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Abstract  

The development of new porous materials for use in applications such as gas storage 

and separation processes, catalysis, catalysts supports and the removal of 

environmentally unfriendly species has increased rapidly over the past decade.  

Research into the development of these new materials has been dominated by metal 

organic frameworks, covalent organic frameworks, nanoporous polymers and, most 

recently, porous organic cage molecules. This thesis describes adsorption studies of a 

metal organic framework, Zn (TBAPy) and a porous tetrahedral organic cage 

molecule of ~ 1 nm diameter formed by the condensation reaction of 1,3,5-

triformylbenzene with 1,2-ethylenediamine. 

The development of metal organic frameworks has traditionally involved the 

formation of rigid network structures, analogous to that of zeolites.  More recently 

the focus has shifted to those of dynamic, flexible framework materials, and the 

response of these materials to adsorption of gases and vapours.  The metal organic 

framework Zn (TBAPy) is based on a zinc metal centre functionalised with benzoate 

fragments.  The initial two-dimensional structure undergoes rearrangement of the 

paddlewheel units to form a 3D framework, Zn (TBAPy)' upon desolvation.  The 

ability of this 3D network to separate p-xylene and m-xylene was investigated. It was 

found that these isomers produced different effects on the framework, with p-xylene 

producing a typical Type I isotherm, whereas m-xylene induced a structural change 

within the material, with a much slower rate of m-xylene adsorption at higher 

pressures.  This could potentially lead to the equilibrium separation of these two 

isomers by the metal organic framework Zn (TBAPy)'.   

The 1 nm diameter tetrahedral cage molecules formed by the condensation reaction 

of 1,3,5-triformylbenzene with 1,2-ethylenediamine can exist in a number of stable 

polymorphs, Cage 1α, Cage 1β and Cage 1γ.  These polymorphs can be 

interconverted by exposure to certain organic vapours/solvents.  The conversion of 

Cage 1β to Cage 1α by adsorption of probe molecules ethyl acetate, 2-butanone, 

diethyl ether, pentane and methanol was studied.  Adsorption of ethyl acetate, 2-

butanone and diethyl ether produced unusual adsorption isotherms, which included 

desorption of adsorbed vapour with increasing pressure during the adsorption 

isotherms.  This desorption is attributed to the structural change from Cage 1β to 



 

 

 

Cage 1α.  The unusual desorption step is not observed for methanol or pentane 

adsorption.  The adsorption of methyl acetate was studied over a wide temperature 

range in order to assess the thermodynamic and kinetic characteristics of the unusual 

desorption step.  The adsorption of dichloromethane showed the reverse 

transformation of Cage 1α to Cage 1β, showing that the inter conversion produces 

stable polymorphs.  The kinetics of the structural transformation followed an Avrami 

model and the mechanism is an activated process. 

Cage 1α has voids between the cages, which are connected by very narrow 

constrictions that allow the kinetic molecular sieving of oxygen, carbon dioxide and 

nitrogen.  It was found that oxygen adsorbs approximately ten times faster than 

nitrogen on Cage 1α, with selectivity and rate constants similar to those observed for 

carbon molecular sieves.  The thermodynamics and kinetic results are discussed in 

terms of structural characteristics and diffusion into molecular cage materials. The 

kinetic molecular sieving is not present in the polymorph Cage 1β, which has wider 

pores.
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Chapter 1 Adsorption 

1.1 Principles of Adsorption 

The phenomenon of adsorption has been exploited since ancient times, with the 

Egyptians and Sumerians utilising the adsorbent properties of clay and wood 

charcoal for the treatment of disease and the purification of water.
1
  The earliest 

quantitative studies of adsorption were conducted by Scheele and Fontana
2,3

 in the 

late 1770s, however the term “adsorption” was not coined until research by Kayser 

was conducted in 1881.
4
  Many investigations were conducted into the nature of 

adsorption,
5,6,7

 with major advances in the theoretical interpretation of adsorption 

isotherms made in the early twentieth century. A brief historical outline of the major 

developments in the interpretation and analysis of adsorption isotherms is given in 

Table 1-1.  

Adsorption is now defined by the International Union of Pure and Applied Chemistry 

(IUPAC) as the enrichment of one or more components in the interfacial layer.
8
 The 

adsorption process involves the accumulation of an excess of molecules at the 

interface between two phases. This differs from the process of absorption which is 

the bulk penetration of mass into a solid or liquid. The general term sorption was 

proposed by McBain
9
 in 1909 and can be applied to a system where both of these 

processes are occurring. The term adsorbate applies to the gas or vapour in the 

adsorbed phase, the term adsorptive applies to the gas or vapour that is to be 

adsorbed in the fluid phase and the term adsorbent applies to the material that the gas 

or vapour is adsorbing onto.  Adsorption is usually classified into two types, 

chemisorption and physisorption.  The classification is according to the types of 

forces acting on the surface of the material.  Adsorption can also be classified 

according to the phases which are interacting:  at the gas-liquid boundary, the liquid-

solid boundary, the liquid-liquid boundary or the gas-solid boundary.  In this study, 

only gas-solid physisorption systems are reviewed.  
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Table 1-1: Historical description of advances in isotherm interpretation and analysis 

Date Name Significance 

1907 Freundlich Proposed a general mathematical relationship to 

describe the adsorption isotherm, now used as an 

empirical description.
10

 

1909 McBain Noted that the uptake of hydrogen by carbon was via 

two processes, adsorption and absorption, and coined 

the term “sorption” to cover both effects.
9
 

1911 Zsigmondy Developed the theory of capillary condensation for 

mesoporous carbons.
11  

1914 Polanyi Developed the Polanyi Potential Theory – a description 

of the intermolecular forces involved in adsorption – 

now the Lennard Jones Potential is the favoured theory, 

but the Polanyi potential was used by Dubinin to 

develop the theory of micropore filling.
12

 

1916 Langmuir 1916 was the start of the publication of several papers 

by Langmuir, bringing together all evidence to support 

the concept of monolayer coverage.
13,14 

1919-

1922 

Williams and Henry Thermodynamic and kinetic derivations of the virial 

equation at low surface coverage.
15,16

 

1938 Brunauer, Emmet 

and Teller 

BET theory published – identification of an “s” shaped 

isotherm – recognised as multilayer formation, and the 

definition of “Point B” as the completion of monolayer 

coverage and start of multilayer coverage.
17

  

1940 Brunauer, Deming, 

Deming, Teller 

Classifications of the five principle types of isotherms 

into the BDDT classification.
18  

1946 Dubinin – 

Radushkevich 

Proposed the Theory of Volume Filling of Micropores 

(TVFM) developed from the Polanyi Potential theory to 

show that physisorption in micropores is different to 

that of adsorption in larger pores or on the open surface.    
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1.1.1 Physisorption and Chemisorption 

Physisorption is a long range interaction, based on van der Waals forces (dispersion 

interactions) and as such is a weak force.  Physisorption is analogous with 

condensation within the pores of the material and as such the energy released upon 

physisorption is of the same order of magnitude as the enthalpy of vaporisation of the 

gas, typically (ΔHads) is 10 – 80 kJ mol
-1

, although this may increase if adsorption 

occurs in narrow pores due to favourable interactions.
19

 Chemisorption is a shorter 

range reaction which involves the formation of chemical bonds between the gas 

molecule and the surface through the exchange of electrons.  Chemisorption can be 

associative or dissociative, dissociative chemisorption leads to the adsorbed molecule 

being torn into fragments on the surface, giving rise to the use of solid surfaces as 

catalysts, for example the oxidation of carbon monoxide on the surface of platinum.
20

 

The energy of chemisorption is much higher than that of physisorption, with (ΔHads) 

values in the region of 200 kJ mol
-1

. As chemical bonds are formed with the surface, 

chemisorption is usually irreversible, unless severe conditions are used, 

physisorption may be reversed by decreasing the pressure or increasing the 

temperature of the system, and the adsorbed molecule will return to the fluid phase in 

its original composition.   Chemisorption is confined to monolayer coverage, 

physisorption will form multiple layers, however physisorption may occur on top of 

chemisorbed layers.  Physisorption rapidly reaches equilibrium and decreases as 

temperature increases, chemisorption is a slower process and increases as the 

temperature increases, and normally occurs at high temperatures.
21

  The 

physisorption process is spontaneous, and results in a decrease in entropy due to the 

loss of degrees of freedom of the adsorbate molecule as it is adsorbed onto the 

surface of the material, and can be shown using the Gibbs free energy (equation 1.1). 

         S           1.1 

Where: 

ΔG = the surface free energy (J mol
-1

) 

ΔH = the enthalpy of adsorption (J mol
-1

) 

ΔS = the entropy of adsorption (J K
-1

 mol
-1

)  

T = the temperature (K) 
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As the adsorption process is spontaneous, ΔG is therefore negative.  The reduction in 

entropy during adsorption, as the adsorbate molecules become more ordered on the 

surface of the material, leads to a more negative ΔS on adsorption.  To maintain a 

spontaneous reaction, with a negative ΔG, ΔH must therefore be negative, and 

therefore adsorption is an exothermic process.  

The amount adsorbed decreases with increasing temperature, by Le Chatelier’s 

principle, as thermal energy supply to the system is reduced, the exothermic process 

of adsorption will be favoured and the amount of adsorbate adsorbed will increase. 

This is true for all adsorption systems, except those which exhibit activated diffusion 

effects. (See section 1.4.2.1)   

1.1.2 Adsorption Forces for a Gas Molecule on an Open Surface 

The interaction between the gas molecules and the surface of the solid are 

electromagnetic in nature, and involve the interaction of the electron density 

surrounding the involved molecules.  As the nature of the interaction is 

electromagnetic, there will be an attractive and repulsive component to the forces 

involved.  Which component is involved is dependent on the separation distance of 

the molecules.   

Attractive long range forces arise from London dispersion forces.  Assuming that in 

the ground state the electron cloud of a gas molecule is symmetrically spherical, 

there will be no permanent dipole.  Instantaneous dipoles may be induced in the 

electron cloud by neighbouring molecules, these dipoles in neighbouring molecules 

will be in phase, resulting in the force of attraction.
22

  The energy of this interaction 

is calculated by quantum mechanical methods and is given by equation 1.2: 

   
  

              1.2

                       

Where: r is the distance between atoms and C is a constant. This equation is 

representative of the interactions between a pair of atoms.  When the dispersion 

energy is between an atom and a solid, the dispersion energy becomes equal to the 

sum of the interaction energy between the gas atom and the molecules of the surface 

of the solid, as shown by equation 1.3: 

   ∑             1.3 
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Where: E is the dispersion energy and Ej is the energy of the interaction between the 

gas atom and the jth atom of the solid.  The assumption of molecules being 

symmetrically spherical leads to a disadvantage in this model, as molecules in a solid 

are rarely symmetrical.   

The dispersion interactions of molecules are long range, and are responsible for the 

condensation of gases.  Repulsive interactions occur at shorter separation distances, 

where the electron clouds of separate molecules interact, creating valence forces, and 

are responsible for chemical bond formation.   

The simplest equation for modelling the repulsive interaction energy is shown in 

equation 1.4: 

                                     1.4 

Where: 

B and m = constants  

r = the separation distance between the centres of the atoms 

Combination of equations 1.2 and 1.4 leads to equation 1.5, with m taking the value 

of 12.  

                         1.5 

This equation is known as the Lennard-Jones Potential.
23

  The Lennard Jones 

Potential is shown schematically in Figure 1-1, and describes the potential energy as 

two molecules in the gas phase approach each other.  
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Figure 1-1:  The Lennard-Jones Potential 

Positive values of potential energy occur at short separation distance, and this is 

where repulsions are dominant.  Negative values of potential energy occur at longer 

separation distances and this is where attractions are dominant.  The attractive and 

repulsive forces of interaction between the two molecules will balance at a certain 

separation distance, r (e), at this separation distance the potential energy of interaction 

is at a minimum.   

The short and long range interactions determine if there is an electron transfer 

between the surface and the adsorbed gas molecule, this then determines which type 

of adsorption is observed, either physisorption or chemisorption.
17

 

1.1.3 Adsorption Forces for a Gas Molecule in Porous Materials 

1.1.3.1 Porosity 

The word “pore” describes a minute opening which allows gases or vapours to travel 

from the external surface of the material to the internal surface area. Pores provide 

the internal surface area on which adsorption occurs.  

The internal surface area of a porous material is defined as the area which surrounds 

closed pores and all fissures and cracks which are deeper than they are wide. 

The external surface area of a porous material is defined as the protrusions and 

superficial cracks which are wider than they are deep. 

The total surface area of porous materials consists mainly of internal surface area; 

this can lead to enhanced surface areas of 500 – 1000m
2
g

-1
. 
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The porosity of a material is the collective term for the pores and the pore 

distributions.  Porosity is defined as the ratio of total pore volume to the volume of 

the adsorbent.  Adsorption occurs in open porosity, and this is defined as the ratio of 

voids and open pores to the volume occupied by the adsorbent.   

The sizes of pores are classified by the International Union of Pure and Applied 

Chemistry as in Table 1-2 and Table 1-3. 

 

Table 1-2: Classification of pores according to width
24

 

Pore Classification Width 

Micropores Width less than 2nm 

Mesopores Width between 2 and 50nm 

Macropores Width greater than 50nm 

 

Macropores and mesopores are generally considered as transport pores for the 

adsorptive, with the micropores providing the main surface for adsorption.  

Microporosity can be further defined as in Table 1-3. 

 

 

Table 1-3: Classification of micropores according to width
25

 

Micropore Classification Width 

Ultramicropores Width less than 0.7nm 

Micropores Width between 0.7nm and 1.4nm 

Supermicropores Width between 1.4 and 2.0 nm 

 

Pore size is a critical issue in the adsorption of gases into porous materials.  Larger 

pores increase the amount of gas which can be adsorbed into the material; however 

larger pores pose stability issues, with structural interpenetration, where two parts of 

the structure interconnect and catenation, where connections of links form chains
26

. It 

is more desirable to have a larger number of small pores, which enhance the 

adsorption through favourable interactions.  
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1.1.3.2 Adsorption Potential in Micropores 

At a certain pore width, the overlap of surfaces within the pore will produce a 

favourable minimum potential energy level, which is then occupied by the adsorbed 

molecule.  This interaction potential is greatest in micropores, as the pore walls are in 

closer proximity than in wider pores, and as such the majority of adsorption occurs in 

micropores. This enhancement of adsorption in micropores means that a large 

amount of gas can be adsorbed at low values of relative pressure.  This effect is not 

just influenced by the size of the pore, but also by the ratio of pore size to the 

diameter of the adsorptive. Everett and Powl calculated interaction potentials based 

on a slit-shaped model of micropores
27

.  This is shown in Figure 1-2, where relative 

interaction potential ϕ/ϕ* is shown plotted against the ratio d/r0 where d is the half 

width of the slit and r0 is the collision radius of the molecule.  For large values of 

d/r0, the potential curve resembles plot (a) where two minima are present. As the 

width of the adsorbing molecule approaches the size of the pore, the minima merge 

to give a single potential energy well of increasing depth, plots (b) to (c). Plot (c) is 

that shown in micropores, and allows enhanced adsorption.  

 

 

Figure 1-2: Enhancement of interaction potential in a slit-shaped pore
27,28 
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1.1.4 Thermodynamics of Adsorption 

1.1.4.1 Molar Energy of Adsorption 

As discussed previously, the enthalpy of physisorption is exothermic due to the 

Gibbs free energy equation (equation 1.1). In the most simple of cases, adsorption 

occurs when the temperature and volume of the system are constant.  This allows an 

expression for the molar energy of adsorption ΔaU shown in equation 1.6 

                     1.6 

Where:  –QT, V is the amount of heat evolved at constant temperature and volume. 

In physisorption processes the adsorbent is usually an inert, stable material.
29

  The 

change in molar energy is therefore brought about solely by the change in state of the 

adsorptive, induced by the removal of adsorptive from the gas phased by adsorption 

onto the surface of the material, allowing equation 1.7: 

                     1.7 

Where:  

ua = the molar internal energy of the adsorbed state 

ug = the molar internal energy of the gas phase.   

The molar energy of the adsorption system is then dependant on all adsorbate-

adsorbent and adsorbate-adsorbate interactions.    

1.1.4.2 The Isosteric Enthalpy of Adsorption 

The change in Gibbs free energy with respect to the change in amount of substrate is 

known as the chemical potential, μ, at constant pressure, temperature and constant 

amounts of other components.  It is essential for all thermodynamic studies that the 

system under question reaches equilibrium.
28

   When an adsorption is at equilibrium, 

the chemical potential of the gas phase will be equal to the chemical potential of the 

adsorbed phase: 

                 1.8  

For the gas phase, the change in chemical potential energy, dμg is given by: 

                         1.9 

Where: 
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 Sg = the entropy of the gas phase (J K
-1

 mol
-1

) 

 Vg = the volume of the gas phase (cm
-3

) 

 P = the pressure (mbar) 

For the adsorbed state, the change in chemical potential energy, dμa is given by 

equation 1.10:
28 

       ̇      ̇     
   

   
                       1.10  

Where:  

  ̇  = the differential entropy of the adsorbed phase  

  ̇  = the differential molar volume of the adsorbed phase 

 na = the number of moles adsorbed 

Substituting equations 1.10 and 1.9 into 1.8, and at a constant na gives equation 1.11: 

(    ̇ )   (    ̇ )                    1.11

  

Rearranging equation 1.11 gives equation 1.12: 

(
  

  
)
  

 
(    ̇ )

(    ̇ )
                    1.12  

Assuming that Vg (molar volume of the gas phase) is much greater than Va 

(differential molar volume of adsorbed phase)  and assuming that Vg obeys the 

perfect gas laws, then substitute  Vg = RT/P, equation 1.12 becomes equation 1.13: 

(
  

  
)
  

  (     ̇ )                     1.13  

Sg – Sa represents the total change in entropy, so equation 1.13 becomes equation 

1.14: 

(
  

  
)
  

       ̇    1.14  

At equilibrium, we have equation 1.15 which defines the differential molar enthalpy 

of adsorption,   ̇ : 

  ̇     ̇  1.15  

Rearranging and substituting equation 1.15 into equation 1.14 gives equation 1.16: 
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(
  

  
)
  

    
   ̇ 

   
 1.16  

Separation of variables gives equation 1.17: 

∫
  

 
  

  ̇ 

 
 ∫

  

   1.17  

Integration of equation 1.17 gives the Clausius Clapeyron Equation1.18:
30

  

      
  ̇ 

  
  

  

 
 1.18  

This equation represents the relationship between pressure and temperature for a 

given amount adsorbed, therefore is an adsorption isostere. By obtaining isotherms at 

a series of temperatures, for a set value of amount adsorbed, na (mmol g
-1

), a plot of 

lnP against 1/T (K
-1

) may be obtained, and the value of the isosteric enthalpy of 

adsorption can be calculated directly from the gradient of this plot, ΔH/R, whilst the 

entropy of adsorption can be calculated from the intercept, ΔS/R.  Extrapolation of 

the isosteric enthalpy of adsorption to zero surface coverage provides a fundamental 

measure of the adsorbate/adsorbent interaction.  

1.2 Adsorption Isotherms 

The extent of adsorption (n / mmol g
-1

) on the surface of the adsorbate is a function 

of the temperature (T / K) and pressure (P / mbar) of the system, and of the 

properties of both the adsorbate and the adsorbent:  

                              1.19  

For a given adsorbate adsorbed on a given adsorbent at constant temperature this 

simplifies to: 

                             1.20  

To allow comparison between different systems, isotherms are conventionally 

plotted on the basis of relative pressure P/P
0
 where P

0
 is the saturated vapour 

pressure of the adsorbate: 

    (
 

  )
                     

 1.21  

This gives a universal basis which allows graphical representation and comparison of 

isotherms.   
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1.2.1 Classification of Isotherms 

Brunauer et al
18

 classified physisorption isotherms into five types, with a sixth being 

added in 1985 by the IUPAC classification scheme.
8
  The classification chart is 

shown in Figure 1-3. All isotherms should fit one, or a combination of two or more 

of these isotherms.  

 

Figure 1-3: Isotherm classification chart 

Type I Isotherm:  As explained in Section 1.1.3.2, enhanced adsorption occurs in 

micropores which approach the diameter of the adsorbate.  A decrease in the 

micropore width results in an increase in adsorption energy, and a reduction at the 

relative pressure at which maximum adsorption occurs.  This leads to the production 

of an isotherm concave to the relative pressure axis, which rises sharply at low 

relative pressures and reaches a plateau at low relative pressure, giving an isotherm 

characteristic of microporous materials.  The amount adsorbed reaches a limiting 

value as P/P
0
 approaches 1. The value of amount adsorbed at the plateau gives a 

good indication of the pore volume of the material.
17

 An example is nitrogen and 

carbon dioxide adsorption on activated carbon at 77 K. 
10 

 

Type II Isotherm: The isotherm follows a path which is concave to the relative 

pressure axis, then linear, then convex at higher relative pressure.  The point B is the 

start of the linear section of the isotherm and represents the completion of monolayer 

coverage and the start of multilayer formation. The thickness of the multilayer 

increases as P/P
0
 approaches 1, with the adsorbed layer becoming bulk liquid or solid 

when P/P
0 

reaches 1.  This isotherm type is typically obtained for non- porous or 
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macroporous materials, for example nitrogen adsorption on non-porous silica and n – 

butane on carbon black at 298 K. 
31, 32

 

Type III Isotherm: The isotherm is convex to the relative pressure axis over the entire 

pressure range.  It is characteristic of weak adsorbate-adsorbent interactions, leading 

to low uptakes at low relative pressure.  Once an adsorbate molecule has been 

adsorbed onto an adsorption site the interactions become stronger, which becomes 

the driving force for adsorption, leading to larger uptakes at higher relative 

pressure.
33

 An example of this type of isotherm is water adsorption on active carbon 

BAX950.
34

  

Type IV Isotherm:  The isotherm follows a similar path to that of the Type II 

isotherm; however a plateau is reached at high relative pressure rather than the 

continued uptake.  The most characteristic feature is the hysteresis loop, which 

shows the adsorption section on the lower branch and a different desorption section 

on the upper branch.  The extent of the hysteresis is dependent on the system, and 

can be attributed to capillary condensation in mesoporous materials such as activated 

carbon and to structural change in microporous materials such as metal organic 

frameworks, both of which result in different adsorption and desorption mechanisms. 

An example of this adsorption isotherm is water adsorption on silica.
35

 

Type V Isotherm:  The isotherm follows a similar path to the Type III isotherm, with 

a plateau at higher relative pressure rather than continued uptake.  This type of 

isotherm is uncommon, but has been seen for water vapour adsorption on activated 

carbon.
36

 

Type VI Isotherm:  The isotherm was initially introduced as a hypothetical isotherm 

but was included in the 1985 International Union of Pure and Applied Chemistry 

classification system.  The isotherm shows stepwise multilayer adsorption on a 

highly uniform surface, and has been shown with krypton adsorption on carbon black 

at 77 K.
37

   

1.2.2 Hysteresis  

The desorption section of an isotherm often follows the same pathway as the 

adsorption isotherm.  When the desorption isotherm deviates from the path of the 

adsorption isotherm, as in isotherm Types IV and V, this is known as hysteresis.  It is 
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well known that mesoporous materials produce distinctive hysteresis loops, and these 

were first classified into three types by de Boer.
38

 A further fourth type was added in 

1985 by Sing et al,
2 

 and these hysteresis types are shown in Figure 1-4. The variety 

in the shapes of the hysteresis loops can be associated with specific pore structures.  

 

Figure 1-4: Types of adsorption – desorption hysteresis loops
17

 

 

The H1 hysteresis loop has very steep adsorption and desorption branches which are 

very narrow.  This hysteresis is often given by porous materials with a narrow 

distribution of mesopores. H1 hysteresis contains a plateau, as does the H2 

hysteresis.  The H2 loop is broad with the desorption branch showing a long flat 

plateau before the steep desorption section, and is characteristic of complex pore 

structures.  Hysteresis types H3 and H4 show no plateau at high relative pressure and 

convergence of the two hysteretic branches does not occur until the system 

approaches the saturation vapour pressure. H3 and H4 are usually given by 

adsorbents with slit shaped pores, as seen in activated carbons; however H4 is also 

given by adsorbents with a size distribution in the micropore range.   

In order to provide interpretation of the much studied Type IV isotherm hysteresis, 

the theory of capillary condensation was put forward by Zsigmondy
11

, who described 

adsorption as the multilayer formation within a pore, with desorption being the 

evaporation of the adsorbate from the surface of the pore, two different mechanisms, 

giving rise to different shapes for the adsorption and desorption isotherm. In 



Chapter 1 Adsorption 

 

15 

 

mesoporous carbon based materials the hysteresis is based on this theory of pore 

filling and emptying difference.  As the equilibrium pressure approaches saturation 

pressure there will be a spontaneous condensation of the gas molecules onto the pore 

walls, with multilayer formation until the pore is filled. The desorption process then 

follows from a changed meniscus, as seen in Figure 1-5, leading to an altered 

desorption isotherm.   

 

Figure 1-5: Hysteresis in a column-like pore, (a) adsorption (b) desorption 

Capillary condensation does not account for all occurrences of hysteresis, for 

example, in metal organic frameworks the hysteresis may be based on structural 

change, as metal organic frameworks are mostly microporous, and as such capillary 

condensation does not occur as the pores are too narrow. The hysteretic adsorption of 

hydrogen by a nanoporous metal organic framework was observed by Zhao et al
39

 

and Fletcher et al
40

 where microporous metal organic frameworks showed hysteresis 

based on kinetic trapping effects through structural flexibility.  

1.3 Interpretation of Adsorption Isotherms 

1.3.1 Henry’s Law  

The simplest interpretation of the behaviour of adsorbed molecules at the low surface 

coverage region of the isotherm is that the adsorbed molecules have no interaction 

with each other.
16

 This is Henry’s Law and can be expressed as in 1.22: 

       1.22  

Where: 

 n = the specific surface excess amount 

 P = the pressure (mbar) 

 KH = Henry’s law constant 
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This shows a linear relationship between amount adsorbed at the gas equilibrium 

pressure, at low pressure and high temperatures, at low uptakes.  

The differential enthalpy of adsorption at zero surface coverage can be calculated 

from equation 1.23 by plotting ln KH against 1/T. 

     ̇      
       

  
   1.23  

All isotherms should obey this relationship at low pressure, however in the cases 

where there is deviation from this, a virial treatment may be adopted. Virial analysis 

is also useful for analysis of adsorption where the adsorptive are above their critical 

temperature. 
41, 42 

1.3.2 Langmuir Equation 

The Langmuir model is the simplest description of an adsorption isotherm, and is 

generally used for the analysis of Type I isotherms.  Although classically developed 

for analysis of adsorption on an open surface, the equation describes the limiting 

value shown on the plateau of the Type I isotherm, which is the isotherm 

characteristic of adsorption in microporous materials.
13,14

 The Langmuir isotherm is 

based on several assumptions
43

: 

i. Adsorption in the Type I isotherm is monolayer; the attractive forces of the 

surface are shielded by the monolayer and multilayers of adsorbate are not 

formed 

ii. The surface of the adsorbing surface is uniform and all adsorption sites are 

energetically homogenous 

iii. The adsorbed molecules and the molecules in the bulk gas phase are in 

dynamic equilibrium 

iv. Collisions between a molecule in the bulk gas phase and a vacant adsorption 

site on the adsorbent result in adsorption 

v. Once adsorbed, the molecules become localised, and do not migrate across 

unfilled surface sites  

The Langmuir equation is derived from the kinetic theory of gases. Assuming that 

the adsorbate in the gas phase is in dynamic equilibrium with the surface of the 

adsorbent, this gives equation 1.24 for associative adsorption. 
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     1.24  

Where: 

 Ag = the adsorbent in the gas phase 

 Ssurface = the surface site of the adsorbent 

 ka and kd = the rate constants of adsorption and desorption, respectively (s
-1

) 

 M – A = adsorbed molecule on a surface site 

The adsorption surface is comprised of N
s
 independent and energetically 

homogenous adsorption sites, which can be occupied by N
a
 adsorbed molecules, this 

fractional surface coverage, θ, is given by equation 1.25: 

   
  

   1.25  

The rate of adsorption is dependent on pressure P of the system and the fraction of 

unoccupied surface sites on the adsorbent 1 – θ as shown in equation 1.26: 

                              1.26  

Where: ka = the rate constant of adsorption (s
-1

).  Equation 1.26 shows that if the 

pressure and rate constant are large, and the fraction of unoccupied sites is small, 

then the adsorption will be fast.  

The rate of desorption is independent of pressure, but is dependent on the fraction of 

occupied surface sites as shown in equation 1.27: 

                        1.27  

Where: kd = the rate constant of desorption (s
-1

). 

At equilibrium, the rates of adsorption and desorption are equal, and equations 1.26 

and 1.27 combine to give equation 1.28: 

               1.28  

This can be rearranged to equation 1.32 via the following rearrangement: 

                                            1.29 

   
   

         
 1.30 
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[(

  
  

) ]

[    (
  
  

) ]
 1.31  

   
  

    
 1.32  

Where K = the equilibrium rate constant (not the thermodynamic equilibrium 

constant) and is defined as: 

   
  

  
 1.33  

As the fractional surface coverage is a difficult dimension to measure, it is re-defined 

as the relative mass, and is given by: 

   
 

  
 1.34  

Where: 

n = the amount adsorbed (g) 

 nm = the monolayer capacity of the material (mmol g
-1

) 

Combination of equations 1.32 and 1.34, rearrangement and simplification give the 

Langmuir equation used for isotherm analysis: 

 

 
  

 

  
  

 

   
 1.35  

A plot of P/n against P should give a linear graph of gradient 1/nm, the reciprocal of 

which will give the monolayer capacity of the material.  At very low pressures the 

isotherm is linear and reduces to Henry’s Law.  The equilibrium constant, K, 

represents the strength of interaction between the adsorbate and the adsorbent.   

1.3.3 Brunauer Emmet Teller (B.E.T) Theory 

Although Langmuir put forward an isotherm equation to model monolayer 

adsorption, he also recognised that the kinetic theory used to derive his equation 

could be applied to second and higher layers of adsorbed molecules. The model 

Langmuir arrived at for multilayer adsorption was too complex, and was not adopted.  

By introducing further assumptions to the Langmuir theory, Brunauer, Emmet and 

Teller were able to arrive at their famous equation now commonly used to calculate 

the surface area of many porous materials.
44

 The assumptions used in forming their 

equation include all those used by Langmuir and the following additions:  
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i. Unrestricted multilayer formation may take place 

ii. Only the uppermost layers of molecules in the multilayer system are in 

dynamic equilibrium with the vapour 

iii. Enthalpies of adsorption of the second and higher layers are equal to the 

enthalpy of condensation 

iv. Desorption can only occur from the uppermost exposed layer 

The B.E.T equation is associated with Type II and Type IV isotherms, discovered by 

Brunauer and Emmet in 1937, during their work studying nitrogen adsorption on a 

synthetic iron ammonia catalyst.
45

 Type II isotherms show unrestricted multilayer 

formation, whereas Type IV isotherms show restricted multilayer formation.  

The B.E.T equation in its linear form is shown in equation 1.36:   

 

        
  

 

   
  

     

   
  

 

   1.36  

Where:  

 p = pressure (mbar) 

 p
0
 = saturation vapour pressure (mbar) 

 n = uptake at pressure p (mmol g
-1

) 

 nm = monolayer capacity (mmol g
-1

) 

 c = dimensionless constant, related to adsorption energy, as shown in 

equation 1.37:  

     [
        

  
] 1.37  

Where:  

 ΔHA = enthalpy of adsorption of first layer 

 ΔHL = enthalpy of vaporisation of molecules present in the second and higher 

multilayer 

 R = the gas constant  

 T = the temperature 

When C is large, indicating that the enthalpy of adsorption of the monolayer is large 

compared to the enthalpy of adsorption of the second and higher layers, there will be 

greater adsorption than when C is small.  The value of C taken will affect the shape 
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of the isotherm produced, with larger values of C giving Type I shaped isotherms, 

and smaller values giving Type III shaped isotherms.  Middle range values, from ~ 

10 – 100 will give Type II shaped isotherms.  The effect of changing values of C on 

the shape of the isotherms is shown in Figure 1-6. 

 

Figure 1-6: B.E.T isotherm plots showing change in isotherm with changing C 

values 

Plotting p/n (p
0
 – p) against p/p

0
 will give a straight line, gradient (c – 1)/ nmc and 

intercept 1/nmc in the region of 0.05 – 0.3 on the relative pressure axis.  From this 

monolayer coverage and C values can be calculated, and from this the apparent 

surface area. 

The B.E.T model is the most widely used model for the determination of surface area 

of porous materials, with nitrogen being the standard adsorptive at 77 K.  Nitrogen 

molecules at low temperature tend to fill the entire porosity, with packing only 

depending on the size of the nitrogen molecule, independent of the adsorbent 

structure
46

 making this the optimum adsorptive for determining B.E.T surface area.   

Although the B.E.T equation is commonly used to describe the porosity of many 

materials, there are fundamental problems with the equation, which have been 

recognised since its development.  The assumptions used in deriving the equation do 

not take into account several important features.  Not all surface sites are 

energetically homogenous; almost all adsorbents have energetically heterogeneous 

surfaces.  The model does not take into account the horizontal interactions of 
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molecules in the layers, which must be prominent when surfaces are approaching 

completion due to the proximity of the molecules on the surface.  When used to 

study the surface area of microporous carbons, the B.E.T equation can give 

unreasonably high surface areas.   

1.3.4 Evaluation of Microporosity – The Dubinin-Radushkevich (DR) Model 

The Dubinin Theory of the Volume Filling of Micropores (TVFM) equation is based 

on earlier theories developed by de Saussure
47

, Eucken
48

 and Polanyi
49

.  It is widely 

used for assessing the volume of micropores in activated carbons and other porous 

materials.
14, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60

 The DR model is based upon the Polanyi 

Potential Theory, which assumes that the monolayer does not shield the attractive 

forces of the surface of the material; instead they can reach beyond the dimensions of 

a monolayer and form a potential energy gradient.  This is fundamentally different to 

the Langmuir derivation as this assumes monolayer formation only, with no 

influence beyond the monolayer. 
 

1.3.4.1 Polanyi Potential Theory 

The adsorption potential was defined by Polanyi as the work involved in bringing a 

molecule of gas or vapour from the gas phase to a point within the adsorbed phase.
49

  

Figure 1-7 illustrates schematically the basic ideas involved in the Polanyi Potential 

Theory of adsorption.   

 

Figure 1-7: Polanyi Potential Theory – cross-section of the adsorbed phase 
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The adsorbent surface emanates a strong attractive force, and is responsible for the 

formation of multilayers of adsorbed gas or vapour.  The layers are compressed due 

to the strong attractive force, and by compression from higher layers. This results in 

a density gradient, with the adsorbed gas closest to the adsorbed surface being denser 

than higher layers, with density approximating the liquid phase. The density 

decreases with increasing distance from the surface until it reaches that of the gas 

phase.  The work done in compressing the gas is given by equation 1.38.
61

 

   ∫    
  

  
 1.38  

Where: 

 εi = the adsorption potential when the density of the gas is ρi 

 ρx = the density of the gas phase (g cm
-3

) 

 V= M/ρ where M is the molecular weight of the adsorbate 

The forces of attraction at any given point between the adsorbent surface and the gas 

phase form layers, or equipotential surfaces, shown in the diagram as ε1, ε2, ε3 and ε4, 

at a distance r1, r2, etc.  Each equipotential surface therefore encloses a volume, v1, 

v2, etc. Vmax, the total volume is that encompassed by the adsorbed surface and the 

adsorbed phase/gas phase boundary.  The maximum adsorption potential is found at 

the adsorbent surface, the minimum adsorption potential is found at the gas phase 

boundary. The adsorption potential (ε) is a function of the volume (V) it 

encompasses, shown by equation 1.39, and as such can be considered as an isotherm 

equation as both ε and V can be expressed in terms of temperature and pressure.  

         1.39  

The curve produced from this relationship is known as a “characteristic curve”, as 

the adsorption potential is postulated to be independent of temperature, the curve 

produced becomes characteristic for a given gas at any temperature.   

The Polanyi theory was not developed from kinetic or thermodynamic approaches, 

instead a characteristic curve was calculated from experimental isotherm data, and all 

other isotherms were calculated from this analysis.  When calculating the 

characteristic curve the following assumptions were followed:  
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i. The vapour present in the gas phase behaves as an ideal gas (PV = nRT) 

ii. The liquid in the adsorbed phase is incompressible 

The Polanyi equation is given in equation 1.40: 

    ∫
  

 
     

  

  

  

  
   1.40  

Where: 

εi = described as the work done in compressing an ideal gas from the gas 

phase at pressure Px to the saturated gas pressure P
0
  

R = the gas constant (8.314 J K
-1

 mol
-1

) 

T = temperature (K)  

This allows the temperature dependency of physisorption to be taken into account in 

this adsorption model.   

1.3.4.2 Derivation of the Dubinin-Radushkevich Equation 

While interpreting the Polanyi potential Dubinin re-defined what Polanyi had coined 

the “adsorption potential” to “the change in free energy associated with reversibly 

bringing a molecule of gas from the gas phase to the condensed adsorbed phase” and 

denoted this as A, as shown in equation 1.41.
62

 

         
  

  
 1.41  

Where: 

 R = the gas constant (8.314 J K
-1

 mol
-1

) 

 T = temperature in (K)  

 P
0
 = saturated gas pressure (mbar) 

 Px = pressure (mbar) 

The theory involves calculation of the volume filling of the micropores, therefore a 

second parameter, the degree of filling of the micropores, θ,  is defined as in equation 

1.42. 

   
 

  
 1.42  



Chapter 1 Adsorption 

 

24 

 

Where: 

 W = the volume of micropores that has been filled at a relative pressure of 1  

 W0 = the total available micropore volume 

The micropore size distribution is assumed to be Gaussian
63, 64, 65

, and this led to the 

arrival at the following exponential expression: 

     [  (
 

 
)
 

] 1.43  

Where: 

 A = -RTln(P
0
/P)  

 k = a characteristic parameter  

 β = the similarity constant 

Where k and β are both characteristic of the adsorbate 

Combination of equations 1.42 and 1.43 results in the well-known DR equation: 

        [  (
  

 
)
 

(  
  

 
)
 

] 1.44 

which can be simplified to equation 1.42: 

 

  
    [  (

 

 
)
 

(   
  

 
)
 

] 1.45  

To plot the DR equation, equation 1.45 can be simplified to give equation 1.46 

                  (
  

 
)   1.46  

Where: 

    (
 

 
)
 

 = a measure of the pore size distribution of the adsorbent.   

A graph of log(W) against log
2
(P

0
/P) should yield a straight line where the intercept 

is equal to the total micropore volume.  In normal cases where mass uptake is 

measured, W and W0 can be replaced by n and n0, which are the consecutive mass 

measurements, and volumes can be calculated from these values.   
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1.3.4.3 The Dubinin – Astakhov (DA) Equation 

The squared factor in the Dubinin – Radushkevich equation (log P
0
/P)

2
) describes a 

Gaussian distribution of micropore sizes.  The Dubinin – Astakhov equation is 

simply a generalised version of this, where the square is replaced by n as shown in 

equation 1.47: 

                  (
  

 
)   1.47  

The term n  is referred to in the literature as the heterogeneity factor, relating to the 

distribution of pore sizes.  Experimentally it has been shown that n = 2 for activated 

carbons and n = 4 – 6 zeolites.  It allows linearization of plots by adjustments of the 

value of n.  

The DR and DA equations are based upon the description of the distribution of the 

pore sizes within the structure. It has been suggested that for carbons and coals, the 

DR and DA equations are successful so long as the distribution of pores sizes can be 

described by a mathematical model.
66,67,68

 

1.3.4.4 Application of the Dubinin – Radushkevich Equation 

The Dubinin – Radushkevich equation is a powerful tool in the analysis of isotherms 

produced by microporous materials.  It can yield the following information when 

analysing the low relative pressure region of the isotherms by carbon dioxide 

adsorption at 273 K
28

: 

i. The amount adsorbed leading to the micropore volume 

ii. Relative pore size distributions based upon the gradient of the plots 

iii. How the pore size distributions vary from the expected Gaussian distribution 

The relative pore size distributions affect the shape and degree of linearity of the 

plots produced by the DR analysis.  This is shown in Figure 1-8 along with how this 

changes the shape of the distribution from the expected Gaussian.
69

 The dashed lines 

represent the expected shapes of the graphs; the solid lines show the possible 

deviations.  
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Figure 1-8: Possible deviations from the linear Dubinin - Radushkevich plot
68

 

A) Shows that the material obeys the theory of volume filling of micropores, 

where the micropore filling occurs from the smallest to the largest. 

 

B) Shows a pore distribution where the larger micropores are absent, or 

complete micropore filling occurs at a relative pressure less than 1.  

 

C) Shows an increase at higher relative pressures.  This is attributed to the filling 

of additional porosity, for example mesoporosity, supermicropores or 

multilayer adsorption on the non-porous surfaces of the material. 

 

D) Shows a decrease in micropore filling at lower values of relative pressure, 

showing the smallest of micropores are not filled, this could be due to 

activated diffusion or molecular sieve effects. 

 

E) Shows that the micropore distribution is narrow and the isotherm is not at 

equilibrium, and cannot be analysed by the DR equation.  

The gradients of the plots shown in Figure 1-8 can be used to describe the average 

pore size distributions, lower values of the gradient represent a narrower distribution 

of micropores, higher values of the gradient represent a wider distribution of 

micropores, when adsorbents of similar types are compared.
69
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1.3.5 Virial Equation 

The virial equation is employed as a method for analysing the low surface coverage 

region of adsorption isotherms. It can be applied to many systems and mechanisms, 

and is particularly useful when the isotherms are of gas adsorption at temperatures 

above the gas critical temperature.   

A linear form of the virial equation was developed in the early 1900s by Williams
 15 

and Henry
16

 and is given by equation 1.48.
70

   

  (
 

 
)               

   1.48  

In this equation A0 and A1 parameters are indicative of the interaction between the 

adsorbate-adsorbent at zero coverage and adsorbate-adsorbate interactions, 

respectively. The higher terms, A2 and above, can be ignored under circumstances of 

low surface coverage. 
71, 72

  

A similar virial treatment was adopted by Kiselev et al
73

 to analyse the adsorption of 

methane, ethane and ethylene on carbon black and zeolite materials.  The form of the 

equation used is shown as equation 1.49. 

                     
     

    1.49  

Where: 

 n = the amount adsorbed (mol g
-1

)  

 p = pressure (Pa) 

 C = a temperature dependant parameter of the gas – solid system.  

Czerpirski and Jagiello
74

 developed equation 1.50 for virial analysis of adsorption 

isotherms, assuming that the isotherms obey Henry’s Law at low surface coverage. 

             
 

 
 ∑    

   ∑    
   

   
 
    1.50  

Where: 

 P = pressure (Pa) 

 N = uptake (mol g
-1

)  

 T = Temperature (K) 

 ai and bj = temperature independent empirical parameters.   
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This equation has been previously used by Rowsell et al
75

 to describe the unique 

curvature of hydrogen adsorption isotherms observed on metal organic frameworks 

at 77 K, which were shown to be poorly described by Langmuir and other empirical 

isotherm equations.  

The validity of the use of the linear equation 1.48 over equation 1.50 was 

investigated by Chen et al who compared the analysis of isotherms by equations 1.48 

and 1.50 and also by the empirical Langmuir – Freundlich equation:   

(
 

  
)  (

  
 

 ⁄

     
 

 ⁄
) 1.51  

The greatest uncertainties in the applications of these equations occur at low pressure 

where there is the steepest uptake of gas.  For this reason equation 1.51 was the least 

successful at modelling the isotherms at low pressure, as the equation does not 

reduce to Henry’s Law. In the comparison by Chen et al, the linear equation 1.48, 

was found to have smaller errors when fit to the isotherm data than equation 1.50, 

and was used to model the data presented in their study.   

At low surface coverage the amount adsorbed, n, approaches zero, and the linear 

virial equation 1.48 reduces to equation 1.52.  

 

 
            1.52  

Calculation of A0 values can then yield the Henry’s law constant by equation 1.53. 

           1.53  

The specific values of A0 can be calculated by plotting ln (n/P) against n.  

The virial equation can be used to determine the isosteric enthalpy of adsorption.    

By plotting ln (n/p) against n at series of temperatures, it is then possible to estimate 

the enthalpy of adsorption at zero surface coverage by plotting values of A0 against 

1/T.  The gradient of this plot would be equal to ΔH/R, allowing calculation of ΔH in 

kJ mol
-1

.   
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1.4 Surface Area Calculations and Phenomena Observed During Adsorption 

Adsorption techniques are widely applied to determine the surface area of porous 

materials.  The surface area of a porous material calculated by adsorption does not 

give a true representation of the actual surface area.  The “equivalent” surface area 

that is calculated is a function of the experimental conditions and the method used to 

interpret the data, therefore it is a variable parameter and must be treated with 

caution.  The calculation of surface area may also be affected by certain phenomena 

which exist in adsorption science, such as activated diffusion, molecular sieve effects 

and cooperation effects.  

1.4.1 Surface Area Calculation 

With the calculation of monolayer capacity from either the Langmuir or B.E.T 

equation, the apparent surface area of the material can be calculated using equation 

1.54. 

          1.54  

Where: 

 S = the specific surface area (m
2
 g

-1
) 

 Am = the average area occupied by one molecule of adsorbate at monolayer 

coverage  

 NA = Avogadro’s number, 6.022 x 10
23

 (molecules mol
-1

) 

 nm = the monolayer capacity of the material (mmol g
-1

) 

1.4.2 Phenomena Observed During Adsorption 

1.4.2.1 Activated Diffusion 

Adsorption is an exothermic process, so by convention it is expected that as 

temperature is increased at a given relative pressure, the amount adsorbed should 

decrease.  In porous systems in which ultra-microporosity is present often the 

contrary to this expected behaviour is observed, and a mass increase with increasing 

temperature is seen, with very slow timescales - where equilibrium may not be 

reached for many hours or days. Figure 1-9 shows how activated diffusion was 

observed by P. Zweitering et al.
76 
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Figure 1-9: Activated diffusion
76

 

Figure 1-9 illustrates how low levels of adsorption occur at low temperatures, with 

equilibrium not being established.  As the temperature increases, the amount 

adsorbed increases to a point where equilibrium is established.  From this point any 

further increases in temperature results in mass loss, which is as expected, and has 

been shown many times.
77,78

 The effect of activated diffusion is attributed to the 

relative sizes of the pores and the adsorbate molecules. When the size of the 

adsorbate approaches the size of the pores, barriers to diffusion occur which are only 

overcome by having enough thermal energy, as shown by the Arrhenius equation 

(equation 1.55). 

      
  
   1.55  

Where: 

 k  = the rate of adsorption (s
-1

) 

 Ea = the activation energy of the process (J mol
-1

) 

 A = the pre exponential factor (s
-1

) 

 R = the gas constant (8.314 J K
-1

 mol
-1

) 

 T = the temperature (K) 

The barrier to diffusion is the activation energy required to enter the pore, and is 

related to the pore size.  According to equation 1.55 the activation energy is related 

to the temperature of the system, the higher the temperature the more thermal energy 

the adsorbate possesses therefore the rate of adsorption increases, increasing the 

amount adsorbed.  This temperature dependency for adsorption in porous materials 



Chapter 1 Adsorption 

 

31 

 

which possess the smallest and highest energy micropores may pose a problem for 

producing reliable surface areas, as values will change with changing temperature.  

This is especially a problem for nitrogen adsorption, and activated diffusion effects 

are often observed while attempting to gain a B.E.T nitrogen surface area value.  

1.4.2.2 Molecular Sieve Effects 

Molecular sieve effects mainly refer to the exclusion of certain adsorbates from the 

porosity due to their effective diameters being larger than the entrance to the 

porosity. Molecules which have a smaller effective diameter will provide a larger 

value of surface area than those the same size, or larger than, the entrance to the 

porosity.  This effect is explained more in Chapter 2 – Porous Materials.   

1.4.2.3 Cooperation Effects 

Cooperative effects occur in larger micropores, where it is possible for more than 

monolayer coverage to occur.  The phenomenon is illustrated in Figure 1-10. 

 

Figure 1-10: Cooperative effects in micropores 

Initial filling of the monolayer occurs at low relative pressures.  As the pressure 

increases, it becomes as energetically favourable to fill the middle of the pore as it is 

to complete the partially filled monolayer.  This leads to an over – estimation of the 

surface area.   
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1.5 Mechanism of Adsorption 

For the adsorption of a gas phase adsorbate onto the surface of the adsorbent to 

occur, the gas phase adsorbate must first diffuse to the surface of the adsorbent; this 

makes adsorption a two-step process, diffusion followed by adsorption. The rate of 

adsorption of the adsorbate onto the open surface of the solid is so great that it can be 

considered as instantaneous, making the rate determining step of adsorption the rate 

of diffusion (or how fast the molecules approach the surface of the solid).
79

  The 

process of diffusion can follow four main mechanisms including: a) gas diffusion; b) 

Knudsen diffusion; c) surface diffusion; and d) activated diffusion.  Which 

mechanism is followed is greatly dependent on the ratio of the dimensions of the 

adsorbate (in particular the mean free path of the molecule), to the size of the pore 

entrance.   

The mean free path of the molecule is defined as the average distance the particle 

travels between collisions with other particles and is given by equation 1.56: 

   
  

√       
 1.56  

Where: 

 P = the pressure (Nm
-2

) 

 T = the temperature (K) 

 R = the gas constant (8.314 J K
-1

 mol
-1

) 

 d  = the collision diameter (nm)  

 NA =  Avogadro’s constant (mol
-1

)  

Figure 1-11 illustrates the various mechanism of diffusion, and how the pore size 

relates to the mean free path of the molecule.  
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Figure 1-11: Mechanisms of diffusion 

In gas diffusion, the molecules move through the porous structure without contact 

with the pore walls as the pore diameter is much greater than the mean free path of 

the molecules.  This usually occurs in the larger macropores which have a diameter 

greater the 50 nm.  

Knudsen diffusion can be described by the Knudsen Number, which is the ratio of 

the mean free path of the molecule and the diameter of the pore wall.
80

   

    
 

 
 1.57  

Where: 

 λ = mean free path 

 d = diameter of the pore (cm) 

Free gas diffusion Kn << 1 

Knudsen diffusion Kn = 1 

Surface diffusion Kn >> 1 

 

A small number indicates that the diffusion is similar to gas diffusion, and there is 

minimum contact with the pore walls.  When the Knudsen number is large the 
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molecule is permanently within the influence of the surface of the pore wall, and 

there is more collisions with the pore walls than with other molecules.  

Surface diffusion occurs when the pore diameter reaches a size smaller than the mean 

free path of the adsorbate, leaving the molecule constantly in contact with the pore 

wall, the molecule diffuses via site to site hopping along the pore wall.  

Activated diffusion occurs when small molecules diffuse into high energy pores.  

The pore has an energy barrier that the molecule must overcome.  This is common in 

microporous materials, as the molecule mean free path approaches the size of the 

pore diameter, and interactions between the molecule and the pore walls create 

repulsive effects.   

1.6 Models of Adsorption Kinetics 

1.6.1 Empirical Description 

Kinetic models describe the adsorption of a gas particle into a spherical pore.  

Empirical adsorption is shown by equation 1.58. 

  

  
      1.58  

Where:  

Mt = uptake at time t (s) / (g) 

Me = uptake at equilibrium (g) 

k = rate constant (s
-1

)  

n = diffusion exponent 

A plot of ln (Mt/Me) against ln (t) should yield a linear plot, from the gradient of 

which the diffusion exponent can be determined.  The diffusion exponent can 

distinguish between different types of diffusion behaviour, determined by the value 

which it takes.  Rao et al
81

 describe the mechanisms which govern the diffusion of 

gaseous species into porous carbon materials. 

1) Diffusion through a barrier at the pore entrance (n = 1) 

2) Diffusion along the pore (n = 0.5) 

3) Combination of diffusion through a barrier and along the pore ( 0.5 < n > 1) 

These kinetic barriers to diffusion can be illustrated as in Figure 1-12.   
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Figure 1-12: Kinetic barriers to diffusion 

The rate at which adsorption occurs is dependent on which mechanism is controlling 

the diffusion of the gas into the porous system. Diffusion along the pore is described 

by the Fickian model, diffusion through a barrier at the pore entrance is modelled by 

the Linear Driving Force model (LDF) and when both types of mechanism contribute 

to the rate, this may be modelled by the Combined Barrier Resistance/Diffusion 

model (CBRD). 

1.6.2 Fickian Diffusion 

The Fickian diffusion model is concentration dependent, where the kinetics of 

adsorption are controlled by the transportation of the adsorbate through the pore, 

rather than through the rate of adsorption onto the surface.  This is shown by Ficks 

first law of diffusion: 

     
  

  
 1.59  

Where: 

 F = Flux rate (mol cm
-2

 s
-1

) 

 C = concentration of diffusing species (mol cm
3
) 

 x = space coordinate measured normal to the section 

 D = diffusion coefficient (cm
2 

s
-1

)  

This can be illustrated by Figure 1-13. 
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Figure 1-13: Representation of Fickian diffusion concentration gradient 

Ficks second law of diffusion models the rate at which the concentration changes at 

any given point in space when the diffusion is radial into a spherical shaped pore.  It 

is described by the partial differential equation shown in equation 1.60.
82

 

  

  
  (

   

    
   

   
) 1.60  

Equation 1.60 is a diffusion law for isothermal diffusion into a homogenous sphere.  

The solution of equation 1.60 is given by equation 1.61 which shows the total 

amount of diffusing substance entering and leaving the spherical particle.
83

  

  

  
   

 

   ∑
 

     (
       

  ) 
    1.61  

Where: 

 Mt = uptake (g) at time t (s) 

 Me = uptake at equilibrium (g) 

 D = gas diffusion coefficient (cm
2
 s

-1
) 

 a = radius of particle (cm) 

Equation 1.60 can be solved for short timescales and long timescales. For small times 

the solution of the equation is as follows: 

  

  
  (

  

  )
 

 ⁄

{ 
  

 ⁄    ∑       
   

  

√    
}   

  

     1.62  
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Equation 1.62 approximates to: 

  

  
   (

  

  )
 

 ⁄

 1.63  

Expansion of this gives 

  

  
  

 

√ 
 
√ √ 

 
 1.64  

This equation is valid for small timescales where Mt/Me < 25%, so a plot of Mt/Me 

against t
1/2 

will have a gradient equal to  
 

√ 
 
√ 

 
.  

For long timescales equation 1.60 is solved as follows:  

  

  
   

 

   [   (
     

  )]   1.65  

Rearranging gives: 

   
  

  
 

 

   [   (
     

  )]   1.66  

To illustrate the long term behaviour of diffusion, a plot of ln (1 - Mt/Me) against 

time will give a linear plot of gradient  
    

   .  This equation is valid for long 

timescales where Mt/Me > 60%. This equation has been used to analysis kinetics of 

gas adsorption on carbon molecular sieves.
84

 

1.6.3 Linear Driving Force Model 

The linear driving force (LDF) model is a concentration independent model. When 

the mechanism of diffusion follows the LDF model, the number of available surface 

sites available for adsorption will decrease exponentially with time as shown in 

Figure 1-14.  The rate constant is directly proportional to the displacement of the 

system from equilibrium.  
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Figure 1-14: Exponential decay of surface adsorption sites 

This is modelled by a conventional rate law: 

Rate = k(adsorbate concentration) x (available sites)
n
 

When n = 1 this implies a first order rate constant.  Assuming that adsorption follows 

first order reaction kinetics, then the rate of change of adsorbate concentration is 

given by equation 1.67: 

        

  
           1.67  

Me – Mt is the driving force for adsorption. Integration gives: 

∫
 

       
            ∫   1.68  

Giving the following conditions: 

∫               ∫     
 

 

  

  
 1.69 

Then: 

  (  
    

    
)       1.70  

Rearrangement gives the standard LDF equation 1.71: 

  

  
         1.71  

Where: 
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 Mt = the amount adsorbed (g) at time t (s) 

 Me = the equilibrium uptake (g)  

 k = the rate constant (s
-1

) 

A graph of ln(1 – Mt/Me) against time t should yield a linear plot with a gradient 

equal to the rate constant.  The linear driving force model has been used to give rate 

constants for various gas adsorption on activated carbon,
85,86,87

 carbon molecular 

sieves
88

 and metal organic frameworks.
89

  

1.6.4 Combined Barrier Resistance / Diffusion Model 

The combined barrier resistance / diffusion (CBRD) model
90

 is used to describe the 

diffusion of an adsorbate when there is both diffusion through a barrier and diffusion 

along the pore contributing to the rate of adsorption.  To analyse this mechanism of 

adsorption, Ficks second law is again used (equation 1.60) and an additional equation 

1.72. 

   
       

  
    { 

            } 1.72  

Where: 

 D = crystalline diffusivity (cm
2
 s

-1
) 

 kb = barrier resistance (cm s
-1

) 

 rc = the radius of the adsorbate (cm) 

 r = the radial coordinate 

 t = time (s) 

 C = adsorbate concentration within the pore (mmol cm
-3

) 

 C* = surface concentration in equilibrium with the gas phase (mmol cm
-3

) 

The useful parameters which can be derived from this equation are the barrier 

resistance, kb and kd = D/rc
2
. Although this model has been used to describe the 

kinetics of gas adsorption
41

 it is difficult to use and involves complicated 

mathematical interpretations.   
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1.6.4.1 Comparison of Diffusion Models 

Typical schematic plots of Fickian, LDF and CBRD analysis are shown in Figure 

1-15. This shows the Fickian model deviating from linearity at low uptake values, 

whereas the LDF model obeys linearity across the entire uptake range, and the 

CBRD model sits between the two.  

 

Figure 1-15: Schematic comparison of Fickian, LDF and CBRD models 

1.6.5 Stretched Exponential (SE) Model 

In 1847, Kohlrausch
91

 first proposed the stretched exponential model to describe 

mechanical creep. He proposed the equation in the following form: 

        [( 
 

 
)
 

]                 1.73  

Where: 

 ϕ(t) = the relaxation function 

 β and τ = material dependent parameters 

The equation was then used by Williams and Watts
92

 to describe dielectric relaxation 

in polymers. It was shown by Klafter and Shlesinger
93

 that this equation can be 

applied to many complex systems to describe relaxation decay. For example, they 

showed that the stretched exponential equation has underlying mathematical features 

which relate it to the Fӧrster direct-transfer mechanism, which is a model of energy 
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transfer from a donor to an acceptor molecule, such as transfer of excitation energy 

between chromophore in a molecule.  They also showed common mathematical 

features with other decay models.
94,95

 

It is possible to use the stretched exponential equation to model diffusion into a 

porous material.  The relaxation modelled in the adsorption of gases into porous 

materials is the relaxation of degrees of freedom of the adsorbate molecule as it is 

adsorbed onto the surface of the material. Klafter and Shlesinger also concluded that 

when the value of β = 0.5, this is indicative that the model is one dimensional, when 

β = 1 this is indicative that the model is three dimensional, with the model 

presumably becoming two dimensional at intermediate values.  The β values give an 

indication of the distribution of the relaxation times, as β decreases the distribution 

broadens.  When β = 1 there is a single relaxation time which is indicative of a rate 

determining step due to the diffusion through a barrier at the pore entrance.  The 

stretched exponential equation can be used in the following form for application to 

adsorption kinetics: 

   [             ] 1.74  

Where: 

 A = a constant 

 k = rate constant (s
-1

) 

 t = time (s) 

 β = the exponential parameter 

The experimental data is conventionally normalised to show fractional uptake, which 

gives A the value 1 and reduces equation 1.74 equation 1.75.  

  

  
              1.75  

When β = 1, equation 1.75 reduces to a single exponential, and becomes identical to 

the LDF model.   
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1.6.6 Double Exponential Model 

The linear driving force model is used to analysis kinetics in systems where there is a 

single barrier to diffusion at the pore entrance.  This can be extended to incorporate 

systems with two kinetic processes contributing to the overall rate of adsorption, by 

using the double exponential model as shown in equation 1.76: 

  

  
                             1.76  

Where:  

 Mt = the amount adsorbed (g) at time t (s) 

 Me = the equilibrium uptake (g)  

 k1 and k2 = the rate constants (s
-1

) 

 A1 and A2 = the contributions of the rate constants to the overall rate of 

adsorption, with the relationship A1 + A2 = 1 

This model has been used previously to describe the adsorption kinetics of gases and 

vapours on metal organic frameworks,
96

 where the two different kinetic processes 

were found to be: 

1. Slow diffusion through pore windows which have a high activation energy 

2. Fast diffusion along cavities in the porous structure with low activation 

energies.  
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Chapter 2 Porous Materials 

2.1 Porous Materials  

The success of the adsorption process lies fundamentally with the adsorbent used.  In 

principle any microporous material can adsorb gases or vapour; however, to be 

industrially viable, the adsorbent must have a good capacity for adsorption, and must 

complete adsorption at an acceptable rate.  Historically, there have been many porous 

materials applied to a variety of uses, and these have developed continually, with 

new porous materials approaching the forefront of recent research.
1
 Table 2-1 

illustrates briefly the historical development of porous materials.  

Table 2-1: Historical development of porous materials 

Date Name Significance 

1773 Scheele  
Investigation of the uptake of gases by charcoal 

and clays. 
2,  3

 

1814 De Saussure 

Started the systematic analysis of various 

adsorbents such as cork and charcoal, and 

discovered the exothermic nature of adsorption. 

4,5
 

1901 Von Ostrejko 

Activated carbons become commercial 

developed through the process of incorporating 

metallic chlorides.
6
 

1903 Tswett 

Selective adsorption by silica gels was observed 

during the separation of chlorophyll and other 

plant pigments.
7
 

1904 Dewar 
Observed the selective adsorption of oxygen 

during air uptake by carbon.
8
 

1911 
NORIT Factory, 

Amsterdam 

Founded as one of the international 

manufacturers of activated carbon. 

1956 Breck 
North American Linde Company started to 

produce zeolites on a commercial scale.
9
 

1959 Milton 
Synthetic zeolite molecular sieves discovered – 

allowing shaped based gas separation.
10

 

1990 Hoskins and Robson Identification of Metal Organic Frameworks.
11
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2.1.1 Current Industrial Adsorbents 

There are several adsorbents used in industry which satisfy the criteria of good 

capacity and fast kinetics.  These include alumina, silica gel, activated carbons, 

carbon molecular sieves and zeolites.  Alumina and silica gel are predominately used 

for gas drying, whereas activated carbons, carbon molecular sieves and zeolites have 

applications in gas purification and separation.  

2.1.1.1 Activated Carbon 

Activated carbons are a classic rigid adsorbent, commonly used in industry for 

applications including: trace impurity removal, gas separation and removal of CO2 

from flue gas.
12

 They are porous, amorphous materials which can have extremely 

high internal surface areas, up to 3000m
2
 g

-1
.    

Structure  

The structure of activated carbon consists of graphene layers, which contain a regular 

hexagonal arrangement of carbon atoms, with varying degrees of perfection.  These 

layers are randomly stacked within the structure, with the varying gaps between the 

stacks giving rise to the microporous nature of the material, which has a pore size 

distribution of macropores, mesopores and micropores.
13

  

 

Figure 2-1: Structure of activated carbon
14

  

 

The pores in activated carbon can be classified into four main types as described in 

Figure 2-2. 
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Figure 2-2: Pore classification in activated carbons
15

 

Open - connected to external surface allowing passage of adsorbate 

Closed - isolated void within solid, not connected to external surface 

Transport - connects parts of external surface to inner porosity 

Blind – not isolated but not leading to other pores/surface 

The microporous nature and high surface area of the activated carbons leads to their 

use in industry as an adsorbent.  The adsorption potential of activated carbons is also 

modified by the presence of functional groups, which are found at the edge of the 

graphene layers within the structure, where there are unsaturated carbon atoms.  The 

most important functional groups are oxygen based, which gives hydrophilic nature 

in addition to the hydrophobic nature of the graphene layers. The dual nature of 

activated carbons allows a wide range of chemical species to be adsorbed into the 

material.   

Production 

Activated carbons are made from coals, cokes, wood, coconut shells and pecan 

shells, along with other carbonaceous agricultural by-products.
16

  To make an 

activated carbon, a char must first be formed from the source material. Pyrolysis in 

an inert atmosphere at temperatures below 1000 K results in thermal decomposition 

leading to the loss of impurities such as water, carbon dioxide and a wide range of 

organic molecules. This carbonaceous precursor is then activated by either physical 

methods, such as partial gasification using carbon dioxide, steam or air at 1073 – 

1223 K to develop the porous structure, or chemical methods, by adding reagents 

before or after the carbonisation process, such as ZnCl2, KOH or CaCl2.  These 

compounds act as dehydrating agents, preventing the formation of tars and increasing 
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the yield of activated carbon.  Chemical activation often yields higher surface areas 

than physical activation. 
17, 18 

2.1.1.2 Carbon Molecular Sieves 

Molecular sieves are substances which can separate mixtures of species based on the 

size of the species in relation to the pore size of the sieve.  The term “molecular 

sieve” was first coined by McBain in 1932 for materials which “exhibit selective 

sorption properties”.
2
 Carbon molecular sieves (CMS) are a special type of activated 

carbon, where the main difference is in the separation properties of the two carbon 

types.  Activated carbons are utilised in separation on the basis of the difference in 

equilibrium adsorption capacity of the carbon, whereas CMS separates mixtures 

based on the rate of adsorption, or the kinetic differences.  One of the most useful 

separations achieved by CMS is the separation of nitrogen from air; this will be 

discussed in more detail in Chapter Three – Separation of Gases and Vapours.  

2.1.1.3 Zeolites 

Zeolites are crystalline hydrated aluminosilicates which contain regular discrete 

pores and cavities which extend into three dimensions, differentiating zeolites from 

the irregular and amorphous carbon molecular sieves. Zeolites consist of connected 

tetrahedral sites formed by oxygen ions.  Within each tetrahedral oxygen sites sits a 

cation, either Si
4+ 

or Al
3+

, forming SiO4 or AlO4 tetrahedra.  These primary 

tetrahedral building units form the extended 3D network of the zeolite framework.  

Due to the negative charge of the AlO2
-
 which makes up the tetrahedra, zeolites are 

negatively charged.  This negative charge is balanced by the inclusion of positively 

charged cations within the non-framework positions.  These cations are typically 

group I or group II, such as Na
+
 and Ba

2+
.
19

 Water molecules are also found within 

the non-framework positions. A typical equation to describe zeolites is shown as: 

      [              ]
  

                      2.1 

Where n+ represents the charge on the guest cation, x and y represent the number of 

aluminium and silicon tetrahedra, x- represents the negative charge of the zeolite and 

w represents the extent of hydration of the zeolite.  The dimensions of the cavities 

found in zeolites are dependent on the structure, with the sizes of the openings 

ranging from 3 to 7 Å across various zeolites.  An example of a commercial zeolite is 

shown in Figure 2-3. 
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Figure 2-3: Faujasite zeolite 

Zeolites were first commercialised in 1954, where they were exploited for their 

hydrophilic nature by being utilised as refrigerant desiccants and in the drying of 

natural gas.
20

 The first exploitation of the molecular sieve properties of zeolites 

occurred in 1959 with the ISOSIV process, which separates branched and linear 

hydrocarbons on the basis of their molecular cross-sectional areas, with branched 

isomers having a larger cross sectional area than linear isomers.  The smaller pore 

openings allow the passage of linear hydrocarbons, but prevent the entry of the 

bulkier branched and cyclic structures, as shown in Figure 2-4. 

 

Figure 2-4: Molecular sieve effect 

This property can be used to separate other hydrocarbons,
21

 and in separating 

metallic impurities from water.
22

  Zeolites can also be applied to air separation.  This 

will be discussed in more detail in Chapter Three – Separation of Gases and 

Vapours. 

http://upload.wikimedia.org/wikipedia/commons/0/08/Faujasite_structure.j
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2.2 Porous Coordination Polymers 

Coordination polymers
23

 date back to the 1960s, but it was not until the research by 

Hoskins and Robson
11

 in the early 1990s that research truly engaged, producing a 

vast amount of research papers and porous materials. Porous coordination polymers 

are crystalline porous materials, bearing similarities to zeolites through their 

scaffold–like, rigid structures. However they contain both inorganic and organic 

components, allowing the manipulation of surfaces within the frameworks to 

enhance adsorption.
24

  The inorganic fragments are nodes and these are found at 

“corner” sections of the scaffold.  The organic fragments are linkers, joining the 

nodes together to form the extended network, as shown in Figure 2-5. 

 

Figure 2-5: Schematic of porous coordination polymer assembly 

Porous coordination polymers may also include additional components, such as 

counter- ions, guest/template molecules, within the voids formed by the frameworks.  

Permanent porosity is exhibited when the guest/templating molecules can be 

removed, with the framework retaining structural integrity. The template molecules 

are often from the solvent used in synthesis to dissolve the starting materials, they 

will have a weak interaction with the framework itself and this allows easy removal 

at low temperatures, under the correct conditions this will quickly yield accessible 

porosity.  This then leaves an open space within the framework, which may then be 

able to adsorb other guest materials, leading to interesting applications in clean 

energy applications, gas separation, drug delivery and catalysis.   
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2.2.1 Classification of Porous Coordination Polymers 

Kitigawa et al
25

 classified porous coordination polymers by two main features: the 

interaction with guest molecules and the spatial dimensions of the pores.  

2.2.1.1 Generational Classification 

The generational classification scheme is based upon the interaction of the guest 

molecules with the framework: 

1
st
 Generation: microporous frameworks which irreversibly collapse upon removal 

of guest/templating molecules. 

2
nd

 Generation: microporous frameworks which retain robust stability upon removal 

of the guest/templating molecules. 

3
rd

 Generation: stable, flexible, dynamic frameworks which respond to guests and 

other external stimuli.  

2.2.1.2 Classification by Spatial Dimension 

Porous coordination polymers can exist in 0, 1, 2 or 3 dimensions.  The spatial 

dimension classification is based upon the space created during synthesis which then 

yields the porosity of the solid on desolvation. 

OD Dots: these are isolated voids within the structure which are impenetrable by 

guest molecules.  

1D Channels: regular 1D channels which extend through the porous structure.  Size 

and functionality of these pores can be modified by changing the linker molecule to 

give wider pores or to enhance interaction with the guest molecules.  

2D Layers: Channels extending in two dimensions to create layers, between which 

guest molecules can be incorporated.  Often weakly held together by hydrogen 

bonds, this type of structure can have a flexible response to guest adsorption.  

3D Intersecting Channels: This structure frequently occurs in zeolites, formed by the 

interconnection of 1D channels.  These structures have high porosity, but are rare due 

to the inherent instability of the frameworks due to the high porosity.   
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2.2.2 Synthesis Concepts and Design 

The design and synthesis of porous coordination polymers relies on careful selection 

of nodes, linkers and guest molecules/solvents as well as temperatures and synthetic 

methods and conditions.  Synthesis methods include hydro/solvothermal techniques 

and slow diffusion methods.  Typically porous coordination polymers are 

characterised first by single crystal X-ray diffraction, and as such a crystalline 

product is desirable.  Due to the nature of the reagents typically used in synthesis, 

reactions can occur quickly and produce amorphous products, which are difficult to 

characterise.  As such, techniques such as slow-diffusion and hydro/solvothermal 

synthesis have been developed, these techniques slow the reaction time and allow the 

thermodynamically more stable and crystalline product to form, rather than the 

amorphous kinetic product. Due to the insolubility of the frameworks, they must be 

produced in single step reactions.  Solvothermal synthesis involves dissolving 

reagents in a suitable solvent, placing the solution mixture into a Teflon lined high 

pressure autoclave, and heating at 60 - 150°C for a varying amount of time, from 

hours to days. Solvothermal techniques are more prevalent when the framework is to 

be forced to form around a specific templating molecule, with the high pressure 

inside the autoclave and the high temperature, the length of time which the solvent 

remains in the liquid phase increases, whilst reacting at a higher temperature, 

drastically reducing the time taken for crystallisation.  

2.2.2.1 Design of Motifs 

The motifs which can be produced vary with the coordination mode of the metal 

node, as shown in Figure 2-6.  These include a) honeycomb b) ladder c) cubic d) 

hexagonal diamondoid e) square grid and f) zigzag chain. 

 

Figure 2-6: Various simple motifs available to porous coordination polymers
26

 

There are several types of bonding interactions found within the motifs, from simple 

coordination bonds between the nodes and linkers, to hydrogen bonding and π-π 
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stacking, which help to aggregate lower dimensional polymers to more complex 3-

dimensional frameworks.  

2.2.2.2 Nodes and Linkers 

Nodes 

Nodes and linkers are most often the starting materials that are used in the synthesis 

of the polymer, and are the principal construction elements of the network.  Nodes 

are typically metal cations, requiring anionic organic linkers to charge balance the 

network.  Transition metals are typically used as nodes as they have labile 

coordination bonds, the advantage of a range of readily accessible oxidation states, 

and also a range of possible coordination numbers, from two to seven. This allows a 

wide range of geometries; linear, T or Y shaped, tetrahedral, square planar, square 

pyramidal, trigonal bipyramidal and all distorted forms of these.
25,27

 The most 

commonly used transition metals are first row transition metals, such as copper, 

cobalt, nickel, manganese and zinc. Recently, lanthanide ions have also been used to 

produce coordination polymers.
28,29

 Lanthanide metals have photo-luminescent 

properties, enhanced when combined with organic chromophore linkers.
30

  This 

makes the incorporation of Lanthanide metal ions into metal organic frameworks a 

very interesting avenue of research, the luminescence could be exploited in sensor 

technology, with a luminescent reaction to guest molecules. 

Linkers 

As the linker molecules are required to bridge between two metal ions, they must 

normally be bi- or multi- dentate (with two or more donor binding sites).  The most 

common linker molecules currently used are those which contain multiple oxygen or 

nitrogen donor sites, as these lead to be structurally stable polymers which are able to 

withstand the loss of guest molecules.  Typically donors are carboxylates and 

heterocyclic nitrogen donors. Examples of typical oxygen donors are shown in 

Figure 2-7 and examples of typical nitrogen donors are shown in Figure 2-8.  

Traditionally, rigid linkers are used, leading to thermally stable frameworks; 

however there are also flexible ligands which can be used, as shown in Figure 2-9. 



Chapter 2 Porous Materials 

 

57 

 

 

Figure 2-7: Oxygen donors 

 

 

Figure 2-8: Nitrogen donors producing 1, 2 and 3D structures 
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Figure 2-9: Flexible linkers
31,32 

 

2.2.2.3 “Design” of Pre-Determined Frameworks 

Yaghi et al have coined the term reticular synthesis to describe the conceptual 

formation of three dimensional framework materials by the means of secondary 

building units (SBUs).
33

 Secondary building units are fragments of inorganic or 

organic components that can be generated by organic synthesis or in situ.  These 

secondary building units are used to define geometrical shapes, which can then be 

used to predict the structures of the frameworks.  This is important as attempts to 

produce structures simply by mixing reagents together often results in a large number 

of possible structures, with a lack of control over pore size and functionality.  The 

knowledge of which reaction conditions give particular shaped secondary building 

units, and then how these units to form an extended network allows the control over 

the topology of the network.  An example of the use of secondary building units to 

produce a porous framework is MOF-5, the structure of which is shown in Figure 

2-10.
34

  MOF-5 is part of a series of structures produced by Yaghi et al, the IR – 

MOF (iso-reticular metal organic framework) series.  This series contains the Zn4O 

tetrahedra and carboxylate carbon atoms, forming the  octahedral SBU, all linked by 

varying length dicarboxylic acids, produces frameworks of varying size, all with the 

same topology. This series is shown in Figure 2-11.    
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Figure 2-10: MOF-5 a) shows Zn4O tetrahedra SBU linked by benzene 

dicarboxylate linkers b) shows MOF-5 represented schematically – red polyhedra 

represent inorganic SBU blue polyhedra represent linkers
33

 

 

 

 

Figure 2-11: IR-MOF Series 

 Yellow spheres represent void space
33
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2.2.2.4 Post-Synthetic Modification 

The range of functionality available to porous coordination polymers through 

modification of linker molecules is a major advantage as the chemical nature of the 

surface of the pores controls the overall pore environment, and can be achieved by 

simple chemical modification of the linker molecule.  A new approach, “Post 

Synthetic Modification” is being applied; this is a two-step approach which involves 

the initial framework synthesis followed by functional group transformation. For 

example, IR - MOF 3, a metal organic framework from the IR – MOF series 

synthesised by Yaghi et al can be modified post synthetically by the transformation 

of amine functionality to salicylidene functionality.
35

 The functional groups that are 

to be modified must not have a structure defining role during framework synthesis.  

The advantages of post synthetic modification are that functional groups can be 

incorporated which may not survive the temperature and pH conditions required 

during framework synthesis, and which may interfere with the donor group on the 

bridging ligand during synthesis.
36

 

2.2.2.5 Interpenetration 

The incorporation of larger linker molecules to provide larger pores, as in the IR – 

MOF series can cause problems with respect to stability of the framework, and 

although used to increase pore size, can result in reduced pore size due to 

interpenetration.  Networks which have long linker molecules can result in the 

penetration of one framework into the void space in a second framework, in Figure 

2-12 this is shown by the interpenetration of two diamondoid networks.  

 

Figure 2-12: Schematic representation of the interpenetration of diamondoid 

frameworks 
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This can be avoided if anions are required for synthesis, as these will tend to fill the 

pores, or if guest/template molecules are used which have stronger interactions with 

the framework, than other framework networks.
27 

 

2.2.2.6 Dynamic Structural Responses 

3
rd

 generation polymers have the ability to exhibit dynamic structural responses to 

guest molecules. These were categorised by Kitigawa et al as one of two structural 

changes
25

: 

1) Guest-induced crystal to amorphous deformation - the framework collapses 

on removal of guests but can be reformed by exposure to original conditions. 

2) Guest-induced crystal to crystal change – the framework structure changes 

but long-range crystalline structure is retained. 

Structural change can be brought about by submersion in a liquid or by exposure to 

vapour.  

Crystal to Amorphous Deformation 

Pores which collapse on removal of guest species can be reformed by re-exposure to 

the original guest/template molecule. An example of this is by Choi et al, and their 

framework {[Ni(cyclam)(H2O)2]3[btc]2.24H2O}n where btc = 1,3,5 

benzenetricarboxylate. In this compound the structure is held together by hydrogen 

bonds between the Ni (II) macrocycle and btc via water molecules.  Removal of the 

water provides an amorphous solid, which re-crystallises to the original structure on 

suspension in water.  

 

Figure 2-13: Crystal structure of {[Ni(cyclam)(H2O)2]3[btc]2.24H2O}n (in the 

presence of water)
37
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Crystal to Crystal Deformations 

There are many examples of structural change where the crystalline structure is 

retained, for example, induced fit, breathing of pores, and deformation by exchange 

of guests. 

Induced Fit 

Induced fit occurs when the pore shrinks to fit tightly around the guest molecule. An 

example of this is by Kondo et al, who used the compound [Cu2(pzdc)2(bpy)] where 

pzdc = pyrazine-2,3-dicarboxylate and bpy = 4,4’-bipyridine.  This compound shows 

a reversible structural change on the adsorption and desorption of benzene.  In the 

absence of benzene the pores are rectangular in shape, when benzene is adsorbed the 

pores shrink around the benzene to form a “z” shaped pore, as shown in Figure 2-14. 

 

Figure 2-14:  The shrinkage of a pore on adsorption of a benzene molecule
38

 

A structural change also occurs around copper metal centre, in which the 

arrangement of the ligands changes from a square pyramidal geometry to a square 

planar on adsorption of the benzene.   

Breathing of Pores 

When the size of the pore is too small to hold the guest molecule, the pore will 

expand to the correct size to hold the guest tightly. This effect was shown by 

Soldatov et al, and their compound [Cu(L1)2] where L1 = 

CF3COCH2COC(OMe)Me2. This compound forms two different structures.  When 

the initial non porous form is exposed to the guest molecules, the oxygen of the 

methoxy group coordinates to the copper axial sites to form six-membered cyclic 

structures, hence opening up the porosity, as shown in Figure 2-15. The key to this 

transformation is the lability of the copper – methoxy bond.  
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Figure 2-15: Expansion of the framework to incorporate a guest molecule
39, 40 

Guest Exchange Deformation 

Guest exchange deformation occurs when the simultaneous exchange of guest 

molecules induces a structural change. This was observed by Biradha et al, and their 

compound {[Ni(L2)2(NO3)2].4(o-xylene)}n where L2 = 4,4’-bis(4-pyridyl)biphenyl.  

The compound is structured as 2D layers with a short interlayer separation of 4.1Å, 

held together by weak interlayer aromatic and hydrogen bonds. These weak bonds 

allow sliding of the layers, during which time the bonds are broken and reformed. 

When the o-xylene guest is exchanged with mesitylene, the extent of the sliding 

between the layers gives rise to channels which are larger than when the guest is o-

xylene.  This transformation appears to be limited to mesitylene, attempts with 

benzene, m-xylene and 1,2- and 1,3- dimethoxybenzene failed.  

 

Figure 2-16: Structural change observed on exchange of o-xylene and mesitylene 

guests. 
41,42 

Crystal to Crystal Transformation 

Deformations by the expansion and collapse of pores, where structural changes occur 

without the breaking or forming of bonds have been shown many times.  

Transformations in which bonds are broken and different bonds are formed, whilst 

retaining crystallinity, are much rarer.  For transformations of this nature to occur 
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within metal organic frameworks with only one metal centre and one type of linker, 

then the linker most possess dual functionality, allowing the formation of strong 

bonds and weaker bonds.  This would allow cleavage of weaker bonds, whilst 

stronger bonds remain intact, retaining crystallinity.  An example of a linker with 

dual functionality is 5-sulfoisothalate, which contains two strongly binding 

carboxylate groups and one weaker sulfonate group, allowing rearrangement through 

the sulfonate group without cleaving the metal-carboxylate bonds.
43

  An example of 

the use of this linker in a metal organic framework is that of Cu-SIP-3.3H2O by Xiao 

et al.
44

 Xiao et al showed that upon dehydration, the bound water molecules 

coordinated to the copper centre are removed at 405 K, allowing the previously 

unbounded oxygen of the sulfonate to bind to the copper centre.  Cooling down 

under a moist atmosphere shows the rehydration of the copper centre and the 

reversibility of the transformation.  During both of these processes, no change occurs 

to the stronger carboxylate connectivity.  The dehydrated form of this material shows 

selective adsorption of NO at sub ambient pressures over any other common gases up 

to a pressure of 10bar.  On exposure of the NO–loaded material to water, the original 

hydrated phase is reformed and NO is released.  Xiao et al also show that the 

transformation can be stopped using a “blocking” ligand, in this case pyridine, which 

replaces the coordinated water molecule and prevents formation of an open metal 

centre, blocking the coordination of the sulfonate group.   

2.2.3 Applications of Porous Coordination Polymers  

Several possible applications of porous coordination polymers have been discussed 

in the literature during their development, including gas separation and purification, 

clean energy applications, catalysis; for which zeolites and carbon molecular sieves 

are already utilised in industry. The ability to tailor the surface chemistry, size of the 

pores and the ability to introduce flexibility within porous coordination polymers 

towards specific processes makes them highly significant materials in the 

improvement and development of these applications.   
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2.2.3.1 Separation and Purification 

This is the main application to be investigated within this study and as such is 

covered in more detail in Chapter 3 – Separation of Gases and Vapours.  

2.2.3.2 Clean Energy Applications 

Hydrogen has long been seen as a clean energy source, the only by-product of 

hydrogen use in an engine is water, and the way forward as a greener alternative to 

fossil fuels to be used in motor vehicles. The challenges involved with the storage of 

hydrogen for use in motor vehicles are the safety, efficiency and economic value of 

on-board hydrogen storage systems.
45

 Hydrogen can be stored via a number of 

methods, by storage in tanks as compressed gas or as a cryogenic liquid or through 

the absorption and adsorption of the gas into porous materials.  In 2009, the US 

Department of Energy (DOE) released revised targets for on-board hydrogen storage 

for light-duty vehicles, as an update to previous targets which were deemed 

unobtainable.  These revised targets are shown in Table 2-2. 

Table 2-2: US DOE targets for hydrogen storage for 2010 and 2017
46

 

Storage Parameter 2010 2017 Ultimate 

Gravimetric Capacity / (kgH2/ kg system) 0.045 0.055 0.075 

Volumetric Capacity / (kgH2 / L system) 0.028 0.040 0.070 

Min/Max Delivery Temp / (°C) -40/85 -40/85 -40/85 

Cycle life / (cycles)  1000 1500 1500 

 

Along with these targets, the materials must have fully reversible hydrogen 

adsorption, refuelling times should be within minutes to compete with current fuel 

loading systems and both loading and unloading of hydrogen should occur at 

ambient pressures and temperatures.  The majority of research into hydrogen storage 

has been conducted at 77 K, across a pressure range of 20 – 80 bar. Examples of 

porous coordination polymers which have displayed hydrogen adsorption properties 

are shown in Table 2-3, with calculated enthalpy of adsorption at 77 K.  Adsorption 

properties and enthalpy of hydrogen adsorption data for selected other porous 

materials are given in Table 2-4.  At cryogenic temperatures the uptake volume of 

hydrogen is low due to the low enthalpy of adsorption, even at high pressures.  It is 

predicted that for viable storage at ambient temperature, the enthalpy of hydrogen 
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adsorption should be approximately 20kJ/mol. The ability to alter the surface 

functionality of porous coordination polymers could lead to the enhancement of the 

interaction between the hydrogen on the surface of the material, for example by 

including open metal centres within the framework.  This is important at lower 

pressures, where having a larger enthalpy of adsorption is important for maximizing 

the adsorption potential.  At higher pressures, the adsorption potential is determine 

more by the available pore space, larger pores are more desirable as the volume 

available is what limits the capacity for hydrogen loading.  

Table 2-3: High pressure adsorption data, porous structure characterisation and 

enthalpies of adsorption for porous coordination polymers (adapted from ref.45) 

Porous 

Material 

Surface 

Area / 

m
2
 g

-1
 

Pore 

Volume 

/ cm
3
 g

-1
 

Amount 

adsorbed at 

77K (wt%) 

Amount 

adsorbed at 

ambient 

temperature 

(wt%) 

Enthalpy of 

Adsorption, 

Qst / kJ mol
-1

  

Zn4O(BDC)3 

MOF-5
47,48

 

2296
B 

1.19 5.1 (65 bar) 0.28 (65 bar) 4.9 – 4.4 (77 

– 87 K) 

Cu3(btc)2 

HKUST - 1
49,48

 

1154
 B

 0.75 3.6 (30 bar) 0.35 (65 bar) 6.6- 6.0 

 (77 – 87 K) 

Cu2(qptc) 

NOTT-102
50

 

2932
 B

 1.138 6.07 (20 bar) - 5.3  

(77 K) 

Cu2(tptc) 

NOTT-101
50

 

2247
 B

 0.886 6.06 (20 bar) - 5.4  

(77 K) 

Cu2(abtc) PCN-

10
51

 

1779
 L

 0.67 4.33 (20 bar) 0.25 (46 bar) 7 – 4 

(77 – 300 K) 

Mn3[(Mn4Cl)3(

BTT)8]2 

Mn-BTT
52

 

2100
 B

 0.795 5.1 (40 bar) 0.95 (90 bar) 10.1 

(77 K) 

Zn(mim)2 ZIF-

8
53

 

1810
 L

 0.663 3.1 (55 bar) - 4.5 

(30 – 300 K ) 

B 
BET surface area 

L 
Langmuir surface area 
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Table 2-4: High pressure adsorption data and porous structure characterisation for 

selected porous materials (adapted from ref. 45) 

Porous 

Material 

Surface Area 

/ m
2
 g

-1
 

Pore Volume 

/ cm
3
 g

-1
 

Amount adsorbed 

at 77K (wt%) 

Amount adsorbed at 

ambient temperature 

(wt%) 

Porous 

carbons
54

 

22 – 2564
 B

 0.0065 – 0.75 0 – 4.4 0 – 0.54 

COFs
55

 3472
 B

 - 8.8 (80 bar)
 GCMC

 - 

Zeolites
56

 - - 1.02 – 2.07 (16 bar) 0.42 – 0.49 (60 bar) 

Ion-exchanged 

zeolites
57

 

384 – 725
 B

 - 1.32 – 2.19 (15 bar) - 

B 
BET surface area 

GCMC 
Grand canonical Monte Carlo simulation data 

Table 2-5: High pressure enthalpies of adsorption for selected porous materials 

(adapted from ref. 45) 

Porous Material Enthalpy of Adsorption, 

Qst / kJ mol
-1

 

Temperature range of enthalpy 

of adsorption calculation / K 

Functionalised activated 

carbons
58

 

5.2 – 3.9 77 – 114 

Zeolites 4A, 5A, 13X
59

 7.9 – 5.9 75 – 90 

COFs
55

 8.8 – 2.7
 GCMC

 - 

GCMC 
Grand canonical Monte Carlo simulation data 

2.2.3.3 Catalysis 

Catalysis is a major part of industrial process, with porous materials employed as 

supports, such as platinum loaded on activated carbon and as catalysts in their own 

right, such as zeolites.  The ability to fine tune the structural components of porous 

coordination polymers makes them a highly attractive material for use as catalysts.   

MOF-5 [ZnO4(BDC)3] has been extensively investigated as a catalyst support for 

various nanoparticle catalysts, as outlined in Table 2-6. 
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Table 2-6: Selected examples of the catalytic activity of MOF – 5 derivatives 

MOF-5 Variant Reaction Reference 

Pd – MOF-5 Sonogashira coupling reaction  
60

 

Ni – MOF-5 Hydrogenation 
61

 

Ag – MOF-5 Epoxidation 
62

 

Pt – MOF-5 H2O2 Synthesis 
63

 

 

MOF-5 is readily utilised due to its high surface area, thermal stability and ease of 

synthesis, with these features being comparable to that of classical catalyst supports 

such as activated carbon and zeolites.   

Incorporation of active sites within the building units of porous coordination 

polymers can help to develop catalysts which have similar properties to zeolite 

catalysts, with size and shape selectivity and fixed areas of catalytic activity. (R,R)-

(2)-1,2-cyclohexanediamino-N,N’-bis(3-tert-butyl-5-(4-pyridyl)salicylidene)Mn
III

Cl 

is a chiral ligand which was incorporated into a zinc based framework, Zn2(bpdc)2 by 

Cho et al.
64

  The chirality of the manganese ligand makes this framework an 

effective asymmetric catalyst for olefin epoxidation, with enhanced catalytic 

behaviour attributed to the fixation of the active site within the linkers, allowing a 

highly stable and size-selective catalyst to be formed.   

Lewis and Brønsted acid sites within catalysts have been reported for a number of 

porous coordination polymers. The material [Cu3(btc)2(H2O)3] also known as 

HKUST-1 (Hong Kong University of Science and Technology)
65

 reveals an open 

Cu(II) site upon desolvation of coordinated water molecules.  This Lewis acid site 

has been shown to catalyse the cyanosilylation of benzaldehyde or acetone.
66

  

Chemisorption of the benzaldehyde activates the aldehyde for the cyanosilylation, 

and produces a high yield of product.  A copper based framework produced by 

Ingleson et al
67

 with amino acid linkers, Cu(asp)bpe0.5, allows the confinement of an 

aspartate group within the framework.  Post synthetic modification of the framework 

can occur by protonation of one of the two carboxylate groups available in the 

aspartate.  Only one carboxylate in the aspartate can be protonated due to the 

coordination of the aspartate to the metal centre.  The carboxylate acid group formed 
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binds to the Cu metal centre, producing a Brønsted acid site, which can be used to 

facilitate the ring-opening methanolysis of small epoxides.
67

 

2.2.3.4 Drug Delivery 

Effective control over the size, loading, release kinetics and surface properties are 

crucial for the development of therapeutic agents for effective biological 

applications.
68

  Over the past five years there has been extensive research conducted 

into the use of porous coordination polymers for drug delivery, with the high surface 

areas, large pores and tuneable surface functionality being the major advantages 

exploited for the use of these materials as drug carriers.  A major disadvantage for 

using porous coordination polymers is that of the inherent toxicity of the metal 

centres and the ligands used as building units within the framework, therefore careful 

selection of building units and complete evaluation of biocompatibility is required 

for each individual framework produced. Metals centres such as zinc or iron that 

have acceptable LD50 ranges are more likely to be incorporated into metal organic 

frameworks for drug delivery, coupled with naturally occurring linkers such as 

polycarboxylates or polar compounds which have fast excretion rates from the 

human body. The stability of porous coordination polymers, which is an extremely 

important factor for applications such as gas storage and catalysis, as the system 

would be required to be continually regenerated, is not as great an issue for medicinal 

uses, providing the material retains stability long enough for the function to be 

completed within the biological system.  Solubility in certain biological solutions in 

fact may be an advantage, as this would facilitate the removal of the drug carrier 

from the body in a reasonable timescale.   

Specific Examples 

The MIL (Material of Institute Lavoisier) family of porous coordination polymers 

have been investigated for their ability to store and release Ibuprofen.
69

  MIL–101 

showed a loading of 1.376g Ibuprofen per gram of MIL–101, with steady release of 

the drug over an initial eight hour period in simulated body fluid at 37°C.  MIL–101 

is a framework based around a chromium metal centre, which is toxic, with an LD50 

range of 50 – 150 mg/kg.  Chromium damages the kidneys and liver by oxidation 

reactions, and as such this material would be unsuitable for drug carrying purposes, 

however, an iron analogue to MIL-101 has been produced.
70

  Iron is a component in 

haemoglobin and has a concentration of approximately 22µM in blood plasma, 
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therefore an iron analogue displaying the same properties as the chromium analogue 

would be a highly effective drug carrier, as shown by the Lin group, who 

incorporated both a cisplatin pro-drug for chemotherapy treatment and a bodipy 

fluorophore bulk into MIL–101(Fe).
71

  This opens up the potential for using both an 

active cancer treatment and an imaging reagent in the same drug delivery system, 

allowing real time monitoring of cancer treatment.   

Porous coordination polymers have also shown an ability to store nitric oxide (NO) 

gas by utilising unsaturated metal centres within the framework.
25

 Materials such as 

HKUST-1
65

 adsorb significant volumes of NO, with a marked hysteresis, indicating a 

trapping effect.
72

  This allows little release of NO from the HKUST structure, which, 

although for storage application is useful, for small release into biological systems it 

is not.  M-CPO-27 (where M=Ni or Co) has been shown to adsorb 7mmol NO per 

gram of material, and release the adsorbed NO on exposure to moisture.
73

  The NO 

which is released form the material is pure, and has been shown to promote 

vasodilation and inhibit platelet formation, thus reducing thrombosis occurrence.
74

   

2.2.4 New Porous Coordination Polymers 

Metal organic frameworks have been dominant in research into porous coordination 

polymers for the past decade, however new porous coordination polymers are being 

developed, such as zeolite imidazole frameworks and covalent organic frameworks.  

2.2.4.1 Zeolitic Imidazolate Frameworks (ZIFs)  

Zeolites have an advantage over other porous materials due to the rigid, stable and 

highly predictable topologies. The drive to incorporate this into new porous 

materials, with the added extra of functionalised organic links has been the force 

behind the development of zeolitic imidazolate frameworks (ZIFs).  ZIFs are porous 

crystalline materials which contain tetrahedral topologies resembling that of zeolites, 

however the tetrahedral coordinated atoms in the zeolites, for example silicon, are 

replaced by a transition metal, and the oxygen bridges are replaced by the imidazole 

molecule.  The key in developing ZIFs was the realization that the metal – imidazole 

– metal linkage retains an angle close to 145°, which is comparable to that of the 

silicon – oxygen – silicon bridge found in zeolites, as shown in Figure 2-17.  
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Figure 2-17: Bond angles in ZIFs and in zeolites
53

 

The synthesis of two ZIFs was recently reported by Yaghi et al, which show 

potential for the separation and storage of carbon dioxide. ZIFs 95 and 100 both 

show thermal stability to 500°C and show large Langmuir surface areas, up to 1, 240 

m
2
 g

-1
. The ZIFs have small apertures opening into large cages, leading to the ability 

to separate due to size exclusion principles and to store a large capacity of gas.  Both 

of these ZIFs show a high affinity for carbon dioxide when compared with 

adsorption of methane, carbon monoxide and nitrogen.  This is attributed to the slit 

width to the entrance to the porosity being similar to that of the dimensions of carbon 

dioxide, and also due to the quadrupole interactions between the carbon dioxide and 

the nitrogen in the imidazolate linkers.  Using breakthrough curves, Yaghi et al 

showed that carbon dioxide is retained selectively when flowed through the ZIF with 

mixtures of carbon monoxide, methane and nitrogen.
53

   

2.2.4.2 Covalent Organic Frameworks (COFs) 

Covalent organic frameworks are a new class of porous material, based on strong C-

O, C-C and C-B bonds, which are being investigated for their potential application in 

storage of gases pertinent to obtaining clean energy and a greener environment.  The 

group led by Yaghi et al has synthesised a number of covalent organic frameworks 

as shown in Figure 2-18.
75 

 

 

Figure 2-18: Examples of secondary building units used in COF synthesis 
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COFs are formed by either the self or co-crystallisation of a number of starting 

materials. The basic synthesis involves the heating of reaction mixture consisting of 

either the self-condensing or the two co-condensing starting materials.
75

 

The hydrogen uptake for COF-102 is 72.4mg g
-1

, this is comparable to one of the 

highest performing MOFs, MOF-5, placing COFs high up among the ranks of porous 

materials approaching the guidelines of 45g of hydrogen per litre, as sent out by the 

US Department of Energy.
 55,76,77 

2.3 Porous Organic Molecules  

Porous coordination polymers and zeolites all display conventional porosity – they 

are permeable and generally unaffected by guest uptake and removal.  These 

materials all are fixed two dimensional or three dimensional frameworks with clearly 

defined channels giving access to voids and cavities into which gas molecules can be 

adsorbed.   A second type of porosity, porosity “without pores”, was discussed by L. 

J. Barbour in relation to molecular crystals.
78

  Molecular species tend to pack in the 

crystal state at distances which maximise the attractive intermolecular forces 

between the units of the crystal, therefore it is unusual to encounter molecular 

crystals which possess the channel and voids as a functional analogue of zeolites and 

metal organic frameworks.  The lack of conventional porosity within the material 

does not mean there are no voids within the crystal structure - there are crystal lattice 

voids, which, when connected by crystal lattice channels,  allow the permeation of 

guest molecules into the lattice porosity – hence the term porosity “without pores”.  

Molecular materials which display this porosity “without pores” have been shown 

recently to display porosity in the solid state.  The porosity displayed by these non – 

conventionally porous organic molecules has been defined by Cooper et al
79

 as either 

being intrinsic or extrinsic.    Intrinsic porosity is that which results from the discrete 

molecular subunits within the crystal structure, guest molecules are adsorbed into the 

discrete unit.  Extrinsic porosity is that which results from the inefficient packing of 

the molecules in the crystal lattice, and is not a result of the discrete units themselves, 

with guest molecules being adsorbed between the discrete units.  These terms are 

illustrated in Figure 2-19. 
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Figure 2-19: Diagram illustrating the difference between intrinsic and extrinsic 

porosity 

2.3.1 Intrinsically and Extrinsically Porous Organic Materials 

The spatial dimension classification applied to porous coordination polymers can 

also be applied to porous organic materials.
80

 An example of an intrinsically porous 

molecule which is also 0D is that of calix[n]arenes.  Calix[n]arenes are macrocylic 

polyphenol compounds where the n denotes the number of phenol groups in the 

macrocycle.
81,82 

There is a large number of calix[n]arene derivatives, with structures 

varying in the number of phenol groups in the ring, and in the functional groups 

attached to the phenol ring.  One particular example of a calix[n]arene which shows 

promising interactions with guest molecules is p-tert-butylcalix[4]arene, shown in 

Figure 2-20.  Thallapally et al
83

 have shown that a high density guest-free form of p-

tert-butylcalix[4]arene can be converted to the lower density form and vice versa by 

gas induced transformation upon exposure to carbon dioxide at 3.5MPa at room 

temperature.  This transformation occurs despite the high density form being devoid 

of pores or cavities.  It is thought that the gas molecules diffuse through the solid into 

small lattice voids produced by inefficient packing of the crystal lattice.  Adsorption 

of carbon dioxide results in 10% increase in the volume of the crystal lattice.  
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Figure 2-20: p-tert-butylcalix[4]arene
83

 

One dimensional channel forming organic crystals have been seen as analogues to 

zeolites due to their structural similarity.  One of the compounds which paved the 

way in the development of these one dimensional zeolite analogues is that of tris-o-

phenylenedioxycyclotriphosphazene (TPP), Figure 2-21. 

 

Figure 2-21: Structure of tris-o-phenylenedioxycyclotriphosphazene (TPP)
84

  

The channels form a hexagonal array which often collapses upon the removal of the 

guest solvent molecules present in the channels.  The TPP molecule with guest 

benzene molecules was successfully desolvated to reveal empty nano-channels 

within the hexagonal array, which are 4.6Å in diameter.
84

  This desolvated TPP is 

stable to 150°C and is accessible to carbon dioxide and methane molecules.    

A calix[n]arene functionalised to form 1,2-dimethoxy-p-tert-butylcalix[4]-

dihydroquinone has been shown to form two distinct types of porosity, 

interconnecting channels forming a 3D network and discrete units formed by the 

calix[n]arene molecules.
85,86

  After removal of water molecules the structural 

integrity was retained, giving a BET surface area of 230 m
2
g

-1
.  The dehydrated 

molecule was shown to selectively adsorb carbon dioxide and methane over 



Chapter 2 Porous Materials 

 

75 

 

hydrogen, and recent studies have shown that the adsorbed methane resides within 

the interconnecting channels of the 3D network.
87

   

2.3.2 Porous Organic Cage Molecules 

Porous organic cage molecules are examples of compounds which can show both 

intrinsic and extrinsic porosity.  The composition of cage molecules is similar to that 

of covalent organic frameworks (COFs) as they contain C-C, C-H, N-H and C-N 

bonds.  The cages are assembled without the use of the directional covalent bonding 

used in COFs, instead using weaker intermolecular interactions, giving the potential 

for flexibility within the materials through both reorientation and complete relocation 

of the individual discrete units.  A number of cage molecules have been reported in 

the literature over the past five years with research lead by Zhang, Mastalerz and 

Cooper.   

Zhang et al produced a trigonal-prismatic cage from the imine condensation of a 

triamine and a dialdehyde, Zhang cage-6 is shown in Figure 2-22.
88

 

 

Figure 2-22: Zhang Cage-6
88 

 

The cages pack together in offset layers the provided channels of diameter 4.6 – 10.6 

Å.  The well-ordered 3D structure, plus the secondary amine groups present within 

the pores allows the preferential adsorption of carbon dioxide over nitrogen at 293 K, 

which is an essential feature for carbon capture from flue gas.  Further cage 

structures have been produced by Zhang et al by varying the triamine and dialdehyde 

used in the synthesis of Zhang cage-6.
89

   

Mastalerz et el  produced a cage compound which has an exceptionally high surface 

area of 1566 m
2
g

-1
 which compares well with covalent organic frameworks, and is 

one of the highest reported for a porous organic cage,  Figure 2-23. 
90
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Figure 2-23: Mastalerz cage-3
90

 

This cage was produced via the imine condensation of a triamine and 

salicylbisaldehyde.  This compound was shown to adsorb 9.4wt % of carbon dioxide, 

compared to 0.94wt% of methane, showing a much higher selectivity for carbon 

dioxide.  Mastalerz et al have shown that salicylbisimine cage compounds can be 

functionalised at the periphery, and a series of cages have been produced, one of 

which, cage-3a, shows a BET surface area of 2071 m
2
g

-1
.
91

   

Cooper et al have reported the synthesis of three organic cages,
92

 via the [4 + 6] 

condensation of 1, 3, 5-triformylbenzene with three different diamines.  The cages 

were isolated as crystalline solids when recrystallized from various solvents.  The 

various packing motifs and the porosity produced in these materials is a direct result 

of the symmetry of the individual cage units and the functional groups bound at the 

vertices of the cages as shown in Table 2-7. 
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Table 2-7: Cage structures with synthesis, structure, porosity and adsorption details.  

Yellow and orange space filling represents Connolly Surface area.
92 

 

Cage One 

Cage one will form the basis of the majority of the research conducted in this thesis.  

Cage one was prepared and fully characterised by single crystal X-ray diffraction and 

powder X-ray diffraction by the research group led by Andrew Cooper at Liverpool 

University. The following information is provided from the paper published in 

2010
93

, and is not claimed as the authors own.   

Cage one is synthesised by the [4 + 6] condensation of 1, 3, 5-triformylbenzene with 

1, 2 ethylenediamine, the product of which is crystallized from ethyl acetate as a 

solvate, 1α•2.5EtOAc.  The cage itself is around 1nm in size.  Cage one has been 

Cage Synthesis Structure and Porosity Adsorption 

Cage 

One 

1,2ethylenediamine 

Crystallised from ethyl 

acetate 

 

Intrinsic Porosity with isolated void volume 

Little hydrogen or nitrogen 

at 77K 

Larger quantities of methane 

and carbon dioxide at 

ambient temperature. 

Cage 

Two 

1,2propylenediamine 

Crystallised from 

acetonitrile 

 

Intrinsic and Extrinsic Porosity with isolated void 

volume as in Cage 1 – methyl groups attached to arene 

gives inefficient packing providing 1D pore channels 

Type I nitrogen adsorption at 

77K 

Langmuir surface area: 

600m2g-1 

BET surface area: 533m2g-1.  

Cage 

Three 

(R,R)-

1,2diaminocyclohexane 

Crystallised from 

dichloromethane 

 

Interconnected diamondoid network 

Type 1 nitrogen adsorption at 

77K 

Langmuir surface area: 

730m2g-1 

BET surface area: 624m2g-1.  
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shown to interconvert between a number of stable polymorphs upon exposure to 

certain chemical triggers.
93

 The conversion between polymorphs 1α and 1β are 

shown in Figure 2-24. 

 

Figure 2-24:  Conversion between various polymorphs (1α and1β) accessible to the 

cage one structure, where 1α` and 1β` indicate desolvated structures. Yellow, blue, 

green and orange space filling represents Connolly Surface area. 
93 

 

Desolvation of 1α•2.5EtOAc leads to 1α` (step i), which can reform the solvated 

structure on exposure to ethyl acetate (step ii).  Exposing 1α` to dichloromethane 

solvent converts 1α` to 1β•2.5DCM (step iii).  Removal of DCM solvent produces 

1β` (step iv), which can be converted to 1α•2.5EtOAc upon exposure to ethyl acetate 

(step vi), or can be reconverted to 1β•2.5DCM by exposure to dichloromethane (step 

v).  1β•2.5DCM exists in a state which contains two conformers, 1
T 

and 1
C3

. 1
T 

is a 

tetrahedral conformer, and 1
C3 

is non-tetrahedral. These conformers exist in a 1:1 

ratio within the 1β•2.5DCM structure, stacking alternately in a window to arene 

fashion to give a helical channel structure, which is occupied by the dichloromethane 

molecules.  On desolvation of the dichloromethane molecules, the 1
C3 

conformer 

converts to 1
T 

via rotation around the C-C bond of the imine to arene connection, 

forming a homochiral crystal of 1β`, containing only one enantiomer of the 1
T 

conformer.  Exposure of 1β` to ethyl acetate causes the transformation to the 

1α•2.5EtOAc phase through the incompatibility of the ethyl acetate and the helical 
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pore channel structure of 1β`, resulting in a structure consisting of disconnected cage 

voids.  Conformational conversion causes the formation of a racemic crystal by the 

production of both R and S enantiomers of the 1
T 

conformer.  The 1
T 

conformers in 

1α•2.5EtOAc stack in parallel layers, on desolvation these layers move closer 

together, reducing the pore volume by 12%.  The narrow porosity restricts adsorption 

and at 77 K 1α` is non-porous to nitrogen and hydrogen.  Exposing 1α` to 

dichloromethane results in the transformation of 1α` to 1β•2.5DCM, converting 1
T 

conformers to 1
C3

 producing the helical channel structure.  Although non-porous to 

nitrogen and hydrogen at 77 K, exposure to dichloromethane opens the structure of 

1α` in a cooperative diffusion mechanism.  There is no conversion from one 

polymorph to another over time, or with application of heat, indicating a stable 

system which only converts when exposed to the trigger molecules of ethyl acetate 

and dichloromethane.  The conversion has been shown to be as a result of 

conformational change of the tetrahedral cage units and the reorganization of the 

discrete cages within the crystal lattice.
93 
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Chapter 3 Separation of Gases and Vapours 

3.1 Introduction 

The separation of gases and vapours is a major process in the chemical industry, 

from the separation of hydrocarbons to the production of nitrogen from air.  

Although cryogenic distillation methods still remain the most dominant separation 

technique used industrially, adsorptive gas separations using carbon materials and 

zeolites are becoming increasingly more popular.  Adsorptive separation of gases and 

vapours can occur via three different mechanisms, these are: 

1) Exclusion of one or more components of the mixture based solely on the size 

or shape of the adsorbate 

2) Exclusion of one or more components of the mixture based on the kinetic 

effects produced by the difference in size or shape  

3) Exclusion of one or more components of the mixture based on differences in 

the interaction of the adsorbate with the surface of the porous material
1
 

Separation of gaseous or vapour mixtures based on the size or shape of the adsorbate 

was first utilised industrially in the 1960s using zeolites for the separation of linear 

hydrocarbons from branched and cyclic isomers. This separation takes advantage of 

the critical molecular diameter of the branched and cyclic isomers being significantly 

larger than that of the linear isomers, for example the kinetic diameter of n-octane is 

0.43nm, which is significantly smaller than the branched isooctane with a kinetic 

diameter of 0.62nm.
2
  This illustrates the simplicity of size exclusion principle, using 

materials of a fixed pore width; molecules of too large a critical diameter will not 

diffuse through the aperture, and those with a critical molecular diameter smaller 

than the pore width will diffuse through, therefore allowing an effective molecular 

sieve process.    True size exclusion separations are rare as typically there is not 

enough of a difference between the molecular diameters of the components of the 

mixture.
3
  Separations also occur due to the differences in the rates of passage 

through the apertures into the pores of the material, one or more components of the 

mixture will adsorb faster into the pores than the other components, resulting in 

kinetic molecular sieving.  Favourable interactions between one or more components 

of the mixture and the surface of the adsorbent can also lead to separation through 

the preferential adsorption of the species with the stronger interaction with the 
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surface, for example the separation of carbon dioxide and methane on metal organic 

framework MIL-53.  Carbon dioxide molecules are adsorbed into the framework, 

where the interaction of the quadrupole moment of the carbon dioxide with the 

oxygen atoms of hydroxyl groups lead to a strong interaction.  In contrast methane 

has no specific interactions with the framework, and as such is adsorbed to a lesser 

extent.
4
  There are two specific separation processes which will be investigated 

during this study, the separation of air and the separation of xylene isomers. 

3.2 Air Separation 

Air separation is widely used in industry as a method to produce nitrogen, oxygen 

and argon; three of the mostly widely used industrial gases in the world today. It is a 

highly cost effective process as air is a limitless raw supply.  The composition of dry 

unpolluted air at sea level is shown in Table 3-1.  

Component Volume / % 

  Nitrogen    78.084 

Oxygen 20.946 

Argon 0.934 

Carbon dioxide 0.0360 variable 

Neon 0.00182 

Helium 0.00052 

Methane 0.00016 

Krypton 0.00011 

Hydrogen 0.00005 

Nitrous Oxide 0.00003 

Xenon Trace 

 

Table 3-1: Typical composition of unpolluted dry air at sea level
5
 

Gaseous nitrogen is primarily utilised as an inert atmosphere, for reactions and 

processes such as food storage for which oxidation is a damaging process. Liquid 

nitrogen is a cryogenic liquid, boiling at 77 K therefore allowing uses in freezing and 

cooling, for example in refrigerating biological samples.  Oxygen is used as a 

respiratory gas in the healthcare system, and also as a major component in the metals 

production industry.  The oxidising properties of oxygen are utilised in rocket fuel 
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and in other combustion based processes.  Argon is a noble gas and is therefore also 

greatly desired for use as an inert atmosphere.  Noble gases are produced as by-

products from cryogenic oxygen and nitrogen separation, as argon is the most 

abundant in the atmosphere it is readily inexpensive, and therefore highly desirable.  

Argon is also use in welding, in inert atmosphere production and in preserving food.  

Industrially there are three major processes for separating air; cryogenic, membrane 

and adsorptive separation.
6
  Cryogenic systems are the dominant industrial process 

with larger scale systems producing high purity gas.  Membrane and adsorptive 

separations are non-cryogenic and often provide lower purity gases, however they 

require less space than cryogenic units and as such allow the separation of gases at a 

lower capital cost.
7
  

3.2.1 Cryogenic Air Separation 

Cryogenic air separation is a process which has been continually developed since its 

conception by Carl von Linde in the early 20
th

 century.
8
  A distillation process, 

cryogenic separation of air relies on the difference in boiling points of the various 

gaseous components of air.  Large volumes of air are taken from the atmosphere and 

compressed at pressures of up to 10 atm before impurities are removed.  Using an 

adsorbent bed, impurities such as water and carbon dioxide; which would freeze later 

in the cooling process; and hydrocarbons, are removed.  The purified and 

compressed air is then cooled using a heat exchanger.
9
  The compressed, purified and 

cooled air is then fed into a distillation column, separating the major components, as 

shown in Figure 3-1. 

Additional distillation columns are added to separate argon from the gases found in 

the mid-section of the distillation column.
9
  Although the nitrogen produced by 

cryogenic air separation is very high purity, the process itself incurs a high capital 

cost due to the utility requirements and the large on-site space required for the 

distillation tower.  The size of the system does not allow effective scalability, so 

although cryogenic separation is effective for large scale high purity nitrogen 

production, it is often too large and of too high a capital cost for small scale on-site 

production of nitrogen.
10
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Figure 3-1 Simplified flow diagram of a cryogenic air separation system
9 
 

3.2.2 Membrane Separation 

Industrial separation of air by using membrane technology was first introduced by 

the company Generon in the 1980s.
11

 There are a number of materials which are 

utilised as membranes for air separation, including carbon molecular sieves, zeolites 

and mixed-matrix materials.
12

  Air separation using a membrane is based on the 

difference in permeation rates of the individual components of air through the 

particular membrane. The first polymer membranes developed allowed the 

generation of nitrogen with purity greater than 99%.
13

  For a material to be efficient 

as a membrane separator, it must have suitable permeability and selectivity – 

attributes which can be tailored for the desired separation – and must have the ability 

to form stable and thin membranes.
11

  For the rate of permeation to be maximised, 

the selective layer of the membrane must be extremely thin, 0.5 – 0.1 µm or even 

thinner. This allows the formation of thin fibres, which increases the surface area to 

volume ratio and therefore giving a more economic process.  Often the very thin 

films must be supported on another porous material to withstand the operating 

pressure of the membrane system.
7
 The fibres can be kept as flat sheets or as hollow 

fibres, as shown in Figure 3-2.  Multiple hollow fibres can be combined to form a 

membrane module, maximising surface area to volume for maximum economic gain.  
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Figure 3-2 Membrane construction a) flat sheet membrane b) hollow fibre 

membrane 

 

Similar to the cryogenic systems, air is first compressed and filtered through a 

molecular sieve adsorbent bed to remove carbon dioxide, water and hydrocarbons.  

The compressed, purified air is then passed through the membrane, as depicted in 

Figure 3-3, to produce an enriched air stream. Producing pure nitrogen through 

membrane separations is relatively easy, as air already contains 80% nitrogen and it 

is a matter of allowing small volumes of oxygen to permeate through the membrane.  

Often nitrogen also partially permeates the membrane with the oxygen and argon, 

and as such it is difficult to produce pure oxygen by this method, and typically only 

oxygen-enriched air is produced. Producing pure oxygen by membrane separation is 

still a challenging field of research.  In comparison with cryogenic systems, the near 

ambient conditions and smaller scale system leads to lower capital cost, but produces 

lower purity nitrogen.  Membrane separation technology cannot produce nitrogen on 

the large scale that cryogenic systems are capable of, and membranes currently are 

only utilised in nitrogen production, not oxygen or argon production.
11 
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Figure 3-3 Simplified flow diagram of a membrane air separation system
10

 

 

3.2.3 Separation by Adsorption Technology  

There are a number of materials which are utilised as adsorbents for commercial air 

separation, including activated carbon, carbon molecular sieves, zeolites, aluminas 

and silica gels. The availability of such a wide range of adsorbents, with a wide range 

of pore volumes, structures and pore size distribution, and the ability to use these 

materials in the design of novel separation processes has led to a large amount of 

research into their potential applications in the separation industry. Activated carbons 

are a leading material in gas separation technologies along with zeolites.  The 

varying precursors, methods of production and methods of activation lead to a large 

variety of activated carbons, which can be tailored to specific separation processes.  

Carbon molecular sieves, a class of activated carbon, are used for commercial scale 

air separation.
14

 

3.2.3.1 Pressure Swing Adsorption  

Pressure swing adsorption (PSA) was first introduced by Skarstrom in 1960.
15

 The 

basic pressure swing adsorption system contains two adsorbents beds, typically 

containing either carbon molecular sieve or zeolite, depending on which gas is 

required as the main product.  Air is compressed and pre-filtered and a valve controls 

the flow of the air into one of the adsorbent beds, where the adsorbed component is 
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removed from the air stream.  The adsorbent bed is then regenerated by lowering the 

partial pressure of the system to remove the adsorbed species.  While the first 

adsorbent bed is being regenerated, the valve directs the air flow to the second bed,  

so a continuous feed process is created.  A simplified flow diagram of this process is 

shown in Figure 3-4. 

 

Figure 3-4 A simplified flow sheet of a pressure swing adsorption process
16

 

Pressure swing adsorption is a well-developed method used industrially to separate 

nitrogen from air.  A subset of pressure swing adsorption, vacuum swing adsorption 

(VSA) is used to produce oxygen from air.  

Nitrogen Production 

In the pressure swing adsorption process to produce nitrogen, carbon molecular 

sieves make up the adsorbent bed.  Carbon molecular sieves contain pores which 

have a size of a similar order of magnitude to that of the molecules in air.  The 

slightly smaller oxygen molecules are adsorbed at a faster rate into the cavities of the 

carbon molecular sieve than nitrogen making this a kinetically selective separation.
17

  

The selectivity has been previously explained by the difference in kinetic diameter of 

oxygen and nitrogen, (3.46 and 3.64 Å, respectively).  However, it is more likely that 

the molecular width of these molecules (2.8 and 3.0 Å, respectively) is the rate 

determining factor into the adsorption of these molecules into the slit shaped pore of 
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carbon materials.  Oxygen and nitrogen have similar thermodynamic properties, so 

after time there will be equal amounts of both gases adsorbed into the system, 

therefore the separation is a time-dependant process.  Oxygen adsorbs at 114 x 10
-4

 s
-

1
, whereas nitrogen adsorbs approximately twenty five times slower at 3.23 x 10

-4
 s

-1
 

at 293 K and 99 kPa, leading to 80% adsorption of oxygen within the first few 

minutes of exposure, but only 5% adsorption of nitrogen.
18

   Pressure swing 

adsorption processes have a lower capital cost than cryogenic processes for nitrogen 

production, but there is a limit in the scalability to large scale productivity as more 

adsorbent beds would need to be added to the process, subsequently increasing the 

capital cost.
9
 A comparison of techniques for nitrogen production is shown in Figure 

3-5. 

 

Figure 3-5 Comparison of cryogenic, PSA and membrane technology
19

 

Pressure swing adsorption processes produce higher purity nitrogen than membrane 

technology, but not as a high purity as that produced by cryogenic processes.   

Oxygen Production 

In the vacuum swing adsorption process to produce oxygen, zeolites are utilised in 

the adsorbent bed due to their equilibrium selectivity for the adsorption of nitrogen 

over oxygen and argon.
20

  The selectivity for nitrogen arises from the interaction of 
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the quadrupole in nitrogen with the electric field generated inside the zeolite pores 

formed by the presence of cations.
21

   Vacuum swing adsorption operates in a similar 

way to pressure swing adsorption, the difference is that while pressure swing 

adsorption regenerates the adsorbent bed at atmospheric pressure, vacuum swing 

adsorption has an additional vacuum stage to more completely purge the adsorbent 

bed.
22

  Synthetic zeolites are typically used in oxygen production.  Zeolites A (LTA) 

and X (FAU) and Y (FAU) have all previously been used, with cations such as 

sodium, calcium and lithium present in the pores.
23

  The choice of zeolite and cation 

can improve the ability to adsorb nitrogen; lithium cations in zeolite X have showed 

a significant improvement over zeolite X with sodium cations. 
24, 25

  

3.2.3.2 Air Separation Using Metal Organic Frameworks 

Metal organic frameworks have been utilised in a number of gas separations, 

including separating methane and carbon dioxide, carbon dioxide capture and some 

exploration into removal of other toxic and environmentally hazardous compounds.
26

 

MOF-177 Zn4O(1,3,5-benzenetribenzoate)2 has been shown to preferentially adsorb 

oxygen over nitrogen at low pressures and at 298 K as shown in Figure 3-6, with 

unique behaviour. As shown in the isotherms the oxygen uptake is linear with 

pressure whereas the nitrogen plateaus in a Type 1 isotherm shape, showing that 

oxygen is adsorbed more favourably on the framework at higher pressure. 

Traditionally separation isotherms display the same shape and uptake for oxygen and 

nitrogen separation on carbon molecular sieves.  This difference in uptake volume at 

low pressure indicates that a larger separation factor would be seen at higher 

pressure, allowing the possibility of using this metal organic framework in the 

production of nitrogen at high pressure.
27

  Separation of air by the adsorption of 

oxygen is more desirable as oxygen is less abundant, so less work would be required 

to remove it from the air stream.  
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Figure 3-6: Nitrogen and oxygen adsorption isotherms on MOF-177 at 298 K.
27

 

Cu-BTC (copper (II) benzene-1,3,5-tricarboxylate) is a 3D porous metal organic 

framework which has shown preferential adsorption of nitrous oxide and carbon 

dioxide over both nitrogen and oxygen at 295 K, as shown in Figure 3-7.
28

 Although 

not suitable for direct separation of oxygen and nitrogen, this material could be 

readily utilised in an air pre-purification unit such as the ones found within a 

cryogenic separation system.   

 

 Figure 3-7: N2O, CO2, O2 and N2 adsorption isotherms on Cu-BTC at 295 K
28
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3.3 Xylene Separation 

Xylene is the collective term for a mixture of several C8 alkyl aromatic hydrocarbons 

including o-xylene, m-xylene, p-xylene and traces of ethyl benzene as an impurity. 

The mixed xylenes are produced from crude oil, via the catalytic reforming of 

petroleum naphtha. The structures of each isomer and some data are given in Table 

3-2. The p-xylene constituent of the mixed xylenes is the most important in industry, 

where it is used to form purified terephthalic acid, which is a major component in the 

polyester production chain. The major growth in demand for polyester is currently in 

Asia, where it is used in textile production, and in Europe and North America where 

polyethylene terephthalate (PET) industry is growing to meet demand for resins for 

soft drinks and mineral water bottles. O-xylene is the next most important xylene 

isomer used in industry.  The major use of o-xylene is in the manufacture of phthalic 

anhydride, which is used to make plasticisers and resins, the largest demand for 

which is to make poly vinyl chloride (PVC) resins. M-xylene is used to produce 

isophthalic acid, which can be used in PET resin blends and ethyl benzene is used to 

obtain styrene.   

 

Xylene Structure Boiling Point Melting Point 

o-xylene 

 

144.4°C -24°C 

m- xylene 

 

139.1°C -48°C 

p-xylene 

     

138.4°C 13°C 

Ethyl benzene       

 

136.2°C -95°C 

Table 3-2: Xylene isomers: structures and data 
29
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3.3.1 Industrial Separation of Xylenes 

The major challenge in industrial processes is the separation of these isomers.  O-

xylene can be separated by fractional distillation, as it has a higher boiling point, 

however, fractional distillation cannot separate p- and m- xylene due to the similarity 

in boiling point.
30

 Currently in industry there are two methods employed to separate 

p-xylene from the xylene mixtures, fractional crystallisation and adsorption. 

Fractional crystallisation constitutes 40% of industrial p-xylene production, whereas 

adsorption methods constitute 60% of p-xylene production.
31

 In fractional 

crystallisation, the variation in melting points of the xylene isomers leads to the 

separation of p-xylene.  The mixture is cooled to -75°C at which point the p-xylene 

precipitates as a crystalline solid, as this has the highest melting point.
32

  

There are multiple adsorption methods which have been developed to separate p-

xylene, such as the Universal Oil Products (UOP) Parex process,
33

 Toray’s Aromax
34

 

and IFP’s Eluxyl process.
35

  These processes use a solid ion exchanged Faujasite 

zeolite adsorbent which is shape selective for p-xylene over the other xylene isomers.  

The adsorbed p-xylene is then removed by displacement by a desorbent, such as 

toluene or p-diethyl benzene, at purities above 99.7%.
36

 The adsorption processes are 

based on a Simulated Moving Bed (SMB) separation,
37

 which uses a continuous 

counter current flow of the liquid phase adsorbate against the solid phase adsorbent 

bed.  As it would be technically difficult to physically move the solid bed of 

adsorbent, the continuous flow is simulated by periodically moving the position of 

the inlet stream (which consists of the feed and the desorbent) and the outlet stream 

(consisting of the high purity p-xylene and the remaining fluid raffinate). The three 

processes all differ in the way that the inlet and outlet streams are rotated. A 

simplified flow diagram of the Parex process is shown in Figure 3-8. 
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Figure 3-8:  A simplified flow sheet of the UOP Parex simulated moving bed (SMB) 

xylene separation process  

1 = desorbent feed 2 = extract 3 = mixed feedstock 4 = raffinate (gas stream with 

adsorbed component removed) 

3.3.2 Separation of Xylenes Using Metal Organic Frameworks 

Several metal organic frameworks have been shown to selectively adsorb one of the 

constituents of the mixture of xylene isomers and ethyl benzene.  MIL-47 and MIL-

53 have been extensively investigated by Alaerts et al.
38,39

 MIL-47 is a 3D 

microporous framework consisting of infinite chains of V
4+

O6 octahedra linked 

together with terephthalate linkers to produce one-dimensional diamond shaped 

channels.
40

  Analysis of xylene separation is conducted by breakthrough 

experiments.  

During breakthrough experiments, a known concentration of adsorbent is flowed in a 

carrier gas through a hollow tube which has been packed with adsorbent.  A 

concentration front is formed which moves down the packed bed, and due to the 

kinetics of adsorption, the shape of the front will change.  The concentration front 

eventually breaks through the edge of the bed, and a plot of relative vapour or gas 

concentration leaving the bed against time is produced.  Keeping the concentration 

and carrier gas flow constant and assuming adsorption occurs by physisorption, an s-

shaped breakthrough curve will be produced.  From this curve the amount of gas or 
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vapour adsorbed can be calculated through integration over time, and the shape of 

the curve can give an indication about the kinetics of adsorption.   

Through breakthrough, Finsy et al have shown that MIL - 47 selectively adsorbs p-

xylene over m-xylene due to the more efficient packing of p-xylene into the porous 

structure of the framework at a lower energy cost in comparison to m-xylene.
41

 Finsy 

et al and Loiseau et al showed the separation of ethyl benzene and ortho xylene using 

the aluminium analogue of MOF-53.
39,42  

MIL-53 is constructed of chains of 

AlO4(OH)2 octahedra held together by terephthalate linkers, giving a three 

dimensional polymer with one dimensional diamond shaped channels.  

Experimentally it is shown that within the contracted form there is a single line 

arrangement of guests, as the gateway pressure is reached, the uptake doubles within 

a very small pressure window, showing the molecules reorganising into a paired row. 

This is shown in Figure 3-9. 

 

Figure 3-9: a) the contracted form of MIL-53, containing a single row of o-xylene 

(b) the reformed form of MIL-53 containing two rows of o-xylene
39 

This effect is strongest for ortho xylene, as this has the strongest interaction with the 

framework at full occupancy, as both methyl groups can interact with the framework.  

The results of these initial adsorption experiments were tested by performing 

breakthrough experiments, showing that at a pressure of 0.056 bar complete 

separation of o-xylene and ethyl benzene was achieved, with pure ethyl benzene 

eluted from the column. 

Both of these materials show that pore filling effects have an impact on the 

adsorption potential and selectivity of the metal organic frameworks.  This was also 

shown by Nicolau et al in their investigation into the vapour phase separation of the 

xylene isomers on MOF-1 [Zn(BDC)(Dabco)0.5], where BDC = benzene 



Chapter 3 Separation of Gases and Vapours 

 

99 

 

dicarboxylate and Dabco = 1,4-diazabicyclo[2.2.2]octane.
43

 Preferential adsorption 

of o-xylene was observed over m-xylene and p-xylene due to more favourable 

interactions and therefore more efficient packing of the o-xylene molecules within 

the porous framework.   

The separation characteristics as well as the stability, and cost of the materials are all 

major factors in the application of these new materials in commercial separations.   
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Chapter 4 Research Objectives 

4.1 Overall Objectives 

The overall objectives of this research are to evaluate porous materials synthesised 

by the research groups led by Professors M. J. Rosseinsky and A. I. Cooper at 

Liverpool University.  The porous materials to be evaluated include a metal organic 

framework and a new branch of porous materials – porous organic cages.  Initial 

porous structure characterisation will be conducted followed by the evaluation of the 

materials with regard to gas separation properties and in the case of the porous 

organic cages, also the evaluation of the structural response upon exposure to certain 

organic vapours.   

4.2 Metal Organic Framework Zn2(TBAPy)(H2O)2 

4.2.1 Porous Characterisation 

 To characterise the porous structure of the framework using carbon dioxide 

adsorption at 195 K and 273 K including pore volume and surface area 

determination 

4.2.2 Separation of Xylene Isomers 

 To evaluate the adsorption of p-xylene adsorption on the framework, 

including thermodynamic and kinetic analysis 

 To evaluate the adsorption of m-xylene adsorption on the framework, 

including thermodynamic and kinetic analysis 

 To compare the kinetic analysis of p- and m- xylene adsorption on the 

framework to evaluate the ability of the framework to separate the xylene 

isomers on a kinetic basis 

 To evaluate the powder X-ray diffraction data by sealing samples of 

Zn2(TBAPy)(H2O)2 in capillaries at set vapour pressures 

4.3 Molecular Organic Cage Materials  

4.3.1 Porous Characterisation 

 To characterise the porous structure of the Cage 1α using carbon dioxide 

adsorption at 195 K and 273 K including pore volume and surface area 

determination 
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 To characterise the porous structure of the Cage 1β using carbon dioxide 

adsorption at 195 K and 273 K including pore volume and surface area 

determination 

4.3.2 Structural Responses Induced by Vapour Adsorption 

 To investigate the structural response of Cage 1β upon exposure to various 

organic vapours 

 To investigate the structural rearrangement of Cage 1β to Cage 1α# upon 

exposure to ethyl acetate and methyl acetate 

 To determine the kinetics of adsorption for ethyl acetate and methyl acetate 

on Cage 1β – including investigation of the kinetics of the unprecedented 

mass loss during adsorption 

 To determine the isosteric enthalpy and entropy of adsorption of methyl 

acetate adsorption for the structural rearrangement of Cage 1β to Cage 1α# 

 To determine the kinetics of adsorption of methyl acetate on Cage 1α# 

 To determine the isosteric enthalpy and entropy of adsorption for methyl 

acetate adsorption on Cage 1α# 

 To investigate the structural rearrangement cycle of Cage1β  Cage1α 

Cage1β Cage 1α through exposure to methyl acetate and 

dichloromethane 

4.3.3 Gas Separation 

 To compare the kinetics of adsorption of oxygen and nitrogen on Cage1α 

 To determine the isosteric enthalpy of adsorption of oxygen and nitrogen on 

Cage 1α  

 To compare the kinetics of adsorption of oxygen and nitrogen on Cage1α# 

 To determine the isosteric enthalpy of adsorption of oxygen and nitrogen on 

Cage 1α# 

 To compare the kinetics and isosteric enthalpy of adsorption of oxygen and 

nitrogen on Cage 1α and Cage1α# 
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Chapter 5 Experimental 

5.1 Materials Used 

5.1.1 Porous Materials 

5.1.1.1 Porous Organic Cages 

Cage 1 was supplied by Professor Andrew Cooper, University of Liverpool.  The 

synthetic method was as follows: ethyl acetate (35mL) was added to 1,3,5 

triformylbenzene (50 mg, 0.31 mmol) in a vial at room temperature.  After 5 minutes 

a solution of ethylene diamine (28 mg, 0.47 mmol) in ethyl acetate (5mL) was added.  

The resulting mixture was left covered for 60 hours with no stirring or heating.  A 

turbid solution was observed to form within 5 minutes after the ethylene diamine 

solution was added to the partially dissolved trialdehyde.  This was followed by 

precipitation of a solid after around 5 – 6 hours, and finally, pale white needles of 

cage 1 were observed to crystallise from solution after around 60 hours.  The product 

obtained was a mixture of needle like crystals which formed on the sides of the 

reaction vial ( major component) and a thin layer of amorphous material on the base 

of the vial (minor component).  The crystals were removed from the side of the flask 

using a spatula without disturbing the amorphous layer; they were washed with ethyl 

acetate then air dried to give the ethyl acetate solvate of cage 1. Cage 1 crystallises as 

Cage 1α•2.5EtOAc.  To desolvate cage 1, the sample was heated to 373 K for 6 

hours under a dry nitrogen flow, and was then evacuated at 353 K for 6 hours to give 

an isolated yield of 35%.
1
 To convert between the various polymorphs, a “vial in 

vial” technique of vapour diffusion was utilised, where the unconverted polymorph 

was placed in a small vial, which was then placed in a larger vial containing the 

organic trigger molecule for each conversion.  The large vial was then sealed and left 

at room temperature for three days.
1
 

5.1.1.2 Metal Organic Framework Zn2(TBAPy)(H2O)2 

Zn2(TBAPy)(H2O)2 was supplied by Dr Kyriakos Stylianou, University of Liverpool.  

The synthetic method was as follows: Zn(NO3)2·6H2O (9 mg, 0.030 mmol) and 

H4TBAPy (10 mg, 0.015 mmol) were suspended in DMF followed by the addition of 

dioxane and H2O in a ratio of 2:1:1 respectively and 10 µL HCl, and the resulting 

yellow solution was sonicated for 10 minutes. The resulting yellow suspension was 

heated to 120°C for 72 hours in a 12 mL sealed vial before cooling to 30°C at a rate 
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of 0.2 °C/min. The resulting yellow block crystals were filtered and washed with 10 

mL of the same mixture of solvents used for the synthesis.
2
 

5.1.2 Organic Vapours and Gases 

Organic liquids used for vapour adsorption were supplied by Sigma Aldrich. The 

properties of these materials are listed in Table 5-1.   Nitrogen (99.9995% purity), 

carbon dioxide (99.999% purity) and oxygen (99.9995% purity) were supplied by 

BOC, UK. The properties of these gases are listed in Table 5-2. 

Table 5-1: Properties of the organic vapours used
3,4 

 Purity 

/ % 

Boiling 

Point 

(initial) 

/  °C 

Melting 

Point / 

°C 

 

Relative 

Density (at 

298K) / g 

cm
-3

 

Flash Point 

(closed cup) 

/ °C 

Molar Mass 

/ g mol
-1

 

Ethyl 

Acetate 

99.99 76.5 -84.0 0.9020 -3.00 88.12 

DCM 99.99 40.0 -97.0 1.32 - 84.93 

Methyl 

Acetate 

99.99 57.0 -98.0 0.9340 -13.0 74.08 

Pentane 99.99 35.0 -130.0 0.6260 -49.0 72.15 

2-butanone 99+ 80.0 -87.0 0.805 -3 72.11 

Diethyl 

ether 

99+ 34.6 -116.0 0.706 -40.0 74.12 

Methanol 99.8 64.7 -98 0.791 9.7 32.04 

p-xylene 99+ 138.00 12.00 3.7000 27.00 106.16 

m-xylene 99+ 138 48.00 3.7000 27.00 106.16 
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Table 5-2: Properties of the gases used
3 

 

 Nitrogen Carbon Dioxide Oxygen 

Molecular Weight / g mol
-1

 28.0134 44.01 31.99 

Melting Point / °C -209.86 -56.6 -219 

Liquid Density / kg m
3
 808.607 1032 1141 

Boiling Point / °C -195.8 -78.5 -183 

Critical Temperature /°C -147 31 -118.6 

Critical Pressure / bar 33.999 73.825 50.43 

Critical Density / kg m
3
 314.03 464 436.1 

Gas Density / kg m
3
 4.614 2.814 4.475 

 

5.1.3 Saturated Vapour Pressure (P
0
) Calculation 

The saturation vapour pressure is the pressure at which the vapour is in equilibrium 

with its non-vapour phase, which is specific at a given temperature.  

This is calculated using the Antoine equation
5
: 

          
 

   
                   5.1 

Where:  

P
0
 = saturated vapour pressure (mmHg) 

T = temperature (°C) 

A, B and C = constants for each adsorbate 

The saturated vapour pressure can also be calculated using Yaws Equation: 

      
   

 
                

Where:  

P
0
 = saturated vapour pressure (mmHg) 

T = temperature (°C) 

A, B, C, D, and E = constants for each adsorbate 
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This was used for carbon dioxide adsorption with the parameters as follows, A = 

35.0169 B = -1511.9 C = -11.334 D = 0.0093368 E = 1.7136 x 10
-9

. 

The Antoine equation coefficients for the various adsorbates used in this study are 

given in Table 5-3.  

Table 5-3: Antoine equation coefficients for gases and organic compounds
6
 

Adsorbate Temperature 

Range, K 

A B C 

Nitrogen 77 - 370 6.49457 255.68 266.550 

Oxygen 54 – 155 6.83706 339.209 268.702 

Ethyl Acetate 190 – 523 7.25963 1338.46 228.608 

Dichloromethane 178 – 510 7.11464 1152.41 232.442 

Methyl Acetate 175 - 507 7.28036 1276.29 233.155 

Pentane 144 - 470 7.00877 1134.15 237.678 

2-butanone 188 – 535 7.20103 1325.15 227.093 

Diethyl ether 156 - 467 7.04631 1112.55 232.657 

Methanol 175 – 512 8.09126 1582.91 239.096 

p-xylene 286 – 616 7.15471 1553.95 225.23 

m-xylene 226 – 616 7.18115 1573.02 226.671 
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5.2 Gas and Vapour Adsorption Studies 

5.2.1 Intelligent Gravimetric Analyser (IGA) 

The Intelligent Gravimetric Analyser (IGA) was used to complete all sorption 

studies.  The IGA utilises an ultra-high vacuum system which allows the 

determination of the mass change of a sample as it is exposed to gases or vapours at 

set pressure increments.   A photograph of one of the five IGAs available in the 

Wolfson Northern Carbon Reduction Laboratories is shown in Figure 5-1. 

  

Figure 5-1: One of several IGAs available in the Wolfson Northern Carbon Research 

Laboratories 

A photograph of the internal layout of the IGA cabinet is shown in Figure 5-2. 

 

Figure 5-2: Internal view of IGA cabinet 
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The gas handling system allows the entry of gases and vapours into the system 

through several valves; it houses the pressure transducers and the glass vapour 

reservoir. Three pressure transducers control the admitted gas/vapour pressure. The 

transducers have individual pressure ranges of 0-0.2 kPa, 0-10 kPa, and 0-0.1 MPa 

for IGA 3, while IGA 1 can reach a maximum pressure of 1 MPa.  A more detailed 

diagram of the automated gas handling system is shown in Figure 5-3. 

 

Figure 5-3: Automated gas handling system 

The IGA is a computer controlled system which allows the simultaneous 

measurement and control of four processes: mass change, pressure regulation and 

two temperature regulation systems. Each of these processes is controlled, and data is 

acquired, through an integral dedicated microcomputer, using parameters and 

algorithms that can be controlled by the user interface in the IGA software.  
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5.2.1.1 Microbalance System  

The mass change is measured by balance head movement. A schematic 

representation of the microbalance system is shown in Figure 5-4.  

 

Figure 5-4:  Schematic representation of IGA microbalance system 

The system includes a balance head, which is balanced by the counterweight and the 

sample bucket.  The microbalance has a total capacity of 5g, with 200 mg range. It 

has a long term stability of ± 1μg and a weighing resolution of 0.2μg.  The weighing 

head consists of a moving coil galvanometer, with a taut band phosphor-bronze 

suspension and a balance beam, which is constructed from fine aluminium tubes, 

which have a through-beam infra-red sensing system which detects changes in 

balance beam position.  When any change in position is detected by the infra-red 

sensors, the IGA computer system passes a current through the moving coil 

galvanometer to readjust the balance beam to the “null” position.  The current needed 

to maintain the balance head at the null position is proportional to the weight applied 

by adsorption of gas or vapour. A more detailed schematic of the IGA microbalance 

head is shown in Figure 5-5. 
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Figure 5-5: Schematic representation of IGA microbalance head
7
 

The mass increase at set pressure increments was recorded by the software to 

produce the isotherm.  The mass increase was also monitored as a function of time. 

The real-time processing uses non-linear least squares regression analysis to 

determine estimates of kinetic parameters during the adsorption/desorption process.
8
 

After the mass is equilibrated at a set pressure, the software moves the system on to 

the next pressure step - recording each step as a kinetic profile. The equilibrated mass 

value is recorded as an isothermal point. This is shown in Figure 5-6.  

 

Figure 5-6: Typical adsorption isotherm and kinetic mass profiles 
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5.2.1.2 Pressure Regulation 

The regulation of pressure is controlled by the IGA software algorithms.  The 

software controls the motion of admit and exhaust valves within the automated gas 

handling system.  These Swagelok valves are adjusted by the software using high 

resolution stepping motors.  An example of this type of valve is shown in Figure 5-7.  

 

 

Figure 5-7: Schematic representation of an IGA gas admit/exhaust valve
7
 

The computer algorithms control the stepping motor, which turns the upper and 

lower coupling and torque disk.  This in turn rotates the switch hammer, the 

algorithm registers the valve as closed when the switch hammer rotates around and 

shuts the micro switch. The pressure controller operates over a wide range of 

differential pressure (the difference between the admit pressure and the system 

pressure).  The controller can be adjusted within the software by manipulation of the 

proportional – integral – derivative (PID) controller process control inputs.  The most 

important control inputs with typical values in parenthesis are: the Admit gain (4 – 

6), which controls the approach to pressure set point; the Admit valve integral 

acceleration (0.1 – 1), which integrates the area between the set point line and the 

pressure set and controls the pressure once the set point is reached; the crack cycle (6 

– 18) and regulation cycles (6 – 18) which control the opening of the Admit valve 

and the rotation limit (60 – 180 degrees), which controls the maximum angle to 

which the Admit valve will open.  For vapours the rotation limit is usually set at a 
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maximum of 180 degrees.  It is important to produce a good pressure set, as this 

allows good kinetic profiles to be obtained.  Examples of good and poor pressure sets 

are shown in Figure 5-8. Adjustment of parameters helps to keep the system 

regulated and avoid overshoot.   

 

Figure 5-8: Pressure set point regulation 

5.2.1.3 Temperature Control 

Thermo-stirrers/ Cryostats / Furnaces 

Thermo-stirrers and cryostats were used to control the temperature set point of the 

isotherm, allowing isotherms to be gathered at a variety of temperatures.  Thermo-

stirrers are typically an RM 6 Lauda analogue water bath, which circulates a 1:1 

mixture of ethylene glycol and water.  The water bath was used to set temperatures 

from -5°C to 60°C.   Cryostats consist of a glass-lined Dewar filled with substances 

to set cooler temperatures. For experiments conducted at 195 K a Dewar of dry ice 

and acetone was used, typically for carbon dioxide adsorption; for 77 K a Dewar was 

filled with liquid nitrogen, typically used for nitrogen and hydrogen adsorption.  The 

Dewar was wrapped in a suitable insulating material and kept at 95% capacity with 

cooling substance as required throughout the isothermal run. Furnaces were used to 

bring the sample to the higher outgas temperatures to remove any volatile substances 

held within the porous structure, to an accuracy of ±0.3°C.  The sample temperature 

was monitored by a thermocouple 5 mm above the sample inside the steel sample 

chamber.  
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Thermal Regulation 

The thermo regulator was used to circulate air at a constant temperature around the 

IGA cabinet, regulating the temperature of all temperature – sensitive devices such as 

the microbalance.  In conjunction with the anti-condensation system the thermo 

regulator can be used to increase range of pressure and temperature which is 

available to certain vapours.  The air temperature was monitored using a platinum 

resistance thermometer and controlled also using a PID controller and a miniature 

fan heater to an accuracy of ±0.01°C.    

5.2.1.4 Typical Experimental Procedure  

A schematic diagram of the gas inlet/outlet system for the IGA is shown in Figure 

5-9.   

 

Figure 5-9: Schematic diagram of inlet/outlet system for gas and vapour adsorption 

experiments 

VA – Automated Gas Admit Valve:  1/4" Swagelok connection to the computer 

controlled valve allowing gas/vapour into the system 

VE – Automated Gas Exhaust Valve: 1/4" Swagelok connection to the computer 

controlled valve removing gas/vapour from the system 
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EV1 - External Vacuum Bleed Valve:  Switches at the automated gas admit valve 

between gas supply from external gas cylinders and the vacuum pump.  Connection 

to the vacuum pump allows the decontamination of the admit pipework 

PIV 4 – Reservoir Isolation Valve: Switches between the vapour reservoir and the 

gas admittance pipework. When pointing left vapour from the reservoir is admitted to 

the system, when pointing right gas from the external supply is admitted to the 

system, when pointing upwards the system is isolated from any vapour or gas inlet 

PIV 1 – Vacuum-Pressure Isolation Valve: Isolates the sample chamber from direct 

exposure to the vacuum pump.  Can be slowly opened to allow an improved vacuum 

within the chamber 

To begin an adsorption experiment, the system was first brought to atmospheric 

pressure by allowing air into the system using the air admit valve and pipeline a. 

Once pressure was at atmospheric (~1000 mbar) the steel vacuum pressure chamber 

was removed, any old sample disposed of and a new sample loaded.  Empty sample 

bucket mass measurements were taken before each new sample loading to reset the 

“null” position of the balance beam.  After the sample was loaded, the steel vacuum 

vessel was replaced and the system degassed.  The degassing procedure removed any 

volatile substances from the pores of the material and removed any residual gas or 

vapour from the internal pipework of the IGA.  To outgas the sample the following 

pipework system was used: 

 

To outgas the internal pipework the following system was used: 
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Once the pressure inside the sample chamber was below 1 mbar, valve PIV 1 was 

opened to expose the sample directly to the turbo pump.  Outgassing at x10
-6

 Pa was 

sustained for each sample while heating was conducted.  Typically samples were 

heated at 120°C for > 5 hours, or until a stable mass profile was obtained.  At this 

point the samples were fully outgassed and prepared for adsorption studies.  This 

outgas procedure was followed after every adsorption isotherm experiment to ensure 

all adsorbed gases from previous experiments were removed from the sample and the 

pipework.  The experimental temperature was then set using either the water bath or 

Dewar containing cooling liquid.   

For gas adsorption experiments, gas was introduced into the sample chamber from a 

cylinder via the following system:  

 

 

 

For vapour experiments, vapour was introduced into the sample chamber via: 

 

 

5.2.1.5 Vapour Adsorption 

Liquid adsorbate is injected into a glass reservoir using a pipette; the reservoir is then 

attached to the IGA within the automated gas handling section. The temperature 

within the IGA cabinet is held high enough to induce vapour formation from the 

liquid within the reservoir.  The liquid in the reservoir is fully degassed using a 

procedure known as “blocking and bleeding” to remove any air from the liquid. In 

the first step, “blocking”, the vapour reservoir is isolated from the rest of the system 

by turning the vapour admit valve to the vacuum.  This evacuates the internal pipe-

work up to the gas admit valve.  In the next step, “bleeding”, the vapour admit valve 
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is turned to the reservoir, so it is open to the internal pipe-work, and vapour 

formation is induced to fill the vacuum found within the internal pipe-work.    

5.2.1.6  Capillary Experiments 

Glass capillaries of diameter 0.3, 0.5 and 0.7mm (supplied from Capillary Tube 

Supplies Ltd.) were used to seal a sample at a set pressure and vapour/gas loading, so 

as to assess changes to the structure of the material induced by pressure and vapour 

exposure.  The IGA sample chamber was modified to include a valve and outlet for a 

capillary connection.  The capillary connection was sealed with Apiezon W hard wax 

vacuum sealant, and vacuum tested to ensure that the system was leak free. The 

capillary adaptation is shown in Figure 5-10. 

 

Figure 5-10:  Capillary adaptor 

The sample is outgassed as normal, using a water bath to achieve high temperatures, 

then vapour / gas is admitted at a set pressure, the pressure and mass is left for a pre-

determined time from previous isotherms to ensure equilibration, the capillary is then 

sealed using a hydrogen/oxygen mix fine welding torch.   

5.2.2 Additional Experimental Methodologies  

5.2.2.1 Thermal Gravimetric Analysis 

The Thermal Gravimetric Analysis machine used is a Stanton Redcroft STA 780 

thermo-balance, which consists of an electronic microbalance with a hang down 

suspended down to the centre of a furnace, cooled by a water jacket.  Thermal 

gravimetric analysis is used to determine the thermal stability of samples.  
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Approximately 10 mg of sample is needed to determine thermal stability.  The 

sample is loaded into a ceramic bucket, the furnace is raised around the sample and 

heated at 5°C/min to temperatures of typically 500°C under a constant flow of 

nitrogen (50cm
3
 min

-1
), while mass loss is recorded by computer software.  A typical 

TGA analysis plot is shown in Figure 5-11. 

 

 

Figure 5-11: Typical TGA profile 

5.2.2.2 Scanning Electron Microscopy 

Size and sample morphology were obtained using a scanning electron microscope 

JEOL 5300 LV fitted with Rontec and Si (Li) energy dispersive X-ray detector 

(EDX). Both detectors were cooled by liquid nitrogen. The EDX instrument was ran 

with an operating voltage of 25 kV under vacuum for qualitative elemental analysis. 

The samples were coated with gold and imaged with secondary electrons in high 

vacuum mode. This analysis was carried out by the Materials Analytical Unit, 

Newcastle University. 

5.2.2.3 Fourier Transform Infrared (FTIR) Spectroscopy 

FTIR spectra were collected across the wavelength range 400 – 4000 cm
-1

 for 

samples of Cage 1β, Cage 1α and Cage 1α#.  Spectra were collected on a Digilab 

SCIMITAR series FTIR Spectrometer in the Department of Chemistry, Newcastle 

University. A small amount of powder (~2mg) was placed on the disc press assembly 

for analysis. Samples were analysed for 16 scans with a resolution of 4cm
-1

. 
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5.2.2.4 Single Crystal X-ray Diffraction 

X-ray diffraction data for the analysis of the single crystals of both the metal organic 

framework and the cages were completed at Liverpool University.  Single crystal 

structures were collected on a Bruker D8 diffractometer using MoKα radiation.  The 

crystal structures were solved with Direct Methods and refined with full-matrix least 

squares regression using SHELX.
1
  

5.2.2.5 Powder Diffraction  

All powder X-ray diffraction data was collected by researchers at Liverpool 

University. 

The Zn (TBAPy) MOF samples loaded with xylene were analysed by powder X-ray 

diffraction collected in transmission using a STOE Stadi-P diffractometer with CuKα 

radiation at 298 K.
2
   

The Cage materials powder X-ray diffraction analysis was carried out on a 

PANalytical X’pert pro multi-purpose diffractometer in transmission Debye-Scherrer 

geometry with a Cu anode.
1
   

5.2.3 Error Analysis 

Random errors may occur within the IGA measurements, such as small changes in 

pressure which the IGA is not sensitive enough to control.  These errors appear as 

numerical values when a model is used to describe the dataset.   

The ± errors on calculated parameters are generated from the standard error of the fit 

of the models to the raw data gathered from the IGA experiments.  They are at first 

calculated from parameters obtained from the fit of either the linear regression (such 

as Langmuir or DR analysis) or the curve fitting (such as kinetic analysis), and 

propagated through the calculations of the various stated values or parameters 

through combining the uncertainty for each step in the calculation.   

How far the models used to analyse the kinetic profiles vary from the original data 

points is displayed as residuals underneath each kinetic point.  The model is 

considered a good fit if the residuals are less than 4% and acceptable fit will have 

residuals up to 10%. Above that the model does not provide an accurate description 

of the raw data and cannot be used.    
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Chapter 6 Xylene Separation by Zn(TBAPy) 1' Metal Organic 

Framework 

6.1 Introduction 

A metal organic framework has been synthesised in which flexibility is produced 

though changing the structural dimensions from two dimensional to three 

dimensional by the reconfiguration of paddlewheel units.  The material was 

synthesised by Dr Kyriakos Stylianou in the Rosseinsky research group at Liverpool 

University.   The metal organic framework is based on zinc metal centres and a 

pyrene based ligand functionalised with benzoate fragments.  The initial structure 

produced is a two dimensional layered structure, Zn(TBAPy) 1, and upon 

desolvation the layers cross link to form a three dimensional framework Zn(TBAPy) 

1'.  The compound contains the pyrene based ligand TBAPy (1,3,6,8,-tetrakis(p-

benzoic acid) pyrene (Figure 6-1).   

 

Figure 6-1: Structure of the fluorophore ligand TBAPy (1,3,6,8,-tetrakis(p-benzoic 

acid) pyrene 

The pyrene core of this molecule is a fluorophore, and has been previously shown in 

indium based frameworks to rotate around the benzoate functional groups to allow 

framework distortion and the fluorescent properties are shown to be guest 

responsive.
1
 On adsorption of toluene, π – π stacking effects were also observed, 

showing strong interaction between the toluene and pyrene.  The synthesis of 

Zn(TBAPy) 1 was outlined in Chapter 5 – Experimental.
2
 

6.2 Crystal Structure of Zn(TBAPy) 1 

The pyrene ligands attach to the two zinc metal centres to form a paddlewheel motif, 

with square based pyramidal coordination geometry, as shown in Figure 6-2 (a).  

The carboxylate groups of four TBAPy ligands are attached in the equatorial plane of 

the square pyramidal geometry, with a water molecule attached in the axial position.  



Chapter 6 Xylene Separation by Zn(TBAPy) 1' Metal Organic Framework 

123 

 

This allows the formation of two distinct channels within the framework as shown in 

Figure 6-2 (b), where the channels including the axial water molecule are 

hydrophilic and the channel lined by the pyrene ligands are hydrophobic.   

 

Figure 6-2: (a) Coordination of four different TBAPy ligands around Zn  

paddlewheel units (b) View along a-axis showing that the stacking of the 2D layered 

framework affords a porous network with the formation of two types of pores; the 

hydrophilic in which coordinated H2O molecules reside within this channel (green) 

and the hydrophobic (orange).  Image provided by Dr D. Bradshaw (Liverpool 

University).  

6.3 Structural Transformation from Zn(TBAPy) 1 to Zn(TBAPy) 1' 

The structural transformation of Zn(TBAPy) 1 to Zn(TBAPy) 1' was noticed after 

stability of Zn(TBAPy) 1 was evaluated by outgassing for 12 hours at 110°C under 

dynamic vacuum (10
-6 

mbar).  The colour of the crystals change from pale yellow to 

dark yellow, PXRD indicated a less crystalline material was formed, with SEM 

images showing an apparent delaminating of crystals after desolvation.  In order to 

establish the exact nature of the structural changes, extensive molecular dynamics 

simulations were completed. The simulations indicate that the zinc metal centres 

undergo a coordination geometry change, from square pyramidal to tetrahedral upon 

the loss of the axial water molecule. The loss of the axial water molecule forces the 

formation of a four coordinate zinc complex which then forces the formation of the 

more sterically stable tetrahedral coordination sphere.  The proposed mechanism for 

this change then leading to the formation of a three dimensional framework relies 

upon the flexibility of the benzoate fragments attached to the pyrene ligand.  

Cleavage of one zinc-carboxylate bond allows the rotation of the benzoate fragment, 
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allowing the formation of a bond between zinc atoms in adjacent layers of the 

paddlewheel unit.  This criss-crossing of layers leads to the formation of the three 

dimensional framework. The reorientation of the ligands and the distortion of the 

framework lead to two different sized pores – one circular and one ellipsoid.  Both of 

these pores are now hydrophobic due to the loss of the axial water molecule. The 

channel dimensions are 9.0 and 8.0 Å (circular channel) and 5.8 and 5.3 Å 

(ellipsoidal channel).  Due to the specific size and shape of the channels in 

Zn(TBAPy) 1', and the nature of the ligand used, the adsorption properties of the 

sample when exposed to xylene isomers was investigated.  This separation is a major 

industrial separation and it is outlined in Chapter 3 – Separation of Gases and 

Vapours. The dimensions of m-xylene and p-xylene are given in Table 6-1. 

Table 6-1: Molecular dimensions of m-xylene and p-xylene in Å
3
 

 x y z MIN-1 MIN-2  

m-xylene 8.994 3.949 7.315 3.949 7.258 

p-xylene 6.618 3.810 9.146 3.810 6.618 

 

Table 6-1 gives the molecular dimensions of the xylene molecules along the x, y and 

z symmetry axis of the molecule.  MIN-1 and MIN-2 are the minimum dimensions 

determined by rotating the molecules to find the axis which represents the minimum 

distance through the molecule.  MIN-1 and MIN-2 are the dimensions which 

determine the entry into the pore.  A slit shaped pore will require only MIN-1 as the 

limiting dimension.  A cylindrical pore will rely upon two dimensions to allow entry 

of the molecule.  Due to the meta- position of the methyl groups in m-xylene, as 

shown in Figure 6-3, m-xylene has larger MIN-1 and MIN-2 values.  

 

 

m-xylene p-xylene 

Figure 6-3: Structure of m-xylene and p-xylene 

The MIN-1 values for both xylene isomers are similar, with m-xylene being slightly 

larger.  The ellipsoidal channels in Zn(TBAPy) 1` are 5.8 and 5.3 Å, which are larger 

than the MIN-1 dimensions.  The MIN-2 dimension of 7.258 for m-xylene 
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approaches the dimensions of the circular channel (9.0 and 8.0 Å), which could lead 

to the slower adsorption of m-xylene into the circular pores. The shape of p-xylene 

and m-xylene may also induce different π-π stacking interactions within the 

framework when the aromatic nature of the xylenes interacts with the polyaromatic 

pyrene core.
4
  This could potentially lead to a separation process for the two isomers. 

6.4 Porous Structure Characterisation Sorption Experiments of Zn(TBAPy) 1` 

A sample of Zn(TBAPy) 1 was provided by Kyriakos Stylianou at Liverpool 

University. The main problem associated with this material is that when Zn(TBAPy) 

1' is formed, it can readily destabilise to (Zn(TBAPy) 1'a, which gives (Zn2 

(TBAPy)(H20)3.6, on exposure to atmospheric water.  A fresh batch of sample was 

used for each gas / vapour adsorption experiment to ensure no conversion to 

(Zn(TBAPy) 1'a.  Desolvation in the IGA occurred by exposing the sample to 

vacuum (10
-6 

mbar) and heating to 373 K for five hours, until a stable mass profile 

was reached. Typical mass loss was around 22.5%.  This desolvation process formed 

Zn(TBAPy) 1'.  

6.4.1 Carbon Dioxide Adsorption Zn(TBAPy) 1' 

Nitrogen adsorption did not occur on Zn(TBAPy) 1'  at 77 K due to activated 

diffusion effects. Therefore, the main characterisation isotherms were completed 

using carbon dioxide at 195 K and 273 K.  Carbon dioxide adsorption experiments 

were conducted over the pressure range 100 – 1000 mbar.  

6.4.1.1 Carbon Dioxide Adsorption at 195 K 

Carbon dioxide adsorption at 195 K was used to estimate to total pore volume of the 

material by using the Langmuir equation (6.1).
5,6

 

    
 

 
  

 

  
  

 

   
                      6.1 

Where:  

 p = pressure (mbar) 

 n = amount adsorbed (g) 

 nm = the monolayer capacity of the material (mmol g
-1

) 

 K = equilibrium constant  
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The mass of sample used was 30.9233mg.  Figure 6-4 shows the carbon dioxide 

adsorption isotherm at 195 K for Zn(TBAPy) 1'.  The isotherm is a typical Type I 

isotherm by IUPAC classification.
7
   The Langmuir plot is shown in Figure 6-5.  The 

Langmuir equation fits the experimental data with 2.5%.  The Langmuir monolayer 

coverage was calculated as 6.67 ± 0.0291 mmol g
-1

, the Langmuir pore volume was 

calculated as 0.287 ± 0.00125 cm
3 

g
-1

 and the apparent Langmuir surface area was 

calculated as 763 ± 3.33 m
2
 g

-1
.   

6.4.1.2 Carbon Dioxide Adsorption at 273 K 

Carbon dioxide adsorption at 273 K was used to estimate the micropore volume of 

the material by using the Dubinin-Radushkevich (DR) equation (6.2).
8
 

                  (
  

 
)                   6.2 

Where: 

 n = the volume of micropores that have been filled at a relative pressure of 1 

 n0 = the total available micropore volume 

 p = pressure (mbar) 

 p
0
 = saturated gas pressure (mbar)  

    (
 

 
)
 

 = a measure of the pore size distribution of the adsorbent.   

The mass of sample used was 30.9783mg.   Figure 6-6 shows the carbon dioxide 

adsorption isotherm at 273 K for Zn(TBAPy) 1'.  The DR plot for Zn(TBAPy) 1'  is 

shown in Figure 6-7.  The results show that the DR plot shows no deviation from 

linearity across the pressure range 5 - 950 mbar, this shows that the adsorption is 

consistent with micropore filling.
9
 The micropore volume calculated at 273 K is 

lower than the total pore volumes calculated from carbon dioxide adsorption at 195 

K, which is expected.  The micropore volume is 0.250 ± 0.00468 g
-1 

cm
3 

and the total 

pore volume is 0.287 ± 0.00125 cm
3
 g

-1
.  The micropore volume accounts for 87% of 

the total porosity.  The total pore volume compares well with the calculated 

PLATON pore volume of 0.2929 cm
3
 g

-1
.  
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6.4.2 Xylene Vapour Adsorption on Zn(TBAPy) 1'   

6.4.2.1 Adsorption of p-xylene 

The first p–xylene isotherm was investigated at 303 K.  Repeat isotherms were 

measured on different samples to ensure repeatability.  The mass of samples 1 and 2 

were 32.0666 mg and 39.0539 mg respectively.  The isotherms were measured 

within the pressure range 0.02 – 14.5 mbar. The isotherm measured for sample 1 is 

shown in Figure 6-8, and shows high repeatability by sample 2 as shown in Figure 

6-9.  The isotherms measured were Type I by IUPAC classification
7
, the plateau is 

reached at 2 mbar with a slight increase in uptake at a higher pressure of 14.5 mbar.  

Both isotherms were reversible. At the start of the plateau, at 2 mbar pressure, the 

framework uptakes 1.53 p–xylene molecules per formula unit, whereas the 

framework takes up approximately 1.70 p–xylene molecules uptake per formula unit 

at 14.5 mbar, showing a slight increase towards the end of the isotherm. The 

isotherm was analysed using the Langmuir equation, equation 6.1. The Langmuir 

plot is shown in Figure 6-10.  The Langmuir monolayer coverage for samples 1 and 

2 were calculated as 2.068 ± 0.0180 mmol g
-1 

and 2.071 ± 0.0193 mmol g
-1

, the 

Langmuir pore volume was calculated as 0.252 ± 2.20 x 10
-3

 cm
3
 g

-1
 and 0.253 ± 

2.35 x 10
-3 

cm
3
 g

-1
 respectively, showing good agreement. At 2 mbar the uptake was 

1.89 mmol g
-1

 which corresponds to a pore volume of 0.231 cm
3
 g

-1
.   The p–xylene 

uptake fills approximately 80% and 87% of the total pore volume at 2 mbar and 14.5 

mbar, respectively. The incomplete filling of the pores can be attributed to the bulky 

nature of p-xylene. The reversibility of the p-xylene isotherm suggests that the pores 

of the 3D structure, Zn (TBAPy) 1', are large enough to accommodate the ″linear″ p- 

xylene possibly introducing weak π–π stacking interactions with the TBAPy ligand 

during the adsorption process. 

Attempts were made to calculate an enthalpy of adsorption for p-xylene adsorption.  

A sequence of four temperatures was investigated: 303, 313, 318 and 323K.  The 

isotherms are shown in Figure 6-11.  All isotherms are Type I by IUPAC 

classification.  All isotherms reach the plateau at a relative pressure of 0.1, and show 

a slight further uptake at a relative pressure of 0.8.  These data are unusable to 

calculate the enthalpy of adsorption for p-xylene.  The isotherms do not follow the 

expected trend of a decrease in amount adsorbed as temperature increases, which is 

expected for physisorption isotherms.  The isotherms all lie within expected 
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experimental error.  There are time constraints upon the experiments which can be 

conducted at temperatures below 303 K the isotherms become very slow, and due to 

the saturated vapour pressure of p-xylene, to obtain an isotherm above 323 K the 

vapour reservoir must be held at a higher temperature, which is beyond the 

capabilities of the equipment.   

6.4.2.2 Adsorption of m-xylene at 303 K 

Adsorption isotherms for m–xylene adsorption were measured on two samples to 

check repeatability. The mass of samples 1 and 2 were 37.7035 mg and 37.7203 mg 

respectively.  The isotherms were measured within the pressure range 0.02 – 14.5 

mbar. The isotherms measured for the two samples are shown in Figure 6-12.  The 

isotherms measured initially start as Type I by IUPAC classification7 until 4 mbar, 

where a second step occurs in the isotherm, up to 14.5 mbar. The isotherms are not 

reversible, they exhibit a large hysteresis, the majority of desorption starts to occur at 

1 mbar in the desorption profile. The framework can uptake 1.45 m–xylene 

molecules per formula unit at 2 mbar, which is comparable with the uptake observed 

for p-xylene at 2 mbar.  At 14.5 mbar the framework adsorbs 2.71 m–xylene 

molecules per formula unit, which is considerably more uptake than what is observed 

for p–xylene. The pore volume for m–xylene adsorption was estimated from the 

uptake at the end of the isotherm, and is calculated as 3.37 mmol g
-1,

 giving a pore 

volume of 0.411 cm
3
 g

-1
.  This corresponds to filling 143% of the total pore volume.  

This indicates a structural change or the compression of m–xylene molecules which 

were trapped within the pores during the adsorption process.  The differences 

between the p–xylene and m–xylene isotherms are shown in Figure 6-13, and in 

Figure 6-14 on a relative pressure basis.   
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6.4.2.3 Kinetics of Xylene Adsorption 

The kinetic data of each xylene isotherm were fitted using the stretched exponential 

(SE) model (Chapter 1 – Adsorption), equation 6.3:  

  

  
                                       6.3 

Where: 

 Mt = the amount adsorbed (g) at time t (s) 

 Me = the equilibrium uptake (g)  

 k = rate constant (s
-1

) 

 t = time (s) 

 β = the exponential parameter 

When the value of β = 0.5, this is indicative that the model is one dimensional, when 

β = 1 this is indicative that the model is three dimensional, with the model 

presumably becoming two dimensional at intermediate values.  The β values give an 

indication of the distribution of the relaxation times, as β decreases the distribution 

broadens.  When β = 1 there is a single relaxation time which is indicative of a rate 

determining step due to the diffusion through a barrier at the pore entrance.
10

 

All kinetic plots can be found in CD Appendix A – Xylene Separation by 

Zn(TBAPy) 1' Metal Organic Framework.  The differences in the kinetics of 

adsorption allow the potential for separation.  Up to 2 mbar the kinetics for both p- 

and m-xylene are similar, corresponding to the similarity in the shapes of the 

isotherms.    At 4 mbar, the shapes of the isotherms change, with m-xylene showing a 

large uptake.  This corresponds to a dramatic decrease in the rate of uptake.  The 

comparison of rate constant with adsorption of p-xylene is shown in Figure 6-15.  

The rate constant remains of the same order of magnitude across the entire pressure 

range of adsorption, which is consistent with the isotherm showing a plateau region 

from 2 mbar to the completion of the isotherm.  In contrast, the rate of m-xylene 

adsorption is significantly slower after the plateau. The rate constants for m-xylene 

decrease at pressures above 4 mbar, which is consistent with the point of inflection in 

the m–xylene adsorption isotherm at 4mbar, as shown in Figure 6-16. A comparison 

of ln(rate constant) against pressure shows the difference in magnitude between the 

two xylene isomers, as shown in Figure 6-17.  Figure 6-18 shows a direct 
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comparison between the ln (rate constant) and the adsorption isotherms for both p– 

and m–xylene isotherms.  It is clear that below 2 mbar the rate constant values are of 

similar magnitude, and above 4 mbar there is a dramatic decrease in rate constant for 

m–xylene.  The kinetic profile with stretched exponential analysis for p-xylene for 

the step 6.0 – 8.0 mbar is shown in Figure 6-19.  The time taken to reach equilibrium 

for this point was under 2 minutes.   The corresponding step for m–xylene is shown 

in Figure 6-20, the time taken to reach equilibrium was much longer, 39 hours for 

this one kinetic point. Details of stretched exponential kinetic analysis parameters are 

given in Table 6-2 for p-xylene and Table 6-3 for m-xylene. Kinetic analysis using 

the stretched exponential equation gives β values of 1 for the majority of the p-

xylene adsorption isotherm (see Table 6-2).  Stretched exponential β values of 1 

indicate that the diffusion of the vapour into the porous structure is following the 

linear driving force (LDF) model.  This model has also been used to fit the kinetic 

data for p-xylene adsorption, and the graphs of the SE and LDF analysis for 0.08 – 

0.10 mbar are shown in Figure 6-21 and Figure 6-22, respectively.  The LDF graphs 

show good linear correlation, showing that the LDF model is a good description of 

the kinetic profiles.   

Kinetic analysis of m-xylene shows that before the point of inflection in the plateau 

is reached, the SE β values are close to 1, indicating that the linear driving force 

model of diffusion is also being followed for m-xylene adsorption at low pressure, as 

shown by the graphs of SE and LDF analysis shown in Figure 6-23 and Figure 6-24, 

respectively.  At the point of inflection in the plateau, the rate of m-xylene adsorption 

slows significantly, and the β values lower to ~0.7 for the remainder of the isotherm 

(see Table 6-3).  According to Klafter and Schlesinger, β values of 1 indicates a 

three dimensional model, with a single relaxation time, and that the rate determining 

step is due to diffusion through a barrier at the pore entrance.
10

 β values of 0.5 

indicate a one dimensional model with a distribution of relaxation times.  Values 

between 1 and 0.5 indicate a two dimensional model.  The reduction in β from 1 to 

0.7 after the point of inflection in the m-xylene isotherm indicates that the linear 

driving force model is no longer describing the diffusion of m-xylene into the 

material, and the diffusion process has changed from three dimensional to two 

dimensional.  The change of β with the adsorption of m-xylene is shown in Figure 

6-25.  This change shows that the rate determining step of diffusion of m-xylene is 
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no longer solely based upon diffusion through a constriction at the pore entrance, 

indicating that a structural change has occurred.   

6.4.2.4 Capillary loading and PXRD Analysis 

In order to determine any structural changes induced by the different xylene isomers, 

glass capillaries of 0.5 mm diameter were filled with Zn (TBAPy) 1 for powder X-

ray diffraction analysis.  The capillaries were sealed onto the modified IGA sample 

chamber (see Chapter 5 – Experimental section 5.2.1.6) and outgassed at 373 K for 

18 hours, to form Zn(TBAPy) 1' (Figure 6-26).  The samples were partially loaded 

with vapour at selected pressures at room temperature (293 K).  Pressures were 

selected which corresponded to the relative pressure at 303 K.  The relative pressures 

used were 0.23 which is 2.030 mbar for p–xylene and 2.293 mbar for m–xylene mbar 

at 293 K, corresponding to 4 mbar at 303 K; this is the point up to which the two 

isomers produce the same shape in the isotherm.  The second relative pressure used 

was 0.93 which is 8.210 mbar for p-xylene and 7.898 mbar for m–xylene at 293K, 

corresponding to 14 mbar, the end of the isotherm for both isomers.  The time 

allowed for equilibration was 18 hours.  After this time the capillaries were sealed 

using a hydrogen/air flame and sent to Liverpool University for PXRD analysis.  The 

PXRD patterns for the xylene isomer loadings at 8.210 mbar for p-xylene and 7.898 

mbar for m–xylene are shown in Figure 6-27.  The powder diffraction shows slight 

shifts in the peaks for m–xylene, and the pattern contains sharper peaks, which 

indicate increased crystallinity of the material as the empty cavities are filled with m–

xylene molecules resulting in increased order and the smaller unit cell.  The sample 

loaded with p–xylene is comparable with the samples loaded with m–xylene, as 

shown in Table 6-4.  The unit cell volume for m-xylene is higher than that of p-

xylene, with values of 2493 and 2457Å
3
, respectively.  

6.5 Conclusions 

A 2D zinc / pyrene based metal organic framework was synthesised, which on 

desolvation rearranges to form a 3D framework by loss of water inducing a 

coordination change around the metal centre, facilitated by the flexibility of the 

carboxylate groups which functionalise the pyrene core of the ligand.
1
  Due to the 

specific size and shape of the channels in the 3D structure and the nature of the 

polyaromatic ligand used, the sorption characteristics of aromatic molecules of m–

xylene and p- xylene were investigated.
4
  The isomers showed similar isotherms up 
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to 2 mbar, after which the p–xylene continued along a plateau in a standard Type I 

isotherm, and the m–xylene continued to uptake to 143% of total pore volume, 

producing a hysteretic desorption isotherm. The differences in the shape of isotherms 

were accompanied by a vast difference in rate of adsorption above 4 mbar, with m–

xylene showing very slow adsorption kinetics.  The isotherm shapes and rate 

constants for both p-xylene and m–xylene adsorption are similar until the 2 mbar 

step, this could be the pressure to which neither xylene has an effect on the 

framework.  The β values for p-xylene adsorption remain at 1 and follow a linear 

driving force model for the duration of the isotherm, with similar rate constants, 

showing that the p-xylene molecules induce no structural change within the material.  

During m-xylene adsorption, a plateau is reached, then a point of inflection occurs, 

where the rate of adsorption decreases, the volume of m-xylene adsorbed increases, 

and the β parameter changes from 1 to 0.7, a value which is retained for the duration 

of the isotherm.  These three observations show that a structural rearrangement is 

occurring.  The larger volume of m-xylene adsorbed shows that the structural change 

leads to an increase in pore volume to a value of 0.411 cm
3
 g

-1
, compared to 0.231 

cm
3
 g

-1
 for p-xylene.  This increased pore volume is also shown by the PXRD 

analysis of loaded samples of Zn(TBAPy) 1', where the unit cell volume for m-

xylene is higher than that of p-xylene, with values of 2493 and 2457 Å
3
, respectively. 

This increase in pore volume is coupled with an increase in the size of the 

constriction at the entrance of the pore – as shown by the changing β values in the 

stretched exponential kinetic analysis.  The change from β =1 to β= 0.7 shows that 

diffusion through a barrier at the entrance to the pore is no longer the rate 

determining step and the rate of diffusion is also coupled with diffusion across the 

surface of the pore, producing a distribution of relaxation times.
10 

 The hysteretic 

nature of the m-xylene desorption is also indicative of a structural change as the m-

xylene is desorbing from the material via a different mechanism to the 

adsorption.
11,12

  This shows that m- xylene is adsorbed at a slower rate at higher 

pressures than p-xylene, indicating a potential separation capability at high pressures.      
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6.6 Figures 

 

Figure 6-4: Zn (TBAPy) 1' CO2 adsorption isotherm at 195 K 

 

Figure 6-5: Langmuir analysis of Zn (TBAPy) 1' CO2 adsorption at 195 K  
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Figure 6-6: Zn (TBAPy) 1' CO2 adsorption isotherm at 273 K 

 

Figure 6-7: DR analysis of Zn (TBAPy) 1' CO2 adsorption at 273K 
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Figure 6-8: Zn (TBAPy) 1' p-xylene isotherm at 303 K 
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Figure 6-9: Zn (TBAPy) 1' p-xylene adsorption isotherms for samples 1 and 2 at 303 

K 
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Figure 6-10: Langmuir analysis of Zn (TBAPy) 1' p-xylene adsorption at 303 K 
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Figure 6-11: Zn (TBAPy) 1' p-xylene adsorption isotherms at 303, 313, 318 and 323 

K  
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Figure 6-12: Zn (TBAPy) 1' m–xylene isotherm at 303 K 
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Figure 6-13: Zn (TBAPy) 1' m- and p–xylene isotherm comparisons at 303 K 
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Figure 6-14: Zn (TBAPy) 1' m- and p–xylene isotherm comparisons at 303 K on a 

relative pressure basis 
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Figure 6-15: Comparison of Zn (TBAPy) 1' p – xylene adsorption isotherm and rate  

constant / s
-1 

at 303 K 
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Figure 6-16: Comparison of Zn (TBAPy) 1' m – xylene adsorption isotherm and rate  

constant / s
-1

 at 303 K 
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Figure 6-17: Comparison of ln(rate constant) for Zn (TBAPy) 1' m- and p- xylene 

isomers at 303 K 
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Figure 6-18: Comparison of ln(rate constant) for Zn (TBAPy) 1' adsorption m- and 

p-xylene isotherms at 303 K 

 

Figure 6-19: Zn (TBAPy) 1' p-xylene adsorption kinetic step 6.0 – 8.0 mbar SE 
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Figure 6-20: Zn (TBAPy) 1' m–xylene adsorption kinetic step 6.0 – 8.0 mbar SE 

kinetic analysis at 303 K 
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Table 6-2: Exponent and rate constant, k values for p- xylene adsorption SE kinetic 

analysis 

Pressure / 

mbar 

 

Conc. / 

mmol g
-1

 

R
2
 Exponent Rate Constant / s

-1 
ln (rate 

constant) / 

ln (s
-1

) 

 

0.039 0.917 0.9813 1.000 ± 

0.023 

0.0327 ± 5.9 x 10
-4

 -3.422  ± 

0.0181 

0.059 1.108 99703 1.000 ± 

0.017 

0.0310 ± 5.9 x 10
-4

 -3.473 ±  

0.0164 

0.079 1.284 0.99604 1.000 ± 

0.021 

0.0282 ± 6.2 x 10
-4

 -3.569 ±  

0.022 

0.099 1.449 0.99951 1.000 ± 

0.010 

0.0264 ± 1.8 x 10
-4

 -3.635 ± 

0.00682 

0.199 1.776 0.98752 1.000 ± 

0.021 

0.0259 ± 3.3 x 10
-4

 -3.655 ± 

0.01276 

0.403 1.821 0.9957 0.656 ± 

0.025 

0.0206 ± 1.4 x 10
-3

 -3.881 ± 

0.06883 

0.8 1.863 0.99748 0.500± 

0.0064 

0.00015 ± 6.6 x 10
-7

 -8.805 ± 

0.00443 

1.99 1.891 0.99845 0.994 ± 

0.048 

0.0685 ± 2.4 x 10
-3

 -2.681 ± 

0.03445 

4.002 1.919 0.99753 1.000 ± 

0.017 

0.0441 ± 4.5 x 10
-4

 -3.121 ± 

 0.0102 

8.009 1.965 0.99749 1.000 ± 

0.038 

0.0504 ± 1.3 x 10
-3

 -2.989 ± 

0.02581 

9.987 1.984 0.99652 1.000 ± 

0.045 

0.04807 ± 1.4 x 10
-3

 -3.106 ± 

0.02808 

14.997 2.116 0.99737 1.000 ± 

0.024 

0.0329 ± 5.3 x 10
-4

 -3.414 ± 

0.01611 
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Table 6-3: Exponent and rate constant, k values for m-xylene adsorption SE kinetic 

analysis 

Pressure / 

mbar 

 

Conc. / 

mmol g
-1

 

R
2
 Exponent Rate Constant / s

-1 
ln (rate 

constant) / 

ln (s
-1

) 

 

0.058 0.7969 0.9926 1.000 ± 

0.0185 

0.0324  ± 3.5 x 10
-4

 -3.431  ± 

0.0108 

0.078 0.9540 0.99668 0.851  ± 

0.0219 

0.0357  ± 7.4 x 10
-4

 -3.334 ± 

0.0208 

0.098 1.101 0.99297 1.000 ± 

0.0751 

0.0507  ± 2.3 x 10
-3

 -2.982 ± 

0.0462 

0.198 1.717 0.99645 0.906  ± 

0.0272 

0.0507  ± 0.00113 -2.981 ± 

0.0223 

0.398 1.812 0.99912 0.947 ± 

0.0164 

0.0421  ± 5 x 10
-4

 -3.168 ± 

0.0119 

5.986 5.996 0.99946 0.723 ± 

0.00277 

6 x 10
-5 

 ± 4.9 x 10
-7

 -9.721 ± 

0.00811 

8.001 8.007 0.99766 0.726 ± 

0.00196 

3 x 10
-5 

 ± 1.154 x 

10
-7

 

-10.414 ± 

0.00385 

9.989 9.994 0.99824 0.707 ± 

0.00328 

4 x 10
-5 

 ± 2.650 x 

10
-7

 

-10.127 ± 

0.00662 

11.981 11.990 0.99828 0.702 ± 

0.00544 

2 x 10
-5

  ± 3.437 x 

10
-7

 

-10.820 ± 

0.01719 
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Figure 6-21: Zn(TBAPy) 1' p-xylene adsorption at 303 K 0.08 – 0.10 mbar step SE 

kinetic analysis 

 

Figure 6-22: Zn(TBAPy) 1' p-xylene adsorption at 303 K 0.08 – 0.10 mbar step LDF 

kinetic analysis 
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Figure 6-23: Zn(TBAPy) 1' m-xylene adsorption at 303 K 0.08 – 0.10 mbar step SE 

kinetic analysis 

0 5 10 15 20 25 30 35 40

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

Linear Regression for Data1_A:

Y = A + B * X

Parameter Value Error

------------------------------------------------------------

A 0.10582 0.02425

B -0.05755 0.00133

------------------------------------------------------------

R SD N P

------------------------------------------------------------

-0.99334 0.07118 27 <0.0001

------------------------------------------------------------

ln
 (

1
-M

t/M
e
)

Time / seconds

LDF Analysis m-xylene 0.08 - 0.10 mbar 

 

Figure 6-24: Zn(TBAPy) 1' m-xylene adsorption at 303 K 0.08 – 0.10 mbar step 

LDF kinetic analysis 
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Figure 6-25: Zn(TBAPy) 1' m-xylene adsorption at 303 K comparison of adsorption 

isotherm and SE kinetic analysis β exponent 

 

 

Figure 6-26: Capillary adapter containing a sample of Zn (TBAPy) 1' 
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Figure 6-27: PXRD Patterns for p- and m-xylene loaded samples of Zn (TBAPy) 1'.  

 

 

Table 6-4: PXRD Parameters for p- and m-xylene loaded samples of Zn (TBAPy) 1'. 

Parameter m–xylene at 7.898 mbar p-xylene at 8.210 mbar 

a 14.313(1) 14.188(1) 

b 16.1199(9) 16.0557(8) 

c 10.9660(7) 10.9439(9) 

α 95.196(4) 95.624(6) 

β 93.904(4) 93.869(6) 

γ 96.958(6) 96.359(6) 

V/Å
3
 2493(3) 2457(3) 
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Chapter 7 Structural Change Induced by Adsorption of Gases 

and Vapours on Porous Cage Materials 

7.1 Introduction 

As discussed previously (Chapter 2 – Porous Materials), Cage 1 was produced by 

the research group led by Andrew Cooper at Liverpool University.
1
  Cage 1 has been 

shown to interconvert between a number of stable polymorphs.  The conversion of 

interest in this study is the conversion of Cage 1β to Cage 1α.  The conversion was 

initially shown by the research group at Liverpool University, when Cage 1β was 

converted to Cage 1α via vapour diffusion of ethyl acetate into a sample of Cage 1β.  

The full conversion cycle is shown in Figure 7-1.  

 

Figure 7-1: Conversion between various polymorphs (1α and1β) accessible to the 

cage one structure, where 1α` and 1β` indicate desolvated structures. Yellow, blue, 

green and orange space filling represents Connolly Surface area.
2
 

The cage is initially isolated as Cage 1α•tOAc.  The individual cage unit 

consists of four arene faces connected by six aliphatic linkers, as shown in Figure 

7-2.  
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Figure 7-2: Individual cage units found in Cage 1 

Each cage unit is around 1nm in size. On removal of ethyl acetate from Cage 

1α•tOAc and exposure to dichloromethane, Cage 1β is isolated.  Re-exposure of 

desolvated Cage 1β to ethyl acetate reforms the original Cage1α.  Cage 1β and Cage 

1α, as prepared by the research group at Liverpool University, were characterised 

using scanning electron microscopy, thermal gravimetric analysis and carbon dioxide 

adsorption at 195 and 273 K.  The effects of exposing Cage 1β to various organic 

triggers, starting with ethyl acetate, were investigated.  The product of the exposure 

of Cage 1β to ethyl and methyl acetate through vapour adsorption experiments 

conducted in the IGA is named Cage 1α#.   

7.2 Characterisation of Cage 1β and Cage 1α 

7.2.1 Thermal Gravimetric Analysis  

Thermal gravimetric analysis was carried out on a 6.8 mg sample of Cage 1β and on 

a 7.6 mg sample of Cage 1α. Cage 1β was previously dried during synthesis by 

researchers at Liverpool University.  The percentage mass loss profiles are shown in 

Figure 7-4 and Figure 7-5 for Cage 1β and Cage 1α, respectively. Heating was 

carried out over the temperature range 25 - 550°C under a nitrogen flow. For Cage 

1β, a stable mass profile is observed up to a temperature of approximately 330°C, 

showing that the sample is very stable under increasing temperature.  After this 

temperature the sample degrades, over the temperature range 330 - 550°C.  For Cage 

1α a stable mass profile is apparent up to 125°C, after which there is a mass loss 

which corresponds to approximately 15% of the total mass, which is attributable to 

solvent loss.  A second stable plateau is present across the temperature range 230 – 

330°C, which then leads to the final degradation of the sample above a temperature 

of 330°C.   
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7.2.2 Scanning Electron Microscopy of Cage 1β and Cage 1α 

Scanning electron microscopy (SEM) images of Cage 1β and Cage 1α crystals at 

150x magnification are shown in Figure 7-6.  The micrograph of Cage 1α shows 

long, thin, rectangular crystals.  The micrograph for Cage 1β shows smaller, 

hexagonal crystals.  The Cage 1α crystals are of a smaller size to Cage 1β, and have 

aggregated into clusters. 

7.2.3 Carbon Dioxide Adsorption Characterisation Isotherms of Cage 1β and Cage 

1α 

7.2.3.1 Carbon Dioxide Adsorption at 195K 

Carbon dioxide adsorption isotherms at 195 K were analysed by the Langmuir 

equation (7.1). 
3,4

 

 
 

 
  

 

  
  

 

   
                                    7.1 

Where:  

 p = pressure (mbar) 

 n = amount adsorbed (g) 

 nm = the monolayer capacity of the material (mmol g
-1

) 

 K = equilibrium rate constant  

The carbon dioxide adsorption isotherm for Cage 1β at 195 K is shown in Figure 

7-7, and is a typical Type I isotherm by IUPAC classification.
5
 The Langmuir plot is 

shown in Figure 7-8.  The Langmuir monolayer coverage was calculated as: 5.80 ± 

0.0570 mmol g
-1

; the Langmuir pore volume was calculated as: 0.255 ± 2.50 x 10
-

3
cm

3
g

-1
. 

The carbon dioxide adsorption isotherm at 195 K for Cage 1α is shown in Figure 

7-9.  The graph follows a typical Type I IUPAC classification shape until a pressure 

of 800 mbar, then slight deviation occurs.
5
  Langmuir analysis for carbon dioxide 

adsorption up to a pressure of 800 mbar is shown in Figure 7-10. Analysis gave a 

monolayer coverage value of 4.55 ± 0.0445 mmol g
-1

, and a pore volume of 0.170 ± 

1.66 x 10
-3

 cm
3
 g

-1
.   
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7.2.3.2 Carbon Dioxide Adsorption at 273 K 

Carbon dioxide adsorption at 273 K was used to estimate the micropore volume of 

Cage 1β and Cage 1α using the Dubinin – Radushkevich (DR) equation (7.2).
6
 

                  (
  

 
)                                         7.2 

Where: 

 n = the volume of micropores that have been filled at a relative pressure of 1 

 n0 = the total available micropore volume 

 p = pressure (mbar) 

 p
0
 = saturated gas pressure (mbar)  

    (
 

 
)
 

 = a measure of the pore size distribution of the adsorbent.   

The isotherm is shown in Figure 7-11, and again is typical Type I by IUPAC 

classification.
5 

The DR plot for carbon dioxide adsorption on Cage 1β is shown in 

Figure 7-12. The plot shows that there is no deviation from linearity across the 

pressure range 10 – 900 mbar, showing that the material obeys micropore filling.
7
  

The micropore volume at 273 K is calculated as 0.187 ± 4.54 x 10
-4 

cm
3
 g

-1
 showing 

that the micropore volume accounts for 73% of the total porosity.   

Carbon dioxide adsorption on Cage 1α at 273 K is shown in Figure 7-13.  The 

isotherm is a typical Type I by IUPAC classification.
5
  The isotherm was again 

analysed by the DR equation, which is shown in Figure 7-14.  The plot shows no 

deviation from linearity across the pressure range 200 – 1000 mbar.  The micropore 

volume was calculated as 0.108 ± 1.16 x 10
-3

 cm
3
 g

-1
.  The calculation shows that 

Cage 1α is 64% microporous.   A comparison of the pore volumes and micropore 

volumes, calculated using Langmuir and the DR equation, of Cage 1α and Cage 1β is 

given in Table 7-1.  The data shows that Cage 1α has a smaller pore volume and 

micropore volume than that of Cage 1β.   

7.3 Probe Molecule Studies Cage 1β 

The structural transition from Cage 1β to Cage 1α# was investigated by the 

adsorption of several organic trigger molecules; ethyl acetate, 2- butanone, diethyl 

ether, pentane, methanol and methyl acetate.  These molecules were chosen as they 
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contain oxygen atoms in varying positions, and would allow the investigation of the 

effect of different oxygen containing functional groups, or absence of oxygen 

functional groups in the case of pentane, on the transition from Cage 1β to Cage 1α#. 

The adsorption isotherms and kinetics of adsorption for the organic trigger molecules 

were investigated. The structure of the various organic trigger molecules are shown 

in Figure 7-3. 

 

Figure 7-3: The structure of the organic trigger molecules used to investigate the 

structural change from Cage 1β to Cage 1α# 

7.3.1 Ethyl Acetate Adsorption on Cage 1β 

7.3.1.1 Ethyl Acetate Adsorption Isotherm Analysis 

The isotherm for adsorption of ethyl acetate on Cage 1β is shown in Figure 7-15, 

and on a relative pressure basis in Figure 7-16.  The adsorption isotherm has an 

unprecedented shape.  The initial section of the isotherm follows a Type I shape, up 

to a relative pressure of 0.150 and an ethyl acetate uptake of 1.437 mmol g
-1

 which 
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corresponds to a volume of 0.141 cm
3
 g

-1
, accounting for 1.14 molecules of ethyl 

acetate per formula unit of Cage 1β.  This is then followed by a steep uptake to a 

maximum ethyl acetate uptake of 3.006 mmol g
-1

 at a relative pressure of 0.219.  

This corresponds to a volume of 0.295 cm
3
 g

-1 
and accounting for 2.38 molecules of 

ethyl acetate per formula unit of Cage 1β.  After this second uptake, the isotherm 

then decreases to a plateau, which is an unusual feature of the adsorption isotherm.  

The desorption profile for the pressure step 35 – 40 mbar is shown in Figure 7-17.  

The amount of ethyl acetate adsorbed after this decrease falls to 2.668 mmol g
-1

, 

which is a volume of 0.262 cm
3
 g

-1 
and corresponds to 2.16 molecules of ethyl 

acetate per formula unit.  This mass loss is associated with the desorption of ethyl 

acetate molecules as the structure undergoes a change to Cage 1α#, the equivalent to 

Cage 1α that is prepared by adsorption of ethyl acetate in the IGA under pressure 

instead of by preparation by vapour diffusion in a sample vial.  The uptake at the 

maximum pressure used of 148 mbar (relative pressure of 0.92) was 2.784 mmol g
-1

; 

giving a total pore volume of 0.273 cm
3 

g
-1

, assuming the density of ethyl acetate is 

0.897 g cm
-3

.  The ethyl acetate desorption isotherm is hysteretic, following a Type I 

desorption profile.  

The repeat isotherm of ethyl acetate on Cage 1β is also shown in Figure 7-15.  The 

isotherm follows the same step at a relative pressure of 0.150 and an ethyl acetate 

uptake of 1.435 mmol g
-1

; however the step is to an uptake of 2.539 mmol g
-1

at a 

relative pressure of 0.167.  The desorption step observed in run 1 was not present in 

run 2, indicating that the structural rearrangement of Cage 1β to Cage 1α# is 

permanent and does not reverse upon desorption of ethyl acetate.  The desorption 

profile for run 2 is also hysteretic, and follows the same desorption path as run 1.  

7.3.1.2 Ethyl Acetate Adsorption on Cage 1β Desorption Step Kinetics Analysis 

The kinetics of crystallisation has been previously described by Avrami
8,9,10

 and the 

Kolmogorov-Johnson-Mehl-Avrami or KJMA equation.
11

  The equation is given in 

equation 7.3 and is apparent that it is related to the stretched exponential equation. 

  

  
                             7.3 

Where: 
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 Mt = the amount adsorbed (g) at time t (s) 

 Me = the equilibrium uptake (g)  

 k = rate constant (s
-1

) 

 t = time (s) 

 β = the Avrami exponential parameter 

Although the stretched exponential and the Avrami equations are similar, the Avrami 

exponent β should be an integer between 1 and 4, and the rate constant is 

independent of this parameter,  whilst in the stretched exponential model the 

exponent is fixed as 0.5< β <1. The value β is based upon the nucleation mechanism 

and the dimensionality of the growth of crystals.
12

  The Avrami equation was used to 

analyse all desorption kinetics to assess the rate constant for the desorption step and 

to determine differences in β parameter values – this will give an indication to 

differences in the crystalline to crystalline changes.  The desorption profile for the 

step in the ethyl acetate adsorption isotherm at 303 K is shown in Figure 7-18.  The 

desorption step took approximately 45 hours to complete.  The rate constant for this 

desorption step is 2.00 x 10
-5

 ± 2.73 x 10
-8

 s
-1

, with an Avrami β parameter of 1.37 ± 

0.003.  The residuals for the fit of the Avrami equation to the data are within 2%, 

showing that the Avrami model is a good description of the data. 

7.3.1.3 Ethyl Acetate Adsorption on Cage 1β and Cage 1α# Kinetic Analysis 

The ethyl acetate adsorption kinetics were analysed using the stretched exponential 

(SE) model in the following form (equation 7.4).
13

 

  

  
   (          )                           7.4 

Where: 

 Mt = the amount adsorbed (g) at time t (s) 

 Me = the equilibrium uptake (g)  

 k = rate constant (s
-1

) 

 t = time (s) 

 β = the exponential parameter 

 A0 = parameter for fitting purposes ( value of 1 when data is normalised) 
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According to Klafter and Schlesinger, β values of 1 indicate a three dimensional 

model, with a single relaxation time, and that the rate determining step is due to 

diffusion through a barrier at the pore entrance.
13

 Stretched exponential β values of 

0.5 indicate a one dimensional model with a distribution of relaxation times.  Values 

between 1 and 0.5 indicate a two dimensional model. All kinetic adsorption profiles 

of ethyl acetate adsorption analysed by the stretched exponential model can be found 

in CD Appendix B – Molecular Cage Materials.  The kinetic profiles analysed 

using the stretched exponential equation for ethyl acetate adsorption on both Cage 1β 

and Cage 1α# for the pressure increment 0.5 – 1.0 mbar at 303 K are shown in 

Figure 7-19 and Figure 7-20, respectively. It is apparent from the profiles that ethyl 

acetate adsorption at this pressure increment is much slower for Cage 1α# than Cage 

1β.  Equilibration is reached after approximately 2 hours for Cage 1β whereas Cage 

1α# takes approximately 4 days for equilibration. The rate constants and SE β 

parameters for ethyl acetate adsorption on Cage 1β and  Cage 1α# are given in Table 

7-2 and Table 7-3, respectively.  The corresponding comparison plots of rate 

constant are given in Figure 7-21 and SE β parameters are given in Figure 7-22.  

The rate constant for EtOAc adsorption on Cage 1α# is much smaller than for EtOAc 

adsorption on Cage 1β for the initial part of the isotherm.  During the step in the 

adsorption isotherm on Cage 1β, for the pressure increments 20 – 25 mbar and 25 – 

28 mbar, there is a drop in the rate constant, as shown in Figure 7-23.  The SE β 

parameters for EtOAc adsorption on Cage 1β increase from 0.5 to 1 throughout the 

initial part of the isotherm.  For EtOAc adsorption on Cage 1α# the SE β parameters 

remain at 0.5 for the duration of the isotherm.  The difference in the rates of 

adsorption of EtOAc and the difference in the SE β parameters indicate that the 

structure of Cage 1β has changed, and that Cage 1α# is formed during the EtOAc 

adsorption on Cage 1β. The slow rates of adsorption on Cage 1α# are indicative of a 

narrowing of the porosity.  Narrow pores are crucial for kinetic molecular sieving of 

similar sized molecules.  The kinetic molecular sieving of oxygen and nitrogen by 

Cage 1α# is investigated in Chapter 8 – Kinetic Molecular Sieving of Oxygen and 

Nitrogen by Organic Cage Materials Cage 1α and Cage 1α#.    

Due to the large amount of time required for equilibration of ethyl acetate 

adsorption, the effects of methyl acetate adsorption on Cage 1β were studied further, 
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as the smaller molecule contains the same functionality, with the decrease in size 

facilitating faster diffusion.  The methyl acetate investigation is given in 7.4 Methyl 

Acetate Adsorption. 

7.3.2 2-butanone and Diethyl Ether Adsorption on Cage 1β 

7.3.2.1 2-butanone and Diethyl Ether Adsorption Isotherm Analysis 

The adsorption isotherm for the adsorption of 2-butanone on Cage 1β at 298 K is 

shown in Figure 7-24 and on a relative pressure basis in Figure 7-25.  This isotherm 

again shows an unprecedented desorption step within the adsorption isotherm.  A 

step in the isotherm occurs at a 2-butanone uptake of 1.37 mmol g
-1

 at a relative 

pressure of 0.043. This corresponds to 1.08 molecules of 2-butanone per formula 

unit, and a volume of 0.122 cm
3
 g

-1
.  At the end of the second plateau the 2-butanone 

uptake was 3.18 mmol g
-1

 at a relative pressure of 0.255,  corresponding to a volume 

of 0.285 cm
3
 g

-1
, and 2.52 molecules of 2-butanone per formula unit.  After the 

desorption step the amount of 2-butanone adsorbed reduces to 2.79 mmol g
-1

at a 

relative pressure of 0.34, with a reduced volume of 0.250 cm
3
 g

-1
, and 2.21 

molecules per formula unit.  At the end of the isotherm at a maximum pressure of 

110 mbar the amount of 2-butanone adsorbed is 2.93 mmol g
-1

, which is a final total 

pore volume of 0.263 cm
3
 g

-1
. 

The isotherm for the adsorption of diethyl ether on Cage 1β is shown in Figure 7-26 

and on a relative pressure basis in Figure 7-27.  The adsorption isotherm again also 

shows a step at low relative pressure and the unusual desorption step at higher 

relative pressure.  The first plateau occurs at a diethyl ether uptake of 1.50 mmol g
-1

 

at a relative pressure of 0.105, corresponding to 1.19 molecules of diethyl ether per 

formula unit and a volume of 0.156 cm
3
 g

-1
. The desorption step occurs at the end of 

the second plateau, at a diethyl ether uptake of 3.16 mmol g
-1

 and a relative pressure 

of 0.562, corresponding to a volume of 0.328 cm
3
 g

-1
, and 2.50 molecules per 

formula unit.  After this desorption the amount of diethyl ether adsorbed is 2.97 

mmol g
-1

; corresponding to 2.35 molecules of diethyl ether per formula unit and a 

volume of 0.308 cm
3
 g

-1
.  At a maximum pressure of 700 mbar the diethyl ether 

uptake is 3.05 mmol g
-1

; corresponding to a total pore volume of 0.317 cm
3
 g

-1
and 

2.42 molecules of diethyl ether per formula unit. The desorption isotherm is 

hysteretic, following a Type I desorption profile.  
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7.3.2.2 2-butanone and Diethyl Ether Adsorption Desorption Step Kinetics 

Analysis 

The desorption step in the 2-butanone isotherm occurs at the pressure step 30 – 40 

mbar, and is shown in Figure 7-28. The Avrami analysis of the desorption profile of 

2-butanone desorption from Cage 1β is shown in Figure 7-29. The rate constant for 

this desorption step is 1.70 x 10
-4 

± 7.15 x 10
-7

 s
-1

, showing a faster desorption step 

than that observed for ethyl acetate desorption at 303 K.   

The desorption step in the diethyl ether isotherm occurs at the pressure step 400 – 

500 mbar, and is shown in Figure 7-30.  The Avrami analysis of the desorption 

profile of diethyl ether desorption from Cage 1β is shown in Figure 7-31.  The rate 

constant for this desorption step is 2.00 x 10
-4 

± 4.66 x 10
-7

 s
-1

.  This shows a similar 

rate of desorption to that of 2-butanone, and again a faster desorption rate than ethyl 

acetate.  

7.3.2.3 2-butanone and Diethyl Ether Adsorption Kinetic Analysis 

Adsorption kinetics of 2-butanone adsorption on Cage 1β were analysed by the 

stretched exponential equation.  All kinetic profiles of 2-butanone adsorption 

analysed by the stretched exponential model can be found in CD Appendix B – 

Molecular Cage Materials.  The kinetic profile for the pressure step 2.00 – 5.00 

mbar analysed by the stretched exponential equation is shown in Figure 7-32.  A 

table of stretched exponential parameters for the isotherm up to a pressure of 20 

mbar is shown in Table 7-4.   

Adsorption kinetics of diethyl ether adsorption on Cage 1β were also analysed by the 

stretched exponential equation.  All kinetic profiles of diethyl ether adsorption 

analysed by the stretched exponential model can be found in CD Appendix B – 

Molecular Cage Materials.  The kinetic profile for the pressure step 5.00 – 10.00 

mbar analysed by the stretched exponential profile is shown in Figure 7-33.  A table 

of stretched exponential parameters for the isotherm up to a pressure of 175 mbar is 

shown in Table 7-5.  

7.3.2.4 Comparison of Ethyl Acetate, 2-butanone and Diethyl Ether Adsorption on 

Cage 1β 

Ethyl acetate, 2-butanone and diethyl ether adsorption on Cage 1β all give similar 

shaped isotherms, containing unprecedented desorption steps within the adsorption 
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isotherm.  A comparison of the adsorption isotherms is given in Figure 7-34, on a 

vapour volume basis in Figure 7-35 and as a comparison of the number of molecules 

adsorbed per formula unit in Figure 7-36.  The data at various important sections of 

the isotherm are presented in Table 7-6.  The data for the three vapours is similar, 

with the various sections of the isotherms occurring at slightly different relative 

pressures, but resulting in similar uptakes and number of molecules per formula unit.  

At maximum relative pressures above 0.9, ethyl acetate shows the lowest number of 

molecules per formula unit, with diethyl ether showing the highest number of 

molecules per formula unit.  The similar uptake and number of molecules adsorbed 

per formula unit at various points along the isotherm show that the vapours are all 

being adsorbed into the same pore space within the material. The similar pore 

volumes at the end of the isotherm, after the structural transition to Cage 1α# has 

occurred, show that the vapours induce a structural change which give a structure 

with similar pore volumes for each vapour, indicating that the structure formed on 

exposure of the Cage to these three vapours is similar.   

 

The analysis of the adsorption kinetics of ethyl acetate, 2-butanone and diethyl ether 

on Cage 1β up to the pressure before the desorption step show similar characteristics.  

The graph of rate constant against vapour uptake is shown in Figure 7-37.  For the 

three vapours, the rate constant increases during the initial uptake to the first plateau.  

This is then followed by a slow uptake during the step to the second plateau, after the 

plateau is reached the rate constant increases again until the desorption step due to 

small uptakes with increasing pressure on the plateau. The graph of stretched 

exponential β parameter against vapour uptake is shown in Figure 7-38.  The three 

vapours follow the same trend, of an increase in the β parameter from 0.55 to 1.00 up 

to a vapour uptake of ~1.50 mmol g
-1

.  After the second uptake step in the isotherm, 

the β parameter remains between 0.8 and 1 up to uptakes of ~3.25 mmol g
-1

, before 

the desorption steps occur.    This indicates that the diffusion mechanism changes 

during the initial step of the isotherms for all three vapours, the mechanism changes 

from three dimensional with a distribution of relaxation times to one dimensional, 

with one relaxation time, indicating that the rate determining step is diffusion 

through constrictions at the pore entrance.   
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The similarity in the variation of the adsorption rate constant and stretched 

exponential β parameter with amount adsorbed shows that the vapours all have a 

similar effect on the framework, with the adsorption process changing from three 

dimensional to one dimensional across the initial parts of the isotherms. This 

indicates that a structural change occurs during the second step of the isotherms.  

Further structural rearrangement occurs during the desorption step on the plateau, 

where structural rearrangement forces the loss of vapour from the porous structure.  

The loss of ethyl acetate occurs at a slower rate than the 2 – butanone and diethyl 

ether, indicating that ethyl acetate has a stronger interaction with the Cage material.   

7.3.3 Pentane and Methanol Adsorption on Cage 1β 

The pentane isotherms at 298 K for Cage 1β are shown in Figure 7-40 and in Figure 

7-41 on a relative pressure basis.  The isotherm is Type I to a pressure of 400 mbar 

where a step occurs in the isotherms.  The amount of pentane adsorbed before this 

step is 1.43 mmol g
-1

;
 
corresponding to a volume of 0.165 cm

3
 g

-1
 and 1.21 

molecules of pentane per formula unit. After the step the amount of pentane 

adsorbed increases to 2.733 mmol g
-1

, corresponding to a pore volume of 0.315 cm
3
 

g
-1

 and 1.54 molecules of pentane per formula unit at a maximum pressure of 700 

mbar.  The pentane adsorption isotherms show no desorption step in the adsorption 

profile.  The step in the adsorption profile and the hysteretic nature of the desorption 

profile indicate that a structural change is occurring, however it occurs without the 

unprecedented loss of mass as seen for ethyl acetate, 2-butanone and diethyl ether 

adsorption.   

The methanol isotherm at 303 K for Cage 1β is shown in Figure 7-42 and on a 

relative pressure basis in Figure 7-43. The isotherm contains a point of inflection at 

40 mbar.  The total uptake is 7.96 mmol g
-1

; corresponding to a pore volume of 

0.322 cm
3
 g

-1
 and 4.50 molecules of methanol per formula unit.  The desorption 

profile for methanol is not hysteretic, suggesting that methanol does not induce any 

structural change, and there is no desorption step present within the adsorption 

isotherm, with increasing pressure. 

A comparison of the isotherms collected for pentane, methanol and ethyl acetate 

adsorption on a vapour volume uptake basis on Cage 1β is shown in Figure 7-44.  
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This comparison shows that the isotherms for the three vapours are quite different.  

The pentane isotherm is typical Type I, with a large hysteresis.  Methanol shows an 

isotherm with a point of inflection in the shape of the curve, and shows no hysteresis.  

Both pentane and methanol give the same total pore volumes, of 0.314 cm
3
g

-1
 which 

is higher than the total pore volume found at the end of the ethyl acetate isotherm, 

0.273 cm
3
g

-1
.  

Examples of kinetic profiles fit to the stretched exponential model are shown in 

Figure 7-45 and in Figure 7-46 for pentane and methanol, respectively.  The data 

from the stretched exponential analysis of all kinetic points in the pentane and 

methanol isotherms are given in Table 7-7 and Table 7-8. A comparison of the 

stretched exponential rate constant for pentane, methanol and ethyl acetate 

adsorption is given in Figure 7-47. The pentane adsorption kinetics increase as the 

isotherm progresses to values of 6.87 x 10
-3

 s
-1

. At a pressure of 400 mbar the rate 

constant decreases significantly, to 5.00 x 10
-5

 s
-1

.   The methanol kinetic rate 

constants decrease as the isotherm approaches the point of inflection, with a rate at 

this point of 4.5 x 10
-4 

s
-1

.  From a pressure of 80 mbar the rate constants increase 

and remain at a similar value for the remainder of the isotherm.  The rate of 

methanol adsorption is greater than the rate of pentane adsorption, due to methanol 

having a smaller cross sectional area than pentane.   

A comparison of the stretched exponential β parameter for pentane, methanol and 

ethyl acetate adsorption is given in Figure 7-48.  As the ethyl acetate adsorption 

isotherm progresses, the β value increases from 0.566 to values above 0.80 

indicating a change from a three dimensional process to a one dimensional, 

indicating a change in the structure which leads to a constriction in the entrance to 

the  porosity, so that there is a single relaxation time.  The β parameter for pentane 

also starts at a lower value of 0.62; this then increases to 1, and then decreases to 

values between 0.60 and 0.80 for the duration of the isotherm. The methanol β 

parameter remains between 0.75 and 1.00 for the duration of the isotherm.      

The powder X-ray diffraction pattern for Cage 1β loaded with pentane compared to 

desolvated Cage 1α is shown in Figure 7-49.  The power diffraction patterns do not 

match, indicating that pentane does not induce a structural transition to Cage 1α.  
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The difference in the shapes of the isotherms for ethyl acetate, pentane and methanol 

adsorption, absence of the desorption step within the adsorption isotherm for pentane 

and the difference in rate constants and stretched exponential β parameters, indicates 

that pentane does not have the same structural effect on the framework which occurs 

on adsorption of ethyl acetate. Pentane instead leads to the formation of a different 

Cage 1 polymorph, which is supported by the difference in the powder diffraction 

patterns when compared with Cage 1α.  Methanol shows no hysteresis or significant 

change in β parameter to indicate any kind of structural effect on Cage 1β.   

7.4 Methyl Acetate Adsorption Studies on Cage 1β 

Structural rearrangement by vapour diffusion using the “vial within vial” method 

was achieved by researchers at Liverpool University using the diffusion of ethyl 

acetate.  Ethyl acetate adsorption into the material is a very slow process.  To 

investigate the structural rearrangement induced by the acetate group, the adsorption 

isotherms of methyl acetate adsorption on Cage 1β were measured.  Methyl acetate 

is smaller than ethyl acetate, and as such produced faster kinetics, allowing a larger 

volume of data to be gathered for analysis. 

7.4.1 Methyl Acetate Adsorption on Cage 1β Isotherm Analysis 

Methyl acetate adsorption isotherms were collected for the temperature range 268 – 

313 K in 5 K intervals.  The methyl acetate isotherm collected at 303 K is shown in 

Figure 7-50.  The isotherm shows a step at a methyl acetate uptake of 1.59 mmol g
-1

.  

This step increases to plateau. At the end of this plateau at a pressure of 100 mbar 

and an uptake of 3.53 mmol g
-1

 the desorption step occurs.  This decreases to amount 

of methyl acetate adsorbed to 3.24 mmol g
-1

. The amount adsorbed, at the maximum 

pressure of 350 mbar, is 3.49 mmol g
-1 

which gives a pore volume of 0.277 cm
3
 g

-1
.  

The desorption isotherm is hysteretic.  A comparison of methyl acetate and ethyl 

acetate adsorption isotherms is given in Figure 7-51.  The first step in the isotherms 

occurs at similar uptakes, the step initiates at a lower relative pressure for methyl 

acetate, with methyl acetate reaching a lower maximum volume adsorbed before the 

desorption step.  At maximum relative pressures the volume of vapours adsorbed is 

very similar, 0.277 cm
3
 g

-1
 for methyl acetate and 0.273 cm

3
 g

-1
 for ethyl acetate.  A 

comparison of the number of molecule of ethyl acetate and methyl acetate is given in 

Figure 7-52.  From this comparison it is apparent that there are more molecules of 
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methyl acetate adsorbed per formula unit of Cage 1β, which is expected as methyl 

acetate has a smaller cross sectional area, and as such more molecules can pack into 

the porosity than ethyl acetate. Figure 7-53 shows the adsorption isotherms for 

methyl acetate on Cage 1β for the temperature range 268 - 313 K.  The isotherms 

were repeatable, with deviations occurring only for the lowest temperature of 268 

and 273 K and the highest temperature 313 K.  The isotherms show that as 

temperature decreases, the relative pressure at which the desorption step occurs 

increases.  The desorption step for the isotherm at 313 K occurs at a relative pressure 

of 0.211. The isotherms for 278 – 308 K show desorption steps at a relative pressure 

of 0.280, the desorption steps for 273 K and 268 K occur at relative pressures of 

0.420 and 0.500, respectively.  This shows there is some temperature dependency on 

the relative pressures at which desorption occurs.   

7.4.2 Methyl Acetate Adsorption on Cage 1β Enthalpy and Entropy Calculations  

The isotherms for the temperature range 278 – 308 K were used to calculate the 

enthalpy and entropy of methyl acetate adsorption (Figure 7-54).  The enthalpy of 

adsorption was calculated using the van’t Hoff isochore, equation, 7.5:
14

 

      
  ̇ 

  
  

  

 
 7.5  

This equation represents the relationship between pressure and temperature for a 

given amount adsorbed. By obtaining isotherms at a series of temperatures, for a set 

value of amount adsorbed, na (mmol g
-1

), a plot of lnP against 1/T (K
-1

) may be 

obtained, and the value of the enthalpy of adsorption can be calculated directly from 

the gradient of this plot, gradient = ΔH/R. The value of the entropy of adsorption can 

be calculated from the intercept of the plot, intercept = ΔS/R.  A plot of the variation 

of enthalpy and entropy of methyl acetate adsorption with surface coverage on Cage 

1β for the temperature range 278 – 303 K is shown in Figure 7-55.  At low surface 

coverage the enthalpy of adsorption is close to the enthalpy of vaporisation of methyl 

acetate, 32.7 kJ mol
-1

.  The plot shows an increase in enthalpy of adsorption from 

32.7 ± 5.2 to 49.7 ± 2.5 kJ mol
-1

, from the initial adsorption to an amount of methyl 

acetate adsorbed of 1.50 mmol g
-1

. The enthalpy of adsorption then remains constant 

as the amount adsorbed increases, to 2.70 mmol g
-1

.  As the amount adsorbed 

approaches the maximum, which occurs prior to the desorption step, the enthalpy of 
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adsorption begins to decrease, and then there is a sharp increase as the amount 

adsorbed reaches a maximum.  The enthalpy of adsorption at the maximum amount 

adsorbed is 58.3 ± 1.8 kJ mol
-1

.  As the isotherm approaches the desorption step, the 

entropy becomes more negative, from values of -179.2 ± 2.5 to -229.6 ± 1.8 J K
-1 

mol
-1

 .  This indicates that as the isotherm approaches the desorption step the system 

is ordering, through an increase in the strength of adsorbate-adsorbate interactions.  

After the maximum uptake is reached and the desorption occurs, the isosteric 

enthalpy and entropy values become unreliable due to low uptakes on the plateau 

and possible only partial transformation of the sample to Cage 1α#. 

A similar phenomenon has been observed by Buckton and Darcy during the 

crystallisation of lactose, during which adsorbed water in the lactose is desorbed, 

leading to the observation of a  desorption step in the isotherm, as shown through 

water adsorption experiments on mixtures of amorphous and crystalline α-lactose 

monohydrate.
15

  The initial isotherm shows a large increase in mass as water is 

absorbed into the amorphous regions of the mixture as well as being adsorbed onto 

the surface of the crystalline component of the mixture.   The water absorbed by the 

amorphous component causes recrystallization of the amorphous material, desorbing 

the water from the material and resulting in mass loss.  Isotherms on this crystalline 

sample show no desorption of water as all amorphous components have been 

recrystallized.
15

  The solid–phase crystallisation growth kinetics of dried lactose has 

also been investigated recently by Das and Langrish
16

 who investigated the 

thermodynamic effects of loss of moisture during recrystallization of amorphous 

lactose.  When the interaction of the monolayer and subsequent multilayer molecules 

decreases, the enthalpy of adsorption decreases and moisture is released during 

crystallisation.  The experiments of Das and Langrish show that there is a steady 

increase in moisture content to a peak, after which there is a steady decrease in 

moisture content until a constant value is reached, which is a similar description to 

the adsorption of ethyl acetate, methyl acetate, 2-butanone and diethyl ether on Cage 

1β.  At peak moisture content in the lactose experiments, it is suggested that the 

particles of lactose will have sufficient activation energy to initiate the process of 

crystallisation, starting with the desorption of moisture from the amorphous state and 

then the subsequent rearrangement of the particles crystalline state.
16 

 



Chapter 7 Structural Change Induced by Adsorption of Gases and Vapours on 

Porous Cage Materials 

165 

 

7.4.3 Methyl Acetate on Cage 1β Kinetic Analysis 

The kinetics for the pressure steps for the adsorption of methyl acetate across the 

temperature range 278 – 308 K fit the shapes of the isotherms well. The variation of 

rate constant with methyl acetate uptake on cage 1β is shown in Figure 7-56.  As the 

first plateau is reached, at uptakes of ~ 1.5 mmol g
-1

, the rate constant increases, as 

the uptake becomes smaller.  During the second step the rate constant decreases, as 

the structure allows larger volumes of methyl acetate to be adsorbed.  As the second 

plateau is reached the rate constant again increases, as the uptake becomes smaller, 

to the point where the desorption step occurs.  The stretched exponential β 

parameters for the temperature range 268 – 313 K are shown in Figure 7-57, this 

figure shows that across the temperature range the β values remain between mostly 

in the range of  0.6 – 1.0.  This indicates a two dimensional process where diffusion 

into the porosity can be defined by both diffusion through a barrier at the entrance to 

the porosity and by diffusion of the methyl acetate across the surface of the pores in 

a site-to-site hopping mechanism. 

The ln (k) against the amount of methyl acetate adsorbed graph is shown in Figure 

7-58.  The graph shows a slight trend with temperature, the rate constant increases 

with increasing temperature; however the values are all of a very similar order of 

magnitude, indicating that there is low activation energy for adsorption into the 

material.  If the activation energy is significantly lower than the isosteric enthalpy of 

adsorption, then the diffusion of the methyl acetate molecules along the pore would 

be controlled by the site-to-site hopping mechanism on the surface of the pore, rather 

than by diffusion through a constriction into the porosity.  

7.4.4 Kinetics of Methyl Acetate Desorption Step 

The Avrami equation was again used to model the desorption step in each of the 

methyl acetate isotherms for the temperature range 278 – 308 K, the profiles for 

which are shown in Figure 7-59 to Figure 7-65.  The model fits all of the profiles 

within 8%, showing that the model is a good description of the data.    The Avrami 

exponents for the temperature range are within the range of 1.19 ± 0.015 and 1.46 ± 

0.0078, as shown in Table 7-9.    



Chapter 7 Structural Change Induced by Adsorption of Gases and Vapours on 

Porous Cage Materials 

166 

 

From the desorption profiles across the temperature range 278 – 303 K, the 

activation energy of desorption can be calculated.  The graph of ln (k) against 

reciprocal temperature is shown in Figure 7-66.  From this the activation energy for 

methyl acetate desorption from Cage 1β is calculated as 42.5 ± 6.2 kJ mol
-1

. This 

kinetic barrier is much lower than the isosteric enthalpy of adsorption indicating that 

diffusion from the surface of the pore is the rate determining step for the structural 

change.  

Each desorption step is accompanied by a stable adsorption step both before and 

after the desorption step, as shown in Figure 7-67.  The adsorption before and after 

the desorption step is always a small uptake. A comparison of the desorption profile 

for the different adsorbates, ethyl acetate, 2-butanone, diethyl ether and methyl 

acetate is shown in Figure 7-68.  The desorption step for each vapour occurs at 

different relative pressures, with ethyl acetate occurring at the lowest relative 

pressure of 0.219, and diethyl ether occurring at the higher relative pressure of 0.562, 

with 2-butanone desorption occurring at 0.255.  It is apparent the ethyl acetate has 

the longest desorption time of just over 160,000 seconds to reach stable mass, methyl 

acetate desorbs from Cage 1β at a faster rate than the other three vapours, with an 

equilibration time of 5,000 seconds compared to 30,000 for 2–butanone and 14,000 

for diethyl ether.  Parameters calculated from the Avrami analysis for the desorption 

kinetics are shown in Table 7-10. The rate constant for ethyl acetate is 2.0 x 10
-5

 ± 

2.7 x 10
-8 

s
-1

 , for 2-butanone is 1.7 x 10
-4

 ± 7.2 x 10
-7 

s
-1

 , for diethyl ether is   2.0 x 

10
-4

 ±  4.7 x 10
-7

 s
-1

 and for methyl acetate is 4.7 x 10
-4

 ± 7.4x 10
-7 

s
-1

. The rate 

constant decreases in the order methyl acetate diethyl ether  2-butanone  ethyl 

acetate.  

7.5 Methyl Acetate Adsorption on Cage 1α# 

In the case of methyl acetate adsorption on Cage 1β, after the structural transition the 

isosteric enthalpy of adsorption values became unreliable due to the low uptakes for 

each pressure step on the plateau and partial conversion from Cage 1β to Cage 1α#. 

Methyl acetate adsorption was investigated on Cage 1α# after conversion and 

exposure to methyl acetate at p/p0 =  0.98 in order to establish thermodynamic 

effects on the conversion of Cage 1 to Cage 1α# involving the unusual desorption 

step with increasing pressure.  
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7.5.1 Methyl Acetate Adsorption on Cage 1α# Isotherm Analysis 

Figure 7-69 shows the adsorption isotherm for methyl acetate on Cage 1α# at 298 K.  

The isotherm shows two step uptake sections during the initial part of the isotherm, 

which are separated by a small plateau. The small plateau occurs across the pressure 

range 5.00 – 30.00 mbar.  After the second steep uptake section stable plateau is 

reached to a pressure of 250 mbar.  At this point the isotherm is at high relative 

pressure, and condensation of methyl acetate into the pores causes a sharp increase in 

the amount adsorbed.  The desorption path closely follows the adsorption back to a 

pressure of 50 mbar, where slight deviation occurs.  The shape of the isotherm is 

repeatable at increasing temperature, as shown in Figure 7-70 and in Figure 7-71 on 

a relative pressure basis for the temperature range 298 – 313 K.  The shape of the 

Cage 1α#isotherm is similar to that of Cage β in having a step around 1 - 1.2 

molecules of methyl acetate adsorbed per formula unit of cage. 

The isotherms show a consistent shape with increasing temperature. The 

equilibration was good above 2.5 mmol g
-1

, which is the uptake range where the 

structural change for methyl acetate adsorption on Cage 1 occurs. This is the 

important region for understanding the thermodynamic process in the structural 

transition. However, despite using long equilibration times of 8 to 15 hours, the 

isotherm points failed to reach equilibrium on the steep part of the isotherm, where 

the chemical potential gradient is low. Estimates of equilibrium times from the 

kinetic data showed that isotherm measurements for a single temperature could take 

over a month or more. This is not surprising since Cage 1α exhibits kinetic 

molecular sieving of O2 and N2 (see Chapter 8). However on the plateau at high 

pressure, where the chemical potential gradient is highest, the isotherm points did 

equilibrate satisfactorily. This is the most important isotherm region for comparison 

with Cage 1 where the structural change occurs from Cage 1 to Cage 1αwhich 

results in the unprecedented desorption step, for a porous material, with increasing 

pressure. 

The enthalpy and entropy of methyl acetate on Cage 1α# were again calculated using 

the van’t Hoff equation.  The variation of the enthalpy and entropy of adsorption 

with increasing amount of methyl acetate adsorbed is shown in Figure 7-72.  There 
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are large errors in the enthalpy and entropy calculations at low surface coverage, and 

the calculated isosteric enthalpy of adsorption is lower than that of the enthalpy of 

vaporisation of methyl acetate, which is 32.67 kJ mol
-1

.   This is due to failure to 

reach equilibration in the kinetic profiles for methyl acetate uptakes below 2.5 mmol 

g
-1

 and at low pressure, where equilibration is not reached even after 8 – 15 hours 

duration per point on the isotherm. A typical example of a kinetic profile which does 

not equilibrate is shown in Figure 7-73.  This is attributed to the very narrow pores 

present in Cage 1α#. As the surface coverage increases, the standard deviation in 

enthalpy and entropy decreases with increasing amounts adsorbed. These values 

have smaller errors and are justified in their calculation as the kinetic profiles for 

steps above uptakes of 2.5 mmol g
-1

 all show good equilibration, examples of which 

are shown in Figure 7-74 to Figure 7-77 , and all show linear van’t Hoff plots, as 

shown in Figure 7-78 for uptakes of 2.5, 2.8, 3.0 and 3.2 mmol g
-1 

of methyl acetate 

on Cage 1α#.  On the plateau of the isotherm, at 2.6 mmol g
-1

 uptake of methyl 

acetate, the isosteric enthalpy is 36.69 ± 4.66 kJ mol
-1

, and the entropy is -148 ± 17 J 

K
-1 

mol
-1

.  At higher uptakes of 3.0 mmol g
-1 

the isosteric enthalpy increases to 88.72 

± 1.7 kJ mol
-1

. This indicates an increase in the strength of the interactions between 

the adsorbate molecules and the adsorbent structure. As the isosteric enthalpy of 

adsorption increases, the entropy becomes more negative, indicating an ordering of 

the system toward the end of the isotherm.  As saturation begins to occur at 

maximum methyl acetate loading, the entropy becomes less negative (the system 

disorders) and the enthalpy decreases.   

7.5.2 Methyl Acetate Adsorption on Cage 1α# Kinetic Analysis 

Figure 7-79 shows the variation with the rate constant for methyl acetate adsorption 

on Cage 1α#.  Up to a methyl acetate uptake of 2.5 mmol g
-1

 the rate of adsorption is 

very slow, with rate constants in the region of ~5.00 x 10
-6 

s
-1

.  Many kinetic points 

in this region did not equilibrate over twelve hours. This was especially apparent 

over the region of curvature, where there are estimated rate constants of 4 x 10
-10

 s
-1

. 

As the plateau is reached the rate constant increases, as less methyl acetate is 

adsorbed into the system.  The stretched exponential β parameter shows variation 

over the extent of the isotherm.  Over the steep uptake section where there is s-

shaped curvature the β parameter drops to 0.5.  This then increases to values between 
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0.70 and 1.00 as the plateau is approached.  Above methyl acetate uptakes of 2.5 

mmol g
-1

, after which all kinetic points have equilibrated, the β value decreases back 

to 0.5 towards the maximum uptakes of 3.5 mmol g
-1

, as shown in Figure 7-80.  

This indicates that the diffusion is controlled more by the diffusion of the molecules 

along the surface of the pore than by diffusion through a constriction at the entrance 

to the porosity for Cage 1α#.  

7.5.3 Methyl Acetate Adsorption on Cage 1α# Kinetic Corrections 

The kinetic profiles were examined in detail in order to attempt to predict the fully 

equilibrated isotherm in the low pressure region because the isosteric enthalpies of 

adsorption values were below the enthalpy of vaporisation. The profiles of zeroed 

original mass increase against time were analysed using the stretched exponential 

equation. When fitting using the stretched exponential, the parameter A0 is included 

in the equation.  This is normally fixed at 1 during the fitting process for the 

normalised profile, but can be allowed to vary in order to give a multiplier to allow 

an indication of where equilibration would be achieved.  When fitting the raw mass 

uptake, this parameter (A) can be used to calculate the mass at which equilibration 

would be reached.  From this, the equilibrium concentration can be calculated, and 

the isotherm corrected accordingly.  This then gives corrected equilibrium isotherm 

points, which can be used to calculate the isosteric enthalpy of adsorption.  It was 

possible to correct non equilibration below uptakes of 1.5 mmol g
-1

, or at low 

pressure.  In the region of the steep part of the isotherm, where the chemical 

potential gradient is low, the equilibration corrections provided values which were 

unreasonably high and had large errors associated with them, and as such were 

unusable in the corrected isosteric enthalpy of adsorption calculations.  

The first pressure steps recorded in the isotherm are the 0.5 – 1.0 mbar steps.  This 

corresponds to ~0.5 mmol g
-1

 uptake.  Below this uptake the extrapolation and hence 

equilibrium isotherm points and isosteric enthalpy of adsorption data are less 

reliable. The successful corrections were made for the range of uptakes 0.5 – 1.4 

mmol g
-1

 for 298 and 303 K. The profiles of zeroed original mass increase against 

time analysed using the stretched exponential equation along with tables of corrected 

data can be found in CD Appendix B – Molecular Cage Materials. The corrected 

isotherms are shown in Figure 7-81 and Figure 7-82, respectively.  Adjustment of 
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the isosteric enthalpy of adsorption plots to include the corrected 298 and 303 K data 

show an increase in isosteric enthalpy of adsorption at low uptakes, between 0.5 and 

1.4 mmol g
-1

 bringing the isosteric enthalpies of adsorption above the value of the 

enthalpy of vaporisation of methyl acetate.  This is shown in Figure 7-83. Selected 

improved van’t Hoff plots are shown in Figure 7-84. A comparison of corrected 

isosteric enthalpy of adsorption plots with error bars omitted for clarity is shown in 

Figure 7-85. This data is tabulated in Table 7-11 and shows, for example, that for 

0.6 mmol g
-1

 of methyl acetate adsorbed, the original isosteric enthalpy of adsorption 

was 26.39 ± 15.25 kJ mol
-1

, which falls below the enthalpy of vaporisation of 32.67 

kJ mol
-1

.  The corrected isosteric enthalpy of adsorption is 36.07 ± 12.64 kJ mol
-1

. 

The corrected data shows that the isosteric enthalpy of adsorption does not change 

significantly until the region in the isotherm where the second plateau occurs, at 

similar uptakes to where the Cage 1β to Cage 1α# structural change occurs during 

methyl acetate adsorption on Cage 1β.   

7.5.4 Comparison of Cage 1β and Cage 1α# 

A comparison of the methyl acetate adsorption isotherms collected at 303 K on Cage 

1β and Cage 1α# are shown in Figure 7-86.  A comparison of the isosteric enthalpy 

of adsorption of methyl acetate for Cage 1β and Cage 1α# is shown in Figure 7-87, 

and a comparison of the isosteric entropy of adsorption is shown in Figure 7-88.  

Desorption of methyl acetate from Cage 1β occurs at 3.5 mmol g
-1

.  The resulting 

uptake after this desorption is 3.2 mmol g
-1

, as shown in Figure 7-86. After this 

point the isosteric enthalpy and entropy of adsorption values became unreliable on 

the isotherm plateau due to partial conversion from Cage 1β to Cage 1α#.  For Cage 

1α#,  reliable isosteric enthalpy and entropy of adsorption values can be calculated 

up to 3.3 mmol g
-1

, which is the point at which saturation occurs within the pores at 

high relative pressures (P/P
0
 = 0.95). Comparison of the isosteric enthalpy and 

entropy of adsorption for Cage 1β at 3.5 mmol g
-1

, just before the desorption, and 

Cage 1α# at 3.2 mmol g
-1

, which is the mass after desorption, shows that Cage 1β 

has an enthalpy of adsorption of 58.3 ± 1.8 kJ mol
-1

, whereas Cage 1α# has a higher 

enthalpy of adsorption, with a value of 85.7 ± 4.2 kJ mol
-1

. The entropy of 

adsorption for Cage 1β is -229.6 ± 8.2 J K
-1

 mol
-1

, with Cage 1α# showing more 

negative entropy of -322.8 ± 13.7 J K
-1

 mol
-1

.  
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The structural change which occurs during desorption of methyl acetate is an 

activated process driven by the enthalpy of adsorption leading to a decrease in 

entropy.  Before the desorption step there is more methyl acetate adsorbed in the 

material.  When a maximum amount of methyl acetate is adsorbed, the material 

begins to undergo a structural change from Cage 1β to crystalline Cage 1α#.  The 

structural change leads to desorption of methyl acetate from the porous structure, and 

the formation of a more ordered structure. Cage 1α has  narrower pores than Cage 

1, leading to an enhanced interaction with a greater isosteric enthalpy of adsorption, 

and a more ordered system, as shown by the more negative entropy of adsorption. 

Above 3.3 mmol g
-1

 adsorption of methyl acetate on Cage 1α#, the enthalpy 

decreases and the entropy becomes less negative, which is attributed to the effects of 

saturation of methyl acetate into the narrow pores of Cage 1α# and possible partial 

dissolution of Cage 1α#. 

7.6 Dichloromethane Adsorption on Cage 1α 

Through the “vial in vial” method of vapour diffusion, the researchers at Liverpool 

University have shown that Cage 1α can be interconverted to Cage 1β through 

exposure to dichloromethane.  To investigate this, the adsorption isotherm for 

dichloromethane adsorption on Cage 1α was collected at 298 K.  The isotherm 

shows an increase in the amount adsorbed up to a pressure of 150 mbar where a 

plateau is reached.  This plateau continues up to a pressure of 400 mbar, at which 

point a large step in the amount of dichloromethane adsorbed occurs.  The isotherm 

is hysteretic, and is shown in Figure 7-89. The step and the hysteresis indicate that 

dichloromethane adsorption induces a structural change in Cage 1α.   

The adsorption kinetics for dichloromethane adsorption on Cage 1α can be described 

by the stretched exponential equation up to a pressure of 200 mbar.  An example of 

this is shown for the pressure step 5 – 10 mbar in Figure 7-90. All kinetic profiles 

can be found in CD Appendix B: Molecular Cage Materials.   At 200 mbar the 

plateau on the isotherm is reached, and due to small fluctuations in the amount 

adsorbed, the kinetics cannot be analysed. The stretched exponential data for the 

analysis of the kinetic profiles up to a pressure of 200 mbar can be found in Table 

7-12.  The data shows that the rate of dichloromethane adsorption into Cage 1α is 
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very slow, with equilibrium not fully reached after 8 hours, giving rate constants in 

the region of 1 x 10
-5

 s
-1

.  The stretched exponential β parameter varies between 0.5 

and 0.87, indicating a two dimensional process, where the diffusion of 

dichloromethane is controlled more by the diffusion along the surface of the pore 

than by diffusion through a constriction in the porosity. At a pressure of 400 mbar 

adsorption of dichloromethane is resumed.  For the pressure steps 400 to 450 and 

450 to 500 mbar, the stretched exponential equation no longer describes the kinetics, 

which are now best modelled using the Avrami equation.  The Avrami analysis of 

these pressure steps are shown in Figure 7-91 and Figure 7-92, giving Avrami 

parameters of 2.68 ± 9.4 x 10
-3

 and 2.40 ± 1.9 x 10
-2

.  The Avrami model fits the data 

well, with small residuals showing that the model is a good description of the data.  

The change in the kinetics from the stretched exponential model to the Avrami 

model indicates that the structural change is occurring by crystalline to crystalline 

transformation of Cage 1α through dichloromethane adsorption, to Cage 1β#.  To 

assess the structural change, the Cage 1β# prepared by dichloromethane adsorption 

was degassed, and a methyl acetate adsorption isotherm was collected.  This is 

shown in Figure 7-93 and on a volume of vapour adsorbed basis in Figure 7-94.  

The isotherms show a good repeat of methyl acetate adsorption on Cage 1β as 

prepared by researchers at Liverpool University, and shows that the adsorption of 

dichloromethane on Cage 1α induces a structural change to Cage 1β#, which can 

then be transformed back into Cage 1α# through exposure to methyl acetate.   

7.7 Conclusions 

The inter conversion of Cage 1α and Cage 1β can be facilitated by the adsorption of 

various solvent vapours.
1,2

  Probe molecule studies show that the inter conversion 

from Cage 1β to Cage 1α# occurs on adsorption of ethyl acetate, methyl acetate, 2-

butanone and diethyl ether. These four vapours all displayed unique adsorption 

isotherms, which included an unusual desorption of vapour with increasing pressure.  

The desorption of vapour is associated with the structural change from Cage 1β to 

Cage 1α#. This unique isotherm shape was not observed for methanol or pentane.  

Methanol adsorption showed no effect on the structure of Cage 1β.  Pentane 

adsorption displayed features consistent with a structural change, including a step in 

the isotherm and a hysteretic desorption isotherm, without the presence of the 
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unusual desorption step observed in the ethyl acetate, methyl acetate, 2–butanone 

and diethyl ether adsorption isotherms.   Analysis of the powder X-ray diffraction of 

a sample of Cage 1β after pentane adsorption showed a diffraction pattern that did 

not match that of either Cage 1β or Cage1α, indicating that pentane may have 

induced the formation of another polymorph of Cage 1 or a mixed phase product.  

The adsorption of methyl acetate was studied over a wide temperature range in order 

to assess the thermodynamic and kinetic characteristics of the conversion of Cage 1β 

to Cage 1α#.  During the methyl acetate adsorption isotherm, at low surface coverage 

the enthalpy of adsorption is close to the enthalpy of vaporisation (32 kJ mol
-1

) of 

methyl acetate.  As the second plateau approaches the desorption step, the enthalpy 

of adsorption increases, to a value of 58.3 ± 1.8 kJ mol
-1

, while the entropy of 

adsorption becomes more negative, from values of -179.2 ± 2.5 to -229.6 ± 1.8 J K
-1 

mol
-1

, indicating an ordering of the system. At maximum methyl acetate loading 

Cage 1β has sufficient activation energy to initiate conversion to Cage 1α#, through 

desorption of vapour. 

The kinetics of the desorption step of methyl acetate follow the Avrami model,
8,9,10

 

with the Avrami exponents for the temperature range 278 – 308 K falling within the 

range of 1.19 ± 0.015 and 1.46 ± 0.0078.  This is consistent with the diffusion of 

methyl acetate from the particle surface during the formation of Cage 1α#. The 

activation energy for methyl acetate desorption from Cage 1β was 42.5 ± 6.2 kJ mol
-

1
, showing that there is a kinetic barrier to diffusion. This kinetic barrier is lower 

than the isosteric enthalpy of adsorption indicating that diffusion through pores to 

the particle surface is the rate determining step for the structural change.
17

   

The adsorption of methyl acetate on Cage 1β was compared with the adsorption of 

methyl acetate on Cage 1α# in order to establish the thermodynamic effects for the 

conversion of Cage 1β to Cage 1α#.  The adsorption of methyl acetate on Cage 1α# 

does not induce further structural change and this allowed the isosteric enthalpy and 

entropy of adsorption to be determined. The isosteric enthalpy for methyl acetate 

adsorption on Cage 1α# had a peak (90.2 ± 3.2 kJ mol
-1

 at 3.1 mmol g
-1

) and a 

corresponding minimum in the entropy of adsorption (-335.0 ± 10.4 J K
-1

 mol
-1

). 

Comparison of the thermodynamic parameters for methyl acetate on Cage 1β just 
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before structural change (58.3 ± 1.8  kJ mol
-1

 and -229.6 ± 8.2  J K
-1

 mol
-1

at 3.5 

mmol g
-1

) and  Cage 1α# for uptakes just after the structural change (85.7 ± 4.2 kJ 

mol
-1 

and -322.8 ± 13.7 J K
-1

 mol
-1 

at 3.2 mmol g
-1

)  showed ordering driven by the 

enthalpy of adsorption. Further small increases in uptake with increasing pressure on 

the isotherm plateau result in the decrease in isosteric enthalpy of adsorption and the 

entropy becomes less negative (40.5 ± 4.5 kJ mol
-1

 and -180.9 ± 14.7  J K
-1

 mol
-1 

at 

3.5 mmol g
-1

). These changes are attributed to the pores filling with methyl acetate 

leading to greater disorder in the system and possible partial dissolution of Cage 1α#. 

Cage 1α# has narrower pores, and hence, an increased interaction and ordering. 

Dichloromethane adsorption facilitates the reverse conversion of Cage 1α to Cage 

1β. This transition is reversed by methyl acetate adsorption. Analysis of the kinetics 

of dichloromethane adsorption shows that initially the adsorption profiles fit the 

stretched exponential model.  The isotherm step corresponding to structural change 

occurs at high relative pressure.  The kinetic data for this step can be described by 

the Avrami model, giving exponent parameters of 2.68 ± 9.4 x 10
-3

 and 2.40 ± 1.9 x 

10
-2

.  These Avrami exponents are much larger than those observed for the methyl 

acetate desorption from Cage 1β, indicating a difference in the diffusion mechanism 

for the two vapours.
12

  The kinetic data show that methyl acetate drives the 

conversion by diffusion through pores and out of the particle surface, whereas 

dichloromethane drives the structural change through adsorption, which then results 

in an opening of the structure to facilitate structural change to form wider pores and 

increased adsorption capacity. 

Cage 1 can interconvert between stable polymorphs α and β on exposure to selected 

solvent vapours by an activated process, retaining crystallinity. The structural change 

is driven by the enthalpy of adsorption and subtle cage structural packing effects, 

which influence the mechanism of vapour diffusion in the pore structure. 
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7.8 Figures 
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Figure 7-4: Thermal gravimetric analysis (TGA) of Cage 1β for the temperature 

range 0 – 500°C 
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Figure 7-5: Thermal gravimetric analysis (TGA) of Cage 1α for the temperature 

range 0 – 500°C 
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a) 

 

b) 

Figure 7-6: Scanning electron microscopy (SEM) image of a) Cage 1β crystals at 

150x magnification b) Cage 1α crystals at 150x magnification 
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Figure 7-7: CO2 isotherm for Cage 1β at 195 K 
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Figure 7-8: Langmuir analysis of CO2 adsorption on Cage 1β at 195 K 
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Figure 7-9: CO2 isotherm for Cage 1α at 195 K 
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Figure 7-10: Langmuir analysis of CO2 adsorption on Cage 1α at 195 K across the 

pressure range 10 – 800 mbar  
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Figure 7-11: CO2 isotherm for Cage 1β at 273 K  
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Figure 7-12: DR analysis of CO2 adsorption on Cage 1β at 273 K 
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Figure 7-13: CO2 isotherm for Cage 1α at 273 K  
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Figure 7-14: DR analysis of CO2 adsorption on Cage 1α at 273 K 
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Table 7-1: Langmuir and DR data for carbon dioxide adsorption on Cage 1β and 

Cage 1α 

Material Langmuir Monolayer 

coverage / mmol g
-1

 

Langmuir pore 

volume / cm
3
g

-1
 

DR micropore volume / 

cm
3
 g

-1
 

Cage1β 5.80 ± 0.0570 0.255 ± 2.50 x 10
-3

 0.187 ± 4.54 x 10
-4

 

Cage 1α 4.55 ± 0.0445 0.170 ± 1.66 x 10
-3

 0.108 ± 1.16 x 10
-3
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Figure 7-15: Ethyl acetate adsorption on Cage 1β at 303 K run 1 and run 2  
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Figure 7-16: Ethyl acetate adsorption on Cage 1β at 303 K run 1 and run 2 on a 

relative pressure basis 
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Figure 7-17: Desorption of ethyl acetate at the pressure step 35 to 40 mbar  
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Figure 7-18: Cage 1β EtOAc desorption step at 35 – 40 mbar at 303 K, Avrami 

analysis 
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Figure 7-19: EtOAc adsorption on Cage 1β at 303 K 0.500 – 1.00 mbar step SE 

kinetic analysis 
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Figure 7-20: EtOAc adsorption on Cage 1α# at 303 K 0.50 – 1.00 mbar step SE 

kinetic analysis 

Table 7-2: Table of stretched exponential kinetic analysis parameter for ethyl acetate 

adsorption on Cage 1β at 303 K 

Pressure / mbar SE β Parameter Rate constant, k / s
-1

 

0.25 0.566 ± 0.00093 2.40 x 10
-4 

 ± 1.22 x 10
-6

 

0.50 0.620 ± 0.00083 3.80 x 10
-4 

 ± 1.39 x 10
-6

 

1.00 0.693 ± 0.0012 7.30 x 10
-4 

 ± 2.86 x 10
-6

 

2.22 0.713 ± 0.0035 3.07 x 10
-3 

 ± 3.00 x 10
-5

 

5.47 0.827 ± 0.0057 6.88 x 10
-3 

 ± 5.00 x 10
-5

 

10.42 0.916 ± 0.0077 1.13 x 10
-2 

 ± 7.00 x 10
-5

 

15.40 0.983 ± 0.0094 1.40 x 10
-2 

 ± 9.00 x 10
-5

 

20.41 1.000 ± 0.0130 1.46 x 10
-2 

 ± 1.30 x 10
-4

 

24.34 0.867 ± 0.0120 7.25 x 10
-3 

 ± 8.00 x 10
-5

 

27.99 0.978 ± 0.0011 3.80 x 10
-4 

 ± 2.44 x 10
-7

 

30.41 0.935 ± 0.0125 1.36 x 10
-2 

 ± 1.20 x 10
-4

 

35.46 1.000 ± 0.0169 3.31 x 10
-2 

 ± 3.40 x 10
-4
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Table 7-3: Table of stretched exponential kinetic analysis parameter for ethyl acetate 

adsorption on Cage 1α# at 303 K 

Pressure / mbar SE β Parameter Rate constant, k / s
-1

 

0.10 0.500 ± 0.000940 4.00 x 10
-5 

 ± 4.43 x 10
-7

 

0.25 0.567 ± 0.00108 5.55 x 10
-6 

 ± 4.37 x 10
-8

 

0.50 0.574± 0.00977 7.80 x 10
-4 

 ± 6.00 x 10
-5

 

1.00 0.500 ± 0.00222 5.37 x 10
-6 

 ± 1.43 x 10
-7

 

4.99 0.500 ± 0.00877 5.00 x 10
-5 

 ± 1.11 x 10
-6

 

14.99 0.500 ± 0.00892 2.00 x 10
-5 

 ± 5.68 x 10
-7

 

24.00 0.500 ± 0.01767 1.30 x 10
-4 

 ± 2.00 x 10
-5

 

34.99 0.500 ± 0.01301 1.00 x 10
-5 

 ± 2.65 x 10
-6
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Figure 7-21: Comparison of rate constant, k for EtOAc adsorption on Cage 1β and 

Cage 1α# at 303 K 
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Figure 7-22: Comparison of SE β parameter for EtOAc adsorption on Cage 1β and 

Cage 1α# at 303 K 

0 5 10 15 20 25 30 35 40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 Cage 1 isotherm

 Cage 1 EtOAc adsorption rate constant 

Pressure / mbar

E
tO

A
c
 U

p
ta

k
e

 /
 m

m
o

l 
g

-1

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

R
a

te
 c

o
n

s
ta

n
t, k

 / s
-1

 

Figure 7-23: Comparison of EtOAc adsorption isotherm and rate constant, k, for 

EtOAc adsorption on Cage 1β at 303 K 
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Figure 7-24: 2-butanone adsorption on Cage 1β at 298 K 
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Figure 7-25: 2-butanone adsorption on Cage 1β at 298 K on a relative pressure basis 
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Figure 7-26: Diethyl ether adsorption on Cage 1β at 298 K 
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Figure 7-27: Diethyl ether adsorption on Cage 1β at 298 K on a relative pressure 

basis 

 



Chapter 7 Structural Change Induced by Adsorption of Gases and Vapours on 

Porous Cage Materials 

189 

 

0 5000 10000 15000 20000 25000 30000

0.0

0.2

0.4

0.6

0.8

1.0

M
t/
M

e

Time / seconds

 

Figure 7-28: Desorption of 2 - butanone for the pressure step 30 to 40 mbar at 298 K 
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Figure 7-29: Cage 1β 2-butanone desorption step 30 to 40 mbar at 298 K Avrami 

analysis 
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Figure 7-30: Desorption of diethyl ether for the pressure step 400 to 500 mbar 298 K 
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Figure 7-31: Cage 1 β diethyl ether desorption step 400 – 500 mbar  at 298 K 

Avrami analysis 
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Figure 7-32: 2-butanone adsorption on Cage β at 298 K 2.00 – 5.00 mbar step SE 

kinetic analysis 

 

Table 7-4: Table of stretched exponential kinetic analysis parameter for 2-butanone 

adsorption on Cage 1β at 298 K 

Pressure / mbar SE β Parameter Rate constant, k / s
-1

 

0.10 0.745 ± 0.00132 7.00 x 10
-4 

 ± 9.27 x 10
-7

 

2.02 0.893 ± 0.00671 5.66 x 10
-3 

 ± 5.00 x 10
-5

 

5.01 1.000 ± 0.00874 1.63 x 10
-2 

 ± 1.00 x 10
-4

 

9.98 1.000 ± 0.00536 7.56 x 10
-3 

 ± 4.00 x 10
-5

 

19.99 0.890 ± 0.0200 3.33 x 10
-2 

 ± 6.00 x 10
-4
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Figure 7-33: Diethyl ether adsorption on Cage 1β at 298 K 5.00 – 10.00 mbar step 

SE kinetic analysis 

 

Table 7-5: Table of stretched exponential kinetic analysis parameter for diethyl ether 

adsorption on Cage 1β at 298 K 

Pressure / mbar SE β Parameter Rate constant, k / s
-1

 

0.40 0.637 ± 0.00242 5.30 x 10
-4 

 ± 5.30 x 10
-6

 

0.80 0.694 ± 0.00421 6.80 x 10
-4 

 ± 8.68 x 10
-6

 

1.00 0.709 ± 0.00486 1.02 x 10
-3 

 ± 1.00 x 10
-4

 

5.00 0.755 ± 0.00269 2.21 x 10
-3 

 ± 6.09 x 10
-6

 

9.97 0.917 ± 0.00795 8.58 x 10
-3 

 ± 8.00 x 10
-5

 

49.99 1.000 ± 0.0469 1.29 x 10
-2 

 ± 4.30 x 10
-4

 

99.82 1.000 ± 0.00332 1.28 x 10
-2 

 ± 4.47 x 10
-6

 

124.99 0.920 ± 0.00241 3.30 x 10
-3 

 ± 5.43 x 10
-6

 

150.02 1.000 ± 0.0190 3.00 x 10
-2 

 ± 4.30 x 10
-4

 

174.94 0.812 ± 0.0276 2.85 x 10
-2 

 ± 8.50 x 10
-4
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Figure 7-34: Comparison of ethyl acetate, 2-butanone and diethyl ether adsorption 

isotherms on Cage 1β on a relative pressure basis 
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Figure 7-35: Comparison of ethyl acetate, 2-butanone and diethyl ether vapour 

amount adsorbed on a vapour volume basis on Cage 1β  
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Figure 7-36: Comparison of ethyl acetate, 2-butanone and diethyl ether number of 

molecules per formula unit of Cage 1β on a relative pressure basis 
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Table 7-6: Isotherm data for ethyl acetate, 2-butanone, and diethyl ether adsorption 

on Cage 1β 

Section of 

Isotherm 

Vapour Relative 

Pressure 

Uptake / 

mmol g
-1 

Vapour Volume / 

cm
3
 g

-1
 

No. of 

molecules 

per 

formula 

unit 

First 

plateau 

EtOAc 0.150 1.437 0.141 1.14 

2-butanone 0.043 1.365 0.122 1.08 

Diethyl ether 0.105 1.500 0.156 1.19 

Before 

desorption 

EtOAc 0.219 3.006 0.295 2.38 

2-butanone 0.255 3.182 0.285 2.52 

Diethyl ether 0.562 3.156 0.328 2.50 

After 

desorption 

EtOAc 0.247 2.668 0.262 2.16 

2-butanone 0.343 2.786 0.250 2.21 

Diethyl ether 0.701 2.969 0.308 2.35 

At 

maximum 

pressure 

EtOAc 0.920 2.784 0.273 2.21 

2-butanone 0.941 2.939 0.263 2.33 

Diethyl ether 0.982 3.050 0.317 2.42 
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Figure 7-37: Comparison of ethyl acetate, 2-butanone and diethyl ether rate 

constant, k for adsorption on Cage 1β, on a vapour uptake basis  
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Figure 7-38: Comparison of ethyl acetate, 2-butanone and diethyl ether SE β 

parameter for adsorption on Cage 1β, on a vapour uptake basis 
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Figure 7-39: Comparison of ethyl acetate, 2-butanone and diethyl ether ln (k) for 

adsorption on Cage 1β 
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Figure 7-40: Pentane adsorption on Cage 1β at 298 K 
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Figure 7-41: Pentane adsorption on Cage 1β at 298 K on a relative pressure basis 
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Figure 7-42: Methanol adsorption on Cage 1β at 303 K 
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Figure 7-43: Methanol adsorption on Cage 1β at 303 K on a relative pressure basis 
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Figure 7-44: Comparison of pentane, methanol and ethyl acetate adsorption on Cage 

1β 
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Figure 7-45: Pentane adsorption on Cage 1β at 298 K 50.0 – 100.0 mbar step SE 

kinetic analysis 
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Figure 7-46: Methanol adsorption on Cage 1β at 303 K 20.00 – 25.00 mbar step SE 

kinetic analysis 
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Table 7-7: Table of stretched exponential kinetic analysis parameter for pentane 

adsorption on Cage 1β at 298 K      

 

  

  

Pressure / mbar SE β Parameter Rate constant, k / s
-1

 

6.00 0.625 ± 0.00629 4.70 x 10
-5 

 ± 1.93 x 10
-6

 

8.06 0.635 ± 0.00520 6.00 x 10
-5 

 ± 1.88 x 10
-6

 

10.01 0.964 ± 0.00165 2.20 x 10
-4 

 ± 3.12 x 10
-6

 

12.07 1.000 ± 0.0305 3.20 x 10
-4 

 ± 6.42 x 10
-6

 

16.03 0.692 ± 0.00945 3.10 x 10
-4 

 ± 8.96 x 10
-6

 

19.96 0.649 ± 0.00827 5.40 x 10
-4 

 ± 2.00 x 10
-4

 

24.05 0.642 ± 0.0144 5.30 x 10
-4 

 ± 4.00 x 10
-4

 

30.01 0.813 ± 0.00709 1.33 x 10
-3 

 ± 1.00 x 10
-6

 

50.00 0.833 ± 0.00564 1.82 x 10
-3 

 ± 1.00 x 10
-4

 

99.90 0.846 ± 0.00598 3.37 x 10
-3 

 ± 3.00 x 10
-4

 

200.18 0.785 ± 0.0199 6.87 x 10
-3 

 ± 1.60 x 10
-4

 

399.83 0.645 ± 0.00187 5.00 x 10
-5 

 ± 5.54 x 10
-6

 

649.97 0.836 ± 0.00504 3.00 x 10
-5 

 ± 4.16 x 10
-7
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Table 7-8: Table of stretched exponential kinetic analysis parameter for methanol 

adsorption on Cage 1β at 303K 

Pressure / mbar SE β Parameter Rate constant, k / s
-1

 

2.01 1.000 ± 0.00309 2.60 x 10
-2 

 ± 5.00 x 10
-5

 

5.00 0.981 ± 0.0104 1.98 x 10
-2 

 ± 1.30 x 10
-4

 

10.01 0.814 ± 0.00906 1.41 x 10
-2 

 ± 1.20 x 10
-4

 

14.99 0.766 ± 0.00633 1.08 x 10
-2 

 ± 7.00 x 10
-5

 

19.99 0.754 ± 0.00486 9.18 x 10
-3 

 ± 5.00 x 10
-5

 

24.99 0.753 ± 0.00586 8.48 x 10
-3 

 ± 5.00 x 10
-5

 

29.99 0.820 ± 0.0232 4.50 x 10
-4 

 ± 8.50 x 10
-7

 

35.00 0.803 ± 0.00319 7.26 x 10
-3 

 ± 2.00 x 10
-5

 

40.02 0.753 ± 0.00872 1.00 x 10
-2 

 ± 1.10 x 10
-4

 

60.03 0.804 ± 0.00523 8.22 x 10
-3 

 ± 4.00 x 10
-5

 

80.02 0.790 ± 0.00579 9.17 x 10
-3 

 ± 6.00 x 10
-5

 

119.90 0.853 ± 0.0102 1.35 x 10
-2 

 ± 1.30 x 10
-4

 

139.92 0.772 ± 0.0105 1.20 x 10
-2 

 ± 1.40 x 10
-4

 

199.59 0.782 ± 0.0127 1.31 x 10
-2 

 ± 1.70 x  10
-4

 

 

  



Chapter 7 Structural Change Induced by Adsorption of Gases and Vapours on 

Porous Cage Materials 

203 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

R
a

te
 c

o
n

s
ta

n
t,
 k

 /
 s

-1

Relative Pressure

 Pentane 298 K

 Methanol 303 K

 Ethyl acetate 303 K

 

Figure 7-47: Comparison of pentane, methanol and ethyl acetate adsorption on Cage 

1β SE rate constant, k.   
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Figure 7-48: Comparison of pentane, methanol and ethyl acetate adsorption on Cage 

1β SE β parameter 
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Figure 7-49: PXRD comparison of Cage 1β after pentane adsorption and Cage 1α 

desolvate 
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Figure 7-50: Methyl acetate isotherm on Cage 1β at 303 K 
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Figure 7-51: Comparison of methyl acetate and ethyl acetate adsorption isotherms at 

303 K on Cage 1β 
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Figure 7-52: Comparison of methyl acetate and ethyl acetate number of molecules 

adsorbed per formula unit of Cage 1β at 303 K  
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Figure 7-53: Methyl acetate adsorption isotherms on Cage 1β for the temperature 

range 268 – 318 K  
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Figure 7-54: Methyl acetate adsorption isotherms on Cage 1β for the temperature 

range 283 - 308 K 
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Figure 7-55: Enthalpy and entropy graph for methyl acetate adsorption on Cage 1β 

for the temperature range 278 - 308 K 
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Figure 7-56: Graph of rate constant, k, versus MeOAc uptake on Cage 1β for the 

temperature range 268 – 313 K 
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Figure 7-57: Graph of SE parameter, β, versus MeOAc uptake on Cage 1β for the 

temperature range 268 – 313 K 
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Figure 7-58: Graph of ln k versus MeOAc uptake / mol g
-1

 for MeOAc uptake on 

Cage 1β for the temperature range 268 - 313 K 
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Figure 7-59: Cage 1β MeOAc desorption step at 278 K Avrami analysis 
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Figure 7-60: Cage 1β MeOAc desorption step at 283 K Avrami analysis 
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Figure 7-61: Cage 1β MeOAc desorption step at 288 K Avrami analysis 
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Figure 7-62: Cage 1β MeOAc desorption step at 293 K Avrami analysis 
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Figure 7-63: Cage 1β MeOAc desorption step at 298 K Avrami analysis 

0 1000 2000 3000 4000 5000 6000

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000 6000
-0.025
-0.020
-0.015
-0.010
-0.005
0.000
0.005
0.010
0.015
0.020
0.025

Data: Data1_MtMe

Model: SWeibull2 

Equation: y = a - (a-b)*exp( -(k*x)^d ) 

Weighting:

y No weighting

  

Chi^2/DoF = 0.00018

R^2 =  0.99817

  

a 0 ±0

b 1 ±0

d 1.46421 ±0.0078

k 0.00067 ±1.5965E-6

Time / seconds

M
t/

M
e

 

Figure 7-64: Cage 1β MeOAc desorption step at 303 K Avrami analysis 
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Figure 7-65: Cage 1β MeOAc desorption step at 308 K Avrami analysis 

 

 

Table 7-9: Cage 1β MeOAc desorption step kinetics Avrami analysis parameters 

Temperature / K Rate constant / s
-1

 Avrami β parameter 

283 2.4 x 10
-4

 ± 1.59 x 10
-6

 1.19 ± 0.015 

288 3.3 x 10
-4 

± 1.49 x 10
-6

 1.28 ± 0.012 

293 2.8 x 10
-4 

± 1.55 x 10
-6

 1.25 ± 0.014 

298 4.7 x 10
-4 

± 7.41 x 10
-7

 1.41 ± 0.0049 

303 6.7 x 10
-4 

± 1.60 x 10
-6

 1.46 ± 0.0078 

308 1.26 x 10
-3 

± 8.91 x 10
-6

 1.34 ± 0.018 
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Figure 7-66: Graph on ln (k) against reciprocal temperature for MeOAc desorption 

steps on Cage 1β for the temperature range 278 – 308 K 
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Figure 7-67: MeOAc profiles for a) 35 -40 mbar, b) 40 – 60 mbar and c) 60 – 80 

mbar showing profiles before, during and after desorption step on Cage 1β at 283 K 
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Figure 7-68: Comparison of the desorption steps in the ethyl acetate, 2-butanone, 

diethyl ether and methyl acetate adsorption isotherms  

Table 7-10: Parameters for desorption step from Cage 1β Avrami analysis  

Adsorptive Rate constant, k / s
-1

 Avrami β Parameter 

EtOAc 303 K 2.00 x 10
-5

 ± 2.73 x 10
-8

 1.37 ± 0.0033 

2-butanone 298 K 1.70 x 10
-4

 ± 7.15 x 10
-7

 1.19 ± 0.010 

Diethyl ether 298 K 2.00 x 10
-4

 ±  4.66 x 10
-7

 1.82 ± 0.011 

MeOAc 4.7 x 10
-4

 ±  7.41 x 10
-7

 1.41 ± 0.0049 
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Figure 7-69: Methyl acetate isotherm on Cage 1α# at 303 K 
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Figure 7-70: Methyl acetate adsorption isotherms on Cage 1α# for the temperature 

range 298 - 313 K 
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Figure 7-71: Methyl acetate adsorption isotherms on Cage 1α# for the temperature 

range 298 - 313 K on a relative pressure basis 
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Figure 7-72: Enthalpy and entropy variation with uptake graph for methyl acetate 

adsorption on Cage 1α# for the temperature range 298 - 313 K 
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Figure 7-73: MeOAc on Cage 1α# at 303 K 1.22 mmol g
-1

 uptake, 5 – 10 mbar 

pressure step SE kinetic analysis showing poor equilibration 
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Figure 7-74: MeOAc on Cage 1α# at 298 K 3.42 mmol g
-1

 uptake, 80 – 160 mbar 

pressure step SE kinetic analysis showing good equilibrium  
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Figure 7-75: MeOAc on Cage 1α# at 303 K 3.12 mmol g
-1

 uptake, 60 – 100 mbar 

pressure step SE kinetic analysis showing good equilibrium  
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Figure 7-76: MeOAc on Cage 1α# at 308 K 3.00 mmol g
-1

 uptake, 60 – 100 mbar 

pressure step SE kinetic analysis showing good equilibrium 
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Figure 7-77: MeOAc on Cage 1α# at 313 K 2.77 mmol g
-1

 uptake, 60 – 80 mbar 

pressure step SE kinetic analysis showing good equilibrium 
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Figure 7-78: van’t Hoff plots for MeOAc uptakes of 2.5, 2.8, 3.0 and 3.2 mmol g
-1

 

on Cage 1α# for the temperature range 298 – 313 K 
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Figure 7-79: Graph of rate constant, k, versus MeOAc uptake on Cage 1α# for the 

temperature range 298 – 313 K 
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Figure 7-80: Graph of SE parameter, β, versus MeOAc uptake on Cage 1α# for the 

temperature range 268 – 313 K 
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Figure 7-81:  Corrected and original isotherm points for methyl acetate adsorption 

on Cage 1α# at 298 K for the pressure range 0 – 50 mbar  
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Figure 7-82:  Corrected and original isotherm points for methyl acetate adsorption 

on Cage 1α# at 303 K for the pressure range 0 – 50 mbar 
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Figure 7-83: Corrected isosteric enthalpy of adsorption and entropy of adsorption 

profiles for methyl acetate adsorption on Cage 1α# 
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Figure 7-84: van’t Hoff plots for MeOAc uptakes of 0.5, 0.6, 0.7, 0.8 and 0.9 mmol 

g
-1

 on Cage 1α# for the temperature range 298 – 313 K 
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Figure 7-85: Comparison of original and corrected isosteric enthalpy of adsorption 

for methyl acetate adsorption on Cage 1α#, with error bars omitted for clarity, for the 

temperature range 298 – 313 K 
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Table 7-11: Comparison of the corrected and original isosteric enthalpy of 

adsorption and entropy of adsorption values for methyl acetate adsorption on Cage 

1α# 

MeOAc 

Uptake / 

mmol g
-1

 

Original 

Qst(ADS) / kJ 

mol
-1

 

Corrected 

Qst(ADS) / kJ 

mol
-1

 

Original ΔS(ADS) / 

J K
-1

 mol 
-1 

Corrected  

ΔS(ADS) / J K
-1

 mol 

-1
 

0.5 19.97 ± 13.65 49.41 ± 15.82 -62.85 ± -44.70 -157.75 ± -51.80 

0.6 26.39 ± 15.25 36.07 ± 12.64 -86.42 ± -49.95 -117.39 ± -41.40 

0.7 29.68 ± 17.89 37.33 ± 14.22 -99.68 ± -58.60 -123.71 ± -46.56 

0.8 36.88 ± 17.62 42.48 ± 20.15 -126.4 ± -57.73 -143.74 ± -65.98 

0.9 27.6 ± 18.88 42.25 ± 22.78 -99.63 ± -61.83 -145.84 ± -74.61 

1 30.2 ± 15.2 51.94 ± 26.35 -111.45 ± -49.77 -180.37 ± -86.28 

1.1 33.2 ± 15.36 49.00 ± 20.28 -124.26 ± -50.29 -174.24 ± -66.43 

1.2 39.37 ± 12.07 48.98 ± 19.41 -147.49 ± -39.52 -177.62 ± -63.58 

1.3 45.07 ± 9.58 48.32 ± 7.52 -168.88 ± -31.38 -179.1 ± -24.62 

1.4 47.1 ± 6.76 56.28 ± 8.41 -177.56 ± -22.14 -206.75 ± -27.53 
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Figure 7-86: Comparison of methyl acetate adsorption on Cage 1β and Cage 1α# at 

303 K 
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Figure 7-87: Comparison of methyl acetate isosteric enthalpy of adsorption on Cage 

1β and Cage 1α#  
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Figure 7-88: Comparison of methyl acetate isosteric entropy of adsorption on Cage 

1β and Cage 1α# 



Chapter 7 Structural Change Induced by Adsorption of Gases and Vapours on 

Porous Cage Materials 

227 

 

0 100 200 300 400 500 600

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
ic

h
lo

ro
m

e
th

a
n

e
 u

p
ta

k
e
 /
 m

m
o

l 
g

-1

Pressure / mbar 

 Dichloromethane adsorption

 Dichloromethane desorption

 

Figure 7-89: Dichloromethane adsorption on Cage 1α at 298 K 
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Figure 7-90: Stretched exponential kinetic analysis of dichloromethane adsorption 

on Cage 1α for the pressure step 5 – 10 mbar  
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Table 7-12: Dichloromethane adsorption at 298 K stretched exponential kinetic 

analysis parameters 

Pressure / mbar SE β Parameter Rate constant, k / s
-1

 

1.00 0.743 ± 0.00981 5.00 x 10
-5 

± 3.00 x 10
-6

 

4.92 0.746 ± 0.00598 4.00 x 10
-5  

± 2.00 x 10
-6

 

10.012 0.671 ± 0.0146 1.00 x 10
-5

± 3.00 x 10
-6

 

20.01 0.502 ± 0.00642 5.00 x 10
-9 

± 4.00 x 10
-10

 

50.02 0.500 ± 0.00698 2.00 x 10
-5 

± 3.00 x 10
-6

 

99.88 0.500 ± 0.00351 9.00 x 10
-5 

± 4.00 x 10
-6

 

149.95 0.742 ± 0.00983 3.00 x 10
-5 

± 2.00 x 10
-6

 

199.74 0.876 ± 0.0254 8.00  x 10
-5 

± 6.00 x 10
-6
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Figure 7-91: Dichloromethane adsorption pressure step 400 – 450 mbar Avrami 

kinetic analysis 
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Figure 7-92: Dichloromethane adsorption pressure step 450 – 500 mbar Avrami 

kinetic analysis 
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Figure 7-93: Cage 1α dichloromethane  methyl acetate cycle 
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Figure 7-94: Cage 1α dichloromethane  methyl acetate cycle on a vapour volume 

basis 
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Chapter 8 Kinetic Molecular Sieving of Oxygen and Nitrogen by 

Organic Cage Materials Cage 1α and Cage 1α# 

8.1 Introduction 

The separation of oxygen and nitrogen is achieved commercially using carbon 

molecular sieves and the pressure swing adsorption technique (PSA) – see Chapter 

3 – Separation of Gases and Vapours.   The pressure swing adsorption separation 

of oxygen and nitrogen by carbon molecular sieves is based upon the difference in 

the adsorption kinetics of oxygen and nitrogen, as the amount of each gas that is 

adsorbed is similar. The difference in the kinetics of adsorption of the two gases is 

related to the relatively small differences in molecular dimensions with oxygen 

(2.930 x 2.985 x 4.052 Å) being slightly smaller than nitrogen (2.991 x 3.054 x 

4.046Å).
1
 Although the differences in size are small, they can make a large 

difference in the rate of adsorption, with oxygen adsorbing up to 25 times faster than 

nitrogen on carbon molecular sieve.
2
 Previous studies of the kinetic molecular 

sieving of oxygen and nitrogen by commercially available carbon molecular sieves 

have shown that the kinetic molecular sieving is achieved by the heterogeneous 

deposition of a hydrocarbon layer on the surface of the carbon molecular sieve.
3
  

Deposition across the entrance to the pore is highly desirable as this allows a 

constriction in the entrance to the pores, without reducing the available pore volume.  

In these cases the kinetics fit the linear driving force model as there is only one rate 

determining step for diffusion into the pores, which is diffusion through the 

constriction at the entrance to the pore caused by the hydrocarbon deposition layer.
4,5

 

The kinetic selectivity of the carbon molecular sieves is defined as the ratio of the 

linear driving force rate constants for oxygen and nitrogen adsorption: 

   

   

 = selectivity                    8.1 

Cage 1α# is formed in situ under vacuum from the exposure of Cage 1β to ethyl 

acetate, as described in Chapter 7 – Structural Change Induced by Adsorption of 

Gases and Vapours on Porous Cage Materials.  The kinetic molecular sieving 

properties for these materials was analysed, and compared with the Cage 1α material 

formed from the crystallisation of Cage 1 from ethyl acetate.   
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8.2 Characterisation of Cage 1α# 

A comparison of the scanning electron micrograph at 150 x magnification for Cage 

1α#, Cage 1β and Cage 1α is given in Figure 8-2.  The micrograph of Cage 1α 

shows long, thin rectangular crystals.  The micrograph for Cage 1β shows smaller, 

hexagonal shaped crystals.  The Cage 1α crystals are of a smaller size to Cage 1β, 

and have aggregated into clusters.  Figure 8-2 shows the micrographs for Cage 1α# 

and Cage 1β at 1000 and 1500 x magnification respectively, of individual crystals 

not aggregated into clusters.  Cage 1α# shows similar individual crystal shape to that 

of Cage 1β, with a reduction in size of the crystals during the transformation from 

Cage 1β to Cage1α#, and an aggregation of the individual units.  This was also 

shown to occur by Jones et al during successive “vial in vial” methods of structural 

rearrangement.
6
  Jones et al showed that although the size of the crystals is reduced 

through successive transformation, long range order is retained, as shown by PXRD 

analysis.
6  

 

The PXRD of the Cage 1α and Cage 1α# are shown in Figure 8-3.  The PXRD 

shows significant differences between these two polymorphs.  The Cage materials 

are susceptible to hydration from water in the atmosphere.  Although these samples 

were fully desolvated, small amounts of moisture can produce vastly different PXRD 

patterns.  The exposure of the sample to water vapour in the atmosphere before 

analysis by PXRD through transport to Liverpool University for analysis is suspected 

to be the reason for the difference in the PXRD patterns.   

Analysis by Fourier-Transform Infra-Red Spectroscopy (FTIR) for Cage 1α, Cage 

1α# and Cage 1β is shown in Figure 8-4.  The FTIR spectra are very similar.  The 

FTIR spectrum for Cage 1β shows a broad peak at 3375 cm
-1

, which is not present in 

the spectrum for Cage 1α#.  This is attributed to the presence of atmospheric water 

hydrogen bonded to the sample.  

The adsorption of carbon dioxide at 195 K and 273 K was used to characterise the 

porous structure of Cage 1α#. The carbon dioxide adsorption isotherms at 195 K and 

273 K for Cage 1α, Cage 1α# and Cage 1β, and the subsequent Langmuir, DR and 

Virial analysis are shown in Figure 8-5 to Figure 8-9. The resulting Langmuir pore 
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volumes, DR micropore volumes and Virial parameters are shown in Table 8-1 and 

Table 8-2.   

Table 8-1: Langmuir and DR data for carbon dioxide adsorption on Cage 1α, Cage 

1α# and Cage 1β at 273 K (using CO2 liquid density 1.023 g cm
3
) 

Material Langmuir capacity / 

mmol g
-1

 

Langmuir pore 

volume / cm
3
g

-1
 

DR micropore volume / 

cm
3
 g

-1
 

Cage 1α# 5.03 ± 0.0884   0.216 ± 3.78 x 10
-3

 0.108 ± 3.44 x 10
-3

 

Cage 1α 4.55 ± 0.0445 0.170 ± 1.66 x 10
-3

 0.108 ± 1.16 x 10
-3

 

Cage1β 5.80 ± 0.0570 0.255 ± 2.50 x 10
-3

 0.187 ± 4.54 x 10
-4

 

 

Table 8-2: Virial data for carbon dioxide adsorption on Cage 1α, Cage 1α# and Cage 

1β at 273 K 

Material A0 / ln (mol g
-1

 Pa
-1

) A1 / g mol 
-1

 

Cage 1α#   -15.369 ± 0.0035 -1693.417 ± 26.458 

Cage 1α -15.396 ± 0.0075 -1692.374 ± 5.789 

Cage 1β -16.108 ± 0.025 -703.181 ± 14.822 

 

From the carbon dioxide adsorption at 195 K data, it is apparent that there is a 

reduction in the Langmuir pore volume on conversion from Cage 1β to Cage 1α#.  

The Langmuir pore volume for Cage 1α# remains higher than that observed for Cage 

1α.  From the carbon dioxide at 273 K data it is also apparent that there is a reduction 

in the micropore volume on conversion of Cage 1β to Cage 1α#, the micropore 

volume for Cage 1α and Cage 1α# are not statistically different, indicating that the 

structures have a similar microporous structure. Virial analysis of carbon dioxide 

adsorption at 273 K show that Cage 1α and Cage 1α# have very similar A1 values, of 

-1692.374 ± 5.789 and -1693.417 ± 26.458 g mol 
-1

 respectively; and Cage 1β has a 

value of -703.181 ± 14.822 g mol 
-1

.  This difference indicates that there are stronger 

adsorbate-adsorbate interactions and narrower pores in both Cage 1α and Cage 1α# 

than in Cage 1β.  

The PXRD and FTIR analysis shows that the cages may be susceptible to structural 

change on exposure to atmospheric water; therefore it is apparent that any 

transformation from Cage 1β to Cage 1α# would be more reliable under vacuum, 
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with no exposure to water, and to keep the sample sealed throughout any gas 

adsorption experiments.  As Cage 1α# is formed under vacuum, and can be kept 

under vacuum throughout gas adsorption experiments, it is the more reliable sample 

to work with. Carbon dioxide adsorption indicates a decrease in pore and micropore 

volume upon the transformation from Cage 1β to Cage 1α#, showing a narrowing of 

the pores and increased adsorbate-adsorbate interaction.  This narrowing of the pores 

could lead to kinetic molecular sieving of oxygen and nitrogen in Cage 1α# and Cage 

1α that would not be present in Cage 1β.  

8.3 Kinetic Molecular Sieving of Oxygen and Nitrogen by Cage 1α#
 
and Cage 1α 

The kinetic molecular sieving properties of Cage1α and Cage 1α# were investigated.  

Cage 1α# is the product of the exposure of Cage1β to ethyl acetate through the 

adsorption isotherm as discussed in Chapter 7 – Structural Change Induced by 

Adsorption of Gases and Vapours on Porous Cage Materials. Upon repetition of 

ethyl acetate adsorption on cage 1α# it was found that although the amount of ethyl 

acetate adsorbed did not change, the rate of adsorption was much slower –indicating 

a reduction in the size of the entrance to the porous structure, which could potentially 

lead to the ability to separate different molecules.  To investigate this, oxygen and 

nitrogen adsorption isotherms on Cage 1α# were collected, and compared to Cage 

1α, which is the pure form produced by ethyl acetate vapour diffusion by the 

research group at Liverpool University, the synthetic procedure for which is outlined 

in Chapter 5 – Experimental.    

8.4 Cage 1α# Oxygen and Nitrogen Adsorption 

8.4.1 Oxygen and Nitrogen Isotherm Analysis Cage 1α# 

The oxygen and nitrogen adsorption isotherms on Cage 1α# for the temperature 

range 273 K to 298 K on Cage 1α# are shown in Figure 8-10 and Figure 8-11. The 

isotherms for both oxygen and nitrogen adsorption are consistent with Type I in the 

IUPAC classification scheme.
7
 The isotherms show a similar uptake for both oxygen 

and nitrogen, with values between 0.15 and 0.35 mmol g
-1

 for the temperature range 

273 K to 298 K.  The isotherms show a decrease in uptake with increasing 

temperatures as is expected for physisorption systems.   

The isotherms were analysed using the virial equation in the following form: 
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  (
 

 
)               

                              8.2 

Where: 

 n = the amount adsorbed (mol g
-1

)  

 p = pressure (Pa) 

A0 and A1 = parameters are indicative of the interaction between the 

adsorbate-adsorbent at zero coverage and adsorbate-adsorbate interactions, 

respectively
8
 

 

The virial equation can be used to determine the isosteric enthalpy of adsorption.    

By plotting ln (n/p) against n at series of temperatures, it is then possible to estimate 

the enthalpy of adsorption at zero surface coverage by plotting values of A0 against 

1/T.  The gradient of this plot would be equal to ΔH/R, allowing calculation of ΔH in 

kJ mol
-1

.   

The virial graphs for oxygen and nitrogen adsorption on Cage 1α# are shown in 

Figure 8-12 and Figure 8-13, respectively, with all the graphs showing good 

linearity.  The virial parameters for oxygen and nitrogen adsorption on Cage 1α# are 

shown in Table 8-3 and Table 8-4. The tables show that A1 values cover the range -

440.1 ± 21.0 to -1102.2 ± 47.1 g mol
-1

. These values fit well with the range obtained 

for carbon molecular sieves of -684 to -1077 g mol
-1

 over the temperature range 303 

- 343 K.
9,10

  

The corresponding isosteric enthalpies of adsorption at zero surface coverage (Qst, 

n=0) values were derived from a graph of A0 versus 1/T. The graph for oxygen 

adsorption is given in Figure 8-14; the graph for nitrogen adsorption is given in 

Figure 8-15.  Both graphs show good linearity.  The Qst, n=0 value can be obtained 

from the gradient of the graph. The Qst, n=0 value for oxygen adsorption was 16.9 ± 

1.7 kJ mol
-1

, the Qst, n=0 value for nitrogen adsorption was 18.8 ± 1.1 kJ mol
-1

.  These 

values are similar and also similar to the values obtained for carbon molecular 

sieves.
9, 10
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8.4.2 Oxygen and Nitrogen Kinetic Analysis Cage 1α# 

The oxygen and nitrogen adsorption kinetics on Cage 1α# were analysed using the 

stretched exponential (SE) model in the following form (equation 8.3).
11

 

  

  
   (          )                           8.3 

Where: 

 Mt = the amount adsorbed (g) at time t (s) 

 Me = the equilibrium uptake (g)  

 k = rate constant (s
-1

) 

 t = time (s) 

 β = the exponential parameter 

 A0 = a parameter used for fitting purposes 

All kinetic profiles of oxygen and nitrogen adsorption analysed by the stretched 

exponential model can be found in CD Appendix C – Kinetic Molecular Sieving of 

Oxygen and Nitrogen by Organic Cage Materials.  Typical oxygen and nitrogen 

profiles for the stretched exponential fit at 283 K for the pressure increment 800 – 

900 mbar are shown in Figure 8-16 and Figure 8-17.  It is apparent from the profiles 

that nitrogen is much more slowly adsorbed than oxygen, with the oxygen adsorption 

reaching equilibrium after ~ 250 seconds and nitrogen adsorption reaching 

equilibrium after ~ 2000 seconds.  All stretched exponential profiles fit the 

experimental data within 4%, showing that the model provides a good description of 

the data.  Analysis of the kinetic data using the stretched exponential model provides 

values for the rate constant and the β parameter.   

The rate constant and β parameters for oxygen adsorption on Cage 1α# are shown in 

Figure 8-18 and Figure 8-19.  From Figure 8-18 it is apparent that the rate constant 

for oxygen adsorption increases with increasing temperature, ranging between 0.015 

s
-1

 and 0.040 s
-1

 for the temperature range 278 – 298 K.  For this temperature range 

the stretched exponential β parameter varies between 0.5 and 1 as shown in Figure 

8-19, with the parameter approaching 1 with increased temperature.  When β =1 this 

indicates a single relaxation time, where the rate determining step of adsorption is 

diffusion through a barrier at the pore entrance.
11  
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The rate constant and β parameters for nitrogen adsorption on Cage 1α# are shown in 

Figure 8-20 and Figure 8-21. Figure 8-20 shows that the rate constant for nitrogen 

adsorption is much slower than that for oxygen adsorption, with the rate constant 

varying between 0.001 s
-1 

and 0.008 s
-1 

increasing for the temperature range 273 – 

298 K.  For this temperature range the stretched exponential β parameter varies 

between 0.5 and 1, as shown in Figure 8-21.  The β parameter at 298 K approaches 

the value of 1, however most values are between 0.6 and 1, averaging around 0.7 – 

0.8 which indicates a distribution of relaxation times, where the rate determining step 

is both diffusion through a barrier at the pore entrance and surface diffusion.
11  

 

The variation of the natural log of the rate constant, ln (k), is shown for oxygen 

adsorption in Figure 8-22 and for nitrogen in Figure 8-23.  It is evident from the 

graphs that there is a linear correlation.  These graphs can be used to calculate the 

activation energy for the diffusion of oxygen and nitrogen into the porous structure 

of Cage 1α#.  Extrapolation of the ln (k) against amount adsorbed graphs to zero 

surface coverage gives the values shown in Table 8-5 for oxygen and Table 8-6 for 

nitrogen adsorption.  The activation energy at zero surface coverage, Ea(n = 0) , can 

then be calculated from graphs of ln (k) at zero surface coverage against reciprocal 

temperature as shown in Figure 8-24 for oxygen adsorption and Figure 8-25 for 

nitrogen adsorption.  The activation energies at zero surface coverage were 30.4 ± 

3.6 kJ mol
-1

 for oxygen and 40.9 ± 3.5 kJ mol
-1

 for nitrogen. As the activation energy 

at zero surface coverage for oxygen and nitrogen adsorption is much greater than the 

isosteric enthalpy of adsorption at zero surface coverage, diffusion through a barrier 

from constrictions at the entrance to the porous structure is the rate determining step 

for the adsorption of these two gases rather than the diffusion of the gas molecules 

across the surface of the porous structure.   

The kinetic profiles for the pressure step 200 – 300 mbar for nitrogen, carbon dioxide 

and oxygen adsorption on Cage 1α# at 273 K is given in Figure 8-26.  This figure 

illustrates the difference in equilibration times for the three gases on Cage 1α#, 

nitrogen has the longest equilibration time, followed by carbon dioxide then oxygen.  

A comparison of the ln (k) against uptake is shown in Figure 8-27 for nitrogen, 

carbon dioxide and oxygen adsorption on Cage 1α#.  This shows that carbon dioxide 
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has an intermediate rate of adsorption between oxygen and nitrogen.  This follows 

the same trend as shown by carbon molecular sieves.
10  

8.4.3 Diffusion Coefficients for Oxygen and Nitrogen Adsorption on Cage 1α#  

The diffusion coefficient can be calculated using Ficks second law, and is shown in 

equation 8.4 to model the amount of diffusing substance entering and leaving a 

spherical particle.
12

   

  

  
   

 

   ∑
 

     (
       

  ) 
                    8.4 

For long time scales equation 8.4 can be solved as follows: 

   
  

  
 

 

  
 [   (

     

  
)]                    8.5 

Where: 

 Mt = uptake (g) at time t (s) 

 Me = uptake at equilibrium (g) 

 D = gas diffusion coefficient (cm
2
 s

-1
) 

 a = radius of particle (cm) 

To illustrate the long term behaviour of diffusion, a plot of ln (1 - Mt/Me) against 

time will give a linear plot of gradient  
    

   .  This equation is valid for long 

timescales where Mt/Me > 60%. This equation has been used to analysis kinetics of 

gas adsorption on carbon molecular sieves.
13

  This equation is valid when the 

kinetics fit the stretched exponential model.  If a linear driving force model is 

followed, adjustment of the equation allows the conversion of the linear driving force 

rate constant k to the diffusion coefficient D,
14

 as shown in equation 8.6: 

   
  

  
 

 

   [   (
     

  )]                    8.6 

Cage 1α# crystals are needle-like crystals, and as such an approximation of spherical 

radius is given.  The crystals are of varying length but have approximately the same 

radius, which for these diffusion coefficient calculations is approximated as 10µm, 

based on SEM (Figure 8-2). 
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Selected plots of ln (1 - Mt/Me) against time for oxygen and nitrogen adsorption on 

Cage 1α# are given in CD Appendix C – Kinetic Molecular Sieving of Oxygen 

and Nitrogen by Organic Cage Materials.  The range of diffusion coefficients is 

calculated as 7.18 x 10
-11

 – 3.58 x 10
-10

 cm
2
s

-1
 for nitrogen adsorption and 6.47 x 10

-

10
 – 3.14 x 10

-9
 cm

2
s

-1
 for oxygen adsorption on Cage 1α#. 

8.5 Comparison of O2/N2 Adsorption Kinetics on Cage 1α# and Cage 1β 

The oxygen and nitrogen adsorption isotherms at 298 K for both Cage 1α# and Cage 

1β are shown in Figure 8-28.  Both cages show similar uptakes for these gases.  All 

kinetic profiles can be found in CD Appendix C – Kinetic Molecular Sieving of 

Oxygen and Nitrogen by Organic Cage Materials.  A comparison of the rate 

constant and SE β parameter for Cage 1α# and Cage 1β oxygen and nitrogen 

adsorption at 298 K are given in Figure 8-29 and Figure 8-30 respectively.  The rate 

constants for oxygen and nitrogen adsorption on Cage 1β are very similar, and are 

similar to that of the rate constant for oxygen adsorption on Cage 1α#, while the rate 

constants for nitrogen adsorption on Cage 1α# are considerably smaller. Both cages 

display similar SE β parameters of approximately 1, indicating a single relaxation 

time, where the rate determining step is diffusion through a barrier due to a 

constriction in the pore structure. The variation of ln (rate constant) with gas uptake 

graph is shown in Figure 8-31.  It is apparent from this graph that there is a 

significant difference in the rate of adsorption of oxygen and nitrogen on Cage 1α#, 

whereas the rates of adsorption for Cage 1β are similar and do not vary greatly with 

amount adsorbed.  This indicates that the kinetic molecular sieving properties of the 

Cages is limited to Cage 1α#, and is not present in Cage 1β.   

8.6 Cage 1α Oxygen and Nitrogen Adsorption 

Cage 1α#, formed in situ under vacuum from exposure of Cage 1β to ethyl acetate, 

has been shown to kinetically molecular sieve oxygen and nitrogen.  The kinetic 

molecular sieving properties of Cage 1α, formed through the condensation reaction 

of 1,3,5triformylbenzene with 1,2-ethylenediamine, and crystallised from ethyl 

acetate were also investigated.
15
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8.6.1 Oxygen and Nitrogen Isotherm Analysis Cage 1α 

The oxygen and nitrogen adsorption isotherms for Cage 1α are shown in Figure 8-32 

and Figure 8-33, respectively.  The isotherms for both oxygen and nitrogen 

adsorption are consistent with Type I in the IUPAC classification scheme.
7 

The 

isotherms for Cage 1α show an uptake at the maximum pressure reached of 1000 

mbar of 0.25 mmol g
-1

 for oxygen at 273 K and values from 0.15 – 0.30 mmol g
-1

 for 

nitrogen for the temperature range 293 – 273 K.  The nitrogen adsorption isotherms 

show a decrease in uptake with increasing temperature as expected for physisorption 

systems.  The isotherms were again analysed by the virial equation given in equation 

9.2.  The virial graph for oxygen adsorption is shown in Figure 8-34, the virial 

graphs for nitrogen adsorption for the temperature range 273 – 293 K are given in 

Figure 8-35.  The graphs all show good linearity.  The A1 value for oxygen 

adsorption at 273 K is -1788.1 ± 5.6 g mol
-1

 and the A0 value is -19.299 ± 0.0012 ln 

(mol g
-1

 Pa
-1

).  The A1 and A0 values for nitrogen adsorption on Cage 1α are given in 

Table 8-7. These values cover the range -19.170 ± 0.0055 to -19.771 ± 0.0072 ln 

(mol g
-1

 Pa
-1

) for Ao and -1433.7 ± 9.8 to -1792.8 ± 50.3 g mol
-1

 for A1.  The A0 

values are slightly larger than that obtained for carbon molecular sieves for the 

temperature range 303 – 343 K.
9,10

  

The isosteric enthalpy of adsorption at zero surface coverage, Qst, n=0 for nitrogen 

adsorption can again be obtained from a graph of A0 against reciprocal temperature.  

The graph for nitrogen adsorption is shown in Figure 8-36, showing good linearity. 

The Qst, n=0 value for nitrogen adsorption on Cage 1α was 20.2 ± 0.3 kJ mol
-1

.  

8.6.2 Oxygen and Nitrogen Kinetic Analysis Cage 1α 

The oxygen and nitrogen adsorption kinetics for adsorption on Cage 1α were again 

analysed using the stretched exponential equation, equation 8.3.  All kinetic profiles 

can be found in CD Appendix C – Kinetic Molecular Sieving of Oxygen and 

Nitrogen by Organic Cage Materials.   

Typical oxygen and nitrogen profiles for the stretched exponential fit at 273 K for the 

pressure increment 600 -700 mbar are shown in Figure 8-37 and Figure 8-38, 

respectively.  The stretched exponential profiles fit the data within 4%, showing that 

the model is again a good description of the data.   
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The rate constants and the stretched exponential β parameters for oxygen adsorption 

at 273 K are shown in Figure 8-39 and Figure 8-40. The rate constant increases with 

pressure from 0.020 ± 3.4 x 10
-4 

to 0.022 ± 0.0015 s
-1

.  The stretched exponential β 

parameter remains at approximately 1 throughout the isotherm.   

The rate constants and the stretched exponential β parameters for nitrogen adsorption 

on Cage 1α for the temperature range 273 – 293 K are shown in Figure 8-41 and 

Figure 8-42.  Figure 8-41 shows that the rate constant for nitrogen adsorption varies 

between 0.00124 ± 2 x 10
-5 

and 0.00497 ± 9 x 10
-5 

s
-1 

for the temperature range 273 – 

293 K.  For this temperature range the stretched exponential β parameter varies 

between 0.6 and 0.8 indicating a distribution of relaxation times.   

The variation of the natural log of the rate constant, ln (k) with uptake is shown in 

Figure 8-44 for nitrogen for the temperature range 273 – 293 K and in Figure 8-43 

for oxygen uptake at 273 K.  The graphs show a linear correlation and the nitrogen 

data can be used to calculate the activation energy for the diffusion of nitrogen into 

the porous structure of Cage 1α.  Extrapolation of the ln (k) against amount of 

nitrogen adsorbed graphs to zero surface coverage gives the values shown in Table 

8-8.  A graph of ln (k) at zero surface coverage against reciprocal temperature allows 

the calculation of activation energy at zero surface coverage; the graph is shown in 

Figure 8-45 and the value of Ea(n = 0) = 32.4 ± 3.6 kJ mol
-1

 for nitrogen adsorption.  

The activation energy at zero surface coverage is larger than the isosteric enthalpy of 

adsorption at zero surface coverage, showing that diffusion through a barrier from 

constrictions in the porosity is most likely the rate determining step for nitrogen 

adsorption into Cage 1α.   

8.6.3 Diffusion Coefficients for Oxygen and Nitrogen Adsorption on Cage 1α  

The diffusion coefficients for the adsorption of oxygen and nitrogen on Cage 1α can 

also be estimated using equation 8.6.   The radius of the Cage 1α needles is estimated 

to be on average 15µm based on SEM (see Figure 8-1).   

Selected plots of ln (1 - Mt/Me) against time for oxygen and nitrogen adsorption on 

Cage 1α# are given in CD Appendix C – Kinetic Molecular Sieving of Oxygen 

and Nitrogen by Organic Cage Materials.  The range of diffusion coefficients is 

calculated as 1.65 x 10
-10

 – 2.14 x 10
-10

 cm
2
s

-1
 for nitrogen adsorption for the 



Chapter 8 Kinetic Molecular Sieving of Oxygen and Nitrogen by Organic Cage 

Materials Cage 1α and Cage 1α# 

243 

 

temperature range 273 – 293 K and 1.79 x 10
-9

 – 7.70 x 10
-10

 cm
2
s

-1
 for oxygen 

adsorption at 273 K on Cage 1α. 

The diffusion coefficients for nitrogen and oxygen adsorption in Cage 1α and Cage 

1α# are of similar order of magnitude.  There is a degree of uncertainty in the 

calculations due to the needle shape of the crystals and the variation of the radii of 

the crystals. However, the values do fit within an accepted range of diffusion 

coefficients.   

8.7 Comparison of the Kinetic Molecular Sieving Properties of Cage 1α#
 
and Cage 

1α 

The oxygen and nitrogen uptakes for Cage 1α#
 
are similar at maximum uptakes of 

0.35 mmol g
-1

, and are also similar to the uptakes for nitrogen on Cage 1α at a 

maximum pressure of 1000 mbar.  A comparison of the virial parameters A0 and A1 

for nitrogen adsorption on Cage 1α#
 
and Cage 1α are shown in Figure 8-46. The 

graph shows that the A0 parameters for both cages are similar.  When comparing A1 

values, both oxygen and nitrogen for Cage 1α#
 
are similar, covering the range -440.1 

± 21.0 to -1102.2 ± 47.1 g mol
-1

.  The values for Cage 1α are however larger, with 

nitrogen adsorption covering the range -1433.7 ± 9.8 to -1792.8 ± 50.3 g mol
-1 

and 

oxygen adsorption at 273 K at -1788.1 ± 5.6 g mol
-1

.  These values also sit outside 

the range obtained for carbon molecular sieves of -684 to -1077 g mol
-1

 over the 

temperature range 303 - 343 K.
9, 10

 The more negative the value of A1, the stronger 

the interaction between the adsorbate and other adsorbate molecules.  The more 

negative A1 values for oxygen and nitrogen adsorption on Cage 1α suggest a stronger 

interaction within the pores of Cage 1α than within in the pores of Cage 1α#, 

indicating a constriction in the size of the pores in Cage 1α compared to Cage 1α#. 

For Cage 1α#
 
nitrogen adsorption is much slower than oxygen adsorption, with 

nitrogen adsorption rate constants varying between 0.001 s
-1 

and 0.008 s
-1 

increasing 

for the temperature range 273 – 298 K, whereas for oxygen adsorption the rate 

constant ranges between 0.015 s
-1

 and 0.040 s
-1

, approximately 10 times faster than 

nitrogen adsorption.  The rate of nitrogen adsorption into Cage 1α varies between 

0.00124 ± 2 x 10
-5 

and 0.00497 ± 9 x 10
-5 

s
-1

, and oxygen adsorption at 273 K is 

approximately 0.0216 ± 0.0015 s
-1

.  This shows that nitrogen adsorption into the two 

cages occurs at a similar rate, both much slower than oxygen adsorption.  Oxygen 
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adsorption into Cage 1α at 273 K is slightly faster than oxygen adsorption on Cage 

1α# at 273 K.  A comparison of ln (k) against reciprocal temperature for nitrogen and 

oxygen adsorption on Cage 1α#
 
and nitrogen adsorption on Cage 1α is shown in 

Figure 8-47, where it is apparent that the ln (k) values for nitrogen on the two 

different cages are similar, as are the oxygen ln (k) values.   

A comparison of the isosteric enthalpy of adsorption at zero surface coverage and 

activation energy at zero surface coverage values are given in Table 8-9.   For both 

materials the activation energy at zero surface coverage for nitrogen were higher than 

the isosteric enthalpy of adsorption at zero surface coverage, indicating that the rate 

determining step is diffusion through a barrier due to constrictions at the entrance to 

the porosity.
16

   

The kinetic selectivity values are shown in a graph of kinetic selectivity against 

pressure in Figure 8-48.  From this graph it is apparent that the selectivity values for 

Cage 1α# are slightly lower than that for Cage 1α. There is no trend in selectivity 

with temperature for Cage 1α#, with selectivity values ranging between 5.0 and 8.5 

for the temperature range 278 – 298 K.  The selectivity for Cage 1α at 273 K is 

slightly higher, ranging from 8.75 to 11.75 across the pressure range.   

8.8 Conclusions 

The conversion between the polymorphs of cage 1α and β is shown in Figure 8-49.  

Cage 1β exists in a helical channel structure.  Upon desolvation of the 

dichloromethane solvent, a structure is formed consisting of disconnected cage voids, 

Cage 1β`. Figure 8-49 shows that Cage 1β` has available pore space in the channels 

between the cages as well as within the cages themselves. Exposure of the structure 

to ethyl acetate results in the formation of Cage 1α.  This causes the disconnected 

cages to stack in parallel layers.  Upon desolvation of the ethyl acetate, these layers 

move closer together, showing a reduction of 12% in the PLATON pore volume, 

through the loss of pore space in the channels between the cages.
17

  

Cage 1α# was successfully synthesised under vacuum through the low-pressure 

adsorption of ethyl acetate vapour.  The structural characteristics of Cage 1α# were 

compared to those of Cage 1β and Cage 1α, and it was found that Cage 1α# has 

similar properties to Cage 1α, and contains a smaller pore volume and micropore 
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volume than Cage 1β, consistent with the crystallographic data and PLATON pore 

volume reduction. Cage 1α and Cage 1α# show stronger adsorbate – adsorbate 

interactions through virial analysis of carbon dioxide adsorption at 273 K.  This 

indicates a narrowing of the pores in Cage 1α and Cage 1α# compared to Cage 1β.   

The kinetic molecular sieving properties of Cage 1α#, Cage 1α and Cage 1β were 

investigated by analysis of adsorption of oxygen and nitrogen.  The smaller porosity 

found in Cage 1α and Cage1α# allows the effective separation of oxygen and 

nitrogen due to the differences in molecular diameter. This is not seen in Cage 1β. 

Kinetic molecular sieving is introduced when Cage 1β undergoes structural 

transformation to Cage 1α or Cage 1α#.  For both Cage 1α and Cage 1α# the 

activation energy at zero surface coverage for nitrogen were higher than the isosteric 

enthalpy of adsorption at zero surface coverage, indicating that the rate determining 

step is diffusion through a barrier due to constrictions at the entrance to the porosity. 

The structure of Cage 1β has wider pore constrictions than Cage 1α, with very 

narrow constrictions in the porosity introduced upon rearrangement of Cage 1 to 

Cage 1α.  Kinetic molecular sieving occurs when the molecule cross-section is 

similar in size to the pore constriction resulting in an activated diffusion process 

taking place. Cage 1α# has similar virial parameters to that of carbon molecular 

sieves; whereas Cage 1α shows slightly higher values indicating that a stronger 

interaction between adsorbate molecules is induced within the pores of Cage 1α.  

Both cages have very similar kinetic properties, with oxygen adsorption occurring at 

10 times faster rate than nitrogen.  Cage 1α has a higher selectivity than Cage 1α#, 

due to constrictions in the porosity being greater for Cage 1α than Cage 1α#.  

Selectivity values for oxygen and nitrogen separation on carbon molecular sieves 

have been previously shown to be in the region of 5 - 25 depending on the type of 

deposition present in the material.
3 

 The selectivity values for Cage 1α# and Cage 1α 

are of similar values as carbon molecular sieves. The difference in the selectivity and 

the A1 parameters between Cage 1α and Cage 1α# could be attributed to the 

differences in preparation of the two materials.  Cage 1α is crystallised from ethyl 

acetate and therefore forms an initially more stable structure.  It is not the product of 

a transformation and therefore is a more pure sample.  As Cage 1α# is formed from 

the exposure of Cage 1β to ethyl acetate, there is the possibility of a mixed phase 
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present, where complete conversion to Cage 1α# does not occur.  Cage 1α# remains 

a stable structure under vacuum, with very repeatable adsorption characteristics.  

Cage 1α reacts with water vapour in the atmosphere.  As this does not occur for Cage 

1α#, as it is made under vacuum and remains sealed from the atmosphere throughout 

the adsorption work, Cage 1α# provides more repeatable and reliable adsorption 

data.  The PXRD data for Cage 1α# before and after nitrogen and oxygen separation 

studies are shown in Figure 8-50, showing that the structure of Cage 1α# before and 

after adsorption is similar, and that the separation of oxygen and nitrogen causes no 

structural transition in Cage 1α#, and that the long range crystallographic order 

remains intact. 

The data shows that the two cages, Cage 1α and Cage 1α#, although prepared 

differently, both show the potential to separate oxygen and nitrogen on a scale which 

is similar to carbon molecular sieves.  As far as is currently known, this is the first 

example of a porous cage material to kinetically separate oxygen and nitrogen.    
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8.9 Figures 

a) 

 

b) 

 

c) 

 

Figure 8-1: Scanning electron micrographs at 150 x magnification a) Cage 1α# b) 

Cage 1β c) Cage 1α 
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a) 

 

b) 

 

Figure 8-2: Scanning electron micrograph (SEM) image of a)  Cage 1α# at 1000 x 

magnification b) Cage 1β crystals at 1500x magnification 
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Figure 8-3: PXRD comparison of Cage 1α and Cage1α# 
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a) 

 

 

b) 

 

c) 

 

Figure 8-4: FTIR spectra of a) Cage 1α b) Cage 1α# c) Cage 1β 
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Figure 8-5: Carbon dioxide adsorption on Cage 1α, Cage 1α# and Cage 1β at 195 K 
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Figure 8-6: Langmuir analysis of carbon dioxide adsorption on Cage 1α, Cage 1α# 

and Cage 1β at 195 K 
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Figure 8-7: Carbon dioxide adsorption on Cage 1α, Cage 1α# and Cage 1β at 273 K 
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Figure 8-8: Virial analysis of carbon dioxide adsorption on Cage 1α, Cage 1α# and 

Cage 1β at 273 K 
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Figure 8-9: DR analysis of carbon dioxide adsorption on Cage 1α, Cage 1α# and 

Cage 1β at 273 K 
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Figure 8-10:  Oxygen adsorption isotherms for Cage 1α# for temperature range 273 

– 298 K 
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Figure 8-11: Nitrogen adsorption isotherms for Cage 1α# for temperature range 273 

– 293 K 
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Figure 8-12: Virial graphs for oxygen adsorption on Cage 1α# for temperature range 

273 – 298 K 
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Figure 8-13: Virial graphs for nitrogen adsorption on Cage 1α# for temperature 

range 273 – 293 K 

 

Table 8-3: Virial constants for the adsorption of oxygen on Cage 1α# for 

temperature range 273 – 298 K 

Temperature / K A0 / ln (mol g
-1

 Pa
-1

) A1 / g mol 
-1

 

273 -19.253 ± 0.009 -746.2 ± 36.3 

278 -19.525 ± 0.004 -440.1 ± 21.0 

283 -19.597 ± 0.004 -648.2 ± 24.8 

288 -19.731 ± 0.006 -728.1 ± 39.6 

293 -19.819 ± 0.002 -848.5 ± 16.0 

298 -19.918 ± 0.002 -954.3 ± 15.9 
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Table 8-4: Virial constants for the adsorption of nitrogen on Cage 1α# for 

temperature range 273 – 293K 

Temperature / K A0 / ln (mol g
-1

 Pa
-1

) A1 / g mol 
-1

 

273   -19.174 ± 0.0051 -957.7 ± 14.5 

278 -19.383 ± 0.0046 -825.6 ± 22.6 

283 -19.480 ± 0.0033 -856.1 ± 17.4 

288 -19.627 ± 0.0037 -835.9 ± 22.3 

293 -19.760 ± 0.0021 -886.1 ± 21.6 
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Figure 8-14: Graph of A0 versus 1/T for oxygen adsorption on Cage 1α# for 

temperature range 273 – 298 K 
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Figure 8-15: Graph of A0 versus 1/T for nitrogen adsorption on Cage 1α# for 

temperature range 273 – 293 K 
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Figure 8-16: Oxygen adsorption on Cage 1α# at 283 K 800 - 900 mbar step SE 

analysis 
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Figure 8-17: Nitrogen adsorption on Cage 1α# at 283 K 800 - 900 mbar step SE 

analysis 
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Figure 8-18: Graph of rate constant, k, versus pressure for oxygen adsorption on 

Cage 1α# for temperature range 278 – 298 K 



Chapter 8 Kinetic Molecular Sieving of Oxygen and Nitrogen by Organic Cage 

Materials Cage 1α and Cage 1α# 

259 

 

400 500 600 700 800 900 1000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

S
E

 
 P

a
ra

m
e

te
r

Pressure / mbar 

 278 K

 283 K

 288 K

 293 K

 298 K

 

Figure 8-19: Graph of SE parameter, β, versus pressure for oxygen adsorption on 

Cage 1α# for temperature range 278 – 298 K 
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Figure 8-20: Graph of rate constant, k, versus pressure for nitrogen adsorption on 

Cage1α#
 
for temperature range 273 – 298 K 
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Figure 8-21: Graph of SE parameter, β, versus pressure for nitrogen adsorption on 

Cage 1α#
 
for temperature range 273 – 298 K 
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Figure 8-22: Graphs of ln k versus oxygen uptake / mol g
-1

 for oxygen adsorption on 

Cage 1α# for temperature range 278 – 298 K 
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Table 8-5: ln k / ln (s
-1

) values at zero surface coverage for oxygen adsorption on 

Cage 1α# for temperature range 278 – 298 K 

Temperature / K ln k / ln (s
-1

) 

278 -4.450 ± 0.038 

283 -4.032 ± 0.047 

288 -3.874 ± 0.049 

293 -3.682 ± 0.080 

298 -3.525 ± 0.038 
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Figure 8-23: Graphs of ln k versus nitrogen uptake / mol g
-1

 for nitrogen adsorption 

on Cage 1α#
 
for temperature range 273 – 298 K 
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Table 8-6: ln k/ ln (s
-1

) values at zero surface coverage for nitrogen adsorption on 

Cage 1α# for temperature range 273 – 298 K 

Temperature / K ln k / ln (s
-1

) 

273   -7.221 ± 0.101 

278 -6.707 ± 0.078 

283 -6.465 ± 0.054 

293 -6.018 ± 0.038 

298 -5.574 ± 0.072 
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Figure 8-24: ln k versus 1/T for oxygen adsorption on Cage 1α# for temperature 

range 273 – 298 K 
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Figure 8-25: ln k versus 1/T for nitrogen adsorption on Cage 1α# for temperature 

range 273 – 298 K 
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Figure 8-26: Comparison of the kinetic profiles for the pressure step 200 – 300 mbar 

for nitrogen, carbon dioxide and oxygen adsorption on Cage 1α# at 273 K 
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Figure 8-27: Comparison of ln k against amount adsorbed for nitrogen, carbon 

dioxide and oxygen adsorption on Cage 1α# at 273 K 
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Figure 8-28: Oxygen and nitrogen adsorption by Cage 1α# and Cage 1β at 298 K 
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Figure 8-29: Graph of rate constant, k, versus pressure for oxygen and nitrogen 

adsorption by Cage 1α# and Cage 1β at 298 K 
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Figure 8-30: Graph of SE β parameter versus pressure for oxygen and nitrogen 

adsorption by Cage 1α# and Cage 1β at 298 K 
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Figure 8-31: Graph of ln (k) versus gas uptake for oxygen and nitrogen adsorption 

by Cage 1α# and Cage 1β at 298 K 
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Figure 8-32: Oxygen adsorption isotherms for Cage 1α at 273 K 
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Figure 8-33: Nitrogen adsorption isotherms for Cage 1α for temperature range 273 – 

293 K 
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Figure 8-34: Virial graph for oxygen adsorption on Cage 1α at 273 K 
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Figure 8-35: Virial graphs for nitrogen adsorption on Cage 1α for temperature range 

273 – 293 K 

Table 8-7: Virial constants for the adsorption of nitrogen on Cage 1α for temperature 

range 273 – 293 K 

Temperature / K A0 / ln (mol g
-1

 Pa
-1

) A1 / g mol 
-1

 

273 -19.170 ± 0.0055 -1480.9 ± 22.3 

278 -19.322 ± 0.0042  -1598.19 ± 19.5 

283 -19.489 ± 0.010 -1570.3 ± 54.5 

288 -19.639 ± 0.0015 -1433.7 ± 9.8 

293 -19.771 ± 0.0072 -1792.8 ± 50.3 
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Figure 8-36: Graph of A0 versus 1/T for nitrogen adsorption on Cage 1α for 

temperature range 273 – 298 K 
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Figure 8-37: Oxygen adsorption on Cage 1α at 273 K 600 – 700 mbar step SE 

analysis 
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Figure 8-38: Nitrogen adsorption on Cage 1α at 273 K 600 - 700 mbar step SE 

analysis 
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Figure 8-39: Graph of rate constant, k, versus pressure for oxygen adsorption on 

Cage 1α at 273 K 
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Figure 8-40: Graph of SE parameter, β, versus pressure for oxygen adsorption on 

Cage 1α at 273 K 
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Figure 8-41: Graph of rate constant, k, versus pressure for nitrogen adsorption on 

Cage 1α for the temperature range 273 – 293 K 
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Figure 8-42: Graph of SE parameter, β, versus pressure for nitrogen adsorption on 

Cage 1α for the temperature range 273 – 293 K 
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Figure 8-43: Graph of ln k versus oxygen uptake / mol g
-1

 for oxygen adsorption on 

Cage 1α at 273 K 
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Figure 8-44: Graphs of ln k versus nitrogen uptake / mol g
-1

 for nitrogen adsorption 

on Cage 1α for temperature range 273 – 293 K 
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Table 8-8: ln k / ln (s
-1

) values at zero surface coverage for nitrogen adsorption on 

Cage 1α for temperature range 273 – 293 K 

Temperature / K ln k / ln (s
-1

) 

273 -7.034 ± 0.077 

278 -6.698 ± 0.11 

283 -6.350 ± 0.021 

288 -6.222 ± 0.088 

293 -6.058 ± 0.061 
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Figure 8-45: ln k versus 1/T for nitrogen adsorption on Cage 1α for temperature 

range 273 – 293 K 
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Figure 8-46: Comparison of virial parameter A0 for nitrogen adsorption on Cage 1α#
 

and Cage 1α for the temperature range 273 – 293 K 
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Figure 8-47: Variation of ln (k) with reciprocal temperature for oxygen and nitrogen 

adsorption on Cage 1α#
 
and Cage 1α for the temperature range 273 – 298 K  
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Table 8-9: Comparison of Qst and Ea values for Cage 1α and Cage 1α# for oxygen 

and nitrogen adsorption 

 Cage 1α Cage 1α# 

 Oxygen Nitrogen Oxygen  Nitrogen  

Qst / kJ mol
-1 - 20.2 ± 0.3 16.9 ± 1.7 18.8 ± 1.1 

Ea / kJ mol 
-1 - 32.4 ± 3.6 30.4 ± 3.6 40.9 ± 3.5 
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Figure 8-48: Comparison of the kO2/kN2 kinetic selectivity of Cage 1α# for the 

temperature range 278 – 298 K and Cage 1α at 273 K 
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Figure 8-49: Conversion between various polymorphs (1α and1β) accessible to the 

cage one structure, where 1α` and 1β` indicate desolvated structures
17
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Figure 8-50: PXRD data for Cage 1α# before and after N2/O2 separation studies  
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Chapter 9 Overall Conclusions 

Over the past decade there has been a rapid increase in the development of novel 

nanoporous materials, and extensive investigations into the applicability of these 

materials for gas storage, separation and purification process.  Materials such as 

activated carbon
1
, carbon molecular sieves and zeolites

2
 have predominantly been 

used for industrial applications such as gas separation, catalysis and removal of trace 

impurities.   While these are traditional materials that have a successful history for 

such applications, there is always a drive for new materials to improve the efficiency 

of these processes and for potential new applications, for example, hydrogen storage, 

drug delivery and sensor technology.  Any material which is developed has to 

compete with existing adsorbents such zeolites and activated carbons in industrial 

process. New materials must have 1) high adsorption capacity, 2) suitable kinetics, 

3) stability over multiple cycles of use and 4) be economic and cost effective.
3
   

Porous coordination polymers and porous organic cage molecules are at the forefront 

of current research into new materials for adsorption processes.  Metal organic 

frameworks have been discussed in the literature for applications in gas storage, 

separation and purification, clean energy applications, and catalysis.
4
  The surface 

chemistry of metal organic frameworks can be tailored through the introduction of 

functional groups, creating the ability to control the size of the pores and the specific 

interaction with target molecules, often through simple one-step synthesis reactions.  

Metal organic frameworks were initially synthesised in rigid frameworks, analogous 

to that of zeolites.  Recently, the effects of introducing flexibility through pore 

reformation, shrinkage and breathing of pores and crystal to crystal structural change 

have been investigated.
5
   

One such flexible metal organic framework was investigated in this thesis.  A 2D 

framework showed conversion to a 3D framework induced by a coordination change 

upon desolvation facilitated by the flexibility of carboxylate groups.  The 3D 

framework of Zn(TBAPy) was tailored for the adsorption of xylene molecules 

through the inclusion of the pyrene polyaromatic core, designed to enhance 

interactions with aromatic species.  This metal organic framework was used to 

investigate the challenging separation of the p-xylene and m-xylene isomers, an 

important industrial separation currently achieved using simulated moving bed 
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technology based on a p-xylene shape selective zeolite adsorbent.  The framework 

showed a structural change on the adsorption of m-xylene, leading to slower rate of 

adsorption of this isomer over the p-xylene at higher pressures.
6
  The investigations 

into the metal organic framework highlighted a particular problem associated with 

this type of porous material, and that is the inherent instability of these materials.  

The Zn (TBAPy)', the desolvated 3D network, was especially susceptible to 

structural degradation upon exposure to atmospheric water vapour.  Although 

relatively stable metal organic frameworks have been published in the literature, 

such as HKUST and the IR MOF series, the stability of these materials still poses a 

major issue in the use of these materials in industrial applications.   

Zhang
7
, Mastalerz

8
 and Cooper

9
 have been leading research into the development of 

porous organic cages, which contain inherent flexibility through weak interactions 

between the cages, allowing potential flexibility though reorientation of discrete cage 

units within the crystal lattice. The polymorphism of Cage 1 can be demonstrated 

through structural rearrangement on the exposure of the cage to various organic 

vapours/solvents, showing inter conversion between two stable structures, Cage 1α 

and Cage 1β.  The conversion of Cage 1β to Cage 1α# displays an unprecedented 

shape of adsorption isotherm, which included desorption of adsorbed vapour with 

increasing pressure during the adsorption isotherms.  The unprecedented isotherm 

shape and the structural transformation have been shown for a selection of 

gases/vapours, including ethyl acetate, methyl acetate, 2-butanone and diethyl ether, 

but not methanol and pentane.  This shows a response to selected solvent vapour 

molecules.  Methyl acetate adsorption on Cage 1β allowed the characterisation of the 

kinetics and thermodynamics of the structural change from Cage 1β to Cage 1α#.  

The adsorption of methyl acetate on Cage 1β was also compared with the adsorption 

of methyl acetate on Cage 1α# in order to establish the thermodynamic effects on the 

conversion of Cage 1β to Cage 1α#. Comparison of the isosteric enthalpy and 

entropy of adsorption before transformation on Cage 1β and after transformation on 

Cage 1α# show that the structural change, which occurs during desorption of methyl 

acetate, is driven by the enthalpy of adsorption. The desorption kinetics for the 

structural change show that it is an activated process. The product, Cage 1α#, has 

narrower pores, and hence an increased interaction between the adsorbate and 

adsorbent, leading to a larger isosteric enthalpy of adsorption. This structural change 
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also results in more negative entropy of adsorption, showing ordering of the system 

as methyl acetate is removed and the crystalline to crystalline transformation occurs.  

The reverse transformation from Cage 1α to Cage 1β# has been shown to be induced 

through exposure to dichloromethane.  The transformations lead to the formation of 

stable polymorphs, which can interconvert without the loss of long range 

crystallographic order.   

Cage 1α has voids between the cages, which are connected by very narrow 

constrictions that allow the kinetic molecular sieving of oxygen, carbon dioxide and 

nitrogen, a property which is not present in the polymorph Cage 1β.  It was found 

that oxygen adsorbs approximately ten times faster than nitrogen on Cage 1α#, with 

selectivity and rate constants similar to those observed for carbon molecular sieves.  

This material was found to be extremely stable, and repeatable isotherms of carbon 

dioxide, oxygen and nitrogen adsorption were collected after over 30 cycles of 

adsorption, heating to 120°C and desorption, with isotherms collected over a 

pressure range of 0 - 1000 mbar.   

This thesis has investigated the adsorption characteristics and properties of two 

different types of porous materials.   Metal organic frameworks are often unstable 

and this leads to limitations in their use.  They have the potential for many industrial 

applications, but as yet have not been able to compete with the more traditional 

adsorbents such as zeolites and carbon molecular sieves.  The more recent 

developments into porous organic cages show considerable potential for these 

materials. The study of vapour adsorption on Cage 1 polymorphs has shown the 

ability to introduce structural responses to selected molecules, which can be 

measured and quantified.  The stability and narrow pores in Cage 1αgives this cage 

the ability to separate oxygen and nitrogen by kinetic molecular sieving with 

characteristics that are similar to commercially available carbon molecular sieves.  
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Chapter 10 Further Work 

The remaining work to be completed is mainly focused on the investigations into the 

adsorption induced structural rearrangement of the different polymorphs of Cage 1.  

The structural change from Cage 1β to Cage 1α induced by exposure to the methyl 

acetate has been fully assessed both thermodynamically and kinetically, with 

isosteric enthalpies of adsorption and the activation energy of adsorption calculated, 

as well as the activation energy for the desorption of vapour.  The kinetics of 

desorption of methyl acetate were found to follow the Avrami model of 

crystallisation kinetics. The adsorption of dichloromethane results in the reverse 

structural transition from Cage 1α to Cage 1. The key question that needs to be 

answered is – What are the solvent-cage interactions, which trigger the 

transformation of Cage 1β to Cage 1α and vice versa? 

The structural change of Cage 1β to Cage 1α could be monitored using powder X-

ray diffraction data.  This would give information on the structural changes produced 

during the adsorption process, in particular around the first step at ~ 1:1 solvent: 

cage stoichiometry and the structural change around 2.5:1 solvent: cage 

stoichiometry.  

The extension of the current probe molecule adsorption study on Cage 1β, to include 

determination of enthalpies of adsorption and activation energy for 2-butanone and 

diethyl ether adsorption would lead to more detailed understanding of the factors 

which influence structural change. 

The initial investigations into the reverse transformation of Cage 1α to Cage 1β 

through exposure to dichloromethane showed very interesting adsorption kinetics, 

which changed from a stretched-exponential model to an Avrami model at high 

pressure.  This suggests that dichloromethane also induces a crystallisation effect 

whilst undergoing structural transformation. This cycle of transformations for Cage 

1α and Cage 1β requires further investigation, with measurement of dichloromethane 

adsorption isotherms for a range of temperatures to give thermodynamic and kinetic 

parameters to answer the following specific questions: 

 What is the isosteric enthalpy and activation energy of dichloromethane 

adsorption on Cage 1α? 
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 Is dichloromethane adsorption induced rearrangement an activated process? 

 Is a higher enthalpy required to transform Cage 1β to Cage 1α through 

dichloromethane adsorption than the reverse transformation with methyl 

acetate adsorption? 

 The structural changes induced by dichloromethane adsorption could also be 

monitored using powder X-ray diffraction studies. 

 How many cycles of transformations can be achieved before degradation of 

the sample? 
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