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Abstract 

Functional programming languages such as Haskell allow numerical algorithms to be expressed in a 
concise, machine-independent manner that closely reflects the underlying mathematical notation in 
which the algorithm is described. Unfortullatply the price paid for this level of abstraction is usually 
a considerable increase in execution time and space usage. 

This thesis presents a three-part study of the use of modern purely-functional languages to 
develop numerical software. 

• In Part I the appropriateness and usefulness of language features such as polymorphism. pat­
tern matching, type-class overloading and non-strict semantics are discussed toget her with the 
limitations they impose. Quantitative statistics concerning the manner in which these features 
are used in practice are also presented. 

• In Part II the information gathered from Part I is used to design and implement FSC. all 
experimental functional language tailored to numerical computing, motivated as much by 
pragmatic as theoretical issues. This language is then used to develop numerical software and 
its suitability assessed via benchmarking it against C'jC++ and Haskell under various metrics. 

• In Part III the work is summarised and assessed. 
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Chapter 1 

Introduction 

The theme of this thesis is the development of efficient numerical software using modern functional 
languages together with the design decisions, pragmatic considerations and techniques required from 
a modern functional language specialised to this area. 

Typically, numerical software is based on algorithms associated with discrete approximation and 
linear algebra. These algorithms often have high computational requirements and dominate the 
field of scientific computing. 

An efficient implementation of an algorithm expressed in a procedural language is often very differ­
ent from the underlying mathematical definition. 

The use of functional programming languages for scientifically-significant computations offers the 
advantages over procedural languages of modularity, conciseness, clarity. ease of proof, ease of in­
troducing problem-oriented notation and independence from hardware peculiarities [15]. 

In the field of scientific computing, domain-specific knowledge also plays a vital role as improve­
ments in efficiency are often possible when problem proper tie" are known. This thesis di&cussp", how 
many of the ideas and techniques available in modern functional languages may be used in the con­
text of numerical software development without suffering the lack of efficiency normally associated 
with functional languages; how domain specific knowledge may be expressed within this framework; 
and the necessary pragmatic concessions which must be made to achieve these goals. 

The test-bed for these concepts is the development of numerical software in an experimental func­
tional language, FSC. FSC is essentially a Haskellesque[49, ,,)0] language specialised for numerical 
computation compiling to SISAL[19] . 

1 



1. Introduction 1.1. The Problem 

1.1 The Problem 

Since computer performance is increasing all the time we are now in the position of being able to 
solve problems of greater complexity than was previously possible. Fnfortunately it is a sad fact 
that as problem complexity increases, program complexity often increases also l . It is for exactly this 
reason that clarity, conciseness and correctness of code are important. A -functional (or applic~til"e) 
style is necessary to realise the promise of general-purpose parallel programming" [105]. This promise 
draws on the fact that there is no underlying concept of a physical machine, store or sequencing, 
and although implicit parallel functional programming has often been promised, and to an extent 
delivered, we believe that in the area of scientific programming this promise can be achieved:!, with 
applicative languages such as SISAL [18, 19] substantiating this claim. 

1.1.1 Functional Programming and Scientific Computing. 

The main advantages of using a functional language in this application domain are clear; programs 
can be written more quickly, more concisely, at a higher level (resembling more closely traditional 
mathematical notation) and are more amenable to formal reasoning, analysis and transformation­
based compilation. Some of the disadvantages in this area are also clear; I/O is not as straightforward 
as in imperative languages3 ; low-level machine actions are hard to program; often the price paid 
for the level of abstraction is an increased execution time and space usage (especially for lazy 
functional languages). We also need to consider issues relating to numerical analysis; execution 
efficiency is paramount; legacy code exists and will continue to do so for many years to come4 . In 
the design of any realistic tool for work in this area each of these points should be taken into account, 
maximising the advantages and minimising the disadvantages while still respecting the numerical 
analysis aspects, making necessary compromises along the way between mathematical/theoretical 
elegance and pragmatic considerations. 

1.2 Summary of Original Work 

The original work reported in this thesis consists of: 

• A study of the suitability and use of the purely functional language Haskell[49, 50] to implement 
numerical algorithms. 

• An investigation of the development of algorithms in a style differing from the usual array­
intensive definition. 

• A non-pivoting version of LV factorisation which does not require all leading left suhmatrices 
to be non-singular and which does not introduce fill-in. 

1 Piclcing through a PVM or MPI message-passing code should convince the reader of this. 
2Given that the algorithm is not strictly sequential. 
3This is as much a matter of unfamiliarity as conceptual difficulty especially with the increasing use of monads 

(see later). 
4 Asking practitioners to re-do 40+ years of work is not feasible. 
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1. Introduction 1.3. Overvie"' of Thesis 

• Quantitative statistics regarding the manner and frequency with which specific funct ional­
language features are used in practice. 

• The design, development and evaluation of FSC, a strict, Haskell-like functional language 
specialised to scientific computing. 

• The definition of a user-defined transformation language enabling domain-specific knowlt'dgt' 
and optimisations to be embedded in a program script and a monadic translation schemt' for 
the interpretation of such transformations. 

• The development of a purely functional I/O system, suited to this area. 

• The development of an array abstract datatype which may be used in conjunction wilh 
pattern-matching expressions, translation schemes for syntactic sugarings of array opera­
tions/definitions and optimisations based on the GCD5_test avoiding the need for intermediate­
array building . 

• A scheme for efficiently constructing recursively-defined arrays . 

• The development and evaluation of an efficient multi-parameter type-class system suited to 
the area of scientific computing. 

1.3 Overview of Thesis 

The central theme of this thesis is t he use of techniques from modern functional programming to 
produce clear efficient implementations of numerical algorithms in a manner that preserves as much 
of the spirit of functional programming as possible. 

This thesis is organised in three parts. Part I acts as an introduction to functional scientific com­
puting and describes work carried out using existing modern functional languages. In Part II the 
language FSC is introduced and used to construct numerical software. Part III offers conclusions 
and suggests further work. 

PART I: Functional Implementations of Numerical Methods 

Chapter 2: Functional Programming 
The main concepts and idioms behind functional programming are introduced together 
with a discussion of commonly used functional (or mostly functional) programming lan­
guages. 

Chapter 3: Numerical Methods 
The problem domain we are working in is introduced and a brief overview of scientific 
computing is presented. 

5GCD-test: A dependence test used in parallelising compilers based around use of the greatest common divisor. 

3 



1. Introduction 1.4. Xotational Com·ention ... 

Chapter 4: Use of Haskell to Implement Numerical Algorithms. 
In this chapter, use of the purely functional language Haskell to implement numerical 
algorithms is described, the development of numerical algorithms in styles other than the 
usual array intensive definition is investigated and the impact of non-strict semantics on 
this area is discussed. 

Chapter 5: Efficiency and Empirical Analysis 
In this chapter initial conclusions are presented as to the suitability of Haskell·s language 
features to scientific computing. 

Chapter 6: Related work 
Part I is concluded with a survey of the previous work in the area of functional scientific 
computing. 

PART II: The FSC Language 

Chapter 7: Design of FSC 
In this chapter the necessary features for a functional language specialised to numerical 
analysis are discussed. 

Chapter 8: Definition of FSC 
A formal definition of FSC is presented. 

Chapter 9: Implementation of FSC 
A discussion of the pragmatic implementation details is given. 

Chapter 10: Use of FSC in practice 
Extended examples in FSC are presented and the efficiency of these examples discussed. 

Chapter 11: Related work 
A survey of work related to techniques used in Part II is presenteu. 

PART III: Conclusions 

Chapter 12: Conclusions 
The work presented is summarised and assessed. 

1.4 Notational Conventions 

Footnotes are used to add minor points of non-essential information to the body of the text; footnotes 
are denoted by Arabic numerals6 . More extensive notes are collected at the end of each chapter and 
are indicated by Roman numeralsCi }. Both footnotes and chapter notes may be ignored on a first 

reading. 

References to other work are indicated by a series of numbers in square brackets. e.g. [1,2]. 

6 A footnote. 
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1. Introduction 1.5. Cbapter Sotes 

Mathematical expressions are written in italic font: id = .Ax.x. 

Program code fragments are displayed in typewriter font: x = y and. unless specified as other­
wise, larger Haskell, FSC and Miranda[96] code sections are written as literate scripts [60] using 
the Haskell offside rule, i.e. code is commented in rather than out and its column placement has 
meaning. 

A variation on a familiar program in FSC 

> main :: 10 () 
> main do 10 w where 
> w = print x 

due to its column placing the 
definition below is local to 
main and not global 

> x = "hello world" ++ endl 

1.5 Chapter Notes 

i (page 4) : 
Chapter notes are cross-referenced with the page to which the note refers. 

5 
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Functional Implementations of 
Numerical Methods 

6 



Chapter 2 

Functional Programming 

2.1 Introduction 

It has often been claimed that the use of functional programming languages for scientifically­
significant computations offers the advantages over procedural languages of modularity, conci"pness. 
clarity, ease of proof, ease of introducing problem-oriented notation and independence from hard­
ware peculiarities [15]. However, before discussing how functional programming relates to numerical 
methods, we introduce some of the features found in modern functionallangllag,"" and the colllmon 
classification of these languages according to their function invocation disciplirws. r n!e"s st at,>d 
otherwise, all examples are given in Haskell-style syntax [·19, 50]. 

2.2 What is Functional Programming? 

Functional programs are so called because at the highE'st level a program is considefPd as a funet ion 
from the program input to the program output. Pure functional programs do not possess an implicit 
state and so preserve referent ial transparellcy. All values are st atic, and re-assignment is disallowed. 
Referential transparency is the feature of programs where (quais may replace equals such that in the 
expressIOn 

... .r: + .r: ... where .L' = f(a) 

the function application f( a) may be substituted for any free occurrence! of l' in the scope created 
by the where expression (such as the sub-expression .r: + .r:). Referential transparency implie" that 
t here is no implicit underlying context. to an expression and subexpressions may be evaluated in any 
order, Referential transparency is important in the field ofmathematical programming, it encourages 
equational reasoning and modular methods of proof can be utilised whereby statements about whole 
constructs may be proved by proving sub-theorems (or lemmas) about their constituents. 

1 free occurrence: See Appendix C 

7 



2. Functional Programming 2.3. Features of Modern Functional Languages 

2.3 Features of Modern Functional Languages 

One of the features common to many functional programming languages is strong static typing. 
Although strong static typing is not restricted to functional languages it has become one of the 
features that tends to characterise them. Each expression in a program has a type associated with it 
and hence has a type expression (or signature) that describes it. For example if we consider Peano's 
successor function [57]: 

> suee :: Int -> Int 

it can be seen from the signature that the function suee is of type Int -> Int (i.e. suee maps one 
integer to another). This is very similar to the mathematical notation of a function signature. We 
could define suee as 

succ is a function from rN to rN such that suec( x) = x + 1 

and define suee as 

> 
> 

suee Int -> Int 
suee x = x+l 

Although we do not need the type definition (as the language can often infer this for us) it is useful 
as it improves the readability of programs and often brings sources of error to light. The advantages 
of statically-typed languages are well known, all type errors are detectable at compile time and a 
compiler is able to produce efficient code as no runtime tags are needed. 

2.3.1 User-Defined Datatypes and Pattern Matching 

User-defined datatypes are defined using a notation resembling BNF [5]. For instance the type 

Boolean could be written 

> data Boolean = TRUE I FALSE 

and a list of elements of type a asCi) 

> data List a = Empty I Cons a (List a) 

One of the techniques that is used extensively in functional programming is pattern matching: the 
writing of many different equations to define a function where in each case only one is applicable. 

> 
> 
> 

length 
length 
length 

List a 
Empty 
(Cons a b) 

-> Int 
o 
1 + (length b) 

Pattern matching is important because it supports clear, concise definitions, structural induction, 

and encourages equational reasoning about programs. 

8 



2. Functional Programming 2.3. Features of -'{odern Functional Languages 

2.3.2 Partial Application and Sections 

Partially applicable, or Curried, functions are arity n functions which, when applied to a single 
argument, return functions of arity (n - 1). For example addition can be thought of as a function 

(+)tuple :: (a,a) - a 

which sums pairs of numbers, or as a function 

(+)curried :: a - (a - a) 

which takes one parameter and yields a function which increments its argument by the value of that 
parameter. The function-space constructor (-) is assumed to be right associative so we may omit 
the parentheses and write 

(+)curried :: a - a - a 

A Curried function is applied to an argument by juxtaposing the function and the argument. For 
example if add is a Curried addition function then we could define the value three as the sum of 1 
and 2 via 

> 
> 

three Int 
three = (add 1) 2 

but since function application is taken to be left associative we may again omit the parentheses and 

write 

> 
> 

three Int 
three = add 1 2 

An application of Currying is differentiation: 

> differentiate :: Function -> EvaluationPoint -> Value 

since differentiate f constructs the function f' and differentiate f k constructs the value 

f'(k). 
A feature closely associated with Currying is sectioning. A section is a mechanism that forms 

prefix functions from infix operators allowing such operators to be partially applied to their left or 

right arguments: 

> 
> 
> 

(+) 
(a+) 
(+b) 

<=> f where f a b 
<=> g where g b 
<=> h where h a 

= a + b 
a + b 

a + b 

where free occurrences of a, b have bindings in the surrounding environment. The use of partial 
application is important as it cuts down on unnecessary brackets and also increases the usefulness 

of higher order functions. 
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2. Functional Programming 2.3. Features of )/odern Functional Languages 

2.3.3 Higher Order Functions 

The existence of higher order functions stems from the argument that functions are values just like 
any other and, as such, should be given first class status, i.e. allowed to be stored in data structures. 
passed as arguments and returned as results. Since functions are the main abstraction mechanism 
over values, allowing functions to be higher order increases this form of abstraction. Another t'qually 
valid argument for higher order functions is that recurring patterns of computation can be identified 
and parameterised to allow complicated functions to be expressed simply using function composition. 
For example a function to compute the L2 norm of a vector x having elements .rl,.r:! .... ,:£.\' 

may be written as 

> 
> 

l2_norm [Double] -> Double 
l2_norm = sqrt.sum.(map (-2)) 

where f ,g denotes function composition fog and map applies a given function f to each element in 
a list, so map (+1) [1,2,3] = [2,3,4]. The function map is defined using pattern matching as 

> 
> 
> 

map 
map 
map 

(a -> b) -> [a] 
f [] 

-> [b] 
= [] 

f (x:xs) = f x: (map f xs) 

and exhibits parametric polymorphism since it acts uniformly over lists of various component types. 
Higher order functions are essential for mathematical programming since they allow modular speci­
fications of functionals such as integration. 

2.3.4 List Comprehensions 

In functional programming there is a very common notation called the list comprehension. This is 
similar to notation in set theory. For instance we can write 

filterSet P Y = {yl(Y E Y) 1\ P(y)} 

to define the subset ofY satisfying some predicate P. In functional programming we have the similar 

notation 

> 
> 

filter :: (a -> Bool) -> [a] -> [a] 
filter p ys = [yl y<-ys,p y] 

which may be read as 'The list xs of elements drawn from the list ys such that for each x in IS, x 

satisfies the predicate p'. We may use this notation to define map 

> 
> 

map 
map 

(a -> b) -> [a] -> [b] 
f xs = [f x I x<-xs] 

10 



2. Functional Programming 2.3. Features of .Uodern Functional Languages 

which may be read as 'The list defined by applying the function f to each x where 1: is drawn from the 
list xs'. A list comprehension preserves order and can be considered as the functional-programming 
equivalent of a for loop. 

Although list comprehensions could be viewed as mere notational convenience or syntactic sugar. 
the ability to express algorithms concisely and clearly with them makes them very useful. For 
example 'Quicksort' could be defined [91] as 

> qSort [Int] -> [Int] 

> qSort [] = [] 

> qSort (a:x) = qSort [y I y< -x, y<=a] 

> ++ [a] ++ 

> qSort [y I y<-x, y>a] 

2.3.5 Type classes and Ad-Hoc Polymorphism 

Recently, the notion of type classes[97] has appeared in functional languages. Type classes provide 
a system where identifiers may be incrementally overloaded. Consider the function min defined as 

> 
> 
> 

min x y = if x < y 
then x 
else y 

The most general type of min is 
min:: a - a -+ a 

for all types a with the operator < defined on them. In Haskell this is written 

> min: :Ord(a) => a -> a -> a 

where Ord is the class of types admitting the operator <. Type classes capture the behaviour of 
a collection of overloaded functions in a consistent manner. To overload (+) on both integers and 
floats we declare the class admitting the operator (+) 

> 
> 

class Num a where 
(+) :: a -> a -> a 

and declare integers and floats as instances2 of this class 

> 
> 

instance Num Int where x + y = addInts x y 
instance Num Float where (+) = addFloats 

where addInts and addFloats are primitive addition functions specialised to integers and floating 
point numbers. If we now define a function sum which sums the elements in a non-empty list 

> 
> 
> 

sum :: Num a => [a] -> a 
sum [x] x 
sum (x:xs) x + sum xs 

2Note: the definition x + y = f x y is equivalent to (+) = f. 

11 



2. Functional Programming 2.4. Classifications of Functional Languages 

we may apply the function sum both to lists of integers and to lists of floats or indeed lists of an\" 
type which is a member of the class Num. In this way the domain of applicability of the function s~ 
and all functions defined in terms of it may be extended at a later date via the inclusion of extra 
types in class Hum. 

2.4 Classifications of Functional Languages 

Functional languages are often classified according to the method used to evaluate expressions: 

Strict (call by value) languages evaluate the arguments of a function before attempting to eval­
uate the body of the function itself in a style analogous to applicati .... e order reduction [21) in 
the lambda calculus (see Appendix C). Examples of such languages include SISAL [19) and 
SML [67). 

Lenient (eager non strict) languages do not impose an a priori order of evaluation betWl'en the 
function body and its arguments. This means that values arising from functions applied to 
undefined arguments may themselves be defined. This is what is meant hy a function heing 
non-strict in an argument. The only condition on the ordering of the evaluation is that when 
an argument is needed, evaluation of the function body must be suspended until the required 
argument becomes available [93). An example of a lenient language is Id [71). 

Lazy (call by need) languages are non-strict languages in which arguments to function calls are 
evaluated once only, if at all, and only evaluate values which contribute to required results. This 
makes it possible to define and manipulate potentially infinite objects within this framework, 
allowing elegant solutions to certain types of problems (see Section 2.6). Examples of such 
languages include Haskell and Miranda. 

Call by name evaluation also exists although this is extremely rare. Call by name is non-strict 
evaluation in which no sharing occurs. This is analogous to normal reduction in t he lambda 
calculus (See Appendix C.). 

To appreciate the difference between strict, non-strict and lenient semantics consider the function f 
x y = x+x which depends only on its first argument. In a non-strict language f 1 1. evaluates to 2 
whereas in a strict language f 1 1. evaluates to 1., where 1. is the value assigned to an expression 
without a normal form, or to a non-terminating computation. In a lenient language f 1 1. will 
evaluate to 2 as long as partial evaluation of 1. does not explicitly halt the computation. 

2.5 Advantages of Non-Strict Semantics 

One advantage of non-strict languages is their ability to manipulate potentially infinite structures. 
Programs may be modularized further by decoupling the process of producing a structure from the 

process consuming it [52]. 
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2. Functional Programming 2 .. 5. A.dvantages of Son-Strict Semantics 

2.5.1 Infinite Structures 

An example of an infinite structure is an infinite sequence of approximations to a value defined by 
an iteration. Taking square roots as an example, we can define the method of producing the next 
value in a Newton iteration by the function 

Double -> Double -> Double > 
> 

newton 
newton a x = (x+a/x)/2 

which, given a number a and an initial estimate x, produces a closer estimate of t.he square root of 
a. We may now use the higher-order function iterate which produces an infinite list of values such 
that iterate fa = [a, f(a), f2(a), ... J, given the initial value a and function f: 

iterate (a -> b) -> a -> [b] > 
> iterate i a = a:iterate i (f a) 

The function within, returning the approximate limit of a sequence deemed to have converged on a 
value to within eps, may be defined as 

> within :: Double -> [Double] -> Double 
> within eps (a:b:rest) I abs (a-b) < eps = b 
> I otherwise = within eps (b:rest) 

Finally the square root 

> sqrt :: Double -> Double -> Double -> Double 
> sqrt x eps a = within eps (iterate (newton a) x) 

may be constructed from reusable components. 

2.5.2 Recursive Structures 

Another advantage of non-strict languages is the ability to consume structures before they are 
completely defined. This allows the recursive definition of data structures. For example, back 
substitution(ii) is often defined as 

n 

b; - L U;jXj 

j=i+l 
Xi = --~--------

Uii 

and may be expressed in Haskell similarly as 

> type Matrix = Array (Int,Int) Double 
> type Vector = Array Int Double 

> back_subst Matrix -> Vector -> Vector 
> back_subst u b = x 

i=1,2, ... ,n 

> where x = array bnds [(b!i - f i)/u!(i,i)li<- range bnds] 
> f i = sum[u!(i,j)*x!jlj <- range (i+l,n)] 
> bnds~(l,n) = bounds b 
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where the vector x is defined in terms of itself. This recursive definition is not allowed in a strict 
language as any value defined as v = f(v) for some function f results in non-termination analogous 
to writing 

int f(){return (!f(»;} 

in the imperative language C[58]. 
Other forms of non-strictness occur in programs such as functional and conditional non-strictness[8?)] 

but in the context of this thesis these are of little practical benefit and, as such, will not be discussed 
further. 

2.5.3 Simulating Non-Strict Behaviour in Strict Languages 

As mentioned earlier, one of the advantages of lazy languages is the ability to manipulate potentially 
infinite structures. If written verbatim in a strict language such expressions would result in non­
termination. It is straightforward, however, to simulate this behaviour in a strict language (S~IL), 
and a lazy list (iii) may be defined as follows: 

datatype 'a lazyList = Nil 
Cons of 'a * (unit -> 'a lazyList); 

Our square root function can be written in Sl\IL in a style similar to that used before: 

fun newton a x = (x+a/x)/2.0; 

fun iterate f a = Cons(a,fun()=>iterate f (f a»; 

fun within (eps:real) Cons(al,as) = 
let val (Cons(a2,rest» = as(); 
in if 

(al-a2) < eps 
then 

a2 
else 

within eps (Cons(a2,rest» 
end; 

fun sqrt x eps a = within eps (iterate (newton a) x); 

where we manually insert our own closures. In this way it can be seen that the modularity of 
the previous lazy program can be achieved within a strict framework. In the above example a list 
is represented by a value/function pair (a,as), which can be viewed as being analogous to a list 
element together with a pointer or link to the next value/function pair in an imperative language. 
Unfortunately, in general, this method may not be used to define recursive structures such as the 
vector x in a back substitution algorithm as the exements must be evaluated in a head to tail order. 
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F igure 2.1: Fun ctiona l language history a nd lin ag 

2.6 Functional Language Implementations 

In this section commo n fun ct ional languag s a nd im plementat ion a re introduc d and bri Ay d -
scribed . The lineage of these langauges is shown in Fig. 2.1, a diagram which wi ll b ext nded laL r 
to include FSC. 

2.6.1 GoFER 

The GoFER (Good F or Equ a tiona l R easoning)[54] y tem provid e an int rpr l r for a small lan­
guage based closely on version 1.2 of the Has kell report [50]. In part icul a r , GoFER upport lazy 
evalu at ion , higher-o rd r fun ctions , polymorphi c typing , pattern-m atc hing , and upport for overload­
ing. GoFER was the first language to prov id e const ru ctor cl asses [54] whi ch a llow fun ction. uch ru 
map to be over loaded to operate over conta iner types uch as list and t rees. The notab le featur of 
GoFER, which di st inguishes it from similar languages such as Haskell. is its mu lti-param ter type 
class mechanism which is discussed in g reat.er depth later. . ,l atrix multiplicat ion in o FER may be 
written as either of the fo llowing definiti ons3 

3T h e GoFER definitions are not stric tl y p errn.i ssible as syn onym s are not allowed as class m embers . We ignore 
this fact as this p errn.its a clearer present.ation. 
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2. Functional Programming 

> instance 
> a * b 
> 
> 

Rum List2D where 
= [[ sum[a_ik* b_kjICa_ik,b_kj) 

I b __ j <- b_T ] 
I a_i_ <- a ] where b_T = 

> instance Rum Array2D where 

2.6. Functional Language Implementations 

transpose b 

> a * b = array «l,ml),(l,n2» [(i,j):=f i jli<-[l .. ml],j<-[l .. n2]] 
> 
> 
> 
> 

where 
f i j = sum[ a!(i,k) * b!(k ,j) I k <- [l .. nl]] 
«l,ml),(l,nl» = bounds a 
«l,m2),(l,n2» = bounds b 

depending on whether we view a matrix as a list of lists or as an array. 

2.6.2 Haskell 

The Haskell language is the result of the language-design committee set up in 1%7 to alleviatp the 
proliferation of similar languages and create a standard non-strict functional programming language. 
The definition of Haskell is frequently revised to add new features with the effect that t he current 
version (1.4) of Haskell is certainly not a small language although there is currently an effort to 
provide a standard Haskell[51]. Haskell provides features similar to GoFER with the addition of a 
module system. From the view of expressiveness, readability and conciseness it is wry attractive. 
However, the lack of efficiency with which it executes and the storage it currently requires are much 
more costly than with strict or imperative languages [50, 49]. Matrix multiplication in Haskell is 
exactly the same as for the GoFER example. 

2.6.3 Hope 

Hope [17] is a small polymorphically-typed functional language that can be considered as one of 
the forerunners to Haskell/SML. Hope was the first language to use pattern matching and was 
originally strict. To a large extent, Hope has fallen into disuse now but is worthy of mention as 
one of the features of Hope is its best-fit pattern matching whereby patterns need not be read in a 
top-to-bottom manner but must be collectively unambiguous. ~Iatrix multiplication in Hope may 
be written in a very similar manner to the algorithm in GoFER. 

2.6.4 Hugs 

Hugs [55], the Haskell User's GoFER System, is an interpreted implementation of Haskell with an 
interactive development environment much like that of GoFER. 

2.6.5 Id 
The core of Id [71] is a non-strict functional language with implicit parallelism targeted at dataflow 
architectures such as the Monsoon[74]. Id supports polymorphic typing. algebraic types and defi­
nitions with clauses and pattern matching, and list comprehensions. Since the syntax of Id closely 
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resembles that of Haskell, Id researchers have recently switched their attention to transforming Id 
to pH (parallel Haskell) which will have the same semantics as Haskell (up to program termination). 
Id works on the basis of lenient execution (as mentioned earlier) but also allows non-functional side 
effects in the form of I-structures and M-structures. I-struct ures are struct ures that mav be defined 
only once and all attempts to read an undefined element will block until it is defined. ~I-structures 
are completely mutable and allow non-determinism, the only provisos being that a process cannot 
write to a full cell, or read from an empty cell, and the act of reading empties a cell. ~Iatrix 

multiplication in Id may be written 

def mmu1t A B = {(10a1,m1),(10a2,n1) matrix-bounds A 
(10b1,m2),(10b2,n2) = matrix-bounds B 
in 
{matrix «10a1,m1),(10b2,n2)) 
I [i,j] = sum {: A[i,k]*B[k,j] I I k <- lobi to m2} 
I I i <- 10a1 to m1 & j <- 10b2 to n2}; 

2.6.6 Miranda 

Miranda4 [96) is a strongly-typed, higher-order lazy functional language designed in 1985 as the 
successor to SASL [94) and KRC [95). 

Miranda was the first widely disseminated language with non-strict semantics and polymorphic 
strong typing, and was one of the main influences on the later design of Haskell. Points differing 
from Haskell include the fact that overloading is performed over numeric types by having a single 
type num, and pattern matching in equations need not be linear5

. ~Iatrix multiplication in ~liranda 
may be expressed in a form almost identical to that of GoFER, differing only in that \liranda does 
not support overloading. 

2.6.7 ML 
ML6 [67) is a family of programming languages with (usually) functional control structures, strict 
semantics, a strict polymorphic type system, and parameterised modules [30). The family includes 
Standard ML, Lazy ML, CAML, CAML Light, and various experimental languages. ~Iatrix multi-

plication may be expressed as [75) 

fun dotprod([],[]) = 0.0 
I dotprod(x: :xs,y: :ys) x*y + dotprod(xs,ys); 

fun rowprod(row,[]) = [] 
I rowprod(row,co1: :co1s) = 

dotprod(row,co1) :: rowprod(row,co1s); 

4 Miranda is a trademark of Research Software Ltd. 
5 A non-linear pattern is a pattern which implies an equality between arguments. The function equal x x = True 

is non-linear 
6 Meta-Language. 
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fun rowlistprod([] ,cols) = [] 
I rowlistprod(row::rows,cols) = 

rowprod(row,cols) :: rowlistprod(rows,cols); 

fun matprod(A,B) = rowlistprod(A, transp B) 

where transp transposes a matrix stored as a list of lists. 

2.6.8 NESL 

NESL [10] is a fine-grained, mostly-functional, nested data-parallel language based loosely on ~IL 
with implementations for workstations, the Connection Machines Cl\12 and C\!.'), the Cray Y_~IP 
and the MasPar MP2. NESL includes a built-in parallel datatype of polymorphic sequences. strict 
semantics, polymorphic typing and a limited use of higher-order functions. Currently it does not 
have support for modules and its datatype definition is limited. The compiler is based around 
delayed compilation and specialised polymorphic functions, avoiding the need for uniform represen­
tation/calling convention. Matrix multiplication in NESL may be written as 

function matrix_multiply(A,B) = 
{{sum({x*y: x in rowA; y in columnB}) 

: columnB in transpose(B)} 
: rowA in A} $ 

2.6.9 SISAL 

SISAU [19] is a first order applicative language designed "to support clear, efficient expression of 
scientific programs; to free application programmers from details irrelevant to their endeavours; and 
to allow automatic detection and exploitation of the parallelism expressed in source programs" [30]. 

The SISAL language is currently implemented on several shared memory and vector systems 
running Unix, including the Sequent Balance and Symmetry, the Cray X/l\IP and Y /~IP, Cray 2, 
and a few other less well-known machines [19, 18]. The newer SISAL90, which is still under devel­
opment allows user-defined reductions, limited polymorphism via typesets, higher-order functions 
and array operations resembling the vector operations of FORTRAN90. SISAL90 still lacks support 
for datatypes, type inference, an I/O system, and many of the characteristic features of modern 
functional languages [31, 86]. SISAL has been shown to outperform handwritten FORTRA~ and 
is currently benchmarked as the most efficient functional language implementation [45]. l\latrix 
multiplication in SISAL may be written as 

type OneDim = array[ real ]; 
type TwoDim = array [ OneDim ] ; 

function Matmult( A,B:TwoDim; M,N,Linteger returns TwoDim) 

7 Streams and Iteration in a Single Assignment Language 
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for i in 1, M cross j in 1, L 
S .- for k in 1, N 

returns value of sum A[i,k] *B[k,j] 
end for 

returns array of S 

end for 
end function 

2.6.10 UFO (United Functions & Objects) 

2./. Chapter Sotes 

UFO [83, 82] is an attempt to reconcile the functional and object-oriented worlds by providing a 
language whose core is functional (in the style of SISAL) but which also resembles object-oriented 
languages such as Eiffel [66]. The motivation behind UFO is the desire to provide a general purpose 
parallel language for both numerical and symbolic computations which may require state. \Iatrix 
multiplication in UFO may be written 

typevar Num <- Numeric 

matmult(a, b Array[Num]) : Array [Num] is 
{ 

} 

for i in [lower(a,1) to upper(a,1)] 
cross j in [lower (b , 2) to upper(b,2)] do 

cij = 
for a_element in a[i, .. dot b_element in be .. ,j] do 

c_element = a_element * b_element 
return sum(c_element) 
od 

return cij 
od 

This concludes our introduction to functional programming and description of various functional 
programming languages. The review is not exhaustive but offers an overview of the functional 
language spectrum. The interested reader is referred to [48] for a more complete but less recent 
discussion. 

2.7 Chapter Notes 

(page 8): 
Although 

> data List a = Empty I Cons a (List a) 

is a perfectly valid definition of a list it is more common to write Empty as O. Cons as 
( : ), List a as [a] and to think of lists as being defined as 
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> data [a] = [] I a: [a] 

Although this is not valid Haskell syntax. 

11 (page 13): 
Back substitution is the solution of the linear system in n unknowns 

UllXl + U12 X 2 + ... + UlnXn b1 

U22 X 2 + ... + U2n X n b2 

UnnXn bn 

2.7. Chapter Sates 

usually written as Ux = b where U is an upper triangular matrix. The back substitution 
method works by solving the final equation for X n , substituting this value into the first 
n - 1 equations, and so reducing the original system to a system with (n - 1) unknowns 

UllXl + U12X2 + ... + Ul,n-lXn-l 

U22X2 + ... + U2,n-l Xn-l 

Un-l,n-lXn-l 

b1 - UlnXn 

b2 - U2n X n 

bn - 1 - Un-l,nXn 

The back substitution algorithm is then applied to this reduced system. 

111 (page 14): 
In Section 2.6.3 we referred to the datatype lazylist as a la::y list. This is actually a 
misnomer as no sharing occurs and repeatedly used tails are recomputed since they are 
explicitly represented as closures. A more accurate description would bl' a call by name 
list. The term lazy list is used since this is its title in [75] where the example originates. 

20 



Chapter 3 

Numerical Methods 

In this chapter we present a background to the numerical methods considered later in this thesis. 
For a simple background to numerical analysis see [39]. For readers unfamiliar with the notation 
used, Mathematical notation is explained in Appendix K. 

3.1 Introduction 

Numerical methods are techniques employed by engineers and scientists to solve mathematical ('qua­

tions. A major advantage of numerical methods over analytical methods is that a numerical answn 
can often be obtained even when a problem has no analytical solution. For example, the following 
integral taken from [39], which gives the length of one arc of the curVE' of y = sin(.r), has no closed 
form, analytic, solution: 

1" vII + cos2 (x)dr. 

However, the length of this curve may be computed by standard numerical methods that apply to 
essentially any integrand; there is never a need to make special substitutions or to apply Greens 
theorem 1 to obtain a result. Moreover, the only operations required are addition, sub! raction, 
multiplication, division and comparisons. It is this fact that makes a computer so suited to the task 
of number crunching. 

Important distinctions between analytical and numerical solutions to problems are: 

• A numerical solution is an approximation to the true solution which, in theory, may be made 
arbitrarily accurate (up to machine arithmetic) . 

• The behaviour and properties of numerical solutions are not as apparent as they often are in an­
alytical solutions, precisely because they are purely numerical. :\' umerical methods frequent Iy 
simply yield tables of values which must be analysed further, using visualisation techniques, 
before such properties may be determined. 

1 Greens theorem: A generalisation of integration by parts 
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3. Numerical Methods :3.2. Systems of Equations 

In the remainder of this thesis we consider systems of equations, approximation of functions. numer­
ical differentiation, numerical integration and quadrature, root finding / optimisation. differential 
equations, and symbolic manipulation, and so here very briefly introduce each of these areas. These 
topics are introduced because 

• They are typical scientific computations. 

• We later present the limitations of certain styles of programming in terms of these examples. 

• Quantitative statistics for codes are given in terms for these topics. 

• They are particularly good at demonstrating the suitability of later solutions. 

Frequently used notation is given in Appendix K. 

3.2 Systems of Equations 

The simplest systems of equations are linear algebraic equations (LAEs). A set of n LAEs II1n 

unknowns has the form: 

a11 X I + alZxZ + + aIjXj + + aInXn bi 

a2I X I + an X 2 + + a2j x j + + aZnXn b2 

aiIxl + ai2 x 2 + + aij x j + + ainXn bi 

anlXI + a n ZX 2 + + anjxj + + annXn bn 

where the Xi are the unknowns and the aij and bi are known. For convenience this is written 111 

matrix notation as 
Ax=b 

where A is the coefficient matrix 

A = [aij] = [ 
anI 

and x, b are vectors 

[ 
Xxnl 1 x = [Xi] = 

We assume that the matrix A is non-singular, that is Ax = b has a unique solution. 
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3.2.1 Direct Methods 

One of the simplest methods for solving the linear system Ax = b is Gaussian Elimination. This 
involves the systematic subtraction of multiples of one equation from others to obtain an upper 
triangular system 

where the Uij and the f3i are linear combinations of the aij and the bi respectively such that this 
reduced system is equivalent to the original. Since the last equation has only one unknown it can 
be solved for X n . This value can then be substituted into the penultimate equation to determine 
the value of Xn-l. This back-substitution process continues until the values of all the Xi have been 
determined. 

This is an example of a direct method since the solution is obtained in a fixed finite number 
of operations dependent only on n. One of the major drawbacks of the method is that the right­
hand side vector, b must be altered along with A causing difficulties if we have multiple right-hand 
sides which are not available simultaneously2. This problem may be overcome via the use of LV 

decom posi tion. 

3.2.2 LV Decomposition 

Since triangular systems of equations may be solved easily using back substitution we may decompose 
a linear system into the product LU = A where L is an n x n lower triangular matrix and U is an 
n x n upper triangular matrix. Since there is more than one possible factorisation we often take the 
diagonal elements of L to be 1 (Iii = 1) and by omitting this diagonal store the factorisation in the 
same amount of space required to store A. 

[ an 
a12 

a21 an 

anl a n 2 

We may now use these matrices to solve Ax = b or (LU)x = b by solving the two sets of linear 

equations 
Ly=b Ux=y 

We may solve Ly = b using forward substitution and then solve Ux = y using back substitution 
and solve the system without altering b. In the method the Uij are the original Uij from Gaussian 
elimination and the lij are the multipliers computed at each stage. 

2This situation arises in the case of iterative refinement. 
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3.2.3 Stability 

Before leaving direct methods we discuss pivoting. In both LU factorisation and Gaussian elimination 
we observe that if at the kth stage3 the element akk is zero then the method breaks down, possibly 
because the matrix is singular but not necessarily so (as this condition may arise due to a row-wis~ 
permutation P of A). For example if A = 133 

o 
1 
o 

The row-wise permutation shown above would yield a system which although non-singular would 
cause Gaussian elimination to fail. However, as long as at least one of the sub-diagonal elements 
in au's column (the pivotal column) is non-zero at the kth stage of elimination, the process may 
continue by interchanging rows. Even if this element is not identically zero, it may be so small 
compared to other elements in that column that the multipliers which are generated are very large, 
resulting in the whole process becoming unstable and highly inaccurate due to roundoff-errors being 
amplified. 

This row-exchange process is usually performed by searching down the pivotal column for the 
element with largest magnitude, exchanging row k with its row and continuing as before. This is 
known as partial pivoting. An alternative is complete pilloting in which the whole lower submatrix is 
searched for the element of greatest magnitude, causing row and column exchanges to be carried out, 
and therefore additional book-keeping. Since partial pivoting is usually deemed sufficient, suhspquent 
references to pivoting will refer to partial pivoting unless otherwise qualified. 

Other direct methods such as Choleski decomposition, cyclic reduction or QR factorisation work 
in a similar manner to Gaussian elimination and L U factorisation in that they transform t hf' system 
into an equivalent one which may be solved trivially. An interesting direct (but often used as an 
indirect) method which is not of this form is the conjugate-gradient method which is discussed later. 

3.2.4 Cyclic reduction 

Cyclic reduction [36] (or odd-even reduction) is a method of solving a tridiagonal system of equations 
which may be performed in parallel. We focus on this method as we shall use it as an extended 
example later. The variation of cyclic reduction we choose to implement proceeds as follows: 

b1 Cl x, y, 

a2 b2 

Cn-l 

an bn Xn Yn 

3 We define the kth stage as the stage in the computation which detennines the value of Ukk· 

24 



.1. Numerical Methods 
.1.2. Systems of Equations 

A. tridiagonal system of equations Ax = Y is transformed into an equivalent pentadiagonal system 
with zero sub- and super-diagonals. . 

b(l) 
1 0 

0 b(l) 
2 

a(1) 
3 

(1) 
CI 

(I) 
an 0 

c( I) 
(n-2) 

0 
b~l) 

(I) 
YI 

(I) 
Yn 

This system is then reordered so that it is expressed as two sub-problems of half the dimension. 
That is, if we assume that n is even we renumber the equations in the order 1,:3 .... , n - 1,2, I .... , /I 
and renumber the unknowns in a similar way. 

b(I) (1) 
1 C1 (I) 

(1) 
II YI 

a3 

b(l) 
n-1 Xn -1 

(1) 

~ 
b(l) Xz (I) 

YZ 2 

(1) 
Cn _ 2 Xn (II (/) b~l) Yn an 

Since we now have two tridiagonal systems we may apply recursively and ill parallel the ahovp 
transformation process to the two non-zero quadrants of the matrix until we reach a s<'l of trivial 
equations. The transformation step to create the pentadiagonal system described above is )!;iv"/I 
below 

(1) a j 

b~ I) 
• (I) 

Cj 
(1) 

Yi 
OJ 

(3i 

°iai-I 

bi + 0iCi_1 + Ji(li+1 

(3i Ci+1 

Yi + U i Yi -1 + .Ji y, + 1 

-a;jb i - 1 

-c;jb i +1 

After solving each final equation (in parallel) the vector of solutions may be reordered to yield t fw 
solution vector. 

3.2.5 Iterative Methods 

In the last section we considered the solution of linear systems in a fixed, finite number of steps. 
We now consider an iterative approach where we make an initial guess Xi a I at the solution and use 
this to form a better approximation x(1), which in turn we use to form xi:! I, etc The aim is that 
the sequence of vectors {x(k)}, k = 1,2, ... converges to the exact solution x of the systPnl. i.e. 
x(k) --> A-I bask --> 00. 
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Figure 3.1: Partitioning of a matrix for the Jacobi/Gauss-Seidel methods 

3.2.6 Gauss-Seidel and Jacobi Methods 

If A is an n x n non-singular matrix and Ax = b is the linear system to be solved. then the Jacobi 
iteration is 

X(Hl) = ~ [_ '" a"x(k) + b'] 
I a" L 'l 1 " 

i.i=1.2 ..... n 
" j~i 

This may be written in matrix form by splitting A into three sections. the diagonal D and the 
sub/superdiagonal elements L/U (Fig. 3.1). Our iteration may now be rewritten as 

Convergence to a fixed point4 x satisfies 

that is 
Dx = -(L + U)x + b 

or 
(D+L+ U)x= b 

or 
Ax=b 

and hence would solve our system of equations. \\"ith iterative methods. convergence to a fixed 
point is not guaranteed although, depending on the method used. there are conditions for which 
convergence is guaranteed. For example Jacobi's method converges if A is diagonally dominant 

(Vi, laid> LNi laij I). 
A method related to Jacobi's method is the Gauss-Seidel iteration 

,(HI) _ 1 [ 2:.-1 
.. (HI) _ 2:n 

" (k) + b'] 
,Ii - - - a'l x)' a,Jxj I, 

a" 
II j=1 j=i+l 

i = 1. 2 ..... n 
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or in matrix form 
X(k+l) = n-1 [_Lx(k+1) _ Ux(k) + b] 

which converges to a solution more rapidly. \Vith iterative methods the degree of accuracy of the 
solution may be defined by specifying the value of the residual r(k) = b - Ax(k) at which the 
iteration is deemed to be a close enough approximation to the true solution. or by examining the 
difference between successive estimates. This is usually done by determining whether a particular 
norm is sufficiently small. 

3.2.7 Non-Linear Equations 

So far we have only considered systems of linear equations. However, systems of non-linear equatioll" 
frequently arise such as 

cos(2xt} - COS(2X2) = 0.4 
1.2 2(X2 - xI) + sin(2x2) - sin(2xd = 

Generally we write these systems as 

ft(Xl,X2, ... ,Xn ) 0 
h(Xl,X2, ... ,Xn ) 0 

or more compactly as 
f(x) = 0 

where f is the vector of functions [ft, h, ... , InV and x the vector of variables [x 1, X2, .... .r nV, 
and use root-finding or optimisation techniques to solve these systems iterat i vely. Such iterative 
methods may themselves generate and solve a linear system at each iteration. Further discussion is 

left to Section 3.6. 

3.3 Approximation of Functions 

The computational procedure used in computer software for the evaluation of a library function 
such as sin(x), cos(x), or eX involves polynomial approximation. The simplest met hod of polynomial 
approximation is a truncated Taylor Series where, if we assume that I is continuously (.\' + 1 )-times 

differentiable over the interval [a, b], then 

I(x) = Ps(x) + Es(x) 

where PN( x) is an Nth-degree polynomial approximation to I( x) 
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3. Numerical Methods 3.3. A.pproxlmation of Funcrion5 

xo is an arbitrary point within the inteval and E:dx) is the error term 

for some c lying between xo and x. Hence, the function sin(x) may be approximated using the 
Taylor series expansion around the point (xo = 0) 

x3 x 5 x 7 

sin(x)""" x - - + - - - + ... 
- 3! .j! 7! 

Before continuing we briefly note that this approximation may be reduced by (conomwlIg the pO\\"t'r 
series. Economisation perturbs the coefficients in a power series such that much of the accuracy of 
an Nth-degree polynomial approximation is captured as an (S -l)th-degree approximation, usually 
via the subtraction of a weighted Chebyshev polynomial (for further discussion see [64]). 

3.3.1 Evaluation 

The method used to evaluate a polynomial is crucial if execution efficiency is to be maintained. One 
method of evaluating a polynomial is Horner's .1Idhod where the polynomial 

N V-I g(x)=x +aN_jl" +···+alx+aO 

is rewritten 
g(x) = (((- .. (((x + aN-dx + aN_~)x + ... + adx + ao 

requmng (N - 1) multiplications and N additions. Similar methods may be used to evaluate a 

Taylor series expansions 

N fk( ) ,\' 
'" Xo ( )k '" fk( )P f( x) ~ ~ -k-! - x - IO = ~ Xo k 

k=O k=O 

where the Pi are defined as 
Po 
PI .r - Xo 
Pk tPjPk - 1 

and are evaluated PI to PN with common terms being shared. 

3.3.2 Fourier Series 

Polynomials are not the only functions which may be used to approximate known functions. A 
Fourier Series approximation may be formed via a sum of sine and cosine terms: 

f(x) ~ .~o + fJ4 n cos(nx) + Bn sin(nx)] 
n=1 
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where An and Bn are defined as 

1 jP (n7rx) 
An = P _p f{x) cos p dx, 

1 jP . (n1i.r) 
Bn = P _p f(x)sm p d.r 

creating an approximation to f(x) with a period of 2P. The act of computing the coefficients 
in a Fourier series is sometimes called harmonic analysis since if f is a time-dependent periodic 
function, its Fourier series represents an equivalent function of frequencies, and knowledge of the 
most significant coefficients in a Fourier series provides information on the fundamental frequencies 
of a system. This knowledge is important if phenomena such as resonance are to be avoided. Another 
name for this procedure is the Fourier transform. 

3.4 Numerical Differentiation 

Numerical differentiation involves the estimation of derivatives at certain specific points over the 
domain of a function f. To see how *" may be estimated we expand f(.r) in a Taylor series about 

(x = Xn + h) 
, h2 

If 

f(x n + h) = fn+1 = In + hfn + 2! In + ... 

which, when truncated at the 2nd term, gives: 

and the first derivative may be approximated by the quotient of t he forward difference and stpp 
length. Similarly, expanding around (.r = Xn - h) 

, h"2 If 

f(x n - h) == fn-l = fn - hfn + 2! fn - ... 

gives 1 f~ == ~ I· These approximations may be combined to form a more a·:curate approximation: 

fn+l - fn-l == fn - fn + hf~ - (-hf~) + ~~ f~ - ~~ f~ + ... ~ 1 f~ == '"+1:;;"-1 1 

since it involves truncation at the third term rather than the second. This is known as the Ct n­

iral difference approximation to the first derivative. Adding truncated Taylor series expanded 
around (x = Xn + h) and (x = Xn - h) leads to an approximation for the second derivative 

f~ == 'n 1 - 2:; +J n+l • Further discussion of differentiation and differences is left until later sec­

tions where differential equations are introduced. 

3.5 Numerical Integration and Quadrature 

J list as numerical differentiation estimates values of a function's derivative evaluated at a specific 
point, numerical integration estimates the value of an integral over a specific interval [a, b). The 
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Figu re 3.2: The t rapezo id a l rul e 

simplest approach to numeri cal integrat ion is to um t. he a rea un der a piec wi - lin a r app roximalion 
to the curve as in Fig.3.2. Th is is call ed t he t rape::oidal rule and may b fo rmula ted a : 

where (X i+l- Xi ) is constant. By est im at ing the data u ing a piecewi, -qu adrat ic o r a pi 
curve we obtain Simpson 's ~ and ~ Rules: 

• X N - Xo '"' l
X N 3( ) N/3 - 1 

Xo f( x) dx ~ 8N 20 (hi + 3hi+l + :313i+2 + hi+3) 

These methods are a ll examp les of Newt on-Co te integra tio n for mul a and. in g " ra l, fo rmu la 
may be derived to approx im ate an in tegra l using a piece lV i e_nth d gree po lynom ia l, a lt hough hi gher 
order methods a re not mu ch use in genera l. For fur ther inform at ion ee [39]. 

3.5.1 Gaussian Quadrature 

The previous formulae for numeri ca l in tegrat ion a ll requ ire that the va lue of a fun ct ion b evalu­
ated at evenly-spaced x - values. An a ltern at ive a pproach is to use a method known as Gaussian 
Qlladra11tre. Gaussian Quadrature symmet ri call y pl aces 1 x-values aro und the interval midpoint 

and approxim ates the definite integra l 

1= lb f (x) dx 

by transform ing f into a fun ct ion rj; : 

rj;(x) = fl t(b - a)x + Hb + a)] 
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3. Numerical Methods 

allowing I to be expressed as an integral between limits -1 and + 1: 

I = ~(b - a) 11 Q(x)dx 
-1 

This integral may be approximated as follows: 

1 !Ii 1 ¢>(x)dx = L U'iO(X;) 
-1 ;=1 

3.6. Root Finding 

where Wi and Xi represent tabulated values of the weight functions and the abscissae (or intfgratioll 
points) associated with the N points in the interval (-1,1). Thus the result is 

b N 

1=1 f(x)dx ~ ~(b - a) L w;¢>(x;) 
a ;=1 

which, for appropriate weights and abscissae (which may be calculated), will exactly integrate a 
polynomial of degree (2N - 1) [1]. 

3.6 Root Finding 

As mentioned earlier, root-finding techniques are often used to find a solution to a S\'stem of non-
linear equations . 

/t(Xl,X2, ... ,Xn ) 0 
h(xl,x2, ... ,xn) 0 

often written 
f(x) = 0 

where f is the vector of functions [It, 12, ... ,fn]T and x is the vector of independent variables 
[Xl, X2, ... , xnJT. In this area, no general method exists leading to a solution of the non-linear 
system f(x) = 0 in a predefined number of steps, even when N = I! 

3.6.1 Bisection 

In the case where the 'system' consists of a single non-linear equation the method of bisection may be 
used to find a solution to f(x) = 0 in the interval [a, b] if f is continuous and if f(a)f(b) < O. Having 
taken up positions on either side of a root, one of the bounds is replaced with the midpoint b;a Sllch 
that the root is still straddled. This process is repeated until the interval is sufficiently small, or until 
a zero has been discovered (Fig. 3.3). Rather than using the midpoint in a comparison, the method 

may be improved on by using the root of a linear approximation to the function, §[!l~J(!l, and thf' 
method is called the rule of false position. Replacing the upper bound, b, with this approximate 
root and replacing the lower bound a with the previous upper-bound is known as the Secant Jfethod. 
which does not need to straddle a root although convergence to a solution is not always guaranteed. 
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3. Numerical Methods 3.6. Root Finding 

fix) 

a b 

x 

Figure 3.3: Root finding via bisection 

fix) 

a - fta)/!'(a) 

Figure 3.4: Newtons method for root finding 

3.6.2 Newton's Method 

By assuming an initial approximation, a, to a roo\', Newton's method proceeds by calculating the 

next approximation as the intercept of ~1 with the x axis, i.e. a - f,\:\ (Fig. 3.4). This method 

is often referred to as the Newton-Raphson method, but since we deal with its extension (:\ewton's 
method) solving systems of equations we abbreviate its title. 

3.6.3 Newton's Method for Systems of Non-Linear Equations 

The iteration step in the Newton-Raphson method 

f(xr-d 
Xr=Xr-l- fl ( ) 

Xr-l 

may be readily generalised to the multivariate case, leading to the iteration 
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3. Numerical Methods 3./. Optimisation 

where J(x) is the n x n Jacobian matrix of partial derivatives evaluated at x having the form 

J(x) = 
[

Ell. E..l.L 1 bXl bX n 

· . · . · . 
?b !!b.. 
bXl bX n 

To avoid having to compute an inverse Jacobian at each step the iteration is rewritten 

That is, at each stage we solve a linear system Arxr = b r where Ar = J(Xr_l) and b r == 
J(Xr-dXr-1 - f(xr-d using techniques described in Sections 3.2/3.3. In practice this system may 
be solved more economically via the solution of 

where c5xr = Xr - Xr-l. 

3.7 Optimisation 

Optimisation involves finding an x at which a function f(x) has its minimum value5 . For an equation 
in one dimension a simple method is the Golden SectIOn Search where in an interval [a, b) two internal 
points Xl = b - r(b - a) and £2 = a + r(b - a) are calculated and at each step either a is replaced by 
Xl or b is replaced by X2, depending on which causes the updated interval to straddle t he minimum 
value. If r satisfies r : (1- r) = 1 : r (the Golden Ratio) only one new function invocation is required 
at each stage. 

3.7.1 Method of Steepest Descent 

If the first derivatives of f are known then an obvious choice of method is that of Steepest Descent 
in which the iteration step is 

\"f(xr-d 
Xr = Xr-l - Q'11V'f(xr-dll 

where V' is defined as V' f = ~i + Uj + M-k and Q' is computed via a one-dimensional minimisation 

of ¢>(t) = f (xr - l - t vpx r
_

d ). One problem with using the method of steepest descent is that a 
IIV (xr-tlll 

minimum along a line has a gradient which is orthogonal to that line and hence the path taken by 
successive estimates is full of right angles! A better choice for minimisation directions makes use of 
conjugate directions and leads to the conjugate gradient method which was mentioned briefly earlier. 

5 We do not consider maximising a function since a maximum value of f is a minimum value of - f. 
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3. Numerical Methods 3./. Optimisation 

3.7.2 Conjugate Gradients 

Although the conjugate gradient method minimises a non-linear function, for the purpose of this 
thesis we only consider its use as a linear system solver. To understand how a linear system mav be 
solved via the minimisation of a non-linear system, consider the equations • 

10x2 

Ery : y = -- - 20x - 2 El : lOx = 20, 

Solving El is equivalent to minimising E2 slllce d(5r::2orl = lOx - 20. Similarly. solving the 
symmetric, positive definite6 linear system 

Ax=b 

is equivalent to minimising the quadratic 

since Ax - b = \l (~xT Ax - bT 
x). Like the steepest descent method, iterations are of the form 

where the Pk are direction vectors and the O'k are scalars specifying distance moved. The O't are 
chosen so that Q is minimised in the direction of Pk which can be shown to be when 

If we choose po, ... , Pn-l such that they are conjugate with respect to A, i.e. they satisfy Vi #- j : 
pT Apj then we have a conjugate direction method and the iteration is guaranteed to converge in 
no more than n steps [40]. The most efficient way, in general, to obtain till' direction vectors to be 
used in solving Ax=b is via the conjugate gradient method, a conjugate direction method which 
calculates the kth direction vector at the (k - l)th iteration. The iteration step of one formulation 
of the conjugate gradient method is as follows: 

Xk+l Xk - O'kPk 
rk+l rk - O'kAPk 
Pk+l rk+l - {3k A Pk 

where 
O'k - < rk, rk > / < Pk, APk > 
{3k < rk+l, rk+l > / < rk, rk > 

where the rk are the residuals rk = AXk - b, Po = ro, and < x. y >= x T y. An advantage of the 
conjugate gradient method is that the coefficient matrix, A, need not be explicitly formed, the only 
requirement being that its representation must support multiplication by an arbitrary vector. 

6 A is positive definite: ~ '<Ix : x T Ax > O. 
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3.8 Differential Equations 

Although we mainly concentrate on partial differential equations (PDEs) (differential equations 
involving more than one independent variable) we also briefly mention ordinary differential equations 
(ODEs) and so briefly introduce methods used to solve these. An nth-order ODE has the general 
form 

dny ( dy d2 y dny ) 
dxn = f x,y, dx' dx2"'" dxn 

with the useful property that an nth order ODE may always be transformed into a svstem of n first 
order ODEs. ODEs of the form dyjdx = f(x, y) are often solved by advancing a ~olution, i.e. if 
Yk = y( Xk) is known then Yk+l = y( (1 + ~).r Ie) may be calculated via 

N 

Yk+l = Yk + L wi/(gi(.rk,Yk» 
i=O 

with the parameter values being derived from a Taylor series expansion, leading to Euler's method 
and Nth-order Runge-Kutta Methods which may be straightforwardly applied to systems of ODEs 
and hence to higher-order ODEs. Although this introduction does not do justice to solution methods 
for ODEs it is a sufficient introduction for our purpose as we only mention ODE solution method~ 
when discussing quantitative statistics derived from software developed elsewhere. We move on to 
solution methods for PDEs which, of course, may be applied to ODEs, 

3.8.1 Partial Differential Equations 

The two methods that we discuss for the solution of PDEs are the finztf difference and finite dement 
methods. 

3.8.2 The Finite Difference Method 

In the finite difference method, the domain of a function u(x, y) is discretised (usually at regular 
intervals [see Fig. 3.5]) into a set of points of interest. For example, the Poisson equation 

f) 2 u f) 2 u 
-d ., + -d ., = p(x, y) x- y-

with known values on the boundary of a region is rewritten as a difference equation, where h IS 

defined to be the distance between adjacent mesh points, using techniques from Section :3.4: 

Ui+l,)' - 2Ui)' + Hi-l,)' + lLi )'+1 - 2Uij + Ui,j-l 
, ., ~ Pij 

h2 h-

If the points of interest are arranged as a vector x then this forms a linear system which may 
be solved via techniques from Section 3.1, or by special fact forms of Gaussian elimination if the 
resulting system is tridiagonal. Iterative techniques such as Jacobi or Gauss-Seidel are often u~d 
on these problems as they may be easily formulated in terms of a point in the discretised domalll 
and its local neighbours, and the matrix-vector representation need not be explicitly formed. 
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U(x,y)=d(x) 

U(x,y)= c(y) U(x,y)=a(y) 

U(x,y)=b(x) 

3.9. Symbolic .\Ianipu/atioll 

0000000 
o 0 
o 
o 

o 
o 

0000000 

Figure 3.5: Oiscretisation of a 20 region 

3.8.3 The Finite Element Method 

The Finite Element Method (FEM) approximates the solution to a POE over a region of intert'st hy 
discretising the domain using an element mesh and computing the solution of t he POE at the nod.· 
points of these elements. This is usually done by representing the solution of the POE at the node 
points as the solution of the linear system Ax = b. The stiffnf.~.~ matrix A and the force I'ector b 
are constructed by performing integrations over each element and summing these contnbut/oTI.~ (Fig. 
3.6). The solution of the POE over the region is then approximated using interpolation functions 
that depend on the values at neighbouring node points. A typical FE\I domain discretisation is 
shown in Fig. 3.7. The stiffness matrix that typically arises is symmetric. positivE' definite and hence 
the conjugate gradient method may be used for the system's solution. This wry simplt- explanation 
of the FEM does not do justice to the method and is only meant to form the context for the following 
material, rather than an introduction to the method. For a more in-dept h introduction sl'e [69, I]. 

3.9 Symbolic Manipulation 

Symbolic manipulation, sometimes called computer algebra, is an area of scientific computing which 
is concerned with the manipulation of expressions in an analytical style. For instance. in a Computer 
Algebra System (CAS) differentiation of the function 

would yield 

y = sin2 (x) + cos 2(.r) + l,2 

dy = 2x 
dx 

The advantage of symbolic manipulation is that it allows problems to be solved which might other­
wise prove troublesome. For instance, simple evaluation of the expression 

x 
p(x) = sin(x) 
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Fi gure 3.6 : St ru ct ura l fini te element assembly calcu lat ion 

F igure 3.7 : 2D finit e element mesh 
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at the point x=O would result in a division by zero. But we may easily work out the limit at .c = 0 
with I'H6pitals rule7 via symbolic manipulation and use the formula: 

p(x) = { ~ 
siner) 

if x = 0 
otherwise 

7L'HOPITAL'S RULE [81](p. 94): 
if f;/.J:l -+ A as x _ a and g(x) - 0 and f(x) -+ 0 as x -+ a , then ~~;; - .4 as x-a. 

9 :r 
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Chapter 4 

Use of Haskell 

In this chapter we discuss the use of purely functional languages to implement numerical algorithms. 
We consider how functional languages may be used to denote these algorithms concisely, the relative 
efficiency with which the algorithms may be executed, and identify factors within these programs 
which affect this efficiency. 

4.1 Plan of Study 

The organisation of the chapter is shown in Fig. 4.1. We initially discuss the choice of language/style 
and present motivating examples written without regard for execution efficiency. \\'1' use L U fac­
torisation as a case study of some of the difficulties associated with the lack of mutable state and 
offer solutions to these problems in two distinct ways: 

• We use alternative data structures to arrays, including quadtrees which have the advantage 
of providing an efficient sparse matrix representation and encouraging implicit parallel divide 
and conquer-style algorithms. 

• We use alternative mathematical techniques to circumvent the need for updatcable state. 

We also demonstrate how these techniques can be combined. In addition, we discuss how other 
common numerical algorithms, such as successive over-relaxation (SOR) and cyclic reduction, may 
be expressed efficiently in terms of quadtrees and compare these formulations with related work. 

4.2 Choice of Language 

The languages which we concentrate on are non-strict and purely functional. 

• Non-strict languages are more expressive than strict languages, 
i.e. 'ie : EVALs"i<t[e] :5 EVALNon_Stdct[e] 
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Language choice 

t 

Slyle choice 

t 

Motivaling Examples 

t 

Consequences of lack 

of mutable slale 

t 

Althernative 
.--- dala slTculures 10 arrays t---

Allernative 

Alternative Agorithms 
Fonnulations 

Combined Approaches 
f-~ 

Figure 4.1: Plan of study 
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• Structures may be defined recursively, i.e. x = !(x) f- EVAl[x] = .l.. A consequence of this 
is that arrays may be defined recursively. 

• Purely functional languages do not allow side effects of any form. and hence equational rea­
soning is everywhere valid. 

This severely limits our possible choice of languages. From the remaining possibilities we choose 
Haskell (GHC 0.26) because: 

• Haskell is the standard non-strict functional programming language. 

• Haskell implementations are much more efficient than other non-strict functional languages 
[45]. 

• Haskell compilers exist and are freely available. 

Although the current version of Haskell is 1.4, the version of Haskell we use is version 1.2 since 

• This was the de-facto standard at the beginning of this work. 

• The differences between versions 1.2 and 1.4 are concerned mainly with I/O and GoFER-style 
constructor classes (two features which this thesis does not rely on). 

• At the time of writing, implementations of versions 1.3/1.4 are still error-prone and the greater 
functionality provided by the later language definition causes major inefficiencies. 

• Many people have claimed that versions 1.3/1.4 are too complex to use in practice Fil] and there 
is a move to limit some of these features as Haskell approaches standardisation to Standard 
Haskell. 

4.3 Choice of Style 

The style of functional programming we adopt is elementary. By elementary we mean programs 
where there is no hidden state. This idea of state may seem strange sino .. functional programs are 
stateless, but many techniques exist for modelling state in a purely functional manner. For example, 
the contrived imperative example 

w = 
W += 
W *= 

x' , 
y; 
w; 

represents the computation w = (x + y) * (x + y). In a functional language this could either be 
written as 

> let 
> w = z * z 
> z = x + y 
> in 
> 
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or expressed, with appropriate functions incBy and mulBy, as 

> do 

> w <- return x 
> w <- incBy y 
> W <- mulBy w 
> 

where great effort has been taken to model an imperative flow of control. The above fragment is a 
syntactically sugared version of 

> return x »= (\w -> 
> incBy y »= (\w -> 
> mulBy w » 
> 

where (»=) is a higher-order infix-combining function that models the flow of control in an imper­
ative program, and Currying is used to carry the current state of the machine around as an ('xtra 
hzdden parameter. The advantages of this kind of impera/ /l'e functional progralllming is t hat it can 
often be compiled into its imperative equivalent and imperative algorithms may be expressed in a 
functional language very easily. Hence FORTRA~-style array algorithms could be transliterated 
into functional languages given a library of combining functions which model FORTRA:\ features. 
However, we reject this style of functional programming as it suffers from the same drawback as ilJl­
perative programming, i.e. it imposes a serial control flow that is difficult to reason about. The style 
of functional programming we adopt could be considered app/ica/ I ve functional programming as op­
posed to imperative functional programming, where we specifically avoid the use of state-modelling 
combinators and hidden parameters. 

4.4 Denotation of Numerical Methods 

In this section we discuss functional denotations of numerical methods. We use the phrase denota­
tions rather than implementations to stress the fact that each script is written in terms of abstract 
values, rather than as a mapping onto a physical machine. Initially, we concentrate on the expres­
siveness of Haskell via the use of motivating examples before proceeding with a discussion of points 
arising from using Haskell as an implementation tool. 

4.4.1 Linear Systems 

A significant component of numerical problem solving is concerned with the solution of (dense) linear 
systems. In this area we find that algorithms such as LV factorisation can be expressed in a manner 
that matches, very closely, their mathematical definition. The array comprehensions of Haskell lend 
themselves naturally to this area. 

As mentioned in Chapter 3, the LV factorisation of an n x n matrix A consists of two matrices 
L and V such that. A is expressed as the product A = LV. V being an n x n upper-triangular 
matrix and L being an n x n lower-triangular matrix. Since both L and V are triangular, (LV)x = 
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L(Ux) = b can be solved via forward and back substitution. If we are to perform this factorisation 
we must decide which form of Land U to take as more than one possibility exists. If we set Iii = 1. 
then by omitting explicit representation of this diagonal, we can store the factorisation in the same 
amount of space as A. The mathematical formulation for this can be expressed as 

(i > j) 

and a Haskell implementation as 

> type Matrix = Array (Int,Int) Double 
> lu :: Matrix -> Matrix 
> lu a = luf where 
> luf = array bnds [(i,j) := f i j I (i,j) <- range bnds] 
> bnds = bounds a 
> f i j (i>j) = (a!(i,j)-sum[luf!(i,k)*luf!(k,j) 
> Ik<-[l .. (j-l)]])/luf!(j,j) 
> (i<=j) = a!(i,j)-sum[luf!(i,k)*luf!(k,j) 
> Ik<-[l .. (i-l)]] 

Because Haskell is lazy the array elements are evaluated as they are demanded, guaranteeing that the 
operations occur in the correct order. The 1-1 relationship between the mathematical specification 
and the Haskell implementation is valuable as it allows direct correspondence of functional code 
with the mathematical equations, which makes the code easy to develop, write read and modify 
[24], meaning textbook matrix algebra can often be translated almost verbatim into a non-strict 
functional language. It is interesting to note that this definition of LV factorisation is not possible 
in a strict language, such as ML or SISAL, as it would lead to an infinite recursion. The formulation 
is referred to as a compact scheme since the elements in the final triangular form are obtained 
by accumulation, dispensing with the computation and recording of intermediate coefficients and 
reducing roundoff errors [101]. The formulation is known as the Doolittle (Black) [11, :Vi, 63, 34] 
method of LV factorisation but other compact factorisation schemes such as Crout (Banachiewicz, 

General Cholesky) [12, 27, 35, 46, 47, 63, 34] 

(implicit) 

(i<j) 

(i ~ j) 

or symmetric Cholesky (Square-Root Method,Banachiewicz) [11,27,35. 34] 
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Iii = Uii = 
i-I 

aii - L U~i 
k=l 

Iji = Uij = (aij - ~ UkjUkj) / Ujj (i < j) 

may also be expressed in Haskell equally as easily. 

4.4.2 Symbolic and Analytic Methods 

In Haskell it is almost trivial to write a function to perform analytic differentiation over expressions. 
For example, (87) (p. 53) includes the following formulae: 

13.2 
13.3 
13.4 
13.5 

l (e) = 0 
d'l (ex) = e 
l exn = nexn - 1 

1.( U ± v ± w ± ... ) = du ± dv ± duo ± ... 
dx dx dx dr 

Given an appropriate datatype this may be written as 

> diff :: Expr -> Expr 
> diU (CON c) = (CON 0) 
> diU ((CON c) 'MUL' VAR) = (CON c) 
> diU ((CON c) 'MUL' VAR 'POW' (CON n» CON (n*c) 'MUL' VAR 
> diff (u 'ADD' v) = diff u 'ADD' diff v 
> diff (u 'SUB' v) = diff u 'SUB' diff v 

'POW' CON (n-1) 

and again the close relationship between the textbook description and the functional specification is 
preserved. This form of manipulation may be extended so that the input to a differential equation 
solver may be written in terms of an expression datatype rather than as a series of constants and 
flags. For instance, by considering the variables !I, t, .r as variables Uo, U1 , [T3 the parabolic equation 

may be be written as 

D (U 0) (U 1) :=: D .-. 2 (U 0) (U 2) 

and the first stage of the computation could dis-assemble this via pattern matching and derive an 
appropriate finite-difference representation. As the required solution's accuracy increases (i.e. more 
computational power is required) this overhead becomes negligible. \\"ith a parser and a pretty 
printer placed at each end we may easily construct a rudimentary computer algebra system. 
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4.4.3 n-point Gaussian Quadrature 

Another significant component of numerical problem solving is the area of numerical quadrature. 
where an analytic integral is approximated via one of a variety of methods. The applicative code 
to carry out an algorithm such as Gaussian quadrature is also as terse, yet expressive. as the 
mathematical specification. The use of lists greatly increases our ability to implement very general 
n-point quadrature: simply by passing the appropriate weights and abscissae to the integration 
algorithm. 

The method we consider estimates a definite integral 

1= lb f(.r)dx 

by approximating f using a polynomial and integrating analyticaIIy the approximating function. 
The estimate is of the form 

n 

R= LW;/; 
i=1 

where fi = f(x;), and the Xi are the abscissae, or integration points, with corresponding 1('( ights U',. 

The formulation given below is a symmetric n-point Gaussian quadrature: 

lb f(y)dy ~ Pr t wi(f(Pm + pr.ri) + f(Pm - pr.ri») 
a ;=1 

where 

and a HaskeII implementation is given by 

> type IntegrationRoutine = 

P -~ m - ? 
b--a 

Pr=~ 

> (Double -> Double) -> (Double,Double) -> Double 
> gq :: [Double]->[Double]-> IntegrationRoutine 
> gq x w f (a,b) = pr * sum (zipWith f1 w x) 
> where f1 wi xi = wi * (f (pm+pr*xi) + f (pm-pr*xi» 
> pm = (b+a)/2.0 
> pr = (b-a)/2.0 

where zipWith is a higher-order function which applies a function f elementwise to two lists such 
that, for example, zipWith (+) [1,2] [3,4] = [4,6]. 

4.4.4 Multidimensional Integration 

The use of quadrature can very easily be extended to encompass multidimensional integration using 
the higher-order nature offunctionallanguages to write a general n-dimensional integration routine, 
passing an arbitrary I-dimensional quadrature function as an argument to a higher-order multiple 

integrating function: 
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> 
> 
> 

type Limit 
type Fn 
type Point 

= Point->(Double,Double) 
= Point -> Double 
= [Double] 

4.4. Denotation of SumericaJ .\fethods 

> multiplelntegral :: IntegrationRoutine -> [Limit] -> Fn -> Double 
> multiplelntegral int limits f = mi int [] limits f 
> where 
> mi int g Cab] f = int f1 (ab g) 
> where f1 x = f (g++ [x] ) 
> mi int g (ab:lims) f = int f1 (ab g) 
> where f1 x = mi int (g++ [x]) lims f 

Thus, to evaluate 

l X21Y2(X) jZ2(X,Y) 
1= f(x,y,z)dzdydx 

Xl yt{x) ZI(.r,Y) 

we integrate a I-D function H(x) as 

1= l rJ 

H(x)dx 
x, 

using our quadrature scheme, where H(x) is defined as 

l
Y2(X) j Z2(X,Y) 

H(x) = f(x, y, z)dzdy 
YI(X) 'I(X,Y) 

which may be evaluated for each abscissae Xi of J H(x)dx via the above method. 
The simplicity and terseness of this formulation is apparent when this is compared with a com­

parable but less general algorithm [79] expressed in Pascal taking 50+ lines·. This terseness is due 
directly to the ability to create functions on the fiy, a motivating argument for functions being first 
order. 

4.4.5 Example 

As an example of this in use we can define the function integrate by combining our multi­
dimensional integration function mul tiplelntegral and our Gaussian quadrature function gq wit h 
appropriate abscissae and weights. 

> integrate :: [Limit] -> Fn -> Double 
> integrate limits f = multiplelntegral (gq abscissae weights) limits f 

> where abscissae 
> weights = 

1 The figure 50+ relates to the fact that some Pascal procedures were not implemented, only described, in [79]. 

46 



4. Use of Haskell 4.4. Denotation of SumericaJ .Uetbods 

Usin.g ~hese functions we can very simply compute the volume of a sphere, or area of a circle. by 
specIfymg appropriate limits. The required formulae are 

1r1~ -r _~dydx 

volume r 1
r 1~ 1";~r2-Y~2_"'2 

d::dyd.r 
-r -vr'-x' _yrr:;-'_-y--:';-_-"'-::-' 

and the integration limits can be expressed as 

> circle_lims :: Double -> [Limit] 
> circle_lims r = [lim1,lim2] 
> where lim1 = (-r,r) 
> lim2 (x:_) = (-sq,sq) 
> where sq = sqrt(r*r - x*x) 

> sphere_lims :: Double -> [Limit] 
> sphere_lims r 
> = circle_lims r ++ [lim3] 
> where lim3 (x:y:_) = (-sq,sq) 
> where sq = sqrt (r*r - y*y - x*x) 

We can now express the final computation as tersely as we would expect it to appear in text. I.e. 
fcircle dydx. 

> area, volume :: Double -> Double 
> area r = integrate (circle_lims r) (const 1) 
> volume r = integrate (sphere_lims r) (const 1) 

where const may be defined as 

> 
> 

const 
const 

a -> b -> a 
k x = k 

4.4.6 Basis FUnctions for Finite Element Analysis 

These ideas can be extended to the specification of interpolation functions for finite element analysis, 
where we can very generally state facts about iso-parametric basis functions. The essence of the 
finite element method (FEM) is to partition the domain of a problem into non-overlapping elements 
and provide an approximate solution which has a simple form within each element. The local 
representations are then patched together to form a global solution. The approximate solution is 
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calculated us~ng basis, or inte~po/at~on, functions dependent on the values at neighbouring node 
points. The sImplest approach IS to mterpolate linearly within an element: 

1 

O-+-------.:Ir-

In Haskell we can write this as 

> type Element = ([lnterpolation] ,[Limit] ,(lnt,lnt» 
> simplex_2D :: Element 
> simplex_2D = (interpolations,limits,(dimensions,nodes» 
> where interpolations = [ii,i2,i3] 
> where ii (r:s:_) = 1 - r - s 
> i2 (r:s:_) = r 
> i3 (r:s:_) = s 

> 
> 
> 

> 
> 

limits = [11 ,12] 
where 11 

12 (x:_) 

nodes = 3 
dimensions = 2 

= ( 0 1 ) 

( 0 i-x ) 

allowing us to model simplex elements very naturally, since the interpolation functions for a 10 

simplex are 
HI(1')= 1-1' 
H2(r) = r 

and the interpolation functions for a 20 simplex are 

H d 1', s) = 1 - r - 5 

H2(1', s) = l' 

H3(r, s) = s 

This explains our use of (x: y: _) rather than (x, y) in that we express functions in a form that 
allows us to speak more generally later about the dimensionality. 

Now that an element has been specified, one of the things we need to do is to integrate a function 
over its limits, which can also be specified very tersely via the definition of the projection getLimits

2
. 

2 In Haskell f . g == fog denotes function composition. 
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> getLimits :: Element -> [Limit] 
> getLimits (_,limits,_) = limits 

> integrateOverElement :: Element -> Fn -> Double 
> integrateOverElement = integrate.getLimits 

We can now integrate any function f over the element via 

> integrateOverElement simplex_2D f 

4.4.7 Finite Element Analysis 

The techniques described in the previous sections were brought together to form a simple finite 
element package implemented in Haskell. One of t he requirements was t hat it should work in an 
arbitrary number of dimensions with plug-in basis functions and a plug-in linear system solver. 

The notation provided by Haskell was found to be very useful in the development of this system. 
often making the problem description clear. For example, in the FE\I we establish the element 
equations for each element. Generally this is done by substituting the interpolation functions into 
the governing integral form. Historically these matrices have been called the element 8Iiffnfs.~ matrix 
and load (or force) vector, respectively3. Once the element equations have been established the 
contributions from each element are summed to form the system of equation.~ Sx = F. This can be 
expressed in Haskell as 

> linear_system :: Mesh -> Basis_Fn -> Linear_System 

> linear_system mesh shape = MkLinear_System sm fv 
> where sm = sum [contrib_to_sm shape e I e <- elements] 
> fv = sum [contrib_to_fv shape e I e <- elements] 
> elements = getElements mesh 

where the element stiffness matrix and force vector depend on the interpolating function shape and 
the particular element being considered4 . 

By using Haskell's type class mechanism to define instances over an El'pression datatypt' (Set 
Section 4.4.2), high level descriptions of problems can be specified very naturally. 

4.4.8 Example 

Consider the simple 1-D linear slider bearing shown in Fig. 4.2, which is assumed to extend to 
infinity out of the plane of the figure [1] (p. 207). It consists of a rigid bearing and a slider moving 
relative to the bearing with velocity F. 

3This naming scheme relates to a time when the FE:'>.I was predominately used by engineers for structural analysis. 
4 The types Mesh and LinearSystem have not been defined explicitly as any representation of a finite element mesh 

and Matrix-Vector would do. 
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U: 20rls ~ 

~ ~------t------{). I25 · 0.036' 
0.025' 0.125" 

Figure 4 .2: Linear slider bearing 

The extrem ely thin gap between t he bearing a nd the li d r i Ail ed with an incolllpr --ihle 
lubri cant having viscosity v. Fo r the one-dimensio na l case t he gove rnin g Reynolds qllation red ll c 

to d (h 3 dP) d 
elx 6v elx = - elx (U h ) 

where P( x) denotes the pressure a nel h(x) the distance b tw en he li der and th ba rin g. It 
boundary conditions a re that P must equal t he kn own ex te rn a l pres ur (usuall y z ro) a t th tll'O 

ends of the bearing. Considerin g the governing diffe renti a l equation as 

L(P) = Q 

we may use a weig ht ed residua l m et ho el by ass uming a n app rox imate olu lion 

where the ¢i(X) a re bas is fun ctions satisfy ing o ur bound a ry condi tions , a nd d An a r idual e rro r 

term 
R = L(F" ) - Q 

Although we canno t for ce this te rm to vani sh we can fo rce a weig ht dint g ra l, ov r Lh 
dom ain , of the res idu a l to van ish . That is , t he in teg ra l ove r t he o lu lio n domain (fl) of Lh 

of the residual term a nd som e weig hting fun ct io n is s t eq ua l to zero: 

Ii = l w;(x) Relfl = 0, i =1 , 2, ... , n 

In the above example we have 

Ii = rL 
w;(x) [5£ (h3 

elF") + 5£ (U h)] elx = 0, 
} 0 elx 6v el x el x 

i =1 ,2 .... ,n 

which , after integration by parts , gives 

o lulio n 
prod ucL 

[ 
h3elP ' ]L lLdW;(X) (h

3
dP" ) Ii = Wi(X){-- + Uh} - -- -- + 'h dx = 0, i = L 2, .... n. 

6u dx 0 0 dx 6v dx 
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Selecting Wi(X) = ¢i(X) allows us to simplify this to5 

1L d¢i(X) (h 3 dP* ) 
Ji = -- --+Uh dx=O 

o dx 6v dx ' i = 1, 2, ... , n 

Writing the basis functions as a vector [¢l, ¢2, ... , ¢n]T and p. as a dot product 

defines our global stiffness matrix and force vector Sx = F: 

and defines the element stiffness matrices and force vectors as [1] 

se = ~ lX] h3 H eT H'dx 
6v x, x x 

where the H; are the element interpolation functions. 
The element stiffness matrices and force vectors can be written in Haskell using an Erpn .~.~/On 

datatype as6 

> element sm_and_fv :: Bas -> Bas -> Point -> Representation 
> element_sm_and_fv f g (x:_) 
> = «h * h * h)/(6.0 * v» * g' * f' :=: -u * h * g' 
> where 
> 
> 
> 
> 
> 
> 
> 

g' = D g (U 1) 
f' = D f (U 1) 

u = 20.0 
v = 0.002 

velocity = 20 ft/s 
viscosity = 0.002 lb s/ft-2 

h = thickness x thickness at point x 
thickness x I x < 0.125 = 0.0250 -- ft 

I x > 0.125 = 0.0360 -- ft 

5Since I;/i: cPi(O) = cPi(L) = O. Setting w;(x) = cPi(X) gives rise to the Galerkin (29) method. 
6 D f (U n) is taken to mean differentiate f with respect to the nth variable and 5 :=: F is taken to mean that 

after integration 5 and F form the stiffness matrix and force vector for a general element. 
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10 

Figure 4.3: Domain of Poisson problem 

where Bas and Representation are simply a suitable coding of EIpressions. Similarly, for a 2-D 
Poisson problem (Fig. 4.3) taken from [69] (p.82) 

whose Galerkin equations become: 

t Uk/J f {(O'Pkl) (J,Ylj) + (O'Pkl) (O'Pii)}dXdy k,l=l JR oX c).I: oy oy 

+ J h2<.pi'i d.rdY = 0, (i, j = 1,2, ' , , , T) 

where the 'Pij(X, y) are the basis functions, and R is the region of interest divided into (T + 1)2 
square elements, the element stiffness matrices and force vectors can be expressed as : 

> element_sm_and_fv :: Bas -> Bas -> Point -> Representation 
> element_sm_and_fv f g (x:y:_) 
> = (fx * gx + fy * gy - -2.0 * g) 
> 
> 
> 
> 
> 

where 
gx 
fx 
gy 
fy 

4.4.9 Summary 

D g (U 1) 

= D f (U 1) 
= D g (U 2) 
= D f (U 2) 

The above examples provide the motivation behind the use of functional programming languages to 
express numerical met.hods, Unfortunat.ely, their lack of direct handling of state often makes some 
programs run very inefficiently, as shown in the rest of this chapter, 

52 



4. Use of Haskell 4.5. Case Study; LC Factorisation 

[ 
0 OIl o 1 0 x=b 
1 0 0 

Figure 4.4: A non-singular matrix which causes naive LV factorisation to break down 

A A 

~ 
LU ...... �-------- p 

Figure 4.5: Dependencies for LV decomposition without and with partial pivoting 

4.5 Case Study: L U Factorisation 

In Section 4.4.1 we presented a compact formulation of Ltl factorisation. Unfortunately, since this 
formulation does not store intermediate results we cannot perform pivoting in t he usual way to 
retain numerical stability7. Even if numerical stability is not an issue, a non-singular matrix such 
as Fig. 4.4 can still cause this method to fail if one of the pivots is zero. Since the USt· of compact 
methods encourages numerical stability it is this approach we concentrate on. 

4.5.0.1 Compact Pivoting 

The compact methods described earlier may admit pivoting if a permutation matrix is built at the 
same time as Land U and all accesses to A. are performed in terms of this (Fig. 4.5). Unfortunately 
this involves storing N(N + 1)/2 intermediate values, or massive recalculation, and so we rejl'ct this 
scheme. 

4.5.0.2 Non-Compact Pivoting 

To allow pivoting we must express the algorithm in terms of elimination steps: 

> lu2 :: Matrix -> Matrix 
> lu2 a = eliminate a 1 n where (_,(n,_» = bounds a 

> eliminate :: Matrix -> Int -> Int -> Matrix 
> eliminate a i n 

7This lack of pivoting is not as drastic as it first seems since compact methods are inherently more stable than 
algorithms involving the storage of intermediate results [101] (p. 10). 
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Figure 4.6: Timings(Unix time) for monolithic, incremental array versions of Ll" factorisation 

> i >= n = a 
> otherwise 
> eliminate (a II submatrix) (i+l) n 
> where submatrix 
> = concat [let 
> kmul = a! (k,i)/pivot 
> in 
> ([(k,i):= kmul] 
> ++ 
> [(k,j):= a!(k,j)-a!(i,j)*kmul 
> I j <- [i+i. .n]]) 
> k <- [i+i. .n]] 
> pivot = a!(i,i) 

where the algorithm is obscured to ensure that the division by the pivot is shared. If this algorithm 
were to include pivoting we would calculate kmul by searching down the column i of a for the 
maximum element and include the row swapping in the association list. Unfortunately. when this 
technique is used, copying of intermediate arrays causes the program to be unacceptably slow. as 
can be seen from Fig. 4.6, where the previous compact scheme admits a monolithic array definition 
and the elimination implies an incremental array definition. This efficiency loss is due to the fact 
that, at each elimination step, the array update operation U j) causes the whole array to be copied. 
The reason for this copying can be explained via the following example, where f acts as a datatype 
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1 

If ~ ~ Om 
0 0 

• 

Figure 4.7: Graph transitions for f (access a i) (replace a i p) 

constructor with two fields, initially neither argument to f is evaluated, 

> x = f (a!i) (a II [i := p]) 

and each argument holds a reference to a. An internal representation is shown in Fig. 4.7. If the 
left argument is evaluated first then no array copying is necessary (Fig. 4.7: path 1 ~ 2a - 3) 
as its reference has been freed. However if the right argument is evaluated first (Fig. 4.7: path 
1 -+ 2b -+ 3) then we must copy the array as the left argument still refers to a. Since we are using 
non-strict languages we cannot perform all reads before writes as the computation must be demand 
driven to allow recursive definition. 

4.5.1 Strategies 

In order to avoid this efficiency loss we investigate: 

1. The use of non-array datatypes which may be decomposed and their constituent parts shared, 
such as trees and lists. 
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2. Alternative mathematical methods which eschew the need for pivoting. 

4.5.2 Non-Array-Based Matrix Methods 

In this section we examine how we may efficiently express algorithms common to linear algebra if we 
no longer have efficient array access/replacement and are forced to use an alternative approach. Thi,­
is the case for many functional languages as often if arrays are available they may not be efficient. 
or they may exhibit prohibitive access/update costs. 

The structure which is most prevalent in functional programming is the list. Lists are very 
efficient for operations such as vector addition, matrix addition or scalar multiplication. These 
operations may be specified as 

> vectoradd [Double] -> [Double] -> [Double] 
> vectoradd [] [] = [] 
> vectoradd (x:xs) (y:ys) = (x+y) : vectoradd xs ys 

> scalarrnult :: Double -> [Double] -> [Double] 
> scalarrnult a xs = [a * x I x <- xs] 

> rnatrixadd [[Double]] -> [[Double]] -> [[Double]] 
> rnatrixadd [] [] = [] 
> rnatrixadd (x:xs) (y:ys) = (vectoradd x y) : rnatrixadd xs ys 

or equivalently 

> vectoradd = zipWith (+) 
> rnatrixadd = zipWith vectoradd 

However operations such as matrix multiplication are more difficult as, to use an analogy, !L'f /L'ork 
against the grain of the representation, as can be seen in Fig. 4.8, and hen Ct· do not admit such an 
elegant algorithm and we must restructure the lists first \'ia transpostition to \"ork u'ith the grain: 

> rnrnult :: [[Double]] -> [[Double]] -> [[Double]] 
> rnrnult a b = [[ surn [a_ik * b_kj I (a_ik,b_kj) <- zip a_i_ b __ j] 
> I b __ j <- b_T ] 
> I a_i_ <- a ] 1iIhere b_T = transpose b 

This causes inefficiencies. 
If an algorithm operates with the grain of a representation we say that it is catamorphlc, meaning 

it descends the structure, and it is this property which makes many functional programs elegant. 
To solve a problem over a large set of data we combine solutions over subsets of that data, 
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r-----------------~Xrr----------------~ 

Figure 4.8: List-based matrix multiplication 

4.5.2.1 LV Decomposition Over Lists of Lists 

We may define LU decomposition (Doolittle) in this way using elimination: 

> Iud 
> Iud 
> Iud 
> 
> 
> 
> 
> 
> 

:: [[Double]] -> ([Double], [[Double]]) 
[ [x] ] = ([], [[x]] ) 

«pivot :rowl) 
:rows) = let 

(mults,submat) = eliminate pivot rowl ro~s 
= Iud submat (l,u) 

in 
(mults:l,(pivot:rowl):u) 

> eliminate:: Double -> [Double] -> [[Double]] -> ([Double],[[Double]]) 
> eliminate pivot ro~l [] = ([],[]) 
> eliminate pivot ro~l «cl:ro~):ro~s) 

> = let 
> (multipliers,submatrix) = eliminate pivot ro~l ro~s 
> m = cl / pivot 
> updatedrow = axpy (-m) ro~l ro~ 
> axpy a x y = zipWith (\x_i y_i -> a * x_i + y_i) x y 
> in 
> (m:multipliers,updatedro~:submatrix) 

This formulation proves to be quite efficient, as can be seen in Fig. 4.9. r nfortunately, if we wish 
to perform partial pivoting then we lose much of this elegant recursive definition as the columns of 
L must be dragged through the computation in case row-swapping is necessary (Fig. 4.10). This 
makes the problem monolithic. So although an efficient pivoting LV-decomposition is possihle using 
lists of lists, much of the elegance that we desire is lost and we arrive at an algorithm which is very 
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Figure 4.9: Timings (Unix time) for monolithic array, quadtree and list versions of Lr factorisation 

L u 

L' 
~ _________ --I Submatrix 

------------~------------

section of data structure in computation 

Figure 4.10: Monolithic list-based LU factorisation with partial pivoting 
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F igure 4. 11: Tri-diagona l a nd lower-triangu la r matri c as quadlr 

hard to reason a bout . 

4.5.2.2 Quadtrees 

As ment ioned earli er , fun ct iona l languages genera ll y shy away from the 1I of a rray a nd t nd to us 
st ru ctures such as li sts or t rees instead , lead in g to the writing of a lgo ri thm in a \. ry C1l ta I1l rphi c 
way. Two st ru ct ures t hat lend t hem se lves to th is a rea are th quadtre a nd binary tr , whi ch can 
be used to represent m at ri ces a nd vec tor respect ively. Exampl of impl e qua Itr lll 1l lri Cl. 1l re 

given in F ig. 4.11. 
A m at rix of o rder 2P can be represented by a qua Itr e o f depth p, where th tr i- eilh r: 

• a zero matr ix rep resented by 0; 

• a scala r Illu lt ip le aI (a -# 0) of t:1e identity matrix , repre nl ed by a; 

• a 2 x 2 block ma trix , each sub-matr ix being of o rder 2P -
1

. 

Some of t he advantages of using quad t rees are that t hey a re u eful fo r both par lorage 
pattern; t heir asymp tot ic space comp lexi ty is linea r in the numb r o f non-z ro fo r common mat ricc 
[106]8; a nd matrix a lgor it hms can be exp ressed naturall y a blo k a lgo rithm u ing quadLr f' . 

8lL is possib le to const,ruc t patholog.ical matrix patterns that refut e thi , uch as permutat i n mat ri ce . However 

these can b e stored as Ahnentafe l index t rees , as in [106J. 
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4.5.2.3 LV Decomposition Over Quadtrees 

An L U factorisation can be expressed using a block formulation 9 as 

blockLU [ ~~~ 

where LUll = blockLC All 
U12 = fwdSubst LUll ...1 12 

L21 = bkSubst LUll A:l1 

LUn = blockLU (An - L 21 Ud 

blockLU a = a 

where we pattern match on the tree to determine whether decomposition is necessary. This pre­
sentation encourages inductive proof techniques and the correctness of the above algorithm may be 
reduced to proving the following: 

Lll(fwdSubst LUllAd ...112 

(bkSubst LUll A:n)Ull .. -b 

where fwdSubst and bkSubst are defined as 

4.5.2.4 Efficiency 

(fwdSubst (L + U) A 
(bkSubst (L + U) A 

The efficiency of this method on full matrices measures up well against array and list representations 
(Fig. 4.9), although the great advantage of using quadtrees to represent matrices lies in their ability 
to represent dense and sparse matrices uniformly with operations over quadtrees taking advantage of 
sparsity. In addition to this, the cost of representing common sparse matrices is favourable, as can be 
seen in Table 4.1, taken from [105). The metric Dell~ity refers to the ratio between the space occupied 
by a matrix and the space occupied by a dense matrix of the same order, and the metric Spar.Hty 

refers to one minus the ratio between the expected time to access a random element and the expected 
access time within a dense matrix of the same order. Both metrics are measured on a scale from 
zero to one, with Density and Sparsity being accurate to within a term of O(n- 1

) and O((lg(n))-2) 
meaning that some densities are recorded as zero. The expected path is the expected time to access 
a random element. Matrices which measure up badly are the FFT and Shuffle permutation matrices 
which, as we show later, may be represented more efficiently. 

9This factorisation can be considered to be a version of the Fadeev algorithm [28]. 
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4.5.2.5 Quadtree Cyclic Reduction 

A quad tree version of cyclic reduction is also possible, although the derivation of this is not obvious 
from the usual elimination step definition: 

The quadtree version may be expressed as 

cyclic(a, y) = y/a if a and yare scalars 

cyclic(A, y) = [ IVI ] where 
V2 

VI = cyclic( AI, ytl 
1'2 = cyclic(A2' Y2) 

[~41 ~42] = 1\[.\1(1 + l') + V]I\T 

[ ~~ ] = 1\ ( .\1 y + y) 

.U = -(L + U)V-l 

(V, (1 + U)) = takeOutDiag(A) 

where the I\s are matrices of knight's movesof any size: 

1 0 0 0 0 0 
o 0 1 000 

J\ = 0 0 0 0 0 

o 0 000 

and AI, ...1.2 are half the order of A. Obviously these permutation matrices should not be stored 
explicitly and we can construct functions shuffle(~') = I\r and shufHe·H(A) = I\..'J.I\T which serve 
the same purpose. The following functions are defined via pattern matching where we take some 
liberty lO with syntax for clarity. We consider the binary tree in Haskell 

data BinTree a= Leaf a I Branch (BinTree a) (BinTree a) 

lOIn Part III of this thesis we discuss how this syntactic liberty may be realised. 
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as being defined as 

and the quad tree 

4.·5. Ca.se Study: L l" Factorisation 

[ 
(BinTree a) ] data BinTree a = al 
(BinTree a) 

data Quadtree a= QLeaf a I QBranch (Quadtree a) (Quadtree a) 
(Quadtree a) (Quadtree a) 

as being defined as 

splitM 

splitM 

[ 
(Quadtree a) 

data Quadtree a= al ( Quadtree a) 
(Quadtree a) ] 
(Quadtree a) 

shuffle [~:] = split [ ~: ] 

shuffle x = x 

,plit [: ~; : 1 [: ;~ : 1 where [ :: ] = split [ :': ] 

split x = x 

] = split ,\/ [ 

x=x 

~~] [:: 
~:] [:: 

~: ] 1 [[: ~:~ ~::] [ 
~: ] [;~:~ :~::] [ 

ai b.] 
c. d. [ 

nU'. 
where 

Stu, 
] =split

M 
[ 

r=r 

4.5.2.6 Algorithms Over Quadtrees 

It has been suggested [42, 100] that quad trees be used as an implementation for matrices in ap­
plicative languages. However, using this as an abstract datatype is prohibitive as we incur O(lg n) 
access times for element access. If the algorithms employ a divide and conquer style approach acting 
catamorphically ove~ the quadtree then the situation is not so severe. For example, the addition 
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Dense 
Symmetric 
Triangular 

FFT permutation 
Tridiagonal 
Pentadiagonal 
Heptadiagonal 
Enneadiagonal 
Shuffle permutation 
Identity 

Space 
~(n2 - i) 

~(n + 2)(n - ~) 
~(n + 2)(n - ~) 
nlgn + 4n _ ! 

2 3 3 
6n - 2lgn -.S 
8n - 2lgn - 9 

11 n - 2 19 n - 19 
13n - 2lg n - 26 

3(n - 1) 
1 

Density 
1 
1 
"2 
1 
"2 

~ !IE!. 
8 n 
o 
o 
o 
o 
o 
o 

4 . .5. Case Study: LF Factorisation 

Expected Path Sparsity 

Table 4.1: Average costs of quadtree representation 

of quadtrees may be performed element-wise using an element st/fCior junction, or by recursively 
descending the structure. The time taken to add two quad tree matrices of order .V catamorphically 
may be defined as follows: 

T(N) 
T(l) 

= 4 [T ( ~) 1 + C't 
C2 

where C1 is associated with constructing a 4-element node and C2 is associated with element addition. 
The complexity of the recursive scheme is as follows: 

4[T(~)l+Cl 
4 [4 [T (~)l + cd + C 1 

k 

4kC2+CIL4i 
i=O 

4k C2 + 4k+ 1C 1 - C\ 
C2N2 + 4C1 .V 2 - C't 

O(N2) 

This complexity tends towards O(N) as one or more of the matrices tends towards a diagonal 
matrix with no explicit description of the structure. If the structure is accessed element-wise then 
the complexity is O(N2Ig N) since the cost of element access is O(lg .\'). 

4.5.2.7 Quadtree SOR 

This access-cost was largely ignored by Wainwright and Sexton in their study of sparse matrix 
representations for the solving of linear systems in functional languages [100]. In their study they 
conclude (as expected) that a quadtree representation is more suited to techniques such as the 
conjugate gradient method and less suited to methods such as SOR. We agree with these findings 
only to a certain extent as Wainwright and Sexton's formulations of each of these methods are very 
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different. Their conjugate gradient method concentrates on level-2 BLAS (\Iatrix-vector) operations 
and hence suits the quadtree representation. However, their SOR formulation concentrates on lewl-
1 BLAS operations, updates and accesses, stamping a row-wise formulation on the quadtree. It is. 
however, straightforward to create a version ofSOR suitable to quadtrees starting with the definition 
in [101] (p. 60): 

(w- 1 D + L) -1 [b - Ux(k) _ (1 _ ...,.-1) Dx(k)] 

[I - (w- 1D + L)-I A\X(k) + (...,.-ID + L)-l b 

x(k) + (w- 1D + L)-l b _ Ax(k)] 

Although both methods are 0(N2) (full matrix), imposition of a row-wise decomposition caus"" 
the row-oriented version to be very expensive, suggesting that it is the lack of regard for the data 
structure, rather than the inherent unsuitability of the quadtree to SOR. For a tight ly-banded 
matrix, such as tridiagonal, this mining of rows and O(lg N) element access/replacement causes the 
row-wise algorithm to exhibit O(NlgN) behaviour rather than 0(.\'). 

A quad tree version of SOR whose behaviour tends towards 0(.\') as the bandwidth of A tends 
towards zero is given belowll : 

quadStep 

where SORSolve is defined as 

SORsolve 

SORsolve 

w 

w 

A x 

a 

b = x+( 
where ( SORsoire 

] [:~] 
b 

r b - Ax 
w 1.66 

[ 
SORsolve 

- SORsolve 

= wb/a 

,..; A r 

This algorithm was tested against the row-oriented SOR of Wainwright and Sexton under 
Hugs(reduction+cells used) and GHC (unix time), the results being summarised in Table 4.2. The 
results show that this catamorphic formulation executes at between 25% and :300% faster than that 
of Wainwright and Sexton (a motivating argument for computing along the grain). This signifys the 
importance of respecting the datastructure's underlying representation. 

IJ A value of w = 1.66 is shown although any value in the range [1,2) is permissable. 
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N Matrix Type row-oriented method block method 
512 (HUGS) Full 4,554,169(10,049,620) 3.598 .500( 8 .256.506) 

1024 (HUGS) Full 18,000,057(39,719,793) 14.362 ,276( 32.940.:):31 ) 
512 (HUGS) Tridiagonal 259,485(575,447) 51 ,820( 1:30.030) 

1024 (HUGS) Tridiagonal 573,328( 1,267,839) 104.008(259.996) 
2048 (HUGS) Tridiagonal 1,255,301(2.769,508) 208..128(520.010) 
4096 (HUGS) Tridiagonal (heap exhausted) 417,280( 1.040.120) 
8192 (HUGS) Tridiagonal (heap exhausted) 835,044(2.080.422) 

8192 (GHC -0) Tridiagonal 7.3 l.~ 

Table 4.2: Rowand block oriented SOR results 

4.5.2.8 Sparse Strassen Multiplication 

By using a quad tree it is trivial to implement a version of Strassen's algorithm [89J for matrix 
multiplication which automatically respects the sparseness of the matrices. 

0 B 0 

A 0 0 

[ All A12 ] [ Bll B12 ] [ Cll C]2 ] A21 A22 B21 B22 C2l Cn 
where 
ell PI + P4 - Ps + P7 
C12 P3 + P, 
C21 P2 + P4 

Cn PI + P3 - P2 + P6 

PI (All + ,-b)(Bll + B22 ) 

P2 (A2J + ...1.22 )Bll 
P3 = All(Bl2 - Bn) 
P4 A22(B21 - B ll ) 
Ps = (All + Al2)Bn 
P6 (A21 - All)(Bll + B l2 ) 
P7 (.412 - .·\22)(B21 + Bn) 

[ Bll BI2 ] [ aBll aBl2 ] a 
B21 B22 aB2l aBn 

[ All Al2 ] b [ Allb A 12 b ] 
A21 A22 A2l b A 22 b 

a b ab 

4.5.2.9 Pivoting 

As with nearly all quad tree algorithms, the formulations ahove automatically take advant~ge of 
sparsity, decompose naturally into a few subproblems, highlight implicit parallelism inherent III the 
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method12 , and make reasoning and proving programs correct much easier. However, since the\' 
do not decompose naturally (or efficiently) into rows or columns, additions to algorithms such ~ 
pivoting are hard (if not impossible) to implement efficiently13. 

4.5.2.10 Summary 

It can be seen from the algorithms above that quadtrees have many useful applications. such as 
sparse matrix representations and tools for divide and conquer algorithms. In writing quadtree 
methods it is clear that very similar subfunctions regularly occur. These functions are variations 
on the BLAS and therefore producing a library of quad tree BLAS would be \'er)' beneficial to this 
area. Unfortunately, many non-block algorithms do not admit an elegant (or efficient) quadtree 
formulation and so arrays are still very desirable. 

4.5.3 Alternatives to Pivoting 

As mentioned earlier, the big disadvantage of using a quadtree L U factorisation scheme, or a compact 
scheme, is that it cannot deal with the need for pivoting, i.e. it breaks down on problems such as 

[ ~ OIl lOx = b 
o 0 

In this section we examine what occurs during pivoting and attempt to create an alternative fac­
torisation algorithm which eschews pivoting and which will not break down on problems sllch as the 
above. For the compact scheme 

(i > j) 

(i~j) 

method breakdown is avoided if each leading submatrix of.-l is nonsingular. If a factorisation involves 
pivoting we do not factor A into LV but instead factor PAQ into LV such that 

PAQ(QT x) = Pb 

where P and Q are permutation matrices generated and implicitly applied during the method ex­
ecution using intermediate values. One possibility would be to permute the matrix A in advance 
but this would involve as much computation as pivoting and so we reject this. Another possibil­
ity is artificially to impose non-singularity on each leading sub-matrix and deal with the resulting 
consequences later. In both the compact and Fadeev (quadtree) methods a singularity in the ith 

12ln our quadtree LV decomposition the North-East and South-West quadrants of the matrix may be built in 
parallel and many of the linear algebra building blocks are implicitly parallel. 

13 An LV-style factorisation over quadtrees has been developed by D.S. Wise based on undulant block pi!'oting [106]. 
although this formulation is very involved and not easily reasoned about. 
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leading submatrix is discovered at the point where the element Ujj is determined. If the value of Uii 

is zero then the ith leading submatrix is singular, otherwise the leading submatrix is nOllsingular. 
The method we suggest is that on discovering a singularity at the ilh stage we take the value of Uji 

as one, rather than zero, and continue. This ensures each leading submatrix is nonsingular. 

4.5.3.1 Proof 

• For the case n = 1 any nonzero constant is a nonsingular 1 x 1 matrix. 

• For the inductive case (assume true for n-l): The first n -1 rows of Un are linearly independent 
(from hypothesis) and so the first n-l columns may be triangularised via Gaussian elimination. 
If Un is nonsingular we are done, otherwise we add the vector [0,0, ... ,0, IV to the final column 
of Un. As this forms a triangular matrix with non-zero diagonal elements it is necessarily 
nonsingular. 

Here Ui refers to the ilh leading submatrix. We thus have the factorisation 

LU=A+D 

where D is a diagonal matrix of ones and zeros. To obtain the solution to Ax = b we need a method 
of solving (LV - D)x = b. A corollary of the above proof is that if A is nonsingular then so is 
A+D. 

4.5.3.2 Rank Annihilation 

We present a method of solving Ax = b based around Rank Annihilation [102, 103). From the 
Sherman-Morrison formula [79) (p. 77) which gives the inverse of A + u ® v for arbitrary wctors 
u,v: 

(A -I ) 0 ( T A -I) 
(A + u 12> v)-I = A-I _ U v 

l+vTA-I u 

we may derive the solution of 
(A +u0v)x = b 

as 

where 
Ay=b Az =u 

and from this derive a formulation of LU factorisation. 
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4.5.3.3 Rank annihilating LV factorisation 

Consider the linear system 
Ax=b 

This may be rewritten as 
((A +u®v) -u® v)x = b 

and may be solved via 

where 
(A+ u®v)y = b (A+u®v)z=u 

More interestingly, if we write Ax = b as 

we may solve Ax = b via 
x = y+Zw 

where 
w H-Iv 

v VTy 

H [I - UTZl 

(P )-' y A+ f;u k ®Uk b 

Zi 
(P )-' A + f; Uk ® Uk Uj 

Z - [ZI,Z2,""ZP] 

u - [UI, U2, .. " up] 

Z and U being matrices with columns Zl, Z2, ... , Zp and Ul, U2, ... , up. Therefore we may avoid 
method breakdown in LU factorisation without pivoting by slightly altering our normal Doolill" 

(Black) formulation 

(i > j) 

(i ~ j) 
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To encompass this change we have 

which defines 
(L-I)+(U-D) 

where 
LU=A+D 

and D is a diagonal matrix with dii being either 1 or 0: 

if U;; = 0 
otherwise 

4 . .5. Case Study: Ie Factorisation 

(i > j) 

From this we may easily solve Ax = (LV - D)x = b via application of the Sherman-.\/orrison­
Woodbury method. 

4.5.3.4 Convergence 

As it stands this method may not converge as there is no guarantee that the set of vectors {u;} that 
the (N x N) matrix A produces will have cardinality < lV, although this will be extremely rare. :\ 
solution to this problem would be initially to find a row with a non-zero first element and consider 
this as the first row in the matrix performing the decomposition under a row-wise permutation of 
which we have a-priori knowledge. 

( 

j-l ) / 
lij = ap(i)j - L likUkj (if Ujj = 0 then 1 else Ujj) 

k=1 
i-I 

Uij = ap(i)j - L likUkj 

k=1 

p( i) = i 
p(i) = 1 
p(i)=piv 
p( i) = i 
piv = head[jlajl :/; 0] 
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* * * 

* * * 

* * * 

Figure 4.12: Patterning of matrix H under quadtree-Sherman-:\[orrison-Woodbury nwthod 

4.5.4 Combination Approaches 

This method of rank annihilation may also be used with quadtrees where suitable changes are made 
to bkSubst, i.e. a division by zero implies division hy 1. 

blockLU [ :1~~ 

where LUll = blockLU All 
U12 = fwdSubst LU11 A I2 

L21 = bkSubst LU11 .4 21 
LUn = blockLU (.-122 - L21 Ud 

blockLU a = a 

However, since the previous formulation (Section 4 .. 5.3.) constructed matrices in a row-wise manner, 
it does not suit the quad tree representation part icularly well. If quad trees are to be used with this 
method, it is suggested that square matrices are used, relying on t he performance of the quadtree 
as a sparse matrix data structure. That is, the diagonal matrix D is explicit Iy formed as a spars/' 
matrix and block methods are used in the Sherman-Morrison- Woodbury method. :\ consequence of 
this is that we solve an N x N linear system at each stage, although the patterning of the matrices 
(Fig. 4.12) is such that no fill-in occurs under LU-factorisation and therefore, due to the advantage 
quadtrees take of sparsity, the amount of extra work which needs to be performed is low. To gain the 
full benefit from the quadtree representation it is advisable to add a specific multiplicative identity 
I to avoid unnecessary multiplications. 

4.6 Summary 

The methods presented above demonstrate that in many cases functional specifications of numerical 
algorithms are very elegant. Unfortunately, it is often the case that the speed of execution of these 
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algorithms is unacceptably slow14
. In array-based algorithms this speed loss can often be attributed 

to the copying of data during updates. To side-step this problem we presented two strategies: 

1. Non-array based methods 

2. Alternative mathematical formulations 

and demonstrated via the SOR method that if non-array-based methods were to be used then they 
should be used cat amorphi cally. In this area it is the quadtree representation for which the most 
elegant, catamorphic algorithms exist. These formulations almost always expose any coar,.;,,-grain 
parallelism and respect sparsity implicitly. However, many common row/column-style algorithms 
are either impossible or too costly in practice to implement in terms of these structures. 

Alternative mathematical formulations were used to attempt to eschew the need for pivoting. 
This produced a method which suits functional languages but which is still inefficient, in terms of 
the amount of necessary work, compared to an imperative pivoting array version. However, this 
process did produce a method which could be used with sparse matrices, does not introduce fill-in, 
and is more parallelisable than pivoting. 

Unfortunately these methods did not produce an efficient, more aesthetically pleasing or more 
easily reasoned about method than the incremental update elimination version, suggesting we turn 
our attention towards exploring what (if anything) may be altered so that such definitions may be 
efficiently executed. 

4.6.1 Array Semantics 

Although we have shown that non-array-based methods are indeed possible, the most natural way 
to express a method, such as a pivoting factorisation, is often by incrementally updating array 
elements, necessitating strict semantics (Section 4.5). Unfortunately, the main advantage of nOIl­
strict semantics is the ability to consume structures before they are complete, and hence define data 
structures in terms of themselves. For example, back substitution can be defined as 

and expressed in Haskell as 

n 

bi - L UijIj 

j=i+1 
Xi = --~--------

Uii 

> back_subst:: Matrix -> Vector -> Vector 
> back_subst u b = x 

i=1,2, ... ,n 

> where x = array bnds [(b!i - f i)/u!(i,i)li<- range bnds] 
> f i = sum[u!(i,j)*x!jlj <- range (i+1,n)] 
> bnds~(1,n) = bounds b 

14 By "unacceptably slow" we mean that it exhibits a worse asymptotic time complexity than its imperative 

counterpart. 
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where the vector x is defined in terms of itself. 
However, we may define back substitution very elegantly using a quadtree approach. i.e. 

bkSub [ U11 

where X2 = bkSub Un b2 

Xl = bkSub U11 (b l - Ul2 .r:d 

bkSub ub = b/u 

which is pictorially expressive, terminates under eager evaluation, and is more efficient. Therefore. 
before decisions on possible language alterations are to be considered the amount to which language 
features are used, and the areas which contribute to efficiency loss, should be examined. and hence 
it is these areas which are the subject of the next chapter. 
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Chapter 5 

Efficiency and Empirical Analysis 

In the previous chapter we used Haskell to implement numerical methods and concentrated on the 
relative efficiency and elegance of various techniques and formulations rather than tIl<' absolute 
efficiency of the resulting execut.ables compared with FORTRA:'-.' or C. 

5.1 Chapter Overview 

In this chapt.er we take t.he most efficient methods from Chapter 4 and bf'nchmark I lit's!' again"l 
their i llIperati ve cousi liS. 

5.1.0.1 White Box Analysis 

Chapt.er 4 can be considered as treating Haskell implementations in a b/acJ.:-boI "lyle. at It'lIqJI IlIg to 
gain the best performance with little regard for what was occurring under the hood. To continue tilt' 
use of testing terminology we analyse the implementation in a lL'htie-boI style I() highlight the arl'i\ 
where efficicllcy is lost. 

5.1.0.2 Empirical Analysis 

After highlighting the major areas of efficiency-loss we st udy how t hes!' language featur"s. or idioms, 
are used in practice. This follows the simple idea that lauIIChed the RISe revolution in comput('r 
architecture: to obtain high performance, one must measure the behaviour of "real" prograJlls. and 
make sure t hat the most common operations are performed at blinding speed - even if less common 
operations go a bit slower as a result [77]. This quantitative analysis is very important as a designer's 
"scat. of t.he pants" instinct about. what. counts is often wrong [59]. 

5.1.0.3 Collation of Results 

,\fter empirically studying the extent and manner to which language features are used we collate this 
information to layout a set of requirements that a functional language tailored to scientific comput ill)!, 
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should satisfy, and suggest directions of investigation with the view to improving efficiency. 

5.2 Efficiency Issues 

Lazy evaluation in languages such as Haskell has advantages in areas such as heuristic searching, 
allowing elegant, recursive specifications, and ,a-reduction is always valid. U nfortunatelv lazy lan­
guages also have the property of slowing down the execution of work which is necessary by deiaying 
it if the compiler fails to determine that the work is necessary. This has a side-effect of creating a 
situation where the order of evaluation has little to do with the loop-like higher order functions. and 
closures persist longer than necessary. 

5.2.0.4 Benchmarks 

As a simple benchmark of raw power we use the following arbitrary computation 

which we express in HaskellCi ) as 

> value :: Double 

10,000 (10,000 ) 

value= L L ij 
;=1 j=l 

> value = sum[sum[fromlnt i * fromlnt jlj <-[1 .. 10000]] li<- [1 .. 10000]] 

We convert from integers since this more closely models common numerical computations and avoids 
overflow; in all versions we perform similar castings. We express this in C as 

register int i,j; 
register double value=O.O; 
for (i=1;i<=10000;i++) 

{ 

for (j=1;j<=10000;j++) 
{ 

value += (double) i * (double) j; 
} 

1* end of for loop index = j *1 
} 

1* end of for loop index = i *1 

and denote this as RC (readable C). We also optimise this and denote this as OC (obfuscated C) 
leaving it up to the compiler (gcc -04) to perform more obvious optimisations such as loop unrolling 
and invariant removal1. In OC we "hack" the RC to remove relational operators and rely on the 
fact that a pre decrement is generally faster than post decrement ([13] p.154). 

1 Unrolling and restructuring RC did not improve the performance of the compiler-optimised code. 
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for (i=10001;--i;) 
{ 

for (j=10001;--j;) 
{ 

value += (double) i * (double) j; 
} 

/* end of for loop index = j */ 
} 

/* end of for loop index = i */ 

5.2.0.5 Timings 

.5.2. Efficiency Issues 

To print value the times were as shown in Table 5.1. From these timings we see that the Haskell 

Code RC(in code timing) OC(in code timing) Haskell(unix tillw) 
Time (Seconds) 8.32 7.55 71.43 

Table 5.1: Benchmark timing8 for cbmputation 

version executes 9.46 times slower than OC and 8.59 times slower than RCI If functional languages 
are to be used in this area then we must at least produce codes comparable to the efficiency of Re. 
That is, we must increase their efficiency by an order of magnitude. 

5.2.1 Functional Programming and Arithmetic 

When non-strict languages such as Haskell are compiled, the resulting code usually manipulates 
heap-allocated box numbers [78]. Thus, in a naive implementation, numbers are always represented 
as a pointer to a heap-allocated object which may be an unevaluated closure, or a box, containing 
the number's value which has overwritten the closure. Consequently, simple arithmetic operations 
which require a single machine instruction in a strict language require the following steps: 

• fetch operands from their respective boxes 

• perform the operation 

• allocate a new box 

• place the result in the box 

Clearly it is more efficient to work with the bit patterns that reside in the boxes (thf unboxed 
values) than with the boxes and contents (the boxed l'alues). With reference to large-scale sCIentific 
computing, retaining this efficiency is not only desirable but essential. 

Some compilers such as GHC allow the programmer access to these unboxed representations 
but at the expense of losing common higher-order functions and polymorphism! This effect is 
reduced, however, by the use of specialisation pragmas in the code. Other features, such as strictness 
annotations, also exist in functional languages (Haskell 1.3 definition) and, up to a point, these 
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features help to claw back efficiency. For instance, the performance of Levell BLAS operation~ are 
improved eight-fold when written in unboxed core Haskell. 

5.2.1.1 Unboxed Haskell 

In Glasgow Haskell (ghc), unboxed values can be accessed using hash-notation by considering the 
ground types (integers, doubles, floats, etc.) as being algebraic types with unary constructors. 1.1'. 

integers, doubles and floats can be thought of as being defined as 

> data Int = MkInt Int# 
> data Float = MkFloat Float# 
> data Double = MkDouble Double# 

For example Int# represents the unboxed integer (int in C). rnfortunately we cannot easily create 
structures of unboxed values since, when we use them, we lose polymorphism. This means we must 
redefine a monomorphic structure for each ground type. 

5.2.1.2 Example: Boxed and Unboxed Lists 

To find the lengths of a list of boxed integers and a list of boxed reals we could write 

> data List a = Null I Cons a (List a) 

> length :: List a -> Int 
> length Null = 0 
> length (Cons a as) = 1 + length as 

> rlength 
> ilength 

= length rlist 
length ilist 

for suitable lists, ilist and rlist. However, for unboxed lists we would need to write 

> data FloatList = NullF FCons Float# FloatList 
> data IntList NullI ICons Int# IntList 

> intlength IntList -> Int 
> intlength xs = case xs of 
> Null I -> 0 

> ICons x# xs -> 1 + (intlength xs) 

> floatLength :: FloatList -> Int 
> floatlength xs case xs of 
> NullI -> 0 

> ICons x# xs -> 1 + (floatlength xs) 

> ilength intlength iUnboxedList 
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> rlength = floatlength rUnboxedlist 

To really improve performance however, we may split the function into a workt rand uTapper. unbox 
further and use tail recursion. 

> intlength :: IntList -> Int 
> intlength xs = case worker xs 0# of i# -> MkInt i# 
> where worker xs acc# 
> = case xs of 
> NullI -> 0# 
> 
> 

ICons i# rest -> case pluslnt# 1# acc# of 
t# -> worker rest t# 

only re-boxing into a boxed integer at the end of the function. This is the sort of opt imisation that 
strictness analysis should allow. However, optimising code in the above fashion is usually performed 
by hand as automatic optimisation often fails to claw back this lost efficiency. It is felt that this 
form of source code obfuscation is really only acceptable in a library. 

5.2.1.3 Scalar Functions 

For scalar-valued functions the situation is not so bleak since, following [78], Haskell compilers can 
automatically lower the number of closures being built by using unboxed values. Unfortunately the 
case of non-scalar valued functions is not as simple. 

5.2.1.4 Complex Numbers 

Consider the complex numbers: 
Cl (rel, imI) 
C2 (re2,im2) 

Performing the addition Cl + C2 will cause closures to be built which. because of the non-strict 
semantics, will not be resolved until the real and imaginary parts of the tuple are demanded. This 
can be resolved by making the real and imaginary parts of the complex llumber strict so that no 
closures are built inside the tuple. That is, we regard complex numbers as atomic. Unfortunatdy, 
this approach cannot be extended since, if we consider a complex number as a point in the complex 
plane (a two-dimensional space) how should we represent points in three-, four- or n-dimensional 
space? If we take the above approach of strictifying each of the components we are in the position of 
being able to perform arithmetic more efficiently at these points but we lose the ability to consume 
part of the data structure before the complete structure is built and therefore cannot recursively 
define data structures. Later in this chapter we examine existing Haskell code for numerical methods 
to investigate whether this recursive definition is frequently used in practice. 

2This worker/wrapper idiom is common in functional programming. 
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5.2.2 Efficiency Via Unboxing 

To structure the use of unboxing we extend the Haskell 1.2 class hierarchy (Fig. 5.1) to admit a 
lower level. Unfortunately, this hierarchy does not allow efficient oyerloaded methods over structures 

Figure 5.1: Existing Haskell 1.2 class hierarchy 

such as vectors or matrices, and operations such as transposition do not fit into the hierarchy. With 
this in mind we extend the hierarchy to Fig. 5.2, where BLAS operations reside at the intersection 
of the classes whose member operations they depend on. (For instance a dot product would reside 
in Num-Structure as it operates over a structure and relies on the members of the class :\um [+ and 
xl.) The advantage of operating in this manner is that we may provide efficient medium-to-large 
sized BLAS functions which have been internally unboxed with which to build algorithms. The 
Structure class contains methods which operate over structures such as transposition. 

5.2.3 Performance 

In practice this method of unboxing library internals dramatically improves performance. 
To demonstrate this, codes taking a command line argument were written in naive boxed Haskell, 

unboxed Haskell using this class hierarchy, and in readable C (RC). For an argument n, the codes 
output the value of xT x, where x is the vector [1,2, ... , njT of single-precision floating point numbers. 
The results in Fig. 5.3 exhibit approximately an eightfold increase in efficiency over the boxed 
representation although the amount of heap and stack space required for the boxed yersion suggests 
that it suffers from a major space leak as closures accumulate (seen as a departure from linear 
around 60,000). The boxed and unboxed Haskell versions were compared up to vector length 105

. as 
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".:CStruCIU , , , , , , 

Figure 5.2: Extended class hierarchy 

.5.2. Efficiency Issue; 

beyond this point the naive Haskell implementation consumes excessive heap and stack resources. 
(For vectors of length greater than 105 the boxed implementation fails with a lG\lb heap and a 
16Mb stack!) The unboxed version was tested against an RC implementation up to a vector length 
of 106 (Fig 5.4) and ran at 1/4 of the speed of t.he corresponding RC implementation. 

5.2.4 Larger Algorithms 

A question which must be answered at this point is does this method scale up and the bent/it accrue, 
or does the efficiency diminish as the complexity of the algorithm increases? 

To test this, a conjugate gradient solver was constructed, using this extended class hierarchy, 
which solved a tridiagonal linear system arising from a finite difference solution to a one-dimensional 
Poisson equation. The number of unknowns was given as a command line argument and the im­
plementations first constructed then solved the system. Heap profiles were examined to check that 
the solution of the system dominated the computation and that system assembly was insignificant 
compared to this. 

For each Haskell version (Boxed and unboxed) the conjugate gradient method was coded as 

> iterativelySolve :: ([b] -> c) -> (a -> b) -> a -> c 
> iterativelySolve convergenceCondition nextIteration start 
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> = convergenceCondition ( it ar at e next l ter ation start ) 

> conj_grad xO eps a_times b 
> = iterativelySolve cgConverge cglteration (xO,pO,rO) 
> where 
> 
> 

> 
> 
> 
> 
> 
> 
> 

pO 
rO 

b - a time s xO 
pO 

cgl t eration (x,p , r ) = (x ' ,p' ,r ') 
where x ' = x + alpha * p 

p ' r ' + beta * p 
r ' = r - alpha * q 
alpha rr / pq 
beta (alpha * qq)/pq-l 
pq P ' dot' q 
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> 
> 
> 

rr 
qq 
q 

= r 'dot' r 
= q 'dot' q 

a_times p 

> 
> 

cgConverge((x,_,r ): rest )I r 'dot ' r <= eps = x 
I otherwise = cgConverge rest 

with the extended cl ass hi era rchy enab li ng the overl oading and multiplicatio n- . .\o t tha t th is is 
exaclly the code t ha t appeared in both programs and that a ll boxing i ue a r r lega t tI LO insitl 
inst a nce definiti ons. 

5,2.4.1 R esults 

It was found that und er a bin a ry t ree/qu adtree r pr s ntatio n o f vec to r / m a tri c II' could prod ll ce 
no improvem ent from unboxing. T hi s is not sur pri . ing a th un a ry Leaf con l runor a t as a hox. 
For vectors s tored as lis ts and t he t ridiagona l matri c tor d as thr Ii t th r ult - hown in Fi . 
5.5 were ob erved. A s peed up factor o f a round 1.7 due to thi un boxing w ob fI'ed whi h W i\.S 
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Figure 5.5: Times( unix ) for unboxed/box d Haskell a nd R 

di sap po inting in light of the earli er , s im pler, dot product sp dup. 

5.2.4.2 Conclusion 

The use o f unboxing in BLAS ub rou t ine improve the performan c of a lgo rithms. Cnfortun a lely, 
as th com pl xity of t hese a lgo ri t hms in creases , th e overh ead of no n- t ri et em a nti cs cr p in a nd 
th effi ciency is a m o rt ized aga in t this . In view of this fact , and in view of the a mount th a t un box ing 
obfu scates p rev iously elegant Has kell , II' rej ect t hi s met hod as it doe not sati fy o ur goal of elegance 
and o nly pa rti a ll y sat i fi es o ur goal of effi ciency (we a re sti ll nOlrhere nea r the , peed of R ' o r 0 ') . 
T he a pproach we choo e is m o re ho list ic in that we a im to alt er the language 0 t ha t it effi ci IItl y 
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supports programming in the style of Chapter 4. We begin this process by highlighting areas of 
efficiency-loss as prime candidates for alteration. 

5.3 Highlighting Areas of Inefficiency 

Since the greatest proportion of imperative numerical algorithms involve array traversals. and since 
we argued that efficient array manipulation is required in a functional language specialised to nu­
merical methods (Chapter 4), we begin by examining how 0(1) access arrays may be represented in 
functional languages. 

5.3.0.3 Arrays in Functional Languages 

Fig. 5.6 shows different storage schemes implied by different classes of language. These schemes are 

Monomorphic. Suic! Array 

values 

Non-suic! Array 

closures 

Polymorphic. suic! 

! ~ ~ ! 1 ~ i ~ i ~ 

values 

Figure 5.6: Array storage schemes 

as follows (in order of decreasing efficiency): 
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• Monomorphic, strict arrays can be stored as a contiguous block of memory and hence 
map directly to arrays in FORTRAN or C. This is possible as the array is mono~lOrphic and 
hence we have a-priori knowledge of the size of each element. However. since these arrays aT'( 
monomorphic we may not apply useful higher-order polymorphic functions to them. s~ch as 
map or fold, but must specialise these higher-order functions oyer each element type. Also. 
since these arrays are strict we may not define them recursively. 

• Polymorphic, strict arrays require a uniform representation which may be used over all 
types. This implies that they are represented as arrays of pointers to heap-allocated elements. 
This scheme allows us to use higher-order uniformly but still does not allow recursive array 
definition. 

• Polymorphic, non-strict arrays require that an array of closures be stored and. as these 
are represented as pointers to heap-allocated boxes, can be polymorphic at no ext ra cost. 
These arrays may be defined recursively but exhibit the efficiency loss associated with the 
manipulation of closures and boxed data. This is the variety of arry which Haskell supports. 

Of these schemes, it is only monomorphic, strict which stands a chance of approaching the raw speed 
of optimised C or FORTRAN. 

5.3.0.4 Polymorphism 

If functions are polymorphic then they must either have a uniform calling convpntion so t 11t',Y can 
operate parametrically, regardless of type, or be tagged with their type as run-time data. Whil"t 
being a great boon to the programmer, the uniformity exhibited in parametric polymorphi~lIl causes 
inefficiencies as we could generate more efficient code if monomorphic functions were used. The 
major advantage of monomorphic code is that a compiler can produce optimum code using optimum 
representations of data. That is, the code can be tailored to the type of the specialisation. producing 
the required runtime speed and low space overhead. The disadvantage of this technique is that the 
number of monomorphic specialisations can explode exponentially. We aim to investigate whether 
"real programs" in the area of numerical software explode in this manner or whether monomorphic 
specialisation may be vindicated. 

5.3.0.5 Overloading 

The charge of causing exponential code-growth levelled against the specialisation of polymorphism 
is also levelled against ad-hoc polymorphism (overloading) in languages such as Haskell. To avoid 
this exponential growth, Haskell implements instances of its type classes via implicit parameters. 
For instance, if we define addition over pairs of objects element-wise as 

> instance (Num x,Num y) => Num (x,y) where 
> (a,b) + (c,d) = (a+c,b+d) 

then Haskell translates this to 

> addPair:: (x->x->x) -> (y->y->y)->(x,y)->(x,y)->(x,y) 
> addPair plus_x plus_y (a,b) (c,d) = (plus_x a c,plus_y b d) 
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which, because of the cost associated with higher order functions, is much less efficient than if 
a monomorphic specialisation were constructed. Therefore. it would be beneficial to investigate 
whether monomorphic specialisation of overloaded functions would cause (numerical) program size 
to grow intractably. 

5.3.0.6 Non-Strictness 

As mentioned earlier in this chapter, non-strictness has a nontrivial implementation cost associated 
with it and therefore we should also examine the way non-strictness is used in practice. 

5.3.0.7 Expressiveness 

Fig. 5.7 shows the expressiveness, efficiency of evaluation and typing systems. By "more exprt'ssiw­
ness" we mean that the translation of a program which uses non-strictness into a strict equivalent 
may require global re-organisation of the entire program. 

efficiency 

laL] polymorphic 

infinite datatypes 

polymorphic 

higher-order functions 

Type-class overloading 

strict polymorphic 

efficient arrays 
and arithmetic 

recursive arrays 

strict monomorphic 

Figure 5.7: Intersection of desirable features 

84 

expressiveness 



5. Efficiency and Empirical Analysis 5 .. '3. Highlighting Areas of Inefficiency 

5.3.1 Forms of Non-Strictness 

In this section we identify different forms of non-strictness and present examples to illustrate them. 
The forms and examples we use are taken directly from Schauser and Goldstein [85] so that their 
scientific computing results may be included in our results. In their study of non-strictness they 
only consider programs which do not manipulate potentially infinite data. '\'e extend their results 
to cover infinite data also. 

5.3.1.1 Functional Non-Strictness 

Functional non-strictness arises from feedback dependencies from t he result of a function invocation 
to its arguments. To illustrate this form of non-strictness and the need for dynamic scheduling, we 
use the following simple, contrived, example taken from [84]: 

> two .. Int -> Int -> (Int,Int) 
> two x y = (x*x,y+y) 
> g,h .. Int -> Int 
> g z = let (a,b) = two z a in b 
> h z = let (a,b) = two b z in a 

In this example, the function two takes two arguments, :r and y, and returns two results ;r * .r and 
y + y. Inside the function there is no dependence between the multiplication and the addition. 
Thus code to evaluate the two halves of the pair can be put in either order when compiling the 
function under eager evaluation. This is not true under non-strict evaluation. In our example, the 
function two is used in two different contexts which require non-strictness. In the function 9 the 
argument z is given as the first argument to the function lu'o, while the second argument to tu'o 

is taken from its first result. This requires that two first computes: * :. returns the result. and 
then computes (: * z) + (z * z) = 2z2. We see that in this case the multiplication is executed before 
the addition. In the function h the opposite occurs. The second result of the function tu'O is fed 
back as the first argument. Here z + z is computed first and then (= + =) * (: + :) = ~:2. \ow 
the addition is executed before the multiplication. Thus the multiplication and the addition have 
to be scheduled independently. Note that the scheduling is independent of the data values of thp 
arguments; it depends only on the context in which the function is used and how results are fed back 
in as arguments. Larger examples of this form of non-strictness, used for less trivial computations, 
may be found in [9]. 

5.3.1.2 Conditional Non-Strictness 

Non-strictness and the requirement for dynamic scheduling not only occur across function calls. but 
can also appear within conditionals. The following example, taken from [92], illustrates this. 

> kt :: Bool -> Int -> Int 
> kt p z = let (a,b,c) = if P then (y,z,x) else (z,x,y) 
> 
> 
> in c 

x = a+a 
y = b*b 
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> 
> g,h .. Int -> Int 
> g z = kt True z 
> h z = kt False z 

In this example a single conditional steers the evaluation of three variables, a, band c. If the 
predicate is true than b ~ z, Y I-. Z * z and a I-. y, and the result c becomes :; * :; + :; * :;. In 
this case the multiplication is executed before the addition. If the predicate is false. the evaluations 
occur in a different order. First a I-. z then x&b 0-----, (:; + z), and finally y and the result c evaluate 
to (z + z) * (z + z). Now the addition is performed before the multiplication. Again. we see that 
both the addition and the multiplication have to be scheduled dynamically. Although the operations 
appear outside the scope of the conditional, the conditional affects the order in which the values a. b 
and c are available. 

Unlike the previous example, it may seem that the scheduling is at least data-dependent. since' 
it is influenced by the conditional and therefore depends on the value of t he predicate. \\'hile this 
observation is correct, we can obtain precisely the same behaviour without conditionals as is shown 
in the next example. 

> f1 .. a -> b -> C -> (b,c,a) 
> f1 x y z = (y,z,x) 
> f2 .. a -> b -> c -> (c,a,b) 
> f2 x Y z = (z,x,y) 
> kt2 .. (Int -> Int -> Int 
> kt2 func z = let (a,b,c) 

-> (Int,Int,Int)) -> Int -> Int 
func x y z 

> 
> 
> 
> 
> g,h 
> g z 
> h z 

in c 

:: Int -> Int 
kt2 f1 z 

= ht2 f2 z 

x = a + a 

y = b * b 

Here the conditional is replaced with a call to a function taking three arguments and returning three 
results. The argument Junc determines which function is called; it is It in the case of 9 and h ill 
the case of h. The two functions It and h do not perform any computation; they merely shuffle the 
results around and thereby affect the order in which the addition and multiplication in the caller get 
executed. This example shows that in addition to the caller affecting the order in which operations 
get executed in the callee, the callee can also affect the order in the caller. In general, it is the whole 
context, i.e. the whole call tree, in which a function appears which determines the order. 

5.3.1.3 Data Structure Non-Strictness 

In non-strict languages, data structure constructors exhibit the same form of non-strictness as func­
tion calls, i.e. the result may be required before all the elements are defined. This gives the 
programmer the ability to define circular data structures, infinite data structures. or recursively 
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define some of the elements in terms of other elements. For example, the recursive binding a = 1: a 
denotes a simple cyclic list. This power of non-strictness also extends to Jist comprehensions and 
array comprehensions. Schauser and Goldstein [85] define the following hierarchy of non-strictness 
in data structures. 

• Functionally strict: All elements must be evaluated before the data structure is created. 

• Circular: A pointer to a data structure may be stored in one of its elements. 

• Recursive: An element of a data structure may be defined in terms of other elements. For 
this case we can distinguish two sub-cases which describe the schedule used to fill the elements. 

1. Static: A static schedule can be found for the program which fills in the elements in the 
correct order. 

2. Dynamic: A dynamic schedule is required. 

Frequently-cited examples of recursively defined data structures are wavefront [4] and the follow· 
ing function computing the first n Fibonacci numbers. 

> fib_array :: Int -> Array Int Int 
> fib_array n = a where 
> a = array (O,n) ([0 1,1:= 1] 
> ++ [i := a!(i-1) + a!(i-2) Ii <- [2 .. n]]) 

Both examples can be scheduled statically, i.e. a static scheduling of the program can be found which 
obeys the data dependencies among the array elements (left to right in the case of the Fibonacci 
series). With a static schedule it would be possible to implement the arrays as standard arrays in 
imperative languages (modulo polymorphism). However, this may not always be the case. Consider 
the array 

> dyn_array :: Array Int Int -> Int -> Array Int Int 
> dyn_array b n = a where 
> a = array (O,n) [i := if 
> (i -- b!O) 
> then 
> 1 

> else 
> a! (mod (i-1) (n+1» + 1 
> I i <- [0 .. n]] 

The schedule depends on the vector b which may not be available at compile time. 

5.3.1.4 Infinite Iteration Lists 

One function which appears repeatedly in functional scientific programs is the higher order function 

iterate 
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> iterate (a -> a) -> a -> [a] 
> iterate f a = a : iterate f (f a) 

which (lazily) constructs an infinite list of approximations to the value rC(a}. 

[a, f(a). f(f(a}}, ... 

This list is usually truncated and the value prior to truncation used. For example, a square root 
may be written as 

> newton:: Double -> Double -> Double 
> newton a x = (x + a/x) / 2 
> sqrt :: Double -> Double -> Double -> Double 
> sqrt init eps a = within eps (iterate (newton a) init) 

where within looks along the list for a sufficiently accurate approximation to the true solution. 
However, this could be written without laziness as 

> sqrt :: Double -> Double -> Double -> Double 
> sqrt init eps a = iterateWithin eps (newton a) init 

> iterateWithin:: Double -> (Double->Double) -> Double -> Double 
> iterateWithin eps f x I abs(f x - x) < eps = f x 
> I otherwise = iterateWithin eps f (f x) 

or 

> sqrt2:: Double -> Double -> Double -> Double 
> sqrt2 in it eps a = Newtonlteration eps a init 

> newtonlnteration:: Double -> Double -> Double -> Double 
> newtonlteration eps a current 
> I abs(new - current) < eps = new 
> I otherwise = newtonlteration eps a new 
> where new = newton a current 

or by inventing some special syntax 

sqrt( valini" f, a) = (vall val ~ newton(a, vanuntil(ll'al- l'alp,.,·1 < f) I ral = rat.,) 

Because this specific form of non-strictness is used so frequently we denote this as iteratin non­
strictness, since a program which depends on it could be trivially rewritten so that it no longer 
depended on non-strictness. Another reason for encouraging alternative styles of expression is that 
the code produced by the strict version is more efficient that the code produced by the lazy version. 
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II Author code I Author 

1 Kostas Ksickis [61] 
2 Various (results taken from [85]) 
3 Stephen Bevan [8] 
4 Sexton + Wainwright [100] 
5 Chris Angus 

6 Liu, Kelly & Cox [62] 
7 :'liAS benchmark Fourier Transform [43] 

8 John McCrory [65] 

Table 5.2: Authors of functional software 

5.3.2 Experimental Results 

5.3.2.1 Programs 

II 

We use the benchmark programs shown in Tables 5.3+5.4. The programs chosen cover the gamut 
of numerical methods presented in Chapter 3. In this section we assess the degree of non-strictnpss 
required by a large set of functional numerical software (Tables 5.3+5.4), most of which are from 
sources other than the author (Table 5.2). 

5.3.2.2 Categories 

Tables 5.6+5.7 and 5.8+5.9 show the results of analysing the programs as detailed in Table 5.5:
1

. 

The figures presented may be overly pessimistic as they ignore simple in-lining. For example, an 

application of 

> sum xs = foldl (+) 0 

often can, and will, be in-lined, eschewing the need to specialise the function sum. Within the 
specialisation categories of Table 5.5 True relates to the number of truly polymorphic non-function 
objects which are not given a monomorphic type. The other categories refer to t he number of 
extra copies of functions/type definitions which would need to be generated for the code to beconlf' 

completely monomorphic. 

5.3.2.3 Notes 

t (Table 5.6): illustrates that the infinite structure in AnDiff is [1 .. ] used to number variablc-" 
This can be trivially rewritten. FinElem imports AnDiff and so this result is carried ovpr. 
t (Table 5.8): shows an integer specialisation of a list which may be trivially converted to a loop in 

a strict language, i.e. [10 .. hi] or range (lo,hi), etc. 
t (Table 5.8): refers to a specialisation which exists purely through an application of iterate. For 
example, an iterative linear system solver defined using iterate would require a list of vectors. Each 
of the columns denotes the number of extra specialisations which would be needed, rather than thp 

3We do not include I/O functions in the results. 
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II Program Brief Description Author II 
ABA Adams-Bashforth methods for 2M -order differential equations 3 
ADAMS4 Adams 4 th -order predictor-corrector 1 
AnDiff Analytic differentiation .5 
APCA Adams-predictor-corrector methods for solving second-order 

differential equations. 3 
Bisection Bisection method for finding roots of f( r) = 0 3 
CholeskiA Choleski's algorithm for deriving the lower triangular matrix 3 
CholeskiB Choleski factorisation in Miranda 6 
Choleskil Choleski factorisation (Array) .5 
Choleski2 Choleski factorisation (Quad tree) .5 
ConjGradl Conjugate gradient solver I 
ConjGrad2 Conjugate gradient iteration ., 
Crout Crout reduction for tridiagonal linear systems :J 
Cubic Cubic spline interpolants 3 
CYCRl Cyclic-reduction (List) 8 
CYCR2 Cyclic- reduction (Quad trees) .5 
DFP Davidon-Fletcher-Powell (Optimisation) .5 
Eigen3 Eigen problems 2 
EULERl Euler's method I 

EULER2 Modified euler I 

FEHLBERG Runge-K utta-Fehlberg I 

FinElem Simple finite element code for n-dimensional p.d.e. .5 

Fixed Point Fixed-point method for finding roots of f( r) = 0 3 
FDCN Finite difference (Crank-Nicholson) for parabolic p.d.e. ') 

FDE Finite difference (explicit) for parabolic p.d.e. 5 

FFT Fast Fourier transform (N AS) 7 

Gaussl Gaussian elimination (~Iax Row pivot) + back substitution ') 

Gauss2 Gaussian elimination with naive pivoting/back substitution 1 

Gauss3 Gaussian elimination with maxima column 
pivoting/back substitution 1 

GaussSeidell Gauss-Seidel 1 

GaussSeidel2 Perform Gauss-Seidel iteration to solve Ax = b 3 

Golden Golden section 5 

Hermite Calculates the value of the Hermite polynomial 3 

HEUN Heun's method I 

Housholder Eigen-solver 2 

Horner Horner's algorithm for evaluating polynomials P(r),P'(r) .3 

Table 5.3: Table of numerical methods 
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" Program Brief Description -\uthor II 
Jacobi! Jacobi's iterative method 1 
Jacobi2 Perform Jacobi iteration to solve Ax = b 3 
Jacobi3 Jacobi eigen solver 2 
Jacobi4 Jacobi-iteration (Quadtree) .5 
JacohLgroup Jacobi eigen solver (group rotations) 2 
LeastSquares Calculate the gradient and intersection for a least squares :3 
LDL LDLT method in Miranda 6 
LUI LU decomposition (Array) .'i 

LU2 LU decomposition (Quadtree) .'i 
LU3 L U decomposition (Miranda) 6 
Matrixl misc. operations on mat rices 3 
MM Matrix multiply 2 
MMT44 Blocked matrix multiply test 2 
MCNP Monte carlo photon transport 2 
MDQUAD n-dimensional multiple integrals .5 
MPF Multiplier-penalty-function (Optimisation) .'i 

Neville Neville's iterated interpolation algorithm :1 

Newton Newton's method for non-linear equations 1 
NewtonCotes Newton-Cotes formulae for approximating an integral 3 

N ewtonDivided Newton's interpolatory divided-difference formula :l 

N ewtonRaphson Newton-Raphson method for finding roots of f(r) = 0 3 

PCG Preconditioned conjugate gradient method (~Iiranda) 6 

QUAD Numerical quadrature 5 

QTrees Matrix/vector quadtree operations .'i 

RungeKuttal Runge-Kutta 4th order I 

RungeK utta2 Runge-Kutta methods for 2nd-order differential equations. 3 

Secant Secant method of finding roots of f (x) = 0 3 

Simple Hydrodynamics and heat conduction 2 

Simplex Simplex method I 

SORI Perform SOR iteration to solve Ax = b 3 

SOR2 SOR method in Miranda 4 

SOR3 SOR iteration (Quadtree) .'i 

Steffensen Steffensen's method for finding roots of f( r) = 0 3 

Strassen Strassen multiplication 5 

Taylor Taylor methods for solving 2nd _order differential equations .3 

Vector Misc. operations on vectors 3 

Wavefront Simple wavefront SOR 2 

Table 5.4: Table of numerical methods (continued) 
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Category Description \'a1ues 
Func. Does the program require functional non-strictness'? Yes/No 
Condo Does the program require conditional non-strictness'? Yes/\o 
Circ. Does the program require circular non-strictness? Yes/\o 
Iter. Excluding I/0, does the program manipulate potentially 

infinite data, or would only iterative non-strictness suffice? \o/Yes/lter. 
Recu. Does the program exhibit recursive non-strictness? Yes/\o 
Dyn. Does the program exhibit dynamic non-strictness: Yes/\o 
Intrinsic No. of extra specialisations needed for map, filter. fold. append Integer 
Other No. of extra speciaIisations needed for user-defined 

Polymorphic functions Integer 
True No. of true polymorphic objects Integer 
Overload No. of extra specialisations needed for overloaded identifiers Integer 

List/Array No. of extra speciaIisations of lists/arrays Integer 

Other Data No. of extra specialisations of other data types Integer 

Table 5.5: Category descriptions 

number of specialisations per se. Thus the optimal value for each column is zero. Specialisations of 
each function are denoted as x, y, meaning there are :r extra specialisation of one function and y of 

another. 

5.3.3 Discussion of Results 

5.3.3.1 Non-Strictness 

Table 5.6 shows that in the field of numerical methods the greatest use of non-strictness is in the 
recursive definition of arrays using schemes which admit a static schedule, functional, conditional 
and circular varieties being hardly used. The only program using any of these is a cubic splilW 
interpolant generator which uses a technique called circular programming [9] in an attempt to 
increase the efficiency of a smaller, clearer incrementally updating program. Because any efficiency 
gain is amortised against the cost of the system necessary to support the technique (closures), WI' do 
not believe functional non-strictness is necessary to this area. The use of infinite data is restricted 
to iterations with the exception of the list [1 .. ] being used as a numbering mechanism. Since we 
showed earlier that instances of iterate are trivial to replace we conclude that the only nfCtSSary 

incarnation of non-strictness is recursive data-structure non-strictness. 

5.3.3.2 Polymorphism and Overloading 

Table 5.8 shows that the greatest use of polymorphism/overloading is for sequence data structures, 
such as arrays or lists, and even for these there is wry little. All the programs analysed defined 
polymorphic functions for ease of definition and called them under a single context. \Iost surpris­
ingly, the programs analysed did not require any extra specialisation of overloadings. The only area 
where function specialisation is used in more than one context is functions such as map, jiitfr, length, 
concai, etc. i.e. the tiny core of standard functions which make up all functional language preludes. 
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5. Efficiency and Empirical Analysis .5 .• 3. Highlighting Areas of Inefficiency 

II Program Func. Condo eire. Iter. Recu Dvn 

ABA No No ~o Iter ~o \0 
ADAMS4 No No No ~o \0 \0 
AnDiff No No ~o Yest \0 \0 
APCA No No \0 Iter \0 \0 
Bisection No No No No No No 
CholeskiA No No \0 \0 Yes \0 
CholeskiB No No No No Yes No 
Choleskil No No No No Yes \0 
Choleski2 No No No No No i'io 
ConjGradl No No No ~o No :\0 
ConjGrad2 No No No No :\0 :\0 
Crout No No No No Yes \0 
Cubic Yes No No \0 Yes \0 
CYCRl No No No No No \0 

CYCR2 No No No ~o :\0 \0 

DFP No No No No No No 
Eigen3 No No No No No \0 

EULERl No No No No No ~o 

EULER2 No No No No No No 
FEHLBERG No No No No No \0 

FinElem No No No Yest No No 
FixedPoint No No No Iter No \0 

FDCN No No No No Yes No 
FDE No No No No No \0 

FFT No No No No Yes No 
Gaussl No No No No No No 
Gauss2 No No No No Yes No 
Gauss3 No No No No Yes \0 

GaussSeidell No No No No Yes \0 

GaussSeidel2 No No No Iter Yes :\0 

Golden No No No No No :\0 

Hermite No No No No Yes No 
HEUN No No No No \0 \0 

Housholder No No No No No \0 

Horner No No No \0 ~o \0 

Table 5.6: Use of non-strictness in practice 
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/I Program Func. Cond Cire Iter Reeu Ovn /I 
Jacobil No No ~o No \0 \0 
Jacobi2 No 1\"0 No Iter \0 \0 
Jacobi3 No No No \0 \0 \0 
Jacobi4 No No No :-';0 \0 \0 
Jacobi_group No No No \0 ~o \0 
LeastSquares No No \0 1\"0 \0 \0 
LDL No No No l'io Yes ~o 
LUI No No No 1\"0 Yes \0 
LU2 No No No No 1\0 \0 

LU3 No ;.,ro 1\0 No Yes \0 
Matrixl No No No No \0 \0 

MM No No No i\o :'\0 \0 

MMT44 No No No ]';'0 \0 \0 
MCNP No No No \0 \0 \0 

MDQUAD No No No No \0 \0 

MPF No No No No No \0 

Neville No No No \0 Yes \0 

Newton No No No No Yes \0 

NewtonCotes No No No No No \0 

N ewtonDivided No No No \0 Yes i\o 
N ewtonRaphson No No No Iter No \0 

PCG No No No No No \0 

QUAD No No No No i\o i\o 
QTrees No No No No No No 
RungeKuttal No No No No No \0 

RungeKutta2 No No No Iter No \0 

Secant No No No No i\o \0 

Simple No No No No Yes \0 

Simplex No No No No Yes \0 

SORI No No No Iter Yes \0 

SOR2 No No No No No \0 

SOR3 No No No No No \0 

Steffensen No No No Iter :';0 \0 

Strassen No No No No No :';0 

Taylor No No No Iter No \0 

Vector No No No No No No 
Wavefront No No No No Yes \0 

Table 5.7: Use of non-strictness in practice (continued) 

94 



5. Efficiency and Empirical Analysis 5 . .3. Highlighting Areas of Inefficiency 

II Program Intrinsic Other True Overload List/ Arrav Other Data II . 
ABA 0 0 0 0 0 0 
ADAMS4 0 0 0 0 0 0 
AnDiff 0 0 0 0 It 0 
APCA 0 0 0 0 0 0 
Bisection 0 0 0 0 0 0 
CholeskiA 0 0 0 0 It 0 
CholeskiB 0 0 0 0 I,It 0 
Choieskil 0 0 0 0 It 0 
Choleski2 0 0 0 0 0 0 
ConjGradl 0 0 0 0 0 0 
ConjGrad2 0 0 0 0 0 0 
Crout 0 0 0 0 It 0 
Cubic 0 0 0 0 0 0 
CYCRI 0 0 0 0 It 0 
CYCR2 0 0 0 0 0 0 
DFP 0 0 0 0 It 0 
EULERI 0 0 0 0 0 0 
EULER2 0 0 0 0 0 0 
FEHLBERG 0 0 0 0 0 0 

FinElem 1,3 0 0 0 ut 0 
FixedPoint 0 0 0 0 0 0 

FDCN 0 0 0 0 2.1 t 0 

FDE 0 0 0 0 It 0 

Gaussl 0 0 0 0 1 0 

Gauss2 0 0 0 0 It 0 

Gauss3 0 0 0 0 It 0 

GaussSeidell 0 0 0 0 It 0 

GaussSeidel2 0 0 0 0 1 t,It 0 

Golden 0 0 0 0 0 0 

Hermite 1 0 0 0 It 0 

HEUN 0 0 0 0 0 0 

Table 5.8: Use of polymorphism and overloading in practice 
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II Program Intrinsic Other True Overload List/Array Other Data 

Horner 0 0 0 0 0 0 
Jacobil 0 0 0 0 It 0 
Jacobi2 0 0 0 0 IUt 0 
Jacobi4 0 0 0 0 0 0 
LeastSquares 0 0 0 0 It 0 
LDL 0 0 0 0 1,1 t 0 
LUI 0 0 0 0 It 0 
LU2 0 0 0 0 0 0 
LU3 0 0 0 0 1,1 t 0 
Matrixi 0 0 0 0 It 0 
MDQUAD 0 0 0 0 1 0 
MPF 0 0 0 0 It 0 
Neville 0 0 0 0 It 0 
Newton 0 0 0 0 It 0 

NewtonCotes 0 0 0 0 0 0 

NewtonDivided 0 0 0 0 It 0 

N ewtonRaphson 0 0 0 0 0 0 

PCG 0 0 0 0 l,lt 0 

QUAD 0 0 0 0 0 0 

QTrees 0 0 0 0 0 0 

RungeKuttai 0 0 0 0 0 0 

RungeKutta2 0 0 0 0 0 0 

Secant 0 0 0 0 0 0 

Simplex 0 0 0 0 2 0 

SORI 0 0 0 0 It. It 0 

SOR2 0 0 0 0 It 0 

SOR3 0 0 0 0 0 0 

Steffensen 0 0 0 0 0 0 

Strassen 0 0 0 0 0 0 

Taylor 0 0 0 0 0 0 

Vector 0 0 0 0 It 0 

Table 5.9: Use of polymorphism and overloading in practice (continued) 
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5. Efficiency and Empirical Analysis .5.4. Lessons Learned 

We could find no values for which a monomorphic type is not known at runtime. With this in mind 
we conclude that the only support needed in a functional language specialised to this area is an 
efficient sequence data type over all types and efficient support for a few intrinsic functions, all other 
features being specialised out. 

5.4 Lessons Learned 

Since the performance of Haskell is so drastically improved by unboxing it is believed that !"lICcess in 
using functional programming languages for scientific computing relies on the use of st rict languagt'!". 
When we unbox a value we impose a level of strictness. The benefit of carrying out unboxing 
decreases as the complexity of the problem increases, and the act of unboxing a datatype removes 
the ability to use higher-order functions such as map, makes code monomorphic, and obscures 
the algorithm. As mentioned in previous sections, it is possible to simulate the manipulation of 
infinite structures in a strict language and it is also possible to express recursiwly-defined array 
problems in terms of matrix/vector operations. Because of these observations it is proposf'd that a 
strict language with recursive arrays should be used for this type of application, where pit her lazy 
behaviour is explicitly coerced in the style of Section 2.6, or specialised language constructs art' 
used for common patterns of computation. This approach has the benefits of not having to unbox 
arithmetic expressions, an improved execution, and an improved ability to reason about the runtime 
behaviour of programs. 

This view is echoed by experience with the SISAL [19] language, where efficiency comparable 
with hand-written C/FORTRAN for serial and parallel machines (mostly shared memory) has been 
achieved. Although a functional language, SISAL is quite primitive by modern language standards 
and is perhaps more accurately described as a single-assignment language with Pascal-like sYfltax. 
SISAL is monomorphic, explicitly typed but lacks many of the modern features of functioflal lan­
guages. The newer SISAL 90 [31] addresses some of these shortcomings, such as the first order nature 
of SISAL 1.2, but concentrates mainly on improving array operations (a feature which SIS:\ L 1.2 is 
strong in anyway). 

5.4.1 Non-Strict Semantics and Program Manipulation 

We further vindicate our move towards strict semantics by identifying difficulties with proofs under 
non-strict semantics. We desire a language which is easily reasoned about and, because 3-reduction 
is everywhere valid, initially non-strict languages seem the most promising. However non-strictness 
can easily lead to false reasoning. Consider the following axioms concerning the functions 

> (++):: [aJ -> [aJ -> [aJ -- list append ([1J ++ [2J [1, 2J ) 
> elem ::p -> [pJ -> Bool -- element predicate (elem 1 [1,2J = True 
> (I I):: Bool -> Bool -> Bool -- logical OR 

(1) elem e (x ++ y) <=> elem e x I I elem e y 
(2) a II b <=> b II a 

Now consider the expression 
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5. Efficiency and Empirical Analysis 5.5. Chapter Sotes 

elem 1 [1 .. ] 

which evaluates to True under non-strict semantics. If we apply our axioms we may deriw an 
"equivalent" expression. 

elem 1 [1. .] 

= elem 1 ([1] ++ [2 .. ]) 
= elem 1 [1] II elem 1 [2 .. ] (by 1) 
= elem 1 [2 .. ] II elem 1 [1] (by 2) 

elem 1 ([2 .. ] ++ [1]) (by 1) 

which never terminates! The mistake that was made was in the definition of the second axiom. 
It is only valid when both arguments are either 1. or both are =/; 1.. These difficulties are not 
insurmountable but require any reasoning to be carried out in terms of domain theory [88] (see 
Appendix I) rather than set theory. It is the author's opinion that applied mathematicians and 
engineers would much rather reason in terms of sets and induction rather than more abstract models. 

5.4.2 Summary 

With these issues in mind, a functional language, Functional Scientific Computing (FSC). has being 
developed specifically for the purpose of numerical programming in the sty Ie of Haskell. toge! her wi t h 
features found in other functional languages. It is the design, implementation and demonstration of 
this language which is the subject of Part II of this thesis. 

5.5 Chapter Notes 

i (page 74) Earlier we presented benchmarks for the simple Haskell program: 

> value = sum[sum[ fromlnt i * fromlnt jlj<-[l .. 10000]] li<-[1 .. 10000]] 

However, the program which was presented to the Haskell compiler was 

> value 
> value 
> 
> 
> 
> 
> 
> 

:: Double 
= (sum [Double] -> Double) [ 

(sum :: [Double] -> Double) [ 
«*) :: Double -> Double -> Double) 
«fromlnt :: Int -> Double) (i::lnt» 
«fromlnt :: Int -> Double) (j: :Int» 
I j <- [(1: :Int) .. (10000::Int)]] 
I i <- [(1: :Int) .. (10000::Int)]] 

to encourage G He to perform as much optimisation as possible. The program's export list was also 
restricted to main to encourage in-lining. 
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Chapter 6 

Related Work 

6.1 Use of Functional Languages 

In this section we conclude Part I by introducing some of the previous work in this area and relating 
this to the material presented. 

There have been many attempts to apply functional programming to numerical methods owr 
the last few years. 

• D. S. Wise [105, 104, 106] uses quadtrees to define matrix/vector algorithms in a 'divid,· and 
conquer' fashion. The quad tree is used in the same manner as it is in [25]. where it is called a 
hypermatrix. Wise presents algorithms for matrix inversion and the fast Fourier transform in 
the style of [76]. 

• The Quadtree approach is also used in the work of Wainwright &: Sexton [100] where conjugate 
gradient and SOR methods are coded in ~Iiranda for various sparse matrix representations. 
In their report they conclude that the quad tree is mor" suitable for CG-type algorithms than 
SOR, although, as mentioned in Chapter 4, their row-based formulation of SOR rather than 
a block-based formulation, would explain this. 

• Page & Moe [73] define an executable specification of a reservoir model as a \Iiranda program 
embedded in a 200 page ]}TEX document. Although executable, this code is not meant to be 
production quality and was later hand-coded in an imperative language. One of the interesting 
points arising from this study is the fact that, compared with previous software. the amount of 
documentation in the form of commentary approximately doubled, and the number of flagged 
lines of code approximately halved when a literate style of programming was employed. It 
is because of this that one of the areas this thesis later explores is a more literate style of 
programming. 

• As part of the FLARE! [41] project a finite element program simulating fluid dynamics was 
written in Haskell. This concurs with [100] in that quadtree-type data structures were found to 

1 Functional Languages Applied to Real world Exemplars. 
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6. Related Work 6.1. l-se of Functional Languages 

be faster than list based structures for sparse linear system solvers. The stud\' concludes that 
compared to procedural programming, functional programming is more exp;f'$Si\,e and more 
easily maintained, with most errors being detected at the compilation stage. Lazy evaluation 
did not prove advantageous, with evaluation having to be forced for efficiency. 

• O~her very si~p.le FE codes have been written in functional languages such as ~liranda [62] 
(SImple beam JOInt code), and SASL [26] (problem-specific elementary ID PDE code), with 
emphasis mainly on the elegance of the implementation. 

• Boyle, Fitzpatrick, Clint & Harmer [15, 14] use program transformations to tran"late code 
expressed as pure LISP and ~IL to FORTRA\. The approach proposed in this thesi~ dif­
fers from their work in that it aims to bring together many of t he features found in various 
languages to support the construction of large scale numerical software, rather than writing 
transformational compilers for existing languages, although we do build on their work in Part 
II. 

• Diaz & Shenoi [24] use Miranda to investigate decoupling systems of well equations in a Schur 
complement approach to domain decomposition using the number of reductions to measure 
work complexity. In the study they comment that kfunctional syntax allow., d,rect correspon­
dence of functional code with the mathematical equations. u'hich makES the code easy to dudop. 
write, read and modify". 

• Hartel & Vree [44] present a study of the use of arrays in functional languages using the fast 
Fourier transform [22] as a case study. They conclude k ... that algorithms published in the 
literature for imperative languages cannot always be translated dirtctly into a [lazy] functIOnal 
language, because efficiency considerations are of a different nature" and that -... an effiCient 
implementation of arrays contributes significantly to the performance of functIOnal language., 
in some areas. However a clear distinction should be made bettfan array con.,truciion and 
array subscription". For their Fourier transform they could not gain efficiency by using array 
construction, other than for storing precomputed data, like the input. 

• Hammes, Sur & Bohm [43] investigate the effectiveness of Id and Haskell language features 
when writing scientific codes by implementing the ;-.; AS Fourier transform benchmark thrf'e­
dimensional heat equation solver in both languages and comparing their resulting performance 
with a FORTRAN implementation. They conclude that these languages still han> inefficient 
implementations with their largest executable problem (323 ) running at 15 times sIO\\'f'r than 
FORTRAN using 3 times as much space! 

• Sullivan & Zorn [90] compare various languages for suitability for implementing numerical 
methods including SML, C++ and Haskell although they approach the coding of a sparse 
Gaussian elimination benchmark with mutable state clearly in mind. As a result they are not 
able to offer a benchmark for Haskell as it suffers the same space and time efficiency problems 
as the incremental array LU factorisation presented in Chapter 4 (Copying arrays on update). 
They conclude that the features offered by Haskell make the code terse and readable but 
its current implementation causes it to be unusable on any but the smallest problems. "In 
benchmarks ... we found the Haskell implementations to be 50 to 10,000 times slouH than 
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c++ or FORTRAN in array manipulations. Additionally. current Hashll implementatIOn' 
tend to die when handling arrays larger than 20 by 2{T([90] Sote 1 p.292). However this dyll/9 
is more likely to be due to the multiple copying of arrays as in Chapter .1. rather than a bad 
implementation. 

6.2 Summary 

The preceding chapters have all concentrated on the use of the functional language Haskell to 
implement numerical methods and discussed its advantages/failings as a vehicle for the expression 
of these methods. In addition to this we have presented quantitative statistics concerning thp lewl 
to which its specific language features are actually used in practice. This information is USl'd ill 
the following chapters to provide the motivation for the design and implementation details of a 
functional language specialised to this area (Fig. 6.1). 

Identify salient Specialise language 

Implement Numerical points/frequently- around these features 

Methods ~ used features --- to provide effiCIent 
programs 

Figure 6.1: Development plan 

This idea of using quantitative analysis to improve performance is not new, as it was exact Iy this 
thinking which led to the RISC [59] revolution in microprocessors. In our case this analysis leads 
directly to the design and implementation of a purely functional language tentatively named FS(, 
(Functional Scientific Computing). This language is the focus of the second part of this thp~is. 
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Part II 

The FSC Language 
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Chapter 7 

Language Design 

In t his chapter we discuss the principles I\"hich should underpin a functional. numerical programming 
lang;llage. \Ve focus on (implementation independent) drawbacks and advantages of lIaskdl and 
discuss how its weak points mily be circumvented, and its ~t rong points mimicked, in an dtirif'nt 
manner. 

7.1 Introduction 

Before presenting a definition of FSC. we discuss its required features and hOI\' they Illay he implp­
mented efficiently. 

7.1.1 Characteristic Features 

From experiences reported in Chapters 4-6, and from exposure to the other fllllCt ional pr<>).!,r:llliming 
languages presented in Chapter 2, we conclude that the feature,; which would prow IIs,>ful in (S(' 
art' as follows: 

• Specialisation Ii fa \" ES L [10] 

• Real arrays II fa SIS:\L with array comprehensions 

• ~I ulti-parameter type classes 

• Recursive array,.; 

• Simple I/O 

• l"scr-dcfined t.ransformations 

• \Iixed-mode arithmetic 

• '\\'here' constructs and), expressions 
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7. Language Design 1.1. Introduction 

• An offside rule and terse syntax a la Haskell 

• Guarded expressions 

• Support for ADTs and pattern matching 

• Parametric polymorphism (textual) 

• Allowing uppercase characters to denote matrix identifiers 

• A literate programming style a la ~Iiranda/Haskell 

• Strict semantics 

• Implicit typing 

• Partial application and sections 

• Iterations a la SISAL 

However, before discussing how these features may be collect ively implemented we explain t lIP 
rationale behind some of them: 

• Specialisation: 

Experience reported in Chapters 4-6 suggests that the flavour of polymorphism support"d 
should be textual and implemented via specialisation in the style of \'ESL [10]. This allows 
optimal code to be written using optimal representation of data. therefore allowing for more 
efficient code. Experiments reported in Chapter ?i show that the fear of an exponential ex­
plosion in code length (the main argument against this technique [97]) is not justifipt\ in our 
problem domain. 

• Real Arrays: 

From the material presented in Chapters 4-6 we conclude that the language should be strict. 
with true arrays being readily available. The language should be based around arrays rath"r 
than lists. As such, array comprehensions should be provided, together with techniqut·s for 
performing pattern matching on arrays, The ability to pattern match over an array, and 
consequently to regard an array as a free algebraic datatype, allows reasoning about arr'ty 
algorithms to be simplified, As such the language need not have built-in support for lists. 

• Multi-Parameter Type Classes: 

Although Haskell's typeclass mechanism is a great improvement over standard Hindley-~lillJ('r 
polymorphism, it is felt that its insistence on type classes being single parameter is a ma­
jor drawback to a scientific programming language as many common overloadings cannot be 
expressed in terms of a single parameterl. \\"e discuss mechanisms for implementing multi­
parameter type classes suited to this area, together with algorithms detailing how these may 
be integrated into the Hindley-Milner type system. 

I Recently members of the Haskell community have also commented on this limitation which originated due to 
difficulties in compiling muli-parameter type classes[Sl]. 
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• Recursive Arrays: 

Chapter 5 showed that recursive arrays are often used in the definition of matrix problem,.;:!. 
We investigate how recursively-defined arrays may be elegantly expressed in a strict language 
and discuss how these recursive arrays may be efficiently implemented eagerly. 

• Simple I/O: 
Although powerful, functional I/O can often be unwieldy. The SISAL language presents a 
very simple, and easy to use, I/O system but. as a result, is constrained to simple batch-style 
programs. Haskell provides a monadic I/O system which allows interactive I/O but has the 
disadvantage that if all that is required is a batch-style operation t hen the program sl ill looks 
unwieldy. We aim to integrate these two models of I/O as batch operation is common in 
numerical programming. 

• Program Transformation: 

Boyle, Harmer, Clint and Fitzpatrick [15. 14] demonstrate the power and usefulness of user­
defined transformations for expressing domain specific knowledge. We investigate how a trans­
formation sub-language may be included in a Haskell-style language and discuss its s.'mantics 
and implementation details. 

Other features which we regard as worthwhile include: 

• The ability to use upper case characters to denote identifiers. 

• Iteration constructs a la SISAL, including fOl' and while constructs, and a method of integral illg 
these constructs with array comprehensions. 

• Many of the features of Haskell including: 

- Partial application/sectioning 

Algebraic types 

Guarded expressions 

,X-expressions 

where constructs 

- Pattern matching 

Implicit polymorphic typing. 

These features are preserved as we wish to retain the essence of Haskell, but improve its 
usefulness and ease of application to the numerical domain. 

7.2 Simple 1/0 
In this section, suitable I/O mechanisms for numerical functional programming are discussed. How­
ever, before discussing these mechanisms we investigate existing methods of I/O, namely those of 

Haskell and SISAL. 
2 Recursive arrays were shown to be one of the few places where non-strictness is actually needed. 
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7.2.1 Haskell I/O 

Over the last few years the model of I/O for Haskell has changed considerably[50]. However. Haskell 
1.3 bases I/O around the notion of a monad [3, 98]. In this system the type of main is constant 
across programs, with 

> main :: 10 () 

denoting that main takes no arguments and returns a value of type IO (). This type n'presents 
a computation which yields the value (). We use the term computatIOn rather than functioll to 
differentiate the fact that a side effect may occur within a computation. However. these side-effecl8 
are rigorously controlled and, by making the datatype 10 abstract. all properties of equational 
reasoning are preserved although restrictions are imposed by the structure of the equations. 

The interface to IO includes a binding function, (»=), whose type is 

> (»=) :: 10 a -> (a -> 10 b) -> 10 b 

and a function return whose type is 

> return :: a -> 10 a 

The purpose of return is to transform a value into the trivial computation yielding that value. 
and the purpose of (»=) is to sequence two existing computations. The reason that equational 
reasoning is valid is that once a value has been raised to the status of computation there is no way of 
returning it to a simple value (because the datatype is abstract), so side-effecting expressions. slIch 

as 

> let 
> x = read1ntFromStdin() + read1ntFromStdin() 

> in 

which would normally cause a common subexpression elimination 

> let 
> z = read1ntFromStd1n() 
> x = z + z 
> in 

to be invalid, cannot occur since a side-effecting function of type 

> read1ntFromStd1n :: () -> 1nt 

can never be constructed. 
Using Monadic I/O, a Haskell program which receives two strings from the user parses them as 

integers using a suitable function read1nt and prints their sum may be written 
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> main :: 10 () 
> main = getLine »= \x -> 
> getLine »= \y -> 
> print (readInt x + readInt y) 

which cannot be invalidated by common subexpression elimination3 . One disadvantage of this 
method is that data must be explicitly described by the user. 

7.2.2 SISAL I/O 

SISAL does not have any I/O system to speak of, other than the fact that its entry point may have 
any type (its arguments being the values supplied by the user and its result being the value printed 
by the program). This simplicity is attractive as it removes the burden of parsing datatypes frolll 
the user, although it is not suitable for programs which require interaction. The previous program 
could be written in SISAL's Pascal-like syntax as 

DEFINE main 

FUNCTION main(x,y:INTEGER RETURNS INTEGER) 
x + y 

END FUNCTION 

whose charm is its simplicity. 

7.2.3 FSC I/0 

FSC combines the Haskell and SISAL I/O models as follows. The main function is of the following 
type: 

main ::TO --+ Tl --+ ... - Tn --+ 10( 01, cP2, ... , <Pm) 

i.e. the type of main has the syntax shown in Fig. 7.1. 

m ~ 0, n ~ 0 

The addition example from Subsection 7.2.1 may be written in FSC either as: 

> main .. INT -> INT -> IO () 

> main x y = print (x + y) 

or as 

> main .. INT -> INT -> IO INT 
> main x y = return ex + y) 

which retains the simplicity of the SISAL version. 

3This program relies on the existence of two further intrinsic functions, getLine: :10 String and print: :S~ov a 
=> a -> 10 () , being in the interface of the abstract datatype. These are computations which return a line of mput 

and display a printable value, respectively. 
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Type-syntax 

Main type <!> 100 
10(,;,) 
T-O 

Return type 

'" T 

T. ';' 

type T All types 

Figure 7.1: Formal type-syntax of FSC entry-points 

7.2.4 Combining I/O Actions 

To combine I/O actions we borrow the do syntax of GoFER to sugar monad operations. In GoFER 
syntax our original Haskell example is written 

> main = do 
> 
> 
> 

x <- getLine 
y <- getLine 
print (readInt x + readInt y) 

which is a simple sugaring and translates directly into the original Haskell example. 

7.2.5 Translation 

These examples may be translated into the simpler language SISAL by regarding 10 to be a function 
which takes an integer and returns a pair which includes an integer: 

> datatype 10 a = INT -> (INT,a) 

This being the case, return can be considered as an arity-2 function and (»=) as an arity-;~ function 
with the following, continuation-passing style, SISAL translations: 

(»=) m k io = LET 
new_io,result = m(io) 

IN 
k(result,new_io) 

END LET 

return a io = io,a 

Hence the FSC function 

> 
> 
> 

println :: String -> 10 () 
println s = 

do ID 
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> 
> 

print s 
putchar '\n' 

may be translated to the intermediate code 

println :: String -> liT -> (IIT,(» 
println s init 

1.:1. Array sugaring 

> 
> 
> = (»=) (\io -> print s io) (\res io -> putchar '\n' io) in it 

and then to a SISAL equivalent 

FUNCTION PRINTLN(STR:ARRAY[CHARACTER]; IO_IIIT:INTEGER 
RETURNS IO(VOID» 

LET 

IN 
PUTCHAR('\n',IO_l); 

END LET 
END FUNCTION 

We may generate interactive SISAL code by making use of SISAL's foreign language interface to (' in 
a style analogous to GHC's implementation of I/O, although t.hese details are inside the PRIIT and 
PUTCHAR functions provided in a standard prelude. The use of the IO keyword is tells the compiler 
it is dealing with the IO-monad, thus simpilifying compilation and error reporting. 

7.3 Array sugaring 

Pattern matching is very useful for writing compact and readable programs. l'nfortunately knowl­
edge of the concrete representation of an object is necessary before pattern matching can be invoked. 

To apply pattern matching to arrays we initially regard an array as an abstract data type with 
the operations shown in Table 7.14 . 

And then sugar these operations as follows 

> (i <: x) = setliml i x 

> (i :> x) setlimh i x 

> (a <+ A) = appendLoil A a 

> (A +> a) = appendHigh A a 

These four operators can be hard-coded into the language and pattern matching should be allowed 
over them. 

4The names of these functions have been chosen to be familiar to Haskell and SISAL programmers. 
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Prototype Description 

liml::Arraya->IHT liml A returns the lower limit of A. 

limh::Arraya->IHT limh A returns the upper limit of A. 
setliml::IHT >Array a >Array a setliml n A sets the lower limit of A to n. 

setlimh::INT->Array a->Array a setlimh n A sets the upper limit of A to n. 

empty::Arraya->BOOL The empty A predicate is True if A has no 
elements. 

appendLov::Array a->a->Array a appendLov A a extends the array A by 
element a at its lower bound. 

appendHigh::Arraya->a >Arraya appendHigh A a extends the array A by 
element a at its upper bound. 

init::Array a->Array a init A removes the upper-most element 
from A. 

tail::Array a->Array a tail A removes the lower-most element 
from A. 

[J::Arraya->INT->a A[i] selects the element associated with 
subscript I. 

[]::Arraya [] is the array with no element~. 

Table 7.1: Operations over arrays 

7.3.1 Comment 
Pattern matching is important as it allows us to provide elegant specifications of highly-efficient 
built-in functions such as map. Pattern matching also allows us to define specifications which may 
be refined if necessary and simplifies inductive proofs, as an inductive prooF is simply a statement 
that a fact is valid over all the constructors of its datatype. 

7.4 Recursively Defined Arrays 

As mentioned in Chapters 4-6, functional languages such as Haskell allow I lit' definition of non­
strict monolithic arrays using so-called "array comprehensions", although the fact that ttw",' are 
bolted on top of list comprehension syntax makes them slightly inelegant. Son-strict arrays may 
contain undefined (i.e. ..l) elements and still be well-defined overall; Ihis is in contrast to strict 
arrays which are completely undefined if anyone element is undefined. :"on-strict arrays are more 
in the spirit of lazy, or call-by-need, evaluation, whereas strict arrays capture the essence of call-by­
value computation [2]. Functional arrays can be categorised further depending on their method of 

definition: 

• In monolithic arrays, elements are defined when the array is created . 

• In incremental arrays, elements are defined incrementally. 

°In a strict language. 
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Although both types of array are functional, monolithic arrays are more in the spirit of functional 
programming and incremental arrays resemble the imperative array model. 

7.4.1 Strict Versus Non-Strict Arrays 

We begin by defining the difference between non-strict and strict arrays. 

Definition: Let A[i] be the value at subscript i of array ..1. An array is 
strict if for any i within the bounds of A. A[i] = 1. implies that ..1 = 1.[2]. 

From this it is easy to show that if a strict array is recursively defined the entire array must evaluate 
to 1.. However, in the field of scientific computing, recurrence relations are frequently us,>d and hence 
we prefer a non-strict array constructor for this expressiveness. tT nfortunately. in general. nOIl·st rict 
arrays must represent the delayed computation of array elements a'> closures (thunks) which incur 
prohibitive runtime costs. 

7.4.2 Strict Contexts 

In most scientific programs the programmer knows that an array is used in a context that involws 
all of its elements. Hence we may be able to treat a recursively defined array like a strict array. To 
do this, we need to know: 

• that the non-strict array is used in a strict context, and 

• a safe (partial) order of evaluation of the elements such that no element is evaluated until after 
every element on which it depends. 

Since FSC is a strict language we choose to take the approach that all recursive arrays are used in 
strict contexts, together with the ability to offer a (partial) ordering and an array which should be 
overwritten by the new array during the computation. This is in direct agreement with the [weds 
that were identified in Chapter 5. 

7.4.3 Wavefronts 

Consider the wavefront example 

{

I 

ai,j = 1 
ai-l,j + ai-l,j-l + ai.j-l 

if i = 1, 
if j = 1, 
2 ~ i ~ n. 

l~j~n 

2 ~ i ~ n 
2~j~n 

which would fill in a two-dimensional array in a south-easterly direction. In a lazy language such as 
Haskell this could be written as: 

> a :: Array (lnt,lnt) lnt 
> a = array «1,1),(n,n)) ( [(1,j) 1 I j <- [1. .n] ] ++ 
> [(i,1) := 1 I i <- [2 .. n] ] ++ 
> [(i,j) := a!(i-1,j) 
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> 
> 
> 
> 

+ a! (i-l,j-l) 
+ a!( i ,j-l) 

However, the style of notation we suggest for FSC is: 

> A:: [[INT]] 
> array A[(l,l) . . (N,N)] ~here 
> A[l,j] = 1 
> A[i,l] = 1 

I i <- [2 .. n] , 
j <- [2 .. n] ] 

> A[i,j] = A[i-l,j] + A[i-l,j-l] + A[i,j-l] 

i.e. a pattern matching function defines the array. At this point no ordering is assumed and 
dynamic code can be generated which, at runtime, ensures that the data-dependancies are respected 
(see later). However, efficiency may be improved by specifying an ordering on the data in the stylf' 
of[37,38]: 

> A:: [[INT]] 
> array A[(l,l) . . (N,N)] 
> ordered 
> [( i, 1) I i in [1.. N]] and [( 1, j) I j in [2 .. 5]] 

> then by k in [4 . . 2*N] 
> [(i,j) when (i+j==k) Ii in [2 .. N];j in [2 .. N]] 

where 
A[l,j] = 1 
A [i, 1] = 1 

> 
> 
> 
> A[i,j] = A[i-l,j] + A[i-l,j-l] + A[i,j-l] 

Efficiency may also be regained by overwriting the original array. so that in the example of SOR 
iteration 

> U:: [[DOUBLE]] 
> array U[(l,l) . . (N,N)] ~here 
> U[i,j] I (i,j) is on_boundary = A[i,j] 

> I otherwise 
= U[i,j-l] > 

> + U[i-l,j] + A[i+l,j] 
> + A[i,j+l] 

> on_boundary (i,j) = i==l I I i==N I I j==l I I j==N 

We could also specify (dangerously) that an attempt be made to overwrite A with the values of U 
if we knew this could not affect the semantics of the expression as is the case in this example. Also. 
if this was not the last use of A it would not be overwritten. However we may be able to coerce this 
into being the last use of A since FSC semantics are strict. 
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> U :: [[DOUBLE]] 
> array U[(l,l) .. (I,I)] overwrites A where 
> U[i,j] I (i,j) is on_boundary = A[i,j] 
> I otherwise 

= U[i,j-1] > 
> + U[i-1,j] + A[i+1,j] 
> + A[i,j+1] 

7.4. Recursi~'ely Defined .-\rrays 

> on_boundary (i,j) = i==l I I i==1 I I j==l I I j==1 

7.4.4 Implementation 

In this SOR example each element is defined via a star which accesses its neighbours, as in Fig. 7.'2. 
The dependencies which must be respected by the compiler can be seen in Fig. 7.3, where a dotted 
arrow represents a basic dependence and a continuous arrow a reCUrsil'f dependence. With the basic 
dependencies we are free simply to return the values, but with the recursive dependencies WI' must 
evaluate the elements in order. This order is maintained by generating tag arrays for representing 
recursive arrays, that is an array of the same size which holds tags regarding the evaluation I'xtent 
of each element in the array. 

7.4.4.1 Example 

Consider the 4 x 4 array shown in Fig. 7.5 At the start of the computation all of these tags are set to 
undefined and the elements of the data array are undefined (Fig. 7.4). (If we are overwriting A then 
this data array would be A itself.) We then pick an arbitrary path through the array from start to 
finish (for the sake of explanation we choose 15 ... 0, as O ... 15 is not very interesting). ~;Iements 

15 to 11 are basic dependencies so they require no more work than writing their values and sel ling 
their tags to defined (Fig. 7.6[A)). It is when element 10 is reached that we come across a recursive 
dependence which is handled by locking the tag and making a recursive call to the function which 
evaluates the array. This call evaluates element 6 (element 10's first recursive dependent). A side 
effect of evaluating U6 is that U1 , U2 , U4 and U5 are also evaluated (Fig. 7.6[8]). Once this is done the 
evaluation of UlO proceeds to its next dependent Ug and evaluates this (a side effect of which i~ that 
Us is evaluated (Fig. 7.6[C])). Once all its recursive dependents have been checked UlO is built and 
its tag set to defined (Fig. 7.6[D]). Us and Ug are skipped since their tags are set and U7 . U3 and Uo 
are defined via basic dependencies. The tag array is of no use now and is discarded, leaving the 
evaluated array. The initial SOR code from Section 7.4.3 would be automatically translated to 

> on_boundary:: Int -> (Int,Int) -> Bool 
> on_boundary N (i,j) = i == 1 I I i == 1 I I j -- 1 I I j -- 1 

> U: : (Int,Int) -> Int -> [[Double]] -> [[TAG]] 
> -> ([[Double]], [[TAG]]) 
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r"\ 1 ~ ,..., 
'-' '-' '-' 

1 1 
w 

I 1 
~ 

I 
I 

I I I 

I I I 
I I 

Figure 7.2: OR tar 

Figure 7.3 : SO R d pendencies 

• Defin ed 

..1 Undefin ed 

v Evaluated Tag 

A Undefin ed Tag 

/ Locked Tag 

Figure 7.4 : Ini t ia l data in recursive SOR impl ementation 
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7..1 . Recu i\'e/y Defined Array, 

0° ..... 0 1 
. . ... . 0 2 ..... 0 3 

, . . , . , . 
: 4 : 5 : 6 : 7 

O · ... .. ...... . ······ 0 
· , . · . · , · . 

: 8 : 9 : 10 . II 
0 ······ : ....... , ······ 0 

: 12 : 13 : 14 . 15 
0 ······0 ··· ·· ·0 ······ 0 

Figure 7..5 : O R grid 

A B 

..1 ..1 ~ • v • v ..1 lX 

..1 • v • v • v ..1 lX 

..1 ..1 [X l lX }- V • v 

• v v • v v • • r-- • • v v v v 

C D 

..1 lX • v • v ..1 X ..1 X • v • v ..1 X 
• v • v • v ..1 X • v • v • v ..1 X 
• v • v ..1 V • v • v • v • v • v 

• v • v • v • v • v • v • v • v 

Figure 7.6: Stages of recursive SOR eva lua tion 
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U (i,j) N u_oo T_OO = 
case(T_OO[i,j]) of 

DEFINED -> (U_OO,T_OO) 
LOCKED -> error "BLACK HOLED \ 

7.1. Recursi\'ely Defined .. \rrays 

> 
> 
> 
> 
> on evaluating recursive array UtI 
> UNDEF -> if 
> on_boundary N (i,j) 
> then 
> (U_OO[(i,j) -> A[i,j], 
> T_OO[(i,j) -> DEFINED]) 
> else 
> let T_01 = tags[(i,j)->LOCKED] 
> U_01 = U_OO 
> (U_02,T_02) 
> = U (i,j-1) N U_01 T_01 
> (U_03,T_03) 
> = U (i-1,j) N U_02 T_02 
> result = U_03[i,(j-1)] 
> + U_03[(i-1),j] 
> + A[i,j+1] 
> + A[i+1,j] 
> in 
> (U_03[(i,j) -> result], 
> T_03[(i,j) -> DEFINED]) 

> U_TRAVERSE :: Int -> [[Double]] -> [[Double]] 
> U_TRAVERSE N A 
> = let 
> 
> 
> 
> 
> 
> 
> 

in 

U_oo = build initial_U N 
T_OO build_initial_T N 

(U_01,T_01) <- U (i,j) N U_01 T_01; 
i in [1.. N]; 
j in [1. .N] 

(U_01,T_01) = (U_OO,T_OO» 

where U is a recursive function which mimics the structure of the array U, the syntax A[i->v] is read 
as replace the ith value of A with v and the function U_TRAVERSE evaluates each of the elements of 
the array U in a single-threaded, arbitrarily ordered, manner before returning the evaluated array. 

7.4.5 Preliminary Results 

Various schemes were tested for the following recursively defined array 
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which was used to compute 

1000000 

0.0 
1.0 

7.4. Recursi,"ely Defined Array" 

aj ai-l + ai-2 + 1.0 

L (if gk = 0.0 then 1.0 else 2.0) 
k=999900 

This example was chosen as the computation is suitably large, involves floating-point arithmetic. 
and a small amount of time is spent on I/O. Comparative results are shown in Table 7.2, while the 

Version In-code Time (Seconds) 
gcc 208.96 

gcc -04 174.66 
Array Scheme 1 ;3.)1 

Array Scheme l(a) 311.17 
Array Scheme l(b) 28-\ 

Ordered Array Scheme 2 192 
Ordered Array Scheme 2(a) 182 

Haskell (Exhausted 32\lb heap) 
Haskell on problem 1/10 of size 1.5 mins (unix time) 

Table 7.2: Recursive arrays versus Haskell and C 

schemes are detailed in Table 7.3. The scheme used in 7.4.4 was Array schelJ1f' I. 

Scheme Explanat.ion 
Array Scheme 1 Simplest scheme using tristatf' tags. 

Array Scheme 1 (a) Scheme using Boolean tags. 
Array Scheme l(b) As 1 (a) except undefined data is not zeroed. 

Array Scheme 2 Order is made explicit. and hence tags are not needed. 
Array Scheme 2(a) As 2 except undefined data is not zeroed. 

Table 7.3: Compilation scheme key 

7.4.6 Initial Conclusions 

The results shown in Table 7.2 are most promising as the essence of Haskell's recursive arrays have 
been captured in an economical manner. The method allows algorithms to be prototyped with no 
ordering and an ordering applied at a later date. The increase in speed over Haskell (> 2.1) is 

117 



7. Language Design 7.5. Support for partial application 

extremely encouraging as the method provides all the power we need to express the computations 
investigated in Chapters 4-6 at a fraction of the cost. In the above example, the worst case where 
no information on ordering is given runs at 50% of the speed of optimised C, but 250% faster than 
Haskell on a problem an order of magnitude smaller6. However the best case benchmarks at 96% of 
optimised C. 

7.4.7 Notes 

Much of the syntax for recursive arrays builds on the work of Gao et at [37. 38] although their work 
does not detail implementation issues. Although the specification of an ordering is left to the user. 
many checks may be made at compile time[37, 38]. As regards efficiency. the previous example 
involved only floating-point addition. As the computation increases the overhead of managing a tag 
array reduces its dominance on the cost of the computation. 

7.5 Support for partial application 

A key area in the design of a numerical functional language is array and function support. In curried 
languages such as Haskell or ML a function can be written 

> f :: Int -> Int -> Int -> Int 
> f x Y z = x + y + z 

This is removed from the idea of functions in languages such as C where a similar funct ion could be 
written as 

int feint x,int y,int z) 
{ 

return (x + y + z); 
} 

The advantage of writing the above function in its curried form is that it can be partially applied 
(e.g. g = f 1 2 is a function which adds 3 to its argument). This syntax is clumsy as it is only the 
last argument which may be applied later. \Vith this in mind. the following syntax is introduced 

> f{x,y,z} = f x Y z 

the advantage being that we may partially apply this function via the use of underscores 

> f{x,_,z} = \y -> f x Y z 

This idea of under-scoring can be carried over to array definitions, where, if we had a two-dimensional 
array A, we can only access one dimension easily. This is resolved similarly. 

A= U 2 
5 
8 

6In the Haskell version, the range of k was (99990,100000) rather than (999900,1000000) as GHC ran out of 

resources at t.he original range. 
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If we consider the above array then 

A[1,1] = 
A[1,2] = 
A[1] 
A[1,_] = 
A[_,1] = 

1 
2 
[1,2,3] 
[1,2,3] 
[1,4,7] 

and we may define matrix multiplication as 

7.5. Support for partial application 

> A * B = C where array C[i,j] = A[i,_] * B[_,j] 

if there exists an appropriate dot product version of *. 
Similarly, matrix-vector multiplication could be written as 

> A * v = b where array b[i] = A[i] * v 

This syntax allows us to slice arrays in a style syntactically similar to that used in functions. The 
above examples exhibit implicit bounds definition, i.e. if an array has not defined its extf'nt explicitly 
then it should be taken to be as large as possible. To declare bounds implicitly then all suhsrripts 
should be simple linear expressions. If no finite bounds can be determined then a compilation error 
should be returned. 

7.5.1 Example 

The following code 

> a:: [DOUBLE] 

> array a[i] = b[C1 * i + C2] 

is translated to 

> 
> 
> 
> 
> 
> 
> 
> 
> 

a [DOUBLE] 

a = let 

in 

(10 <: : > hi) = b 
low = (10 - C2) div C1 
high= (hi - C2+extra C1) div C1 
extra 1 = 0 
extra n = 1 

10w<:[b[C1*i + C2] I i in [low .. high]] 

If more than one array is used then the convention which seems intuitive (and is also used in texts 
such as [36]) is that expressions combined with addition should have their range defined as the union 
of the ranges of the left and right operands and all other combining functions should cause the range 
to be defined as the intersection of the ranges of each argument. Out of range expressions should 
be zero-ed for addition purposes and the union and intersection of array ranges are defined as 

[al .. bl] U[a2 .. b2] = [min(al, a:d .. ma.'{(b l , b2)] 
[al .. bl]n[a2 .. b2] = [max(al,a2) .. min(b l ,b2 )] 
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Note: since this is a syntactic convention it is neither compatible with a-conversion nor i-equality. 
and as such, use of the identifiers {+, - V within an array definition should be considered distinct 
to the use of these identifiers elsewhere. That is, in the following definitions array X may have a 
greater number of elements than Y since + causes the union of ranges and 'plus' the intersection. 

> array XCi] = b[i] + e[i] 
> array Y[i] = b[i] 'plus' e[i] where plus = (+) 

7.6 Example: Cyclic Reduction 

Using ideas from the previous section, the computational section of cyclic reduction [36] for a tridi­

agonal matrix 
bl CI II YI 

a2 b2 

Cn-l 

an bn Xn Yn 

may be expressed as follows: 

> a' ,b' ,e' ,y' alpha,beta .. [DOUBLE] 

> array a' [i] = alpha[i] *a[i -1] 

> array b' [i] b[i] + alpha[i]*e[i-1]+beta[i]*a[i+1] 

> array e' [i] = beta[i] * e [i+1] 

> array y' [i] = y[i] + alpha[i]*y[i-1] + beta[i]*y[i+1] 

> array alpha[i] = -a[i]/b[i-1] 

> array beta[i] = -e[i]/b[i+l] 

which compares favourably with the textbook definition taken from [:36] 

(1) 
a i 
bel) , 

(1) 
Ci 

(1) 
Yi 
°i 

(3i 

bj + QiCi-1 + {3j a i+1 

{3j Ci+1 

Yi + QiYi-1 + {3iYi+1 

-a;jbi - l 

-c;jbi +l 

The only disadvantage is that substantial bounds checking occurs. A solution is to allow extra 

information relating the bounds of the arrays: 

7Minus is included as a - b == a + (-b). 
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1.1. Array Stripping 

> a: :{2 .. N}; 

> b,y: :{l .. N}; 
> c::{l .. N-l}; 

where N is a value already in scope. Like the recursive array examples presented earlier. this is 
another example of a textbook-style definition followed by extra information to increase efficiency. 

7.7 Array Stripping 

Often an expression is more easily understood in terms of an intermediate value using either a let 
expression or a where clause: 

> let 
> temp = f xl '" xn 
> in 
> g y_l '" y_p temp y_q '" y_n 

This use of local values may be easily in-lined via /3-reduction and no allocation is needed for 
a temporary structure. However, if there are multiple instances of the temporary value then J­
reduction may cause extra work to be done: 

> let 
> temp2 = f xl " . xn 
> in 
> g y_l y_p temp2 temp2 y_q ... y_n 

i.e. in-lining will double the number of invocations of the function f. If the local value is not an 
array then checking the number of references to it is sufficient to allow in-lining. However, if the 
structure is an array then the decision whether or not to in line is more complex. \Ve call the process 
of removing intermediate arrays, array stripping. 

7.7.0.1 Example 

The simplest example of an array strip is a simple .3-reduction: 

> A,B :: [INT] 
> array A[i] F xCi] 
> array B[i] = F A[i] 
> 
> {- No further references to A -} 

This expression becomes 

> B :: [INT] 
> array B[i] F (F X [i]) 

121 



7. Language Design 1./ . Array Stripping 

However, other situations exist where there is more than one reference to the array yet array stripping 
would still prove beneficial, such as the following example: 

> A,C,D,E :: [INT] 
> array A[i] B[i] 
> array C[i] = A [2*i] 
> array D[i] = A[2*i+1] 
> array E[i] D[i] + C[i] 

> No further dependency on A, C or D 

Here the references to A are mutually exclusive, i.e. each element of t he array is accessed at most once 
only and hence may be in-lined. From this we conclude that the necessary condition for stripping 
without fear of causing extra computation is that each element of an array is accessed at most OIlCP 

only, with a view to transforming the above example into: 

> E :: [INT] 
> array E[i] = B[2*i+1] + B[2*i] 

However, in the following code, array C should not be stripped as this would increase the number 
of invocations of f 1. 

> let array C [i] f1 A[i+1] 
> array B[i] = f2 C [i] 
> array D[i] f3 C[i+1] 
> in 
> f4 B D; 

The rest of this section discusses tests which facilitate a general strip decision for the abov,' 
examples. The method we suggest for evaluating whether a strip can be performed safely is as 
follows: 

• The iterations containing the accesses are normalised. If this cannot be done then the value 
of any identifiers used in an access is taken to mean all possible integers. 

• An N x N matrix of Booleans B is built. where .V is the number of references to the "t ru('ture 
in question, and bij is True if and only if the ith and ph references to the array in question 

are mutually exclusive. 

• A linear Diophantine8 equation is constructed for each non-diagonal element of the matrix 
which is tested using the greatest common dlrisor (GCD) test (given below). If all tests show 
independence then the array is not built and the accesses are in-lined. 

V 8 A Diophantine equation is a linear algebraic equation of the form L::=l C,.r, == co, where both the r, and the c, 

are integers. 
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7.7.1 The GCD Test 

Testing whether n array accesses are mutually exclusive is exactly the same as testing whether the\' 
are pairwise-parallelisable for all possible pairs. A simple test for parallelisability is the GCD t~t 
[108]. To apply this test, two array accesses are chosen and a Diophantine equation is constructed 
from their index expressions. To construct this equation the index expressions are set equal to each 
other with their variables being kept distinct. 

7.7.1.1 Example 

The accesses 

> 1[2I + 2J] 

> 1[4I - 6J +3] 

would cause the equation 
2Xl + 2X2 = 4Yl - 6Y2 + 3 

to be constructed. Collecting all variables on the left yields 

2Xl + 2X2 - 4Yl + 6Y2 = 3 

which is the Diophantine equation which we wish to examine for solvability. This may done I,y 
finding the greatest common divisor of the coefficients in the Diophantine equation. That is, for a 

Diophantine equation. 
N 

LCiXi = Co 
;=1 

we compute the greatest common divisor of the set {Ci liE {I, 2, .... V}} as follows 

gcd({O,O}) 
gcd( {a, O}) 
gcd({a,b}) 
gcd({}) 
gcd( {aI, a2, ... , aN}) 

1.. 

lal 
gcd( {Ibl. mod( Ial.lbl)}) 
1.. 
gcd( {aI, gcd( {a2,"" as})}) 

and test whether 9 = gcd( {Cl' C2, ... ,CN }) divides co· 
If 9 Aco then no dependence exists between the two array accesses and they are pairwise paral-

lelisable. 
As mentioned earlier, applying this test to all possible pairs yields a test for strippability appli-

cable to our original example. 

7.7.1.2 Comment 

This section is intended to be a discussion of how the GCD test may be used to provide an array­
stripping decision, rather than an introduction to data dependence analysis in super-compilers. The 
interested reader is encouraged to investigate [108] for a more in-depth treatment. 
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7.8 Summary of FSC arrays 

Since arrays form an integral part of FSC we provide examples in this section. 

7.8.1 Array access 

FSC arrays are accessed using [] notation: 

> A[1] 

Arrays of arrays may be accessed similarly: 

> B[i,j] = B[i] [j] = (B[i])[j] 

Array access may be partial using the underbar: 

> C[i,_] = C[i] 
> D[_,j] = \i -> D[i,j] 

Arrays may also be pattern-matched against using the +> and <+ operators: 

> (aHead <+ aTai1) = A 
> (alnit +> aLast) = A 

> reverse (1 <+ m +> r) = r <+ reverse m +> 1 
> reverse other other 

7.8.2 Array Bounds Interrogation 

The bounds of an array may be determined via pattern matching using the : > and <: operators: 

> determineBounds (low <: A :> high) = (low,high) 

7.8.3 Array Modification 

Arrays are modified using the [->] syntax: 

> A = [1,2,3] 
> A' = A[1 -> 0] = [0,2,3] 

7.8.4 Literal Array Definition 

Literal arrays may be defined as follows: 

> emptyArray [] 
> intArray [1,2,3] 
> charArray ['a', 'b', 'c'] = "abc" 
> twoDarray [emptyArray,[4,5,6],intArray] 
> intArrayWithLowerBoundOf2 = 2 <: [1,2,3] 
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7.8.5 Arrays as Strides and Sequences 

An array may be defined as an arithmetic sequence or as a Stride: 

> digits = [0 .. 9] = [0:9] = [0,1,2,3,4,5,6,7,8,9] 
> revdig = [9 .. 0] [9,8,7,6,5,4,3,2,1,0] 
> odddig = [1: 9: 2] = [1,3,5,7,9] 
> revevendig = [8: 0 :-2] = [8,6,4,2,0] 

7.8.6 Simple Array Comprehensions 

Comprehensions similar to Haskell list comprehensions are provided in FSC. A comprehension rna\" 
use the in keyword to define a range: . 

> [ x I x in A] = A 

And filter elements using when and unless 

> 
> 

odds = [ x when x is odd 
evens = [ x unless x is odd 

x in [0 .. 10]] = [1,3,5,7,9] 
x in [0 .. 10]] = [0,2,4,6,8] 

Multiple arrays may be built via the use of commas 

> (odds,evens)= [x when x is odd,x unless x is odd I x in [0 .. 10]] 
> = ([1,3,5,7,9],[0,2,4,6,8]) 

Functions may be included when commas are used via the of keyword: 

> 
> 
> 

sum[x I x in [1. .10]] = [sum of x I x in [1. .10]] 
product[x I x in [1 .. 10]] = [product of xl x in [1 .. 10]] 
[sum of x,product of x I x in [1 .. 10]] = (55,3628800) 

The index of an iteration may be found using at: 

> [y,A[i] I y in A at i) = (A,A) 

Semicolons may be used to create arrays in blocks: 

> [ 10*xjx I x in [1 .. 4]] = [10,1,20,2,30,3,40,4] 

Loop ranges may be combined using dot,cross and j 

55 
3628800 

> [ x + y x in [1 .. 4] dot y in [11 .. 14]] = [1+11,2+12,3+13,4+14] 

> [ x + y x in [1 .. 4] cross y in [11 .. 14]] 
> [[1+11,1+12,1+13,1+14], 
> [2+11,2+12,2+13,2+14], 
> = [3+11,3+12,3+13,3+14], 
> = [4+11,4+12,4+13,4+14]] 
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> [ x + y I x in [1 .. 4] ; Y in [11 .. 14]] 
> = [1+11,1+12,1+13,1+14, 

> 
> 
> 

= 2+11,2+12,2+13,2+14, 
= 3+11,3+12,3+13,3+14, 

4+11,4+12,4+13,4+14] 

7.8.7 Iterative Array comprehensions 

1.8. Summary of FSC arrays 

Array comprehensions may also be defined iteratively from left to right using the vhile/until 
keywords and local bindings: 

> [ count I count <- count+l until count -- 10 count = 0] 

> = [0,1,2,3,4,5,6,7,8,9] 

> [ count I count <- count+l "ilhile count 1- 10 count = 0] 

> = [0,1,2,3,4,5,6,7,8,9] 

> [ count I until count == 10 count <- count+1 count = 0] 

> = [0,1,2,3,4,5,6,7,8,9,10] 

> [ count I while count != 10 count <- count+1 count = 0] 

> = [0,1,2,3,4,5,6,7,8,9,10] 

Multiple updates may be combined using semicolons: 

> [countl,count2 I count1 <- countl+l; 
> count2 <- count2+2 
> until countl == 10 I countl = 0; 
> count2 = 0] 

This is equivalent to: 

> [count1,count2 I (countl,count2) <- (countl+l,count2+1) 
> until countl == 10 I (countl,count2) = (0,0)] 

7.8.8 Array declarations 

Arrays may also be defined using the array keyword as follows: 

> array A[l .. 10] "ilhere A[i] = 10 - i 
> -- A = [9,8,7,6,5,4,3,2,1,0] 
> 
> array B[i] = A[i] 
> -- B = [9,8,7,6,5,4,3,2,1,0] 
> 
> array e[l .. 10] "ilhere 
> e [1] = 10 
> e[i] = e[i-1] - 1 
> e = [10,9,8,7,6,5,4,3,2,1] 
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> array D[1 .. 10] where 
> C[i] 1 i is even = 'e' 
> 1 otherwise = '0' 
> 
> 

-- D = [, 0' , , e' , '0' , 'e J , , 0' , ' e J , , 0' , J e' , ' 0 ' , J e J ,] 

= "oeoeoeoeoe" 

FSC arrays are discussed further in previous sections of this chapter and also in I he next chapter. 

7.9 Parametric Overloading 

Quite apart from the fact that lazy evaluation is too inefficient to be used in practice. one of I he 
major limitations of Haskell for use as a numerical programming language is the fact that the class 
system of Haskell is not powerful enough to express all the operator overloadings which are common 
in this scenario. For example scalar multiplication of matrices or vectors may not be exprt'sst'd undt'r 
the type class mechanism. Also, the method by which Haskell resolves the type of an expression is 
not intuitive. 

Consider the class Num in the Haskell standard prelude. For the instance of Sum over Iype 
0' there exists a method to construct a value of type 0' from an integer and also a multiplication 
method to compute the product of two values of type 0'. If we define a data type VECTOR denoting 
vectors of length 4: 

> data VECTOR = V [Double] 

and make this an instance of class Num: 

> instance Num VECTOR where 
> fromlnt x = [fromlnt x 1_ <- [1 .. 4J] 
> (V x) * (V y) = V (zipWith (*) x y) 

and define the following expression 

> exp = (1 * 2) * v where v = V [1.0,2.0,3.0,4.0] 

then it would be intuitive to imagine that the computation would proceed as 

(1 * 2) * v -> 2 * v 
-> fromlnt 2 * v 
-> V [2.0,4.0,6.0,8.0] 

where actually the computation is 

(1 * 2) * v -> (fromlnt 1 * fromlnt 2) * v 
-> (V [1.0,1.0,1.0,1.0] * V [2.0,2.0,2.0,2.0]) * v 
-> V [1.0 * 2.0,1.0 * 2.0,1.0 * 2.0,1.0 * 2.0J * v 
-> V [2.0,2.0,2.0,2.0] * v 
-> V [2.0,4.0,6.0,8.0] 
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and so eight floating-point multiplications would be carried out instead of four! 

To coerce the desired behaviour we would have to write 

> exp = fromlnt x * v 
> x = 1 * 2 

In the following sections we discuss how type classes may be used and implemented in a more 
intuitive manner which suits numerical applications. We also discuss the problem of overlapping 
instance definitions which occurs when type classes are generalised. 

7.9.1 Multi-Parameter Type Classes 

The version of Haskell type classes proposed are similar to those of wanlL [72] in that multi­
parameter templates are allowed in class definitions. For example, we can define a class Plus (a, b ,c) 
containing the function (+):: a->b->c and, using this, define instances such as (INT, REAL, REAL) 
to allow true, mixed-mode arithmetic. 

7.9.1.1 Efficiency 

We do not wish to lose efficiency via this use of overloading and so the method that has been chosen 
to implement FSC polymorphism is what has been described as tertual polymorphism [70], where a 
function has many types only at the source level. The advantages [70] of this technique are that 

• it can produce optimum code for each application of the polymorphic procedure, 

• it can support non-uniform representations of data, and 

• it can support ad-hoc polymorphism as well as universal polymorphism. 

The disadvantages are that it cannot support true first class polymorphic values since it is a 
monomorphic specialisation, and there is a potential fur an exponential explosion in the number 
of specialised polymorphic forms. In each case we believe these drawbacks will not prove to be 
detrimental due to the type of programs written within our chosen problem domain. This view is 
backed up by results from Chapter 5 and also in [53] where the specialisation of type classes actually 
reduced the final executable's size. 

The remaining sections describe the motivation behind the use of this type system, together with 
the presentation of an algorithm to implement it. 

7.9.2 Use and Motivation 

The simplest usage of multi-parameter overloading is as follows, where we provide overloadings for 
+ so that it may work on both integers and floats : 

> class Plus (a,b,c) where 
> (+) a -> b -) c 
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> instance Plus(INT,INT,INT) where 
> (+) = primintintplus 
> instance Plus(INT,Float,Float) where 
> (+) = primintfloatplus 

here primintfloatplus and primintintplus are primitive monomorphic functions which add a 
float to an int and add an int to an int respectively. In the main 9 expression we could write 

> main = 2 + 3 + 1.5 

and the type of main is [+: INT-> INT->a] [+: a->REAL->b] b. A unique satisfying suhs! it ution exists 
for the above constraints and so the overloading is resolved. This is completely different to Haskell 
where implicit fromlnteger and defaults are used. 

A slightly more complicated example is 

> f x y z = x + y + z 

> main = f 1 2 3 

where the function f exports two constraints and the types of main and fare: 

f [+:a ->b ->c] [+:c ->d ->e] a -> b -> d -> e 
main [+:INT->INT->a] [+:a ->INT ->b] b 

The function f can be seen to form an abstraction requiring five type variables {a,b,c.d,f}. 
The motivation behind the use of this system can be understood by considering t he following 

example. 

7.9.3 Example 

Consider the linear system Ax=b with A symmetric positive definite. It is possible to solve this 
system in various ways, one being the Conjugate Gradient ~Iethod (CG ~I), whose iteration can be 
described in a Haskell-like language as: 

> dot x Y 

> sum [] 
> sum [x] 

= sum (zipWith (*) x y) 

= fromlnteger 0 
= x 

> sum (x:xs) = x + sum x 

> conjugate_gradient_iteration A (x,p,r) = (x',p',r') 
> where x' = x + alpha * p 

gIn this discussion we ignore I/O without loss of generality. 
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> p' = r' + beta * p 
> r' r - alpha * q 
> alpha = rr / pq 
> beta = (alpha * qq) / pq -1 
> pq = P 'dot' q 
> rr = r 'dot' r 
> qq = q 'dot' q 
> q = A * P 

Often we do not wish the matrix A to be formed explicitly as this is sometimes very computationally 
intensive. In such situations the CG~1 iteration above can be thought of as forming an abstraction. 
If we define an overloading of (*) such as function application (*):: (a -> b) -> (a -> b). we 
would not explicitly form the matrix A, although our iteration algorithm would retain its elegance, 
i.e. in the above example the identifier A is just regarded as a data type with the method (*) defined 
on it. If A were a function (*) could represent application such that (A*) transfornlPd wctors in 
the same manner as matrix multiplication by the matrix A. 

7.9.4 Description of the Type Inference Algorithm 

Informally the typechecker runs through a Hindley-Milner inference [20] phase and collects type 
constraints. These constraints are then resolved. The approach taken here is vpry similar to [72], 
the difference being that since we have already made the decision to specialise our polymorphic 
forms and overloaded identifiers (see Chapter .S), we may use a morp liberal resolution algorithm 
than (72). 

7.9.4.1 Example 

As an example, consider: 

> double x = x + x 

> main = double 2 

After type inference double and main are typed as 

> double:: [+: a -> a -> b] a -> b 
> main :: [+:INT -> INT -> a] a. 

an intermediate code is generated resembling an extended second order A-calculus lifted into recursive 
supercombinator definitions i.e. type variables within a definition are tagged onto the end of the 
definition as extra parameters: 

> double ::([+: a -> a -> b] a -> b)[a,b](x:a RETURNS b) 
> = (+)[a,a,b](x,x) 

> main 
> 

: :([+:INT -> INT -> a] a) [a] (RETURNS a) 
= double [INT,a] (2) 
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A unique solution for the constraints attributed to main ([+ : JST - JST - 0]) is then 
searched for. If found, the code is specialised lO . The formal syntax for expressions and types 
is given in Figs. 7.7 and 7.8 with an extension to Robinson's unification algorithm [801 allowing 
contraint gathering summarised in Fig. 7.9, where X is a constructor. t' is a variable. C is a 

Formal Syntax of Expressions 

Identifier x 

Expression e x 
el e2 
Ax.e 
let x = eo in el 
if eo then el else f2 

Figure 7.7: Formal syntax of expressions 

Formal Syntax of Types 

Type Variables Q 

Type Constructors \ 
Type Constraints C {x: T} 

Co UCI 

Types T "- Q .. 
TO - TI 

\(TI, ... , Tn) 

CI ,· . .. en T 

Type Schemes u .. - Vo.u .. 
T 

Figure 7.8: Formal syntax of types 

constraint, and the Sj are arbitrary terms. unifY8C.(X.y) computes the most general unifier of x 
and y under () and C* , together with the set of constraints that must be satisfied for x and y to be 
unified. 

The typechecking rules written in terms of a set of assumptions A. are given in Fig. 7.10, where 
overloaded instances are checked against their templates and all resulting constraints are collected. 

IOProYiding the type of main is now monomorphic. 
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Unification 

unifYec· (C; rl ,C; r2) succeeds if unijyo,(c. UC~uC;)( rIo 7'2) succeeds. 
and fails otherwise 

unifyo,c· (rl' C; r2) succeeds if umjyo,(C" uC~)( 7'1.7'2) succeeds. 

and fails otherwise 

unifye,c· (C; rl, r2) succeeds if unijyo,( C" uc; i( 7'1. T2) succeeds. 

and fails otherwise 

unifYe,c. (VI, V2) succeeds; 
VI and V2 are bound to the same variable in (J 

unifYe,c·(xdsll, ... ,Slm],X2[S21, ... ,S2n]) succeeds if \1 = \2/\ m = n 
/\unif Yo,C. (Sl1 . s21 ) /\ ... /\ unij Yo,C· (31 m. 32"). 

and fails otherwise 

unifye,c· (V,X[SI,'" ,sn]) succeeds binding V to \[SI ..... Sn] in (J 

if V does not occur in S1 ... Sn. 
and fails otherwise 

unifyo,c. (X[SI,.' . ,sn], v) succeeds similarly 

TAUT 

COND 

ABS 

LET 

GEN 

SPEC 

COMB 

Figure 7.9: Extension to Robinson's unification algorithm 

Type rules 

A.x : T f- x : T 

A f- eo : Co bool A f- e1 : C irA f- t2 : c; T 
A f- (if eo then el else e2): (CO uC; UC;)T 

A.x : a f- e : C· r 
A f- (Ax.e) : Ca r 

A f- eo : a .·Lx: a f- q : r 
A f- (let x - eo in el) : r 

Af-e:r 
Af-e:Vo.T 

A f- a: Vo.r 
Af-e:[a/o]r 

A f- eo :Cpa - r A f- e1 :C;a 
A f- (eo el): (CO UC;)r 

(o not free in A) 

Figure 7.10: Type inference and constraint-gathering rules 
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7.9.5 Overloading Resolution 

The overloading resolution phase attempts to find a unique satisfying substitution of type instances 
over the type constraints resulting from type inference. This is described in Fig. 1.11 where I is 

Overloading R .. ~olution 

RESOLVE(1, {CJ, ... ,Cn}) = SEARCH(1, .\f.4TCHES(1, {},Cd, {C2 , ••• ,Cn}) 

MATCHES(1,(J,C) 
= {unijV8,{} (itype,Ctype ) liE I" unijY9,{} (itype,C type ) "# ~ "Cname = i name } 

SEARCH(1,P,C) = { ~UT({DERl\·ATION(p .. I,C)lp, E P}), ~t~e;:~~ 
OUT({x}) = x 
OUT({}) = ~ 
OUT({x}, ... ,xn}) = ~ 

DERIV AT ION(((J, {}), I, {}) = ((J, {}) 
DERIV ATION(((J,{}),I, {C l , ... ,Cn}) 

= SEARCH(1,MATCHES(I,(J,(J(Cd),{C2 , ... ,Cn}) 
DERIV ATION(((J,Cj), I,Ci) = DERIV ATIOiV(((J,{},I,C; u q) 

Figure 7.11: Overloading resolution 

the set of instances, B are substitutions, C are constraints and the P are possible match,'s. In our 
description X' denotes a set of X's. All constraints are taken to be name-type pairs; for example, 
if C = {+ : INT _ INT _ INT} then Cname = + and Ctype = IXI' - 1ST - 1ST. In thf' 
FSC implementation the typechecker is more detailed than suggested hy the above, allowing such 
features as pattern matching and case statements. 

7.10 Overlapping Type Class Instances 

The type resolution algorithm described in the previous section is designed to operate on a set of 
type-class instances which do not overlap as overlapping instances are cannot be dealt wit It trivially. 
Overlapping may be understood by considering the set of types which match a given pattern. If w(' 

denote the patterns of a set of instances by 

and the set of types which matches Pi by Si, 1 ~ i ~ n, then a set of non-overlapping inst ances is 
characterised by the fact that no two patterns match the same type, i.e. 

SinSj=0,I~i,j~Tl. i#j 

The following set of patterns is non-overlapping 

{Real- Real - Real, Int -+ Int - Int} 
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7.10.1 Specialisation 

A pattern Pi is said to be a specialisation of a pattern Pj (or Pi is more specific than p.) if each 
expression which matches Pi also matches Pj but not vice versa; that is. if Sj is a proper Jsubset of 
Sj (Si C Sj). Thus the type Real is a specialisation of the type variable T but the type variable CT 

is not. 
If we partially order our instances according to how specific they are. we may construct guard~ 

against patterns being matched where there exists a more specific pattern. That is. we order the 
patterns under the relation 

Pi ~ Pj == Sj ~ Sj 

Each pattern Pi is now replaced by P;" such that the set of types which match P,· is 

7.10.1.1 Example 

Ifwe consider overlapping multiplications, the class TIMES could have the following instances. where 
[aJ denotes a vector of element-type a: 

> instance TIMES(a,b,c) => Times(a,[bJ ,[cJ) .. . 
> instance TIMES(a,b,c) => Times([aJ,b,[cJ) .. . 
> instance TIMES(a,b,c),PLUS(c,c,c) => Times([aJ,[bJ,c) ... 

representing right and left scalar multiplications and the dot product of two vectors. 
Without paying attention to overlapping instances, typing the expression 

> x * y 
> where 
> x = [1,2,3J 
> Y = [4,5,6J 

would give rise to the constraint {* : [Int] -+ (Int] ~ Q} which matches all of the above instances. 
resulting in ambiguity. The above instances compute xyT, (xyT)T and ,rT y respectiwiy. 

However, if we add constraints to these instances so that they reject types accepted by instan,('s 
more specific or incomparable to themselves, then WI' find that this ambiguity disappears and the only 
instance which matches the expression above is .r:T y. This addition of constraints is the conversioll 
of each Pi to Pt mentioned earlier. 

This makes the above set of instances unambiguous. In general, to ensure that a set of pattern" 
is unambiguous then the set must be (possibly) extended so that its members satisfy the following 
condition: 

Unambiguity: If any two instances overlap and neither is a specialization of the 
other then, for each type T which matches each instance, there must be a third 
pattern which is the specialization of both instances that also matches T. 

In effect the above method is equivalent to creating this third pattern which automatically fails 
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due to an unresolvable sub-constraint. This can also be seen as forming a lattice from the poset of 
matchings by embedding each set of non-comparable instances inside a lattice by adding a least upper 
bound (l.u.b.) drawn from the set of all patterns. T represents the pattern with no matchings. i.e. 
the l.u.b. of the set of all patterns and the class template itself is the greatest lower bound (g.l.b.). 
The set of types accepted by an instance is then restricted to the set of types it accepted originally. 
less the union of the sets of types originally accepted by all its least upper bounds properll. 

7.10.1.2 Example I 

To visualise this procedure, consider the M ULT class with overloadings for integer mUltiplication. dot 
products and scalar multiplication (Fig. 7.12) where a,.3 and ., are implicitly universally qualified. 
The act of adding extra dummy instances so that our unambiguity condition may be satisfied is also 
shown in Fig. 7.12. 

7.10.1.3 Example II 

A larger set of multiplication instances is shown in Fig. 7.13, and its disambiguated version shown 
in Fig. 7.14. Again Ct, f3 and 'Yare implicitly universally qualified. 

7.10.2 Overloading Resolution under Overlapping Instances 

A version of overloading resolution is given in Fig. 7.1.5, where I is the set of instances, 0 ar,· 
substitutions, C are constraints and the P are possible matches, X' denotes a ~d of X·s. All 
constraints are taken to be name, type and side-condition triples; for example, if C = {. : fI - J -
'Y : a # Int} then Cname = *, Ctype = a -+ f3 - 'Y and Csc = Ha, In/)}. 

7.11 Summary 

In this chapter we discussed the rationale behind the features which appear in FSC. our prototyp" 
language. We are now in a position to present a definition of the FS(' language proper. This is 
the subject of the following chapter. Note: FSC' contains a transformational meta-language which 
allows program transformation. Discussion of this meta-language is left to Chapter 9 as it is built 
strictly above the core language. 

1! We define upper bound proper (u.b.p.) of an element e as an upper bound of e which is not equal to e. 
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T 

[al]->[~l]->[yl] 

a->[~l]->[yl] [al]->[~l]->y [al]->~->[yl] N->N->N 

~ 

a->~->yCD 

Poset to Lattice Q 
a->[~l]->[yl] [al]->[~l]->y [al]->~->[yll N->N->N 

a->~->y 

Figure 7.12: Embedding each non-comparable subset in a lattice 
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[[a2JJ->[[~2JJ->[["{2J J 

a->[[~2ll->[["{211 [al J->[[~211->[yl) [[a211->[~ll->[yll [[a2))->i}->[["{2)) 

R->R->R a->[~Il->[yll [all->[~I]->y [al]->i}->[yl] N->N->N 

a->i}->y 

Figure 7.13: Partially-ordered set of instances for class \llTr 
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T 

II 0.211->11 ~211->IIy2J J 

R->R->R o.->1I~2JJ->IIy2JJ 
1Ia.211->~>IIy211 

o.->~->y 

Figure 7.14: Lattice of instances for class ~lrLT 
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Overloading Resolution with Overlapping Instann>, 

RESOLVE(I,{CI , ... ,Cn}) = SEARCH (I, .HATCHES(I, n,C I • 0). {C} .... ,C n }) 

MATCHES(I,e,C,SC) 

1.11. Summary 

= {(unijYe.{} (itype,Ctype),j(isc uSC) liE III unijYe.{} (itype,Ctype) i: 1.IICnam• = inam.} 

where j(SC) = {( unijYe,{}(itype, Ctype)(O"), r)I(O'. r) ESC} 

RCH(I P CO) {1., if P = n 
SEA ,,= RESTRICT({DERIVATION(p .. I.C°)lp, E P}), otherwise 

RESTRICT(X) = {el«e, {}),SC) EX, allowed(9,SC)} 
where allowed(e,SC) = !\{unijYe,O(O" r) = 1.1(O',r) ESC} 

OUT({x}) = x 
OUT({}) = 1. 
OUT({XI,,,,,Xn}) = 1. 

DERIV AT ION«(e, {}),SC),!, {}) = (e, {},SC) 
DERIV ATION«(e,{}),SC), I, {CI " .. ,Cn}) 

= SEARCH(I. AI ATCHES(I,e, 9(C I ),SC), {C2 •••• • en }) 

DERIVATION«(e,Cn,SC), I,Ci) = DERIVATION«((e, {}).SC),l,e; uc;) 

Figure 7.15: Overloading resolution with overlapping instances 
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Chapter 8 

Definition of FSC 

In this chapter we present a definition of the FSC programming language. 

8.1 Introduction 

FSC is a purely functional language incorporating many recent innovations in programming lan­
guage research, including higher order functions, static polymorphic typing, user defined algebraic 
datatypes, pattern matching and a rich set of primitives. The design of this language has been 
heavily influenced by languages from the non-strict functional programming world such as Haskell, 
languages from the strict functional programming world such as ML, and also languages from the 
single assignment world such as SISAL (Fig. 8.1). 

The emphasis of the FSC design is to provide an extremely efficient functional language with 
which to develop numerical software in a manner which best suits the problem domain. To this 
end, some of the ideas incorporated in FSC are either very experimental or do not possess tllP 
completeness! of similar concepts in languages such as Haskell. We do not consider this a failing, 
but merely recognise that we have a separate set of goals for which we consider efficiency paramount 
and try to embrace as much of the flavour of functional programming as possible. 

Although FSC builds heavily on previous ideas it also has several innovative features which we 
consider useful in the area of numerical programming: 

1. FSC extends Haskell-style overloading to cover typical linear algebra operations using tech­
niques which do not create slower code through the use of overloading. 

2. True arrays are provided as a primitive datatype, the novel feature being the combination of 
pattern matching and array operations. 

3. A term rewriting system allows axioms to be expressed in FSC and code improving derivations 
to be written. 

1 An example of FSC's lack of syntactic completeness is the fact that A [i] f. A ([i] ). 
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Figure 8.1: Language spectrum and lineage of FS(' 
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B. Definition of FSC B.2. Program Structure 

4. A purely functional I/O facility is provided which unifies the I/O models of Haskell 1.3 and 
SISAL. 

This chapter defines the syntax of FSC programs and an informal abstract semantics for the 
meaning of such programs. We leave as implementation dependent the ways in which FSC' programs 
are to be compiled other than defining criteria on efficiency requirements which must be respectt'd. 
This includes issues such as guaranteeing that the use of an overloaded function will not result in 
an increased execution time as it does in the implementation of languages such as Haskell. The 
structure, language and commentary of this chapter unashamedly borrows heavily from the Haskell 
1.2 report [50] since our aim is to mimic Haskell syntactically. 

8.2 Program Structure 

In this section we describe the abstract syntactic and semantic structure of FSC. as well as how it 
relates to the organisation of the rest of this chapter. 

1. At the topmost level an FSC program is a set of modules . .\lodules provide a way to control 
namespaces and to re-use software in large programs. 

2. The uppermost level of an FSC module consists of a collection of declarations. of which there 
are several kinds. Declarations define things such as values, datatypes, type cla,;"p,.;. fixity 
information and rewrite rules. 

3. At the next level are expressions. An expression denotes a value and has a siatlc type. 

4. At the lowest level is FSC's lexical structure. The lexical structure captures the conerett' 
representation of FSC scripts in text files. 

Examples of FSC fragments in running text are given in typewriter font as in: 

> let x = 1 
> z = x+y 
> in z+l 

8.2.1 The FSC Kernel 

FSC has many of the common syntactic structures that are popular in functional programming. In 
these cases we give a translation into a subset of FSC which we call the FS'C kernel. This fulfils a 
similar role to the Haskell kernel in that we can provide a straightforward denotational semantics for 
the kernel and a translation of each syntactic structure into the kerneL This allows the presentation 
of the language to be simplified. 
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Program 
Bindings 

Expression 

Literal values 

Alternatives 

Constructor alt 

prog 
binds 
bind 

expr 

literal 

alts 

calt 

binds 
bindj ; ... ; bind,. 
var = expr 

exprl expr2 
,\ var. expr 
ease expr of alts 
if exprj then fxpr2 else expr3 
let bind in fxpr 
letree binds in expr 
con 
var 
literal 

Integer 
Float 
Character 
Double 
Boolean 

caltj ; ... ; calt., 

con varl ... varn -> rxpr 

Figure 8.2: Syntax of the FSC kernel 

8.2. Program Structure 

n ~ 1 

Application 
Lambda abstraction 
Case expression 
Conditional 
Local definition 
Local recursion 
Const ruetor 
\'ariable 

n ~ 1 

n~O 

8.2.1.1 FSC Kernel Syntax, Semantics and Intrinsic Operations 

The syntax and semantics of the FSC kernel are shown in Fig. 8.2 and 8.:3 respect i\'dy. The FS(' 
language contains true arrays and, as such, we regard these as primitive with operations shown in 
Figs. 8.4 and 8.5. Other primitive, hard-wired, functions exist over the ground types {/.\'T. REA L, 
DOUBLE, CHAR, BOOL} such as 

> _primIntIntEqual :: INT -> INT -> BOOL 

8.2.2 Expressions and Types 

An expression evaluates to a l'a[ue and has a static type. Types are not first order in FSC although 
the type system allows user-defined datatypes and permits parametric polymorphism and ad-hoc 

polymorphism (using type classes). Because of FSC's standpoint of efficiency, not all polymorphic 
values are allowed in FSC2 . 

2 All values must have a set of static monomorphic resolutions and polymorphic objects such as a = hd [] are 
disallowed. 
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P[program] : Val 
P[prog] = EVAL[ letrec prog in main] Pinit 

EVAL[expr] : Env ~ Val 
EVAL[k] p 

EVAL[x] p 
= K[k] 

p ./.' 

8.2. Program Structure 

(EVAL[el] p) (EVAL[e2] p) EVAL[el e2] P 
EVAL[A x.e] p 
EVAL[if el then e2 else e3] P 

= strict(Axn ••. EVAL[e] (p0xo--x ••• )) 
EVAL[case el of True -> f2; 

False -> e3] P 
EVAL[let x = e in b ] p EVAL[(AX.b) e] p 

EVAL[letrec binds in e ] p = EVAL[e] (p 'fl fix( Ap'.8[binds](p.p p'))) 
EVAL[c] p A(I ... Afn.(C, fl, ... , (n) 
EVAL[case x of Cl x11··· x1al-> el; ... ; cn xnl ... xna• -> en] p 

= case EVAL[e] p of 
~1- -+ 1-
~ (Cl,(11"",(laJ EVAL[el] (pEB{X11 ........ (ll, .... Xlal o--(Ial}) 
~ ... 
~ (Cn ,(nl"'.,(na.) -+ EVAL[e n ] (pEB{Xnlo--(nl .... 'J.'nano--(nan}) 
end 

8[binds] : Env -+ Env 
8[Xl = el; ... ; Xn = en] p 

strict: ( Val -+ Val) -+ Val -+ Val 
strict f J.' = f x , if x "# 1-
strict f 1- = 1-

= {Xi ......... EVAL[ei] pli E {l ... . ,n}} 

Figure 8.3: Denotational semantics of the FSC kernel 

144 



8. Definition of FSC 

_access .. 
_cons .. 
-snoc .. 
Jiead .. 
_tail .. 
_nil .. 
Jast .. 
_in it .. 
_append .. 
_replace .. 
_fill .. 
-size .. 
Jiml .. 
Jimh .. 
-subarray .. 
-setindex .. 
_isEmpty .. 

Array or 
or 
or 
Array or 
Array or 
Array or 
Array or 
Array or 
Array or 
Array or 
Int 
Array or 
Array or 
Array or 
Array or 
Array or 
Array or 

Int 
Array or 
Array or 
or 
Array or 

or 
Array or 
Array or 
Int 
Int 
Int 
Int 
Int 
Int 
Int 
Baal 

or 
Array or 
Array or 

Array or 
or 
Q 

Int 
Array or 

Figure 8.4: Intrinsic array operations 

8.2. Program Structure 

Array Q 

Array or 

Array Q 

8.2.3 Namespaces 

The distinctions between namespaces for variables and constructors are not disjoint. This is to allow 
users to denote matrices using upper-case identifiers. There are the following constraints on naming: 

• Constructors and type constructors begin with upper-case letters; type variables begin wit h 
lower-case letters. 

• Type class names begin with upper-case letters. 

• Operators may be any valid identifier or any string of characters excluding the selllicolon, 
comma, underscore, brace and quote characters. 

8.2.4 Layout 

FSC permits the use of a layout (or "off-side") rule in the style of Haskell. For example 

> let 
> x = 1 
> Y = 2 
> in 
> x + y 

may be written in place of 

> let {x = 1; Y = 2} in (x+y) 

For a more in depth discussion of this layout convention see [50]. In this chapter. we do not use the 
offside rule as it is a mere preprocessor phase and hence of little interest. 
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_cons a [i 0-- ei, (i + 1) 0-- ei+l,'" ,n 0-- en] 
= [(i - 1) 0-- a, i 0-- ei, (i + 1) >-- e.+l,···, n >- en] 

_snac a [i 1-+ ei, (i + 1) >- e.+l,···, n ...... en] 
= [i >-- e I, (i + 1) 1-+ e i+ 1 , ... , n ...... en, (n + 1) >- a] 

_head [i ...... ei,"', n 1-+ en] = ei 

_tail [i >-- e
" 

(i + 1) 1-+ ei+l,"', n 1-+ en] = [(i + 1) >- e.+I,···, n >- en] 

_last [i 1-+ ei, ... ,n >-- en] = en 

_init [i 1-+ ei, ... , (n - 1) t-o- ei+l, n 1-+ en] = [i 1-+ e" ... , (n - 1) >- en-d 

_append [i 1-+ ei,"', n 1-+ en] (j 1-+ El ,"', m >- em] 
= [i t-o- ei, ' , " n >- en, (n + 1) 1-+ el , . , . , (( m - j) + n + 1) >- en] 

_replace [i 1-+ e.,'" ,j 1-+ el ,'" ,n t-o- en] j a = [i 1-+ f,,· .. ,j 1-+ a,···, n ..... ("J 

_fill ina =[i 1-+ a, . , . , .. " n 1-+ a] 

_liml [i t-o- ei , '" I n t-o- en] = i 

_limh [i 1-+ ei, ... I n t-o- en] = n 

_size [i ...... ei,'" ,n ...... en] = (n - I) + 1 

_subarray [i 1-+ e
" 

... I j >- eJ I' .. I k >- e k, ..• I n >- en] j k = (j >- t l' ... , k >- f k] 

_setindex [i ...... f , ,···, n 1-+ en] j = (j >- f , ,···, (n - i) + j >- en] 

_isEmpty A = _primlntlntEqual (_size .-l) 0 

Figure 8.5: Intrinsic array operation identities 
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8.3 Lexical Structure 

In this section we describe the low level lexical structure of FSC. ~Iany of the details may be skipped 
on a first reading. 

8.3.1 Notational Conventions 

The following notational conventions are used for presenting syntax: 

[pattern] 
{pattern} 
(pattern) 
pat1 lpat2 

patpat' 

factorial 

optional 
zero or more repetitions 
groupmg 
choice 
difference-elements generated by pat 
except those generated by pat' 
terminal syntax in typewriter font 

Because the syntax in this section describes lexical syntax, all whitf' space is expressed explicitly; 
there is no implicit space between juxtaposed symbols. B:\F-like syntax is used throughout, with 
productions having the form: 

nonterm - alt1 Ialt2 1 ... lalt,.. 

Care must be taken in distinguishing metalogical syntax such as I and [ ... ] from concrete lnlninal 
syntax (given in typewriter font) such as I and [ ... J, although usually the context makes the 
distinction clear. 

8.3.1.1 Lexical Program Structure 

program 
lexeme 
literal 
special 

whitespace 
whitestuff 
whitechar 
comment 
any 
graphic 

--+ 

--+ 

--+ 

--+ 

--+ 

--+ 

--+ 

{lexemel whitespace} 
tyidiconidl varsyml consymlliif ra~~p( lIa~ roc rredopi n~1 "ndld 
illtegerlfloatl doublel characterl stringl boolea n 
(I) 1.1; I [iJ 1-1'1 {I} 

whitestuff{ whltestufJ} 
whitecharl comment 
spacel newlinel tab 
--{ any} newline 
graphicl spacel tab 
largelsmalll digit 
'1"1#1$1%1&1'1(1)1*1+ 
• H ·1/1: I; 1<1=1>1?I<o 
[I\IJI-I-I'I{IW 

small --+ albl ... Iz 
large --+ AIBI ... IZ 
digit 0111 ... 19 
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Characters not in the category graphic or whitestuff are not valid and should result in a lexing t'rrl)r 

8.3.2 Identifiers and Operators 

tyid 
varid 
conid 
reservedid 

(small{ smal~ largel digitl'I_} ),., .... d;d 

tyidlconid 
large{ smal~ largel digitl'I_} 
alliarraylatibylcaselclassicrossidatatypeidoidotielse 
forliflininfixlinfixrlinfixllinstancelletloflordered 
pref ixlrepeat Ireturnlreturnsl suff ixlthenlt ypelwi thlwhen 
wherelunt illunless 

An identifier consists of a letter followed by zero or more let ters, digits. underscores. and acute 
accents. Identifiers are lexically divided into two classes: those beginning with a lower-case let tn 
(type variable identifiers) and those beginning with an upper-case letter (constructor identifiers). 

varsym 
symbol 
reservedop 

{symbol} ,,,,,vedop 

!I#I$I%I&I*I+I· I/I<I=I>I-I?I~I\I-II 
. ·1: : I=>I=I~I\III<-I->I: 

Operator symbols are formed from one or more symbol characters, as defined above. 

8.3.3 Boolean Literals 

boolean - TruelFalse 

8.3.4 Numeric Literals 

There are three distinct kinds of numeric literals: intege r. float and double. 

integer 
float 

double 

digit{ digit} 
IIIteger.integer{( e I EW I +]llItege~ 
intfger( e I EW I +] integer 
illteger. 
integer.integer{(dIOW 1+]lntege~ 
integer(d I oW I +]illteger 

8.3.5 Character and String Literals 

A character literal is written between acute accents and a string literal between double quotes. The 
use of backslash characters for newline, tab, etc. is identical to that of the C programming language. 

String literals are actually abbreviations for arrays of characters. 

148 



8. Definition of FSC 8.4. Expression" 

8.4 Expressions 

In this section, we describe the syntax and semantics of FSC expressions, including their translation 
into the FSC kernel where appropriate. 

exp aexp :: type 
expo 

expo let {decls[;]} in exp 
\apatl ... apatn -> exp 
if exp then exp else exp 
cas e exp of {alts[;]} 
do type computations 
iteration 
fexp 

fexp -+ fexp aexp 
fexp [args."a) 
fexp {argsexp } 

aexp 
aexp --+ var 

con 
literal 
() 
(exp ) 
(exPl' ... , eXPk) 

(expression type signature) 

(let expression) 
(lambda abstraction n ~ 1) 
( condi tional) 
(case expression) 
(do (IO) expressions) 
(i teration / array expressions) 

(function application) 
(array access) 
(bracketed application) 

(variable) 
(constructor) 

(unit) 
(parenthesised expression) 
(tuple k ~ 2) 

The FSC grammar is simplified by handling the parsing of operators from outside the grammar. 
Table 8.1 shows how examples are initially parsed and then transformed to prefix expressions. 

The expression parses as and is transformed to 
f x + g Y ((((f x) +) g) y) (+ (f x» (g y) 

n! (n !) ( ! n) 

(x+) BRACK(x +) (+ x) 

Table 8.1: Operator parsing 

8.4.1 Variables, Constructors and Operators 

var 
con 
consym 
op --+ 

varid I varsym I( op ) 
conid I consym 
varsym 
varid Ivarsym I' varid' 

(variable) 
( constructor) 

(operator) 

Alphanumeric operators are constructed by either declaring the operator as infix in a fixity decla­
ration, or by enclosing it between grave accents (backquotes). In this way fun r y. with fun a prefix 
function, is equivalent to x 'fun' y. 
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Similarly, a~y no~-prefix identifier may be used as a (Curried) variable by enclosing it in paren­
theses. If op IS an mfix or suffix operator then an expression or pattern of the form :c op y is 
equivalent to (op) x y. 

8.4.2 Curried Applications and Lambda Abstractions 

exp \ apatl ... apatn -> up 
fexp fexp aexp 

fexp {argsexp } 

Function application is written el e2· Application associates to the left and so the parentheses may 
be omitted in (f x) y, for example. The second form of function application uses the braces {.} 
and comma separators such that the expression 

> f {x,y,z} 

is equivalent to 

> f x Y z 

The advantage of this use of braces is that a function may be partially applied to any combination 
of its arguments via the use of underscores. That is, the expression 

> f {x,_,y,_,_,z} 

is equivalent to 

> (\ p q r -> f {x,p,y,q,r,z}) 

Note: Underscores may not be used without braces, i.e. the application 

> f x z 

is invalid. Such partial applications are disallowed since 

> f x _ Y 

would have a very different meaning to 

> (((f x) _ ) y) = ((\z -> (f x) z) y) = f x Y 

i.e. it is not compatible with left association of function application. 

8.4.2.1 Lambda Abstractions 

Lambda abstractions are written \Pl ... Pn -> e, where the Pi are patttrns(Fig. 8.6). If any pattern 
contains a constructor with arity > 0 then it must be surrounded by parentheses. FSC requifPs these 
patterns to be linear, i.e. with no variables appearing more than once in the set. Cnlike Haskell. 
admitting non-linear patterns would not cause semantic problems [48] in FSC. The reason for not 
allowing non-linear patterns is that it could potentially cloud computationally expensive expressions. 
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Translation: The lambda abstraction \ PI .. , pn -> e is equivalent to 
\ Xl .•. Xn -> case (XI,···.X n ) of (PI,''',Pn) -> e 
where the x, are new identifiers. If the pattern fails the result is .1... 

8.4. Expressions 

Figure 8.6: Translation rule for pattern-matching lambda expressions 

8.4.3 Operator Applications 

exp eXPI 0P;nf;x eXP2 

exp 0P.ulnx 

(infix operator applicat ion) 
(suffix operator application) 

The form elop e2 is the infix application of a binary operator op to the expressions £:1 and h. The 
form elop is the suffix application of a unary operator op to the expression el (Fig. 8.7). -

Translation: If op is an infix operator, el op e2 is equivalent to (op) el f2. 

If op is a suffix operator, el op is equivalent to (op) el. 

Otherwise el op e2 is equivalent to « el (op» e2). 

8.4.4 Sections 

Figure 8.7: Translation rule for operators 

aexp (exp op) 

(op exp) 

Sections are written as ( op e ) or ( e op ), where op is a binary operator and e is an pxpression. 
Sections are convenient syntax for partial application of binary operators (Fig. t'.t'). 

The normal rules of syntactic precedence apply to sections; for example (*a+b) is invalid, but 
(+a*b) and (*(a+b» are valid. 

Translation: For binary operator op and expression e, if I is a variable that does not occur [[f'e in f, 

the section (op e) is equivalent to \I-> I op e, and (e op) is equivalent to \I-> I op I. 

Figure 8.8: Translation rule for sections 

8.4.5 Conditionals 

exp if erpl then erp~ else exp3 

A conditional expression has the form if el then e2 else e3 and returns the value of £:2 if the value of 
el is True, and e3 if el is False, where True and False are the two built-in nullary constructors for 
booleans. Conditional expressions are left unchanged in the kernel although an equivalent translation 
is given in Fig. 8.9. 
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Translation: if e] then e2 else e3 is equivalent to case e] of {True -> f2: False -> f3} 

where True and False are the two built-in nullary constructors from the booleans. 

Figure 8.9: Translation rule for conditionals 

8.4.6 Arrays 

iteration - [el, ... , en] (k ~ 0) 

Arrays are of the form [el,' ",en ], where n ~ 0; the empty array is written O. Arrays art' the 
predominant datatype in FSC and hence much work has been done to facilitate their use. Since 
FSC is based heavily around pattern matching there is a facility to pattern match against array 
arguments, with many analogies being drawn with lists in languages such a'S Haskell. St andard 
operations for constructing arrays are shown in Fig. 8.10. Other array operations exist and these 

Operation Translation 
A +> a append a to the end of A 
a <+ A append a to the front of A 
A ++ B concatenate A and B 
I <: A set the lower bound of A to I 
A :> u set the upper bound of A to u 
[] The empty array 

Figure 8.10: Intrinsic operations over arrays 

will be discussed later in this chapter. Now that we have these constructors we may give a meaning 
to [el, ... ,en ] (Fig. 8.11). 

Translation: Eel •...• en] is equivalent to e] <+ ( e2 <+ ( ... ( en <+ []»). The types of e 1 to fn 

must all be r for some type r and the type of the overall expre~sioll is Array( r) 

Figure 8.11: Translation rules for array patterns 

8.4.7 Tuples 

aexp (el, ... ,en) (n ~ 0) 

Tuples are of the form (el, ... ,en) and may be of arbitrary length n ~ 2 (Fig. 8.12). 

8.4.8 Unit Expressions and Parenthesised Expressions 

aexp (e) 
() 
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Translation: (el, ... ,en) for n > 2 is an instance of an n-tuple and requires no translation. 

Figure 8.12: Translation rule for tuples 

The form (e) is simply a parenthesised expression and is equivalent to e (Fig. 8.1:3). The UIIII 

expression () has type () (the void type). 

Translation: (e) is equivalent to e. 

Figure 8.13: Translation rule for parentheses 

8.4.9 Arithmetic Sequences and Strides 

iteration -+ [el" e2] 
[el :e2{ :t3}] 

(range) 
(stride) 

The form [el .. e2] denotes the arithmetic sequence from el to e2 either up or down in steps of 1. 
This generates an array of integers. Index arrays with non unit strides are generated in a similar 
manner. The form [el: e2 : e3] denotes the arithmetic sequence from el in increments of '3 of values 
not greater than e2. If e3 is omitted then an increment of 1 is assumed. 

8.4.10 Array Comprehensions 

iteration [retexPl' ... ,retexPn I range [I inits] ] n~1 

[exPI ; ... ; eXPn I range [I inits] ] n ~ I 

retexp -+ [aexp of ] exp[(whenlunless) tIp] 
inits -+ mitl ; ... ; initn n ~ 1 

init -+ pat = exp 
range -+ updates (whileluntil) tXp 

(whileluntil)aexp updates 
{updates;} illrange 
all var 

updates -+ updatel; ... ; updaten n ~ 1 

update pat <- exp 
mrange pat in exp [at !Jar] [(dotlcrossl;) illrange] 

Array comprehensions are similar to list comprehensions in Haskell. They must not be recursive. 
Before providing translation rules for array comprehensions we simplify these comprehension" via 
the elimination of ;, at, dot and cross constructs3

. 

3These examples aim to show semantic equivalence rather than efficient implementation. 
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8.4.10.1 Semicolon-Comprehensions 

The form 
[exPl; ... ; eXPn I range [I inits] ] 

is equivalent to 

n> 1 

concat [[exPl, ... , eXPn] I range [I inits] ] 

8.4.10.2 at constructs 

8.-1. Expressions 

n ~ 1 

Array comprehensions involving the at construct may be simplified as shown below: 

[ retexps I '" a in A at i... ] 

is equivalent to 

[ retexps I ... i in [Uiml(A) .. Uimh(A»] .. .J [a/A [i]] 

where we use e[a/ A] to denote the replacement of all free occurrences of a in e with A. 

8.4.10.3 dot Loop-Fusion 

Array comprehensions involving the dot construct may be simplified as shown below: 

[ retexps I ... a in A dot b in B ... ] 

is equivalent to 

let 
hi = maxCsize(A),_size(B)-1 

in 
[retexps I ... i in [O .. hlJ .. .J[a/A[i+_lim/(..\)]][b/BEi+_lim/(B)]] 

e.g. Using the dot construct a dot-product may be written as 

dot X Y = sum[x * y I x in X dot y in y] 

8.4.10.4 cross Loop-Fusion 

Array comprehensions involving the cross construct may be simplified as shown below: 

[ exp I ... a in A cross b in B .. , ] 

is equivalent to 
[ [exp I .. , b in B ...] I a in A ] 

If the expression contains a guard or a function of application then the application is transported 
to the outer comprehension but the guard is not. 

[ el of C2 when e3 I '" a in A cross b in B ... ] 
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is equivalent to 

[ el of [ el of e2 when ea I ... b in B ... J I a in .-1. J 

An identity matrix could be generated using the cross construct as follows 

idM N = [if i==j then 1 else 0 I i in [1 .. NJ cross j in [l .. IJJ 

and all the elements in a matrix could be incremented by 1 via 

inc A = [1+A[i,jJ I i in [1 .. MJ cross j in [1 .. IJJ 

A semicolon between in-ranges defines the cross product of the two ranges Ii fa ~Iiranda. i.e. 

[ exp I ... a in A ; b in B ... J 

is equivalent to 
eoneat ( [ [exp I .. , b in B ... J I a in A J) 

If the expression contains a guard or a function of application then the application j" tran~ported 

outside the comprehension but the guard is not. 

[ el of f2 when fa I ... a in A b in B ... J 

is equivalent to 

fl (eoneat ( [ [ E2 when fa I ... b in B ... J I a in .-1. J» 

8.4.10.5 (for) all Comprehensions 

Translation of the keyword all in 

> dotProd A B = surn[A[iJ*B[iJ I all iJ 

proceeds as follows 

• All (sic) the all indices are normalised. That is. each array access containing all-variable i is 
transformed to the form a i + c, \\' here a and c are integer constants. If this is not possi ble a 

static error is returned . 

• The lower and upper bounds for each access is calculated as in Section 1 .. 1 and these values 

are used in an in comprehension. 
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8.4.10.6 in, while and until Comprehensions 

The array comprehensions of FSC are very similar to the list comprehensions of Haskell. If we 
disregard the fact that Haskell's list comprehensions are lazy then the Haskell expression 

[el I i l <- h ,Q1Ui),i2 <- I:a 

is equivalent to the FSC array comprehension 

[ el when Ql (it) I i 1 in It; i2 in 12 ] 

However, FSC extends this notation to allow the definition of multiple values and allow iteration. Tht' 
manner in which it allows multiple values is that it allows ranges to be shared between computation". 
that is, 

(sum[i I i in [1 .. 10]],product[i I i in [1 .. 10]]) 

may be written as 

[sum of i,product of iii in [1 .. 10]] 

and the array traversal may be shared between computations. FSC also allows itprations to be 
performed within array comprehensions a fa SISAL. (This syntax is similar to that proposed in 
Chapter 5.) As an example of an array comprehension containing iteration, consider the conjugate 
gradient iteration cglteration function from Section 5.2.4. This may be used to write an iteration 
in FSC: 

> conj_grad xO eps A b 
> = last[x I (x,p,r) <- cglteration (x,p,r) 
> until (norm r<eps)l(x,p,r) = (xO,b-A*xO,pO)] 

The remainder of this section details how these expressions may be represented in the FSC kernel. 

8.4.10.7 Translations 

The following translations (Figs. 8.14-8.19) apply and make use of the following r(peai functions: 

> repeat :: (s->a)->(s->Bool)->(s->s)->s->[a] 
> repeat prj p upd in it 
> = [prj init] ++ if (p init) then repeat prj p upd (upd init) else [] 

> repeat2 :: (s->a)->(s->Bool)->(s->s)->s->[a] 
> repeat2 prj p upd init 
> = if (p init) then [prj init] ++ repeat prj p upd (upd init) else [] 

> repeat3 :: (s->a)->(s->i->s)->s->[i]->[a] 
> repeat3 prj upd in it [] = [] 
> repeat3 prj upd init (a <+ A) = prj uia <+ repeat3 prj upd uia A 
> where uia = upd init a 
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Translation: The array comprehension 
[rvl, ... , rVn Iwhile (cond )Xl - 1'1;··· ;Xm - em I Xl = i l ;· .. :Xm = im ] 
is equivalent to 
let Upd(Xl, ... ,xm)=(el ..... em ) 

III 

cnd (Xl, ... , Xm) = cond 
init= (il, ... ,im ) 
prjl(xl,"" xm) = TERV, [rt'l] 

prjn (Xl, ... , Xm) = TEm ·! [rVI] 
packl = TE RV2 [rVl] 

(packl (repeat prh cnd upd init), . . . ,packn (repeat prjn end I1pd init)) 

Figure 8.14: Translation rule for prefix-while array comprehension 

Translation: The array comprehension 
[rvl, ... , rVn luntil (cond )Xl +- (1:"'; Xm - em I Xl = ;1;··· ;Xm = im ] 
is equivalent to 
let Upd(Xl, ... ,xm)=(el, ... ,cm) 

III 

cnd(xl, ... ,.z·m) = not (cond) 
init= (il .... ,im ) 

prjl(xl,"" xm) = TERv, [rvl] 

prjn(Xl,"" xm) = TERv, [rvl] 
packl = TE RV2 [rvl] 

(packl(repeat prh cnd upd init) ..... pack.,(repeat prjn cnd upd in/til 

Figure 8.15: Translation rule for prefix-until array comprehension 
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Translation: The array comprehension 

[rvI, ... , rVn IXI ~ el;·· ';Xm - em while(cond) I XI = ;1; .. ':Xm = im ] 
is equivalent to 
let Upd(XI, ... ,Xm)=(el, ... ,em ) 

III 

cnd (Xl, .. . ,xm) =cond 
init = (i l , . .. ,im ) 

prjl (Xl, ... , Xm) = TE RV, [rvI] 

prjn(XI,"" Xm) = TERV, [rvI] 
packl = TE RV2 [rVI] 

(packl ()'epeat2 prjl cnd upd init), . . . ,packn (repeatf! prj" end upd /II/I)) 

Figure 8.16: Translation rule for postfix-while array comprehension 

Translation: The array comprehension 
[rvI,.·.,rl'n IXI - el; ... ;Xm - em until(eond)1 XI = il;···;xm = im ] 

is equivalent to 
let upd(xI, ... ,xm)=(el, ... ,em ) 

111 

cnd (Xl, ... , Xm) =not( cond) 
init= (il, ... ,im ) 

pr:h (x 1, ... , Xm) = TER\:, [rvlB 

prjn(XI, ... , Xm) = TERV, [rvI] 
packl = TE RV2 [rvI] 

(packl(repeat2 prjl end upd init), ... ,paek,,(repeat2 prj" cnd upd mil)) 

Figure 8.17: Translation rule for postfix-until array comprehension 
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Translation: The array comprehension 
[rvl, ... ,rvn IX1~el;",;Xm~em ;indin II xl=il: ... :,rm=im ] 
is equivalent to 
let Upd(Xl, ... ,xm}ind=(el, ... ,em) 

III 

init = (il, .. . ,im ) 

prh(xl, .. " xm) =TE RV1 [rvl] 

prjn(Xl, .. " xm} = TERV1 [rvl] 
packl = TERV2 [rvl] 

(packl(repeat.'J prh 7/prt init J), ... ,packn(rfpeat.'J prjn upd init J)) 

Figure 8.18: Translation rule for element array comprehension 

Translation: TERV1 and TE RV1 are defined as 
TERv1 [ return of e unless p] 
TERV1 [ return of e when p] 
TERv1 [ return of e] 
TERV1 [ e unless p] 
TERv1 [ e when p] 
TERv1[ e] 
TERV2 [ return of e unless p] 
TER v2 [ return of e when p] 
TERV2 [ return of e ] 
TERV, [ e unless p] 
TERV2 [ e when p] 
TERv2 [ e] 

=? if P then [] else [e] 

=? if P then [e] else [] 
=? [e] 

=? if P then [] else [e] 
=? if P then [e] else [] 
=? [e] 

=? return 
=? return 
=? return 
=? id 

=? id 
=? id 

Figure 8.19: Translation rule for array comprehension guards 
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Translation: TE RV3 is defined as 
TERV3 [ return of e unless p] 
TERV3 [ return of e when p] 
TE RV3 [ return of e ] 
TE RV3 [ e unless p] 
TERV3 [ e when p] 
TE RV3 [ e] 

Figure 8.20: Translation rule for value comprehension guards 

8.4.11 Value Comprehensions 

iteration 
retval 
inits 
init 
range 

updates 
update 
l1Irange 

--> 

--> 

--> 

(retvah, ... , retvaln 1 range [I inits] 
exp[(whenlunless) exp] 

init1 ; ... ; initn 
pat = erp 
updates (whileluntil) exp 
(whileluntil)aexp updates 
{updates;} inrange 
all var 

--> update 1 ;· .. ; updaten 
pat <- up 

--> pat in exp [at var] [(dotlcrossl;) mrange] 

n > 1 

n ~ 1 

n > 1 

~ return 
~ return 
~ return 
~ last 
~ last 
~ last 

Value comprehensions are similar to array comprehensions. Again, they may not bp recursivp. 

(el(whenlunless)elc> ... , en (whenlunless)el c 1 rangf [I in its] ) 

is equivalent to 

[last ofel(whenlunless)elc, ... ,last ofen(whenlunless)tl c 1 range [I inll,] ] 

The translation rules for value comprehensions are identical to t host' of array comprehensions wit h 
the following exception: translation TER\', is everywhere replaced by TERV3 (Fig. 1'1.20). whfTf' last 
(A +> a) = a and last [] = 1... 

8.4.12 previous Value Definitions 

In many applications, values from different iterations are used. \\"hile it is possible to express this 
fact in the above framework it involves the manual copying of data between iterations which is 
syntactically ugly. Hence we introduce the use of the prev modifier which allows access to the value 
bound to an identifier in the previous iteration. 

The modifier prev is syntactically treated like a function prev :: a -> a but may only ap­
pear within (array/value) comprehensions, and moreover, only those involving while or until 
terminators. 
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Any number of prey modifiers may be used; e.g. prey (prev (prev x» is legal and refers to 
the value that was bound to x three iterations previously. 

8.4.12.1 Example Usage: Newton Iteration 

Using a single prey modifier we may write a Xewton iteration as: 

> sqrt :: DOUBLE -> DOUBLE -> DOUBLE -> DOUBLE 
> sqrt in it TOL a = (x I while (abs(x - prey x) > TOL) 
> x <- newton a x 
> Ix = init) 
> newton :: DOUBLE -> DOUBLE -> DOUBLE 
> newton a X = ( X + a / X) / 2 

8.4.12.2 Translation 

prey-modifiers are translated out by adding extra identifiers to hold the previous values and the 
first n iterations performed outside the loop via unrolling (where n is the length of the longest chain 
of pre v applications). The prey values are then simply updated at each iteration. That is. 

> sqrt :: DOUBLE -> DOUBLE -> DOUBLE -> DOUBLE 
> sqrt in it TOL a = (x I while (abs(x - prey x) > TOL) 
> x <- newton a x 
> I x init) 

is translated to 

> sqrt :: DOUBLE -> DOUBLE -> DOUBLE -> DOUBLE 
> sqrt init TOL a 
> = let 
> _newton_a_init = newton a in it 
> 
> 
> 
> 
> 
> 
> 

in 
(x I while (abs(x - _prey_x) > TOL) 

x <- newton a x; 
_prev_x <- x 

_prev_x init; 
x = _newton_a_init) 

Note: care must be taken to ensure that unrolling of the first n iterations does not cause re­
computation. That is if prey x and prey (prev x» co-exist then the initialisation should not be 
written as 
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> let 
> _f_init = f init 
> _f_f_init f (f init) 
> in 
> ... I _prev_prev_x = init; 
> _prev_x = _f_init; 
> x = _f_f_init 

> ] 

but instead as 

> let 
> _f_ in it = f init 
> _f_f_init = f _f_init 
> in 
> _prev_prev_x init; 
> _prev_x = _f_init; 
> x f f in it 
> ] 

8.4.13 Let Expressions 

Let expressions have the general form let {d1 ; ... ; dn } in e, and introduce a nested, lexically­
scoped, mutually-recursive list of declarations (let is often called letrec in other languages, and 
in the translation to the FSC core we also denote recursive declarations via this keyword). The 
scope of the declarations is the expression e and the right-hand side of the declarations (Fig. 8.21). 
Declarations are described in Section 8.5. Pattern bindings are only allowed on irrefutable patterns. 

Translation: The semantics of the expression let { dl ; ••. ; dn } in eo is captured as follows: 
After removing all type signatures, each declaration d, is translated into an equation 
of the form Pi = ei, where Pi and f, are patterns and expressions respectively, 
Once done, these equalities hold, which may be used as a translation into the kernel: 

let {PI = fl;P2 = e2; ... ;pn = en} in eo 
=let {PI =eJ} in (let {P2=f2; ... ;Pn=t,,} in eo) 

where none of PI ... pn appear in el 
let {PI=el;P2=e2; ... ;Pn=fn } in eo 

= let {P2 = e2; ... ;pn = en} in (let {PI = tl} in eo) 
where none of el ... pn reference in PI 
let {PI = EI;P2 = e2;···;pn = en} in eo 

= let {P2 = e2; ... ;pn = en;pl = ed in eo 
let {PI=el;P2=e2; ... ;Pn=en } in eo 

= letrec {PI = el;p2 = e2; ... ;pn = en} in eo 
where the Pi are mutually-recursive. 

Figure 8.21: Translation rule for let expressions 
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8.4.14 For Expressions 

iteration 
retexp 

for [initial {inits}]lrangetorreturns (retexPI' ... ,retexPnl 
[aexp of ] exp[(vhenlunless) exp] 

inits ---+ initl ; ... ; initn 
init 
rangelor 

updates 
update 
inrange 

pat = exp 
repeat {updates }(vhileluntil) exp 
(vhileluntil)aexp {repeat updates} 
{updates;} inrange 
all var 

-+ updatel;"'; updaten 
pat <- exp 

-+ pat in exp [at var] [(dotlcrossl;) inrange] 

n ~ 1 

n ~ 1 

n ~ 1 

If a lot of information is to be conveyed in an array comprehension then the syntax can get very 
cluttered. For this reason FSC also provides for expressions. 

For expressions are semantically equivalent to array comprehensions: 

for [initial {inits}]range'o,returns (reiexpl •... ' retexPn) 

[retexPI"" ,retexPn I range [I wits] ] 

8.4.15 Case Expressions 

exp 
alts 
alt 

gdpat ---+ 

gd ---+ 

case tXp of { alts[;]} 
altl ; ... ; altsn 
pat -> exp [vhere {decls [;]}] 
pat gdexp [vhere { decls [;]}] 

gd -> exp [gdpat] 
I exp 

A case expression has the general form 

case e of {PI matchl ; ... ; Pn matchn } 

where each match; is of the general form 

Igim->eim; 
vhere {decls;} 

(n ~ 1) 

A case expression must have at least one alternative and each alternative must have at least one 
body. Each body must have the same type, and the type of the whole expression is that type. 
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A case expression is evaluated by pattern matching the expression e against the individual alter­
natives. The matches are tried sequentially, from top to bottom. The first successful match causes 
evaluation of the corresponding alternative body, in the environment of the case expression extt'llded 
by the bindings created during the matching of that alternative. and by the decls associated with 
that alternative. If no match succeeds, the result is ..l. Pattern matching is described in Subsection 
8.4.18 

8.4.16 Do Expressions 

exp 
actions 
action -

domain -> 

do domain { actions[;]} 
actionl; ... ; actionn 

return exp 
pat <- exp 
exp 
type 

n > 1 
(unit) 
(bind) 

(domain choice) 

In FSC all side-affecting computations, such as I/O, are carried out via the do expressioll. Thi" 
expression serves a similar purpose to the do-expression in the GoFER language in that it is a 
syntactic sugaring for a monad computation. However. in FSC WE' do not allow user-defined extpnsion 
of the do syntax via the use of a monad constructor class, but instead make these an implementation 
dependent feature with the type variable immediately after t he do keyword selecting which monad 
is to be chosen. Although the choice of monads is implementation dependent we insist that the 
I/O monad be available with intrinsic operations prototyped in Appendix H. This f'xplicit monad 
naming will aid compilation and simplify error reporting. 

8.4.17 Expression Type-Signatures 

exp - aexp :: tyPt 

Expression type-signatures have the form e: : t, where e is an expression and t is a type. Tlw)' are 
used to type an expression explicitly. The value of the expression is just that of expo The only rule 
FSC specifies regarding the value of t is that t must be unifiable with the principal type deliver<ible 
from expo It is an error to give a type not comparable to the principal type. 

8.4.18 Pattern Matching 

Patterns appear in lambda abstractions, function definitions and case expressions. However, the 
first two of these ultimately translate into case expressions, and so defining the semantics of pattern­
matching for case expressions is sufficient. 
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8.4.18.1 Patterns 

Patterns have the syntax: 

pat 

apat -+ 

I 
I 
I 
I 
I 
I 
I 
I 
I 

fpats -+ 

I 

apat 

con fpats 
var(@apat ] 
con 
literal 

() 

(pat) 

(patl' ... ,patk ) 

[patl' ... , patkJ 
[patl' ... , patk ) 

(patl' ... , patkJ 
{patl' ... , patk } [Jpats] 
apat[Jpats] 

(as pattern) 
(arity con=O) 

(wildcard) 
(unit pattern) 
(parenthesised pattern) 
(tuple pattern, k ~ 2 ) 
(array pattern, k ~ 0 ) 

8A. Expressions 

(left edge array pattern, k ~ 0 ) 
(right edge array pattern, k ~ 0 ) 
(application pattern, k ~ 1 ) 

The arity of a constructor must match the number of sub-patterns associated with it: one cannot 

Translation: (ej , ... , en] is equivalent to 
( _ +> ej +> e2 +> ... en ) 

Translation: [ej , .. . ,en ) is equivalent to 
( ej <+ e2 <+ ... en <+ _ ) 

Figure 8.22: Translation rule for arrays 

match against a partially applied constructor. 
All patterns must be linear, no variable may appear more than once. 
Patterns of the form var@pat are called as-pat/trIlS, and allow one to use l'ar as a name for the 

value being matched by pat. 
Patterns of the form _ are wildcards and are useful when some part of t he pattern is not referenced 

on the right-hand side. Right and Left edge array patterns are given a translation in Fig. 8.n. 
In this chapter we distinguish two kinds of patterns. An Irrefutable pattern is a pattern which 

cannot fail, such as a variable or tuple. All other patterns are refutable. 

8.4.18.2 Informal Semantics of Pattern Matching 

Patterns are matched against values. Attempting to match a pattern may result in one of three 
results: it may fail; it may succeed, returning a binding for each variable in the pattern: or it may 
diverge (i.e. return 1.). Pattern matching proceeds left-to-right, and outside in, according to thl:' 
following rules: 

1. Matching a value v against the irrefutable pattern rar always succeeds and binds rar to 1'. 

Matching a value v against the pattern l'ar 2'apat always fails if matching apat to J; fails; and 
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diverges if matching apat to v diverges, Otherwise rar and the free variables in apat are bound 
to the appropriate values from v. 

2. Matching 1.. against any pattern (refutable or otherwise) always diverges and, since any value 
containing 1.. is identical to 1.., any value containing 1.. fails similarly. 

3. Matching a non-1.. value succeeds only if the outermost constructor matches and all tilt' sub­
patterns in the pattern in question also match. 

8.4.18.3 Formal Semantics of Pattern Matching 

The semantics of all pattern matching constructs other than case expressions is defined hy giving 
identities that relate those constructs to case expressions. The semantics of case expressions 
themselves are in turn given as a series of identities, as shown in Fig. 8.23. Any implementation 
should behave so that these identities hold; it is not expected that it will us!' them directly. sine.' 
this would generate rather inefficient code. 

In Fig. 8.23 e, e' and ei are expressions; g and gi are Boolean-valued expressions; p and /'. are 
patterns; x and Xi are variables; 1{ and 1{' are constructors (including tuple constructors): and k is 
a character, string or numeric literal. 

case eo of { PI matchl ; ... ; pn matchn 
=case eo of { PI matchl ; _ -> ... case eo of {Pn matchn; _ -> error "no match" } ... } 

case eo of { _ -> e; ... ; _ -> e' } = f 

case eo of { k -> e;_ -> e' } = if (eo == k) then E else e' 
case eo of { x -> e;_ -> e'} = (\ I -> e) fa 
case (1\"' EI ... en ) of { (}( XI ... I n ) -> e ;_ -> e' } =['.11:'111:' 
case (}(' el ... en ) of { (1{ XI ... I,,) -> e ;_ -> (' ) =e[xI/el ..... In/tnl. 1\'=1\" 
case ( }(' el ... en ) of { (}( PI ... Pn) -> e ;- -> (' ) 

= case ( 11:' el ... en ) of { (11: II ... Xn ) -> case II of { 
Pl -> ... case Xn of { pn -> e; _ -) e' } ... _ -) (' ) _ -> f' 

Figure 8.23: Case expression identities 
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8.5 Declarations and Bindings 

In this section we describe the syntax and informal semantics of FSC declaratiolls. 

module --+ module modid [exports]where body 

I body 
body --+ {[ impdecls; ] [ffixdecls ;] topdecls [;]]} 

I {impdecls [;]} 
topdecls --+ topdecl1 ; ... ; topdecln (11 :::: 1) 
topdecl type simple = type 

datatype simple = constrs 
class[ context =>] class [where {cbody [;]}] 
instance[ context =>] tycls inst [where {valdefs [;]}] 
transformation 
decl 

decls --+ dech; ... ; decLn (11 :::: 0) 
decl --+ arraydecl 

valdef 

Like Haskell, the declarations in the syntactic category topdecls are only allowed at the top level 
of an FSC module, whereas decls may be used either at the top level or in nested scope (i.e. I host' 
within a let or where construct). 

We divide declarations into three groups: user-defined datatypes, consisting of type and datatype 
declarations; type-classes and overloading consisting of class and instance declarations; and ne"",d 
declarations consisting of value bindings and type signatures. 

8.5.1 Overview of Types and Classes 

Like Haskell, FSC uses a traditional Hindley-l\lilner polymorphic Iype system to provide a static 
type semantics, but the type system has been extended with type classes that providp, a sl ructured 
way to introduce overloaded functions. 

A class definition introduces a new type class and the overloaded operatiolls I hat must be 
supported by any type that is an instance of that class. An instance declaration declan's that 
a type is an instance of a class and includes the definitions of the overloaded operations (called 
methods) instantiated on the named type. 

For example, suppose we wish to overload the operation (+) on types INT and REAL. WI' 
introduce a class called PLUS: 

> class PLUS (a,b,c) where 
> (+):: a -> b -> c 

This declaration may be read "a triple (a, b, c) is an instance of the class PLUS if there is an 
overloaded operation (+) of the appropriate types, defined on it." 

We may then declare instances of this class involving REAL and INT: 
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> instance PLUS (INT,INT,INT) where 
> x + y = addlntlnt x y 

> instance PLUS (REAL,REAL,REAL) where 
> x + y = addRealReal x y 

> instance PLUS (REAL,INT,REAL) where 
> x + y = addRealInt x y 

> instance PLUS (INT,REAL,REAL) where 
> x + y = addlntReal x y 

where addlntInt, addRealReal, addlntReal and addRealInt are assumed to be primitive func­
tions, but, in general, could be any user-defined function. The first declaration above may be read 
"(INT, INT ,INT) is an instance of class PLUS as witnessed by the definition for (+)". • 

8.5.1.1 Syntax of Types 

type -+ btype[- digit][-> type] 

btype atype l ... atypek 

atype 

atype -+ tyvar 

tycon 
() 
(type) 

(typel"'" typek) 
[type] 

(arity tycon = k. k 2:: 1) 

(arity tycon = 0) 
(unit type) 
(parenthesised type) 
(tupl\~ type k 2:: 2 ) 
( array type) 

The syntax for FSC type expressions is given above. They are built in the usual way from type vari­
ables, function types, type constructors, tuple types. and array types. Type variables are identifi('r~ 
beginning with a lower-case letter and type constructors are identifiers with an upper-case letter. 

The array type [t] (also written Array t ) is an array with element type t. The caret lIIay be IIsl'd 
in types as a short hand for multiple function construction. 

> [a] -0 = () 

> [a] -1 = [a] 
> [a] -2 [a] -> [a] 
> [a] -3 [aJ -> [aJ -> [a] 
> 

All type variables are taken to be implicitly universally quantified except those in class declarations 
which are explicitly existentially qualified. 
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8.5.1.2 Syntax of Class Assertions and Contexts 

context class 

class 
tycls 

(classl, ... , classn ) 

tycls( type l ' ... , typen ) 

conid 

8.5. Declarations and Bindings 

(n 2:: 1) 
(n 2:: 1) 

A class assertion has the form ty cls ( type l , ... , typen ) and indicates membership of t he tuple 

(type l ' ... , typtn ) 

in the class tycls. A class identifier begins wit h a capital letter. 
A context consists of one or more class assertions, and has the general form 

(ClUl, .... Cnun ) 

where Cl , ... , Cn are class identifiers and the Ul • ...• Un are 11-1 uples (n 2:: 1) of types. :\s in Haskell. 
we use c to denote a context and write c=> t to indicate thf' type i restricted by the context c. \01<' 

that, unlike Haskell, FSC does not enforce explicit contf'xts in USf'r provided type declarations. 
Further details of FSC type classes were given in Chapter 7. 

8.5.2 User-Defined Datatypes 

In this section we describe algebraic datatypes (datatype declarations) and type synonyms (type 
declarations). These declarations may only appear at the top level of a module. 

8.5.2.1 Algebraic Datatype Declarations 

topdecl 
simple 
constrs 
constr 

-> datatype simplE = constrs 
-+ tycon tyvarl ... tyvark 

constrl I ... I consirn 
con atypel ... atypek 

(arity tycon =k. k 2:: 0) 
(n 2:: 1) 
(arity con =k. k 2:: 0) 

Infix/suffix constructor functions are handled in exactly the same way as infix/suffix identifif'r~. 
An algebraic datatype declaration introduces a new type and constructors over that type and 

has the form 
datatype T Ul ... Uk= J{l ill.··tlkl ... IKn tnl···ink 

The type variables Ul ... Uk must be distinct and may appear in the iij' It is a static error for any 
other type variable to appear in the tij' 

For example, the declaration 

datatype Tree a = Leaf a I Branch (Tree a) (Tree a) 

introduces a new type constructor Tree and constructors Leaf and Branch with types 

Leaf .. Va.a - Tree a 
Branch .. Va.Tree a -+ Tree a -+ Tree a 
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8.5.2.2 Type Synonym Declarations 

topdecl 
simple 

type simple = type 
tycon tyvaTI ... tyvaTk (arity tycon =k, k 2: 0) 

A type synonym declaration introduces a new type which is equivalent to an old type and has 
the form 

type T UI ... Uk= t 

which introduces a new type constructor T. The type (T t I ... t k) is equivalent to the type 
t[tdUI"'" tk/Uk]' The type variables Ui must be distinct and are scoped only over t. It is a 
stat.ic error for any other type variable to appear in t. As in Haskell, mutually recursiw type 
synonyms are disallowed. In essence type declarations declare a new name for an exist ing type. 
datatype declarations create a brand new type. 

8.5.3 Type Classes and Overloading 

8.5.3.1 Class Declarations 

topdecl -+ class [contut =>]class [where 
cbody -+ cSlgns 
cszgns -+ cszgnl ; ... ; cSlgnn 
cszgn -+ vaTs:: [context => type 
vaTs -+ vaTI, ... , vaTn 

{ cbody[; ]}] 

(n 2: 1) 

(n 2: 1) 

A class declaration introduces a new class and the operations on it. A class declaration has the 
general form: 

class C U where { VI :: CI => tl;"'; 1'2 :: C2} 

This introduces a new class name C; the type variable U is scoped only over the method signatures in 
the class body. The class declaration introduces new class methods 1'\, . , .• I'n whose scope extpnds 
outside the class declaration. 

Two classes in scope at the same time may not share any of the same methods as otherwisf' an 
overloaded method could not be attribued uniquely to a dass. 

8.5.3.2 Instance Declarations 

topdecl -+ instance [context =>]tycls inst [Where { va/defs [;] }] 
inst -+ type 

va/defs va/defl; ... ; valdefn (n 2: 1) 

An instance declaration introduces an instance of a class. 
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8.5.4 Transformation Declarations 

FSC also has top level transformation declarations. However, these form a supershell to FS(' and 
are discussed in the next chapter. 

8.5.5 Nested Declarations 

The following declarations may be used in any declarat ion list, including at the top level of a module. 

8.5.5.1 Type Signatures 

decl ....... vars:: type 
vars ....... varl,'" , varn (n ~ I) 

A type signature specifies the types for variables. :\. type signature has thf' form: 

Xl"",Xn::t 

which is equivalent to assertinp; Xi :: t for each of the i. Each J:j must haw a value binding in tlw 
same declaration list that contains the type signature; i.e. it is illegal to give a type signature for a 
variable bound in an outer scope. Moreover, it is illegal to give more than one type signature for a 
variable. 

As mentioned earlier, every type variable appearing in a signature is uniw>rsally quantified over 
that signature, and hence the scope of the type variable is limited to the type ~ignaturf' that contains 
it. 

A type signature for x may be more (or less) specific than the principal type derivablf' frolll the 
value binding of x, but it is an error to give a type that is incomparable to the principal typf'. If a 
more specific type is given then all occurrences of the variables must be used at t he more specific 
type, or at a more specific type still. The aim of this feature is to allow the user to offer a type 
signature without having to provide type class constraints. 

8.5.5.2 Function and Pattern Bindings 

decl --+ valdef 
arraydecl 

valdef --+ lhs = fIP [Where { decls[;]}] 
lhs gdrhs [where { decls[;]}] 

lhs --+ pat 
funlhs 

funlhs --+ !'a r { apatl"'" apatd {( { apat l , ... , apatk } lapat)} 
apat apat {apat} 

gdrhs ....... gd = exp[gdrhs] 
gd ....... I erp 
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We distinguish two cases within this syntax: a pattern binding occurs when the lhs is pat; otherwise. 
the binding is called a function binding. Binding may either appear at the top level of a module. or 
within a where or let construct. 

8.5.5.2.1 Function Bindings A function binding binds a variable to a function value. The 
general form of a function binding for variable x is: 

x Pll Plk 

x Pnl Pnk matchn 

where each Pij is a pattern, and each matc~ is of the general form: 

= c where {decls } 

or 
I gil = Cil 

I gim = Cim 

where {declsi } 

The set of patterns corresponding to each match must be linear (no variable is allowf'd 10 appear 
more than once in the entire set) (Fig. 8.24). 

Translation: The general binding form for functions is 
semantically equivalent to the equation: 

where the I, are new identifiers. 

(PIl.PI2 •...• Plk }match1 

(Pml • pm2 • ...• pmk ) matchm 

Figure 8.24: Translation rule for function bindings 

8.5.5.2.2 Pattern Bindings A pattern binding binds variables to values. A simple pattern 
binding has the form P = e. The general form of a pattern binding is p match. where match is the 
same structure as for function bindings above; i.e. 

P I gl = el 

I g2 e2 

I gm em 

where { decls;} 
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which is semantically equivalent to: 

P = let decls in 
if gl then el else 
if g2 then e2 else 

8 . .). Declarations and Bindings 

if grn then ern else error "Unmatched pattern" 

Since FSC does not have the concept of lazy binding it is suggested that refutable pattern,; are lIu! 

used in pattern bindings, although this is not enforced. That is. it is considered dangerous to II"" il 

pattern involving a constructor if that constructor does not span the datatype. 

8.5.6 Array Declarations 

arraydecl 
vardecls 
vardecl 

ordering 
mutexp 
ords 
ord 

bnd 

-> 

-> 

-> 

-> 

-> 

array [varl [[ bnd] .. bnaJ [ordering][ mutexp]where ] 
{ vardecl; ... ; vardecl} 
varl [Pt , ... ,Pn] grhs[where {decls[; ill 
vart [PI, ... ,Pn] = exp[where {decls[;]}] 
ordered ords 
overwrites 1lar2 

ord {(thenland}ords} 
by var in exp iteration 
iteration 

-> (exPt,···, eXPn) 
-> exp 

I'ardecls 

(0 ? 1) 

An alternative to an array comprehension is an array declaration. Whether to u,;t' array dt'darations 
or array comprehensions is often a matter of taste, as many forms are equivalent. 

> array x[i] = a[i] 

The extent of i is implicitly quantified by the bound of array a. This quantification lIIay be made 
explicit: 

> array x[1 .. 10] where x[i] = a[i] 

Non-recursive array declarations are translated as follows 

array x[i l , ... , is]= e 

is equivalent to 
x= [ ... [el all i}\'] ... 1 all Xl] 

If the quantification is made explicit the all-comprehensions above are replaced by in-comprehensions. 
Array definitions may be written in the same manner as functions. with recursive definitions being 
allowed. An example would be a wave-front computation: 
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array A[(l,l) .. (N,N)] where 

8 . .5. Declarations and Binding,; 

1 

A[l,j] = 1 
A[i,1] 
A[i,j] = A[i,j-l] + A[i-l,j-l] + A[i-l,j] 

Note: Recursive array definitions cannot be implicitly bounded. These declarations are transformed 
into a worker function which recursively passes a data array (and possibly a tag array) in a ~ingle­
threaded manner and a wrapper which returns only the array component of the computation. For 
further discussion of recursive array declarations see Chapter T, where this process i~ discu~~t'd at 
length. 

8.5.7 Input/Output 

The I/O system in FSC is purely functional. )"t't has the expressivt' power of conventional language 
I/O systems. This is achieved via the use of a monad to integrate the I/O operations into a purely 
functional context. 

The I/O monad used by FSC mediates between the values natural to a functional language and 
the actions which characterise I/O operations and imperative programming in gent-'ral. The order of 
evaluation of expressions in FSC is constrained only by data dependencies; an implementation has 
a great deal of freedom in choosing this order. Howevt'r. actions must be ordered in a well-definf'd 
manner for program execution and I/O in particular to be meaningful. The type of main, and hence 
the type of the program, must match the signature 0'1 - ... - O'n - 10(;31 , .•.. 3m ), where In ~ 0 
and n ~ O. In addition there is a special value argv :: [String] which may be used in main to access 
command line arguments. The number of command line arguments is the length of the array argv. 

The arguments to main are interpreted as initialisation arguments to be given at runtime in 
FSC syntax. 

8.5.8 Static Semantics of Functional Pattern Bindings 

The static semantics of function and pattern binding lists is discussed in this section. 

8.5.8.1 Dependency Analysis 

As with Haskell, in general the static semantics are given by the normal Hindlf>y-\Iilner inferpnce 
rules, except that a dependency analysis transformation is first performed to enhance polymorphism, 
as follows. Two variables bound by value declarations are in the same declaration group if either 

1. they are bound to the same pattern binding, or 

2. their bindings are mutually recursive (perhaps by some other declarations which are also part 
of the group). 

Application of the following rules causes each let or where construct to bind only the variables 
in a single declaration group, thus capturing the required dependency analysis: 

1. The order of the declarations in a where/let construct is irrelevant. 
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2. let {d1 ; d2 } in e == let {dd in (let {d2 } in e) 
(when no identifier bound in d2 appears in dI). 

8.5.8.2 Type Inference 

8.6. .\[odu/es 

The type inference used by FSC is described in Chapter I, with the following post-inference check: 

• All recursive bindings (bindings inside a letrec) must be proved to have a type which is a 
specialisation of a ---;. /3. 

The consequence of this is that 

f x = f x 

is a valid (albeit foolish) FSC declaration as its type is Va, .3.0 ~ /3. However the same declaration 
after TJ-reduction: 

f = f 

is not valid as its type is Va.a. This measure is to prevent non terminating computations. All 
recursive arrays are translated to recursive functions and so this measure does not effect them. 

8.6 Modules 

A module defines a collection of values, datatypes, synonyms, classes and transformations4, and 
exports some of these resources, making them available to other modules. '\"e use the tf'rm entIty 
to refer to the values, types and classes defined in, and perhaps exported from, a module. 

Each FSC program is a collection of modules, one of which, like Haskell, must be called Main 
and must export the value main. The value of the program is the value of the identifif'r main III 

the module Main, and main must have type 

(n,m 2: 0) 

(see Chapter 7). 
Modules may reference other modules via explicit import declarations, each givillg the Ildlllt' 

of the module to be imported, specifying its entries to be imported. Unlike Haskell, modules may 
not be mutually recursive for compiler and specialisation simplicity. 

The name-space for modules is flat, with each module being associated with a unique module 
name of lexical type conid. 

8.6.1 Overview 

Like Haskell, a module consists of an interface and an implementation of that interface. The 
interface provides complete information about the static semantics of that module, including type 
signatures, type declarations and class definitions. If a module M imports modules .\h. J[2, .... . \In 

then all information needed to compile M to an object is provided in .\fl .. \12 , .... . \In . 

4 For transformations see Chapter 9. 
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8.6.2 Module Implementations 

A module implementation defines a mutually recursive scope containing declarations for value bind­
ings, data types, type synonyms, classes, etc. 

module 

body 

modid 
impdecls 
topdecls 

module modid [exports]where body 
body 
{[impldecls ; ][(fixdecls ;] topdecls [;]]) 
{[impldecls [; ]} 

-> conid 
impdecll ; ... ; impdecln 
topdecll ; ... ; topdecln 

(n ~ 1) 
(n ~ 0) 

A module implementation begins with a header: the keyword module, the module name. and 
a list of entities (enclosed in round parentheses) to be exported. The header is followed by an 
optional list of import declarations that specify the modules to be imported. This is followed by 
an optional list of fixity declarations and the module body. The module body is simply a list of 
top-level declarations. 

As in Haskell, an abbreviated form of module is permitted, which consists only of the module 
body. If this is used the header is assumed to be module Main where. 

8.6.2.1 Export Lists 

exports -> ( exportl , ... , exportn ) 

export 

entity 

-> entity 
modid 

-> vaT 
tycon 
tycon( .. ) 
tycon( con l, ... , conn) 
tycls 
tycls( .. ) 
tyclS(vaTl, ... , vaTn) 

(n ~ 1) 

(n ~ 1) 

(n ~ 0) 

An export list identifies the entities to be exported by a module declaration. If t he export list 
is omitted than all top-level declarations defined in that module are exported. 

The FSC export system is similar to that found in Haskell and similarly the exported definitions 
must possess closure, e.g. it would be a static error to export a function f: : a -> Tree and not 
export the datatype Tree. 
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8.6.2.2 Import Declarations 

impdecl-+ import modid 

The entities exported by a module are brought into scope with an import declaration. 

8.6.2.3 Abstract Datatypes 

As in Haskell abstract datatypes are constructed via the use of the module system to export a 
datatype but not its constructors. This datatype is accessed though the functions which are also 
exported from the module. 

8.6.2.4 Fixity Declarations 

fixdecls -+ fix1 ; ... ; fixn 
fix 

vaTS 

(n ~ 1) 
infix [int(g(~ rars 
infix! [intege~vars 
infixr [intege~ rars 
prefix [intege~ l'ars 
suff ix [intege~ rars 

A fixity declaration gives a fixity and a binding precedence of a set of operators. Fixity decla­
rations may appear only at the start of a module and may only be given for identifiers definpd in 
that module. Fixity declarations may not be overwritten and an identifier may only haw one fixity 
declaration. 

There are five kinds of fixity, non-, left-, right-, pre- and post-, and an integer precedf'nce with a 
range of at least [0 .. 1000]. If the precedence is omitted a precedence of 1000 is assumed. 

8.6.2.4.1 Example The infamous factorial example may be written: 

> suffix! 
> (!):: INT -> INT 

> O! 1 

> n! = product[l .. n] 

where product is defined in the standard prelude (see Appendix H). 
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Chapter 9 

Implementation of FSC 

In this chapter v\,(' discuss how various aspects of FS(' may be implellJl'III,d 

9.1 2nd-order Lambda Calculus 

,\s part. of compilat ion it is suggeste" that t.he code he transformed into a form similar to an t'xtplJd,'d 
second-order lambda cal cui us[:j(j]. That is, types are treated as first-order objects and ident ifins arc 
('xplicitiy typed, i,e. rather than 

Identifier x 
Expression x 

we have as our calculus 
Ident ifier J' : T 

Expression J' : T 

tIc :! 

AJ' .f 

.\1.< 

e [T] 

\\'here t is a typt' variable and T is a type. The code 

> f:: a -) a 

> f Y = id Y 

is translated to 
f = ,\y.id Y 

and then to 
f : Vo.o ~ 0 = .\o.('\y((id: VJ.3 -+ 3)[0]) y: n) 

lit: 



9. Implementation of FSC 9.1. 2nd-order Lambda Calculus 

Figure 9.1: 1\ eeds analysis 1 

r'\DA map: Va,p.(a->p)->[a]->[p] L/ ... 

Figure 9.2: :"eeds analysis 2 

This use of A also matches our view of polymorphism in that we view f to be a function which 
must be made monomorphic before being evaluated. The use of this extended calculus allows us to 
reserve type information after type inference and overloading resolution. 

9.l.1 Needs Analysis 

During compilation, a database of dependencies should be kept. We call the building of this databasp 
needs analysis. Needs analysis is the creation of a parameterised database entry for each identifier, 
and type, which details the entities which are needed to evaluate it. Note: These identifiers should 
only be the free variables within a function body and variables bound hy lambda abstractions should 
not be entered into the database. The identifier itself should not be entered into ttIP database on 
multiple occasions unless it has different types bound to it. That is, a recursive function such as map 

should not have any identifier needs but a method instance of a type class which calls a difft-rent 
instance of the same method should. Figs. 9.1,9.2 show the entries for id, f and map respectiv,·ly. 
The function 

> 
> 

instance PLUS(a,b,c) => PLUS«a,a),(b,b),(c,c» where 
(al,a2) + (bl,b2) = (al+bl,a2+b2) 

has an entry shown in Fig. 9.3. \\"ith an abstract version of the source code, these entries may 

+: 3 PLUS «(l,~,y)=> (Il,(l)->{~,~)->{y,y) 0 ~ 
y 
+: [Il,~,yl 

Figure 9.3: l'ieeds analysis 3 
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~e used to generat: sp:cialisations of functio~s on ~tman~ which can be appended to an existing 
library .. The entry m FIg. ~.3 m~y be read as to bUIld an mstance of plus which adds pairs of type 
a to paIrS of type b returnmg paIrs of type c there must exist the types a, band c and an instance 
of addition from a and b to c" . 

9.1.2 Boxing 

Because of the emphasis we place on efficiency. boxing should not be used in an implementation 
and specialisations should be generated. Results in Chapter:) show this not to be a problem in the 
numerical domain. 

9.2 Target Language 

It is suggested that FSC be compiled to SISAL, or more specifically SISA.L 90, as: 

• SISAL has features similar to the FSC kernel. 

• Mature implementations exist on architectures including PCs, shared memory multi-processors 
and vector architectures. 

• Experimental implementations exist for distributed memory machines. 

• SISAL is implicitly parallel. 

• Efficiency is comparable with C/Fortran on uniprocessors and often better than C on multi­
processors [18]. 

• SISAL has iteration constructs so transformations such as the linear expansion theorem (LET) 
[32] may be viewed as source to source. 

• SISAL has a primitive foreign language interface. 

• SISAL90 has all the features needed for a simple kernel language including higher-order func-
tions, case expressions and user-defined reductiolls. 

Interest in SISAL itself seems to be dwindling. However, currently, there seems to be much interest 
in the use of SISAL as an intermediate parallel language for compiler construction [7]. Although 
SISAL is an applicative language, its foreign language interface allows the use of non-pure functions. 
In FSC this feature is not available to the user although this is wrapped up to provide I/O. We 
suggest that FSC be compiled down into an efficient SISA.L kernel in a manner similar to that 
described in Chapter 8. 

9.3 Input/Output 

Input to and output from FSC programs is handled via the generation of a parser and a printer. If 
an FSC program has the type 
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> main Int -> Tree INT -> 10 (Tree DOUBLE) 

i.e. it reads and writes the user defined datatype Tree 

> datatype Tree a = Leaf a I Branch (Tree a) (Tree a) 

then the implementation should generate a parser accepting an integer followed by a tree of integers 
(on stdin) and should also generate a pretty printer to display a tree of doubles. 

9.3.1 Format 

If bc. out is an executable with an entry point main 

> main :: x -> 10 (x) 

for some monomorphic type x then program-output is grammatically correct program-input (pro­
vided that there is no I/O within the program body). Moreover, the I/O end points are grammati­
cally correct FSC-expressions of type x. 

9.4 Parallelism 

Since SISAL is an implicitly parallel language it would be foolish for FSC not to try to retain this 
implicit parallelism. In SISAL, functions are split into two categories 

• Reductions 

• Normal (non-reducing) Functions 

Reductions accept the output of an iteration and reduce it. in parallel, to a single value. In SISAL 
these functions cannot be applied simply to arguments and, similarly, functions cannot bp applif'(1 
to the result of an iteration. FSC has no concept of a reductioll and all functions may be applied 
to the output of an iteration. However in order to harness SISAL reductions it is suggested that 
applications of the function reduce :: (a -> a -> a) -> (() -> a) -> [a] -> a be used to 
denote reductions, that is, the definition 

> 
> 

sum :: PLUS(a,a,a),ADDID(a) => [a] -> a 
sum = reduce (+) zero 

defines a reduction and, if applied to an iteration, will reduce the iteration in parallel using addition, 
otherwise it will create an iteration across its argument and reduce this in parallel. Unfortunately 
this relys on the existence of user defined reductions and hence requires translation to SISAL90. 
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9.5 Higher Order Functions 

It is.suggested that higher order .functions be in-lined as much as possible as these constitute a major 
effiCIency overhead. Both recursIve and non-recursive parameterisation I may be easily compiled out 
via partial evaluation. That is, the function 

> 
> 

map:: (a->b) -> [a] -> [b] 
map f xs = [f x I x in xs] 

which we regard as being non-recursively parameterised, may be in-lined, and the function 

> 
> 
> 

map :: (a->b) -> [a] -> [b] 
map f [] = [] 
map f (x <+ xs) = f x <+ map f xs 

which we regard as being recursively parameterised, may be specialised around the function f. 

9.5.1 Non-Parameterising Higher Order Functions 

Occasionally an example of a non-parameterising higher order function arises although it may easily 
be rewritten. The function 

> contrived .. (INT->INT) -> (INT->INT) -> (INT->INT) 
> contrived f g I f 0 == 1 = contrived g (f.g) 
> I f 1 == 1 = contrived (g.g.f) (g.f) 
> I otherwise = (g.f) 

is such an example. Pointers to these functions may be stored in a closure tog(·ther with an environ­
ment in which it has been partially applied. However, we do not envisage the need to generate this 
type of code very often as the type of example given above does not frequently occur in our domain 
of interest. Alternatively higher order functions may be implemented directly if SISAL 90 is used 
as the resulting intermediate language. 

9.6 Specialisation and Separate Compilation 

The use of specialisation as a method for compiling polymorphic functions is easy to understand. 
However, specialisation relies on a priori -knowledge of the complete call path for an executable. 

1 Definition: A Parameterising function is a function in which all recursive function applications wi thing the body 
exhibit at least one constant argument which itself is a parameter to the function. This argument must be at the 
same position for all applications and definitions. 
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> 
> 

> 
> 

> 
> 

id .. a -> a 
id x = x 

f a -> a 
f Y = id Y 

main .. INT -> 10 INT 
main x = do 10 {return id (f x)} 

• An implementation based on specialisation initially checks that main has a monomorphic typ., 
and generates a set containing the single element {main: :INT-> 10 liT} . 

• Next, it adds to the set the specialisations needed by the elements already contained in the 
set . 

• This last step repeats until the process converges on a fixed point. 

This fixed point is the set of required specialisations. In the above example the sd is initially 

S = {main:: INT -> IO INT} 

Next the functions called by main are added 

S = {main:: INT -> 10 INT, f: : INT -> INT, id: : INT->I1T} 

and the functions called by f and id. In this example the only extra function called by either of 
these is id, which is called by f. More specifically, the polymorphic function 

f::\;/Q·Q~Q 

makes a call to the monomorphic function 

id:: Q ~ Q 

The type instantiated on f must be carried through to id and since main requires an instance of f 
with its type instantiated to INT -> INT it also requires an instance of id with its type instantiated 
to INT -> INT. Since such an instance of id is already in the set, and since there are no other call" 
in the tree, we have reached the fixed point and the set of required instances is 

S= {main:: INT -> 10 INT,f: :INT -> INT,id: :INT->INT} 

9.6.1 Separate Compilation 

Specialisation is not directly compatible with separate compilation. If the example from the previous 
section was divided into three files, one for each function, then only the file containing main could 
be compiled independently of the others. This tends to suggest that the use of libraries containing 
polymorphic functions would prove problematic if not impossible. This issue is tackled in the next 
nextion. 
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Figure 9.4: Standard compilation 

9.7 Library-Based Separate Compilation 

In the previous section we identified the problem which specialisation poses. This arises from consid­
ering separate compilation as divided object-file-wise (Fig. 9.4). If, however, we consider compilation 
to be arranged into libraries rather than objects we may initially start with an empty library and 
incrementally add to it provided we have some abstract code with enough information to generate 
further specialisations (Fig. 9.5). Linkage of precompiled objects may update these objects and 
may extend the number of specialisations in a library. At this point, of course, no type checking is 
necessary as all the source is in an abstract, typed form. 

9.8 Transformations and Derivations 

In this section the nature of transformations used in the FSC system is discussed. However. before 
discussing how such a system may be implemented we discuss its properties and the features it 
should support. The following features form part of the FSC language, however their development 
is currently not part of any compiler. To a large extent this section could be considered as further 
work. We include it here however as it is part of the FSC definition with only the implmentation 
and usefulness in practice requiring further investigation. 

9.S.1 Rewrite Rules 

The form that transformations in FSC take is similar to other systems [15. 14, 33] in that they 
consist of a series of rewrite rules of a pattern to match and a replacement expression. For example: 

TRANSFORM(xmeta)[xmeta 1\ True] => [xmetJ 
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9.8. Transformations and DerivatIOn.'; 
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Figure 9.;): FSC compilation strategy 
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and 

TRANSFORM(xmeta)[xmeta * 1] => [xmetJ 

both form valid transformations. The identifiers in parentheses denote variables in the transforma­
tion which must be bound to expressions before they are used. Any free variables relate to globallv 
scoped identifiers. The following is illegal . 

TRANSFORM(xmeta)[O] => [xmetJ 

since x does not have a value bound to it before it is used. For convenience. in the rest of the 
discussion we shall omit the meta-tag notation. To guarantee the preservation of correctness. the 
following property must hold for all expressions e 

EVAL(TRANSFORM(Xl, ... , xn)[pat.] => [rtplacement](f)) = EVAL(e) 

i.e. a transformation must not alter the value associated with an expression. This property must be 
checked by the user when defining transformations. F nfortunately. demanding that transformations 
exhibit this property in a strict semantic framework prevents us from defining useful transformations 
such as 

TRANSFORM(x)[x 1\ False] = [False] 

or 
TRANSFORM( x )[x * 0] => [0] 

However a weaker version of the above property can be used which allows such transformations. 
This rule is that the transformation should not reduce the information content of an t'xpression: 

EVAL(e) :; EVAL(TRANSFORM(Xl, .... xn)[pat.] => [repl.](e)) 

or, more precisely 

EVAL'PPHc.(e) :; EVAL(TRANSFORM(Xl •.... xn)[pat.] => [repl.](e)):; EVAL'<a;o.,(e) 

That is, if the expression fails to terminate under applicative order evaluation but terminates under 
lenient order evaluation a transformation may convert it into an expression which terminates under 
applicative order evaluation. This is shown in Fig. 9.6 where three examples of spurious trasfor­
mations are shown. Two of these transformations are invalid (bold top and middle) due to the fact 
they transform one value to a completely different value. The other (bold bottom) is spurious as it 
reduces the information content in an expression. 

The FSC transformation system may be regarded as an interpreted language which executes 
at compile time. More precisely, the transformation system in FSC transforms 2nd-order extended 
lambda calculus expressions to another 2nd-order extended lambda calculus expression and since 
FSC is a heavily overloaded language, must preserve type information. 

Our first example 
TRANSFORM(x)[x 1\ True] => [x] 

186 



9. Implementation of FSC 9.B. Transformations and Deri"ations 
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Figure 9.6: Correct and spurious transformations 
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is actually a sugared version of the following transformation 

TRANSFORM(x, Td[x /\ True] I 
/\ 

=> 

[X]::Tl 
[x /\ True] :: Tl 
[x] 

A slightly more complex example is the solution of a linear system 

TRANSFORM(A, x)[A -1 * x] => [solve(A. x)] 

which is translated to 

TRANSFORM(A, X, Tl, T2, T3)[A-
1 * x] [A] :: Tl 

/\ [x] :: T'.! 

/\ [A-l * x] :: T3 

/\ 3[solve]:: (Tl. T'.!) - T3 

=> [solve(A, x)] 

That is, all subexpressions should have a type associated with them and all newly introduced free 
variable identifiers should have their existence checked. 

9.8.2 Predicates 

There is a set of predicates associated with transformations to test expressions {id,const,app .... } 
which can be used to test individual terms. New predicates may be introduced as follows: 

9.8.3 Evaluation 

PREDICATE(x)[simple(x)] => t'ar(x) V const(x) 

PREDICATE(x)[anything(x)] => True 

EVAL declares we trust a function and that function should be evaluated at compile time were it to 
be applied to constant arguments. For example, 

EVAL[+:: INT -+ INT - I.VT] 

declares that addition of integers is a safe function to evaluate. 

9.8.4 Derivations 

Transformations of the same level are applied in textual order and transformations of different levels 
are applied in level order, i.e. it is possible to interpret levels as priorities. Composite transformations 
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may also be built up by enclosing a list of transformations in braces and the transformations will be 
composed, that is, 

TRANSFORM 
{ 
TRANSFORM(xI, ... , xn)[pai1] => [rep/.Il 
TRANSFORM(Yl, ... , Yn)[pai:?] => [rep/.:!] 
} 

is equivalent to: 

9.8.5 Subconditions 

It is sometimes neater to have subconditions in a transformation, e.g. 

TRANSFORM(y, a, x)[a * x + a * y] => [a * (x + y)] 

could be extended to encompass a commuting * and written as 

TRANSFORM(x, y, .::1, .::2, a)[x + y] I 
/\ 

([a n1] is [x] V [.::1 * a] is [x]) 
([a * z2] is [y] V [.:::2 * a] is [y]) 

=> [a * (zl + .::2)] 

Which reads: If an expression matches x + y for some x, y then if x matches eit her a * .:: I or .:: I * a 
for some a, zland y matches either a * z2 or .::2 * a for some .::2 and for the a bound previously then 
the complete expression may be replaced with a * (zl + .::2). A more general example could be 

TRANSFORM(f,x,y,e, l',x',y')[f x y] I 
/\ 

/\ 

/\ 

[e] in [x] 
[e] in [y] 
[v] is new 
[;l"] is [[r]/[e]][x] 
[y'] is [[l']/[e])[y] 

=> [let !'=e in f x' y'] 

9.8.6 Required Features 

To be able to support the above system we need: 

• The forms ::, 3, is and in. 

• The notion of substitution. 

• The notions of Success and Failure. 

• A unique name supply. 

• The notion of backtracking ci /a Prolog. 
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• The ability to compose transformations . 

• The "logical" connectives --', 1\ and V. 

We place the word "logical" in quotes as these connectives do not behave exactly like -., 1\ and 
V over simple variables. For example within a transformation till' statement Va. -.( -'a) = a is Ilnt 

everywhere valid. However, Va.-,(-.(-,a)) = -,a is everywhere valid. The reason for this becomes 
clear if we view the success state as success with a set of bindings and the failure state as binding-Ie" 
Negation either constructs a trivial success state from failure or constructs failure from a success 
state. However, for premises T1, T2 in which no binding occurs 

do hold, and for all premises (regardless of binding) the following laws hold: 

9.8.7 Translation 

(A 1\ B) V (A 1\ C) 
(AI\B)I\C 
(A V B) V C = 

A 1\ ·.4 
AI\A 
AVA 

-,( -.( -,A)) 

A 1\ (B V C) 
A 1\ (B 1\ C) 
A V (B V C) 
Failure 
A 
A 
·A 

The translation of these transformations is easily carried out in terms of a tran.~formmg monad 
interpreting each as a T-resultric function, i.e. a transformation is typed 

Expression --+ T( Expression) 

for some type constructor T. If we form a monad with a notion of Success/Failure from T, then Wp 

may interpret the conjunctions in our transformation as sequencing, i.e. 

TE[f 1\ g] :::} TE[J] » TE[g] 

and interpret the result similarly 

TE[f:::} g] :::} TE[f] » TR[g] 

That is, (f 1\ g) or (f :::} g) succeeds if f succeeds and then 9 succeeds. Disjunctions are handled 
similarly by considering monads with the combining operation ++, 

TE[f V g] :::} TE[f] + + TE[g] 

That is, (f V g) can only fail if both f and 9 fail. Here the combinators » and ++ are typed 

++ :: T a --+ T a - T a 
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and 
»:: T a ~ T b - T b 

We give a concrete definition of these presently_ Interestingly we find that Kleisli compo,;ition is also 
useful in this area: 

TE[TRANSFORM{t 1 ; ... ; tn}] => TE[t n ] 7r ...... TE[iJ] 

We may model pattern matching and the introduction of variables via the addition of the func­
tions variables and match, which introduce variables and bind expressions to patterns respectively. 

TE[TRANSFORM(x\, ... , xn)[pat.]lguards => [rep/.]] 
=> AX. variables [Xl, ... ,Xn ] » 

match TP[paf.] x » 
TE[guards => [rep/.]] 

We also have a function subExps which binds sub-expressions to identifiers and WI' have the following 
translation 

TE[[x] in [y]] => subExps TP[.r] Tl [y] 

TE[[x] is [y]] => match TP[.r] TT[y] 

where TT evaluates the bound variables and TP evaluates and renames the bound variables so t Iwy 
cannot interfere with program variables. 

9.8.8 Building Transformations 

Before proceeding further we model our transformation system and build simple expressions. This 
model takes the form of a Haskell script. Initially we see that a transformation with suitable unit 
and bind operations forms a monad. 

type Transformation = Expr -> T Expr 

The monad is formed from (T, »=: :T a -> (a -> T b) -> T b, unit: : a -> T a) and we gam 
Kliesli composition (.*.) and sequencing (») in the usual manner 

> 
> 

(.*.): :(a -> T b ) -> (b -> T c) -> (a -> T c) 
f .*. g = \x -> f x »= g 

> (»): :(T a) -> (T b) -> (T b) 
> f» g = f »= \_ -> g 

9.S.S.1 Transformation Monads 

For pragmatic reasons we need to be able to put some upper bound on the amount of time/resources 
that are allocated on transformation. With this in mind we define T as 

> type T a = Int -> Int -> ... -> (Int,Int .. , a ... ) 
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i.e. an execution count and upper bound are threaded through the computation. In fact we wallt 
it also to include an environment, a bound-variable list, a unique variable supply, a dictionarv (If 
functions and also model several interpretations of the same transformation. Thus, we define T-as 

> type T a = Count -> 
> Bound -> 
> Diet -> 
> Uniq -> 
> BVL -> 
> Env -> «Diet,Bound),[(Count,Uniq,BVL,Env,a»)) 

9.8.8.2 Building Blocks 

Now that we have a simple type which models transformations, we consider how transformations 
may be constructed. Our first building block is the identity transformation uni tTrans. i.e. it always 
succeeds, has only one interpretation, and does not affect an expression 

> 
> 
> 
> 
> 
> 
> 
> 

unitTrans :: a -> T a 
unitTrans exp = \i j die u bvl env -> 

check j die [(i,u,bvl,env,exp») 
check j die 0 = «dic,j),D) 
check j die «i,u,b,en,ex):xs) 

= if i < j then let (_,xs') = check j die xs 
in «die,j),(i+l,u,b,en,ex):xs') 

else check j die xs 

We can also define a transformation zeroT which always fails: 

> 
> 

> 
> 

zeroTrans :: a -> T a 
zeroTrans exp = zeroT 

zeroT :: T b 
zeroT = \i j die u bvl env -> «die,j),[) 

We now look at how transformations may be built from other transformations and from values of 
type T a. We first define the monadic combinator bindTrans. 

> 
> 
> 
> 
> 
> 

bindTrans :: T a -> (a -> T b) -> T b 
bindTrans r t = 

\i j die u bvl env -> 
check die j (eoneat [ (snd'.t) e i' j die u2 b2 e2 

I (i',u2,b2,e2,e) <- (snd' r) i j die u bvl env) 
snd' f = \i j dub e -> case f i j dub e of (_,x) -> x 

Thus the triple (T, bindTrans, unitTrans) forms a monad-like structure2 which, after performing 
a set (normally very large) number of transformations, returns failure. 

2This is not an actual monad as the pragmatic execution count violates the monad laws. i.e. bindTrans x 
unitTrans = x is not always valid as the last unit Trans could cause the execution count to exceed the limit. 
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9.8.8.3 Success and Failure 

Success and failure may be easily coded as: 

> successT = unitTrans () 
> failureT = zeroT 

9.8.8.4 Negation 

Negation may be coded as: 

> neg :: T a -> T () 
> neg t = \i j die u bvl env -> case t i j die u bvl env of 
> e,[]) -> check j die [(i,u,bvl,env,O)] 
> -> check j die 0 

9.8.8.5 Existence 

The existence of an identifier can be checked by looking in the dictionary which is carried throughout 
the monad. This dictionary should contain all prototypes for all identifiers in scope. 

9.8.8.6 Evaluation 

Evaluation offunctions is carried out by carrying the abstract source for the evaluatable functions ill 
the dictionary and interpreting it at compile time. As such, the abstract source for these functions 
should be exported as part of the module interface. This interpretation should update the threshold 
variable to avoid non-termination. 

9.8.8.7 Connectives 

We define V, 1\ as: 

> tl .\f. t2 = addTrans tl t2 

a .f\. b bindTrans a (\_ -> b) 
addTrans T a -> T a -> T a 
addTrans tl t2 

> 
> 
> 
> 
> 

= \i j die u bvl env -> check j die ((snd' tl) i j die u bvl env 
++ (snd' t2) i j die u bvl env ) 

9.8.8.8 Matchings, Sub-Expressions and Substitutions 

The function match may be defined as: 

> match pat exp = lookupT pat 'bindTrans' \expl 
> lookupT exp 'bindTrans' \exp2 
> match2 expl exp2 
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> 
> 
> 
> 
> 
> 
> 
> 
> 

> 

> 

> 

> 
> 

lookupT (App e1 e2) ~ lookupT e1 'bindTrans' \e1 -> 
lookupT e2 'bindTrans' \e2 -> 
unitT (App e1 e2) 

lookupT (Var x) 
= \i j d u bvl env -> if x 'elem' bvl 

etc 

then check j dic [(i,u,bvl,env,lookup env x)] 

else check j dic [(i,u,bvl,env,BVar x)] 

match2 (App e1 e2) (App e3 e4) = match2 e1 e3 .J\. match e2 e4 

match2 (Var x) (Var y) = if (x == y) then successT 
else failureT 

match2 .(BVar x) e = addBinding x e 

etc 

where addBinding x e attempts to add the binding x ....... f to the environment and pither fails 
or succeeds. Success is returned if there is no earlier binding for x or t he earlier binding is e. 
Subexpressions are constructed in a similar way to matchings although no binding occurs within a 
subexpression. Similarly, substitutions recursively descend the abstract syntax trep. 

9.8.9 Unique Variables 

The line 

is translated to 

[x] is ne .. 

> newVar 'bindTrans' addBinding x 

where newVar is defined as 

> newVar = \i j dic u b e -> check j dic [(i,incU u,b,e,mkVarU u)] 

and incU and mkVarU increment the variable supply and make a new variable name from the old 
u value, respectively. 

9.9 Application of Transformations 

The transformations may be applied in a top down manner to the abstract syntax tree 
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> 
> 

> 
> 
> 
> 
> 
> 
> 
> 

> 
> 
> 
> 
> 
> 
> 
> 
> 

applyTopDn :: [Transformation] -> Transformation 
applyTopDn tlist = applyTopDn2 [] tlist 

applyTopDn2 ys [] e = unitTrans e 
applyTopDn2 ys (x:xs) e 

= \i j die u b en -> ease x e 1 J die u b en of 
<-, []) -> (applyTopDn (ys ++ [x]) xs e i j die u [] 0) 
(_,«i,u,bvl,env,ne):_» -> ( 

applyTopDn2 [] (ys++(x:xs» 
ne i j die u 0 0 

applyTopDn' :: (Exp -> T Exp) -> Exp -> T Exp 
applyTopDn' t e 
= t e .J\. ease e 

(App el 

. .. ete 

of 
e2) -> «applyTopDn' t el 'bindTrans' 

unitTrans (App tel e2» 
./\. 

(applyTopDn' t e2 'bindTrans' 
unitTrans (App el te2») 

\tel -> 

\te2 -> 

i.e. applyTopDn takes a list of transformations and applies the first one in a top down manner to 
the abstract syntax tree. If this has any effect then the original list is regenerated and the process 
repeated. However, if this transformation fails then the same process is repeated starting with tllP 
next transformation. This continues until all transformations fail (either because t hey are no longer 
applicable or because we have exceeded our self imposed limit on operations). Other application 
schemes, such as bottom-up application, can be written easily. 
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9.10 Syntax of Transformations 

The syntax of transformations is as follows: 

topdecls -+ transdecl 
PREDICATE(varl, ... , varn) [var( varl,.··, rarm)] => simple 
EVAL[var:: type] 

transdecl 
trhs 

premises -+ 

simple -+ 

texp -+ 

9.11 Summary 

TRANSFORM{ transdecl{; transdecf}} 
TRANSFORM (varl, ... , l'a r n ) [exp ] trhs 
Ipremises=> [tIp] 
=> [exp] 
[-]premises {(VII\)premises } 
texp 
(premises) 
[-]simple{ (VII\)simple} 
var(x) 
(simple) 
[exp] :: type 
exist [exp] :: type 
[exp] is [tIp] 
[exp] is [new ] 
[exp] is [[exp] / [exp]] [up] 
[exp] in [exp] 
var(x) 

In the last three chapters we introduced the FSC language. 

• In Chapter 7 we described our rationale behind the design of FSC and suggested how the 
features of FSC may be implemented. . 

• In Chapter 8 we defined the FSC language (excluding its transformational meta-language). 

• In this chapter we introduced the transformational meta-language and explained how it could 
be implemented in a Haskell-like language. We also discussed how some of the implementation 
dependent features could be realised. Like the language definition of Chapter 8 the transfor­
mation description is not meant to be taken as a real-world implementation but as a simplified 
description of how the system could be modelled. 

In the next chapter we compare FSC with other languages, concentrating on its expressiveness and 
conciseness. We express a simple functional finite element code in FSC and demonstrate its expres­
siveness by presenting examples written in FSC. 'Ye also make use of a prototype implementation 
of the FSC language and present two case studies, comparing its performance with Haskell/C/C++ 
as a proof of concept. 
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Chapter 10 

Use of FSC in Practice 

In this chapter we use the FSC' language to implement \"ilrious numerical algorithllls and II"" a 
prototype compiler to demonstrate that it compares favourably with C'/C'++/Haskell. \\"" beglll hy 
rewriting the SASL finite element example given in [26J in FS(' Originally this w,\>- t \tought dear and 
concise and we demonstrate how FSC' enhances this, \\"e then present various numeric;t! algorithllls 
wrilt('11 in FSC and present in-depth case studies where the clarity. concisell"s,;. and effirit'licy of 
FSC programs are compared with their counterparts IITitten in Haskell, C and ('++. 

10.1 Functional Programming for Finite Elements 

This ,,('cl ion takes its title from t he paper hy .J. F. Dwyer [26J. "'I' rqwat t he original COlllllwnt ary 
and insert FSC below the original S,\SL implementation. Syntactic convention !If ,-;,\ '-;L which thp 
reader may not be familiar wit h are shown in Fig 10.1 wit h their II askell t ranslat ion. 

SASL 
DIV 
/ 
lambda J' . 

p -> el ; t:! 

let J' be y in f 

Haskell 

U) 
[J 
\,r -> t 

if P then il else e2 

let J.' = y in i 

Figure 10.1: SASL syntactic conventions 

10.1.1 The Finite Element Problem 

The example presented is made as simple as possible. to illustrate the concepts of functional pro­
gramming rather than any advanced finite element theories. The ordinary differential equation I,) 
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be solved is 
.:!-. (x dU(X») _ ~ 
dx dx - x2 ' 

a < x < b. (10.1 ) 

with given boundary conditions U(a) (essential constrained boundary condition) and 

( -xdU(x)/dx)x=b 

(natural unconstrained boundary condition). The finite element formulation given here is that pre­
sented in [16]. The domain (a, b) is broken into (n -1) su bdomains by the nodal points .r 1 . .r:! ..... .r" 
and two linear shape functions are used on each subdomain 

¢?)(x) 

¢j2)(x) 

Xi±l- X 

IJ±l-X] , 

I-Xl 

Xj+l- X ) , 

j = l. 2, ... , n - 1 

j=I,2, ... ,n-1 

The standard assembly process leads to a tridiagonal symmetric stiffness matrix K. where 

lX' x d4>,-_,(x) dx 
( 

I') )2 
Xn-l dx 

I x) x d4>j_l(r) dx 
( 

(2) )2 
IJ-l dx 

+ 

~ 
(I) ~2 rXj+1 x d4>, (x) dx 2 < . < n - 1 

Jx) dx - ) -
(I) (2) 

I x)+' X ~ (~) dx. x, dr dr 

The force vector b is given by 

- f:,2 ;2¢P)(x)dx - (_xd~~r») x-a 

Jx n 2 -1.(2) ()d (. dU(xI, 
- X._I x 2 '1'n-l X X- -x---;r;:-)x=b 

- f:,j_, x
2,¢j'2},1(X)dx 

- f2+' x
2,<t>?)(x)dx :l ~ j ~ n-l. 

( 10.2) 

(10.3) 

(10.4) 

The natural boundary condition given above can be substituted immediately into the expression 
for bn . The usual procedure for handling the essential boundary condition is to multiply the first 
column of K by the given value and subtract the result from the force vector and then delete the 
first row and first column of K. This modification only affects the original b2 which now becomes 

(10.5 ) 

Hence the problem reduces to the solution of an (n -I) x (n -1) symmetric tridiagonal system. In the 
interests of space efficiency this matrix can be stored as a vector whose components are determined 
from the matrix elements in the following way: 
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12j = Kj.j+l 1 ~ j ~ n - 1 

II 12 
13 14 

12n - 3 12n - 2 

12n - 1 

The Gaussian elimination triangulation process for the system reduces to 

(lO.6) 

and 
b~ = b1 

b' - b lfi- 2 b 2 <_ j <_ n (10.7) 
j - j - I'J_3 j-l 

where I: and bi are the modified components of I and b respectively. 
The recursive definitions given here are very suitable for immediate translation into a functional 

program which is presented in the next section. 
The back-substitution algorithm is given by 

( 10.1') 

where aj, j = 1 ... n, are the elements of the solution vector 

10.1.2 The SASL (FSC) Program 

It is instructive to consider the top-down design approach to programming the solution to the giVf'n 
problem. First it is noted that the final answer is the vector of nodal quantities. Hence a function 
must be defined which takes as arguments the stiffness matrix (the vector I in the previous section) 
and the force vector b and returns the solution vector as its result. The vectors I and b must 
be assembled from the terms in equations (10.3) and (10.4). Therefore functions must be defined 
which take the subinterval boundary points Ij and use numerical integration to return as a result 
the vectors I and b. These functions in turn require values of OJ and dOj/dx: so finally functions for 
these shape functions are provided. This kind of breakdown forces the programmer into a modular 
decomposition of the problem. Each of the required functions wiII now be presented in the sequence 
in which they have to be written (not necessarily designed) to satisfy the scope rules of SASL. This 
order is essentially the reverse of the design order outlined above. Note: FSC does not require this 
ordering and we could write the FSC function definitions in any order. The functions OJ and doj/dx 
from (10.2) are defined with the help of the following function which returns the number at position 
i in the vector x: 
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SASL: ____________________________________________________ __ 

Let POSH be lambda x.lambda i. 
i = 1 -> hd x; 

POSH (tl x) (i-i) 

FSC: ________________________________________________________ __ 

We may use the primitive array indexing for this purpose. If we wanted to implement the above 
function we could write 

> POSH :: IHT -> [a] -> a 
> POSH i x = xCi] 

In the following definitions, xj (X in FSC) is the vector of Xj'S and i denotes which of t he two 
element shape functions is being computed. 
SASL: ________________________________________________________ __ 

let PHI be lambda x. lambda j. lambda i. lambda xj. 
i = 1 -> (POSH xj (j+i)-x ) DIV (POSH xj (j+i)-POSR xj j); 

(x -POSH xj j) DIV (POSH xj (j+1)-POSR xj j) 

let DPHIDX be lambda x.lambda j. lambda i. lambda xj 
i = 1 -> (-1) DIV (POSH xj (j+i) - POSH xj j); 

(1) DIV (POSH xj (j+i) - POSH xj j) 

FSC: ____________________________________________________________ __ 

> PHI :: DOUBLE -> IHT -> IHT -> [DOUBLE] -> DOUBLE 
> PHI x j 1 X = (X[j+i] - x) / (X[j+i] - X[j]) 
> PHI x j _ X = (x - X[j]) / (X[j+i] - X[j]) 

> DPHIDX :: DOUBLE -> IHT -> IHT -> [DOUBLE] -> DOUBLE 
> DPHIDX x j 1 X = -l/(X[j+i] - X[j]) 
> DPHIDX x j _ X = 1/(X[j+1] - X[j]) 

The integrands in (10.3) and (10.4) can now be evaluated using PHI and DPHIDX: 
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SASL: ____________________________________________________ _ 

let F be lambda x. 2 DIV (x*x) 

in 

let FINT be lambda x. lambda j. lambda i. lambda k. lambda xj. 

k = 3 -> (F x) * (PHI x j i xj); 
(DPHIDX x j i xj) * (DPHIDX x j k ij) * x 

FSC: ________________________________________________________ _ 

> FINT :: DOUBLE -> INT -> INT -> INT -> [DOUBLE] -> DOUBLE 
> FINT x j i k X I k == 3 = 2/x-2 * PHI{x,j,i,X} 
> I otherwise = DPHIDX{x,j,i,X} * DPHIDX{x,j,k,X} * x 

Here k = lor 2 determines whether tPJl) or tPJ2) is calculated, whereas k = 3 indicates calculations 
of the integrand for the force vector. 

Numerical integration is carried out using Gaussian quadrature. The arguments for such a 
function are the specifications for the integrand given earlier as well as the lists of the absicissae xg 
and the weights wg for the quadrature and the end points of the integration interval al and b1 . 
SASL: __________________________________________________________ ___ 

let GQUAD be lambda bi. lambda ai. lambda j. lambda i. lambda k. 
lambda xj. lambda xg. lambda wg. 

xg = / -> 0; 
((bi - ai) DIV 2) * (hd wg) 
* FINT ((hd xg) * ((bi - ai) DIV 2) 
+ ((bi + ai) DIV 2» j 1 J xj 
+ GQUAD bi ai j i k xj (tl xg) (tl wg) 

FSC: __________________________________________________________ _ 

> GQUAD :: DOUBLE->DOUBLE->INT->INT->INT-> [DOUBLE]->[DOUBLE]-> [DOUBL E]->DOUBLE 
> GQUAD b a j i k X xs ws 
> = sum[pr*w*FINT{x*pr+pm,j,i,k,X}1 w in ws dot x in xs] 
> where pm = (b+a)/2 
> pr = (b-a)/2 

The assembly of the above integrals into the vector representing the stiffness matrix follows ac­
cording to (10.3): 
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SASL: ____________________________________________________ ___ 

let L be lambda j. lambda xj. lambda xg. lambda vg. lambda n. 

j= (n-1) -> GQUAD (POSN xj (j +1» 
(POSN xj j) (n-1) 2 2 xj xg vg:/; 

GQUAD (POSN xj (j +1» 
(POSN xj j) j 2 2 xj xg vg+ 
GQUAD (POSN xj (j+2» 
(POSN xj (j+1» (j+1) 1 1 xj xg vg): 
GQUAD (POSN xj (j+2» 
(POSN xj (j+1» (j+1) 1 2 xj xg vg): 
L (j+1) xj xg vg n 

FSC: __________________________________________________________ _ 

> mkL :: [DOUBLE]->[DOUBLE]->[DOUBLE]->INT->[DOUBLE] 
> mkL X xs ws N 
> = [ GQUAD X[j+1] X[j] j 2 2 X xs vs + 
> GQUAD X[j+2] X[j+1] (j+1) 1 1 X xs vs 
> GQUAD X[j+2] X[j+1] (j+1) 1 2 X xs vs 
> j in [1 .. N-2]] +> GQUAD X[N] X[N-1] (N-1) 2 2 X xs vs 

An analogous function assembles the force vector according to (10.4) and noting (10.5). bCI is 
the essential boundary condition U (a) while bC2 is the natural boundary condition (-Ide / dx ).r=b. 

202 



10. Use of FSC in Practice 10.1. Functional Programming for Finite Elements 

SASL: ____________________________________________________ ___ 

let B be lambda j. lambda xj. lambda xg. 
lambda wg. lambda n. lmdab bel. lmdab be2. 

j=2 -> - GQUAD (POSH xj 2) (POSH xj 1) 1 2 3 xj xg wg 
- GQUAD (POSH xj 3) (POSH xj 2) 2 1 3 xj xg wg 
- bel * GQUAD (POSH xj 2) (POSH xj 1) 1 1 2 xj xg wg 

: B (j+l) xj wg n bel be2; 
k=n -> - GQUAD (POSH xj n) (POSH xj (n-l» (n-l) 2 3 xj xg wg - be2:/; 

- GQUAD (POSH xj j) (POSH xj (j-l» (j-l) 2 3 xj xg wg 
- GQUAD (POSH xj (j+l» (POSH xj j) j 1 3 xj xg wg 
: B (j+l) xj xg wg n bel be2 

FSC:: ______________________________________________________ _ 

> mkB :: [DOUBLE]-> [DOUBLE]-> [DOUBLE]->IHT->DOUBLE->DOUBLE->[DOU BLE] 
> mkB X xs ws H bel be2 
> -GQUAD X[2] X[l] 1 2 3 X xs ws 
> -GQUAD X[3] X[2] 2 1 3 X xs ws 
> -bel * GQUAD X[2] X[l] 1 1 2 X xs ws 
> <+ [ -GQUAD X[j] X[j-l] (j-l) 2 3 X xs ws 
> - GQUAD X[j-l] X[j] j 1 3 X xs ws I j in [3 .. H-l] ] +> 
> -GQUAD X[H] X[H-l] (H-l) 2 3 X xs ws - be2 

The system equations have now been developed and can be used later on in the solver which is 
now defined. First, SASL functions are written to find the ith component of the vector 1 according 
to (10.6). 

SASL: ________________________________________________________ __ 

let LP be lambda L. lambda i. 

i = 1 -> POSH L 1; 
i MOD 2 = 0 -> POSH L i; 
POSH L i - (POSH L (i-l) * POSH L (i-l» DIV LP L (i-2) 
FSC: ________________________________________________________ _ 

> LP :: [DOUBLE]->[DOUBLE] 
> LP (1 <:L:> H) 

> = let array L'[l . . H] ordered [1 . . H] where 
> L' [1] = L[1] 

> L'[i] I (i is even) = L[i] 
> I otherwise = L[i] - L[i-l]-2/L'[i-2] 
> in L' 

Similarly, from (10.7) the modified ith component of b IS 
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SASL: ____________________________________________________ ___ 

let BP be lambda L. lambda b. lambda i. 

i=1 -> POSN b 1; 

POSN b i - (POSN L (2*i-2) * POSH b (i-1» DIV LP L (2 *i - 3) 

let BSUB be lambda L. lambda b. lambda n. lambda i. 

i = 1->(BP L b i) DIV (LP L (2*n-1»:/; 
(BP L b i - LP L (2*i) * hd (BSUB L b n (i+1» DIV (LP L (2*n-1» 

: BSUB L b n (i+1) 

FSC: __________________________________________________________ _ 

> BP :: [DOUBLE] -> [DOUBLE] -> [DOUBLE] 
> BP L' (1 <: B :> N) 
> = let array B'[1 .. N] ordered [1 . . N] where 
> B' [1] = B[1] 
> B' [j] = B[j]-L' [2j-2]/L' [2j-3]*B' [j-1] 
> in B' 

These functions are then used in the function for back-substitution which follows from (10.8). 
SASL: __________________________________________________________ ___ 

let BSUB be lambda L. lambda b. lambda n. lambda i. 

i = 1->(BP L b i) DIV (LP L (2*n-1»:/; 
(BP L b i - LP L (2*i) * hd (BSUB L b n (i+1» DIV (LP L (2*n-1» 
BSUB L b n (i+1) 

FSC: __________________________________________________________ _ 

> BSUB [DOUBLE] -> [DOUBLE]->[DOUBLE] 
> BSUB L (1 <: B :> N) 
> = let array a[1 .. N] ordered [N .. 1] where 
> a[j] I (j == H) = B[N]/L[2N-1] 
> I otherwise = (B[j] - L[2j]*a[j+1])/L[2j-1] 
> in a 

The final solution vector a can then be obtained by applying BSUB to the stiffness matrix and 
force vector defined above: 
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SASL: __________________________________________________ ___ 

let A be lambda n. lambda xj. lambda xg. 
lambda wg. lambda be1. lambda be2. 

BSUB (L 1 xj xg wg n) (B 2 xj xg wg n bv1 bv2) (n-1) 1 

FSC: ________________________________________________________ _ 

> A .. INT-> [DOUBLE]->[DOUBLE]->[DOUBLE]->DOUBLE->DOUBLE->[DOUB LE] 
> A N X x_g w_g BC1 BC2 
> = BSUB L' B' where 
> L' = LP L 
> B' = BP L' B 
> L = mkL X x_g w_g N 
> B = mkB X x_g w_g N BC1 BC2 

10.1.3 Conclusions 

In the original paper Dwyer concludes that the functions presented above demonstrate the power and 
conciseness of functional languages. Each function is short and therefore can easily be tested in an 
independent manner. The design of the solution forces the programmer to think in a highly-modular 
fashion and thus adhere strictly to top-down design principles. Dwyer also mentions that there are, 
however, some major disadvantages associated with programming in a functional manner. The 
efficiency of execution of most functional programs is low. We believe FSC improves the readability 
of this particular example and, as we show in the sections that follow, FSC addresses these efficiency 
concerns also. 

10.2 Summed axpys 

In this section we concentrate on the raw power and flexibility of FSC by considering the computation 

axpy = ax + y 

In order that we may compare this with Haskell the computatiQn we actually perform is 

N 

~)a.ri + Yi) 
;=1 

We use this computation since its output is small and hence I/O does not taint the results too badly. 

10.2.1 The programs 

The programs to carry out the above computation are as follows: 
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10.2. Summed axpys 

10.2.1.1 C summed axpy 

} 

double summed_daxpy(int N, double a, double *x, double *y) { 
int i; 
double acc=O.O; 
for(i=N;i--j) 

acc += (a * x[i]+ y[i]); 
return acc; 

mainO { 

} 

int N,i; 
time_t timer=1; 
double a; 
double *x; 
double *y; 

scanf("%d\n",8cN); /* read N */ 
scanf("%f\n",8ca); /* read a */ 

x = (double*)malloc«unsigned) (N * sizeof(double»); 
for (i=O;i<N;i++) { 

scanf("%lf\n",8cx[i]); /* read in elements of X */ 
} 

x = (double*)malloc«unsigned long) (N * sizeof(double»); 
for (i=O;i<N;i++) { 

scanf (''%If\n'' , 8cy [i] ); /* read in elements of Y */ 
} 

timer = clock(); 
a = summed_daxpy(N,a,x,y); 
timer = clock() - timer; 

/* start the clock */ 
/* perform computation */ 
/* evaluate interval */ 

printf(" result = %f\n",a); /* print result for validation */ 
printf(" time elapsed = %ld\n",timer); /* print interval */ 

exit(O); 

10.2.1.2 Haskell summed axpy 

> 
> 

main Dialogue 
main = interact (show.process.lines) 
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> process :: [StringJ->Double 
> process [astr,xstr,ystr] = summed_axpy a x y 
> where (a,x,y) 
> = (read astr, 
> read xstr, 
> read ystr)::(Double,[Double],[Double]) 

> summed_axoya xs ys :: Double -> [Double] -> [Double] -> Double 
> summed_axpy a xs ys = sum [ a * x + y I (x,y) <- zip xs ys] 

10.2.1.3 FSC summed axpy 

> main :: DOUBLE -> [DOUBLE]-2 -> 10 DOUBLE 

> main a X Y = do 10 return summed_axpy a X Y 

> summed_axpy :: DOUBLE -> [DOUBLE] -> [DOUBLE] -> DOUBLE 
> summed_axpy a X Y = sum[a*x+ylx in X dot y in y] 

The codes were then compiled and executed to evaluate 

N 

~)2.5 x 0.1 + 1.1) = I.:35.V 
;=1 

for various values of N. 

10.2.2 Executable Size 

Code C Haskell FSC 
Size of stripped executable(bytes) 3888 717352 64628 

Table 10.1: C / Haskell / FSC executable sizes. 

Table 10.1 shows that the prototype FSC compiler generated an executable larger than the C version 
but much smaller than the Haskell version. 

10.2.3 Execution Efficiency 

The programs were timed using various values for X. In the following discussion we use the conven­
tion X(math) to denote the program in language X disregarding the non-mathematical work such 
as I/O. 
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Figure 10.2: Timings (unix) for summed axpys with I/O 

10.2.4 Results 

Fig. 10.2 shows the results of running the above code on various values of iV timing the execution 
(including I/O). Fig. 10.3 shows the results of running the (' and FSC code on various values of ;V 

timing only the computational kernel. These values show that for this example the computational 
kernel of FSC runs at a speed comparable with C and FSC easily outstrips the corresponding Haskell 
program. 

10.3 Argument Domains 

We continue to take as our example the axpy computation and examine the generality of this 
computation. In FSC, we consider the function 

> axpy a X Y = [a*x + yl x in X dot y in y] 

as being general, as we may apply it to vectors and scalars of many different component types. that 
is, all the following calls 

> floats :: REAL 
> floats = axpy 2.5 [0.1] [1.1] 
> doubles :: DOUBLE 
> doubles = axpy 2.5d [O.ld] [l.ld] 
> ints :: INT 
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Figure 10.3: Timings (in-code) for summed axpys without I/O 

> ints = axpy 2 [0] [1] 

are valid. Languages such as C++ support templates which allow the same behaviour although 
explicit templates can get confusing. In addition to the above examples we may also calculate 

> real_int_real :: REAL 
> real_int_real = axpy 2.5 [1] [1.0] 

That is, our type system allows much more freedom than is available in template based systems and 
allows functions whose return types are non-trivial functions of their input types. 

10.4 Dot Prod nets 

We now consider the computation 
dot(x,y) = xT Y 

which may be written tersely in a functional language (such as FSC) as 

dotprod X Y = sum(zipWith (*) X Y) 

where zipWith is defined as 

> zipWith f X Y = [ f x y I x in X dot y in y] 
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Because we are able to reason at a higher level about this function, the FSC compiler is able to 
automatically inline the call to zipWith, reducing the number of array traversals. If we time thi~ 
against the comparable C code retaining the modularity. 

double* timesVec(int I,double *x,double *y) 
{ 

} 

int i; 
for (i=O;i<N;i++) 

xCi] *= y[i]; 
return x; 

double sum(int N,double *x) 
{ 

} 

int i; 
double aee=O.O; 
for (i=O;i<N;i++) 

ace += x[i]; 
return ace; 

double dot(int N,double *x,double *y) 
{ 

return sum(N,timesVec(N,x,y»; 
} 

we find that this modularity causes inefficiency. A dot-product of two vectors of order 10'; , akes 
1.21 seconds in C (gcc -04) as opposed to 0.71 seconds in FSC1

. Written more conventionally the 
C code acheives the same efficiency as FSC as in Section 10.2. 

10.5 Gaussian Quadrature 

We now consider an FSC version of the [Haskell] Gaussian quadrature function described in Chapter 
4: 

> -- Haskell Gaussian Quadrature --
> gq x w f (a,b) = pr * sum(zipWith f1 w x) 
> where f1 wi xi = wi * (f (pm+pr*xi) + f (pm-pr*xi» 
> 
> 

pm = (b+a)/2.0 
pr = (b-a)/2.0 

The FSC version is almost identical to the Haskell version, differing only in that double-precision 
floating point numbers in FSC have d after them. 

1 To regain this performance from C the functions must be declared static inline. 
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Fig ure 10.4: Area under a normal cun'e 

> -- FSC Gaussian Quadrature --
> gq x ~ f a b = pr * sum(zipWith f1 w x ) 
> where f1 wi xi = wi * (f (pm+pr*x i) + f (pm-pr*xi » 
> pm = (b+a)/2 . 0d 
> pr = (b-a)/2 . 0d 

It is th is fun ctio n whi ch we use in t he next sect ion to tabu late t he valu or the cumulat iv d n ity 
function (CDF) of a normal di stributio n. 

10.6 Normal CDFs : Extended Example 

This sect ion is a n extended example detai li ng t he proces of compi ling the code to comput th 
ta bul ated values ror the cumul a tive density fun ct io n (C DF ) of the norm a l di tribulio n with mean J.I 
and standard deviation u. 

10.6.1 The Problem 

The prob lem we choose to solve is to tabu late t h a rea un der th cu rv of a normal probability 
distr ibution fun ction (PDF) fro m zero to various values o f x (Fig. 10. ). \V choo thi xampl 
as the tab le should be fami li ar to t he reader a nd , as the normal C DF doe not admit a clo d for m , 
it is a mot ivat ing example. In an im plem entat io n we in ist t hat th e int g ration be p rfo rm cI by 
a general integ rat ing fun ctio n , that t he values of J.I and u b runt ime cI p ndent and that each 
in teg ration be evalu ated independentl y to s implify t h definition . 

10.6.2 The Mathematical Formulation 

The values we wi h to find may be defin ed as 

1 l x 
- (y _ ~)O d -- e 0 y 

u,j'E 0 ' 
x = 0,0,20, .. .. 4 - 0 

T he FSC code to comput.e this table is as follows usinf abscissae and weights taken fro m [1]. 

> main DOUBLE-2 - > INT - > IO (Array DOUBLE ) 
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> main mu sigma I = do IO return RESULT 
> where RESULT = normalCDF mu sigma I 

> normalCDF :: DOUBLE -> DOUBLE -> liT -> [DOUBLE] 
> normalCDF mu sigma I 
> = [ gq x w distribution O.OdO (4.0dO*i)/1 I i in [0 .. 1-1]] 
> 
> 
> 
> 
> 
> 
> 

where distribution x = normal PDF mu sigma x 
x = [0.238619186083197dO, -- abscissae 

0.661209386466265dO, 
0.932469514203152dO] 

w = [0.467913934572691dO, -- weights 
0.360761573048139dO, 
0.171324492379170dO] 

> normalPDF :: DOUBLE -> DOUBLE -> DOUBLE -> DOUBLE 
> normalPDF mu sigma x 
> = exp((x-mu)-2/-2.0dO)/(sigma*sqrt(2.0dO*PI» 
> where PI = 3. 14159265358979323846dO 

This program was benchmarked against a C program written by the author and a C++ program 
kindly written by Dr. Misra [68]. These codes were hand-optimised for speed (for instance tl ... C 
version does not compute .J2ir but has it defined as 2.50663 in the code). These were run on tables 
ranging in size from 0 to 50,000 entries. The results of this benchmark are shown in Fig. 10.;). 

10.6.3 Discussion 

On this example, the FSC version performs remarkably well, running at just under double the speed 
of the C and C++ versions and the C version sneaks in under the C++ version as one would expt'ct. 
The efficiency gain over the imperative versions is due to the ability to manipulate and optillli~e the 
code more freely in the absence of side effects. A C compiler will not try to inline a function whell 
it is passed as a pointer rather than when it is simply called. To FSC functions are simply values 
like any other and, as such, may be freely in-lined and optimised further after the in-lining. The C 
code can be found in Appendix B. 

10.7 Cyclic Reduction: Extended Example 

Cyclic reduction [36] (or odd-even reduction) is a method of solving a tridiagonal system of equations 
which may be performed in parallel~. The variation of cyclic reduction we choose to implement 

2 Cyclic reductions were mentioned in Chapter 4 where a quad tree version was presented. 
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Figure 10.5: Timings (in-code) for CDF generation 

proceeds as follows: 
Yl 

Yn 

A tridiagonal system of equations Ax = Y is transformed into an equivalent pentadiagonal "ystf'11I 

with zero sub- and super-diagonals. 

b(l) 
1 0 

0 b(l ) 
2 

(1) a3 

(1) 
C1 

(1) 
an 0 

(1) 
C(n_2) 

0 
b~l ) 

(1 ) 
YI 

(I) 
Yn 

This system is then reordered so that it is expressed as two sub-problems of half the dimension. 
That is, if we assume that n is even we renumber t he equations in the order 1. 3, ... , n - 1, '2. -1 .... , n 
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and renumber the unknowns in a similar way. 

b(l) (1) 
1 c1 

(1) 
a3 

x,. 

(1 ) 
Yl 

(1 ) 
Yn-l 

--(1-)-

Y2 

(I) 
Y,. 

Since we now have two tridiagonal systems we may apply recursively and in parallel t Iw above 
transformation process to the two non-zero quadrants of the matrix until we reach a "pI of trivial 
equations. The transformation step to create the pentadiagonal system described above is given 
below 

(1) 
a· , 
bel) 
• (1) 

Cj 
(1) 

Yj 

O'jaj_l 

bj + O'jCj_1 + i3jaj+l 

i3j Ci+l 

Yi + O'jYj-l + i3jYi+l 

-a;jb j _ l 
-c;jb j +1 

though the more formal version is: 

(1) 
ai O'jaj-1 iE{3, ... ,n} 

{ bl + i3la2 if i = 1 
bel) bi + O'iCi-l + i3i ai+l if i < i < n iE{l, ... ,n} 

I 

bn + O'nCn-l if i = n 
(1) 

Cj i3i C;+1 iE{1, ... ,n-2} 

{ Yl + i3lY2 if i = 1 
(1) 

Yi + O'iYi-l + i3jYi+l if i < i < 11 iE{l, ... ,n} Yi 
Yn + O'nYn-1 if i = n 

O'i -a;jbi - l i E {2, ... , n} 

i3i -c;jbi+1 iE{l, ... ,n-l} 

We may implement this algorithm in FSC as 

> 
> a' = [alpha[i] * a[i-l] i in [3 .. N] ] 

> b' = [b[1] + beta[l] * a[2]] 
> ++[b[i] + alpha[i]*c[i-l] + beta[i]*a[i+l] i in [2 .. N-1] ] 
> ++[b[N] + alpha[N]*c[N-l]] 
> c' = [beta[i] * c[i+l] i in [1. .N-2] ] 
> y' = [y[l] + beta[l] * y[2]] 
> ++[y[i] + alpha[i]*y[i-l] + beta[i]*y[i+l] i in [2 .. N-1] ] 
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> ++[y[l] + alpha[I]*y[I-1]] 
> alpha = [-a[i]/b[i-1] 
> beta = [-c[i]/b[i+1] 

i in [2 .. 1] ] 
i in [1. .1-1] ] 

and we immediately see that there is a direct correlation. Interestingly, we could also implement an 
FSC version of the original presentation as 

> ... 
> array a' [i] 
> array b' [i] 
> array c' [i] 
> array y' [i] 
> array alpha[i] 
> array beta[i] 

= alpha[i] * a[i-1] 
= b[i] + alpha[i]*c[i-1] 
= beta[i] * c[i+1] 
= y[i] + alpha[i]*y[i-1] 

-a[i] /b [i -1] 
= -c[i]/b[i+1] 

+ beta[i]*a[i+1] 

+ beta[i]*y[i+1] 

We choose to use the former presentation rather than the latter as this it more efficient (the bounds 
of the array are explicitly given). All the implementations (including C++) relate to systems of '2:' 
equations where N is an integer. Our first code for a full cyclic reduction is: 

> cyclic_reduction a (b:> I) c y 
> = if (N==2) 
> then Branch LeaHy [1] /b [1]} LeaHy [2] /b [2]} 
> else 
> Branch cyclic_reduction{2<:a1,b1,c1,y1} 
> cyclic_reduction{2<:a2,b2,c2,y2} 
> where 
> (a1,a2) = odd_even a' 
> (b1,b2) = odd_even b' 
> (c1,c2) = odd_even c' 
> (y1,y2) = odd_even y' 

> a1 [alpha[i] * c[i-1] 

> b1 [b[1] + beta[1] * a[2]] 
> ++[b[i] + alpha[i]*c[i-1] + beta[i]*a[i+1] 
> 

> 

> 
> 
> 

> 

> 

++[b[N] + alpha[N]*c[N-1]] 

c' [beta[i] * c[i+1] 

y' [y[1] + beta[1] * y[2]] 
++[y[i] + alpha[i]*y[i-1] + beta[i]*y[i+1] 
++[y[N] + alpha[N]*y[N-1]] 

alpha = [-a[i]/b[i-1] 

beta = [-c[i]/b[i+1] 
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where the result is stored in a tree, to avoid repeated array copying. Once the tree is complete a 
result array may be generated so that copying is avoided as a post processing phase: 

> FFT_tree_to_array :: [Double] -> liT -> liT -> Tree DOUBLE 
> FFT_tree_to_array A n I (Leaf a) 
> = (A[m -> a] ,n+l) 
> where m = bitflip(n,N) 
> FFT_tree_to_array A n I (Branch a b) 
> = FFT_tree_to_array A' n' I b 
> where (A',n') = FFT_tree_to_array A n I a 

where bitflip is a function from the standard prelude to perform an FFT permutation: 

> bitflip :: INT -> INT -> INT 
> bitflip n N = (x I x <- bitXOR{x«l,bitAND i 1}; 

> 
> 

i <- i»l; 
k <- k»l I (x,i,k) = (O,I,n» 

Our second code reorders the results on the fly using the prelude function riffle 

> riffle X Y = [ x;y I x in X dot y in y] 

which interleaves two arrays, to give 

> cyclic_reduction a (b:> N) c y 
> = if (N==2) 
> then [y [1] /b [1] , y [2] /b [2]] 
> else 
> riffle cyclic_reduction{2<:al,bl,cl,yl} 
> cyclic_reduction{2<:a2,b2,c2,y2} 
> where 
> (al,a2) = odd_even a' 
> (bl,b2) = odd_even b' 
> (cl,c2) odd_even c' 
> (yl,y2) = odd_even y' 

> al [alpha[i] * c[i-l] 

> bl [b[l] + beta[l] * a[2]] 
> ++[b[i] + alpha[i]*c[i-l] + beta[i]*a[i+l] 
> ++[b[N] + alpha[N]*c[N-l]] 

> c' [beta [iJ * c [i +1] 

> y' [y[1] + beta[l] * y[2]] 
> ++[y[i] + alpha[i]*y[i-l] + beta[i]*y[i+l] 
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> ++[yoo + alpha[I]*y[N-1]] 

> alpha = [-a[i]/b[i-l] i in [2 .. 1] ] 

> i in [1 .. 1-1] ] 

10.7.0.1 Results 

These codes were executed on systems of equations with up to 214 elements and bench-marked 
against an existing C++ cyclic reduction code which had previously been run against Haskell and 
achieved a speed of at least 20 times that of Haskell [65]. The results of running this code can be 
seen in Fig. 10.6. These figures indicate that the C++ code runs at D7£ and 2i7£ faster than the 
array and tree versions respectively. Some improvement could be made to the efficiency of the fSC 
versions by sharing loops but for reasons of clarity we chose not to. 

12 FSC -.' 
FSC(tree) ..... . 

10 C++ -

8 

seconds 
6 

4 

2 

o ~~~ ____ -L ____ ~ __ ~ ____ ~ ____ ~ __ ~ ____ ~ 

o 2000 4000 6000 8000 10000 12000 14000 16000 
unknowns 

Figure 10.6: Timings (in-code) for cyclic reductions 

10.7.0.2 Code Size 

The amount of code which was required to write and implement these cyclic reductions ranged from 
290 lines in C++ to 34 lines in FSC (the above function and an entry point). Although the C++ 
version is 9% faster than the FSC version, FSC is over 800% terser on this example, a fact to bear in 
mind when considering raw efficiency versus programming cost, and if array declarations were used 
this line count could fall below 20 without being obfuscated. 
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10.8 Summary 

In this chapter we have presented various algorithms written in FSC. We recoded algorithms to 
demonstrate the tersity of the language and presented two case studies to demonstrate that FSC' 
was capable of contending with C/C++ and in some cases beating it on efficiency! Since larger 
programs are constructed from the building blocks that we have shown run efficient Iy we beliew 
that this vindicates our proof of theory. Further examples of FSC implementations of numerical 
exemplars are, however, provided in Appendix G for the interested reader. 
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Chapter 11 

Related Work 

In this chapter we survey the previous work covering areas introduced in Part II. 

11.1 Use of Multi-Parameter Type Classes 

• Cormack & Wright [23] present an overloading type system which treats overloaded functions ill 
a similar manner to FSC. However, their system does not use implicit typing and all overloaded 
functions have their type parameters explicitly denoted at definition. They do not prp" .. nt a 
typechecking algorithm for their system. 

• The GoFER language [54] has multi-parameter type classes but only provides conservativt· 
overloaded resolution, and therefore cannot support many numerical examples. For example, 
it is necessary (in GoFER) for the user to provide explicit typings on expressions such as 

««3 * 4.5) :: Double) * 4.8) :: Double) * 4 :: Double 

However, the type classes of GoFER are suitable for coding examples involving monads and 
monad transformers [3]. 

• Ophel & Duggan [72] provide a multi-parameter type class system on which many of the 
ideas in FSC are based. However, their system is restricted by the method thpy use for 
implementation (adding extra function parameters), which causes inefficiency and forces some 
syntactic forms to be constrained. Since FSC uses specialisation as its implementation method 
these restrictions are lifted. 

• The latest version of GHC (3.01) has support for multi-parameter type classes as no doubt 
will Standard Haskell[51]. However, these are aimed at the same area as those of GoFER and. 
irrespective of their semantic power, would be too inefficient to use in our problem domain. 
GHC's inclusion of multi-parameter type classes is long overdue. It will be interesting to see 
how the Haskell community uses them. 
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11.2 Use of Transformation Systems 

• Boyle, Fitzpatrick, Clint & Harmer [15, 14] use program transformations to translate code 
expressed as pure LISP and ML to FORTRAl\. They make use of a program transformation 
system called TAMPR which uses transformations in a manner similar to FS('. The manner 
in which FSC differs with TAMPR is that FSC only attempts to perform source to source 
transformations and combine these in a less ad-hoc manner. 

11.3 Use of Recursively Defined Monolithic Arrays 

• Gao, Yates, Dennis & Mullin [37, 38] introduce a monolithic array constructor which offers 
a solution to the overhead of scheduling and synchronisation of recursively defined arrays 
and the copying of intermediate arrays during array construction. In their papers they give 
no implementation details and their array constructor resembles an explicitly ordered array 
declaration in FSC with poorer syntax. That is, information concerning the evaluation order 
of the elements is mandatory. Gao et al. also offer subscript analysis techniques for checking 
the validity of a specified ordering which (as mentioned in Chapter 7) may also be used to 
check the validity of the optional FSC array declaration orderings. 

• Anderson & Hudak [2] present techniques for compiling Haskell array comprehensions based on 
the definition of strict contexts. Their techniques offer a number-theoretic subscript-analysis 
of Haskell arrays to allow safe-eager evaluation. FSC takes the alternative view that the user 
be allowed to specify an ordering of array evaluation if the default dynamic schedule is not 
efficient enough. However (as demonstrated in Chapter 7) FSC's default scheduling generates 
tags of finite size independent of the array expression rather than (possibly nested, large) 
closures, hence efficiency-loss is not such an issue. 

220 



Part III 

Conclusions 
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Chapter 12 

Conclusions 

Numerical methods often have very elegant definitions which are easily understood. However it is 
sadly the case that often an efficient implementation of these methods is rather obscure. These 
implementations are difficult to verify formally and are also difficult to correct, modify or reason 
about. 

12.0.1 Summary of Thesis 

In this thesis we present a study of the principles underlying the design and implementation of a 
functional language specialised to numerical programming. We justify the design decisions we haw 
taken via the use of empirical investigation of numerical functional programs and provide proof of 
concept of our ideas via results from experiments using an experimental-prototype implementation. 

The techniques used in this thesis to investigate existing functional language usage art' not 
new, although their application to this area is. We follow the same technique which led to the 
RISe revolution in microprocessor design, namely perform a quantitative analysis of commonly 
used features and provide a system which offers low-cost features. 

We integrate the feel of Haskell into FSe such that numerical algorithms are specified in a manner 
which encourages formal verification as the implementation is often extremely close to the tpxtbook 
definition. 

Since the semantics of kernel FSe are simple l the ability to perform optimisation is great. \'·f· 
further enhance this innate ability by defining a transformational metalanguage which allows domain 
specific transformations to be defined, combined and reasoned about. 

This combining is important as transformations may be verified in isolation prior to combination. 
The prototype compiler is only the initial step in vindicating the work presented in this thesis. 

The compiler is not perfect (far from it), however we believe the basic ideas on which it is based 
are sound and that it can be considered as a proof of concept. That is, we may consider the results 
presented in this thesis as proof that purely-functional high performance computing in a Haskellesque 
style is indeed feasible. 

I Compared with other languages. 
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12. Conclusions 12.1. .-\ssessmen t 

12.1 Assessment 

The importance of the work reported here is: 

• It lessens the weight of evidence supporting the claim that functional languages are toys which 
cannot generate real-world performance. 

• It supports the claim that functional languages may be implemented to run at comparable 
speeds to C/Fortran. 

• It highlights the vast difference in performance of a system driven by pragmatic, rather than 
aesthetic, considerations. 

• It presents a study of a functional language used in practice to program numerical method" and 
discusses the suitability of Haskell as a vehicle for expressing numerical programs. Empirical 
data regarding the level to which Haskellesque language features are used in numerical examples 
is also presented and as such, this thesis forms a useful source of reference for future language 
design. 

• It offers and demonstrates ideas pertinent to functional language development such as recursive 
arrays and multi-parameter type classes and unifies ideas from the SIS:\. Land Haskell languages 
such as I/O and array/list comprehensions. 

• It shows that, for efficiency reasons, numerical functional programming languages must be 
strict and must operate over datatypes in a catamorphic manner. It also demonstrates that 
this working with the grain -style of algorithm is not always possible and thus arrays are 
necessary. This investigation has also provided a non-pivoting version of Lr-factorisation 
which does not require all leading submatrices to be non-singular. 

• It throws new light on earlier results such as conclusions arising from the SOR implementation 
of Wainwright & Sexton [100] where a catamorphic appoach was not used. 

12.2 Discussion 

We may draw an analogy between the designs of Haskell/FSC and the schools of mathematical 
thought of Intuitionism [6] /Classicallogic. \Ye liken FSC compilation to classic logic and proofs such 
as reductio ad absurdum whilst likening Haskell compilation to intuitionistic logic and construct ivl' 
proof. 

This analogy may be best understood by noticing that: 

• Intuitionistic proofs are always valid in classical logic, similarly Haskell style compilation is 
always valid in FSC. 

• Although not usable in constructive mathematics, classical proofs are watertight enough for 
most purposes. Similarly, Haskell-style compilation may be applied to FSC but not the con­
verse. However FSC style compilation gets you further and is still formal in the same manner 
that classical logic and intuitionistic logic are both formaL 
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• Just as m~ny classical proo~s do not .admit a constructive equivalent. many easily expr~s.,d 
FSC algorIthms do not admIt an efficIent Haskell equivalent. 

In short, FSC is a pragmatic tool with a mathematical impetus designed to perform a well-defined 
task. However, Haskell is an attempt at embedding a set (albeit small) of idealist principles within 
a language. As such, FSC out-performs Haskell with ease. 

12.3 Further Work 

12.3.1 The FSC compiler 

The current implementation of the FSC compiler can be described as prototype at best. The results 
that it produces are good but it is far too inefficient to be used in anger (t he cyclic reduct ion 
example presented earlier takes over an hour to compile on an Intel Pentium). This is due to the 
fact that it was not written with efficiency in mind and is implemented in Haskell which is known 
to be inefficient. Before further work is carried out it is suggested that the implementation be 
re-engineered in C in the style of GoFER and Hugs [.,)4]. 

12.3.2 Transformations 

The prototype FSC compiler currently does not include the transformational meta-language. :\s 
such, very little is known about its use in practice. This would be an interesting area of continued 
investigation. The transformational system was implemented as an off-line separate thread of inves­
tigation with its principles being tested via the implementation in terms of a simpler abstract syntax 
tree2 . The behaviour-in-practice of this metalanguage is an area which is ripe for invpstigation. 

12.3.3 Editing 

Although not part of the language, the way in which algorithms are presented often allows code to 
be better understood. 

With this in mind an area of further study would be an editor for FSC. This should allow 

• literate commenting, 

• diagrams, and 

• user-defined hierarchical syntactic-sugaring. 

12.3.4 User-Defined Hierarchical Sugaring 

In mathematics we often invent syntax on the fly and also often give meaning to relative positioning 
and placement in a manner which, although ambiguous. is well understood within its context. For 
example 

2This was not added to the compiler as it was proving unwieldy enough without it. 
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12. Conclusions 12 .. 3. Further Work 

The most alarming of these being f(n) which depending on the situation rna. represent either 
f 0 ... 0 f or d:~<:). To combat this we introduce the idea of hierarchical sugari~g. ------n times 

Overloading in FSC can be thought to form an abstraction, i.e. the function 

f-O = one 
r1 = f 
f-n = f * f-(n-1) 

is of type a -+ INT -+ a for all a such that * : a ~ a - a exists and 0 has a multiplicative ident it v. 
This is opposed to using similar notation to mean very different things. . 

Hierarchical sugaring is the act of providing views for syntax which 

• hides as much or as little information as required, and 

• allows non-ASCII symbols to be used in programs. 

12.3.5 Example: Quadratic Factorisation 

We begin with the FSC function 

quadFactor abc = let p = -b 
q = sqrt(b-2 - 4a * c) 

in 
(p + q,p - q) / 2a 

A sugaring of this might use the display-rule shown in Fig. 12.1, allowing the function to be written 
as 

quadSolve abc = ( b ± sqrt(b~2 - 4a * c))/2a 

and with other rules written as 

-b ± Jb 2 - 4ac 
quadSolve abc = 2a 

emulating textbook typesetting. User-defined hierarchical sugaring would also allow the visualisation 
of datatypes as in Figure 12.2. 

12.3.6 Matrices 

Perhaps a more motivating example is the sugaring of quadtrees as seen in Fig. 12.2. This emulates 
the shorthand that was used in Chapter 5. So far each of these diagramatic descriptions have been 
flat, and for simple examples this suffices. However, if we have multiple methods of performing 
the same operation we need a different solution. If these methods have exactly the same type then 
type-directed overloading is no use. For example in the following expression 

area = integrate f (0,1) 
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:::JI_ -.x 
name lplusor Minus 

I parameters x y 

dermed IN I 
inline ly I 

let p - x -

q - y ,- - - - -, , , 
'x' + 'Y' In , , - ' , , - , , - , 

(p+q, p-q ) 

Figure 12.1: ± di play rul 

::JI- x 

name IQTree I 
parameters Iml m2 m3 m4 I 

t': defined Iy I 
inline IN I 

lm-l: ~2~ '- -' '--' 
r -., r - ., 

'm3' :m4' 
" , 
, __ I , __ , 

F igure 12 _2: Quadt ree display rul e 
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it is impossible to overload the functions 

gaussianQuadrature 
simpsonsRule 

(Double -> Double) -> (Double,Double) -> Double 
(Double -> Double) -> (Double,Double) -> Double 

onto the same identifier integrate as their types are identical and as such, a compiler would not 
know which one to choose. However, we may create hierarchical representations of them which may 
be partially viewed. . 

12.3.7 Hierarchical viewing and information hiding 

Using the technique from the last section, it is simple to imagine sugaring Gaussian quadrature and 
Simpson's rule as 

and 

gaussianQuadrature f Ca, b) = J b f(x)dx 
GQa 

simpsonsRule f Ca, b) = r b f(x)dx 
JSimpson a 

respectively. If the two sugarings could be defined in such a way that the subscript information 
was defined at a lower level, this information could be hidden by the editor until needed and the 
presentation of resulting algorithms could be simplified to 

area = 11 f(x)dx 

12.4 Concluding Remarks 

With the current prototype implementation of FSC we have proven that the style of programming 
advocated by functional programming may indeed be used for the efficient implementation of nu­
merical methods. This fact holds independently of the efficiency of our prototype compiler. The 
principles on which our prototype implementation stands are independent of FSC and it would be 
interesting to see how others would interpret the results from Part I of this thesis to form a language. 
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Appendix A 

FSC: Syntax and Kernel semantics 

A.I Lexical Structure 

A.1.0.1 Lexical Program Structure 

JlT'lJqm /II 

Ir.l'c III C 

Illc f'(/I 
sl)ccial 

whllcsJI!I(,c 
1I'IIIIcsi nIT 
whitech!l" 
C071l1llClii 

!lIly 
graphic 

."71 a II 
large 
digit 

-+ 

-+ 

-+ 

{/eumel whilespace} 
I Yldl conzdll'a rs ym I consym I if I ( ra~ spec iall rc,r rI'cdopl re 'i rl'f did 
In I c g( rift oall do ublel eh araci( rlsl ri n gl boolea n 

(j) I, I; I [IJ 1-1'1 {j} 

u'liiteslujJ{ IL'hitesiuJj} 
!I'h Iluh!l 1'1 comm (lit 
sJi!lul TIC !r/iTlcltab 
--{ !lny} llf 1e/11I( 

graph iclspacel lab 
largelsmalll digit 

11"1#1$1%1&1' IC\)I*I+ 
, H·I/I: I; 1<1=1>1?I<o 
[I \ IJ I - I-I' 1{llI' 

albl·· ·Iz 
AIBI·· ·IZ 
0111 .. ·19 

Characters not in the category graphic or Il'hltc,/ujJare not valid and should rf';,ult in a lexillg error. 
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A. FSC: Syntax and Kernel semantics .4.1. Lexical Structure 

Program prag binds 
Bindings binds bindl ; ... ; bind,. n ~ 1 

bind var = expr 

Expression expr exprl expr2 Application 
).. var. up. Lambda abstraction 
case expr of alts Case expression 
if exprl then expr2 else expr3 Conditional 
let bind in expr Local definition 
letrec binds in expr Local recursion 
can Constructor 
var Variable 
literal 

Literal values literal Integer 
Float 
Character 
Double 
Boolean 

Alternatives alts caltl ; ... ; calin n ~ 1 

Constructor alt calt can varl ... l'orn -> expr n~O 

Figure A.I: Syntax of the FSC kernel 
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A. FSC: Syntax and Kernel semantics ..1 .. 1. Lexical Structure 

P[program] : Val 
P[prog] = EVAL[ letrec prog in main] Pind 

EVAL[expr] : Env --> Val 
EVAL[k] p 
EVAL[x] p 

EVAL[el e2] P 
EVAL[A x.e] p 
EVAL[if el then e2 else e3] P 

K[k] 
p x 
(EVAL[el] p) (EVAL[e2] p) 
strict {A x ..... EVAL[e] (p S x 0-- I ••• )) 

EVAL[case el of True -> e2; 
False -> e3] P 

EVAL[let x = e in b ] p EVAL[{h.b) e] p 
EVAL[letrec binds in e] p EVAL[e] (pEBfiX{Ap'.B[binds](p-'Bp'))) 
EVAL[c] p Ail· .. Ain.(C, il,···, in) 

EVAL[case x of Cl Xll ... Xla,->el;···;Cn Inl ... Xnan->en] P 
case EVAL[e] p of 
~1.. 
~ (Cl,ill, .. ·,ila,) 
~ ... 
~ (Cn,inl,.· .,inan ) 

end 

B[binds] : Env -- Env 
B[XI = el; ... ; Xn = en] p 

strict: ( Val --> Val) -+ Val --> Val 
strict f x = f x , if x #- 1.. 
strict f 1.. = 1.. 

{Xi 0-- EVAL[ei] pli E {I, ... , n}} 

Figure A.2: Denotational semantics of the FSC kernel 
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A. FSC: Syntax and Kernel semantics 

_access .. 
_cons .. 
_snoc .. 
fiead .. 
_tail .. 
_nil .. 
.last .. 
_init .. 
_append .. 
_replace .. 
_fill .. 
_size .. 
_liml .. 
_limh .. 
_subarray .. 
_setindex .. 
_isEmpty .. 

Array 0' 

0' 

0' 

Array 0' 

Array 0' 

Array 0' 

Array 0' 

Array 0' 

Array 0' 

Array 0' 

Int 
Array 0' 

Array 0' 

Array 0' 

Array 0' 

Array 0' 

Array 0' 

Int 
Array 0' 

Array 0' 

0' 

Array 0' 

0' 

Array 0' 

Array 0' 

Int 
Int 
Int 
Int 
Int 
Int 
Int 
Baal 

0' 

Array 0' 

Array 0' 

Array 0' 

0' 

0' 

Int 
Array 0 

Figure A.3: Intrinsic array operations 

A .. 1. Lexical Structure 

Array 0' 

Array 0' 

Array 0 

A.I.1 Identifiers and Operators 

tyid 
varid 
eonid 
reservedid 

(small{ smal~largel digitl'I_} ) ... ervedid 

~ tyidl eouid 
~ large{ smal~ largel digitl'I_} 
~ alliarraylatibylcaselclassicrossidatatypeidoidotielse 

fori if I ininf ixl inf ixrl inf ixll instancellet loflordered 
prefixlrepeatlreturnlreturnslsuffixlthenltypelwithlwhen 
whereluntillunless 

varsym ~ 

symbol ----
reservedop ----

{ symbol} reservedop 

!I#I$I%I&I*I+I· I/I<I=I>I-I?I~I\I-II 
. ·1: : I=>I=I~I\III<-I->I: 

A.I.2 Boolean Literals 

boolean ---- TruelFalse 
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A. FSC: Syntax and Kernel semantics A .. 1. Lexical St ruet Un' 

_cons a [i>-- ej, (i + 1) >-- ej+l,"', n >-- en] 
= [(i -1) >-- a,i >-- ei,(i + 1) >-- ei+l,"', n f- en] 

_snoc a [i>-- ei, (i + 1) >-- ei+l,"', n f- en] 
= [i 1-+ ej, (i + 1) >-- ei+l, ... , n f- En. (n + 1) 1-+ a] 

_head [i 1-+ ej, ... , n 1-+ en] = ei 

_tail [i >-- ei, (i + 1) f- ei+l,···. n f- en] = [(i + 1) f- e,+l, .. ·. n f- en] 

_last [i f- e , ,'" , n >-- en] = en 

_init [i 1-+ ei,"', (n - 1) 1-+ ei+l, n r-- en] = [i f- ei,"', (n - 1) f- en-I] 

_append [i 1-+ ei,"', n r-- en] [j f- e],"', m >-- em] 
= [i>-- ei, ... ,n f- en, (n + 1) f- e], ... , (( m - j) + n + 1) f- en] 

_replace [i 1-+ ei,· .. ,j f- e],''', n f- en] j a = [i f- f,.· .. ,j f- a, .. ·. n f- en] 

_fill ina =[i 1-+ a,···,···,n f- a] 

_liml [i 1-+ ei,"', n >-- en] = i 

_limh [i 1-+ f , ,"', n >-- en] = n 

_size [i 1-+ E,.···,n f- en] = (n - i) + 1 

_subarray [i 1-+ ej,···,j r-- f J .···, k f- fk.···, n f- en] j I.: = [j f- f J •···• k f- ek] 

_setindex [i 1-+ f,.···' n f- en] j = [j f- E •• ···, (n - i) + j f- en] 

_isEmpty A = _primlntIntEqual (_si::e A) 0 

Figure A.4: Intrinsic array operation identities 
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A. FSC: Syntax and Kernel semantics 

A.1.3 Numeric Literals 

integer 
float 

double 

A.2 Expressions 

-+ digit{ digit} 
integer. integer( e I EW 1+] integerj 
integer( e I EW I +] integtr 
integer. 

-+ integer.integer((dIDW I+]integerj 
integer(dID)[-I+]inttger 

A.2. Expressions 

In this section, we describe the syntax and semantics of FSC expressions, including their transla! iOIl 

into the FSC kernel where appropriate. 

exp --> aexp :: type (expression type signature) 
expo 

expo --> let {decls[;]} in exp (let expression) 
\apat1 ... apatn -> exp (lambda abstraction n 2: 1) 
if exp then exp else exp ( conditional) 
case exp of {alts[;]} (case expression) 
do type computations (do (10) expressions) 
iteration (iteration/array expressions) 
fexp 

fexp --> fexp aexp (function application) 
fexp [args&nayJ (array access) 
fexp {args. xp } (bracketed application) 
aexp 

aexp --> var (variable) 
con (constructor) 
literal 
() (unit) 
(exp ) (parenthesised expression) 
(exPl' .,. ,exPk) (tuple k 2: 2) 

The FSC grammar is simplified by handling the parsing of operators from outside the grammar. 
Table A.I shows how examples are initially parsed and then transformed to prefix expressions. 

The expression parses as and is transformed to 
f x + g Y « «f x) +) g) y) (+ (f x» (g y) 

n! (n !) ( ! n) 
(x+) BRACK(x +) (+ x) 

Table A.l: Operator parsing 

234 



A. FSC: Syntax and Kernel semantics 

A.2.1 Variables, Constructors and Operators 

var -+ varid I varsym I (op ) (variable) 
con conid Iconsym ( constructor) 
consym varsym 
op ---. varid Ivarsym I' varid' (operator) 

A.2.2 Curried Applications and Lambda Abstractions 

exp --+ \ apatl ... apatn -> up 
fexp --+ fexp aexp 

fexp {argsexp } 

A.2.3 Operator Applications 

exp 

A.2.4 Sections 

A.2.S Conditionals 

A.2.6 Arrays 

eXPl OP;.';x cXP2 
exp OP,u{f;x 

(infix operator application) 
(suffix operator application) 

aexp --+ (exp op) 
(op exp) 

exp ~ if eXPl then eXP2 else eXP3 

iteration --+ [el,· .. ,en] (k ~ 0) 

.4..2. Expressions 

Arrays are of the form [el," ',en], where n ~ 0; the empty array is written []. Arrays are the 
predominant datatype in FSC and hence much work has been done to facilitate their use. Since 
FSC is based heavily around pattern matching there is a facility to pattern match against array 
arguments, with many analogies being drawn with lists in languages such as Haskell. Standard 
operations for constructing arrays are shown in Fig. A.5. 

A.2.7 Tuples 

aexp --+ (el,'" ,en) (n ~ 0) 
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A. FSC: Syntax and Kernel semantics 

Operation Translation 
A +> a append a to the end of A 
a <+ A append a to the front of A 
A ++ B concatenate A and B 
1 <: A set the lower bound of A to I 
A :> u set the upper bound of .4 to u 
[] The empty array 

Figure A.5: Intrinsic operations over arrays 

A.2.8 Unit Expressions and Parenthesised Expressions 

aexp (e) 
() 

A.2.9 Arithmetic Sequences and Strides 

iteration eel .. e2] 
[el: e2{ :e3}] 

(range) 
(stride) 

A.2.10 Array Comprehensions 

iteration -> [retexPl' ... , retexPn 1 range [I inits] ] 
[exPl; ... ; eXPn 1 range [I inits] ] 

retexp -> [aexp of ] exp[(whenlunless) exp] 

inits initl; ... ; initn 

init -> pat = exp 
range updates (whileluntil) up 

(whileluntil)aexp updates 
{updates;} inrange 
all var 

updates -> update l ; ... ; update n 

update pat <- exp 
znrange -+ pat in exp [at var] [(dotlcrossl;) inrange] 
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A. FSC: Syntax and Kernel semantics .-\.2. Expressions 

A.2.11 Value Comprehensions 

iteration ---+ (retvalt , ... , retvaLn I range [I inits] 
retval ---+ exp[(whenlunless) exp] 

n 2: 1 

inits init!; ... ; ini4, 
in it pat = exp 
range ---+ updates (whileluntil) tXp 

(whilelunt il) aexp updates 
{updates;} inrange 
all var 

updates ---+ update l ; ... ; updaten 
update pat <- exp 
mrange --+ pat in exp [at var] [( dotlcrossl;) inrange] 

A.2.12 For Expressions 

iteration 
retexp 
inits 

--+ for [initial {inits }]I rangelo,returns (retexPI"'" r(/f TPn) n 2: 1 

in it 
rangelo. 

updates 
update 
mrange 

-+ [aexp of ] exp[(whenlunless) exp] 
--+ init l ; ... ; ini4, 
-+ pat = exp 
-+ repeat {updates }(whileluntil) exp 

(whileluntil)aexp {repeat updates} 
{updates;} inrange 
all var 

-+ update!; ... ; updaten 
pat <- exp 

-+ pat in exp [at var] [(dotlcrossl;) inrallgf] 

A.2.13 Case Expressions 

exp ---+ case exp of { alts[;]} 
alts ---+ alt l ; ... ; altsn 

alt -+ pat -> exp [where {decls [;]}] 
pat gdexp [where { decls [;]}] 

gdpat gd -> exp [gdpat] 
gd I exp 
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A. FSC: Syntax and Kernel semantics 

A.2.14 Do Expressions 

exp do domain{actions[;]} 
actions action!; ... ; actionn 

action --+ return exp 
pat <- exp 
exp 

domain --+ type 

n ~ 1 
(unit) 
(bind) 

(domain choice) 

A.2.15 Expression Type-Signatures 

exp --+ aexp : : type 

A.2.16 Pattern Matching 

A.2.16.1 Patterns 

pat --+ apat 
con fpats 

apat ---+ var[@apat ] (as pattern) 
con (arity con=O) 
literal 

(wildcard) 
() (unit pattern) 
(pat) (parenthesised pattern) 

(patl' ... , patk ) (tuple pattern, k ~ 2 ) 

[patl' ... , patkJ (array pattern, k ~ 0 ) 

.4.2. Expressions 

[patl' ... , patk ) (left edge array pattern, k ~ 0 ) 

(patl' ... , patkJ (right edge array pattern, k ~ 0 ) 

fpats ---+ {patl' ... , patk } [fpats] (application pattern, k ~ 1 ) 

apat[fpats] 
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A. FSC: Syntax and Kernel semantics A.3. Declarations and Bindings 

A.3 Declarations and Bindings 

module 

body 

topdecls 
topdecl 

decls 
decl 

module modid [exports]where body 
body 
{[impdecls; ][ffixdecls ; ]topdecls [;]]} 
{impdecls [;]} 
topdecl1 ; ... ; topdecln 

-+ type simple = type 
datatype simple = constrs 
class[ context =>] class [Where {cbody [;]}] 
instance[ context =>] tycls inst [Where {valdefs [;]}] 
transformation 
decl 

-+ dech; ... ; decln 
arraydecl 
valdef 

A.3.0.2 Syntax of Types 

type btype[- digit][-> type] 

btype atypel ... atypek 
atype 

atype -+ tyvar 
tycon 
() 
(type) 
(typel"'" typek) 
[type] 

(arity tycon = k, I.: 2: 1) 

(arity tycon = 0) 
(unit type) 
(parenthesised type) 
(tuple type I.: 2: :1 ) 
(array type) 

A.3.0.3 Syntax of Class Assertions and Contexts 

context -+ 

class 
tycls -+ 

class 
(classl , ... , classn ) 

tycls( type 1 ' ... , typen ) 

conid 
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A. FSC: Syntax and Kernel semantics 

A.3.1 User-Defined Datatypes 

topdecl 
simple 
constrs 
constr 

datatype simple = constrs 
tycon tyvarl ... tyvark 
constrll ... I constrn 
con atypel ... atypek 

A.3.1.l Type Synonym Declarations 

topdecl 
simple 

--+ type simple = type 
tycon tyvarl ... tyvark 

A.3.1.2 Class Declarations 

A .. 3. Declarations and Bindings 

(arity tycon =k. k 2: 0) 
(n 2: 1) 
(arity con =k, k 2: 0) 

(arity tycon =k. k 2: 0) 

topdecl --+ class [context =>] class [where { cbody[; ]}] 

chody --+ cszgns 
csigns --+ csign1 ; ..• ; cszgnn (n 2: 1) 

csign --+ vars :: [context => type 

vars --+ varl, ... , varn (n 2: 1) 

A.3.1.3 Instance Declarations 

topdecl instance [context =>]tycls inst [where { valdefs [;] }] 

inst --+ type 

valdefs --+ valdefl;' .. ; valdefn (n 2: 1) 

A.3.2 Nested Declarations 

A.3.2.l Type Signatures 

decl vars :: type 
vars --+ varl, ... , varn (n 2: 1) 
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A. FSC: Syntax and Kernel semantics 

A.3.2.2 Function and Pattern Bindings 

decl 

valdef 

valdef 
arraydecl 

lhs = exp [where { decls[;]}] 
lhs gdrhs [where { decls[;]}] 

lhs pat 
I funlhs 

A.A. Modules 

funlhs ~ var { apatl , ... , apatd{( { apatl , ... , apatdlapal)} 
I apat apat {apat} 

gdrhs -+ gd = exp[gdrhs] 
gd -+ I exp 

A.3.3 Array Declarations 

arraydecl 
vardecls 
vardecl 

ordering 
mutexp 
ords 
ord 

bnd 

-+ 

-+ 

-+ 

-+ 

array [varl [[ bnd] .. bnd] [orderingJ[ mutexp]where ] 
{vardecl; ... ; !Iardec!} 
varl [PI, ... ,PnJ grhs[where {decls[;]}] 
varl [PI, ... ,PnJ = exp[where {decls[;]}] 
ordered ords 
overwrites var2 
ord {( thenland) ords} 
by var in exp iteration 
iteration 

-+ (exPI"'" eXPn) 
-+ exp 

A.4 Modules 

A.4.1 Module Implementations 

module 

body 

modid 
impdecls 
topdecls 

-+ module modid [exports]where body 
body 

-+ {[impldecls; J[ffixdecls ; )topdecls [;]]} 
{[ impldecls [;]} 

conid 
-+ impdecll ; ... ; impdecln 

topdecll ; ... ; topdecl,. 
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A. FSC: Syntax and Kernel semantics 

A.4.1.1 Export Lists 

exports 

export 

entity 

A.4.1.2 Import Declarations 

A.4.1.3 Fixity Declarations 

( exportl , ... , exportn ) 

entity 
modid 

---> var 
tycon 
tycon( .. ) 
tycon( conI, ... , conn) 
tycls 
tycls( .. ) 
tycls( varI, ... , varn) 

impdecl-+ import modid 

(n ~ 1) 

(n ~ 1) 

(n ~ 0) 

fixdecls ---+ fixl; ... ; fixn 
fix 

(n ~ 1) 
infix [integer] vars 
infixl [intege~ vars 
infixr [intege~vars 
prefix [illt(gf~vars 
suffix [intege~vars 

vars varI, ... , l'arn 
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Appendix B 

normalCDF: C implementation 

'I'll<' code that follows is the C code to tabulate a cumulative density function ofa norlllal dl,Iributl()1l 
referred to in Chapter 10. 

#include<stdio.h> 
#include<math.h> 
#include<stdlib.h> 
#include<time.h> 

static void normalCDF (int n); 
double calculate (int n, int i); 
static inline double normalPDF(double x); 
static inline double integrate(double (*f)(double),double a,double b); 

double MU; 
double SIGMA; 
double pi; 
clock_t t1,t2; 
double sc; 

/* Takes 3 command line arguments 
** MU double 
** SIGMA double 

** n int 
** N is 
** i. e. 
*/ 

the number of points you wish to evaluate 
in Schaum book N = 400 

int main(int argc,char* argv[J) 
{ 

2·1:3 



B. normalCDF: C implementation 

} 

int n = argc; 
pi = 3.14159265358979323846; 

if (argc == 4) { 

} 

n = atoiCargv [3] ) ; 
MU = atof(argv[l]); 
SIGMA = atof(argv[2]); 
sc = (SIGMA * 2.50663 ); /* 2.50663 = sqrt(2 * pi»; */ 
normalCDF(n); 

else { 
printf("Error: 3 arguments expected %d received ",argc); 

} 

return 0; 

static void normalCDF(int n) 
{ 

} 

int i; 
double* out; 
double z; 
out = (double*) malloc((unsigned) n * sizeof(double»; 
t1 = clock(); 
z = 4.0 / ((double) n); 
for (i = O;i <n;i++) { 

} 

out[i] = integrate(normalPDF,O.O,(double) i * z); 
/* printf("%lf\n",out[i]); */ 

t2 = clock(); 
printf("clocks %If\n'', 

((double)(t2 - t1»/((double)CLOCKS_PER_SEC»; 

static inline double normalPDF(double x) { 
register double q x - MU; 

} 

register double y = (q*q)/(-2.0); 
return exp(y)/sc; 

/* symmetric n-point Gaussian quadrature.*/ 

static inline double integrate(double (*f) (double) ,double a,double b) 



B. normalCDF: C implementation 

{ 

double xi; 
double total; 
total (b-a)/2.0; 
b = (b+a)/2.0; 
a = total; 

/* unroll loop */ 

") 

xi a*0.960289856497536; 
total = 0.101228536200367 * «*f)(b+xi) + (*f)(b-xi»; 
xi = a*0.796666477413627; 
total += 0.222381034453374 * «*f)(b+xi) + (*f)(b-xi»; 
xi = a*0.525532409916329; 
total += 0.313706645877887 * «*f)(b+xi) + (*f)(b-xi»; 
xi = a*0.183434642495650; 
total += 0.362683783378362 * «*f)(b+xi) + (*f)(b-xi»; 
return a * total; 



Appendix C 

Lambda Calculus 

C.l Introd uction 

The development of functional languages has been most influenced by the work of Church on the 
lambda calculus. This work was motivated by the desire to create a calculus (a'Ylitax for terms and a 
set of rewrite rules for transforming them) of anonymous funct ions t hat captured I he comptlt at ional 
aspects of functions rather than considering functions as merely sets of argument/r,,,,tli paIrs. 

In the lambda calculus all functions are presented in prefix form. For example. 

denotes the expression (2 + 3). If we wish to evaluate an expression we select a reducible expr,·""ioTl. 
or redex, in our Illain expression and reduce it. In this example the reduction would Iw: 

If our expression was 
(+(*12):3) 

t.hen (+ (* 12) 3) would not be a redex since + must be applied to two numbers before WP can reducl" 
it.. However, (* 12) is a red ex and so \\T may reduce the expression: 

If an expression contains more than one redex then we have a choice of \\'hich to reduce first. This 
issue is discussed later. 

C.2 Definitions 

To denote function application we use juxtapositioning and write 

fx 

246 



C. Lambda Calculus C .. 1. Tbe Pure t'ntyped Lambda Calculus 

to denote the function f applied to the argument x. We may also define new functions using lambda 
abstractions: 

'\x.( + x 1) 

This is read as'\ ( + 1 ) 
The function 1 

C.3 The Pure Untyped Lambda Calculus 

In the pure untyped lambda calculus we have identifiers and lambda expressions where an expression 
e in Exp can be either an identifier x, an abstraction '\x.e or an application (1 e'2 

Identifier x 
Expression e x 

el e'2 
'\x .e 

111 our previous example the expression '\x.( + xl) 2 would be an exampk of an application of the 
abstraction '\x.( + xl) to the expression 2 where x is an identifier I . 

The expression '\x.e is an example of an abstraction, the mechanism by which the notion of a 
function is captured without the need to bind a name to it. Informally this expression can be read 
as "the function which when applied to x, returns e". Lambda abstractions can often be found in 
actual functional programs. For example the following two Haskell definitions are equivalent: 

> f = \x -> x * x 
> g x = x*x 

where '\x.e would be written as \x -> e. 
The expression (el e2) is an application, the mechanism by which the notion of function applicil­

tion is captured. By convention function application is assumed to be left associative and so we can 
write «el e2) e3) as (el e2 e3)' This process was carried out above where we wrote (+ 2 3) rather 
than «+ 2) 3). 

CA Rewrite Rules 

The rewrite rules of the '\-calculus depend on the notion of the substitution of an expression (1 for 
all free occurrences of an identifier x in an expression e2, which we write" as [et/x)e2 . So 

[5/x)(+ xl) =? (+.J 1). 

However, when performing these substitutions the scope of a variable must be respected in the same 
sense as mentioned earlier. As a result of this complication the definition of substitution, although 

ITechnically this expression is not taken from the pure untyped lambda calculus but from the lambda calculus 
with constants. Also dealing with built in functions such as addition would require the usc of c rules. 

2In some texts the notation e2[eJ/x] is also used. 
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C. Lambda Calculus C.5. Reductions and Com'ersions 

conceptually simple, is somewhat laborious. To define substitution we must first make the distinction 
between free and bound variables occurring inside an expression. 

An occurrence of the variable v inside the expression e is said to be bound if it occurs within a 
sub-expression of e with the form Av.el, and is free otherwise. Or. more formally. the set of free 
variables of an expression e is defined as . 

FV(x) 
FV(el e2) 
FV(h.e) 

{x} 
F~"(fd u n'(C2) 
FV(e) - {x} 

and x is free in e if (and only if) x E FV(e). For example 

FV(h.Ay.X y y) 
FV(Ax.x y y) 
FV(x y y) 

{} 
= {y} 
= {x. y} 

We now can define the substitution [et/x]e2 inductively [48] over identifiers, applications and ab­

str:u:tions as 

[e/x;] Xj { 
e, if i = j 
Xi, otherwise 

if i = j 
if i ::f j /\ Xj rt FHed 
otherwise 
where k::f i.l.:::f j. Xk rt n"(f d U F\"(I:d 

The last rule resolves name conflicts by making a name change if necessary. This lIIay be more easily 

understood as 

[E/x](>.x.F) 
[E/x](>.y.F)ly::f x 

Ax.F 
Ay.[E/x]F, if:r does not occur free in E 
Ay. [E / x]( [ .:-j y] F), otherwise 

where = is a new variable name 
which does not occur free in E or F. 

The following example, taken from [48]. demonstrates application of all three rules: 

[y/:r](Ay.X)(AX.,r),r = (>.z.y)(h.:r)y 

C.5 Reductions and Conversions 
We define three simple rewrite rules on lambda expressions. These rules define steps that may be 

used in simplifying terms which we write in the form el - e2· 
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C. Lambda Calculus C.6. Normal Forms and Confluence of Reductions 

1. a-conversion (renaming): 

2. j1-reduction (application): 

(Ax.edt:? ~ [e2/xJel. 

3. 1]-reduction (regarding functions with the same external behaviour equal): 

Ax.(e x) ~ e, if x f!. FV(e). 

Informally, for a function f: 

• a-conversion says that the definition f(x) = x + 1 is the same as fey) = y + 1. 

• j1-reduction says that fee) ~ e + 1 

• 1]-reduction says that we can regard the function Ax.f( x) to be the same as f, i.e. if a funct ion 
takes an argument and simply passes it to another function then these two functions are 
equivalent. 

An example of each rule is : 

(Ax. + x 1) 

(Ax.f(x)) 

Ct 

,., 
(Ay.+ yl) 

f 
(Ax. + xl) 2 !!. (+ 2 1) 

We write el ~ e2 if e2 can be derived from zero or more ..3/1]-reductions or a-conversions. \\'e 
also have j1- and 1]- conversions which are the same as ,13- and 1]- reductions other than they can 
happen in both directions and hence are denoted el ~ e2· 

C.6 Normal Forms and Confluence of Reductions 

A lambda expression is said to be in normal form if it cannot be reduced further by using .3- or 1]­

reduction. This is often what we think of as the value of an expression or the result of a computation. 
Note: some expressions have no normal form such as 

(Ax.(x .r)) (Ax.(.r .l')) 

where the reduction process is non-terminating. If normal form does exist we would wish to Iw able 
to find it and also would like it to have a unique value. The Church Rosser theorems give positiw· 
results in both these cases . 

• CHURCH-ROSSER THEOREM I 
If eo :. el then there exists an e2 such that eo ..:.. e2 and el ..:.. t2 . In other words if eo and 
el are intra-convertible then there exists a third term (possibly the same as to or fd to which 
they can both be reduced. 
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C. Lambda Calculus C.7. Order of Reduction 

• COROLLARY 
No lambda expression can be converted to two distinct normal forms (ignoring differences due 
to a-conversion). 

What this means is that a normal form is unique (up to renaming of variables) and how we 
arrive at it does not matter (the order of evaluation is irrelevant). \Ye say that - is confluent 

or -+ has the Church Rosser property if for all eo, e1, t2 such that eo ...:.. f 1 and fO ...:.. I-l there 
exists e3 such that e1 ...:.. e3 and e2 ...:.. e3. -

So we know that the normal form of an expression is unique but the question still remains whether 
it is always possible to find it. To answer this we define two reduction strategies. 

C.7 Order of Reduction 

A normal-order reduction is a sequential order reduction in which whenever there is more than one 
redex (reducible expression), the left-most one is chosen first. An applicailrt-ordu reduction IS a 
sequential reduction in which the left-most-innermost redex is chosen first. 

• CHURCH-ROSSER THEOREM II 

If eo ...:.. e1 and e1 is in normal form then there exists a normal order reduction from eo to (1. 

What this means is that if a normal form of an expression exists then we can always find it by 
using normal order reduction. 

As it turns out, applicative order reduction is not always adequate, for instance using applicat ivp 

order reduction to reduce (AX .y)( (AX.X X )(AX.X x» would result in (AX.X x) (the inner-most left-III()'" 
redex) being applied to (h.x x) yielding (AX.X x) with which to replace (AX..!" x)(h.x .r) and so 

(h.y)«h.x X)(AX.X x» 
(h.y)«h.x x)(h.x x» 

... ad infinitum 

However, using normal order reduction to reduce (AX.y)«(A.t.X X)(AX.l: x» would result in AX.y (the 
left-most redex) being applied to (h.x x)(h.x x) yielding y. 

C.s 

(AX.y)«AX.X x)(h.x x» 
y 

Strictness and Laziness 

The normal-order reduction rules of the lambda calculus are the most general in that they can 
guarantee to produce the normal form of an expression if one exists. Given this. it is natural 
to consider using normal-order reduction as the computational basis of a programming language. 
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C. Lambda Calculus C.8. Strictness and Lazines...; 

Unfortunately a naive implementation of this is hopelessly inefficient. To see why consider the 
following examples [48]: 

(h.(+ x .r))(* 5 4) 
(+(* 5 4)(* 5 4)) 

--+ (+ 20 (* 5 4)) 
--+ (+ 20 20) 

40 : 4 reductions 

where the.multip.lica~ion (*54) is done twice. In other circumstances this could be an arbitrarily large 
computatIOn which IS computed as many times as there are occurrences of the formal paramelt'r 
For this reason normal order reduction is often associated with a call-by-name strategy of parameter 
passing. A solution to this is to use a reduction rule other than normal-order such as applicati,,>­
order reduction where evaluation of the above expression would result in the following 

(h.(+ .r .r))(* .j 4) 
(Ax. (+ .r .r)) 20 

--+ (+ 20 20) 
--+ 40: 3 reductions 

where the argument is evaluated before the application of the lambda abstraction. Thus applicatiw­
order reduction is often associated with a call-by-value strategy of parameter passing. I!owt>vn. 
the disadvantage of this is that it may perform more reductions than is necessary in order to reach 
normal-form or, as mentioned earlier, may never reach normal-form. Despite this apparent drawback 
many functional languages, such as ~IL. Hope and pure Lisp, use a version of applicative-ord('r 
semantics and enjoy quite efficient implementations using much of the same call-by-value compih'r 
technology used in imperative languages [48]. 

The efficiency problem with normal order reduction is based around the fact that the lambda cal­
culus is normally described as string reduction which prevents any sharing from occurring. Howev/'[. 
if we describe it as a graph reduction [99] then we may implement sharing by the use of pointers: 

(h.(+ .r x))(* 5 4) 
--+ let X = (* .5 4) in(+ \ \) 
--+ let X = 20 in( + \ \) 

40 : 3 reductions 

which takes the same number of steps as the applicative-order reduction sequence. This form of 
reduction in which re-computation is avoided is called call-by-need, or lazy f l'aluation. The key 
features are that it possesses the full power of normal-order reduction and arguments are evaluated 
at most once. From a number of reductions point of view it is more efficient than applicative-order 
reduction in that "at most once" may amount to no computation. However, this apparent efficiency 
is amortised against the cost of implementing lazy graph reduction on conventional hardware which 
seem more suited to call-by value strategies. Representing unevaluated parts of the graph involves 
implementing closures or thunks whose cost is often non-trivial. 
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Appendix D 

Polymorphic Type Inference 

D.l Polymorphic Type Inference 

The purpose of this appl'lldix is to serve as an introduction to polYlllOrphic type inferelw' IJs"d in 
the basic type syst"IIl which 1I;\~kell, l\liranda and FS(' have in COIlllllon Thl~ IS not I'n's"I1!t-d in ;\ 
rigorous 'from the ground up' style approach. Rather. we i\SSIIIlIf' the reader has an uIl,J"r~I"Il<ling lor 
titl' notion of 11f/)(S and how these are used in practice in programming laIl)!,II")!,'" but ita., had littl,· 
experience with notions such as polymorphism or polymorphic flfllfs. This appendix h orgaIlI~,·d a.' 

follows: 

• Section D.L reviews the basic concepts of, and notation for. types. 

• Section D.:\ introduces the idea of polymorphism. 

• Section D.4 shows informally how the principal typ(' of an f'xprt'ssion is infprred. 

• Sect i()11 D.~) Illakf's this process more concrete, clarifies the rules of typ" inference and pre""lIh 
tl\t's(' ru]..s as an abstract algorithm. 

This is I'r('s(,lI1f'd in terms ofa Nrysimple applicative language which is the tIll IIdcd lambda ca/culll". 

D.2 Notation for Types 

\ \", begin hy defining three classes of type: 

• Ground types 

• ('Ullst ructed typcs 

• Type variables 
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D. Polymorphic Type Inference D.3. Polymorphism 

Ground types are types such as Integer, Real, Character, etc. Constructed types are types made from 
other types such as functions, lists and tuples, and type variables play the same role as variablps in 
mathematics, i.e. a type variable 0 can stand for a type in the same way that a variable n stands 
for a number. We use Greek characters to represent type variables. The notation 

x:: 0 

means that x is of type o. Other examples include 

10 
'e' 

Integer 
Character 

where 10 is of ground type Integer and' e' is of ground type Character. 

D.2.1 Constructed Types 

Constructed types consist of a type-forming operator and a list of arguments. Some examples of 
constructed types are 

Empty 
truncate 
Leaf1 

List 0 

Real -+ Integer 
Tree Integer 

list of type 0 

function from integers to reals 
a tree of integers 

former = List 
former = (-) 
former = Tree 

It is quite common for some of these formers to be syntactically sugared in functional languages. for 
example List(o) is often written as [0]. 

D.3 Polymorphism 

Many of the functions defined in a functional program are to some extent indifferent to the types of 
their arguments. The archetypal example being the identity function id 

> id x = x 

which can be applied to any type i.e. 

> id 1 = 1 
> id 'a' = 'a' 
> id "hello" "hello" 
> id (1, , a') = (1,' a') 

In a sense id is indifferent to the type of its argument although it always returns a value of the sam( 
type as that of its argument. For the examples above the types of id would be 

> id 1 id: : INT -> INT 
> id 'a' id: : CHAR -> CHAR 
> id "hello" id: : STRING -> STRING 

> id (l,'a' ) id:: (INT ,CHAR) -> (INT,CHAR) 
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D. Polymorphic Type Inference D.4. Type Inference 

We capture this generality of typing by saying that the type of id is VA : 0. - 0.. In this exampk 
0. is known as a generic, or schematic, variable and it is often the case that we take all variables to 
be implicitly schematic and omit the V clause. So the type of id is written as 

id:: 0. ~ 0. 

D.3.1 The Functions length and map 

Often we want to define functions which work on all types which are more useful than the above 
identity function. An example is length: 

> length [] 0 
> length (x:xs) = plus 1 (length xs) 

This function can be applied to lists of any element type and returns the length as an integer. Hpnce 
the type of length is 

length:: [0.]- > lNT 

Other useful polymorphic functions are map and foldr with definitions as follows: 

> map f [] = [] 
> map f (x:xs) = f x map f xs 

> foldr f z [] = z 
> foldr f z (x:xs) = f x (foldr f z xs) 

whose types are 
map 
foldr 

D.4 Type Inference 

.. (0. - j3) -0- [0.]- [J] 
(0. ~ J -+ j3) - j3 - [Q] - .13 

In order to explain the manner in which principal types are inferred we consider thl' following 
example: 

let / x = x in / 3 

which is translated into 
let / = .Ax.x in /(3) 

Informally the process of type inference is 

• infer type of AX .X 

• bind / to this type 

• infer type of /(3) under the above inferences 

where the type of AX .e is found as follows: 
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• create a non-polymorphic type variable Tl and bind it to x 

• infer the type T2 of e under the above 

• unify Tl with the type of x to give T3 

• type of AX .X is inferred as T3 ~ T2 

• make Tl polymorphic 

giving the type of Ax.x as Vu : U ~ u. The type of f(e) is now inferred as follows: 

• create a new type variable T 

• infer the type of f (U1 -+ (2) 

• infer the type of 3 (U3) 

• unify U1 -+ U2 and U3 - T to give T3 -+ T4 

• type of f(e) is T4 

D.5 Type Rules 

The rules we use to infer types in the above style are often written as abstract algorithms. For 
instance, the statement: 

A.x : T f- X : T 

reads "from the set of assumptions A and the assumption that x has type T we fllity deduce that .I 

is of type T", and the rule: 

Af-f:u-T Af-f:U 

rf'ads "If, from thf' set of assumptions A, we may deduce that f has type (J - T and WI' may also 
deduce that e has type U then we may deduce from A that f(e) has type T". The type rules for 
standard Hindley-Milner type inference are given in Fig. C.2. wit h Robinson's unification algorithm 
given in Fig. C.l. 

255 



D. Polymorphic Type Inference D . .). Type Rules 

Unification 

unifyo(vI, V2) succeeds; 
VI and V2 are bound to the same variable in 8. 

unifYQ(xIlSll, ... , Slm], X2[S21, ts, S2n)) succeeds if \.1 = \.2 Am = n 

AunifYo(Sll, S2l) A ... A unifYo(Slm. S2n). 

and fails otherwise. 

unifye(v, X[SI, ... , sn)) succeeds binding v to \.[SI, •••• sn] in 8 
if v does not occur in SI ... Sn. 

and fails otherwise 

unifYe(X[SI, ... , sn], v) succeeds in a similar manner to the definition above 

TAUT 

COND 

ABS 

LET 

GEN 

SPEC 

COMB 

Figure D.I: Robinson's unification algorithm 

Type rules 

A.x : T f- I: T 

A f- eo : bool A f- el : T : A f- e2 : T 

A f- (if eo then el else e2): T 

A.I : (T f- e : T 

A f- (Ax.e) : (T -> T 

A f- eo : (T A.r: (T f- e I : T 

A f- (let I - eo in el) : T 

A f- e : T 

Af-e:'rIo.T 

Af-a:'rIo.T 

A f- e: [(T/oj T 

A f- eo : (T - T A f- el : (T 

A f- (eo el) : T 

(0 not free in A) 

Figure D.2: Type inference rules 
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Appendix E 

Monads and Imperative 
Functional Programming 

'III<' concept. of a monad originally stems from category theory \\' Il<'r" I t is defined a" a trip\.' (.\1. '1. II) 
where M is it functor and 1): '\I.U - .U.J1: 1-.U are natural transformations such thaI III' thrt't' 
monad laws are satisfied: 

J1 0 1) id 
J1 0 .U1) id 
J1 0 .'1 J1 /1 0 II 

In functional programming terms a functor is ;my function map I ol!,d Iwr with a Iyp .. (,Oll,t rllel',r .\1 
slIch that. IlIllp takes funct iuns (\ -+ .3 into functions .'10 - .1/ .i and sat I"fi .. " 

map Id 
map(gof) 

id 
mapgomapj 

and a nat.ural t.ram,[0rmation can be thought of as a polymorphic function which r""I"II"''' a (!:ita 
structure without affecting the constituents of its arguments. It turlls Ollt that thl' well-kllowli 

functions 
COllcat .. [[0J]- [oJ .. 
::IP .. ([oj, [3]) - [(0 . 3) ] .. 
takt 11 

.. [0]- [0] .. 
fst .. (0 . .1)-0 .. 

are all nat ural t.ransformations. 

E.O.1 Monads in Functional Programs 

In Haskell t he triple (.\1.1), II) is written as (map. unit. join) 

map (0 - J) - (.\1 0 -+ .\1 .3) 

IInit () - .\10 
)OIn ,\1 (.U 0) -+,\10 
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and, as ~efore: must satisfy the thr:e mona.d laws for (map, unit, join) to form a monad. Howevpr. the 
man~e.r III ~hIch monads are used III func.tlOnal programs leads to an alternative, though equivalent, 
defimtlOn via an abstract datatype M wIth two operations unit and bind 

a- ~ Ma-unit 
bind .\lta- - (a- - .\ltJ) - .\ltJ 

satisfying 

(1) Left unit: 
(2) Right unit: 
(3) Associative: 

(unit a) 'bind' k 
m 'bind' unit 

m 'bind' Aa.(k a 'bind' h) 

with the following equivalences holding 

k a 
m 

(m 'bind' k) 'bind' h 

map f 
jom 
bind x f 

AX. bind 1: ( unit of) 
Ax.bind 1: (map id) 
(join 0 map f) .r 

Before proceeding we introduce an auxiliary operation 

f*g Ax.bind(fx)g 
joino map go f 

which allows us to reformulate the above laws as: 

(1) Left unit: unit*x 
(2) Right unit: X * unit 
(3) Associative: f*(g*h) 

which is a lot clearer. In the rest of this appendix monads will be built using unli and bmd, and 
reasoned about using Kleisli composition *. In categorical terms this is known as a Id( I.~ll category 
with M -resultric functions as morphisms, unit as identity and" as composition. \\,,, denot<' this 
category as A:-' and denote the monad (M, unitM, bindM ) as AM. 

E.O.2 Monads In Practice 

The reason monads are usually defined in terms of unii and bind rather than unit and .. is due to 
the use of these operations when modelling computational behaviour in a purely functional manner. 

Consider the problem of uniquely numbering the leaves of a binary tree. In Haskell this could 
be implemented by explicitly passing state as 

> data Tree a = Leaf a 
> (Tree a) (Tree a) 
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> number (Leaf a) 
> number (left . . 
> 

n = (Leaf (a,n),n+l) 
right) n let 

(n1eft,nl) number n left 
> (nright,n2) = number nl right 
> in 
> (n1eft :-: nright,n2) 

However, if we form a monad with an extra operation get defined as: 

> type M a = Int -> (Int,a) 

> bind x f = \a -> let (i,r) = x a in f r 
> unit x = \a -> (a,x) 
> get \a -> (a+1,a) 

we may model this passing of state 

> number (Leaf a) = get 'bind' \x -> 
> unit (Leaf (a,x» 

> number (x 
> 
> 

y) = number x 'bind' \x -> 
number y 'bind' \y -> 
unit (x :-: y) 

i 

and the computation is structured and less likely to suffer from silly errors introducted by explicitly 
passing state. Other computational behaviours which monads model include exceptions, I/O and 
non-determinism. Examples of use in these areas may be found in [98]. 
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Appendix F 

Finite Element Code 

This Appelldix contains the FS(' finite element code from Chapter 10 

Direct translation of functions from Dwyer's 
Functional programming for finite elements 

PHI :: DOUBLE -> INT -> INT -> [DOUBLE] -> DOUBLE 
PHI x j 1 X (X[j+1] - x) / (X[j+1] X[j]) 
PHI x j _ X = (x - X[j]) / (X[j+1] - X[j]) 

DPHIDX :: DOUBLE -> INT-2 -> [DOUBLE] -> DOUBLE 
DPHIDX x j 1 X -1/(X[j+1] X[j]) 
DPHIDX x j _ X = 1/(X[j+1] - X[j]) 

----------------------------------------------------------------------

FINT :: DOUBLE -> INT-3 ->[DOUBLE] -> DOUBLE 
FINT x j i k X I k == 3 = 2/x-2 * PHI{x,j,i,X} 

I otherwise = DPHIDX{x,j,i,X} * DPHIDX{x,j,k,X} * x 

----------------------------------------------------------------------
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GQUAD :: DOUBLE-2 -> INT-3 -> [DOUBLE]-3 -> DOUBLE 
GQUAD b a j i k X xs ws 

= sum[pr*w*FINT{x*pr+pm,j,i,k,X}! w in ws dot x in xs] 
where pm = (b+a)/2 

pr = (b-a)/2 

------------------------------------------------------ -

mkL :: [DOUBLE]-3->INT->[DOUBLE] 
mkL X xs ws N 

= [ GQUAD X[j+l] X[j] j 2 2 X xs ws + 
GQUAD X[j+2] X[j+l] (j+l) 1 1 X xs ws 
GQUAD X[j+2] X[j+l] (j+l) 1 2 X xs ws 

---------------

j in [1 . . N-2]] +> GQUAD X[N] X[N-l] (N-l) 2 2 X xs ws 

mkB :: [DOUBLE]-3->INT->DOUBLE-2->DOUBLE 
mkB X xs ws N bel be2 

= -GQUAD X[2] X[l] 1 2 3 X xs ws 
-GQUAD X[3] X[2] 2 1 3 X xs ws 
-bel * GQUAD X[2] X[l] 1 1 2 X xs ws 

<+ [ -GQUAD X[j] X[j-l] (j-l) 2 3 X xs ws 
- GQUAD X[j-l] X[j] j 1 3 X xs ws ! j in [3 .. N-l] ] +> 

-GQUAD X[N] X[N-l] (N-l) 2 3 X xs ws - be2 

LP [DOUBLE] -> [DOUBLE] 
LP (1 <:L:> N) = let array L'[l .. N] ordered [1 .. N] where 

L'[l] L[l] 
L'[i] (i is even) = L[i] 

otherwise = L[i] - L[i-l]-2/L'[i-2] 
in L' 

BP :: [DOUBLE]-2 -> [DOUBLE] 
BP L' (1 <: B :> N) = let array B'[l .. N] ordered [1 .. N] where 

B' [1] = B[l] 
B' [j] = B[j]-L' [2j-2]/L' [2j-3]*B' [j-l] 

in B' 
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--------------------------------------------------------------------

A :: INT -> [DOUBLE]-3 -> DOUBLE-2 -> [DOUBLE] 
A N X x_g w_g BCl BC2 = BSUB L' B' where 

L' = LP L 
B' = BP L' B 
L = mkL X x_g w_g N 
B = mkB X x_g w_g N BCl BC2 
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Appendix G 

FSC Code Examples 

In this appendix we give numerical examples implemented in FS(' 

G.1 Jacobi Iteration 

> jacobi:: [[DOUBLE]] -> [DOUBLE]-2 -> [DOUBLE] 
> jacobi A b x = x' where 
> array x' [i] = (b[i]-sum[A[i,j]*x[j] when i!=jl all j])/ A[i,i] 

G.2 Gauss-Seidel Iteration 

> GaussSeidel :: [[DOUBLE]] -> [DOUBLE]-2 -> [DOUBLE] 
> GaussSeidel A b (1 <: x :> N) = x' where 
> array x'[l .. N] where 
> x'[i] = (b[i]-sum[A[i,j]*x'[j]lj in [1..i-1]] 

-sum[A[i,j]*x[j]lj in [i+1..N]])/ A[i.i] 

G.3 Gaussian Quadrature 

> gq :: [DOUBLE]-2 -> (DOUBLE->DOUBLE)->DOUBLE-2-> DOUBLE 
> gq x w f a b = pr * sum[f1 w_i x_i I w_i in w dot x_i in x] 
> where f1 wi xi = wi * (f (pm+pr*xi) + f (pm-pr*xi» 
> pm = (b+a)/2.0d 
> pr = (b-a)/2.0d 

GA Matrix-Vector Operations 

> mmult :: [[DOUBLE]]-2 -> [[DOUBLE]] 
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> mmult M1 M2 = M3 where 
> array M3[i,j] = sum[ M1[i,j]* M2[k,j] I all k] 

> dotproduct :: [DOUBLE]-2 -> DOUBLE 
> dotproduct X Y = sum(zipWith (*) X Y) 

> MatrixVectorMult :: [[DOUBLE]]->[DOUBLE]->[DOUBLE] 
> MatrixVectorMult A x = [ dotprod row x I row in A] 

> MatrixPlus :: [[DOUBLE]]-2 -> [[DOUBLE]] 
> MatrixPlus A B = C where 
> array C[i,j] = A[i,j] + B[i,j] 

G.5 L U Decomposition 

LU_Decompose :: [[DOUBLE]] -> [[DOUBLE]] 
LU_Decompose (1 <: A :> N) = LU where 

array LU[ .. (N,N)] where 

G.·5. Ie Decomposition 

LU[i,j] I i>j = (A[i,j]-sum[LU[i,k] * LU[k,j]lk in [1..(j-1)])/LU[j,j] 
I i<=j = (A[i,j]-sum[LU[i,k] * LU[k,j] Ik in [1 .. (i-1)] 

G.6 Newton's Method for Systems of Non-Linear Equa­
tions 

In this section we present an example of Newton's method extended to deal with a systelll of n 
non-linear equations in n unknowns. 

G.6.1 Outline of Method 

We consider the system of n equations in n unknowns 

h(XI, X2, .. ·, Xn) 0 
h(XI,X2 .... ,Xn) 0 

fn(Xl,X2, ... ,Xn) = 0 

which is normally written f(x) = 0 where f= [h,h, ... ,fnY and x = [XI,X:! .... ,xnV [107]. W(· 
assume a solution exists, that is, we assume there is an a such that f(a) = O. The following code is 
for a partucular example where 

h(x, y) 
h(x, y) 

cos(2x) - cos(2y) - 0.4 
sin(2y) - sin(2x) - 1.2 
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main :: [DOUBLE] -> [DOUBLE] 
main init = iterate (NEWTON_IT LU_SOLVE J F) norm O.OOOdO init 

f_1,f_2 :: [DOUBLE] -> DOUBLE 
f_1 [x,y] = cos(2x) - cos(2y) - O.4dO; 
f_2 [x,y] = sin(2y) - sin(2x) - 1.2dO; 

F :: [DOUBLE] -> [DOUBLE->DOUBLE] -> [DOUBLE] 
F X = [f x I x in X dot f in Fs] 

where Fs = [f_1,f_2] 

J :: [DOUBLE] -> [[DOUBLE]] 
J[x,y]=[ 

] 

[ -2sin(2x), 2sin(2y)], 
[ -2cos(2x), 2cos(2y)] 

norm :: [DOUBLE]-> DOUBLE 
norm X = sum[x-2 Ix in X] 

iterate :: ([DOUBLE]->[DOUBLE])->([DOUBLE]->DOUBLE) 
-> DOUBLE -> [DOUBLE] -> [DOUBLE] 

iterate scheme norm tol init 
= (x I while (norm x < tol) x <- scheme x I x = init) 

NEWTON_IT SOLVE J F x = SOLVE (J x) (J x * x - F x) 

LU_SOLVE :: [[DOUBLE]] -> [DOUBLE]-> [DOUBLE] 
LU_SOLVE A b = LU_Subst M b 

where M = LU_Decomp A 

LU_Subst :: [[DOUBLE]] -> [DOUBLE] -> [DOUBLE] 
LU_Subst LU b = solution where 

solution = LU_BkSubst LU Y 
Y = LU_FwdSubst LU b 

LU_FwdSubst :: [[DOUBLE]] -> [DOUBLE] -> [DOUBLE] 
LU_FwdSubst L (1 <: b :> N) = Y where 
array y[1 .. N] where 

y[i] = (b[i] - sum[L[i,k] * y[k] Ik in [i. .(i-1)]]) / L[i,i] 

LU_BkSubst :: [[DOUBLE]] -> [DOUBLE] -> [DOUBLE] 
LU_BKSubst U (1 <: y :> N) = x where 
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array x[l .. N] where 
x[j] = y[j] - sum[U[j ,k] * x[k] I k in [j+1. .11]] 
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Appendix H 

FSC Standard Prelude 

PRIMITIVES FILE 

--------------- FIXITIES I PRIORITIES -------------------------------------
-- infixl 1000 [ ] ARRAY INDEXING 
-- infixl 1000 [ 1->] ARRAY REPLACEMENT 

infixr 950 
infixl 925 -
infixl 900 I 
infixl 890 III 
infixl 800 * , 
infixl 790 I * I 
infix 700 :+ 

infixl 700 + 

inf ixl 690 I + I 
infixl 600 -
infixl 590 H 
infixl 500 <: , 
indixr 490 :>, 
infixl 500 ++ 
infixl 400 , 
infixl 300 && 

infixl 200 II 
suffix ! 
prefix -
infix « 
infix » 
infix is 
infix div 

% 

<+ 
+> 

!= , <, <=, >=, > 

COMPOSITION 
EXPONENTIATION 
DIVISION 
VECTOR DIVISION 
MULTIPLICATION I MODULUS 
VECTOR MULTIPLICATION 
COMPLEX CONSTRUCTOR 
ADDITION 
VECTOR ADDITION 
SUBTRA CTI ON 
VECTOR SUBTRACTION 
LOWER BOUND I APPEND LEFT 
UPPER BOUND I APPEND RIGHT 
CATENATION 
EQUALITY I ORDERING 
LOGICAL AND 
LOGICAL OR 
FACTORIAL 
NEGATION 
SHIFT LEFT 
SHIFT RIGHT 
PREDICATE CONNECTIVE 
INTEGER DIVISION 
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-- Boolean Functions -----------------------------------------------------------

(U), ( II ) · . BOOL -> BOOL -> BOOL 
False Ux False 
True Ux = x 

False II x x 

True II x True 

not · . BOOL -> BOOL 
not True False 
not False True 

Factorials 

O! = 1 
n! = product [i I i in [1 .. n]] 

Some standard functions ----------------------------------------------------­
component projections for pairs: 

fst · . (a,b) -> a 
fst (x,_) = x 

snd (a,b) -> b 
snd C,y) y 

identity function 
id a -> a 
id x = x 

-- constant function 
const 
const k 

a -> b -> a 

= k 

-- function composition 
(.) (b -> c) -> (a -> b) -> (a -> c) 
(f . g) x = f (g x) 

-- predicate connective --------------------------------------------------------

(is) :: a -> (a->BOOL) -> BOOL 
X is P = P X 

-- error is applied to a string, returns any type, and is everywhere 
-- undefined. Operationally, the intent is that its application 
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terminates execution of the program and displays the arguaent 
string in some appropriate way. 

error :: String -> a 

__ Standard types, classes and instances ---------------------------------------

class NEQ(a) where 
(==) :: a -> a -) Bool 
(!=) :: a -> a -> Bool 

A == B = not (A '= B) 

class ORD(a) where 
«), «=), (>=), (» .. a -> a -> Bool 

class PLUS(a,b,c) where 
(+) :: a -> b -> c; 

class BY(a,b,c) where 
(I) :: a -> b -> c; 

class TIMES(a,b,c) where 
(*) :: a -> b -> c; 

class NEGATE(a) where 
C) :: a -> c; 

class VECPLUS(a,b,c) where 
(1+1) :: a -> b -> c; 

class VECMINUS(a,b,c) where 
(I-I) :: a -> b -> c; 

class VECBY(a,b,c) where 
(III) :: a -> b -> c; 

class VECTIMES(a,b,c) where 
(1*1) :: a -> b -> c; 

class ADDID(a) where 
zero:: a 

class MULID(a) where 
one:: a 

class BOUNDS(a) where 
maxVAL :: a 

269 



H. FSC Standard Prelude 

minVAL :: a 

class TO_INT where 
int :: a -> INT; 

class TO_DOUBLE where 
double :: a -> DOUBLE; 

class TO_FLOAT where 
float :: a -> FLOAT; 

class MATH(a) where 
pi,e 
exp, log, sqrt, 
sin, cos, tan 
asin, acos, atan 
sinh, cosh, tanh 

In 
a 
a -> a 

.. a -> a 

.. a -> a 
a -> a 

asinh, acosh, atanh .. a -> a 

Boolean type 

datatype BOOL = False I True 

-- Complex Type -------------------------------------------------------------

datatype Complex a = a :+ a 

real (re :+ im) re 
imag (re :+ im) im 

instance PLUS(a,b,c) => PLUS(Complex a,Complex b, Complex c) where 
(x:+y) + (x':+y') = (x+x') ;+ (y+y') 

instance TIMES(a,b,c) => TIMES(Complex a,Complex b,Complex c) where 
(x:+y) * (x':+y') = (x*x'-y*y') :+ (x*y'+y*x') 

ETC ---

Standard functions ------------------------------------

bitFlip INT -> INT -> INT 
(<<) INT -> INT -> INT 
(») INT -> INT -> INT 
bitAND .. INT -> INT -> INT 
bitOR INT -> INT -> INT 
bitXOR INT -> INT -> INT 

270 



H. FSC Standard Prelude 

riffle 
riffle X Y 

deal 
deal (10 <: X :> hi) N 

:: Array a -> Array a -> Array a 
= [ x ; y I x in X dot y in Y] 

.. Array a -> INT -> Array (Array a) 
[X [lo+i :hi: N] I i in [0 .. N-1]] 

odd_even 
odd_even 

.. Array a -> (Array a,Array a) 
(10 <: X :> hi) (X[10:hi:2],X[10+1:hi:2]) 

liml,liml 
bound 
liml (10 <: 
bounds (10 <: 
limb ( 

head,last 
head (a <+ A) 
last (A +> a) 

tail, init 
tail (a <+ A) 
init (A +> 

take ,drop 
take N (lo 
drop N (10 

split At 
splitAt 

filter 
filter p 

mapcat 
mapcat 

map 
map f X 

f 

N X 

X 

a) 

<: 
<: 

X 
X :> hi) 
X :> hi) 

X 
X :> hi) 

.. Array a -> INT 

.. Array a -> (INT,INT) 
10 
(lo,hi) 

= hi 

:: Array a -> a 
= a 
= a 

.. Array a -> Array a 
A 
A 

.. INT -> Array a -> Array a 
X [10: 10+N-1] 
X [1o+N :hi] 

.. INT -> Array a -> (Array a,Array a) 
= (take n X, drop n X) 

.. (a -> BOOL) -> Array a -> Array a 
[x when x is p I x in X] 

.. (a -> Array b) -> Array a -> Array b 
concat . (map f) 

.. (a -> b) -> Array a -> Array b 
[ f x I x in X]; 

NOTE: Application of reduce should construct a parallel 
reduction function 
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reduce 
reduce (*) id [J 

reduce (*) id [x] 
reduce (*) id [x,y] 

reduce (*) id (x <+ X +> y) 

length 
length (10 <: X :> hi) 

foldl 
foldl f z [J 
foldl f z (a <+ A) 

foldr 
foldr f z [J 
foldr f z (A +> a) 

foldll 
foldll f 

foldrl 
foldrl f 

(x <+ X) 

(X +> x) 

scanl, scanr 
scanl (*) [] 

scanl (*) (x <+ X) 

scanr (*) [] 

scanr (*) (X +> x) 

accumulate 
accumulate frame 

.. (a -> a -> a) -> a -> Array a -> a; 
id 

= x 
x * y 
x * (reduce (*) id X) * Y 

.. Array a -> INT 
hi - 10 + 1 

(a -> b -> a) -> a -> Array b -> a 

= z 
foldl f (f z a) A 

(a -> b -> b) -> b -> Array a -> b 

= z 
foldr f (f z a) A 

.. (a -> b -> a) -> Array b -> a 
foldl f x X 

.. (a -> b -> b) -> Array a -> b 
foldr f x X 

(a -> a -> a) -> Array a -> Array a; 
[J 
x <+ [x * y I y in scan (*) X] 

[] 
[x * y I y in scan (*) X] +> x 

.. PLUS(b,a,b) => b -> Array a -> b 
foldl (+) frame 

for all associative operations (+) 

sum 
sum 

sums 
sums 

product 

accumulate zero [ ] = sum [ ... ] 

.. PLUS(a,a,a),ADDID(a) => Array a -> a 
reduce (+) zero 

.. PLUS(a,a,a) => Array a -> Array a 
scanl (+) 

TIMES(a,a,a),MULID(a) => Array a -> a 
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product 

products 
products 

maximum, minimum 
maximum 
minimum 

min,max 
min x y 

max x y 

imin,imax 

x < y 
otherwise 

x > y 
otherwise 

imin (x,i) (y,j) 

imax (x, i) ( y , j ) 

imaximum, iminimum 
imaximum 
iminumum 

value 
value (X +> x) 
value [] 

values 
values 

and, or 
ands, ors 

ands 
and 

ors 
or 

reverse 

x < y 
otherwise 

x > y 
otherwise 

reverse (10 <: X :> hi) 

reduce (*) one 

TIMES(a,a,a) => Array a -> Array a 
scanl (*) 

'. ORD(a),BOUNDS(a) => Array a -> a 
reduce max minVAL; 
reduce min maxVAL; 

.. ORDeal => a -> a -> a 
= x 

y 

= x 
y 

.. ORDeal -> (a,INT) -> (a,INT) -> (a,INT) 

(x,i) 
(y,j) 

(x, i) 

(y,j) 

.. ORD(a),BOUNDS(a) => Array a -) (a,INT) 
reduce imax (maxVAL,maxINT) 
reduce imin (minVAL,minINT) 

· . Array a -) a 

= x 
error "EMPTY LIST in call to val'le" 

Array a => Array a 
id 

· . Array BOOL -) BOOL 
Array BOOL -> Array BOOL 

scanl (Ue) 

reduce (U) True 

scanl ( I I ) 
reduce ( II ) False 

· . Array a -) Array a 
X[lo :hi:-1] 



H. FSC Standard Prelude 

concat 
concat 

transpose 
transpose A 

indexZipWith, zipWith 
indexZipWith f X Y 

zipWith f X Y 

Array-2 a -> Array a 
reduce (++) 0 

:: Array-2 a -> Array-2 a 
B where array B[i,j] A[j,i] 

(a->b->c) -> Array a -> Array b -> Array c 
z where array z[i] f X[i] Y[i] 

[f x y I x in X dot y in Y] 

------- I/O --------------------------------------------------------------------

put char 
get char 
getstring 
putstring 
openfile 
closefile 
fgetchar 
fputchar 
fgetstring 
fputstring 

showlnt 
showDouble 
showFloat 

printInt 
print Double 
printFloat 
printBool 

argv 
argc 

print 
print 

· . 

· . 

· . 

· . 

· . 

· . 
· . 

· . 

CHAR 

STRING 
STRING 
FILE PTR 
FILE_PTR 
FILE PTR -> CHAR 
FILE PTR 
FILE]TR -> STRING 

INT -> STRING; 
DOUBLE -) STRING; 
FLOAT -> STRING; 

INT 
DOUBLE 
FLOAT 
BOOL 

Array STRING 
INT 

SHOW(a) => a -) 100 
putstring.show 
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-> 100 
10 CHAR 
10 STRING 

-> 100 
-> 10 FILE_PTR 
-> 100 
-> 10 CHAR 
-> 10 0 
-> 10 STRING 
-) 10 0 

-> 100 ; 
-'> 100 ; 
-> 100; 
-> 1O() ; 



Appendix I 

Domain Theory 

1.1 Introduction 

Our discussion of the lambda calculus in Appendix C was purely syntactic. We defined a ,,1"1 of 
rewrite rules with which we could reduce an expression by replacing sub-expressions textually. Thi" 
observation applies equally to all programming languages in that the syntax alone is not powerful 
enough to explain the effect of executing a program. Domain theory and denotational semantics 
(discussed in Appendix I) have been constructed to give meaning to syntactic expressions l and hence 
recursive functional programs. We take the meaning or value of a program to be taken from some 
set or domain with well understood mathematical properties. If we consider a \pry simple language 
made up from the following tokens: 

T F V 1\ -, 

although we can determine what are grammatically correct expressions. such as -,T or T 1\ F, we 
have not given a meaning to these tokens. Using the usual interpretation Wf' would expect tIll's!' 
expressions to mean the same thing - the truth value false. 

1.2 Terminology 

If we take this interpretation of the above language we say that the token T denotes the truth value 
true. The important distinction is that our tokens are concrete and the values tllf'}" denote are 
mathematical abstractions. 

1.3 Domains Versus Sets 

Initially it may seem simple to define the domain for the meanings of syntactic expressions as t IIf" 
set of booleans {true, false} and functions defined on this. However, with this approach we almost 

1 There are many alternatives for describing behaviour to denotational semantics such as operational semantics. 
However. these systems will not be considered here as denotational semantics suits our purpose. 
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1. Domain Theory 1.4. Summary 

immediately run into difficulties with inconsistency. Consider the definition of the following function: 

! 
! x 

Truthvalue ~ Trutht"Ulue 
--.!(x) 

If we consider Truthvalue to be the set Bool = {true,falsf} and --. to be the negation operator we 
cannot find any function! :: Baal ~ Baal to satisfy our equation representing!. For example. 
if !(true) = true then !(true) "# --.!(true), contradicting the equation. If !(true) = !a/~t we see 
that the result is a similar contradiction. In practice applying! to any element in the st'l Bool 
would cause the computation to loop forever and there is no value in Bool to represent this idea of 
looping forever. If we now extend Bool by adding the new element 1... pronounced ·'bottom". and 

true false 

'\~/ 
Figure 1.1: The boolean domain 

refer to this extended set as Baal.!. 2 we can regain consistency by making! a well defined function. 
This requires that we extend the definition of (-.) such that --.1.. = 1.. and the definition of ! which 
satisfies its equations is "Ix E Baal.!., !(x) = 1... The bottom element contains less information than 
the elements of Bool as it represents an undefined value, or non-termination. By defining a partial 
ordering by information content on Baal.!. in this way, the set becomes what is known as a domain. 
In fact for functions defined only on sets which do not contain compound data items such as lists 
this domain construction is sufficient to define a consistent semantics. The boolean domain is shown 
in Fig. H.I. 

1.4 Summary 

This is all the domain theory needed for the topics discussed in this thesis as the strict "t'l1lantic" 
of FSC prevent the creation of partial objects. Rather than bog the reader down with unnecessary 
theory, further introduction can be found in [32], or for the more adventurous [88]. 

2For any set S, S1. denotes the set S u {.l..}. 
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Appendix J 

Denotational Semantics 

J.1 Introduction 

In this appendix we give a very brief introduction to denotational semantics hy considering th .. 
denotational semantics of the lambda-calculus presented in Appendix C. Denotational semant irs 
differs from other ways of looking at functions in that. rather than considering a function as a 
sequence of state transitions over time (as in operational semantics) it considers th"m as a fix"d set 
of associations between arguments and their corresponding values. 

In Appendix C we saw how an expression may be evaluated via the repeated application of 
0', f3 and T} rules. These provide a purely syntactic treatment of the process of evaillation. i.,', 
given an expression they describe which conversion rules may be applied without all)' referl'n,e 
to the meaning of these expressions. By itself the lambda-calculus is merely a formal SY"\"1I1 for 
manipulating syntactic symbols but why do we suppose that this system models thf' idea of an 
abstract function? 

Denotational semantics is the necessary stepping stone relating this rewrite system to our intuitiw 
ideas of abstract functions. 

J.2 The EVAL Function 

The purpose of denotational semantics is to give a value to ewry expression in a language. An 
expression is viewed as a purely syntactic object. However, a value is an abstract mathematical 
object. We express the semantics of a language as a (mathematical) function, EVAL, from expressions 
to values 

I Expressions I E~L I \'alues I 
and we can write equations such as: 

EVAL[2 + 2] = 4 

which is read as 'the meaning of the expression 2 + 2 is the abstract value .. 1' with the use of IT] 
emphasising that the argument is a syntactic object. \\"e may regard the expression 2 + 2 dl noting 
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J. Denotational Semantics J .. 1. Lambda Calculus 

the value 4, hence the term denotational semantics. 

J.3 Lambda Calculus 

To .give mea?i~g to ~xpression~ in the lambda-calculus we need to be able to give meaning to 
vanables. It IS Immediately obvIOus that in order to do this we need to be able to acce;;" the context 
?r scop: of a variable. T~is scope ~s taken into account by giving EVAL an extra paramel<'r. p. called 
Its envzronment, a functIOn mappmg variable names to their values. Thus 

EVAL[x] p = p(x), x E Id 

Applications may be treated similarly: 

However, lambda abstractions require a little more thought. What should the value of EVAL[A.r.E]p 
be? Since it is a function we define its value in terms of an arbitrary argument a: 

(EVAL[AX.E] p) a = EVAL[E] p[x - a] 

where the notation p[x -> a] denotes the environment p extended with the binding of variable .r to 
value a. More formally, this is: 

p[x - alI 
p[x -> a] y 

a 

P y, I=/; Y 

This completes the denotational semantics for the lambda calculus. This ('an be extended naturally 
to cover constants and built-in primitive functions such as the integers, reals, booleans and the 
standard operators over them. The collection of all the possibk values which EVAL can produce 
turns out to be a domain (see Appendix I) and we may write the following for the function f from 
Appendix I defined as f(I) = ...,f(I): 

EVAL[f x] p = .1. 

This allows us to talk about the properties of functions in a very terse manner, for instance, we Illily 
encapsulate the fact that (a+b) is undefined if either a or b are undefined as: 

J.4 Summary 

EVAL[+] a b 
EVAL[+] a b 

a + b, if a =/; .1. 1\ b =/; .1. 
.1., otherwise 

This is a very brief and superficial introduction to denotational semantics meant to be no more than 
a compact summary of the material required to understand the presentation of some of t he sections 
in this thesis. For a fuller treatment the reader is again referred to [88]. 
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Appendix K 

Mathematical Notation 

A = [Oi;] 
AB 
a = [OJ, (le. ... ,an] 
AT 
b = [b l , b2 , ... , bnV 
I 

IAI 
A-I 

\' 

1'(,1" ) 
fk (,I') 

< x,y > 

matrix having element a l ) in row i. column j 
matrix multiplication 
row II-vector having ai ilS the ith ("OIIlPOlwllt 

transpose of A,= raj;] 
column n-vector having bi as the i1h component 
identity matrix of any size (i jj = I and ikj = 0, k =f. j 
determinate of square matrix A 
inverse of A 
derivative of l' with respect to l' 
, , _ at· . + ov . + '-'-'-I,-
\ 1 - or' By) d' 

derivarivt' of J(x) with respect to l' 

e h derivariw of f(.r) with reslH'ct to x 
inner prodmt (usually xTy) 
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