- xs]

> matrixadd [[Doublel] -> [[Doublel] -> [[Doublel]
matrixadd [] 0 = [1
> matrixadd (x:xs) (y:ys) = (vectoradd x y) : matrixadd xs ys

\'4

or equivalently

> vectoradd = zipWith (+)
> matrixadd = zipWith vectoradd

However operations such as riatrix multiplication are more difficult as, to use an analogy, we work
against the grain of the representation, as can be seen in Fig. 4.8, and hence do not admit such an
clegant algorithm and we must restructure the lists first via transpostition to work with the gramn:

> mmult :: [[Double]]l -> [[Doublell -> [[Doublell

> mmult a b = [[ sum [a_ik * b_kj | (a_ik,b_kj) <- zip a_i_ b__jl
> | b__j <- b_T 1]

> | a_i_ <~ a ] where b_T = transpose b

This causes inefficiencies.

If an algorithm operates with the grain of a representation we say that it is catamorphic. meaning
it descends the structure, and it is this property which makes many functional programs elegant.
To solve a problem over a large set of data we combine solutions over subsets of that data.
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Figure 4.8: List-based matrix multiplication

4.5.2.1 LU Decomposition Over Lists of Lists

We may define LU decomposition (Doolittle) in this way using elimination:

1ud :: [[Doublel] —> ([Doublel, [[Doublell)
1ud [[x]]1 = (03, [0x1D)
1lud ((pivot:rowl)
:rows) = let
(mults,submat) = eliminate pivot rowl rows
(1,u) = lud submat
in

(mults:1, (pivot:rowl):u)

eliminate :: Double -> [Double] -> [[Doublell -> ([Doublel, [{Doublel])
eliminate pivot rowi [1 = ([1,01)
eliminate pivot rowl ((cl:row):rows)
= let
(multipliers,submatrix) = eliminate pivot rowl rows
m = c1 / pivot
updatedrow = axpy (-m) rowl row
axpy a x y = zipWith (\x_i y_i -> a * x_i + y_i) x y
in
(m:multipliers,updatedrow:submatrix)

VVVVVVVVVVVVVYVVVYVVYV

This formulation proves to be quite efficient, as can be seen in Fig. 4.9. Unfortunately, if we wish
to perform partial pivoting then we lose much of this elegant recursive definition as the columns of
L must be dragged through the computation in case row-swapping is necessary (Fig. 4.10). This
makes the problem monolithic. So although an efficient pivoting LU-decomposition is possible using
lists of lists, much of the elegance that we desire is lost and we arrive at an algorithm which is very
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Figure 4.9: Timings (Unix time) for monolithic array. quadtree and list versions of LU factorisation

Submatrix

section of data structure in computation

Figure 4.10: Monolithic list-based LU factorisation with partial pivoting
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£

Figure 4.11: Tri-diagonal and lower-triangular matrices as quadtrees

hard to reason about.

4.5.2.2 Quadtrees

As mentioned earlier, functional languages generally shy away from the use of arrays and tend to use
structures such as lists or trees instead, leading to the writing of algorithms in a very catamorphic
way. Two structures that lend themselves to this area are the quadtree and binary tree, which can
be used to represent matrices and vectors respectively. Examples of simple quadtree matrices are
given in Fig. 4.11.

A matrix of order 2 can be represented by a quadtree of depth p, where the tree is either

e a zero matrix represented by 0;
e a scalar multiple al (a # 0) of the identity matrix, represented by a;
e a2 x 2 block matrix, each sub-matrix being of order 2°~".

Some of the advantages of using quadtrees are that they are useful for both sparse and dense storage
patterns; their asymptotic space complexity is linear in the number of non-zeros for common matrices
[106]%; and matrix algorithms can be expressed naturally as block algorithms using quadtrees.

81t is possible to construct pathological matrix patterns that refute this, such as permutation matrices. However

these can be stored as Ahnentafel index trees, as in [106].
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4.5.2.3 LU Decomposition Over Quadtrees

An LU factorisation can be expressed using a block formulation? as

Ay Al LU Uya
bl - 11 12
OCkLU[ Ao Ag ] [ L2y LUy ]

where LU;; = blockLU 4,
Uy2 = fwdSubst LUy Ao
L21 = kaUbSt LUllc“l'll
LU22 = blOCkLU (.’132 - L'_)lUl'_))

blockLU a = a

where we pattern match on the tree to determine whether decomposition is necessary. This pre-
sentation encourages inductive proof techniques and the correctness of the above algorithm may be
reduced to proving the following:

Lu(deSUbStLU“AlQ) = .-119
(kaUbStLU“Agl)Uu = Ay

where fwdSubst and bkSubst are defined as

(fwdSubst (L +U) A = L~'A
(bkSubst (L + U) A

|
i
~
-
|
—

4.5.2.4 Efficiency

The efficiency of this method on full matrices measures up well against array and list representations
(Fig. 4.9), although the great advantage of using quadtrees to represent matrices lies in their ability
to represent dense and sparse matrices uniformly with operations over quadtrees taking advantage of
sparsity. In addition to this, the cost of representing common sparse matrices is favourable, as can be
seen in Table 4.1, taken from [105]. The metric Density refers to the ratio between the space occupied
by a matrix and the space occupied by a dense matrix of the same order, and the metric Sparsity
refers to one minus the ratio between the expected time to access a random element and the expected
access time within a dense matrix of the same order. Both metrics are measured on a scale from
zero to one, with Density and Sparsity being accurate to within a term of O(n~') and O((lg(n))~?)
meaning that some densities are recorded as zero. The expected path is the expected time to access
a random element. Matrices which measure up badly are the FFT and Shuffle permutation matrices
which, as we show later, may be represented more efficiently.

®This factorisation can be considered to be a version of the Fadeev algorithm [28].
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4.5.2.5 Quadtree Cyclic Reduction

A quadtree version of cyclic reduction is also possible, although the derivation of this is not obvious

from the usual elimination step definition:

1

a(gl) aid;—1

b;’ ) = bi + aici_1 + Biaip
1

eV Biciy1
1

v = gt + Ji¥isr

o = —a;fbi_,

Bi = —cifbiqy

The quadtree version may be expressed as
cyclic(a,y) = y/a if a and y are scalars

cyclic(A,y) = [ ivl ] where

vy = cyclic(A;,y)
v = cyclic(Aa, y2)

[ A ", J = K[M(L+ ")+ DJKT

[ " ] = K(My+y)

M=—(L+0)D"!

(D, (L + U)) = takeOutDiag(4)

where the A's are matrices of kright's movesof any size:

OO -

L=

0

000 0 0
01 0 0
00 0 1 0
0000 - 1

and Ay, A, are half the order of 1. Obviously these permutation matrices should not be stored
explicitly and we can construct functions shuffle(z) = R'r and shuffle* (4) = K AKT which serve
the same purpose. The following functions are defined via pattern matching where we take some
liberty® with syntax for clarity. We consider the binary tree in Haskell

data BinTree a= Leaf a | Branch (BinTree a) (BinTree a)

101n Part III of this thesis we discuss how this syntactic liberty may be realised.
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as being defined as

data BinTree a = a| [ (BinTree a) ]

(BinTree a)

and the quadtree

data Quadtree a= QLeaf a | QBranch (Quadtree a) (Quadtree a)
(Quadtree a) (Quadtree a)

as being defined as

data Quadtree a = a| [ (Quadtree a) (Quadtree a) ]

(Quadtree a) (Quadtree a)

shuffle U1 ] = split [ v ]
v2

shuffle z =1«

split = where [ z' ] = split [ :' ]

split rT=r¢

shufle™ [ o 012 ] =spljt‘\’ [ ¢ G2 ]

a2y @22 a1 @22

shufie z=1=2
a1 b ax b nw, nus ne;, nep 'I
¢ di ca do nws nws nex  ney
split™ =
as bs ag bs swy  sw; se1 86,
cz ds cs dy sw3 Sws ses  Seq
h nw; ne, | _ solit M a; b,
where [ cw,  ses | P ¢ di
split™ r=r

4.5.2.6 Algorithms Over Quadtrees

It has been suggested [42, 100} that quadtrees be used as an implementation for matrices in ap-
plicative languages. However, using this as an abstract datatype is prohibitive as we incur O(lgn)
access times for element access. If the algorithms employ a divide and conguer style approach acting
catamorphically over the quadtree then the situation is not so severe. For example, the addition
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Space Density Expected Path  Sparsity
Dense 3(n*—3) 1 lgn+1 0
Symmetric 2(n+2)(n—3) i Ign+1 0
Triangular %(:z +2)(n—3 i gr 3L 1 =
FI'?T' permutation ngn 41 Slgn 1_522 +4-L 13
Tridiagonal 6n—2lgn—>5 0 D342 15
Pentadi-agonal 8n —2lgn—9 0 Q- % - :{’)—0, 1 ﬁ%
Heptadiagonal 1ln—2lgn-19 0 D2t 1%
Enneadiagonal 13n —21gn — 26 0 R 3{%"
Shuffle permutation 3(n—-1) 0 3(1- 1) 1 - 1—53
Identity 1 0 1 g

Table 4.1: Average costs of quadtree representation

of quadtrees may be performed element-wise using an element selector function, or by recursively
descending the structure. The time taken to add two quadtree matrices of order .V catamorphically
may be defined as follows:

T(N) 4T (%) +¢
(1) = C-

where C is associated with constructing a 4-element node and C> 1s associated with element addition.
The complexity of the recursive scheme is as follows:

T(N)=T(2¥) = 4[T ()] +C
= sprEi+alia

k
= Yo+ ) ¥

i=0
= 40y +4FFIC, - (4
=  CyN*4+4CIN?* -,
= O(N?)

This complexity tends towards O(N) as one or more of the matrices tends towards a diagonal
matrix with no explicit description of the structure. If the structure is accessed element-wise then

the complexity is O(N21g N) since the cost of element access is O(lg V).

4.5.2.7 Quadtree SOR

This access-cost was largely ignored by Wainwright and Sexton in their study of sparse matrix
representations for the solving of linear systems in functional languages [100]. In their study they
conclude (as expected) that a quadtree representation is more suited to technigues such as.the
conjugate gradient method and less suited to methods such as SOR. We agree with these findings
only to a certain extent as Wainwright and Sexton’s formulations of each of these methods are very
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different. Their conjugate gradient method concentrates on level-2 BLAS (Matrix-vector) operations
and hence suits the quadtree representation. However, their SOR formulation concentrates on level-
1 BLAS operations, updates and accesses, stamping a row-wise formulation on the quadtree. It is.
however, straightforward to create a version of SOR suitable to quadtrees starting with the definition

in [101] (p. 60):

x40 = (WD +L)7! [b—Ux® - (1 -1 Dx¥)]
[1—(w-1D+L)“A x4+ (D +L) b
x® + (D +L)”" b - AxY)]

Although both methods are O(N2) (full matrix), imposition of a row-wise decomposition causes
the row-oriented version to be very expensive, suggesting that it is the lack of regard for the data
structure, rather than the inherent unsuitability of the quadtree to SOR. For a tightly-banded
matrix, such as tridiagonal, this mining of rows and O(lg V) element access/replacement causes the
row-wise algorithm to exhibit O(N lg N) behaviour rather than O(.V).

A quadtree version of SOR whose behaviour tends towards O(.V) as the bandwidth of A tends
towards zero is given below!!:

quadStep A =z b =zx+e

where ¢ = SORsolve w A r
r = b-—Ar
w = 1.66

where SORSolve is defined as

Au b] _ SORSOIUC’ w Al] b1
SORsolve  w [ ] [b] _[SORsolve w An (bg-,-aglxl)]

SORsolve w a b =wb/a

This algorithm was tested against the row-oriented SOR of Wainwright and Sexton under
Hugs(reduction+cells used) and GHC (unix time), the results being summarised in Table 4.2. The
results show that this catamorphic formulation executes at between 25% and 300% faster than that
of Wainwright and Sexton (a motivating argument for computing along the grain). This signifys the
importance of respecting the datastructure’s underlying representation.

11 A value of w = 1.66 is shown although any value in the range {1, 2] is permissable.
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N | Matrix Type row-oriented method block method

512 (HUGS) Full 4,554,169(10,049,620) 3.598.500(8.256.,506)
1024 (HUGS) Full 18,000,057(39,719,793)  14,362,276(32.940.531)
512 (HUGS) | Tridiagonal 259,485(575,447) 51,820(130.030)
1024 (HUGS) | Tridiagonal 573,328(1,267,839) 104.008(259.996)
2048 (HUGS) | Tridiagonal 1,255,301(2.769,508) 208.428(520.,010)
4096 (HUGS) | Tridiagonal (heap exhausted) 417.280(1.040,120)
8192 (HUGS) | Tridiagonal (heap exhausted) 835,044(2.080.422)
8192 (GHC -O) | Tridiagonal 7.3 1.3

Table 4.2: Row and block oriented SOR results

4.5.2.8 Sparse Strassen Multiplication

By using a quadtree it is trivial to implement a version of Strassen’s algorithm [39] for matrix
multiplication which automatically respects the sparseness of the matrices.

0 B =
A 0 = 0

A1r A2 Bu B2
Az Az B2y Ba

where
C11 = P1+P4_P5+P7
Ci2 = P+ P
Cn = P+P
C22 = Pi+Pi-Pr+ P
P, = (A + A22)(Bn + B22)
P, = (A21 4 A2)Bn
P = An(Biz — B»)
P, =  Ax(B2a — Bn)
Py = (A1 + A2)B2
Ps = (Aa1 — An){Bu + B2)
Py = (A2 — A2} Ba + B22)
By B2 _ aBiy eBn
¢ Bs1 Ba - aB aB»n
[ A11 A12 ] b _ [ Al]b AIZb ]
A2 A - Anb  Axnd
a b = ab

4.5.2.9 Pivoting

As with nearly all quadtree algorithms, the formulations above automatically'take'z advante.xge of
sparsity, decompose naturally into a few subproblems, highlight implicit parallelism inherent in the
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method!?, and make reasoning and proving programs correct much easier. However, since they
do not decompose naturally (or efficiently) into rows or columns, additions to algorithms such as
pivoting are hard (if not impossible) to implement efficiently3.

4.5.2.10 Summary

It can be seen from the algorithms above that quadtrees have many useful applications, such as
sparse matrix representations and tools for divide and conquer algorithms. In writing quadtree
methods it is clear that very similar subfunctions regularly occur. These functions are variations
on the BLAS and therefore producing a library of quadtree BLAS would be very beneficial to this
area. Unfortunately, many non-block algorithms do not admit an elegant (or efficient) quadtree
formulation and so arrays are still very desirable.

4.5.3 Alternatives to Pivoting

As mentioned earlier, the big disadvantage of using a quadtree LU factorisation scheme, or a compact
scheme, is that it cannot deal with the need for pivoting, i.e. it breaks down on problems such as

0 01
01 0x=Db
1 00

In this section we examine what occurs during pivoting and attempt to create an alternative fac-
torisation algorithm which eschews pivoting and which will not break down on problems such as the
above. For the compact scheme

j-1
lij = (aij - th%j) /ujj (i>J)
k=1
i-1
uij = aij — 3 ik (1<)
k=1

method breakdown is avoided if each leading submatrix of .1 is nonsingular. If a factorisation involves
pivoting we do not factor A into LU but instead factor PAQ into LU such that

PAQ(Q"x) =Pb

where P and Q are permutation matrices generated and implicitly applied during the method ex-
ecution using intermediate values. One possibility would be to permute the matrix 4 in advance
but this would involve as much computation as pivoting and so we reject this. Another possibil-
ity is artificially to impose non-singularity on each leading sub-matrix and deal with the resulting
consequences later. In both the compact and Fadeev (quadtree) methods a singularity in the ith

121 our quadtree LU decomposition the North-East and South-West quadrants of the matrix may be built in
parallel and many of the linear algebra building blocks are implicitly parallel.

13 An LU-style factorisation over quadtrees has been developed by D.S. Wise based on undulant block pivoting [106],
although this formulation is very involved and not easily reasoned about.
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leading submatrix is discovered at the point where the element u;; is determined. If the value of u;;
is zero then the i** leading submatrix is singular, otherwise the leading submatrix is nonsingular.
The method we suggest is that on discovering a singularity at the i'" stage we take the value of u;;
as one, rather than zero, and continue. This ensures each leading submatrix is nonsingular.

4.5.3.1 Proof

e For the case n = 1 any nonzero constant is a nonsingular 1 x 1 matrix.

o For the inductive case (assume true for n—1): The first n—1 rows of U, are linearly independent
(from hypothesis) and so the first n—1 columns may be triangularised via Gaussian elimination.

If Uy is nonsingular we are done, otherwise we add the vector [0,0, .. .,0, 1]7 to the final column
of U,. As this forms a triangular matrix with non-zero diagonal elements it is necessarily
nonsingular.

Here U; refers to the i*? leading submatrix. We thus have the factorisation
LU=A+D

where D is a diagonal matrix of ones and zeros. To obtain the solution to Ax = b we need a method
of solving (LU — D)x = b. A corollary of the above proof is that if A is nonsingular then so is
A+D.

4.5.3.2 Rank Annihilation

We present a method of solving Ax = b based around Rank Annihilation [102, 103]. From the
Sherman-Morrison formula [79] (p. 77) which gives the inverse of A + u® v for arbitrary vectors
u, v:
(A~'u) @ (vTA~Y)
1+vTA-'u

(A-i—u(éZ)v)_1 =A"1

we may derive the solution of
(A+u®v)x=Db

v (YN,
=y 14+vTz

Ay=Db Az=u

where

and from this derive a formulation of LU factorisation.
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4.5.3.3 Rank annihilating LU factorisation

Consider the linear system
Ax=Db

This may be rewritten as
(A+u®v)—u®v)x=>b

T
= vy
x—y+(1_sz)z

(A+u®v)y=>b (A4+u®v)z=u

and may be solved via

where

More interestingly, if we write Ax = b as

P P
((A+Zuk ®uk> —Zuk®uk)x:b
k=1

k=1

we may solve Ax = b via

X=y+Zw
where
w = Hly
v = UTy
H = [1-UTZ]
p -1
y = <A+Zuk®uk> b
k=1
P -1
zZ; = <A+Zuk®uk) u,;
k=1
Z = [z1,22,....2P]
U = [u,uy,...,up]
Z and U being matrices with columns z1,22,...,2p and uj,us,...,up. Therefore we may avoid

method breakdown in LU factorisation without pivoting by slightly altering our normal Doolittle

(Black) formulation
j-1
Iij = (a,'j _Zlikukj) /lljj (i >])
k=1

i—1
Ui = @ — Z lixur;j )
k=1
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To encompass this change we have

ji-1
Li; = (a,’j — Zl{kukj) /(ifu]'j = 0 then 1 else u;;) (i >j)
7
Uij:aij—‘zlikukj (i1<J)
k=1
which defines

(L-I)+(U-D)
where
LU=A+D
and D is a diagonal matrix with d;; being either 1 or 0:

dii:{l 1fu;,~:0

0 otherwise

From this we may easily solve Ax = (LU — D)x = b via application of the Sherman-Morrison-
Woodbury method.

4.5.3.4 Convergence

As it stands this method may not converge as there is no guarantee that the set of vectors {u;} that
the (N x N) matrix A produces will have cardinality < .V, although this will be extremely rare. A
solution to this problem would be initially to find a row with a non-zero first element and consider
this as the first row in the matrix performing the decomposition under a row-wise permutation of
which we have a-priori knowledge.

j-1
I,'j = (ap(i)j —Zl,’kukj> /(lf uj; = 0 then 1 else uj;) (i>j)

. k1=1

i
Ui = Gp(s)j — Z I;kukj (i <J)

k=1
pli) = i if a1y # 0
p(i) =1 if { = piv
p(i) = piv ifi=1
p(i) =i otherwise
piv = head[j|aj; # 0]
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* * * 7
* * *
* * *

Figure 4.12: Patterning of matrix H under quadtree-Sherman-Morrison-Woodbury method

4.5.4 Combination Approaches

This method of rank annihilation may also be used with quadtrees where suitable changes are made
to bkSubst, i.e. a division by zero implies division by 1.

An A | _ [ LUn U
blOCkLU[ A2y Ao ] _[ Ly, LU»

where LU;; = blockLU A4
Uy2 = fwdSubst LUy 1 Aq2
Lgl = bkSubst LU“AQI
LUQQ = blockLU (.-1'_72 - Lg]Ulg)

blockLUa = a

However, since the previous formulation (Section 4.5.3.) constructed matrices in a row-wise manner,
it does not suit the quadtree representation particularly well. If quadtrees are to be used with this
method, it is suggested that square matrices are used, relying on the performance of the quadtree
as a sparse matrix data structure. That is, the diagonal matrix D is explicitly formed as a sparse
matrix and block methods are used in the Sherman-Morrison-\Woodbury method. A consequence of
this is that we solve an N x N linear system at each stage, although the patterning of the matrices
(Fig. 4.12) is such that no fill-in occurs under LU-factorisation and therefore, due to the advantage
quadtrees take of sparsity, the amount of extra work which needs to be performed is low. To gain the
full benefit from the quadtree representation it is advisable to add a specific multiplicative identity
I to avoid unnecessary multiplications.

4.6 Summary

The methods presented above demonstrate that in many cases functional specifications of numerical
algorithms are very elegant. Unfortunately, it is often the case that the speed of execution of these
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algorithms is unacceptably slow!?. In array-based algorithms this speed loss can often be attributed
to the copying of data during updates. To side-step this problem we presented two strategies:

1. Non-array based methods
2. Alternative mathematical formulations

and demonstrated via the SOR method that if non-array-based methods were to be used then they
should be used catamorphically. In this area it is the quadtree representation for which the most
elegant, catamorphic algorithms exist. These formulations almost always expose any coarse-grain
parallelism and respect sparsity implicitly. However, many common row/column-style algorithms
are either impossible or too costly in practice to implement in terms of these structures.

Alternative mathematical formulations were used to attempt to eschew the need for pivoting.
This produced a method which suits functional languages but which is still inefficient, in terms of
the amount of necessary work, compared to an imperative pivoting array version. However, this
process did produce a method which could be used with sparse matrices, does not introduce fill-in,
and is more parallelisable than pivoting.

Unfortunately these methods did not produce an efficient, more aesthetically pleasing or more
easily reasoned about method than the incremental update elimination version, suggesting we turn
our attention towards exploring what (if anything) may be altered so that such definitions may be
efficiently executed.

4.6.1 Array Semantics

Although we have shown that non-array-based methods are indeed possible, the most natural way
to express a method, such as a pivoting factorisation, is often by incrementally updating array
elements, necessitating strict semantics (Section 4.5). Unfortunately, the main advantage of non-
strict semantics is the ability to consume structures before they are complete, and hence define data
structures in terms of themselves. For example, back substitution can be defined as

n

b,‘ - Z U;j;Ij

zi:—’—ii—, i=1,2,...,n
Ujj

and expressed in Haskell as
> back_subst :: Matrix -> Vector -> Vector
> back_subst u b = x
> where x = array bnds [(b!i - £ i)/u!(i,i)|i<- range bnds]
> fi=sum[ut(i,j)*x!jlj <- range (i+1i,n)]
> bnds@(1i,n) = bounds b

14By “unacceptably slow” we mean that it exhibits a worse asymptotic time complexity than its imperative
counterpart.
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where the vector z is defined in terms of itself.
However, we may define back substitution very elegantly using a quadtree approach. i.e.

Un Ui by | | =1
sw | O g |3 =121

where 24 = bkSub Usobs
ry = bkSub U“(bl - Ul'_g.l‘g)

bkSub ub = b/u

which is pictorially expressive, terminates under eager evaluation, and is more efficient. Therefore,
before decisions on possible language alterations are to be considered the amount to which language
features are used, and the areas which contribute to efficiency loss, should be examined, and hence
it is these areas which are the subject of the next chapter.



Chapter 5

Efficiency and Empirical Analysis

In the previous chapter we used Haskell to implement numerical methods and concentrated on the
relative efficiency and elegance of various techniques and formulations rather than the absolute
efficiency of the resulting executables compared with FORTRAN or (.

5.1 Chapter Overview

In this chapter we take the most efficient methods from Chapter 4 and benchmark these againsi
their imperative cousins.

5.1.0.1 White Box Analysis

Chapter 4 can be considered as treating Haskell implementations in a black-box style, attempting to
gain the best performance with little regard for what was occurring under the hood. To continue the
use of testing terminology we analyse the implementation in a whife-bor style to highlight the area
where efficiency is lost.

5.1.0.2 Ewmpirical Analysis

After highlighting the major areas of efficiency-loss we study how these language features. or idioms,
are used in practice. This follows the simple idea that launched the RISC revolution in computer
architecture: to obtain high performance, one must measure the behaviour of “real” prograins. and
make sure that the most common operations are performed at blinding speed - even if less common
operations go a bit slower as a result [77]. This quantitative analysis is very important as a designer’s
“scat of the pants™ instinct about what counts is often wrong [59].

5.1.0.3 Collation of Results

After empirically studying the extent and manner to which language features are used we collate this
information to lay out a set of requirements that a functional language tailored to scientific computing
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should satisfy, and suggest directions of investigation with the view to improving efficiency.

5.2 Efficiency Issues

Lazy evaluation in languages such as Haskell has advantages in areas such as heuristic searching,
allowing elegant, recursive specifications, and S-reduction is always valid. Unfortunately lazy lan-
guages also have the property of slowing down the execution of work which is necessary by delaying
it if the compiler fails to determine that the work s necessary. This has a side-effect of creating a
situation where the order of evaluation has little to do with the loop-like higher order functions. and
closures persist longer than necessary.

5.2.0.4 Benchmarks

As a simple benchmark of raw power we use the following arbitrary computation

10,000 /10,000

value = Z Z 1j

i=1 ji=1
which we express in Haskell®) as

> value :: Double
> value = sum[sum[fromInt i * fromInt jlj <-[1..10000]]}li<- [1..10000]]

We convert from integers since this more closely models common numerical computations and avoids
overflow; in all versions we perform similar castings. We express this in C as

register int i,j;
register double value=0.0;
for (i=1;i<=10000;i++)

{
for (j=1;j<=10000;j++)
{
value += (double) i * (double) j;
}
/* end of for loop index = j */
}

/* end of for loop index = i */

and denote this as RC (readable C). We also optimise this and denote this as OC (obfuscated C)
leaving it up to the compiler (gcc -O4) to perform more obvious optimisations such as loop unrolling
and invariant removall. In OC we “hack” the RC to remove relational operators and rely on the
fact that a predecrement is generally faster than post decrement ([13] p.-154).

1Unrolling and restructuring RC did not improve the performance of the compiler-optimised code.
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for (i=10001;--i;)

{
for (j=10001;--3j;)
{
value += (double) i * (double) j;
}
/* end of for loop index = j */
}

/* end of for loop index = i */

5.2.0.5 Timings

To print velue the times were as shown in Table 5.1. From these timings we see that the Haskell

Code RC(in code timing) OC(in code timing) Haskell(unix time)
Time (Seconds) | 8.32 7.55 71.43

Table 5.1: Benchmark timings for computation

version executes 9.46 times slower than OC and 8.59 times slower than RC! If functional languages
are to be used in this area then we must at least produce codes comparable to the efficiency of RC.
That is, we must increase their efficiency by an order of magnitude.

5.2.1 Functional Programming and Arithmetic

When non-strict languages such as Haskell are compiled, the resulting code usually manipulates
heap-allocated boz numbers [78]. Thus, in a naive implementation, numbers are always represented
as a pointer to a heap-allocated object which may be an unevaluated closure, or a boz, containing
the number’s value which has overwritten the closure. Consequently, simple arithmetic operations
which require a single machine instruction in a strict language require the following steps:

fetch operands from their respective boxes

.

e perform the operation
e allocate a new box
e place the result in the box

Clearly it is more efficient to work with the bit patterns that reside in the boxes (the unbozed
values) than with the boxes and contents (the bozed values). With reference to large-scale scientific
computing, retaining this efficiency is not only desirable but essential.

Some compilers such as GHC allow the programmer access to these unboxed representations
but at the expense of losing common higher-order functions and polymorphism! This effect is
reduced, however, by the use of specialisation pragmas in the code. Other features, such as strictness
annotations, also exist in functional languages (Haskell 1.3 definition) and, up to a point, these
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features help to claw back efficiency. For instance, the performance of Level 1 BLAS operations are
improved eight-fold when written in unboxed core Haskell.

5.2.1.1 Unboxed Haskell

In Glasgow Haskell (ghc), unboxed values can be accessed using hash-notation by considering the
ground types (integers, doubles, floats, etc.) as being algebraic types with unary constructors. i.c.
integers, doubles and floats can be thought of as being defined as

> data Int = MkInt Int#
> data Float MkFloat Float#
> data Double MkDouble Double#

For example Int# represents the unboxed integer (int in (). Unfortunately we cannot easily create
structures of unboxed values since, when we use them, we lose polymorphism. This means we must
redefine a monomorphic structure for each ground type.

5.2.1.2 Example: Boxed and Unboxed Lists

To find the lengths of a list of boxed integers and a list of boxed reals we could write

> data List a = Null | Cons a (List a)
> length :: List a -> Int

length Null = 0
> length (Cons a as) = 1 + length as

\'%

> rlength = length rlist
> ilength = length ilist

for suitable lists, ilist and rlist. However, for unboxed lists we would need to write

> data FloatList = NullF | FComns Float# FloatList

> data IntList = Nulll | ICons Int# IntList

> intlength :: IntList -> Int

> intlength xs = case xs of

> NullI -> 0

> ICons x# xs -> 1 + (intlength xs)
> floatLength :: FloatList -> Int

> floatlength xs = case xs of

> NullI -> 0

> ICons x# xs -> 1 + (floatlength xs)
>

ilength = intlength iUnboxedList
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> rlength = floatlength rUnboxedlist

To really improve performance however, we may split the function into a worker and wrapper:. unbox
further and use tail recursion.

> intlength :: IntList -> Int
> intlength xs = case worker xs O# of i# -> MkInt i#
> where worker xs acc#
> = case xs of
NullIl -> o#
ICons i# rest -> case plusInt# 1# acc# of
t# -> worker rest t#

Vv V VvV

only re-boxing into a boxed integer at the end of the function. This is the sort of optimisation that
strictness analysis should allow. However, optimising code in the above fashion is usually performed
by hand as automatic optimisation often fails to claw back this lost efficiency. It is felt that this
form of source code obfuscation is really only acceptable in a library.

5.2.1.3 Scalar Functions

For scalar-valued functions the situation is not so bleak since, following [78], Haskell compilers can
automatically lower the number of closures being built by using unboxed values. Unfortunately the
case of non-scalar valued functions is not as simple.

5.2.1.4 Complex Numbers

Consider the complex numbers:
C1 (7'61, iml)
c2 = (resz,ims)

Performing the addition ¢; + c¢2 will cause closures to be built which., because of the non-strict
semantics, will not be resolved until the real and imaginary parts of the tuple are demanded. This
can be resolved by making the real and imaginary parts of the complex number strict so that no
closures are built inside the tuple. That is, we regard complex numbers as atomic. Unfortunately,
this approach cannot be extended since, if we consider a complex number as a point in the complex
plane (a two-dimensional space) how should we represent points in three-, four- or n-dimensional
space? If we take the above approach of strictifying each of the components we are in the position of
being able to perform arithmetic more efficiently at these points but we lose the ability to consume
part of the data structure before the complete structure is built and therefore cannot recursively
define data structures. Later in this chapter we examine existing Haskell code for numerical methods
to investigate whether this recursive definition is frequently used in practice.

2This worker/wrapper idiom is common in functional programming.
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5.2.2 Efficiency Via Unboxing

To structure the use of unboxing we extend the Haskell 1.2 class hierarchy (Fig. 5.1) to admit a
lower level. Unfortunately, this hierarchy does not allow efficient overloaded methods over structures

Text Binarv

KealFloar

Figure 5.1: Existing Haskell 1.2 class hierarchy

such as vectors or matrices, and operations such as transposition do not fit into the hierarchy. With
this in mind we extend the hierarchy to Fig. 5.2, where BLAS operations reside at the intersection
of the classes whose member operations they depend on. (For instance a dot product would reside
in Num-Structure as it operates over a structure and relies on the members of the class Num [+ and
x].) The advantage of operating in this manner is that we may provide efficient medium-to-large
sized BLAS functions which have been internally unboxed with which to build algorithms. 'The
Structure class contains methods which operate over structures such as transposition.

5.2.3 Performance

In practice this method of unboxing library internals dramatically improves performance.

To demonstrate this, codes taking a command line argument were written in naive boxed Haskell,
unboxed Haskell using this class hierarchy, and in readable C (RC). For an argument n, the codes
output the value of 27z, where r is the vector [1,2, ..., n]T of single-precision floating point numbers.
The results in Fig. 5.3 exhibit approximately an eightfold increase in efficiency over the boxed
representation although the amount of heap and stack space required for the boxed version suggests
that it suffers from a major space leak as closures accumulate (seen as a departure from linear
around 60,000). The boxed and unboxed Haskell versions were compared up to vector length 10°. as
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\(X_Slruclu

N Integral_Structure

RealFloat_Structure

Figure 5.2: Extended class hierarchy

beyond this point the naive Haskell implementation consumes excessive heap and stack resources.
(For vectors of length greater than 10° the boxed implementation fails with a 16Mb heap and a
16Mb stack!) The unboxed version was tested against an RC implementation up to a vector length
of 10° (Fig 5.4) and ran at 1/4 of the speed of the corresponding RC implementation.

5.2.4 Larger Algorithms

A question which must be answered at this point is does this method scale up and the benefit accrue,
or does the efficiency diminish as the complezity of the algorithm increases?

To test this, a conjugate gradient solver was constructed, using this extended class hierarchy,
which solved a tridiagonal linear system arising from a finite difference solution to a one-dimensional
Poisson equation. The number of unknowns was given as a command line argument and the im-
plementations first constructed then solved the system. Heap profiles were examined to check that
the solution of the system dominated the computation and that system assembly was insignificant

compared to this.
For each Haskell version (Boxed and unboxed) the conjugate gradient method was coded as

> iterativelySolve :: ([b] -> ¢) -> (a -> b) -> a > ¢
iterativelySolve convergenceCondition nextIteration start

v
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Figure 5.3: Times(unix) for boxed and unboxed dot products for vectors of length 10* — 10°
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Figure 5.4: Times(unix) for unboxed and RC dot products of vectors of length 10° — 10°

> = convergenceCondition (itsrate nextIteration start)
> conj_grad xO eps a_times b

> = iterativelySolve cgConverge cglteration (x0,p0,r0)
> where

> pO = b - a_times x0

> r0 = po

> cglteration (x,p,r) = (x’,p’,r’)

> where x’ = x + alpha * p

> p’ =1’ + beta *p

> T’ = r = alpha * q

> alpha = rr / pq

> beta = (alpha * qq)/pq-1

B pq = p ‘dot‘ q



5. Efficiency and Empirical Analysis 5.2. Efficiency Issues

> T =r ‘dot‘ r

> Qq = q ‘dot‘ q

> q = a_times p

> cgConverge((x,_,r):rest)| r ‘dot‘ r <= eps = x

> | otherwise = cgConverge rest

with the extended class hierarchy enabling the overloading and multiplications. Note that this is
exactly the code that appeared in both programs and that all boxing issues are relegated to inside
instance definitions.

5.2.4.1 Results

It was found that under a binary tree/quadtree representation of vectors/matrices we could produce
no improvement from unboxing. This is not surprising as the unary Leaf constructor acts as a box.
For vectors stored as lists and the tridiagonal matrices stored as three lists the results shown in Fig.
5.5 were observed. A speedup factor of around 1.7 due to this unboxing was observed which was
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Figure 5.5: Times(unix) for unboxed/boxed Haskell and RC
disappointing in light of the earlier, simpler, dot product speedup.

5.2.4.2 Conclusion

The use of unboxing in BLAS subroutines improves the performance of algorithms. Unfortunately,
as the complexity of these algorithms increases, the overhead of non-strict semantics creeps in and
the efficiency is amortized against this. In view of this fact, and in view of the amount that unboxing
obfuscates previously elegant Haskell, we reject this method as it does not satisfy our goal of elegance
and only partially satisfies our goal of efficiency (we are still nowhere near the speed of RC or OC).
The approach we choose is more holistic in that we aim to alter the language so that it efficiently
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supports programming in the style of Chapter 4. We begin this process by highlighting areas of
efficiency-loss as prime candidates for alteration.

5.3 Highlighting Areas of Inefliciency

Since the greatest proportion of imperative numerical algorithms involve array traversals. and since
we argued that efficient array manipulation is required in a functional language specialised to nu-
merical methods (Chapter 4), we begin by examining how O(1) access arrays may be represented in
functional languages.

5.3.0.3 Arrays in Functional Languages

Fig. 5.6 shows different storage schemes implied by different classes of language. These schemes are

Monomorphic, Strict Array

. rr r [ r 7 I | ]

values

Non-strict Array

I D O O A
!

closures

Polymorphic, strict
C T T [ |

e RS N A

values
Figure 5.6: Array storage schemes

as follows (in order of decreasing efficiency):
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¢ Monomorphic, strict arrays can be stored as a contiguous block of memory and hence
map directly to arrays in FORTRAN or C. This is possible as the array is mouo;norphic and
hence we have a-priori knowledge of the size of each element. However. since these arrays are
monomorphic we may not apply useful higher-order polymorphic functions to them. Sl;Ch as
map or fold, but must specialise these higher-order functions over each element tyvpe. Also,
since these arrays are strict we may not define them recursively.

¢ Polymorphic, strict arrays require a uniform representation which may be used over all
types. This implies that they are represented as arrays of pointers to heap-allocated elements.
This scheme allows us to use higher-order uniformly but still does not allow recursive array
definition. ’

¢ Polymorphic, non-strict arrays require that an array of closures be stored and, as these
are represented as pointers to heap-allocated boxes, can be polymorphic at no extra cost.
These arrays may be defined recursively but exhibit the efficiency loss associated with the
manipulation of closures and boxed data. This is the variety of arry which Haskell supports.

Of these schemes, it is only monomorphic, strict which stands a chance of approaching the raw speed
of optimised C or FORTRAN.

5.3.0.4 Polymorphism

If functions are polymorphic then they must either have a uniform calling convention so they can
operate parametrically, regardless of type, or be tagged with their type as run-time data. Whilst
being a great boon to the programmer, the uniformity exhibited in parametric polymorphism causes
inefficiencies as we could generate more efficient code if monomorphic functions were used. The
major advantage of monomorphic code is that a compiler can produce optimum code using optimum
representations of data. That is, the code can be tailored to the type of the specialisation. producing
the required runtime speed and low space overhead. The disadvantage of this technique is that the
number of monomorphic specialisations can explode exponentially. Ve aim to investigate whether
“real programs” in the area of numerical software explode in this manner or whether inonomorphic
specialisation may be vindicated.

5.3.0.5 Overloading

The charge of causing exponential code-growth levelled against the specialisation of polymorphism
is also levelled against ad-hoc polymorphism (overloading) in languages such as Haskell. To avoid
this exponential growth, Haskell implements instances of its type classes via implicit parameters.
For instance, if we define addition over pairs of objects element-wise as

> instance (Num x,Num y) => Num (x,y) where
> (a,b) + (c,d) = (atc,b+d)

then Haskell translates this to

> addPair :: (x->x->x) -> (y->y->y)->(x,y)->(x,y)->(x,y)
> addPair plus_x plus_y (a,b) (c,d) = (plus_x a c¢,plus_y b d)
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which, because of the cost associated with higher order functions, is much less efficient than if
a monomorphic specialisation were constructed. Therefore, it would be beneficial to investigate
whether monomorphic specialisation of overloaded functions would cause (numerical) program size
to grow intractably.

5.3.0.6 Non-Strictness
As mentioned earlier in this chapter, non-strictness has a nontrivial implementation cost associated
with it and therefore we should also examine the way non-strictness is used in practice.

5.3.0.7 Expressiveness

Fig. 5.7 shows the expressiveness, efficiency of evaluation and typing systems. By “more expressive-
ness” we mean that the translation of a program which uses non-strictness into a strict equivalent
may require global re-organisation of the entire program.

lazy polymorphic

infinite datatypes recursive arrays

efficiency
cxpressiveness

polymorphic

higher-order functions

Type-class overloading

strict polymorphic

efficient arrays
and arithmetic

strict monomorphic

Figure 5.7: Intersection of desirable features
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5.3.1 Forms of Non-Strictness

In this section we identify different forms of non-strictness and present examples to illustrate them.
The forms and examples we use are taken directly from Schauser and Goldstein [85] so that their
scientific computing results may be included in our results. In their study of non-strictness they
only consider programs which do not manipulate potentially infinite data. We extend their results
to cover infinite data also.

5.3.1.1 Functional Non-Strictness

Functional non-strictness arises from feedback dependencies from the result of a function invocation
to its arguments. To illustrate this form of non-strictness and the need for dynamic scheduling, we
use the following simple, contrived, example taken from [84]:

> two :: Int -> Int -> (Int,Int)
> two x y = (x*x,y+y)
> g,h :: Int -> Int
> gz=1let (a,b) =two z a inbd
> hz=1let (a,b) = two b z in a

In this example, the function two takes two arguments, r and y, and returns two results r * r and
y + y. Inside the function there is no dependence between the multiplication and the addition.
Thus code to evaluate the two halves of the pair can be put in either order when compiling the
function under eager evaluation. This is not true under non-strict evaluation. In our example, the
function {wo is used in two different contexts which require non-strictness. In the function g the
argument z is given as the first argument to the function fwo, while the second argument to tuo
is taken from its first result. This requires that {wo first computes - * z. returns the result, and
then computes (z * z) + (z * z) = 2z2. We see that in this case the multiplication is executed before
the addition. In the function h the opposite occurs. The second result of the function two is fed
back as the first argument. Here z + z is computed first and then (z + z) * (z + z) = 4:%. Now
the addition is executed before the multiplication. Thus the multiplication and the addition have
to be scheduled independently. Note that the scheduling is independent of the data values of the
arguments; it depends only on the context in which the function is used and how results are fed back
in as arguments. Larger examples of this form of non-strictness, used for less trivial computations,
may be found in [9].

5.3.1.2 Conditional Non-Strictness

Non-strictness and the requirement for dynamic scheduling not only occur across function calls. but
can also appear within conditionals. The following example, taken from [92], illustrates this.

> kt :: Bool -> Int -> Int

> kt p z = 1let (a,b,c) = if p then (y,z,x) else (z,x,y)
> X = ata

> y = b*b

> in ¢

85



5. Efficiency and Empirical Analysis 5.3. Highlighting Areas of Inefficiency

>

> g,h :: Int -> Int
> gz =kt True z
> h z = kt False z

In this example a single conditional steers the evaluation of three variables, a, b and ¢. If the
predicate is true than b — 2, y +— 2z * z and a — y, and the result ¢ becomes z x z + - x -, In
this case the multiplication is executed before the addition. If the predicate is false. the evaluations
occur in a different order. First ¢ — z then z&b — (z + z), and finally y and the result ¢ evaluate
to (z + z) * (z + z). Now the addition is performed before the multiplication. Again, we see that
both the addition and the multiplication have to be scheduled dynamically. Although the operations
appear outside the scope of the conditional, the conditional affects the order in which the values a,b
and ¢ are available.

Unlike the previous example, it may seem that the scheduling is at least data-dependent, since
it is influenced by the conditional and therefore depends on the value of the predicate. While this
observation is correct, we can obtain precisely the same behaviour without conditionals as is shown
in the next example.

>f1 ::a->b->c¢c -> (b,c,a)
>fixyz-=(y,2,x)

>f2 ::a->b ->c¢ -> (c,a,b)

>f2 xyz = (z,x,y)

> kt2 :: (Int -> Int -> Int -> (Int,Int,Int)) ~> Int -> Int
> kt2 func z = let (a,b,c) = func x y z
> X =a+a

> y=b=x*b

> in ¢

>

> g,h :: Int -> Int

>gz = kt2 f1 z

>hz =ht2 £f2 z

Here the conditional is replaced with a call to a function taking three arguments and returning three
results. The argument func determines which function is called: it is f; in the case of g and f; in
the case of h. The two functions f; and f» do not perform any computation; they merely shuffle the
results around and thereby affect the order in which the addition and multiplication in the caller get
executed. This example shows that in addition to the caller affecting the order in which operations
get executed in the callee, the callee can also affect the order in the caller. In general, it is the whole
context, i.e. the whole call tree, in which a function appears which determines the order.

5.3.1.3 Data Structure Non-Strictness

In non-strict languages, data structure constructors exhibit the same form of non-strictness as func-
tion calls, i.e. the result may be required before all the elements are defined. This gives the
programmer the ability to define circular data structures, infinite data structures, or recursively
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define some of the elements in terms of other elements. For example, the recursive bindinga = 1:a
denotes a simple cyclic list. This power of non-strictness also extends to list comprehensions and
array comprehensions. Schauser and Goldstein [85] define the following hierarchy of non-strictness

in data structures.
o Functionally strict: All elements must be evaluated before the data structure is created.
e Circular: A pointer to a data structure may be stored in one of its elements.

¢ Recursive: An element of a data structure may be defined in terms of other elements. For
this case we can distinguish two sub-cases which describe the schedule used to fill the elements.

1. Static: A static schedule can be found for the program which fills in the elements in the
correct order.

2. Dynamic: A dynamic schedule is required.

Frequently-cited examples of recursively defined data structures are wavefront [4] and the follow-
ing function computing the first n Fibonacci numbers.

> fib_array :: Int -> Array Int Int

> fib_array n = a where

> a = array (0,n) ([0 := 1,1 := 1]

> ++ [i := al(i-1) + a!(i-2) i <~ [2..n]])

Both examples can be scheduled statically, i.e. a static scheduling of the program can be found which
obeys the data dependencies among the array elements (left to right in the case of the Fibonacci
series). With a static schedule it would be possible to implement the arrays as standard arrays in
imperative languages (modulo polymorphism). However, this may not always be the case. Consider
the array

> dyn_array :: Array Int Int -> Int —> Array Int Int
> dyn_array b n = a where

> a = array (0,n) [i := if

> (i == b'0)

> then

> 1

> else

> a'(mod (i-1) (n+1)) + &
> | i <- [0..n]]

The schedule depends on the vector b which may not be available at compile time.

5.3.1.4 Infinite Iteration Lists

One function which appears repeatedly in functional scientific programs is the higher order function
iterate

le d]
-1
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> iterate (a -> a) -> a -> [a]
> iterate f a = a : iterate £ (f a)

which (lazily) constructs an infinite list of approximations to the value £ (a).

[a, f(a). f(f(a)),...

This list is usually truncated and the value prior to truncation used. For example, a square root
may be written as

newton :: Double —> Double -> Double

newton a x = (x + a/x) / 2

sqrt :: Double -> Double -> Double -> Double

sqrt init eps a = within eps (iterate (newton a) init)

vV V. VvV

where within looks along the list for a sufficiently accurate approximation to the true solution.
However, this could be written without laziness as

v

sqrt :: Double -> Double -> Double -> Double
> sqrt init eps a = iterateWithin eps (newton a) init

> iterateWithin :: Double -> (Double->Double) -> Double -> Double

> iterateWithin eps f x | abs(f x - x) < eps = f x
> | otherwise = iterateWithin eps £ (f x)
or

> sqrt2 :: Double -> Double -> Double -> Double

> sqrt2 init eps a = NewtonIteration eps a init

> newtonInteration :: Double -> Double -> Double -> Double
> newtonlteration eps a current

> | abs(new - current) < eps = new

> | otherwise = newtonIteration eps a new

> where new = newton a current

or by inventing some special syntax
sqri(val,,, €,a) = (vall val — newton(a, val)until(|val — val,...| < €)1 val = val,,,)

Because this specific form of non-strictness is used so frequently we denote this as iteratize non-
strictness, since a program which depends on it could be trivially rewritten so that it no longer
depended on non-strictness. Another reason for encouraging alternative styles of expression is that
the code produced by the strict version is more efficient that the code produced by the lazy version.
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“ Author code j Author w

Kostas Ksickis [61]

Various (results taken from [85])
Stephen Bevan [8]

Sexton + Wainwright [100]

Chris Angus

Liu, Kelly & Cox [62]

NAS benchmark Fourier Transform [43]
John McCrory [63]

| I O O x| WO DO =

Table 5.2: Authors of functional software

5.3.2 Experimental Results
5.3.2.1 Programs

We use the benchmark programs shown in Tables 5.34+5.4. The programs chosen cover the gamut
of numerical methods presented in Chapter 3. In this section we assess the degree of non-strictness
required by a large set of functional numerical software (Tables 5.345.4), most of which are from
sources other than the author (Table 5.2).

5.3.2.2 Categories

Tables 5.645.7 and 5.845.9 show the results of analysing the programs as detailed in Table 5.5%
The figures presented may be overly pessimistic as they ignore simple in-lining. For example, an
application of

> sum xs = foldl (+) ©

often can, and will, be in-lined, eschewing the need to specialise the function sum. Within the
specialisation categories of Table 5.5 True relates to the number of truly polymorphic non-function
objects which are not given a monomorphic type. The other categories refer to the number of
extra copies of functions/type definitions which would need to be generated for the code to become
completely monomorphic.

5.3.2.3 Notes

t (Table 5.6): illustrates that the infinite structure in AnDiff is [1..] used to number variables.
This can be trivially rewritten. FinElem imports AnDiff and so this result is carried over.

t (Table 5.8): shows an integer specialisation of a list which may be trivially converted to a loop in
a strict language, i.e. [1o..hi] or range (1o,hi), etc.

t (Table 5.8): refers to a specialisation which exists purely through an application of iterate. For
example, an iterative linear system solver defined using iterate would require a list of vectors. Each
of the columns denotes the number of erfra specialisations which would be needed, rather than the

3We do not include 1/O functions in the results.
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ﬂT’rogram I Brief Description I Authoﬂ]

ABA Adams-Bashforth methods for 2"%-order differential equations | 3
ADAMS4 Adams 4'*-order predictor-corrector 1
AnDiff Analytic differentiation 5
APCA Adams-predictor-corrector methods for solving second-order

differential equations. 3
Bisection Bisection method for finding roots of f(r) =0 3
CholeskiA Choleski’s algorithm for deriving the lower triangular matrix 3
CholeskiB Choleski factorisation in Miranda 6
Choleskil Choleski factorisation (Array) 5
Choleski2 Choleski factorisation (Quadtree) 3
ConjGradl Conjugate gradient solver 1
ConjGrad2 Conjugate gradient iteration 5
Crout Crout reduction for tridiagonal linear systems 3
Cubic Cubic spline interpolants 3
CYCR1 Cyclic-reduction (List) 8
CYCR2 Cyclic-reduction (Quadtrees) 5
DFP Davidon-Fletcher-Powell (Optimisation) 5
Eigen3 Eigen problems 2
EULER1 Euler’s method 1
EULER2 Modified euler 1
FEHLBERG | Runge-Kutta-Fehlberg 1
FinElem Simple finite element code for n-dimensional p.d.e. 5
FixedPoint Fixed-point method for finding roots of f(r) =10 3
FDCN Finite difference (Crank-Nicholson) for parabolic p.d.e. 5
FDE Finite difference (explicit) for parabolic p.d.e. 5
FFT Fast Fourier transform (NAS) 7
Gaussl Gaussian elimination (Max Row pivot) + back substitution 5
Gauss2 Gaussian elimination with naive pivoting/back substitution 1
Gauss3 Gaussian elimination with maxima column

pivoting/back substitution 1
GaussSeidell | Gauss-Seidel 1
GaussSeidel? | Perform Gauss-Seidel iteration to solve Ax = b 3
Golden Golden section 5
Hermite Calculates the value of the Hermite polynomial 3
HEUN Heun’s method 1
Housholder Eigen-solver 2
Horner Horner’s algorithm for evaluating polynomials P(r), P'(z) 3

Table 5.3: Table of numerical methods
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[[ Program | Brief Description [ Author ||
Jacobil Jacobi’s iterative method 1
Jacobi2 Perform Jacobi iteration to solve Ax = b 3
Jacobi3 Jacobi eigen solver 2
Jacobi4 Jacobi-iteration (Quadtree) 5
Jacobi_group Jacobi eigen solver (group rotations) 2
LeastSquares Calculate the gradient and intersection for a least squares | 3
LDL LDL” method in Miranda 6
LU1 LU decomposition {Array) 5
LU2 LU decomposition (Quadtree) 5
LU3 LU decomposition (Miranda) 6
Matrix1 misc. operations on matrices 3
MM Matrix multiply 2
MMT44 Blocked matrix multiply test 2
MCNP Monte carlo photon transport 2
MDQUAD n-dimensional multiple integrals 5
MPF Multiplier-penalty-function (Optimisation) 5
Neville Neville’s iterated interpolation algorithm 3
Newton Newton’s method for non-linear equations 1
NewtonCotes Newton-Cotes formulae for approximating an integral 3
NewtonDivided Newton’s interpolatory divided-difference formula 3
NewtonRaphson | Newton-Raphson method for finding roots of f(r) =0 3
PCG Preconditioned conjugate gradient method (Miranda) 6
QUAD Numerical quadrature 5
QTrees Matrix/vector quadtree operations 5
RungeKuttal Runge-Kutta 4" order i
RungeKutta2 Runge-Kutta methods for 2”¢-order differential equations. | 3
Secant Secant method of finding roots of f(z) =0 3
Simple Hydrodynamics and heat conduction 2
Simplex Simplex method 1
SOR1 Perform SOR iteration to solve Ax =b 3
SOR2 SOR method in Miranda 4
SOR3 SOR iteration (Quadtree) 5
Steffensen Steffensen’s method for finding roots of f(r)=10 3
Strassen Strassen multiplication 5
Taylor Taylor methods for solving 279 _order differential equations | 3
Vector Misc. operations on vectors 3
Wavefront Simple wavefront SOR 2

Table 5.4: Table of numerical methods (continued)
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Category Description \alues
Func. Does the program require functional non-strictness? Yes/No
Cond. Does the program require conditional non-strictness? Yes/No
Circ. Does the program require circular non-strictness? Yes/No
Iter. Excluding I/O, does the program manipulate potentially

infinite data, or would only iterative non-strictness suffice? No/Yes/Iter.
Recu. Does the program exhibit recursive non-strictness? Yes/No
Dyn. Does the program exhibit dynamic non-strictness? Yes/No
Intrinsic No. of extra specialisations needed for map, filter, fold. append | Integer
Other No. of extra specialisations needed for user-defined

Polymorphic functions Integer
True No. of true polymorphic objects Integer
Overload No. of extra specialisations needed for overloaded identifiers Integer
List/Array | No. of extra specialisations of lists/arrays Integer
Other Data | No. of extra specialisations of other data types Integer

Table 5.5: Category descriptions

number of specialisations per se. Thus the optimal value for each column is zero. Specialisations of
each function are denoted as z,y, meaning there are r extra specialisation of one function and y of
another.

5.3.3 Discussion of Results
5.3.3.1 Non-Strictness

Table 5.6 shows that in the field of numerical methods the greatest use of non-strictness is in the
recursive definition of arrays using schemes which admit a static schedule, functional, conditional
and circular varieties being hardly used. The only program using any of these is a cubic spline
interpolant generator which uses a technique called circular programming [9] in an attempt to
increase the efficiency of a smaller, clearer incrementally updating program. Because any efficiency
gain is amortised against the cost of the system necessary to support the technique (closures), we do
not believe functional non-strictness is necessary to this area. The use of infinite data is restricted
to iterations with the exception of the list [1..] being used as a numbering mechanism. Since we
showed earlier that instances of iterate are trivial to replace we conclude that the only necessary
incarnation of non-strictness is recursive data-structure non-strictness.

5.3.3.2 Polymorphism and Overloading

Table 5.8 shows that the greatest use of polymorphism/overloading is for sequence data structures,
such as arrays or lists, and even for these there is very little. All the programs analysed defined
polymorphic functions for ease of definition and called them under a single context. Most surpris-
ingly, the programs analysed did not require any extra specialisation of overloadings. The only area
where function specialisation is used in more than one context is functions such as map, filter, length,
concat, etc. i.e. the tiny core of standard functions which make up all functional language preludes.
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|LProgram | Func. | Cond. | Circ. [ Tter. | Recu. | D_\’nv_ﬂ
ABA No No No Iter No No
ADAMS4 No No No No No No
AnDiff No No No Yest | No No
APCA No No No Iter No No
Bisection No No No No No No
CholeskiA No No No No Yes No
CholeskiB No No No No Yes No
Choleskil No No No No Yes No
Choleski2 No No No No No No
ConjGradl No No No No No No
ConjGrad?2 No No No No No No
Crout No No No No Yes No
Cubic Yes No No No Yes No
CYCR1 No No No No No No
CYCR2 No No No No No No
DFP No No No No No No
Eigen3 No No No No No No
EULER1 No No No No No No
EULER2 No No No No No No
FEHLBERG | No No No No No No
FinElem No No No Yest | No No
FixedPoint No No No Iter No No
FDCN No No No No Yes No
FDE No No No No No No
FFT No No No No Yes No
Gaussl No No No No No No
Gauss?2 No No No No Yes No
Gauss3 No No No No Yes No
GaussSeidell { No No No No Yes No
GaussSeidel2 | No No No Iter Yes No
Golden No No No No No No
Hermite No No No No Yes No
HEUN No No No No No No
Housholder No No No No No No
Horner No No No No No No

Table 5.6: Use of non-strictness in practice
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Brogram ]T““LL Cond. [ Circ.

Iter. | Recu. | Dyn. ]

Jacobil No No No No No No
Jacobi2 No No No Iter | No No
Jacobi3 No No No No No No
Jacobi4 No No No No No No
Jacobi_group No No No No No No
LeastSquares No No No No No No
LDL No No No No Yes No
LU1 No No No No Yes No
LU2 No No No No No No
LU3 No No No No Yes No
Matrix1 No No No No No No
MM No No No No No No
MMT44 No No No No No No
MCNP No No No No No No
MDQUAD No No No No No No
MPF No No No No No No
Neville No No No No Yes No
Newton No No No No Yes No
NewtonCotes No No No No No No
NewtonDivided No No No No Yes No
NewtonRaphson | No No No Iter | No No
PCG No No No No No No
QUAD No No No No No No
QTrees No No No No No No
RungeKuttal No No No No No No
RungeKutta2 No No No Iter | No No
Secant No No No No No No
Simple No No No No Yes No
Simplex No No No No Yes No
SOR1 No No No Iter | Yes No
SOR2 No No No No No No
SOR3 No No No No No No
Steffensen No No No Iter | No No
Strassen No No No No No No
Taylor No No No Iter | No No
Vector No No No No No No
Wavefront No No No No Yes No

Table 5.7: Use of non-strictness in practice (continued)
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{l Program | Intrinsic [ Other | True | Overload | List/Array | Other Data ||
ABA 0 0 0 0 0 0
ADAMS4 0 0 0 0 0 0
AnDiff 0 0 0 0 1 0
APCA 0 0 0 0 0 0
Bisection 0 0 0 0 0 0
CholeskiA 0 0 0 0 1t 0
CholeskiB 0 0 0 0 1,1% 0
Choleskil 0 0 0 0 1t 0
Choleski2 0 0 0 0 0 0
ConjGrad1 0 0 0 0 0 0
ConjGrad?2 0 0 0 0 0 0
Crout 0 0 0 0 17 0
Cubic 0 0 0 0 0 0
CYCR1 0 0 0 0 1t 0
CYCR2 0 0 0 0 0 0
DFP 0 0 0 0 11 0
EULER1 0 0 0 0 0 0
EULER2 0 0 0 0 0 0
FEHLBERG | 0 0 0 0 0 0
FinElem 1,3 0 0 0 3.1% 0
FixedPoint 0 0 0 0 0 0
FDCN 0 0 0 0 2.1t 0
FDE 0 0 0 0 1% 0
Gaussl 0 0 0 0 1 0
Gauss2 0 0 0 0 1% 0
Gauss3 0 0 0 0 1% 0
GaussSeidell | 0 0 0 0 1% 0
GaussSeidel2 | 0 0 0 0 1,13 0
Golden 0 0 0 0 0 0
Hermite 1 0 0 0 17 0
HEUN 0 0 0 0 0 0

Table 5.8: Use of polymorphism and overloading in practice
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[ Program [ Intrinsic | Other | True | Overload | List/Array | Other Data i
Horner 0 0 0 0 0 0
Jacobil 0 0 0 0 17 0
Jacobi2 0 0 0 0 17,13 0
Jacobi4 0 0 0 0 0 0
LeastSquares 0 0 0 0 1% 0
LDL 0 0 0 0 1,1} 0
LU1 0 0 0 0 1f 0
LU2 0 0 0 0 0 0
LU3 0 0 0 0 1,1% 0
Matrix1 0 0 0 0 11 0
MDQUAD 0 0 0 0 1 0
MPF 0 0 0 0 14 0
Neville 0 0 0 0 1t 0
Newton 0 0 0 0 1t 0
NewtonCotes 0 0 0 0 0 0
NewtonDivided 0 0 0 0 1t 0
NewtonRaphson | 0 0 0 0 0 0
PCG 0 0 0 0 1,1§ 0
QUAD 0 0 0 0 0 0
QTrees 0 0 0 0 0 0
RungeKuttal 0 0 0 0 0 0
RungeKutta2 0 0 0 0 0 0
Secant 0 0 0 0 0 0
Simplex 0 0 0 0 2 0
SOR1 0 0 0 0 17.1% 0
SOR2 0 0 0 0 17 0
SOR3 0 0 0 0 0 0
Steffensen 0 0 0 0 0 0
Strassen 0 0 0 0 0 0
Taylor 0 0 0 0 0 0
Vector 0 0 0 0 17 0

Table 5.9: Use of polymorphism and overloading in practice (continued)
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We could find no values for which a monomorphic type is not known at runtime. With this in mind
we conclude that the only support needed in a functional language specialised to this area is an

efficient sequence data type over all types and efficient support for a few intrinsic functions, all other
features being specialised oul.

5.4 Lessons Learned

Since the performance of Haskell is so drastically improved by unboxing it is believed that success in
using functional programming languages for scientific computing relies on the use of strict languages.
When we unbox a value we impose a level of strictness. The benefit of carrying out unboxing
decreases as the complexity of the problem increases, and the act of unboxing a datatype removes
the ability to use higher-order functions such as map, makes code monomorphic, and obscures
the algorithm. As mentioned in previous sections, it is possible to simulate the manipulation of
infinite structures in a strict language and it is also possible to express recursively-defined array
problems in terms of matrix/vector operations. Because of these observations it is proposed that a
strict language with recursive arrays should be used for this type of application, where either lazy
behaviour is explicitly coerced in the style of Section 2.6, or specialised language constructs are
used for common patterns of computation. This approach has the benefits of not having to unbox
arithmetic expressions, an improved execution, and an improved ability to reason about the runtime
behaviour of programs.

This view is echoed by experience with the SISAL [19] language, where efficiency comparable
with hand-written C/FORTRAN for serial and parallel machines (mostly shared memory) has been
achieved. Although a functional language, SISAL is quite primitive by modern language standards
and is perhaps more accurately described as a single-assignment language with Pascal-like syntax.
SISAL is monomorphic, explicitly typed but lacks many of the modern features of functional lan-
guages. The newer SISAL 90 [31] addresses some of these shortcomings, such as the first order nature
of SISAL 1.2, but concentrates mainly on improving array operations (a feature which SISAL 1.2 is
strong in anyway).

5.4.1 Non-Strict Semantics and Program Manipulation

We further vindicate our move towards strict semantics by identifying difficulties with proofs under
non-strict semantics. We desire a language which is easily reasoned about and, because 3-reduction
is everywhere valid, initially non-strict languages seem the most promising. However non-strictness
can easily lead to false reasoning. Consider the following axioms concerning the functions

> (++)::[a] -> [a] -> [a] -- list append ([1] ++ [2] = [1,2])
> elem ::p -> [p] -> Bool -- element predicate (elem 1 [1,2] = True
> (1}):: Bool -> Bool —> Bool -- logical OR

(1) elem e (x ++ y) <=> elem e x || eleme y
(2) all b <=>b |l a

Now consider the expression
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elem 1 [1..]

which evaluates to True under non-strict semantics. If we apply our axioms we may derive an
“equivalent” expression.

elem 1 [1..]
= elem 1 ([1] ++ [2..])
= elem 1 [1] |} elem 1 [2..] (by 1)
= elem 1 [2..] || elem 1 [1] (by 2)
= elem 1 ([2..] ++ [1]) (by 1)

which never terminates! The mistake that was made was in the definition of the second axiom.
It is only valid when both arguments are either L or both are # L. These difficulties are not
insurmountable but require any reasoning to be carried out in terms of domain theory (88] (see
Appendix I) rather than set theory. It is the author’s opinion that applied mathematicians and
engineers would much rather reason in terms of sets and induction rather than more abstract models.

5.4.2 Summary

With these issues in mind, a functional language, Functional Scientific Computing (FSC), has being
developed specifically for the purpose of numerical programmingin the style of Haskell, together with
features found in other functional languages. It is the design, implementation and demonstration of
this language which is the subject of Part II of this thesis.

5.5 Chapter Notes

i (page 74) Earlier we presented benchmarks for the simple Haskell program:
> value = sum[sum[ fromInt i * fromInt jlj<-[1..10000]]}i<-[1..10000]]

However, the program which was presented to the Haskell compiler was

> value :: Double

> value = (sum :: [Double] -> Double) [

> (sum :: [Double] —> Double) [

> ((*) :: Double —> Double -> Double)

> ((fromInt :: Int -> Double) (i::Int))
> ((fromInt :: Int -> Double) (j::Int))
> | j <- [(1::Int)..(10000::Int)]]

> | 1 <- [(1::Int)..(10000::Int)]]

to encourage GHC to perform as much optimisation as possible. The program’s export list was also
restricted to main to encourage in-lining.
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Chapter 6

Related Work

6.1 Use of Functional Languages

In this section we conclude Part I by introducing some of the previous work in this area and relating
this to the material presented.

There have been many attempts to apply functional programming to numerical methods over
the last few years.

e D. S. Wise [105, 104, 106] uses quadtrees to define matrix/vector algorithms in a ‘divide and
conquer’ fashion. The quadtree is used in the same manner as it is in [25], where it is called a
hypermatrix. Wise presents algorithms for matrix inversion and the fast Fourier transform in
the style of [76].

o The Quadtree approach is also used in the work of Wainwright & Sexton [100] where conjugate
gradient and SOR methods are coded in Miranda for various sparse matrix representations.
In their report they conclude that the quadtree is more suitable for CG-type algorithms than
SOR, although, as mentioned in Chapter 4, their row-based formulation of SOR rather than
a block-based formulation, would explain this.

o Page & Moe [73] define an executable specification of a reservoir model as a Miranda program
embedded in a 200 page IATgX document. Although executable, this code is not meant to be
production quality and was later hand-coded in an imperative language. One of the interesting
points arising from this study is the fact that, compared with previous software, the amount of
documentation in the form of commentary approximately doubled, and the number of flagged
lines of code approximately halved when a literate style of programming was employed. It
is because of this that one of the areas this thesis later explores is a more literate style of
programming.

e As part of the FLARE! [41] project a finite element program simulating fluid dynamics was
written in Haskell. This concurs with [100] in that quadtree-type data structures were found to

! Functional Languages Applied to Real world Exemplars.
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Use of Functional Languages

be faster than list based structures for sparse linear system solvers. The study concludes that
compared to procedural programming, functional programming is more expr'e:\<i\'e and more
easily maintained, with most errors being detected at the compilation stage. Lazy evaluation
did not prove advantageous, with evaluation having to be forced for efficiency.

O‘ther very sirr.lp‘le FE codes have been written in functional languages such as Miranda [62]
(simple beam joint code), and SASL [26] (problem-specific elementary 1D PDE code), with
emphasis mainly on the elegance of the implementation.

Boyle, Fitzpatrick, Clint & Harmer [15, 14] use program transformations to translate code
expressed as pure LISP and ML to FORTRAN. The approach proposed in this thesis dif-
fers from their work in that it aims to bring together many of the features found in various
languages to support the construction of large scale numerical software, rather than writing

transformational compilers for existing languages, although we do build on their work in Part
II.

Diaz & Shenoi [24] use Miranda to investigate decoupling systems of well equations in a Schur
complement approach to domain decomposition using the number of reductions to measure
work complexity. In the study they comment that “functional syntaz allows direct correspon-
dence of functional code with the mathematical equations. which makes the code easy to develop,
write, read and modify”.

Hartel & Vree [44] present a study of the use of arrays in functional languages using the fast
Fourier transform [22] as a case study. They conclude * ...that algorithms published in the
literature for tmperative languages cannot always be translated directly into a [lazy] functional
language, because efficiency considerations are of a different nature” and that ~... an efficient
implementation of arrays conlributes significanily to the performance of functional languages
in some areas. However a clear distinction should be made between array construction and
array subscription”. For their Fourier transform they could not gain efficiency by using array
construction, other than for storing precomputed data, like the input.

Hammes, Sur & Bohm [43] investigate the effectiveness of Id and Haskell language features
when writing scientific codes by implementing the NAS Fourier transform benchmark three-
dimensional heat equation solver in both languages and comparing their resulting performance
with a FORTRAN implementation. They conclude that these languages still have inefficient
implementations with their largest executable problem (32%) running at 15 times slower than
FORTRAN using 3 times as much space!

Sullivan & Zorn [90] compare various languages for suitability for implementing numerical
methods including SML, C++ and Haskell although they approach the coding of a sparse
Gaussian elimination benchmark with mutable state clearly in mind. As a result they are not
able to offer a benchmark for Haskell as it suffers the same space and time efficiency problems
as the incremental array LU factorisation presented in Chapter 4 (Copying arrays on update).
They conclude that the features offered by Haskell make the code terse and readable but
its current implementation causes it to be unusable on any but the smallest problems. “In
benchmarks ... we found the Haskell implementations to be 50 to 10,000 times slower than
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C++ or FORTRAN in array manipulations. Additionally, current Haskell implementations
tend to die when handling arrays larger than 20 by 207([90] Note I p.292). However this dying
is more likely to be due to the multiple copying of arrays as in Chapter 4. rather than a bad
implementation.

6.2 Summary

The preceding chapters have all concentrated on the use of the functional language Haskell to
implement numerical methods and discussed its advantages/failings as a vehicle for the expression
of these methods. In addition to this we have presented quantitative statistics concerning the level
to which its specific language features are actually used in practice. This information is used in
the following chapters to provide the motivation for the design and implementation details of a
functional language specialised to this area (Fig. 6.1).

Identify salient Specialise language
Implement Numerical points/frequently- | around these features

Methods used features to provide efficient
programs

Figure 6.1: Development plan

This idea of using quantitative analysis to improve performance is not new, as it was exactly this
thinking which led to the RISC [59] revolution in microprocessors. In our case this analysis leads
directly to the design and implementation of a purely functional language tentatively named FSC
(Functional Scientific Computing). This language is the focus of the second part of this thesis.
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The FSC Language
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Chapter 7
Language Design

In this chapter we discuss the principles which should underpin a functional, numerical programiming
language. We focus on (implementation independent) drawbacks and advantages of Haskell and
discuss how its weak points may be circumvented, and its strong points mimicked. in an efficient
manner.

7.1 Introduction

Before presenting a definition of FSC. we discuss its required features and how they may he imple-
mented efficiently.

7.1.1 Characteristic Features

From experiences reported in Chapters 4-6, and from exposure to the other functional programming
languages presented in Chapter 2, we conclude that the features which would prove useful in FSC
are as follows:

e Specialisation ¢ la NESL [10]
¢ Real arrays a la SISAL with array comprehensions
o Multi-parameter type classes

¢ Recursive arrays

Simple [/0O

User-defined transformations

Mixed-mode arithmetic

"Where’ constructs and A expressions
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An offside rule and terse syntax d la Haskell

e Guarded expressions

Support for ADTs and pattern matching

e Parametric polymorphism (teztual )

Allowing uppercase characters to denote matrix identifiers
o A literate programming style ¢ la Miranda/Haskell

Strict semantics

Implicit typing

Partial application and sections
e Iterations a la SISAL

However, before discussing how these features may be collectively implemented we explain the
rationale behind some of them:

¢ Specialisation:

Experience reported in Chapters 4-6 suggests that the flavour of polymorphism supported
should be teztual and implemented via specialisation in the style of NESL [10]. This allows
optimal code to be written using optimal representation of data. therefore allowing for more
efficient code. Experiments reported in Chapter 5 show that the fear of an exponential ex-
plosion in code length (the main argument against this technique [97]) is not justified in our
problem domain.

¢ Real Arrays:

From the material presented in Chapters 4-6 we conclude that the language should be strict,
with true arrays being readily available. The language should be based around arrays rather
than lists. As such, array comprehensions should be provided. together with techniques for
performing pattern matching on arrays. The ability to pattern match over an array, and
consequently to regard an array as a free algebraic datatype, allows reasoning about array
algorithms to be simplified. As such the language need not have built-in support for lists.

¢ Multi-Parameter Type Classes:

Although Haskell’s typeclass mechanism is a great improvement over standard Hindley-Milner
polymorphism, it is felt that its insistence on type classes being single parameter is a ma-
jor drawback to a scientific programming language as many common overloadings cannot be
expressed in terms of a single parameter!. We discuss mechanisms for implementing multi-
parameter type classes suited to this area, together with algorithms detailing how these may
be integrated into the Hindley-Milner type system.

'Recently members of the Haskell community have also commented on this limitation which originated due to
difficulties in compiling muli-parameter type classes[51].
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¢ Recursive Arrays:

Chapter 5 showed that recursive arrays are often used in the definition of matrix problems-.
We investigate how recursively-defined arrays may be elegantly expressed in a strict language
and discuss how these recursive arrays may be efficiently implemented eagerly.

¢ Simple I/0:
Although powerful, functional I/O can often be unwieldy. The SISAL language presents a
very simple, and easy to use, I/O system but. as a result, is constrained to simple batch-style
programs. Haskell provides a monadic 1/O system which allows interactive 1/O but has the
disadvantage that if all that is required is a batch-style operation then the program still looks
unwieldy. We aim to integrate these two models of I/O as batch operation is common in
numerical programming.

¢ Program Transformation:

Boyle, Harmer, Clint and Fitzpatrick [15. 14] demonstrate the power and usefulness of user-
defined transformations for expressing domain specific knowledge. We investigate how a trans-
formation sub-language may be included in a Haskell-style language and discuss its semantics
and implementation details.

Other features which we regard as worthwhile include:
o The ability to use upper case characters to denote identifiers.

e Iteration constructs @ la SISAL, including for and while constructs, and a method of integrating
these constructs with array comprehensions.

o Many of the features of Haskell including:

— Partial application/sectioning
— Algebraic types

— Guarded expressions

— A-expressions

— where constructs

Pattern matching

Implicit polymorphic typing.

These features are preserved as we wish to retain the essence of Haskell, but improve its
usefulness and ease of application to the numerical domain.

7.2 Simple I/O

In this section, suitable I/O mechanisms for numerical functional programming are discussed. How-
ever, before discussing these mechanisms we investigate existing methods of 1/0, namely those of
Haskell and SISAL.

2Recursive arrays were shown to be one of the few places where non-strictness is actually needed.
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7.2.1 Haskell I/O

Over the last few years the model of 1/O for Haskell has changed considerably[50]. However, Haskell
1.3 bases I/O around the notion of a monad [3, 98]. In this system the type of main is constant
across programs, with

> main :: I0 ()

denoting that main takes no arguments and returns a value of type I0 (). This type represents
a computation which yields the value (). We use the term computation rather than function to
differentiate the fact that a side effect may occur within a computation. However, these side-effects
are rigorously controlled and, by making the datatype I0 abstract. all properties of equational
reasoning are preserved although restrictions are imposed by the structure of the equations.

The interface to I0 includes a binding function, (>>=), whose type is

> (>>=) :: I0a->(a->I0Db) ->1I0D
and a function return whose type is
> return :: a -> I0 a

The purpose of return is to transform a value into the trivial computation yielding that value,
and the purpose of (>>=) is to sequence two existing computations. The reason that equational
reasoning is valid is that once a value has been raised to the status of computation there is no way of
returning it to a simple value (because the datatype is abstract), so side-effecting expressions, such
as

> let
> x = readIntFromStdin() + readIntFromStdin()
> in

which would normally cause a common subexpression elimination

let
= readIntFromStdIn()
zZ + 2

vV V V.V
" N
n o\

in

to be invalid, cannot occur since a side-effecting function of type
> readIntFromStdIn :: () -> Int

can never be constructed.
Using Monadic 1/0, a Haskell program which receives two strings from the user parses them as
integers using a suitable function readInt and prints their sum may be written

106



7. Language Design i.2. Simple I/0

main :: I0 ()
main = getLine >>= \x ->
getLine >>= \y ->
print (readInt x + readInt y)

Vv V V. V

which cannot be invalidated by common subexpression elimination®. One disadvantage of this
method is that data must be explicitly described by the user.

7.2.2 SISAL I/O

SISAL does not have any 1/0 system to speak of, other than the fact that its entry point may have
any type (its arguments being the values supplied by the user and its result being the value printed
by the program). This simplicity is attractive as it removes the burden of parsing datatypes from
the user, although it is not suitable for programs which require interaction. The previous program
could be written in SISAL’s Pascal-like syntax as

DEFINE main

FUNCTION main(x,y:INTEGER RETURNS INTEGER)
X +y
END FUNCTION

whose charm is its simplicity.

7.2.3 FSC1/0

FSC combines the Haskell and SISAL 1/0 models as follows. The main function is of the following

type:
main :7p — 7L — ... — Tn — 10(01. 02, ..., 0m) m>0,n>0

i.e. the type of main has the syntax shown in Fig. 7.1.

The addition example from Subsection 7.2.1 may be written in FSC either as:

> main :: INT -> INT -> I0 O
> main x y = print (x + y)

or as

> main :: INT -> INT -> ID INT
> main x y = return (x + y)

which retains the simplicity of the SISAL version.

3This program relies on the existence of two further intrinsic functions, getLine: : 10 String and print::Show a
=> a -> 10 (), being in the interface of the abstract datatype. These are computations which return a line of input
and display a printable value, respectively.
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L Type-syntax |
Main type ¢ == 10()
I 10()
| T—o0
Return type v o= 7T
[
type T All types

Figure 7.1: Formal type-syntax of FSC entry-points

7.2.4 Combining I/O Actions

To combine I/O actions we borrow the do syntax of GoFER to sugar monad operations. In GoFER
syntax our original Haskell example is written

main = do
X <- getLine
y <- getLine
print (readInt x + readInt y)

vV V Vv VvV

which is a simple sugaring and translates directly into the original Haskell example.

7.2.5 Translation

These examples may be translated into the simpler language SISAL by regarding I0 to be a function
which takes an integer and returns a pair which includes an integer:

> datatype I0 a = INT -> (INT,a)

This being the case, return can be considered as an arity-2 function and (>>=) as an arity-3 function
with the following, continuation-passing style, SISAL translations:

(>>=) m k io = LET
new_io,result = m(io)

IN
k(result,new_io)
END LET
return a io = io,a
Hence the FSC function
> println :: String -> I0 ()
> println s =
> do I0
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> print s
> putchar ’\n’

may be translated to the intermediate code

> println :: String -> INT -> (INT,())
> println s init
> = (>>=) (\io -> print s io) (\res io -> putchar ’\n’ io) init

and then to a SISAL equivalent

FUNCTION PRINTLR(STR:ARRAY[CHARACTER]; IO_INIT:INTEGER
RETURKS IO(VOID))
LET
IO_1,RES_1 := PRINT(STR,IO_INIT);
IN
PUTCHAR(’\n’,I0_1);
END LET
END FUNCTION

We may generate interactive SISAL code by making use of SISAL’s foreign language interface to (" in
a style analogous to GHC’s implementation of I/O, although these details are inside the PRINT and
PUTCHAR functions provided in a standard prelude. The use of the I0 keyword is tells the compiler
it is dealing with the I0-monad, thus simpilifying compilation and error reporting,.

7.3 Array sugaring

Pattern matching is very useful for writing compact and readable programs. Unfortunately knowl-
edge of the concrete representation of an object is necessary before pattern matching can be invoked.

To apply pattern matching to arrays we initially regard an array as an abstract data type with
the operations shown in Table 7.1% .

And then sugar these operations as follows

> (i <: x) = setliml i x
> (i :>x) = setlimh i x
> (a <+ 4) = appendLow A4 a
> (A +> a) = appendHigh A a

These four operators can be hard-coded into the language and pattern matching should be allowed
over them.

*The names of these functions have been chosen to be familiar to Haskell and SISAL programmers.
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[7Prototype ] Description ‘
1liml::Array a->INT liml A returns the lower limit of A.
limh::Array a->INT limh A returns the upper limit of A.

setliml::INT->Array a->Array a | setliml n A sets the lower limit of A to n.
getlimh: :INT->Array a->Array a setlimh n A sets the upper limit of A to n.
empty::Array a->BOOL The empty A predicate is True if A has no
elements.

appendLow: :Array a->a->Array a appendLow A a extends the array A by
element a at its lower bound. )
appendHigh: :Array a->a->Array a | appendHigh A a extends the array A by
element a at its upper bound. -

init::Array a->Array a init A removes the upper-most element
from A.

tail::Array a->Array a tail A removes the lower-most element
from A.

[ J::Array a->INT->a A{i] selects the element associated with
subscript 1.

[]::Array a [1 is the array with no elements.

Table 7.1: Operations over arrays

7.3.1 Comment

Pattern matching is important as it allows us to provide elegant specifications of highly-efficient
built-in functions such as map. Pattern matching also allows us to define specifications which may
be refined if necessary and simplifies inductive proofs, as an inductive proof® is simply a statement
that a fact is valid over all the constructors of its datatype.

7.4 Recursively Defined Arrays

As mentioned in Chapters 4-6, functional languages such as Haskell allow the definition of non-
strict monolithic arrays using so-called “array comprehensions”, although the fact that these are
bolted on top of list comprehension syntax makes them slightly inelegant. Non-stricl arrays may
contain undefined (i.e. L) elements and still be well-defined overall; this is in contrast to stric!
arrays which are completely undefined if any one element is undefined. Non-strict arrays are more
in the spirit of lazy, or call-by-need, evaluation, whereas strict arrays capture the essence of call-by-
value computation [2]. Functional arrays can be categorised further depending on their method of
definition:

o In monolithic arrays, elements are defined when the array is created.

o In incremental arrays, elements are defined incrementally.

5In a strict language.
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Although both types of array are functional, monolithic arrays are more in the spirit of functional
programming and incremental arrays resemble the imperative array model.

7.4.1 Strict Versus Non-Strict Arrays
We begin by defining the difference between non-strict and strict arrays.

Definition : Let A[i] be the value at subscript i of array 1. An array is
strict if for any ¢ within the bounds of A. A[{] = L implies that 1 = 1[2].

From this it is easy to show that if a strict array is recursively defined the entire array must evaluate
to L. However, in the field of scientific computing, recurrence relations are frequently used and hence
we prefer a non-strict array constructor for this expressiveness. Unfortunately. in general. non-strict
arrays must represent the delayed computation of array elements as closures (thunks) which incur
prohibitive runtime costs.

7.4.2 Strict Contexts

In most scientific programs the programmer knows that an array is used in a context that involves
all of its elements. Hence we may be able to treat a recursively defined array like a strict array. To
do this, we need to know:

o that the non-strict array is used in a strict context, and

o asafe (partial) order of evaluation of the elements such that no element is evaluated until after
every element on which it depends.

Since FSC is a strict language we choose to take the approach that all recursive arrays are used in
strict contexts, together with the ability to offer a (partial) ordering and an array which should be
overwritten by the new array during the computation. This is in direct agreement with the needs
that were identified in Chapter 5.

7.4.3 Wavefronts

Consider the wavefront example

1 ifi=1, 1<j<n
. ifj=1 2<i<n
ai—1j+ai—1jo1+aj-1 2<i<n. 2<j<n

which would fill in a two-dimensional array in a south-easterly direction. In a lazy language such as
Haskell this could be written as:

:: Array (Int,Int) Int

= array ((1,1),(n,n)) ( [(1,)
[(i,1)
£Gi,j :

a
a

1 1 j<-[1..n] 7] ++
1 | i<-10[2..n] ] ++
a'(i-1,j)

vV V V V
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> + al(i-1,j-1)

> +at(i,j-1)

> | i <- [2..n],

> j <= [2..n] 1)

However, the style of notation we suggest for FSC is:

> A :: [[INT]]

> array A[(1,1)..(N,N)] where

> Al1,5] =1

> Afi,1] = 1

> Ali,j] = A[i-1,3] + Afi-1,3-1] + A(i,j-1]

i.e. a pattern matching function defines the array. At this point no ordering is assumed and
dynamic code can be generated which, at runtime, ensures that the data-dependancies are respected

(see later). However, efficiency may be improved by specifying an ordering on the data in the style
of [37, 38]:

> A :: [[INT]]

> array A[(1,1)..(N,N)]

> ordered

> [(i,1)) i in [1..N]] and [(1,j)}j in [2..N1]
> then by k in [4..2*N]

> [(i,j) when (i+j==k)li in [2..N];j in [2..N]]
> where

> Af1,j]) =1

> Af[i,1] = 1

> A[i,j] = Ali-1,31 + Ali-1,j-1] + A[i,j-1]

Efficiency may also be regained by overwriting the original array, so that in the example of SOR
iteration

> U :: [[DOUBLE]]

> array U[(1,1)..(N,N)] where

> U[i,j] | (i,j) is on_boundary = Ali,j]

> | otherwise

> = Uli,j-11

> + U[i-1,3] + Ali+1,3]

> + Ali,j+1]

> on_boundary (i,j) = i==1 || i==N || j==1 || j==N

We could also specify (dangerously) that an attempt be made to overwrite A with the values of U
if we knew this could not affect the semantics of the expression as is the case in this example. Also,
if this was not the last use of A it would not be overwritten. However we may be able to coerce this
into being the last use of A since FSC semantics are strict.
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> U :: [[DOUBLE]]

> array UL[(1,1)..(N,N)] overwrites A where

> Uli,33 | (i,j) is on_boundary = Afi,j]

> | otherwise

> = U[i,j-1]

> + U[i-1,j] + Ali+1,3]

> + A[i,j+1]

> on_boundary (i,3j) = i==1 || i==N || j==1 || j==

7.4.4 Implementation

In this SOR example each element is defined via a star which accesses its neighbours, as in Fig. 7.2.
The dependencies which must be respected by the compiler can be seen in Fig. 7.3, where a dotted
arrow represents a basic dependence and a continuous arrow a recursive dependence. With the basic
dependencies we are free simply to return the values, but with the recursive dependencies we must
evaluate the elements in order. This order is maintained by generating tag arrays for representing
recursive arrays, that is an array of the same size which holds tags regarding the evaluation extent
of each element in the array.

7.4.4.1 Example

Consider the 4 x 4 array shown in Fig. 7.5 At the start of the computation all of these tags are set to
undefined and the elements of the data array are undefined (Fig. 7.4). (If we are overwriting A then
this data array would be A itself.) We then pick an arbitrary path through the array from start to
finish (for the sake of explanation we choose 15...0, as 0...15 is not very interesting). Elements
15 to 11 are basic dependencies so they require no more work than writing their values and setting
their tags to defined (Fig. 7.6[A]). It is when element 10 is reached that we come across a recursive
dependence which is handled by locking the tag and making a recursive call to the function which
evaluates the array. This call evaluates element 6 (element 10's first recursive dependent). A side
effect of evaluating Us is that Uy, Us, Us and Us are also evaluated (Fig. 7.6{B]). Once this is done the
evaluation of U proceeds to its next dependent Us and evaluates this (a side effect of which is that
Us is evaluated (Fig. 7.6[C])). Once all its recursive dependents have been checked {/}q is built and
its tag set to defined (Fig. 7.6[D]). Us and Us are skipped since their tags are set and Uz.Us and Up
are defined via basic dependencies. The tag array is of no use now and is discarded, leaving the
evaluated array. The initial SOR code from Section 7.4.3 would be automatically translated to

> on_boundary :: Int -> (Int,Int) -> Bool

> on_boundary N (i,j) =i ==1 1l i==N 1} j==11]3j==X
> U::(Int,Int) -> Int -> [[Doublel] -> [[TAG]]

> -> ([[Doublell, [{TAGI])
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D : - - Fe—
—4
—4
Fan g —iig _a
7 —
—
—4

Figure 7.2: SOR star

Figure 7.3: SOR dependencies

i L il L M | Defined

L L i i | Undefined

9 L i 1 + | Evaluated Tag

i i i I Undefined Tag
Locked Tag

Figure 7.4: Initial data in recursive SOR implementation
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Figure 7.6: Stages of recursive SOR evaluation
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U (i,j) ¥ U_00 T_00 =
case(T_00[i,j]) of

on
UNDEF -> if

then

else

in

VVVVVVVVVYVVVVVVVVVVVVYVYVYV

>

> U_TRAVERSE N A

> = let

> U_00 =
> T_00 =
> in

> (u_o1l
>

>

>

let T_O1
U_01
(u_02,T_02)

(u_
T_

DEFINED -> (U_00,T_00)
LOCKED -> error "BLACK HOLED \

evaluating recursive array U"

on_boundary ¥ (i,j)

(u_oo[(i,j) -> aTli,jl,
T_00[(i,j) -> DEFINED])

tags[(i,j)->LOCKED]
U_00

=V (i,j-1) N U_01 T_O1

(U_03,T_03)

= U (i-1,j) N U_02 T_02

result = U_03[1i,(j-1)]

+ U_03[(i-1),3]
+ Ali, j+1]
+ A[li+1,3]

03[(i,j) -> resultl],
03[(i,j) -> DEFINED])

U_TRAVERSE :: Int -> [[Doublel] -> [[Double]]

build_initial U N
build_initial T N

(U_01,T_01) <~ U (i,j) ¥ U_01 T_O1;
i in {1..¥];
j in [1..¥]

(U_01,T_01) = (U_00,T_00))

where U is a recursive function which mimics the structure of the array U, the syntax A[i->v] is read
as replace the i'? value of A with v and the function U_TRAVERSE evaluates each of the elements of
the array U in a single-threaded, arbitrarily ordered, manner before returning the evaluated array.

7.4.5 Preliminary Results

Various schemes were tested for the following recursively defined array
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0.0
1.0

n
gn = E a, where a;
k=1 as

il

a; a1+ ai_»+1.0
which was used to compute
1000000
>~ (if g = 0.0 then 1.0 else 2.0)
£=999900

This example was chosen as the computation is suitably large, involves floating-point arithmetic.
and a small amount of time is spent on 1/O. Comparative results are shown in Table 7.2, while the

Version In-code Time (Seconds)
gee 208.96
gee -04 174.66
Array Scheme 1 351
Array Scheme 1(a) 311.17
Array Scheme 1(b) 234
Ordered Array Scheme 2 192
Ordered Array Scheme 2(a) 182
Haskell (Exhausted 32Mb heap)
Haskell on problem 1/10 of size 15 mins (unix time)

Table 7.2: Recursive arrays versus Haskell and C

schemes are detailed in Table 7.3. The scheme used in 7.4.4 was Array scheme 1.

Scheme Explanation
Array Scheme 1 Simplest scheme using tristate tags.
Array Scheme 1(a) Scheme using Boolean tags.
Array Scheme 1(b) As 1(a) except undefined data is not zeroed.
Array Scheme 2 Order is made explicit and hence tags are not needed.
Array Scheme 2(a) As 2 except undefined data is not zeroed.

Table 7.3: Compilation scheme key

7.4.6 Initial Conclusions

The results shown in Table 7.2 are most promising as the essence of Haskell’s recursive arrays have
been captured in an economical manner. The method allows algorithms to be prototyped with no
ordering and an ordering applied at a later date. The increase in speed over Haskell (> 25) is
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extremely encouraging as the method provides all the power we need to express the computations
investigated in Chapters 4-6 at a fraction of the cost. In the above example, the worst case where
no information on ordering is given runs at 50% of the speed of optimised C, but 250% faster than
Haskell on a problem an order of magnitude smaller®. However the best case benchmarks at 96% of
optimised C.

7.4.7 Notes

Much of the syntax for recursive arrays builds on the work of Gao et al [37. 38] although their work
does not detail implementation issues. Although the specification of an ordering is left to the user.
many checks may be made at compile time(37, 38]. As regards efficiency, the previous example
involved only floating-point addition. As the computation increases the overhead of managing a tag
array reduces its dominance on the cost of the computation.

7.5 Support for partial application
A key area in the design of a numerical functional language is array and function support. In curried
languages such as Haskell or ML a function can be written

> £ :: Int -> Int —> Int -> Int

> fxyz=x+y+z

This is removed from the idea of functions in languages such as C where a similar function could be
written as

int f(int x,int y,int z)
{
return (x + y + 2);

}

The advantage of writing the above function in its curried form is that it can be partially applied
(e.g. g = £ 1 2is afunction which adds 3 to its argument). This syntax is clumsy as it is only the
last argument which may be applied later. With this in mind, the following syntax is introduced

> f{x,y,2z2} =fxyz
the advantage being that we may partially apply this function via the use of underscores
> f{x,_,z} = \y >fxyz

This idea of under-scoring can be carried over to array definitions, where, if we had a two-dimensional
array A, we can only access one dimension easily. This is resolved similarly.

1 2 3
A=|4 5 6
T8 9

®In the Haskell version, the range of k was (99990,100000) rather than {999900,1000000) as GHC ran out of
resources at the original range.
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If we consider the above array then

Al1,1] =1
Al1,2] =2
Af1} = [1,2,3]
Al1,3 = [1,2,3]
A[_,1]1 = [1,4,7]

and we may define matrix multiplication as
> A * B = C where array C[i,j] = A[i,_] * B[_,j]

if there exists an appropriate dot product version of *.
Similarly, matrix-vector multiplication could be written as

> A * v = b where array b[i] = A[i] * v

This syntax allows us to slice arrays in a style syntactically similar to that used in functions. The
above examples exhibit implicit bounds definition, i.e. if an array has not defined its extent explicitly
then it should be taken to be as large as possible. To declare bounds implicitly then all subscripts
should be simple linear expressions. If no finite bounds can be determined then a compilation error
should be returned.

7.5.1 Example

The following code
> a:: [DOUBLE]
> array ali]l = b[C1 * i + C2]

is translated to

> a :: [DOUBLE]

> a = let

> (lo <: _ :>hi) = b

> low = (lo - C2) div C1

> high= (hi - C2+extra C1) div Ci

> extra 1 =0

> extran = 1

> in

> low<:[b[C1*i + €2] | i in [low..high]]

If more than one array is used then the convention which seems intuitive {and is also used in texts
such as [36]) is that expressions combined with addition should have their range defined as the union
of the ranges of the left and right operands and all other combining functions should cause the range
to be defined as the intersection of the ranges of each argument. Out of range expressions should
be zero-ed for addition purposes and the union and intersection of array ranges are defined as

[a1..51] Ulaa..b2] = [min(ay, as).. max(by, b2)]
[a1..b1] Naz-.b2] = [max(a;, az).. min(by, bs)]
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Note: since this is a syntactic convention it is neither compatible with a-conversion nor 3-equality
and as such, use of the identifiers {+, —}" within an array definition should be considered dislin;t'.
to the use of these identifiers elsewhere. That is, in the following definitions array X may have a
greater number of elements than Y since + causes the union of ranges and ‘plus‘ the intersection.

bli] + c[i]
b[i] ‘plus‘ c[i] where plus = (+)

> array X[i]
> array Y[i]

7.6 Example: Cyclic Reduction

Using ideas from the previous section, the computational section of cyclic reduction [36] for a tridi-
agonal matrix

[ b1 o 1T 1] -yll

asz b2

Qp bn Tn |l Un |

may be expressed as follows:

a’,b’,c’,y’ alpha,beta :: [DOUBLE]
array a’[i] = alphalil*ali-1]
array b’[il = b[i] + alphalil*c[i-1]+betalil*ali+1]

betal[i] * c[i+1]

y[i] + alphalil*y[i-1] + betali]l*y[i+1]
~alil/pbli-1]

“c[il/bli+1]

array c’[i]
array y’[il
array alphal[i]
array betalil

vV VV V V V YV

which compares favourably with the textbook definition taken from [36]

asl) = {a;-1

B = b+ aicion+ Bigin
V= B

y,(-l) = ¥+ aigi-1 + Bivis1
a; = —ai/bi-

B = —cifbin

The only disadvantage is that substantial bounds checking occurs. A solution is to allow extra
information relating the bounds of the arrays:

"Minus is included as @ — b = a + (=b).
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> a::{2..N};
> b,y::{1..N};
> c::{1..§N-1};

where N is a value already in scope. Like the recursive array examples presented earlier, this is
another example of a textbook-style definition followed by extra information to increase efficiency.

7.7 Array Stripping

Often an expression is more easily understood in terms of an intermediate value using either a let
expression or a where clause:

let
temp = f x1 ... xn
in

VvV V VvV

gy-t ...y ptempy.q... yn

This use of local values may be easily in-lined via B-reduction and no allocation is needed for
a temporary structure. However, if there are multiple instances of the temporary value then J-
reduction may cause extra work to be done:

let
temp2 = £ x1 ... xn
in

vV V V Vv

gy-.1 ... y_p temp2 temp2 y_q ... y_n

l.e. in-lining will double the number of invocations of the function £. If the local value is not an
array then checking the number of references to it is sufficient to allow in-lining. However, if the
structure is an array then the decision whether or not to inline is more complex. We call the process
of removing intermediate arrays, array stripping.

7.7.0.1 Example

The simplest example of an array strip is a simple J-reduction:

A,B :: [INT]
array A[i] = F x[i]
array B[i] = F A[i]

YV V V V V

{- VNo further references to A -}
This expression becomes

> B :: [INT]
> array B[i] = F (F X[il)
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However, other situations exist where there is more than one reference to the array yet array stripping
would still prove beneficial, such as the following example: )

> A,C,D,E :: [INT]

> array A[i] = B[i]

> array C[i] = A[2%i]

> array D[i] = A[2*i+1]

> array E[i] = D[i] + c[il

> -- No further dependency on A, C or D

Here the references to A are mutually exclusive, i.e. each element of the array is accessed at most once
only and hence may be in-lined. From this we conclude that the necessary condition for stripping
without fear of causing extra computation is that each element of an array is accessed at most once
only, with a view to transforming the above example into:

> E :: [INT]
> array E[i] = B[2#*i+1] + B[2#il

However, in the following code, array C should not be stripped as this would increase the number
of invocations of £1.

> let array C[il = f1 A[i+1]
> array B[i] = f£2 C[i]

> array D[i] = £3 C[i+1]
> in

> f4 B D;

The rest of this section discusses tests which facilitate a general strip decision for the above
examples. The method we suggest for evaluating whether a strip can be performed safely is as
follows:

e The iterations containing the accesses are normalised. If this cannot be done then the value
of any identifiers used in an access is taken to mean all possible integers.

e An N x N matrix of Booleans B is built, where .V is the number of references to the structure
in question, and b;; is True if and only if the ith and j** references to the array in question
are mutually exclusive.

e A linear Diophantine® equation is constructed for each non-diagonal element of the matrix
which is tested using the greatest common divisor (GCD) test (given below). If all tests show
independence then the array is not built and the accesses are in-lined.

8 A Diophantine equation is a linear algebraic equation of the form Zml ¢;T: = co, where both the r, and the c,

are integers.
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7.7.1 The GCD Test

Testing whether n array accesses are mutually exclusive is exactly the same as testing whether they
are pairwise-parallelisable for all possible pairs. A simple test for parallelisability is the GCD test
[108]. To apply this test, two array accesses are chosen and a Diophantine equation is constructed
from their index expressions. To construct this equation the index expressions are set equal to each
other with their variables being kept distinct.

7.7.1.1 Example
The accesses

> A[2T + 27J]

> A[4I - 6] +3]
would cause the equation
2r1 4 210 =4y — 6y2 +3

to be constructed. Collecting all variables on the left yields
2z1 + 210 — 4y1 +6y2 =3

which is the Diophantine equation which we wish to examine for solvability. This may done by
finding the greatest common divisor of the coefficients in the Diophantine equation. That is, for a

Diophantine equation.
N

E ;i = Co

i=1

we compute the greatest common divisor of the set {c;|i € {1,2, ... N'}} as follows

ng({O’O}) = 1
ged({a,0}) = |af
ged({a,b}) = ged({|bl, mod(lal, [8])})

ged({}) = 1
ged({ay,a2,...,an}) = ged({ar,ged({az,....ax})})

and test whether g = ged({c1,¢a, ..., cn}) divides co.

If g Jco then no dependence exists between the two array accesses and they are pairwise paral-
lelisable.

As mentioned earlier, applying this test to all possible pairs yields a test for strippability appli-
cable to our original example.

7.7.1.2 Comment

This section is intended to be a discussion of how the GCD test may be used to provide an array-
stripping decision, rather than an introduction to data dependence analysis in super-compilers. The
interested reader is encouraged to investigate [108] for a more in-depth treatment.
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7.8 Summary of FSC arrays

Since arrays form an integral part of FSC we provide examples in this section.

7.8.1 Array access
FSC arrays are accessed using [] notation:
> Al1]

Arrays of arrays may be accessed similarly:

> B[i,j]l = BLi1[3]1 = (BL[i1) [j]
Array access may be partial using the underbar:
> ¢li,_] = C[i]

> D[_,j] = \i -> D[i,j]

Arrays may also be pattern-matched against using the +> and <+ operators:

> (aHead <+ aTail) = A

> (aInit +> alast) = A

> reverse (1 <+ m +> ¥) = r <+ reversem +> 1
> reverse other = other

7.8.2 Array Bounds Interrogation
The bounds of an array may be determined via pattern matching using the :> and <: operators:

> determineBounds (low <: A :> high) = (low,high)

7.8.3 Array Modification

Arrays are modified using the [->] syntax:

> A =[1,2,3]
> A’ = A[1 —> 0] = [0,2,3]

7.8.4 Literal Array Definition

Literal arrays may be defined as follows:

twoDarray = [emptyArray,[4,5,6],intArray]
intArrayWithLowerBound0f2 = 2 <: [1,2,3]

> emptyArray = []

> intArray = [1,2,3]

> charArray = [’a’,’b’,’c’] = "abc"
>

>
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7.8.5 Arrays as Strides and Sequences

An array may be defined as an arithmetic sequence or as a Stride:

> digits = fo..91 = [0:9] = [0,1,2,3,4,5,6,7,8,9]
> revdig = [9..0] = [9,8,7,6,5,4,3,2,1,0]

> odddig = [1:9:2] = [1,3,5,7,9]

> revevendig = [8:0:-2] = [8,86,4,2,0]

7.8.6 Simple Array Comprehensions

Comprehensions similar to Haskell list comprehensions are provided in FSC. A comprehension may
use the in keyword to define a range: )

> [Lx | xin A} = A

And filter elements using when and unless

> odds = [ x when x is odd | x in [0..10]] = [1,3,5,7,9]

> evens = [ x unless x is odd | x in [0..10]] = [0,2,4,6,8]
Multiple arrays may be built via the use of commas

> (odds,evens)= [x when x is odd,x unless x is odd| x in [0..10]]

> = ([1,3,5,7,91,(0,2,4,6,8])

Functions may be included when commas are used via the of keyword:

> sum[x | x in [1..10]] = [sum of x | x in [1..10]] = 55

> productx | x in [1..10]] = [product of x| x in {1..10]] = 3628800
> [sum of x,product of x | x in [1..10]] = (55,3628800)

The index of an iteration may be found using at:

> [ y,Alil | y in A at il = (4,4)

Semicolons may be used to create arrays in blocks:

> [ 10*x;x | x in [1..4]] = [10,1,20,2,30,3,40,4]

Loop ranges may be combined using dot,cross and ;

> [x+y | xin [1..4] dot y in [11..14]] = [1+11,2+12,3+13,4+14]

[x+7y | xin [1..4] cross y in [11..14]]
= [[1+11,1+12,1+13,1+14],
[2+11,2+12,2+13,2+14],
[3+11,3+12,3+13,3+14],
[4+11,4+12,4+13,4+14]]

vV V.V V YV
1]
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{x+y | xin [1..4] ; y in [11..14]]
[1+11,1+12,1+13,1+14,
2+11,2+12,2+13,2+14,
3+11,3+12,3+13,3+14,
4+11,4+12,4+13,4+14]

vV V. V V V
n

7.8.7 Iterative Array comprehensions

Array comprehensions may also be defined iteratively from left to right using the while/until
keywords and local bindings:

> [ count | count <- count+1 until count == 10 | count = 0}
> = [0,1,2,3,4,5,6,7,8,9]

> [ count | count <- count+1l while count != 10 | count = 0]
> = [0,1,2,3,4,5,6,7,8,9]

> [ count | until count == 10 count <~ count+1i | count = 0]
> = [0,1,2,3,4,5,6,7,8,9,10]

> [ count | while count != 10 count <- count+i | count = 0]
> = [0,1,2,3,4,5,6,7,8,9,10]

Multiple updates may be combined using semicolons:

> [countl,count2 | countl <- counti+l;

> count2 <- count2+2

> until countl == 10 | countl = 0;

> count2 = 0]

This is equivalent to:

> [countl,count2 | (countl,count2) <- (counti+1,count2+1)
> until counti == 10 | (countil,count2) = (0,0)]

7.8.8 Array declarations
Arrays may also be defined using the array keyword as follows:

array A[1..10] where A[i] = 10 - i
- A = [9,8,7,6,5,4,3,2,1,0]

array B[i] = A[il
-8 = [9,8,7,6,5,4,3,2,1,0]

array C[1..10] where
cl1] = 10
clil = cli-1] - 1
-- ¢ = [10,9,8,7,6,5,4,3,2,1]

VvV VV VVVVVVYV
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array D[1..10] where
Cfi]l | i is even = ‘e’
| otherwise = ’o’
[)o”’e’,’o),’e")o’,’e’,’ol’)e)’)ol’le),]
"oeoeoeoeoe"

-- D

VvV V V VYV

FSC arrays are discussed further in previous sections of this chapter and also in the next chapter.

7.9 Parametric Overloading

Quite apart from the fact that lazy evaluation is too inefficient to be used in practice. one of the
major limitations of Haskell for use as a numerical programming language is the fact that the class
system of Haskell is not powerful enough to express all the operator overloadings which are common
in this scenario. For example scalar multiplication of matrices or vectors may not be expressed under
the type class mechanism. Also, the method by which Haskell resolves the type of an expression is
not intuitive.

Consider the class Num in the Haskell standard prelude. For the instance of Num over type
a there exists a method to construct a value of type a from an integer and also a multiplication
method to compute the product of two values of type a. If we define a data type VECTOR denoting
vectors of length 4:

> data VECTOR = V [Double]

and make this an instance of class Num:

> instance Num VECTOR where
> fromInt x = [fromInt x |_ <- [1..4]]
> (Vv x) * (Vy) =V (zipWith (*) x y)

and define the following expression
> exp = (1 * 2) * v where v = V [1.0,2.0,3.0,4.0]
then it would be intuitive to imagine that the computation would proceed as

(1 *2) *xyv-=>2%v
-> fromInt 2 * v
-> Vv [2.0,4.0,6.0,8.0]

where actually the computation is

(1 * 2) * v => (fromInt 1 * fromInt 2) * v
-> (v [1.0,1.0,1.0,1.0] * V [2.0,2.0,2.0,2.0]) * v
->V [1.0 * 2.0,1.0 * 2.0,1.0 * 2.0,1.0 * 2.0] * v
-> v [2.0,2.0,2.0,2.0] * v
-> Vv [2.0,4.0,6.0,8.0]
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and so eight floating-point multiplications would be carried out instead of four!

To coerce the desired behaviour we would have to write

> exp

= fromInt x * v
> x =1 *

2

In the following sections we discuss how type classes may be used and implemented in a more
intuitive manner which suits numerical applications. We also discuss the problem of overlapping
instance definitions which occurs when type classes are generalised.

7.9.1 Multi-Parameter Type Classes

The version of Haskell type classes proposed are similar to those of watML [72] in that multi-
parameter templates are allowed in class definitions. For example, we can define a class Plus(a,b,¢)
containing the function (+)::a->b->c and, using this, define instances such as (INT,REAL,REAL)
to allow true, mixed-mode arithmetic.

7.9.1.1 Efficiency

We do not wish to lose efficiency via this use of overloading and so the method that has been chosen
to implement FSC polymorphism is what has been described as tertual polymorphism [70], where a
function has many types only at the source level. The advantages [70] of this technique are that

¢ it can produce optimum code for each application of the polymorphic procedure,
¢ it can support non-uniform representations of data, and
e it can support ad-hoc polymorphism as well as universal polymorphism.

The disadvantages are that it cannot support true first class polymorphic values since it is a
monomorphic specialisation, and there is a potential for an exponential explosion in the number
of specialised polymorphic forms. In each case we believe these drawbacks will not prove to be
detrimental due to the type of programs written within our chosen problem domain. This view is
backed up by results from Chapter 5 and also in {53] where the specialisation of type classes actually
reduced the final executable’s size.

The remaining sections describe the motivation behind the use of this type system, together with
the presentation of an algorithm to implement it.

7.9.2 Use and Motivation

The simplest usage of multi-parameter overloading is as follows, where we provide overloadings for
+ 50 that it may work on both integers and floats :

> class Plus (a,b,c) where
> (+) a->bp > ¢
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instance Plus(INT,INT,INT) where

(+) = primintintplus

instance Plus(INT,Float,Float) where
(+) = primintfloatplus

vV V V. V

here primintfloatplus and primintintplus are primitive monomorphic functions which add a
float to an int and add an int to an int respectively. In the main® expression we could write

> main = 2 + 3 + 1.5

and the type of main is [+: INT->INT->a] [+:a->REAL->b] b. A unique satisfying substitution exists
for the above constraints and so the overloading is resolved. This is completely different to Haskell
where implicit fromInteger and defaults are used.

A slightly more complicated example is

> fxyz=x+y+z

> main = £ 1 2 3
where the function £ exports two constraints and the types of main and £ are:

f :: [+:a ->b ->c][+:c ->d ->e]l a->b ->d4d -> e
main :: [+:INT->INT->al[+:a ->INT ->b] b

The function £ can be seen to form an abstraction requiring five type variables {a,b,c.d,¢}.

The motivation behind the use of this system can be understood by considering the following
example.

7.9.3 Example

Consider the linear system Ax=b with A symmetric positive definite. It is possible to solve this
system in various ways, one being the Conjugate Gradient Method (CGM), whose iteration can be
described in a Haskell-like language as:

> dot x y = sum (zipWith (*) x y)
> sum [] = fromInteger 0
> sum [x] = x

> sum (x:xs) = x + sum x

> conjugate_gradient_iteration 4 (x,p,r) = (x’,p’,r’)
> where x’ = x + alpha * p

9In this discussion we ignore I/O without loss of generality.
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> P’ =1’ + beta * p

> r’ = r - alpha * q

> alpha = rr / pq

> beta = (alpha * qq) / pq -1
> pqa =p ‘dot‘ q

> T =r ‘dot‘ r

> 99 =q ‘dot‘ g

> q = A *p

Often we do not wish the matrix A to be formed explicitly as this is sometimes very computationally
intensive. In such situations the CGM iteration above can be thought of as forming an abstraction.
If we define an overloading of (*) such as function application (*)::(a -> b) -> (a -> b). we
would not explicitly form the matrix A, although our iteration algorithm would retain its elegance,
l.e. in the above example the identifier A is just regarded as a data type with the method (*) defined
on it. If A were a function (*) could represent application such that (A%*) transformed vectors in
the same manner as matrix multiplication by the matrix A.

7.9.4 Description of the Type Inference Algorithm

Informally the typechecker runs through a Hindley-Milner inference [20] phase and collects type
constraints. These constraints are then resolved. The approach taken here is very similar to [72],
the difference being that since we have already made the decision to specialise our polymorphic
forms and overloaded identifiers (see Chapter 5), we may use a more liberal resolution algorithm

than [72].
7.9.4.1 Example
As an example, consider:

> double x = x + x

> main = double 2
After type inference double and main are typed as

> double :: [+: a -> a ->b] a ->b
> main :: [+:INT -> INT -> al] a.

an intermediate code is generated resembling an extended second order A-calculus lifted into recursive
supercombinator definitions i.e. type variables within a definition are tagged onto the end of the
definition as extra parameters:

> double ::([+: a -> a -> b] a -> b)[a,b](x:a RETURNS b)

> = (+)[a,a,bl(x,x)
> main  ::([+:INT -> INT -> al a)[al (RETURNS a)
> = double[INT,al(2)
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7.9. Parametric Overloading

A unique solution for the constraints attributed to main ([+ : INT — INT — a]) is then
searched for. If found, the code is specialised!®. The formal syntax for expressions and types
is given in Figs. 7.7 and 7.8 with an extension to Robinson’s unification algorithm [80] allowing
where x is a constructor, v is a variable. C is a

contraint gathering summarised in Fig. 7.9,

[ Formal Syntax of Expressions ]
Identifier z
Expression e u= T
| ee
| Az.e
| let  =eg in €
| if g then ¢; else ¢

Figure 7.7: Formal syntax of expressions

r Formal Syntax of Types

Type Variables
Type Constructors
Type Constraints

Types

Type Schemes

(94

— i i

{z:7}
CoUCy

4

To— "
\(Tl,...,Tn)
C[,--..Cn T
Ya.o

T

Figure 7.8: Formal syntax of types

constraint, and the s; are arbitrary terms. unifys.c+(r.y) computes the most general unifier of z
and y under 8 and C*, together with the set of constraints that must be satisfied for z and y to be

unified.

The typechecking rules written in terms of a set of assumptions A are given ir.l Fig. 7.10, where
overloaded instances are checked against their templates and all resulting constraints are collected.

10Providing the type of main is now monomorphic.
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F Unification j

unifygc«{C] 71,C5 72) succeeds if unifyg (c- ucs ucs)(71,72) succeeds,
and fails otherwise ;

unifyg,ce (11,C$ 72) succeeds if unifyg (c+ ucs)(71. 72) succeeds,
and fails otherwise

unifyg,c+ (C$ 11,72) succeeds if unifyg (c- ucs (71, 72) succeeds,
and fails otherwise

unifyp‘c- (v1,v2) succeeds;
v; and v; are bound to the same varable in 8

‘unl'fyglco (X1 [.5'11 yeeny s;m], X2[821 yor- ,32,,]) succeeds if X1 =\ 2Am=n
Aunifyg,ce(s11.521) A ... Aunifyg ce(S1m. 52n),
and fails otherwise

unifye,c» (v, x[s1,...,5n]) succeeds binding v to \[s1,...,5n] in 8
if v does not occur in sj ... sn,

and fails otherwise

unifyg ce (x[s1,-..,8n],v) succeeds similarly

Figure 7.9: Extension to Robinson’s unification algorithm

l Type rules ]

TAUT Az:Thz:T
cow R e e verot

s A e e =

LET AAI_I—e(()I;tor = v :jlz -

GEN %%:T (o not free in A)
SPEC ';T:—.[:/Z]-T
COMB A l-jol_: (c:iael—) :T(c? 551‘)- Cio

Figure 7.10: Type inference and constraint-gathering rules
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7.9.5 Overloading Resolution

The overloading resolution phase attempts to find a unique satisfying substitution of type instances
over the type constraints resulting from type inference. This is described in Fig. 7.11 where I is

{ Overloading Resolution ]

RESOLVE(I,{C1,...,Cn}) = SEARCH(I, MATCHES(I1,{},C1).{C2,....Cn})

MATCHES(1,0,C)

= {unijye,{)(itypﬁvcf!lpe) | 1€l Au"ifye‘{}(itypcyctype) # L ACname = iyxamg}
- -Ly if P = {}
SEARCH(I,P,C*) = ,
kR (1, P.C*) { OUT({DERIVATION(p:,I,C*)|p, € P}). otherwise
oUT({z})==z
ouT({))=1

OUT({z1,...,zn}) =L

DERIVATION((6.{}).1.{}) = (6.{})
DERIVATION((8,{}),1,{C1,....Cn})

= SEARCH(I, MATCHES(I,8,6(C1)),{C2,--.Cn})
DERIVATION((6,C?),1,C}) = DERIVATION((8.{}.1,C; UC3)

Figure 7.11: Overloading resolution

the set of instances, 8 are substitutions, C are constraints and the P are possible matches. In our
description X* denotes a set of .X's. All constraints are taken to be name-type pairs; for example,
if C= {4+ : INT — INT — INT} then Cname = + and Ciype = INT — INT — INT. In the
FSC implementation the typechecker is more detailed than suggested by the above, allowing such
features as pattern matching and case statements.

7.10 Overlapping Type Class Instances

The type resolution algorithm described in the previous section is designed to operate on a set of
type-class instances which do not overlap as overlapping instances are cannot be dealt with trivially.
Overlapping may be understood by considering the set of types which match a given pattern. If we
denote the patterns of a set of instances by

Py, Ps, ..., Py

and the set of types which matches P; by Si,1 < i < n, then a set of non-overlapping instances Is
characterised by the fact that no two patterns match the same type, 1.e.

SinS;=0,1<4,5<n, it
The following set of patterns is non-overlapping

{Real — Real — Real, Int — Int — Int}
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7.10.1 Specialisation

A pattern P; is said to be a specialisation of a pattern P; (or P; is more specific than P;) if each
expression which matches P; also matches P; but not vice versa; that is. if Si is a proper subset of
S;j (Si C Sj). Thus the type Realis a specialisation of the type variable 7 but the type variable ¢
1s not.

If we partially order our instances according to how specific they are, we may construct guards
against patterns being matched where there exists a more specific pattern. That is. we order the
patterns under the relation

P,>P=S5CSj

Each pattern F; is now replaced by P such that the set of types which match P is
Si=Uisi1Ps 2 P2

7.10.1.1 Example

If we consider overlapping multiplications, the class TIMES could have the following instances, where
[a] denotes a vector of element-type a:

> instance TIMES(a,b,c) => Times(a,[b],[c]) ...
> instance TIMES(a,b,c) => Times([a],b,[c]) ...
> instance TIMES(a,b,c),PLUS(c,c,c) => Times([a],[b],c)...

representing right and left scalar multiplications and the dot product of two vectors.
Without paying attention to overlapping instances, typing the expression

> x *y

> where

> x = [1,2,3]
> y = [4,5,6]

would give rise to the constraint {x : [/nf] — [Inf] — a} which matches all of the above instances.
resulting in ambiguity. The above instances compute zy7, (ry” )7 and x7y respectively.

However, if we add constraints to these instances so that they reject tvpes accepted by instances
more specific or incomparable to themselves, then we find that this ambiguity disappears and the only
instance which matches the expression above is 7 y. This addition of constraints is the conversion
of each P; to P} mentioned earlier.

This makes the above set of instances unambiguous. In general, to ensure that a set of patterns
is unambiguous then the set must be (possibly) extended so that its members satisfy the following
condition:

Unambiguity: If any two instances overlap and neither is a specialization of the
other then, for each type 7 which matches each instance, there must be a third
pattern which is the specialization of both instances that also matches 7.

In effect the above method is equivalent to creating this third pattern which automatically fails
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due to an unresolvable sub-constraint. This can also be seen as forming a lattice from the poset of
matchings by embedding each set of non-comparable instances inside a lattice by adding a least upper
bound (L.u.b.) drawn from the set of all patterns. T represents the pattern with no matchings. i.e.
the l.u.b. of the set of all patterns and the class template itself is the greatest lower bound (g.1.b.).
The set of types accepted by an instance is then restricted to the set of types it accepted originally.
less the union of the sets of types originally accepted by all its least upper bounds proper!!. -

7.10.1.2 Example I

To visualise this procedure, consider the MULT class with overloadings for integer multiplication. dot
products and scalar multiplication (Fig. 7.12) where a. 3 and 4 are implicitly universally qualified.
The act of adding extra dummy instances so that our unambiguity condition may be satisfied is also
shown in Fig. 7.12.

7.10.1.3 Example IT

A larger set of multiplication instances is shown in Fig. 7.13, and its disambiguated version shown
in Fig. 7.14. Again «, § and 7 are implicitly universally qualified.

7.10.2 Overloading Resolution under Overlapping Instances

A version of overloading resolution is given in Fig. 7.15, where I is the set of instances, 8 arc
substitutions, C are constraints and the P are possible matches, .\* denotes a sct of X's. All
constraints are taken to be name, type and side-condition triples; for example, if C = {+ : 02 — 3 —
v :a # Int} then Crame = *, Ciype = a — B — 5 and Csc = {(a, Int)}.

7.11 Summary

In this chapter we discussed the rationale behind the features which appear in FSC, our prototype
language. We are now in a position to present a definition of the FSC' language proper. This is
the subject of the following chapter. Note: FSC' contains a transformational meta-language which
allows program transformation. Discussion of this meta-language is left to Chapter 9 as it is built
strictly above the core language.

"1'We define upper bound proper {(w.b.p.) of an element e as an upper bound of ¢ which is not equal to e.
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[od]->[B1]->{y1]

o—>[B11->[y1] [@1]->[B1}>Y  [g1}-5B->[y1] N->N->N

/

o—>B—>y ()

Poset to Lattice ﬁ

oa—>[B1]->[y1] [all->[B1]->y [al]l->B—>[y1] N->N->N

/-

o—>B—>y

Figure 7.12: Embedding each non-comparable subset in a lattice
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([o2])->{[B2]}=>([12]]

a->{[B2])->{(12)] [e1)->{[B21)1->(v1) [[e2]]->(B1]->(¥1] ([e2]->B->((2]]

R>R->R  a—>[B1]->(y1] [al}->[B1]->y [al}->B—>[¥1] N.>N->N

o—>p—>y

Figure 7.13: Partially-ordered set of instances for class MULT
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{fa2)i->{IB211->112]]

{lo211->{p11->11¥2]l

[l ]->((B21)1->11v2]

lle21->{Bl->iv ) lla2)1->B->(121]

R->R->R a->[(2)]->1v211 \ [ail=>{(B2]1->(v!

lall->(B11->(Y1)

1B11->y lali->p->{yl)

a—>(B1)->[y11 el }->]

a->p->y

Figure 7.14: Lattice of instances for class MULT
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Summary

Overloading Resolution with Overlapping Instances ]

RESOLVE(I,{C1,...,Cn}) = SEARCH(I, MATCHES(I,{},C1,{}).{C2.....Ca})

MATCHES(1,8,C,8C)
= {(unifye,{}(itype,Ctype),f(isc U‘SC) | i€lA un'ifye,{}(itypevctypc) # LACname = inamc}
where f(SC) = {(unifyg (}(itype,Ctype)la).7)|(o,7) € SC}

w_J L if P={}
SEARCH(I, P,C*) = { RESTRICT({DERIVATION(p;,1,C*)lp; € P}), otherwise
RESTRICT(X) = {8]((6, {}).5C) € X, allowed(8,5C)}

where allowed(8,5C) = A{unifyg }(o,7) = L|(0.7) € SC}

oUuT({z})==
OUT({}) = L
oUT({z1,...,zn}) =1

DERIVATION(((6,{}),5C), I,{}) = (8,{},S¢)
DERIV ATION(((8,{}),8C), I,{C1,.--,Cn})

= SEARCH(I, MATCHES(I,8,0(C1),8C), {C2.-...Cn})
DERIVATION(((6,C2),5C),1,c3) = DERIVATION(((6,{}),8C).1,C; uC})

Figure 7.15: Overloading resolution with overlapping instances
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Chapter 8

Definition of FSC

In this chapter we present a definition of the FSC programming language.

8.1 Introduction

FSC is a purely functional language incorporating many recent innovations in programming lan-
guage research, including higher order functions, static polymorphic typing, user defined algebraic
datatypes, pattern matching and a rich set of primitives. The design of this language has been
heavily influenced by languages from the non-strict functional programming world such as Haskell,
languages from the strict functional programming world such as ML, and also languages from the
single assignment world such as SISAL (Fig. 8.1).

The emphasis of the FSC design is to provide an extremely efficient functional language with
which to develop numerical software in a manner which best suits the problem domain. To this
end, some of the ideas incorporated in FSC are either very experimental or do not possess the
completeness! of similar concepts in languages such as Haskell. We do not consider this a failing,
but merely recognise that we have a separate set of goals for which we consider efficiency paramount
and try to embrace as much of the flavour of functional programming as possible.

Although FSC builds heavily on previous ideas it also has several innovative features which we
consider useful in the area of numerical programming:

1. FSC extends Haskell-style overloading to cover typical linear algebra operations using tech-
niques which do not create slower code through the use of overloading.

2. True arrays are provided as a primitive datatype, the novel feature being the combination of
pattern matching and array operations.

3. A term rewriting system allows axioms to be expressed in FSC and code improving derivations
to be written.

! An example of FSC’s lack of syntactic completeness is the fact that A[i] # A([i]).
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FORTRAN

( Sirnuia

Haskell 1.0

Figure 8.1: Language spectrum and lineage of FSC

Haskell 1.4

G
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4. A purely functional 1/O facility is provided which unifies the I/O models of Haskell 1.3 and
SISAL.

This chapter defines the syntax of FSC programs and an informal abstract semantics for the
meaning of such programs. We leave as implementation dependent the ways in which FSC programs
are to be compiled other than defining criteria on efficiency requirements which must be respected.
This includes issues such as guaranteeing that the use of an overloaded function will not result in
an increased execution time as it does in the implementation of languages such as Haskell. The
structure, language and commentary of this chapter unashamedly borrows heavily from the Haskell
1.2 report [50] since our aim is to mimic Haskell syntactically.

8.2 Program Structure

In this section we describe the abstract syntactic and semantic structure of FSC. as well as how it
relates to the organisation of the rest of this chapter.

1. At the topmost level an FSC program is a set of modules. Modules provide a way to control
namespaces and to re-use software in large programs.

2. The uppermost level of an FSC module consists of a collection of declarations. of which there
are several kinds. Declarations define things such as values, datatypes, tvpe classes, fixity
information and rewrite rules.

3. At the next level are ezpressions. An expression denotes a value and has a static type.

4. At the lowest level is FSC’s lexical structure. The lexical structure captures the concrete
representation of FSC scripts in text files.

Examples of FSC fragments in running text are given in typewriter font as in:

> let x =1
> z = xty
> in z+it

8.2.1 The FSC Kernel

FSC has many of the common syntactic structures that are popular in functional programming. In
these cases we give a translation into a subset of FSC which we call the FSC kernel. This fulfils a
similar role to the Haskell kernel in that we can provide a straightforward denotational semantics for
the kernel and a translation of each syntactic structure into the kernel. This allows the presentation
of the language to be simplified.
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Program prog — binds
Bindings binds —  bindy;...;bind, n>1
bind — wvar = expr
Expression eIpr —  expr, ezpr, Application
| X wvar. expr Lambda abstraction
| case ezprof alts Case expression
|  if expr, then erpr, else ezpr, Conditional
|  let bind in expr Local definition
| letrec binds in expr Local recursion
| con Constructor
| wvar Variable
| literal
Literal values literal —  Integer
|  Float
|  Character
{  Double
|  Boolean
Alternatives alts —  calty;...;calt, n>1
Constructor alt calt — conwvar ... varp => erpr n>0

Figure 8.2: Syntax of the FSC' kernel

8.2.1.1 FSC Kernel Syntax, Semantics and Intrinsic Operations

The syntax and semantics of the FSC kernel are shown in Fig. 8.2 and 8.3 respectively. The FSC
language contains true arrays and, as such, we regard these as primitive with operations shown in
Figs. 8.4 and 8.5. Other primitive, hard-wired, functions exist over the ground types {/NT. REAL,
DOUBLE, CHAR, BOOL} such as

> _primIntIntEqual :: INT -> INT -> BOOL

8.2.2 Expressions and Types

An expression evaluates to a value and has a static type. Types are not first order in FSC although
the type system allows user-defined datatypes and permits parametric polymorphism and ad-hoc
polymorphism (using type classes). Because of FSC’s standpoint of efficiency, not all polymorphic
values are allowed in FSC?.

2All values must have a set of static monomorphic resolutions and polymorphic objects such as a = hd [] are

disallowed.
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. Program Structure

Plprogram] : Val
Plprog] = EVAL[ letrec prog in main ] Pinit

EVAL[ezpr] : Env— Val
EVAL[k] p

EVAL[z] p

EVAL[e; e2] p

EVAL[A z.€] p

EVAL[if e; then e; else e3] p

K[k]

pr

(EVAL[e1] p) (EVAL[e2] p)

strict(A 7,....EVAL[e] (p = r — z,..))

EVAL[case €; of True -> ¢4
False -> e3] ¢

EVAL[(Xz.5) €] p

EVAL[e] (p ® fir(Ap'.Bl[binds)(p % p')))

EVAL[let z=¢ in b ] p
EVAL[letrec binds in ¢ ] p

EVAL[c] p A€y .. Aen e €r, .-, €6n)
EVAL[case r of ¢; z11...Z14,->€1;...;¢Cn Tni...Tna,~> €] p
= case EVAL[e] p of
ﬂ_L - 1

|] ((.‘1,611,...,6101) — EVAL[[CI]] (p@{l‘“ — €11,.--.L1q, '_’flal})

I] (Cnxenl,u-;fnan> - EVALIIC,,]] (P®{rn1 —€n1.- 1 Tna, — €na, })
end

B[[binds] : Env — Env
Blzi=e1;...;2n =€n] p = {zi—EVAL[e] pli€{1....,n}}

strict : ( Val — Val ) — Val — Val
strict f r=frx iffe#L
strict f L = 1

Figure 8.3: Denotational semantics of the FSC kernel
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8.2. Program Structure

_access Arraya ~ Int o

_cons o —  Array a Array a

-snoc a —  Array o Array a

_head Arraya — «

~tail Arraya  —  Array a

_nil Array o

last Arraya — «

_init Arraya — Array o

_append Arraya — Array o Array a

_replace Arraya — Int a — Arraya
il Int — Int a —  Array a
_size Arraya — Int

diml Arraya — Int

dimh Arraya — Int

_subarray Arraya — Int Int —  Arraya
_setindex Arraya — Int Array a

-tsEmpty Arraya —  Bool

8.2.3 Namespaces

Figure 8.4: Intrinsic array operations

The distinctions between namespaces for variables and constructors are not disjoint. This is to allow
users to denote matrices using upper-case identifiers. There are the following constraints on naming:

¢ Constructors and type constructors begin with upper-case letters; type variables begin with

lower-case letters.

o Type class names begin with upper-case letters.

o Operators may be any valid identifier or any string of characters excluding the semicolon,

comma, underscore, brace and quote characters.

8.2.4 Layout

FSC permits the use of a layout (or “off-side”) rule in the style of Haskell. For example

> let
> x=1
> y=2
> in
> x+y

may be written in place of

> let {x = 1; y = 2} in (x+y)

For a more in depth discussion of this Jayout convention see {50]. In this chapter. we do not use the
offside rule as it is a mere preprocessor phase and hence of little interest.
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- . . .
—access[i— €, (1+ 1) —eiy1,---,j— €5, ,m—e€n) j=c¢,

_cons a i ei,(i+1)— eit1, -, n — €n]
=[i-1)—a,ir—ei,(i+1)— eit1,--.n — eg]

-snoca (i ei,(i+1)—eit1, -, n— en]
=[—e,(i4+1)— €1, -, n > en,(n+1) —d]

-head [i—eiy---,n—en] =6

daillli—e, (i4+1)—eig1,--,n—eq]=[(i+1) — €g1, .1 — en]
il =]

last[i—ei, -, nr en] =€n

dnitfi—ei, -, (n—1)—eiy1,n—en]=[i—e. -, (n—=1)— en_y]

cappend[i—ei,--- ,nr>en] [ €, m — €m]
=[r—e, - ,n—en(n+l)—en -, ((m=j)+n+1)—en]

_replace [i > e, -+, jr— €, -, nrven]Ja =[ir—e -, jr—a, - nr€n
Sllina=fi—~a,- -, ---,n+—ad]

diml[i—ei,--,n—en] =1

dimh[i— e, ,n—en]=n

size[i—ei, -, m i en] =(n—1)+1
_subarray[iHe.,---,j»—»e_,,'n,k»—-ek,-~',n»—-e,.]jk=[j»—e,,~-.k>—'6k]
_setindez[iHe.,---,n»—»en]jz[j»—»e.,~-,(n—i)+jr—'€n]

-isEmpty A = _primIntintEqual (_size 4) 0

Figure 8.5: Intrinsic array operation identities
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8.3 Lexical Structure

In this section we describe the low level lexical structure of FSC. Many of the details may be skipped
on a first reading. :

8.3.1 Notational Conventions

The following notational conventions are used for presenting syntax:

{pattern) optional

{pattern}  zero or more repetitions

(pattern)  grouping

pat, |pat, choice

pat difference-elements generated by pat
except those generated by pat’

factorial terminal syntax in typewriter font

pat’

Because the syntax in this section describes lerical syntax, all white space is expressed explicitly;
there is no implicit space between juxtaposed symbols. BNF-like syntax is used throughout, with
productions having the form:

nonterm — alty|alts|...|alt,

Care must be taken in distinguishing metalogical syntax such as | and [...] from concrete terminal
syntax (given in typewriter font) such as | and [...], although usually the context makes the
distinction clear.

8.3.1.1 Lexical Program Structure

program —  {lezeme|whitespace}
lereme —  tyid|conid|varsym|consym|literal)speciallreservedop|rese reedid
literal — integer|float|double|character|string|boolean
special —  (DLEIEI K1Y
whitespace —  whitestuff{ whitestuff}
whitestuff — whitecharicomment
whitechar ~—  space|newline|tab
comment — -—{any}newline
any —  graphic|space|tad
graphic —  large|small| dig:t
|t [eislulel 1D+
(N e N A H S b
| O HHBT
small — albl...|z
large — AlB|...|Z
digit — OJ1f...|9
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Characters not in the category graphic or whilestuff are not valid and should result in a lexing error.

8.3.2 Identifiers and Operators

tyid —  (small{smallllarge]digit|'|}).ercrvesia
varid —  tyid|conid
conid — large{small|large| digit|'|-}

reservedid — alllarrayl|at|by|case|class|cross|datatype|do|dot|else
|  for|if|ininfix|infixr|infixl|instance|let|of|ordered
| prefix|repeat|return|returns|suffix|then|type|with|when
| where|untillunless

An identifier consists of a letter followed by zero or more letters, digits. underscores, and acute
accents. Identifiers are lexically divided into two classes: those beginning with a lower-case letter
(type variable identifiers) and those beginning with an upper-case letter (constructor identifiers).

varsym - {symbOI} reservedop
symbol  —  t[#ls{Alafwi+]. |/|<I=]>|" 2Io\I"]1
reservedop — . .|::|=>|=|Q]\|l|<-|->|:

Operator symbols are formed from one or more symbol characters, as defined above.
8.3.3 Boolean Literals
boolean — True|False

8.3.4 Numeric Literals

There are three distinct kinds of numeric literals: integer. float and double.

integer —  digit{digit}

float — integer.integer{(e|E)[" | +]integer]
| integer(e|E)[" | +]integer
| integer.

double — integer.integer{(a1D)[" | +]integer]
|

integer(d|D)[~ | +]integer

8.3.5 Character and String Literals

A character literal is written between acute accents and a string literal between double. quotes. The
use of backslash characters for newline, tab, etc. is identical to that of the C programming language.
String literals are actually abbreviations for arrays of characters.
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8.4 Expressions

In this section, we describe the syntax and semantics of FSC ezpressions, including their translation

into the FSC kernel where appropriate.

exp — aezp : lype

| ezpg
expy — let {decls[;]} in exp
\apat, ... apat,—> ezp

l
[ if ezp then ezp else ezp
| case ezp of {alis[;]}
| do type computations
| iteration
| fezp
fexp —  fexp aexp
| Jerp Largs,,,]
| Jeap {args,)
| aezp
—  var
| con
| literal
| O
| Cezp)
| Cexpy, ...,ezp;)

aerp

(expression type signature)

(let expression)

(lambda abstraction n > 1)
(conditional)

(case expression)

{(do (IO) expressions)
(iteration/array expressions)

(function application)
(array access)
(bracketed application)

(variable)
(constructor)

(unit)
(parenthesised expression)
(tuple k£ > 2)

The FSC grammar is simplified by handling the parsing of operators from outside the grammar.
Table 8.1 shows how examples are initially parsed and then transformed to prefix expressions.

and is transformed to

The expression | parses as
fx+gy (£ x) ¥) g) y)
n! (n?)

(x+) BRACK(x +)

(+ (£ x)) (g y)
(1 n)
(+ x)

Table 8.1: Operator parsing

var —  wvarid |varsym [(op )

con —  conid |consym
consym — varsym

op —  varid |varsym |‘varid*

8.4.1 Variables, Constructors and Operators

(variable)
( constructor)

{operator)

Alphanumeric operators are constructed by either declaring the operator as infix in a fixity decla-
ration, or by enclosing it between grave accents (backquotes). In this way fun r y. with fun a prefix
function, is equivalent to z ‘fun® y .
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Similarly, any non-prefix identifier may be used as a (Curried) variable by enclosing it in paren-
theses. If op is an infix or suffix operator then an expression or pattern of the form r op yis
equivalent to (op) z y.

8.4.2 Curried Applications and Lambda Abstractions

ezp — \apal; ... apatl, -> e1p
fexp —  fezxp aexp
| fezp {argsezp}

Function application is written ey ez. Application associates to the left and so the parentheses may
be omitted in (f x) y, for example. The second form of function application uses the braces {.}
and comma separators such that the expression

> £ {x,y,z}
is equivalent to
> ftxyz

The advantage of this use of braces is that a function may be partially applied to any combination
of its arguments via the use of underscores. That is, the expression

> f {x,_,y,_,_,2}

is equivalent to

> (\Npgqr —> f {x,p,v,4,r,2})

Note: Underscores may not be used without braces, i.e. the application
> fx_2z

is invalid. Such partial applications are disallowed since

> fx_y

would have a very different meaning to

> ((Ex) ) =(N\z->Ex)2)y) =fxy

i.e. it is not compatible with left association of function application.

8.4.2.1 Lambda Abstractions

Lambda abstractions are written \p; - -- p, —> €, where the p; are patterns(Fig. 8.6). If any pattern
contains a constructor with arity > 0 then it must be surrounded by parentheses. FSC requires these
patterns to be linear, i.e. with no variables appearing more than once in the set. Unlike Haskell.
admitting non-linear patterns would not cause semantic problems [48] in FSC. The reason for not
allowing non-linear patterns is that it could potentially cloud computationally expensive expressions.
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Translation: The lambda abstraction \ p; --- pn -> € is equivalent to
\T1 -2, > case (21, --,zn) of (P1,--,pn) > €
where the z; are new identifiers. If the pattern fails the result is L.

Figure 8.6: Translation rule for pattern-matching lambda expressions

8.4.3 Operator Applications
exp — eIp; 0P, €IP, (infix operator application)
| exp op, 4, (suffix operator application)

The form €3 0p ey is the infix application of a binary operator op to the expressions ¢; and e5. The
form ey op is the suffix application of a unary operator op to the expression e; (Fig. 8.7).

Translation: If opis an infix operator, €1 op ez is equivalent to (op) €; e,.
If op is a suffix operator, e; opis equivalent to (op) e;.
Otherwise e1 op e is equivalent to ((e1 (op)) e2).

Figure 8.7: Translation rule for operators

8.4.4 Sections

aezp — (erp op)
| (op exp)

Sections are written as ( op e ) or ( e op ), where op is a binary operator and e is an expression.
Sections are convenient syntax for partial application of binary operators (Fig. 8.8).

The normal rules of syntactic precedence apply to sections; for example (*a+b) is invalid, but
(+axb) and (*(a+b)) are valid.

Translation: For binary operator op and expression e, if r is a variable that does not occur free in e,
the section (op €) is equivalent to \x-> r op e, and (e op) is equivalent to \7-> ¢ op r.

Figure 8.8: Translation rule for sections

8.4.5 Conditionals

ezp — if erp, then erp, else ezpy

A conditional ezpression has the form if e; then es else e3 and returns the value of ¢, if the value of
e, is True, and e3 if e; is False, where True and False are the two built-in nullary constructors for
booleans. Conditional expressions are left unchanged in the kernel although an equivalent translation
is given in Fig. 8.9.
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Translation: if e; then e, else e; is equivalent to case ¢; of {True -> e;:False -» e}
where True and False are the two built-in nullary constructors from the booleans.

Figure 8.9: Translation rule for conditionals

8.4.6 Arrays

iteration — [ey,...,e,] (k>0)

Arrays are of the form [e,---,e ], where n > 0; the empty array is written [J. Arrays are the
predominant datatype in FSC and hence much work has been done to facilitate their use. Since
FSC is based heavily around pattern matching there is a facility to pattern match against array
arguments, with many analogies being drawn with lists in languages such as Haskell. Standard
operations for constructing arrays are shown in Fig. 8.10. Other array operations exist and these

Operation | Translation

A+>a append a to the end of A

a <+ A append a to the front of A

A ++B concatenate A and B

1<: A set the lower bound of A to!
A :>u set the upper bound of A to u
0] The empty array

Figure 8.10: Intrinsic operations over arrays

will be discussed later in this chapter. Now that we have these constructors we may give a meaning
to [ey,...,en] (Fig. 8.11).

Translation: [e;,...,en] is equivalent to e; <+ (e <+ (--- (en <+ [1))). The tvpesof e, to ¢,
must all be 7 for some type 7 and the type of the overall expression is Array(r)

Figure 8.11: Translation rules for array patterns

8.4.7 Tuples

ael'p - (el) "~yen) (Tl 20)

Tuples are of the form (e;, ...,e,) and may be of arbitrary length n > 2 (Fig. 8.12).
8.4.8 Unit Expressions and Parenthesised Expressions

aerp — (e)

| O
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| Translation: (e:1,...,en) for n > 2 is an instance of an n-tuple and requires no translation. |

Figure 8.12: Translation rule for tuples

The form (e) is simply a parenthesised ezpression and is equivalent to e (Fig. 8.13). The unit
erpression () has type () (the void type).

rTranslation: (e) is equivalent to e. B

Figure 8.13: Translation rule for parentheses

8.4.9 Arithmetic Sequences and Strides

iteration — [ey..ea] (range)
| Ler:eaf:es}] (stride)

The form [ej . .es] denotes the arithmetic sequence from ey to es either up or down in steps of 1.
This generates an array of integers. Index arrays with non unit strides are generated in a similar
manner. The form [e;:es2:e3] denotes the arithmetic sequence from e; in increments of e3 of values
not greater than ez. If e3 is omitted then an increment of 1 is assumed.

8.4.10 Array Comprehensions

iteration — [retexp,, ...,retezp, | range [linits] ] n>1
| Lezp,; ...;ezp, |range [linits] ] n>1
retezp — [aezp of ] ezp[(vhen|unless) crp]
wmits — anity; ... nl, n>1
it — pat = exp
range — updates (while|until) exp
| (while|until)aezp updates
| {updates;} inrange
| all wer
updates — updaley; ...;updale, n>l
update |  pat <— exp

inrange — pat in ezp [at var] [(dot|cross|;) inrange]

Array comprehensions are similar to list comprehensions in Haskell. They must not be recursive.
Before providing translation rules for array comprehensions we simplify these comprehensions via
the elimination of ;, at, dot and cross constructs®.

3These examples aim to show semantic equivalence rather than efficient implementation.
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8.4.10.1 Semicolon-Comprehensions

The form
Lexp ;... ;exp,lrange [linits] ] n>1

is equivalent to
concat [Lezp,, ... ,exp,] |range [linits] ] n>1

8.4.10.2 at constructs
Array comprehensions involving the at construct may be simplified as shown below:
[ retezps| ... a in A at /... ]
is equivalent to
[ retezps | ... i in [(diml(A)) .. (Limh(A))].. J[a/AL]

where we use efla/A] to denote the replacement of all free occurrences of a in e with A.

8.4.10.3 dot Loop-Fusion

Array comprehensions involving the dot construct may be simplified as shown below:
[ retezps | ... a in A dot b in B ... ]
is equivalent to

let
hi = maz(_size(A), -size(B)) — 1
in
[ retezps | ... ¢ in [0..hd.. J[a/ALi+ -iml(A)]][6/BLi + _limi B) 1]
e.g. Using the dot construct a dot-product may be written as

dot XY = sumlx *y | x in X dot y in Y]

8.4.10.4 cross Loop-Fusion

Array comprehensions involving the cross construct may be simplified as shown below:
[ ezpl ... @ in A cross b in B ... ]

1s equivalent to
[LLezp | ...0in B ...] 1 ain 4]

If the expression contains a guard or a function of application then the application is transported
to the outer comprehension but the guard is not.

[ e, of eo when e3 | ... a in A cross b in B ]
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is equivalent to
Le; of [ e of e whenes | ... 0in B ... ] | a in 1 ]

An identity matrix could be generated using the cross construct as follows

idM N = [if i==j then 1 else 0 | i in [1..N] cross j in [1..N]]
and all the elements in a matrix could be incremented by 1 via

inc 4 = [1+A[i,j1 | i in [1..M] cross j in [1..N]]
A semicolon between in-ranges defines the cross product of the two ranges d la Miranda, i.e.

Lepl ... ain A ; bin B ... ]

is equivalent to
concat ( [ Lep | ...0in B ...] | ain 1 1)

If the expression contains a guard or a function of application then the application i> transported
outside the comprehension but the guard is not.

[ e of eo whenez | ... ain A ; bin B ... ]
is equivalent to

ei(concat ( [ [ es whenez | ... bin B ... ] | a in 4 1))

8.4.10.5 (for) all Comprehensions

Translation of the keyword all in

> dotProd A B = sum[A[i]#B[i] | all il
proceeds as follows

e All (sic) the all indices are normalised. That is, each array access containing all-variable i is
transformed to the form ai + ¢, where a and c are integer constants. If this is not possible a
static error is returned.

e The lower and upper bounds for each access is calculated as in Section 7.5 and these values
are used in an in comprehension.
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8.4.10.6 in, while and until Comprehensions

The array comprehensions of FSC are very similar to the list comprehensions of Haskell. If we
disregard the fact that Haskell’s list comprehensions are lazy then the Haskell expression

Cer | iy <= I1,Q1(1h),12 <= 1]
is equivalent to the FSC array comprehension
[ €1 when Ql(il) | il in Il;ig in Ig]

However, FSC extends this notation to allow the definition of multiple values and allow iteration. The
manner in which it allows multiple values is that it allows ranges to be shared between computations.
that is,

(sum[i | i in [1..10]1],productli | i in [1..10]])
may be written as
[sum of i,product of i | i in [1..10]]

and the array traversal may be shared between computations. FSC also allows iterations to be
performed within array comprehensions d la SISAL. (This syntax is similar to that proposed in
Chapter 5.) As an example of an array comprehension containing iteration, consider the conjugate
gradient iteration cgIteratiorn function from Section 5.2.4. This may be used to write an iteration

in FSC:

> conj_grad x0 eps A b
> = last[x | (x,p,r) <- cglteration (x,p,r)
> until (norm r<eps)|(x,p,r) = (x0,b-4*x0,p0)]

The remainder of this section details how these expressions may be represented in the FSC kernel.

8.4.10.7 Translations
The following translations (Figs. 8.14-8.19) apply and make use of the following repeat functions:

> repeat :: (s->a)->(s->Bool)->(s->s)->s->[al
> repeat prj p upd init
> = [prj init] ++ if (p init) then repeat prj p upd (upd init) else []

> repeat2 :: (s->a)->(s->Bool)->(s->s)->s->[al
repeat2 prj p upd init

\%

> = if (p init) then [prj init] ++ repeat prj p upd (upd init) else [J
> repeat3 :: (s->a)->(s->i->s)->s->[i]->[al

> repeat3 prj upd init [1 = ]

> repeat3 prj upd init (a <+ A) = prj uia <+ repeat3 prj upd uia A

> where uia = upd init a
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Translation:

The array comprehension

[rvi,...,rvn IWhile (cond )z —ey1;...;2m —em | 2 = iy fm = im ]
is equivalent to
let upd (z1,...,2m) = (e1...., em)

end (21,...,2m) = cond

init = (i1, .. .,i)
pri(z1, ..., 2m) =TEgy, [rvi]

Prin(z1, .., Tm) =TERgy, [rvi]
packl :TERV2 [[T"l)1]]

pack, =TEgy,[[rva]

in

{packi(repeat prjy cnd upd init),.. . ,pack,(repeat pri, cnd upd init))

Figure 8.14: Translation rule for prefix-while array comprehension

Translation:

The array comprehension

[rvi,...,rv, luntil (cond )y —e€y1:...;2m —em L 21 =415 50m =iy ]
is equivalent to
let wpd (z1,...,zm)=1(e€1,-..,€m)
cnd (zy,...,r,m) = not (cond)
init = (4, ..., im)
Zm) =TEgy, [rvi]

pri(ey, ...,

prin(z1, ..., tm) =TErv, [ru]
packy =TEgy,[rvi]

pack, =TEgv,[rv.]
in '
(pack,(repeat prjy cnd upd init),. ... pack,(repeat prj, cnd upd 1nit))

Figure 8.15: Translation rule for prefix-until array comprehension
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Translation: The array comprehension

[rvi,...,rvn |2y —ey;...;2m — e while(cond )| z; = oo iZm = im ]
is equivalent to
let upd (z1,...,2m)=(e1,.-.,€m)

end (21,...,2,) =cond

init = (iy,.. ., im)
prji(z1, ..., 2m) =TEgv, [rvi]

Prin(x1, ..., 2m) =TEgv, [ruvi]
packy =TEgy, [[rv1]

packy, =TEgy,[[rv,]
in

{packi(repeat? prjy cnd upd inil),. . .,pack,(rcpeat? pry, cnd upd inmit))

Figure 8.16: Translation rule for postfix-while array comprehension

Translation: The array comprehension
Crvy,...,7vn |2y —ey;...;m — e until(cond )| £y =iy .iZm = im ]
1s equivalent to
let upd (z1,...,2m)=(e1,...,m)
end (z1,...,zm) =not(cond)
init = (i1,...,im)
pT‘jl(.L‘l,'. Cey Im) :TER\/" [[Tl’lﬂ

PTia(21, -+, Zm) =TEgy, [rui]
packl :TERV:, |Irv1]]

pack, =TEgy,[[rva]
in

(pack, (repeat? prjy cnd upd init),. . .,packy(repeal? prjn cnd upd init))

Figure 8.17: Translation rule for postfix-until array comprehension
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Translation: The array comprehension
[rvi,....700 |21 —eq;...02m — ey ;ind in T | ST PR S S |
is equivalent to
let upd (z1,...,2zm)ind= (e1,...,em)
nit = (i1,...,in)
prii(z1, ..., 2m) =TEgy, [rui]

Prin(21, ..., 2m) =TEgy, [rvi]
pack; =TEgy,[[rvi]

pack, =TEgy,[rv,]
in

(packy(repeat3 prjy upd init I),. .. packy(repeat3 pri, upd init I))

Figure 8.18: Translation rule for element array comprehension

Translation: TEgy, and TEgv, are defined as

TEgy, [ return of e unless p] = if p then [] else [e]
TEgv, [ return of e when p] = if p then [e] else []
TERgv,[ return of e = [e]

TEgv,[ € unless p] = if p then [] else [e]
TErv,[ € when p] = if p then [e] else []
TErv,[ ¢] = (€]

TEgv,[ return of e unless p] = return

TERgy,[ return of e when p] = relurn

TERgv,[ return of e = return

TERy,[ e unless p] = id

TERv,[ e when p] = id

TEgv,[ e] = id

Figure 8.19: Translation rule for array comprehension guards
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Translation: TEpgy, is defined as

TErv, [ return of e unless p] = return
TERy,[ return of e when p] = refurn
TERv,[ return of e ] = return
TERv,[ € unless pJ = last
TErv,[ € when p] = last
TErv,[ €] = last

Figure 8.20: Translation rule for value comprehension guards

8.4.11 Value Comprehensions

iteration — (retvaly, ... ,retval, | range [{inits] ) n>1
retval —  ezp[(whenlunless) ezp]
inits — ity ... inily, n>1
it —  pal = erp
range — updates (whilejuntil) ezp

| (while|until)aezp updates

| {updates;} inrange

| all vaer
updates — updale,; ...;update, n>1
update | pat<- erp
inrange — pat in ezp {at var] [(dot|cross|;) inrange]

Value comprehensions are similar to array comprehensions. Again, they may not be recursive.
(ei(whenjunless)e;., ..., e, (when|unless)e;. | range [l inuts] )
is equivalent to
[last ofe;(when|unless)e., ...,last ofe,(when|unless)eqc | range [}inits] ]

The translation rules for value comprehensions are identical to those of array comprehensions with
the following exception: translation TEgy-, is everywhere replaced by TEgv, (Fig. 8.20). where last
(A +> a) = aandlast [ = L.

8.4.12 previous Value Definitions

In many applications, values from different iterations are used. \While it is possible to express this
fact in the above framework it involves the manual copying of data between iterations which is
syntactically ugly. Hence we introduce the use of the prev modifier which allows access to the value
bound to an identifier in the previous iteration.

The modifier prev is syntactically treated like a function prev :: a -> a but may only ap-
pear within (array/value) comprehensions, and moreover, only those involving while or until
terminators.
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Any number of prev modifiers may be used; e.g. prev (prev (prev x)) is legal and refers to
the value that was bound to r three iterations previously.

8.4.12.1 Example Usage: Newton Iteration

Using a single prev modifier we may write a Newton iteration as:

sqrt :: DOUBLE -> DOUBLE -> DOUBLE -> DOUBLE

sqrt init TOL a = ( x | while (abs(x - prev x) > TOL)
X <- newton a x
Ix = init)

newton :: DOUBLE -> DOUBLE -> DOUBLE

newtona X=(X+a/X)/ 2

VvV V.V V V V

8.4.12.2 Translation

prev-modifiers are translated out by adding extra identifiers to hold the previous values and the
first n iterations performed outside the loop via unrolling (where n is the length of the longest chain
of prev applications). The prev values are then simply updated at each iteration. That is,

> sqrt :: DOUBLE -> DOUBLE -> DOUBLE -> DOUBLE

> sqrt init TOL a = ( x | while (abs(x - prev x) > TOL)
> x <- newton a x

> Ix = init)

is translated to

> sqrt :: DOUBLE -> DOUBLE -> DOUBLE -> DOUBLE
> sqrt init TOL a

> = let

> _newton_a_init = newton a init

> in

> ( x | while (abs(x - _prev_x) > TOL)
> X <- newton a X;

> _prev_x <- x

>
>
>

_prev_x = init;
x = _newton_a_init)

Note: care must be taken to ensure that unrolling of the first n iterations does not cause re-
computation. That is if prev r and prev (prev z)) co-exist then the initialisation should not be
written as
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> let

> _f_init = f init

> _f_f_init = £ (£ init)

> in

> | _prev_prev_x = init;

> _prev_x = _f_init;

> X = _f_f_init

> ]

but instead as

> let

> _f_init = f init

> _f f_init = £ _f_init

> in

> | _prev_prev_x = init;

> _prev_x = _f_init;

> X = _f_f_init

> ]

8.4.13 Let Expressions

Let expressions have the general formlet {d; ; ... ; d, } ine, and introduce a nested, lexically-

scoped, mutually-recursive list of declarations (let is often called letrec in other languages, and
in the translation to the FSC core we also denote recursive declarations via this keyword). The
scope of the declarations is the expression e and the right-hand side of the declarations (Fig. 8.21).
Declarations are described in Section 8.5. Pattern bindings are only allowed on irrefutable patterns.

Translation: The semantics of the expression let {di ; ... ; dn } in e is captured as follows:
After removing all type signatures, each declaration d, is translated into an equation
of the form p; = e;, where p; and e, are patterns and expressions respectively,

Once done, these equalities hold, which may be used as a translation into the kernel:
let {p1 = €1;p2 =€2;...;Pn =€n} in eo
=1let {p1 =e1} in (let {p2 = €2;...;pn = €x} in eo)
where none of p; ...pn appear in €;
let {p1 = e1;p2 = €2;...;Pn = €n} in €o
=1let {p2 =€2;...;pn =en} in (let {pr =€1} in eo)
where none of e; ... p, reference in p;

let {p1 =e€1;p2 =€2;...;pn =e€n} in e

=let {p2 =€2;...;Pn =€n;p1 = €1} in €o
let {p1 =e1;p2 = €2;-..;Pn =€n} in eo

= letrec {p1 = e1;p2 = €2;...;Ppn =€n} in eo

where the p; are mutually-recursive.

Figure 8.21: Translation rule for let expressions
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8.4.14 For Expressions

ileration — for [initial {inits}]|range

for

retezp — [aezp of ]| ezp[(when|unless) ezp]
inits — ity ... inid,
it — pat = ezxp
range,,, — repeat {updaies }(whileluntil) erp
| (whileluntil)aezp {repeat updates)
| {updates;} inrange
| all war
updates — updatey; ... ;update,
update |  pat <~ exp
inrange — pat in ezp [at var] [(dot|cross|;) inrange]

returns (refezrp,, ..

.,reterp,) n>1

n>1

If a lot of information is to be conveyed in an array comprehension then the syntax can get very

cluttered. For this reason FSC also provides for expressions.
For expressions are semantically equivalent to array comprehensions:
for [initial {inits}]range

for

{retezp,, ..., retexp, | range [l inits] ]
8.4.15 Case Expressions

ezp — case ezpof { alisf;]}

alts — alty;...;alts, (n>21)

alt — pat -> ezp [where {decls [;]}]
|  pat gdezp [where { decls [;]}]

gdpat — gd -> ezp [gdpal]
gd — | exp

A case expression has the general form
case e of {pimaichy; ...;pamalch,}
where each match; is of the general form
lgin—>ei1;

| gim—>€im ;
where {decls;}

returns (refexp,, ..., relerp,)

A case expression must have at least one alternative and each alternative must have at least one
body. Each body must have the same type, and the type of the whole expression 1s that type.
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A case expression is evaluated by pattern matching the expression e against the individual alter-
natives. The matches are tried sequentially, from top to bottom. The first successful match causes
evaluation of the corresponding alternative body, in the environment of the case expression extended
by the bindings created during the matching of that alternative. and by the decls associated with
that alternative. If no match succeeds, the result is L. Pattern matching is described in Subsection

8.4.18

8.4.16 Do Expressions

ezp — do domain{actions(;]}
aclions — actiony; ... ;action, n>1
action = — return ezp (unit)
| pat <- ezp {bind)
| ezp
domain — iype (domain choice)

In FSC all side-affecting computations, such as [/O, are carried out via the do expression. This
expression serves a similar purpose to the do-expression in the GoFER language in that it is a
syntactic sugaring for a monad computation. However, in FSC we do not allow user-defined extension
of the do syntax via the use of a monad constructor class, but instead make these an implementation
dependent feature with the type variable immediately after the do keyword selecting which monad
is to be chosen. Although the choice of monads is implementation dependent we insist that the
I/0 monad be available with intrinsic operations prototyped in Appendix H. This explicit monad
naming will aid compilation and simplify error reporting.

8.4.17 Expression Type-Signatures

erp — aexp :: lype

Ezpression type-signatures have the form e::t, where ¢ is an expression and t is a type. They are
used to type an expression explicitly. The value of the expression is just that of ezp. The only rule
FSC specifies regarding the value of ¢ is that ¢ must be unifiable with the principal type deliverable
from exp. It is an error to give a type not comparable to the principal type.

8.4.18 Pattern Matching

Patterns appear in lambda abstractions, function definitions and case expressions. However, the
first two of these ultimately translate into case expressions, and so defining the semantics of pattern-
matching for case expressions is sufficient.
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8.4.18.1 Patterns
Patterns have the syntax:

pat apat

| con fpats
apat  — var{@apat | (as pattern)

| con (arity con=0)

| literal

| - (wildcard)

| O (unit pattern)

| (pat) (parenthesised pattern)

I (paty, ..., paty) (tuple pattern, k > 2)

I [paty,...,pat;] (array pattern, k> 0)

| [paty, ..., paty) (left edge array pattern, £ > 0 )

| (paty, ..., pat,] (right edge array pattern, k > 0)
fpats — {pat,..., pat;}{[fpats] (application pattern, k > 1)

| apat[fpats)

The arity of a constructor must match the number of sub-patterns associated with it; one cannot

Translation: (e;,...,en] is equivalent to
( _+>e1+>ex+> ---€en)

Translation: [ei,...,en) is equivalent to
(e1 <+ ey <+ -+ e <+ _ )

Figure 8.22: Translation rule for arrays

match against a partially applied constructor.

All patterns must be linear, no variable may appear more than once.

Patterns of the form var@pat are called as-patterns, and allow one to use rvar as a name for the
value being matched by pat.

Patterns of the form  are wildcards and are useful when some part of the pattern is not referenced
on the right-hand side. Right and Left edge array patterns are given a translation in Fig. 8.22.

In this chapter we distinguish two kinds of patterns. An irrefutable pattern is a pattern which
cannot fail, such as a variable or tuple. All other patterns are refutable.

8.4.18.2 Informal Semantics of Pattern Matching

Patterns are matched against values. Attempting to match a pattern may result in one of three
results: it may fail; it may succeed, returning a binding for each variable in the pattern: or it may
diverge (i.e. return L). Pattern matching proceeds left-to-right, and outside in, according to the
following rules:

1. Matching a value v against the irrefutable pattern rvar always succeeds and binds var to v.
Matching a value v against the pattern var@apat always fails if matching apat to v fails; and
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diverges if matching apat to v diverges. Otherwise var and the free variables in apal are bound
to the appropriate values from v.

2. Matching L against any pattern (refutable or otherwise) always diverges and, since any value
containing L is identical to L, any value containing L fails similarly.

3. Matching a non-.L value succeeds only if the outermost constructor matches and all the sub-
patterns in the pattern in question also match.

8.4.18.3 Formal Semantics of Pattern Matching

The semantics of all pattern matching constructs other than case expressions is defined by giving
identities that relate those constructs to case expressions. The semantics of case expressions
themselves are in turn given as a series of identities, as shown in Fig. 8.23. Any implementation
should behave so that these identities hold; it is not expected that it will use them directly, since
this would generate rather inefficient code.

In Fig. 8.23 ¢,¢’ and e; are expressions; g and g; are Boolean-valued expressions; p and p, are
patterns; z and z; are variables; A" and A’ are constructors (including tuple constructors): and & is
a character, string or numeric literal.

case eo of { p1 matchy;...;p. match, }

=case eg of { p1 matchy;- -> ... case eo of { pn matchn;_ -> error "no match" }...}
case eg of { - > e;...;- > € }=e¢
case eg of { k -> e;- => ¢’ } = if (eo == k) then ¢ else ¢’
case eg of { z > e;->e }=(\1 ->e) e
case ( K e;...en Y of { (K z1...1,) > € ;- >¢ }=¢,K#K'
case ( K'e1...en ) of { (K z1...7,) -> € 5. => ¢ } =e[r1/er,....znfen] , K =K'
case ( K' ey...en ) of { (K p1...pn) => € ;- => ¢}

=case ( A  e1...en ) of { (K ri...zn) -> case r; of {

pr => ...case zn of { pn D> e; - >} ... _ >} ->e€ )

Figure 8.23: Case expression identities
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8.5 Declarations and Bindings

In this section we describe the syntax and informal semantics of FSC declarations.

module ~— module modid [ezportslwhere body
|  body

body —  {[impdecls;]([fizdecls ;]topdecls [;]]}
|

{impdecls [;]}
topdecls — topdecly;...;topdecl, (n>1)
topdec!l — type simple = type
datatype simple = consirs
class[contert =>]class [where {cbody [;]}]
instance[contezt =>]tycls inst [where {valdefs [;]}]

transformation
decl
decls —  dech;...; decl, (n>0)
decl —  arraydecl
| valdef

Like Haskell, the declarations in the syntactic category topdecls are only allowed at the top level
of an FSC module, whereas decls may be used either at the top level or in nested scope (i.e. those
within a let or where construct).

We divide declarations into three groups: user-defined datatypes, consisting of type and datatype
declarations; type-classes and overloading consisting of class and instance declarations; and nested
declarations consisting of value bindings and type signatures.

8.5.1 Overview of Types and Classes

Like Haskell, FSC uses a traditional Hindley-Milner polymorphic type system to provide a static
type semantics, but the type system has been extended with type classes that provide a structured
way to introduce overloaded functions.

A class definition introduces a new type class and the overloaded operations that must be
supported by any type that is an instance of that class. An instance declaration declares that
a type is an instance of a class and includes the definitions of the overloaded operations (called
methods) instantiated on the named type.

For example, suppose we wish to overload the operation (+) on types INT and REAL. We
introduce a class called PLUS:

> class PLUS (a,b,c) where
> (#) ;s a—>bp > ¢

This declaration may be read “a triple (a,b,c) is an instance of the class PLUS if there is an
overloaded operation (+) of the appropriate types, defined on it.”
We may then declare instances of this class involving REAL and INT:
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> instance PLUS (INT,INT,INT) where
> x +y = addIntInt x y

> instance PLUS (REAL,REAL,REAL) where
> x + y = addRealReal x ¥y

> instance PLUS (REAL,INT,REAL) where
> x + y = addReallnt x y

> instance PLUS (INT,REAL,REAL) where
> x +y = addIntReal x y

where addIntInt, addRealReal, addIntReal and addReallnt are assumed to be primitive func-
tions, but, in general, could be any user-defined function. The first declaration above may be read
“(INT,INT,INT) is an instance of class PLUS as witnessed by the definition for (+)".

8.5.1.1 Syntax of Types

type  —  btype[digif][-> type ]

btype — atype, ... alype, (arity tycon = k. k£ 2>1)
| atype
atype — tyvar
|  tycon (arity tycon = 0)
| O (unit type)
| (type) (parenthesised type)
| C(typey, ..., typey) (tupl: type k > 2)
| Ctypel (array type)

The syntax for FSC type expressions is given above. They are built in the usual way from type vari-
ables, function types, type constructors, tuple types, and array types. Type variables are identificrs
beginning with a lower-case letter and type constructors are identifiers with an upper-case letter.

The array type [t] (also written Array t ) is an array with element type {. The caret may be used
in types as a short hand for multiple function construction.

> fal-0 = ()

> [al-1 = [a]

> [al-2 = [a] -> [al

> [a]l"3 = [a] -> [a]l -> [al
>

All type variables are taken to be implicitly universally quantified except those in class declarations
which are explicitly existentially qualified.
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8.5.1.2 Syntax of Class Assertions and Contexts

context — class

| (classy, ..., class,) (n>1)
class —  tycls(type,, ..., type,) (n>1)
tycls —  conid

A class assertion has the form tycls(type,, ..., type,) and indicates membership of the tuple

(type,, ..., type,)

in the class tycls. A class identifier begins with a capital letter.
A context consists of one or more class assertions, and has the general form

(Crus,....Coup)

where C1, ..., C, are class identifiers and the u;, ..., u, are n-tuples (n > 1) of types. As in Haskell.

we use ¢ to denote a context and write ¢=> ¢ to indicate the type t restricted by the context c. Note

that, unlike Haskell, FSC does not enforce explicit contexts in user provided type declarations.
Further details of FSC type classes were given in Chapter 7.

8.5.2 User-Defined Datatypes

In this section we describe algebraic datatypes (datatype declarations) and type synonyms (type
declarations). These declarations may only appear at the top level of a module.

8.5.2.1 Algebraic Datatype Declarations

topdecl — datatype simple = conslrs

stmple — tycon tyvar,...lyvar, ¢ (arity tycon =k, k > 0)
constrs — consiri| ... |constr, (n>1)

constr — con atype, ...alype, (arity con =k, k > 0)

Infix /suffix constructor functions are handled in exactly the same way as infix/suffix identifiers.
An algebraic datatype declaration introduces a new type and constructors over that type and
has the form
datatype T uy... ux= Ky tq.. Al I Kp thy - -tok

The type variables uj ... u; must be distinct and may appear in the t;;. It is a static error for any
other type variable to appear in the ;;.
For example, the declaration

datatype Tree a = Leaf a | Branch (Tree a) (Tree a)
introduces a new type constructor Tree and constructors Leaf and Branch with types

Leaf :: VYa.a — Tree a
Branch :: Va.Tree a — Tree a — Tree a
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8.5.2.2 Type Synonym Declarations

topdecl — type simple = type
simple  —  tycon tyvar, ...tyvar, (arity tycon =k, k > 0)

A type synonym declaration introduces a new type which is equivalent to an old type and has
the form
type T uj...up =t

which introduces a new type constructor 7. The type (T t,...t;) is equivalent to the tvpe
tti/u1, - ., tx/ux]. The type variables u; must be distinct and are scoped only over £. It is a
static error for any other type variable to appear in t. As in Haskell, mutually recursive type
synonyms are disallowed. In essence type declarations declare a new name for an existing type.
datatype declarations create a brand new type.

8.5.3 Type Classes and Overloading
8.5.3.1 Class Declarations

topdecl — class [contert =>]class [where { cbody[;]}]

cbody — csigns

csigns  —  csigny;...; csign, (n>1)
csign  — vars :: [contert => type

vars — vary,...,var, (n>1)

A class declaration introduces a new class and the operations on it. A class declaration has the
general form:
class C u where { vy :: ¢ =>11;...; va :: €2}

This introduces a new class name C; the type variable u is scoped only over the method signatures in
the class body. The class declaration introduces new class methods vy,....v, whose scope extends
outside the class declaration.

Two classes in scope at the same time may not share any of the same methods as otherwise an
overloaded method could not be attribued uniquely to a class.

8.5.3.2 Imstance Declarations

topdecl — instance [context =>]tycls inst [where { valdefs [;] }]
inst —  lype

valdefs — wvaldefy;...; valdef, (n2>1)

An instance declaration introduces an instance of a class.
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8.5.4 Transformation Declarations

FSC also has top level transformation declarations. However, these form a supershell to FSC and
are discussed in the next chapter.

8.5.5 Nested Declarations

The following declarations may be used in any declaration list, including at the top level of a module.
8.5.5.1 Type Signatures

decl — wvars:: iype
vars —  vary,...,var, (n>1)

A type signature specifies the types for variables. A type signature has the form:
Ty,...,&n 2t

which is equivalent to asserting z; :: ¢ for each of the i. Each r; must have a value binding in the
same declaration list that contains the type signature; i.e. it is illegal to give a type signature for a
variable bound in an outer scope. Moreover, it is illegal to give more than one type signature for a
variable.

As mentioned earlier, every type variable appearing in a signature is universally quantified over
that signature, and hence the scope of the type variable is limited to the type signature that contains
it.

A type signature for £ may be more (or less) specific than the principal type derivable from the
value binding of z, but it is an error to give a type that is incomparable to the principal type. If a
more specific type is given then all occurrences of the variables must be used at the more specific
type, or at a more specific type still. The aim of this feature is to allow the user to offer a type
signature without having to provide type class constraints.

8.5.5.2 Function and Pattern Bindings

decl —  valdef
|  arraydecl

valdef — lhs = erp [where { decis;]}]
lhs gdrhs [where { decls[;]}]

ths —  pat
|  funlhs

funlhs — var { apaty,...,apat, }{( { apat,..., apat;}|apat)}
|  apat apat {apat}

gdrhs — gd = exp[gdrhs]

gd —  lexp
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We distinguish two cases within this syntax: a patfern binding occurs when the ks is pat; otherwise,
the binding is called a function binding. Binding may either appear at the top level of a module. or
within a where or let construct.

8.5.5.2.1 Function Bindings A function binding binds a variable to a function value. The
general form of a function binding for variable z is:

T P11 .- Pk matchy
z Pn1 --- Pnk malch,,
where each p;; is a pattern, and each match; is of the general form:
= ¢ where {decls }

or
I gin = e
| gim = Cim
where {decls;}

The set of patterns corresponding to each match must be linear (no variable is allowed to appear
more than once in the entire set) (Fig. 8.24).

Translation: The general binding form for functions is
semantically equivalent to the equation:

z £, T2 ... Ik =case {z1,T2,...,Tx)of (p11,p12,- .-, P1x)ymatch

(Pm1,Pm2, ... Pms)matchn

where the r, are new identifiers.

Figure 8.24: Translation rule for function bindings

8.5.5.2.2 Pattern Bindings A pattern binding binds variables to values. A simple pattern
binding has the form p = e. The general form of a pattern binding is p match, where match is the
same structure as for function bindings above; i.e.

p g =e
I g2 = e2
| 9m = em

where {decls;}
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which is semantically equivalent to:

p= 1let decls in
if g; then e; else
if g, then e, else

if ¢gn then e, else error "Ummatched pattern”

Since FSC does not have the concept of lazy binding it is suggested that refutable patterns are not
used in pattern bindings, although this is not enforced. That is. it is considered dangerous to use a
pattern involving a constructor if that constructor does not span the datatype.

8.5.6 Array Declarations

arraydecl — array [var [[bnd]..bnd][ordering][mutezp]where ] vardecls
vardecls —— {wardecl;...;vardecl}
vardecl — war [p;, ...,pnlgrhs[where {decls[;]}]
| wvar[p1,...,pnl= explwhere {decls[;]}]
ordering — ordered ords
mutexp — overwrites vary {vary # var)
ords —  ord {(then|and)ords}
ord — by var in exp iteration
| teratlion
bnd —  (expy,...,ezp,) (n>1)
—  exp

An alternative to an array comprehension is an array declaration. Whether to use array declarations
or array comprehensions is often a matter of taste, as many forms are equivalent,

> array x[i] = a[i]

The extent of 7 is implicitly quantified by the bound of array a. This quantification may be made
explicit:

> array x[1..10] where x[i] = a[il
Non-recursive array declarations are translated as follows
array rfiy,....ixJ= €

1s equivalent to
r= [...[el all ix3...1 a1l 2]

If the quantification is made explicit the all-comprehensions above are replaced by in-comprehensions.
Array definitions may be written in the same manner as functions. with recursive definitions being
allowed. An example would be a wave-front computation:
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array A[(1,1)..(N,N)] where

Al1,5) =1
Ali,1] =1
Ali, 3] = A[i,j-1] + Ali-1,j-1] + Ali-1,3]

Note: Recursive array definitions cannot be implicitly bounded. These declarations are transformed
into a worker function which recursively passes a data array (and possibly a tag array) in a single-
threaded manner and a wrapper which returns only the array component of the computation. For
further discussion of recursive array declarations see Chapter 7, where this process is discussed at
length.

8.5.7 Input/Output

The 1/0 system in FSC is purely functional. yet has the expressive power of conventional language
1/0 systems. This is achieved via the use of a monad to integrate the 1/O operations into a purely
functional context.

The 1/0 monad used by FSC mediates between the values natural to a functional language and
the actions which characterise I/O operations and imperative programming in general. The order of
evaluation of expressions in FSC is constrained only by data dependencies; an implementation has
a great deal of freedom in choosing this order. However, actions must be ordered in a well-defined
manner for program execution and I/0 in particular to be meaningful. The type of main, and hence
the type of the program, must match the signature a; — ... — a, — 10(3;,....: 3m). where m > 0
and n > 0. In addition there is a special value argv :: [String] which may be used in main to access
command line arguments. The number of command line arguments is the length of the array argv.

The arguments to main are interpreted as initialisation arguments to be given at runtime in
FSC syntax.

8.5.8 Static Semantics of Functional Pattern Bindings

The static semantics of function and pattern binding lists is discussed in this section.

8.5.8.1 Dependency Analysis

As with Haskell, in general the static semantics are given by the normal Hindley-Milner inference
rules, except that a dependency analysis transformation is first performed to enhance polymorphism,
as follows. Two variables bound by value declarations are in the same declaration group if either

1. they are bound to the same pattern binding, or

2. their bindings are mutually recursive (perhaps by some other declarations which are also part
of the group).

Application of the following rules causes each let or where construct to bind only the variables
in a single declaration group, thus capturing the required dependency analysis:

1. The order of the declarations in a where/let construct is irrelevant.
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2. let {di;d>} in e=1let {d1} in (let {d>} in )
(when no identifier bound in d3 appears in d;).

8.5.8.2 Type Inference
The type inference used by FSC is described in Chapter 7, with the following post-inference check:

o All recursive bindings (bindings inside a letrec) must be proved to have a tyvpe which is a
specialisation of o — S.

The consequence of this is that
fx=1fx

is a valid (albeit foolish) FSC declaration as its type is Va, 3.0 — 3. However the same declaration
after 7-reduction:

f=1

is not valid as its type is Va.a. This measure is to prevent non terminating computations. All
recursive arrays are translated to recursive functions and so this measure does not effect them.

8.6 Modules

A module defines a collection of values, datatypes, synonyms, classes and transformations?, and
exports some of these resources, making them available to other modules. We use the term entity
to refer to the values, types and classes defined in, and perhaps exported from, a module.

Each FSC program is a collection of modules, one of which, like Haskell, must be called Main
and must export the value main. The value of the program is the value of the identifier main in
the module Main, and main must have type

o) — ...— a, — I0(F....,0m) (n,m>0)

(see Chapter 7).

Modules may reference other modules via explicit import declarations, each giving the natue
of the module to be imported, specifying its entries to be imported. Unlike Haskell, modules may
not be mutually recursive for compiler and specialisation simplicity.

The name-space for modules is flat, with each module being associated with a unique module
name of lexical type conid.

8.6.1 Overview

Like Haskell, a module consists of an interface and an implementation of that interface. The
interface provides complete information about the static semantics of that module, including type
signatures, type declarations and class definitions. If a module A/ imports modules ;. Ma, ... \n
then all information needed to compile Af to an object is provided in M;. Ma,..... V.

4For transformations see Chapter 9.

175



8. Definition of FSC 8.6. Modules

8.6.2 Module Implementations

A module implementation defines a mutually recursive scope containing declarations for value bind-
ings, data types, type synonyms, classes, etc.

module  — module modid {ezports|where body
| body
body —  {[impldecls ;][[fizdecls ;]topdecls [;]]}
| {lsmpldecls [;]}
modid —  conid
impdecls — impdecl;;...;impdecl, (n>1)
topdecls — topdecl;...;topdecl, (n>0)

A module implementation begins with a header: the keyword module, the module name. and
a list of entities (enclosed in round parentheses) to be exported. The header is followed by an
optional list of import declarations that specify the modules to be imported. This is followed by
an optional list of fixity declarations and the module body. The module body is simply a list of
top-level declarations.

As in Haskell, an abbreviated form of module is permitted, which consists only of the module
body. If this is used the header is assumed to be module Main where.

8.6.2.1 Export Lists

exports — (export,,..., export,) (n>1)

ezport  — enlity
modid

enlily — wvar

tycon

tyeon(..)

tycon(cony, . ..,cony,) (n>1)
tycls

tycls(..)

tycls(vary, ..., vary) (n>0)

An ezport list identifies the entities to be exported by a module declaration. If the export list
is omitted than all top-level declarations defined in that module are exported.

The FSC export system is similar to that found in Haskell and similarly the exported definitions
must possess closure, e.g. it would be a static error to export a function £::a -> Tree and not
export the datatype Tree.
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8.6.2.2 Import Declarations

tmpdecl — import modid

The entities exported by a module are brought into scope with an import declaration.

8.6.2.3 Abstract Datatypes

As in Haskell abstract datatypes are constructed via the use of the module system to export a
datatype but not its constructors. This datatype is accessed though the functions which are also
exported from the module.

8.6.2.4 Fixity Declarations

fizdecls — fiz(;. . .; fiz, (n>1)

fiz infix [integer]vars
infixl [integerjvars
infixr [integer]vars
prefix [infegerjvars
suffix [integer]vars

-

vars — vary,...,var,

A fixity declaration gives a fixity and a binding precedence of a set of operators. Fixity decla-
rations may appear only at the start of a module and may only be given for identifiers defined in
that module. Fixity declarations may not be overwritten and an identifier may only have one fixity
declaration.

There are five kinds of fixity, non-, left-, right-, pre- and post-, and an integer precedence with a
range of at least [0..1000]. If the precedence is omitted a precedence of 1000 is assumed.

8.6.2.4.1 Example The infamous factorial example may be written:

> suffix !

> (') :: INT -> INT
> oy =1

> n! = product[1..n]

where product is defined in the standard prelude (see Appendix H).



Chapter 9

Implementation of FSC

In this chapter we discuss how various aspects of FS(" may be implemented

9.1 2"-order Lambda Calculus

As part of compilation it is suggested that the code be transformed into a form similar to an extended
second-order lambda calculus[36]. That is, types are treated as first-order objects and identifiers are
cxplicitly typed, i.e. rather than

Identifier z

Expression ¢ = =
| €1 €9
| Ar.e
we have as our calculus
Identifier T
Expression ¢ = uT
! €y v
| Ar.e
| Ate
| elr]

where ¢ is a type variable and 7 is a type. The code

f::a->a
fy=idy

Is translated to

and then to
f:VYa.a —a=\ao.(Ay.((id: V3.3 — I)[e]) vy : o)
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id:Vo.o—>o [> D
f:Vo.o—o D

Figure 9.1: Needs analysis 1

map : Vo,p.(a—>B)—>[a]->[B] I:> g

Figure 9.2: Needs analysis 2

This use of A also matches our view of polymorphism in that we view f to be a function which
must be made monomorphic before being evaluated. The use of this extended calculus allows us to
reserve type information after type inference and overloading resolution.

9.1.1 Needs Analysis

During compilation, a database of dependencies should be kept. We call the building of this database
needs analysis. Needs analysis is the creation of a parameterised database entry for each identifier,
and type, which details the entities which are needed to evaluate it. Note: These identifiers should
only be the free variables within a function body and variables bound by lambda abstractions should
not be entered into the database. The identifier itself should not be entered into the database on
multiple occasions unless it has different types bound to it. That is, a recursive function such as map
should not have any identifier needs but a method instance of a type class which calls a different
instance of the same method should. Figs. 9.1, 9.2 show the entries for id, f and map respectively.
The function

> instance PLUS(a,b,c) => PLUS((a,a),(b,b),(c,c)) where
> (a1,a2) + (b1,b2) = (al+bl,a2+b2)

has an entry shown in Fig. 9.3. With an abstract version of the source code, these entries may

+:3 PLUS (o, B,1)=> (,o)—>(B.B)y—>(v. 1 D

+ < TR

: [0,B.Y]

Figure 9.3: Needs analysis 3
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be used to generate specialisations of functions on demand which can be appended to an existing
library. The entry in Fig. 9.3 may be read as “to build an instance of plus which adds pairs of type
a to pairs of type b returning pairs of type ¢ there must exist the tvpes a. b and ¢ and an instance
of addition from a and b to ¢”.

9.1.2 Boxing

Because of the emphasis we place on efficiency. boxing should not be used in an implementation
and specialisations should be generated. Results in Chapter 5 show this not to be a problem in the
numerical domain.

9.2 Target Language

It is suggested that FSC be compiled to SISAL, or more specifically SISAL 90, as:
o SISAL has features similar to the FSC kernel.

¢ Mature implementations exist on architectures including PC's. shared memory multi-processors
and vector architectures.

o Experimental implementations exist for distributed memory machines.
e SISAL is implicitly parallel.

o Efficiency is comparable with C/Fortran on uniprocessors and often better than C on multi-
processors [18].

o SISAL has iteration constructs so transformations such as the linear expansion theorem (LET)
[32] may be viewed as source to source.

e SISAL has a primitive foreign language interface.

e SISAL90 has all the features needed for a simple kernel language including higher-order func-
tions, case expressions and user-defined reductions.

Interest in SISAL itself seems to be dwindling. However, currently, there seems to be much interest
in the use of SISAL as an intermediate parallel language for compiler construction [7]. Although
SISAL is an applicative language, its foreign language interface allows the use of non-pure functions.
In FSC this feature is not available to the user although this is wrapped up to provide 1/O. We
suggest that FSC be compiled down into an efficient SISAL kernel in a manner similar to that
described in Chapter 8.

9.3 Input/Output

Input to and output from FSC programs is handled via the generation of a parser and a printer. If
an FSC program has the type
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> main :: Int -> Tree INT -> I0 (Tree DOUBLE)
i.e. it reads and writes the user defined datatype Tree
> datatype Tree a = Leaf a | Branch (Tree a) (Tree a)

then the implementation should generate a parser accepting an integer followed by a tree of integers
(on stdin) and should also generate a pretty printer to display a tree of doubles.

9.3.1 Format
If £sc.out is an executable with an entry point main
> main :: x -> ID (x)

for some monomorphic type x then program-output is grammatically correct program-input (pro-
vided that there is no I/O within the program body). Moreover, the I/O end points are grammati-
cally correct FSC-expressions of type x.

9.4 Parallelism

Since SISAL is an implicitly parallel language it would be foolish for FSC not to try to retain this
implicit parallelism. In SISAL, functions are split into two categories

¢ Reductions
e Normal (non-reducing) Functions

Reductions accept the output of an iteration and reduce it. in parallel, to a single value. In SISAL
these functions cannot be applied simply to arguments and, similarly, functions cannot be applied
to the result of an iteration. FSC has no concept of a reduction and all functions may be applied
to the output of an iteration. However in order to harness SISAL reductions it is suggested that
applications of the function reduce :: (a -> a -> a) -> (() -> a) -> [a]l -> a be used to
denote reductions, that is, the definition

> sum :: PLUS(a,a,a),ADDID(a) => [a] -> a
> sum = reduce (+) zero

defines a reduction and, if applied to an iteration, will reduce the iteration in parallel using addition,
otherwise it will create an iteration across its argument and reduce this in parallel. Unfortunately
this relys on the existence of user defined reductions and hence requires translation to SISAL90.
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9.5 Higher Order Functions

It is suggested that higher order functions be in-lined as much as possible as these constitute a major
efficiency overhead. Both recursive and non-recursive parameterisation! may be easily compiled out
via partial evaluation. That is, the function

> map :: (a->b) -> [a]l -> [b]
> map f xs = [f x | x in xs]

which we regard as being non-recursively parameterised, may be in-lined, and the function

> map :: (a->b) -> [a] -> [b]
> map £ [] =[]
> map £ (x <+ xs) = f x <+ map f xs

which we regard as being recursively parameterised, may be specialised around the function £.

9.5.1 Non-Parameterising Higher Order Functions

Occasionally an example of a non-parameterising higher order function arises although it may easily
be rewritten. The function

contrived :: (INT->INT) -> (INT->INT) -> (INT->INT)
contrived f g | £ 0 == 1 = contrived g (f.g)
| £ 1 ==1 = contrived (g.g.f) (g.f)
| otherwise = (g.f)

vV V. V VvV

is such an example. Pointers to these functions may be stored in a closure together with an environ-
ment in which it has been partially applied. However, we do not envisage the need to generate this
type of code very often as the type of example given above does not frequently occur in our domain
of interest. Alternatively higher order functions may be implemented directly if SISAL 90 is used
as the resulting intermediate language.

9.6 Specialisation and Separate Compilation

The use of specialisation as a method for compiling polymorphic functions is easy to understand.
However, specialisation relies on a priori -knowledge of the complete call path for an executable.

1Definition: A Parameterising function is a function in which all recursive function applications withing the body
exhibit at least one constant argument which itself is a parameter to the function. This argument must be at the
same position for all applications and definitions.
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> id :: a -> a

> id x = x

> f::a->a

> fy=idy

> main :: INT -> IO INT

> main x = do I0 {return id (f x)}

e An implementation based on specialisation initially checks that main has a monomorphic type
and generates a set containing the single element {main::INT-> I0 INT}.

¢ Next, it adds to the set the specialisations needed by the elements already contained in the
set.

o This last step repeats until the process converges on a fixed point.
This fixed point is the set of required specialisations. In the above example the set is initially
S = {main:: INT -> IO INT}
Next the functions called by main are added
S = {main:: INT -> IO INT,£f::INT -> INT,id::INT->INT}

and the functions called by £ and id. In this example the only extra function called by either of
these is id, which is called by £. More specifically, the polymorphic function

f i Vaa—a
makes a call to the monomorphic function
d:a—a«

The type instantiated on f must be carried through to id and since main requires an instance of £
with its type instantiated to INT -> INT it also requires an instance of id with its type instantiated
to INT —-> INT. Since such an instance of id is already in the set, and since there are no other calls
in the tree, we have reached the fixed point and the set of required instances is

S = {main:: INT -> IO INT,f::INT -> INT,id: :INT->INT}

9.6.1 Separate Compilation

Specialisation is not directly compatible with separate compilation. If the example from the previous
section was divided into three files, one for each function, then only the file containing main could
be compiled independently of the others. This tends to suggest that the use of libraries containing
polymorphic functions would prove problematic if not impossible. This issue is tackled in the next
nextion.
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Source 1 Sowrce2 @00} — = = = = = = = = = Souarce N
o O o =
Object 1 Object2 | = — — — — — — = — — Otyect N

Exccutable

Figure 9.4: Standard compilation

9.7 Library-Based Separate Compilation

In the previous section we identified the problem which specialisation poses. This arises from consid-
ering separate compilation as divided object-file-wise (Fig. 9.4). If, however, we consider compilation
to be arranged into libraries rather than objects we may initially start with an empty library and
incrementally add to it provided we have some abstract code with enough information to generate
further specialisations (Fig. 9.5). Linkage of precompiled objects may update these objects and
may extend the number of specialisations in a library. At this point, of course, no type checking is
necessary as all the source is in an abstract, typed form.

9.8 Transformations and Derivations

In this section the nature of transformations used in the FSC system is discussed. However, before
discussing how such a system may be implemented we discuss its properties and the features it
should support. The following features form part of the FSC language, however their development
is currently not part of any compiler. To a large extent this section could be considered as further
work. We include it here however as it is part of the FSC definition with only the implmentation
and usefulness in practice requiring further investigation.

9.8.1 Rewrite Rules

The form that transformations in FSC take is similar to other systems [15. 14, 33] in that they
consist of a series of rewrite rules of a pattern to match and a replacement expression. For example:

TRANSFORM(z et a)[zmeta A True] = [zmetal
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Source 1 Source2 0| — — — — = = - = = Source N

Compliaton

Abstract Library 1 Abstract Library 2 Abstract Library N

Source | Source 2 Source N

Linking

Exccutable

Figure 9.5: FSC compilation strategy
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and
TRANSFORM(Imeta)HImeta *1] = [z metal

both form valid transformations. The identifiers in parentheses denote variables in the transforma-
tion which must be bound to expressions before they are used. Any free variables relate to globally
scoped identifiers. The following is illegal )

TRANSFORM(z1et2)[0] = [zmetal

since £ does not have a value bound to it before it is used. For convenience, in the rest of the
discussion we shall omit the meta-tag notation. To guarantee the preservation of correctness, the
following property must hold for all expressions e

EVAL(TRANSFORM(zy, ..., z,)[pat.] = [replacemeni](¢)) = EVAL(e)

i.e. a transformation must not alter the value associated with an expression. This property must be
checked by the user when defining transformations. Unfortunately, demanding that transformations
exhibit this property in a strict semantic framework prevents us from defining useful transformations

such as
TRANSFORM(z)[[x A False] = [[False]

or

TRANSFORM(z)[[z + 0] = [0]

However a weaker version of the above property can be used which allows such transformations.
This rule is that the transformation should not reduce the information content of an expression:

EVAL(e) < EVAL(TRANSFORM(x1, ..., z,)[pat] = [repl](e))
or, more precisely
EVAL,,.i..(e) X EVAL(TRANSFORM(z1, . ... z,)[pat] = [rept](€)) < EVAL cnicni(e)

That is, if the expression fails to terminate under applicative order evaluation but terminates under
lenient order evaluation a transformation may convert it into an expression which terminates under
applicative order evaluation. This is shown in Fig. 9.6 where three examples of spurious trasfor-
mations are shown. Two of these transformations are invalid (bold top and middle) due to the fact
they transform one value to a completely different value. The other (bold bottom) is spurious as it
reduces the information content in an expression.

The FSC transformation system may be regarded as an interpreted language which executes
at compile time. More precisely, the transformation system in FSC transforms 2"¢-order extended
lambda calculus expressions to another 2"%order extended lambda calculus expression and since
FSC is a heavily overloaded language, must preserve type information.

Our first example

TRANSFORM(z)[[x A True] = [[z]
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is actually a sugared version of the following transformation

TRANSFORM(z, 7y )[z ATrue] |  [z] =7
A [z ATrue] i 7y

= [=]
A slightly more complex example is the solution of a linear system
TRANSFORM(A, z)[A™! # 2] = [solve(4, z)]
which is translated to

TRANSFORM(A, z, 71, o, T3)[A ™} * z] 4] = n

|
A fz]m

AN [Alxz]um

A Jfsolve] :: (11, 72) — 13
= [solve(4, )]

That is, all subexpressions should have a type associated with them and all newly introduced free
variable identifiers should have their existence checked.

9.8.2 Predicates

There is a set of predicates associated with transformations to test expressions {id,const,app,...}
which can be used to test individual terms. New predicates may be introduced as follows:

PREDICATE(z)[simple(x)] = var(x) V const(z)

PREDICATE(z)[[anything(z)] = True

9.8.3 Evaluation

EVAL declares we trust a function and that function should be evaluated at compile time were it to
be applied to constant arguments. For example,

EVAL[+ :: INT — INT — INT]
declares that addition of integers is a safe function to evaluate.

9.8.4 Derivations

Transformations of the same level are applied in textual order and transformations of different levels
are applied in level order, i.e. it is possible to interpret levels as priorities. Composite transformations
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may also be built up by enclosing a list of transformations in braces and the transformations will be
composed, that is,
TRANSFORM

TRANSFORM(zy, ..., z,)[pat,] = [repl,]:
TRANSFORM(y1, . .., yn)[pat,] = [repl,]
}

is equivalent to:

(TRANSFORM(y1, . - ., yn)l[pat,] = [repl,]) o (TRANSFORM(zy, . .., z,)[pat,] = [repl,])

9.8.5 Subconditions

It is sometimes neater to have subconditions in a transformation, e.g.
TRANSFORM(y, a, r)ax r +axy] = fa*(z + )]
could be extended to encompass a commuting * and written as

TRANSFORM(z,y, :1,:2,a)[c+ 9] | ([a=:z1] is [z]V [z1+a] is [z])

A ([a=*22] is [y] v [:2+*a] is [y])
=> [a*(21+:2)]

Which reads: If an expression matches r + y for some z,y then if £ matches either a * z1 or z1 *a
for some a, zland y matches either a * z2 or z2 x a for some :2 and for the a bound previously then
the complete expression may be replaced with a * (z1 + =2). A more general example could be

TRANSFORM(f, z,y,e,v.2,y)[f 2 y] |  [e] in [z]
[e] in 3]
[v] is new
[+ is [[]/[])[=]
[v] is ([v]/[elil¥]
[let v=e in f &' ¥]

40>>>>

9.8.6 Required Features
To be able to support the above system we need:
o The forms ::, 3, is and in.

The notion of substitution.

The notions of Success and Failure.

¢ A unique name supply.

The notion of backtracking ¢ la Prolog.
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o The ability to compose transformations.
o The “logical” connectives -, A and V.

We place the word “logical” in quotes as these connectives do not behave exactly like =, A and
V over simple variables. For example within a transformation the statement Va.~(—a) = a is not
everywhere valid. However, Va.—~(—(-a)) = —a is everywhere valid. The reason for this becomes
clear if we view the success state as success with a sel of bindings and the failure state as binding-le-s.
Negation either constructs a trivial success state from failure or constructs failure from a success
state. However, for premises 71, 72 in which no binding occurs

~(-m) = 7
—!(Tl vV Tg) = 7N A M Ta

do hold, and for all premises (regardless of binding) the following laws hold:

(AANB)V(AAC) = AAN(BV(QO)
(AABYAC = AAN(BAQ)
(AvB)VC = AV (BV()

AA—-4 = Failure
AANAdA = A
AvAa = A4

~(=(~4) = -4

9.8.7 Translation

The translation of these transformations is easily carried out in terms of a fransforming monad
interpreting each as a T-resultric function, i.e. a transformation is typed

Ezpression — T(Ezpresston)

for some type constructor T. If we form a monad with a notion of Success/Failure from T, then we
may interpret the conjunctions in our transformation as sequencing, i.e.

TE[f A gl = TE[f] >> TE[g]
and interpret the result similarly
TE[f = ¢] = TE[f] >> TR[g]

That is, (f A g) or (f = g) succeeds if f succeeds and then g succeeds. Disjunctions are handled
similarly by considering monads with the combining operation -++,

TE[f Vv ¢] = TE[f] + +TE[g]
That is, (f V g) can only fail if both f and g fail. Here the combinators >> and ++ are typed

++::Ta—Ta—Ta
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and
>>:Ta—Tb—T5bH

We give a concrete definition of these presently. Interestingly we find that Kleisli composition is also
useful in this area:

TE[TRANSFORM{ty;. . .;1,}] = TE[ta] = - - - = TE[t,]

We may model pattern matching and the introduction of variables via the addition of the func-
tions variables and match, which introduce variables and bind expressions to patterns respectively.

TE[TRANSFORM(z:, ..., z,)[pat.]|guards = [repl]]
= Ar. variables [z1,...,z,] >>
match TP[pat] = >>
TE[guards = [repl]]

We also have a function subExps which binds sub-expressions to identifiers and we have the following

translation
TE[[z] in [y]] = subExps TPz] TT[y]

TE[[[z] is [y]] = match TP[+] TT{y]

where TT evaluates the bound variables and TP evaluates and renames the bound variables so they
cannot interfere with program variables.

9.8.8 Building Transformations

Before proceeding further we model our transformation system and build simple expressions. This
model takes the form of a Haskell script. Initially we see that a transformation with suitable unit
and bind operations forms a monad.

type Transformation = Expr -> T Expr

The monad is formed from (T,>=::T a -> (a => T b) -> T b,unit::a -> T a) and we gain
Kliesli composition (.*.) and sequencing (>>) in the usual manner

> (+#)::(a->Tb)>@®->T¢c)—>(a->Tc¢c)
> f . x. g =\x >fx>=g

> (>>)::(T a) => (Tb) > (T b)

> £> g =£f>=\_->¢g

9.8.8.1 Transformation Monads

For pragmatic reasons we need to be able to put some upper bound on the amount of time/resources
that are allocated on transformation. With this in mind we define T as

> type T a = Int -> Int -> ... > (Int,Int ... a ... )
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i.e. an execution count and upper bound are threaded through the computation. In fact we want
it also to include an environment, a bound-variable list, a unique variable supply, a dictionary of
functions and also model several interpretations of the same transformation. Thus, we define T-as

> type T a = Count ->
> Bound ->
> Dict ->
> Uniq ->
> BVL ->
> Env -> ((Dict,Bound), [(Count,Uniq,BVL,Env,a)])

9.8.8.2 Building Blocks

Now that we have a simple type which models transformations, we consider how transformations
may be constructed. Our first building block is the identity transformation unitTrans. i.e. it always
succeeds, has only one interpretation, and does not affect an expression

unitTrans :: a > T a
unitTrans exp = \i j dic u bvl env —>
check j dic [(i,u,bvl,env,exp)]

check j dic [1 = ((dic,j),[])

check j dic ((i,u,b,en,ex):xs)

= if i < j then let (_,xs’) = check j dic xs
in ((dic,j),(i+1,u,b,en,ex):xs’)
else check j dic xs

V VV V V V VYV

We can also define a transformation zeroT which always fails:

> zeroTrans :: a -> T a

> zeroTrans exp = zeroT

> zeroT :: TDH

> zeroT = \i j dic u bvl env -> ((dic,j),[])

We now look at how transformations may be built from other transformations and from values of
type T a. We first define the monadic combinator bindTrans.

bindTrans :: Ta > (a->Tb) >Thb
bindTrans r t =
\i j dic u bvl env ->
check dic j (concat [ (snd’.t) e i’ j dic u2 b2 e2
| (i’,u2,b2,e2,e) <- (snd’ r) i j dic u bvl envl)
snd’ f =\i jdube->casefijdubeof (_,x) >x

VvV V V V VYV

Thus the triple (T,bindTrans,unitTrans) forms a monad-like structure? which, after performing
a set (normally very large) number of transformations, returns failure.

2This is not an actual monad as the pragmatic execution count violates the monad laws. i.e. bindTrans x
unitTrans = x is not always valid as the last unitTrans could cause the execution count to exceed the limit.
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0.8.8.3 Success and Failure

Success and failure may be easily coded as:

>
>

successT = unitTrans ()
failureT = zeroT

9.8.8.4 Negation

Negation may be coded as:

VvV V V V

neg :: Ta->T ()
neg t = \i j dic u bvl env -> case

t i j dic u bvl env of

(_,[0) -> check j dic [(i,u,bvl,env,())]

9.8.8.5 Existence

-> check j dic [J

The existence of an identifier can be checked by looking in the dictionary which is carried throughout
the monad. This dictionary should contain all prototypes for all identifiers in scope.

9.8.8.6 Evaluation

Evaluation of functions is carried out by carrying the abstract source for the evaluatable functions in
the dictionary and interpreting it at compile time. As such, the abstract source for these functions
should be exported as part of the module interface. This interpretation should update the threshold
variable to avoid non-termination.

9.8.8.7 Connectives

We define V, A as:

>

vV V. V V V

t1 .\/. t2 = addTrans ti1 t2

a ./\. b = bindTrans a (\_ -> b)
addTrans :: Ta->Ta->Ta
addTrans t1 t2

= \i j dic u bvl env -> check j dic ((snd’ t1) i j dic u bvl env

++ (snd’ t2) i j dic u bvl env )

9.8.8.8 Matchings, Sub-Expressions and Substitutions

The function match may be defined as:

>
>
>

match pat exp

= lookupT pat ‘bindTrans‘ \expl —>

lookupT exp ‘bindTrans‘ \exp2 ->

match2 expl exp2
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> lookupT (App el e2) = lookupT el ‘bindTrans‘ \el ->
> lookupT €2 ‘bindTrans‘ \e2 ->
> unitT (App el e2)
> lookupT (Var x)
> =\i jdubvl env -> if x ‘elem‘ bvl
> then check j dic [(i,u,bvl,env,lookup env x)]
> else check j dic [(i,u,bvl,env,BVar x)]
>
> etc
> match2 (App el e2) (App e3 e4) = match2 el e3 ./\. match e2 e4
> match2 (Var x) (Var y) = if (x == y) then successT
else failureT
> match2 (BVar x) e = addBinding x e
> ..
> etc

where addBinding x e attempts to add the binding r — € to the environment and cither fails
or succeeds. Success is returned if there is no earlier binding for r or the earlier binding is e.
Subexpressions are constructed in a similar way to matchings although no binding occurs within a
subexpression. Similarly, substitutions recursively descend the abstract syntax tree.

9.8.9 Unique Variables

The line
[z] is new

is translated to

> newVar ‘bindTrans‘ addBinding x

where newVar is defined as

> newVar = \i j dic u b e -> check j dic [(i,incU u,b,e,mkVarU u)]

and incU and mkVarU increment the variable supply and make a new variable name from the old
u value, respectively.

9.9 Application of Transformations

The transformations may be applied in a top down manner to the abstract syntax tree
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> applyTopDn :: [Transformation] -> Transformation

> applyTopDn tlist = applyTopDn2 []1 tlist

> applyTopDn2 ys [] e = unitTrans e

> applyTopDn2 ys (x:xs) e

> =\i jdicuben->casexei jdic ub en of

> (-, 1) -> (applyTopDn (ys ++ [x]) xs e i j dic u [J (J)

> (_,((i,u,bvl,env,ne):_)) > (

> applyTopDn2 [] (ys++(x:xs))

> ne i jdicu ] O

> )

> applyTopDn’ :: (Exp -> T Exp) -> Exp -> T Exp

> applyTopDn’ t e

> =t e ./\. case e of

> (App el e2) -> ((applyTopDn’ t el ‘bindTrans‘ \tel ->
> unitTrans (App tel e2))

> N

> (applyTopDn’ t €2 ‘bindTrans‘ \te2 ->
> unitTrans (App el te2)))

> . etc

i.e. applyTopDn takes a list of transformations and applies the first one in a top down manner to
the abstract syntax tree. If this has any effect then the original list is regenerated and the process
repeated. However, if this transformation fails then the same process is repeated starting with the
next transformation. This continues until all transformations fail (either because they are no longer
applicable or because we have exceeded our self imposed limit on operations). Other application
schemes, such as bottom-up application, can be written easily.
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9.10 Syntax of Transformations

The syntax of transformations is as follows:

topdecls

transdecl
trhs
premises

simple

texp

9.11

|77

I T

Summary

transdecl
PREDICATE(war,.
EVAL [var :: {ypel
TRANSFORM{transdecl{; transdecl}}
TRANSFORM(vary, ..., var,) Lexp 1irhs
|premises=> [erp ]

=> [exp]

[“]premises {(V|A)premises }

texp

(premises )

[“)simple{(V|A)simple}

var(z)

(simple)

Lezp] :: type

exist [exp] :: type

Lexzpl is [erp]

[ezp]l is [new ]

Cexp]l is [Lezpl/Lezpl]Lexp]

Lezp]l in [ezp]

var(z)

.., vary) [var(var,

In the last three chapters we introduced the FSC language.

.-, varm)] => simple

e In Chapter 7 we described our rationale behind the design of FSC and suggested how the
features of FSC may be implemented.

e In Chapter 8 we defined the FSC language (excluding its transformational meta-language).

¢ In this chapter we introduced the transformational meta-language and explained how it could
be implemented in a Haskell-like language. We also discussed how some of the implementation
dependent features could be realised. Like the language definition of Chapter 8 the transfor-
mation description is not meant to be taken as a real-world implementation but as a simplified
description of how the system could be modelled.

In the next chapter we compare FSC with other languages, concentrating on its expressiveness and
conciseness. We express a simple functional finite element code in FSC and demonstrate its expres-
siveness by presenting examples written in FSC. We also make use of a prototype implementation
of the FSC language and present two case studies, comparing its performance with Haskell/C/C++

as a proof of concept.
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Chapter 10

Use of FSC in Practice

In this chapter we use the FSC language to implement various numerical algorithms and use a
prototype compiler to demonstrate that it compares favourably with C/C++/Haskell. We begin by
rewriting the SASL finite element example given in [26] in FSC'. Originally this was thought clear and
concise and we demonstrate how FS(' enhances this. We then present various numerical algorithms
written in FSC and present in-depth case studies where the clarity. concisencss, and efficiency of
FSC programs are compared with their counterparts written in Haskell, C and C'++4.

10.1 Functional Programming for Finite Elements

This section takes its title from the paper by J.F.Dwyer [26]. We repeat the original commentary
and insert FSC below the original SASL implementation. Syntactic convention of SASI. which the
reader may not be familiar with are shown in Fig. 10.1 with their Haskell transiation.

SASL Haskell

DIV (/)

/ N

lambda r . ¢ \z > ¢

p —> €1 ; €9 if p then ¢, else e€»
let r be y in € let r = y in ¢

Figure 10.1: SASL: syntactic conventions

10.1.1 The Finite Element Problem

The example presented is made as simple as possible, to illustrate the concepts of functional pro-
gramming rather than any advanced finite element theories. The ordinary differential equation to
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10. Use of FSC in Practice 10.1. Functional Programming for Finite Elements

be solved is

d dU(z)\ 2
=\ s = a<zr<hb. (10.1)

with given boundary conditions U(a) (essential constrained boundary condition) and
(—zdU(z)/dz)=p

(natural unconstrained boundary condition). The finite element formulation given here is that pre-
sented in [16]. The domain (a, b) is broken into (n — 1) subdomains by the nodal points ry.zs, ..., 1,
and two linear shape functions are used on each subdomain

1 ip1— .
¢P(z) = Fmof =12, .,n-1 (102)
(2 - . .
d)j)(:c) = ﬁ’;, j=12,...,n-1
The standard assembly process leads to a tridiagonal symmetric stiffness matrix K. where
Tn s (0
I{n" = fl’n—l r —dr dr
. do{? 2
I\jj = f;]}—x r ( ¢ J;(r)) dz
16 9 (10.3)
+ f:j“r —J—¢dr(r) dz 2<j<n-1
. do{z)\ [ dot? i)
Kijo = [0z (25 ( ) de.
The force vector b is given by
1 du
b= [ S0 @)de - (—a )
n 2 2 dal’(ry
N >,=b (10.4)
2 4(2) '
bj = ——f;}"_l Il’.’(bj—l(l')dr
—J0r BeN(a)de 2<j<n-1.

The natural boundary condition given above can be substituted immediately into the expression
for b,. The usual procedure for handling the essential boundary condition is to multiply the first
column of K by the given value and subtract the result from the force vector and then delete the
first row and first column of K. This modification only affects the original b, which now becomes

by — U(a)R 12 (10.5)

Hence the problem reduces to the solution of an (n—1) x (n—1) symmetric tridiagonal system. In the
interests of space efficiency this matrix can be stored as a vector whose components are determined
from the matrix elements in the following way:

lyj_1 = Kj; 1<j<n
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bi=Kjjx1  1<j<n-1

IL’n—3 1211—'_’

l2n—1

The Gaussian elimination triangulation process for the system reduces to

1=h
. =1y ] —
5= g L Sisnod (10.6)
Izj+1=12j+1—§j 1<j<n-1
and
b =b
by =b; — #=2bj_y 2<j<n (10.7)

where [} and b; are the modified components of 1 and b respectively.

The recursive definitions given here are very suitable for immediate translation into a functional
program which is presented in the next section.

The back-substitution algorithm is given by

b

TR (10.5)
b, —15 . .
aj:,_r-,a_,u 1<j<n-1

l:;—x

where a;,j = 1...n, are the elements of the solution vector

10.1.2 The SASL (FSC) Program

It is instructive to consider the top-down design approach to programming the solution to the given
problem. First it is noted that the final answer is the vector of nodal quantities. Hence a function
must be defined which takes as arguments the stiffness matrix (the vector 1 in the previous section)
and the force vector b and returns the solution vector as its result. The vectors 1 and b must
be assembled from the terms in equations (10.3) and (10.4). Therefore functions must be defined
which take the subinterval boundary points r; and use numerical integration to return as a result
the vectors 1 and b. These functions in turn require values of ¢; and do;/dz: so finally functions for
these shape functions are provided. This kind of breakdown forces the programmer into a modular
decomposition of the problem. Each of the required functions will now be presented in the sequence
in which they have to be written (not necessarily designed) to satisfy the scope rules of SASL. This
order is essentially the reverse of the design order outlined above. Note: FSC does not require this
ordering and we could write the FSC function definitions in any order. The functions o; and do;/dz
from (10.2) are defined with the help of the following function which returns the number at position
i in the vector z:
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10. Use of FSC in Practice 10.1. Functional Programming for Finite Elements

SASL:

Let POSN be lambda x.lambda i.
i =1->hd x;
POSN (tl x) (i-1)

FSC:
We may use the primitive array indexing for this purpose. If we wanted to implement the above
function we could write

> POSN :: INT -> [a] > a
> POSN i x = x[i]

In the following definitions, xj (X in FSC) is the vector of x;’s and i denotes which of the two
element shape functions is being computed.
SASL:

let PHI be lambda x. lambda j. lambda i. lambda xj.
i=1-> (POSN xj (j+1)-x ) DIV (POSN xj (j+1)-POSN xj j);
(x -POSN xj j) DIV (POSN xj (j+1)-POSN xj j)

let DPHIDX be lambda x.lambda j. lambda i. lambda xj

i =1 -> (-1) DIV (POSN xj (j+1) - POSN xj j);
(1) DIV (POSN xj (j+1) - POSKN xj j)

FSC:

> PHI :: DOUBLE -> INT -> INT -> [DOUBLE] -> DOUBLE
>PHI x j 1t X = (X[j+1] - x) / (X[j+1] - x[3D)
>PHI x j _ X = (x - X[31) / (X[j+1] - X[3])

> DPHIDX :: DOUBLE -> INT -> INT -> [DOUBLE] -> DOUBLE
> DPHIDX x j 1 X = "1/(X[j+1] - X[31)
> DPRIDX x j _ X = 1/(X[j+1] - X[j1)

The integrands in (10.3) and (10.4) can now be evaluated using PHI and DPHIDX:
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SASL:

let F be lambda x. 2 DIV (x*x)
in
let FINT be lambda x. lambda j. lambda i. lambda k. lambda xj.

k=3->(Fx)* (PHI x j i xj);
(DPEIDX x j i xj) * (DPHIDX x j k ij) * x

FSC:

> FINT :: DOUBLE ~> INT -> INT -> INT -> [DOUBLE] -> DOUBLE

>FINT x j i k X | k == = 2/x°2 * PHI{x,j,i,X}

> | otherwise = DPHIDX{x,j,i,X} * DPHIDX{x,j,k,X} * x

Here k = 1 or 2 determines whether ¢§-1) or ¢§-2) is calculated, whereas k£ = 3 indicates calculations
of the integrand for the force vector.

Numerical integration is carried out using Gaussian quadrature. The arguments for such a
function are the specifications for the integrand given earlier as well as the lists of the absicissae xg
and the weights wg for the quadrature and the end points of the integration interval a; and b;.
SASL:

let GQUAD be lambda bl. lambda al. lambda j. lambda i. lambda k.
lambda xj. lambda xg. lambda wg.

xg =/ > 0;

((b1 - a1) DIV 2) * (hd wg)

* FINT ((hd xg) * ((b1 - al) DIV 2)

+ ((b1 + al) DIV 2)) j i j xj

+ GQUAD b1 a1 j i k xj (t1 xg) (t1 wg)

FSC:

> GQUAD :: DOUBLE->DOUBLE->INT->INT->INT->[DOUBLE]->{DOUBLE]->[DOUBLE]->DOUBLE
>GQUAD b a jikXxsws

> = sum[pr*w*FINT{x*pr+pm,j,i,k,X}| w in ws dot x in xs]
> where pm = (bt+a)/2
> pr = (b-a)/2

The assembly of the above integrals into the vector representing the stiffness matrix follows ac-
cording to (10.3):
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SASL:

let L be lambda j. lambda xj. lambda xg. lambda wg. lambda n.

j= (n-1) -> GQUAD (POSF xj (j+1))
(POSN xj j) (n-1) 2 2 xj xg wg:/;
GQUAD (POSN xj (j+1))
(POSN xj j) j 2 2 xj xg wgt
GQUAD (POSK xj (j+2))
(POSN xj (j+1)) (j+1) 1 1 xj xg wg):
GQUAD (POSK xj (j+2))
(POSN xj (j+1)) (j+1) 1 2 xj xg wg):
L (j+1) xj xg wg n

FSC:

> mkL :: [DOUBLE]->[DOUBLE]->[DOUBLE]->INT->[DOUBLE]
> mkL X xs ws N

> = [ eQuap x[j+1] x(j1 j 22X xs ws +
> GQUAD X[j+2] Xx[j+1] (j+1) 1 1 X x5 ws ;
> GQUAD X[j+2] X[j+1] (j+1) 1 2 X xs ws |
> j in [1..N-2]]1 +> GQUAD X[N] X[N-1] (N-1) 2 2 X xs ws

An analogous function assembles the force vector according to (10.4) and noting (10.5). be, is
the essential boundary condition U(a) while be, is the natural boundary condition (—zdl’/dz),,.
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SASL:

let B be lambda j. lambda xj. lambda xg.
lambda wg. lambda n. lmdab bcl. lmdab bc2.
j=2 -> - GQUAD (POSN xj 2) (POSN xj 1) 1 2 3 xj xg wg
- GQUAD (POSN xj 3) (POSN xj 2) 2 1 3 xj xg wg
- bel * GQUAD (POSN xj 2) (POSN xj 1) 1 1 2 xj xg wg
: B (j+1) xj wg n becl be2;
k=n -> - GQUAD (POSN xj n) (POSN xj (n-1)) (n-1) 2 3 xj xg wg - bc2:/;
- GQUAD (POSN xj j) (POSN xj (j-1)) (j~1) 2 3 xj xg wg
- GQUAD (POSN xj (j+1)) (POSN xj j) j 1 3 xj xg wg
: B (j+1) xj xg wg n bel be2

FSC:

> mkB :: [DDUBLE]—>[DOUBLE]—>[DOUBLE]->INT->DOUBLE—>DOUBLE—>[DOUBLE]
> mkB X xs ws N bci bc2

> = "GQUAD X[2] X[1] 1 2 3 X xs ws

> -GQUAD X[3] X[2] 2 1 3 X xs ws

> -bcl * GQUAD X[2] X[1] 1 1 2 X xs ws

> <+ [ ~GQuaDp x[j] X[j-1] (j-1) 2 3 X xs ws

> - GQUAD X[j-1] X[j] j 1 3 X xs ws | j in [3..N-1] ] +>
> “GQUAD XIN] X[N-1] (N-1) 2 3 X xs ws - bc2

The system equations have now been developed and can be used later on in the solver which is
now defined. First, SASL functions are written to find the i** component of the vector 1 according

to (10.6).

SASL:

let LP be lambda L. lambda i.

i=1->P0OSNL 1;
i1MOD2=0->POSNL ij;
POSN L i - (POSN L (i-1) = POSN L (i-1)) DIV LP L (i-2)

FSC:

> LP :: [DOUBLE]->[DOUBLE]
>LP (1 <:L:> N)
> = let array L’[1..N] ordered [1..N] where
L°[1] = L[1]
L°[i] | (i is even) = L[i]
| otherwise = L[i] - L[i-1]-2/L’[i-2]

vV V Vv V

in L

Similarly, from (10.7) the modified ¢** component of b is
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SASL:

let BP be lambda L. lambda b. lambda i.

i=1 -> POSN b {;

POSN b i - (POSN L (2*%i-2) * POSK b (i-1)) DIVLP L (2 *i - 3)
let BSUB be lambda L. lambda b. lambda n. lambda i.

i =1->(BP L b i) DIV (LP L (2#*n-1)):/;

(BPLbi-LPL (2#i) * hd (BSUB L b n (i+1)) DIV (LP L (2#n-1))
: BSUBL bn (i+1)

FSC:

> BP :: [DOUBLE] -> [DOUBLE] -> [DOUBLE]
>BP L’ (1 <:B :>N)

> = let array B’[1..N] ordered [1..N] where

> B’[1] = B[1]

> B’ {j1 = B[j1-L’(2j-2]/L’[2j-31+B’ [j~1]
> in B’

These functions are then used in the function for back-substitution which follows from (10.8).
SASL:

let BSUB be lambda L. lambda b. lambda n. lambda i.

i=1->(BP L b i) DIV (LP L (2*%n-1)):/;
(BPLbPi-LPL (2%i) * hd (BSUB L b n (i+1)) DIV (LP L (2%n-1))
: BSUBL bn (i+1)

FSC:

> BSUB :: [DOUBLE] -> [DOUBLE]->[DOUBLE]
>BSUBL (1 <: B :>N)

> = let array al1..N] ordered [N..1] where

> aljl | (j == ¥) = BIN]/L[2N-1]

> | otherwise = (B[j] - L[2jl*alj+11)/L[2j-1]
> in a

The final solution vector a can then be obtained by applying BSUB to the stiffness matrix and
force vector defined above:
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SASL:

let A be lambda n. lambda xj. lambda xg.
lambda wg. lambda bcl. lambda bc2.
BSUB (L 1 xj xg wg n) (B 2 xj xg wg n bvi bv2) (n-1) 1

FSC:

> A :: INT->[DOUBLE]->[DOUBLE]->[DOUBLE]->DOUBLE->DOUBLE->[DOUBLE]
>A N X x_g w_g BC1 BC2

> = BSUB L’ B’ where

> L’ =LPL

> B> =BP L’ B

> L =mkL X x_gw_gX

> B = mkB X x_g w_g N BC1 BC2

10.1.3 Conclusions

In the original paper Dwyer concludes that the functions presented above demonstrate the power and
conciseness of functional languages. Each function is short and therefore can easily be tested in an
independent manner. The design of the solution forces the programmer to think in a highly-modular
fashion and thus adhere strictly to top-down design principles. Dwyer also mentions that there are,
however, some major disadvantages associated with programming in a functional manner. The
efficiency of execution of most functional programs is low. We believe FSC improves the readability
of this particular example and, as we show in the sections that follow, FSC addresses these efficiency
concerns also.

10.2 Summed axpys

In this section we concentrate on the raw power and flexibility of FSC by considering the computation
arpy=ax+y

In order that we may compare this with Haskell the computation we actually perform is

N
Z(ari + ¥i)

We use this computation since its output is small and hence I/O does not taint the results too badly.

10.2.1 The programs

The programs to carry out the above computation are as follows:
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10.2.1.1 C summed axpy

double summed_daxpy(int N, double a, double *x, double *y) {
int i;
double acc=0.0;
for(i=N;i-—-;)
acc += (a * x[il+ y[il);
return acc;

}
main() {
int N,i;
time_t timer=1;
double a;
double =*x;
double *y;
scanf("%d\n",&N); /* read N */
scanf ("%f\n",&a); /* read a */
x = (double*)malloc((unsigned) (N * sizeof(double)));
for (i=0;i<N;i++) {
scanf ("%1f\n",&x[i]); /* read in elements of X */
}
x = (double*)malloc((unsigned long) (N * sizeof(double)));
for (i=0;i<N;i++) {
scanf ("%1f\n",&y[i]l); /* read in elements of Y */
}
timer = clock(); /* start the clock */
a = summed_daxpy(N,a,x,y); /* perform computation */
timer = clock() - timer; /* evaluate interval */
printf (" result = %f\n",a); /* print result for validation */
printf(" time elapsed = %1d\n",timer); /* print interval #*/
exit(0);
}

10.2.1.2 Haskell summed axpy

> main :: Dialogue
> main = interact (show.process.lines)
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> process :: [String]->Double

> process [astr,xstr,ystr] = summed_axpy a x y

> where (a,x,y)

> = (read astr,

> read xstr,

> read ystr)::(Double, [Double], [Double])

> summed_axoy a xs ys :: Double -> [Double] -> [Double] -> Double
> summed_axpy a xs ys = sum [ a * x + y | (x,y) <- zip xs ys]

10.2.1.3 FSC summed axpy

> main :: DOUBLE -> [DOUBLE]"2 -> IO DOUBLE

> main a X Y = do ID return summed_axpy a X Y

> summed_axpy :: DOUBLE -> [DOUBLE] -> [DOUBLE] -> DOUBLE
> summed_axpy a X Y = sum[a*x+ylx in X dot y in Y]

The codes were then compiled and executed to evaluate

N
> (25x0.1+1.1)=135¥

i=1

for various values of V.

10.2.2 Executable Size

Code C Haskell FSC
Size of stripped executable(bytes) | 3888 717352 64628

Table 10.1: C / Haskell / FSC executable sizes.

Table 10.1 shows that the prototype FSC compiler generated an executable larger than the C version
but much smaller than the Haskell version.

10.2.3 Execution Efficiency

The programs were timed using various values for V. In the following discussion we use the conven-
tion X(math) to denote the program in language .\’ disregarding the non-mathematical work such

as I/0.
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Figure 10.2: Timings (unix) for summed axpys with 1/0O

10.2.4 Results

Fig. 10.2 shows the results of running the above code on various values of NV timing the execution
(including 1/0). Fig. 10.3 shows the results of running the C and FSC code on various values of .V
timing only the computational kernel. These values show that for this example the computational
kernel of FSC runs at a speed comparable with C and FSC easily outstrips the corresponding Haskell
program.

10.3 Argument Domains

We continue to take as our example the axpy computation and examine the generality of this
computation. In FSC, we consider the function

> axpy a X Y = [a*x + y| x in X dot y in Y]

as being general, as we may apply it to vectors and scalars of many different component types. that
is, all the following calls

floats :: REAL

floats axpy 2.5 [0.1] [1.1]
doubles :: DOUBLE

doubles = axpy 2.5d [0.1d] [1.1d]
ints :: INT

VvV V Vv Vv VvV
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Figure 10.3: Timings (in-code) for summed axpys without 1/0

> ints = axpy 2 [0l [1]

are valid. Languages such as C++ support templates which allow the same behaviour although
explicit templates can get confusing. In addition to the above examples we may also calculate

> real_int_real :: REAL
> real_int_real = axpy 2.5 [1] [1.0]

That is, our type system allows much more freedom than is available in template based systems and
allows functions whose return types are non-trivial functions of their input types.

10.4 Dot Products

We now consider the computation
dot(x,y) = xTy

which may be written tersely in a functional language (such as FSC) as
dotprod X Y = sum(zipWith (*) X Y)
where zipWith is defined as

> zipWith £ X Y= [ £ xy | x in X dot y in Y]
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Because we are able to reason at a higher level about this function, the FSC compiler is able to
automatically inline the call to zipWith, reducing the number of array traversals. If we time this
against the comparable C code retaining the modularity.

double* timesVec(int N,double #*x,double *y)

{
int i;
for (i=0;i<N;i++)
x[i] *= y[il;
return x;
}
double sum(int N,double *x)
{
int i;
double acc=0.0;
for (i=0;i<N;i++)
acc += x[i];
return acc;
}
double dot(int N,double *x,double *y)
{
return sum(N,timesVec(N,x,y));
}

we find that this modularity causes inefficiency. A dot-product of two vectors of order 10 takes
1.21 seconds in C (gcc -O4) as opposed to 0.71 seconds in FSC!. Written more conventionally the
C code acheives the same efficiency as FSC as in Section 10.2.

10.5 Gaussian Quadrature

We now consider an FSC version of the [Haskell] Gaussian quadrature function described in C"hapter
4:

-- Haskell Gaussian Quadrature --

ga x w f (a,b) = pr * sum(zipWith f1 v x)

where f1 wi xi = wi * (f (pm+pr*xi) + f (pm-pr+*xi))
pm = (b+a)/2.0
pr = (b-a)/2.0

VvV V.V V YV

The FSC version is almost identical to the Haskell version, differing only in that double-precision
floating point numbers in FSC have d after them.

To regain this performance from C the functions must be declared static inline.
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0 z

Figure 10.4: Area under a normal curve

-- FSC Gaussian Quadrature —-

gq x wf ab =pr * sum(zipWith f1 w x)

where f1 wi xi = wi * (£ (pm+pr*xi) + f (pm-pr*xi))
pm = (b+a)/2.0d
pr = (b-a)/2.0d

N NS ONE WE W

It is this function which we use in the next section to tabulate the values of the cumulative density
function (CDF) of a normal distribution.

10.6 Normal CDFs : Extended Example

This section is an extended example detailing the process of compiling the code to compute the
tabulated values for the cumulative density function (CDF) of the normal distribution with mean p
and standard deviation o.

10.6.1 The Problem

The problem we choose to solve is to tabulate the area under the curve of a normal probability
distribution function (PDF) from zero to various values of r (Fig. 10.4). We choose this example
as the table should be familiar to the reader and, as the normal CDF does not admit a closed form,
it is a motivating example. In an implementation we insist that the integrations be performed by
a general integrating function, that the values of p and ¢ be runtime dependent and that each
integration be evaluated independently to simplify the definition.

10.6.2 The Mathematical Formulation

The values we wish to find may be defined as

1/6—%“‘—'@, £=0,626,...,4—6
0

oV 27

The FSC code to compute this table is as follows usinf abscissae and weights taken from [1].

> main :: DOUBLE"2 -> INT -> IO (Array DOUBLE)

211



10. Use of FSC in Practice 10.7. Cyclic Reduction: Extended Example

> main mu sigma N = do IO return RESULT

> where RESULT = normalCDF mu sigma N

> normalCDF :: DOUBLE -> DOUBLE -> INT -> [DOUBLE]

> normalCDF mu sigma N

> = [ gq x w distribution 0.040 (4.0d0*i)/N | i in [0..K-1]]
> where distribution x = normalPDF mu sigma x

> x = [0.238619186083197d0, -- abscissae
> 0.661209386466265d0,

> 0.932469514203152d40]

> w = [0.467913934572691d0, -- weights
> 0.360761573048139d0,

> 0.17132449237917040]

> normalPDF :: DOUBLE -> DOUBLE -> DOUBLE -> DOUBLE

> normalPDF mu sigma x

> = exp((x-mu)~2/72.0d0)/(sigma*sqrt(2.040%PI))

> where PI = 3.14159265358979323846d0

This program was benchmarked against a C program written by the author and a C++ program
kindly written by Dr. Misra [68]. These codes were hand-optimised for speed (for instance the C
version does not compute v/271 but has it defined as 2.50663 in the code). These were run on tables
ranging in size from 0 to 50,000 entries. The results of this benchmark are shown in Fig. 10.5.

10.6.3 Discussion

On this example, the FSC version performs remarkably well, running at just under double the speed
of the C and C++ versions and the C version sneaks in under the C++ version as one would expect.
The efficiency gain over the imperative versions is due to the ability to manipulate and optimise the
code more freely in the absence of side effects. A C compiler will not try to inline a function when
it is passed as a pointer rather than when it is simply called. To FSC functions are simply values
like any other and, as such, may be freely in-lined and optimised further after the in-lining. The C
code can be found in Appendix B.

10.7 Cyclic Reduction: Extended Example

Cyclic reduction {36] (or odd-even reduction) is a method of solving a tridiagonal system of equations
which may be performed in parallel>. The variation of cyclic reduction we choose to implement

2Cyclic reductions were mentioned in Chapter 4 where a quadtree version was presented.
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10.7.

Cyclic Reduction: Extended Example
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Figure 10.5: Timings (in-code) for CDF generation
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with zero sub- and super-diagonals.

B 1
b
0

o)

0
b5

(1) T . A

Cl Iy
(1) =
c(n—?)

. .. 0

a0 b | Lzl

4

1
| o)

This system is then reordered so that it is expressed as two sub-problems of half the dimension.
That is, if we assume that n is even we renumber the equations in the order 1.3,...,n—1,2.4....,n
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and renumber the unknowns in a similar way.

r (1 (1) .
bg) Cl) _ _ - (1) 1
) a1 u
ag : :
1 ) )
bgzll Tn-1 | _ yf,l_’l
B I3 v
(1) :
- Cpla
2 r (1)
! SOl R

Since we now have two tridiagonal systems we may apply recursively and in parallel the above
transformation process to the two non-zero quadrants of the matrix until we reach a set of trivial
equations. The transformation step to create the pentadiagonal system described above is given
below

aEl) = ;a1
bsl) = bitaici1 + Biaiyy
CEI) = ficipa
v =y ayict + Bigin
a; = =—a;i/bi_1
Bi = —cifbina
though the more formal version is:
agl) = o;q;1 1 € {3, .. ..n}
b1 + fras ifi=1
bgl) = b,-+a,~c,-_1+ﬁ,~a,-+1 ifi<i<n iE{l,...,n}
bo + ancn-1 ifi=n
cgl) = ,8,‘C,j+1 iE{],...,n—?}
. 1+ Biye ifi=1
g = vi +oiyioy + Bivip fi<i<n i€{l,....n}
Yn + Cn¥Yn-1 ifi=n
o = —aifbi i€{2,....n}
Bi = —ci/biq1 ief{l,...,n—1}

We may implement this algorithm in FSC as

> .

> a’ = [alpha[i] * ali-1] | i in [3..N] 1]
> b’ = [b[1] + betal1] * a[2]1]

> ++[b[i] + alphalil*c[i-1] + beta[il*ali+1] | i in [2..N-1]]
> ++[b[N] + alphal[N]*c[N-1]]

>c? = [betalil * c[i+1] | i in [1..N-211]
>y = [y[1] + betal1] * y[213

> ++[y[i] + alphalil*y[i-1] + betalil*y[i+1] | i in [2..N-1]]
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> ++[y[N] + alpha[N]*y[N-1]]
> alpha = [“a[il/b[i-1] | iin [2..N] ]
> beta = ["c[il/bf[i+1] | iin [1..N-1] ]

and we immediately see that there is a direct correlation. Interestingly, we could also implement an
FSC version of the original presentation as

> ...

> array a’[i] = alpha[i}] * a[i-1]

> array b’[i] = b[i] + alphal[i]#c[i-1] + betal[il=»a[i+1]
> array c’[i] = betali] * c[i+1]

> array y’[i] = y[il + alpha[il*y[i-1] + betalil*y[i+1]
> array alphalil] = "ali]l/b[i-1]

> array betali] = “cl[il/b[i+1]

We choose to use the former presentation rather than the latter as this it more efficient (the bounds
of the array are explicitly given). All the implementations (including C++) relate to systems of 2-¥
equations where N is an integer. Our first code for a full cyclic reduction is:

> cyclic_reduction a (b :> N) ¢ y

> = if (N==2)

> then Branch Leaf{y[1]/b[1]} Leaf{y[2]/b[2]}

> else

> Branch cyclic_reduction{2<:ai,bl,c1,y1}

> cyclic_reduction{2<:a2,b2,c2,y2}

> where

> (at,a2) = odd_even a’

> (b1,b2) = odd_even b’

> (c1,c2) = odd_even ¢’

> (y1,y2) = odd_even y’

> al = [alpha[i] * c[i-1] | 1 in [3..N] 1]

> bl = [b[1] + beta[1] * a[2]]

> ++[b[i] + alphalil*c[i-1] + betal[il*ali+1] | i in [2..N-1] ]
> ++[b[N] + alpha([N]#c[N-11]

> ¢’ = [beta[il * c[i+1] | iin [1..8-2]]
> y’ = [y[1] + beta[1] * y[2]1]

> ++[y[i] + alphafil*y[i-1] + betalil*y[i+1] | i in [2..N-1] ]
> ++[y[N] + alphal[N]*y[N-1]]

> alpha = [“al[il/b[i-1] | i in [2..N] ]
> beta = [~c[il/b[i+1] | i in [1..N-1]]
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where the result is stored in a tree, to avoid repeated array copying. Once the tree is complete a
result array may be generated so that copying is avoided as a post processing phase:

FFT_tree_to_array :: [Double] -> INT -> INT -> Tree DOUBLE
FFT_tree_to_array A n N (Leaf a)
= (A[m -> al,n+1)
where m = bitflip(n,N)
FFT_tree_to_array A n N (Branch a b)
= FFT_tree_to_array A’ n’ N b
where (A’,n’) = FFT_tree_to_array A n N a

VvV V V V V VvV VvV

where bitflip is a function from the standard prelude to perform an FFT permutation:

> bitflip :: INT -> INT -> INT

> bitflip n N = (x | x <- bitXOR{x<<1,bitAND i 1};

> i <= i>>1;

N k <- k>>1 | (x,1i,k) = (0,N,n))

Our second code reorders the results on the fly using the prelude function riffle
>riffle X Y= [ x;y | x in X dot y in Y]
which interleaves two arrays, to give

> cyclic_reduction a (b :> N) ¢ y

> = if (N==2)

> then [y[11/b[1],y(2]1/b[2]1]

> else

> riffle cyclic_reduction{2<:ai,bl,c1,y1}
> cyclic_reduction{2<:a2,b2,c2,y2}
> where

> (a1,a2) = odd_even a’

> (b1,b2) = odd_even b’

> (c1,c2) = odd_even c’

> (y1,y2) = odd_even y’

> al = [alpha[i] * c[i-1] | i in [3..N]]
> bi = [b{1] + beta[1] * a[2]]

++[b[i] + alphalil*c[i-1] + beta[il*ali+1] | i in {2..N-1] ]
> ++[b[N] + alpha[N]*c[N-1]]

v

[betali] * c[i+1] | i in [1..¥-2] 1]

v
[e]
1]

y’ = [y[1] + betal1] * y[2]]

> ++[y[i] + alphalil*y[i-1] + betalil*y[i+1] | in [2..8-1] 1]

[y
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N ++[y[N] + alpha[N]*y[N-1]]
> alpha = ["a[il/b[i-1] | iin [2..8] ]
> beta = ["c[il/b[i+1] | iin [1..8-1]1}

10.7.0.1 Results

These codes were executed on systems of equations with up to 2'* elements and bench-marked
against an existing C++ cyclic reduction code which had previously been run against Haskell and
achieved a speed of at least 20 times that of Haskell [65]. The results of running this code can be
seen in Fig. 10.6. These figures indicate that the C++ code runs at 9% and 27% faster than the
array and tree versions respectively. Some improvement could be made to the efficiency of the FSC
versions by sharing loops but for reasons of clarity we chose not to.

T T T T T T T
12 FSC —
FSC(tree) ----
10 - C++ — |
8 .
seconds B i
4 r .
2 F |
0 | — 1 1 1 ] 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000
unknowns

Figure 10.6: Timings (in-code) for cyclic reductions

10.7.0.2 Code Size

The amount of code which was required to write and implement these cyclic reductions ranged from
290 lines in C++ to 34 lines in FSC (the above function and an entry point). Although the C++
version is 9% faster than the FSC version, FSC is over 800% terser on this example, a fact to bear in
mind when considering raw efficiency versus programming cost, and if array declarations were used
this line count could fall below 20 without being obfuscated.
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10.8 Summary

In this chapter we have presented various algorithms written in F S( We recoded algorithms to
demonstrate the tersity of the language and presented two case s.tudl.es to den.\onstrate~ that FSC
was capable of contending with C/C++ and in some cases beating it on efﬁc1en.c_v! Since Ial_-ger
programs are constructed from the building blocks that we have sh(?wn run efﬁ(‘.lentl_\' we belngw
that this vindicates our proof of theory. Further examp-les of FSC implementations of numerical
exemplars are, however, provided in Appendix G for the interested reader.
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Chapter 11

Related Work

In this chapter we survey the previous work covering areas introduced in Part II.

11.1 Use of Multi-Parameter Type Classes

o Cormack & Wright [23] present an overloading type system which treats overloaded functions in
a similar manner to FSC. However, their system does not use implicit typing and all overloaded
functions have their type parameters explicitly denoted at definition. They do not present a
typechecking algorithm for their system.

e The GoFER language [54] has multi-parameter type classes but only provides conservative
overloaded resolution, and therefore cannot support many numerical examples. For example,
it is necessary (in GoFER) for the user to provide explicit typings on expressions such as

((((3 * 4.5) :: Double) * 4.8) :: Double) * 4 :: Double

However, the type classes of GoFER are suitable for coding examples involving monads and
monad transformers [3].

o Ophel & Duggan [72] provide a multi-parameter type class system on which many of the
ideas in FSC are based. However, their system is restricted by the method they use for
implementation (adding extra function parameters), which causes inefficiency and forces some
syntactic forms to be constrained. Since FSC uses specialisation as its implementation method
these restrictions are lifted.

¢ The latest version of GHC (3.01) has support for multi-parameter type classes as no doubt
will Standard Haskell[51]. However, these are aimed at the same area as those of GoFER and.
irrespective of their semantic power, would be too inefficient to use in our problem domain.
GHC’s inclusion of multi-parameter type classes is long overdue. It will be interesting to see
how the Haskell community uses them.
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11.2 Use of Transformation Systems

¢ Boyle, Fitzpatrick, Clint & Harmer [15, 14] use program transformations to translate code
expressed as pure LISP and ML to FORTRAN. They make use of a program transformation
system called TAMPR which uses transformations in a manner similar to FSC. The manner
in which FSC differs with TAMPR is that FSC only attempts to perform source to source
transformations and combine these in a less ad-hoc manner.

11.3 Use of Recursively Defined Monolithic Arrays

¢ Gao, Yates, Dennis & Mullin [37, 38] introduce a monolithic array constructor which offers
a solution to the overhead of scheduling and synchronisation of recursively defined arrays
and the copying of intermediate arrays during array construction. In their papers they give
no implementation details and their array constructor resembles an explicitly ordered array
declaration in FSC with poorer syntax. That is, information concerning the evaluation order
of the elements is mandatory. Gao et al. also offer subscript analysis techniques for checking
the validity of a specified ordering which (as mentioned in Chapter 7) may also be used to
check the validity of the optional FSC array declaration orderings.

o Anderson & Hudak [2] present techniques for compiling Haskell array comprehensions based on
the definition of sirict conierts. Their techniques offer a number-theoretic subscript-analysis
of Haskell arrays to allow safe-eager evaluation. FSC takes the alternative view that the user
be allowed to specify an ordering of array evaluation if the default dynamic schedule is not
efficient enough. However (as demonstrated in Chapter 7) FSC's default scheduling generates
tags of finite size independent of the array expression rather than (possibly nested, large)
closures, hence efficiency-loss is not such an issue.
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Chapter 12

Conclusions

Numerical methods often have very elegant definitions which are easily understood. However it is
sadly the case that often an efficient implementation of these methods is rather obscure. These
implementations are difficult to verify formally and are also difficult to correct, modify or reason
about.

12.0.1 Summary of Thesis

In this thesis we present a study of the principles underlying the design and implementation of a
functional language specialised to numerical programming. We justify the design decisions we have
taken via the use of empirical investigation of numerical functional programs and provide proof of
concept of our ideas via results from experiments using an experimental-prototy pe implementation.

The techniques used in this thesis to investigate existing functional language usage are not
new, although their application to this area is. e follow the same technique which led to the
RISC revolution in microprocessor design, namely perform a quantitative analysis of commonly
used features and provide a system which offers low-cost features.

We integrate the feel of Haskell into FSC such that numerical algorithms are specified in a manner
which encourages formal verification as the implementation is often extremely close to the textbook
definition.

Since the semantics of kernel FSC are simple! the ability to perform optimisation is great. We
further enhance this innate ability by defining a transformational metalanguage which allows domain
specific transformations to be defined, combined and reasoned about.

This combining is important as transformations may be verified in isolation prior to combination.

The prototype compiler is only the initial step in vindicating the work presented in this thesis.
The compiler is not perfect (far from it), however we believe the basic ideas on which it is based
are sound and that it can be considered as a proof of concept. That is, we may consider the results
presented in this thesis as proof that purely-functional high performance computing in a Haskellesque
style is indeed feasible.

! Compared with other languages.
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12.1 Assessment

The importance of the work reported here is:

o It lessens the weight of evidence supporting the claim that functional languages are toys which
cannot generate real-world performance. )

o It supports the claim that functional languages may be implemented to run at comparable
speeds to C/Fortran.

o It highlights the vast difference in performance of a system driven by pragmatic, rather than
aesthetic, considerations.

o It presents a study of a functional language used in practice to program numerical methods and
discusses the suitability of Haskell as a vehicle for expressing numerical programs. Empirical
data regarding the level to which Haskellesque language features are used in numerical examples
is also presented and as such, this thesis forms a useful source of reference for future language
design.

o [t offers and demonstrates ideas pertinent to functional language development such as recursive
arrays and multi-parameter type classes and unifies ideas from the SISAL and Haskell languages
such as I/O and array/list comprehensions.

o It shows that, for efficiency reasons, numerical functional programming languages must be
strict and must operate over datatypes in a catamorphic manner. It also demonstrates that
this working with the grain -style of algorithm is not always possible and thus arrays are
necessary. This investigation has also provided a non-pivoting version of LU-factorisation
which does not require all leading submatrices to be non-singular.

o It throws new light on earlier results such as conclusions arising from the SOR implementation
of Wainwright & Sexton [100] where a catamorphic appoach was not used.

12.2 Discussion

We may draw an analogy between the designs of Haskell/FSC and the schools of mathematical
thought of Intuitionism [6] /Classical logic. We liken FSC compilation to classic logic and proofs such
as reductio ad absurdum whilst likening Haskell compilation to intuitionistic logic and constructive
proof.

This analogy may be best understood by noticing that:

e Intuitionistic proofs are always valid in classical logic, similarly Haskell stvle compilation is
always valid in FSC.

¢ Although not usable in constructive mathematics, classical proofs are watertight enough for
most purposes. Similarly, Haskell-style compilation may be applied to F5C but not the con-
verse. However FSC style compilation gets you further and is still formal in the same manner
that classical logic and intuitionistic logic are both formal.
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e Just as many classical proofs do not admit a constructive equivalent. many easily expressed
FSC algorithms do not admit an efficient Haskell equivalent. )

In short, FSC is a pragmatic tool with a mathematical impetus designed to perform a well-defined
task. However, Haskell is an attempt at embedding a set (albeit small) of idealist principles within
a language. As such, FSC out-performs Haskell with ease.

12.3 Further Work
12.3.1 The FSC compiler

The current implementation of the FSC compiler can be described as prototype at best. The results
that it produces are good but it is far too inefficient to be used in anger (the cyclic reduction
example presented earlier takes over an hour to compile on an Intel Pentium). This is due to the
fact that it was not written with efficiency in mind and is implemented in Haskell which is known
to be inefficient. Before further work is carried out it is suggested that the implementation be
re-engineered in C in the style of GoFER and Hugs [54].

12.3.2 Transformations

The prototype FSC compiler currently does not include the transformational meta-language. As
such, very little is known about its use in practice. This would be an interesting area of continued
investigation. The transformational system was implemented as an off-line separate thread of inves-
tigation with its principles being tested via the implementation in terms of a simpler abstract syntax
tree?. The behaviour-in-practice of this metalanguage is an area which is ripe for investigation.

12.3.3 Editing

Although not part of the language, the way in which algorithms are presented often allows code to
be better understood.
With this in mind an area of further study would be an editor for FSC. This should allow

o literate commenting,
¢ diagrams, and

o user-defined hierarchical syntactic-sugaring.

12.3.4 User-Defined Hierarchical Sugaring

In mathematics we often invent syntax on the fly and also often give meaning to relative positioning
and placement in a manner which, although ambiguous, is well understood within its context. For
example

AT AT 4m Wt

2This was not added to the compiler as it was proving unwieldy enough without it.
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The most aladryl(ing of these being f(®) which depending on the situation may represent either
fo---ofor —d—i,‘il. To combat this we introduce the idea of hierarchical sugaring.

n times .
Overloading in FSC can be thought to form an abstraction, i.e. the function

£°0 = one
71 =1
fn = f * £°(n-1)

is of type & — INT — o for all & such that * : @ — a — a exists and a has a multiplicative identity.
This is opposed to using similar notation to mean very different things.
Hierarchical sugaring is the act of providing views for syntax which

o hides as much or as little information as required, and

¢ allows non-ASCII symbols to be used in programs.

12.3.5 Example: Quadratic Factorisation
We begin with the FSC function
quadFactor a b ¢ = let p = b
q = sqrt(b"2 - 4a * c)
in
(p+qp-9 /2
A sugaring of this might use the display-rule shown in Fig. 12.1, allowing the function to be written

as
quadSolve a b ¢ = ( bxsqrt(b"2 —4a x¢))/2a

and with other rules written as
—b+ Vb2 —4ac
2a

emulating textbook typesetting. User-defined hierarchical sugaring would also allow the visualisation
of datatypes as in Figure 12.2.

quadSolve a b ¢ =

12.3.6 Matrices

Perhaps a more motivating example is the sugaring of quadtrees as seen in Fig. 12.2. This emulates
the shorthand that was used in Chapter 5. So far each of these diagramatic descriptions have been
flat, and for simple examples this suffices. However, if we have multiple methods of performing
the same operation we need a different solution. If these methods have exactly the same type then
type-directed overloading is no use. For example in the following expression

area = integrate f (0,1)
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xy

W

Figure 12.1: £ display rule

Figure 12.2: Quadtree display rule
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it is impossible to overload the functions

gaussianQuadrature :: (Double -> Double) -> (Double,Double) -> Double
simpsonsRule :: (Double -> Double) -> (Double,Double) -> Double

onto the same identifier integrate as their types are identical and as such, a compiler would not
know which one to choose. However, we may create hierarchical representations of them which mav
be partially viewed.

12.3.7 Hierarchical viewing and information hiding

Using the technique from the last section, it is simple to imagine sugaring Gaussian quadrature and
Simpson’s rule as

b
gaussianQuadrature £ (a,b) E/ f(x)dz

and )
simpsonsRule f (a,b) E/ f(z)dz
Simpson,,

respectively. If the two sugarings could be defined in such a way that the subscript information
was defined at a lower level, this information could be hidden by the editor until needed and the
presentation of resulting algorithms could be simplified to

1
area:/ f(z)dx
0

12.4 Concluding Remarks

With the current prototype implementation of FSC we have proven that the style of programming
advocated by functional programming may indeed bc used for the efficient implementation of nu-
merical methods. This fact holds independently of the efficiency of our prototype compiler. The
principles on which our prototype implementation stands are independent of FSC and it would be
interesting to see how others would interpret the results from Part I of this thesis to form a language.
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Appendix A

FSC: Syntax and Kernel semantics

A.1 Lexical Structure

A.1.0.1 Lexical Program Structure

program —  {lezeme|whitespace}
lereme — tyid|{conid|varsym|consym|literal speciallresc reedop|reservedid
lileral — integerifloat|double|charactcr]string{boolean

special — (])|,|,|[|]|_|‘|{|}

whitespace  —  whitestuff{ whitestuff}
whitestull  — whilecharlcomment
whitechar — —  space|newline|tab

comment  — —={any}newline
any —  graphic|space|tab
graphic large|smallldiget

A=l 171 1<=>(7|e

|| | LAl | x
[ N e

small — albl...|z
large — A|B]...|Z
digit — 0]1]...|9

Characters not in the category graphic or whitestuff are not valid and should result in a lexing error.
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A. FSC: Syntax and Kernel semantics

A.l. Lexical Structure

Program
Bindings

Expression

Literal values

Alternatives

Constructor alt

prog
binds
bind

expr

literal

alts

calt

————————

—

binds
bind;...; bind,

var = ezpr

expr, ezpr,

A var. expr

case expr of alts

if ezpr; then ezpr, else erpr;
let bind in expr

letrec binds in ezpr

con

var

literal

Integer
Float
Character
Double
Boolean

calty;...;calty

con vary ... var, —> €Ipr

Application
Lambda abstraction
Case expression
Conditional

Local definition
Local recursion
Constructor

Variable

Figure A.1: Syntax of the FSC kernel
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A. FSC: Syntax and Kernel semantics

A.l1. Lexical Structure

Plprogram] : Val

EVAL[ezpr] : Env— Val

EVAL[K] p

EVAL[z] p

EVAL[e; e2] p

EVAL[Az.€] p

EVAL[if e; then ey else e3] p

EVALlet =€ in b ] p
EVAL[letrec binds in e ] p
EVAL[C] p

= case EVAL[e] p of

I L —- 1
|] (01,611,---,€1a.)

“ (Cnvenlw--;fnan)

end

B[[binds] : Env — Env
Blzi=e1;...;zn=€a] p

strict : { Val - Val ) — Val — Val
strict f x=fz,ifz#l
streict f L =1

Pllprog]l = EVAL[ letrec prog in main ] p;pns

EVAL[case z of ¢1 211...Z14,">€1;--

— EVAL[e1] (p® {x11 — €11, --

— EVAL[en] (p® {€n1 — €n1, -

Kk]

pz

(EVAL[e] ) (EVAL[eo] p)

strict (A Z,..-EVAL[e] (p % £ — r...))

EVAL[case e; of True -> e3;
False —> e3] p

EVAL[()z.b) €] p

EVAL[e] (p ® fis(Ao' Blbinds}(p = #')))

D YR VI (N ST 9

iCp Inl-.-Tna,~>€n] P

yL1a, ‘10,})

yTna, m t'na,.})

= {.’L‘,-b——EVAL[[e,']] pIiE{l,...,n}}

Figure A.2: Denotational semantics of the FSC kernel
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A. FSC: Syntax and Kernel semantics A.1. Lexical Structure

.access i Arraya — Int - a

_cons T« — Arraya — Arraya

_snoc T — Arraya — Array o

_head i Arraya — «

_tail . Arraya — Armaya

_nil . Arraya

_last i Arraya — o

.init it Arraya — Arraya

-append . Arraya — Arraya — Arraya

_replace i Arraya — Int - —  Arraya
il i Int — Int — —  Arraya
_size . Arraya — Int

iml 2 Arraya — Int

Aimh 2 Arraya — Int

subarray :: Arraya — Int — Int — Arraya
_setindexr :: Arraya — Int — Arraya

_isEmpty @ Arraya —  Bool

Figure A.3: Intrinsic array operations

A.1.1 Identifiers and Operators

(small{ smallllarge|digit|’| _} ) cserveaia

tyid —
varid —  tyid|conid
conid —  large{small|large|digit|’| -}
reservedid — alllarray|at|by|case|class|cross|datatype|do|dotielse
|  for|if|ininfix|infixr|infixl|instance|let|of|ordered
|  prefix|repeat|return|returns|suffix|then|type|with|when
| whereluntil|unless
varsym —  {symbol} . ...
symbol — trIslulelx+]. 1/1<[=1>17(7 |0\
reservedop — . .|::[=>|=|Q|\|I|<-|->|:

A.1.2 Boolean Literals

boolean — True|False
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A. FSC: Syntax and Kernel semantics A.1. Lexical Structure

_accessfir—e, (14 1) —eiq1, -, fr— €5, men] j=¢, —'

_consa i ei,(i+1)— eiy1, -+, 7 — en]
=[i-1)—a,i—ei,(1+1)—eig1, -, n — €y]

snoca i ei,(i+1)— eig1, -+, n — €n)
=[i'_’ei!(i+l)'_’ei+l,"',’nl—v6n.(n+l)n—»a]

_head [i— ei,---,n—en] = e
tal[i—ei,(1+1)—eig1,- n—en] =[(i+1)— €1, -+, n— en)
nil =]

dast[i— e, ,m— en] =en

dnitfiv e, (m—1)—eiq1,n—en)=[i—ei, -, (n—1) — en_1]

-append i ei, -, en] [j— €, -, m — em]
=[i—ei, - n—en(n+1)—e5-,((m—3)+n+1)—en]

_replace [i+— €i,--+,j—€5,---,n—e€n)ja =[i— e, -, jr—a, -, n+en]
fillina=li—~a,--, - ,nr—a]

diml[i— e, n—en] =1

dimh[i— e, ,n—eq]l=mn

sizefi > e, ,n—en] =(n—1)+1
_subarray[iHe.',n-,jl—»e_,,‘--,kn—-ek.~--,nr—e,,]jk:[j»—'e,.-u,k»——ek]
_setindex[ir—re.,---,n»—en]j=[j»—»e.,”-,(n—i)-*-j’—‘en]

-isEmpty A = _primIntintEqual (_size A) 0

Figure A.4: Intrinsic array operation identities
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A. FSC: Syntax and Kernel semantics

A.2. Expressions

A.1.3 Numeric Literals

integer.integer{(e|E)[" | +]integer]

integer —  digit{digit}

float —
| integer(el|E)[~ |+]integer
| integer.

double —

integer.inieger{(d|D)[~ | +]integer]

| integer(dID)[~ | +]integer

A.2 [Expressions

In this section, we describe the syntax and semantics of FSC ezpressions, including their transi

into the FSC kernel where appropriate.

exp

ezpg

fezp

aecp

—
—
—
—

aezp :: lype

exp,

let {decls[;]} in ezp
\apat, ... apatl,-> exp
if ezp then erp else exp
case ezp of {alis[;]}
do type computalions
iteration

fezp

fezp aexp

fezp Largs,,,, ]

fezp {args, )}

aexp

var

con

literal

O

(ezp )

(expy, ..., exp;)

{expression type signature)

(let expression)

(lambda abstraction n > 1)
(conditional)

(case expression)

(do (10) expressions)
(iteration/array expressions)

(function application)
(array access)
(bracketed application)

(variable)
(constructor)

(unit)
(parenthesised expression)
(tuple k > 2)

ation

The FSC grammar is simplified by handling the parsing of operators from outside the grammar.

Table A.1 shows how examples are initially parsed and then transformed to prefix expressions.

The expression

parses as

and is transformed to

tx+gy
n!

(x+)

(((Ex)+H gy
(n )
BRACK(x +)

+ (£ x)) (gy)
(! n)
(+ x)

Table A.1: Operator parsing
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A. FSC: Syntax and Kernel semantics A.2. Expressions

A.2.1 Variables, Constructors and Operators

var — varid |varsym |(op ) (variable)
con —  conid |consym ( constructor)
consym —  varsym

op —  varid |varsym |*varid* (operator)

A.2.2 Curried Applications and Lambda Abstractions

ezp — \eapal; ... apat, -> erp
fexzp —  fexp aexp
| fezp {argsesp}
A.2.3 Operator Applications

exp — eIp, 0p,... €IP2 (infix operator application)
| ezp op, ., (suffix operator application)

A.2.4 Sections

aezp — (ezp op)
| (op exp)

A.2.5 Conditionals
ezp — if ezrp, then ezp, else ezp;

A.2.6 Arrays

iteration — [ey,...,en] (k>0)

Arrays are of the form [ey,---,e,], where n > 0; the empty array is written [1. Arrays are the
predominant datatype in FSC and hence much work has been done to facilitate their use. Since
FSC is based heavily around pattern matching there is a facility to pattern match against array
arguments, with many analogies being drawn with lists in languages such as Haskell. Standard
operations for constructing arrays are shown in Fig. A.5.

A.2.7 Tuples

aezp — (ey,...,en) {(n>0)
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A. FSC: Syntax and Kernel semantics A.2. Expressions

Operation { Translation

A+ a append a to the end of A

a <+ A append a to the front of A

A ++B concatenate A and B

1<: A set the lower bound of A to!
A:>u set the upper bound of 4 to u
] The empty array

Figure A.5: Intrinsic operations over arrays

A.2.8 Unit Expressions and Parenthesised Expressions

aezp — (e)

| O
A.2.9 Arithmetic Sequences and Strides

iteration — [e;..ez2] (range)

| Cepzeaf:es}] (stride)

A.2.10 Array Comprehensions

deration — [retezp,, ...,retezp, | range [|inits] ] n>1
| Lezpy; ... ezp, | range [linits] ] n>1
retezp — [aezp of | ezp[(when|unless) ezp]
nils —  inily; ..., n>1
it —  patl = ezxp
range —  updates (whileluntil) ezp
| (whileluntil)aerp updates
|  {updates;} inrange
| all ver
updates — update;; ...;update, n>1
update | pat <— ezp
inrange — pat in ezp [at var] [(dot|cross|;) inrange]
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A. FSC: Syntax and Kernel semantics

A2 EXpreSions

A.2.11 Value Comprehensions

iteration —  (retvah, ..., retval, | range [|inits] )

retval —  erp[(when|unless) ezp)
inits —  naty; ... iy,
it — pat = exp
range — updates (vhileluntil) exp
| (whileluntil)aezp updates
| {updates;} inrange
| all wvar
updates — update ; ...;update,
update | pat <- ezp
inrange — pat in ezp [at var] [(dot|cross|;) inrange]

A.2.12 For Expressions

iteration — for [initial {inils}]|range,,

retexp — [aezp of ] ezp[(when|unless) exp]

inits —  antly; ... i,

inet — pal = exp

range,, — repeat {updates }(vhilejuntil) erp
| (whilefuntil)aezp {repeat updates}
| {updates;} inrange
| all waer

updales — updatey; ...;updale,

update |  pat <- exp

inrange — pat in ezp [at var] [(dot|cTross|;) inrange]

A.2.13 Case Expressions

ezp — case ezp of { alis[;]}

alls — alty; ... ;alls,

alt —  patl -> ezp [where {decls [;]}]
|  pat gdezp [where { decls [;]}]

gdpat — gd -> ezp [gdpal]
gd — | exp
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A. FSC: Syntax and Kernel semantics

A2

Expressions

A.2.14 Do Expressions

erp —
actions —
action —
domain —

do domain{actions[;]}

actiony; ...;

return erp
pat <- ezxp
exp
type

action, n>1
(unit)
(bind)

(domain choice)

A.2.15 Expression Type-Signatures

exp — aexp :: lype

A.2.16 Pattern Matching
A.2.16.1 Patterns

pat

apat

fpats

apat

con fpats
var[@apat |

con

literal

O

(pat)
(paty,..., paty)
[paty, ..., paty]
Cpat,,. .., paty)
(paty, ..., pat;]
{pat,, ..., pat, }{fpats]
apai(fpats|

(as pattern)
(arity con=0)

(wildcard)

(unit pattern)

(parenthesised pattern)

(tuple pattern, k > 2)

(array pattern, k > 0)

(left edge array pattern, k> 0)
(right edge array pattern, k> 0)
(application pattern, k > 1)
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A. FSC: Syntax and Kernel semantics

A.3. Declarations and Bindings

A.3 Declarations and Bindings

module — module modid [ezportsjwhere body

| body

body — {[impdecls; ){[fizdecls ;]topdecis [;]]}

| {impdecls [;]}
topdecls — topdecly;...;topdecl,
topdecl type simple = type

datatype simple = consirs

instance[context =>]tycls inst [where {valdefs [;]}]

transformation
decl

decls — decly;...; decl,

decl — arraydec!
| valdef

A.3.0.2 Syntax of Types

type — biype[~ digif)[-> type ]

biype — atype;...alype;
atype

atype — tyvar

|  tycon

0O

| Uype)

| (typey, . . -, typey)
|  [typel

|
| class(contezt =>]class [where {cbody [;]1}]
|
|
|

(arity tycon =k, k>1)

(arity tycon = 0)
(unit type)
(parenthesised type)
(tuple type k >2)
(array type)

A.3.0.3 Syntax of Class Assertions and Contexts

context — class

| (classy, ... ,classy) (
class —  tycls(type,, -- (

tycls —  conid
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A. FSC: Syntax and Kernel semantics A.3. Declarations and Bindings

A.3.1 User-Defined Datatypes

topdecl — datatype simple = consirs

simple — tycon lyvar, ...tyvar, (arity tycon =k, k > 0)
constrs — constr | ... |constr, (n>1)
constr — con atype, ...atype, (arity con =k, k > 0)

A.3.1.1 Type Synonym Declarations

topdecl — type simple = type
simple ~— {tycon tyvar, ...1lyvar, (arity tycon =k. k > 0)

A.3.1.2 Class Declarations

topdecl — class [contert =>]class [where { cbody[;]}]
cbody — csigns

csigns  —  CcSigny;...; CSign, (n>1)
csign  — wvars :: [context => type
vars — vary,..., %0y (n>1)

A.3.1.3 Instance Declarations

topdec! — instance [context =>]tycls inst [where { valdefs [}] }]
1nst —  lype

valdefs — wvaldefy;...; valdef, (n>1)

A.3.2 Nested Declarations
A.3.2.1 Type Signatures

decl — wvars:: type
vars — vary,...,vaT (n>1)
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A. FSC: Syntax and Kernel semantics A4 Modules

A.3.2.2 Function and Pattern Bindings

decl —  valdef
|  arraydecl

valdef — lhs = ezxp [where { decls[;]}]
| lhs gdrhs [where { decls[;]}]

lhs —  pat
| funlhs

funlhs —  wvar { apat,...,apat, }{( { apat,,..., apat,}apat)}
|  apat apat {apat}

gdrhs — gd = ezp[gdrhs|
gd —  lexp

A.3.3 Array Declarations

arraydecl — array [var [[bnd]..bnd][ordering][mutezp]where | vardecls
vardecls — {vardecl;...; vardecl}
vardecdl  — wari[p1,...,pnlgrhs[where {decls[;]}]
|  warilp1,...,pn)= exp[where {decls;]}]
ordering — ordered ords
mutexp — overwrites var (vary # vars)
ords — ord {(then|and)ords}
ord — by wvar in ezp iteralion
|  deration
bnd —  (ezpy,...,ezp,) (n>1)
—  exp

A.4 Modules

A.4.1 Module Implementations

module — module modid [ezporislwhere body
|  body
body —  {[impldecls ;][[fizdecls ;]topdecis [;]]}
| {[impldecis [;]}
modid —  conid
impdecls — impdecl;;...; impdecl, (n>1)
topdecls — topdecl ;.. .;topdecl, (n>0)
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A. FSC: Syntax and Kernel semantics

A4 Modules

A.4.1.1 Export Lists

exports — (ezporty,..

ezport — entity
| modid

—  var
| tycon
| tyeon(.)
|
|
|
|

tycon(cony, .

tycls
tycls(..)

tycls(vary, ..

A.4.1.2 Import Declarations

., export,) (n>1)

.., conyg) (n>1)

.,vary) (n>0)

impdecl — import modid

A.4.1.3 Fixity Declarations

fizdecls — fizy; .. .; fiz,

fiz —

vars —
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infix [integer]vars
infixl [integerjvars
infixr [integer]vars
prefix [integerjvars
suffix [integerjvars

vary, ..., tary,



Appendix B

normalCDF: C implementation

'T'he code that follows is the (' code to tabulate a cumulative density function of a normal it ribution
referred to in Chapter 10.

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<time.h>

static void normalCDF (int n);

double calculate (int n,int i);

static inline double normalPDF(double x);

static inline double integrate(double (*f)(double),double a,double b);

double MU;
double SIGMA;
double pi;
clock_t t1,t2;
double sc;

/* Takes 3 command line arguments

** MU double

** SIGMA double

** int

** N is the number of points you wish to evaluate
**x i.e. in Schaum book N = 400

*/

int main(int argc,char* argv[])

{

243



B. normalCDF: C implementation

int n = argc;
pi = 3.14159265358979323846;

if (argec == 4) {
n = atoi(argv[3]);
MU = atof(argv[1]);
SIGMA = atof(argv[2]);
sc = (SIGMA * 2.50663 ); /* 2.50663 = sqrt(2 * pid)); =/
normalCDF(n);
}
else {
printf("Error: 3 arguments expected %d received ",argc);
}

return O;

static void normalCDF(int n)
{
int i;
double* out;
double z;
out = (double*) malloc((unsigned) n * sizeof(double));
t1 = clock();
z = 4.0 / ((double) n);
for (1 = 0;i <n;i++) {
out[i] = integrate(normalPDF,0.0,(double) i * z);
/* printf("%1f\n",outlil); */
}
t2 = clock();
printf("clocks %1f\n",
((double)(t2 - t1))/((double)CLOCKS_PER_SEC));

static inline double normalPDF(double x) {
register double q = x - MU;
register double y = (q*q)/(-2.0);
return exp(y)/sc;

}

/* symmetric n-point Gaussian quadrature.*/

static inline double integrate(double (*f)(double),double a,double b)
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B. normalCDF: C implementation

{
double xi;
double total;
total = (b-a)/2.0;
b = (b+a)/2.0;
a = total;
/* unroll loop */
xi = a*0.960289856497536;
total = 0.101228536200367 * ((*f)(b+xi) + (*£f)(b-xi));
xi = a*0.796666477413627;
total += 0.222381034453374 * ((*f)(b+xi) + (*f)(b-xi));
xi = a*0.525532409916329;
total += 0.313706645877887 * ((*f)(b+xi) + (*f)(b-xi));
xi = a*0.183434642495650;
total += 0.362683783378362 * ((*f)(b+x1i) + (*f)(b-xi));
return a * total;
}



Appendix C

Lambda Calculus

C.1 Introduction

The development of functional languages has been most influenced by the work of Church on the
lambda calculus. This work was motivated by the desire to create a calculus (a syntax for terms and a
set of rewrite rules for transforming them) of anonymous functions that captured the computational
aspects of functions rather than considering functions as merely sets of argument/re~ult pairs.

In the lambda calculus all functions are presented in prefix form. For example,

(+23)

denotes the expression (2+3). If we wish to evaluate an expression we select a reducible expression.
or redex, in our main expression and reduce 1t. In this example the reduction would he:

(+23) =5

If our expression was

(+(x12)3)
then (+ (% 12)3) would not be a redex since + must be applied to two numbers before we can reduce
it. However, (% 12) is a redex and so we may reduce the expression:

(+(x12)3)=>(+23)=>5

If an expression contains more than one redex then we have a choice of which to reduce first. This
issue is discussed later.

C.2 Definitions
To denote function application we use juxtapositioning and write

fz
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C. Lambda Calculus C.3. The Pure Untyped Lambda Caleulus

to denote the function f applied to the argument z. We may also define new functions using lambda
abstractions:
Az (+z1)

This is read as A | =] - |+ |=z| |1
The function | of | « | which | adds | = [ to |1

C.3 The Pure Untyped Lambda Calculus

In the pure untyped lambda calculus we have identifiers and lambda expressions where an expression
e in Exp can be either an identifier z, an abstraction Az.e or an application ¢; e

Identifier =z

Expression e = r
| e e
| Az.e

In our previous example the expression Az.(+ z 1) 2 would be an example of an application of the
abstraction Az.(+ z 1) to the expression 2 where z is an identifier!.

The expression Az.e is an example of an abstraction, the mechanism by which the notion of a
function is captured without the need to bind a name to it. Informally this expression can be read
as “the function which when applied to z, returns ¢”. Lambda abstractions can often be found in
actual functional programs. For example the following two Haskell definitions are equivalent:

> £=\x > x * x
> g x = x*x

where Az.e would be written as \x -> e.

The expression (e; e3) is an application, the mechanism by which the notion of function applica-
tion is captured. By convention function application is assumed to be left associative and so we can
write ((e; e2) e3) as (e1 e2 es). This process was carried out above where we wrote (+ 2 3) rather
than ((+ 2) 3).

C.4 Rewrite Rules

The rewrite rules of the A-calculus depend on the notion of the substitution of an expression ¢, for
all free occurrences of an identifier r in an expression e», which we write” as [e;/z]es . So

6/z](+z1) = (+51).

However, when performing these substitutions the scope of a variable must be respected in the same
sense as mentioned earlier. As a result of this complication the definition of substitution, although

lTechnically this expression is not taken from the pure untyped lambda calculus but from the lambda calculus
with constants. Also dealing with built in functions such as addition would require the use of & rules.
%In some texts the notation es[e;1 /2] is also used.
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C. Lambda Calculus C.5. Reductions and Conversions

conceptually simple, is somewhat laborious. To define substitution we must first make the distinction
between free and bound variables occurring inside an expression.

An occurrence of the variable v inside the expression e is said to be bound if it occurs within a
sub-expression of e with the form Av.e1, and is free otherwise. Or. more formally, the set of free
variables of an expression e is defined as )

FV(I‘) = {1‘}
FV(ep e2) = Fl(e1)UFV(e2)
FV(Az.e) = FV(e)-{r}

and z is free in e if (and only if) z € FV(e). For example

{}
{y}
{z.y}

We now can define the substitution [e1/z]es inductively [48] over identifiers, applications and ab-
stractions as

FV(Azdy.zyy)
FV(Az.zyy)
FV(zyy)

S
ler/z] (e2 es) = ([er/z]e2)([er/x]e3)
Az;.e3, if i=j
fs) Oepen = | NI e e

where k# i k# jore ¢ FV{er)U Fl(e2)

The last rule resolves name conflicts by making a name change if necessary. This may be more easily
understood as

[E/z)(Az.F)
(E/z](M\y-F)ly # =

Az F
My.[E/2]F, if z does not occur free in £
My.[E/z)([z/y)F), otherwise
where = is a new variable name
which does not occur free in £ or F.

The following example, taken from [48], demonstrates application of all three rules:

ly/x)(Ay.x)(Az.z)r = (Az.y)(Az.z)y

C.5 Reductions and Conversions

We define three simple rewrite rules on lambda expressions. These rules define steps that may be
used in simplifying terms which we write in the form ey — e2.
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C. Lambda Calculus C.6. Normal Forms and Confluence of Reductions

1. a-conversion (renaming):
Azi.e — Azj.[z;/z;le, where z; ¢ FV'(¢).
2. f-reduction (application):
(Az.e1)es — [ea/z]e;.
3. np-reduction (regarding functions with the same external behaviour equal):

Az.(e r) —e,if z ¢ Fl'(e).

Informally, for a function f:
o a-conversion says that the definition f(z) = r + 1 is the same as f(y) = y + 1.
o [-reduction says that f(e) — e+ 1

o 7-reduction says that we can regard the function Az.f(z) to be the same as f, i.e. if a function
takes an argument and simply passes it to another function then these two functions are
equivalent.

An example of each rule is :

Gz.+ z1) 2 (dy+ yl)
(Az.f(z)) - f
Ge.+z1)2 2 (21

We write e; — e5 if €5 can be derived from zero or more 3/m-reductions or a-conversions. \We
also have f— and n— conversions which are the same as J— and 7— reductions other than they can
happen in both directions and hence are denoted e; — ¢-.

C.6 Normal Forms and Confluence of Reductions

A lambda expression is said to be in normal form if it cannot be reduced further by using J- or 7-
reduction. This is often what we think of as the value of an expression or the result of a computation.
Note: some expressions have no normal form such as

(Az.(z 2)) (Az(r 1))

where the reduction process is non-terminating. If normal form does exist we would wish to be able
to find it and also would like it to have a unique value. The Church Rosser theorems give positive

results in both these cases.
¢ CHURCH-ROSSER THEOREM 1 }
If eg = e; then there exists an e» such that eg — e> and €; — €2 . In other words if eg a'nd
ey are intra-convertible then there exists a third term (possibly the same as ¢ or ¢) to which
they can both be reduced.
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C. Lambda Calculus C.7. Order of Reduction

¢ COROLLARY

No lambda expression can be converted to two distinct normal forms (ignoring differences due
to a-conversion).

What this means is that a normal form is unique (up to renaming of variables) and how we
arrive at it does not matter (the order of evaluation is irrelevant). We say that — i\ confluent

or — has the Church Rosser property if for all eg, ey, €5 such that eg — ¢, and ¢ —- ¢2 there
exists es such that e; — e3 and ey — €.

So we know that the normal form of an expression is unique but the question still remains whether
it is always possible to find it. To answer this we define two reduction strategies.

C.7 Order of Reduction

A normal-order reduction is a sequential order reduction in which whenever there is more than one
redex (reducible expression), the left-most one is chosen first. An applicative-order reduction is a
sequential reduction in which the left-most-innermost redex is chosen first.

¢ CHURCH-ROSSER THEOREM II

* . . . .
If ep — e; and e; is in normal form then there exists a normal order reduction from eg to ¢;.
What this means is that if a normal form of an expression exists then we can always find it by
using normal order reduction.

As it turns out, applicative order reduction is not always adequate, for instance using applicative
order reduction to reduce (Az.y)((Az.z z)(Az.z r)) would result in (Az.x z) (the inner-most left-most
redex) being applied to (Az.z z) yielding (Az.r z) with which to replace (Ar.r z)(Az.r r) and so

(Az.y)((Az.z 2)(Az.x x))
— (Az.y)((Az.r z)(Az.z 1))
— ...ad infinitum

However, using normal order reduction to reduce (Az.y){((Az.z r)(Ar.r r)) would result in Az.y (the
left-most redex) being applied to (Az.x r)(Az.zr r) yielding y.

(Az.y)((Az.z z)(Ar.z 1))
— Yy
C.8 Strictness and Laziness

The normal-order reduction rules of the lambda calculus are the most general in that they can
guarantee to produce the normal form of an expression if one exists. Given this. it is natural
to consider using normal-order reduction as the computational basis of a programming language.
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C. Lambda Calculus C.8. Strictness and Lazipese

Unfortunately a naive implementation of this is hopelessly inefficient. To see why consider the
following examples [48]:
(Az.(+ z 2))(* 5 4)
— (+(* 3 4)(x 5 4))
— (+ 20 (= 5 4))
— (+ 20 20)
— 40:4 reductions

where the multiplication (+54) is done twice. In other circumstances this could be an arbitrarily large
computation which is computed as many times as there are occurrences of the formal para}Ilet«‘r.
For this reason normal order reduction is often associated with a call-by-name strategy of parameter
passing. A solution to this is to use a reduction rule other than normal-order such as applicative-
order reduction where evaluation of the above expression would result in the following

(Az.(+ z 2))(* 5 1)
— (Az.(+ z 1)) 20
—  (+ 20 20)
— 40 :3 reductions

where the argument is evaluated before the application of the lambda abstraction. Thus applicative-
order reduction is often associated with a call-by-value strategy of parameter passing. However.
the disadvantage of this is that it may perform more reductions than is necessary in order to reach
normal-form or, as mentioned earlier, may never reach normal-form. Despite this apparent drawback
many functional languages, such as ML. Hope and pure Lisp, use a version of applicative-order
semantics and enjoy quite efficient implementations using much of the same call-by-value compiler
technology used in imperative languages [48].

The efficiency problem with normal order reduction i1s based around the fact that the lambda cal-
culus is normally described as string reduction which prevents any sharing from occurring. However.
if we describe it as a graph reduction [99] then we may implement sharing by the use of pointers:

(Az.(+ z z))(x 5 4)
— let x=(*54)in(+ \ \)
— let x=20in(+ \ \)
— 40:3 reductions

which takes the same number of steps as the applicative-order reduction sequence. This form of
reduction in which re-computation is avoided is called call-by-need, or lazy evaluation. The key
features are that it possesses the full power of normal-order reduction and arguments are evaluated
at most once. From a number of reductions point of view it is more efficient than applicative-order
reduction in that “at most once” may amount to no computation. However, this apparent efficiency
is amortised against the cost of implementing lazy graph reduction on conventional hardware which
seem more suited to call-by value strategies. Representing unevaluated parts of the graph involves
implementing closures or thunks whose cost is often non-trivial.
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Appendix D

Polymorphic Type Inference

D.1 Polymorphic Type Inference

The purpose of this appendix is to serve as an introduction to polyvmorphic type inference used in
the basic type system which Haskell, Miranda and FSC have in commmon. This 1s not presented in a
rigorous ‘from the ground up” style approach. Ratlier. we assume the reader has an understanding of
the notion of fypes and how these are used in practice in programming languages but has had little
experience with notions such as polymorphism or polymorphic types. This appendix i~ organised as
follows:

e Section D.2 reviews the basic concepts of, and notation for, types.
e Section D.3 introduces the idea of polymorphism.
e Section D.4 shows informally how the principal type of an expression is inferred.

e Section D5 makes this process more concrete, clarifies the rules of type inference and presents
these rules as an abstract algorithm.

This is presented in terms of a verysimple applicative language which is the ertendcd lambda calculus.

D.2 Notation for Types
We begin by defining three classes of type:
e Ground types
o Constructed types

e Type variables
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Ground types are types such as Integer, Real, Character, etc. Constructed types are types made from
other types such as functions, lists and tuples, and type variables play the same role as variables in
mathematics, i.e. a type variable a can stand for a type in the same way that a variable n stands
for a number. We use Greek characters to represent type variables. The notation

Toa
means that z is of type a. Other examples include

10 = Integer
¢’ :: Character

where 10 is of ground type Integer and ’c’ is of ground type Character.

D.2.1 Constructed Types

Constructed types consist of a type-forming operator and a list of arguments. Some examples of
constructed types are

Empty @ Lista list of type « former = List
truncate : Real — Integer function from integers to reals former = (—)
Leafl ;2 Tree Integer a tree of integers former = Tree

It is quite common for some of these formers to be syntactically sugared in functional languages. for
example List(a) is often written as [a].

D.3 Polymorphism

Many of the functions defined in a functional program are to some extent indifferent to the types of
their arguments. The archetypal example being the identity function id

> id x =x

which can be applied to any type i.e.

> id 1 - =1

> id ’a’ - =’a’

> id "hello”" -- = "hello”
> id (1,0a’)  -- = (1,’a’)

In a sense id is indifferent to the type of its argument although it always returns a value of the same
type as that of its argument. For the examples above the types of id would be

> id 1 -= 1id::INT -> INT

> id ’a’ -- id::CHAR -> CHAR

> id "hello"  -- id::STRING -> STRING

> id (1,’a%) -— id::(INT,CHAR) -> (INT,CHAR)
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We capture this generality of typing by saying that the type of id is Va : a — a. In this example
o is known as a generic, or schematic, variable and it is often the case that we take all variables to
be implicitly schematic and omit the V clause. So the type of id is written as

idiia—a

D.3.1 The Functions length and map

Often we want to define functions which work on all types which are more useful than the above
identity function. An example is length:

> length [] =0
> 1length (x:xs) = plus 1 (length xs)

This function can be applied to lists of any element type and returns the length as an integer. Hence
the type of length is
length :: [a]— > INT

Other useful polymorphic functions are map and foldr with definitions as follows:

a

f x: map f xs

> map £ []
> map £ (x:xs)

> foldr £ z [] =z
> foldr £ z (x:xs) = £ x (foldr £ z xs)

whose types are
map o (a— B) = [a] — [J]
foldr = (c—3—8)—8—[a]—23

D.4 Type Inference

In order to explain the manner in which principal types are inferred we consider the following

example:
let fr=uxin f3

which is translated into
let f = Ar.zin f(3)

Informally the process of type inference 1s
o infer type of Az.z
e bind f to this type
¢ infer type of f(3) under the above inferences

where the type of Azr.e is found as follows:
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e create a non-polymorphic type variable 7, and bind it to z
o infer the type ™ of e under the above
e unify , with the type of z to give 73
e type of Az.z is inferred as 73 — 7
¢ make 7 polymorphic
giving the type of Az.z as Vo : 0 — 0. The type of f(e) is now inferred as follows:
e create a new type variable 7
o infer the type of f (o1 — o3)
o infer the type of 3 (03)
e unify 0y — 02 and 03 — T to give 13 — 14

e type of f(e) is 4

D.5 Type Rules

The rules we use to infer types in the above style are often written as abstract algorithms. For
instance, the statement:
Ar:tbhz: 1

reads “from the set of assumptions A and the assumption that r has type 7 we may deduce that r
is of type 7”, and the rule:

At f.o0—T1 AkFe:o
A-(fe):r

reads “If, from the set of assumptions A, we may deduce that f has tyvpe ¢ — 7 and we may also
deduce that e has type o then we may deduce from A that f(e) has type r”. The type rules for
standard Hindley-Milner type inference are given in Fig. C.2. with Robinson’s unification algorithm
given in Fig. C.1.
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D.5.

Tvpe Rules

—

Unification

unifyp(vi,v2)

unifye(xi(s11,--
"371])

Unifye(v, X[sl) [

uni fyp(x[s1,...,sn},v)

-y 81m)s x2[821,t8, 52n])

succeeds;
v1 and v, are bound to the same variable in 4.

succeedsif \; =\, Am=mn

Aunifyg(siz,s21) A ... Aunifyg(s1m. 52n).
and fails otherwise.

succeeds binding v to x[s1,...,5r] in §
if v does not occur in s; ...5p,

and fails otherwise

succeeds in a similar manner to the definition above

Figure D.1: Robinson’s unification algorithm

Type rules

TAUT

COND AF

Az:thkr:r

e :bool AFey:7 : AkFex:r

ABS

LET

GEN

SPEC

COMB

Al (if eo theney elsee) : 7

Az:obte:T
AF(Are):o— 7

Abe:0 Ar:oke:r
AF(letr=eginer): 7

T‘??:f_\;;.‘r_ (o not free in A)
AlFa:Va.r
AFe:[o/o]T

Able:o—7 Aler:o

At (eper): 7T

Figure D.2: Type inference rules
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Appendix E

Monads and Imperative
Functional Programming

‘I'he concept of a monad originally stems from category theory where it is defined as a tripte (M. 5. p)
where M 1s a functor and np: MM — M.y : I — )M are natural transformations such that the three
monad laws are satisfied:

Hon = id
polly = id
poMuy = pop
In functional programming terms a functor i1s any function map together with a tyvpe constructor M
such that map takes functions o — J into functions M o — A/ J and satisfies
map id = ud
map(go f) = mapgomapf

and a natural transformation can be thought of as a polymorphic function which reshapes a data
structure without affecting the constituents of its arguments. It turns out that the well-known
functions

concat :: [[a]] — [a]

ap (b ) — [+ )
take n = [a] — [a]

fst 2 (a d)—a

are all natural transforimations.

E.0.1 Monads in Functional Programs
In Haskell the triple (\\/,n, u) is written as (map, unit, join)

map = (a—J3)—(Ma—1J)
unit 1 a— Ma
join = M (Ma)— Ma
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and, as before, must satisfy the three monad laws for (map, unit, join) to form a monad. However. the
manner in which monads are used in functional programs leads to an alternative, though equivalent
definition via an abstract datatype M with two operations unit and bind

unit a— Ma
bind Ma — (a — MJI) — My
satisfying
(1) Left unit : (unit @) bind‘k = koa
(2) Right unit : m ‘bind‘ unit = m
(3) Associative : m ‘bind‘ Aa.(k a ‘bind‘h) = (m ‘bind’ k) ‘bind' h

with the following equivalences holding

map f = Az.bind 1 (unitof)
join = Ar.bind r (map id)
bindz f = (joinomapf) r

Before proceeding we introduce an auxiliary operation

Az.bind (fz) g
= joinomap gof

fxg
which allows us to reformulate the above laws as:

(1) Left unit: unitxxr = I

(2) Right unit: rxunit = x

(3) Associative: fx{gxh) = (fxg)«~h
which is a lot clearer. In the rest of this appendix monads will be built using unif and bind, and
reasoned about using Kleisli composition x. In categorical terms this is known as a Aleusli category
with M -resultric functions as morphisms, un:t as identity and = as composition. We denote this
category as AM and denote the monad (M, unitp, bindag) as AM.

E.0.2 Monads In Practice

The reason monads are usually defined in terms of unif and bind rather than unit and » is due to
the use of these operations when modelling computational behaviour in a purely functional manner.

Consider the problem of uniquely numbering the leaves of a binary tree. In Haskell this could
be implemented by explicitly passing state as

> data Tree a = Leaf a
> | (Tree a) :~: (Tree a)
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> number (Leaf a) n = (Leaf (a,n),n+1)

> number (left :~: right) n = let

> (nleft,n1) = number n 1left
> (nright,n2) = number ni right
> in

> (nleft :": nright,n2)

However, if we form a monad with an extra operation get defined as:

> type M a = Int -> (Int,a)
>bind x f = \a > let (i,r) = xainfri
>unit x = \a —> (a,x)

> get = \a -> (at+i,a)

we may model this passing of state

> number (Leaf a) = get ‘bind‘ \x ->

> unit (Leaf (a,x))

> number (x :~: y) = number x ‘bind‘ \x ->
> number y ‘bind‘ \y ->
> unit (x :": y)

and the computation is structured and less likely to suffer from silly errors introducted by explicitly
passing state. Other computational behaviours which monads model include exceptions, 1/0O and
non-determinism. Examples of use in these areas may be found in [98].
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Appendix F

Finite Element Code

This Appendix contains the FSC' finite element code from Chapter 10

-- Direct translation of functions from Dwyer’s
-- Functional programming for finite elements

PHI :: DOUBLE -> INT -> INT -> [DOUBLE] -> DOUBLE
PHI x j 1 X = (X[j+1] - x) / (X[j+1] - X{3D)
PHI x j _ X = (x - X[j1) / (X[j+11 - X[jD)

DPHIDX :: DOUBLE -> INT"2 -> [DOUBLE] -> DOUBLE
DPHIDX x j 1 X = "1/(X[j+1]1 - X[j])
DPHIDX x j _ X 1/(x[j+1] - X(3D)

FINT :: DQUBLE -> INT"3 ->[DOUBLE] -> DOUBLE
FINT x j i x X | k == = 2/x"2 * PHI{x,j,1,X}
| otherwise = DPHIDX{x,j,i,X} * DPHIDX{x,j,k,X} * x
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GQUAD :: DOUBLE"2 -> INT"3 -> [DOUBLE]-3 -> DOUBLE
GQUAD b a j i k X xs ws
= sum{pr*w¥FINT{x*pr+pm,j,i,k,X}| w in ws dot x in xs]
where pm = (b+a)/2
pr = (b-a)/2

mkL :: [DOUBLE]~3->INT->[DOUBLE]
mkL X xs ws N
= [ GQUAD X[j+1]1 X[j1 j 22X xs ws +
GQUAD X[j+2] X[j+1] (j+1) 1 1 X xs ws ;
GQUAD X[j+2] X[j+1] (j+1) 1 2 X xs ws |
j in [1..N-2]] +> GQUAD X[N] X[N-1] (N-1) 2 2 X xs ws

mkB :: [DOUBLE]~3->INT->DOUBLE~2->DOUBLE
mkB X xs ws N bcl be2
= “GQUAD X[2] X[1] 1 2 3 X xs ws
-GQUAD X[3] X[2] 2 1 3 X xs ws
~bcl * GQUAD X[2] X[1] 1 1 2 X xs ws
<+ [ -GQuaD Xx[j] X[j-1] (j-1) 2 3 X xs ws
- GQUAD X[j-1] X[j] j 1 3 X xs ws | j in [3..N-1]1 ] +>
“GQUAD X[N] X[N-13 (N-1) 2 3 X xs ws - be2

LP :: [DOUBLE] -> [DOUBLE]
LP (1 <:L:> N) = let array L’[1..N] ordered [1..N] where

L’[13 = L[1]
L’[i] | (i is even) = L[i]
| otherwise = L[i] - L{i-1]"2/L’[i-2]
in L’
BP :: [DOUBLE]~"2 -> [DOUBLE]
BP L’ (1 <: B :> N) = 1let array B’[1..N] ordered [1..N] where
B’[1] = B[1]

B’[j] = B[j1-L’[2j-21/L’[2j-3]1*B’[j-1]
in B’
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A :: INT -> [DOUBLE]-3 -> DOUBLE"2 -> [DOUBLE]
AN X x_g w_g BC1 BC2 = BSUB L’ B’ where

L> =LPL
B> =BP L’ B
L =mkL X x_gw_gQN

B

mkB X x_g w_g N BC1 BC2
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FSC Code Examples

In this appendix we give numerical examples implemented in FSC

G.1 Jacobi Iteration

> jacobi :: [[DOUBLE]] -> [DOUBLE]"2 -> [DOUBLE]
> jacobi A b x = x’ where
> array x’[i] = (b[i]-sum[A[i,jl#x[j] when i'!'=jl| all j1)/ Al[i,i]

G.2 GGauss-Seidel Iteration

> GaussSeidel :: [[DOUBLE]] -> [DOUBLE]"2 -> [DOUBLE]

> GaussSeidel A b (1 <: x :> N) = x’ where

> array x’[1..N] where

> x’[1] = (vl[il-sum[A[i,jI*x’[11j in [1..i-1]]
-sum[A[i,jl*x[j11j in [i+1..N11)/ A[i.i]

G.3 Gaussian Quadrature

> gq :: [DOUBLE]"2 -> (DOUBLE->DOUBLE)->DOUBLE~2-> DOUBLE
>ggxwfab=pr * sum[f1 w_i x_i | w_i in w dot x_i in x]
where f1 wi xi = wi * (f (pm+pr*xi) + f (pm-pr*xi))
pm = (b+a)/2.04
pr = (b-a)/2.0d

vV Vv VvV

G.4 Matrix-Vector Operations

> mmult :: [[DOUBLE]]~2 -> [[DOUBLE]]
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> mmult M1 M2 = M3 where
> array M3[i,j] = sum[ M1[i,jl* M2[k,j] | all k]

> dotproduct :: [DOUBLE]-2 -> DOUBLE
> dotproduct X Y = sum(zipWith (*) X Y)

> MatrixVectorMult :: [[DOUBLE]]->[DOUBLE]->[DOUBLE]
> MatrixVectorMult A x = [ dotprod row x | row in A]

> MatrixPlus :: [[DOUBLE]]~2 -> [[DOUBLE]]
MatrixPlus A B = C where
array C[i,j] = A[i,j] + BLi,j]

v Vv

G.5 LU Decomposition

LU_Decompose :: [[DOUBLE]] -> [[DOUBLE]]
LU_Decompose (1 <: A :> N) = LU where
array LU[..(N,N)] where
LU[i,j] | i>j = (A[i,jl-sum[LU[i,k] * LULk,jllk in [1..(j-1)]1)/LU(],]]
| i<=j = (A[i,jl-sum[LU[i,k] * LU[k,jllk in [1..(i-1)]

G.6 Newton’s Method for Systems of Non-Linear Equa-
tions

In this section we present an example of Newton’s method extended to deal with a system of n
non-linear equations in n unknowns.

G.6.1 Outline of Method

We consider the system of n equations in n unknowns

fi(zxi,za,...,2,) = 0
f?(l'ly-l'g,...,.l:n) = 0
fn(xhlm-..,l',,) = 0

which is normally written f{(x) = 0 where f = [f1, fo, ..., fa]¥ and x = [z}, 2. .. .,.tn]T.[107]. We
assume a solution exists, that is, we assume there is an a such that f(a) = 0. The following code is
for a partucular example where

fl(l',y)
fa(z,y)

[l

cos(2z) — cos(2y) — 0.4
sin(2y) — sin(2z) — 1.2

[l
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main :: [DOUBLE] -> [DOUBLE]
main init = iterate (NEWTON_IT LU_SOLVE J F) norm 0.000d0 init

f£_1,f_2 :: [DOUBLE] -> DOUBLE
£_1 [x,y] = cos(2x) - cos(2y) - 0.4d0;
f_2 [x,y] = sin(2y) - sin(2x) - 1.2d0;

F [DOUBLE] -> [DOUBLE->DOUBLE] -> [DOUBLE]
FX=1[fx | x in X dot £ in Fs]
where Fs = [f_1,f_2]

J :: [DOUBLE] -> [[DOUBLE]]
JIx,yl =1
[ “2sin(2x), 2sin(2y)],
[ "2cos(2x), 2cos(2y)]
]

norm :: [DOUBLE]-> DOUBLE
norm X = sum[x~2 |x in X]

iterate :: ([DOUBLE]->[DOUBLE])->( [DOUBLE]->DOUBLE)
-> DOUBLE ~> [DOUBLE] —> [DOUBLE]

iterate scheme norm tol init

= (x | while (norm x < tol) x <- scheme x | x = init)

NEWTON_IT SOLVE J F x = SOLVE (J x) (J x * x - F x)

LU_SOLVE :: [[DOUBLE]] -> [DOUBLE]-> [DOUBLE]
LU_SOLVE A b = LU_Subst M b
where M = LU_Decomp A

LU_Subst :: [[DOUBLE]] -> [DOUBLE] -> [DOUBLE]
LU_Subst LU b = solution where

solution = LU_BkSubst LU y

y LU_FwdSubst LU b

LU_FwdSubst :: [[DOUBLE]] -> [DOUBLE] -> [DOUBLE]
LU_FwdSubst L (1 <: b :> N) = y where

array y[1..N] where
y[il = (b[i] - sum[L[i,k] * y[klik in [i..(i-1)11) / L[i,i]

LU_BkSubst :: [[DOUBLE]] -> [DOUBLE] -> [DOUBLE]
LU_BKSubst U (1 <: y :> N) = x where
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array x[1..N] where
x[j1 = y[j] - sum[ULj,k] * x[k] | k in [j+1..¥]]
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FSC Standard Prelude

-- PRIMITIVES FILE

——————————————— FIXITIES / PRIORITIES —-==-==~=—==mmmmmmmmmm
-- infixl 1000 [ ] ARRAY INDEXING
-- infixl 1000 [ |-> ] ARRAY REPLACEMENT

infixr 950 . —-- COMPOSITION

infixl 926 ~ -- EXPONENTIATION

infixl 900 / ~- DIVISION

infixl 890 /I -- VECTOR DIVISION

infixl 800 =x, % -- MULTIPLICATION / MODULUS
infixl 790 |x*| -- VECTOR MULTIPLICATION
infix 700 :+ -- COMPLEX CONSTRUCTOR
infixl 700 + -- ADDITION

infixl 690 |+] -- VECTOR ADDITION

infixl 600 - -- SUBTRACTION

infixl 590 |-| -- VECTOR SUBTRACTION
infixl 500 <:, <+ -- LOWER BOUND / APPEND LEFT
indixr 490 :>, +> -- UPPER BOUND / APPEND RIGHT
infixl 500 ++ -— CATENATION

infixl 400 ==, !=, <, <=, >=, > -- EQUALITY / ORDERING
infix1l 300 && -- LOGICAL AND

infixl 200 || -- LOGICAL OR

suffix ! -- FACTORIAL

prefix ~ -— NEGATION

infix << -- SHIFT LEFT

infix >> —-- SHIFT RIGHT

infix is —- PREDICATE CONNECTIVE
infix div -- INTEGER DIVISION
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-- Boolean Functiong ———===————— ol

&%), (4 :: BOOL -> BOOL -> BOOL
False && x = False

True && x =X

False || x =x

True |} x = True

not :: BOOL -> BOOL

not True = False

not False = True

—— Factorials =———=—= - e e
0! =1

n! = product [i | i in [1..n]]

-- Some standard functions ——=---——--——————- - - - --— oo
-- component projections for pairs:

fst :: (a,b) > a
fst (x,_) = X
snd :: (a,b) > b
snd (_,y) =y

-- identity function
id 1t a->a
id X =X

-- constant function
const iz a->b=->a
const k _ =k

-- function composition
9] it (b ->¢) -> (a->b) ->(a->c)
f . g «x =f (g x)

-- predicate connective

(is) :: a -> (a->BOOL) -> BOOL
Xis P =P X

-- error is applied to a string, returns any type, and is everyvhere
-- undefined. Operationally, the intent is that its application
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—- terminates execution of the program and displays the argument
-- string in some appropriate way.

error :: String -> a
-- Standard types, classes and instances ------————--—==------=----oo--oo-ooo-oo

class NEQ(a) where

(==) :: a => a -> Bool
(=) :: a => a -> Bool
A ==B=not (A '=B)

class ORD(a) where
(<), (<=), =), (>) :: a -> a -> Bool

class PLUS(a,b,c) where
(#) :: a-=>b ->c;

class BY(a,b,c) where
(/) :: a->b=>c;

class TIMES(a,b,c) where
(*) :: a->b->c;

class NEGATE(a) where
(") s a->c¢;

class VECPLUS(a,b,c) where
(J+]) :: a > b => c;

class VECMINUS(a,b,c) where
(l-1) ::a=>b =>c;

class VECBY(a,b,c) where
(/1) ::a=>b > c;

class VECTIMES(a,b,c) where
(1%]) :: a =>b =>c;

class ADDID(a) where
zero :: a

class MULID(a) where
one :: a

class BOUNDS(a) where
maxVAL :: a
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minVAL :: a

class TO_INT where
int :: a -> INT;

class TO_DOUBLE where
double :: a —-> DOUBLE;

class TO_FLOAT where
float :: a -> FLOAT;

class MATH(a) where

pi,e a

exp, log, sqrt, In a->a
sin, cos, tan a->a
asin, acos, atan a->a
sinh, cosh, tanh :ra-> a
asinh, acosh, atanh :: a -> a

-- Boolean type —————mmm oo oo e e e ——m o
datatype BOOL = False | True
—= Complex Type ———— === -m o e e e e e oo
datatype Complex a = a :+ a

real (re :+ im) = re
imag (re :+ im) = im

instance PLUS(a,b,c)} => PLUS(Complex a,Complex b, Complex c) where
(x:+y) + (x7:+4y?) = (x+x°) + (y+y’)

instance TIMES(a,b,c) => TIMES(Complex a,Complex b,Complex c) where
(x:+y) * (x?:+y’) = (xxx’-y*y’) :+ (x*y’+y*x’)

-- ETC ---

-- Standard functions —-------—-----=---------ooo—so—-eooo

bitFlip :: INT -> INT -> INT
(<) :: INT -> INT -> INT
> :: INT -> INT -> INT
bitAND :: INT -> INT -> INT
bitOR :: INT -> INT -> INT
bitXOR :: INT -> INT -> INT
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riffle 1t Array a -> Array a -> Array a
riffle X Y =[x;y | xinXdotyin¥Y]

deal :z Array a -> INT -> Array (Array a)
deal (1o <: X :> hi) N = [X[lo+i:hi:N]!i in [0..N-1]]
odd_even it Array a -> (Array a,Array a)
odd_even (Qo <: X :> hi) = (X[lo:hi:2],X[lo+1:hi:2])
liml,liml :: Array a -> INT

bound :: Array a -> (INT,INT)

liml (lo <: X ) = lo

bounds (lo <: X :> hi) = (lo,hi)

limh ( X :> hi) = hi

head,last :: Array a -> a

head (a <+ A) = a

last (A +> a) =a

tail, init :: Array a -> Array a

tail (a <+ A) = A

init (A +> a) = A

take,drop :: INT -> Array a -> Array a

take N (1o <: X ) = X[lo:1o+N-1]

drop N (o <: X :> hi) = X[lo+N:hi]

splitAt :: INT -> Array a -> (Array a,Array a)
splitAt N X = (take n X, drop n X)

filter :: (a -> BOOL) -> Array a -> Array a
filter p X = [x when x is p | x in X]

mapcat :: (a => Array b) -> Array a -> Array b
mapcat f = concat.{(map f)

map :: (a => b) -> Array a -> Array b

map £ X =[fx ]| x in X];

-- NOTE: Application of reduce should construct a parallel
== reduction function
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reduce

reduce (*) id
reduce (*) id
reduce (*) id
reduce (x) id

length
length (lo <:

foldl
foldl £ z []
foldl f z (a

foldr
foldr f z [1
foldr f z (A

foldll
foldll £ (x

foldril
foldrt £ X

scanl, scanr
scanl (%) (]

0

[x]

[x,y]

(x <+ X +> y)

X :> hi)

<+ A)

+> a)

<+ X)

+> x)

scanl (%) (x <+ X)

scanr (*) []

scanr (*) (X +> x)

accumulate

accumulate frame

-~ for all associative

: (a->a->a) ->a-> Array a -> a;

= id
b3
X *y

: Array

=[]

hi -1

(a >
z
foldl

(a ->
z

foldr

(a >
foldl

(a ->
foldr

(a —>

x <+

]

a
¢}

b

f

a

x * (reduce (*) id X) * y

-> INT
+1

->a) -> a -> Array b > a
(fza)h
->b) => b -> Array a > b
(f z a) A

-> a) -> Array b -> a
x X

->b) -> Array a => b
x X

-> a) -> Array a -> Array a;

[x *y | y in scan (*) X]

{x * y | y in scan (%) X] +> x

.. PLUS(b,a,b) => b -> Array a > b

foldl (+) frame

operations (+)

J=sum [...]

—— accumulate zero [ ...

sum
sun

sums
sums

product

.: PLUS(a,a,a),ADDID(a) => Array a -> a

reduce (+) zero

: PLUS(a,a,a) => Array a -> Array a
scanl (+)

. TIMES(a,a,a),MULID(a) => Array a -> a
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product = reduce (*) one
products :: TIMES(a,a,a) => Array a -> Array a
products = scanl (%)
maximum, minimum :: ORD(a),BOUNDS(a) => Array a -> a
maximum = reduce max minVAL;
minimum = reduce min maxVAL;
min,max :: ORD(a) => a -> a -> a
pminxy | x <y = x

| otherwise =y
max x ¥y | x>y = x

| otherwise =y
imin, imax .: ORD(a) -> (a,INT) -> (a,INT) -> (a,INT)
imin (x,i) (y,J) | x <y = (x,i)

} otherwise = (y,j)
imax (x,1) (y,3) | x>y = (x,1)
| otherwise = (y,j)

imaximum, iminimum :: DRD(a),BOUNDS(a) => Array a -> (a,INT)
imaximum = reduce imax (maxVAL,maxINT)
iminumum = reduce imin (minVAL,minINT)
value :: Array a -> a
value (X +> x) = x
value [] = error "EMPTY LIST in call to valie”
values :: Array a => Array a
values = id
and, or :: Array BOOL -> BOOL
ands, ors :: Array BOOL -> Array BOOL
ands = scanl (&%)
and = reduce (&&) True
ors = scanl (D)
or = reduce ({l) False
reverse :: Array a -> Array a
reverse (lo <: X :> hi) = X[lo:hi:"1]
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concat
concat

transpose
transpose A

indexZipWith, zipWith
indexZipWith £ X Y

zipWith £ X Y

putchar
getchar
getstring
putstring
openfile
closefile
fgetchar
fputchar
fgetstring
fputstring

showInt
showDouble
showFloat

printInt
printDouble
printFloat
printBool

argv
argc

print
print

:: Array”2 a -> Array a

= reduce (++) [J

:: Array™2 a -> Array~2 a
= B where array B[i,j] = A[j,1i]

(a->b->c) -> Array a -> Array b -> Array ¢

= z where array z[i] = f X[i] Y[i]

=[fxy ] x in X dot y in Y]

:: STRING

:: STRING

:: FILE_PTR
:: FILE_PTR
:: FILE_PTR
:: FILE_PTR
:+ FILE_PTR

-> CHAR

-> STRING

:: INT -> STRING;
:: DOUBLE -> STRING;
:: FLOAT

-> STRING;

: INT ->

:: DOUBLE ->
:: FLOAT ->
:: BOOL ->

:: Array STRING
: INT

:: SHOW(a) => a —> I0Q)

= putstring.show
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10
10

CHAR
STRING

-> 10Q)

-> 10

FILE_PTR

-> 100)

-> 10
-> 10
-> 10
-> I0

100);
100);
100);
100);

CHAR
0O
STRING
0O



Appendix I

Domain Theory

I.1 Introduction

Our discussion of the lambda calculus in Appendix C was purely syntactic. Ve defined a ~t of
rewrite rules with which we could reduce an expression by replacing sub-expressions textually. This
observation applies equally to all programming languages in that the syntax alone is not powerful
enough to explain the effect of executing a program. Domain theory and denotational semantics
(discussed in Appendix I) have been constructed to give meaning to syntactic expressions! and hence
recursive functional programs. We take the meaning or value of a program to be taken from some
set or domain with well understood mathematical properties. If we consider a very simple language
made up from the following tokens:
T F v A =

although we can determine what are grammatically correct expressions, such as =T or TAF, we
have not given a meaning to these tokens. Using the usual interpretation we would expect these
expressions to mean the same thing - the truth value false.

I.2 Terminology

If we take this interpretation of the above language we say that the token T denotes the truth value
true. The important distinction is that our tokens are concrete and the values they denote are

mathematical abstractions.

I.3 Domains Versus Sets

Initially it may seem simple to define the domain for the meanings of syntactic expressions as the
set of booleans {true, false} and functions defined on this. However, with this approach we almost

IThere are many alternatives for describing behaviour to denotational semantics such as operational semantics.
However, these systems will not be considered here as denotational semantics suits our purpose.
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immediately run into difficulties with inconsistency. Consider the definition of the following function:

f ;2 Truthvalue — Truthvalue
fz = —f(z)

If we consider Truthvalue to be the set Bool = {true,false} and — to be the negation operator we
cannot find any function f :: Bool — Bool to satisfy our equation representing f. For example,
if f(true) = true then f(irue) # —f(true), contradicting the equation. If f(true) = false we see
that the result is a similar contradiction. In practice applying f to any element in the set Bool
would cause the computation to loop forever and there is no value in Bool to represent this idea of
looping forever. If we now extend Bool by adding the new element L. pronounced “bottom™. and

true false
4
Figure I.1: The boolean domain

refer to this extended set as Bool) ? we can regain consistency by making f a well defined function.
This requires that we extend the definition of (—) such that ~1L = L and the definition of f which
satisfies its equations is Yz € Bool, f(z) = L. The bottom element contains less information than
the elements of Bool as it represents an undefined value, or non-termination. By defining a partial
ordering by information content on Bool, in this way, the set becomes what is known as a domain.
In fact for functions defined only on sets which do not contain compound data items such as lists
this domain construction is sufficient to define a consistent semantics. The boolean domain is shown
in Fig. H.1.

I.4 Summary

This is all the domain theory needed for the topics discussed in this thesis as the strict semantics
of FSC prevent the creation of partial objects. Rather than bog the reader down with unnecessary
theory, further introduction can be found in [32], or for the more adventurous [88].

2For any set S, S; denotes the set SU {L1}.

276



Appendix J

Denotational Semantics

J.1 Introduction

In this appendix we give a very brief introduction to denotational semantics by considering the
denotational semantics of the lambda-calculus presented in Appendix C. Denotational semantics
differs from other ways of looking at functions in that. rather than considering a function as a
sequence of state transitions over time (as in operational semantics) it considers them as a fixed set
of associations between arguments and their corresponding values.

In Appendix C we saw how an expression may be evaluated via the repeated application of
a, B and n rules. These provide a purely syntactic treatment of the process of evaluation, 1.
given an expression they describe which conversion rules may be applied without any reference
to the meaning of these expressions. By itself the lambda-calculus is merely a formal system for
manipulating syntactic symbols but why do we suppose that this system models the idea of an
abstract function?

Denotational semantics is the necessary stepping stone relating this rewrite system to our intuitive
ideas of abstract functions.

J.2 The EVAL Function

The purpose of denotational semantics is to give a value to every expression in a language. An
expression is viewed as a purely syntactic object. However, a value is an abstract mathematical
object. We express the semantics of a language as a (mathematical) function, EVAL, from expressions

to values EVAL
lExpressionsI = \'aluesl

and we can write equations such as:

EVAL[2 + 2] = 4

which is read as ‘the meaning of the expression 2 + 2 is the abstract value 4 with ther use ofv
emphasising that the argument is a syntactic object. We may regard the expression 2 + 2 denoting
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the value 4, hence the term denotational semantics.

J.3 Lambda Calculus

To give meaning to expressions in the lambda-calculus we need to be able to give meaning to
variables. It is immediately obvious that in order to do this we need to be able to access the context
or scope of a variable. This scope is taken into account by giving EVAL an extra parameter. p, called
its environment, a function mapping variable names to their values. Thus

EVAL[z] p = p(z), zeld
Applications may be treated similarly:
EVAL[E, E2] p = (EVAL[E\] p) (EVAL[E-] p)

However, lambda abstractions require a little more thought. VWhat should the value of EVAL[A:.E]p
be? Since it is a function we define its value in terms of an arbitrary argument a:

(EVAL[)z.E] p) a = EVAL[E] p[z — ]

where the notation p[z — a] denotes the environment p extended with the binding of variable z to
value a. More formally, this is:

plt —a]lr = a
ple —~aly = pyz#y

This completes the denotational semantics for the lambda calculus. This can be extended naturally
to cover constants and built-in primitive functions such as the integers, reals, booleans and the
standard operators over them. The collection of all the possible values which EVAL can produce
turns out to be a domain (see Appendix I) and we may write the following for the function f from
Appendix I defined as f(z) = - f(x):

EVAL[fz]p= L

This allows us to talk about the properties of functions in a very terse manner, for instance, we may
encapsulate the fact that (a+b) is undefined if either a or b are undefined as:

EVAL[+]ab = a+b, ifa#LAb#£L
EVAL[+] a b 4, otherwise

J.4 Summary

This is a very brief and superficial introduction to denotational semantics meant to be no more than
a compact summary of the material required to understand the presentation of some of the sections
in this thesis. For a fuller treatment the reader is again referred to [88].
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Appendix K

Mathematical Notation

A = [a;;]
AB
a=|u,a9....,a5]
AT

b = [b1, b, ...

matrix having element a,; in row /. column j

matrix multiplication

row n-vector having a; as the /** componem
transpose of A, = [a;]

column n-vector having b; as the i*" component
identity matrix of any size (i;; = 1 and ix; =0,k # j
determinate of square matrix A

inverse of A

h

derivative of v with respect to r

f= Grgy Buy oy
Vo= 51‘I+ ay-} + zitl‘
derivarive of f(r) with respect to r
k" derivarive of f(x) with respect to &
inner product (usually xTy)
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