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Abstract

Astrophysical observations of the solar photosphere uncover a wealth of detailed

structures that arise from the interaction of vigorously convecting plasma and the

internally generated magnetic fields. The most prominent features are sunspots, which

exhibit sub-structures on a range of scales. Specifically within the umbra is an intensity

pattern consisting of individual small bright points, referred to as umbral dots. These

states are thought to indicate the presence of localised magnetoconvective motions.

This thesis discusses the applications of magnetoconvection to the umbra, with the

aim of investigating the occurrence of steady and oscillatory localised states known as

convectons.

Convectons are isolated convective plumes from which magnetic flux is at least

partially expelled. In two-dimensional Boussinesq magnetoconvection we examine both

a simplified model, in which the vertical structure has been reduced, and a fully-resolved

model. In performing parametric surveys of the steady modes we attempt to understand

how localised states differ between the two models. Examining the oscillatory localised

cells we locate, for the first time, these states in the fully-resolved system. Both of these

models are horizontally periodic. We find that by altering these horizontal boundaries

so that they are impermeable to fluid motions does not impede the existence of these

states but leads to the additional existence of a new set of solutions that are localised

at the boundaries. To examine the bifurcation structure of these states we develop

a numerical continuation model. However, due to the limitations of the continuation

program, AUTO-07p, this model has restricted symmetries and impermeable horizontal

boundaries. Despite these simplifications the symmetries of the model ensure that

convectons can still be found and in addition allows the examination of the wall states.

The remainder of this thesis focuses on compressible magnetoconvection. In study-

ing oscillatory convectons in two-dimensions we find a new type of oscillation not found

in the Boussinesq models. This state no longer retains Boussinesq point symmetry

but has more gentle extended upflows characteristic of a three-dimensional cylindrical

plume. In three dimensions a new type of steady convecton is found with a broken

symmetry such that the cross-section corresponds to a single overturning roll.
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Chapter 1

Observations

The Sun provides us with a wealth of information that has made it a central theme of

astrophysical science for many centuries. With other stars being too distant to view in

any real detail the Sun provides us with the opportunity of gaining an understanding

of the structure and dynamics of a star. Since the discovery of solar magnetic fields

by Hale (1908), a description of how magnetic fields interact with the solar plasma has

been sought.

Observational study provides the basis of solar magnetoconvective research and

an attempt should be made to understand the range of complex processes that the

Sun exhibits in order to fully understand its structure and evolution. This chapter

discusses observations of magnetoconvective phenomena at the solar surface. It should

be noted that this chapter does not attempt to give an exhaustive description of these

observations and more thorough accounts can be found in the reviews by Stix (2004);

Solanki (2003) and Thomas & Weiss (2004, 2008).

1.1 Solar Convection and Small-Scale Magnetic Activity

The Sun is one of many lower main sequence stars, categorized via the Hertzsprung-

Russell diagram, and as such has a central radiative core (the radiative zone) with

an outer convective envelope (the convection zone). These two regions are named

according to the way in which energy is transported within them. The former is stably

stratified and rotates almost as a solid body, whereas the latter is convectively unstable

and rotates differentially. There is a shear layer between these regions known as the

tachocline. This is the region of the Sun where it is believed the large scale solar

magnetic field is generated, by a hydromagnetic dynamo, and conditions within this

region are still not fully understood (Larmor, 1919; Brummell et al., 1995; Tobias, 2002;

Ossendrijver, 2003).

Above the convection zone is a thin thermal boundary layer known as the photo-
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Chapter 1. Observations

sphere, the densest part of what we call the solar atmosphere. It has a thickness of

about 100km (Tobias, 2002) and provides a transition between the opaque gas of the

convection zone and the more transparent gas of the chromosphere. The photospheric

temperature varies from about 6000K at the base to about 4200K in the upper regions

(Thomas & Weiss, 2008), which is cool enough for negative hydrogen ions (H−) to ex-

ist. These absorb radiation from the solar interior, re-emitting visible light and giving

the Sun what seems to be a solid body form. Within the photosphere (and in higher

layers) a quantity known as the optical depth (τλ) is used to determine a geometric

height. The optical depth essentially gives the quantity of light that is scattered by a

medium. A layer of optical depth τλ = 1 reduces the intensity of radiation at wave-

length λ (measured in nanometers) by a factor of e−1 (Thomas & Weiss, 2008). Thus

a medium is said to be optically thin if τ � 1 or optically thick if τ � 1.

Energy transport to the photospheric surface via convection is observable as gran-

ulation. Granulation is a transient phenomenon with a single granule having a lifetime

of the order of 5 minutes (Title et al., 1989). Images taken with high resolution solar

telescopes, such as the Swedish 1-m Solar Telescope (SST) on the island of La Palma

Spain, allow us to visualise these structures in great detail. Fig. 1.1 shows one such

image, where individual granules are identified as the bright plumes of rising gas, of

supersonic upward velocity (with maximum upflow speeds of approximately 1.6kms−1)

(Stix, 2004). These are separated from other granules by a dark network of cooler sink-

ing gas, known as the intergranular lanes. Magnetic fields are expelled from within the

vigorously convecting plumes and become concentrated where the flows converge in the

intergranular lanes (Berger & Title, 1996). These small magnetic flux concentrations,

whose diameters are usually less than about 300km (0.′′41), show up as the bright points

in Fig. 1.1 (Keller, 1992). (Note 1.′′0 denotes one second of arc or arcsecond, equivalent

to 1/3600 of a degree.) These magnetic elements move within the intergranular lanes

at speeds ranging from 0.5-5kms−1 (Berger & Title, 1996) and evolve on a timescale

comparable to the granulation. They have a peak field strength between 1500-1700G

and their brightness is thought to be due to lateral heating, by radiation, from the sur-

rounding convection (Solanki, 1993). If the background field within the photosphere

becomes large enough, mixed polarity magnetic fields can cause the granulation to be-

come much more irregular, however, regions of this form are still not fully understood

(Schüssler & Vögler, 2008; Lites et al., 2008). There is evidence to suggest that these

regions are formed from the continuous regeneration of quiet Sun magnetic fields by

near-surface convective motions (Bushby et al., 2012).
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Chapter 1. Observations

Figure 1.1: The magnetic network. A snapshot of the solar granulation displaying the small
magnetic flux concentrations, which appear as bright points within the dark intergranular lanes.
This image was taken with the SST on 23rd May 2010 (Royal Swedish Academy of Sciences;
Vasco Henriques).

1.2 Large Scale Magnetic Features

Large dark solar features, such as pores or sunspots, have been known to astronomers

for many centuries and details of their nature were first recorded by Theophrastus of

Athens, the successor to Aristotle at the Lyceum. Since then astronomers have tried to

explain their origins by the use of telescopic observations, the first of which were carried

out by Galileo Galilei (1564-1642) from 1610, allowing the finer detail of their structure

to be realised. Many early drawings by Galileo illustrate the distinction between what

are known as the dark central ‘umbra’ and the surrounding filamentary ‘penumbra’ of

a sunspot (see Fig. 1.2). More modern sunspot images taken with the Swedish 1-m

Solar Telescope (see Fig. 1.3) illustrate this structure in breathtaking detail.

Sunspots and pores are the result of locally intense vertical magnetic fields that

suppress the normal transport of energy by convection, an idea first suggested by Bier-

mann (1941). As a separate explanation for reduced energy transport in a sunspot,

Hoyle (1949) suggested that the role of the magnetic field might be to force the convec-

tive upflow to follow the lines of force. The result being that the energy transport is

diluted as the cross-sectional area of the field increases with height in order to maintain

a pressure balance with the surrounding photosphere. It was Cowling (1953) who later

suggested that a full description must incorporate both of these theories and that there

must be a reduced but non negligible amount of energy transport by convection within

a sunspot. In a more strict sense, convective motions within a sunspot can be locally
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Chapter 1. Observations

Figure 1.2: Galileo sunspot drawing. One of many sunspot drawings by Galileo illustrating the
distinction between the umbra and penumbra of a sunspot, seen most clearly in the sunspot
group just below and to the left of disk centre.

Figure 1.3: A sunspot group. This magnificent image reveals two large sunspots as well as nu-
merous pores. This image was taken with the SST on 14th August 2003 at 4364Å (Continuum)
(Royal Swedish Academy of Sciences; Göran Scharmer and Kai Langhans, ISP).
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Chapter 1. Observations

suppressed when the magnetic energy density of the field is comparable to that of the

kinetic energy density of the convective motions. Numerical simulations show that a

magnetic field strength of about 600G will raise the magnetic pressure enough to create

low density regions and suppress convection (Weiss, 1964). However, a much stronger

field of about 1600G is required to balance the gas pressure from the surrounding pho-

tosphere and create a rigid magnetic structure such as a pore or sunspot (Simon &

Weiss, 1970).

1.2.1 Pores

Pores are distinct from sunspots in that they do not have a well developed penumbra.

Pores have a central field of strength 1500-2000G and continuum intensity ranging

from 20-65% of the normal photospheric rate (Solanki, 2003; Thomas & Weiss, 2008).

Structurally, the magnetic field in a pore varies from vertical at the centre to no more

than 35◦ from the vertical, at the periphery (Thomas & Weiss, 2008). Pores generally

have diameters ranging anywhere from 1-3Mm (1.′′38-4.′′14) but can be as large as 7Mm

(9.′′65) (Solanki, 2003). Pores are thought to develop from groups of larger magnetic

features that grow over time as their local magnetic flux increases. This increase leads to

the field at the periphery becoming increasingly inclined to the vertical until a critical

flux of about 1020Mx is reached, corresponding to about 3.5Mm diameter, when a

fluting instability is said to set in and the pore rapidly develops a penumbra, becoming

known as a sunspot (Simon & Weiss, 1970; Rucklidge et al., 1995; Leka & Skumanich,

1998). This process is also confirmed by highly idealised numerical simulations which

indicate that pores are susceptible to convectively driven instabilities (Tildesley &

Weiss, 2004; Botha et al., 2007). Penumbral development is a fast process and is

usually completed in less than a day (Solanki, 2003). However, if pores grow very

rapidly they can pass over this penumbral development and remain as pores for the

larger diameters that are generally characteristic of sunspots.

1.2.2 Sunspots

Sunspots are dynamic in nature and range in size and shape over their lifetimes, gen-

erally being classified via their morphology (McIntosh, 1990). Sunspots can live from

hours to months and their diameters are generally observed to be between 20-40Mm

(2.′′76-5.′′52), although they can occasionally reach diameters of 60Mm (8.′′27) or more

(Solanki, 2003; Thomas & Weiss, 2004). Sunspots can however be as small as 3.5Mm

(4.′′83) meaning there is an overlap (or level of hysteresis) between sunspot and pore

sizes. As sunspots, with their well developed penumbrae, can have smaller diameters

than the largest pores, this suggests that the penumbra is a very stable structure once

formed. The field strength in a sunspot increases from about 1000G at the periph-
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Chapter 1. Observations

ery of the penumbra to about 3700G at the centre of the umbra (Livingston, 2002).

The umbra generally spans about 40% of the sunspot radius, covering just 20% of the

sunspot area (Thomas & Weiss, 2008). Energy emissions from the umbra are about

20-30% of the normal photospheric rate, corresponding to temperatures between 4000-

5000K. The penumbra on the other hand has a local energy flux of between 75-85% of

the photospheric rate, corresponding to temperatures between 5500-6000K (Thomas &

Weiss, 2008). In terms of the total energy flux of a sunspot, the umbra radiates just

5% of the total energy into the solar atmosphere (Rucklidge et al., 1995). The cooler

temperatures and lower energy flux of sunspots in comparison to the average photo-

spheric rate is a direct consequence of the inhibition of convective energy transport by

the presence of the magnetic fields.

The reduction in temperature has a significant mechanical effect on the structure

of a sunspot. In 1769, Alexander Wilson (1714-1786) discovered what is now known

as the Wilson effect. He described the penumbral width as being “much contracted

on that part which lay towards the centre of the disc” (Wilson & Maskelyne, 1774),

a process now known as limb shortening. It was this observation that led Wilson to

suspect that “the central part, or nucleus of this spot, was beneath the level of the Sun’s

spherical surface”, a property known as Wilson depression. The Wilson depression can

vary anywhere from a few hundred to several thousand kilometres from the normal

photospheric height (τ500 = 1), with average values between 500-1000km (Balthasar &

Woehl, 1983; Solanki, 1993; Thomas & Weiss, 2008). The lowering of the optical depth

means that the radiation emitted from a sunspot is from a deeper layer than in the

quiet photosphere.

Surrounding most sunspots is an annular moat cell, 10-20Mm from the sunspot

periphery, which is essentially a large supergranular cell centred on the sunspot. There

is a persistent horizontal outflow from the sunspot, which carries both granular and

mesogranular cells through it. The moat itself has no permanent magnetic field. How-

ever there are numerous magnetic elements that move radially outwards with speeds

of 0.1− 3kms−1, known as moving magnetic features (MMFs) (Sheeley, 1969; Vrabec,

1971; Harvey & Harvey, 1973). The transport of flux away from the sunspot is thought

to be one of the primary means of sunspot decay as the active region is recycled into

the quiet photosphere.

Observations confirm that the umbra of a sunspot has an intense near-vertical mag-

netic field at its centre, which becomes more horizontal with radius (a configuration

first determined by Hale et al., 1919). Modern observations confirm that the mean

inclination to the vertical is about 45◦-50◦ at the inner penumbra and about 70◦-75◦

at the outer penumbra (Title et al., 1993; Lites et al., 1993). The penumbra is made

up of bright and dark radial bands known as penumbral filaments (see Fig. 1.3), which
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were described by Herschel (1801) as “the minute appearances on the Sun” or “tufted

... shallows”. The bright filaments are found to be inclined at about 50◦-60◦ to the

vertical and correspond to regions of inclined magnetic field, which can extend across

vast solar distances to other foot-points, linked via coronal loops (Sams et al., 1992)

(see Fig. 1.4). The dark filaments on the other hand have an almost horizontal mag-

netic field, which either forms a shallow magnetic canopy at the solar surface (Solanki

et al., 1994) or else is dragged down below the surface by the rapidly descending convec-

tive downflows in the intergranular lanes (Schlichenmaier & Schmidt, 2000), a process

known as flux pumping (Thomas et al., 2002; Weiss et al., 2004; Brummell et al.,

2008). A combination of the downdrafts, magnetic buoyancy and magnetic restoring

forces are thought to be responsible for keeping the flux tubes submerged, helping to

explain the abrupt end to the penumbra at the edge of a sunspot. This also provides a

possible stabilising mechanism for the two component penumbra and the maintenance

of the interlocking comb geometry of the magnetic field (Thomas et al., 2002; Weiss

et al., 2004; Brummell et al., 2008) (see Fig. 1.5). Confirmation of the magnetic field

re-entering the solar surface at the sunspot periphery is taken from observations, which

show a field reversal at the outer edge in magnetogram images (Solanki, 2003). This

explanation of penumbral structure is in keeping with the common view that a sunspot

magnetic field is a monolithic flux tube that fans out with height in order to maintain a

pressure balance with the surrounding photospheric convection (Cowling, 1976). How-

ever it was also proposed by Parker (1979a,b) that the monolithic structure actually

splits into many smaller flux tubes below the photospheric surface due to the fluting

or interchange instabilities (Parker, 1975; Solanki, 2003) (see Fig. 1.6). This leads to

an alternative explanation of penumbral filaments as due to convection in field free,

radially aligned gaps below the visible surface (Spruit & Scharmer, 2006; Scharmer &

Spruit, 2006). This explanation coincides very nicely with the penumbral interlocking

magnetic fields, which suggests distinct magnetic flux tubes and is thought to solve the

classical discrepancy between the large heat fluxes and low velocities that are observed

in the penumbra (Spruit & Scharmer, 2006). However, alternative reasoning based

on lateral heating from the surrounding photospheric convection can also be used to

resolve these heat flux discrepancies (Rucklidge et al., 1995). This is therefore still a

controversial area. In any case in order to produce high resolution realistic models of

sunspots one usually considers a monolithic flux tube in the magnetoconvection con-

text (Schüssler & Vögler, 2006; Rempel et al., 2009b; Rempel, 2011; Kilcik et al., 2012).

More details of the complex arguments for and against the two different types of model

can be found in Solanki (2003).

John Evershed (1864-1956) discovered, by observing Doppler shifts in the absorption

line profile of penumbral filaments, that there is a radial outflow of gas in the penumbra,
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Figure 1.4: Coronal loops. This breathtaking image of coronal loops over the eastern limb of
the Sun shows the fine detail of the global magnetic structure of a sunspot pair. This image
was taken in the TRACE 171Å pass band, characteristic of plasma at 1 MK, on November 6,
1999.

Figure 1.5: Sunspot diagram. A sketch (from Weiss et al., 2004) showing the structure of both
the bright and dark filaments that make up the interlocking-comb geometry of the magnetic
field in the filamentary penumbra of a sunspot. The sunspot is surrounded by a layer of small
scale granular convection (wavy arrows) embedded in the radial outflow associated with the long
lived annular super-granule or moat cell (large curved arrow). The vertical arrows represent
the turbulent pumping by the granular convection, which keeps the flux tubes submerged in
the moat.
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Figure 1.6: Sunspot models. A sketch of (a) monolithic and (b) cluster type models of the
subsurface structure of a sunspot magnetic field, taken from Solanki (2003)

now known as the Evershed effect (Evershed, 1909a). Increasing resolution indicates

that the bulk movements of gas are confined solely to the dark filaments (Title et al.,

1993), which contains the near horizontal field. It is expected that the convection

within the dark filaments onsets in the form of less efficient overturning rolls, a result

of the field inclination (Danielson, 1961; Degenhardt & Wiehr, 1991; Schmidt et al.,

1992).

High resolution observations of bright penumbral filaments show dark radial stripes

at their centres (Spruit & Scharmer, 2006; Scharmer & Spruit, 2006) (see Fig. 1.3). Nu-

merical simulations show that, in a compressible medium with radiative upper bound-

ary conditions, the plumes appear to be evacuated of field due to the rapid expansion

of the gas. The dark stripes owe their existence to this upflow rapidly slowing as it

reaches the surface, which causes the plasma to lose buoyancy due to radiative cooling.

The stratification of the layer then becomes subadiabatic and the plasma piles up rais-

ing the surface of optical depth unity to low temperature regions (Schüssler & Vögler,

2006; Rempel et al., 2009b).

At spatial resolution below 1.′′0 (725km) it is possible to see that there are motions

within the bright filaments within the penumbra, known as penumbral grains (Muller,

1973a,b). These small features are usually located near the umbra and have widths

of about 305km (0.′′42) and lengths that range from 305km (0.′′42) to 2500km (3.′′45)

(Rouppe van der Voort et al., 2004). They have intensity variations between 85-110%

of the normal photospheric rate meaning that they can be brighter than the brightest

granules in the non-magnetic photosphere (Tritschler & Schmidt, 2002). Penumbral

grains are observed to have radial motions that are inwards in approximately the inner

two thirds of the penumbra and outwards in the outer third, possibly owing to a

combination of the varying field strength and inclination in these regions (Sobotka et al.,

1999; Sobotka & Sütterlin, 2001). Inward moving penumbral grains move with speeds
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of 0.5kms−1 and outward moving grains with speeds between 0.5-0.75kms−1 (Wang &

Zirin, 1992; Sobotka & Sütterlin, 2001). The outward moving grains often disappear

before reaching the outer boundary of the penumbra although some do penetrate into

the moat cell of the sunspot becoming either a small bright feature or a regular granular

cell with the same outward motion (Sobotka et al., 2002).

1.3 Umbral Dots

Within a rigid magnetic structure, such as the umbra, the atmosphere is almost fully

stably stratified so that only the strongest convective plumes reach the photospheric

surface. The partially inhibited convection is barely detectable at current resolution

limits and the majority of sunspot images that one is usually presented with, such

as Fig. 1.3, show a uniformly dark umbra (Lites et al., 1991). However, with the

correct exposure and a high spatial resolution one can observe the numerous convective

plumes that penetrate into the umbra and appear as bright points. These features are

known as umbral dots (UDs) (Danielson, 1964) (see Fig. 1.7). This pattern within the

umbra was first reported by Chevalier (1916) and later confirmed by Thiessen (1950).

Dark nuclei, like those in the upper part of Fig. 1.7, represent regions of stronger

vertical magnetic field in which convection is severely inhibited and fine scale structure

is scarcely observed (Weiss et al., 2002).

Early UD observations seem to be largely under-resolved and what were referred to

as umbral granules by Bray & Loughhead (1959) and Loughhead & Bray (1960), with

mean sizes of about 2.′′3 (1670km) were probably groups of UDs. Later observations by

Danielson (1964), using Stratoscope I, seem to resolve individual UDs with lifetimes

between 4-50 minutes and diameters at their limit of resolution, 0.′′43 (310km). This is in

keeping with more modern high resolution observations of UDs with diameters ranging

from 0.′′32-0.′′5 (230-360km) with a small percentage found with diameters as small as

0.′′24 (175km), the theoretical limit of the observations taken with Hinode (Kitai et al.,

2007). Most recent studies suggest that lifetimes of UDs range from 4-40 minutes,

with average lifetimes of approximately 15 minutes (Ewell, 1992; Sobotka et al., 1997;

Sobotka & Hanslmeier, 2005; Kitai et al., 2007; Riethmüller et al., 2008), however,

shorter average lifetimes of 4.5 minutes have been found by Sobotka & Puschmann

(2009).

There are two sub-classes of umbral dots, peripheral umbral dots (PUDs) and cen-

tral umbral dots (CUDs) (Kitai, 1986; Ewell, 1992; Kitai et al., 2007; Watanabe et al.,

2010). CUDs located in the more vertical field of the central umbra remain almost

motionless but can move with slow random proper motions with a maximum speed of

0.5kms−1 (Kitai, 1986; Sobotka et al., 1997). PUDs on the other hand originate either
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in the periphery of the umbra or else are formed from inward moving penumbral grains

that penetrate into the umbra. PUDs move radially towards the umbral centre with

speeds ranging from 0.5− 0.9kms−1 (Kitai et al., 2007).

No relationship has as yet been found between the classes of UDs and their sizes and

lifetimes. Intuitively it makes sense that CUDs would be smaller than their peripheral

counterparts due to the larger magnetic pressure at the centre of a sunspot. Another

curiosity is that increasing resolution of UD observations often show an increase in

the number of UDs with smaller diameters (Sobotka et al., 1997; Tritschler & Schmidt,

2002). Contrary to this, Sobotka & Hanslmeier (2005) found effective diameters of UDs

in the range 0.′′14-0.′′6 (100-435km) with no monotonously increasing trend towards

smaller diameters but a centred distribution about 0.′′23 (165km). This means that

the majority of UDs in these observations are well above the resolution limit of the

telescope, and as such are fully resolved. It would be expected that the more recent

observations, using increased resolution, would give more reliable observational data.

The distribution of UDs throughout the umbra is non-uniform, although it is found

that the smaller UDs are more evenly spread than the larger ones (Sobotka et al., 1997;

Tritschler & Schmidt, 2002). Nearest neighbour distances are found to be between 0.′′38-

0.′′42 (275-305km) with an average nearest neighbour distance of 0.′′4 (290km) and an

average peak to peak distances of 0.′′75 (545km) (Sobotka & Hanslmeier, 2005). It is

not yet fully understood if the interaction of the neighbouring plumes plays a role in

determining the characteristic lifetimes and distribution of UDs or whether some degree

of localisation is responsible for their observed non-uniform distribution.

Observations of the detailed temporal evolution of UDs have recently shown evi-

dence of fusion and fission events within CUDs (Kitai et al., 2007). Fusion events are

described as the merging of two UDs to form a single UD with a fission event being

the reverse process. Kitai et al. (2007) comments that these events could be clusters of

unresolved dots less than 0.′′24 (175km) in diameter (Sobotka et al., 1997; Sobotka &

Hanslmeier, 2005) and the fusion and fission events could correspond to brightening or

decaying phases within these regions (also noted by Sobotka et al., 1997). A curious

aspect of these events is that PUDs show no signs of them suggesting some physical

difference between PUDs and CUDs. However, this could simply be due to the fact

that PUDs do not move randomly.

The intensity of UDs is usually found to vary between 20-70% of the normal pho-

tospheric intensity (Thomas & Weiss, 2004). Sobotka & Hanslmeier (2005) and Kitai

et al. (2007) found that the temperatures of CUDs fall in the range 4200-5500K (aver-

age 4600K) whilst PUDs are slightly hotter ranging from 4700-5900K (average 5460K)

(see Fig. 1.8). The temperature of the umbral background is found to increase smoothly

with radius with the intensity of individual UDs locally dependent on this diffuse back-
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Figure 1.7: Umbral dots. Red-band (6020Å) observation (from Sobotka & Puschmann, 2009)
of the umbra made with the SST on 18th June 2004. The upper rectangle contains a group
of central umbral dots and dark nuclei with the lower one highlighting a region containing
numerous peripheral umbral dots.

ground intensity (Sobotka et al., 1992, 1997; Tritschler & Schmidt, 2002; Sobotka &

Hanslmeier, 2005). Kitai et al. (2007) found that UDs are generally about 300K hot-

ter than their immediate surroundings, which provides a possible explanation for the

greater temperature of PUDs. In accordance with this result PUDs are found to de-

crease linearly in brightness over their lifetimes as they move radially inwards whereas

CUDs respectively increase or decrease in brightness in correspondence with the growth

or decay phases of a sunspot. Sobotka et al. (1993) found that the filling factor (the

ratio of total area of UDs to the area of the umbra) increases with increasing brightness

of the umbral background suggesting that a thermal driving effect is responsible for

the occurrence of these features.

Determining the magnetic field structure of UDs has proved to be an inconsistent

process. Early observations suggest no field weakening within UDs (Lites et al., 1991;

Zwaan et al., 1985). In contrast more recent high resolution observations suggest field

strength reductions in UDs (Wiehr & Degenhardt, 1993; Tritschler & Schmidt, 1997;

Socas-Navarro et al., 2004; Ortiz et al., 2010). The observations provided by Ortiz et al.

(2010) show field weakening of up to 500G from the surrounding umbral field. They

also find that the field is inclined by about 20 degrees, to the vertical, in contrast to the

surrounding umbral atmosphere, which is close to vertical. A similar problem is found

when trying to determine if UDs have upflows and downflows. Observations by Bharti

et al. (2007) and Ortiz et al. (2010) present UDs as convective plumes with central

upward velocities of 400ms−1 and 1400ms−1 with surrounding downflows of velocity

300ms−1 and up to 400-1000ms−1 respectively, compatible with the simulations of
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Figure 1.8: Umbral dot intensity. This composite image taken from Kitai et al. (2007) shows a
fairly regular sunspot on the 4th March 2007, with a green continuum image on the left and a
temperature distribution on the right, with colour bar.

Schüssler & Vögler (2006); however, they find higher maximum velocities of between

3-4kms−1. A number of other observations show upflows of a few hundred metres per

second (Socas-Navarro et al., 2004; Rimmele, 2008), others show stronger upflows (Lites

et al., 1991; Socas-Navarro, 2003), some show no upflows at all (Zwaan et al., 1985;

Wiehr, 1994; Schmidt & Balthasar, 1994) and others give evidence for downflows only

(Hartkorn & Rimmele, 2003).

Similar to the dark lanes found in penumbral filaments, dark lanes have been

found both theoretically (Schüssler & Vögler, 2006) and observationally (Sobotka &

Puschmann, 2009) in UDs. They are believed to be due to the same process of plasma

piling up at the top of the plume. A result of this mechanism is that the weakest fields

and fluid motions may scarcely be observed, possibly explaining the lack of continu-

ity between observations of these features. There have been recent observations that

show no dark lanes (Andic, 2011). However, these observations were performed in a

different wavelength band and when examining features in a different wavelength, one

may expect to observe different structures. Given the contradictory nature of these

observations, it is clear that further theoretical work is required.

It has been shown that radiative processes alone are not sufficient to transport the

observed energy flux from below the umbral photosphere to the surface (Schlüter &

Temesváry, 1958) and some form of convective energy transport is required (Deinzer,

1965). These results with those already discussed is this section suggest that the inten-

sity pattern observed within the umbra corresponds to some form of magnetoconvective

state. Thus we shall view UDs in this way and turn to magnetoconvection simulations

to study their structure and properties.
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Magnetoconvection

It is important to present and derive the governing equations in order to gain a quan-

titative understanding of how a magnetic field should interact with an electrically con-

ducting fluid. In this thesis we will be analysing results from both fully compressible

and Boussinesq magnetoconvection models. In the first section we shall present the full

equations of compressible magnetoconvection and then make simplifying assumptions

to obtain a Boussinesq model.

2.1 The Equations of Compressible Magnetoconvection

We consider a layer of electrically conducting, compressible fluid (plasma), that is

heated from below in the presence of an imposed magnetic field. The gas is contained

within a Cartesian box of dimensions 0 ≤ z ≤ d and 0 ≤ x, y ≤ λd, where λ is the

aspect ratio and d is the layer depth of the box. We take the z-axis to point vertically

upwards, parallel to the constant gravitational acceleration, g = −gẑ. At a position x

and time t the fluid has pressure, density, temperature and velocity given respectively

by P (x, t), ρ (x, t), T (x, t) and u (x, t), whilst B (x, t) represents the magnetic field.

There are a number of properties of the fluid that are held constant. These are the

magnetic diffusivity, η, the dynamic viscosity, µ, the magnetic permeability, µ0, the

thermal conductivity, K, and the specific heat capacities at fixed density and pressure

respectively cV and cP .

2.1.1 The Navier-Stokes Equation

To conserve momentum, the fluid motions within our system will be governed by the

magnetically modified Navier-Stokes equation, which is given by (e. g. Chandrasekhar,

1961),

ρ

(
∂

∂t
+ u · ∇

)
u = −∇P + ρg + (J ×B) + µ∇ · τ , (2.1)
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where J = 1
µ0

(∇×B), and the components of the stress tensor τij are given by

τij =
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij . (2.2)

The terms from left to right, on the right hand side of Equation (2.1), are the pressure

gradient, the buoyancy due to gravity, the Lorentz force, which is the force exerted

by the magnetic field on the electrically conducting fluid, and the fluid stresses due to

viscous effects.

2.1.2 The Induction Equation

The induction equation evolves the magnetic field and is derived from Maxwell’s equa-

tions that govern electromagnetic fields (e. g. Cowling, 1976):

∂B

∂t
= ∇× (u×B) + η∇2B. (2.3)

Starting from left to right the two terms on the right hand side of Equation (2.3)

respectively govern the advection and the diffusion of the magnetic field through the

fluid. An important constraint when dealing with magnetic fields is that they must

remain solenoidal, i.e. magnetic fields are due solely to electric currents and magnetic

monopoles do not exist. Mathematically this is represented by Gauss’s law for mag-

netism:

∇ ·B = 0. (2.4)

There are two important limits that exist for the induction equation. If η � 1 then the

right hand side of Equation (2.3) is dominated by the diffusive term and the magnetic

field will decay. If on the other hand η � 1 the dissipative effects are small and the

field is said to be ‘frozen’ into the fluid (Alfvén, 1943). It is easy to show that this is

the case for an astrophysical fluid. For example, we follow Cowling (1976) and rescale

Equation (2.3) by a characteristic length scale, L0, velocity, V0, and thus a time scale

t0 = L0/V0, giving
∂B

∂t
= ∇× (u×B) +

1

Rm
∇2B, (2.5)

where Rm is the magnetic Reynolds number (ratio of advection to diffusion),

Rm =
L0V0

η
. (2.6)

If we now take the characteristic values for a solar granule as L0 ≈ 106m (approximate

diameter) and V0 ≈ 103ms−1 (approximate upflow speed), given that the magnetic

diffusivity in the photosphere is η ≈ 103m2s−1 (η ranges from 103m2s−1 in the photo-
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sphere to 10−2m2s−1 at the core (Cowling, 1976)), then we find that Rm ≈ 106 � 1.

Therefore, magnetic diffusion within the photosphere can be regarded as a very slow

process and the magnetic field lines can be regarded as frozen into the plasma (see also

Moffatt, 1978; Priest, 1982). As a result, the field lines are advected with the fluid and

become concentrated where the flows converge in the intergranular lanes (Proctor &

Weiss, 1982; Thomas & Weiss, 2008). Flux expulsion describes the process by which

vigorously rotating fluid eddies expel almost all magnetic flux from their interior. The

first time-dependent numerical simulations of flux expulsion were carried out by Weiss

(1966) in a kinematic model of flux expulsion. If, in addition, a Lorentz force is in-

cluded in the dynamics, providing a coupling to Equation (2.1), then rigid magnetic

flux concentrations may form (Galloway et al., 1977). In addition magnetoconvection

simulations of two-dimensional rolls (Peckover & Weiss, 1978; Weiss, 1981a,b) and of

axisymmetric tori (Proctor & Galloway, 1979) indicate that these flux concentrations

generate counter-vorticity, which leads to the suppression of convective motions, or

even to the driving of weak counter-cells within them (Hurlburt & Toomre, 1988). The

separation of the field from the regions of vigorous convection is referred to as flux sep-

aration (Tao et al., 1998), and in wide computational boxes we find regions of strong

field and small scale convection along-side convective plumes that are at most weakly

magnetised (Weiss et al., 2002).

2.1.3 The Heat Equation

In order to conserve energy within the system we use the following form of the heat

conduction equation (see Chandrasekhar, 1961),

ρcV

(
∂

∂t
+ u · ∇

)
T = K∇2T − P (∇ · u) +

µ

2
τ2 +

η

µ0
|∇ ×B|2. (2.7)

The terms from left to right, on the right hand side of Equation (2.7), are the thermal

diffusion and the heating due to compressibility, fluid viscosity, and ohmic dissipation.

2.1.4 The Continuity Equation

To conserve mass within the system we use the continuity equation, that is readily

derived via physical considerations of mass conservation (see Chandrasekhar, 1961;

Acheson, 1990; Batchelor, 2000) and is given by,

∂ρ

∂t
+∇ · (ρu) = 0. (2.8)
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2.1.5 The Equation of State

We will be modelling a photospheric plasma, so we must make an assumption about

the equation of state. Photospheric plasma is a high temperature, low density gas,

meaning that to a good approximation we can treat it as an ideal gas. Hence, the

pressure P is given by the relation

P = R∗ρT, (2.9)

where R∗ represents the gas constant.

2.2 The Boussinesq Approximation

Solving the full equations of magnetoconvection with compressibility poses a great

numerical challenge but it is possible to produce more simplified models that allow

numerical computation on a much shorter timescale. It was Boussinesq (1903) who

first pointed out that there are situations in which the complexity of the basic equa-

tions, (2.1)-(2.4) and (2.7)-(2.9), can be reduced by making a number of simplifying

assumptions. The Boussinesq approximation has been rigorously studied and we refer

the reader to Spiegel & Veronis (1960); Chandrasekhar (1961) and Proctor & Weiss

(1982) for more details of this derivation. In this section we will give some details of

this formulation.

The Boussinesq approximation makes several assumptions about the nature of the

model and it is important to understand what these assumptions are so that we may

apply them correctly. The theory assumes that:-

1. The layer is thin leading to slowly varying state variables over the depth of the

layer.

2. Density variations are small enough to be neglected but gravity is sufficiently

strong to create buoyancy within the system.

3. Fluctuations in the thermodynamic quantities are small compared to the mean

values.

Thus the model applies to incompressible, magnetically interacting fluids undergo-

ing natural convection as a result of an imposed temperature gradient.
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2.2.1 Preliminary Details

We begin by expanding each of the state variables, temperature, T , density, ρ, and

pressure, P , (represented by f) in the form

f (x, y, z, t) = f0 + fs (z) + f ′ (x, y, z, t) , (2.10)

where f0 represents the space-averaged value, fs is the variation in the absence of

motion and f ′ represents the variation resulting from motion. Assuming initially that

the layer is static (f ′ = 0), we can introduce the scale height (the height interval over

which a quantity decreases by a factor of e) as follows:

Hf =

[
− 1

f0

dfs
dz

]−1

. (2.11)

Thus the basic approximation, given in Point 1, can be expressed mathematically in

the form,

d� |min[HT , Hρ, HP ]|. (2.12)

Taking d/|Hf | � 1 and integrating Equation (2.11) over the depth of the layer we

obtain
∆fs
f0
≡ ε� 1, (2.13)

where ∆fs is the maximum variation of fs across the layer. We must also make the

further restriction that the fluctuations arising from motion do not exceed, in order of

magnitude, the variation in the absence of motion,∣∣∣∣f ′f0

∣∣∣∣ ≤ ∆fs
f0

= O(ε). (2.14)

2.2.2 The Continuity Equation

If we use Equations (2.10) and (2.13) then we may rewrite the continuity equation,

(2.8), as

∇ · u = −
(
∂

∂t
+ u · ∇

)(
ερs
∆ρs

+
ερ′

∆ρs

)
+O

(
ε2
)
, (2.15)

Thus, to order ε, the continuity equation reduces to the incompressibility condition

∇ · u = 0, (2.16)

and thus the stress tensor, (2.2), reduces to

τij =
∂ui
∂xj

+
∂uj
∂xi

. (2.17)
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2.2.3 The Navier-Stokes Equation

A simple equilibrium solution to the Navier-Stokes equation can be found:

u = 0, B = ẑ,
∂P

∂x
=
∂P

∂y
= 0. (2.18)

and this corresponds to a state of hydrostatic equilibrium:

dP

dz
= −gρ, (2.19)

a state in which, at any specific height within the layer, the pressure can be regarded

as the weight of the overlying fluid on that layer. It is convenient to consider deviations

from this state and thus in the absence of motion the vertical component of the Navier-

Stokes equation becomes
dPs
dz

= −gρ0 − gρs. (2.20)

Using the form of the stress tensor in Equation (2.17), the magnetically modified,

incompressible Navier-Stokes equation takes the form

ρ

(
∂

∂t
+ u · ∇

)
u = −∇P + ρg + (J ×B) + µ∇2u, (2.21)

where the viscosity µ = ρν is assumed uniform and ν represents the kinematic viscosity.

For convenience, in order to group the pressure terms (gas plus magnetic), we express

Equation (2.21) in the form

ρ

(
∂

∂t
+ u · ∇

)
u = −∇

(
P +

|B|2

2µ0

)
+ ρg +

1

µ0
(B · ∇)B + ρν∇2u. (2.22)

Using Equation (2.10) and the hydrostatic relation, (2.20), we may rewrite this (at

lowest order) as follows:(
∂

∂t
+ u · ∇

)
u = − 1

ρ0
∇p′ + ρ′

ρ0
g +

1

µ0ρ0
(B · ∇)B + ν∇2u, (2.23)

where p = P + Pm = P + |B|2/ (2µ0) is the total pressure and Pm is the magnetic

pressure (Note: Pm = Pm0 + Pms + P ′m (cf. Equation 2.10) and p′ = P ′ + P ′m). Given

that ρ′/ρ0 = ερ′/∆ρs, it can be seen that the buoyancy term is of order ε and thus

should be neglected. It is necessary to retain this term if we are to study convection

problems. Thus it follows that the total pressure gradient and the fluctuations in the

buoyancy force must be of the same order. Hence

p′

P0
∼ gdρ′

P0
=
gdρ0

P0

(
ρ′

ρ0

)
∼
(

d

HP

)(
ρ′

ρ0

)
� ρ′

ρ0
. (2.24)
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Thus the fluctuations in the total pressure gradient are small and we may write

P ′

P0
= −P

′
m

P0
= − P ′m

β̄Pm0

, (2.25)

where β̄ = P0/Pm0 is the ratio of the gas to the magnetic pressure in the hydrostatic

state. To proceed we linearise the equation of state, (2.9), giving

ρ− ρ0

ρ0
=
P − P0

P0
− T − T0

T0
, (2.26)

from which we may derive the relations

ρs = ρ0

(
Ps
P0
− Ts
T0

)
, (2.27)

and

ρ′ = ρ0

(
P ′

P0
− T ′

T0

)
. (2.28)

Details of this linearisation can be found in Spiegel & Veronis (1960). Briefly, it consists

of Taylor expanding the equation of state about T0, ρ0 and P0, retaining the leading

order terms. Using Equations (2.13), (2.25) and (2.27) we can write Equation (2.28)

in the form

ρ′ = ρ0

(
−T

′

T0
− P ′m
β̄Pm0

)
. (2.29)

The two terms on the right hand side of this equation lead to thermal and magnetic

buoyancy forces. Following Proctor & Weiss (1982) we assume that the second term

on the right hand side is much smaller than the first (certainly true if β̄ � 1). This

implies that:

ρ′ = −ρ0α̂T
′ (2.30)

where α̂ = 1/T0 is the coefficient of thermal expansion for a perfect gas (Chandrasekhar,

1961). Applying this condition to Equation (2.23) and reforming the Lorentz force, we

find that the Navier-Stokes equation under the Boussinesq approximation takes the

form (
∂

∂t
+ u · ∇

)
u = −∇

(
P ′

ρ0

)
− α̂T ′g +

1

ρ0
(J ×B) + ν∇2u. (2.31)

2.2.4 The Energy Equation

Now we turn our attention to the energy equation, (2.7). If in Equation (2.31) we

compare the relative magnitudes of the buoyancy term and the inertial term then

we can show that the prevailing velocities u ∼ (α̂∆Tgd)1/2 (Chandrasekhar, 1961).

Consequently, comparing the viscous term to the diffusion term on the right hand side
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of Equation (2.7) we find

µu2

K∆T
=
να̂gρ0d

K
=

ν

K

d

HT
� 1 (unless ν � K), (2.32)

where HT = T0/gρ0. Thus the viscous term is usually small compared to the thermal

diffusion. From Equation (2.31) comparing the relative magnitudes of the Lorentz force

and the buoyancy term we find that |B0| ∼ (α̂∆Tgdρ0µ0)1/2. Consequently, comparing

the ohmic heating term to the diffusion term on the right hand side of Equation (2.7)

we find
η|B0|2

µ0K∆T
=
ηα̂gρ0d

K
=

η

K

d

HT
� 1 (unless η � K). (2.33)

We retain P (∇ · u) as it is the same order as the other terms. To verify this we first

note that Ps/P0 = O(d/HP ). Now using Equations (2.10) and (2.14) we can express

P in the form P = P0 + O(d/HP ). Combining Equations (2.15), (2.27) and (2.30) we

obtain (at leading order)

P∇ · u = P0

(
∂

∂t
+ u · ∇

)(
Ts + T ′

T0
− Ps
P0

)
, (2.34)

and thus the heat equation can be written in the form

ρ0cV

(
∂

∂t
+ u · ∇

)(
Ts + T ′

)
+ P0

(
∂

∂t
+ u · ∇

)(
Ts + T ′

T0
−Ps
P0

)
= K∇2

(
Ts + T ′

)
.

(2.35)

Using the hydrostatic relation, (2.20), we can write(
∂

∂t
+ u · ∇

)
Ps
P0

= −gρ0uz
P0

+O

(
d

HP

)
, (2.36)

and following from Equation (2.35), we obtain(
∂

∂t
+ u · ∇

)
T = u · ∇Tad + κ∇2T, (2.37)

where ∇Tad = gα̂T0/cp is the adiabatic temperature gradient, cP = cV + R∗ = cV +

P0/ρ0T0 is the specific heat capacity at constant pressure and κ = K/ρ0cP is the

thermal diffusivity. For a layer of fluid where the top and bottom boundaries are

held at fixed temperatures T1 and T2 respectively, we define the potential temperature

difference across the layer as follows:

∆T = (T2 − T1)− gα̂T0d

cp
. (2.38)
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Under normal conditions we assume that gα̂T0d/cp � (T2 − T1), thus ∆T ≈ T2 − T1.

In this limit, the energy equation also simplifies to:(
∂

∂t
+ u · ∇

)
T = κ∇2T. (2.39)

2.2.5 The Governing Equations of Boussinesq Magnetoconvection

The governing equations of Boussinesq magnetoconvection are Equations (2.31), (2.39)

and (2.3), which we shall summarise here:(
∂

∂t
+ u · ∇

)
u = −∇

(
P ′

ρ0

)
− α̂T ′g +

1

ρ0
(J ×B) + ν∇2u, (2.40)

(
∂

∂t
+ u · ∇

)
T = κ∇2T, (2.41)

∂B

∂t
−∇× (u×B) = η∇2B. (2.42)

2.3 Theoretical Research of Magnetoconvection Models

Current high resolution observations of the solar photosphere have vastly increased

our knowledge of the interactions between convection and magnetic fields (see Chap-

ter 1). As we have seen, observations may lead to an ambiguous interpretation of

these features due to observational limitations. For example, lower sub-photospheric

layers are inaccessible to direct observations and do not allow us to comprehensively

conclude what structural form these features take. Numerical magnetohydrodynamic

simulations, in the form of magnetoconvection models, allow us to view these layers in

three-dimensions and provide a means of probing the mechanisms responsible for the

formation of the structures that are observed.

Studies of magnetoconvection are often approached from one of two viewpoints.

Either we attempt to reproduce as accurately as possible the solar photospheric con-

ditions in a ‘realistic’ model or else we produce a simplified or ‘idealised’ model in

which the key parameters of the system can be varied enabling a qualitative under-

standing of the physical processes involved. We shall discuss the current attempts in

each area to model photospheric features, focusing particularly on those relevant to

umbral magnetoconvection. We shall discuss localised states in some detail, particu-

larly the magnetoconvective states known as ‘convectons’, which are the main focus of

this thesis.
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Figure 2.1: A numerical sunspot model taken from Rempel (2011) showing the grey scale
intensity. The domain size for this simulation is 49×49×6.1Mm with the grid resolution being
16× 16× 12km (3072× 3072× 512 grid points).

2.3.1 Realistic Models

Realistic models usually include elaborate physical processes such as radiative trans-

fer, which is known to be the main driver of convection and dominant mode of energy

transport in the photosphere, and partial ionisation, which has a strong effect on the

convective energy transport (Vögler et al., 2005). From such complex models it is

possible to analyse specific quantitative data, such as spectral line profiles and polari-

sation diagnostics, and compare it directly with the data derived from high resolution

observations. The numerical models that we will discuss have been very successful in

reproducing observational data.

Realistic calculations were pioneered by Nordlund (1982, 1983) in his study of pho-

tospheric granulation, but resolution in these simulations was rather limited. Due to

recent advances in numerical resources, attempts to simulate the full complexities of a

large scale structure such as a sunspot have been made (Rempel et al., 2009b,a; Rem-

pel, 2011; Kilcik et al., 2012). Modelling a section of both the umbra and penumbra,

Rempel et al. (2009b) were able to show bright heads (penumbral grains) propagating

into the umbra and detaching from the penumbral filaments. This model also repro-

duces the smooth transitions between central and peripheral umbral dots that are seen

in observations. The first comprehensive simulation of an entire sunspot group was pre-

sented by Rempel et al. (2009a) who considered a sunspot pair of opposing polarities.

This simulation reproduced fairly accurate representations of parts of the photospheric

convection and penumbra, as well as the intensity pattern within the umbra. The best

resolved simulation of a sunspot to date was that presented by Rempel (2011) who used
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an enormous domain and spatial resolution of 49 × 49 × 6.1Mm and 16 × 16 × 12km

(3072× 3072× 512 grid points) respectively (see Fig. 2.1). Simulations of this type are

very valuable in understanding the interactions between distinct parts of a sunspot as

well as global energy transport. More focused attempts to model the individual parts

gives a simpler means of understanding the fine scale structure and attempts to model

specific regions, such as the umbra, have produced some remarkable results.

Schüssler & Vögler (2006) examined a model whose geometry corresponds to that

of the central umbra. Results of these calculations show the development of magne-

toconvection in the form of umbral dots (see Fig. 2.2), which are found to compare

favourably with observations. Individual umbral dots can be identified in the intensity

image as the bright, almost field free, features, which correspond to central upflowing

plumes with downflows concentrated at the ends of the dark stripes. These individ-

ual time-dependent features are found to have diameters in the range 200 − 300km

and lifetimes of approximately 30 minutes, which both compare favourably with the

observations discussed in Section 1.3. These simulations also show umbral dots to be

horizontally elongated, taking an elliptical (as opposed to a circular) form, which seems

to be in agreement with observations made by Kilcik et al. (2012). The distribution

of convective features within the umbra in this model are uniformly distributed, in

contrast to observations of umbral dots which show a rather non-homogeneous pattern

(Sobotka et al., 1997; Tritschler & Schmidt, 2002; Sobotka & Hanslmeier, 2005). This

suggests that umbral dots may display some degree of localisation that is not cap-

tured accurately by this realistic model. The characteristic range of time-scales and

sizes of these cells also raises the question as to the physical mechanisms responsible

for determining these properties. Furthermore the extent to which these properties

depend upon the interactions between neighbouring plumes is unclear. It is possible

that idealised calculations of localised magnetoconvective states may shed more light

on this.

2.3.2 Idealised Models

The ability to carry out more realistic calculations does not diminish the importance

of more simplified models as they allow the variation of key parameters, leading to a

deeper understanding of the physical processes involved. Thus idealised models should

be considered complementary to more realistic calculations. In much of what follows in

this thesis we will be discussing the bifurcations that arise in these magnetoconvection

systems. Thus we refer the reader to Appendix A for a brief introduction to these

bifurcations.

Idealised models of magnetoconvection are generally said to be made up of just

convection and magnetic fields, with most of the elaborate physics from the realistic
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Figure 2.2: A realistic simulation of umbral magnetoconvection. The plots show vertically
emerging gray intensity, normalised by its horizontal average (left), and cuts of the vertical
velocity (middle) and vertical magnetic field (right). The bright features in the intensity image
can be identified with umbral dots. Taken from Schüssler & Vögler (2006).

models not included. The simplest approach is to consider an incompressible fluid un-

der the Boussinesq approximation (see Section 2.2) with idealised boundary conditions

that allow some analytical progress to be made (Proctor & Weiss, 1982) in both the

linear and weakly non-linear regimes. It is known that there are a range of steady

and oscillatory flow patterns that exist in these models (Weiss, 1981a,b). Furthermore,

analyses based on non-linear dynamical systems have revealed the sequences of bifur-

cations that can lead to oscillatory, chaotic and steady flows (Weiss, 1981a,b). In this

way Boussinesq simulations have developed much of our intuition of magnetoconvec-

tion. Their simplicity also results in features such as the up-down symmetry in the

convective flows, which prevents detailed comparison with observations.

In a compressible medium the flows are found to be asymmetric, a result of pres-

sure fluctuations that accentuate buoyancy breaking and buoyancy driving. Thus the

flows are found to take the form of broad gentle upflows and strong narrow downflows,

reminiscent of photospheric granulation (Hurlburt et al., 1984; Hurlburt & Toomre,

1988). Systematic studies based on numerical simulations uncover the complex range

of dynamical behaviours that exist in these models of non-linear compressible magne-

toconvection (Weiss et al., 1990, 1996, 2002). Fig. 2.3, taken from Weiss et al. (2002),

indicates two convective patterns found in a three-dimensional simulation of compress-

ible magnetoconvection. These solutions are bistable at the same parameter values and

thus demonstrate the existence of overlapping solution branches or hysteresis within

the system. In three dimensions the planform of convection at high field strengths is

found to correspond to an array of steady hexagonal cells (see Fig. 2.3(a)) but as the

convective driving is increased this gives way to an irregular time-dependent pattern

of flux separated states (Fig. 2.3(b)) and allows turbulent convection to develop on a

wider range of scales (Emonet & Cattaneo, 2001).
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Figure 2.3: Two idealised calculations of three-dimensional compressible magnetoconvection
taken from Weiss et al. (2002) for the same parameter values; θ = 10, R = 100000, Q = 2000,
ζ = 1.2, σ = 1, γ = 5/3, m = 1 and λ = 4 (parameter definitions can be found in Chapter 5,
Section 5.1.1.). In (a) the magnetic field has been decreased from a large value resulting in a
stable steady pattern with near hexagonal symmetry whilst in (b) the field strength has been
increased from a smaller value resulting in a time-dependent flux separated state. The top
panel in each figure indicates the strength of the magnetic field while the lower panel shows the
corresponding temperature gradients. In these grey-scale images lighter shades correspond to
warmer fluid and stronger field and darker shades correspond to cooler fluid and weaker field.
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Figure 2.4: Experimental observation of a stable stationary nine soliton solution on the surface
of a magnetic fluid (dispersion medium of magnetic nanoparticles), contained in a Teflon vessel
in the presence of a stationary magnetic field. The deformation of the liquid surface seen at
the edge of the vessel is a result of the magnetic field gradient induced by the discontinuous
magnetisation in this region. This image was taken from Richter & Barashenkov (2005).

Localised States

As discussed above it is not well understood if umbral dots display some degree of

localisation and interactions between neighbouring plumes may influence the lifetimes

and distribution of umbral dots. These observations have motivated theorists to search

for localised states in idealised models of magnetoconvection. Localised states are not

restricted to magnetoconvection models and are found in a wide range of other physical

systems. Examples include the localised buckling patterns that are observed in the

bending of beams (Wadee & Gardner, 2012), cavity solitons in a semiconductor-based

optical amplifier (Barbay et al., 2008), isolated current filaments in a gas discharge

system (Astrov & Logvin, 1997) and soliton-like structures on the surface of a ferrofluid

(Richter & Barashenkov, 2005) (see Fig. 2.4). Oscillatory localised states (‘oscillons’)

have been observed experimentally in vertically-vibrated media (Umbanhowar et al.,

1996; Lioubashevski et al., 1999). With appropriate choices for the nonlinear terms,

the Swift-Hohenberg equation exhibits a range of localised stable solutions in both

one (Burke & Knobloch, 2006, 2007; Kozyreff et al., 2009; Burke & Dawes, 2012) and

two spatial dimensions (Sakaguchi & Brand, 1997; Crawford & Riecke, 1999), whilst

equations of Ginzburg-Landau type can also produce localised states (Burke et al., 2008;

Dawes & Lilley, 2010). Spatially-localised behaviour has also been found in simulations

of two-dimensional thermosolutal convection (Ghorayeb & Mojtabi, 1997; Bergeon &

Knobloch, 2008b,a; Beaume et al., 2011) as well as in two-dimensional simulations of

convection in a binary fluid (Batiste & Knobloch, 2005; Batiste et al., 2006; Mercader

et al., 2011).

In non-equilibrium systems (internally dissipative and externally driven), pattern

forming instabilities can lead to the formation of localised states. It is often stated that

there are two key ingredients necessary for the formation of localised states near these
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Figure 2.5: Two images taken from Burke & Dawes (2012) showing (a) a bifurcation diagram
of stationary solutions to an extended Swift-Hohenberg equation and(b) profiles from several
saddle node bifurcations of the snaking branches. Profiles (i), (iii) and (v) are from L0, and
profiles (ii), (iv) and (vi) are from L1. The shaded region indicates the pinning or snaking
region of parameter space.

pattern forming instabilities; these are bistability and pinning (see Fig. 2.5). Bistability

refers to the coexistence of solution branches over a single set of the system parameters.

This occurs when the initial bifurcation is subcritical, leading to the coexistence of a

nonlinear solution branch with the trivial unpatterned state. Pinning refers to the

energetic barrier that has to be overcome in order for the localised state to propagate

further into the background state or for the background state to be able to overcome

the localised state (Dawes, 2010). As can be seen in Fig. 2.5, in the Swift-Hohenberg

case, solution branches corresponding to localised states form a vertical “snaking”

pattern of interlaced curves of gradually increasing numbers of oscillations (Kozyreff &

Chapman, 2006; Chapman & Kozyreff, 2009). This snaking pattern is mostly confined

to the narrow “pinning” region of parameter space. In a finite domain, this pattern

of snaking solution branches eventually terminates on the periodic patterned solution

branch.

It is now well-established that it is possible to find steady localised states (often re-

ferred to as “convectons”) in two-dimensional Boussinesq magnetoconvection (Blanch-

flower, 1999a; Dawes, 2007) (see Fig. 2.6). These states take the form of a single roll

convective cell from which magnetic flux is expelled, surrounded by a region of fluid

which remains static due to the dynamical influence of the surrounding strong vertical

magnetic field. Steady convectons are found to be robust features of magnetoconvec-

tion in that they exist over a wide range of system parameters (Blanchflower, 1999b)

possibly a result of their efficiency at expelling magnetic flux. The bifurcation structure

of this magnetoconvection system differs from that exhibited by simpler systems, such

as the illustrative Swift-Hohenberg models, where localised states exist in a region of

bistability between the conducting state and the multiple roll, spatially-periodic con-

29



Chapter 2. Magnetoconvection

Figure 2.6: An isolated convective cell or ‘convecton’ found in fully-resolved Boussinesq
magnetoconvection, taken from Blanchflower (1999a) for the parameter values R = 100000,
Q = 100000, ζ = 0.1, σ = 1 and λ = 6 (parameter definitions can be found in Chapter 3,
Section 3.2.). This grey scale image shows deviations in the temperature from the static con-
ducting state, overlaid with velocity arrows and contours of the magnetic field lines. Lighter
colours correspond to warmer fluid with darker colours to colder fluid.

vective pattern (Burke & Knobloch, 2006, 2007). In the case of magnetoconvection

models, the presence of a conserved quantity (namely the vertical magnetic flux) has

an important effect upon the bifurcation structure (Matthews & Cox, 2000). Numer-

ical continuation has been used to show that the solution branches corresponding to

localised states in magnetoconvection, which tend to bifurcate subcritically from the

periodic states, exhibit a slanted snaking pattern that is not confined to a narrow

pinning region (Dawes, 2008; Lo Jacono et al., 2011, 2012). In addition numerical con-

tinuation has shown that the solution branches corresponding to localised states are

present even when the primary instability to the periodic state is supercritical. It has

been suggested that standard snaking should be recovered in the limit as the box size

tends to infinity (Lo Jacono et al., 2011, 2012), the existence of slanted snaking in finite

domains illustrates the fact that the bifurcation structure of magnetoconvection differs

in a fundamental way from that of many comparable pattern-forming systems. This is

therefore an interesting system to study in its own right.

One of the notable features of Boussinesq magnetoconvection is that it is possible

to find regions of parameter space in which the trivial conducting state is unstable to

a spatially-periodic oscillatory mode (Proctor & Weiss, 1982). This raises the question

of whether it might be possible to find localised oscillatory states (Knobloch, 2008).

Oscillatory convectons have been found in both two (Blanchflower, 1999b) and three

(Blanchflower & Weiss, 2002) spatial dimensions, but only in idealised models in which

the vertical structure of the system has been simplified by a projection onto a small

number of Fourier modes. Fig. 2.7, taken from Blanchflower & Weiss (2002), indicates

one such solution found in a vertically truncated three-dimensional Boussinesq model.

This state consists of a pair of plumes, one rising and one falling, in which the flow

reverses every half period whilst the cell rotates, giving a pulsating appearance. This

work indicates that there are many types of oscillatory state, which are all confined to a

narrow range of subcritical field strengths (using the parameters defined in Chapter 3,

Section 3.2, R = 5000, λ = 6, ζ = 0.1 σ = 1 and 4200 ≤ Q ≤ 5500 (Blanchflower &
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Figure 2.7: A localised oscillatory state in a three-dimensional vertically truncated model of
Boussinesq magnetoconvection, taken from Blanchflower & Weiss (2002) for the parameter
values R = 5000, Q = 5500, ζ = 0.1, σ = 1 and λ = 6. This grey scale image shows (a) a
horizontal section just below the surface showing the temperature (left) and the magnetic field
strength (right); (b) the temperature distribution for a vertical section cutting through the cell
at y = 4.52. In these images lighter shades correspond to warmer fluid and stronger field and
darker shades correspond to cooler fluid and weaker field.

Figure 2.8: A steady localised convecton in a three-dimensional compressible model of mag-
netoconvection, taken from Houghton & Bushby (2011); (left) the temperature distribution
in a horizontal plane just below the upper surface; (right) the top panel shows the tempera-
ture perturbation from the background distribution and the bottom panel shows the vertical
component of the magnetic field, both taken from a vertical slice at x = 7.5.
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Weiss, 2002)). Little is known of the parametric dependancies of these states due to the

limited exploration of parameter space that has been carried out to date. Likewise, little

is known about the parametric dependencies of the two-dimensional oscillatory states

and again the existence of such states has been confirmed only in a very small region of

parameter space (using the parameters defined in Chapter 3, Section 3.2, R = 20000,

ζ = 0.1, σ = 1, λ = 6 and 17000 ≤ Q ≤ 22000 (Blanchflower, 1999b)). Whether or not

fully-resolved magnetoconvection can produce corresponding oscillatory states is still

an open question. As described above, only steady localised states have so far been

found in fully-resolved two-dimensional Boussinesq magnetoconvection. Similar states

have been found in fully-resolved three-dimensional compressible magnetoconvection

(Houghton & Bushby, 2011) in which steady convectons take the form of cylindrical

cells consisting of broad central upflows, devoid of magnetic flux, surrounded by narrow

downflows (see Fig. 2.8). Again, only a limited exploration of parameter space has been

carried out to date (using the parameters defined in Chapter 5, Section 5.1, θ = 10,

R = 6000, ζ0 = 0.1, σ = 1, λ = 8 and 160 ≤ Q ≤ 215 (Houghton & Bushby,

2011)). So, on the basis of previous studies, we cannot discount the possibility that

oscillatory localised states exist only in simplified models of magnetoconvection. Having

said that, given the complexity of the bifurcation structure for the steady modes it is

just as plausible that these states do exist but have yet to be observed in numerical

simulations.

2.4 Outline

In the next chapter we investigate the properties of steady and oscillatory convectons

in Boussinesq magnetoconvection and perform simulations that build on pre-existing

work. Parametric surveys of steady convectons are performed in both fully-resolved

magnetoconvection simulations and a truncated model in which the vertical depen-

dence of the layer is simplified by a projection onto a small number of Fourier modes.

Oscillatory convectons then become the main focus of the chapter as we present, for

the first time, results of the parametric dependencies of these states in the truncated

model. We then show that these states are not confined to these simplified models, but

exist in a fully-resolved model, the increased structure of which, changes the nature of

the oscillations.

Chapter 4 examines two-dimensional Boussinesq magnetoconvection with horizontal

boundaries that are impermeable to the fluid motions. We find that the inclusion of

these boundaries has the effect of increasing the complexity of the bifurcation structure,

retaining the solutions from the periodic boundaries model but introducing a new set

of solutions, which form cells that are localised at the boundaries. In the second half

32



Chapter 2. Magnetoconvection

of this chapter we develop an approximate model that is used for continuation of the

bifurcation sequence that leads to the formation of convectons. Due to the limitations

of the continuation program, AUTO-07p, this model has restricted symmetries but is

still compatible with boundary conditions that are impermeable to fluid motions. Thus

we can compare the results of this analysis with the results derived from our numerical

work.

The remainder of this thesis focuses on compressible magnetoconvection. In Chap-

ter 5 we examine the effects of stratification on two-dimensional steady and oscillatory

convectons and find a fundamentally new type of oscillation that persists to moderate

stratification. In Chapter 6 we examine the corresponding states in three-dimensions.

With regards to the steady convectons we find a state with a broken symmetry whose

cross-section corresponds to a two-dimensional convecton, i.e. a single overturning roll,

in contrast to the usual cylindrical plume.
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Boussinesq Magnetoconvection
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Chapter 3

Two-dimensional Models With

Periodic Boundaries

In this chapter we shall investigate the properties of localised states in two-dimensional

Boussinesq magnetoconvection with periodic horizontal boundary conditions. This

work builds on that of Blanchflower (1999a,b) and Dawes (2007). In the next few

sections (3.1-3.7) we shall give the details of the way in which the models are set up.

We shall then present details of the model testing in Section 3.8. We shall then focus

on steady convectons in the truncated (Section 3.9.1) and fully-resolved (Section 3.9.2)

models, with the aim of assessing the similarities and differences between the structure

and stability of these states. We shall then move on to determine the properties of

oscillatory states in the truncated model (Section 3.10.1) carrying out a parametric

survey in order to verify that oscillatory localised states are robust features of this

system. We shall then demonstrate the existence of localised oscillatory states in the

fully-resolved case (Section 3.10.2). We end the chapter with a brief summary (Section

3.11). Parts of this chapter form the basis for a paper that has recently been accepted

for publication in Physical Review E (Buckley & Bushby, 2013).

3.1 The Fully Resolved Model

We consider a layer of electrically conducting, fluid (plasma), under the Boussinesq

approximation, that is heated from below in the presence of an imposed magnetic field.

The gas is contained within a two-dimensional Cartesian box of dimensions 0 ≤ z ≤ d
and 0 ≤ x ≤ λd, with the z-axis pointing vertically upwards, parallel to the constant

gravitational acceleration, g = −gẑ. The governing equations of this system were

summarised by Equations (2.40)-(2.42) in Section 2.2.5. It is useful to render these

equations dimensionless, as the quantities of the system are better measured against

other appropriate units. We follow Proctor & Weiss (1982) and scale all lengths by
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the layer depth, d, times with respect to the thermal relaxation time, d2/κ, and the

magnetic field by the imposed uniform vertical field, |B0|. We define T ∗ = (T ′−T1)/∆T

and recall that∆T = T2−T1, where T ′ is the variation in the temperature resulting from

motion and T1 and T2 are the fixed temperatures of the top and bottom boundaries,

respectively. Thus the governing equations, in a dimensionless form become

1

σ

(
∂u

∂t
+ (u · ∇)u

)
= −∇P ∗ +RT ∗ẑ + ζQ (∇×B)×B +∇2u, (3.1)

∂T ∗

∂t
+ (u · ∇)T ∗ = ∇2T ∗, (3.2)

∂B

∂t
−∇× (u×B) = ζ∇2B, (3.3)

with the conditions

∇ · u = ∇ ·B = 0, (3.4)

where P ∗ = P ′d2/κνρ0 − gᾱzT1d
3/κν is a modified pressure (recall that P ′ is the

variation in the gas-pressure resulting from motion). It is convenient to eliminate

the pressure, P ∗, by taking the curl of Equation (3.1), which introduces the vorticity,

ω(x, t) = ∇× u:

1

σ

(
∂ω

∂t
−∇× (u× ω)

)
= R∇T ∗ × ẑ + ζQ∇× (j ×B) +∇2ω, (3.5)

where j = µ0J .

3.2 Dimensionless Parameters

The non-dimensionalisation introduces four non-dimensional parameters; these are the

Chandrasekhar number, Q,

Q =
|B0|2d2

µ0ρ0νη
, (3.6)

a measure of the dimensionless field strength, the Rayleigh number, R,

R =
gα̂∆Td3

κν
, (3.7)

a measure of the destabilising effects of the superadiabatic temperature gradient, the

Prandtl number, σ,

σ =
ν

κ
, (3.8)
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the ratio of the viscous to thermal diffusivities and, ζ,

ζ =
η

κ
, (3.9)

the ratio of the magnetic to thermal diffusivities.

3.3 Boundary Conditions

Following Blanchflower (1999a) and Dawes (2007), we adopt boundary conditions that

give a fixed temperature gradient across the depth of the layer, so we set:

T ∗ = 1, 0 respectively at z = 0, 1, (3.10)

and take the upper and lower boundaries to be impermeable and stress free, with a

magnetic field that is constrained to be vertical:

w =
∂u

∂z
= Bx =

∂Bz
∂z

= 0 at z = 0, 1. (3.11)

The horizontal boundary conditions are taken to be periodic, with period λ (where λ

is the aspect ratio of the domain).

3.3.1 Realistic Boundary Conditions

The idealised boundary conditions stated above are used throughout this thesis but

are not the only conditions that we could use.

The vertical field boundary conditions are often chosen as they allow analytical

progress to be made with the governing equations. The most obvious alternative is

to use potential field boundary conditions where we match the field at a particular

boundary to the field some distance away from the boundary. Such conditions allow

the inclination of the field to be set incorporating a new parameter into the problem.

Blanchflower (1999a) considered both potential field conditions in a vertical configu-

ration and fixed vertical field boundary conditions. In addition they also considered

combinations of these conditions at the top and bottom of the layer. All cases, except

for the unphysical case of vertical field at the top of the layer and potential field at the

bottom, show little variation in the physical characteristics of the solutions.

In the idealised setup the temperature at the top and bottom of the layer is fixed.

A common extension to this configuration is to consider a variable temperature at the

upper boundary by which the heat conducted to the boundary is matched to black

body radiation. This radiative upper boundary condition is also known to have little

effect on the pattern of convection, mainly because the temperature variations that
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result are small.

In terms of the fluid motions these simulations can be made more realistic by

using an open lower boundary, allowing inflowing matter with a fixed thermal energy

density. If this condition is coupled with a radiative upper boundary condition, this

can alter the radiative output at the upper surface leading to larger thermal variations.

Configurations of this type are often considered in more ‘realistic’ calculations, such as

those of (Schüssler & Vögler, 2006; Rempel et al., 2009b) discussed in Chapter 2.

3.4 A Change of Variables

As we are working in the highly symmetric configuration of two-dimensional Boussinesq

magnetoconvection, Equations (3.1)-(3.3) can be greatly simplified. It is convenient to

express the temperature, velocity and magnetic field in a alternative form. Therefore we

introduce a temperature perturbation, θ(x, t), from the background conduction state,

satisfying (3.10):

T ∗ = 1− z + θ (x, z, t) , (3.12)

a stream function, ψ(x, t):

u = ∇× (ψ (x, z, t) ŷ) = (−∂zψ, 0, ∂xψ) , (3.13)

and a flux function, A(x, t):

B = B0 +∇× (A (x, z, t) ŷ) = (−∂zA, 0, 1 + ∂xA) , (3.14)

whereB0 = (0, 0, 1) is the dimensionless, uniform vertical magnetic field (Chandrasekhar,

1961; Knobloch et al., 1981; Proctor & Weiss, 1982). Expressing the velocity and the

magnetic field in this way ensures that condition (3.4) is satisfied. This leads to the

following set of governing equations

∂ω

∂t
+
∂ (ψ, ω)

∂ (x, z)
= σ∇2ω − σR∂θ

∂x
− σζQ

(
∂∇2A

∂z
+
∂
(
A,∇2A

)
∂ (x, z)

)
, (3.15)

∂θ

∂t
+
∂ (ψ, θ)

∂ (x, z)
= ∇2θ +

∂ψ

∂x
, (3.16)

∂A

∂t
+
∂ (ψ,A)

∂ (x, z)
= ζ∇2A+

∂ψ

∂z
, (3.17)
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where ω(x, z, t) is the magnitude of the vorticity vector (which is parallel to the y-

direction) and

ω(x, z, t) = −∇2ψ(x, z, t). (3.18)

Note we have used Jacobian notation in equations (3.15)-(3.17) where,

∂ (f, g)

∂ (x, z)
=
∂f

∂x

∂g

∂z
− ∂f

∂z

∂g

∂x
, (3.19)

with f = f(x, z, t) and g = g(x, z, t). Having made this change of variables, the

boundary conditions can be written in the following form:

ψ = ω = θ = ∂zA = 0 at z = 0, 1. (3.20)

Equations (3.15)-(3.17) have a trivial equilibrium solution such that

ω = ψ = θ = A = 0, (3.21)

which corresponds to a static fluid with a constant temperature gradient, permeated

by a uniform, vertical magnetic field (i.e. the basic conducting state (see Appendix B

for a derivation)):

u = 0, B = ẑ, T ∗ (z) = 1− z, P ∗ = R

(
z − z2

2

)
+ constant. (3.22)

3.5 A Truncated Model

A number of previous studies of Boussinesq magnetoconvection have considered a fur-

ther simplification to this model. The full horizontal structure is retained but, mo-

tivated by the fact that the convective pattern close to onset has a relatively simple

vertical dependence, only a minimal (non-trivial) set of modes are retained in the verti-

cal Fourier decomposition of each variable (Knobloch et al., 1981; Blanchflower, 1999a;

Dawes, 2007). Following these authors, we satisfy the boundary conditions (3.20) by

considering the following Fourier expansions,

ψ(x, z, t) = ψ1 (x, t) sin (πz) , (3.23)

ω(x, z, t) = ω1 (x, t) sin (πz) , (3.24)

θ(x, z, t) = θ1 (x, t) sin (πz) + θ2 (x, t) sin (2πz) , (3.25)

A(x, z, t) = A0 (x, t) +A1 (x, t) cos (πz) . (3.26)

It should be noted that both the z-dependent and z-independent components of the

magnetic flux function are included in order to incorporate the flux expulsion effect
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(Weiss, 1966; Knobloch et al., 1981). It is necessary to include θ2 in order to ensure

that the hydrodynamic problem retains some form of nonlinearity. Projecting onto

these modes we obtain the following set of five partial differential equations, which will

become our one-dimensional truncated model (Dawes, 2007)

∂tω1 = σ
(
ω′′1 − π2ω1

)
− σRθ′1 − σζQπ

[(
1 +A′0

) (
π2A1 −A′′1

)
+A′′′0 A1

]
, (3.27)

∂tθ1 = θ′′1 − π2θ1 + ψ′1 (1 + πθ2) +
π

2
ψ1θ

′
2, (3.28)

∂tθ2 = θ′′2 − 4π2θ2 +
π

2

(
ψ1θ

′
1 − ψ′1θ1

)
, (3.29)

∂tA0 = ζA′′0 +
π

2
(ψ1A1)′ , (3.30)

∂tA1 = ζ
(
A′′1 − π2A1

)
+ πψ1

(
1 +A′0

)
, (3.31)

with the condition that

ω1 = π2ψ1 − ψ′′1 , (3.32)

(where primes have been redefined to denote ∂x).

3.6 Parameter Values

Within the upper solar photospheric layers it is estimated that R ∼ 1016, σ ∼ 10−7

and ζ ∼ 10−1 (Ossendrijver, 2003). Also within a sunspot it is expected that Q ∼ 1011.

Even in a realistic model of magnetoconvection one cannot hope to access a parameter

regime that comes close to resembling that of the photosphere. It is the goal to isolate

parameter regimes in which the governing equations display behaviour comparable, in

some way, to that observed in a realistic context.

In this chapter we will be investigating the stability range of steady and oscillatory

convectons in terms of the Chandrasekhar number, Q. We shall do this for a range of

values of the Rayleigh number, R, the aspect ratio, λ, and the magnetic to thermal

diffusivity ratio, ζ. When performing numerical simulations of magnetoconvection, an

important consideration is the horizontal extent of the computational domain. Blanch-

flower et al. (1998) found that to establish how the true patterns of motion evolve,

the plumes should not be geometrically constrained and the size of the domain must

be much larger than an individual plume. It was determined that boxes of λ ≥ 6 are

required to allow the full range of convective patterns to be observed. Thus we shall

maintain λ ≥ 6 throughout this chapter. Using linear theory (see Appendix B), in

the absence of a magnetic field one can show that the onset of convection occurs at
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Rc ≈ 657.51, corresponding to a critical wavenumber, kc ≈ 2.22. In this chapter we

shall choose relatively large values of the Rayleigh number, R � Rc, in order to pro-

mote vigorous convection in the absence of a magnetic field. We shall be varying ζ for

which there exist two distinct regimes. As Q is decreased from a very large value, for

ζ > 1, linear theory tells us that convection onsets as steady motion at Q
(e)
max, whereas

for ζ < 1, convection onsets as overstability (oscillatory motion) at Q
(o)
max. In these

two distinct regimes the bifurcation points respectively separate the subcritical regime

(Q > Q
(e)
max or Q > Q

(o)
max), where the trivial state is stable to convective perturba-

tions, and the supercritical regime (Q < Q
(e)
max or Q < Q

(o)
max), where the trivial state

is unstable to convective perturbations. Within the supercritical regime a multitude

of different states bifurcate via pitchfork, Q
(e)
m , and Hopf bifurcations, Q

(o)
m , from the

trivial state (where m is the number of pairs of convective rolls). Finally for numerical

simplicity we choose σ = 1.

3.7 Code Details

Although some analytical progress can be made with the truncated model (Dawes,

2007), the complexity of Equations (3.15)-(3.17) and (3.27)-(3.31) require a numerical

approach in order to carry out a full exploration of parameter space. This is accom-

plished by discretising the equations onto a two-dimensional Cartesian mesh, with

resolution M × L. All results presented in this section are for M = 256 mesh points

horizontally (where appropriate) and L = 64 vertically, unless otherwise stated. In

Section 3.8 some resolution tests are carried out to determine the optimal resolution

for the system, in the parameter regimes of interest. Both codes are pseudo-spectral,

using Fast Fourier Transforms (FFT) from standard FFTW libraries to calculate all

horizontal derivatives. The fully-resolved model uses fourth order finite differences to

calculate all vertical derivatives. Both codes are initialised using periodic initial con-

ditions, given as a superposition of random Fourier modes of small amplitudes. The

systems are evolved using a fourth order Runge-Kutta method for time-stepping, with

the timestep size constrained via the Courant-Friedrichs-Lewy (CFL) condition (Press

et al., 1986).

The vorticity and the stream function are related by Equation (3.18) in the fully-

resolved model, and by Equation (3.32) in the truncated model. So, every time the

vorticity is evolved in time, these equations must be inverted in order to find the

streamfunction. For the truncated model, this is accomplished by moving into Fourier

space, using the standard FFTW libraries, where a second derivative corresponds to

multiplication by (ik)2, where k = 2π/Λ is the wavenumber and Λ is the wavelength.
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Thus in Fourier space

ψ̂1 =
ω̂1

π2 + k2
, (3.33)

where ψ̂1 and ω̂1 correspond to the Fourier transforms of ψ1 and ω1 respectively. For

the fully-resolved case, we invert Equation (3.18) using an LU-decomposition (Press

et al., 1986), having already simplified the horizontal dependence of the problem by

again moving into Fourier space.

In what follows, we shall often refer to the Nusselt number:

N = λ−1

∫ λ

0
(1− ∂θ/∂z) dx, (3.34)

which measures the ratio of convective to conductive heat transfer (Proctor & Weiss,

1982). We always measure this (often time-dependent) quantity at the base of the

domain. Note that for N = 1 we have a purely conductive state and thus no convective

motions. For N > 1, convection is occurring, with larger values corresponding to more

vigorous convective motions. For oscillatory states we shall see that the Nusselt number

varies with time about a mean, given by N̄ . As described in Chapter 2, convectons are

associated with the phenomenon of flux expulsion. To quantify this effect, we define

Qeff = QB2
z , (3.35)

where Bz is the (uniform) field in the non-convective part of the layer. This is a measure

of the effective field strength in the magnetically-dominated regions within which the

localised state is embedded. When flux expulsion is very efficient, which is certainly

the case for steady convectons, this definition is (approximately) equivalent to

Qeff = Qλ2/
(
λ− λ̄

)2
, (3.36)

where λ̄ represents the cell width (Dawes, 2007). Note to calculate the effective field

strength for the oscillatory states we plot Qeff = QB2
z across the layer and then take an

average of this function over the region not occupied by the cell i.e. the outside region.

3.8 Model Testing

To check that this model was working correctly it was necessary to test that it could

reproduce the range of behaviours discussed by Blanchflower (1999a) and also that

specific details of convecton stability, width (λ̄) and convective efficiency (N), agree

with those presented in this paper. Thus in this sub-section we shall first discuss branch

tracking by varying the field strength and then compare specific details of convectons,
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with the previously established results.

3.8.1 The Truncated Model

Varying the Field Strength

It is known that steady convectons are the result of secondary subcritical bifurcations

from multiple roll steady states (Lo Jacono et al., 2011). This is also highlighted in

the fact that all states obtained from the trivial state must necessarily retain reflection

symmetry (Crawford & Knobloch, 1991):

(x, z)→ (λ− x, z) and (x, z)→ (x, 1− z) . (3.37)

Thus convectons can only arise if this symmetry is broken. The method of branch

tracking can be used to locate the upper saddle node, which bounds flux separated

solution branches at large Q, under which the symmetries of the system may be broken.

Initially, we follow Blanchflower (1999a) and use the parameter values λ = 6, R =

20000, σ = 1, ζ = 0.1, with variable Q. We proceed by performing an initial parameter

sweep of the domain, in steps of Q = 1000, by initialising the code from a random

perturbation to the trivial state. Steady states with an even number of rolls, ranging

from 12-rolls (m = 6) at Q = 0 to 2-rolls (m = 1) at Q = 9000, can be found with the

addition of a three roll state at Q = 6000. A multitude of oscillatory states are found

for Q ≥ 10000. These will be discussed in Section 3.10.

A state consisting of four convective rolls, that fill the computational domain, was

obtained at Q = 3000 (see Fig. 3.1(a). Note that lighter colours correspond to warmer

fluid and stronger fields and darker colours corresponding to cooler fluid and weaker

fields). Using this state as an initial condition the field strength was increased in steps

of Q ≈ 500 − 1000. Each state was allowed to settle for around 500 − 1000 thermal

diffusion times, until the Nusselt number exhibited no further time-dependence.

As can be seen from Fig. 3.1, the magnetic field in these states is expelled from

within the vigorously overturning convective plumes. This concentrates the field into

flux sheets where the flows converge at the top and bottom of the layer. The effect of

increasing Q is to increase the size of these flux regions, suppressing convective motions

and reducing the size of one of the convective cells. This suppression of the convective

motions can be seen as a gradual drop in the Nusselt number, with more significant

drops as the simulations bifurcate between different solution branches, as one of the

convective rolls is suppressed.

Increasing Q, the 4-roll state underwent a bifurcation at Q ≈ 7000, transitioning

to a 3-roll state. This transition breaks the reflective symmetry of the 4-roll state, the

first symmetry breaking bifurcation that is encountered in these simulations. The next
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Figure 3.1: A sequence of states obtained by varying Q for R = 20000, ζ = 0.1, σ = 1 and λ = 6;
(a) 4-roll; Q = 3000 with N = 2.41 (b) 3-roll; Q = 10000 with N = 1.86 (c) 2-roll; Q = 12000
with N = 1.67 (d) convecton; Q = 24300 with λ̄ = 0.78 and N = 1.21 (Qeff = 32105). Each of
the four sets of plots shows the temperature perturbation θ (top) and magnetic field strength,
|B|2 (bottom).
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transition occurred at Q ≈ 12000, leading to a 2-roll state with a central downflow

and peripheral upflows. This transition can also lead to a more typical plume with a

central upflow and peripheral downflows, with careful increases in the field strength.

The final bifurcation occurred at Q ≈ 19000 by which the final reflection symmetry

of the system was broken and the state transitioned to a single convective roll (see

Fig. 3.1(d)). The single roll states observed in this model are found to satisfy the

Boussinesq point symmetry:

(x, z)→ (λ− x, 1− z) with (ψ, θ,A)→ (ψ,−θ,−A) , (3.38)

(equivalent to inverting the colours and rotating the page through 180o).

Steady Convecton Stability Range

We define convectons to be stable in the range Qmin ≤ Q ≤ Qmax. In this parameter

regime we find that steady convectons are stable in the region 13700 ≤ Q ≤ 24300,

which compares favourably with that given by Blanchflower (1999a) to be 13700 ≤
Q ≤ 26500 (Note smaller step sizes of Q = 100 were made on the convecton branch

in order to assess its stability range more accurately). The disagreement between the

results could be due to resolution issues, as Blanchflower (1999a) suggested that “64

mesh intervals prove to be sufficient in the majority of cases”, which we find to be

largely insufficient. This could lead to major changes in the stability range of states

as the magnetic boundary layers will not be resolved sufficiently. In fact, we find

that by repeating the calculations with M = 64 the solution does not lose stability

until Q = 31300, with λ̄ = 0.84 and N = 1.25. This does suggest an increase in

the stability if the solution is under-resolved, but this result does not match that of

Blanchflower (1999a) exactly. From extensive simulations we have found that states can

contain slowly decaying transients and hence the reason why we use the long run times

(500−1000) stated above. It is therefore possible that the state noted by Blanchflower

(1999a), at Q = 26500, would decay to the the trivial state if given sufficient run-time.

If we are then to compare the cell widths and Nusselt numbers of the states at the

extremes of the stability range that were given by Blanchflower (1999a) to be λ̄ = 1.5

and N = 1.49 at Q = 13700 and λ̄ = 0.75 and N = 1.18 at Q = 26500, then they

compare favourably with those found by our model to be λ̄ = 1.50 and N = 1.50 at

Q = 13700 and λ̄ = 0.78 and N = 1.21 at Q = 24300. The widths of the convectons

in our model are calculated as the difference between the turning points of A0 (i.e.

where A′0 = 0), shown in Fig. 3.2. It is not known how Blanchflower (1999a) calculates

the widths of the cells, but as shown above, our results show good agreement with the

existing results, so we shall proceed with this method.

Thus, the results we have obtained do compare favourably with those presented by
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Figure 3.2: One-dimensional profiles for the convecton solution given in Fig. 3.1(d), for the
parameter values R = 20000, ζ = 0.1, σ = 1, λ = 6 and Q = 24300.

Figure 3.3: A resolution test for the convecton solution in Fig. 3.1(d), showing the Lorentz
force at R = 20000, ζ = 0.1, σ = 1, λ = 6 and Q = 24300; (a) M = 64 (b) M = 128 (c)
M = 256 (d) M = 512.
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Blanchflower (1999a) and we can be confident that the model we are using, given the

resolution and long run-times used, is producing accurate output.

Resolution Test

Fig. 3.3 shows a plot of the Lorentz force, which is the force exerted by the magnetic field

on the electrically conducting fluid, for the convecton in Fig. 3.1(d). This is calculated

as the sum of the terms proportional to Q on the right hand side of Equation (3.27).

This low ζ case is a good test of the resolution requirements as the boundary layers

are thin. As can be seen we do not obtain a smooth profile, with all the small scale

‘oscillations’ removed, until M = 256 mesh points are used. In fact the structure

of the Lorentz force for M = 64 bears little resemblance to that for M ≥ 128. For

these parameter values it is clear that the optimal resolution to use is M = 256, an

achievable grid size with the computing resources available. We note that there is also

a resolution dependence on ζ with M = 128 being sufficient to resolve solutions for

0.3 < ζ < 0.8 and M = 64 sufficient for ζ > 0.8. All solutions presented in this Chapter

use a resolution of M = 256 for consistency.

3.8.2 The Fully Resolved Model

In a similar way to the previous section we shall ensure that the model can reproduce

the range of behaviours that were discussed in the truncated model.

Varying the Field Strength

Almost all the features of steady convection observed in the truncated model are re-

produced in the fully-resolved model. The linear theory still applies and one finds the

same types of solutions bifurcating from the trivial state. The solutions themselves

look qualitatively similar but with a richer vertical structure (see Fig. 3.4), retaining

the usual Boussinesq point symmetry. Fig. 3.4 shows a branch tracking simulation fol-

lowing the same pattern of bifurcations found in the truncated model. It is clear from

these simulations that for the non-linear steady solution branches the bifurcation points

are shifted. Specifically the saddle nodes that bound each of the branches at large Q,

for the 4-roll, 3-roll, 2-roll, and convecton branches are shifted to Q ≈ 1000, Q ≈ 5000,

Q ≈ 18000 and Q ≈ 25800, respectively, from Q ≈ 7000, Q ≈ 12000, Q ≈ 19000 and

Q ≈ 24300 in the truncated model. We shall not spend numerical resources examining

the multiple roll steady solutions, as we are interested in the localised states, but it is

obvious (for example) that the stability range for the 4-roll branch has been drastically

reduced, with the branch width in the truncated model ranging from 0 ≤ Q ≤ 6000.
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Figure 3.4: A sequence of states obtained by varyingQ for R = 20000, ζ = 0.1, σ = 1 and λ = 6;
(a) 4-roll; Q = 200 with N = 3.51 (b) 3-roll; Q = 2000 with N = 3.23 (c) 2-roll; Q = 10000
with N = 2.61 (d) convecton; Q = 25800 with λ̄ = 1.68 and N = 1.81 (Qeff = 49769). Each of
the four sets of plots shows the temperature perturbation θ (top) and magnetic field strength,
|B|2 (bottom).
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Steady Convectons

Blanchflower (1999a) found a steady convecton for the parameters R = 50000, Q =

80000, λ = 6, σ = 1 and ζ = 0.1. We tried two different initial conditions here.

One taken from the truncated model for the parameters λ = 6, R = 20000, σ = 1,

ζ = 0.1 and Q = 24300 and the solution in Fig. 3.4(d), from the fully-resolved model,

for R = 20000, ζ = 0.1, σ = 1, λ = 6 and Q = 25800. Both led to the production

of a convecton with N = 3.51 and λ̄ = 3.0, comparing extremely favourably with

N = 3.51 and λ̄ = 2.9 presented by Blanchflower (1999a). Again, it is not known how

Blanchflower (1999a) calculated the width of these cells but we have calculated ours

as the distance between the turning points in the mid-layer profile for A. From this

and the above branch tracking results we are thus satisfied that the code is working

correctly.

Resolution Test

The model resolution was tested using a convecton solution at R = 20000, ζ = 0.1,

σ = 1, λ = 6 and Q = 25800. Again, as in the truncated model, these test parameters

correspond to states with the most extreme boundary layers and will provide a good

resolution test for the model. Fig. 3.5 indicates this resolution test for a convecton with,

128 × 64, 256 × 64 and 512 × 64 mesh intervals, with the Lorentz force distributions

taken at the mid-layer. The Lorentz force, for the fully-resolved case, is the third term

on the right hand side of Equation (3.15) at this depth. It is clear that 128 × 64 is

under-resolved due to the large ‘wobbles’ in the profile, whereas, 256 × 64, although

displaying some very small scale ‘wobbles’, is sufficiently resolved for low ζ (ζ = 0.1)

that it will be sufficient in the majority of cases (ζ > 0.1).

3.9 Steady Convectons

As discussed in the previous section, work on steady convectons in a magnetoconvection

context has already been carried out by Blanchflower (1999a,b) and Dawes (2007).

Blanchflower (1999a) carried out a parametric survey for steady convectons in the

truncated model and found convectons to exist over a wide range of the governing

parameters (5000 ≤ R ≤ 100000, 0.1 ≤ ζ ≤ 1.0, 6 ≤ λ ≤ 16), finding an interesting

dependence on the aspect ratio, λ. Specifically in fairly small aspect ratio domains,

convectons were found for Q < Q
(o)
max, with all states showing signs of subcriticality,

but also found that for arbitrarily large boxes (λ � 1) convectons exist strictly for

Q > Q
(o)
max. Blanchflower (1999b) also found the corresponding states in a fully-resolved

model for numerous parameter regimes but no thorough parametric surveys, as in the

truncated model, were performed. Dawes (2007) performed boundary layer analysis for
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Figure 3.5: A resolution test for the convecton solution in Fig. 3.4(d), at R = 20000, ζ = 0.1,
σ = 1, λ = 6 and Q = 25800; (a) M = 128 (b) M = 256 (c) M = 512.

convectons and found an approximate model to describe convectons. Data from this

model, with complementary numerical results from the truncated and fully-resolved

models, was used to show that the location of Qmax followed a specific power-law

scaling, which does not exhibit an obvious explanation. In this section we will build on

the work of these authors.

3.9.1 The Truncated Model

Convectons are very efficient at expelling magnetic flux from their interior as can be seen

from Fig. 3.2, which shows the one-dimensional profiles for the convecton in Fig. 3.1(d).

We can see that the convecton is completely flux expelled, highlighted by the fact that

A′0 ≈ −1, within the cell. This leads to J ×B ≈ 0 in the momentum equation, (3.27),

and thus a purely hydrodynamic evolution in this region. Because flux is conserved the

effect of this total expulsion of flux is to raise the effective field strength of the outside

region leading to the suppression of all convective perturbations and a field which is

close to vertical. The reason that this layer remains stationary is that the balance

between the Lorentz force and temperature gradient in this region, impart equal and

opposite vorticity to the flow (Dawes, 2007). It is clear, both from the contour plots of

the vertical field and the Lorentz force distribution, that the field reaches its peak at

the edges of the cell, forming magnetic boundary layers.

Due to the flux expulsion process, the saddle node that bounds the convecton branch

at large Q is located in the subcritical regime, Q > Q
(o)
max, in which the conduction

state is the only non-localised stable solution. Thus a section of the convecton branch
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Figure 3.6: A convecton solution after a transition through the Hopf bifurcation at Qmin ≈
13700, with counter rotating eddies either side of the main cell, at R = 20000, ζ = 0.1, σ = 1,
λ = 6 and Q = 13000, with λ̄ = 1.52 and N̄ = 1.53. The plot shows the temperature
perturbation θ (top) and magnetic field strength, |B|2 (bottom).

exhibits bistability with the trivial state. This means that as we increase Q along the

convecton branch the solution eventually loses stability at this saddle node, with the

model regaining stability on the trivial state.

At Qmin, small counter rotating eddies either side of the main cell eventually desta-

bilise the layer (see Fig. 3.6). Dawes (2007) found (more specifically) that Qmin corre-

sponds to the location of a subcritical instability for ζ > 0.3 and a Hopf bifurcation for

ζ < 0.3. Note that such transitions are difficult to define numerically and thus we will

not take these limits as rigorous definitions but note that at some point from low to

high ζ there is a transition between these two types of bifurcation. These bifurcations

correspond to Qeff = Q
(o)
max and as Q is further decreased through this bifurcation, the

small eddies that develop can establish themselves as stable steady or oscillatory cells,

depending on the value of ζ. Restabilization is to a state characterised by two rolls

that have the same sign of vorticity, referred to as a multiple roll convecton solution

(see Fig. 3.7) and states of this kind have been examined by Blanchflower (1999a) and

Dawes (2007).

The Bifurcation Sequence

By numerically following solution branches in parameter space we may gain more in-

sight into the structure and location of specific solutions of interest by plotting the av-

erage Nusselt number versus the field strength, in a bifurcation diagram (see Fig. 3.8).

This plot, made by numerically branch tracking Equations (3.27)-(3.31), is similar to

the sketch produced by Blanchflower (1999a), indicating the stability range of a selec-

tion of solution branches in parameter space. As the unstable parts of the solution

branches can only be determined accurately by numerical continuation, we have cho-

sen not to speculate on their form (Blanchflower, 1999a). This bifurcation diagram is
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Figure 3.7: A multiple roll convecton solution at R = 20000, ζ = 0.1, σ = 1, λ = 6 and
Q = 9000, with N = 1.85. The plot shows the temperature perturbation θ (top) and magnetic
field strength, |B|2 (bottom).

Figure 3.8: A bifurcation diagram indicating the stability range of a selection of stable steady
(s) and oscillatory states (o) for the parameter values R = 20000, ζ = 0.1, σ = 1 and λ = 6,
where the dashed line (- -), at N = 1, indicates the unstable region of the trivial state. The
numbers next to the branches refer to the number of convective rolls. Note that the steady

convecton branch extends into the subcritical regime, terminating at Q = 24300 > Q
(o)
max.

by no means complete with numerous other solution branches existing. These have

been omitted from this plot in order to highlight the branches of interest. The diagram

clearly shows the sequence of bifurcations that were indicated in Fig. 3.1. It can also be

seen that there is a large degree in overlap (or level of hysteresis) between the numerous

solution branches. The branches are slanted, a result of the conservation of magnetic

flux in the domain. The snaking effect of the solution branches that was noted by Lo

Jacono et al. (2011) is not observed here due to the small aspect ratio of the box.

Initiating the code from the random initial condition at Q = 22000 leads to a

12-roll (m = 6), time-periodic oscillatory state, a result of the supercritical linear

bifurcation atQ
(o)
max = Q

(o)
6 = 24047, that exhibits bistability with the steady convecton,

as indicated in Fig. 3.9. The oscillatory state corresponds to a standing wave and the
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Figure 3.9: Two supercritical solutions obtained for the same parameter values, R = 20000,
ζ = 0.1, σ = 1, λ = 6 with Q = 22000, for the truncated model, indicating the bistability of
these states; (a) a steady convecton solution with N = 1.31 and λ̄ = 0.996 (Qeff = 31631) (b)
12-roll oscillatory state with N̄ = 1.08. Each plot shows the temperature perturbation θ (top)
and magnetic field strength, |B|2 (bottom).

Figure 3.10: A time sequence of the Nusselt number, N , for the m = 6 state in Fig. 3.9. The
period of oscillation is 0.062 diffusion times corresponding to approximately 16.2 oscillations
per diffusion time. We can see that this state is weakly convecting with N̄ = 1.08.
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cells reverse their sign of vorticity, every half period. The reversal of the vorticity

continuously redistributes the magnetic field, regularly moving the flux sheets at the

top and bottom of the layer into regions in which the flow converges. The reversals occur

in synchronisation with each other, with a very regular oscillatory period, as shown in

Fig. 3.10, displaying a time sequence of the Nusselt number, N , for this state. The

fact that the convecton branch is more vigorously convecting than the oscillatory state

suggests a reason as to why we cannot access this state from a random perturbation to

the trivial state.

Varying ζ

From linear theory (Proctor & Weiss, 1982) it is known that Q
(e)
max does not depend

on ζ and for the parameter values λ = 6, R = 20000 and σ = 1, Q
(e)
max = 1374. In

contrast, Q
(o)
max is dependent on ζ and as ζ is decreased, Q

(o)
max increases. This increases

the separation of Q
(o)
max from Q

(e)
max and has the effect of increasing the stability range

of all of the steady solution branches, as indicated in Table 3.1, for the 4-roll, 3-roll,

and 2-roll, steady solution branches.

Table 3.1: A survey of the branch widths, in terms of Q, for the 4-roll, 3-roll, and 2-roll solution
branches from the branch tracking process for R = 20000, σ = 1 and λ = 6.

ζ 4-roll 3-roll 2-roll

0.5 0-1200 200-2000 400-2800
0.25 0-3000 600-3500 2200-6200
0.1 0-6000 2000-11000 6000-18000
0.05 0-15000 5000-36000 12000-49000

This effect is also apparent with the convecton branch, which is indicated in Table

3.2. Once a stable localised state is obtained, one may use this state as an initial con-

dition to locate convectons in other parameter regimes, removing the computationally

demanding task of branch tracking from higher wavenumber solutions. In this way one

can map out the stability range of convectons for a range of values of ζ with ease. We,

like Blanchflower (1999a), find that convectons can be located for values of ζ as large as

ζ = 1. At larger field strengths we find smaller cells with reduced convective efficiency,

as would be expected given that magnetic fields suppress convection (Chandrasekhar,

1961). Table 3.2 indicates that for ζ = 0.25 the convecton branch does not extend

into the subcritical regime. To investigate this we look to a power-law scaling for the

location of the saddle node bifurcations. Dawes (2007) produced a similar power-law

scaling at R = 5000, finding a scaling of Qζ1.2 = 296. Fig. 3.11 illustrates a reproduc-

tion of these simulations at R = 20000 using the data in Table 3.2. The location of the
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saddle nodes, Qmax, yields the scaling,

Qζ1.23 = 1441, (3.39)

showing good agreement with the lower Rayleigh number calculation of Dawes (2007),

but the right hand side yields a different constant due to the differing value of R used.

To address the point made above about the non-subcritical convectons at ζ = 0.25,

Fig. 3.12 has been produced. This image shows the predicted levels of subcriticality

that the convecton branch should show for varying ζ. This is done by calculating

Qmax − Q(o)
max, where Qmax is predicted from the scaling law (Equation (3.39)). This

plot indicates that over the stability range of convectons, no convecton solution branch

extends into the subcritical regime for

0.13 < ζ < 0.34, (3.40)

i.e. the saddle node is located in the supercritical regime.

To test that this is not an incorrect prediction from the scaling law, extra numerical

simulations for the truncated model were performed at ζ = 0.15, 0.2, 0.3. Table 3.3

indicates the data from these simulations, showing the location of the saddle node

bifurcation. We find that the scaling law is fairly accurate, predicting the location of

the saddle node to within 3%. This data confirms that convectons within the range

0.15 ≤ ζ ≤ 0.3 do not extend into the subcritical regime. It is thought that this is the

result of a finite size effect of the computational domain and a second scaling-law

Qζ1.21 = 1691, (3.41)

for λ = 12, was produced, also indicated in Fig. 3.12, from the data in Table 3.3. As

can be seen all convectons now extend into the subcritical regime suggesting that the

box size, of λ = 6, may be a little constrained for this parameter regime. Using the

scaling laws given by Dawes (2007) (R/ζ = 38.3Q0.862) we find that this phenomenon

is also reproduced although this scaling law predicts that convectons do not extend

into the subcritical regime in the range 0.0199 < ζ < 0.4729 (see Fig. 3.13), which

we know is not the case, as we (like Blanchflower, 1999a) find subcritical convectons

for ζ = 0.1. This scaling could be affected by the fact that it was produced, for the

saddle nodes, for a range of values of R and λ, as well as including data points from

both the truncated and fully-resolved models. It cannot be expected that the data

from these different parameter regimes and models conform to the same power law,

and this could be responsible for the inaccuracies found in this analysis. An interesting

point arises when we examine the scaling-law produced by Dawes (2007) for R = 5000

(Qζ1.2 = 296). Indicated in Fig. 3.13 is a plot of the levels of subcriticality derived
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Table 3.2: A survey of convectons across a range of values of ζ for R = 20000, σ = 1 and λ = 6
showing the bifurcations that bound the convecton branch at large (Qmax) and small (Qmin)
field strengths with the corresponding cell sizes (λ̄), Nusselt numbers (N) and effective field

strengths (Qeff). Also given is the location of the largest linear Hopf bifurcation (Q
(o)
max).

ζ Qmin λ̄ N Qeff Qmax λ̄ N Qeff Q
(o)
max

0.5 1800 1.51 1.53 3214 3400 0.87 1.27 4651 3128
0.25 4800 1.42 1.46 8238 7900 0.82 1.21 10599 8128
0.1 13700 1.50 1.50 24356 24300 0.78 1.21 32105 24047
0.05 26400 1.71 1.56 51641 57900 0.75 1.20 75624 51395

Figure 3.11: Power law scalings (a) for the location of Qmax, Qζ1.23 = 1441 (* and - -) and Qmin,
Qζ1.17 = 862 (× and − · −) and (b) the convecton branch widths Qmax −Qmin, Qζ1.31 = 566.

Table 3.3: The location of the saddle node bifurcations (Qmax) for a range of values of ζ;
λ = 6 (top) and λ = 12 (bottom) with R = 20000, σ = 1, and λ = 6. Also indicated are the
corresponding values of the Nusselt number (N), the cell sizes (λ̄), the effective field strengths

(Qeff) and the location of the largest linear Hopf bifurcation (Q
(o)
max).

λ ζ Qmax λ̄ N Qeff Q
(o)
max

6 0.3 6400 0.79 1.21 8488 6420
6 0.25 7900 0.82 1.21 10599 8128
6 0.2 10400 0.78 1.21 13740 10727
6 0.15 14700 0.80 1.22 19571 15116

12 0.75 2400 0.94 1.42 2825 1651
12 0.5 3900 0.91 1.40 4566 3128
12 0.25 8900 0.91 1.36 10420 8128
12 0.1 27600 0.90 1.31 32357 24266
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Figure 3.12: A test of the levels of subcriticality (Qmax − Q(o)
max) of convecton solutions, for

varying ζ, for two values of λ; λ = 6 (Red, solid line) and λ = 12 (Blue, dot dashed line). Note
the range of values 0.13 < ζ < 0.34 for which convectons are found not to extend subcritically
for λ = 6, which is not the case for λ = 12, where all convecton branches extend into the
subcritical regime.

Figure 3.13: A test of the levels of subcriticality (Qmax−Q(o)
max) of convecton solution, from the

scaling laws provided by Dawes (2007); R/ζ = 38.2581Q0.861758, with R = 20000 (Red, solid
line) and Qζ1.2 = 296 (Blue, dot dashed line), for R = 5000 and λ = 6.

from this scaling-law showing that for a low Rayleigh number all convecton branches

extend into the subcritical regime. This suggests that a lack of subcritical convectons

in certain parameter regimes could be more complex than just due to a finite size effect

and depends on the other dimensionless parameters as well. Specifically convection at

large Rayleigh numbers could be too restricted in boxes of size λ = 6 for the full range

of expected behaviours to be observed.
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Going back to the other scalings from Fig. 3.11. The location of Qmin is given by

Qζ1.17 = 862, (3.42)

scaling differently to the saddle nodes and the difference between the two bifurcations,

Qmax −Qmin, scales like

Qζ1.31 = 566. (3.43)

Both scalings, like that for the location of the saddle nodes, show no obvious expla-

nations. For example, it is known, in the truncated model, that perturbations to the

outside region set in when Qeff = Q
(o)
max, but we find no relation with either.

One may expect, by examining the governing equations, that the location of one of

these bifurcations (Saddle node or Hopf) may relate to the form that these parameters

(Q and ζ) take in the governing equations i.e. Qζ. However, none of these scalings

correlate with this observation and it is clear that the highly non-linear nature of the

governing equations lead to some complex interactions that result in these scaling-laws.

Figure 3.14: The Lorentz force distribution for the (ζ,Q) pairs (1.0,1400), (0.9,1556), (0.8,1750),
(0.6,2333), (0.5,2800), (0.4,3500), (0.3,4667), (0.25,5600), (0.2,7000), (0.1,14000), given that
Qζ = 1400.

Given that the coefficient of the Lorentz force takes the form Qζ in the governing

equations, we wish to understand what effect this coefficient has on the structure of

convectons. By holding this coefficient constant, but varying both Q and ζ, we may

remain on the convecton branch and assess the cell and boundary layer widths. In

order to find a solution on every convecton branch for 0.1 ≤ ζ ≤ 1.0, we have taken

Qζ = 1400. Fig. 3.14 shows the Lorentz force profiles that are obtained from this

analysis, the results of which have also been used to produce the scaling-laws in Fig. 3.15
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from the data in Table 3.4. Note that the boundary layer widths stated in this table

are calculated as the distance between the first and second intersections of a line drawn

from the centre of the cell in either direction, with a Lorentz force magnitude of zero i.e.

y=0 in standard Cartesian notation. We observe that as ζ is increased the boundary

layer width of the cell also increases with a corresponding decrease in the width of the

cell. This corresponds to a drop in the Nusselt number, which is found to be counter-

intuitive, as the field strength is decreasing with increasing ζ, so due to the magnetic

suppression of convection we would expect the Nusselt number to increase. However,

the strength of the Lorentz force is found to increase in the boundary layers, with

increasing field strength, which is found to drive the cell more vigorously as a result.

We observe that the exponent in the scaling law for the cell widths (λ̄ζ0.19) is

approximately the difference between the saddle node bifurcations (Qζ1.2) and the

exponent of the fixed power-law (Qζ1). This suggests that the cell width power-law is

determined entirely by the saddle node power-law and the path that is taken through

parameter space. Additional simulations appear to confirm that this may be the case.

Fixing Qζ1.3 = 1000 leads to a power-law for the cell width of the form λ̄ζ−0.07 = 1.34.

Again we observe that the difference between the exponents of the fixed power-law and

that for the saddle nodes is a reasonable approximation to that for the cell widths.

Table 3.4: Data for the scaling-laws produced in Fig. 3.15 for a range of values of ζ and Q,
such that Qζ = 1400. Indicated are the values of the Nusselt number (N), the cell sizes (λ̄),

the boundary layer widths (λ̂) and the effective field strengths (Qeff).

ζ Q N λ̄ λ̂ Qeff

1.0 1400 1.344 0.963 0.194 1986
0.9 1556 1.348 0.994 0.188 2235
0.8 1750 1.354 1.024 0.181 2544
0.6 2333 1.369 1.087 0.167 3480
0.5 2800 1.379 1.125 0.159 4241
0.4 3500 1.392 1.172 0.149 5406
0.3 4667 1.411 1.235 0.137 7400
0.25 5600 1.423 1.275 0.130 9030
0.2 7000 1.439 1.326 0.123 11535
0.1 14000 1.489 1.489 0.102 24768

3.9.2 The Fully Resolved Model

Having analysed the truncated model in some detail, we now turn to the model of

fully-resolved two-dimensional magnetoconvection. In any model of this type, fairly

large spatial resolution (256 × 64) and long time integrations (≈ 500 − 1000 diffusion

times) are required in order to ensure the persistence of localised states, so the addition
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Figure 3.15: Scaling laws for (a) the boundary layer width, λ̂ζ−0.28 = 0.19 and (b) the cell
width, λ̄ζ0.19 = 0.98, taken from the analysis for Qζ = 1400.

of the extra spatial dimension makes it impractical to carry out detailed parametric

surveys of the fully-resolved system. On the single processor machines that were avail-

able at the time of computation, run times of the order of 10 hours to saturation were

required. This is in contrast to the run-times for the truncated model of approximately

20 minutes. Therefore, with approximately 100 runs required for the bifurcation dia-

gram, in Fig. 3.8, the truncated model is a very practical problem at 33 hours. For the

fully-resolved model such simulations would take in the region of 42 days, making them

rather impractical. Thus in this sub-section our parameter choices must be guided by

the results from the truncated model.

Varying ζ

Previous simulations of steady convectons in fully-resolved two-dimensional calculations

were used to demonstrate the existence of these states (Blanchflower, 1999a) and no

parametric surveys have been performed to assess the effects of including the full set

of Fourier modes. Simulations show an increase in the range of stability from 13700 ≤
Q ≤ 24300 in the truncated model to 6000 ≤ Q ≤ 25800 in the fully-resolved model

(see Table 3.5). Another trait of the fully-resolved simulations is that for a particular

set of the parameters the cell size and convective efficiency is significantly increased in

comparison to the truncated model. The increased cell size can be seen in Fig. 3.16,

which shows a fully-resolved steady convecton, found by branch tracking, as well as

a 12-roll oscillatory state, for Q = 22000. This should be compared with Fig. 3.9,

which shows the truncated model for the same set of parameters. The Nusselt number

in this case is N = 2.38 (as opposed to N = 1.31), an increase which can mostly be
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attributed to the increased cell size. Nonetheless, despite the apparent differences in the

solutions, the presence of a steady convecton for these parameter values suggests that

it is not unreasonable to suppose that the truncated model should provide a reasonable

indication of the appropriate regions of parameter space to search for these solutions

in this fully-resolved model. We note that the Nusselt number for the oscillatory state

(see Fig. 3.17) shows some modulated behaviour in contrast to that in the truncated

model. The lower peaks, every half period, correspond to the reversals in the vorticity

and as the field redistributes a pair of the rolls within the domain is weakened slightly

in comparison to the other cells. This behaviour is most likely the result of the extra

structure provided by the added spatial dimension.

Table 3.5: A survey of convectons across a range of values of ζ for R = 20000, σ = 1 and λ = 6
showing the bifurcations that bound the convecton branch at large (Qmax) and small (Qmin)
field strengths with the corresponding cell sizes (λ̄), Nusselt numbers (N) and effective field

strengths (Qeff). Also given is the location of the largest linear Hopf bifurcation (Q
(o)
max).

ζ Qmin λ̄ N Qeff Qmax λ̄ N Qeff Q
(o)
max

0.7 1000 2.54 2.56 3007 2500 1.91 2.03 5380 1820
0.5 1300 2.96 2.60 5064 3600 2.05 1.51 8306 3128
0.25 2600 3.36 2.95 13430 9000 1.93 2.07 19559 8128
0.1 6000 3.47 2.98 33745 25800 1.81 1.68 52905 24047

As the bifurcation points are observed to move now that we have included the

full set of Fourier modes in the model, it is instructive to examine the scaling laws

produced in Section 3.9.1 to see what, if any, effect results. From the data in Table 3.5

we have produced the scaling laws given in Fig. 3.18. We find that all three scalings

originally produced in the truncated model have been affected by the inclusion of all

of the Fourier modes. The location of the saddle node bifurcations now scales like

Qζ1.21 = 1605, (3.44)

in comparison to Qζ1.23 = 1441 from the truncated model. These scalings are not

too distinct from each other, and the small differences could be attributed to the fact

that the location of the saddle node has been determined to greater accuracy in the

truncated model. The reason for a larger step size in Q, in the fully-resolved model,

is due to the increased computational complexity, although the differences could be

the result of the extra Fourier modes that have been included. The scaling-law for the

location of Qmin, is found to be

Qζ0.93 = 703, (3.45)

which can be compared to that found in the truncated model (Qζ1.17 = 862). Due to
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Figure 3.16: Two supercritical solutions obtained for the same parameter values, R = 20000,
ζ = 0.1, σ = 1, λ = 6 with Q = 22000, for the fully-resolved model, indicating the bistability of
these states; (a) a convecton solution with N = 2.38 and λ̄ = 1.94 (Qeff = 48048) (b) a 12-roll
oscillatory state with N̄ = 1.09. Each plot shows the temperature perturbation θ (top) and
magnetic field strength, |B|2 (bottom).

Figure 3.17: A time sequence of the Nusselt number, N , for the m = 6 state in Fig. 3.16. The
period of oscillation is 0.062 diffusion times corresponding to approximately 16.1 oscillations
per diffusion time. We can see that this state is weakly convecting with N̄ = 1.09.
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Figure 3.18: Power law scalings for the location of (a) the saddle nodes, Qζ1.21 = 1605 (* and
–) and the Hopf bifurcations, Qζ0.93 = 703 (× and − · −) (b) the convecton branch widths
Qmax −Qmin, Qζ1.34 = 936.

the size of the cells, which take a maximum of λ̄ = 3.47 for ζ = 0.1, it is possible that

these states are horizontally constrained, like those in very narrow boxes (Blanchflower

et al., 1998). Thus we cannot rule out the possibility that the scalings would agree

with those in the truncated model if these calculations were reproduced for a larger

value of λ. In addition there is obviously some degree of error in our calculations of the

locations of these bifurcation points. In both the truncated and fully-resolved models

we have calculated the locations of the bifurcation points by varying Q in steps of size

100 in the vicinity of the bifurcation point. Thus there may be some small discrepancies

in our estimates of the power law scalings but these are too small to account for the

differences between the scaling laws in the two models.

We note that it would be possible to use numerous methods to improve on the

accuracy of the data obtained. Richardson extrapolation (Press et al., 1986) is one

such method that could be used to determine the location of the saddle nodes more

accurately by allowing for the known dependence of the results on the finite resolution.

Although we allowed our solutions to saturate over very long time integrations (1000

plus diffusion times) it would also be possible to improve on our estimates of the

Nusselt number along the solution branches by using exponential relaxation on the

Nusselt number time sequences.

In addition there are also ways of predicting the location of the saddle node bi-

furcations to a higher degree of accuracy than using numerical timestepping methods

alone. Given that a saddle node bifurcation takes the form of a parabola we could use

this information combined with a number of data points along a stable section of the

solution branch to extrapolate the location of the bifurcation point.
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For the branch widths we find,

Qζ1.34 = 936, (3.46)

which we expect would not agree with that in the truncated model (Qζ1.31 = 566) due

to the scaling for Qmin not agreeing.

One interesting point to note from Table 3.5 is that all convecton branches extend

into the subcritical regime. This is an interesting point to note as these simulations

have been performed for the same parameter values as for the truncated model and

thus we may expect to observe the same qualitative behaviours in this model. However,

the inclusion of the extra Fourier modes seems to have made a qualitative difference to

this result.

Overall this analysis has shown that the same solutions can be found in both models.

However, we have seen quantitative differences between these models and this demon-

strates that care must be taken in drawing general conclusions from the truncated

model that have not been verified in the fully-resolved case.

3.10 Oscillatory Convectons

Oscillatory convectons have been shown to exist in both two (Blanchflower, 1999b)

and three (Blanchflower & Weiss, 2002) dimensional Boussinesq magnetoconvection.

In both models the vertical structure of the domain was truncated to aid in computa-

tional efficiency and only the mere existence of these states was shown. Thus little is

known of their parametric dependancies. More specifically in two-dimensions oscilla-

tory convectons were shown to exist for the parameter values R = 20000, σ = 1, ζ = 0.1,

λ = 6 and 17000 < Q < 22000, where Q
(o)
max = 24047. Thus in the next sub-section we

shall extend this work and look at what effects varying the dimensionless parameters

has on the properties and stability range of oscillatory convectons. In the following

sub-section (3.10.2) we shall show that these states are not confined solely to these

simplified models but that corresponding states can also be found in the fully-resolved

model.

3.10.1 The Truncated Model

General Properties

In this section we define some general properties of oscillatory states for the parameter

values R = 20000, σ = 1, ζ = 0.1 and λ = 6 with a variable Chandrasekhar number.

We shall then proceed to vary the values of R, ζ and λ sequentially in order to assess

the effects that these parameters have on the stability range of oscillatory convectons.
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Multiple roll, flux separated, oscillatory states are found at lower values of Q in

comparison to the multiple roll oscillatory states that fill the box (see Fig. 3.19). In-

dicated in Fig. 3.19 are 2, 3 and 4-roll oscillatory solution branches. Fig. 3.20 shows a

time sequence of states (with time increasing downwards), illustrating one half-period

of oscillation for a 2-roll oscillatory state at Q = 18000. In this sequence, both rolls

have the same sign of vorticity and oscillate in synchronisation. The sequence proceeds

with both rolls decaying to a transitionary state in which the convective efficiency is

lowest and the magnetic flux within the cells begins to redistribute. The flux sheets

at the top and bottom of the layer then switch to opposite sides of the cell and as the

convective efficiency begins to increase, they both develop into convective rolls with

oppositely-signed vorticity to that with which they started. This illustrates one half

period of oscillation, corresponding to 8.6 complete oscillations per diffusion time. This

solution, like all of the flux separated oscillatory states, is confined to a finite range of

values for Q (14500 ≤ Q ≤ 19000).

Figure 3.19: A bifurcation diagram indicating the stability range of a selection of stable steady
(s) and oscillatory states (o) for the parameter values R = 20000, ζ = 0.1, σ = 1 and λ = 6,
where the dashed line (- -), at N = 1, indicates the unstable region of the trivial state. The
numbers next to the branches refer to the number of convective rolls.

It is also worth noting that the multiple roll flux separated states, although they

have a clear period of oscillation, are modulated over much longer time-scales. Fig. 3.21

shows the variation of N , with time, for the state in Fig. 3.20, over 15-diffusion times.

We observe that there are distinct phases, marked by the vertical dashed lines (- -

), that this state transitions through, corresponding to different types of oscillation.

Phases one (t ≈ 985 − 986.9) and three (t ≈ 992 − 994.5) correspond to the state

shown here with the cells oscillating in synchronisation, with the same sign of vorticity.

Phases two (t ≈ 988.8 − 991.5) and four (t ≈ 995.8 − 999.2) correspond to a state

in which the two cells oscillate in synchronisation but with opposite vorticity to each

other. The transitionary regions between these states correspond to phases in which
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Figure 3.20: A time-sequence of states showing a half-period of oscillation (approximately 0.059
diffusion times) for a two roll oscillatory solution at R = 20000, σ = 1, ζ = 0.1, λ = 6 and
Q = 18000 (Qeff ≈ 25480). The snapshots were taken at the peaks and troughs in the Nusselt
number (a) t = 993.396 (b) t = 993.425 (c) t = 993.455 (See Fig. 3.21). Each of the three sets of
plots shows the temperature perturbation θ (top) and magnetic field strength, |B|2 (bottom).

Figure 3.21: A time sequence of the Nusselt number for the two roll oscillatory state in Fig. 3.20,
indicating the modulated nature of the solution. The average Nusselt number for this state is
N̄ = 1.25 and the maximum is Nmax = 1.41.
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Figure 3.22: A time-sequence of states showing a half-period of oscillation (approximately 0.048
diffusion times) for a single roll oscillatory solution at R = 20000, σ = 1, ζ = 0.1, λ = 6 and
Q = 22200 (Qeff ≈ 25247). The snapshots were taken at the peaks and troughs in the Nusselt
number (a) t = 990.002 (Nmax) (b) t = 990.025 (Nmin) (c) t = 990.050 (Nmax). Each of the
three sets of plots shows the temperature perturbation θ (top) and magnetic field strength,
|B|2 (bottom).

Figure 3.23: A time sequence of the Nusselt number for one full diffusion time for the localised
oscillatory state in Fig. 3.22. There are approximately 10.4 full oscillations per diffusion time
with Nmax = 1.19, Nmin = 1.05 and N̄ = 1.12.
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the oscillation of the cells is no longer synchronised. The 3 and 4-roll states oscillate

with similar modulated behaviour.

Taking the 2-roll oscillatory state at Q = 18000 and increasing the field strength,

one can suppress one of the convective rolls so that only a single localised oscillatory

cell remains. As indicated in Fig. 3.19 the 2-roll solution branch loses stability at

Q ≈ 19000. By branch tracking, it can be shown that the 1o branch is stable in

the range 17900 ≤ Q ≤ 22200, (for convenience we shall redefine the meaning of

Qmin ≤ Q ≤ Qmax as the stability range for oscillatory convectons) in close agreement

with the findings of Blanchflower (1999b) for this particular parameter regime. The

localised oscillatory state, at Q = 22200, is illustrated in Fig. 3.22. The cell oscillates in

the same way as the 2-roll state, oscillating backwards and forwards, reversing the sign

of the vorticity every half period (approximately 0.048 diffusion times). The oscillations

in the Nusselt number are very regular (see Fig. 3.23), with no modulation over large

time-scales. Given that the Lorentz force plays a crucial role in driving the oscillations,

it is instructive to look at the time-evolution of the spatial distribution of the Lorentz

force. This is calculated as the sum of the terms proportional to Q on the right hand

side of Equation (3.27). Fig. 3.24 is a plot of the spatial-dependence of the Lorentz

force terms for the snapshots shown in Fig. 3.22. At each instant in time, the Lorentz

force does appear to be nearly symmetric about x = 3, although there are some small

asymmetries in the distribution (visible primarily in the narrow spikes at the edge of

the convecton in the upper and lower plots). The symmetric nature of the Lorentz force

distribution is probably due to the simplified nature of this model i.e. a lack of vertical

resolution means that interactions are only one-dimensional, whereas additional Fourier

modes, which increase the non-linear coupling of the governing equations, may give rise

to more asymmetries.

We can see, from Fig. 3.24, that the oscillatory state is not completely flux expelled

as the Lorentz force is non-zero within the cell. This is in contrast to steady convectons,

which are very efficient at expelling almost all magnetic flux from their interior. Within

a cell that is completely devoid of magnetic flux, A′0 = −1, so that all terms that make

up the Lorentz force in Equation (3.27) approximate to zero (Dawes, 2007). For the

oscillatory convecton, indicated in Fig. 3.22(a), at the peak of oscillation (Nmax), when

we expect a greater proportion of the flux to be expelled, we find that A′0 ≈ −0.67,

indicating that the cell is only partially flux expelled. This is presumably due to the

fact that convection is rather weak (Nmax = 1.19). The inefficiency of flux expulsion is

almost certainly essential for the persistence of oscillations in these localised states, and

also presumably explains their susceptibility to convective perturbations to the outside

region of the cell, leading to their narrow range of stability. More specifically at Q ≈
22300 the state described above becomes unstable to these convective perturbations
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Figure 3.24: The corresponding Lorentz force plots for the snapshots in Fig. 3.22. The snapshots
were taken at the peaks and troughs in the Nusselt number; (a) t = 990.002 (Nmax) (b)
t = 990.025 (Nmin) (c) t = 990.050 (Nmax).

Figure 3.25: A snapshot of a solution on the single roll oscillatory solution branch at R = 20000,
σ = 1, ζ = 0.1, λ = 6 and Q = 17900, clearly indicating the perturbations to the outside region
of the cell that develop as Q is decreased. This state was taken at an irregular spike in the
Nusselt number (Nmax = 1.34) in order to highlight the eddies in the outside region at the
peak in their intensity (N̄ = 1.20). The plot shows the temperature perturbation θ (top) and
magnetic field strength, |B|2 (bottom).
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Figure 3.26: A snapshot of a solution on the single roll oscillatory solution branch at R = 20000,
σ = 1, ζ = 0.1, λ = 3 and Q = 19800 (Qeff = 22910), indicating that in a restricted domain
the structure of the localised oscillatory cell remains consistent with that in a wider domain.
This state was taken at the peak in the Nusselt number (Nmax = 1.21) where N̄ = 1.13 for this
state. The plot shows the temperature perturbation θ (top) and magnetic field strength, |B|2
(bottom).

and the solution transitions to the 12-roll oscillatory solution indicated in Fig. 3.9(b).

As Q is decreased on the oscillatory convecton branch the outside region becomes

increasingly perturbed and the state is eventually overcome by these oscillations at

Q ≈ 17800 (see Fig. 3.25), transitioning to the 2-roll state indicated in Fig. 3.20.

Parametric Dependencies of Oscillatory States

In this section we assess the effects of varying the Rayleigh number, R, the diffusivity

ratio, ζ, and the aspect ratio, λ. The aim here is to determine whether or not these

localised oscillatory states are restricted to the particular parameter regime that was

discussed above. This is the first time that the parameter-dependence of these states

has been explored. In fact, these solutions do appear to be reasonably robust, in

the sense that similar solutions can be found across a range of different parameters.

In Table 3.6 we summarise some of the findings of this parametric survey. Various

properties of the oscillatory state are given for Qmax (the upper end of the solution

branch): λ̄ corresponds to the mean width of the cell, whilst Nmax and N̄ give the peak

and mean values of the Nusselt number (respectively). Also indicated is the location

of the linear stability boundary for the trivial state, Q
(o)
max (Proctor & Weiss, 1982).

One of the key findings of this survey is that the existence of the oscillatory convec-

ton is found to be critically dependent upon ζ. Fixing R = 20000, σ = 1 and λ = 6 we

find that these states can be found only for ζ < 0.6. It is found that as ζ is increased,

there is a reduction in the stability range of these states, as indicated in Table 3.6.

Steady convectons exhibit a similar ζ dependence (Dawes, 2007). Where oscillatory lo-

calised states do exist, the cell width appears to be relatively insensitive to the precise

choice of ζ, although we see a marked increase in the period of oscillation at higher

values of ζ. This is presumably due to the fact that the lower ζ oscillatory convectons
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are stable at higher values of Q, which increases the amplitude of the Lorentz force in

the boundary layers.

For steady localised states the effect of increasing the box width is to shift the

stability range to higher values of Q (Blanchflower, 1999b). We observe the same

phenomenon here for the oscillatory convectons, although the actual branch width

is always relatively small. For steady convectons this branch moves completely into

the subcritical regime for λ � 1, with the lower end of the steady convecton branch

positioned at Q
(o)
max (Blanchflower, 1999a). The reason for this is that the cell is so

small in the wide domain that the increase in flux in the outside region is not large

enough to suppress all convective perturbations if Q < Q
(o)
max. In this oscillatory case,

the upper limit of the stability range (in Q) of the localised state seems to be tending

towards Q
(o)
max as the box size increases, with almost no variation in the branch width,

as can be seen from Table 3.6. Furthermore, we find no evidence for the existence of

subcritical oscillatory convectons. This is specifically highlighted by the λ = 16 case in

Table 3.6, which indicates that the solution decays rapidly to the trivial state almost

exactly at Q
(o)
max. Unlike steady convectons, oscillatory convectons can also be found

in much smaller domains. As indicated in Table 3.6, the localised oscillatory state for

λ = 3 (which is illustrated in Fig. 3.26) is stable in the range 14400 ≤ Q ≤ 19800. At

Q = 18000, N̄ = 1.25 and Nmax = 1.41, both of which compare very favourably to the

λ = 6 two roll state that is shown in Fig. 3.20. Similarly we may compare the Nusselt

number for a single roll oscillatory state in a domain of size λ = 6/3 = 2 (Q = 14000)

and λ = 6/4 = 3/2 (Q = 11000), which oscillate about average Nusselt numbers of

N̄ = 1.36 and N̄ = 1.51 respectively, in agreement with those for the three (N̄ = 1.37)

and four roll (N̄ = 1.50) oscillatory states in the λ = 6 domain. We conclude from

this that the 2o, 3o and 4o states in the λ = 6 domain could be regarded simply as

collections of interacting oscillatory convectons (any of which could exist in isolation).

Varying the Rayleigh number at fixed ζ(= 0.1) (which is equivalent to varying

the strength of the convective driving forces) we find localised oscillatory convectons

for 5000 ≤ R ≤ 50000, but for larger values of R (e.g. R = 70000), stable states

could not be found. For R = 50000, oscillatory convectons are stable in the range

47600 ≤ Q ≤ 51000, but even at the upper boundary (Qmax) of the solution branch

(Q ≈ 51000, Nmax = 1.42, N̄ = 1.28, Q
(o)
max = 68800), small counter rotating eddies

either side of the main cell are present, indicated by the fact that Qeff ≈ 56848 < Q
(o)
max,

similar to the state in Fig. 3.25. These perturbations outside the cell for higher Rayleigh

numbers are likely to be the result of the inability of these states to expel significant

quantities of magnetic flux. As a result, significant increases in the thermal forcing mean

that the field is not locally strong enough to suppress all convective perturbations and

stabilise the layer. This could give a possible explanation as to why these states have
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not been observed at higher Rayleigh numbers.

In all cases the period of oscillation is much shorter than a thermal diffusion time.

This is consistent with linear theory. From Equation (B.47) we can estimate that near

onset the period of oscillation of the 12-roll state is of the order 0.01 in the low-ζ regime

(ζ ≤ 0.3). We observe shorter periods of oscillation at higher Rayleigh numbers, which

presumably can be attributed to the increased convective driving. Also we find shorter

periods of oscillation at smaller ζ. We expect that this is a result of the increased

magnitude of the Lorentz force in the boundary layers with decreasing ζ, which acts

to drive the oscillations more vigorously as a result.

Table 3.6: A summary of the stability range of oscillatory convectons for a range of values
of λ, ζ and R. Indicated are a number of properties of the cells at Qmax: λ̄ corresponds to
the mean width of the cell, whilst Nmax and N̄ give the peak and mean values of the Nusselt
number (respectively). Also indicated is the location of the largest oscillatory Hopf bifurcation

Q
(o)
max. Note that the period of oscillation is given in terms of diffusion times.

λ ζ R Qmin Qmax Q
(o)
max λ̄ Nmax N̄ Period

6 0.1 5000 3400 4200 4220 0.803 1.14 1.08 0.248
6 0.1 10000 7900 10300 10447 0.664 1.18 1.10 0.161
6 0.1 20000 17900 22200 24047 0.599 1.19 1.12 0.097
6 0.1 50000 47600 51000 68800 0.531 1.40 1.26 0.057
6 0.2 20000 7900 9800 10727 0.592 1.19 1.12 0.116
6 0.3 20000 4700 5800 6420 0.587 1.19 1.11 0.120
3 0.1 20000 14400 19800 24047 0.491 1.21 1.13 0.068
2 0.1 20000 11700 18100 24047 0.441 1.27 1.18 0.068

1.5 0.1 20000 8800 17100 21905 0.464 1.44 1.26 0.067
8 0.1 20000 18800 23300 24191 0.629 1.15 1.09 0.108
16 0.1 20000 19900 24256 24257 0.610 1.08 1.05 0.122

3.10.2 The Fully Resolved Model

Having established the regions of parameter space where oscillatory localised states are

stable, we now turn our attention back to the fully-resolved model. Initial attempts

were made to locate oscillatory convectons for R = 20000, σ = 1, ζ = 0.1 and λ = 6.

However, branch-tracking by increasing Q through the flux-separated oscillatory states

failed to produce the required solution. Tracking down from higher Q (in the other

direction), we found that the spatially-periodic oscillatory state transitions directly

to a 2-roll oscillatory state. So we were unable to find a stable oscillatory convecton

by following this branch-tracking process. It was noticed that there was a transient

localised cell during the transition to the 2-roll state. Although clearly a transient,

this localised state was present for approximately 50 diffusion times, which highlights
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the need for long time integrations in systems of this type. Given the presence of this

long-lived transient, it is certainly possible that a stable oscillatory convecton solution

branch does exist, but perhaps over a narrower region of parameter space than the

corresponding state in the truncated model.

Given that steady convectons tend to be wider in this fully-resolved model, it is

not unreasonable to assume that the stability of these solution branches might depend

crucially upon the aspect ratio. Increasing the box width to λ = 8, we found a two roll

oscillatory state at Q = 21000 (which is illustrated in Fig. 3.27). In this fully-resolved

case, the oscillations no longer take the form of localised standing waves. Instead, the

oscillation has more of a horizontal component. This can be seen from the structure of

the magnetic boundary layers which move gradually across the cell. The translational

velocities are to the right in the left hand cell and to the left in the right hand cell. As

was the case in the truncated model, the Nusselt number variation of this 2-roll state

is modulated over a large time-scale (see Fig. 3.28), and there are distinct phases (of

finite duration) in which the cells oscillate in a synchronous way.

Taking the 2-roll state, we increased the field strength and found that a single

roll oscillatory localised state stabilised at Q = 22000 (Qeff = 24127), as shown in

Fig. 3.29. To verify that this state was not a transient phenomenon, it was evolved

for over 1000 diffusion times, carefully monitoring the mean Nusselt number, which

maintains a stable value of N̄ = 1.09. This average Nusselt number is in fact slightly

lower than that for the comparable state in the truncated model. The actual time-

evolution of the Nusselt number is less trivial than in the corresponding solution in

the truncated model. As shown in Fig. 3.30, whilst still periodic, it is clear that the

Nusselt number has a more complex functional form. Furthermore, the maximum

Nusselt number (Nmax = 1.13) is comparatively large. This behaviour is a consequence

of the fact that the mode of oscillation in the fully-resolved case does not take the form

of a localised standing wave, which implies that there is an asymmetry between the

vertical distribution of the hot and cold regions of the oscillatory convective motion.

The Lorentz force, which is calculated as the magnitude of the third term on the

right hand side of Equation (3.1), is indicated in Fig. 3.31 for this state. The Lorentz

force is calculated at the mid-layer of the box (z = 0.5), where the vorticity takes its

maximum value, in agreement with the dominant modes of the truncation, so that

the Lorentz force can be directly compared between the two models. We observe an

asymmetry in the profile here which is in contrast to the very symmetric form in the

truncated model and is most likely responsible for the differences between their modes

of oscillation. Due to the numerical complexity of these simulations we have not carried

out a detailed parametric survey for these fully-resolved localised states, although we

have found that these states exist in the (approximate) range 19000 ≤ Q ≤ 22000.
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Figure 3.27: A time sequence of convective states for a two-roll flux separated oscillatory state,
showing one half period of oscillation (approximately 0.034 diffusion times) at R = 20000,
σ = 1, ζ = 0.1, λ = 8 and Q = 21000. The snapshots were taken at equally spaced time-
intervals; (a) t = 1543.005 (b) t = 1543.022 (c) t = 1543.039. Each of the three plots shows the
temperature perturbation, θ, (top) and magnetic field strength, |B|2, (bottom).

Figure 3.28: A time sequence of the Nusselt number for the two roll oscillatory state in Fig. 3.27,
indicating the modulated nature of the solution. The average Nusselt number for this state is
N̄ = 1.13.
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Figure 3.29: A time sequence of states for one reversal in the vorticity of the state (approxi-
mately 0.046 diffusion times) at R = 20000, σ = 1, ζ = 0.1 and Q = 22000. The width of the
cell at the peak of oscillation is λ̄ = 0.787. The snapshots were taken at the peaks and troughs
in the Nusselt number; (a) t = 1499.001 (Nmax) (b) t = 1499.027 (Nmin) (c) t = 1499.047.
Each of the three sets of plots shows the temperature perturbation θ (top) and magnetic field
strength, |B|2 (bottom).

Figure 3.30: Time-evolution of the Nusselt number for the localised oscillatory cell shown in
Fig. 3.29, over approximately one full diffusion time. Note that there are approximately 12.049
full oscillations per diffusion time with Nmax = 1.13, Nmin = 1.05 and N̄ = 1.09.
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Figure 3.31: The corresponding Lorentz force plots for the snapshots in Fig. 3.29. The snapshots
were taken at consecutive peaks and troughs in the Nusselt number, at the mid-layer of the
box (z = 0.5); (a) t = 1499.001 (Nmax) (b) t = 1499.027 (Nmin) (c) t = 1499.047.

3.11 Summary and Discussion

3.11.1 Oscillatory States - Comparisons with Observations

The oscillatory localised states that we have examined in this chapter exist over a range

of parameters and show a range of sizes and lifetimes. Although the models discussed

in this chapter are highly idealised it is interesting to compare the properties of these

states with the observations of umbral dots that were discussed in Chapter 1. In this

section we shall use the state in Fig. 3.29, from the fully-resolved model, and estimate
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the realistic values of the field strength, cell width and lifetime (one full oscillation)

that this state represents.

As discussed in Section 3.6 the realistic estimates of the dimensionless parameters

used in this section are R ∼ 1016, σ ∼ 10−7, ζ ∼ 10−1 and Q ∼ 1011. In this chapter

we have chosen more modest values for these parameters. For the oscillatory state in

Fig. 3.29 these parameters take the values R = 20000, σ = 1, ζ = 0.1 and Q = 22000.

Within the central region of a typical sunspot the field strength takes a value of

approximately 0.3T (3000G) as discussed in Chapter 1, whilst µ0 = 4π × 10−7Hm−1.

In addition, representative values of the density and photospheric layer depth are ρ =

10−6kgm−2 and d = 5× 105m, respectively.

We can use Equations (3.6), (3.8) and (3.9) to express the thermal diffusivity in the

following form

κ =
|B0|d√
µ0ρ0σζQ

. (3.47)

Thus given the values stated above and the numerical values of σ, ζ and Q for this

state, we can estimate κ ≈ 2.8×109m2s−1. Thus a thermal relaxation time corresponds

to d2/κ ≈ 87.6s. Given that the oscillatory period of this state is approximately 0.092

oscillations per thermal diffusion time, this value corresponds to approximately 8s.

Note this value is much shorter than that for the shortest living umbral dots whose

lifetimes are observed to fall in the approximate range 4-40 minutes.

Conversely the lifetime of an umbral dot (4-40 minutes) corresponds to approxi-

mately 3-28 thermal relaxation times in our model. Given that we are running sim-

ulations for 1000 thermal relaxation times (or 1470 minutes) it appears that unstable

convectons or transients might be appropriate models of umbral dots. In fact tak-

ing a realistic thermal diffusivity of κ ∼ 104m2s−1, then a thermal relaxation time is

approximately 4.2 × 105 minutes, so that an umbral dot could be either a transient

phenomenon or a very rapid oscillation.

If we were to follow Vögler et al. (2005) and assume that η = 1.1×107m2s−1 and thus

κ = ν ∼ 1.1×108m2s−1, then we obtain a thermal relaxation time of d2/κ ≈ 2.2×102s.

Thus the oscillatory period of the cell corresponds to approximately 3.5 minutes, a

more accurate representation of the turnover time of an umbral dot.

Alternatively, if we assume a more realistic value for the thermal diffusivity, κ ∼
104m2s−1, we estimate that a field strength of Q = 22000 corresponds to B0 ≈ 10−6T.

Given that we have correlated the depth of our layer, d = 1, with 5× 105m, we can

estimate the horizontal extent of our domain, which takes the dimensionless value λ = 8,

to be 4Mm, correlating with the diameter of a small sunspot. Ignoring the geometric

differences between this single roll cell and the plume like nature of an umbral dot, we

estimate that the width of the oscillatory cell in Fig. 3.29, which takes a dimensionless

value of λ̄ = 0.787, to be 393.5km. This is an appropriate size for a fairly large umbral
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dot (see Chapter 1).

3.11.2 Interpretation

From the above discussion we can see that the idealised nature of our models leads to

varying degrees of correlation between model and realistic parameters. In particular

for the field strength and turnover time it is clear that by estimating one parameter

more accurately that we must compromise the values of the other physical parameters

to do so. It is interesting to observe that those given by Vögler et al. (2005) appear to

be finely tuned in aiding correlation between the numerical values of the field strength

and timescale of oscillation with the realistic values of the umbral dots in the centre

of the umbra. The usefulness of performing such calculations is that it does remind

us of the idealised nature of these models. In particular we must remember there are

significant geometric differences between the single roll states in the numerical models

and the plume like nature of umbral dots. All estimates of this kind must be taken with

a ‘pinch of salt’ and we generally use them to satisfy our need to draw comparisons

with observations. It is clear then that highly idealised models of this type are more

appropriate for qualitative analysis rather than quantitive comparisons.

3.11.3 Summary

In the numerical simulations that have been discussed we have seen that localised

steady and oscillatory states are robust features of Boussinesq magnetoconvection. We

have seen that simplified models can be very useful in locating the regions of parameter

space where these states are stable, so that the corresponding solutions can be found in

the fully-resolved case, with the benefit of simulation times being drastically reduced.

For the steady states, in the truncated model, it was found that convecton branches

do not always have to extend into the subcritical regime but this trait is found to be

critically dependent on the governing parameters. This characteristic does not extend

to the fully-resolved simulations, with all states studied demonstrating subcritical be-

haviour. This feature of the model was uncovered by studying a scaling-law for the

location of the saddle node bifurcations that bound steady convectons at large Q. It

was found that this scaling-law closely resembled that in the fully-resolved model, with

small differences that could be accounted for by the inclusion of the full set of modes,

which is expected to alter the behaviour in some small way. The scalings produced for

the location of Qmin, that bounds the steady convecton branch at low field strengths, in

the two models are found not to agree. It is thought that the increased cell size found

in the fully-resolved model, for the same parameter values, could be responsible. At

Qmin the cell size can be over half the width of the box and could provide a horizontal

constraint for the complete development of flux separation, which is often seen in nar-
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row boxes (Blanchflower et al., 1998). Thus in a larger box it is possible that the two

scaling laws could agree, which would indicate that a box of λ = 6 is too constrained

for convectons, close to Qmin.

For oscillatory convectons we demonstrated the existence of these states in a fully-

resolved two-dimensional model. This is the first time that a localised oscillatory state

of this kind has been found in a fully-resolved magnetoconvection simulation. The

time-dependence of these states is found to be more complex than that in simplified

models, differing from a localised standing wave due to the presence of asymmetries

in the Lorentz force. These states were located due to an understanding of their

stability properties that we gained by performing a parametric survey using a vertically

truncated model. These states are found to be restricted to the low ζ regime, existing

for ζ < 0.6. These states are found to be much more robust to variations in the

Rayleigh number, with stable states existing in the range 5000 ≤ R ≤ 50000, but there

is no evidence for their existence at larger values (R = 70000). The steep thermal

gradients that large Rayleigh numbers impose over the depth of the layer are thought

to destabilise these states due to their inefficiency at expelling magnetic flux (as a result

of their weakly convecting nature). This inefficiency is also thought to be the reason

why they show no evidence of subcritical behaviour. This point was highlighted by

increasing the aspect ratio of the domain, a process which moved the upper stability

boundary of these states closer to Q
(o)
max without a corresponding increase in the branch

width. For a box with aspect ratio λ = 16 it was found that the oscillatory convecton

branch terminated precisely at Q
(o)
max, suggesting that this is indeed the case. Thus we

hypothesise that the existence of such states is a consequence of the finite geometry

of the box. Having said that, reducing the box size appears to have no adverse effect

upon the existence of these oscillatory localised states.
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Two-dimensional Models With

Fixed Boundaries

In this chapter we are going to assess the effects of impermeable horizontal bound-

ary conditions on the pattern of convection in a two-dimensional Boussinesq model

of magnetoconvection. As there are are no fixed boundaries of this type in the solar

photosphere it is clear that they do not give an accurate representation of photospheric

convection. However, in laboratory experiments of ferrofluids (Richter & Barashenkov,

2005) in which soliton-like structures are observed the fluid is constrained by the walls

of the container leading to the existence of wall states. Similar states have also been ob-

served in numerical experiments of binary fluid convection (Batiste & Knobloch, 2005;

Mercader et al., 2011). A preliminary calculation by Emily Baldwin (Baldwin, 2010)

demonstrated the existence of a steady ‘wall’ state that is localised at the boundaries

for a single set of the governing parameters. Building on these preliminary calcula-

tions, we analyse the behaviour of these states in more detail and search for oscillatory

convectons.

In Section 4.1 we shall give details of a two-dimensional magnetoconvection model

with fixed horizontal boundaries. Due to the computational cost of examining the full

two-dimensional system, on single processor machines, we shall revert to the truncated

model of the previous chapter (see Section 3.5) to perform a parametric survey in

Section 4.2. We shall discuss attempts to locate these states in a fully-resolved version

of this model in Section 4.2.4.

In the previous chapter it was observed that even if we were to track the fully-

resolved system numerically this would not enable us to explore the bifurcation struc-

ture of parameter space with sufficient precision. Furthermore, it is only possible to

hypothesise about the structure of the unstable branches. Thus in Section 4.3 we shall

develop an approximate model to examine the sequence of bifurcations that lead to

localised states. Due to the approximations used to create this model the horizontal
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boundary conditions, like those in the numerical models, are impermeable to fluid mo-

tions. The analysis of this model will be presented in Section 4.3.6. The chapter will

be concluded with a brief summary of our findings (Section 4.4).

4.1 The Model Problem

The model setup is identical to that in the previous chapter and consists of a layer

of electrically conducting, fluid (plasma), under the Boussinesq approximation, that is

heated from below in the presence of an imposed magnetic field. The gas is contained

within a two-dimensional Cartesian box of dimensions 0 ≤ z ≤ d and 0 ≤ x ≤ λd, with

the z-axis pointing vertically upwards, parallel to the constant gravitational accelera-

tion, g = −gẑ. The governing equations of this system are Equations (3.27)-(3.31) and

the dimensionless parameters are those given in Section 3.2, consisting of the Rayleigh

number, R, the Chandrasekhar number, Q, the Prandtl number, σ, and the diffusivity

ratio, ζ.

4.1.1 Boundary Conditions

As in the previous chapter the upper and lower boundaries are taken to be impermeable

and stress free, with a magnetic field that is constrained to be vertical whilst the

temperature is fixed (see Equations (3.10) and (3.11)). The lateral boundary conditions

will be taken to be impermeable and stress free, allowing no conduction of heat through

the boundary whilst the magnetic field is constrained to be vertical,

u =
∂2u

∂x2
=
∂w

∂x
= 0,

∂T ∗

∂x
= 0, bx =

∂Bz
∂x

= 0 at x = 0, λ, (4.1)

where x̂ is the unit normal in the x-direction such that x̂ · ẑ = 0. Thus in terms

of the stream function, flux function and temperature perturbation these boundary

conditions correspond to (Proctor & Weiss, 1982),

ψ = ω =
∂θ

∂x
= A = 0 at x = 0, λ. (4.2)

4.1.2 Code Details

The vertically truncated equations are discretised onto a one-dimensional Cartesian

mesh, with horizontal resolution M whilst the full equations are discretised onto a

two-dimensional mesh, with resolution M × L. The model testing in the previous

chapter (see Section 3.8) indicated that a resolution of 256 × 64 mesh points would

be sufficient to resolve all structures and thus we shall continue to use this resolution

here. The system is evolved in time using a fourth order Runge-Kutta method for time-
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stepping with fourth order finite differences used to calculate all horizontal and vertical

derivatives. The initial condition is a superposition of Fourier modes, that perturb the

trivial equilibrium solution (see Equation (3.21)) and satisfy the boundary conditions

(Equation (4.2)). In order to calculate the stream function from the vorticity every

time-step, LU-decomposition will be used to invert Equation (3.32) for the truncated

model and Equation (3.18) for the fully-resolved model.

4.2 Varying the field strength

In order to gain an understanding of this system we perform an initial parameter survey

for R = 20000, σ = 1, ζ = 0.1, λ = 6 with variable Q. We know from the previous

chapter that this parameter set will allow a diverse range of non-linear behaviours

and both steady and oscillatory localised states, if they exist. Continuing to use this

parameter set will allow us to draw more accurate comparisons between the two models.

Thus we refer the reader to Section 3.6 for details of these parameter choices.

4.2.1 Parameter Survey

An initial parameter survey of solutions obtained by initialising the code with a random

perturbation to the basic state indicates that a range of steady and oscillatory solutions

can be found. For the steady states we find multiple roll solutions ranging from an 8-

roll (m = 4) state at Q = 0 to a 2-roll (m = 1) state at Q = 11000. These states

will be discussed in Section 4.2.2. In addition there are a number of oscillatory states

that can also be found in this range, which possibly correspond to the lower portions

of the steady solution branches that are known to undergo Hopf bifurcations at low-ζ

(Dawes, 2007). However, due to the vast number of solution branches that exist in

this parameter regime, we shall not discuss these solutions. The majority of oscillatory

solutions are found for larger values of Q and range from a 4-roll flux separated state

at Q = 12000 to a single roll oscillatory convecton at Q = 19000. Spatially periodic

arrays of oscillatory cells that fill the domain are found in the range 20000 ≤ Q ≤ 24230,

corresponding to 11-rolls. Thus in this parameter regime convection onsets to an 11-roll

state at Q
(o)
max ≈ 24230 (determined numerically), differing from linear theory, which

would indicate that convection onsets to 12-rolls at Q
(o)
max ≈ 24047. We therefore find

that the impermeable boundaries have not only altered the pattern to which convection

onsets but has also decreased the stability of the basic state i.e. Q
(o)
max is at a larger value

of the field strength. This is not always the case and testing other parameter regimes

with lower Rayleigh numbers indicate that convection onsets to the same number of

rolls as is predicted by linear theory. This could suggest that the pattern of convection

for this parameter set (R = 20000, σ = 1 and ζ = 0.1) is constrained in a box of width
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λ = 6 and thus we see onset to fewer convective rolls than expected. We shall discuss

the oscillatory states in more detail in Section 4.2.3.

4.2.2 Steady States

It is expected that if the imposed horizontal boundaries allow for the existence of steady

localised states that they are most likely to exist in the same region of parameter space

as those in the periodic boundaries model. Thus we use the method of following

non-linear solution branches to locate a localised state. Starting from a 6-roll state,

obtained from the basic state at Q = 1000, the field strength was gradually increased

resulting in the sequence of states shown in Fig. 4.1. We have seen in the periodic

boundaries model that magnetic flux tends to accumulate in the convective downdrafts

of convective states forming flux sheets which grow as the field strength is increased.

A similar process is observed here, but using a solution obtained from the basic state,

for a run at higher field strength, appears to always result in the growth of a flux

sheet at one of the horizontal boundaries. In the sequence shown in Fig. 4.1 the flux

accumulates at the left hand boundary forcing all of the convective cells to the opposite

boundary. The result of this process is the existence of a single roll cell (Fig. 4.1(f))

that is localised at the right hand horizontal boundary and thus will be referred to as

a ‘wall’ convecton.

Although this state is present at the boundaries, the structure of the cell is similar

to that in the periodic boundaries model, but there are some specific differences. By

examining the one-dimensional profiles in Fig. 4.2 and comparing them to that for a

two-roll state (e.g. Fig. 3.1) in the periodic boundaries model, it becomes immediately

clear that the wall state represents half of a two-roll state in twice the box width.

In fact, this fixed boundaries model represents a symmetry subspace of the periodic

boundaries problem and by studying other models with different boundary conditions

we could study other families of solutions. For example if we were to consider the

following set of horizontal boundary conditions

∂ψ

∂x
=
∂ω

∂x
=
∂θ

∂x
=
∂A

∂x
= 0 at x = 0, λ, (4.3)

then the wall state of interest would be a half cell situated at one of the boundaries.

If such a stable state could be found then it would correspond to a single roll state in

twice the domain. It was not possible to carry out these simulations in the time-scales

of finishing this thesis but it would be interesting to check if this is the case.

The wall convecton is found to be stable in the range 13800 ≤ Q ≤ 25300 (1.47 ≥
N ≥ 1.17, 1.50 ≥ λ̄ ≥ 0.72) and thus extends subcritically (Q

(o)
max = 24230). Note again

for the steady states we give stability ranges based on the range of time-independent
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Figure 4.1: A sequence of states obtained by varying Q for R = 20000, ζ = 0.1, σ = 1 and
λ = 6; (a) 6-roll; Q = 1000 with N = 2.66 (b) 5-roll; Q = 2000 with N = 2.41 (c) 4-roll;
Q = 5000 with N = 2.25 (d) 3-roll; Q = 8000 with N = 1.97 (e) 2-roll; Q = 16000 with
N = 1.62 (f) steady wall convecton; Q = 25300 (Qeff ≈ 32703) with N = 1.17 and λ̄ = 0.72.
Each of the six sets of plots shows the temperature perturbation, θ, (top) and magnetic field
strength, |B|2 (bottom).

Figure 4.2: One-dimensional profiles for the wall convecton solution given in Fig. 4.1(f), for the
parameter values R = 20000, ζ = 0.1, σ = 1, λ = 6 and Q = 25300.
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solutions. Comparing the stability of this state with that in the periodic boundaries

model (13700 ≤ Q ≤ 24300) indicates good agreement, particularly with the Hopf

bifurcation at low Q. Given that the cells are of approximately equal size and thus

will expel the same proportion of flux, weak oscillations set in for approximately the

same value of Q with Qeff(≈ 24486) ≈ Q(o)
max. Thus it would appear that the change in

value of Q
(o)
max results in the movement of the Hopf bifurcation to higher Q. The saddle

node is present at much larger Q than in the periodic boundaries model and it would

appear that the increased stability is a result of the presence of the fixed boundary,

which only allows the cell to expel flux and interact with the large flux sheet in one

direction. Interestingly the saddle node bifurcations for the 4-roll (Q ≈ 6000), 3-roll

(Q ≈ 12000) and 2-roll (Q ≈ 18000) states also correspond very closely with those of

the same wavenumber steady states found in the periodic boundaries model. However,

we would expect small differences to be observed if the stability range of these solution

branches were assessed more accurately.

The entire sequence in Fig. 4.1 is found to be symmetrical in that we can just

as easily obtain a sequence of bifurcations in which the flux accumulates at the right

hand boundary. Thus each of the states observed in this figure has a counterpart

solution situated at the opposite boundary. Fig. 4.3(a) indicates a wall convecton that

is present at the left hand boundary. Figs. 4.3(b) and Fig. 4.3(c) illustrate another

distinctive solution that can be found in this model corresponding to a pair of cells,

one at either boundary. It is known from the work of Blanchflower (1999a) that multiple

roll localised states can exist in this parameter regime and given the horizontal distance

between these states we expect that this corresponds to such a state, with the obvious

geometrical differences. These states exist in a number of forms due to reversals in the

vorticity and exist in the approximate range 6000 ≤ Q ≤ 20000 (1.47 ≤ N ≤ 2.00).

From this analysis we find that any branch tracking process that is initialised using

a solution obtained from the trivial state always consists of at least one cell that is

present at the boundaries. This could suggest that a cell at the boundary of the

domain is a robust feature of this system once formed. Using the convecton illustrated

in Fig. 3.1(d) (R = 20000, ζ = 0.1, σ = 1, λ = 6 and Q = 24300) as an initial condition

for a run at the same parameter values in this model, we find that this state does in fact

stabilise. Fig 4.3(d) shows an example of such a state, at Q = 24600, showing identical

form to that in the periodic boundaries model. These states are found to be stable

in the range 13600 ≤ Q ≤ 24600 (1.17 ≤ N ≤ 1.50, 0.72 ≤ λ ≤ 1.53) and are thus

bistable with the wall convectons over a wide range of parameters. We observe that

this stability range compares more favourably with that from the periodic boundaries

model than with the wall convectons, but there is still a marginal increase in stability.

Using this state to move around parameter space by varying the field strength results
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Figure 4.3: A range of convective states; (a) a wall convecton at Q = 17000 with N = 1.45
and λ̄ = 1.29 (Qeff = 27532) (b) a pair of equal vorticity wall convectons at Q = 20000 with
N = 1.37 (c) a pair of opposite vorticity wall convectons at Q = 20000 with N = 1.37 (d) a
centred convecton at Q = 24600 with N = 1.17 and λ̄ = 0.72 (Qeff = 31920).

Figure 4.4: Two sets of oscillatory states found by the branch tracking process; (a) t = 1021.781
(b) t = 1021.8275 and (c) t = 1021.874, show the oscillations of a central localised state for

Q = 22400 with N̄ = 1.11, Nmax = 1.18 and λ̂ = 0.61 (Qeff = 25979); (d) t = 1147.102 (e)
t = 1147.1385 and (f) t = 1147.175 show a two-roll wall state whose cells oscillate in synchrony,
for Q = 21000 with N̄ = 1.16 and Nmax = 1.26. Interestingly, both states oscillate in the same
regular manner reversing the sign of vorticity of their cells every half period with no modulation
over large time-scales.
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in a family of centred states, equivalent to those found in the periodic boundaries model,

with similar stability properties. It appears that these states are also a robust feature

of the model showing no formation of wall states unless the field strength is reduced so

that convection occupies most of the domain. Thus we find the coexistence of both wall

states and centred states within this fixed boundaries model. Given the knowledge of

the existence of this centred family of states and their close correspondence with those

already observed in the previous chapter we shall not present any further discussion of

these steady solutions.

4.2.3 Oscillatory States

We have already seen from the domain survey that the boundary conditions influence

the onset of convection. The multiple roll flux separated oscillatory states, on the

other hand, are remarkably similar to those found in the periodic boundaries model.

We observe 4-roll, 3-roll, 2-roll and single roll solutions that can be found from the

ground state, with no evidence for the existence of similar oscillatory wall states. In

fact the single roll state found at Q = 19000 is a centralised cell with weak counter-

rotating oscillations either side of the main cell. These oscillations can be suppressed

and the localised cell shown in Fig. 4.4(a)-(c) can be obtained. This state oscillates

in an identical manner to that in the periodic boundaries model reversing its sign of

vorticity every half period of oscillation. In addition the oscillations are found to be

regular with no long time-scale modulation similar to that in Fig. 3.23. The stability

range of these states also show great similarity with the periodic model existing in the

range 17500 ≤ Q ≤ 22400 in comparison to 17900 ≤ Q ≤ 22200 for the state shown

here.

In contrast to the steady states the oscillatory convecton always forms in the centre

of the domain when obtained from the basic state. It is also possible to find oscillatory

wall states by a non-trivial sequence of bifurcations. We find that the steady double

cell wall state illustrated in Fig. 4.3(b) loses stability at Q ≈ 20000 but re-stabilises to

the double wall oscillatory state that is indicated in Fig. 4.4(d)-(f). The oscillations of

this state are very regular and as with the single roll state show no signs of modulation

over large time-scales and the cells continue oscillating in this synchronous way. We

expect that this is due to the separation between the cells indicating that they do not

feel much interaction from one another and could possibly be viewed as non-interacting

localised wall states. This is in contrast to the 2-roll state that can be found from the

ground state which shows similar modulated behaviour to that in the periodic model

(see Figs. 4.5 and 4.6). It is clear from the time sequence of the Nusselt number, which

is indicated in Fig.4.6 that the modulation is more irregular possibly owing to the

interactions of the cells with the boundaries as opposed to the cells interacting only
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Figure 4.5: A two-roll oscillatory state tracked from the basic state comparing very favourably
with that in Fig. 3.20 of the periodic boundaries model, for the same parameter values (R =
20000, σ = 1, ζ = 0.1, λ = 6 and Q = 18000) (Qeff ≈ 24482).

Figure 4.6: A time sequence of the Nusselt number for the two-roll oscillatory state in Fig. 4.5,
indicating the large time-scale modulation of the solution, with N̄ = 1.25 and Nmax = 1.37.
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with each other.

Given that we are able to reproduce much of the behaviour observed in the peri-

odic boundaries model we conclude that the influence of including the impermeable

horizontal boundaries is to add additional solutions, with the exception of the 12-roll

oscillatory state.

4.2.4 Fully Resolved Tests

To ensure that the behaviour observed in these simulations is not a result of the trun-

cation it is necessary to reproduce these stability tests in a fully-resolved model with

fixed boundaries. These tests were not completed due to the time-limitations of sub-

mitting this thesis. A code was written to solve the full system, but it is thought that

this numerical model is producing inaccurate results. Following the method from the

previous chapter and using solutions from the truncated model as initial conditions for

runs in the fully-resolved model always resulted in oscillatory behaviour e.g. a single

roll (centred) steady state would become a single roll (centred) oscillatory state, for

the same parameter values.

In the same way all states obtained from the basic state showed oscillatory be-

haviour. Thus these results suggest that there is bug within the code, which, due to

time-limitations, has not been located. Given the experience gained from the periodic

boundaries model, and the success of the truncated model in reproducing the qualita-

tive behaviours of the full system, we expect that these states do exist in a fully-resolved

model and work in ongoing to verify that this is the case.

4.3 Bifurcation Analysis

The numerical models examined in the previous section and that in the previous chapter

give some information regarding the parametric dependancies of these states. We wish

to understand not only the range of complexity found in these models but also the

origins of the localised states. Thus the plan for this section is to develop a model to

examine the sequence of bifurcations that lead to steady convectons.

To perform the analysis in this section we are going to use a software package known

as AUTO-07p (which we shall refer to as AUTO). AUTO was developed in Fortran

and designed for continuation and bifurcation problems involving ODE’s of the form

u′ (t) = f (u (t) , s) where f, u ∈ Rn, (4.4)

where s is one or more parameters and t is time.
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4.3.1 Alternative AUTO Codes

Before giving details of the approximate model used to perform our analysis, we wish

to discuss other attempts that were made to examine this system. It is clear that to

use AUTO we must reduce the Boussinesq magnetoconvection equations into a set of

ODE’s. There are numerous ways that this can be done and we shall discuss each of

the attempts that were made to create such a model.

A Finite Difference Approach

If we are to take the vertically truncated equations, (3.27)-(3.31), it is possible to

discretise them onto a mesh, expanding each of the terms using finite differences, so

that at each node on the mesh we have five equations, giving 5(M − 2) equations

to solve. However, using AUTO to solve this system resulted in irregular numerical

output. Solving the linear problem resulted in the location of vast numbers of Hopf

bifurcations none of which agree with those predicted by linear theory. In addition this

model does not find any pitchfork bifurcations preventing us from examining the steady

states. It is expected that the irregular behaviour resulted from some redundancy in

the governing set of equations. Given the time constraints of submitting this thesis

we were unable to get this code to produce some sensible output and we decided to

approach this problem from an alternative viewpoint.

The Horizontal Truncation

Knobloch et al. (1981) used a double Fourier expansion to reduce the governing Boussi-

nesq equations to a system of five PDEs. This system was used to examine the near

onset bifurcation structure of both steady and oscillatory states in Boussinesq magne-

toconvection. We decided to follow this approach but sought to use a more general

Fourier expansion. To simplify matters in the present context, the double Fourier ex-

pansion is equivalent to expanding each of the six variables ψ1, ω1, θ1, θ2, A0 and A1

in the vertically truncated equations, (3.27)-(3.31), as Fourier series in the x-direction.

Thus initially we proposed a Fourier expansion of the form

f(x, t) =
N∑
n=0

(an(t) sin(nkx) + bn(t) cos(nkx)) , (4.5)

(Note this expansion is only valid in the periodic boundaries case). This ensures that

all wave forms are possible across the horizontal extent of the domain. However, at-

tempting to include this full set of horizontal Fourier modes results in some irregular

behaviour when performing the AUTO simulations. After numerous tests of this model

and comparisons with previously established results it was apparent that although the
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model could accurately reproduce the linear theory, the non-linear dynamics were vastly

inaccurate. It is thought that the multiple eigenfunction solutions imposed by this ex-

pansion is the root cause of the problems as this creates a redundancy. To remove this

redundancy we decided to follow Knobloch et al. (1981) more closely and propose an

expansion, at leading order, of the form

ψ1(x, t) = ψ1
1(t) sin(kx) ω1(x, t) = ω1

1(t) sin(kx), (4.6)

θ1(x, t) = θ1
1(t) cos(kx) θ2(x, t) = θ0

2(t), (4.7)

A0(x, t) = A2
0(t) sin(2kx) A1(x, t) = A1

1(t) sin(kx), (4.8)

where k = π/λ̂ is a half-period wavenumber (A note on notation. For f = ψ1 we use

the notation an = ψn1 . In a similar fashion for f = θ1 we take bn = θn1 ). Projecting

onto this set of modes leads to the following set of governing equations,

∂ω1
1

∂t
= −σ

(
k2 + π2

)
ω1

1 + σRkθ1
1 + σζQπA1

1

[(
k2 + π2

)
+A2

0k
[
3k2 − π2

]]
, (4.9)

∂θ1
1

∂t
=
(
k2 + π2

)
θ1

1 + kψ1
1

(
1 + πθ0

2

)
, (4.10)

∂θ0
2

∂t
= −4π2θ0

2 −
πk

2
ψ1

1θ
1
1, (4.11)

∂A2
0

∂t
= −4k2ζA2

0 +
πk

2
ψ1

1A
1
1, (4.12)

∂A1
1

∂t
= −ζA1

1

(
k2 + π2

)
+ π2ψ1

1

(
1− kA2

0

)
. (4.13)

This is directly equivalent to the system studied by Knobloch et al. (1981) in Equa-

tion (2.17) without the re-scalings used in this paper. Due to the horizontal truncation

the boundary conditions now correspond with those given in the previous section (see

Equation (4.2)). Note there is a second symmetry class that is consistent with the gov-

erning equations. This takes the form ψ1, ω1, A1 ∼ cos kx, θ1 ∼ sin kx, A0 ∼ sin 2kx

and θ2 ∼ const.. In order to include the complexities of the system that are present in

a regime with large R, large Q and low ζ we must extend this system to include higher

order modes. Thus we expand past leading order in the form

ψ1(x, t) =
N∑
n=1

ψn1 (t) sin(nkx), (4.14)
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θ1(x, t) =

N∑
n=1

θn1 (t) cos(nkx), (4.15)

θ2(x, t) =

N∑
n=0

θn2 (t) cos(nkx), (4.16)

A0(x, t) =
N∑
n=2

An0 (t) sin(nkx), (4.17)

A1(x, t) =
N∑
n=1

An1 (t) sin(nkx), (4.18)

where N is the number of terms in the expansion. Again attempting to solve this

system using AUTO resulted in almost identical problems to that of the initial Fourier

expansion that was posed. Again we observed irregular non-linear behaviour but an

accurate reproduction of linear theory. We decided that the redundancy must still be

present within the system and we proposed the expansion in the next sub-section to

overcome this problem.

4.3.2 The Restricted Symmetries Model

Imposing the expansion (4.6)-(4.8) shows that the governing equations are consistent

in that no low-order harmonics are generated. The terms that are naturally generated

at the next order are found to have the same parity as those at the previous order.

For example, by posing the leading order expansion, we find that at the next order the

expansion becomes

ψ1(x, t) ∼ ψ1
1(t) sin(kx) + ψ3

1(t) sin(3kx), (4.19)

ω1(x, t) ∼ ω1
1(t) sin(kx) + ω3

1(t) sin(3kx), (4.20)

θ1(x, t) ∼ θ1
1(t) cos(kx), (4.21)

θ2(x, t) ∼ θ0
2(t) + θ2

2(t) cos(2kx), (4.22)

A0(x, t) ∼ A2
0(t) sin(2kx), (4.23)

A1(x, t) ∼ A1
1(t) sin(kx) +A3

1(t) sin(3kx). (4.24)

Note that no extra terms have been generated for θ1 and A0 and thus none are included

in the expansion at this order. This is the form of expansion that we will consider,
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including only those terms that are naturally generated by posing the expansion at

the previous order. Table 4.1 indicates the way this progression proceeds and it is

straightforward to check that this is the case from Equations (3.27)-(3.31). As the

expansion of each variable remains consistent with the parity of the leading order

term this model will obviously only allow certain waveforms across the domain. For

example, given that we are using a half period waveform, the stream function will

always be symmetric about the centre of the domain due to the odd parity of its

Fourier expansion. Hence, we shall refer to this as the ‘restricted symmetries’ model.

Thus it is important to note that if we are going to draw comparisons with the models

in the previous section then we are going to lose all those solution that do not satisfy

the following symmetry

(x, z)→ (λ− x, z) , (ψ1, θ1, θ2, A0, A1)→ (ψ1,−θ1,−θ2, A0, A1) . (4.25)

This will include such solutions as the double wall convectons of opposite vorticity and

single wall convectons although we will still retain the wall convectons with the same

sign of vorticity and the central localised convectons.

Table 4.1: Displayed is the highest mode of each expansion at order N for the functions ψ1,
θ1, θ2, A0 and A1. Also indicated is the parity of all terms that arise in each expansion.

N 2 3 6 11 22 43 Parity

ψ1 1 3 5 11 21 43 Odd
θ1 1 1 5 9 21 41 Odd
θ2 0 2 4 10 20 42 Even
A0 2 2 6 10 22 42 Even
A1 1 3 5 11 21 43 Odd

We known from Chapter 3 that the horizontal structure of convection can be com-

plex with very thin magnetic boundary layers and thus it is necessary to include suffi-

cient horizontal wavenumbers to resolve these boundary layers. As each wavenumber,

for each function, will generate a new equation, it is immediately obvious that using

large values of N will generate a large number of equations. It is therefore important to

choose an expansion that has sufficient resolution but will be efficient in computation.

Thus we re-consider the model testing from the previous chapter (see Section 3.8.1) in

which it was found that a resolution of M = 128 would be sufficient in the majority of

cases. The vertically truncated model uses a numerical technique known as dealiasing

to filter the higher wavenumbers so as to retain (2/3)M of unfiltered wavenumbers

(Boyd, 2000). So for M = 128, moving into Fourier space creates a half-complex ar-

ray with 64 wavenumbers and thus we retain 43 unfiltered wavenumbers. Thus using
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N = 43 modes in our horizontal truncation should provide sufficient resolution for the

model in the majority of cases and will therefore be used throughout this chapter. Thus

at this order we shall consider the following expansion

ψ1(x, t) =
21∑
n=0

ψ
(2n+1)
1 (t) sin((2n+ 1)kx), (4.26)

θ1(x, t) =

20∑
n=0

θ
(2n+1)
1 (t) cos((2n+ 1)kx), (4.27)

θ2(x, t) =
21∑
n=0

θ2n
2 (t) cos(2nkx), (4.28)

A0(x, t) =

21∑
n=1

A2n
0 (t) sin(2nkx), (4.29)

A1(x, t) =
21∑
n=0

A
(2n+1)
1 (t) sin((2n+ 1)kx). (4.30)

where k = π/λ̂ is the wavenumber. Posing this expansion generates 108 equations

to be solved by AUTO. It would obviously be a time consuming process to perform

the generation of this set of equations by hand and thus an analytical mathematics

package, known as MAPLE, was used to generate the terms that were subsequently

passed to AUTO.

4.3.3 Measuring the Amplitude of Convection

In addition to the Nusselt number we shall also use the L2-norm to measure the am-

plitude of the solution, given as√√√√NDIM∑
n=0

[an(t)]2 + [bn(t)]2, (4.31)

where NDIM is the number of equations. Note that L2-norm = 0 corresponds to a

Nusselt number of N = 1 i.e. a purely conductive state.

4.3.4 Model Testing

Recently, numerical continuation (Lo Jacono et al., 2011, 2012) has been used to estab-

lish the sequence of bifurcations that lead to steady localised states in a two-dimensional

model of magnetoconvection. This model uses periodic boundaries in the horizontal
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direction in comparison to the restricted symmetries model that we shall be using to

reproduce these results, which has fixed boundaries. To compare with the model of Lo

Jacono et al. (2011) we shall choose to use the parameter values Q = 4, σ = 1, ζ = 0.1

and λ = 26 with variable R. Note that a value of λ = 26.23678515 was used in this

paper, but we have rounded to λ = 26 for simplicity. Fig. 4.7 shows a pair of bifurca-

tion diagrams for comparison with Figure 1. from Lo Jacono et al. (2011), which is also

indicated in Fig. 4.8. Note that Lo Jacono et al. (2011) use the total kinetic energy,

ε ≡ (1/2)
∫ λ

0

∫ 1
0 |u|

2dxdz, and the maximum of the magnetic flux function, Amax, to

assess the energy within the system and the amplitude of the solution, respectively. For

consistency with the previous section we shall use the Nusselt number as a measure of

the energy levels within the system and the L2-norm as a measure of the amplitude

of the solution. Using these values should give a fairly accurate reproduction of these

calculations.

Lo Jacono et al. (2011) found two pairs of subcritically bifurcating spatially peri-

odic solution branches from the ground state, P9 and P10 (dashed lines), corresponding

to periodic states with 9 and 10 full wavelengths or 18 and 20 rolls within the pe-

riod of the domain, respectively. Due to the restricted symmetries, the states in our

model, labelled P19 and P21, correspond to states with 19 and 21 rolls or 9.5 and 10.5

wavelengths across the domain, respectively. Lo Jacono et al. (2011) found that two

pairs of opposite-polarity spatially localised states (odd parity - L−10; even parity - L+
10)

bifurcate subcritically at low-amplitude from the P10 state, rejoining the P9 state at

lower Rayleigh number. Note the localised states are described as bifurcating as a pair

due to the fact that we can obtain a localised state with both signs of vorticity and

thus the solution branches lie directly one top of the other. In our model this process

is slightly different. Only one pair of opposite-polarity spatially localised states (L19)

bifurcate from the P19 state. The other pair is replaced by a pair of opposite polarity

wall cells (W19)(with the same sign of vorticity), a solution which was found in the

numerical models as a result of the fixed horizontal boundaries. Due to the imposed

symmetries of our model (see Equation (4.25)) we lose the even parity states that are

present in the model of Lo Jacono et al. (2011). Therefore this results in the loss of two

solutions (in the present context): the even parity centralised convecton and the even

parity wall mode solution. In addition we have also lost the (single roll) wall convecton

solution, of both odd and even parity, again due to the imposed symmetries. The L19

and W19 solution branches intertwine and snake in the same slanted manner as the

opposite polarity convectons in the model of Lo Jacono et al. (2011). These states then

rejoin the P19 branch from which they originally arose, after which the P19 branch is

found to be stable. This differs from the behaviour found in the fully-resolved model

and it is expected that this different behaviour results from the truncated nature of the
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Figure 4.7: The convecton branch L19 (Black) and the double wall branch, W19, together with
the spatially periodic states P21 (Green) and P19 (Red) for the parameter values Q = 4, σ = 1,
ζ = 0.1 and λ = 26. The Nusselt number (left) and the L2-norm (right), both as functions of
the Rayleigh number. Solid lines indicate stability (–) whereas the dashed lines (- -) indicate
instability. This figure is for comparison with Figure 1. from Lo Jacono et al. (2011) also
illustrated in Fig. 4.8.

Figure 4.8: A reproduction of Figure 1. from Lo Jacono et al. (2011) showing the convecton
branches L+ (Red) and L− (Grey) together with the periodic states P10 and P9 for the pa-
rameter values Q = 4, σ = 1, ζ = 0.1 and λ = 10λc where λc ≡ 2π/kc and kc = 2.3948. The
total kinetic energy, ε, (left) and the maximum of the potential, Amax, (right) both as function
of the Rayleigh number, R. The insets show enlargements at the locations of the arrows. The
solid lines (–) refer to the localised states and the dashed lines (- -) to the periodic states.
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model.

The L19 and W19 states both bifurcate at small amplitude (L2-norm= 0.050677

and N = 1.000042) from the P19 branch at R ≈ 772 and gain stability at saddle node

bifurcations in the subcritical regime at R = 691. Having gained stability these states

monotonically increase in energy, as indicated on the left hand side of Fig. 4.7, as the

length of the structures grow, corresponding to the addition of extra rolls. This is

indicated in Fig. 4.9 for the localised state (convecton) and in Fig. 4.10 for the wall

state. These states are not the classical convectons observed in the numerical models

due to the low value of the field strength. Thus we are in the kinematic regime in which

the magnetic pressures are low and the Lorentz force exerts essentially no influence on

these states.

Although the parameter regime is the same for both our model and that of Lo

Jacono et al. (2011), the double truncation has clearly altered the parameter range

over which these states exist, seen most clearly for the rightmost saddle node, located

at R ≈ 723 in our model and R ≈ 816 in the model of Lo Jacono et al. (2011).

Interestingly the location of the leftmost saddle node for both branches is approximately

the same, with R ≈ 691 in our model and R ≈ 696 for Lo Jacono et al. (2011). Similar

behaviour was also observed in the previous chapter when comparing the locations of

the bifurcations that bound the convecton branch at large and small Q. Note, given

that we were varying different parameters the bifurcation diagram will be essentially

reflected in the y-axis. Thus the rightmost bifurcation (a saddle node in the subcritical

regime) in the truncated model (Q ≈ 24300) was found to compare more favourably

with that in the fully-resolved model (Q ≈ 25800) than the Hopf bifurcations at low

Q (Q ≈ 13700 - truncated, Q ≈ 6000 - fully-resolved). This suggests a possible reason

for the differences in parametric dependence that are observed here.

Thus from this analysis it is clear that there will be some specific qualitative as

well as quantitative differences between this and a fully-resolved model. Overall we

feel satisfied that this model is reproducing (at least to some extent) the dynamics of a

double Fourier truncated magnetoconvection system with fixed horizontal boundaries

and thus we shall proceed with our analysis.

4.3.5 Parameter Values

The simulations of Lo Jacono et al. (2011, 2012) were performed for variable R and the

focus was on comparatively low-values of the field strength (Q = 4 (Lo Jacono et al.,

2011) and 100 ≤ Q ≤ 1000 (Lo Jacono et al., 2012)) and boxes much wider than the

critical wavelength at onset (λ ≈ 26, 52, 105 (Lo Jacono et al., 2011) and 11 < λ < 27

(Lo Jacono et al., 2012)). In this sub-section we shall approach the analysis from the

point of view of fixing R and varying Q, in contrast to the simulations above. The
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Figure 4.9: The solution profile along the convecton branch (L19) showing the addition of rolls
to the state as the energy increases (a) R = 691 with N = 1.01 (b) R = 699 with N = 1.04 (c)
R = 709 with N = 1.08 (d) R = 721 with N = 1.11. The top panel in each of the four images
shows the temperature perturbation, θ, whilst the bottom panel shows the vertical magnetic
field, Bz.
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Figure 4.10: The solution profile along the wall mode branch (W19) showing the addition of
rolls to the state as the energy increases (a) R = 691 with N = 1.01 (b) R = 697 with N = 1.04
(c) R = 709 with N = 1.08 (d) R = 721 with N = 1.12.
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plan for this analysis is to focus on comparatively large values of the Rayleigh number

(R = 6000, 20000) and small boxes (λ = 6), so that we may make comparisons with

the work presented in the previous sections of this thesis. Initially we shall focus on

a regime not too distant from that considered by Lo Jacono et al. (2012), using the

parameter values R = 6000, ζ = 0.2, σ = 1 and λ = 6. We shall then proceed by

increasing the Rayleigh number to R = 20000 with a corresponding increase in the

diffusivity ratio to ζ = 0.25. We shall avoid decreasing the diffusivity ratio to ζ = 0.1

due to resolution issues with N = 43.

4.3.6 Results

Case 1 - R = 6000, ζ = 0.2

For these parameters linear theory (see Appendix B) indicates that the onset of con-

vection should occur as a Hopf bifurcation to eight rolls (m = 4) at Q
(o)
max = 2328.

Numerically using the model in the previous section we find that onset is to eight rolls

but at Q ≈ 2200. From the AUTO model we find that onset occurs to seven rolls at

Q
(o)
max = 2256. Thus it would appear that the stability of the linear state is affected by

the presence of the boundaries and in this case the solution onsets to seven rolls as a

result of the restricted symmetries.

Fig. 4.11 shows the L2-norm and the Nusselt number as functions of the Chan-

drasekhar number. Indicated are the periodic states P5 and P9 with the convecton, L9,

and the wall mode, W9, solutions. The convecton branches are found to bifurcate sub-

critically as two pairs of opposite polarity states, at small amplitude (L2-norm= 0.124

and N = 1.002), from the nine-roll (P9) spatially periodic state at Q = 313. Fig. 4.12

shows the progression of solutions along the L9 branch. This state begins as a weakly

localised unstable solution (see Fig. 4.12(a)) and as the field strength (Q) is increased

this state rapidly localises as the state gains stability at a saddle node bifurcation in

the subcritical regime (Q = 2626 > Q
(o)
max) (see Fig. 4.12(b)). As the field strength is re-

duced along the convecton branch the energy (Nusselt number) of the state is increased.

This results in a corresponding increase in the width of the cell so that it occupies a

larger proportion of the domain (see Fig. 4.12(c)). This state grows to a maximum

width of λ̄ = 1.565 at which point the effective field strength of the layer is reduced be-

low the value at onset Qeff(≈ 2244) < Q
(o)
max(≈ 2256) and the state loses stability via a

Hopf bifurcation (Q = 1226). The state is found to continue to increase in energy until

two counter-rotating cells, one either side of the main cell, slowly establish themselves.

The two cells are found to compress the convecton into a smaller region of parameter

space, resulting initially in a decrease in width of the whole state below the width of

the single convecton at the Hopf bifurcation and hence we observe a drop in the Nusselt

number. Shortly afterwards, as the total length (all three cells) of the convective state
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Figure 4.11: The L2-norm (top) and the Nusselt number (bottom) both as functions of the
Chandrasekhar number for the parameter values R = 6000, ζ = 0.2, σ = 1 and λ = 6. The
branches shown are the spatially periodic states, P5 and P9, with the convecton branch, L9,
and the double cell wall branch, W9. The labels (a)-(d) indicate the corresponding solutions
displayed in Figs. 4.12 and 4.13.

increases, this period becomes an efficient process of transient growth. Again stabil-

ity is gained via a saddle node bifurcation (Q = 1378) (see Fig. 4.12(d)). From this

point the whole process is found to repeat. As the field strength is reduced along this

three-roll state the width of the individual rolls, and thus that of the entire state, grows
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leading to an increase in the Nusselt number. At Q = 61 this three-roll state spans

the width of the domain and the two main flux sheets that were present at the fixed

boundaries are reduced to small flux concentrations. Following this branch further, we

observe a complex sequence of bifurcations at lower Q (and higher L2-norm) that may

become increasingly dependent upon the resolution and modelling assumptions, so we

do not discuss these further here.

For the wall mode branch, W9, the bifurcation sequence shares some similarities.

As indicated above this branch bifurcates at the same secondary bifurcation (Q = 313)

as the single roll convecton branch. This state also starts its initial growth process as

a weakly localised unstable state (see Fig. 4.13(a)) gaining stability at a saddle node

bifurcation in the supercritical regime (Q = 2195) (see Fig. 4.13(b)). The state then

increases in width and convective efficiency (see Fig. 4.13(c)), as the field strength is

reduced, losing stability via a Hopf bifurcation (Q = 461). Upon losing stability the

process of growth and nucleation of cells begins. This process corresponds with the

accumulation of two more rolls (see Fig. 4.13(d)), one at either boundary maintaining

the model symmetry, Equation (4.25). This state gains stability via a saddle node

bifurcation (Q = 809) and continues to increase in energy as the overall width of the

state increases. After further bifurcations this branch eventually terminates on the P5

branch at Q ≈ 413.

Case 2 - R = 20000, ζ = 0.25

For these parameters the onset of convection occurs as a Hopf bifurcation to nine rolls

(m = 4.5) at Q
(o)
max = 8118. Fig. (4.14) shows a plot of the L2-norm as a function of

the Chandrasekhar number indicating the periodic states P5, P9 and P11 states, with

the convecton, L11, and the wall mode, W11, solutions. The L11 and W11 states show a

great deal more structure in terms of the length of their growth process, although the

pattern of growth is certainly very similar.

As can be seen from Fig. (4.14) the initial growth of the convectons passes through

three saddle nodes and a small stable section before the ‘main’ stable section of the

branch is reached. The initial saddle node bifurcation, indicated by the label (a), shows

where the state first stabilises. From here the cell grows, both in terms of the width and

energy levels of the cell. Both increases are only marginal given the small variation in

Q along this section of the branch. The following two saddle nodes, and thus the short

unstable section, only have the effect of increasing the energy levels of the cell. There

are numerous other instances of this growth type over the length of the solution branch.

This consists of pairs of saddle nodes by which the the energy levels of the state change

but with no noticeable qualitative change in the structure of the state, except for some

marginal changes in the cell width. It appears that as R is increased or ζ is decreased
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Figure 4.12: Solution profiles along the L9 branch for the parameter values R = 6000, ζ = 0.2,
σ = 1 and λ = 6 at (a) Q = 381, L2-norm= 0.23, N = 1.01 (b) Q = 2626, L2-norm= 2.077,
N = 1.18 (c) Q = 1226, L2-norm= 6.51, N = 1.44 (d) Q = 1378, L2-norm= 4.34, N = 1.60.

Figure 4.13: Solution profiles along the W9 branch for the parameter values R = 6000, ζ = 0.2,
σ = 1 and λ = 6 at (a) Q = 699, L2-norm= 0.54, N = 1.02 (b) Q = 2195, L2-norm= 2.50,
N = 1.32 (c) Q = 461, L2-norm= 10.32, N = 1.95 (d) Q = 809, L2-norm= 5.32, N = 1.87.
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Figure 4.14: The L2-norm as a function of the Chandrasekhar number for the parameter values
R = 20000, ζ = 0.25, σ = 1 and λ = 6. The branches shown are the spatially periodic states,
P5, P11 and P13, with the convecton branch, L11, the double cell wall branch, W11, and a
multiple roll state, M9.

these saddle nodes move further apart so that there is a larger separation in Q between

them and thus a larger overall variation of the Nusselt number as the state passes

through them. These saddle nodes often overlap and if one were tracking this branch

using the numerical model one would not notice that the solution had passed through

two saddle nodes but would observe a more significant drop in the Nusselt number.

Thus the inclusion of these additional saddle nodes is what causes the increase in the

overall growth process of these states.

As can be seen the growth of these states is separated roughly into ‘diagonal sec-

tions’. In all of the cases studied it appears that it is always the rightmost saddle

node in each of these ‘diagonal sections’ that results in the addition of cells. Label

(b) indicates the saddle nodes for the convecton and wall mode branches where this

is the case. The ‘main’ stable section of the convecton and wall mode branches show

a stepped ‘staircase’ structure in which the growth of the state occurs in short bursts

followed by more extended slow periods of growth. It is expected that as these steps

increase in height (Nusselt number) that the stable section will break into pairs of sad-

dle nodes as is observed along the wall mode branch. In fact this staircase structure

consisting of paris of saddle nodes was also observed by Dawes & Lilley (2010) in a

model of a vertically vibrated layer and has been referred to as ‘smooth snaking’.
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Table 4.2: A summary of the stability range of steady convectons for σ = 1, λ = 6, R =
5000, 20000 for a range of values of ζ. Indicated are a number of properties of the cells at
Qmin and Qmax: λ̄ corresponds to the mean width of the cell, with corresponding values of the
Nusselt number, N , and the effective field strength Qeff (see Section 3.7). Also indicated is the
location of the largest bifurcation to which convection onsets, Qlinear.

λ ζ R Qmin N λ̄ Qeff Qmax N λ̄ Qeff Qlinear

6 0.7 5000 215 1.48 1.2422 342 453 1.20 0.9474 638 246
6 0.6 5000 235 1.46 1.293 382 543 1.19 0.952 768 315
6 0.5 5000 264 1.46 1.342 438 675 1.19 0.957 955 449
6 0.2 5000 925 1.42 1.555 1685 2045 1.18 0.979 2920 1773

6 0.7 20000 918 1.59 1.536 1658 2386 1.21 0.778 3150 1851
6 0.5 20000 1672 1.55 1.577 3077 3526 1.20 0.766 4634 3116
6 0.3 20000 3732 1.48 1.452 6494 6418 1.18 0.744 8363 6382
6 0.25 20000 4776 1.47 1.439 8264 8031 1.24 0.842 10867 8118

Power-law scaling comparisons.

Given the efficiency of AUTO at tracking a full bifurcation diagram (time ∼ 1 hour),

we look to examine the power-law scalings for the location of the saddle node and

Hopf bifurcations that bound the localised states at large and small field strengths,

respectively. This is for comparison with those found in the previous chapter for the

parameter values R = 20000, σ = 1, λ = 6 for ζ as a function of Q. Also we shall

examine the power-law scaling for the parameters R = 5000, σ = 1 and λ = 6 to be

compared with the scaling derived by Dawes (2007). Table 4.2 shows the data obtained

from this analysis.

This data was used to produce the power-law scalings that are indicated in Fig. 4.15.

For R = 5000 Dawes (2007) derived a scaling of Qζ1.2 = 296 for the location of the

saddle node bifurcations. We find almost direct agreement with this result finding

that the saddle nodes scale as Qζ1.20 = 294 in the fixed boundaries model. This

remarkable similarity supports the notion that the central localised states found in the

fixed boundaries model correspond to the convectons in the periodic boundaries model.

We expect that if we had a scaling law with which to compare the location of the Hopf

bifurcations that these scalings would also match closely for R = 5000.

We do not observe the same agreement for the R = 20000 case for which we find

a scaling of Qζ1.17 = 1564 for the fixed boundaries model, which should be compared

with Qζ1.23 = 1441 from the periodic boundaries model. Given the close agreement at

low Rayleigh number, we expect that the variation in this result is a consequence of

the constrained nature of the pattern of convection for R = 20000 with λ = 6. Thus

we would expect closer agreement if both sets of calculations were repeated in larger

boxes of say λ = 8. We have seen a fair amount of evidence to support this claim,
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Figure 4.15: Power-law scaling for the location of the saddle and Hopf bifurcations that bound
the convectons at large and small field strengths, respectively (a) R = 5000; the saddle nodes,
Qζ1.20 = 294 (* and –) and the Hopf bifurcations, Qζ1.23 = 126 (× and − · −) (b) R = 20000;
the saddle nodes, Qζ1.17 = 1564 (* and –) and the Hopf bifurcations, Qζ1.60 = 531 (× and
− · −).

including the irregular modulation of the 2-roll oscillatory state examined in Figs. 4.5

and 4.6.

Close agreement is not found for the location of the Hopf bifurcations, for R =

20000, which show a different form in the fixed boundaries model, Qζ1.60 = 531, to

that in the periodic boundaries model, Qζ1.17 = 862. Assuming that the pattern of

convection is constrained and that the fixed boundaries highlight this, then instability

in the outside region of the cell is likely to set in at a smaller value of Q as we would

expect an enhancement of the effective field strength for any given value of Q, if this

is the case.

4.4 Summary

In this chapter we have examined the effect of the horizontal boundaries on the pattern

of magnetoconvection in a simplified two-dimensional Boussinesq model. We observe

that the change of the horizontal boundaries to the fixed boundary conditions retains

a lot of the behaviour present in the periodic boundaries model. In addition to these

solutions, which are always present in the centre of the domain, we also find a family

of ‘wall’ states in which at least one convective cell is present at the fixed boundaries.

For the steady modes there was the existence of a ‘wall’ convecton, that was localised

at the boundaries, and found to be bistable over a wide range of parameters with other
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convecton states that were independent of the boundaries. We found that this was

not restricted to the steady states and we demonstrated the existence of a double wall

mode oscillatory solution in which the cells appear to be independently oscillating.

We also developed an approximate model for examination of the bifurcation se-

quence that leads to steady convectons. However, given the limitations of the con-

tinuation software used, this model had restricted symmetries so that only certain

waveforms were possible across the domain. This removed numerous solutions of in-

terest from the study, although the model did allow the examination of a centralised

convecton and a pair of wall states. Simulations with AUTO demonstrate that this

solution can extend subcritically suggesting the localised nature of both cells at the

boundaries, but this is very sensitive to the governing parameters.

Using this model we reproduced the scaling laws obtained from the periodic bound-

aries models as well as those derived by Dawes (2007), finding good agreement of the

saddle nodes, especially for lower Rayleigh numbers (R = 5000). It was thought for

the larger Rayleigh number (R = 20000) that the pattern of convection might be

constrained in the box sizes chosen (λ = 6), and the fixed boundaries highlight this

effect resulting in variations in the scaling laws. It would be interesting to repeat these

calculations for larger box sizes (λ = 8) to see if this is indeed the case.
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Compressible Magnetoconvection
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Chapter 5

A Two-Dimensional

Compressible Model

In this chapter we are going to consider the full two-dimensional magnetoconvection

system with compressibility. We wish to examine the effects of the thermal stratification

on the existence and stability of steady and oscillatory localised states. From the

work of Blanchflower (1999a) and Houghton & Bushby (2011), who have demonstrated

the existence of steady localised states in a two-dimensional Boussinesq model and

a three-dimensional compressible model respectively, we expect that two-dimensional

steady localised states should exist in a compressible medium over a wide range of

values of the thermal stratification. However, it is not entirely clear what form these

states will take. As there is no literature on oscillatory localised states in compressible

magnetoconvection, it would be purely speculative to comment on the existence of

these states in a highly stratified medium. However, we expect that these states will

exist in the Boussinesq limit of the model i.e. in the limit as the thermal stratification

with depth tends to zero.

Solving the compressible magnetoconvection equations poses a greater numerical

task in comparison to the Boussinesq models. It is only by advances in computing

power that we are able to use systematic numerical simulations to gain an appreciation

of the complex range of behaviours that exist in such complex systems. Furthermore,

it is only by the development of multi-processor computers and parallel programming

software that we can perform the large time integrations, on the large aspect ratio

domains, required to observe the stable and unconstrained pattern of convection.

The plan for this chapter is to give details of the model in Section 5.1, providing

details of the non-dimensionalisation, boundary conditions and numerical code, with

the model testing given in Section 5.2. The results of our analysis will be presented in

Section 5.3 with the discussion of steady and oscillatory states given separately. We

shall conclude the chapter with a brief summary of our findings (Section 5.4).
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5.1 The Model Problem

We consider a layer of electrically conducting, compressible fluid (plasma), that is

heated from below in the presence of an imposed magnetic field. The gas is contained

within a two-dimensional Cartesian box of dimensions 0 ≤ z ≤ d and 0 ≤ x ≤ λd,

independent of any perturbations in the y-direction. In this chapter we shall take the

z-axis to point vertically downwards (g = gẑ), in order to remain consistent with previ-

ously established results that use this orientation (Hurlburt & Toomre, 1988; Matthews

et al., 1995; Houghton & Bushby, 2011). There are a number of properties of the fluid

that are held constant. These are the magnetic diffusivity, η, the dynamic viscosity,

µ, the magnetic permeability, µ0, the thermal conductivity, K, and the specific heat

capacities at fixed density and pressure, respectively cV and cP .

The governing equations of this system are Equations (2.1)-(2.4) and (2.7)-(2.9),

which we shall express in a non-dimensional form. We rescale lengths by the layer

depth d, times by an acoustic travel time d/(R∗T0)1/2 and thus velocities by (R∗T0)1/2.

Temperature and density are scaled by their unperturbed values at the top of the

layer, respectively T0 and ρ0, with B scaled by the imposed uniform field B0. Thus

the governing equations of this system, written in conservative form (Matthews et al.,

1995; Bushby & Houghton, 2005; Houghton & Bushby, 2011) are,

∂ρ

∂t
= −∇ · (ρu) , (5.1)

∂ (ρu)

∂t
= −∇

(
ρT + F

|B|2

2

)
+ θ (m+ 1) ρẑ +∇ · (FBB − ρuu+ κστ) , (5.2)

∂B

∂t
= ∇× (u×B − κζ0∇×B) , (5.3)

∂T

∂t
= −u · ∇T − (γ − 1)T∇ · u+

κγ

ρ
∇2T +

κ (γ − 1)

ρ

(
στ2

2
+ Fζ0|∇ ×B|2

)
,

(5.4)

with the components of the stress tensor given by,

τij =
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij , (5.5)

whilst the magnetic field remains divergence free

∇ ·B = 0, (5.6)
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and the pressure satisfies

P = ρT, (5.7)

(see Equation 2.9). The governing equations admit a non-trivial equilibrium solution

corresponding to a static, polytropic layer with a vertical magnetic field,

u = 0, T (z) = 1 + θz, ρ (z) = (1 + θz)m , B = ẑ. (5.8)

5.1.1 The Non-dimensional Parameters

Table 5.1: The dimensionless parameters that arise from the non-dimensional analysis for
compressible magnetoconvection.

Symbol Parameter Name Definition

κ dimensionless conductivity K/
(
ρ0dcp (R∗T )1/2

)
σ Prandtl number µcp/K
m polytropic index gd/ (R∗∆T )− 1
γ ratio of specific heats cp/cv
θ thermal stratification ∆T/T0

F dimensionless field strength B2
0/ (ρ0µ0R∗T0)

ζ0 magnetic to thermal diffusivity ratio ηρ0cp/K

The non-dimensional constants that arise from the above analysis are given in

Table 5.1. Although F and κ are integral to the governing equations and can be used

to vary the magnetic field and the imposed temperature gradient respectively, it is

more conventional to use the Chandrasekhar number, Q, and the Rayleigh number, R.

Thus we can define the Chandrasekhar number Q as

Q =
F

ζ0σκ2
, (5.9)

which represents the ratio of the strength of the magnetic field to the diffusive effects of

the fluid and the magnetic field. This is equivalent to the form given for the Boussinesq

model (see Equation (3.6)) and it is straightforward to show that this is the case. As

the layer depth extends over many density scale heights the Rayleigh number also varies

with depth and thus we choose to define a mid-layer Rayleigh number,

R =
(m+ 1) θ2

σγκ2
(m+ 1−mγ) (1 + θ/2)2m−1 , (5.10)

(Matthews et al., 1995) since this approaches the Boussinesq definition as θ → 0. Note

in order to recover the Rayleigh number as well as the Boussinesq equations from Equa-

tions (5.1)-(5.7) we must first substitute for θ = ∆T/T0 and m = gd/ (R∗∆T − 1). We
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then reduce these equations by cancelling the ∆T ’s and then let those that remain tend

to zero (∆T → 0). Again the Rayleigh number has the same physical meaning as in the

Boussinesq case representing the ratio of the destabilising effects of the superadiabatic

temperature gradient to the stabilising effects of the thermal and viscous diffusivities.

The derivation of the mid-layer Rayleigh number is definitely non-trivial and details of

this formulation can be found in Appendix C. Likewise, the diffusivity ratio ζ varies

with depth and thus we define a mid-layer value,

ζ = ζ0

(
1 +

θ

2

)m
, (5.11)

which approaches the quantity ζ0, equivalent to ζ in the Boussinesq model, as θ → 0.

5.1.2 Boundary Conditions

In order to aid comparison with the Boussinesq models we shall continue to use the

same idealised boundary conditions. Thus we take the upper and lower boundaries to

be impermeable and stress free,

w =
∂u

∂z
= 0 at z = 0, d, (5.12)

(where u = (u, v, w)) with a fixed temperature to allow convective instability,

T = T0 at z = 0 and T = T0 +∆T at z = d, (5.13)

and a magnetic field constrained to be vertical,

Bx =
∂Bz
∂z

= 0 at z = 0, d. (5.14)

In addition the domain is horizontally periodic with dimensionless period λ.

5.1.3 Parameter Values

In this chapter we shall assess the effects of thermal stratification on the steady and

oscillatory localised states by varying θ. We choose to use the values: θ = 0.2, a good

approximation to the Boussinesq limit of the model; θ = 2, a mildly compressible layer;

θ = 10, a highly compressible layer that spans many scale heights. We shall do this for

two values of the Rayleigh number R = 6000 and R = 20000 for variable dimensionless

field strength Q. In addition, for the steady states, we shall also examine θ = 1 and

θ = 4 with R = 6000, for reasons that will be made clear in Section 5.3.2. We choose to

follow Houghton & Bushby (2011) and fix ζ0 = 0.1 so that both steady and oscillatory

patterns of motion may be observed for all values of θ used. This is in contrast to fixing
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Table 5.2: The variation of ζ over the depth of the layer for the values of θ used in the present
analysis; ζ0 at top of the layer; ζ at the mid-layer; ζ1 at the base of the layer.

θ ζ0 ζ ζ1

0.2 0.1 0.11 0.12
1.0 0.1 0.15 0.2
2.0 0.1 0.2 0.3
4.0 0.1 0.3 0.5
10.0 0.1 0.6 1.1

ζ at the mid-layer, which would also be a sensible approach. With ζ0 fixed, ζ varies

with θ as well as over the depth of the layer, as indicated in Table 5.2. In the highly

stratified layer, with θ = 10, we observe that ζ < 1 at the top of the layer and ζ > 1

at the base of the layer. This is thought to closely mimic the situation in the umbral

photosphere in which ζ < 1 in the upper photosphere, but at depths below 1500km,

ζ > 1, owing to the increase in opacity (Weiss et al., 1990; Weiss, 2002). In the θ = 0.2

case, our choices of λ = 6 and R = 20000 enable us to draw direct comparisons between

these compressible results and our previous findings from the Boussinesq models. We

thus use this value of λ throughout the chapter for consistency. We shall use a value of

σ = 1 for numerical convenience. Following previous authors (Matthews et al., 1995;

Bushby & Houghton, 2005; Houghton & Bushby, 2011) we use a value of γ = 5/3, which

is appropriate for a monatomic gas. From Equation (C.8) derived in Appendix C, we

can impose a restriction on the polytropic index, m, requiring that

m <
1

γ − 1
, (5.15)

for convective instability. For γ = 5/3 this condition becomes m < 3/2, which is a

condition that is clearly satisfied by our choice of m = 1.

As in the previous chapters we defined the sub-critical and super-critical parameter

regime as Q > Q
(o)
max and Q < Q

(o)
max respectively, given that ζ < 1 and convection

onsets as overstability. Indicated in Table 5.3 are the values of Q
(o)
max, and at lower

Q the largest primary pitchfork bifurcations Q
(e)
max, for the values of R and θ to be

examined in this chapter. The location of the highest steady mode becomes important

in locating flux separated states for large values of θ, as we shall see in Section 5.3.

We observe from this table that one of the effects of compressibility is the increased

stability of the basic state (Gough et al., 1976) and thus a reduction in the magnitude

of Q
(o)
max. In order to locate these points a Newton-Raphson-Kantorovich method was

applied to the linearised governing equations. The code that was used to perform these

calculations was written and provided by Paul Bushby.
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Table 5.3: The values of Q
(e)
max and Q

(o)
max for the values of θ and R used in this chapter.

θ R Q
(e)
max Q

(o)
max

0.2 6000 313 4820
1.0 6000 261 3020
2.0 6000 220 1817
4.0 6000 170 807
10.0 6000 132 157

0.2 20000 1360 21674
2.0 20000 987 9060
10.0 20000 663 1143

5.1.4 Code Details

The complexity of the governing equations require us to solve them numerically. Equa-

tions (5.1)-(5.5) are discretised onto a two-dimensional Cartesian mesh, with resolution

Nx×Nz, consisting of 128×64 grid points. This has proved to sufficiently resolve states

in the majority of cases examined by previous authors (Matthews et al., 1995; Bushby

& Houghton, 2005; Houghton & Bushby, 2011) and thus we shall follow their lead and

use this resolution here. This code uses Fast Fourier Transforms (FFT) from standard

FFTW libraries to calculate all horizontal derivatives whilst fourth order finite differ-

ences are used to calculate all vertical derivatives. This system is evolved in time by

use of an explicit, variable timestep, third-order Adams-Bashforth method. This time-

stepping method is preferred over other explicit multistep time marching algorithms as

only one function evaluation of the right hand side is required at every timestep. This

is in contrast to a Runge-Kutta method for which four evaluations are required. To aid

in computational efficiency this code is parallelised using a Message Passing Interface

(MPI), distributing the processors by layer in the vertical direction. This code was

written and provided by Paul Bushby, but given that the code was written to solve the

full three-dimensional system, certain sections of the code had to be modified in order

for it to run in two-dimensions. As sections of the code used to evolve the magnetic

field are written in a non-standard manner we give specific details of these sections in

Appendix D. The code is initialised by a perturbation to the stable polytropic solution

given in Equation (5.8). All of the simulations in this chapter were performed on the

UKMHD super-computer in St. Andrews.

In the same way as the previous chapters we choose to use the Nusselt number,

Equation (3.34), to assess the convective vigour of states. In addition, given that the

localised states expel magnetic flux, we shall assess the effective field strength of the

steady states using Equation (3.36) and the oscillatory states using Equation (3.35).

For the steady states, given that we will no longer be evolving the flux function, A, we
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shall define the boundaries of the cells at the points where the field strength, |B|2 ≈ 0.

5.2 Model Testing

Due to the modifications made to the code, allowing it run in two-dimensions, we feel

it is necessary to test that this modified version produces sensible numerical output.

In order to do so we shall perform a single set of simulations for comparison with those

described by Hurlburt & Toomre (1988).

Fig. 5.1 shows a numerical simulation for comparison with Fig. 5 taken from Hurl-

burt & Toomre (1988), which is also indicated in Fig. 5.2. The upper panel, in Fig. 5.1,

indicates the temperature perturbation to the background profile, T − T0 (1 + θz/d),

whilst the lower panel shows the strength of the magnetic field, |B|2. This state repre-

sents the solution obtained by initialising the code with θ = 10, R = 100000, ζ0 = 0.25,

σ = 1, λ = 3, m = 1, γ = 5/3 and Q = 288. Note for consistency throughout the

chapter we have used a larger spatial resolution (128×64 grid points) to that (121×41

grid points) used by Hurlburt & Toomre (1988).

We observe a similar asymmetric flow pattern consisting of a central broad upflow

plume with narrow downflows at its edges. This structure is a result of the pressure

fluctuations that accentuate the density fluctuations, which lead to buoyancy breaking

in the upflows and buoyancy driving in the downflows. There are two flux sheets, a

smaller one located at the base of the central upflow and a much broader one located

where the downflows of the two cells converge. Given the low value of the field strength

(Q ≈ 288) in this simulation, the Lorentz force does not exert much influence on the

fluid, so that the broad flux sheet contains some fluid motion in the form of two counter-

rotating cells at the base of the layer. These motions result from the influence that

the Lorentz force has on the fluid, imparting opposite vorticity to the flow, to that

outside of this flux sheet. As can be seen from Fig. 5.2 this is precisely the situation

that was found by Hurlburt & Toomre (1988) with almost identical flow patterns, as

indicated by the velocity arrows. The upper panel of Fig. 5.2 shows a surface plot of

the magnetic pressure showing a double spire within the broad flux sheet at the top

of the layer where the main boundary layers form. This corresponds to the two bright

structures in the vertical field plot of Fig. 5.1. The single spire at the base of the layer

in the magnetic pressure distribution is seen as the central brightening in the vertical

field plot and results from the field being swept aside by the counter-rotating cells,

concentrating it where these cells form an upflow at the base of the layer.

Given that these results show close correlation we believe that the code is accurately

reproducing the physical characteristics of two-dimensional compressible convection.

Therefore we shall proceed to discuss the results of our analysis on the existence of
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Figure 5.1: A numerical simulation for comparison with Fig. 5 from Hurlburt & Toomre (1988)
indicated in Fig. 5.2. This state was obtained for the parameter values θ = 10, R = 100000,
ζ0 = 0.25, σ = 1, λ = 3, m = 1, γ = 5/3 and Q = 288, showing excellent agreement
with the companion figure. The upper panel displays the temperature perturbation from the
background conduction profile, T −T0 (1 + θz/d), whilst the lower panel indicates the magnetic
field strength, |B|2.

Figure 5.2: Image taken from Fig. 5 of Hurlburt & Toomre (1988), indicating a steady solution
with a broad flux sheet at the right hand side, for the parameter values θ = 10, R = 100000,
ζ0 = 0.25, σ = 1, λ = 3, m = 1, γ = 5/3 and Q = 288. The upper panel indicates a surface
plot of the magnetic pressure, the middle panel displays the magnetic field lines and the lower
panel the velocity arrows.
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steady and oscillatory localised states in a compressible medium.

5.3 Results

We shall begin by examining both the steady and oscillatory states in the Boussinesq

limit (θ → 0) of the model. In order to attempt to locate steady and oscillatory

convectons for each value of θ, we resort to the method of following solution branches.

Given the similarities of branch tracking between the different parameter regimes we

shall present only some details of this process where we feel that the details are useful,

otherwise, as in Section 5.3.2, we shall focus on the existence and stability of these

solutions.

5.3.1 The Boussinesq limit - θ = 0.2

Steady Convectons

Initially we shall set R = 20000 in order to compare the analysis with that from the

Boussinesq models. For these parameter values convection onsets as overstability at

Q
(o)
max = 21674. Guided by the knowledge of this parameter regime, from the Boussinesq

models, we initialise the code at low-Q in order to locate a flux separated steady state.

The 2-roll state indicated in Fig. 5.3(a) was obtained from the basic state at Q = 1000.

Given the low value of θ, this state retains the classical Boussinesq roll structure.

Increasing the field strength results in growth of the main flux sheet, to the right

of the domain, reducing the horizontal extent of the convective motions. Note that

throughout this region of the domain Q was increased in steps of Q = 1000 with

each state being allowed to settle for approximately 50000 dimensionless time units

or until the Nusselt number exhibited no further time-dependence. These large time-

integrations, like those in the Boussinesq models, are essential to allow all transient

motions, which are long lived due to their confinement to this two-dimensional plane,

the time to dissipate. The two-roll state transitions to a single overturning roll as it

loses stability at a saddle node bifurcation at Q ≈ 15000 (N = 2.75). This state is also

indicated in Fig. 5.3(b) and shows great similarity with that shown in Fig. 3.16(a) from

the fully resolved Boussinesq model. The approximate range of stability for this state is

10000 ≤ Q ≤ 22900 (1.75 ≤ N ≤ 2.41, 1.31 ≤ λ̄ ≤ 2.39, 27624 ≤ Qeff ≤ 37479). Given

the small degree of compressibility of this layer, we cannot expect that this stability

range will match that of the corresponding state in the fully resolved Boussinesq model,

due to the positive effect of the compressibility on the stability of the basic state and

thus the opposite effect on the stability of the non-linear solution branches. This result

does confirm that steady convectons exist over a wide range of parameters in fully-

resolved magnetoconvection models. At low-Q, as in the Boussinesq model, it is also
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Figure 5.3: Two steady states obtained from the branch tracking process by varying Q for
R = 20000, ζ0 = 0.1 and λ = 6; (a) 2-roll state obtained from the basic state at Q = 1000 with
N = 4.10 (b) convecton at Q = 22900 (Qeff = 37479) with N = 1.75. Each image shows the
temperature perturbation θ (top) and magnetic field strength, |B|2 (bottom).

found that this state does not undergo a Hopf bifurcation and thus oscillatory motion

outside of the cell is not found to be the cause of the destabilisation of this state, which

transitions rapidly to the 2-roll state (see Fig. 5.3(a)) at Q ≈ 10000.

For computational efficiency we decide to follow the method used in the Boussinesq

chapters and use the state in Fig. 5.3 as an initial condition for a run with a simultaneous

variation of both R and Q. With R = 6000 we find that overstability sets in at

Q
(o)
max = 4820 and as we can be fairly certain that a steady localised cell will exist in

the neighbourhood of this point (in the non-linear regime) we use Q = 4820 as the

field strength for the next time-integration. After an initial period of sharp decay the

Nusselt number gradually recovered settling at a value of N = 1.44, i.e. an overall

decrease in the energy, a result of the large decrease in the thermal forcing. This state

is identical to that shown in Fig. 5.3(b) and a stability range analysis indicates that

this state is confined to the approximate range 3000 ≤ Q ≤ 5000 (1.38 ≤ N ≤ 1.61,

1.03 ≤ λ̄ ≤ 1.59, 5552 ≤ Qeff ≤ 7291).
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Oscillatory Convectons

As in the Boussinesq models, for R = 20000, a parameter survey of the basic state

indicates that a range of oscillatory states can be found. Present in the range 16000 ≤
Q ≤ 21674 is a state consisting of 10-rolls that oscillates as a standing wave with regular

periodic reversals of the flow. At lower values of the field strength (10000 ≤ Q ≤ 15000),

there exists a family of flux separated oscillatory states for which we find evidence of

four, three and two roll states. A snapshot of each of these states with the addition of an

oscillatory convecton, located by branch tracking from the 2-roll state, are indicated in

Fig. 5.4. Each of the multiple roll states is modulated over long time-scales by which the

states transition through periods in which different combinations of the cells oscillate

in and out of synchronisation. Given the hysteresis between these solution branches we

can track each branch in either direction by decreasing or increasing the field strength,

resulting in growth or suppression of cells respectively. These transitions occur much

more smoothly than those observed in the Boussinesq models and we expect that the

‘s-shape’ of the solution branches in the Nusselt number plot of Fig. 3.19 become

extended so that the transitions between the branches are not as sharp. The upper

stability boundary of the 2-roll state is located at Q ≈ 17500 by which it loses stability

to a single roll state (see Fig. 5.4(d)).

The oscillatory convecton, like those in the Boussinesq models, exists over a narrow

range of parameters (17200 ≤ Q ≤ 19400). The nature of the oscillations is the same

as those observed in the fully-resolved Boussinesq model, with the vorticity of the

cells being reversed every half period but the oscillations do not correspond to that of

a standing wave. In addition a similar complex functional form (see Fig. 5.5) for the

Nusselt number time-sequence is observed (see Fig. 3.30) verifying that this complexity

results from the nature of the oscillations and not from some other unknown effect. It

is the Lorentz force that acts to drive the oscillations of these cells and variation in the

period of these oscillations is observed over the stability range of these solutions, driven

more vigorously as the field strength is increased. At the upper stability boundary of

this state, in the same way as the multiple roll flux separated states, this state is found

to merge very smoothly with the 10-roll oscillatory state as small oscillatory motions

begin to develop, in the outside region of the cell, as the field strength is increased.

It is interesting to observe the existence of an oscillatory convecton for λ = 6 given

that the corresponding state in the fully-resolved Boussinesq model was found to be

unstable, appearing only as a transient state. Given the added, albeit small, thermal

stratification of this layer, it is possible that this has had some positive effect on the

stability range of this solution branch, holding all other parameters fixed. It is just as

likely that this state does exist in the Boussinesq model at λ = 6 but was overlooked

given the limited exploration of parameter space that could be performed on the single
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Figure 5.4: Oscillatory states in a two-dimensional weakly stratified layer (θ = 0.2) for R =
20000; (a) 4-roll state at Q = 12000 (b) 3-roll state at Q = 14000 (c) 2-roll state at Q = 17000
(d) oscillatory convecton at Q = 18500 (Qeff = 20870) with Nmax = 1.25 and N̄ = 1.15.

processor machines available.

These results indicate that the added compressibility to the model, however small

it may be in the present context, does not inhibit the existence of either steady or

oscillatory convectons in a two-dimensional system. Thus we shall proceed to increase

the thermal stratification and examine its effects on these states.

5.3.2 Varying the Thermal Stratification

Steady Convectons

To identify the existence of convectons for larger values of θ we shall take a systematic

approach of increasing θ starting the branch tracking process from low field strength

flux separated states. At θ = 2 and R = 20000, in the usually way, we use the process of

following non-linear flux separated solution branches from low-Q to high-Q. However,

in this case we do not find a stable steady localised state. At high-Q the two roll

state in the Boussinesq limit takes the form shown in Fig. 5.6(a) consisting of a single

localised plume. However, Fig. 5.6(b) showing the same state at θ = 2, shows that as

a result of the increased thermal stratification of the layer this state now consists of a

central upflow with peripheral downflows and should be considered as a single plume

state. Given this to be the case we cannot restrict the symmetries of this state in

the same way as in the Boussinesq model. Therefore we begin to view this solution

branch as one of a localised state given that it exists as a single structure, but this

state does not extend subcritically given that it is stable in the range 4000 ≤ Q ≤ 6500

(Q
(o)
max = 9060).
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Figure 5.5: A time-sequence of the Nusselt number for the localised oscillatory state shown in
Fig. 5.4(d), for a weakly compressible layer (θ = 0.2) with R = 20000 and Q = 18500. We find
that N̄ = 1.15 and Nmax = 1.25.

At θ = 10 and R = 20000 this plume structure becomes more pronounced, as

indicated in Fig. 5.6(c). The centre of mass of this state is moved significantly below

the centre line so that the inflows at the base of the layer are very narrow and the

upflows and outflows at the top of the layer are very broad. This state is robust in that

it is stable to large variations in the Rayleigh number, with existence of these states

found for R = 6000 (190 ≤ Q ≤ 290) and R = 20000 (10000 ≤ Q ≤ 14000). Houghton

& Bushby (2011) found three-dimensional steady convectons, for the parameter values

θ = 10, R = 6000 and λ = 8, to be stable in the range 160 ≤ Q ≤ 215. As we know from

the Boussinesq models the stability range of convectons does not change significantly

from λ = 6 − 8, it is interesting to observe that the two-dimensional simulations are

a good indicator of the approximate region of parameter space for which these steady

states exist in the three-dimensional model and vice versa. Obviously we would expect

the state in two-dimensions to exist over a wider range of parameters as these states do

not undergo the extra perturbations in a third-dimension, which are likely to limit the

stability range somewhat. We shall discuss these three-dimensional steady convectons

in more detail in the next chapter.

For θ = 10 again we do not find any evidence for the existence of a single roll

structure and thus we expect that this solution branch does not exist in a highly

stratified layer. However, at θ = 2 and R = 20000 we observe the existence of a single

roll transient state as the plume state loses stability at Q ≈ 6500. This transient state
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Figure 5.6: The transition of a two-roll weakly stratified solution to a localised convective plume

in highly compressible convection for R = 20000; (a) θ = 0.2 and Q = 14000 (Q
(o)
max = 21674)

with N = 2.75 (b) θ = 2 and Q = 6500 (Q
(o)
max = 9060) with N = 2.08 (c) θ = 10 and Q = 1400

(Q
(o)
max = 1143) with N = 1.86.

is indicated in Fig. 5.7 and is found to persist for approximately 2500 dimensionless

time units before it transitions to a localised oscillatory state. We shall leave discussion

of this oscillatory state to the next sub-section. For R = 6000 we find that this process

is the same with the plume like structure, stable in the range 900 ≤ Q ≤ 1500, losing

stability at large Q to a localised oscillatory state, although there is no evidence of the

transient state observed at R = 20000. This is likely to be a result of the reduction in

width of the unstable convecton branch, due to the decrease in the Rayleigh number,

meaning that this branch may be very narrow or else may no longer exist at all in this

parameter regime. The existence of a transient, thought to correspond to the unstable

sections of a solution branch, and their persistence in two-dimensional models for a

large number of crossing times, again highlights the need for large time-integrations

when examining these models. This structure is highly asymmetric and appears to be
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Figure 5.7: A transient localised state found through the decay of the plume-like structure for
θ = 2, R = 20000 and Q = 6600. This state persists for approximately 2500 dimensionless time
units.

Figure 5.8: A steady convecton showing increased asymmetric structure for θ = 1, R = 6000
and Q = 2700 (Qeff = 3590) with N = 1.29 and λ̄ = 0.80.

top heavy in that the upflow is very broad and the downflow is very narrow. Thus

we expect that in two-dimensional compressible convection, when the stratification is

increased out of the Boussinesq limit, the asymmetrical structural form imposed on

the localised cell is an unstable form and thus the branch width of this state decreases

with increasing θ. In order to test this hypothesis we shall examine the states that can

be obtained for θ = 1 and θ = 4.

At θ = 1 and R = 6000 the structure of the ‘two-roll’ state (see Fig. 5.8) shows signs

of being a single plume given the broader central upflow cf. the same state at θ = 0.2,

but this structure is not as accentuated as in highly stratified compressible convection

(Hurlburt & Toomre, 1988). In addition, due to the increased compressibility, the

centre of mass or centre of rotation of the state has dropped below that of the centre

line of the layer, so that the there is no longer an up-down Boussinesq symmetry

for this state. In the same way as in the Boussinesq case, we can locate a single

roll steady localised state by the suppression of one of the cells from this multiple
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roll state. However, this localised state is found not to extend subcritically losing

stability at Q ≈ 2700 (Q
(o)
max = 3020). This is unexpected but is not the first time that

we have seen this behaviour in a magnetoconvection simulation, as examples of this

behaviour were observed in the truncated Boussinesq model, with periodic boundaries

(see Section 3.9.1). This may suggest that the branch width of this state decreases

with increasing θ and thus the branch becomes unstable at θ = 2.

At θ = 4 and R = 6000 we find that the plume structure broadens again and

in addition the saddle node bifurcation, that bounds this state at large Q, extends

into the subcritical regime (Qmax(= 840) > Q
(o)
max(= 807)). It is clear then that the

process taking place through this transition region (1 < θ < 4) is that the single roll

state is becoming increasingly unstable due to the structural form of convection in a

compressible layer, which in turn has the effect of transforming the two-roll state in

the Boussinesq limit into a single plume. This latter transition is indicated in Fig. 5.6.

Oscillatory Convectons

In the Boussinesq limit of the model we observed the existence of a single roll oscillatory

state, which was found to share many similarities with that in the Boussinesq models.

Localised states were first discovered at larger values of θ, in this model, due to the

loss of stability of the steady plume at Q = 6600 for θ = 2 and R = 20000. This

oscillatory convecton shows a completely different structure and mode of oscillation to

that of the single cell convecton found in the Boussinesq limit. It is clear then that

the transition from the steady plume to the oscillatory localised state only becomes

possible due to the loss of stability of the single-roll steady convecton. This state can

also be found by initialising the code from the basic state at Q = 6500. Fig. 5.9 shows

the behaviour of this state at the location of the upper stability boundary (Q = 7300).

Also indicated in Fig. 5.10 is a time-sequence of the Nusselt number for this state. We

find that the time-sequence of the Nusselt number follows a similar complex functional

form to the oscillatory convecton in the Boussinesq limit of the model (θ = 0.2) and the

fully-resolved Boussinesq calculations (see Fig. 3.30). This state is found to be stable

in the approximate range 5800 ≤ Q ≤ 7300 (Q
(o)
max = 9060).

At the maximum of oscillation this state corresponds to a plume with a broad central

upflow and narrow peripheral downflows (Fig. 5.9(a)). The nature of the oscillation is

to reverse the flow profile every half period of oscillation, so that the state transitions to

a plume with a central downflow and peripheral upflows at the minimum of the Nusselt

number (Fig. 5.9(b)). The flux sheet which was originally present at the base of the

layer, where the inflows converged, is then moved to the top of the layer whilst the two

flux sheets which bound the cell in the downflows move to the bottom of the layer. This

corresponds to the short growth phase of the state as it transitions to that in Fig. 5.9(c).

124



Chapter 5. A Two-Dimensional Compressible Model

Figure 5.9: A time-sequence of states for an oscillatory localised state in a mildly compressible

layer (θ = 2) with R = 20000 and Q = 7300 (Q
(o)
max = 9060) taken at the peaks and troughs in

the Nusselt number (see Fig. 5.10); (a) t = 109001 (Nmax) (b) t = 109005 (Nmin) (c) t = 109008
(d) t = 109012.

Figure 5.10: A time-sequence of the Nusselt number for the localised oscillatory state shown in
Fig. 5.9, for a mildly compressible layer (θ = 2) with R = 20000 and Q = 7300. We find that
N̄ = 1.22 and Nmax = 1.55.
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This movement of the flux sheets then acts to drive the flow in the opposite direction

and the state decays for a short period, to that shown in Fig. 5.9(d), before the flux

sheets start to move again, back to their original positions. This results in an increase

in energy of the state to its maximum value and the solution profile transitions back

to that in Fig. 5.9(a). Thus the solution appears to oscillate in an up-down motion in

contrast to the oscillatory rolls which show more horizontally directed motions. The

state found at R = 6000 shows similar behaviour to that observed here and is stable

only over a very narrow range, 1200 ≤ Q ≤ 1600 (Q
(o)
max = 1817). These states like

those in the Boussinesq models are only partially flux expelled possibly explaining the

narrow range in which these states are stable, particularly that at R = 6000. It is

thus expected that for θ = 2 the states will be dominated by oscillatory motions in the

outside region of the cell as the Rayleigh number is increased from R = 20000, as in

the Boussinesq model.

For θ = 10 we find that convection onsets as overstability at Q
(o)
max = 157 for

R = 6000 and Q
(o)
max = 1143 for R = 20000. In this highly stratified layer the increased

stability of the basic state leads to oscillatory behaviour in the range Q
(e)
max ≤ Q ≤ Q(o)

max.

As a result we find no evidence for the existence of flux separated oscillatory states

despite an exhaustive parameter survey of the basic state. Given that the branch

tracking process, from these oscillatory states, was our primary means of locating a

localised cell, another method is required to locate a localised oscillatory state. One

possible method is to use an appropriately constructed initial condition, but given time-

constraints this method was not attempted for this model. Thus we have found no

evidence for the existence of oscillatory localised states in this highly stratified layer.

Given that the branch widths for θ = 2 and both R = 6000, 20000 are reasonably

narrow, we assume that the branch widths must decrease with increasing θ in a similar

manner to the single roll steady state.

5.4 Summary

In summary we have seen that both steady and oscillatory localised states appear to be

robust features of two-dimensional compressible magnetoconvection in weakly (θ = 0.2)

to mildly (θ = 2) stratified layers. In addition the steady states are found to be a robust

feature in the highly compressible layer (θ = 10) existing over a wide range of values of

the Rayleigh number (R = 6000−20000). The form of this state is found to change with

increasing θ, taking the form of a single plume with a central upflow and peripheral

downflows as a opposed to the single cell rolls, which are found to become unstable for

some value of θ in the range 1 ≤ θ ≤ 2. The oscillatory states at θ = 2 are also found to

take a different form to those in the Boussinesq limit of the model, consisting of a plume
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with a central upflow and peripheral downflows that transitions to a state with a central

downflow and peripheral upflows, over one-half period of oscillation. Interestingly the

functional form of the Nusselt number corresponds to that of the single cell oscillatory

state in the Boussinesq limit of the model suggesting that the nature of the oscillations

is somehow determined by a common mechanism. At θ = 10 we find no evidence for

the existence of oscillatory localised states. It is possible that these states exist higher

(in amplitude) in parameter space than the multiple roll oscillatory states, that fill the

domain, and thus are hidden from the branch tracking process. Alternatively, it could

be the case that these states are unstable in this parameter regime.
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Chapter 6

A Three-Dimensional

Compressible Model

In this chapter we are going to examine localised states in a three-dimensional model

of compressible magnetoconvection. A summary of the numerical model examined in

the previous chapter will be presented in Section 6.1, but the model will now be set

up to perform three-dimensional calculations. In a three-dimensional context, magne-

toconvection is known to exhibit structures that correspond to steady localised states,

observed in a highly stratified layer (Houghton & Bushby, 2011), and oscillatory lo-

calised states, observed in a vertically truncated Boussinesq model (Blanchflower &

Weiss, 2002).

So far, steady localised states in three-dimensions have only been shown to exist

over a narrow range of the governing parameters. In order to locate a localised state

we shall reproduce the calculations of Houghton & Bushby (2011) in Section 6.2 and

then assess the robustness of these states to variations in the Rayleigh number in Sec-

tion 6.3. Given that Blanchflower & Weiss (2002) only found evidence for the existence

of oscillatory localised states in a Boussinesq model, we wish to probe the Boussinesq

limit of this three-dimensional compressible model to assess the existence of steady lo-

calised states. In addition, given the limited research that has been performed in three-

dimensional Boussinesq magnetoconvection (Cattaneo et al., 2003), in Section 6.4 we

shall probe for the existence of these states whilst examining the convective patterns

that can be obtained for variable field strength. Given that the oscillatory states were

located in a vertically truncated model, it is natural to question their existence in a

fully-resolved calculation. As we have seen in previous chapters, truncated magneto-

convection models have been very successful in reproducing accurately the qualitative

pattern of convection, being the first models in which both steady and oscillatory mag-

netohydrodynamic convectons were observed (Blanchflower, 1999b). Thus we expect

that oscillatory localised states will exist in the Boussinesq limit of a fully-resolved com-
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pressible model, in the same way as they were shown to exist in two-dimensions in the

previous chapter. Thus in Section 6.5 we shall follow Blanchflower & Weiss (2002) and

use inventive initial conditions to probe the existence of oscillatory convectons in the

Boussinesq limit of this model. We also use this method to probe for the existence of

steady convectons for different values of the thermal stratification. This uncovers a new

type of stable steady solution with a broken symmetry, whose cross-section corresponds

to the single overturning convective roll in the two-dimensional Boussinesq models. We

shall conclude the chapter with a summary of our findings (see Section 6.6).

6.1 The Model Problem

As in the previous chapter the model setup consists of a layer of electrically conducting,

compressible fluid (plasma), that is heated from below in the presence of an imposed

magnetic field. However, the gas is now contained within a three-dimensional Cartesian

box of dimensions 0 ≤ z ≤ d and 0 ≤ x, y ≤ λd and we shall take the z-axis to

point vertically downwards (g = gẑ), in order to remain consistent with previously

established results that use this orientation (Hurlburt & Toomre, 1988; Matthews et al.,

1995; Houghton & Bushby, 2011). There are a number of properties of the fluid that

are held constant. These are the magnetic diffusivity, η, the dynamic viscosity, µ, the

magnetic permeability, µ0, the thermal conductivity, K, and the specific heat capacities

at fixed density and pressure, respectively cV and cP .

Again the governing equations of this system, written in a non-dimensional form

are Equations (5.1)-(5.5), subject to the additional constraint that the magnetic field

satisfies the solenoidal constraint (5.6) whilst the gas is ideal (5.7). The non-dimensional

parameters that arise from the analysis are those given in Table 5.1. Again we shall

use the Chandrasekhar number, (5.9), to vary the strength of the magnetic field and

the mid-layer Rayleigh number, (5.10), to vary the thermal forcing.

We shall continue to use the same idealised conditions (see Equations (5.12)-(5.14))

at the upper and lower boundaries, which are taken to be impermeable and stress

free, with fixed temperature to allow convective instability and an imposed magnetic

field that is constrained to be vertical. In addition the domain is horizontally periodic

with dimensionless period λ. The complexity of the governing equations require us to

solve them numerically. Equations (5.1)-(5.5) are discretised onto a three-dimensional

Cartesian mesh, with resolution Nx × Ny × Nz, consisting of 128 × 128 × 64 mesh

points. For details of the numerical code used to solve this system, we refer the reader

to Section 5.1.4. We shall continue to use the Nusselt number to measure the amplitude

of convection. In this model, simulations are run for approximately 300 diffusion times

or until a statistically steady state has been reached. Note that these run-times are
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much smaller than that in the two-dimensional compressible model given that transients

decay more rapidly in a three-dimensional configuration.

6.1.1 Parameter Values

The main aim of this chapter is to probe the existence of convectons for a range of values

of R, θ and ζ0 with variable Q. By varying θ we shall assess the effects of density

stratification on the pattern of convection and perform branch tracking simulations

with the aim of locating localised states. We shall do this for a range of values of R

and ζ0, which we will find have significant effects on the pattern of convection. The

values of these parameters to be studied in this chapter are summarised in Table 6.1,

with corresponding values of the critical Rayleigh number Rc and the locations of the

largest primary pitchfork (Q
(e)
max) and Hopf bifurcations (Q

(o)
max). These values were

calculated using the same Newton-Raphson-Kantorovich method that was applied to

the linearised governing equations in the previous chapter. Each value of the Rayleigh

number used ensures that the layer is convectively unstable for the corresponding values

of θ and ζ0 used. In addition we use values of σ = 1, m = 1 and γ = 5/3, and we

refer the reader to Section 5.1.3 for details of these parameter choices. In all of the

calculations presented in this chapter we shall follow Houghton & Bushby (2011) and

fix the aspect ratio of the domain to λ = 8, giving the box a square cross section.

Table 6.1: The primary pitchfork bifurcations (Q
(e)
max), supercritical Hopf bifurcations (Q

(o)
max)

and critical Rayleigh numbers (Rc) for the values of θ, ζ0 and R to be examined in this chapter.

θ ζ0 Rc R Q
(e)
max Q

(o)
max

10 0.1 1189 6000 132 157
10 0.1 8000 163 270
10 0.1 10000 185 390
10 0.1 12000 205 525

2.0 0.1 818 6000 220 1817
2.0 0.1 20000 987 9060

2.0 0.3 818 4000 125 150
2.0 0.3 6000 220 330

0.2 0.1 663 20000 1360 21674
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(a) T ; Q = 120 with N̄ = 1.51 (b) T ; Q = 141 with N = 1.13 (c) T ; Q = 150 with N̄ = 1.003

(d) Bz; Q = 120 with N̄ = 1.51 (e) Bz; Q = 141 with N = 1.13 (f) Bz; Q = 150 with N̄ = 1.003

Figure 6.1: A parameter survey of the convective patterns that are obtained when the model is
initialised by a perturbation to the basic state for the parameter values θ = 10, R = 6000 and
ζ0 = 0.1. Indicated are (a) & (d) a flux separated state (b) & (e) a patterned state and (c) &
(f) a spatially periodic oscillatory state. The panels show a horizontal cross-section just below
the upper surface (z = 0.02) of (a)-(c) the temperature distribution and (d)-(f) the vertical
component of the magnetic field. Lighter colours correspond to warmer fluid and stronger fields
and darker colours to cooler fluid and weaker fields.

6.2 Preliminary Simulations - θ = 10

6.2.1 Varying the Chandrasekhar Number

The code used in this chapter is an unmodified version of that provided by Paul Bushby

and was used to perform the analysis that was presented in Houghton & Bushby (2011).

Thus there is not the requirement to perform the thorough testing on this model as for

the other models examined in this thesis. However, in order to locate a localised state

state in this system it was sensible to repeat these calculations. Thus in this section we

shall take θ = 10, R = 6000 and ζ0 = 0.1, with all other parameters fixed, as discussed

above.

An initial parameter survey indicates that a range of flux separated states can be

found for Q ≤ 140 (see Fig. 6.1(a)), a near-hexagonal patterned state in the range

141 ≤ Q ≤ 144 (see Fig. 6.1(b)) and an oscillatory pattern that fills the domain for

145 ≤ Q ≤ Q
(o)
max (see Fig. 6.1(c)). For the flux separated states we find that the

domain consists of a number of plumes consisting of upflows close to the centre and

downflows at the edges. The states are found to be very efficient at expelling magnetic
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(a) T (b) Bz (c) w

(d) T − T0 (1 + θz/d) (e) Bz (f) w

Figure 6.2: A steady convecton for θ = 10, R = 6000, ζ0 = 0.1 and Q = 215; (a)-(c) horizontal
cross-section just below the surface (z = 0.02) and (d)-(f) vertical section (y vs z) through the
cell at x = 4.16. Lighter colours correspond to warmer fluid, stronger field and downflowing
fluid, whereas darker colours correspond to cooler fluid, weaker field and upflowing fluid. Note
that this state is weakly convecting with N = 1.04 but is still efficient at expelling magnetic
flux.

flux so that the regions outside of the cells show very little motion. This state is weakly

time-dependent and the structures vary in shape as they move around the box. This

explains the differences between the state in Fig. 6.1 and those presented by Houghton

& Bushby (2011), in their Fig. 1, for the same parameter values (Q = 120). A state

of this kind is required as an initial condition if one wishes to track a flux separated

state into the magnetically dominated regime, which is occupied at low-amplitude by

a spatially periodic oscillatory pattern (see Fig. 6.1(c)). Increasing the field strength

starting from the higher amplitude flux-separated branch results in the suppression of

convection in the same way as in the two dimensional models, with the Nusselt number

decreasing accordingly with the planform area covered by convective plumes. At larger

field strengths all but a single cylindrical plume remains as is indicated in Fig. 6.2. This

image shows side profiles and planforms of the vertical components of the magnetic field

(Bz) and velocity (w) as well as the planform of the temperature distribution (T ) and

a side profile of the temperature perturbation from the basic state (T −T0 (1 + θz/d)).

As can be seen this state consists of a broad central upflowing plume from which the

magnetic flux is expelled. This is surrounded by narrow downflowing plumes, just

outside which the magnetic flux becomes concentrated into an annular boundary layer.

The structure of the vertical slices through the centre of the cell show a great deal of

similarity with those of Fig. 5.6(c), from the two-dimensional model, for θ = 10. The

vertical distribution of the field shows almost identical structure, being devoid of field
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at the top of the layer whilst flux sheets form at the edges of the outflows, that weaken

and narrow towards the base of the layer, where the inflows force all of the flux to the

base of the upflow.

As was noted by Houghton & Bushby (2011) these structures deviate from pure

axisymmetry and this particular state shows an elongation in the y-direction. This

state has two symmetries; these are reflection symmetries through the centre of the cell

about the x and y axes (assuming that the cell is centred at the origin and its major

and minor diameters are aligned with the axes). It is entirely possible, given that

the boundaries are periodic, that this state interacts with the periodic copy of itself

resulting in this structure. On the other hand, if we are to compare this cell with the

umbral dot like structures that were found in the model of Schüssler & Vögler (2006),

indicated in Fig. 2.2 from Chapter 2, then these states can be seen to share a great deal

of similarity. Both sets of states are elongated in one direction, they both have enhanced

velocity profiles in the downflows at the ‘endpoints’ of the elongated direction and as

a result both have an enhancement of the field at these points. Given the variability of

the field strength across the layer, in the model of Schüssler & Vögler (2006), we would

expect these states to show a range of sizes and thus degrees of elongation. Given

that the Chandrasekhar number is spatially uniform in our model we can replicate

this process by increasing and decreasing the field strength, correspondingly decreasing

and increasing the width of the cell. The deviation between these states and the ones

presented by Schüssler & Vögler (2006) are the presence of the dark lanes, which are

known to form as a result of the fluid piling up at the top of the layer. Note that this

is a consequence of a more realistic photosphere and is not reproducible here. This

could lead to further asymmetries of the cells and thus the more pronounced structures

observed in the more realistic models. Thus we would expect that by varying the

system parameters, λ, R and ζ0, that all states, no matter how small or large, would

have this structure.

One calculation which confirms this speculation was carried out by Paul Bushby

for the parameter values θ = 10, R = 6000, ζ0 = 0.1 and λ = 16. The convecton found

from these simulations, although more cylindrical in nature, bears the same elongated

symmetry as the states we have examined in the λ = 8 boxes. Given that this is the

case and considering the computational cost of using the larger meshes that would be

required to examine these states in progressively lager domains e.g. λ = 24, 32, ..., we

have opted not to carry out further calculations at this time. It would be interesting to

carry out a systematic survey of convectons at the upper saddle node in progressively

larger boxes to see if the cells are converging to some fundamental form, possibly

tracking any changes in the ratio of the minor axis to the major axis. In addition it

would also be useful to confirm that these solutions are independent of the horizontal
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aspect ratio.

In the next section we shall assess the effects of varying the Rayleigh number on

these structures.

6.3 Varying the Rayleigh Number

The aim of this section is to assess how robust these three-dimensional localised states

are as we increase the thermal forcing. In parallel with the R = 6000 case some larger

Rayleigh number branch tracking simulations were performed for R = 20000, 25000.

Both states were tracked from a similar flux separated initial condition to that in

Fig. 6.2, but in the magnetically dominated regime these multiple plume flux separated

states were found to decay to spatially periodic convection with no evidence of localised

states. As was discussed by Blanchflower & Weiss (2002) the ambient field in three-

dimensions is not increased to the same extent as that in two-dimensions. In three-

dimensions we can define an effective field strength by Qeff = Qλ4/
(
λ2 − λ̄2

)2
. Thus if

we assume the width of a cell to be λ̄ = 1 (for simplicity) then the ambient field strength

is increased only by a factor of 64/63 ≈ 1.02 as opposed to a factor of 8/7 ≈ 1.14 (see

Equation (3.36)) for the same size of cell in two-dimensions. Therefore we expect the

ambient field strength not to be greatly increased in three-dimensions. So at large

Rayleigh numbers the effective field strength of the layer is not large enough for a

single plume to exist in isolation. As a result at large field strengths the flux separated

states always consist of multiple plumes.

In order to locate localised states with more efficiency we use the process from the

Boussinesq chapters of increasing parameters simultaneously, in this case R and Q.

Thus we shall proceed to take the state in Fig. 6.2 and increase the Rayleigh number

in steps of R = 2000 with a simultaneous increase in the field strength to a value of

Q
(o)
max so that we always remain close to the upper reaches of the convecton branch.

Given that only localised states and the periodic pattern exist at this value of the field

strength, this will limit the chance of motion developing in the outside region and the

cell transitioning to a multiple roll state. From this value, the field strength is then

increased until Qmax is determined and small increases in the field strength result in

decay to the basic state (Equation (5.8)). From this point we then repeat this process.

Thus we find that states exist for; R = 6000 and Q = 215 (Q
(o)
max ≈ 157); R = 8000

and Q = 300 (Q
(o)
max ≈ 270); R = 10000 and Q = 400 (Q

(o)
max ≈ 390); R = 12000 and

Q = 535 (Q
(o)
max ≈ 525). At these saddle nodes we observe a decrease in the width

of these states with increasing R, in the same was as was observed in the Boussinesq

models, but we now have a reduction in width in two dimensions. From the state at

R = 6000 to the state obtained at R = 12000 (see Fig. 6.3) we observe a cell width
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(a) T (b) Bz (c) w

Figure 6.3: A steady convecton for θ = 10, R = 12000, ζ0 = 0.1 and Q = 535. Each panel
shows a horizontal cross-section just below the surface (z = 0.02).

reduction of approximately 11% in the y-direction and 18% in the x-direction. Despite

this reduction the state still retains the same oval structure and asymmetries in the

downflow regions. We have not performed a branch width analysis for these states

given that this analysis focuses on the existence of states. At R = 14000 we observed

that all attempted choices of Q within the vicinity of Q
(o)
max resulted in the decay of the

localised state, and then the same process at R = 13000. Thus it is expected that the

branch width of these states must decrease with increasing R. This is supported by the

fact that the branches extend less subcritically as the Rayleigh number is increased.

A quick calculation of the levels of subcriticality, measured by taking Qmax −Q(o)
max as

a percentage of Q
(o)
max, gives a subcriticality estimate of 37% for R = 6000, 11% for

R = 8000, 3% for R = 10000 and 2% for R = 12000. Thus we expect that steady

localised states do not exist for approximately R > 12000 for θ = 10. This is unlike

the steady convectons in the two-dimensional Boussinesq models, which were found to

be stable over a wide range of values of the Rayleigh number (Blanchflower, 1999a),

with examples found in the range for R = 5000 − 100000 with ζ0 = 0.1, σ = 1 and

λ = 8. This comparatively restricted parameter range could be taken as a further

indication that the additional degrees of freedom in this three dimensional model are

not beneficial for the existence of localised states

6.4 Varying the Thermal Stratification

In this section we shall vary the thermal stratification as in the previous chapter,

with the aim of locating localised states in less stratified domains. We shall begin

by examining the convective pattern with θ = 2. Given the reasoning presented in

the previous section we do not expect to be able to locate localised states at large R.

However, it is not entirely certain what the effects of decreasing θ, holding R = 20000

and ζ0 = 0.1, will be and thus we shall examine this regime initially. A domain survey

of states indicates that we find a set of large plume states in the approximate range
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(a) T at Q = 700 (b) T at Q = 3000 (c) T at Q = 5000

(d) Bz at Q = 700 (e) Bz at Q = 3000 (f) Bz at Q = 5000

Figure 6.4: A range of convective states for θ = 2, R = 20000 and ζ = 0.1; (a) & (d) a partially
flux separated state with large convective plumes; (b) & (e) a partially flux expelled single
plume surround by oscillatory motion (c) & (f) oscillatory pattern of convection. Indicated are
horizontal cross sections just below the surface (z = 0.02) showing the temperature distribution
(a)-(c) and the vertical component of the magnetic field (d)-(f).

Q ≤ 1100 (see Fig. 6.4(a)), smaller cell states in the range 1100 < Q ≤ 2000 and

oscillatory motion in the range 2000 < Q < Q
(o)
max (see Fig. 6.4(c)). The states at

low Q are those which we would usually use for a branch tracking process, but the

states presented here are only partially flux expelled and thus there is always some

small scale convection in the outside regions of the main plumes, across the domain.

We proceed by taking the state in Fig. 6.4(a) and increasing the field strength. In the

usual way this results in the suppression of convection. However, given the inefficiency

of flux expulsion the outside region still retains some small scale convective motions,

in contrast to the simulations at θ = 10 (see Fig. 6.1(a)). The larger plume states

are found to transition through the smaller plume states (1100 < Q < 2000) until at

Q = 3000 we have the suppression of all large cells except for one. This state appears

to be reasonably efficient at expelling magnetic flux, but the increase in the ambient

field strength is not enough to suppresses all other motion within the layer. The cell

is seen to have an asymmetric structure, thought to be the result of interaction with

the small scale convection within the layer as the cell moves around the box. Although

we cannot classify this as a completely localised state, the existence of this solution

does provide some evidence of the existence of localised plumes at θ = 2 in three-

dimensions. This state represents a different solution to that which can be obtained
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(a) T (b) Bz (c) w

Figure 6.5: A single cell plume surrounded by small scale motion for θ = 2, R = 6000, ζ0 = 0.3
and Q = 280. Each panel shows a horizontal cross-section just below the surface (z = 0.02).

from the ground state at Q = 3000, which is found to lead to a state consisting of

small scale motion with some small cells no larger than the one below and to the left

of the big cell (x ≈ 1.75, y ≈ 0.5) in Fig. 6.4(b). At large Q this state gives way to an

oscillatory pattern of convection that is seen in Fig. 6.4(c). At larger Rayleigh numbers,

for example R = 70000, the motion outside of the partially flux separated states, at

low Q, is greater and thus we expect not to find localised states in this regime. At

R = 6000 this motion outside of the main plumes is decreased in amplitude, but still

does not disappear entirely.

Given that varying R for ζ = 0.1 does not yield a localised state it was thought

that an increase in the diffusivity ratio to ζ = 0.3 may result in the enhancement of

the magnetic suppression of convection in the outside regions given that the Lorentz

force scales as Qζ and oscillatory motion becomes reduced with increasing ζ. For

comparatively large values of the Rayleigh number (R = 20000, 50000) the behaviour

observed is very similar to that in the above case, but for lower values of R (R =

4000, 6000) we find flux separated states with little motion outside of the main plumes.

Thus at R = 6000 and Q = 150 we proceeded to increase the field strength. During

the transition between Q = 270 and Q = 280 the transient state shown in Fig. 6.5

was located, persisting for approximately 200 sound crossing times. Although clearly a

transient, this state shows many similarities, in terms of cell structure, with the states

found at θ = 10. It does appear that the flux expulsion process within the domain is

still too inefficient for the outside region of the cell to be completely static. Comparable

behaviour is found at R = 4000 with the existence of a similar plume surrounded by

small scale motion. These states represent the best efforts of this analysis to locate a

localised state at θ = 2 as time-limitations and computational limitations restricted the

breadth of this analysis. We believe from the evidence presented here that given the

right set of parameters for θ = 2 steady localised states of the same form as at θ = 10

may exist. It could be that cylindrical localised plumes do indeed exist in this region

of parameter space, but it is likely that there are a large number of possible solution
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(a) T at Q = 700 (b) T at Q = 3000 (c) T at Q = 5000

(d) Bz at Q = 700 (e) Bz at Q = 3000 (f) Bz at Q = 5000

Figure 6.6: A range of convective states for θ = 0.2, R = 20000 and ζ = 0.1; (a) & (d) a partially
flux separated state with large convective plumes; (b) & (e) a partially flux expelled single
plume surround by oscillatory motion (c) & (f) oscillatory pattern of convection. Indicated are
horizontal cross sections just below the surface (z = 0.02) showing the temperature distribution
(a)-(c) and the vertical component of the magnetic field (d)-(f).

branches, some of which we have missed in our parameter survey.

Reducing the thermal stratification further to θ = 0.2 we find that flux expulsion

becomes much more inefficient than at θ = 2 and we do not see evidence of flux

separated states of the form found at θ = 10 or even θ = 2 for that matter. From our

analysis this appears to be the case for a number of parameter regimes. Initially our

analysis probed the R = 20000 and ζ = 0.1 regime to assess the effects that would

occur if only decreasing θ. For R = 20000 a parameter survey is indicated in Fig. 6.6.

As we can see all of these states consist of convective motions that fill the domain.

Given that locating localised states appears to require the existence of flux separated

states within the domain, and branch tracking must be performed with states that sit

at lower values of Q to these states with all other parameters fixed, we expect not to

find the existence of localised states by using any of the states in Fig. 6.6 as initial

conditions. In fact using the state in Fig. 6.6(a) as an initial condition for this process

results in the transition from the large plume state through the small plume state

that fills the domain (see Fig. 6.6(b)) to an oscillatory pattern of motion that fills the

domain (see Fig. 6.6(c)). Unlike at θ = 2 this problem persists to R = 4000 even with

a simultaneous increases in the diffusivity ratio to ζ0 = 0.55 (ζ = 1.1). Thus we expect

that the flux expulsion process is so inefficient in these low-θ regimes that localised
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states either do not exist or cannot be obtained in the same way as in the high-θ cases

or as those in two-dimensions in which flux expulsion is still efficient, even at low-θ.

6.5 Initial Conditions

Given the problems encountered during the branch tracking analysis we decided to

change our approach in locating localised states. So far in this thesis we have used

two methods to locate convectons in different parameter regimes. Firstly, there is the

method of following non-linear solution branches from the weakly magnetised regime

into the magnetically dominated regime from multiple plume flux separated states.

Secondly given a localised state obtained from the branch tracking analysis, one can

perform simultaneous changes in the governing parameters so as to remain on the con-

vecton branch in the new parameter regime. The latter method has been very effective

in reducing the computation time to obtain a localised state in a new parameter regime

to one long run to allow any slowly decaying transients, that this method imposes, to

decay. Both of these methods are based on using an initial condition that is similar to

the state expected in the new parameter regime to be studied. Both methods result

in a period of growth or decay of the solution by which the state varies in size, shape

and convective efficiency until it re-stabilises on the same solution branch in the new

parameter regime as long as the boundary layers that these methods impose are not

too large.

Blanchflower & Weiss (2002) adopted an alternative approach, using non-trivial

initial conditions in the form of tapered, ‘cigar’ shaped rolls and cylindrical plumes.

These methods are very useful in locating oscillatory localised states as such initial

conditions, in a three-dimensional truncated Boussinesq model, led to oscillatory lo-

calised states. Using the same process we decided to attempt to locate these states in

this fully-resolved three-dimensional compressible model. Thus we decided to take a

steady localised state from the two-dimensional compressible model and extend it in

the y-direction using the relation

fnew = fout (1− cos (y)) + f (cos (y)) (6.1)

where f is the two-dimensional array, fout is a point outside of the cell to which we wish

to match every point in f and fnew is the three-dimensional array. This relation allows

us to match the two-dimensional state, that will sit at the centre of the new state in

the y-direction, to a point in the outside region of the cell that corresponds to the basic

state i.e. a point in which the field is vertical, the temperature decreases linearly with

height and there is no motion. This initial condition was used with θ = 0.2, R = 6000,

ζ0 = 0.1, λ = 6 and Q = 5000 (Q
(o)
max ≈ 4820) and Fig. 6.7 shows the resulting time-
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dependence of this solution that was observed and the oscillatory behaviour of this

state can be seen in the corresponding Nusselt number plot of Fig. 6.8. As we can

see this state clearly oscillates in time with the flow profile reversing every half period

of oscillation, in a very similar manner to that found by Blanchflower & Weiss (2002)

indicated in Fig. 2.7. For a time this state oscillates in the same way as the oscillatory

states observed in the two-dimensional model with a complex functional form for the

Nusselt number (see Fig. 5.10). As time proceeds this state gradually loses energy and

decays to the basic state. In fact all solutions that were found in this model using

this process decay in the same way. The initial condition can be varied in size in the

y-direction although this seems not to greatly effect the outcome of this decay process.

We find that by increasing the Rayleigh number to R = 20000 with Q = 20000 and

all other parameters fixed as above, then we find a different type of oscillatory state

(see Fig. 6.9), showing a more extended decay period in which the state oscillates in

the same manner as in the two-dimensional models (see Fig. 5.10). These states are

clearly oscillatory and do not just decay in a monotonically decreasing fashion in the

same way they do if the field strength is vastly increased to Q = 8000. This suggests

that these initial conditions do excite oscillations that proceed like oscillatory localised

states in three-dimensions, but for some reason these states decay. Whilst we have not

yet observed stable oscillatory states, we cannot rule out the possibility that a solution

of this type may exist in parameter space but the solution branch is unstable in the

parameter regimes that we have probed.

We take inspiration from this idea of using generated initial conditions and decide to

search for steady states in the same way. If such simple initial conditions can reproduce

the complex structure and behaviour of the oscillatory localised convectons then it could

be possible to take a convecton from the highly stratified regime (θ = 10) and decrease

the thermal stratification directly like a normal parameter. This obviously will have

the effect of imposing some quite substantial temperature gradients at the base of the

layer, which will be smoothed out by thermal diffusion but does have the potential to

destabilise any initially localised state. Initial testing showed that large jumps could

not be made as the variations were too great resulting in decay of the localised state,

but very small steps were possible and a convecton could be slowly moved to lower

values of θ. Given that Q
(o)
max varies with θ it is necessary to also make a simultaneous

increase in the field strength during this process so as not to allow convection to develop

outside of the cell. Again given that we are examining the localised states we ensure

that Q = Q
(o)
max so that we are always on the convecton branch or at least in the region

where we would expect it to exist. At θ = 9, R = 6000 and Q = 260 (Q
(o)
max ≈ 190)

this process led to the existence of a new state; a stable localised cell with a broken

symmetry. The symmetry that has been broken is one of the reflections about the x or
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(a) (b) (c)

Figure 6.7: The initial condition (a) and two snapshots (b) & (c) at equally spaced time-intervals
showing an oscillatory state in the process of decay for the parameter values θ = 0.2, R = 6000,

ζ0 = 0.1 and Q = 5000 (Q
(o)
max ≈ 4820). Each panel shows the horizontal cross-section just

below the surface (z = 0.02) of the layer showing the temperature distribution.

Figure 6.8: A time-sequence of the Nusselt number for the decaying oscillatory state shown in
Fig. 6.7, for a weakly compressible layer (θ = 0.2) with R = 6000, ζ0 = 0.1 and Q = 5000.
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(a) (b)

Figure 6.9: Two snapshots (a) & (b) at equally spaced time-intervals showing an oscillatory
state in the process of decay for the parameter values θ = 0.2, R = 20000, ζ0 = 0.1 and

Q = 22000 (Q
(o)
max ≈ 21674). Each panel shows the horizontal cross-section just below the

surface (z = 0.02) of the layer showing the temperature distribution.

(a) T (b) Bz (c) w

(d) T − T0 (1 + θz/d) (e) Bz (f) w

Figure 6.10: The broken symmetries localised state for the parameter values θ = 8, R =

6000, ζ0 = 0.1 and Q = 330 (Q
(o)
max ≈ 250); (a)-(c) horizontal cross-section just below the

surface (z = 0.02) and (d)-(f) vertical section (y vs z) through the cell at x = 3.75. Lighter
colours correspond to warmer fluid, stronger field and downflowing fluid, whereas darker colours
correspond to cooler fluid, weaker field and upflowing fluid.
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y axes resulting in a state that retains only a single reflection symmetry. A similar state

is indicated in Fig. 6.10 for θ = 8 (Q = 330 (Q
(o)
max ≈ 250)) which was the lowest value

for θ for which this process was found to work. Decreasing the thermal stratification

further was found to destabilise this solution so that no localised states of this kind were

observed for lower values of θ. This new localised state corresponds to one in which the

cell no longer consists of a central upflowing plume with peripheral downflows but a

single overturning cell with one upflow and one downflow. The symmetries of this state

are obviously unexpected given the thermal stratification of the layer as the vertical

slices show that this state corresponds to the classical two-dimensional convecton. In

addition this state was found to be unstable in the two-dimensional compressible model

as the thermal stratification was increased. Therefore some combination of the highly

stratified layer and the extra spatial freedom allow this state to stabilise. Increasing the

thermal stratification for this state up to θ = 10, with Q = 180 (Q
(o)
max ≈ 157), results

in the stabilisation of this state. Again given time and computational limitations it

was not possible to perform a branch tracking analysis for this state, although we find

that this state is subcritical and exhibits bistability with the cylindrical plume state.

Thus we find that this state is confined to a narrow range of parameters (8 ≤ θ ≤ 10)

although if we were to take other paths through parameter space it is possible that

this range of stability, for θ, would increase. In fact this is highlighted by the fact that

if we are more careful with our simultaneous decrease of θ and increase of Q then we

also find that the cylindrical plume is also stable in the subcritical regime in the range

8 ≤ θ ≤ 10. This suggests that the increased complexity of parameter space, resulting

from the inclusion of a third dimension, allows multiple forms of steady localised state

to exist in the subcritical regime.

6.6 Summary

In this chapter we have studied the existence of localised states in three-dimensional

magnetoconvection. We examined the steady localised states discovered by Houghton &

Bushby (2011) at higher Rayleigh number finding that they were stable for R ≤ 12000.

We found that the upper saddle node of the steady convecton branch approached the

largest linear Hopf bifurcation as the Rayleigh number was increased from R = 6000

to R = 12000. Thus it is expected that the branch width of this state decreases

with increasing Rayleigh number, in contrast to those in the two-dimensional models

that exist over a wide range of Rayleigh numbers (5000 ≤ R ≤ 100000 (Blanchflower,

1999b)). Given that the asymmetry of these states is similar to that found in the

more realistic calculation of Schüssler & Vögler (2006), we propose that this complex

structure is generated by magnetoconvective interactions within the cell rather than
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any cell-cell interactions across the periodic boundary conditions

We then proceeded to examine a mildly stratified layer (θ = 2) in which single

plumes were found (some of which were transient states) but the outside region in all

cases was found to contain oscillatory motion. It is thought that the reduced effect of

flux expulsion in three-dimensions is the cause of this behaviour. However, it is found

that by carefully choosing the parameters the effect of flux expulsion can be increased.

Given this behaviour it is expected that if we are to choose the parameters carefully

then we probably could find a regime in which these states exist although this may be

a very subtle exercise in the fine tuning of parameters. At θ = 0.2, in the Boussinesq

limit of the model, the highly flux separated states that are thought to be vital to

the location of steady localised states could not be found with all convective patterns

found to fill the domain. Given the existence of the oscillatory localised states that were

discovered by Blanchflower & Weiss (2002), we expect a set of flux separated states

to exist at higher amplitudes than the states obtained from the ground state in our

analysis, but the process of branch tracking may not be the best way to locate these

states.

We then examined the effects of using different initial conditions to generate lo-

calised states. It was found that it is possible to take the highly stratified localised

state and decrease the thermal stratification, although this resulted in the breaking of

a symmetry of the highly stratified convecton. The resulting state was found to consist

of a single upflow and a single downflow, with a vertical structure similar to a single cell

state convecton in two-dimensions. This is in contrast to the analysis in the previous

chapter, which showed these states did not exist as the thermal stratification of the

layer was increased out of the Boussinesq limit. This would suggest some stabilising

mechanism for these states, possibly a combination of the extra spatial dimension and

the increased compressibility.

Finally we examined the use of a generated initial condition as used by Blanchflower

& Weiss (2002) to examine the existence of oscillatory localised states. Although we did

not find any such state, we found that the decay process of the solution followed that of

an oscillatory pattern, with sections of the time-sequence of the Nusselt number showing

many similarities to those found for the oscillatory states in two-dimensions. Given that

these initial conditions were used to probe the subcritical regime where Blanchflower

& Weiss (2002) discovered these states and also that the decaying pattern was not

monotonically decreasing, as with states at larger field strengths, we expect that this

process may have found the existence of an unstable section of an oscillatory localised

state branch. We anticipate that these states probably do exist but given that we have

only probed the regime studied by Blanchflower & Weiss (2002), for which states in a

fully-resolved model could be unstable, more work is needed to determine if these states
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do in fact extend to fully-resolved models. Therefore this problem deserves further

study and work is ongoing to examine alternative parameter regimes, particularly at

higher Rayleigh numbers to search for the existence of these states.
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Chapter 7

Conclusions and Future Work

7.1 Introduction

Magnetoconvection is capable of producing steady and oscillatory localised states across

a range of model configurations. These states are referred to as convectons and give us

a means of studying a convective cell or plume in isolation. The motivation to study

such states comes from observations of small bright features within sunspots, referred

to as umbral dots. These weakly convecting time-dependent plumes are present within

the strong, near vertical, magnetic fields of the sunspot umbrae. Realistic photospheric

models are very accurate at reproducing these observations. However, given their

complexity, understanding the mechanisms responsible for the structural and dynamic

properties of umbral dots can be difficult. An alternative approach, that we have

employed in this thesis, is to examine idealised models, consisting solely of convection

and magnetic fields, allowing the key parameters of the system to be varied and the

resulting effects on magnetoconvective interactions to be studied.

7.2 Boussinesq Magnetoconvection Models

The simplest approach is to consider an incompressible fluid under the Boussinesq ap-

proximation as in Part II, Chapters 3 and 4, of this thesis. In these chapters we studied

both steady and oscillatory convectons and, using a vertically truncated model, we per-

formed parametric surveys to assess their stability for a range of values of the governing

parameters. In Chapter 3 details of the first parametric survey of the stability of os-

cillatory convectons was derived using the truncated model with periodic boundaries.

The existence of these states was then confirmed in the full system, which represents

the first time that a state of this kind has been found in a fully-resolved magnetocon-

vection simulation (Buckley & Bushby, 2013). The time-dependence of these states is

found to be more complex than that in simplified models, differing from a localised
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standing wave due to the presence of asymmetries in the Lorentz force. These states

were found to be inefficient at expelling magnetic flux resulting in two features; their

existence over a narrow range of parameters and their lack of subcritical behaviour. It

is hypothesised that the existence of such states is a consequence of the finite geometry

of the box. This could be tested by continuing to increase the box size and calculations

are underway in boxes of size λ = 24, 32 to assess if this is indeed the case.

In Chapter 4 we demonstrated, in a fixed boundaries model, that the existence of

these states is insensitive to the choice of horizontal boundary conditions. In addition

to these solutions, which are always present in the centre of the domain, a family of

‘wall’ states is observed with at least one convective cell present at the fixed boundaries.

The states which are localised at the boundaries are referred to as ‘wall’ convectons

and were found to be bistable over a wide range of parameters with other localised

convective states that were situated away from the boundaries. Although no evidence

was found of a corresponding single roll oscillatory wall convecton, we demonstrated

the existence of a double wall mode oscillatory solution in which the cells appear to

be oscillating independently. Given that these states do not exist in the parameter

regimes studied there would appear to be no physical reason why a single oscillatory

wall convecton should not exist. For the fixed boundaries model we were unable to

confirm the existence of these states in a fully-resolved calculation as all solutions

found in this model showed oscillatory behaviour suggesting that there is a bug in the

code. From our experience of the periodic boundaries model we expect that these states

do exist and work is on-going to confirm that this is the case.

Power-law scalings were derived for the location of both the saddle nodes and Hopf

bifurcations that bound the steady convectons at high and low field strengths respec-

tively. It was found that the scaling-law for the saddle nodes closely resembled that

in the fully-resolved model, with small differences that could be accounted for by the

inclusion of the full set of modes. The restricted symmetries model used to study the

bifurcation sequence with fixed boundaries was used to repeat these scaling-law calcu-

lations. Good agreement was found when comparing the location of the saddle nodes,

at low Rayleigh number, with a scaling that was derived by Dawes (2007). However,

at large Rayleigh numbers these scalings were found not to agree with the periodic

boundaries model. It is thought that this is the result of the aspect ratio of the box

being too constrained for the simulations at large Rayleigh numbers, a feature that is

accentuated by the presence of the impermeable boundaries. In order to verify that this

is the case it would be necessary to repeat these calculations in larger boxes (λ > 6),

but this is unfeasible for the restricted symmetries model with the resolution used (a

maximum of 43 Fourier modes). To proceed, a restricted symmetries model with an

increased resolution (a maximum of 85 Fourier modes) would need to be derived.
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The scaling-laws confirm that the restricted symmetries model reproduces the be-

haviour in the truncated model with full-symmetries. This suggest that the restricted

symmetries model, given its computational efficiency, is a very useful tool for studying

the bifurcation sequence of localised states. A model based on a finite difference ap-

proach was also developed but was found not to produce sensible output. Given that

models of this type already exist (Lo Jacono et al., 2011, 2012) we believe it would

be worth revisiting this model, as we can see no reason why the bifurcation software

(AUTO) would not be able to solve this system accurately.

The restricted symmetries model is also capable of tracking the oscillatory solution

branches, but these simulations are much more computationally expensive and as a

result, time-limitations restricted our analysis solely to the steady states. Given that

this model reproduces the behaviour of the steady states very accurately we expect that

this model, in the same way, will have the same success in analysing the oscillatory

convecton branches.

7.3 Compressible Magnetoconvection Models

Given that the atmosphere of a sunspot umbrae is compressible, an obvious extension

to the Boussinesq models is to examine the effects of compressibility on the existence of

localised states. Thus in Part III of this thesis we turned our focus to magnetoconvec-

tion models with compressibility. In Chapters 5 and 6 we focused on the existence of

localised states in two and three-dimensions respectively. In the two-dimensional model

we examined the existence of both steady and oscillatory convectons with increasing

thermal stratification. In the Boussinesq limit of the model the analysis was found to

follow closely that of the calculations from the fully-resolved Boussinesq model. With

increasing thermal stratification these solutions were not found and a new type of state

consisting of a central upflow with peripheral downflows was observed. The oscilla-

tory states take a similar form but with the flow profile reversing every half period

of oscillation. Interestingly the functional form of the Nusselt number corresponds to

that of the single cell oscillatory state in the Boussinesq limit of the model suggesting

that the nature of the oscillation is somehow determined by a common mechanism.

No evidence of these oscillatory states was observed in a highly stratified layer. It is

expected that these states do exist but we have not yet found the right path through

parameter space. In addition, study of the transition from the Boussinesq limit to the

highly compressible regime was restricted by time and computational limitations and

it would be of interest to examine this transition in greater detail, for both the steady

and oscillatory states.

In Chapter 6 we studied the existence of localised states in three-dimensional mag-
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netoconvection. We demonstrated that the cylindrical plumes located by Houghton &

Bushby (2011) are restricted to small Rayleigh numbers (R ≤ 12000). It is expected

that the reduced effect of flux expulsion on the ambient field strength is the result of

this observation. It is thought that this could also be the reason why we could not find

single plume states in a mildly or weakly stratified layer. Although, given the existence

of oscillatory localised states in a truncated Boussinesq model (Blanchflower & Weiss,

2002), it is expected that such states do exist at least in the weakly stratified limit. In

order to locate similar oscillatory localised states we generated initial conditions based

on the information provided by Blanchflower & Weiss (2002). Although we did not find

stable oscillatory states, we found that the decay process of the solution followed that

of an oscillatory pattern. Given that the decaying pattern was not monotonic, as with

states at larger field strengths for the same initial condition, we expect that this process

may have found the existence of an unstable section of an oscillatory convecton branch.

We anticipate that these states probably do exist but given that we have only probed

a limited parameter range with one particular choice of initial condition more work is

required to determine if these states do in fact exist in a fully-resolved model. Work is

ongoing to examine alternative parameter regimes, and initial conditions, particularly

at higher Rayleigh numbers to search for the existence of these states.

Taking inspiration from this idea it was found that it is possible to take the highly

stratified steady localised state similar to that found by Houghton & Bushby (2011) and

decrease the thermal stratification directly, in the same way as any other parameter.

Initially some large decreases in this parameter were used and resulted in the breaking

of a symmetry of the highly stratified convecton. The resulting state was found to

consist of a single upflow and a single downflow, with a vertical structure similar to

a single cell steady convecton in two-dimensions. These calculations were repeated

using smaller variations in the thermal stratification and it was possible to follow the

same path through parameter space, moving the localised plume found by Houghton

& Bushby (2011) to lower values of the thermal stratification. These states are thus

found to be bistable over a wide range of parameters. Due to time and computational

limitations these calculations are still ongoing to assess how far we can push this process.

It is expected that the large temperature gradients that are imposed at the bottom of

the layer will make this method impractical moving to smaller values of θ. However,

given the problems encountered with the branch tracking process for low values of the

thermal stratification, this method could be the most efficient way of examining the

transition of steady convectons from a highly stratified layer into the Boussinesq limit of

the model. It would be interesting to include the effects of radiative transfer or partial

ionisation in the three-dimensional compressible model and assess what effects this has

on the structure and existence of localised states. It is expected that if localised states
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do exist in such a model then they will take a similar form to the states observed in

the realistic calculations of Schüssler & Vögler (2006), which correspond closely with

observations of umbral dots.

7.4 A Two-dimensional Axisymmetric Model

In addition to the work contained in this thesis, analysis was carried out in a cylindrical

polar coordinate system, (r, φ, z), where r is the radius, φ is the azimuthal angle and

z is the vertical axis. This system was reduced to the two-dimensional axisymmetric

frame by considering any rotation in the φ co-ordinate to leave the system unaltered.

In our model the left hand boundary corresponds to the origin of the system, r = 0,

and the right hand wall corresponds to the outer edge of the cylindrical domain, r = Λ,

where Λ is the aspect ratio. The fluid that occupies the domain was assumed to satisfy

the Boussinesq approximation and a vertical magnetic field was imposed across the

domain. The boundary conditions in this system were taken to be impermeable and

stress free on all boundaries with a magnetic field that is constrained to be vertical at

the upper and lower boundaries. The equations that govern this system are given by

Proctor & Weiss (1982), Equations (2.30)-(2.34), including the boundary conditions.

The goal behind this work was to locate a single roll cell, as in the Cartesian

domains but at the left hand boundary or origin of the domain. Thus, given the

axisymmetry of the domain, a localised cell situated at this boundary corresponds to

a cylindrical plume. Although localised states were found in this model all of the cells

were situated at the right hand boundary of the domain, so given the axisymmetry these

states corresponded to tori. The reason for this is that the magnetic field preferentially

collects at the origin of the domain forcing the convection to outer boundary and

it remains unclear why this is always the case. It could be, as was found in the

three-dimensional compressible calculations, that a truly cylindrical state does not

exist in a magnetoconvection model and that all three-dimensional plumes take the

elliptical form found in Chapter 6. It is hard to conclude whether this is the case as

we are comparing calculations between an axisymmetric Boussinesq and a Cartesian

compressible magnetoconvection model. It could be that a truly cylindrical cell can

exist in a three dimensional Boussinesq configuration, but without any calculations to

base our assumptions on, this is merely speculation.

In parallel with this work we also considered the boundary layer analysis that was

carried out by Dawes (2007) but in the axisymmetric geometry. The analysis proceeds

in an almost identical manner but breaks down at a point equivalent to that of Equation

(3.2) presented by Dawes (2007). The second equation is a second order ODE in the

parameter θ20. The importance of this equation is that the constant term (in θ20) is
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coupled to sin2 + cos2. Given that sin2 + cos2 = 1 this becomes unimportant dropping

out of the equation and thus is not displayed by Dawes (2007). In the axisymmetric

model however we no longer have sines and cosines as eigenfunctions but a set of Bessel

functions. Thus in the axisymmetric model this constant term takes a very similar form

but is coupled to J2
0 + J2

1 . There is no simple representation that allows us to simplify

this sum of Bessel functions. We can approximate this sum in the following way

J2
0 (kr) + J2

1 (kr) = 1− k2r2

4
+O

(
r3
)
, (7.1)

although truncating at any order results in the analysis that follows being highly sin-

gular in r at the origin. Given that we could find no suitable way to approach solving

the equation in θ20 and also that the numerical approach had failed to provide us with

evidence of a cylindrical state, this analysis was abandoned.

Like in the Cartesian model this analysis begins by making an assumption about the

form that the stream function takes. From the one dimensional profiles of a localised

cell it is clear that we can use a half period sine wave to approximate this structure.

In the axisymmetric case the most appropriate Bessel function to approximate this

structure is J1. It could be that the analysis which follows breaks down because this

approximation is incorrect. There is thus one approach that we can see. If we could

locate a cylindrical plume convecton in a three-dimensional Boussinesq model then we

would be able to observe what form the profile for the stream function should take.

This would then allow us to use this approximation of the stream function to begin the

analysis. In addition half of the cross section of this cylindrical cell could be used as

an initial condition for a run in the axisymmetric numerical model. This could lead to

the existence of a localised state in these models if the parameter regime were chosen

appropriately. If these methods were to result in failure or a cylindrical plume could

not be found in a three-dimensional Boussinesq model, then these results would provide

significant evidence that localised states may not exist in an axisymmetric model.
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Appendix A

Saddle Nodes and Hopf

Bifurcations

In this appendix we shall discuss the bifurcation that bound the stability range of the

localised states, these are saddle nodes and Hopf bifurcations.

Let us consider the following dynamical system

ẋ = f (x, γ) , (A.1)

where x is a spatial coordinate and γ is a parameter. A saddle node bifurcation is a

local bifurcation that occurs when two equilibria of such a dynamical system collide

and annihilate each other. In terms of the Jacobian matrix of partial derivatives of f ,

a saddle node occurs when there is a single zero eigenvalue. The bifurcation is said to

be locally topologically equivalent, near the origin, to one of the normal forms

ẋ = ±γ ± x2, (A.2)

A saddle node bifurcation is illustrated in Fig. A.1(a). As can be seen there are two

equilibria for γ > 0, one for γ = 0 and none for γ < 0.

A Hopf bifurcation (or Andronov-Hopf) bifurcation occurs whenever an equilibrium

point of the system has only imaginary eigenvalues. The normal form for a Hopf

bifurcation, in two dimensions z = x+ iy, takes the form

ż = (γ + iδ) z − |z|2z. (A.3)

As can be seen from Fig. A.1(b), illustrating a Hopf bifurcation, on increasing γ through

zero a periodic orbit or limit cycle appears.

More details of these bifurcations can be found in the books by Guckenheimer &

Holmes (1982) and Glendinning (1994).
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Figure A.1: Illustrated are two bifurcations (a) a saddle node for ẋ = γ − x2 and (b) a Hopf
bifurcation for ż = (γ + iδ) z − |z|2z.
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Appendix B

Linear Stability Theory of

Boussinesq Magnetoconvection

In this appendix we shall apply linear theory to the governing equations of Boussinesq

magnetoconvection (Equations (3.1)-(3.3)) in order to derive relations that indicate

the location of the steady and oscillatory bifurcations from the trivial state. We shall

begin by deriving the trivial solution to the governing equations and then consider

small perturbations to this state. From this analysis we derive a cubic dispersion

relation whose solutions are precisely the equations which indicate the location of the

linear bifurcation points. The work contained in this appendix follows closely that of

Knobloch et al. (1981) and Proctor & Weiss (1982).

B.1 The Static Solution

For ease of reference we repeat here the dimensionless governing equations of Boussinesq

magnetoconvection

1

σ

(
∂u

∂t
+ (u · ∇)u

)
= −∇P ∗ +RT ∗ẑ + ζQ (∇×B)×B +∇2u, (B.1)

∂T ∗

∂t
+ (u · ∇)T ∗ = ∇2T ∗, (B.2)

∂B

∂t
−∇× (u×B) = ζ∇2B, (B.3)

subject to the conditions

∇ · u = ∇ ·B = 0. (B.4)

Note that the z-axis points vertically upwards, parallel to the constant gravitational

acceleration, g = −gẑ and also that in this appendix we shall work solely in the xz-
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plane ignoring any perturbations in the y-direction. If we consider a static fluid layer

with

u = 0, (B.5)

then from the heat equation, (B.2), we obtain

d2T ∗

dz2
= 0, (B.6)

given that the upper (T ∗(z = 1) = 0) and lower (T ∗(z = 0) = 1) boundary condi-

tions (see Equation (3.10)) impose no horizontal x-dependence. Upon integrating and

imposing these boundary conditions, the static state for the temperature is given by

T ∗ = 1− z. (B.7)

Given that the layer of fluid is static the induction equation, (B.3), reduces to

∇2B = 0. (B.8)

The boundary condition on the magnetic field takes the form ẑ×B = 0 at z = 0, 1 (see

Equation (3.11)) implying that Bx = By = 0, so that the basic state for the magnetic

field is taken to be uniform and vertical:

B = ẑ. (B.9)

Therefore, given a temperature gradient that decreases linearly with height and a mag-

netic field that is uniform and vertical, the z-component of the equation of motion

(B.1) reduces to
dP ∗

dz
= R(1− z), (B.10)

(since (∇×B)×B = (∇× ẑ)× ẑ = 0). Upon integrating we find that the basic state

for the modified pressure is

P ∗ = R

(
z − z2

2

)
+ constant. (B.11)

Equations (B.5), (B.7), (B.9) and (B.11) form the trivial solution to the non-dimensional

Boussinesq equations of magnetoconvection.
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B.2 The Eigenvalue Problem

We shall now investigate the stability of this trivial solution. To simplify matters we

choose to remove the pressure and perform the linear analysis for the vorticity equation:

1

σ

(
∂ω

∂t
−∇× (u× ω)

)
= R∇T ∗ × ẑ + ζQ∇× (j ×B) +∇2ω, (B.12)

where j = ∇×B. We shall consider small perturbations θ(x, z, t) and b(x, z, , t) to the

basic state such that |u| � 1 where

T ∗ = 1− z + θ B = ẑ + b. (B.13)

Making these substitutions we may write the vorticity equation (B.12), the heat equa-

tion (B.2) and the induction equation (B.3), respectively in the linearised form

1

σ

∂ω

∂t
= R∇T ∗ × ẑ + ζQ

∂j

∂z
+∇2ω, (B.14)

∂θ

∂t
= uz +∇2θ, (B.15)

∂b

∂t
=
∂u

∂z
+ ζ∇2b, (B.16)

where we have used the identity

∇× (C ×D) = C (∇ ·D)−D (∇ ·C) + (D · ∇)C − (C · ∇)D. (B.17)

Now we may write down the z-component of Equation (B.14) as

1

σ

∂ωz
∂t

= ζQ
∂jz
∂z

+∇2ωz, (B.18)

and the z-component of the curl of Equation (B.16) as

∂jz
∂t

=
∂ωz
∂z

+ ζ∇2jz. (B.19)

As discussed by Proctor & Weiss (1982) these two equations correspond to damped

torsional Alfvén waves. As there are no source terms in the form of thermal driving or

any other kind, solutions decay exponentially. Thus for any unstable perturbation ωz =
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jz = 0. To proceed we expand u and b in terms of poloidal and toroidal components

u = ∇× (G (x, z, t) ẑ) +∇×∇× (F (x, z, t) ẑ) , (B.20)

b = ∇× (L (x, z, t) ẑ) +∇×∇× (H (x, z, t) ẑ) . (B.21)

Now if we take the curl of Equation (B.20) followed by the dot product with ẑ we

obtain

ωz = ẑ · (∇× u) = ẑ · (∇×∇× (Gẑ)) + ẑ · (∇×∇×∇× (F ẑ)) . (B.22)

We can show that the second term reduces to

ẑ · (∇×∇×∇× (F ẑ)) = −ẑ · ∇ ×
(
ẑ
(
∇2F

))
= 0, (B.23)

and thus as ωz = 0 we obtain

ωz = ẑ · (∇× u) = ẑ · (∇×∇× (Gẑ)) = 0. (B.24)

Applying the same argument for jz reduces the expressions (B.20) and (B.21) into a

purely poloidal form (Proctor & Weiss, 1982),

u = ∇×∇× (F (x, z, t) ẑ) , (B.25)

b = ∇×∇× (H (x, z, t) ẑ) . (B.26)

Consequently Equations (B.14)-(B.16) can be written in the form

1

σ

∂

∂t

(
∇2F

)
= −Rθ + ζQ

∂

∂z

(
∇2H

)
+∇4F, (B.27)

∂θ

∂t
= −∂

2F

∂x2
+∇2θ, (B.28)

∂H

∂t
=
∂F

∂z
+ ζ∇2H, (B.29)

where ω = −∇
(
∇2F

)
× ẑ and j = −∇

(
∇2H

)
× ẑ. We now seek normal modes with

(F, θ,H) =
(
F̂ , θ̂, Ĥ

)
f (x) exp (st) , (B.30)
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such that d2f/dx2 = −α2f (where α = 2mπ/λ is the wavenumber), so that Equa-

tions (B.27)-(B.29) become

(
σ−1s−

(
d2
z − α2

)) (
d2
z − α2

)
F̂ = −Rθ̂ + ζQ

(
d2
z − α2

)
dzĤ, (B.31)

(
s−

(
d2
z − α2

))
θ̂ = α2F̂ , (B.32)

(
s− ζ

(
d2
z − α2

))
Ĥ = dzF̂ , (B.33)

where dz ≡ d/dz. Now the upper and lower boundary conditions for this model, given

in Section 3.3, mean that the eigenfunctions for F̂ , θ̂ and Ĥ are trigonometric, where

F̂ = Fn sin(nπz), (B.34)

θ̂ = θn sin(nπz), (B.35)

Ĥ = Hn cos(nπz). (B.36)

This implies that Equations (B.31)-(B.33) can be written in the following form,
(
s+ σβ2

)
β2 −σR σζQβ2nπ

−α2 s+ β2 0

−nπ 0 s+ β2ζ


 Fn

θn

Hn

 = 0, (B.37)

where β2 = α2 + n2π2. Thus there are non-trivial solutions when the determinant of

the 3× 3 matrix is zero, so that the solutions of the cubic characteristic equation,

(
s+ σβ2

) (
s+ β2

) (
s+ β2ζ

)
β2 − σRα2

(
s+ β2ζ

)
+ σζQβ2n2π2

(
s+ β2

)
= 0, (B.38)

are precisely the eigenvalues of the 3× 3 matrix. It proves convenient when calculating

the linear Hopf bifurcations to re-express this dispersion relation in the form

s3 + (ζ + σ + 1)β2s2 +
[
σ
(
β4 + ζQn2π2 − β−2α2R

)
+ ζβ4 (σ + 1)

]
s+ σζ

(
β6 +Qβ2n2π2 −Rα2

)
= 0. (B.39)

B.3 Steady and Oscillatory Bifurcations from the Trivial

State

We shall now consider the roots of the characteristic equation which will allow us to

derive relations for the linear bifurcations. These relations can be expressed in terms

160



Appendix B. Linear Stability Theory of Boussinesq Magnetoconvection

of R or Q and as we will use both throughout Chapters 3 and 4 we shall give both sets

of definitions here.

B.3.1 The Rayleigh Number

The condition for a simple steady bifurcation, at R = R(e), is s = 0, so from the

characteristic equation we obtain the following relation

R(e) =

(
β6 +Qn2π2β2

)
α2

. (B.40)

It is clear from the above equations that R(e) achieves a minimum when n = 1. Thus

we shall use this value throughout to determine the smallest steady bifurcation for the

onset of convection as it can be seen that increasing n is equivalent to varying the layer

depth. In our analysis we choose the layer depth to take non-dimensional length unity

(d = 1) so that the horizontal width of the domain (λ) is the only domain size variable.

For Q = 0 we find that

R(e) = R0(α) =

(
π2 + α2

)3
α2

, (B.41)

achieves a minimum at α = π/
√

2 so that the critical Rayleigh number for the onset

of convection in the absence of a magnetic field is R0 = 27π4/4 = 657.51 (Proctor &

Weiss, 1982). In a finite domain, of integer aspect ratio, this value cannot be achieved

as α = π/
√

2 implies that onset is to a non-whole number of convective rolls e.g. if

λ = 6 then onset at R0 = 657.51 with α = π/
√

2 would be to an m = 2.12 state

with 4.24(= 2m) convective rolls. In a λ = 6 domain, we find that onset occurs at

R0 = 660.5 to an m = 2 state with 4(= 2m) convective cells. Thus in a finite domain

with Q = 0 we find that onset occurs at R0 = 660.5.

We find it convenient to re-write Equation (B.40) in terms of m and thus substi-

tuting for β2 = α2 + π2 and α = 2mπ/λ we write

R(e) =
π2

4m2

(
4m2 + λ2

)
Q+

π4

4m2λ4

(
4m2 + λ2

)3
. (B.42)

We now consider the case of a pair of complex conjugate roots such that s = ±iω̄0 so

that Equation (B.39) gives real

ω̄0
2 =

σζ
(
β6 −Rα2 + β2π2Q

)
β2 (ζ + σ + 1)

, (B.43)
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and imaginary parts

ω̄0
2 = σ

(
β4 + ζπ2Q− β−2α2R

)
+ ζβ4 (σ + 1) . (B.44)

Equating the two and rearranging we obtain an expression for R(o) as

R(o) =
β6

α2
+
β6

α2

ζ

σ
(ζ + σ + 1) + ζπ2Q

β2

α2

(ζ + σ)

(σ + 1)
, (B.45)

which substituting for β2 = α2 + π2 and α = 2mπ/λ becomes

R(o) =
π4

4m2λ4

(σ + ζ) (1 + ζ)

σ

(
4m2 + λ2

)3
+

π2

4m2

ζ (ζ + σ)

(1 + σ)

(
4m2 + λ2

)
Q. (B.46)

From Equation (B.43) it is clear that there exists a Hopf bifurcation only if

ω̄0
2 =

σζα2
(
R(e) −R(o)

)
β2 (ζ + σ + 1)

= −β4ζ2 + σζπ2Q
1− ζ
1 + σ

, (B.47)

is positive. Thus necessary conditions for the existence of a Hopf bifurcation are

ζ < 1 Q >
ζ

σ

(1 + σ)

(1− ζ)

π2

λ4

(
4m2 + λ2

)2
. (B.48)

B.3.2 The Chandrasekhar Number

Equations (B.42) and (B.46) describing the location of the steady and oscillatory bi-

furcations respectively, can be rearranged for Q giving

Q(e) =
4m2R

π2

(
4m2 + λ2

)−1 − π2

λ4

(
4m2 + λ2

)
, (B.49)

and

Q(o) =
(1 + σ)

ζ (ζ + σ)

4m2

π2

(
4m2 + λ2

)−1
R− (1 + σ) (1 + ζ)

ζσ

π2

λ4

(
4m2 + λ2

)2
. (B.50)

The condition on the existence of the Hopf bifurcation however must be derived sepa-

rately. Thus from Equation (B.43) we find that there exists a Hopf bifurcation provided

that

ω̄0
2 =

σζπ2

(ζ + σ + 1)

(
Q(o) −Q(e)

)
=

4m2

(4m2 + λ2)

(1− ζ)

(ζ + σ)
σR− π4

λ4

(
4m2 + λ2

)2
, (B.51)
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is positive. Thus the necessary conditions for the existence of a Hopf bifurcation are

ζ < 1 R >
π4

4m2λ4

(σ + ζ)

σ (1− ζ)

(
4m2 + λ2

)3
. (B.52)
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The Mid-Layer Rayleigh Number

This appendix is devoted to a derivation of the Rayleigh number for the compressible

model examined in Chapters 5 and 6. The Rayleigh number is a non-dimensional

measure of the destabilising effects of the superadiabatic temperature gradient relative

to the stabilising effects of viscous and thermal diffusion (Matthews et al., 1995) and

is written mathematically in the form

R =
gα̂β̂d4

κν
, (C.1)

(Chandrasekhar, 1961) where g = −gẑ is the constant gravitational acceleration, α̂

is the coefficient of thermal expansion for a perfect gas, d is the layer depth, κ is the

thermal diffusivity, ν is the kinematic viscosity and

β̂ =
dT

dz
−
(
dT

dz

)
ad

. (C.2)

As the fluid in question is compressible, both temperature and density decrease with

height resulting in a Rayleigh number that also varies across the depth of the layer.

We shall follow previous authors (Matthews et al., 1995; Bushby & Houghton, 2005;

Houghton & Bushby, 2011) and define a mid-layer Rayleigh number. To proceed we

must calculate the form of the mid-layer temperature and density, which will enable

us to calculate the adiabatic temperature gradient, β̂, and thus the mid-layer Rayleigh

number.

Assuming that the z-axis points vertically downwards (parallel to constant grav-

itational accelerations, g), we consider a static atmosphere (u = 0) with a uniform

vertical magnetic field (B = ẑ), in a state of hydrostatic equilibrium. The pressure, P ,

and density, ρ, satisfy
dP

dz
= gρ, (C.3)
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whilst the temperature equation, (2.7), reduces to

d2T

dz2
= 0. (C.4)

Integrating and imposing the boundary conditions at the top, T (z = 0) = T0, and

bottom, T (z = d) = T1, of the layer, we obtain a relation for the temperature at depth

z/d as

T = T0

(
1 +

θz

d

)
, (C.5)

where θ = ∆T/T0 is the thermal stratification. Given that the gas we are considering

is ideal (Equation (2.9)), and the form for the temperature is as above, the hydrostatic

relation can be expressed as

dρ

dz
=

(
dg

R∗∆T
− 1

)
θ

d(1 + θz
d )
ρ. (C.6)

Upon integrating both sides with respect to z and imposing the condition, ρ(z = 0) =

ρ0, at the top of the layer, the density at depth z/d is given as

ρ = ρ0

(
1 +

θz

d

)m
, (C.7)

where m = dg/R∗∆T − 1 is the polytropic index. For an adiabatically stratified

atmosphere (P ∝ ργ), we may relate m to the ratio of the specific heats, γ = cP /cV ,

by

m =
1

γ − 1
. (C.8)

Now if we express the ideal gas law in the form

T γP 1−γ = constant, (C.9)

and differentiate both sides with respect to z we may write

HT ≡
[

1

T

dT

dz

]−1

=
γ

γ − 1

[
1

P

dP

dz

]−1

⇒ HT =
γ

γ − 1
HP , (C.10)

where HT is the temperature scale height and

HP ≡
[

1

P

dP

dz

]−1

=
d
(
1 + θz

d

)
θ (m+ 1)

, (C.11)

is the pressure scale height. Thus, from Equations (C.10) and (C.11), we may calculate
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the adiabatic temperature gradient as(
dT

dz

)
ad

=
γ − 1

γ

θ(m+ 1)T0

d
. (C.12)

Therefore, from the above results it can be shown that

β̂ =
dT

dz
−
(
dT

dz

)
ad

=
∆T

dγ
[m−mγ + 1] . (C.13)

Finally, using the relations; α̂ = 1/T , κ = K/ρcP , µ = ρν, θ = ∆T/T0, m =

dg/R∗∆T − 1, σ = µcP /K (see Matthews et al., 1995) and Equations (C.5), (C.7)

and (C.13), the mid-layer (z/d = 1/2) Rayleigh number can be expressed as

R =
(m+ 1) θ2 (m− γm+ 1)

(
1 + θ

2

)(2m−1)

γσ

T0R∗c
2
pρ

2
0d

2

K2
. (C.14)

Re-defining κ = K/dρ0cP (R∗T0)(1/2) as the dimensionless thermal diffusivity, for the

purpose of being consistent with previous authors (Matthews et al., 1995; Bushby &

Houghton, 2005; Houghton & Bushby, 2011) then we may write the mid-layer Rayleigh

number in the form

R =
(m+ 1) θ2 (m− γm+ 1)

(
1 + θ

2

)(2m−1)

κ2γσ
. (C.15)
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Compressible Code Details

In Chapters 5 and 6 we study compressible convection in two and three dimensions

respectively. The code that was used to evolve this system was written and provided

by Paul Bushby although some modifications were required for the two-dimensional

calculations. The section of this code used to evolve the magnetic field is written in a

non-standard manner and thus we shall give details of its formulation.

D.1 Poloidal and Toroidal Decomposition of the Magnetic

Field

For ease of reference we state the dimensionless induction equation from Chapter 5,

Equation (5.3),
∂B

∂t
= ∇× (u×B) + κζ0∇2B, (D.1)

having re-written the second term on the right hand side using the fact that ∇·B = 0.

Within the code the magnetic field is decomposed into poloidal, Φ, and toroidal, Ψ ,

components using the relation

B = ∇× (Ψ ẑ) +∇×∇× (Φẑ) . (D.2)

D.1.1 The Magnetic Field Components

Using Equation (D.2), we can derive explicit expressions for the magnetic field compo-

nents in terms of the poloidal and toroidal components, such that,

Bx =

(
∂2

∂x∂z
Φ+

∂

∂y
Ψ

)
By =

(
∂2

∂y∂z
Φ− ∂

∂x
Ψ

)
Bz = −∇2

HΦ. (D.3)
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From these relations we may express the poloidal and toroidal components of the field

in the form

Φ = −∇−2
H (ẑ ·B) , Ψ = −∇−2

H (∇×B)z . (D.4)

D.1.2 The Poloidal and Toroidal Evolution Equation

Using the induction equation, (D.1), we can derive the evolution equations for Φ and

Ψ in the following way. If we take the dot product of Equation (D.1) with ẑ, followed

by the operation of −∇−2
H on the resulting equation, we obtain

∂Φ

∂t
= ∇−2

H

[
∂

∂y
(vBz − wBy)−

∂

∂x
(wBx − uBz)

]
+ κζ0∇2Φ, (D.5)

where u = (u, v, w) and B = (Bx, By, Bz). Taking the z-component of the curl of the

induction equation followed by the operation of −∇−2
H on the resulting equation, gives

∂Ψ

∂t
= −∇−2

H

∂

∂z

[
∂

∂x
(vBz − wBy) +

∂

∂y
(wBx − uBz)

]
+ (uBy − vBx) + κζ0∇2Ψ.

(D.6)

D.1.3 The Mean Field

As a result of evolving the poloidal and toroidal components instead of the magnetic

field directly, we must also evolve the mean field. Taking the spatial average of the

induction equation results in the relations

∂B̄x
∂t

= ζ0κ
∂2

∂z2
B̄x −

∂

∂z
(wBx − uBz), (D.7)

∂B̄y
∂t

= ζ0κ
∂2

∂z2
B̄y +

∂

∂z
(vBz − wBy). (D.8)

As the field is constrained to be vertical at the boundaries, the mean vertical field B̄z is

independent of depth and constant in time and therefore does not need to be evolved.

D.2 Numerical Setup

In the Boussinesq codes one forward and backward Fourier transform is performed in

the calculation of every spatial derivative, so given that these codes use a fourth order

Runge-Kutta method for timestepping, 20(= 4 × 5) forward and backward transfor-

mations are required to evolve the magnetic field every time-step. The compressible

magnetoconvection code on the other hand deals with the magnetic field primarily in

Fourier space in order reduce the number of forward and backward transforms required
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every time-step to three two-dimensional transforms. Thus we evolve Equations (D.5)

and (D.6) in Fourier space with the hydrodynamic components evolved in real space.

In addition we evolve the mean components of the magnetic field using Equations (D.7)

and (D.7). After each time-step we can then reconstitute the magnetic field, summing

the component relations, Equation (D.3), with the corresponding mean field compo-

nents. This method is much more computationally efficient than that used by the

Boussinesq codes.
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