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Abstract 

The research community has produced a great deal of work in recent years in the areas of IP, layer 

2 and connection-chain traceback. We collectively designate these as message traceback systems 

which, invariably aim to locate the origin of network data, in spite of any alterations effected to that 

data (whether legitimately or fraudulently). This thesis provides a unifying definition of spoofing 

and a classification based on this which aims to encompass all streams of message traceback research. 

The feasibility of this classification is established through its application to our literature review of 

the numerous known message traceback systems. We propose two layer 2 (L2) traceback systems, 

switch-SPIE and COTraSE, which adopt different approaches to logging based L2 traceback for 

switched ethernet. 

Whilst message traceback in spite of spoofing is interesting and perhaps more challenging than at 

first seems, one might say that it is rather academic. Logging of network data is a controversial and 

unpopular notion and network administrators don't want the added installation and maintenance 

costs. However, European Parliament Directive 2006/24/EC requires that providers of publicly 

available electronic communications networks retain data in a form similar to mobile telephony call 

records, from April 2009 and for periods of up to 2 years. This thesis identifies the relevance of work 

in all areas of message traceback to the European data retention legislation. In the final part of this 

thesis we apply our experiences with L2 traceback, together with our definitions and classification 

of spoofing to discuss the issues that EU data retention implementations should consider. It is 

possible to 'do logging right' and even safeguard user privacy. However this can only occur if we 

fully understand the technical challenges, requiring much further work in all areas of logging based, 

message traceback systems. We have no choice but to dance with the devil. 
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Glossary 

• Access port 

In COTraSE and switch-SPIE this is a switchport to which a network host is attached see Link 

port 

• Connection Chain Traceback 

Determining the instigating origin host when packets are sent via a chain of connections 

through compromised hosts see Spoofing, Post send spoofing 

• Effective origin 

The last network host to make alterations to received network data see Instigating origin 

• External link port 

In COTraSE this is a link port that does not connect a switch to a given logging node see Link 

port, Internal link port 

• Instigating origin 

The network host that instigated the transmission of received network data see Effective origin, 

Spoofing 

• Internal link port 

In COTraSE this is a link port that connects a switch to a given logging node, see External 

link port, Access port 

• IP Traceback 

Determining the first hop router of the instigating origin host via mechanisms deployed at IP 

routers, in spite of sender spoofing, see Spoofing, Sender spoofing 

• L2 Traceback 

Determining the instigating origin with the Layer 2 network of that host (e.g. switched eth

ernet, IEEE 802.11 wifi), in spite of any spoofing whether sender or post send see Spoofing, 

Sender spoofing, Post send spoofing 
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• Link port 

In COTraSE and switch-SPIE this is a switchport attached to another switch or router, see 

Access port, Internal link port, External link port 

• MAC-table 

The MAC address table maintained by all ethernet switches; a given :\lAC address is reachable 

over the switchport from which frames carrying that address as source were most recently seen, 

see Switchport 

• Post send spoofing 

Spoofing occurs after the data leaves the instigating origin, see Spoofing, Sender spoofing 

• Sender spoofing 

Spoofing occurs at the instigating origin see Spoofing, Post send spoofing 

• Service data 

Collectively refers to network data from the Transport, Network and Data-Link layers of the 

TCP JIP model, see User data 

• Spoofing 

Alteration of any network data intended as an identifier, that effectively obscures the origin 

of the instigating origin; alterations can occur at the instigating origin or at any number of 

intermediate network hosts see Sender spoofing, Post send spoofing 

• Switchport 

A physical Ethernet interface on an Ethernet switch (lOOMbitjs or IGbitjs), see Access port, 

Link port 

• User data 

Data from the Application layer of the TCP JIP model, see Service data 
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Chapter 1 

Introduction 

Hosts on the Internet are assigned a unique Internet Protocol (IP) address, which is reported as the 

source address in each IP packet header. This header source address is taken as an indication of 

the originating machine's identity. However, IP can not in itself prevent creation of packets with a 

forged source address. Explicit generation of these 'spoofed' packets requires a degree of planning 

and effort and so they are often associated with malevolent network activities [8]. The most widely 

known of these are Denial of Service attacks; it is obvious for instance that obscuring the origin of 

an attack may prolong its effects. 

Another, far more ubiquitous form of 'spoofing', which is typically transparent to the user, results 

from commonly employed resource provisioning mechanisms. In a Local Area Network (LAN), a 

number of machines may share a smaller number of public IP addresses through the use of Network 

Address Translation (NAT), and repetitive requests for commonly accessed web pages are minimized 

with a proxying web cache. In such cases, the source IP address of packets leaving the LAN is 

overwritten with that of a gateway router. Effectively, the packet's originator is 'hidden' behind the 

collective identity of the local network. Even if the eventual wide-spread adoption of IPv6 renders 

NAT obsolete, mechanisms such as web-caching utilise similar techniques and will still be a necessary 

part of a typical LAN deployment (especially so for larger corporate or university networks). 

Determining the originating host for a given IP packet, regardless of forged or overwritten source 

address is the domain of so called 'IP traceback systems'. A separate body of work addresses the 

issue of 'connection chain traceback' and is traditionally considered to be distinct from IP traceback 

(and its subdomain L2 traceback). In the first part of this thesis we develop a general classification 

of spoofing which aims to unify these related streams of research. We will then present our two L2 

traceback systems designed for switched ethernet. The final part of this work discusses the relevance 

of work in all areas of message traceback to the European data retention directive, which requires 

widespread logging of network communications data. 
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1.1 Motivation 

The fact that the source address of IP packets cannot always be taken to identify t he origin host 

is compounded by the stateless operation of IP routers. At each router, any state generated in the 

process of forwarding a packet is discarded once it is successfully transmitted. 

IP traceback systems in general try to compensate for this lack of state, and adopt either a 

signaling or logging approach (though hybrid schemes have been proposed [9]). In signaling, routing 

nodes signal their presence on a packet's network path; some approaches suggest marking the packet 

itself [10] whilst the use of separate messages has also been considered [11]. 

As their name suggests, logging based traceback systems require that routing nodes maintain a 

log of forwarded packets. The development of mechanisms to reduce memory requirements in such 

systems is thus central to their viability. Some logging based proposals achieve significant memory 

efficiency by using space efficient bloom filters for packet data [3] whilst our own work in this area 

adopts a 'connection-oriented' approach [12, 13]. 

However, underlying the obvious challenges is the much more subtle and technically challenging 

issue of how the 'origin' of a communication is defined. In the physical sense, the origin is an 

electronic device providing access to Internet connectivity services (a network host). In this sense the 

origin can be described in terms of geographical coordinates, the granularity of which will depend 

on the device's mobility. However, and as shown by work in the area of 'device fingerprinting', 

establishing a correlation between network data and the originating device (in the physical sense) 

remains an open issue [14]. 

IP traceback systems are typically intended for transit networks, and are deployed within or in 

close proximity to IP routers. Thus, at best they can determine the first hop router [5] of the origin 

host. Considering the size of even the smallest ISP networks, the 'origin' at this level of granularity 

is not useful in achieving accountability for network attacks. The actual origin can potentially be 

one of thousands of hosts. Investing in the infrastructure to log traffic only at routers will in practice 

be of little use to investigation or prosecution of online crime. Furthermore, in those cases where 

data is overwritten as in NAT, the source network is already identified by default as we can trust 

the address inserted by a routing node to be 'true'. 

A sub-domain of IP Traceback has emerged in recent years as a direct result of this shortcoming, 

with proposals for "Layer 2 Traceback" (L2 traceback). These 'internal' traceback systems extend 

the tracking process beyond the leaf router, and into the originating network [5, 9, 15, 12]. Generally, 

L2 traceback systems combine an identifier ofthe network hardware and (where applicable) the port 

number from which data first entered the (local) network to specify 'origin'. 

An end to end message traceback system that is able to trace the origin of any given IP packet 

(to any useable granularity) would need to be composed of both IP, L2 and in some cases connection-
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chain traceback components. This thesis first sets about to unify these streams of research through 

a common and all encompassing definition of spoofing. 

The issue of determining an IP packet's originating host when packets have been spoofed and 

in the face of a DoS attack is certainly interesting, though somewhat academic, mainly due to the 

associated costs. However, in April 2006 the European Parliament published a Directive mandating 

data retention in communications networks [16]. By April of 2009, all member states are expected to 

have put in place "laws, regulations and administrative provisions necessary" to store information 

regarding each "communication" made by hosts on "public communications networks". 'Vork in 

the areas of IP and L2 traceback and especially logging based proposals, are useful in exposing the 

difficulties that implementations of this Directive will need to address. 

Though April 2009 is the 'deadline' for EU member states to enforce data retention through 

national legislation, it will realistically be a number of years before they become a reality. The 

implementation of data retention will be difficult and come at a great cost to network and service 

providers, and by extension to all network operators, regardless of their size. Furthermore and 

considering the inherently sensitive nature of retained data, it is imperative that we ensure not only 

its security but also its quality; it must not for instance be possible to implicate an innocent tertiary 

party as the source of a suspect communication by 'spoofing' their network identity. The latter 

parts of this thesis identify and discuss the relevance of work in the areas of logging based message 

traceback systems (IP, L2 or connection chain) to the EU data retention directive. 

1.2 Goal 

The EU data retention directive will affect European citizens in a very personal way. Work in the 

areas of IP, Layer 2 and connection-chain traceback have exposed the many technical challenges posed 

by identifying the origin machine in spite of spoofing. Switched Ethernet provides a very interesting 

deployment environment for L2 traceback, due to the exclusivity with each each network host is 

connected to its switch, bringing both positive and negative consequences. For our L2 traceback 

system to be viable we must find ways to reduce memory requirements, but also to preserve user 

privacy whilst maintaining accountability for any given packet. 

We hope that through practical work and better understanding we can develop a classification 

of spoofing and message traceback. This can then be applied to reasoning about implications that 

message traceback system design decisions will have on the volume, origin granularity, quality, 

security and data-mining characteristics of retained data. 

Goal: Our primary aim is to improve the technology by which logging based 

message traceback is implemented in switched ethernet networks, compared 
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to known work in this area. We a1so aim to provide a comprehensive tech

nical definition of spoofing that considers alterations to data at all layers 

of the TCP lIP model and which unifies known work in all areas of message 

traceback. Finally we apply our understanding and practical experiences to 

identify the important trade-offs that should be considered by implementa

tions of EU Council Directive 2006/24/EC on the retention of data. 

1.3 Approach 

Our primary goal of developing a viable Layer 2 traceback system was achieved through an iterative 

development process. We studied available literature to derive the requirements that our intended 

system was to fulfill. From the outset, we sought a 'hands on' systems approach, as we felt that only 

through this would we be able to understand the practical issues that implementations of message 

traceback (or more generally data retention) need to address. 

Layer 2 traceback systems, as we will see, are directly influenced by the specific (OSI) layer 

2 network protocols and hardware in use (e.g. shared or s1.l.Jitched ethernet). Switched Ethernet 

seemed to present the greatest challenges to logging based message traceback, mainly due to the 

lack of an obvious vantage point from which to observe network traffic. Interestingly however, it 

also allows for a trace result with the highest granularity, by identifying a specific network access 

point, which is why we chose this as a deployment environment. 

Our first attempt at L2 traceback was an adaptation of an existing IP traceback system for 

switched ethernet [15]. The 'Source Path Isolation Engine' (SPIE) [3] satisfied our two key require

ments of low memory utilitsation and preservation of user privacy. Furthermore, the source code of 

a SPIE implementation was publicly available from [17]. 

The available implementation is for the linux operating system and consists of two sub-components. 

A 'kernel space' driver receives IP packets and logs these as hashed digests, whilst the 'user space' 

program allows control of the driver and maintains a ring buffer of previously logged packets. This 

early work took far longer than anticipated, mainly due to the steep learning curve of familiarisation 

with linux device drivers and networking. However, this also served to demonstrate the difficulty of 

deploying such systems 'in the real world' (i.e. beyond academic research). 

The SPIE system uses space efficient bloom filters to store packet digests. However, in a switched 

ethernet environment, each 'routing node' (i.e. ethernet switch) needs to allocate independent bloom 

filters for each switch port. Furthermore, to achieve an acceptably low level of false positives from 

the bloom filters the amount of allocated memory must be increased accordingly. The link speed is 

a dominating factor in determining memory allocation and false positive rate, as we will see, and so 

in a 1 Gbit/ s ethernet environment, memory requirements can quickly become excessive. 
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This early work provided us with the insights necessary to develop a logging based L2 trace

back system for switched ethernet, which we term 'COTraSE' (Connection Oriented Traceback in 

Switched Ethernet). The aforementioned EU Directive on data retention provided the inspiration 

for our 'connection oriented' approach, which allows us to achieve acceptable memory requirements. 

We preserve user privacy by storing 'connection records' as hashed digests. Our earlier experiences 

with switched ethernet were central to the development of our 'switch port resolution' algorithm, 

with which we claim to detect malicious network behaviours such as MAC address spoofing. 

Conceptually, our COTraSE system is one potential solution to the Layer 2 traceback system, 

which is preserving of user privacy and which has acceptable memory requirements. However, in 

practice it could also prove expensive to deploy as a logging node is required between each pair of 

network switches (though this can be relaxed under certain conditions). FUrthermore, and as we 

will see, the privacy preserving features of COTraSE may need to be sacrificed if this is adapted to 

the requirements of the EU data retention. 

This hands on experience allowed us to develop a general classification of spoofing and message 

traceback which unifies the relevant streams of research. This understanding and experience is then 

applied to a 'real world' network logging system. EU Council Directive 2006/24/EC legislates data 

retention but this has yet to be implemented in most member states and so there is still scope for 

influencing any potential designs. 

1.4 Novelty of Approach 

For our practical work in developing a Layer 2 traceback system, we have sought a feasible 'real 

world' solution, that is, one which does not assume functionality that is not currently available. At 

the same time, we must make provisions for the potential of 'spoofed' MAC and IP addresses, as 

this reflects the realistic abilities of any determined attacker. 

This is evident in both of our proposals and in the ways with which we overcome the problems 

of logging in switched ethernet. Other proposals do not always adhere to this principle; in [9] an 

'in switch' process is assumed for accessing ethernet frames whilst in [5] unreasonable processing 

demands are made on the leaf router which logs all traffic from the local network. 

In our first proposal, switch-SPIE [15], we employ switchport mirroring for access to network 

traffic. This functionality is available in most network switches and though not standardised is 

identified as one of the monitoring mechanisms for switched ethernet [18, 19]. The effects of using 

mirroring are twofold; first, the logging processes are distributed to each switch, and so we avoid 

making unrealistic demands on any single routing node, as was the case in [5]. This provides for 

a more flexible deployment environment where we do not need to make any assumptions regarding 

network topology. Secondly, the process of determining the origin switchport, even in the face of 
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spoofed MAC addresses is much closer to the origin host which gives a higher degree of accuracy 

and makes forging the source MAC address harder. 

All known logging based IP and L2 traceback systems that claim to traceback any git'en packet 

can be characterised as 'explicit packet logs', that is all packets are logged. This obviously has 

implications on the memory requirements for such systems. In our second proposal, COTraSE. we 

instead maintain 'connection records'. We note that though this is similar to the approach taken 

by CISCO NetFlow [20], we use different flow termination heuristics and allow for the possibility of 

spoofed MAC or IP addresses. 

A common characteristic of logging based L2 traceback systems for switched ethernet is the use 

of the switch MAC address table (MAC-table) to determine the originating switchport based on the 

source MAC address reported in ethernet frame headers. In COTraSE however, we uniquely corre

late the MAC-table values from two directly adjacent switches. This allows us to more accurately 

determine the source switchport and as we will see also provides an element of error detection, such 

as MAC address spoofing. Furthermore, COTraSE also takes into account the effects of overwritten 

MAC addresses, as in NAT or web caching mentioned earlier, and maintains 'translation records' at 

the leaf router. 

Finally, we are the first to identify the relevance and applicability of work in the areas of IP, 

L2 and connection-chain traceback to the EU data retention directive. Furthermore we are the first 

to consider IP, L2 and connection-chain traceback systems as part of a larger end-to-end message 

traceback system. 

1.5 Contributions 

The contributions of this thesis go beyond the provision of two Layer 2 traceback systems for 

switched ethernet. We will see how a unifying definition and simple classification of spoofing can 

bring together relevant research in the areas of IP, L2 and connection-chain traceback. Furthermore, 

we will show that we can directly apply the experience in developing these message traceback systems 

to the implementation of EU directive 2006/24EC. The main contributions of this thesis are: 

• Unifying definition and classification of spoofing, 

• Extensive literature review of all known work in the areas of IP, L2 and connection-chain 

traceback using our own classification from above, 

• The switch-SPIE L2 traceback system, adapted from SPIE, presented as 'Logging Based IP 

traceback in Switched Ethernet' at Eurosec 2008 [15], 

• The improved L2 traceback system, COTraSE, inspired by EU Directive 2006/24/EC, pre

sented as 'COTraSE: Connection Oriented Traceback in Switched Ethernet' at lAS 2008 [13] 
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and later published in the Journal of Information Assurance and Security [12], 

• Identification of the relevance of message traceback systems to the EU data retention direc

tive, 

• Identification and discussion of key challenges faced by data retention implementations. 

Work in the areas of IP and connection chain traceback have traditionally been considered as 

distinct. In this thesis we argue that IP traceback (and its L2 sub-domain) and connection-chain 

traceback are both fundamentally addressing the same issue of message traceback: How can we 

traceback a given network message (e.g., an ethernet frame) to its origin host if we assume that the 

information contained in that message (especially source addresses) has been altered? Our definition 

of spoofing will primarily aims to define spoofing in a way applicable to all related domains. We show 

that IP and L2 traceback address the issue of sender spoofing, whilst connection-chain traceback 

addresses post-send spoofing. We present the literature review using our classification and definition 

in order to demonstrate their viability. 

The switch-SPIE system is our first attempt at L2 traceback for a switched ethernet, which 

explicitly logs all packets using bloom filters. We adapted the open source SPIE IP traceback 

system and assigned an exclusive bloom filter for each switchport. We added the step of switch port 

resolution to the 'normal' SPIE logging routines, in order to determine the appropriate bloom filter 

for each received frame. We aimed to improve an earlier adaptation of SPIE for switched ethernet by 

deploying logging locally at each switch, rather than at the gateway router. The implications of this 

are that the traceback result is more reliable as local MAC-tables can be refreshed from the switch 

more frequently. Furthermore, this topology allows one to traceback frames that are entirely local 

and do not traverse the gateway router. The problem of low traffic visibility in switched Ethernet 

is well known and switch-SPIE took the approach of using switchport mirroring. Our experiments 

showed that this is not a reliable means of receiving network traffic. This is especially true for 

larger switches where the aggregate traffic from a number of switchports will quickly overwhelm 

the monitor port. Our discussion of memory requirements showed the limitation of our 'one bloom 

filter per switchport' approach; memory requirements are excessive in the worst case of a very large 

switch (1000+ switchports), especially when maintaining a low false positive rate (equating to a 

larger bloom filter). 

The COTraSE system was primarily intended to address the challenges revealed by switch-SPIE. 

This is evident for instance in the placement of connection record logs at a tap between switches, 

rather than relying on switchport mirroring. However, at about this time the EU data retention 

directive came to our attention and we instantly recognised the applicability of logging based IP 

and L2 traceback systems to this legislation. The connection oriented logging approach taken by 

COTraSE was in part inspired by the EUDRD as we have seen. In COTraSE we further exploit the 
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switch MAC-tables to make the switchport resolution algorithm even more reliable. We will see that 

at the cost of an extra MAC-table lookup and some prior configuration at each switch to classify 

switchports (e.g., access or internal link ports) switchport resolution can even detect malicious 

activity such as sender spoofing of source MAC address. Furthermore, by maintaining translation 

records at the gateway router, COTraSE can traceback IP packets that are delivered to external 

hosts, regardless of any legitimate post-send spoofing such as NAT. The potential memory efficiency 

of the connection oriented approach was demonstrated using WAN traces from large ISPs that were 

taken as input by our connection record log implementation. The traces consist of over 136,503,068 

packets (over 12 hours) from an 'OC12' link in Miami, 114,181, 288packets (over 30 minutes) from 

an 'OC48' link in California and 89,357,967 packets (over 90 minutes) from a 100Mbit/s Ethernet 

transit link. We will see that even in the worst case of a 10 second purge interval, the number of 

connection records as a percentage of total frames is consistently lower than 15% across all traces. 

Finally we will introduce the EU data retention Directive with an executive summary, before 

listing the key challenges that any implementation will have to consider. Our discussion draws on 

our experiences with switch-SPIE and COTraSE and also makes use of the definitions that were 

developed in the first parts of this thesis. 

1.6 Thesis Outline 

This Chapter introduces our thesis, outlining the main goals and our approach in satisfying these. 

We have introduced the notions of spoofing and message traceback systems and their relevance to 

the European data retention directive 2006/24/EC. We also summarised the main contributions and 

are outlining the thesis contents here. 

In Chapters 2 and 3 we will unify the relevant threads of research, namely 'IP and L2 traceback' 

but also 'connection-chain traceback' and 'host fingerprinting'. In Chapter 2 we begin this process 

by providing a unifying definition of 'spoofing' together with a classification of its various forms. We 

will see that spoofing is the alteration of any network data intended as an identifier (ephemeral or 

otherwise), that effectively obscures the identity of the instigating origin (sending) host. 

Whilst Chapter 2 unifies the various forms of spoofing, Chapter 3 provides an extensive literature 

review. We consider proposals that in some way address the issue of tracing back to the origin of 

network data, in spite of any sender or post-send spoofing. We will see that IP traceback systems aim 

to identify the origin of network data in spite of sender spoofing. We will also summarise all known 

proposals for L2 traceback and the main challenges that these identify. Chapter 3 also considers 

proposals for connection chain traceback that address the issue of post-send spoofing. 

In Chapter 4 we present the first of our L2 traceback systems, switch-SPIE. For any given IP 
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packet switch-SPIE aims to identify the instigating origin host, through the unique pairing of switch 

identifier and switch-port number (sID, pNO). Our proposal improves over an earlier adaptation of 

SPIE for switched ethernet [9] by deploying logging at each switch, rather than at a single network 

location. As we see switch-SPIE can traceback frames that are entirely local (i.e., do not traverse 

the gateway router) and our configuration allows the MAC-tables maintained by each logging node 

to be updated with a higher frequency than in [9]. Our experiments show that whilst the switch can 

'keep up' with switch-port mirroring without adverse effect to the primary switching function, the 

network host and switch-port to which traffic is mirrored are quickly overwhelmed. Table -1.2 shows 

the memory requirements for lOOMbit and lOOOMbit ethernet with different bloom filter sizes and 

the corresponding false positive rates. 

Chapter 5 presents our second attempt at L2 traceback for a switched ethernet, where we build 

on our experience with switch-SPIE. Our COTraSE system adopts a connection oriented approach 

to logging as we will see, that was in part inspired by EU Directive 2006/24/EC. COTraSE decreases 

memory requirements by only logging a subset of all packets. Crucially and as is explained this does 

not sacrifice our ability to traceback any given ethernet frame or packet and provide the unique 

{sID, pNO} pairing to identify the instigating origin. We also provide details of our implementation 

of the connection record logging algorithm which uses 'real' WAN trace data as input. 

In Chapter 6 we present EU Directive 2006/24/EC and identify the relevance of work in the 

areas of IP and L2 traceback to the implementation of any 'data retention' system. We will argue 

the importance of the accuracy and reliability of retained data and consider the subtle tradeoff 

between storing data as plaintext or as encrypted ciphertext. We consider the problem posed by 

legitimate post send spoofing such as NAT and the difficulties associated with logging of email when 

application level data is designated as off-limits. 

Finally Chapter 7 concludes this work. We begin with a thesis summary and discussion of its 

main contributions. We consider future research directions and finally provide our concluding re

marks. 
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Chapter 2 

On Spoofing 

2.1 Introduction 

This chapter provides an extended definition and discussion of spoofing as this is directly relevant 

to our work in the area of L2 traceback. Furthermore, whilst all message traceback systems address 

some form of spoofing, use of the term is not always consistent. In IP traceback proposals for 

instance it refers exclusively to alteration of source IP address in packets before these are transmitted 

from a network host, whilst in connection-chain proposals it refers to alterations effected at some 

compromised host. 

The effect of any alteration to network data is invariably to obscure the origin of that data from 

the point of view of a recipient host. However, there are other well known methods beyond IP 

address forgery with which attackers conceal their identity (but which are perhaps not traditionally 

considered 'spoofing'). We thus develop a broader definition of spoofing and identify the two main 

types of sender and post-send spoofing. For each of these we consider alterations effected to user data 

(Application layer) or service data (Transport/Network/Data-link layer). Our definition considers 

legitimate alterations to packet data as well as the more obvious fraudulent alterations. In so far as 

our definition of "spoof" is more inclusive, it is also more faithful to the original, broader connotation 

of the word, attributed to a 19th century card game involving ''trickery and nonsense" [21]. 

2.2 Spoofing 

In this thesis we broaden the definition of spoofing from that typically implied and adopted by the 

relevant network security literature; there are more elements to spoofing beyond the use of a forged 

source address in IP packets before these are transmitted. Our definition considers which other 

fields within network data might be altered, as well as when this might occur; within the instigating 

(sending) host, or, en route to the intended destination. 

Furthermore, our definition explicitly removes the implication of fraudulence from the term spoof-
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ing. The aim is to include all mechanisms by which network data might be altered before reaching a 

recipient network host; this includes legitimate network processes (such as Xetwork Address Trans

lation - NAT [22, 23]) as well as illegitimate mechanisms on compromised hosts (as in connection 

chaining [24, 6]). We first provide our definitions and introduce some associated terms before con

sidering each type of spoofing with examples in subsequent sections. 

Definitions: 

• Instigating Origin: the network host that instigated the transmission of received network 

data; the sending host. 

• Effective Origin: the last network host to make any alterations to received network data; 

effectively the origin of network data. In some instances this is the same as the instigating 

origin. 

• Spoofing: Alteration{s) of any network data intended as an identifier (ephemeral or other

wise), that effectively obscures the identity of the instigating origin; alteration{s) can occur 

at the instigating origin or in any number of intermediate network hosts en route to the in

tended recipient host. Spoofing does not imply fraud as it will often follow from a legitimate 

network process. 

Sender spoofing: Instigating = Effective 

Instigating 9!~~~ ~~~ipient host 

Effective o"rigin 

------------------------------
Post-send spoofing: Instigating ':t Effective 

Effectiv~ Origin 
Instigating Origin '. 

Figure 2.1: Instigating and Effective origins 

Figure 2.1 illustrates the relation between the instigating and effective origins in terms of where 

data is altered; as shown in the diagram, we use the term sender spoofing to describe alterations to 

network data at the instigating origin. This differs from post-send spoofing, where alterations are 

made to network data by intermediate network hosts, the last of which becomes the effective origin. 

In terms of which data is altered, we differentiate between user data and service data. As can 

be seen in Figure 2.2, the former refers to data at the Application layer of the Internet Model [251 
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(also known as the 'TCP l IP model'), whilst the latter includes data from the Tran port , :\etwork 

and Dat a-link layers. 

,~~ 

I 
". HTTP, SMTP, DHCP. DNS. <:..., 

user data Application f---~ POP3, TLS/SSL. SO~_/-' 
-----------------------------------~-~ _____ I 

~~::~~~=~~~~~~~~~~~~~~ij~~~~~~==~~3~----1 Transport I service data 

.... .....;.N;.;. • .;.tw;.;.o,;.;rk..;.;........1.-----~ I P(4 .6) . I~P(4:6).'A~ 
.. ---------/-------------- ...... ----------- .. 

(" WLAN (IEEE 802.11), " " r-- Data.link 
",;>- Ethernet (IEEE 802.3) , <<;4----i 1-------4 
(. DOCSIS, DSL __ / c__ Physical 

_______________ ' .. _____________ --------- .... -....;..-_..1 

Figure 2.2: The Internet model showing the division between user and ervice data 

The user data represents the information for which an end user has reque ted tran mi ion a ro 

the network. The service data on t he other hand comes from the networking services which fa ilitat 

that transmission. The user does not normally modify the service data, at least not directly (e.g. 

this is delegated to the operating system). To directly modify service data is anomalous and two 

well known examples are IP and MAC address spoofing to make packets appear to have origi nated 

from a tertiary host. We use the term sender spoofing to describe such cases where alteration to 

user or service data occur only at t he instigating origin host. 

Together, the user and service data are forwarded through the network towards the intended 

recipient host. If this is a local destination , that is, within the same Local Area etwork (LA ), 

then all data should arrive unchanged in its entirety. For external destinations, the service data 

is very likely to have been altered. A common and legit imate occurrence are alterations at th 

Data-link layer , signifying a change between t he local network's physical transmission medium (e.g., 

switched Ethernet or WiFi) and that of the link to adjacent networks (e.g. , DSL, ATM). As we will 

see, changes at the Network layer are also common due to resource provisioning mechanisms such as 

web caching or Network Address Translation. We use t he term post-send spoofing to describe such 

cases, where alterations to user or service data occur after they are transmitted from the instigating 

origin host . The last host to effect alterations to network data becomes the effective origin, as 

illustrated in Figure 2.l. 

Just as service data should not be altered by t he user, t he user data should not be altered by 

network services en route. User data is generally regarded as private, and rarely processed by routing 

nodes except in certain exceptional cases (we will consider an example subsequently). 

We incorporate these concepts into a classification of spoofing based upon when alterations to 

data occur , as shown in Figure 2.3. This simple classification allows a more systematic examina ion 

of spoofing to follow, in which we elaborate on the examples of which data might be altered in each 
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case as summarised in Figure 2.3. Sender spoofing is always fraudulent. whilst post-send ~poofing 

can also be legitimate; for each of these we first consider user data before considering alterations to 

service data, at each protocol layer. 

Sender Post-send 

~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

user data 
(S;viTP-FROM'-"-"! 
~ HTTP user agent ! 
1,.g~§ .. t~~!1_~~~!~~~.~.) 

ervice data 
(ip'cincff';1J\C-"-"-'j 
i.~~~~~?~.?P.<?~!~~~.) 

-----------
user data 
(SSHrerriot"e'j 
: . ..I~Qin_ .. _ .. _..J 

service data 
(Coniiectioii-" - .. - .. 
• I 

ichains : 
~.- .. -.. ---- -.- ... ---~ 

"-------. Fraudulent • --------

user data 
(FTP'PC)"IW: 
:,(~!~-~~~-) 

service data 
(NAT·iirid-··-·· - .. -'j 
i.~~~.:~~c:~~~t .. _ .. ,: 

--I Legitimate .--

Figure 2.3: Classification of spoofing distinguishing when alterations occur and which data is altered 
with examples. 

2.3 Sender spoofing 

As can be seen in Figure 2.3 we consider that sender spoofing is always fraudulent. We make 

this claim as we cannot envisage any conditions under which sender spoofing might be legitimately 

employed. 

In the context of sender spoofing, we refer to alterations of network data values from those 

that are pre-designated or otherwise true. For instance alteration of the :-IAC address provided by a 

networking hardware manufacturer, alteration of an IP address provided by a network administrator 

or alteration of an initial sequence number from that which is chosen at some instance in time by a 

particular TCP implementation. 

2.3.1 Sender spoofing of user data 

As can be seen in Figure 2.2 the user data refers to the Application layer of the Internet model. 

The user data cannot be trusted as a reliable indication of the instigating origin's identity without 

additional authentication mechanisms such as SSL. Thus, the use of untrue or invalid values in 

user data should not cause any problems to recipient hosts (this would mean an easily exploitable 

vulnerability) . 

However, there are well known cases in which the user data contains values that serve as identi-

fiers. It is not possible to enumerate all application layer protocols and identify all data fields within 
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those that might be altered to the effect of obscuring the instigating machine's identity. In what 

follows we provide two interesting and well known cases of sender spoofing of user data to illustrate 

the potential effects. 

The ubiquitous Electronic Mail (e-mail) is one well known example where user data contains 

values that identify the sender and specifically the source e-mail address. A motivated network user 

can trivially change the FROM field in an SMTP exchange; spammers using open SMTP relays will often 

use a false source e-mail address in their message. A common use of this type of spoofing is in 

'phishing' where an e-mail may claim to have been sent by a known or trusted third party (such as 

a bank). Thus one should not typically rely on the source address of an e-mail to accurately identify 

its sender. 

Another example is found in the HTIP protocol 'user-agent' header, which should be used as part 

of client requests [26] such as a HTIP GET. Web browsers include a user-agent string in their requests 

for resources from HTTP servers, to identify the browser and operating system of the instigating 

origin host. For instance, the string: 

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.12) Gecko/20080201 

Firefox/2.0.0.12 

identifies the Firefox browser running on Windows XP. The user agent is used to address incom

patibility issues across different web browsers, by tailoring content sent from the server to the given 

client browser. A common use is in the downloading of multi-platform applications; web servers can 

use the user agent to determine which installation file the client should receive (e.g., the Microsoft 

Windows '.exe' file or the Apple OS X '.dmg' file). 

It is trivial for a user to change their user agent, thus spoofing their HTIP identity. Some popular 

web browsers even make such functionality directly available [27]. For a web server to use the 'user

agent' as a criterion in granting access to resources is then naive, to say the least. None the less, 

it has been suggested [28] that one may gain access to resources on websites that otherwise require 

completion of a registration procedure by masquerading as a search engine 'bot'. A 'bot' (robot) is a 

network host which automatically retrieves and indexes web sites on behalf of a given search engine. 

The string "Googlebot/2. 1 ( +http://www.googlebot.com/bot . html)" for example is one of the 

user-agent strings used by Google bots. These indexing hosts are usually given liberal access to 

a web site's pages, unless the site administrator takes measures against this. The vulnerability of 

spoofing your HTTP identity to gain access to restricted web sites is becoming less prevalent. Web 

servers are taking precautions such as verifying if the IP address of a host claiming to be a bot falls 

within the range of addresses known to be used by the given search engine. The introduction of such 

measures may explain why we have been unable to verify this exploit, which is described in [28]. 
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2.3.2 Sender spoofing of service data 

In the discussion that follows we consider the utility of spoofing a given value from an attacker's 

point of view as we consider that sender spoofing is always fraudulent. That is we cannot envisage a 

scenario in which sender spoofing occurs without the intent to defraud. Of course, it is not possible 

to foresee all possible ways in which this may be employed or manifested in an attack or exploit. 

The service data, being charged with facilitating transmission of the user data through the 

network, will typically contain a number of values used as identifiers, and these have differing 

significance through the Internet Model layers. 

At the Transport layer, a destination TCP or UDP port number is used to identify which application 

on the recipient host is to receive and process user data. Similarly, the source port number identifies 

the sending application, to which any replies need to be addressed. Two other important Transport 

layer identifiers, exclusive to reliable data delivery services (i.e., TCP as opposed to UDP), are the 

sequence and acknowledgement number fields. These serve to uniquely identify the user data bytes 

sent and successfully received by each party in a given communication. Though both ports and 

sequence numbers are intended as identifiers, their semantic scope is limited to a specific property 

of some network process within the host. Thus, they cannot be taken in isolation to identify the 

host itself. 

Attacker. 
IP.addr =A 

1 

r-tc-F'q=fs"T-l 
! ack: y+ 1 ~----
lJf:~_~9..~:.Ij 

Tertiary Host 
IP.addr =T 

ReCipient 
IP.addr = R 

___ -~"Tc-p-SyN:-A¢Kl 
! seq:y ! 
! ack:x+1 ! 
l IP.addr: R ! _____________________ J 

Figure 2.4: An attacker attempting to establish a spoofed TCP connection is foiled by the Tertiary 
host's TCP RST, which resets the connection 

Nonetheless, an attacker needs to very carefully and specifically alter this Transport layer data, 

when the objective is to establish a (spoofed) TCP connection. Consider that an an attacker forging 

his source IP address cannot expect to receive any replies, as illustrated in Figure 2.4. Here the 

attacker with IP address A sends a TCP SYN to establish a connection with host R. However the 

attacker uses the IP address of the tertiary host as a source address. Thus, any replies are addressed 
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to T and so the attacker isn't privy to the initial sequence number chosen by the victim. This 

is of course a prerequisite to completing the 'TCP handshake' [29]. For this reason. spoofing at 

the Transport layer (TCP sequence numbers) often goes hand-in-hand with (and is in fact made 

necessary by) spoofing at the Network layer (source IP address), which we consider forthwith. 

Sender spoofing at the Network and Data-link layer are well known and termed 'IP spoofing' 

and 'MAC spoofing' in the literature. The source IP and source MAC addresses are the only values 

in service data intended, in isolation, to indicate the identity of the host from which a given frame 

or packet has originated. In some respects, the latter is of higher significance, as each 48 bit MAC 

address is both globally unique and permanent; the first 3 bytes provide the Organisationally Unique 

Identifier assigned to each manufacturer, whilst the last 3 identify a specific network interface and 

designated during production. An IP address on the other hand is more transient, as it may be 

re-assigned to another host (of course this is not true for IPv6). None the less, sender spoofing at 

the Network rather than the Data-link layer may be more important for an attacker, depending on 

the locality of the attack. 

The source MAC address will not reach destinations beyond the local network, as it is replaced 

at a leaf router. So we can say that generally, if targeting non-local destinations, sender spoofing 

at the Network (and Transport) layer is the most important for an attacker, with the values at the 

Data-link layer being irrelevant. However, when launching local attacks, then sender spoofing at 

both Network and Data-link layers is necessary. It would not make much sense for a malicious party 

to reveal their actual IP address whilst obscuring their MAC address, if both of these are visible to 

the destination. Thus, attack locality is a determinant factor in whether MAC or IP spoofing are 

employed (or indeed both). 

Another important issue requiring an attacker's consideration is the validity of the altered data 

values, as this bears upon the potential impact of an attack. In their classification of Distributed 

Denial of Service (DDoS) attack mechanisms, Mirkovic et al [30] consider "source address validity" 

referring specifically to the IP address and distinguish between routable and non-routable addresses. 

Routable IP addresses belong to active tertiary hosts, whilst non-routable addresses are either as

signed and not currently used (host is offline), or come from within the IPv4 private address range 

[31]. The authors go on to distinguish how an attacker might select the spoofed IP address and 

consider use of a random address, selecting one from a fixed set or using one from the local network 

(random, fixed and subnet spoofing, respectively). We can extend the notion of validity and relate 

it to our discussion of TCP and the initial sequence number; an attacker must ensure that when 

TCP is in play, consecutively transmitted packets carry valid values, especially sequence numbers 

and ports. 

We incorporate the concepts developed by Mirkovic et al here to show the interplay between 

validity of altered service data values and attack locality. When the attacker alters a source address, 
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whether Network or Data-link layer depending on attack locality, the recipient victim(s) will send 

any replies to the address that was indicated as source, as illustrated in Figure 2.4. We have already 

seen that this is significant in determining the attacker's ability to establish spoofed TCP connections 

[29]. The prediction of sequence numbers has become a less viable option for the attacker, as the 

TCP implementations of most popular operating systems will guard against such attacks [32]. 

In [30] the authors explain that the use of non-routable addresses falling within the IPv4 prh"ate 

address range is easily detectable. We make a slight qualification to say that the use of these ad

dresses is not so easily detectable if instigating origin and recipient host are on the same LAN (in 

general these addresses should not be seen on the Internet [25], but are employed in many LANs). 

Furthermore, the use of non-rout able addresses that are assigned but not active may cause gener

ation of Internet Control Message Protocol (ICMP) Destination Unreachable or Time Exceeded 

messages by any handling routers, which would reveal the spoofing attempt. 

Thus, an attacker may best choose a rout able address from within the local network (subnet). 

Referring to attack locality, in this case attacker and tertiary host are in the same local area network 

and so a shared physical transmission medium (e.g., shared Ethernet or wireless LA~) is advan

tageous to the attacker. It becomes possible for the attacker to 'sniff' network traffic in order to 

discover the initial sequence numbers chosen by the victim. Another advantage from using a routable 

and local address is that an attacker can more feasibly ensure that a currently active tertiary host 

does not respond to the unsolicited packets sent from the victim. This is illustrated in Figure 

2.4 where a tertiary host responds to an unsolicited SYN-ACK with a RST to reset the connection, 

preventing the attacker from establishing a spoofed TCP connection. 

2.3.3 Attacks facilitated by sender spoofing 

As seen above there are a number of issues influencing how sender spoofing might be used by an 

attacker. Here we provide a brief overview of some network attacks that employ sender spoofing. 

In most cases spoofing serves only to obscure the instigating origin's identity whilst in others the 

act of altering network data also delivers the attack. Sender spoofing is most often associated with 

Denial of Service (DoS) which we will examine after first considering some non DoS attacks. 

We have discussed the establishment of a spoofed TCP connection and the challenges this poses 

for an attacker (as summarised in Figure 2.4). A classic example is that of Kevin Mitnick, who 

employed sender spoofing to successfully steal files from Tsutomu Shimomura's computer [33]. Se

quence number prediction was used to spoof a TCP connection to the victim with a separate Denial 

of Service attack on the tertiary host to stop it from transmitting RST frames. Furthermore, the 

attacker was non-local, which serves to demonstrate that spoofing of TCP connections is possible 

even under the most adverse conditions for the attacker. 

Another example is the "dumb host scan" [34] which allows for stealthy (TCP) port scanning. 
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An attacker is able to determine whether a given TCP port on a potential victim host is accepting 

connections; they may wish to know if a given service is available for which an exploit is known. How

ever, the attacker does not want direct communication with the victim in case logging is deployed, 

implicating the attacker in subsequent investigations. The port scan begins with the recruitment 

of a suitable and responding tertiary host, that increments its IPv4 identification field (IPID) in 

a predictable way. The attacker first notes this IPID value then sends a TCP SYN to the victim, 

spoofed as having come from the tertiary host. If the victim's port is responding, it will send a SYN 

ACK to the tertiary host, that will respond with a RST as seen in Figure 2.4. By obtaining the 

value of the tertiary host's IPID field after the scan, the attacker can determine whether the victim 

had responded to the initial (spoofed) SYN, prompting the tertiary host to send RST packets to the 

victim. In this case the port was open and can then be targeted by the attacker. 

In general, the goal of a Denial of Service (DoS) attack is to cause the recipient host to enter 

a stalled state; this may occur as a result of resource exhaustion caused by an incoming packet 

flood, or, through the exploit of a specific vulnerability in the recipient application. The 'denial of 

service' refers either directly to the loss of service at the targeted host, or to denial of service for 

any tertiary hosts whom the victim served (e.g., the victim could be a local DHCP server). Figure 

2.5 summarises the examples that we examine below. 

In DoS attacks that exploit specific vulnerabilities only a small number of packets are required 

to deliver the attack. An example is the well known 'Land' attack whereby a single packet with the 

same source and destination TCP ports and IP addresses "freezes win95 boxes" [35, 36, 37]. This 

was later found to affect a great range of operating systems, including Ciscos lOS [38]. 

Another example is the Teardrop attack [36, 37] which exploits a vulnerability in the reassembly 

of fragmented IP packets with only two packets. In this case sender spoofing involves altering the 

IPv4 source address to hide the instigating origin's identity but also the IPv4 Fragment offset field 

which actually delivers the attack. Once memory is allocated for the first fragment received, the 

fragment offset of the second packet is altered to point inside the memory area allocated for the first 

fragment. This subsequently causes an irrecoverable failure in the memory allocation routine [37]. 

Packet fragment reassembly is also targetted by the dramatically named 'ping of death' [39]. In 

this case, an inflated ICMP echo-request (a 'ping') is created that is larger than the permissible 

maximum transmission unit at the Network layer, to ensure that the resulting IPv4 packet is frag

mented for delivery. A recipient host will only reassemble fragments once all of these have been 

delivered, using the fragment offset field to dictate where in the reconstructed packet each fragment 

occurs [25]. An IPv4 packet cannot be larger than 65,536 bytes, as constrained by the 16-bit total 

length field. In the ping of death the last fragment is of sufficient size so that when combined with 

the previous fragment offset creates a packet larger than the maximum permissible (causing a buffer 

overflow). 
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Figure 2.5: Examples of known DoS attacks that employ sender spoofing 

Rather than targeting a specific vulnerability, flooding DoS attacks involve inundating a victim 

with an overwhelming packet load. The most well known example, perhaps due to its simplicity 

is the SYN Flood [40]. We have already mentioned the TCP handshake, that is a pre-requisite to 

connection establishment. In a SYN Flood, the attacker initiates a TCP connection but then does 

nothing else. At the recipient host, some state is maintained about the (potential) new connection, 

and the attacker's SYN is acknowledged with an ACK, sent from the victim to the tertiary masquer

aded host. By repeatedly creating such 'half open connections' the attacker can consume resources 

at the recipient host until this becomes unable to accept any new connections. 

In the examples seen so far the victim of a sender spoofing attack has also been the recipient 

of spoofed packets. However, in so called reflection attacks [8], it is the tertiary masqueraded host 

that most suffers the consequences of an attacker's efforts. An attacker can generate a large number 

of service requests (e.g., DNS requests) which carry the address of the tertiary host as source IP 

address; a sufficient number of replies will overwhelm the tertiary host. An example is 'smurf' [41], 

where a large number of ICMP echo-request packets are sent, appearing to have come from the 

tertiary host, which must deal with the ensuing wave of echo-reply packets. 

2.4 Post-send spoofing 

In post-send spoofing, alterations are effected to user and/or service data after it has left the insti

gating origin host. The last host to make changes to data before it reaches the intended recipient 

becomes the effective origin of that data as depicted in Figure 2.1. Thus, unlike sender spoofing and 

as per our definitions earlier, in post-send spoofing the instigating and effective origins are not the 

same network host. 

Furthermore, unlike sender spoofing which is always fraudulent, post-send spoofing can also be 

used legitimately. There are a number of widely employed network mechanisms which result in 

user or service data being altered in such a way as to hide the identity of the instigating origin 

host. However, there are also fraudulent uses of post-send spoofing as well as some "grey" situations 

where legitimate mechanisms have the potential to be employed fraudulently. We consider examples 
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of each of these below. 

A general point is that regardless of whether it is legitimate or fraudulent the outcome of post

send spoofing is the same: the alteration of certain values in network data impedes the ability of a 

recipient host to identify the instigating origin of that data. It makes no difference if the spoofing 

was intended or not; in cases of legitimate post-send spoofing the user is typically agnostic to the 

fact. Thus even legitimate post-send spoofing can be problematic when the need to identify the 

instigating origin of network data arises. 

2.4.1 Post-send spoofing of user data 

The user data refers to data from the Application layer of the Internet model, as depicted in Figure 

2.2. As such it is not possible to foresee all circumstances in which this might be altered, legitimately 

or otherwise. Thus and as in our examination of sender spoofing of user data, the following should 

be taken as representative examples and not an exhaustive list. 

One legitimate use of post-send, user data spoofing arises from the special treatment required by 

the File Transfer Protocol (FTP) when Network Address Translation (NAT) is employed [42, 25]. 

We will examine NAT and similar mechanisms in our discussion of post-send service data spoofing 

below but mention the case of FTP over NAT here as FTP is user data. 

Instigating Origin _ ..... I-_~ 
(FTP client) 

• , I 

Effective Origin ! TCP ! 

(N~T~'! 
3 ~-:eciPi.nt 

(FTP server) 

Figure 2.6: Post-send spoofing with changes to user and service data for active mode FTP behind 
a NAT device 

In brief, in active mode FTP the client instructs the server to initiate the TCP connection 

over which the file transfer will operate. This instruction is communicated with a special control 

message (the PORT command) which informs the server of the IP address and TCP port to which 

to connect (on the client side). However, the client IP address specified in the instigating origin's 

(FTP) user data is non routable when NAT is in use and so the server will not be able to initiate 

the TCP connection. Thus, the NAT device needs to alter the control message sent to the server by 

replacing the specified IP address and TCP port with those being used by the NAT device for the 

file transmission. 

Figure 2.6 shows the order of operations and how changes are made to both user and service 
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data. As far as the FTP server is concerned, it is the ~AT device that has requested an FTP 

connection; in fact the server is completely oblivious to the existence of the instigating origin host. 

This phenomenon is not exclusive to FTP and can occur in any protocol that provides ser.·ice 

data identifiers (e.g., IP address or TCP port) within the user data, including the H.323 Internet 

Telephony protocol ([25] - Chapter 5, Section 5.6.2 - "NAT - Network Address Translation"). 

Another example of post-send, user data spoofing is exhibited by chained Secure Shell (SSH) 

connections. The SSH protocol allows secure communication between network hosts (achieving 

confidentiality, integrity and authentication) [43]. As such it is often used to allow remote users 

access to machines in their home network (e.g. a corporate or campus network). A gateway host 

will typically run the SSH daemon process that accepts incoming connections from remote hosts. 

Once a user has completed a successful login using their account details, a second SSH connection 

can then be established to another host within the local network (e.g. the user's own office desktop). 

j~_~~~_~_~!~tt r-ssR-j 
~I rcp! 

(service data) I IP f"', 
I MAC ~ "\~ --------..... .. 

Instigating Origin 
(host h1) 

fSSH'l , , 
i rcp' i 

/'i IP' ! " , 
"" i MAC'! 1 _________ _ 

Recipient host 
(host h3) 

Figure 2.7: Post-send spoofing; host hI establishes a chained SSH connection to host h3 through 
host h2 

This scenario is depicted in Figure 2.7; a remote user at host hI first performs an SSH login to 

host h2. Once logged in the user can perform commands on host h2 (depending on their account 

privileges) using the provided interactive (pseudo) shell. Thus the user issues the command to 

perform a second SSH login from h2 to the user's own machine, host h3. The SSH user data that 

flows between hI and h2 (hI f--7 h2) is not the same as the SSH user data between h2 and h3 

(h2 f--7 h3). When the user issues a command at host hI, this is encrypted using the session keys 

agreed with host h2 to produce the data hI f--7 h2. Once this arrives at h2 it is decrypted and then 

re-encrypted using the keys agreed between h2 and h3 to produce h2 f--7 h3 [43]. Thus the user 

data received by host h3 was actually produced at host h2 (the effective origin), even though the 

instigating origin of that data was host hI. 

A similar situation arises from an extreme form of post-send spoofing, known as mix networks 

[44]. These are particularly successful in hiding the identity of communicating parties, as this is in 

fact their raison d'etre. In mix networks the data transmitted by an instigating origin host will be 

passed through any number of proxy relays as depicted in Figure 2.8. Each of these makes a new 
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network connection to the next over which to forward received data until this is eventually delivered 

to the intended recipient. If confidentiality is provided with encryption of data between each pair of 

relays, as is the case with the "Tor Onion Router" [45] then the user data will be altered at every 

relay. In the example depicted in Figure 2.8, the instigating origin host hI issues an encrypted HTIP 

GET request intended for the web server s1. At each relay host, the user and service data values 

are altered. The last relay host, h4 becomes the effective origin and issues the cleartext HTIP GET 

request to s1. Thus as far as the web server is concerned, the given user data originated at host h4. 

rencrvpted--l f encrypted ' ! I encrypted ,,! I: I: I : 
I TCP , : TCP" : TCP" , I' I:. i 
: IP r.. }. IP ,! A IP " : 
I MAC 1\ 'i: II : , , • :, MAC" • , C'" 
-----------. \ 1 6: 6;_i 

relay 
(host h2) 

effective 
Insllgallng or;g;n.6:1-1- orig;n 

(host h1) relay (host h4) 

P-iiTp-GEfTl 
! TCP III ! 

(host h3) 

: 1------------
I IP ", : 
1 ' 
I MAC III : '-__________________ J 

web server 
s1 

4 

Figure 2.8: Mix network. The host hI issues an encrypted HTTP request which is altered and 
relayed through a number of intermediate hosts before being delivered in cleartext to web server s1. 

Recall that our definition of spoofing requires that alterations to network data result in the 

obscuring of the instigating origin's identity. In the case of both SSH chains and mix networks the 

user data transmitted by the instigating origin is encrypted. Thus, in any case we cannot rely on 

this user data to identify the originating machine. However the fact that the user data is altered in 

SSH chains or mix networks, albeit from one encrypted form to another still impedes our ability to 

track that data back to the instigating origin. It becomes difficult for instance to correlate the user 

data seen at different points of the network and thus reason about its origin. 

The case of SSH chains is an example of a "grey" scenario where it is not clear if spoofing is 

fraudulent or legitimate. It is possible for this legitimate mechanism to be used fraudulently such 

as if an attacker uses the compromised account details of another user. In such cases the attacker 

may assemble a number of compromised accounts to construct a connection chain, from which to 

launch a network attack. This would provide the attacker with a number of 'layers' of anonymity 

(Le. through each compromised host). We will consider connection chains and mix networks again 

in our discussion of post-send service data spoofing. 
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2.4.2 Post-send spoofing of service data 

Two well known and widely used examples of post-send, service data spoofing are related to resource 

provisioning in Local Area Networks (LAN). We have referred to one of these, :\etwork Address 

Translation (NAT) above and will be considering it further here. 

In aLAN, a number of hosts may share a smaller number of publicly routable IP addresses 

through the use of Network Address Translation [22], and repetitive requests for commonly accessed 

web pages are minimized with a proxy web-cache [25]. Here we examine specific modifications made 

to service data under NAT, noting that the techniques employed by a web-cache are similar. 

Briefly, when a client host sends an IP packet to the NAT process (which typically resides in the 

local network's Internet gateway router), the source TCP port and IP address are replaced. The 

NAT device selects an available TCP port (one that is not currently in use) and creates a connection 

to the intended destination from this port, using its own IP address. Local state regarding the origin 

host's IP address and source TCP port is stored for the duration of a connection, so that replies 

received at the NAT device's chosen TCP port are correctly forwarded. 

Figure 2.9 provides a conceptual view of how NAT operates. The two local hosts, hI and h2 are 

both assigned private (non-rout able) IP addresses by the local DHCP server (not shown). Host hI 

issues the request HTTP GET 1 that is addressed to web server s1. The NAT device needs to alter 

the source IP address used by hI with its own, rout able address IP. addr: 9; furthermore, the NAT 

device selects an available TCP port (port 1025 in Figure 2.9) and uses this to communicate with 

the web server s1. It should be noted that in the example shown and unlike the FTP over NAT 

scenario described above, alterations are limited to the service data. The instigating origin's user 

data (HTTP in this case) is forwarded unaltered. 

As far as s1 is concerned the request HTTP GET 1 was sent by the NAT device, which is the 

effective origin. Figure 2.9 also shows the state table maintained by NAT which allows it to correctly 

deliver any response packets. The TCP port to which the replies from each web server are addressed 

is used as a primary key in the state table, to reveal the address and TCP port used by the instigating 

origin; the reply packets are then altered accordingly and finally delivered to the local host. 

Due to its legitimacy, this is easily the most common type of spoofing. However, this type of 

post-send spoofing poses as big a hindrance to identifying the instigating origin origin of network 

data as sender spoofing, even more so due to its pervasive use. Almost every home wireless router 

will provide NAT services, allowing a single broadband Internet connection (and IP address) to be 

shared amongst a number of devices. Indeed, the inability to correctly identify the instigating origin 

of IP packets that come from a network using NAT was tested in a recent Californian court case 

(in 2006). Tammie Marson was alleged to have downloaded copyrighted material in proceedings 

brought by Virgin Records America Inc. [46]. However, the case was dismissed as it could not be 

proven that it was Tammie Marson's computer which had downloaded said infringing material. The 
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Figure 2.9: Network Address Translation 

defense centered on the fact that the defendant's home network was unsecured, with :\,AT in place. 

Furthermore, her capacity as a cheerleading coach meant that any number of girls frequenting her 

house could have been the guilty party, which has lead to this important precedent being termed 

"the cheerleader defense" [47]. 

Nonetheless, the degree to which NAT will obscure the instigating origin is bounded by the 

number of hosts in the local network. If the mechanisms by which data is altered are legitimate, 

then we can take the altered data values as being true. Thus, we can at least identify the effective 

origin's network; in the case of NAT the instigating origin is contained within this network. In Figure 

2.9 for instance, each of the recipient web servers would be able to identify that the instigating origin 

came from the network of the NAT device with IP address '9'. Furthermore, the instigating origin 

in this hypothetical scenario could only be one of two hosts (hI or h2). Of course there are many 

real world deployments such as corporate or campus networks in which the instigating origin may 

be one of thousands. 

In the case of sender spoofing to service data discussed in Section 2.3.2, an attacker can ensure 

that the source address in received IP headers is untrue. Thus, unlike in legitimate post send spoofing 
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the attacker would reveal nothing about their identity, not even their home network. This can be 

related to a notion of effort and associated reward; one can say that sender spoofing requires greater 

effort, with manual modifications to transmitted service data, but provides the greatest degree of 

anonymity. However, where post-send spoofing results from legitimate network processing, no effort 

is required by an attacker, though resulting in a lesser degree of anonymity. Furthermore. attacks 

that employ sender spoofing of service data are generally not possible when network-legitimate 

spoofing is in place, as the attacker's data is simply overwritten. As can be seen in Figure 2.9 if the 

host hl had used sender spoofing to alter its IP address to that of host h2, the ~ AT device would 

overwrite this value with its own IP address. 

We considered how mix networks can cause post send spoofing of user data if encryption is used 

between each pair of relays 'in the mix'. However in mix networks it is the alteration of service 

data values that poses the greatest hindrance to identifying the instigating origin. Mix networks are 

inherently fraudulent; their purpose is to intentionally hide the identity of communicating parties. 

This can of course be used for benevolent purposes such as in circumventing restrictions to Internet 

data mandated by government (the "great firewall of China" is one example). As depicted in Figure 

2.8, each relay host in the mix will make a new network connection to the next. meaning that post 

send, service data spoofing occurs at every stage. The recipient host cannot rely on the service data 

(e.g. a source IP address) to identify the instigating origin, as this will belong to the effective origin. 

Finally we consider a fraudulent form of post send, service data spoofing that is often associated 

with Denial of Service (DoS) attacks. In the relevant network security literature which we present 

in the next chapter, a series of successive compromised hosts, through which an attack is launched is 

called a 'connection-chain' [24]. Instances of this form of spoofing have been likened to to the "laun

dering" of network connections [48]. That is, an attacker assembles a number of compromised hosts 

and iteratively connects from one to the other (for instance using the SSH protocol) to eventually 

launch an attack from the last host 'in the chain', the effective origin. 

Interestingly, though the problem of sender spoofing was recognised earlier [49, 50], it is this 

form of post send spoofing for which a solution was first proposed by Chen et al. Their seminal 

work [24] introduces the term 'connection chain', without however explicitly distinguishing which 

data is altered (i.e. service or user or both). Rather, it is assumed that across the connection chain 

data will be largely invariant "once protocol details are abstracted out". That is, they consider that 

once transmitted from the instigating origin, changes are restricted to the attacker's service data, 

as is reflected in their ''thumbprinting'' approach. We will further consider their proposal and other 

approaches to connection chain traceback in the next Chapter. 

Other proposals dinstinguish whether an "attacker's communications" are fundamentally trans

formed or not when passing through compromised hosts [48]. We interpret this as referring to user 

data, given that service data is always transformed with changes at least to the Xetwork layer IP 
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address. The authors of [48] distinguish between a "stepping stone" , through which data flows ~n

changed in essence" and a "zombie" which "fundamentally transforms" data. A similar distinction 

is adopted by Mirkovic et al [8], who use "agent" and "zombie" interchangeably, and introduce the 

term "handler" in reference to a stepping stone as in [48]. 

There are two distinct scenarios which we must consider using our notions of user and service 

data. The intermediate compromised hosts may relay an attacker's user data, making changes only 

to the service data in a manner similar to NAT or a web proxy as depicted in Figure 2.9. However, 

it is also possible for the attacker to direct the compromised host to create its own user data for 

transmission, as can occur in an SSH chain depicted in Figure 2.7. 

It is not possible to generalise the circumstances under which changes will be restricted only to 

service data, as it will depend on the specific attack. Furthermore, as is pointed out by Mirkovic et 

al [8] an attack will likely involve elements of both scenarios, with the attacker employing handlers 

to relay commands to the agents, from which attack packets are generated. This is characteristic of 

attacks involving large numbers of compromised hosts, which act in coordinated unison to launch a 

large scale Distributed DoS. Instances of this type of spoofing are particularly successful at hiding 

an attacker's identity, though their feasibility and success will depend on the attacker's knowledge 

and determination in recruiting the required (compromised) hosts. 

2.5 Chapter Summary 

This concludes our definition and discussion of spoofing. We have distinguished where alterations to 

network data occur, that is, in the instigating origin host as in sender spoofing or, in an intermediate 

host (the effective origin) as in post send spoofing. In each case we have examined alterations at 

each layer of the Internet model using our generalisations of user data and service data. We saw 

that sender spoofing is always fraudulent and considered the factors that affect the way this type 

of spoofing might be maliciously employed with examples of known network attacks. However we 

also considered how post send spoofing may occur due to legitimate and widely employed network 

mechanisms. 

Invariably and regardless of the intent to defraud, the effect of spoofing is to obscure the origin 

of received data, as this is observed at the recipient host or (assuming an appropriate vantage point) 

within the network itself. We now turn to a discussion of various proposals that aim to trace the 

origin of network data when sender or post send spoofing has been employed. Finally Figure 2.10 

summarises the placement of each type of spoofing within this Chapter to aid the reader. 
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Chapter 3 

Elements of message traceback 

3.1 Introduction 

This chapter presents proposals that address the issue of identifying the instigating origin under 

conditions of spoofing as defined in chapter 2. Whilst some proposals deal with detecting the 

presence of or trying to prevent spoofing, most of the work considered here aims to "traceback" to 

the source of network traffic. Traceback means that one tries to determine the instigating origin 

host of some network data in spite of any alterations of that data. 

Our definition of spoofing identified the two main types, as summarised in Figure 3.1. There are 

also two main areas of traceback research addressing each of those two types of spoofing. Generally, 

sender spoofing is addressed by 'IP traceback' and 'layer 2 traceback', whilst post-send spoofing 

is addressed by 'connection chain (or stepping stone) traceback', as in Figure 3.1. We introduce 

the term 'message traceback' to describe any system that aims to find the instigating origin of 

network data regardless of alterations to that data - whether sender or post-send. Our own systems 

contributions are in the area of layer 2 traceback and are presented in the next chapter. 

No single approach to message traceback can claim to address all instances of spoofing. Snow et 

al explain that determining the identity of an attacker may require (up to) three stages [9], including 

IP and Layer 2 traceback, and where necessary connection-chain traceback. 

As we will see, IP traceback can reveal the instigating origin's "first hop" router, at which point 

layer 2 traceback aims to reveal the instigating origin itself. However, IP traceback systems may 

fail if the traced data is altered at intermediate hosts. In such situations connection chain traceback 

aims to correlate connections across the network that are part of the same connection chain. 

We begin our discussion by presenting IP traceback and layer 2 traceback as these are most 

relevant to our own systems work presented in the next chapter. We then conclude with a discussion 

of connection chain traceback both for completeness but also as proposals in this area both influence 

and are influenced-by IP traceback proposals. 
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Figure 3.1: Summary of the main areas of message traceback research and the type of spoofing that 
these address 

3.2 IP traceback 

The majority of IP traceback proposals attempt to either log or insert marks into IP packets as 

these are forwarded by IP routers. We group such proposals and state that these follow the 'packet 

accounting' paradigm. That is, they try to 'account' for IP packets by recording a packet's identity, 

based on its content, as well as its route, based on which routers forwarded that packet. This 

record of identity and route is then used to successively traceback a packet through the routers that 

forwarded it. 

We note that the two approaches of marking and logging have different emphasis, with regards to 

recording packet identity and route. When marking, the route is explicitly recorded by inserting each 

router's unique identifier into packets. There is no need to record the identity of each packet as this 

is provided by the marked packet itself. However, when logging packets, one must explicitly record 

the identity of each packet and the route is deduced by querying visited routers. This difference 

in approach is visualised in Figure 3.2 which shows the two main approaches to IP traceback and 

whether identity or route is explicitly recorded in each case (with the other captured implicitly). 

By accounting for packets one can traceback a given packet after this has been delivered and is 

no longer being forwarded through the network. The duration during which a packet can be traced 

back after it has been processed by a given router is termed the 'traceback window'. This will 

inevitably depend on available storage resources but also on the efficiency of a particular traceback 

method. 

With regards to sender spoofing, it is not possible or practical to expect a 'secure' TCP lIP 

implementation in all hosts to ensure the use of valid values in network data (e.g., ensure a valid 

source IP address is used). End user equipment is heterogeneous and IP traceback approaches 

typically treat this as 'off-limits'. Furthermore such an approach would not solve the cases of post

send spoofing as the valid values inserted at the instigating origin would simply be overwritten by 

the values inserted at the effective origin. 
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Figure 3.2: Accounting for packets by capturing identity and route; packet logging captures packet 
identity and packet marking captures packet route 

We will now consider proposals that account for packets (packet marking, logging and hybrids 

therein) before presenting some interesting work related to spoofing detection, prevention and spoof

ing attack mitigation. 

3.2.1 Packet Marking 

The core idea of packet marking is for participating routers to insert a unique identifier into packets, 

before these are routed to their destination. Thus, a recipient host can use the marks to recreate 

the packet's route through the network. This will ultimately allow discovery of the first (marking) 

router to have handled a given packet, termed the instigating origin's 'first hop' router. Two central 

challenges are how marks are to be carried within a packet and how to prevent degradation of router 

throughput as a result of the additional per packet processing. 

Savage et al were the first to propose Probabilistic Packet Marking r1]. In order to maintain 

router performance, only a subset of all packets traversing a router will be marked, governed by some 
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Figure 3.3: IPv4 header showing how the IPID field is ut ilised by the Compressed Edge Fragm nt 
Sampling scheme (this diagram is from the CEFS paper [1]) 

probability. The a uthors suggest use of the IP Identification (IPID) field to hold t he mark , providing 

16 bits of storage utilised as shown in Figure 3.3. The proposed encoding scheme, Compre ed Edg 

Fragment Sampling (CEFS) uses the link between two routers, called an edge, as the pack t mark. 

As the IPID field does not provide enough space to hold an edge, each packet is probabili tically 

marked with partial edge information ; a total of 8 marked packets are required to reconstru t ach 

edge. This important early work pioneered the probabilistic packet marking (PP 1) approach and 

addressed the two most obviously pressing issues central to packet marking: marking space and 

router performance. For example, the most frequent operation required of marking router i to 

increment the 'distance' field of the CEFS scheme, which occurs in bits 3 through 7 of the IPID 

field. The alignment of this field wit h the IPv4 TTL field decremented at each router resul ts in no 

changes being required to t he header checksum . 

Very shortly after CEFS, Doeppner et al proposed ' router stamping' [51] where each router 

inserts the IP address of the previous router (i. e., from which a given packet was sent). The authors 

suggest that the IPv4 header size be increased to accommodate packet marks. Schemes such as this 

that require changes to existing and widely used protocols are difficult to implement. 

Song and Perrig proposed the Advanced and Authenticated Marking schemes [52]. Whilst they 

acknowledge the "promising solution" of CEFS and its acceptable router overhead , the authors 

introduce and address 3 addit ional and important challenges for PPM. The first is the computational 

burden on the recipient host in recreating a packet's route from edge fragments, in the face of a 

Distributed DoS. The second is t hat in such DDoS condit ions the reconstruction process produces a 

large number of false posit ives. The Advanced marking scheme [52] addresses these issues, requiring 

however t hat t he recipient has a view (map) of the entire network a priori. The third issue is 

protection from compromised routers, and this is addressed by the Authenticated marking cheme 
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[52]. Along these lines and around the same time, Park and Lee formalise the notion of an attacker 

spoofing the marking field [53]. 

Another proposal that considers false positives and the falsification of marks by a cognizant 

attacker is the 'randomize-and-link' approach by Goodrich [54]. Here, as with CEFS. each packet 

carries a 'message fragment' due to marking space constraints. However, rather than filling all 

available space with a fragment, some is instead devoted to conveying (part of) a checksum oyer the 

entire 'edge' being communicated. This serves to aid the reconstruction process whilst fortifying 

the scheme against malicious marking by an attacker. Goodrich uses 25 bits in the IPy-! header. 

in the fields identified by Dean et al, who develop a series of schemes for the "algebraic coding of 

paths". Besides the 16-bit Identification field, they also suggest using the 8-bit Type of Service field 

as well as 1 bit from the More Fragments flag. Again, the authors consider their scheme in the face 

of multiple attackers (Le., DDoS) who can attempt to confuse the marking scheme. 

Belenky and Ansari are the first to propose a deterministic packet marking (DPM) proposal [11], 

albeit with a somewhat relaxed traceback result. That is, for a given packet the authors aim to 

determine the point of entry to the packet marking enabled network. Thus, edge routers mark all 

ingress packets with the IP address of the recipient interface. A total of 17 bits are required in the 

packet header and as in other proposals the authors suggest to use the Identification field as well 

as the Reserved flag (the "evil bit" [55]). Jones et al [56] propose another deterministic marking 

approach that aims to discover a given packet's network entry point. Their approach is novel in that 

the 8 bit IPv4 Time-To-Live field is used. Edge routers set this to an arbitrary and configurable 

value that is unique to each router interface in order to convey the given packet's ingress or egress 

point. 

In his study Adler [57] considers the tradeoff between the number of bits b used to mark each 

packet and the number of packets n required for traceback. He shows that most previous proposals 

require b 2: log n. In the case of a single attacker Adler demonstrates the possibility of using b = 1 

bit though requiring a great number of packets for reconstruction. In the case of multiple attackers 

such that packets follow k different paths it is concluded that b must be at least log 2k - 1. 

Yet another deterministic proposal is made by Velloso et al who suggest that each packet can carry 

its entire route [58]. Their scheme utilises an adaptation of the space efficient "bloom filter" [59] in 

the packet header. Though they find that 16 bits suggested in other proposals are insufficient for this 

purpose, they do not identify where their 'generalised bloom filter' (GBF) might be accommodated. 

In their short paper, Castelucio et al build on the GBF scheme and suggest a new "IP Traceback" 

community for the Border Gateway Protocol to allow peer networks to propagate their traceback 

capabilities amongst themselves [60]. 

Lai et al propose the novel 'Ant based' traceback where the marking procedure is initiated by 

the recipient of a malicious flow [61]. Starting at the recipient's first hop router, the traceback 
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packets (termed 'ants') use flow information maintained by routers to probabilistically determine 

which router they should visit next. The premise is that in DoS situations the large size of a given 

flow at a router will be indicative of its participation in an attack. Thus links with larger flows are 

assigned a higher probability so that more ants follow these. The ants record all routers they have 

visited until they reach the edge of the monitored network. 

Shi et al propose a deterministic marking scheme for IPv6 [62]. Their approach is based on the 

encoding schemes by Song and Perrig [52] considered earlier. Each network link is assigned a unique 

16 bit signature and the authors suggest the 20 bit Flow Label field of IPv6 to communicate these 

to the packet recipient, or alternatively an IPv6 extension header. A router marks all packets by 

performing the XOR of the egress link's signature with the current packet marking area so that a 

single packet will carry the whole route. 

i---------· 
: route' ----------,,, 

\ 

\~[~~~ 

Instigating r1 ~
outer 

Origin. 

.----:=. i····· ! traceback packet 

.. _____ 1 

~ regular IP packet 

Figure 3.4: The messaging approach to IP traceback - both packet and router identity are captured 
and inserted into traceback messages 

The use of additional messages rather than packet marks was first proposed by Bellovin and 

Leech [63] who defined a new type of ICMP message for this purpose. This is generally known as 

the 'messaging' approach to IP traceback and we briefly consider it here as marking and messaging 

are in-band and out-of-band signalling, respectively. In their proposal Bellovin and Leech suggest 

that routers probabilistic ally send traceback messages to a given packet's recipient, complete with 

authentication data, a timestamp and part of the original packet. Mankin et al [64] provided an 

improvement to this scheme which utilised an 'intention bit' in routing tables to better guide the 

(probabilistic) generation of traceback messages. Whilst this served to lower the number of traceback 

messages required for path reconstruction, Kuznetsov et al [65] note that the messaging approach 

would still require deployment at all routers in order to be useful. They suggest that aside from 

generating traceback messages, routers should also probabilistically insert their own IP address into 

the traceback messages generated by upstream (i.e., earlier) routers to 'fill in the gaps' when some 
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routers do not generate traceback messages. 

In general, the messaging approach is at an inherent disadvantage. As was discussed, to account 

for IP packets one must identify each packet and its route. Whilst logging and marking need only 

explicitly record one of these factors as visualised in Figure 3.2, messaging must convey both. This 

is illustrated in Figure 3.4 where at each router the identity of a packet and its route (by way of the 

router's identity) is captured and inserted into traceback messages. 

3.2.2 Packet Logging 

In the packet logging approach to IP traceback, rather than signalling the route to recipient hosts as 

in packet marking, state is instead retained within the network for subsequent querying. Thus, rather 

than reconstructing the routes themselves, end hosts will dispatch traceback requests either directly 

to routers or by way of a traceback 'management' host. As with packet marking, the challenges that 

logging schemes face are processing overheads for logging routers and the amount of logged data. As 

we will see there is an inherent tradeoff in these two factors; improvement in one adversely affects 

the other. 

The "Trajectory sampling approach" by Duffield et al [2] is one of the earliest proposals relevant 

to our discussion, though the authors do not use the term 'IP traceback'. Rather, the aim is 

to determine the paths followed by packets between the ingress and egress points of a monitored 

domain for "resource allocation and capacity planning". In trajectory sampling, a cryptographic 

hash value is computed over the invariant fields of the packet header and a part of the payload (in 

total 40 bytes) for each received packet. If the hash value falls within a predefined and configurable 

range, then the packet is logged as a 20 bit label - this is sufficient as the authors are not interested 

in reproducing packet content, but merely the 'presence' of a given packet. Thus by using the 

same hash function and range at all routers for a given time interval, packets are logged at all 

nodes or not at all, which improves correlation of logging compared to each router independently 

and probabilistically logging packets .. The identification of invariant fields in the packet header is 

an important contribution of this proposal with similar fields being used by Snoeren et al in their 

SPIE proposal which we consider subsequently. Figure 3.5 shows as unshaded the fields with "high 

entropy" that Duffield et al use as input to the cryptographic hash function. As can be seen fields 

such as the IP version number and header length (HLen) are not used as they are considered to have 

low entropy - that is there will not be a great variation in these values in different IP packets. 

The seminal Source Path Isolation Engine [3] (SPIE) is the most widely cited of logging based 

traceback proposals. The authors demonstrate the feasibility of a deterministic logging process where 

all packets are logged. This is accomplished through the use of Bloom filters [59]. A Data Generation 

Agent (DGA) is deployed at each router and is responsible for processing and logging packets. The 

DGA maintains a bloom filter for each time interval. A bloom filter is a one dimensional bit array, 
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Figure 3.5: Invariant fields in the IP packet header identified by Duffield et al [2] - thi diagram is 

recreated from a colour version in their paper 

with all elements initialised to O. The n bit output of a cryptographic hash fun tion 0 r ach 

packet's content is used as an index into the bloom filter which is of length 2n as hown in Figur 

3.6 (this diagram is taken from the SPIE paper [3]). The bloom filter elements id ntifi d by ach of 

k hash functions over the packet content are set to 1. Thus, to check whether a given pack t was 

inserted (a packet 'membership test') requires the computation of k hashes and confirmation that 

all specified elements in the given bloom filter are 1. The invariant fields u ed by noer n et al diff r 

slightly to those identified in trajectory sampling above, with a total of 24 bytes u ed as input to th 

hash function (8 of which are from the packet payload). Our fir t proposal for a Layer 2 traceback 

system [15] is an adaptation of SPIE, which we will consider in more detai l in the next chapt r. 

I'" n bits ~ I 

Figure 3.6: For each packet the n bit output of k hash digests is used to set elements into a bloom 
filter of size 2n (this diagram is from the SPIE paper [3]) 
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In their proposal Baba and Matsuda term the logging approach to IF traceback as 'hop by hop 

tracing' [66]. Routing nodes log packets together with their data-link level identifier (e.g., the ~IAC 

address of the recipient or sending router interface), reasoning that an attacker will have no control 

over the information inserted by forwarding routers. The authors use a "packet feature structure" to 

uniquely identify packets consisting of similar fields to those used in trajectory sampling and SPIE 

(the authors do not refer to those proposals themselves) as well as up to 20 bytes of packet payload. 

Storing packet data together with data-link level identifiers simplifies the traceback process. When 

a router is found to have processed a given packet, the 'next' router to be queried is explicitly 

identified, though the authors do not consider how to reduce logged data for efficient storage. 

In their work, Shanmugasundaram et al introduce the hierarchical bloom filter (hbf) for "payload 

attribution" [67]. They argue that IP traceback based on logging of invariant packet content is of 

little use unless one has the entire IP packet to be traced. The hbf can accomodate tracing of 

"a reasonably long excerpt" such as 128 bytes of the original packet payload. The authors first 

introduce a 'block bloom filter' (bbf): each packet is split into 'blocks', each of which is appended 

with its offset before being inserted into a bloom filter (which is now a bbf). A collection of these 

forms the hierarchical bloom filter structure. At level 0 of the hierarchy, packets are inserted in 

blocks of size n whilst at level 1 the block size is increased to 2n until eventually the entire packet 

is used as input to a bloom filter. Thus, given a packet excerpt, the traceback procedure tries to 

establish a match at the lowest level before moving up to match as much of the packet as possible 

depending on excerpt length. 

Lee et al consider consider 'scalable packet digesting schemes' [68]. Whilst they acknowledge 

the clever bloom filter technique of Snoeren et al, the authors predict that storage requirements 

for deterministic, per packet logging will continue to be a problem with increasing link speeds. 

They discuss the use of 'flows' as well as 'source-destination' grouping (using only the source and 

destination IP address) to lower storage requirements. 

Zhang and Guan proposed the 'Topology aware' single packet traceback scheme [69] which tries 

to decrease the false positives inherent to bloom filters (and specifically as employed by SPIE). Given 

a number of bloom filter insertions the number of hash functions used for each packet's insertion and 

the bloom filter size can be tuned to produce an optimally low false positive rate. However as the 

number of insertions is dictated by the rate at which packets traverse a router (e.g., link speed) it 

is difficult to optimally tune these a-priori. The authors propose a "k-adaptive" algorithm whereby 

a router maintains a number of bloom filters, each using an increasing number of hash functions 

for packet insertions. At the end of each time interval the bloom filter producing the lowest false 

positive rate is retained whilst the rest are discarded. The authors adopt a similar approach to that 

of Baba and Matsuda, in including the layer 2 "predecessor information" (e.g., sending or recipient 

router interface MAC address) in logged data. 
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The issue of partial deployment is the focus of a study by Korkmaz et al who consider the 

scenario where only some Autonomous Systems are 'traceback enabled' [70). They propose the 

Border Gateway Protocol BGP as a medium for communication between SPIE deployments and use 

simulation to show that logging based traceback can still be useful in a partial deployment. The 

authors consider the trade off between deployment ratio and traceback success rate in a number of 

network topologies. 

Finally, Thing et al propose 'non intrusive' traceback for DDoS attacks [71). The premise here is 

that packets between a given source-destination pair will follow a relatively static route as routing 

table updates are infrequent. Furthermore, the most popular web servers will have stable routes as 

they use reliable and well managed connections to the Internet. When the source address is spoofed 

then packets will pass through a non expected path (for that source-destination pair). Thus the 

authors advocate that routers build a cache of ''valid source addresses" in learning mode. This 

consists of the source-destination addresses as well as a timestamp. The "white list" cache is then 

used for comparison to sampled traffic in operational mode. The authors use simulation to show 

that this scheme need only be deployed at border routers, though the generation of attack graphs 

from sampled data is not well explained. 

3.2.3 Hybrids of the marking and logging approach 

Advocates of a packet marking approach may argue that logging incurs an unacceptable storage and 

performance cost within the network. Similarly, advocates of packet logging will argue that marking 

incurs an even higher performance penalty at routers but also a performance and storage penalty at 

(resource poor) end hosts. Some proposals have thus taken a hybrid approach in an effort to achieve 

the 'best of both worlds'. 

Li and Sung argue that though efficient, the SPIE system cannot scale to higher link speeds (such 

as OC768 at 39.8Gbit/s). Their 'One Bit Random Marking and Sampling' proposal (ORMS) [72) 

thus adopts a sampling approach to achieve an "order of magnitude smaller processing and storage 

cost" than SPIE, which deterministically logs packets. Their scheme utilises a single bit in marked 

packets which serves to improve the correlation factor between neighboring routers, in terms of which 

packets are logged. This bears some resemblance to the 'intention driven' messaging approach by 

Mankin et al [64) that we considered earlier, in which a single bit in routing table entries serves to 

better guide the probabilistic generation of ICMP traceback messages. In ORMS, for each packet 

received a router must check a single signalling bit; if this has been set to 1 by a previous router 

then the packet is stored into the bloom filter and the mark reset to O. Otherwise, if the bit is 0 

then it is probabilistically either set to 1 and the packet logged, or the packet is simply forwarded 

normally. The authors suggest that by sampling 3.3% of packets into a bloom filter with k = 12 

hash functions, a memory utilisation as low as 0.58 bits per packet is achievable. 
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Another marking and logging hybrid is TRACK (rouTer poRt mArking and paCKet filtering) by 

Chen et al [73], who also make use of a marking flag. Interestingly the authors use a router interface 

as the 'atomic unit' of traceback (rather than the router itself). Each interface is given a (locally) 

unique 6 bit identifier, that is probabilistically inserted into packets before these are forwarded. In 

total 18 bits are required: 5 bits record the distance at which the packet was marked and are taken 

from the Time to Live field, 6 bits for the interface identifier, 6 bits hold the exclusive-OR of all 

interface identifiers encountered and a 1 bit marking flag. Routers also maintain a 'trace table' (the 

logging component) which records the hop counts, port identifiers and value of the X 0 R field from 

received packets, to be used during path reconstruction. In 'active' mode, for each packet received 

and if the marking flag is set to 0, then the packet is probabilistically marked with all aforementioned 

fields being updated, and the flag set to 1. In 'passive mode' however packets with no marking flag 

set are forwarded without modification. When the marking flag is set in passive mode, then only the 

XOR field is updated. A victim initiates the traceback procedure by creating its own trace table 

from received packets, before sending this to the first hop router, which eliminates those entries that 

did not participate in the packet's route. This is then forwarded to all second hop routers and the 

process repeated until the network edge. Border routers then return the trace table to the victim. 

In their 'Distributed-log-based scheme' (DLS) Jing et al [74] build on their earlier 'Hierarchical 

Traceback System' (HITS) and suggest a HMAC enhanced HITS. The HITS scheme describes an 

architecture in which marking agents (MA) insert identifiers into forwarded packets, and Evidence 

and Collection Agents (ECA) retrieve marks from packets for logging. In their DLS, 29 bits are 

required in packet headers, 21 of which maintain a hash of the marking router's IP address and 

the rest hold the current value of the Time to Live field (as in TRACK this conveys marking 

distance). When a packet is to be marked (depending on some probability) and it has previously 

been marked, then a router will log the packet's mark fields before inserting its own values. Each 

log entry maintains the given router's IP address (and the HMAC of this), the HMAC from the 

marked packet, the packet's destination and a hop count. FUrthermore, each entry also has a 'count 

number' recording the number of packets in a given flow (records needn't be maintained for each 

packet). 

A similar proposal is made by AI-Dwairi and Govindarasu [75] with their "store, mark and 

forward" approach. Distributed-link-list traceback (DLLT) is the the first of two schemes developed, 

in which routers probabilistic ally store the current values from a previously marked packet into a 

local Marking Table before inserting their own IP address into a 32 bit marking field. Bloom filters 

are employed as in SPIE, however, the value of the first of the k hash functions in which a 0 bit 

is encountered is used as an index in memory which holds the marking information (the Marking 

Table entry) for the given packet. Thus, the packet requires an additional space beyond the 32 bits 

of IP address to convey this hash number. When a packet is not marked it is also not logged, and 
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the use of an extra 'marking flag' to improve logging/marking correlation is considered. The second 

scheme proposed is the Pipelined probabilistic packet marking (PPPM) which requires more than 

40 bits for packet marks: a 32 bit IP address, an 8 bit Time to Live and a 'c-bit' value uniquely 

identifying the given packet. For each unmarked packet received, and when there is no current 

marking information to be conveyed to the destination, the router will insert is own values and 

forward. If a packet is already marked, then the current values are buffered locally, before this is 

re-marked. Marking processes are probabilistic and even when it is decided that a packet is not 

to be marked, locally buffered data (i.e., earlier marks) that are addressed to the given packet's 

destination are 'piggy-backed' using the usual marking fields. 

Finally we consider the interesting Proactive Signalling Architecture (PSAT) by Fadlallah and 

Serhrouchni [76]. Interestingly their proposal is a logging and messaging approach in which IP flows 

are monitored and logged. The information maintained includes the flow information (source and 

destination IP addresses and TCP /UDP ports), a unique session identifier generated by the first 

participating router, and a list of routers encountered (termed 'Traceback Signalling Entities'). The 

authors define three types of messages: signal, query and response. The signal message is generated 

by routers from monitored IP flows, to convey to other routers that a given flow is of interest and 

should be logged. This contains the flow information, session identifier and a list of routers along 

the flow's path (IP address and HMAC of this) as well as a timestamp. 

3.2.4 Attack Detection or Mitigation proposals 

Finally we will consider some proposals do not follow the paradigm of accounting for packets (mark

ing, logging and hybrids) but rather attempt to detect, prevent or mitigate the effects of sender 

spoofing. We briefly consider some of this work here to complete our overview of IP traceback 

research. 

Templeton and Levitt explore a number of interesting detection techniques based on the use of 

probes [77]. These involve a probe packet being sent to the purported source of incoming packets, 

with subsequent replies (if any) checked for consistency with the original. They describe how the 

IPID (Identification) and TTL (Time to Live) fields of the IPv4 header might be used to detect a 

forged source address, e.g., the IPID of the replies should be greater than and close in value to those 

of the original packet. The notion of analysing the values of TCP /IP fields in network traffic to 

reason about that traffic's origin was first employed in the field of 'operating system fingerprinting' 

[78, 79, 80, 81]. A very interesting proposal for 'Physical Device Fingerprinting' [14] takes this 

approach further, by using the TCP timestamps option [82] to detect the unique clock skews of end 

hosts. That is, it "fingerprints" the machine itself rather than deducing what software it is running. 

A simple though somewhat limited preventive measure was suggested by Ferguson and Senie 

with 'ingress and egress filtering' [83] at the entry point to a network. Traffic entering a network 
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(ingress traffic) should not carry a source address from \\ithin that network's address range. As 

shown in Figure 3.7 the packets sent by remote host rh2 are succesfully blocked as they carry the 

source address 192.168.1.2 which is used within the local network. Similarly. traffic exiting the 

network should only carry a valid source address, that is, one that exists within that network (egre5:-; 

filtering). In Figure 3.7 host hI tries to send packets that carry a source address not currently in use 

within the local network and these are successfully blocked. HoweYer and as demonstrated in the 

diagram, one shortcoming of this approach is lack of protection from local spoofing attacks: local 

host h2 can still successfully masquerade as local host hI. Furthermore, remote host rhl can still 

employ sender spoofing but not with an address used in the local network . 
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Figure 3.7: Ingress and Egress filtering 

A relatively recent proposal by \Yang et al advocates 'hop count filtering' as a defence against 

spoofed IP source addresses [84]. Their scheme is based on the premise that an attacker cannot 

forge the number of hops a packet takes in reaching its destination, and that this can be inferred 

from the IP Time to Live field (TTL). Hop count filtering (HCF) begins in a learning mode in 

which 'IP to Hop Count' (IP2HC) tables are constructed from established TCP connection data. In 

filtering mode, packets are dropped if there is inconsistency between the current values for a given 

source address and those stored in the IP2HC table. The authors acknowledge the problems posed 
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by NAT, as multiple hop counts may appear to originate from one host, as initial TTL values are 

not consistent across different Operating Systems (though the TTL used by a given OS is usually 

"well known"). They also propose address prefix clustering to reduce the memory requirements of 

the IP2HC table (so hop counts aren't maintained for individual hosts). 

One of the earliest proposals that explicitly aimed to determine the origin of a DoS attack but 

which still did not follow the 'packet accounting' paradigm is the novel and potentially controversial 

'Controlled Flooding' by Burch and Cheswick [4]. In the face of a packet flood, the authors suggest 

selectively flooding incoming network links with controlled 'bursts' of traffic. If a difference is 

seen in the attacking packet stream before and after flooding a given link, the attack is said to 

originate 'behind' that link. The process is then repeated upstream towards the attacker's network. 

Flooding of a link is achieved with the TCP character generator (chargen) service [85] which generates 

continuous data to a requesting party. It is interesting to note that the authors in fact employ sender 

spoofing of packets to accomplish the flooding. When testing the link between router 1 and router 

2 (Rl and R2) and where Rl is closest to the victim network (from which flooding is instigated), 

service requests are sent to chargen servers beyond R2, but carrying the source address of Rl, which 

will then receive chargen replies (and the link between the routers is flooded). 
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Figure 3.8: Controlled flooding - diagram is taken from [4] 

Another early and important proposal is 'CenterTrack' by Stone [86] which as with Controlled 

Flooding above, requires a catholic view of the network a priori (this is not the case in many 'packet 

accounting' methods as we will see). In CenterTrack, an 'overlay network' is formed between all 

border routers and a dedicated tracking host in the network center (e.g., with the use ofIP tunnels). 

When an attack is detected at the border routers the attacking packet stream is forwarded to the 
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tracking host, which can quickly determine the ingress adjacency; that is, depending on the border 

router forwarding the packet stream, we can determine which adjacent network the traffic originated 

from. 

The last two proposals are important as they predate most other IP traceback work. However, 

they are inherently limited in requiring an ongoing attack stream in order to proceed the traceback 

(and not just a small number of packets or even a single packet). This also means that they cannot 

perform traceback post mortem. This is one of the important advantages of proposals that either 

mark or log packets (i.e., that follow the traffic accounting paradigm), but which of course comes at 

the cost of storage and performace overheads as we will see. Consider that the controlled flooding 

technique above is essentially stateless; no information needs to be stored either within the network 

or at end hosts. 

This concludes our examination of IP traceback proposals which address the issue of sender 

spoofing by trying to traceback to the instigating origin. We have considered proposals that account 

for IP packets by recording each packet's identity and route, either through packet marking or packet 

logging (as well as hybrids therein). We have collectively termed these proposals as following the 

packet accounting paradigm. We have also given an overview of related work that attempts to detect, 

prevent or mitigate the effects of sender spoofing rather than trying to identify the instigating origin. 

We now turn to layer 2 traceback which also addresses sender spoofing and extends the traceback 

process to the instigating origin's home network. 

3.3 Layer 2 traceback 

Layer 2 (L2) traceback systems as with IP traceback above address the issue of sender spoofing. 

Generally L2 traceback aims to locate the physical point of connection within the instigating origin's 

home network. That is, given some received network data L2 traceback aims to locate the point 

at which this data was first processed by a networking device. In the case of switched ethernet for 

instance, L2 traceback proposals use a switch identifier (s1 D) together with the switch-port number 

(pNO). 

IP traceback systems cannot themselves identify the instigating origin as invariably, packet ac-

counting mechanisms (whether marking or logging) are deployed in IP routers. However, the layer 2 

data (such as source MAC address) that may help to identify the instigating origin are not available 

as these are removed at the gateway of the origin's home network. This shortcoming of IP traceback 

is well known; Hazeyama et al state that [5) IP traceback reveals the origin network but not the 

origin host. Figure 3.9 illustrates that IP traceback can identify the instigating origin's "first hop" 

(or gateway) router, at which point layer 2 traceback (L2 traceback) aims to reveal the instigating 

origin itself. 
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Figure 3.9: IP traceback identifies the instigating origin's first hop router. La.\'Pf 2 traceback ext('nd~ 
the traceback process to identify the instigating origin within the local network 

Our own proposals [15, 12, 13] are in the area of L2 traceback for switched ethernet. As such \\T' 

defer a discussion of the challenges of this environment for traceback when we pres('nt our work in 

the next chapter. We now give an overview of some L2 traceback proposals noting that thew has 

generally been less work in this area compared to IP traceback. 

3.3.1 Layer 2 traceback proposals 

Hazeyama et al [5] are the first to directly address the issue of traceback within the instigating origin 

network. They adapt the Source Path Isolation Engine (SPIE) [3] for deploynH'Ilt in a switched 

ethernet network. As introduced earlier, SPIE [3, 17] is a logging based IP traceback system where 

a Data Generation Agent (DGA) logs a hashed digest of each packet forwarded by a router, using 

bloom filters to achieve significant memory efficiency. 

In [5] Hazeyama et al propose a Layer 2 extension to hash based IP traceback. They deploy 

their extended DGA (xDGA) in gateway routers. For each received frame the switch identifier s1 D 

is inferred from the MAC address of the recipient router interface (i.e., the frame's destination \lAC 

address). By maintaining local copies of each s\yitch \IAC address table and given the s1 D the 

MAC-table of the given switch is used to determine the origin port number pNO based on the frame 

source MAC address, The sID and pNO are then concatenated with pa(:ket data before a message 

digest is produced and used to set bloom filter elements (Figure 3.6). This important work is the 

first to directly address the issue of traceback within the instigating origin network. Howeyer the 

deployment suggested by the authors requires a very restrictiYe network topology where all ho~ts are 
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separated from the network edge by only a single switch. This is illustrated by Figure 3.10 where in 

the case of host hI, the frame destination MAC address X allows one to infer that the instigating 

origin is on switch 1 as this is the only switch reachable on router interface 1. However, in the case 

of the frame sent from host h3 it is not possible to infer the instigating origin's switch. Thus it is 

not clear which switch MAC-table should be used for the port number lookup based on the frame's 

source MAC address. This constraint on network topology somewhat limits the applicability of this 

proposal in real world deployments. 

· · · · · I r------------.. ---------~-_. 
I src MAC.addr: 1 I 
i dst MAC.addr: X I '-------------------------_.1 

src MAC.addr: 3 
dst MAC.addr: Y 

: 
I 

interface r2 
MAC.addr: Y_'----' 

Router 
(xDGA) 

interface r1 
MAC.addr: X 

mac.addr: 3 

Figure 3.10: Deployment of xDGA in a Layer 2 extension to IP traceback [5J 

In their more recent proposal, Hazeyama et al [87J deploy a single packet digesting tapbox that 

has a direct link to every switch and router in the network. Due to the problems of traffic visibility 

in the switched ethernet environment (which we address in the next chapter) they use N to 1 switch 

port mirroring to replicate all frames forwarded by each switch to the single digesting tapbox. The 

replicated frames are sent to a special monitor port on each switch, to which the packet digesting 

tap box is connected. The digesting engine maintains a 'retrieve hash table', which maps a message 

digest to a source MAC address (taken from the given frame). When a traceback request is received, 

the message digest is computed and the retrieve hash table searched for a match. If this is found the 

appropriate source MAC address is used to query the switch forwarding databases of all switches 

(FDB) to reveal the origin switchport. In this paper they term Layer 2 traceback as "Intradomain 

traceback". This newer work [87J was published at the same time as switch-SPIE [15J and the two 

systems share some similarities in the use of port mirroring. However, this newer work still faces 

the same scalability issues as their earlier work [5J by using a single digesting tapbox. 

We encountered TRACK (rouTer poRt mArking and paCKet filtering) [73J in our discussion of 

hybrid IP traceback systems (Le. that use logging and marking components). Snow et al [9J build 

on that earlier work to propose Link-Layer traceback in switched ethernet networks. This scheme 

is also called TRACK (Tagged fRAme tracebaCK) and similarly adopts a hybrid approach with 

both logging and marking elements. Tags are applied to ethernet frames by an 'in switch' process. 

Each tag includes a keyed-Hash Message Authentication Code over the first 32 bytes of IP data 
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carried by its frame. A separate process in the 'Analysis and Collection Host' removes and logs the 

tags with links to a sorted 'host table' (each host is sID and pNO). This very interesting proposal 

trivialises a core process of other known solutions: establishing causality between a given frame and 

the originating switchport (pNO). TRACK assumes an 'in switch' process and we agree that this is 

the best vantage point for establishing pNO. However, implementing traceback 'in switch' assumes 

functionality that is (typically) not available. 

Finally we consider two proposals that address the issue of Layer 2 traceback in wireless networks 

rather than switched ethernet. In [88) Huang et al and in [89) Kim et al explain the unique set of 

requirements created by a mobile ad hoc network (MANET) for layer 2 traceback of frames. For 

instance, there is no fixed network infrastructure, all nodes act as both hosts and routers, and no 

nodes are trustworthy. Furthermore, in such an environment the traceback result must be relaxedj 

rather than try to uniquely identify the instigating origin the traceback process terminates at the 

first encountered 'malicious node' (which we term the effective origin). 

Huang et al [88) propose Hotspot based traceback for mobile ad hoc networks (MANET). Here 

the authors use the 'tagged bloom filter'. Whilst a 'regular' bloom filter as used in SPIE [3J is a 2n 

bit array of single dimension (Figure 3.6), a tagged bloom filter is a 2-dimensional array of size 2n by 

c. The c bits of the second dimension are used to store a relative time to live (RTTL) when setting 

elements of the bloom filter. The RTTL is calculated from the Time to Live (TTL) value in the 

IP packet header and serves as the tag for each frame. The premise is that well behaving routers 

will decrement the TTL by 1 and so this can aid the path reconstruction process. Kim et al [89J 

propose attacker traceback with cross-layer monitoring in wireless multi-hop networks. The authors 

focus on persistent attacks, that is, sender spoofing employed in flooding Denial of Service attacks 

as examined in Chapter 2. In this logging based approach, a normal profile is constructed for each 

node based on the cumulative frequency of observed data (e.g., number of frames). This is stored 

together with MAC and IP layer data in the abnormality table which is indexed by destination MAC 

address but also contains the previous hop MAC address. 

3.4 Connection chain traceback 

We now consider those proposals that aim to traceback to the origin of network data, when post send 

spoofing has been employed. As we saw in the previous chapter, post-send spoofing can be fraudulent 

as well as legitimate. The proposals presented here invariably address fraudulent post-send spoofing. 

In the literature, a series of successive compromised hosts, through which an attack is launched 

is called a 'connection-chain' [24). In most proposals the connection-chain is assumed to be formed 

via multiple remote logins through compromised hosts [6, 90, 91, 24, 92, 7,93,94,95). That is, the 

attacker performs an unauthorised remote login to a compromised service and account {e.g., Secure 
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Shell login if Tep port 22 is responding). From there the attacker performs the ne:o..1: remote login 

to the next compromised host and service. This is illustrated in Figure 3.11 where the attacker host 

hI assembles a chain of compromised hosts and then launches a flooding Denial of Service (DoS I 

attack from the last host in the chain. 

Instigating 
(h1) 

I MAC "' 
-----------~ 

Figure 3.11: Post-send spoofing. A connection chain is formed and a DoS attack launched from the 
last host in the chain 

The scenario depicted in Figure 3.11 implies interactive and bi-directional traffic from the attack(·[ 

towards the connection chain (i.e., between hosts hI and chI). As we have seen, it is difficult for 

an attacker to employ sender spoofing when reply packets are required such as in establishing a TCP 

connection (SSH operates over TCP). Thus, within the chain the attacker's service data is assumed to 

be legitimate, in that the reported source IP address is the one currently being used hy the sending 

host. However, service data flowing from the last host in the chain (the effective origin, host ch3 

in Figure 3.11) and towards the recipient does not need to be legitimate. That is, the attacker can 

employ sender spoofing at host ch3 so that the data IP III does not reveal this host's identity. 

This subtle distinction perhaps explains why some connection chain proposals seem to question 

the utility of IP traceback systems that address sender spoofing [96, 97, 98]. It is often (unreal

istically) assumed that attacks originating from a compromised host will carry the true source IP 

address of that host. If this is the case then it becomes possible to identify the effective origin, to 

serve as a starting point in locating the instigating origin. Other proposals however do recognisp 

that IP and connection chain traceback are "discrete but complimentary" [94]. \\·e would go further 

to say that they are both important components of an end-to-end message traceback system; in 

some cases, both are required in order to traceback to the originating machine or network as they 

address different elements of the same problem (sender and post-send spoofing). 
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The term 'connection chain' is introduced in a seminal paper by Staniford-Chen et al [24]. 

However, one finds the concept of a 'chain of intermediaries' in their earlier work which proposed 

a network security monitor for local networks [90J. This earlier work is characterised as similar 

to 'host based intrusion detection' [90J rather than connection-chain traceback. Furthermore, in 

[24] the authors recognise the applicability of systems such as the 'Distributed Intrusion Detection 

System' [93] to connection chain traceback. Thus, the foundations of connection-chain traceback 

can be directly traced to work in the area of Intrusion Detection. 

System based It 
- Network and \ 

host based \ , 
components \ , 

Connection chain 
traceback 

,c-----~ ____ ~--, 
~ 

Network based 
" , 

" "II " \~ 
JI ~ 

Similarity Anomaly 
Based Based 

-liming or 
content based 
measures 

- Operate over 
a connection 
set 

- Detecting 
anomalies in 
ingress or 
egress flows 

- Operate over 
a single 
connection 

.. ~ 
Host based 

- Correlate 
connections 
into and out of 
a given host 

Figure 3.12: Thr classification of connection-chain traceback methods adopted by [6J 

It is well established that connection-chain proposals fall mainly into the two categories of net

work or host based methods [91, 99]' in reference to where these are deployed. Almulhem et al 

suggest a third 'system based' category for those proposals that require both host and network 

based components [6]. Generally, connection chain traceback systems aim to determine whether 

two connections are part of the same connection chain and do so whilst data is still flowing in the 

network. This differs from the traffic accounting paradigm adopted by many IP or L2 traceback pro

posals that allow traceback a posteriori. In what follows we give a brief overview of the approaches 

suggested in the literature, using the classification developed by [6] and which we summarise in 

Figure 3.12. 

3.4.1 Network based connection chain traceback 

We first examine the network based 'thumbprinting' method proposed by Staniford-Chen et al [24]. 

The general idea is to compute a summary based on the contents of each connection and then search 
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for the existence of this summary in other parts of the network. The thumprints are derived using the 

frequencies of characters appearing in the user data per unit time (their experiments use a 1 minut~ 

interval). The implicit assumption here is that user data will be invariant across the connection chain 

with only service data being changed at each compromised host (Le., hosts in the chain simply relay 

an attacker's traffic). This most important work is not only the first proposal specific to connection 

chain traceback, but can also be seen to influence future IP traceback proposals which we examine 

in the next section. The notion of logging a summary version of network traffic, to allow subsequent 

reconstruction of attack paths is central to all logging based IP traceback systems. 

A related network based proposal is made by Zhang et al who instead adopt a timing metric to 

distinguish connections [92]. They explain that content based measures such as 'thumbprinting' will 

fail in the presence of encryption. Rather, they concentrate on identifying "invariants" in network 

traffic, based on its intrinsic properties and not its content. They note a distinctive 'on-off' pattern 

in interactive network traffic, representing the transition from a user typing at a keyboard and then 

stopping. These transitions are detected and correlation between two connections determines if they 

are part of the same connection chain; traffic volume is also suggested as an alternative to timing. A 

main challenge to this kind of approach is the intentional (and malevolent) introduction of entropy 

to the specific properties being monitored (e.g., introduction of timing delays). 

Yet another network based approach is proposed by Choi et al [91], but which does not seem to 

'fit' with the classification given by [6] (summarised in Figure 3.12). Choi et al provide their own 

classification, and their 'Network based real time connection traceback system' (NRCTS) is termed 

as 'active network-based' (thumbprinting and timing based measures are termed 'passive network

based'). The approach used by NRCTS is to insert an easily detectable mark into reply packets, sent 

from the victim back towards the attacker. The true path back to the attacker's machine is then 

reconstructed by detecting the presence of marks at various points in the network. The marking 

approach is not unique to NRCTS but rather appears in the earlier 'Sleepy Watermark' proposal by 

Wang et al [95] (though one can see the foundations of this approach in the packet marking method 

of IP traceback, pioneered by Savage et al [1, 10]). 

Before moving onto host based proposals, this seems an appropriate point to mention a relatively 

new and related marking scheme, that is not aimed at 'connection-chains' in the traditional sense of 

remote logins, but rather at tracking through "anonymous communication systems". We considered 

these earlier in our discussion of post-send spoofing and specifically mix networks such as Tor, where 

data is encrypted in addition to it being 'mixed' through a number of intermediate hosts. The'DSSS

Based Flow Marking Technique' proposed by Yu et al [100] requires an 'interferer' to embed marks 

into the original data (before submission to the mix network) and a 'sniffer' which recovers the 

marks before passing the original data to its intended recipient. The marks are generated using the 

Direct Sequence Spread Spectrum technique, where "pseudo-noise code" is used to "spread the signal 
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over a bandwidth greater than the original data signal bandwidth". Though this novel approach is 

restrictive in requiring the modulator and demodulator at each end of the monitored communication , 
it successfully addresses the issue of traceback invisibility, when a marking approach is employed 

(the 'marks' in this case are not easily detectable). 

3.4.2 Host based connection chain traceback 

In general, host based approaches try to establish causality between the incoming and outgoing 

connections within the host itself. The implicit assumption that traceback functionality installed in 

a given host has not been compromised, even though the (compromised) host itself forms part of a 

connection chain, seems counter-intuitive. Nonetheless, Kang et al [99] adopt a process searching 

approach, which is predicated on the existence of a parent-child relationship between the process 

receiving an attacker's data and the process forwarding this onto the next compromised host (or to 

the attack's victim). The authors make use of existing Operating System tools (such as the linux 

'lsof' utility) to search for a process's parent for establishment of causality; if the search ends with 

the 'super process' (ini t in linux), then the current host was the chain's origin. This of course 

assumes the attacker's machine participates in the traceback scheme, in which case this interesting 

approach is limited to controlled network environments. This is true for any approach that assumes 

host participation, including proposals in the system class which we consider next. 

3.4.3 System based connection chain traceback 

The system class refers to proposals requiring collaboration between various network or host based 

components. The earliest work cited in discussions of connection-chain traceback proposals is the 

'Distributed Intrusion Detection System' (DIDS) proposed by Snapp et al. [93]. This scheme assumes 

that all hosts are "C2 or higher rated computers" which, as per the U.S. Department of Defense 

standard have "controlled access protection" with dedicated user logins and "security-relevant" 

auditing [101]. A host monitor running on each host communicates with the centralised DIDS 

director, attributing relevant events to the unique 'network-user identification' assigned to each user 

upon login. Network activity is scrutinised by dedicated LAN monitors which also communicate 

relevant events to the Director, that in turn forwards them to the rule-based 'expert system' for 

analysis. The DIDS system was not designed with connection-chain traceback as its primary goal, but 

is rather a broader security monitoring scheme for controlled network environments. Its applicability 

to the field of connection-chain traceback was identified retrospectively by Staniford-Chen et al [24] 

(who first introduced the term 'connection-chain'). 

Another early (system based) proposal that is often cited in the literature, but which like DIDS 

above does not directly use the term 'connection chain', is the Caller Identification System (CIS) 
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[7] by Jung et al. It is not entirely clear to us why CIS should be classed as 'S) tern based' in 16J. 
rather t han 'host based'. Though the scheme is distributed it is deployed only in nem-ork ho 

without central direction as was the case with the DIDS proposal above. Jung et aL use an 'e>..i:ended 

TCP wrapper ' (ET CPW) which is an adaptation of t he TCP Wrapper fir t propo ed b , Venema 

[102]. The ETCPW and the Caller Identification Server (CIS) are installed in all network ho t , 

and work together to verify t he origin of inbound connection requests before these are granted. A 

connection request from host n - 1 to host n is intercepted by the ETCPWn (i.e. , The ETCP\\ 

in host n), which makes an authentication request to (the local) CJSn as is hown in Figure 3.13. 

Then, CJSn queries CJSn - 1 for t he origin of the incoming connection requ t. The ub equent 

response from CJSn - 1 indicates whether host n - 1 was the 'home base (instigating origin in our 

terminology) of the connection 's originator or otherwise provides the list of hosts through which the 

remote connection request has passed (from a locally maintained table, updated by earlier qu ri 

and responses). In this latter case, CJ Sn will independently query all of the indicated ho t ' (local) 

CIS for the given connection request 's origin, before granting or refusing access (by appropria el 

signalling the local ETCPWn ), and updating its own local 'host table'. 

Machinen .! 

{ro ln Machlnen .2 .. 

Machinen 

~:--~ 7. Authenlication R .. ponse of Mach in.. J ..• n·2. 

I--=::::E~t--+- 8. Result of Authorization. 
9. Decide to Accept or RtjtCl. 

~-....I:::::::::;--r-- 2. Recognize ReqUt5t 

{roln Machlnen.2 ---\--t 

Legend CIS j : CaUer Identification Server in Machine, 

ETCPWi : EXlended TCP Wrapper in Machinei 

APPj : Application Layer Protocol in Machine, 

LLs j : Lower Layers in the Protocol Stack in MachIne, 

Figure 3.13: Typical sequence of events in t he Caller Identification System - diagram is taken from 
[7] 

The Session Token Protocol (STOP) proposed by Carrier et al [94] performs a similar functional

ity to the Caller Identification System. The STOP is essentially an extension of the IDE T protocol 

proposed by M. St. Johns [103]. Each host is expected to run the STOP daemon, which responds 

to trace requests from other hosts. Unlike the original IDENT, replies sent from the STOP daemon 

do not identify a user but rather provide a token , which can be used to request information from 

the system administrator (thus preserving user privacy). Furthermore, STOP can capture "user and 

application level state" about the originator of a connection request and so provide more information 

than IDENT. As with the DIDS and CIS above, STOP would be most useful in strictly controlled 
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network environments, in which assumptions can be made regarding the software installed at each 

host. 

Finally and for completeness, we briefly consider some important work by Sekar, Xie et al [96, 97, 

98). The authors address the more general case of network-fraudulent spoofing, where new senice 

data and user data are actively generated from each compromised host (Le., the attacker's user data 

is no longer only relayed). Specifically, the authors address the issue of "epidemic spreading attacks" 

such as an automated DoS or a speading 'worm' (malevolent software that replicates and spreads 

by some automated mechanism). Their 'random moonwalk' approach [97J requires a directed 'host 

contact graph', depicting the communication between the hosts involved in the progression of a given 

attack. The assumed universal view of the network and an attack's progression somewhat limits its 

practicality. However, the authors also propose a 'Framework for Internet Forensic Analysis' [96J 

where it is argued that the Internet infrastructure should be extended to include auditing mechanisms 

that allow 'Attack Identification' and 'Attack Reconstruction'. 

3.5 Chapter Summary 

This chapter has provided an overview of related work that in some way addresses the issue of 

spoofing. We have seen that IP traceback and Layer 2 (L2) traceback address sender spoofing whilst 

connection chain traceback addresses (fraudulent) post-send spoofing. Most IP and L2 traceback 

proposals adopt the packet accounting paradigm, where information is captured regarding the iden

tity and route of each packet. This allows a-posteriori traceback of packets, that is, after these 

have been delivered to the recipient host. Connection chain traceback aims to identify which two 

connections form part of the same connection chain, though typically this can only be done whilst 

the packet flow is still active. 

We consider that a true end-to-end message traceback system will inevitably require elements of 

all of these traceback types. IP traceback can reveal the instigating origin's first hop router. Then 

L2 traceback is required to identify the instigating origin's point of access to the network (e.g., the 

ethernet switch to which this host is connected). Connection chain traceback is required when IP 

and L2 traceback reveal the effective rather than the instigating origin. Figure 3.14 is intended to 

aid the reader by summarising the sections and subsections of chapter 3. We will now present our 

own contributions in the area of Layer 2 traceback. 
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Chapter 4 

switch SPIE 

4.1 Introduction 

This chapter presents the first of the two Layer 2 traceback systems we developed. As we saw in 

the previous Chapter, there are a great number of proposals for IP traceback and by comparison 

much less work in the field of L2 traceback. Part of this chapter was presented as "Logging based 

IP Traceback in switched ethernets" at EUROSEC 2008 [15J. 

We decided to pursue L2 traceback for switched ethernet (sw-ether). The only other L2 traceback 

proposals for sw-ether networks that we are aware of are the adaptation of SPIE by Hazeyama et al 

[5, 87J and Tagged Frame Traceback (TRACK) by Snow et al [9], that were discussed in the previous 

chapter. Both of these are designed with switched ethernet in mind and we identified areas to which 

we might offer improvement. Furthermore we had access to an ethernet switch and 8 dedicated 

network hosts on which to develop our system. 

Given an IP packet that has been traced to its source network, L2 traceback systems aim to iden

tify the origin host. The granularity of the L2 traceback result depends on the physical transmission 

medium of the deployment network. Switched ethernet allows us to identify the unique access point 

through which traced data first entered the network. This is achieved by using the switch identifier 

(sID) and switchport number (pNO) to distinguish each host on the L2 network. Thus given a 

traced IP packet that originated from the deployment network, switch-SPIE aims to provide the 

pairing {sID, pNO} that identifies the instigating origin host. 

4.2 Requirements 

Our system, switch-SPIE is a logging based L2 traceback system for switched ethernet. We now 

identify and explain the requirements of switch-SPIE before a brief discussion to consider how these 

are addressed by other known systems: 
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1. Identifies the instigating origin sID, pN 0 of any given packet originating within the deploy

ment network (within a bounded traceback window) 

2. Requires no changes to existing network infrastructure or protocols. 

3. Traceback enabling procedures (Le. logging) should be considerate of user privacy. 

4. The traceback result must be reliable. 

5. Support partial deployment and be adaptable to any network topology. 

6. Realistic expectations of memory requirements at packet logs. 

Requirement one needs no explanation as it forms the primary aim of switch-SPIE. Requirement 

two states that in order to be useful in a 'real world' deployment, L2 traceback systems must not 

require any modifications to ethernet switches. That is, any functionality assumed to be provided 

by the ethernet switches should be widely available. This is not the case in the T RACK proposal 

by Snow et al [9] where it is assumed that switches 'co-operate' in the packet marking procedure. 

In TRACK it is assumed that each "TRACK-enabled switch" in the network contains a 'TRACK 

Frame Tagger' (TFT). The TFT is responsible for determining the sID and pNO though no further 

details regarding how this is achieved are provided. 

Requirement three states that the traceback system should not reveal details regarding the 

content of network data. Even in a logging based system such as switch-SPIE this is achievable by 

passing each packet through a cryptographic hash function (e.g., M D5) and logging all or part of the 

output (Le., the 'packet hash' is logged, rather than the packet itself). This approach was pioneered 

in the 'Trajectory Sampling approach' by Duffield et al [2] and also used by Snoeren et al in SPIE 

[3]. By logging packet hashes rather than packets themselves it remains possible to confirm or deny 

the existence of a given packet at a logging node. However, the (hashed) packet logs themselves are 

useless to an attacker, even if these are entirely compromised. 

Requirement four means that it should not be possible for a malicious network host to 'incrim

inate' an innocent third party. The procedures by which the sID and pNO are determined for 

each logged packet should assume that a source MAC or source IP address are easily spoofed (sender 

spoofing, as we have seen). Hazeyama et al [5] deploy a single logging node that must maintain 

local copies of all switch MAC address tables to determine the sID and pNO based on frame source 

MAC addresses. However, due to this centralised architecture, the single xDGA only 'refreshes' local 

MAC address tables every 60 seconds. This allows ample time for an attacker to create frames that 

are attributed to an innocent tertiary host. Snow et al avoid this issue altogether by assuming an 'in 

switch' process as we have seen. In their more recent proposal, Hazeyama et al [87] deploy a single 

packet digesting tapbox that has a direct link to every switch and router in the network. This work 

was published at the same time as switch-SPIE [15] and the two systems share some similarities in 



56 

the use of port mirroring. However, this newer work still faces the same scalability issues as their 

earlier work [5] by using a single digesting tapbox. 

Requirement five implies that there should be no assumption made over the deployment network 

topology. We have already seen that in their proposal, Hazeyama et al [5] assume that each network 

host is separated from the network edge by only a single switch (as is illustrated in Figure 3.10). 

Finally requirement six is central to all logging traceback systems as storage requirements govern 

the 'traceback window'. This is the time during which we can traceback a packet after it has been 

logged (Le., before older logs are overwritten). Our switch-SPIE system is an adaptation of SPIE 

which employs bloom filters to achieve significant memory efficiency. Rather than logging packet 

hashes themselves, SPIE instead uses the hashes to set bits in a bloom filter, as was illustrated in 

Figure 3.6. We defer a discussion of the memory utilisation and evaluate switch-SPIE with the rest 

of these requirements after first presenting our design and implementation. 

4.3 Design of switch-SPIE 

Our L2 traceback system switch-SPIE is a second adaptation of the SPIE IP traceback system. 

An open source implementation of SPIE is available from [17] and was first adapted for sw-ether 

networks by Hazeyama et al who proposed the modified "xDGA" as we have seen. 

Logging based IP traceback systems such as SPIE require that IP routers retain information 

regarding each packet they forward, within some bounded interval known as the 'traceback window'. 

Thus, they can be queried as to whether they have 'seen' a given packet or not, and if so at which 

time. L2 traceback systems do the same, however L2 traceback for switched ethernet also provides 

the unique {s1 D, pNO} pairing that identifies the instigating origin. That is, whilst logging nodes at 

IP routers need only log each packet, L2 logging procedures at ethernet switches require an additional 

mechanism by which to identify and associate a source switchport to each packet. In switch-SPIE 

we use the MAC address table maintained by all ethernet switches to deduce {s1D,pNO}. The 

same approach is followed by all other known proposals of L2 traceback in sw-ether and we will 

further examine this process in more detail subsequently. 

The SPIE system was briefly considered in the previous chapter, however we provide additional 

details here that are directly relevant to switch-SPIE. We will then consider the particularities of the 

sw-ether environment with respect to L2 traceback and which bear upon our design. Finally we will 

provide details of switch-SPIE and its key algorithms of logging and traceback request processing. 

Implementation details will follow in a subsequent section. 



57 

4.3.1 An Overview of the Source Path Isolation Engine 

SPIE is a logging based IP traceback system proposed by Snoeren et al :3:. The system cOIl~i,ts of 

a SPIE Traceback :':lanager (ST:'l) and a number of Data Ceneration Agent(s) (DCA). As shown 

in Figure 4.1 a DCA is deployed at each router; this can be achieyed by altering the router software 

as in Router r1 where the DCA is 'built in' or as a router tapbox, as is the case for r2 and r3. As 

we will see we choose to deploy our adapted 'switch-DCA' as a switch tapbox through switchport 

mirroring. This decision was driven by requirement one above, i.e., that our L2 traceback system 

require no modifications to existing network infrastructure (which includes the switch operating 

system). 
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Figure 4.1: A typical SPIE deployment, showing interaction between an Intrusion Detection System liDS), 
the SPIE Traceback Manager (STM) and Data Generation Agents (DGA). 

The DCA implements the logging functionality and will process every packet forwarded by its 

router. The n bit results of the k cryptographic hash functions over each packet's content are used 

as indices into a bloom filter of size 2n (this is illustrated in Figure 3.6). The bloom filter element 

specified by each of the k hash results is then set to 1. Thus, in order to check whether a packet 

is present in the bloom filter log (known as a 'packet membership test'), one must calculate the k 

packet 'hashes' and verify that all specified bloom filter elements are set to 1. 

The open source implementation of SPIE [17] which we adapt uses 20 bytes from the IP packet 

header and 8 bytes from the packet payload as input to the cryptographic hash function at each 

DCA. The MD5 algorithm is used, and the 128 bit output of a single hash is used as four 32 bit 

digests (i.e. k is -l and n is 32). This supports bloom filters (i.e., bit arrays) of size up to 232 bits, 

which as we will see in our discussion of memory requirements is sufficient for a switch-DCA logging 

node. Each bloom filter is only useful as long as it does not become 'saturated'. Once too many 

elements are set to 1 then the result of packet membership tests becomes unreliable, that is, t he false 

positive rate of the bloom filter increases above an acceptable level of error. Thus a DCA maintains 
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each bloom filter for a predetermined time interval after which this is replaced with a new bloom 

filter. The default swap time in the SPIE implementation is 10 seconds, and an 'archive' of 6 bloom 

filters is maintained at a given time, providing a 'traceback window' of 60 seconds. 

As can be seen in Figure 4.1 the SPIE system can be used in conjunction with an Intrusion De

tection System (IDS). Each IDS alert generated is translated into a traceback request. treq(dga, p. t) 

specifying the last hop router DGA (dga), the packet itself (p) and the time (t) that the packet was 

observed. This is then communicated to the STM which dispatches the tR.eq to the specified dga for 

processing. The DGA performs a packet membership test in its archived bloom filters for packet p 

and then provides a traceback reply tRep(dga, {I, OJ, t). The tR.ep specifies whether the given DGA 

has seen the packet or not (Le., one of 1 or 0) and if it has the reply will also specify the time t 

that the packet was logged. For each DGA that provides a positive traceback reply, the STM will 

dispatch traceback requests to the given DGA's neighbour routers. After collecting replies from all 

relevant DGAs, the STM can construct a path of the packet's route and the packet is 'traced back' 

through the SPIE enabled network. 

4.3.2 Characteristics of switched ethernet that impact on L2 traceback 

The switched ethernet environment is particularly interesting with respect to L2 traceback. A 

switched environment means that each host gets a dedicated link to the switch, and so medium 

access contention is eliminated. This bears upon the design of our L2 traceback system in two ways, 

one of which is positive and one negative. 

The negative consequence of each host's dedicated link to the switch is that there is no single 

vantage point from which to observe all traffic generated by the switch's connected hosts [104J. 

That is, each (unicast) ethernet frame is 'switched' from ingress to egress switchport and cannot be 

observed by a host on any other switchport. In switch-SPIE we use switchport mirroring to provide 

our modified DGA with all frames transmitted by a switch's hosts. Most switches allow traffic from 

one or more ports to be duplicated and sent to another 'monitor' port. Though this process is 

not standardised it is a widely available feature and identified in [18, 19J as one of the monitoring 

mechanisms for switched ethernet. In switch-SPIE, the egress traffic from all ports to which hosts 

are attached is mirrored to a monitor port, to which our modification of the SPIE DGA (termed 

'switch-DGA') is connected. 

Hazeyama et al [5J resolve the traffic visibility issue by logging at the gateway router rather 

than at each switch. However, this means that frames which are entirely local are not logged. For 

instance, frames transmitted between two hosts on the same switch, or on separate switches that are 

not connected via the gateway router. The result of this is a system that can trace the instigating 

origin of malicious traffic, but not if the victim of said traffic is within one's own network. Moreover 

and perhaps more significantly a centralized logging approach ultimately sacrifices the trace result's 
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reliability, as one is forced to update local MAC-address tables less frequently. This conflicts with 

our second requirement, that is, that the traceback result be reliable. Our second L2 traceback 

system, COTraSE (presented in the next Chapter), addresses the traffic visibility issue through the 

alternative mechanism of a passive tap between switches, rather than using switchport mirroring. 

The positive consequence of providing each host with an exclusive link to the switch is that 

ethernet switches need to create and maintain a MAC address table (~IAC-table). This table 

associates the MAC address of each host with the switchport to which that host is connected. Thus 

to correctly forward frames, switches consult the MAC-table to determine the appropriate egress 

port. The MAC-table is constructed through 'learning' addresses from ingress (to the switch) frames; 

a MAC address is reachable over the port from which traffic carrying that address as source was 

most recently seen. Each address can only be listed once; thus, if a host moves to another port (or 

the source MAC is forged), the MAC-table is updated to reflect the new mapping. That is, ethernet 

switches submit all correctly received user data frames to the switch 'Learning process' [105]. Our 

modified switch-DGA maintains a local copy of the switch MAC-table. This is used to determine 

the origin switchport of received frames and local MAC-tables are updated from the switch MAC

table at some predetermined rate. Though this approach is also taken by Hazeyama et al [5], the 

distributed design of switch-SPIE means that local copies of MAC-tables can be updated (much) 

more frequently. We will further discuss this point in the evaluation of switch-SPIE later in this 

chapter. 

4.3.3 The switch-SPIE logging process 

As stated above we deploy logging of IP packets at each switch with a tap-box. Each tap-box will 

host our switch-DGA adaptation of the open source SPIE DGA. Rather than one bloom filter per 

time interval, we employ an array of n bloom filters, one for each switchport. We will evaluate the 

practicality of this in our discussion of memory requirements later. 

The switch-DGA tap box is installed on a switchport to which the switch is instructed to mirror 

all network traffic. This is illustrated in Figure 4.2, where the switch-DGA is at host M. For our 

switch-SPIE adaptation we decided to log frames that originate from access ports, but not from 

link ports. As shown in the diagram below, link ports are used to connect to other switches or 

routers and access ports are used by end hosts. Thus, in Figure 4.2, the switch is instructed to 

mirror traffic from ports 1,2,3,5,6,7,8 but not from ports 9 and 10. This decision was driven by 

the fact that ethernet switches will typically provide a small number of higher bandwidth ports (e.g. 

IGbit/s as opposed to 100Mbit/s switchport) and these are used as the link ports. For instance, 

the CISCO Catalyst 3524X L switch that we used in our implementation offers two Gigabit ethernet 

ports and 24 Fast ethernet ports. The monitor port, port 4 in Figure 4.2, will be receiving the 

aggregated traffic from all other access ports. Given that link ports can transmit and receivE' an 
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order of magnitude more traffic than access ports, we expected that to mirror that traffic as well 

would simply overwhelm the monitor port. 

( ... other switch) 

host 
h3 

host host 
h7 h8 

host h4 
switch-DGA 

tapbox 
[LOG] 

( ... leaf router) 

Figure 4.2: Placement of a switch-DCA tapbox at each switch, logging traffic from all access ports. 

The implication of this design decision is that switch-SPIE cannot provide a graph of a traced 

packet's route through the network, as is the case in the original SPIE. Each switch-DGA tapbox 

will log traffic from its switch's access ports. Thus, each packet is logged only once in the switch

SPIE enabled local network and only a single switch-DGA tapbox will provide a positive traceback 

reply to traceback requests (more on this subsequently). The primary goal of switch-SPIE is to 

identify the instigating origin (sID, pNO) and this is achievable by monitoring only access ports. 

This decision is in line with requirement 1, that is, no modifications are required to existing network 

infrastructure or protocols. Whilst we considered attaching switch-DGA to a Gigabit ethernet port, 

it is more realistic to expect that these ports are already used as link ports, and not available for the 

purposes of logging. We will see how switchport mirroring is configured for the CISCO lOS software 

in the implementation section that follows. 

Our design requires the switch-DGA to maintain an array of n bloom filters, where n is the 

number of access switchports. Logging of packets occurs as in SPIE, with the additional step of 

identifying which of the bloom filter array elements is to be used to log each packet. This is achieved 

by consulting the switch MAC-table based on the frame source MAC address. Given the local 

proximity of each switch-DGA to the switch itself, it is possible to use the dedicated 'console port' 

provided by ethernet switches for local switch management (and which gives access to the MAC

table). This is ideal as it eliminates the need to communicate MAC-table values from the switch to 

the switch-DGA over the already congested monitor port. An alternative approach is to use SNMP 

to retrieve the switch MAC-table at a predetermined interval. Time constraints meant that we were 

unable to establish the feasibility of the SNMP approach and as we will see our implementation uses 

a text file to simulate the switch MAC-table. 

Thus, with switchport mirroring enabled and access to the switch MAC-table, the switch-DGA 



Logging 

receive ethernet frame f 
extract source MAC address f.src MAC 
extract SPIE packet signature f.sig from f 

consult Jf1lC-tab~e to identify port pHD: 
for (every entry addr.i in MAC-table) 
( 

if(addr.i == f.src MAC) 
( -

extract pNO; 
break loop; 

store packet into b~oom fi~ter array 
bfArray[J : 
calculate k hash digests using f.sig 
for (every digest k) 
{ 

set element in bfArray[pNO]; 
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Traceback request processing 

receive traceback request tReq{p, t) 
extract SPIE packet signature p.sig from p 
retrieve archived bfArray[] for time t 
calculate k hash digests using p.sig 

check b~ocm fi~ter array for packet p: 
set found to false; 
for (every bf.i in bfArray[]) 
( 

if(every k is 1 in bfArray[bf.i]) 
( 

source port pNO was bf.i; 
set found to true; 
break loop; 

if (found) 
( 

else 
( 

send tRep(sID, 1, pNO, t) to STM; 

send tRep{sID, 0) to STM; 

Figure 4.3: switch-DGA algorithms for logging and traceback request processing 

logging process is as shown in Figure 4.3. For each frame received at the switch-DGA monitor port, 

the origin pNO is established from the latest MAC-table based on the frame's source MAC address. 

The k hash digests are calculated based on the packet signature as per SPIE, and these are inserted 

into the bloom filter array at the element representing the given pNO. Given a traceback request, 

tReq{p, t}, with packet p and timestamp t, the switch-DGA checks archived bloom filter arrays 

based on t. Each bloom filter is checked by computing the hashed digest of p as explained earlier. 

When a match is found, the array index of the current bloom filter reveals the source port. This can 

then be communicated to the STM as a traceback reply, as is illustrated in Figure 4.3. We now turn 

to examine how this functionality was implemented by adapting the open source version of SPIE, 

available from [17]. 

4.4 switch-SPIE implementation details 

We begin by describing our deployment network and the installation of the relevant SPIE components 

(STM and DGA). This is followed by details of changes we made to the DGA software to produce 

our switch-DGA adaptation. Changes were also required at the STM to allow receipt of the s1 D 

and pNO data in positive traceback replies from a switch-DGA (the original SPIE has no notion 

of pNO and sID). The SPIE components used in our implementation are from SPIE version 3.0.81 

[17]. Finally we will consider how the switch MAC-table was simulated and used by switch-DGA 

and also how switchport mirroring is configured on the deployment ethernet switch. 
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4.4.1 Deployment network and installation of SPIE components 

Our deployment topology is composed of eight hosts connected by a Cisco switch. All hosts ha\'e at 

least 2.4GHz processor, 512MB of RAM and a 100~lb/s ethernet interface. The sv.itch, 'cs-daysh4' 

is a Cisco Catalyst 3500XL series running Cisco IOS v.12.0(5), with a total of 24 Fast ethernet ports 

(lOOMbits/s) and 2 Gigabit ethernet ports (lOOOMbits/s). 

One of the hosts, 'redmire', served as switch-DGA and another, 'falstone', hosted the STM and 

IDS (Snort [106]). Both redmire and falstone had linux kernel version 2.4.2-2 as this was a require

ment for installing SPIE. The remaining six machines ('erble1' - 'erble6') were used as network hosts 

for generating test' traffic. Figure 4.4 shows the switch ports to which these hosts were attached on 

the cs-daysh4 switch. 

erble3 

( ... cs-daysh12) 

erble4 erble6 

eredmire 
switch-DGA 

[LOG] 

Figure 4.4: Deployment network showing placement of switch-SPIE components 

Installation of the SPIE Traceback Manager (STM) on falstone was relatively straightforward 

as this is a user space application. However, installation of the Data Generation Agent (DGA) 

on redmire required a kernel rebuild, as the SPIE logging functionality is implemented as a kernel 

module (more on this subsequently). For the interested reader, further details regarding installation 

procedures can be found in the SPIE release documentation [17]. 

In addition to the STM, falstone also hosted the IDS and the spiemon application (included with 

the SPIE release). The spiemon process is responsible for receiving IDS alerts and sending these 

to the STM as traceback requests. The spiemon also receives the traceback replies from the STM 

and displays results to the user. We used the open source Snort IDS version 1.9.0 [106] as this was 

recommended for the supplied version of spiemon. 

4.4.2 Implementing switch-DGA 

The SPIE DGA decomposes into two core components directly relevant to our switch-DGA imple

mentation. One of these is a loadable kernel module written in the C language called 'spieJIlem' and 
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the other is 'dgad', a user space process written in C++. The kernel level spie...mem is responsible 

for processing each incoming packet and inserting this into the current bloom filter, whilst the user 

space dgad code retrieves the filled bloom filters from the kernel and archives them for subsequent 

traceback request processing. 

Understanding the very complex SPIE system in order to implement our required functionality 

of 'one bloom filter per switchport' proved to be quite a challenge, compounded by the fact that 

this was our first exposure to C and C++. The spie...mem component is written as a device driver, 

interfacing with a virtual SPIE 'device'. As spie...mem is executed from within the linux kernel, the 

'Kernel Source Level Debugger kgdb' [107] proved invaluable in helping us to effect the switch-DGA 

functionality; falstone was connected to redmire (the switch-DGA host) through a "null modem" 

(RS-232 serial cable), which allowed us to 'pause' the kernel on redmire and set breakpoints to step 

through lines of kernel code. 

The user space dgad maintains a fifo ring buffer of size ma)Lrecords where each ring buffer 

element is a trace...record structure defining a bloom filter and timing information. The default 

value for max_records is 6, which equates to a 60 second traceback window as bloom filters are 

swapped every 10 seconds (these are user configurable parameters - discussion is available in [3]). 

The dgad process maps each new bloom filter into the kernel's memory space for spie...mem using the 

kiobuf mechanism (kernel input/output buffer), avoiding costly copy operations [108]. The spieJDem 

driver maintains two bloom filters at any time, current and next in order to avoid delays in swapping 

these (every 10 seconds). 

In switch-DGA the dgad instead uses a ring buffer of size max-recards * numberofparts, as we 

need a separate set of trace...records for each switch port. This is illustrated in Figure 4.5 which 

shows the ring buffer when there are 4 switchports. Each switchport requires max-I"ecards = 6 

elements to provide the one minute traceback window, giving a total of 24 elements. Furthermore, 

an extra dimension is added into the kiobuf array maintained by spie...mem to represent the cur

rent and next records for each switchport. We use the SPIE DGA configuration file to input the 

number of ports; the configuration file is parsed when the DGA is started and a call to sysctl 

creates a spie. dga. max_ports entry into the /proc (virtual) file system; /proc is used as a way of 

communicating values between the user and kernel level code. 

The DGA configuration file is also used to supply the current values of the switchport MAC 

addresses (Le. the local copy of the switch MAC-table). These are parsed and stored into a character 

array by the user space dgad. Once the kernel spie...mem driver receives the number of switchports 

it creates the appropriate number of entries into the /proc filsystem to hold the MAC address of 

each port. The dgad waits for spie...mem to create the /proc entries and then fills these using sysctl 

and the MAC addresses that were previously parsed from the configuration file. 

Thus both the user space dgad and kernel space spie...mem have the number of switchports and 
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TraceRecords for each port 

Figure 4.5: User and kernel space structures that hold bloom filter information, when there are four 
switchports 

the MAC address associated with each of these, as well as an array of bloom filters per time interval 

(one for each of the switchport MAC addresses). For each frame received the spie..mem code first 

checks the (local copy of the) switch MAC-table to determine the appropriate bloom filter. The 

code then proceeds to calculate the MD5 digest and store this in the same manner as the original 

SPIE. That is, no changes were required at the MD5 digesting functions beyond specification of the 

bloom filter array index for storing the hash output. 

When searching archived bloom filters for a given packet (i.e. during traceback request process

ing), a loop is used to check the bloom filter for each switchport. When a match is found (Le. all 

bloom filter elements are set to 1), the index of the current bloom filter also reveals the instigating 

origin switchport. It was necessary to make alterations to the STM and spiemon components since 

as mentioned earlier, the original SPIE has no notion of pNO and sID. The sID is implied by the 

switch-DGA sending a given traceback reply (as there is one switch-DGA per switch) and a new 

type of SPIE traceback reply was created to accommodate the value of pNO. 

As mentioned earlier, we used the port mirroring function that switches provide to overcome 

the traffic visibility issue inherent to switched ethernet. Our switch, cs-daysh4 runs Cisco lOS 

v.12.0(5) and we managed this remotely via telnet. In Cisco parlance, port mirroring is known as 

'SPAN' (switchport analyser) and our 3500XL series switch offers a port monitor function to mirror 

m source ports to n monitor ports (though in our deployment and as illustrated in Figure 4.4 we 

mirrored m to 1). The monitor port receives both egress and ingress traffic for each switch port 

assigned to it, and this is not configurable (even though switch-DGA only requires egress traffic). 

Figure 4.6 shows the commands used to mirror traffic to switchport 22 that hosts the switch-DGA 



(shown in Figure 4.4). 

65 

Enter configuration mode; 
configure terminal 

~ tbe switeboort to be configured; 
interface FastEthernetO/22 

~ switchoorts to be monitored; 
port monitor FastEthernetO/l 
port monitor FastEthernetO/2 
port monitor FastEthernetO/3 
( ••• J 
end 

Check the current configuration to verify the sbang§;. 
show running-con fig 

Figure 4.6: Commands for enabling port mirroring under Cisco lOS v.12.0(5) 

4.5 Evaluation of switch-SPIE 

As explained earlier, the host 'redmire', served as switch-DGA whilst host 'falstone', hosted the STM 

and IDS (Snort [106]). The remaining six machines Cerblel' - 'erble6') were used to generate test 

traffic. The switch was instructed to mirror traffic from ports 1 through 6 (the erbles) to port 20 

(IDS and STM on falstone) and also to port 22 (switch-DGA on redmire). The switch is not usually 

expected to have two monitor ports active as the STM is typically at a central network location. 

The STM of course does not play any part in the logging processes of switch-DGA. 

The implemented switch-DGA was tested using the six erble machines. The snort IDS running on 

falstone was configured to generate an alert whenever an IeMP echo request was seen between any 

two erble machines (e.g., erblel ping erble2). This is of course an arbitrary trigger but was sufficient 

for our purposes of establishing whether switch-DGA could provide the instigating origin pNO for 

a given IP packet. The STM on falstone created and sent trace requests for every alert generated 

by snort, and the switch-DGA confirmed the originating machines in every instance. 

Of course, it is important that the system does not incur too much overhead when deployed at 

each switch. In a logging based system such as switch-SPIE memory requirements are a primary 

concern; one of our L2 traceback system requirements identified earlier directly addresses memory 

utilisation. Thus we evaluate memory requirements at individual switch-SPIE logs and examine 

the interplay between memory use, the number of hash digests per packet, false positive rate and 

bloom filter size (explained subsequently). We will see that memory requirements can be kept within 

reasonable bounds in current networks. However, it would seem that further investigation of efficient 

logging mechanisms is warranted, especially when considering larger and faster networks (e.g. 10 

Gigabit Ethernet). 

We start however by presenting our experiments, designed to establish the reliability of the 
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port mirroring mechanism. Given the reliance of switch-SPIE on this functionality we felt it was 

important to establish the 'real world' limits of this approach. Our first set of tests shows that the 

switch is able to mirror traffic without adverse effect to the 'normal' switching functions. However. 

as we will see our second set of tests show that the monitor port and logging host can be quickly 

overwhelmed. 

4.5.1 Reliability of the port mirroring mechanism 

The equipment used here is as described in subsection 4.4.1. We repeat the specifications here with 

some relevant additional details: The six erble hosts run Cent OS 5.1 (linux kernel 2.6.18), whilst 

redmire and erble run an older redhat distribution (kernel 2.4.2). The erble machines have dual 

Intel Xeon processors (2.4GHz for erblel and erble2, 2.8GHz for erble3, 4, 5 and 6) with 512Mbytes 

of RAM. Redmire and falstone have a Pentium 4 processor (redmire 2.4GHz, falstone 3GHz) with 

512Mbytes RAM and a 100Mbit/s ethernet interface. The erble machines have a 1Gbit/s interface 

though they are connected to the switch via a 100Mbit/s switchport. Finally, the switch itself is 

a Cisco WS-3524XL running Cisco lOS v.12.0(5) with 24 'fast ethernet' ports (lOOMbit/s) and 2 

'gigabit ethernet' ports (lGbit/s). 

Our experiments are intended to establish whether switch port mirroring is an efficient and 

reliable means of providing traffic to the switch-DGA. The first set of measurements is concerned 

with how well the switch keeps up with simultaneous frame switching and mirroring. We simulated 

short bursts of traffic between the erble machines using 'ping' in flood mode. During a five second 

burst each erble sent and received an average of 23,000 frames. That is just under 5,000 frames per 

second, equating to around 4Mbit/s bandwidth per switchport as each frame occupies 98 bytes 'on 

the wire'. With six source ports active this approaches a quarter of the total 100Mbit/s link into a 

switch-DGA (assuming a FastEthernet port is used). 

We do not claim that our experiments here 'stress' the switch to capacity. Whilst limited by the 

configuration of the testbed (in terms of available hosts) the first investigation described below shows 

that the given (mid-sized) CISCO switch can duplicate the traffic sent from 6 source switchports 

to 3 different mirror ports without affecting the time taken for the source traffic to be delivered. 

Comparing the average round trip time (RTT) reported by ping when mirroring only 3 source 

ports, with that reported for mirroring 6 source ports shows that the RTT is not increased at all. 

Furthermore, comparing the number of packets sent/received by ping with the number of packets 

captured by snort on a given monitor host shows that the switch duplicates and forwards all packets 

correctly in both the 3 and 6 source port cases. 

First, three 'flooding' erble machines, erble2, erble4 and erble6 instigated their five second ping 

flood simultaneously. The switch was instructed to mirror traffic from each of these to a seperate 

monitor host, as depicted in Figure 4.7. The snort IDS was running in 'binary logging' mode on 
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redmire 
(+snort) 

falstone 
(+snort) 

Figure 4.7: Conceptual view of configuration when testing the switch's ability to mirror traffic 

the three monitor machines, redmire, falstone and erblel. A comparison was then made between the 

packets sent and received as reported by 'ping' at each flooding machine, with the packets seen in 

the monitor machine snort logs. 

In all cases the switch was able to keep up the mirroring with a 0% drop rate. That is, the number 

of packets sent and received by each flooding host was the same as the number of packets received 

at each monitor host and the switch did not 'drop' any of these due to resource exhaustion. This 

is shown in Figure 4.8 which gives the number of packets sent/received by ping and those reported 

by snort on each monitor. Performance was maintained after we repeated the measurement and 

configured the switch to mirror traffic from both source and destination erble machines to each 

monitor host, shown as "six simultaneous mirrors" in Figure 4.8. As can be seen iIi Figure 4.8 when 

mirroring from 3 sources (left hand column) host erble2 sent and received 60,004 packets with an 

average RTT of 0.145; the switch was mirroring traffic to redmire which logged 60,004 ICMP ('ping') 

packets. The corresponding values for the 6 sources run are shown in the right hand column. Thus, 

as shown in Figure 4.8, erble2 sent and received 60,013 packets. However, redmire received and 

processed 100,023 packets; this difference is due to host erble3 smultaneously receiving a ping flood 

from erble6 and so redmire logged those further 40, 009 frames. In this configuration of six source 

monitor ports, the average frame round trip time reported by ping was essentially the same as with 

only three source ports. 

The above indicates that the mirroring process does not adversely affect the 'primary' switching 

function. In these circumstances (which represent perhaps higher than normal load at about 25 

percent of link capacity) switch capacity is sufficient so that mirroring is not noticeable. We would 

expect round trip times to have increased for instance, had frame switching been adversely affected. 

Obviously, we could push the switch load further by increasing the number of sources, but our 
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RUN 1 : 3 simultaneous mirrors 

.;,,/" 

:--sen-tireceiVed:36~602i3o;602 ---; 
/,'1_~~gBrrJ.~icr<?~~9..nds1.Q·~_~_j 

ping 
erble2 • • eerble3 

:mirror a. 

V --.... -- ..... __ -------------------------, 
redmir. ---L ____ I?Jlll.~~~'l~~<?rt: ~_O,O~_~ ___ : 

.;,./" 

:--sen-tireceiVed:26~608/20;608 ---; 
/'1_~~gBrr-.l~icr<?~ec9_nds1..Q..~_~_j 

ping 
erble4 • • eerble5 

1mlrror '-

falston~ ----------L_~=19:gg:~a~ii~q~~~,~£"::~=: 

.;,,/--

:--sen-tireceiVed:26~608/20:607--_: 

/'1_~~9BJ}-.lf!1_i~~~~9..n.s!.~J.:.Q.·~_:g_J 

ping 
erble6 • • eerble3 

:mlrror ..... 

V -- ... ----__ ----------------------
erble! e ··L ____ I?Jlll.~~~'l~n_~'!.~_O~~_~ __ =: 

RUN 2: 6 simultaneous mirrors 

/,,/" 

:--sentireceiVed:36~607i30,-606 --_: 
/,1_ ~~gBrr -.l~icr<?~ec9..n.i~t.Q·~_46 J 

ping 
erble2 • • .erble3 

·····.'V .. ;;..;~or ....... , ________________________ --, 
redmire '"1. ___ ~<?illl~P..EY_ sn~!1~1_~O,<!~:!.. ___ : 

,.. .. ,/ .... 

:--sentireceiVed:26~603f20:662--_: 

/"1_~~gBrr-.l~icr<?~~9_'~~J.:.Q.·¥..~_J 

ping 
erble4 • • .erble5 

·····.'V .. ;;,;;;or ....... , ________________________ --, 
falstone '"1. ____ I?Jlll.~~~'l~_~'!.~_O~~_5 ____ : 

."" .. ,,/ .... 

:--sen-tireceiVed:26~605f20:604 --_: 
/'1_~~gBJ}-.l~i~~~~9_n.s!.sJ.Q..~_:g _ J 

erble6 • ping •• erble3 

""'" "~;::or V ....... , --------------------------, 
erble! '"1. ___ ~~illl~~..EY_ ~C?!1~~ Q~<!~!' ___ : 

0) 
00 
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mirror 1 port 

mirror 

mirror 2 ports 

:--sen-tireceiVe;d:26~465i26;465 --i 
!_~BTJ-.l~i£<2~~!?_n.Q.sJ.Q:)_~_j 

" ....... , ping 
red mire e_" ... falstone 

'" 

:--seniireceived:36~4T4iJo;4i3--i 
!_~~gBTJ-.l~i£<2~~!?-,,!£sJ~_'!i_j 

ping •• /' 
erble3 • .. .,. erble2 

mirro!.. erble1 mirror 
-------·-----·--t>es.:::.::~~-:------

mirror 3 ports 

:--seniireceiVed:26~158i26;f58--i 

!_~~g~TJ-.l~i£<2~~!?_n.Q.sJ..Q..)_~_j 
''l... ping 

redmire. .. • falstone 
~"'" 

[~=___r~g"g~J?y~~q!L~i;.~~~~~=: 

:--seniireceiVed:36~553i30,-553 --i 
!_~~gBTJ-.l~i£<2~~!?_r!£SJ~1_~j 

ping •• /' 
erble3 • .. .• erble2 

.' .' 
mirr'!.r erble1 mirror 

.... -.. -...• .---.~.::.:~~.....:. ............... . 
mirror .----- ...... .......... 

..... ' ......... 
•••• ping _ •• ___ .:.~_ •• __ ._. _______ _, 

erble4' ... erble5 L .. _~<2gg~9J?Y.~<?~1_~~~Qr... .. _: 
_. ____ L _________________ _, 
: sent/received: 19,985119,984 : 

!_~~gBTJ-.l~i£<2~~!?_n.Q.sJ..Q..~_~_J 

mirror 4 ports 

:--senVreceiveci:26,o91-il26;091---: 
!_~~g~TJ-.l~i£<2~~!?_n.Q.sJ..Q..)_~_J 

''l... ping 
redmire.. .. • falstone 

....... 

:--sen-tireceiVed:29;997129:9SS---: 
!_~~gBTJ-.l~i£<2~~!?_n.Q.sJ.g;..1_~_J 

ping •• /., 
erble3 • ... erble2 

.' 
mirror erble1 mirror 

.••.•......•..... .---...•..... :~:::::::~~ ...... :: .. . 
mirror .- ______ .1______ -. mirror 

. L..~_n.2.r!:.!!i~,~~~ ./~;~g 
erble4 • ... erble5 

______ L _________________ _, 
: sent/received: 20,002120,001 : 

!_~~gBIU~i£<2~~!?_n.Q.s).:.Q:?:.~_J 

ping". 
erble3 ... "',erble2 

---------------.-:~-------, 
: sent/received: 20,014120,013 : 

!_~~gBTJ-.l~i£<2~~!?_n.Q.sJ.Q:~_~_J 

Figure 4,9: Number of packets sent/received by ping and logged by snort whilst increasing the monitored 
hosts 
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(+snort) 
erble1 

falstone 

Figure 4.10: Conceptual view of mirroring configuration to establish ability to capture a number of sources 
at the monitor host 

experiments were limited by the configuration of the available hardware. It should be noted that 

although the implementation of port mirroring will vary, we expect that on a highly loaded switch 

the mirroring processes become a secondary concern; in trying to keep up with frame switching 

the switch will (eventually) drop frames from ingress and egress mirroring queues [1041. Hence, the 

switch will in any case be protected against compute-intensive mirroring. 

Our experiments highlighted that the bottleneck of our solution is typically not the processing 

overhead at the switch, but at the monitoring machine, which must keep up with the traffic sent 

to it by the mirroring processes. Thus we explored the limits of our equipment with respect to the 

number of active sources that can be mirrored to the tap-box before it is forced to drop frames. We 

designated erble1 as monitor host, running snort in binary packet logging mode. A number of traces 

were taken, with traffic load again being provided by 5 second simultaneous ping floods. Starting 

with only one source host (falstone ping redmire), the number of sources being mirrored to erble1 

was then increased for each trace until we began to observe a packet loss. That is, a comparison 

was made in each case of the packets sent and received by the flooding hosts (reported by ping) 

and the packets received by snort on erble!. Figure 4.9 gives details of the number packets sent and 

received by ping on the source machines with the reported average RTT values and the number of 

packets logged by snort in each case. Table 4.1 summarises the percentage packet loss in each case 

and Figure 4.10 gives a conceptual view of the switch setup when mirroring 4 switchports to the 

monitor switchport 1 (host erble1). 

We observe a packet loss at the monitoring node when we have more than three sources. Of 

course our work does not consider 'specialised' hardware, and our prototype is constructed with 

available equipment. Mechanisms that could limit the number of dropped frames include 'rate 

limiting' each switch port, or equipping the monitor host with more than one network interface. 
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Table 4 1· Summary packet loss at the m ·to h t .. - om r os 
Sources Frames Captured by %Loss KIT Frames 

(total) snort (ms) (avgjhost) 
1 52,930 52,930 0 0.185 26,465 
2 113,758 113,758 0 0.1645 28,439 
3 153,391 152,907 0.32 0.186 25,565 
4 192,205 164,284 14.5 0.198 24,026 

Another obvious approach is to use one of the Gigabit-Ethernet ports to connect the switch-DGA, 

and a more powerful machine to process the data. Although such a solution should resolve the 

issue, it is also expensive. Thus, the need for more efficient logging mechanisms served as a central 

motivation for our second L2 traceback system COTraSE presented in the next chapter. 

4.5.2 switch-SPIE memory requirements 

An interesting property of bloom filters is that they cannot produce false negatives. That is, mem

bership tests for an element e whose hashed digest is represented in a bloom filter will never be 

negative. Thus the following is concerned wholly with false positives, which are used as a measure of 

performance for bloom filters. A false positive in this context is that an innocent host is implicated 

as the source of malicious traffic. That is, given a packet p whose packet digest was not stored in a 

bloom filter, a membership test for p is positive. 

The bloom filter false positive rate P is expressed as a function of its size (m bits), number of 

elements inserted (n packets) and number of hash functions used (k): 

P = (1 _ (1 _ ~) kn) k 

The false positive rate can be lowered by increasing m and limiting the number of insertions n. 

Both however increase memory requirements (the latter results in more bloom filters overall). The 

memory efficiency factor ~ is used in conjunction with P to indicate performance. By increasing k 

(with an equivalent increase in m) the false positive rate is reduced with only slight reductions in 

memory efficiency [3]. That is, increasing the number of bloom filter elements 'set to' 1 to represent 

each packet can produce a lower false positive rate, if bloom filter size is adjusted accordingly. 

However, we must limit the number of digests due to the obvious processing overheads in computing 

these. 

For the purposes of our discussion we first establish some bounds. The number of insertions, n, 

is bounded by the link speed. We assume that bloom filters are used for 10 seconds before being 

swapped (this is the default 'paging rate' in [17]). For performance purposes, we also assume that 

no more than k = 4 digests are used for each packet 'inserted'; in SPIE [17], the 128 bit output from 

a single MD5 hash is used as four 32-bit digests. This supports bloom filters up to 232 bits, which 

as we will see is sufficient for our purposes. 
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Querying each switch-DGA for a given packet is an independent Bernoulli trial (success _ true 

positive/true negative or fail - false positive). Thus, the number of false positives overall follows a 

Binomial distribution. In a network with x 'SPIE-DGA' enabled switches, each maintaining false 

positive rate P, the expected number of false positives overall is xP. The Xewcastle University 

School of Computing Science network consists of just under 30 switches; for the purposes of this 

discussion we arbitrarily select 3ioo as a reasonable upper bound on the false positive rate. That is, 

if each switch maintains P ~ 30
1
00' we expect false positives in the set of trace replies roughly 1 % of 

the time. It should be noted that this is a much stricter bound on the false positive rate than the 

0.125 used in the analysis of [3]. 

Assuming full utilisation of a 100Mbit/ s link into a switch-DGA, we expect 1,000,000,000 bits 

in 10 seconds. Taking an average frame length of 1000 bits, n ::::: 1, 000, 000 frames are stored in 

each bloom filter before it is replaced. Using m = 225 bits (4Mbytes) a false positive rate of 0.00019 

is achievable with k = 4 hash functions [109]. In this configuration, the optimal value for k is 22, 

giving vastly improved performance with P = 0.0000002l. 

The bloom filter size above (m = 225 bits) equates to 24Mbytes of storage per switch port per 

minute. At the very high end, a CISCO Catalyst 6513 Ethernet switch provides 1,152 FastEthernet 

ports, and so requires 27Gbytes for a one minute 'traceback window'. That is, we can 'traceback' 

packets generated up to one minute ago; we consider this sufficient for an automated deployment in 

which an IDS interfaces with the STM to send requests to switch-DGA. At the lower end, a 24 port 

switch would require 576Mbytes. 

This is of course a worst case scenario, that is, we assume full link utilisation with all traffic 

originating from a single access port (and so stored in a single bloom filter). In practice however, 

memory requirements can be relaxed. If we assume that frames originate from each switch port 

with equal probability, we can reduce the expected number of insertions in 10 seconds. Distributing 

the estimated 1,000,000 frames over 1152 ports gives an average of 868 insertions per bloom filter, 

requiring only 215 bits (i.e. 24KBytes/min/port) to maintain P ~ 0.00033. A smaller switch needs 

to provision more memory per bloom filter in this scenario as each accounts for a greater proportion 

of frames. In the 24 port case we can assume 42,000 insertions per bloom filter, requiring 221 bits 

to maintain the same expectation on P. That is l.5Mbytes per minute per switch port. 

In a larger network each switch-DGA must maintain a lower false positive rate to achieve the same 

performance (e.g. false positives in roughly 10% queries). The link speed is a significant factor in 

determining memory requirements for a given false positive rate. In Table 4.2 we show requirements 

for 100Mbit/s and 1Gbit/s Ethernet with corresponding values of P. When the optimal value of k 

for a given m is greater than 4, we show P for both the optimal case and k = 4. 

From Table 4.2 we can see that in the GigabitEthernet case we need roughly 192 ~[bytes per 

minute (per switchport). With k = 4 this produces a false positive rate slightly higher than our 
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Table 4.2: Memory requirements (m) and corresponding false positi rates (P) ve 
n m P pI MUytes/min 

(frames) (bits) (k=4) (optimal k) (per port) 
100Mbit/s: 223 0.024 0.022 6 
~ 1,000,000 224 0.0024 0.00046 12 

225 0.00019 0.00000021 24 
1Gbit/s: 227 0.0052 0.0021 128 

~ 10,000,000 228 0.00044 0.0000046 192 

expectation of P ~ 0.00033. In the worst case, a CISCO Catalyst 6513 switch can provide 577-

GigabitEthernet ports equating to rougly 100 Gbytes for a 1 minute traceback 'window'. Of course, 

one can produce a lower false positive rate by using the optimal number of hashed digests k for each 

packet (rather than increasing memory allocation), though the feasibility of this will depend on the 

performance of available hardware. 

4.5.3 Discussion of Switch-SPIE 

In [5J the deployment of xDGA within gateway routers alleviates the traffic visibility problem, as 

the router sees all traffic leaving the network. Traffic sent between hosts on the same switch is not 

observed and so xDGA cannot traceback malicious activity (wholly) within the local network. A 

key element of Switch-SPIE compared to [5J is the fact that logging takes place at the switches. As 

a consequence, switch-SPIE identifies the host even when more than one switch separates a host 

from the gateway router, as will usually be the case. As a side-effect, the switch-SPIE configuration 

allows traceback even for frames that are wholly local. 

An additional benefit is increased scalability. The processing load is distributed and so traceback 

request processing is an order of magnitude lower at each switch-DGA compared to the (single) 

xDGA. Furthermore, in [5J the xDGA must maintain 'up to date' MAC-tables for all switches in the 

network. 

There is an inherent race condition in using the MAC-tables for resolving origin port from frame 

source addresses; if a forged frame is sent, the MAC-table mapping at the origin switch will correctly 

identify the source port, as correctly received frames are always submitted to the learning process 

[105J. However, the local switch-DGA MAC-table may not yet contain a valid entry (or a different 

earlier mapping). This is illustrated in Figure 4.11, where the switch-DGA local MAC table contains 

an earlier entry for MAC address y, identifying switchport 2 as the origin. However, the switch MAC

table is already updated to identify switchport 1 as most recently sending frames with address y. In 

[5J the authors take into account the high costs of the MAC-table update, suggesting a 60 second 

update interval, which as we explain below gives ample opportunity to an attacker wishing to exploit 

the race condition. Our approach challenges the attacker by moving the logging modules closer to 
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local MAC-table: 
.--------
I Mac.addr 

x 
L ____ ~ , 

2 I 
.~ ___ --l 

l //// 

r ------------~----- .. 
: "source: : ~-.... sWitch-DGA 

l __ ~~~~~~s!~:t~j , , 
\ 

switch MAC-table: 

: y 1 I 
1 ______ -------- ______________ 1 

[LOG] 

Figure 4.11: Potential discrepancy between the switch-DCA local MAC-table and the switch MAC-table 

the switches, making a more frequent MAC-table update feasible. 

In order to exploit the race condition an attacker needs to carefully time packet transmission. Two 

scenarios are possible; the attacker can use the MAC address of another switch host, or an altogether 

different address. The former is potentially the more 'successful', as the attack is attributed to an 

innocent tertiary host. However, it is also non-trivial; the attacker must first determine the tertiary 

host's MAC address (requiring some effort given the switched environment). Furthermore, the 

attacker needs to 'know' when the tertiary host is transmitting. Lets assume the attacker on port 1 

and the tertiary host (MAC address y) on port 2, as is depicted in Figure 4.11. Once attack frames 

are sent, the switch MAC-table will contain a mapping for address y on port 1 (Le. the attacker 

alters its source MAC to be the same as host 2). If the tertiary host transmits a frame before the 

switch-DGA MAC-table update, then the mapping at the switch MAC-table is overwritten. Thus 

once the switch-DGA MAC-table update occurs, the attack packets would be mistakenly attributed 

to port 3. A more frequent MAC-table update, as is possible in switch-SPIE makes this attack more 

difficult. Another possibility is for the update interval to be randomised, further challenging the 

attacker. The approach taken by Hazeyama et al in [5] allows a wide window of opportunity for the 

attacker with the MAC table update time set at 60 seconds, due to the centralised architecture of a 

single logging xDGA. 

If on the other hand the attacker uses an altogether different address and transmits just after a 

table update, the switch-DGA (local) MAC-table wont yet contain an appropriate mapping for that 

address. Under 'normal' conditions, we expect that a mapping wont exist for an address when a 

host has just joined the network. If addresses are consistently not being resolved, then this warrants 

investigation by network administrators. It is trivial to add a further bloom filter to the switch-DGA 

for 'unresolved' frames (with an alarm attached to a threshold frame number). A further refinement 

to our system which we are currently exploring (and that further challenges the attacker) is to 
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Figure 4.12: An example of switch-SPlE partial deplo~'ment 

'buffer' incoming frames until the local :\IAC-table is 'refreshed', before resolving the ~witchport. 

This feature has in fact been incorporated into our second L2 traceback systpm, COTraSE pr(':,('ntni 

subsequently. 

Though our approach addresses many of the issues of :51 it is more expensivp in terms of required 

hardware. A dedicated logging node is necessary at each switch. Partial deploymf'fit is possible, 

whereby a switch-DCA is responsible for traffic from a number of switchE's. As WP C,lll see froIll 

Figure 4.12, the switch-DCAs move from a switch monitor port to a network tap. HowE'wr, we 

begin to lose the advantages afforded by logging at each switch. SpecificallY. WE' sacrifice local traffic 

visibility, as it is not possible to capture traffic unless this traverses a logging node (for instanc(' 

sent between two hosts on the same switch). More significantly howpvpr we also start to sacrific(' 

local MAC-table validity. In Figure 4.12 switch-DGA1 must maintain :\[AC-tables for 5 switches, 

incurring higher update costs. Each switch-DCA must maintain an array of bloom filters for each 

switch. Furthermore, switch-DGA2 will not see packets sent from hosts on switch6 to hosts on switch 

7. However, this still improves on the single xDCA approach, and S\\'itch-DCA placement can be 

adapted to the deployment network. 

4.6 Chapter Summary 

This chapter has presented our first proposal for an L2 traceback system, that is an adaptation of 

the Source Path Isolation Engine SPIE proposed by Snoeren et al [3]. Our work, switch-SPIE is 

designed for switched ethernet networks and takes advantage of the :\1 \C address table maintained 

by ethernet switches to attribute each frame to the sending switchport. Whereas SPIE DCA used 



76 

a single bloom filter for logging packets, switch-DGA uses an array of n bloom filters. one for each 

switchport. An additional step in the logging process identifies the instigating origin s\\itchport from 

a local copy of the switch MAC-table and stores a given packet into the corresponding bloom filter. 

Our proposal improves over an earlier adaptation of SPIE for switched ethernet [9] by deplo)ing 

logging at each switch, rather than at a single network location. This allows for traceback of frames 

that are entirely local (i.e. that do not traverse the gateway router) and also allows the local MAC

tables maintained by each logging node to be updated with a higher frequency (thus increasing the 

reliability of the traceback result). 

Our evaluation of switch-SPIE memory requirements shows that memory utility is manageable in 

current switched ethernet networks (lOOMbit/s or 1Gbit/s ethernet) but that more efficient logging 

mechanisms are warranted for faster networks (such as lOGbit/s ethernet). Empirical evaluation 

of the switchport mirroring mechanism on our deployment switch showed that the switch itself can 

handle the extra load incurred by mirroring traffic. However, the recipient switchport and network 

host (the logging switch-DGA host) are quickly overwhelmed by the traffic load. These two issues 

served as motivation in our development of COTraSE, our second L2 traceback proposal which we 

present in the next chapter. Figure 4.13 summarises the placement of sections in our description of 

switch-SPIE to aid the reader. 

4.5.3 4.5.2 
Discussion Memory 

'" ~eqUirements 

4.5 4.2 

Requireaen~ /valUatiOD -.. . ',::;~ 

4.3.1 
SPIE 

overview~ 

~Cb-S~ m;rror1ng 

4.4 

4.3.2 
switched 
ethernet 

4.3 
Design 

/\ 
4.3.3 

switch-SPIE 
logging 

I/meDt~oD 

4.4.1 4.4.2 
Installing switch-DGA 
components 

Figure 4.13: Idea map for Chapter 4 showing placement of sections 



Chapter 5 

COTraSE 

5 .1 Introduction 

This chapter ('Ofl('('nIS our second L2 I r,tc..} ),11 k ~\'~I"III which Wi!...- pr''''''lIlt:>O as "COTm."F (. tioll 

Oriented Traceback for Switdw<i Ethernet" at lAS ':1111' [13. 12:. Whi!,;t 1Il'l'r,·"ting and lIlUrt' dull· 

lenging than at hrst appears, logging or marking of network I r,dh, In ordn I" Id.·;,' Ih 'rl>' irH Ig .. · ing 

origin of that data caIl be regarded as a rather academic ,'x,'r, i,..·, Th.lt i:-.. in practin' . >iI" 11111\' hod 

it. difficult to ('onvill('(' network Hdlllilli~lrdl()r.' of the net'd f" provid(· ~lIch tlll" graill" I .\iTIIII!I' ,dllli!\' 

over th(' traffic that. t h('\' handle. lP traceback ,\,f"IIIS such as ~I'IF and L.n",·r 2 traceback .\ '!"rll~ 

slI('h as switch-SPlE art' t'xpt'll~i\',· III ill,tall Inn abo fl> mllll! "in (consi,h'r """lIrd\' mana~illg Iflr~'" 

volumes of logged data), 

None the less, in 200611w Europ"an Parliament passed Illl'" til·' 21101",: 11[(' "011' II!' rd"lIfl"11 .• 1 

data ... " [16]. \\'t' consider 1 hi~ dil,·,t i\"· ill ~()I1j(' dt,tail in tIlt' next chapter, 'I'll!' COl'" r£"qulr"I1I"/I! I~ 

for providers of "pllhIid~' available electronic communications services- II) maintain "('tHnlllUIlI',! ion 

rl'cords". akiIl to 1 ho;;,' maintaiIll'd by providers of mobile telephony ·!'rvic!', 111"f i". '11" ,.)IIf'" 

d(';;t.inatioIl, duration and t~'lll' of cOIllIllunication service used. Ci\"'11 tlul ,III It a ",j"la retl'ntl'H1" 

s~';;t(,1lI is (,ss"lltiaII~' a packet log, then logging based IP and L2 traceback are p"rll l 1Ji.,r1y r..)"\,LlII 

and offer yaluabll' insights of the practical difficulties in til<' impi'III' 11'1':··:. of such a ... ·1'111 TljI' 

EU data retention directiw in part inspired the deyelopment of CO I r,<." [':. which adol,ls a "COl1/Wd 1')11 

oriented" approach to logging. A~ we will see, alit,themet frames are processed tfJ deal with "flder 

spoofing, but only a subset are ewntually logged as "connection records". Crucially 1 I.:. dO( .... nut 

sacritict' the ability tll tr,1l'l'h,\ck any given packet. 

\\'p tir~t ITyi:"it our L2 traceback s~'stelll requirements as used in ,,,.-irr j,.": PIE and disc,),,· ho ..... · 

COTraSE improws on these. Thi:-; is then followed by the design and implementation d,·tails In 

Sll bsequent section~. 
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5.2 Requirements 

The experience gained when developing switch-SPIE was instrumental in the design of COTraSE. 

Switch-SPIE like COTraSEis a logging based layer 2 traceback system designed for switched et ber

net networks. Furthermore the two systems share the same set of requirements (see 4.2), though 

COTraSE offers improvement in multiple dimensions. We now revisit these requirements for conve

nience, followed by a discussion of the advancements claimed by COTraSE. 

1. Identifies the instigating origin sID,pNO of any given packet originating within the deploy

ment network (within a bounded traceback window) 

2. Requires no changes to existing network infrastructure or protocols. 

3. Traceback enabling procedures (Le. logging) should be considerate of user privacy. 

4. The traceback result must be reliable. 

5. Supports partial deployment and be adaptable to any network topology. 

6. Realistic expectations of memory requirements at packet logs. 

With regards to identifying the instigating origin, COTraSElike switch-SPIE assumes that the 

source MAC address of all frames has been subjected to sender spoofing and so cannot be taken 

"at face value". However COTraSEgoes further to allow for post-send legitimate spoofing, such 

as when Network Address Translation (NAT) is employed. We will see how this is achieved by 

maintaining 'Translation Records' at the gateway router. Other logging based L2 traceback systems 

including switch-SPIE do not take this type of spoofing into account. Thus, it is not possible to 

match the IP data delivered to the intended recipient with the same data prior to any alterations 

made at the gateway router. This of course greatly decreases the utility of such systems in 'real 

world' deployments, given the ubiquity of legitimate post-send spoofing mechanisms such as NAT 

and web caching as was discussed in Chapter 2. This ability of COTraSEto traceback regardless 

of any legitimate post-send spoofing is also relevant to our second requirement as it removes the 

conflict between logging based L2 traceback systems and widely implemented mechanisms such as 

NAT. It should be noted that translation logging is orthogonal to the issue of L2 traceback; that is, 

it is possible to adapt the translation logging process of COTraSEfor other L2 traceback proposals 

such as switch-SPIE. 

With regards to the third requirement, COTraSEprotects user privacy through encryption of 

logged data. This was also the case in switch-SPIE, where encryption served the dual purpose 

of decreasing memory requirements as well as protecting user privacy. COTraSEdoes not rely on 

encryption to decrease memory requirements and instead adopts a "connection oriented" approach 

to logging. Thus, the use of encryption is entirely for the preservation of user privacy. It could even 
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be argued that the use of encryption in COTraSEis "overkill" as the data logged is drawn only from 

the headers of the Data-link, Network and Transport layers, with the payload not being processed 

at all. This means that in situations where performance of logging nodes is an issue then connection 

records may be stored in cleartext, avoiding costly cryptographic hashing routines. 

The reliability of the trace result is an area where COTraSEmakes significant contributions. 

We feel that this requirement is particularly important in light of the intended use of retained 

data under EU directive 2006/24/EC. It must not be trivial to employ sender spoofing to create 

traffic that implicates an innocent third party. COTraSEdoes not rely on bloom filters to decrease 

memory requirements and so false positives are eliminated alltogether. Furthermore, our switchport 

resolution algorithm (attributing a frame to a source switchport based on the source ~[AC address) 

makes use of two switch MAC tables to make it much harder for an attacker to manipulate the 

MAC-table race condition, as discussed in the previous chapter and illustrated in Figure 4.9. Finally, 

COTraSEdoes not rely on switchport mirroring to overcome the switched ethernet traffic visibility 

issue. The unreliability of port mirroring as the number of switch ports being mirrored to the 

monitor port is increased was illustrated in our experiments. Rather, COTraSElogging procedures 

are deployed at a passive tap between network switches which means that all frames are processed 

regardless of load. Even when link ports are an order of magnitude faster than access ports (e.g., 

1000Mbit/s vs 100Mbit/s), traffic carried by the link ports will still be less than that from the 

amalgamation of n access ports to a monitor port (it is often the case that there are more than 10 

access ports on a mid range ethernet switch). 

COTraSEoffers increased support for partial deployment. In switch-SPIE we logged data from 

access ports, whilst switch link ports were not monitored at all (as illustrated in Figure 4.2). However, 

this is reversed in COTraSEwhere we exclusively log at switch link ports. An ideal deployment of 

COTraSErequires logging between every network switch as only the logging node adjacent to a given 

frame's origin switch can provide us with the unique sID, pNO that identifies the instigating origin. 

However given that we monitor link ports, a frame will be processed by all logging nodes en route 

to the gateway router. Thus, all logging nodes will 'point' towards the instigating origin within the 

local network so that even in a partial deployment COTraSEcan aid in identifying this host. 

Finally, a decrease in memory requirements is another important contribution of COTraSE. The 

aforementioned EU Directive 2006/24/EC requires that network data be retained for "periods of 

not less than six months and not more than two years". This is a much larger "traceback window" 

than that considered by any known L2 traceback systems; in switch-SPIE for instance we discussed 

memory requirements in terms of minutes, not months! Thus, the efficiency of logging is a crucial 

factor in the real world utility of L2 traceback systems. In COTraSE, though all frames are processed 

only a subset are eventually logged as connection records. We have implemented the core logging 

algorithms and used anonymised WAN traces from [110, 111, 112] as input to these, to enable a 
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discussion of memory requirements later. We will now turn our attention to the design details 

COTraSE. 

5.3 COTraSE 

In COTraSE, rather than switchport mirroring we instead log between switches with a passive 'tap'. 

Memory requirements are decreased by attributing frames to 'connections' and log.,aing representatin> 

'connection records' (conRecs) for each interval rather than explicitly logging all frames. We note 

that a similar approach is used in router-deployed NetFlow [20], which is tailored to performance 

management, not traceback. We will examine the important differences between r\etFlow and 

COTraSEin our evaluation later in this chapter. 

The basic realisation behind connection oriented logging is that packets exchanged between peer 

network processes at a given time will have the same source and destination Data-link (MAC), 

Network (IP) and Transport layer (TCP or UDP) addresses. This data is used as a connection 

identifier (conId) for a given communication. One can group packets in 'connections' even in the 

absence of TCP or UDP at the transport layer, as we will see. A separate process at the network edge 

maintains 'translation records' (transRecs), addressing the issue of post-send legitimate spoofing (as 

in NAT). 

(hosts) 

r' --«co'; icf.:,o;ig: conlir.."mod:tfme» -- --1 
t ___________ . !r!'..'!~~I!!!!'.'!_ f!~~~~~~ ..... _ .. _ . ..: 

· · · 

r-L2 network 1 
L boundary-, 

t ... _ .... __ ......... _ transRec Log 
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I 
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:-·_-_·········_·---Connecti"o;;Reco;ds·····-···_··_··-_ .. -: 
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Figure 5.1: COTraSE - conRec and transRec Logs 

An overview of the COTraSEsystem is given in Figure 5.1. As can be seen a conRec log is deployed 

between ethernet switches, processing traffic from the switch link ports. This may be achieved using 

hardware dedicated to this purpose, or with an inexpensive ethernet hub placed between the two 
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switches. Though all ethernet frames are processed and undergo "switchport resolution-, only a 

subset is eventually logged as connection records as we will see. While there may be a number of 

conRec logs only a single translation record log is required per connection and placed at the gateway 

router. 

For the remainder of this section, we first examine the logging procedures at the connection 

record logs. This is followed by a discussion of the key subroutine of the logging process, that 

of switchport resolution. Finally we discuss the two key timing parameters used by COTraSEand 

explain the translation record logging process at the gateway router. 

5.3.1 The Connection Record Logs 

Each connection record (conRec) consists of connection identifier (conId), timing and instigating 

origin information. As in switch-SPIE each host on the layer 2 network is identified by the unique 

pairing of switch identifier sID and switchport number pNO. 

We use a cryptographic hash function over the data-link, network and transport layer addresses 

(MAC, IP, TCP/UDP data) to derive the connection identifier (conId) for each received frame. These 

addresses can uniquely identify a specific communication between two peer processes only if they 

are taken together. 

For each frame received at a conRec log, conId is computed and used to make a new working 

record (wRec). After switchport resolution (explained subsequently), each wRec becomes 'active' 

only if there is no existing active wRec with the same connection identifier. This means that at 

a given time only one active wRec exists for each unique communication between peer network 

processes. 

The set of active working records {AwRecs} represents all currently ongoing communications. 

The active wRecs are cleared as per the 'active connections purge interval'. At the end of each purge 

interval, for every active wRec w E {AwRecs} a permanent connection record is created and logged. 

The next frame for each connection will then become the new active wRec and a new set of active 

working records is populated and maintained until the end of the next purge interval. 

A conceptual overview of this process is given in Figure 5.2, which depicts the progression from 

ethernet frame to connection record, for 12 frames of the same connection. The horizontal axis 

shows time expressed in terms of purge intervals of length t. During the first interval Ot f--> It two 

frames are received and a wRec created for both. However, only the wRec of frame 1 becomes active 

whilst the wRec of frame 2 is discarded (shown as X ). After the first purge interval has elapsed (It) 

the information contained within active wRec 1 is used to create conRec A. Thus at the end of the 

depicted time period (6t) a total of five connection records are required to represent the 12 frames. 

When processing traceback requests, COTraSEcan provide the time periods t during which a 

given frame was processed (if at all). There is an inherent space/time tradeoff in setting the length 
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Figure 5.2: Conceptual view of the progression from ethernet frames to connection records. The 
Figure depicts conRecs from 12 frames of the same connection 

of the active connections purge interval. A larger interval means that more frames are l"!'pr('''('llt('d 

by a single connection record, thus decreasing memory requirements. However this also means that 

traceback replies will become less precise. COTraSEcan only confirm that a frame was processed 

within a given purge interval but cannot identify the precise time this occum·d \\"(' will examine 

the bounds of the purge interval in our discussion of timing parameters later. 

For non TCP/UDP traffic and in the absence of Transport layer port numbers, deriving the conld 

requires us to find a different means of grouping consecutive frames from the ~aIIl(' communication. 

Source and destination MAC addresses are used in conjunction wit h any other available dat a. Of 

course the grouping of consecutive frames is protocol dependent and we give two cliara("\('ri"t ic 

examples as it is impossible to provide an exhaustive list. For ARP one can use the Sender and 

Target Protocol Address together with the Opcode, whilst for ICMP the IP source and destination 

addresses are available, and used in conjunction with ICMP Type and Code. \\'e have been unable 

to identify a networking protocol for which some means of grouping is not possible. How('w[, f'wn 

in such a case the logging procedures will degenerate to no worse than an explicit frame log, which 

is the de facto modus operandi of all other known logging L2 traceback systems. 

The conRec logging algorithm is given later in Figure 5.5, as we must first introduce the key 

subroutine of switchport resolution. At each conRec log and for each frame received the connection 

identifier is computed and a new working record created. COTraSElike switch-SPIE determines the 

origin sf D and pNO by consulting local copies of the switch :'IAC address table. \\-e now turn to 

the details of this "switchport resolution" process. 
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5.3.2 Switchport Resolution 

Ai; mentioned earlier the source MAC (srcMAC) address cannot be taken 'at face value' as it is 

easily spoofed at the instigating origin host. Switches 'learn' the sTcMAC +-+ p.VO mapping from 

each forwarded frame and update their MAC-table accordingly [104, 105]. Ai; in other proposals. we 

maintain local copies of the switch MAC-table to determine the switch identifier (sID) and switchport 

number (pNO) based on the source MAC address. Ai; in switch-SPIE earlier, this process is termed 

'switchport resolution'. The novelty of the COTraSEapproach is to use two ~lAC-tables. Whilst 

this requires an extra MAC-table lookup it also enables us to perform detection of sender spoofing 

activity. We classify the return of each MAC-table lookup and show that some combinations are 

erroneous. A 2-bit flag field is required in all working and connection records to store the outcome 

of switchport resolution. The value of this field directly depends on the combination of the two 

MAC-table queries. Importantly the 2-bit flag allows us to reason about the reliability of a given 

connection record when querying logged data. We now introduce our simple classification and discuss 

how this is used to detect spoofing. 

We correlate the MAC-table values from both adjacent switches to determine {sID,pNO}. Each 

switchport is either an access port, providing network access to end hosts, or a link port which leads 

to another switch or router. This designation was also used in switch-SPIE though COTraSEfurther 

differentiates between internal and external link switchports. This is shown in Figure 5.3, where 

ports {sl, 10} and {s2, 9} are the internal link ports for the shown conRec log, whilst ports {s1,9} 

and {s2, 1O} are the external link ports. Of course this is relative to a specific connection record log; 

at the next conRec log beyond switch s2 (not shown), port {s2, 10} would be an internal link port 

and port {s2, 9} would be an external link port. 

I external link pori I 

7 
~>-0-<::>-" I 

Figure 5.3: COTraSEclassifies all switchports as one of access, internal link or external link 

This classification is configured at each conRec log, allowing the return of MAC-table lookups 

to be classed as one of: null, external link (ext_link), internal link (inLlink), access port (axs_port). 

It is likely that the MAC-tables from both switches will contain an address mapping for a given 

address. Based on our classification, some combinations are not acceptable, and generally indicative 

of an error as will be explained below. One legitimate combination for instance is for the (local) 
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MAC-table of switch 81 to report an internal link whilst the MAC-table for switch 82 gives an access 

port. This is shown as case 8 in Table 5.1 which gives the set of all possible outcomes. In the Table 

the number of each case matches the corresponding circled number in Figure 5.4. The meaning of 

the 2-bit flags, which are also shown in Figure 5.5 will be explained subsequently. 

Table 5.1: Summary of possible switchport resolution outcomes at a given conRec log 

Case 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Switch 1 Switch 2 Flags 

null null 01 

null axs_port 00 

null intJink 11 

null extJink 00 

ext.link axs_port 10 

ext.link intJink 00 

ext.link ext..1ink 10 

intJink axs_port 00 

int..1ink intJink 10 

axs_port axs_port 10 

I 
return 

QnUink) 
siD, pNO 
CODE: 11 

return 
(axsJlOrt) 
slD,pNO 
CODE: 00 

Outcome 

Alert 

Normal 

Alert 

Normal 

Alert 

Normal 

Alert 

Normal 

Alert 

Alert 

retum 
(exI_fink) 
siD, pNO 
CODE: 00 

Figure 5.4: The switchport resolution algorithm 

When both switches return a non-null value (cases 5 to 10 in the Table), switchport resolution 

must 'decide' which of the two should be used as the {8ID,pNO} identifier. An axs_port gives a 

if ail bl If both tables return links, then specific network access point and so is always chosen av a e. 
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an extJink is preferred over an intJink, as in the former case neither adjacent lrnitch was he origin. 

Figure 5.4 shows the switchport resolution algorithm. As can be seen. the algorithm rna];, 

of a 2-bit fl ag to signal t he outcome of MAC-table lookups (corresponding to the Fla
o 

column in 

Table 5.1 above). Code 00 indicates 'normal' switchport resolution, that is a ingle a;. _port (c 

2 and 8) or extJink (cases 4 and 6) is returned. Code 01 means a port mapping was not availabl 

for an address, corresponding to case 1. If MAC addresses are consistentl not learnt by lrn.itch 

MAC-tables, then this may indicate an oversubscribed switch [104]. 

Figure 5.5: Activity diagram showing the conRec Log algorithm 

Figure 5.5 depicts the ent ire connection record logging algorithm, where switchport r olu t ion 

is shown as a shaded activity box. Those wRecs wit h codes other than 00 are never made 'active', 

as they indicate 'abnormal ' switchport resolut ion. Depending on availab le information one or more 

conRecs are immediately created , wit h the error codes indicating their tatus , as in Figure 5.5. 

Codes 10 and 11 signal 'erroneous' switchport resolu t ion. In Figure 5.4 and Table 5.1 cases 5,7,9 

and 10 produce error code 10 and case 3 produces code 11. The former indicates that we cannot 

'choose' between conflict ing or equivalent values. For instance, two ext Jinks or two intJinks would 

mean that the same MAC address was 'seen ' as a source address from two opposing directions. This 

is impossible as switched Ethernet does not permit cycles[104]. 

Code 11 , produced in case 3 means there is insufficient information as only an intJink is returned. 

In this case, switch 82 points to switch 81 as the origin , by returning the intJink from the MAC-tabl 

lookup. Given t hat we perform switchport resolut ion after local MAC-tables are updated we would 

expect switch 81 to return either an axs_port or an extJ ink. 
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As is shown in Figure 5.5, after local MAC-tables are updated and switchport resolution occurs, 

the conRec logging algorithm 'decides' what should occur to each working record based on the 2-bit 

flags. We now turn our attention to the two important timing parameters of the MAC-table update 

time and the active working records purge interval, before considering the (much simpler) translation 

records maintained at the gateway router. 

5.3.3 Timing Parameters 

The MAC-table update time dictates when the local MAC-tables maintained at the conRec logs 

are refreshed from their corresponding 'master' tables on each of the two adjacent switches. As 

was shown in Figure 5.5 once an ethernet frame is received, its resulting working record is buffered 

to undergo switchport resolution only after the MAC-table update. It is possible that the local 

MAC-tables do not yet contain an entry for the source address of a recently received frame, such 

as when a new host joins the network. Its likelihood is reduced by deferring switch port resolution 

until after the local MAC-tables are updated as the switch MAC tables will contain an entry for all 

recently 'seen' source MAC addresses [104, 105]. 

Thus, we must ensure that the update time is less than the MAC address Table 'aging time'. All 

switch MAC-tables will "age out" entries for efficiency, but also to ensure that hosts which move to 

different parts of the network are not permanently prevented from receiving frames [105]. That is, if 

the MAC-table update time is too large it is possible to 'lose' the sTcM AC +-+ pNO mapping from 

the switch MAC-tables so that only null is returned by the switch port resolution process (case 1 in 

Figure 5.4 and Table 5.1). 

The IEEE suggest an aging time of between 10 and 1, 000, 000 seconds [105], with a suggested 

standard of 300 seconds. However, since unprocessed wRecs are buffered until the next MAC-table 

update, the logging process's memory utilisation (''working'' memory - RAM) becomes an important 

and practical concern. With this in mind we choose a MAC-table update time of 5 seconds, which 

also stays within the minimum aging time of 10 seconds. This creates a worst case requirement of 

~ 300Mbytes of RAM on a full duplex 1Gbit/s link to buffer unprocessed wRecs, as we will see in 

our discussion of memory requirements later (assuming 1000 bit frames). 

The second important timing parameter we consider is the active working records purge interval. 

This is the time after which the set of active working records is cleared and a corresponding set of 

connection records created and archived. As was mentioned earlier, the purge interval (purgelnt) 

is governed by an inherent time/space tradeoff. A larger purgelnt means a smaller proportion of 

frames become conRecs overall with each conRec representing a larger time interval. As can be seen 

in Figure 5.6, with a purgelnt of It, conRec A 'represents' frames 1 and 2. If however the purgelnt 

were set to 2t, then conRec A would have represented frames 1,2,3,4 and 5. 

When replying positively to traceback requests (i.e., "yes I processed that frame") COTraSEwill 
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express the time that the given frame was processed in terms of purge intervals. Thus, whilst a larger 

purge interval decreases conRec storage requirements, it also decreases time precision of traceback 

replies. The purge interval is therefore bound to be no greater than is acceptable for the purpose of 

traceback request processing. However, to limit the search for records to only two purge intervals. 

it is also bound to be no smaller than the time we expect between processing a frame and its arrival 

at the intended destination as we explain below (equivalently not less than half the expected round 

trip time). 

Traceback requests provide the time when a given frame to be traced was observed, either at the 

destination or at some suitable vantage point within the network (e.g., at an Intrusion Detection 

System). Based on this time we must search the connection record logs for those conRecs, if any, 

that represent the requested frame. If we ensure that the purge interval is no smaller than half the 

round trip time (RTT) then we can limit the search to only two purge intervals. As can be seen in 

Figure 5.6, frame 1 is received and processed at the conRec log at time Ot + 8, where 0 :5 8 < t. 

Frame 1 reaches its destination at time (Ot + 8) + X and so X represents the 'delivery time'. If we 

ensure that t ;:::: X then frame 1 will be delivered during the current or next purge interval (Le., 

Ot ~ It or It ~ 2t respectively). That is, with a purge interval of t ;:::: ~T the conRec for time 

(Ot + 8) + X or the previous one 'represent' the tracked frame. 

purge interval t .. . 
m 1t ~ 3t 
-,...- ;' ';". ..,... 

ethernet II :111:11 
f········ I ., (time) 

f 12: 345 : 6 7 

t •• r.~~~~ ........ ++ ... +.++.l ..... ~ ... t ...... t ...... t ....... . 
wRecs 1 2 : 3 4 : 6 7 : 

I .. ···:· .. · .. j .. ·+·t .. · .. ~ .. ·l .. ·t X : I .... { .... + ........ 
actIVe 1 :3 6 : 
wRecs • :. • .~ __ ... 

I ~~~~~~~... ..... con~~; A con!~ B cont~ .~ ... 
....... 
3t 

Figure 5.6: The purge interval t must be greater than the time X we expect a frame to take in 
reaching its destination 

We conservatively choose 10 seconds as the lowest bound on the purge interval. We sampled 

data from the Skitter "Macroscopic Topology Project" [113] for 3 arbitrarily chosen days that are 

each one year apart. Each data set shows the RTT for packets sent from a number of skitter nodes 

that were active on that day. For each node, we use the RTf distribution by continent, that is, the 

RTT from the given skitter node to servers around the globe (Africa, Asia, North America, South 



88 

Table 5.2: Summary - Skitter [1131 RTT for all active servers on 3 arbitrary days 
Day Participating RTT 

skitter nodes for 99% of packets (InS) 
02 Mar 2002 13 2050 
02 May 2003 23 4709 
02 Mar 2004 21 3941 

RTT for 99% of packets over 3 days: 3566 

America, Middle East, Europe, Oceania). 

We conservatively estimated that (at the 99th percentile) the round trip time is ::;::: 3.5 seconds, 

as summarised in Table 5.2. For instance for data from 02 May 2003 and for each of the 23 available 

measurements we took the worst case (largest) round trip time at the 99th percentile and then 

calculated a mean value for all servers. Thus we feel that our choice of 10 seconds as the 10WE'st 

bound on the purge interval is sufficient for t ~ X. Of course as lOs is the lowest bound, it also 

produces the greatest number of connection records and so represents the worst case in terms of 

memory utility. We use this value in our implementation of the conRec log so that our discussion 

of memory requirements given later realistically portrays this worst case scenario. 

5.3.4 The Translation Record Logs 

Traceback requests will specify a traced packet in the format it was received by the recipient. As we 

have seen, when legitimate post-send spoofing such as NAT is in place, the source IP address, source 

TCP port and destination TCP port are all subject to change at the gateway router. The translation 

records are a mapping between the connection identifiers before and after any of the address fields 

are re-written. The original SPIE IP traceback system addressed this issue by way of a 'Transform 

Lookup Table' [31 and COTraSEis the only L2 traceback system we are aware of to address this. 

Each translation record contains conld_orig, conld_mod and a timestamp. Our approach is simple in 

that a direct mapping is maintained between data before and after modification. We are confident 

that a more elegant solution is possible and this is deferred to future work. 

At the translation record (transRec) logs, the original connection identifier (conld_orig) is com

puted in the same way as the conld at the connection record logs. That is, a hashed digest over the 

concatenated source and destination addresses from the Transport, Network and Data-link layers 

(rCp /UDP ports, IP and MAC addresses, respectively). However, the modified connection identifier 

cannot include any data that is not received by a given frame's recipient. When servicing traceback 

requests, we need to match the data supplied by the trace initiator (Le. the traced packet) with 

data we have stored in our logs. For frames that leave the local network, we expect the application, 

transport and network layer data to arrive unchanged (Le. in the same form with which it left the 

local network). However we can make no assumptions about the physical (and by extension) data 
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link layers employed to reach the intended destination (for instance ADSL or nOCSIS fibre links 

may be used). Thus, the source and destination MAC addresses are not included in the computation 

of conld_mod. The transRec logging algorithm is shown in Figure 5.7. 

Figure 5.7: The Translation Record logging process 

The transRec log maintains an 'active connections' set in a similar manner to the conRec logs. 

The processing algorithms however are much simpler, in anticipation of the fact that the logging 

procedures at a leaf router may handle a greater volume of traffic. Ai> can be seen in Figure 5.7 no 

attempt is made to perform switch port resolution as this is done at all conRec logs en route to the 

leaf router and doing it again provides no new information. When a frame arrives at the router, the 

original connection identifier (conId_orig) is computed and a check made for an existing translation 

record in the 'active transRecs' set with the same conId_orig. If there is a match then the given frame 

is no longer processed and 'dropped'. If however there is no existing active translation record, then 

a new transRec is created. The connection's state is retrieved (e.g., from the NAT processes or from 

the web proxy) and used to compute the modified connection identifier (conId..mod). A time-stamp 

is then added to this and the new transRec is placed in the leaf router 'active connections'. After 

the active connections purge interval has elapsed (as discussed above), the active connections set is 

cleared with the transRecs being archived to storage for subsequent traceback processing. 

For traceback requests from beyond the local network, transRecs are searched for conId_mod. If a 

match is found, a local traceback request is dispatched, and conRec logs queried based on conId_orig. 

Thus we 'traceback' packets regardless of post-send legitimate spoofing at the leaf router. 

5.4 Memory Requirements 

We now turn our attention to a discussion of the memory requirements created by a COTraSEdeployment. 

This is an obvious and pressing issue for any logging based L2 traceback system. Ai> we will see our 

implementation of the connection record log demonstrates the drastic reduction in the storage needs 

of a connection oriented approach, compared to explicit frame logging. 

Memory requirements are an important concern for logging based IP and L2 traceback systems 

as they govern the 'traceback window'. This is the time during which we can traceback a packet after 
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it has been logged. That is, the length of time for which it is feasible to retain logged connect ion 

records, before the oldest conRecs are overwritten with new data. Below we give details of the various 

COTraSE records encountered so far as these are used in the discussion that follows (brackets denote 

size in bits): 

wRecs (230): conld (128), source MAC (48), sID (10), pNO (10), timestamp (32), flags (2) 

conRecs (182): conld (128), sID (10), pNO (10), timestamp (32), flags (2) 

transRecs (288): conld_orig (128), conId..mod (128), time (32) 

You may recall that the MAC-table update time directly impacts the 'working' memory require

ments (RAM). All working records created from received frames are buffered to undergo switchport 

resolution directly after the MAC-table update. Taking a duplex Fast Ethernet link at 1Gbit/s and 

with average frame size of 1000 bits, at most one gets ~ 1,000,000 frames per second in either direc

tion. Assuming a hypothetical worst case scenario where all frames belong to different connections, 

this would equate to ~ 10, 000, 000 working records in 5 seconds. This scenario is of course highly 

unlikely and can only arise in a sustained DoS attack targeted specifically at COTraSE(further dis

cussion of vulnerabilities follows separately). None the less even in this extreme case a conRec log 

requires RAM of ~ 300MBytes for 5 seconds worth of wRecs, which we do not consider excessive. 

Storage requirements for archived connection records will ultimately depend on the number of 

"conversations" between peer machines at a given time and this will of course vary between networks. 

Recall that a single conRec is required for each ongoing connection for each purge interval. We have 

hence established bounds using 'real world' network traffic from available WAN traces [110, 111, 112]. 

The number of connections C gives the lower bound for the number of conRecs cR we need 

to store for each purge interval p. How many conRecs we store overall depends on the 'traceback 

window', in terms of number of purge intervals. Though C is not within our control, we can tune 

p, as explained earlier. A larger p will mean less purgeInts in a given traceback window and so 

less conRecs overall. As we have argued, to limit the search for records when processing traceback 

requests, a lower bound for p is 10 seconds. This value is used in our experiments so that our results 

represent the worst case, in so far as the purge interval can affect cR. 

In total we processed over 300, 000, 000 packets to derive an upper bound for the number of 

connections C. We cannot necessarily claim that our results represent a general case since C may 

vary in different scenarios. Furthermore WAN traces are not necessarily representative of LAN 

traffic, which is the primary focus for COTraSE. However, 'real' LAN traffic is not easily available 

due to the associated privacy and security concerns. 

We first describe the WAN traces in more detail and explain how these were processed to produce 

a 'hex dump' for each minute of a given trace. This is followed by a description of our implementation 

of the conRec algorithm. Our code, written in Java, takes the processed trace files as input and 
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writes connection records to me at the end of each purge interval. This is then followed by the 

results of our experiments. 

5.4.1 The WAN trace data 

Table 5.3 summarises the trace data used here. Source 'OCI2' [110] provides data from an OC12 

link at the AMPATH Internet Exchange in Miami. We arbitrarily downloaded the data for 09 Jan 

2007, with a total of 12 one hour traces taken at 3-hourly intervals from 0900 until 0000 of 10 Jan. 

Source 'OC48' [111] is an OC48 peering link for a large ISP at NASA Ames Internet Exchange. The 

data we use is for six 5 minute periods: two on each of 14 Aug 2002 (0900), 15 Jan 2003 (0959) and 

24 Apr 2003 (0000). 

Table 5.3: Trace data summary 
Source Traces Total 

Frames 
OC12[110] 12 * 60mins 136,503,068 

OC48[111] 6 * 5mins 114,181,288 
WIDE[112] 6 * 15mins 89,357,967 

All data was available in the form of lihpcap [114] capture files and all traces are anonymised 

(e.g., IP addresses are changed) to preserve the privacy of network users. The OC48 and OC12 traces 

are captured separately in each direction of the monitored link; thus, the six traces for OC48 are 

in actuality either direction at 3 given times. Finally, source 'WIDE'[112] is a 100Mbit/s Ethernet 

transit link from the WIDE research network in Tokyo to its upstream carrying mainly trans-Pacific 

traffic. This source provides 15 minute traces and we used data for the same day (and times) as 

OCI2. The WIDE capture files represent both directions of the monitored link. 

Despite the WIDE data being duplex and the OC48 and OC12 simplex, we processed all trace files 

in the same way and treated the simplex traces as independent captures. Splitting the WIDE trace 

into two simplex traces would be difficult. However merging the simplex OC48 and WIDE traces 

was possible using the mergecap tool, available as part of the wireshark [115] network protocol 

analyser. In any case we decided that this was not necessary. Given the difference in both link speed 

and capture length for each given trace, it is not appropriate to directly compare the number of 

conRecs created even if all traces were either duplex or simplex. Furthermore, the conRec algorithm 

treats each direction of a given communication independently. A different connection identifier is 

derived for frames flowing from A --+ B than that derived for frames flowing A +- B. Thus, whether 

these are processed from a single me (in a duplex capture) or from two files (simplex) does not 

bear upon the total number of connection records created in the given time. As we will see our 

analysis compares the number of conRecs as a ratio of the total number of frames, to allow a direct 

comparison between the results for each source. 
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Each of the six OC48 traces was split using the editcap utility into five files, each representing 

a minute of the given trace (the full 5 minute traces were too large to be processed). This was not 

necessary for the 12 hourly (simplex) OC12 traces and the six 15-minute (duplex) "IDE traces that 

were processed in their entirety. Each . pcap file was passed through the tcpdump utility to produce 

a text file complete with a 'hex dump' of each packet's data. An example is given in Figure 5.8 

which shows data from an OC48 trace. In particular it shows 3 frame representations numbered 2,3 

and 3739. 

As can be seen the start of each frame is denoted by a frame summary before three lines show the 

base 16 representation of the packet's content, with the ASCII equivalent to the right (non printing 

ASCII characters are shown as '. '). Each two digit hex code represents a single byte of raw network 

data. For the OC48 traces the Cisco HDLC data link layer was employed. As can be seen in Figure 

5.8, the code 0800 signals that an IP frame follows and 45 is the first byte of IP header. This 

represents the first two fields of the IP header, showing the IP version as 4 and the IP header length 

as 5 (32-bit) words. As these fields each occupy a nibble, they are shown together as a single byte 

in the hex dump. Furthermore, this is interpreted as the character E in the ASCII representation of 

the data as can be seen. 

U310 U
'2i~£gJ:!.I?MEJ ~~ 

r"':i":io'o;-,::o'e·14 17:00:00.000859 237.222.145.251 .> 0.61.219.228 tlDP Source port: 
~~.tination por!,~-::-,3=.:9;.:c0.=:12=--____________________ --, 

oooo-I2!JOO!:j[§)45 00 00 40 f9 2a 00 00 33 11 2b 38 •.•. E •• @.* •• 3.+8 
0010 ed de 91 fb 00 3d db e4 37 e6 98 64 00 2c 00 00 •.•.• - .. 7 •• d ••.• 
0020 80 04 00 8e 4c c9 e2 e8 00 00 4b e9 a8 Oe 64 09 .•.. L •••.• K .•• d. 

32002·08·14 17:00:00.002855 69.4.145.139 .> 162.131.189.129 TCP 3951 > 80 lACK) 
Seq-725360463 Ack-1228670785 Win-17520 Len-O Destination TCP rt 

0000 Of 00 08 00 45 00 00 28 8e c7 40 00 74 06 a7 46 ...• E .. ( .. @.t •• r 
0010 45 04 91 8b a2 83 bd 81 Of 6f 00 50'2b 3c 1£ 4f E ........ o.P+<.O 
0020 49 3c 07 41 50 10 44 70 ef da 0 00 I<.AP.Dp ... . 

startOfIP~ 

~"'----':;.-J ( ... ) ASCII 
~.~9l1!£~ . .!!~.~!.!!~ i i 

137392002'08'14 17:00:04.318081 237.222.145.251 .> 0.61.219.228 ICMP Dest nat on 
'unreachable (Port unreachable) ICMP ~ and code 

loooO Of 00 08 00 45 00 00 38 a6 41 00 00 77 01 3a 39 
0010 recr<r."9i'fijloo 3d db e41 0 2c 42 00 00 00 00 
oO'2O'45--OO01i2~ c2 bc 00 002£ 1 65 ba 40 45 47 14 

Figure 5.8: Annotated Hex dump of an OC48 .pcap file, ready for processing by the conRec imple
mentation 

Each trace file was processed by tcpdump in the same way to produce an equivalent text file 

complete with the hex representation. Our Java implementation of the conRec logging algorithm 

takes these files as input and parses the hex byte codes to reproduce the necessary fields for working 

and connection records. We now turn to the details of this implementation, before presenting our 

results. 
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Figure 5.9: UML Class diagram showing the main attributes and operations of our COTraSE im
plementation 

5.4.2 The Connection Record log implementation 

Figure 5.9 gives a UML class diagram of our implementation. As can be seen, a main Driver class 

coordinates all activity. A Parser class was required for each of the three sources due to slight 

differences in the capture formats. For instance, OC48 employs Cisco HDLC at the Data-link layer 

(as in Figure 5.8), OC12 is 'raw ip' (no Data-link data) and WIDE uses Ethernet. 

Driver takes as input the location of the processed .pcap file for parsing (with hex dump), the 

purge interval and mac-table update times in seconds and a path to which conRecs are to be written. 

The Driver then instantiates a Parser and reads the first working record from the input file. We 

use relative rather than absolute timing; thus, the start time of each capture is taken from the 

timestamp of the first wRec as read from the input file by the Parser. The next and all subsequent 

purge intervals and mac-table updates are then calculated relative to this. 

Our implementation does not perform switchport resolution and so, though present, the s1 D, 

pNO and flags fields of a conRec remain as NULL . Switchport resolution does not impact upon 

memory requirements, which is the primary focus of this investigation. The Driver maintains a List 

of working records, as these are read from the input file by the Parser. The time of each wRec 

is checked against the MAC-table update time which was set at 5 seconds. As soon as a wRec 

is encountered that 'occurs' after the MAC-table update, the current list of wRecs is sent to the 

ActiveRecordsManager for processing. 

The ActiveRecordsManager class maintains the active working records set as a Hashtable, ma~ 

ping a String connection identifier (MD5 hash calculated by Parser) to the corresponding Work

ingRecord object. For each working record sent by the Driver, the ActiveRecordsManager uses the 

con1d to update the active wRecs set, as described in Section 5.3.1. Similarly to the MAC-table 
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update, as soon as a wHee is processed that occurs in the next purge interval, the current active 

wRecs set is sent to the ConnectionsManager to be written to file. The active wRecs are then cleared 

and the rest of the wRecs are processed if any, thus repopulating the active wRecs. 

, Our Parser classes processed all TCP, UDP and ICMP frames encountered which on average between 

the three sources accounted for more than 98% of data. As discussed earlier, the purge interval was 

set to 10 seconds as, being the lowest bound will produce the greatest number of connection records 

in a given traceback window. Thus a conRec file was created containing the connection records for 

each 10 second interval occurring within the given capture time, an example of which is shown in 

Figure 5.10. We now present the results of this processing and derive estimates for COTraSEmemory 

requirements. 

This file (Tue Jan 09 06:08:21 GMT 2007) contains: 23081 conRecs 

********.*********************************** 

ConID: bcc598f4983f63f11bf4e1a922f49b1e 
Frame no.: NULL time Tue Jan 09 06:08:19 GMT 2007 from 207.232.72.176 to 
208.72.155.27 ip-protoco1 is 01 src TCP/UDP port NULL dst TCP/UDP port NULL 
icmp Type/Code 8/0bcc598f4983f63f11bf4e1a922f49b1e*Tue Jan 09 06:08:19 GMT 
2007*NULL*NULL*NULL 

ConID: 67a050837a6033e40ca8994753d73e24 
Frame no.: NULL time Tue Jan 09 06:08:13 GMT 2007 from 164.133.140.130 to 
192.240.122.81 ip-protoco1 is 06 src TCP/UDP port 3124 dst TCP/UDP port 
58516 icmp Type/Code NULL/NULL67a050837a6033e40ca8994753d73e24*Tue Jan 09 
06:08:13 GMT 2007*NULL*NULL*NULL 

( ... ) 

Figure 5.10: A conRec file from the WIDE trace data for a given 10 second purge interval 

5.4.3 Results 

For each source our code created a conRec file for every 10 second purge interval. Our code also 

created a separate 'debug' file for each processed trace which helped us to verify the values presented 

here. We used both the conRec and debug files to collate the total number of connection records 

calculated for each minute (i.e. from each of the six purge intervals occurring therein). Given 

that the number of connections will vary greatly both due to link speed and network load, it is 

not appropriate to directly compare the number of conRecs created between the three sources. We 

summarise some of our findings in Table 5.4. 

'Bytes per packet' was taken from the metadata associated with each capture file as indexed 

at DatCat [116]. This is significant as in our subsequent calculations we take the average frame 

size to be 1000 bits. As can be seen in Table 5.4 this is a conservative estimate, with the average 

bytes per packet from the WAN data being more than five times that at 673 bytes per packet. 

The 'packets per second' column was populated by taking the total number of working records 

created by the data from each source, and dividing by the total capture time. For example for OC48 

we processed 136,803,068 packets occurring over 15 minutes (processed as 30 minutes of simplex 
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captures), equating to 128,868 packets per second. The difference in bandwidth between the sources 

makes calculation of a mean 'packets per second' redundant (hence n/a). The '% unparseable' 

represents those frames that our parser classes skipped; recall that our code only processed all TCP. 

UDP and ICMP data encountered. As can be seen, IPv6, ARP and incomplete frames (e.g. due to an 

error when capturing) accounted for only 1.43% of total frames on average. 

Table 54' Values from our results .. 
bytes per packets per % unparseable 

Source packet second !(TCP, UDP, ICMP) 

OC48 563 128,868 0.45 
OC12 779 6,320 2.76 
WIDE 676 16,548 1.07 

673 (n/a) 1.43 
a 108 (n/a) 1.20 

With a purge interval of 10 seconds, six conRec files were created in each minute of trace data. 

We took the average number of conRecs for the purge intervals occurring in a given minute and 

multiplied by 6 to calculate the total no of conRecs in that minute. We then plotted the number 

of conRecs as a percentage of the total number of frames for each minute of each trace, as shown 

in Figure 5.11. We see a similarity in the plots and especially so between Figures 5.11(a) and (b). 

Obviously a lower fr::~: ratio signals a greater reduction in memory requirements compared to 

logging all frames. 

Table 5.5: Predicted COTraSE memory use, with each link at full utility 
packets/s Megabytes (traceback window) 

Source (~) 1 min. 1 hour 
OC12 601,300 117 7,045 
OC48 2,488,300 486 29,160 
WIDE 100,000 19.5 1,171 

We use cfonRecs to approximate the number of connections. From Figure 5.11 we take the upper rames 

bound for cfonRecs at 15%. We assume the given link is at full utility and that on average each rames 

packet is R:i 1000 bits, which as we have seen is a very conservative estimate. In Table 5.5 we give the 

predicted memory requirements of a COTraSE deployment, expressed in megabytes, for providing 

the given 'traceback window'. For example, in the OC48 case (Le., 2488.32Mbit/s), taking 15% 

of 2,488,300 packets per second, and multiplying by 182 bits per conRec gives 486Mbytes for a 1 

minute 'traceback window'. The OC48 case is of particular interest as the;:::: 2,000,000 packets/s 

throughput is similar to full utility of a duplex IGb/s ethernet link (1000 bit frames). As we have 

already stated it is not possible to derive a general case from this data. The number of connections 

will vary greatly though it is encouraging that the values we obtained from this 'real world' data are 
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consistently low, with the number of conRecs per minute at below 20% of total frames and often 

closer to 10%. 

5.5 Discussion and Deployment Issues 

As mentioned earlier, there are similarities between the 'connection-oriented' logging approach taken 

by COTraSE and Cisco's 'NetFlow' [20, 117]. NetFlow is deployed in Cisco routers and some high end 

'multilayer' switches. In this section we briefly consider NetFlow and the associated IPFIX standard 

[118, 119] and reveal elements of its operational model that make it unsuitable for L2 Traceback. 

Finally we discuss some of the deployment issues for COTraSE before concluding the Chapter. 

5.5.1 Netflow and IPFIX 

NetFlow is a general purpose traffic reporting system, widely used by ISPs to determine the com

position of traffic on their networks [120]. In its simplest form, a flow consists of source/destination 

IP addresses, TCP ports and the IP protocol field. IPFIX defines a standard format for exported 

data and the protocol by which these are delivered for analysis. 

The main difference between COTraSE and NetFlow /IPFIX lies in the expiration of flows. In 

NetFlow, flows are expired if: the end of a flow can be detected (Le. TCP 'FIN' or 'RST'), when 

the flow has been inactive for a configurable timeout, or due to resource constraints (e.g. memory 

exhaustion). Longer lasting flows are also expired periodically (suggested 30 minutes) to avoid 

'staleness'. In COTraSE however, all 'current' flows (or 'connections' as per our terminology) are 

expired at the end of the current 'active connections purge interval' as we have seen. We note 

that a similar approach is suggested in [120], where the authors suggest a much larger 'time-out' 

than we do (their focus was on improving NetFlow rather than L2 Traceback). We also note that 

NetFlow /IPFIX do not make provisions for correlating the flow data before and after potential 

transformations (e.g. NAT). We note the following of NetFlow/IPFIX flow expiration: 

• Flows are reported after the event. Flows are reported when they expire, or after 30 minutes 

(configurable). Thus, the utility of this data by IDS or security monitoring systems in general 

is debatable. Applying this to logging for traceback it means one cannot bound the time that 

a frame was processed to any useful level of granularity . 

• Memory constraints often force a sampling approach. The metering process maintains state for 

all active flows; with a large number of (longer lasting) flows, memory utilization can quickly 

increase beyond available levels. Sampling of traffic is suggested as a potential solution, and 

this is unacceptable for Traceback systems in general. 
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• The exporting process is uulnerable to attack. Flows are reported by the metering processes 

to the collection host as they expire. Given the high frequency of this operation, strong 

authentication and encryption of transferred data become expensive. A 'dedicated' link is 

suggested as a potential solution. Logging based L2 Traceback systems in general do not 

require that a constant stream of flow information traverse the network. Rather, logs are 

queried only in response to a traceback request (a less frequent event). 

• Flow expiration of non-TCP flows is inaccurate. This is well known, and reported in [120], 

Periodically expiring all active flows, as in COTraSE, improves accounting of non-TCP flows 

and removes the requirement to examine TCP flags when these are present. 

5.5.2 COTraSEdeployment issues 

Performance: Maintaining the connection identifier as a hashed digest preserves user privacy, even 

when logs are compromised. However it is also computationally expensive, and its necessity depends 

on the intended use of COTraSE. As an L2 traceback system the privacy preserving hashed conld 

is preferred. However, the EU 'data retention' council directive [16] mentioned earlier requires that 

'data be transmitted upon request'. With a hashed conId, we cannot for example extract connection 

data for any given source or destination IP address. This point will be further discussed in the next 

chapter. 

The second 'bottleneck' operation is the MAC-table lookup performed during switchport reso

lution. In worst case conditions a dedicated CAM might be a necessity in order to keep up with 

the packet load. This is a general problem for all logging based L2 traceback systems. Given that 

a switch already performs a MAC-table lookup for all frames, traceback functions would ideally 

be performed 'in switch' but such functionality is currently not made available by ethernet switch 

manufacturers. 

Vulnerabilities: Buffering frames until the MAC-table update assumes that address mappings do 

not change between receipt of a frame and the update operation. An attacker may exploit this to 

spoof a tertiary host's address. The switch MAC-table would overwrite the mapping for the given 

address to identify the attacker's pNO as the origin. However, if the tertiary host transmits frames 

after the attacker but before the MAC-table update, then switchport resolution will mistakenly 

identify the tertiary host as the originator of the attack frame. 

The attacker first must discover the tertiary host's MAC address which requires effort due to 

the low visibility of switched Ethernet. The attacker needs to predict when the tertiary host is 

transmitting, but also when the MAC-table update occurs. As was suggested in Chapter 4, the :\1AC-



99 

table update time can be randomized (e.g., between 3 and 5 seconds). Furthermore. COTraSEuses 

the MAC-tables from both switches to perform switchport resolution making conditions even more 

adverse for an attacker. 

Finally, an obvious attack on the COTraSE system is for an adversary to send a large number of 

frames designed to produce different conIds, to exhaust conRec log resources. We note that under 

these 'worst case' conditions our connection oriented approach will degenerate to no worse than an 

explicit frame log. 

Partial Deployment: It may be prohibitively expensive to provide 'full' deployment with a conRee 

log between all network switches. However, we can adapt conRec log placement to the deployment 

network, though a partial deployment ultimately sacrifices 'local traffic visibility'. 

A frame is processed by all conRecs encountered en route to the gateway router. However, only 

the conRec log adjacent to the frame's origin switch will be able to provide the 'axs_port' pNO 

which identifies the frame's origin switchport. All other conRec logs will 'point' to the origin within 

the network (Le., by providing an exUink pNO) which can at least aid in the identification of the 

instigating origin. 

5.5.3 COTraSEand switch-SPIE 

A quantitative comparison of the memory requirements of our switch-SPIE and COTraSEsystems 

is not possible due to the difference in the key logging algorithms. As we have seen, COTraSElogs 

only ~ 15% of all frames, whereas switch-SPIE is an explicit frame log (Le., logging all frames). 

Switch-SPIE used bloom filters to lower memory requirements and this introduces false positives, 

which do not occur in COTraSE. Moreover, the memory requirements of switch-SPIE are governed 

by the bloom filter parameters but also by the number of switchports (and so will depend on the 

deployment switch size) as discussed in 4.5.2. However in COTraSEmemory requirements will depend 

on the characteristics of the network traffic (number of connections) as well as the purge interval as 

we have seen. 

5.6 Chapter summary 

We introduced COTraSEa 'connection oriented' logging based layer 2 traceback system for Switched 

Ethernet. COTraSEallows traceback of ethernet frames that are wholly local but also for IP pack

ets addressed to external recipients, regardless of any address translation mechanisms (e.g., ;'-';AT). 

Rather than explicitly logging all traffic we attribute frames to ongoing connections and log represen

tative connection records in discrete intervals. Our switch port resolution algorithm establishes the 

origin switch and port for frames by correlating MAC address entries from both adjacent switches. 
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This algorithm classifies the return of each Table lookup to detect potential errors such as ~lAC 

address 'spoofing'. COTraSEoffered improvement over our earlier switch-SPIE system in a num

ber of areas, most importantly increased correctness of the traceback result and decreased memory 

requirements. 

We empirically demonstrated the potential memory efficiency of a 'connection oriented' traceback 

approach by simulating the conRec log algorithm using data from available \VA.;.'" traces. Our 

simulations show a consistently low tot':z'i:':~e8 ratio of the order of 15% which is favourable in 

decreasing COTraSEmemory requirements. Finally Figure 5.12 shows the placement of sections in 

this chapter as an aid to the reader. 

Timing 
parameters 

transRec 
Logs 

5.5.3 
5.5.2 

WAN 
trace data 

Figure 5.12: Idea map for Chapter 5 showing placement of sections 
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Chapter 6 

EU 2006/24/EC 

6.1 Introduction 

This chapter examines EU council Directive 2006/24/EC "on the retention of data generated or pro

cessed in connection with the provision of publicly available electronic communications services ... ". 

As was mentioned in the introduction to Chapter 5, this directive requires that EU member states 

bring into force provisions at a national level for the logging of communications data, in a manner 

akin to the 'call records' maintained by mobile telephony service providers. 

As we saw in Chapter 5, the connection oriented approach adopted by COTraSE was in part 

inspired by this EU data retention directive (EUDRD). For instance we consider the connection 

records produced by COTraSE to be well aligned with the requirements laid out by the EUDRD. 

More generally however, we regard all work in the areas of logging based IP and L2 traceback as being 

directly relevant in exposing the challenges to be faced by any implementation of this pan-European 

data retention system. 

We begin this chapter with an executive summary of the EUDRD. This is then followed by a 

discussion of the main challenges that must be addressed, drawing from our own experiences in 

developing the switch-SPIE and COTraSE systems. We will also be using the terms developed in 

Chapter 2, including user or service data, sender or post-send spoofing (fraudulent or legitimate) 

and instigating or effective origins. We refer the reader to Figures 2.1, 2.2 and 2.3 for a reminder of 

these terms. 

6.2 Executive Summary of Directive 2006/24/EC 

The EU Directive 2006/24/EC (EUDRD) was passed on 15 March 2006 and its full title is "on 

the retention of data generated or processed in connection with the provision of publicly available 

electronic communications services or of public communications networks". The core requirement is 

for providers of electronic communications services to retain data that identify the source, destina-
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tion, time, duration and type of communications service used, as well as data to identify the user's 

communication equipment. After introducing some relevant definitions from related Directi .... es. ""e 

decompose the EUDRD with brief summaries of why, what, when, how, and by whom data is to be 

retained. Finally consideration is given to two relevant UK Acts of parliament. the Data Protection 

Act 1998 [121] and the RegUlation of Investigatory Powers Act 2000 [122], with a brief discussion of 

their relevance to the EUDRD. 

6.2.1 Definitions 

From Directive 2002/21/EC on a regulatory framework for electronic communications, 

• Electronic communications network: switching or routing equipment and other resources 

which permit the conveyance of signals by wire, by radio, by optical or by other electromagnetic 

means, including fixed (circuit- and packet-switched, including Internet) and mobile terrestrial 

networks and irrespective of the type of information conveyed. 

• Electronic communications service: a service normally provided for remuneration which 

consists of the conveyance of signals on electronic communications networks. 

• Public communications network: an electronic communications network used wholly or 

mainly for the provision of publicly available electronic communications services. 

From Directive 2002/58/EC on privacy and electronic communications, 

• Communication: any information exchanged or conveyed between a finite number of parties 

by means of a publicly available electronic communications service. 

• Electronic mail: any text, voice, sound or image message sent over a public communications 

network which can be stored in the network or in the recipient's terminal equipment until it is 

collected by the recipient. 

6.2.2 Why is communications data to be retained? 

The primary aim is to make data available for the prevention, investigation, detection and prosecu

tion of criminal offences and in particular organised crime and terrorism. The July 2005 terrorist 

attacks in london are directly cited by the directive and reference is made to the "research and 

practical experience of several Member States" to stress the importance of location and traffic data 

to law enforcement authorities. 

A secondary aim is to harmonise provisions for data retention across the European Union. The 

"legal and technical differences between national provisions" are seen to present an unfair advan

tage to communications service providers in Member States where data retention is not currently 
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mandated. Furthermore, by harmonising these provisions it is ensured that the primary aim of 

making communications data available across all Member States is satisfied and enables inter state 

cooperation on issues of law enforcement and national security. 

6.2.3 When does data need to be retained and for how long? 

Member states are required to bring into force "the laws, regulations and administrative provisions 

necessary" by no later than 15 September 2007. However there is an option to postpone application 

of the Directive for .18 months, until the 15th March 2009 (16 ~Iember States have exercised this 

option by way of a declaration published with the EUDRD). At the time of writing and with ~larch 

2009 having passed, the UK home office has an open consultation [123] on the UK implementation 

of the EUDRD. 

Regarding the period of retention, the EUDRD requires "not less than 6 months and not more 

than 2 years from the date of the communication". The exact retention period is to be resolved at 

a national level. 

6.2.4 What data is retained? 

The Directive is explicit in stating that the content of communications should not be stored. Rather, 

only that data which is "generated or processed" by service providers in the supply of their commu

nications services is to be retained. This is potentially problematic as far as e-mail isconcerned.as 

we will see in the next section. 

The source and destination of a communication are identified by the user id (where applicable) 

and name and address of the subscriber to whom an IP address is allocated. The time and duration 

are identified by recording the log-in and log-off of an Internet access service (including Internet 

e-mail or Internet telephony), together with the IP address and whether this was dynamic or static 

and also the type of communications service used. Finally, it is required that a record be made of 

the users' communication equipment, such as the "digital subscriber line or other end point" and 

data to identify the location of mobile communication equipment. 

6.2.5 How is the data to be retained? 

The Directive states that it is not intended to harmonise the technology by which data will be 

retained and that this should be resolved at a national level. In practice this may contradict one of 

the core aims of the Directive, namely to eliminate "legal and technical" differences between national 

provisions. We will further discuss this point in our analysis below. 
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6.2.6 Who will retain data? 

As stated in the EUDRD title, providers of publicly available electronic communications services 
. ' 

or of public communications networks will retain data. An obvious interpretation of this is that 

European governments will require all Internet Service Providers to log data. However it is not 

clear if the word "service" includes provision of web content services. Does this mean for instance 

that anyone who operates a web server be required to retain data regarding all server requests? 

Furthermore, apart from ISPs, are corporate and university networks required to retain data, or are 

these not considered "publicly available"? We will further develop this point in our discussion of 

implementation issues. 

6.2.7 Related UK Acts of Parliament 

This section considers two UK Acts of Parliament and their relevance to the EUDRD. The first is 

the Regulation of Investigatory Powers Act 2000 [122] and the second is the Data Protection Act 

1998 [121]. 

The Regulation of Investigatory Powers Act (RIPA) consists of five parts and part 1 is most 

directly relevant to the EUDRD as this covers interception and acquisition of communications data. 

RIP A in general outlines the powers available to government agencies with respect to interception of 

communications, intrusive and covert surveillance and access to encrypted data. For each of these 

RIPA outlines the purposes for which a given power can be used and by which authorities as well 

as who can authorise the use of a power, how intercepted data can be used and also provides for 

independent judicial oversight. 

RIP A part 1 describes the interception of communications data and sets out the specific conditions 

under which this can lawfully occur. There is no distinction between user or service data with 

interception defined as making "some or all of the contents of the communication available, while 

being transmitted, to a person other than the sender or intended recipient". Clearly this describes 

a much more intrusive form of data retention than that mandated by the EUDRD. 

Interestingly RIPA defines 'traffic data' as "data identifying any person, apparatus or location 

to or from which the communication is or may be transmitted". Here this is taken to include the 

source and destination addresses within service data (e.g., TCP, IP, or MAC addresses). In defining 

'interception', RIPA explicitly excludes the logging of 'traffic data'. This means that data retention 

as mandated by the EUDRD is not considered as 'interception' of communications and thus not 

subject to the same scrutiny as the powers afforded under RIPA. 

RIPA also defines the terms "public telecommunication system" and "private telecommunication 

system" so that university or corporate networks are considered as private whilst an ISP network is 

considered as public. Whilst the EUDRD requires data retention in public communications systems, 
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RlPA provides for lawful interceptions in private networks under certain conditions. Given that UK 

government agencies already have the legal authority to instigate a very intrusive form of surveillance 

over electronic communications with RlPA, one might question the need for the implementation of 

a widespread data retention system (as required by the EUDRD). 

The Data Protection Act (DPA) sets out the rights of an individual, with respect to the process

ing and disclosure of their personal data. The DPA was passed as a result of an earlier EuropE'an 

Directive 1995/46 "on the protection of individuals with regard to the processing of personal data" 

[124J. The EUDRD explicitly states that directive 1995/46 applies in full to retained data and so 

equivalently it is expected that the DPA will apply in full to data retained under the UK implemen

tation of the EUDRD. 

The DPA provides definitions for 'personal data', that identifies or has the potential to identify 

(e.g., by combining with other available data) an individual, as well as 'sensitive personal data' 

that reveals information about an individual's racial origin, religious, political or sexual orientation, 

physical or mental health. Here it is argued that the data to be retained by the EUDRD, even if 

restricted to service data, constitutes personal and even sensitive personal data as defined by the 

DPA. For instance, it is possible to correlate an IP address with the address allocation data from 

the user's ISP to identify the person to whom that address was allocated. FurthE'rmore, by looking 

at the destination IP addresses of a user's IP packets it is possible to reveal with whom that user 

has communicated, for instance the web server of a particular religious or political group. 

Under Schedule 2 of the DPA, processing of personal data can occur if the subject of that data 

has given their consent. However, a seperate clause in Schedule 2 allows personal data processing 

if the data controller (e.g. the ISP) is required by law to do so; this would be the case for instance 

once the EUDRD has been implemented as a UK Act of Parliament. Furthermore, part 4 of the 

DPA lists the conditions under which the protections afforded by the DPA are voided. These include 

national security and crime which are also given as part of the motivation for the EUDRD. That is, 

the reasons cited by the EUDRD as necessitating the retention of data are the same reasons that 

allow exemptions from the Data Protection Act. 

6.3 Implementation Issues 

In this section we identify and discuss a number of key challenges and issues that must be addressed 

by any implementation of the EUDRD, drawing from our experiences with switch-SPIE and CO

TraSE. As mentioned in the Introduction we will use terms here that were developed in Chapter 

2. 



106 

6.3.1 General Remarks 

Though already controversial, we would argue that in some sense the EUDRD does not go far 

enough. If we are going to the trouble of putting in place a system that accounts for all our online 

communications then we should do it right. Yes, communications data is and must remain private. 

However there are proven ways of 'doing' logging whilst preserving user privacy. Firstly and as the 

EUDRD makes quite explicit, the user data must be designated as strictly off limits. Taking this 

into consideration, there is no difference between the communications records from online activity 

and those already maintained on our telephone calls. The retained data is just 'who called whom, 

for how long and what service where they using?' 

However, if one then invests in the extra computing required to hash all communications data 

before logging this, then one ends up with a querying database. That is, the data in itself is not 

readable and so the only way to deduce whether a given communication was made or not is through 

specific queries. This is the approach taken by COTraSE where the hashed digest of {sourceMac, 

destMac, sourceIP, destIP, sourcePort, destPort} becomes the connection identifier by which all 

records are distinguised. In order to check if host A port 1 made a connection to host B port 2 on 

2IJune 2008 around 1200GMT one would need to compute the connection identifier and use this to 

search archived logs. 

Thus, when records are hashed one needs a starting point in order to query the system. For 

instance an Intrusion Detection System raises an alert based on some predefined rules and you use 

the alert or any generated logs to issue a query to the L2 traceback system. We will see that storing 

logs in cleartext allows for much more general querying which is certainly more intrusive. 

Another issue is who will be required to log? It is likely that networks maintained by universities 

or corporations will not be considered as "publicly available" and so will not be required to log data. 

However, we will see that this will likely create a security problem at these institutions. Firstly, the 

lack of logging will make these networks a target for compromise (e.g. in order to launch network 

attacks). Furthermore it might be the case that these networks are forced to deploy logging by 

proxy, as they will wish to establish personal liability for some malevolent network act that has been 

proven to originate from their network. 

It has been speculated in UK newspapers that a single database would be maintained for all data 

retained under the UK implementation of EUDRD [125]. Knowing the storage needed for logging 

from our L2 traceback systems this is an absurd notion, though one can appreciate the allure of such 

an approach. The most obvious advantage from a government's point of view is the easy access to 

data from a source exclusivedly controlled by a relevant government agency. This also works for the 

ISPs as they do not have to take on the cost of securely managing their own databases of retained 

data, whilst also servicing any requests from the presumably numerous government bodies that will 

be granted access. With the central database approach the ISPs can simply 'log and ship' without 
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being concerned with storage. Of course the complexities and cost of transferring that amount of 

data to a single location makes this approach extremely difficult (thOUgh not strictly impossible). 

6.3.2 Accuracy and reliability of retained data 

Considering the intended use of network data under the EUDRD, it is imperative that the logging 

procedures be entirely reliable. It must not be possible for the logging and any subsequent querying 

systems to produce a false positive. That is, it should not be possible to incorrectly incriminate 

an innocent party. Consider that communications data retained under the EUDRD are intended 

to be produced as evidence before a court of law. As we have seen in Chapter 2 there are many 

ways in which both user and service data can be altered, whether fraudulently or legitimately and 

at the instigating origin or at some intermediary host en route to the intended recipient. Logging 

procedures must be sure that the identifiers attached to a given communication record (e.g. source 

IP or MAC address) are accurate. 

In switch-SPIE and even more so in COTraSE, we adopted the somewhat extreme approach of 

treating all packets as 'guilty till proven innocent'. That is, it is assumed that the source MAC 

address is forged and so we employ a process of 'switchport resolution' to assign a source switch 

identifier and switch port number to a given connection record. This approach however may only be 

viable in very sensitive networks where the need for fine grained accountability over network data 

justifies the added procedures and their associated costs. 

Thus there must be some middle ground for any general and wide spread implementation. In 

a switched ethernet network (wherein our experience lies), switches provide a means with which to 

'lock down' an access switchport to a given source mac address. That is, the switch is instructed to 

drop any frames that do not carry a pre-configured MAC address as source. Of course this introduces 

an additional cost to the overall network administration (e.g., some addresses may be configured 

manually). However with such mechanisms in place, a source MAC address can be taken as valid 

and not spoofed, making switch port resolution redundant. Measures such as this should become a 

part of the local security policy where available. Though our discussion here is specific to a switched 

ethernet, in general the issue of spoofing and its possibility within the context of a given deployment 

network must be considered and factored into any design of a data retention system. 

6.3.3 Ciphertext versus plaintext logs 

Regardless of the technology by which communication records are produced, one must decide whether 

retained data will be stored as cleartext or as ciphertext. For instance in COTraSEan MD5 hash 

digest is used to create the connection identifiers by which unique communications are distinguished. 

This has an obvious impact on the privacy of logged data and inevitably leads to a more secure 
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management; communication records stored as ciphertext are meaningless even if they are entirely 

compromised. Of course, producing a hashed digest for all communication records is computationally 

expensive and so the obvious trade-off is between performance and privacy. It could even be argued 

that since the EUDRD requires only service data to be retained (and not the more private and 

sensitive user data) the use of cryptography is 'overkill'. 

However, there is a second consequence (and trade-off) of the choice between storing commu

nications data as cleartext or ciphertext which is more subtle but equally, if not more important 

than that of performance. With ciphertext records, the way in which retained data can be queried 

becomes more restrictive. You need to 'know' what you are looking for and this was demonstrated 

by both COTraSE and switch-SPIE. In switch-SPIE, the logging procedures explicitly log all packets 

into a bloom filter and so only specific queries can be serviced ("have you seen this packet?"). In 

COTraSE and due to the connection oriented approach and lack of bloom filters, more general queries 

can be serviced, such as "was there a communication between host A port X and host B port Y on 02 

June 2009 at around 19:21 GMT?". However in the case of cleartext records, data mining techniques 

can be employed to answer much more general queries such as "give me all communication records 

with X as source IP last week" . 

Thus, the trade-off is between privacy, performance and importantly traceback 'convenience'. 

This can be related to the notion of evidence: in order to query a traceback system such as switch

SPIE or COTraSE, authorities will need some initial information, or 'evidence', to serve as a starting 

point. By storing ciphertext logs one safeguards privacy by way of the lower traceback convenience, 

albeit at the cost of performance (Le., logging nodes would need fast and multiple processors and 

network cards and large storage capacities). 

6.3.4 Who and where? 

As stated in the executive summary above, the EUDRD is not explicit about who is considered a 

"provider of public communications services". If one asks the highest level ISPs to log data, then it 

is not possible to identify the instigating origin host. As we have seen the instigating origin's identity 

can only be reliably resolved within that given host's local network. This is demonstrated by the 

fact that IP traceback procedures, deployed in routers, can only identify the instigating origin's 

source network. Layer 2 traceback systems, such as switch-SPIE and COTraSE can then identify 

the instigating origin itself, though the granularity will depend on the deployment technology (e.g., 

switched ethernet or 802.11 wireless); this point is further discussed subsequently. In general the 

proximity of a logging node to the instigating origin host directly affects one's ability to determine 

that host's identity, assuming that sender or post-send spoofing is employed. Thus, if only the largest 

ISPs are asked to log data, there will still be a great number of hosts for whom communications 

data will only be partially identifiable. 
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One obvious example that we have seen is Network Address Translation and more generally 

legitimate post-send spoofing. For instance, a public library is provided with Internet connecti,;ty 

services by a large ISP, and is assigned a single publicly routable IP address. The library's network 

administrator therefore configures DHCP and NAT so that appropriate local addresses are assigned 

and, correctly altered before leaving the LAN. One of the publicly available hosts at t he library is 

used to post messages on an extremist blog about a terrorist attack against U.K. interests. The ISP 

logs this activity but all packets coming out of the library will carry the same source IP address. 

Without logging deployed within the origin network (as in L2 traceback) there is no way to know 

'whodunit'. This is known as 'the cheerleader defense' as we saw in Chapter 3 when discussing the 

case of Tammie Marson vs Virgin Records America Inc .. 

Related to this is whether universities and corporate networks will be required to retain data. 

One expects that they will not, given the wording of the EUDRD that data be retained only in 

the provision of a "public communications network". Will this then make these networks, and in 

particular academic networks an obvious launchpad from which to execute network attacks? It 

is not inconceivable that student log-in accounts become prized by malicious network users and 

thus a target for compromise. Moreover, with a widespread, pan-European data retention system 

deployed at ISPs it will become possible to identify that a given communication was made from 

within a specific network (e.g., Newcastle university central campus network). Thus even if it is not 

mandated through legislation, any EUDRD implementation will eventually force smaller network 

providers to deploy Layer 2 traceback logging procedures. If nothing else this will enable them to 

remove the liability for prosecution from themselves. 

6.3.5 E-mail and "the content of electronic communications" 

The EUDRD, as we saw above is explicit in that data retention does not apply to the content of 

electronic communications but rather only to data "generated or processed" by the service providers. 

This fits well with our notions of user and service data; data from the Data-link, Network and 

Transport layers can be logged, but anything from the Application layer (user data) is off limits. 

However, the directive is also explicit in requiring that all categories of data (source, destination, 

time, duration, type, user equipment) be retained for e-mail. This poses a problem as e-mail is by 

definition user data and not service data. An e-mail, including the source and destination addresses, 

subject and message body, is carried as the payload of 'regular' IP packets using TCP at the 

Transport layer. If one were to intercept this data en route to the mail server, and without looking 

at the user data it is impossible to deduce the from and to fields of the e-mail message. In fact the 

only clue that the given data belongs to an e-mail might be the destination TCP port, for instance 

port 25 for an SMTP server or port 110 for a POP3 server. 

There is some wording in the Directive that can be interpreted as addressing this issue and that 
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is that "data generated or processed" should be logged. In general service data is processed by 

service providers and it is this data that would be retained (e.g., the source IP address and TCP 

port number). However, in the case of e-mail one would normally expect some record of each S~ITP 

exchange to be kept at a given mail server. The mail server logs are generated by the service provider 

in the process of delivering the email service. However this is still user data albeit received by proxy. 

Whether the user gives up their right to privacy as they have handed over their data to the service 

provider is, one can be assured, a controversial issue. 

6.3.6 Heterogeneous networks 

The EUDRD does not address the technology for retaining data. It is understandably difficult to 

specify the way in which data retention should be technically deployed. This of course will depend 

both on network topology and physical transmission medium used. Our L2 traceback systems 

are designed for a switched Ethernet. As we saw this poses the problem of low traffic visibility, 

addressed by switchport mirroring in switch-SPIE and by a tap between link ports in COTraSE. 

However, switched ethernet also allows us to be very precise about the instigating origin's identity 

by providing the switch identifier and switchport number (as always, assuming spoofing is employed). 

If on the other hand IEEE 802.11 wireless is used as the transmission medium then there is no 

problem with traffic visibility but the instigating origin can not be reliably identified so precisely. 

If sender spoofing of the MAC address is assumed then one can only reliably identify the wireless 

access point and not the instigating origin host itself. 

6.4 Chapter Summary 

This concludes our examination of Directive 2006/24/EC on the retention of data. We first provided 

an executive summary of the EU data retention directive (EUDRD) to aid the reader by answering 

the questions: why, when, what, how and by whom is data to be retained? We then used the terms 

developed in Chapter 2 to expose the technical challenges that will be faced by any implementation of 

the EUDRD. These are mainly the reliability and accuracy of logging procedures as well as the extent 

to which these respect end user privacy. We saw that the case of e-mail is particularly problematic 

with respect to logging without retaining user data. Finally Figure 6.1 shows the placement of 

sections within this chapter as an aid for the reader. We now turn to the final chapter and the 

conclusions of this work. 
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Chapter 7 

Conclusions 

This Chapter concludes this work. We first summarise the thesis before discussing its overall contri

butions. This is followed by a consideration of future research directions and finally our concluding 

remarks. 

7.1 Thesis Summary 

Chapter 1 introduced this thesis, outlining the main goals and our approach in satisfying these. 

We introduced the notions of spoofing and message traceback systems and their relevance to the 

European data retention directive 2006/24/EC. We also summarised the main contributions and 

outline the thesis contents. 

In Chapters 2 and 3 we unified the relevant threads of research, namely 'IP and L2 traceback' 

but also 'connection-chain traceback' and 'host fingerprinting'. In Chapter 2 we began this process 

by providing a unifying definition of 'spoofing' together with a classification of its various forms. 

We saw that spoofing is the alteration of any network data intended as an identifier (ephemeral or 

otherwise), that effectively obscures the identity of the instigating origin (sending) host. 

Chapter 2 designated spoofing at the instigating origin as 'sender spoofing' and 'post-send spoof

ing' as alterations made at some intermediate network host (which becomes the effective origin of 

that given data), depicted in Figure 2.1. We further differentiate between spoofing of user data 

and service data and our classification is summarised by Figure 2.3. A final distinction was made 

between fraudulent spoofing, when data is altered intentionally and with intent to defraud and le

gitimate spoofing, that is brought about by sanctioned network processes such as Network Address 

Translation. As we saw, sender spoofing is always fraudulent, in so far as we are unable to envisage 

a scenario in which this could be employed legitimately (beyond experimentation by network ad

ministrators for instance). However, post send spoofing can be both legitimate and fraudulent. We 

then provided an extended discussion of each type of spoofing with examples. Figure 2.4 shows the 

limitations of sender spoofing when TCP is in play. Figures 2.6, 2.7 and 2.8 show cases of post-send, 
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user data spoofing and Figure 2.9 depicts an example of legitimate post-send spoofing of senice 

data (NAT). 

Whilst Chapter 2 unified the various forms of spoofing, Chapter 3 provided an extensive literature 

review. We considered proposals that in some way address the issue of tracing back to the origin of 

network data, in spite of any sender or post-send spoofing. We first saw that IP traceback systems 

aim to identify the origin of network data in spite of sender spoofing. This is accomplished in the 

majority of proposals by either marking or logging of IP packets at network routers, as summarised 

by Figure 3.2. We saw that whilst logging procedures capture the identity of each packet, marking 

procedures capture the identity of each router. We also examined some hybrid approaches (both 

marking and logging) as well as related attack detection and mitigation proposals (especially against 

Denial of Service). 

Figure 3.9 shows that IP traceback can only reveal the origin's first hop router and so Layer 

2 traceback is required to identify the instigating origin itself. We briefly summarised all known 

proposals for L2 traceback and the main challenges that these identified. Most work in the area 

of L2 traceback assumes a switched ethernet network, though we also considered two proposals for 

traceback in a mobile ad-hoc network. Finally, Chapter 3 considered proposals for connection chain 

traceback that address the issue of post-send spoofing. Figure 3.11 depicts the example of consecutive 

ssh connections through compromised hosts with a DoS attack launched from the last host in the 

chain (the effective origin). We examined a number of connection chain traceback proposals which 

fall mainly into the categories of host and network based. 

In Chapter 4 we presented the first of our L2 traceback systems, switch-SPIE. As we saw this is 

an adaptation of the open source SPIE IP traceback system for a switched ethernet. For any given 

IP packet switch-SPIE aims to identify the instigating origin host, through the unique pairing of 

switch identifier and switch-port number. We first gave an overview of SPIE (briefly encountered in 

Chapter 3) before considering those characteristics of switched ethernet that bear upon our ability 

to traceback to the instigating origin, in spite of sender spoofing. This was followed by details of our 

switch-SPIE design with Figure 4.3 providing the key algorithms for logging and traceback request 

processing. Our proposal improves over an earlier adaptation of SPIE for switched ethernet [9] 

by deploying logging at each switch, rather than at a single network location. As we saw switch

SPIE can traceback frames that are entirely local (Le., do not traverse the gateway router) and our 

configuration allows the MAC-tables maintained by each logging node to be updated with a higher 

frequency than in [9]. 

Figure 4.4 shows the switch-SPIE deployment network and Figure 4.5 summarises the key changes 

made to the SPIE code for our implementation. Figures 4.7 and 4.10 show the configuration of the 

switch during our investigation into the reliability of the switch-port mirroring mechanism. As 

we saw switch-SPIE relies on mirroring to overcome the low traffic visibility in switched Ethernet. 
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Our experiments showed that whilst the switch can 'keep up' with switch-port mirroring without 

adverse effect to the primary switching function, the network host and switch-port to which traffic is 

mirrored are quickly overwhelmed. Furthermore and as we saw in the relevant discussion, memory 

requirements for switch-SPIE can quickly spiral in larger and faster networks (e.g., faster than gigabit 

ethernet), even though the traceback window is restricted to only 1 minute. Table 4.2 shows the 

memory requirements for 100Mbit and 1000Mbit ethernet with different bloom filter sizes and the 

corresponding false positive rates. Finally we considered the ~1AC-table race condition, as depicted 

in Figure 4.11 and Figure 4.12 shows switch-SPIE in a partial deployment. 

Chapter 5 presented our second attempt at L2 traceback for a switched ethernet, where we built 

on our experience with switch-SPIE. Our COTraSE system adopts a connection oriented approach 

to logging as we saw, which was in part inspired by EU Directive 2006/24/EC. COTraSE decreases 

memory requirements by only logging a subset of all packets. A conceptual overview of 'connection 

oriented' logging is given in Figure 5.2 whilst Figures 5.5 and 5.4 give UML activity diagrams for 

the key algorithms of COTraSE. 

Crucially and as was explained, whilst we log only a subset of packets as connection records, 

this does not sacrifice our ability to traceback any given ethernet frame or packet and provide the 

unique {sID, pNO} pairing to identify the instigating origin. In COTraSE we deployed logging be

tween network switches rather than on a monitor port as in switch-SPIE, as is shown in Figure 

5.1. This allowed us to improve the switchport resolution algorithm so that the origin switchport is 

resolved more accurately albeit at the cost of an extra MAC-table lookup per frame. This approach 

of maintaining 2 MAC-tables (one from each adjacent switch) allows us to detect potential sender 

spoofing activity. We also saw that COTraSE allows for legitimate post-send spoofing mechanisms 

such as NAT by maintaining translation records at the gateway router and Figure 5.7 depicts the 

transRec logging algorithm. Finally Chapter 5 provided details of our implementation of the con

nection record logging algorithm which used 'real' WAN trace data as input. By processing over 300 

million packets we were able to empirically deduce that for the given data the number of connection 

records required per minute is approximately 15% of the total number of frames, equating to much 

reduced memory requirements, compared to explicitly logging all frames. 

Finally in Chapter 6 (this Chapter) we presented EU Directive 2006/24/EC and identified the 

relevance of work in the areas of IP and L2 traceback to the implementation of any 'data retention' 

system. We used our own experiences in developing switch-SPIE and COTraSE, as well as the defi

nitions introduced in Chapter 2, to discuss some of the issues that such an implementation must at 

least consider. 

This completes our thesis summary and we now turn to a discussion of the key contributions made 

by this work. 
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7.2 Contributions 

The contributions of this thesis go beyond the provision of two Layer 2 traceback Systems for 

switched ethernet. We have seen how a unifying definition and simple classification of spoofing can 

bring together relevant research in the areas of IP, L2 and connection chain traceback. Furthermore. 

we show that we can directly apply the experience in developing these message traceback systems 

to the implementation of EU directive 2006/24EC. The main contributions of this thesis are: 

• A unifying definition and classification of spoofing, 

• An extensive literature review of all known work in the areas of IP, L2 and connection-chain 

traceback using our own classification from above, 

• The switch-SPIE L2 traceback system, adapted from SPIE, presented as 'Logging Based IP 

traceback in Switched Ethernet' at Eurosec 2008 [15], 

• The improved L2 traceback system, COTraSE, inspired by EU Directive 2006/24/EC, pre

sented as 'COTraSE: Connection Oriented Traceback in Switched Ethernet' at lAS 2008 [13] 

and later published in the Journal of Information Assurance and Security [12], 

• Identification of the relevance of message traceback systems to the EU data retention direc

tive, 

• Identification of key challenges to be faced by the EUDRD implementations, using our 

experience with L2 traceback. 

Work in the areas of IP and connection chain traceback have traditionally been considered as 

distinct. In this thesis we argue that IP traceback (and its L2 subdomain) and connection-chain 

traceback are both fundamentally addressing the same issue of message traceback: How can we 

traceback a given network message (e.g., an ethernet frame) to its origin host if we assume that the 

information contained in that message (especially source addresses) has been altered? Our definition 

of spoofing was created with the primary aim of a classification applicable to all related domains. 

We showed that IP and L2 traceback address the issue of sender spoofing, whilst connection-chain 

traceback addresses post-send spoofing. We presented the related work using our classification and 

definition in order to demonstrate their viability. 

The switch-SPIE system was our first attempt at L2 traceback for a switched ethernet, which 

explicitly logs all packets using bloom filters. We adapted the open source SPIE IP traceback 

system and assigned an exclusive bloom filter for each switch port. We added the step of switch port 

resolution to the 'normal' SPIE logging routines, in order to determine the appropriate bloom filter 

for each received frame. We aimed to improve an earlier adaptation of SPIE for switched ethernet by 
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deploying logging locally at each switch, rather than at the gateway router. The implications of this 

are that the traceback result is more reliable as local MAC-tables can be refreshed from the switch 

more frequently. Furthermore, this topology allows one to traceback frames that are entirely local 

and do not traverse the gateway router. The problem of low traffic \"isibility in switched Ethernet 

is well known and switch-SPIE took the approach of using switchport mirroring. Our experimeJlts 

showed that this is not a reliable means of receiving network traffic. This is especially true for 

larger switches where the aggregate traffic from a number of switchports will quickly overwhelm 

the monitor port. Our discussion of memory requirements showed the limitation of our 'one bloom 

filter per switchport' approach; memory requirements are excessive in the worst case of a very large 

switch (1000+ switchports), especially when maintaining a low false positive rate (equating to a 

larger bloom filter). 

The COTraSE system was primarily intended to address the challenges re\'ealed by switch-SPIE. 

This is evident for instance in the placement of connection record logs at a tap betwet'Jl switches, 

rather than relying on switchport mirroring. However, at about this time the EU data retention 

directive came to our attention and we instantly recognised the applicability of logging based IP 

and L2 traceback systems to this legislation. The connection oriented logging approach taken by 

COTraSE was in part inspired by the EUDRD as we have seen. In COTraSE we further exploit the 

switch MAC-tables to make the switchport resolution algorithm even more reliable. We saw that 

at the cost of an extra MAC-table lookup and some prior configuration at each switch to classify 

switch ports (e.g., access or internal link ports) switchport resolution can even detect malicious 

activity such as sender spoofing of source MAC address. Furthermore, by maintaining translation 

records at the gateway router, COTraSE can traceback IP packets that are delivered to external 

hosts, regardless of any legitimate post-send spoofing such as NAT. The potential memory efficiency 

of the connection oriented approach was demonstrated using WAN traces from large ISPs that were 

taken as input by our connection record log implementation. We saw that even in the worst case 

of a 10 second purge interval, the number of connection records as a percentage of total frames was 

consistently lower than 15% across all traces (over 300,000,000 packets). 

Finally we introduced the EU data retention directive with an executive summary, before listing 

the key challenges that any implementation will have to consider. Our discussion drew on our ex

periences with switch-SPIE and COTraSE and also made use of the definitions that were developed 

in the earlier Chapters. 

We now turn to a discussion of future work and research directions, before our concluding remarks 

signal the end of this thesis. 
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7.3 Future Work 

The main future research directions are: 

1. Implement logging and switchport resolution 'in switch', 

2. Develop a full COTraSE deployment, 

3. Investigate a better translation record logging mechanism, 

4. Survey commonly used Data-link layer technologies and their traceback characteristics, 

5. Research legislative and technical differences between EUDRD implementations, 

6. Develop a standard querying language and protocol for traceback request processing. 

7.3.1 Implement logging and switchport resolution 'in switch' 

Our implementation of switch-SPIE used the 'dgad' configuration file to simulate the MAC-table. 

As was discussed, the console port available on all switches for local configuration could be used for 

querying the switch MAC-table. This is made possible by the deployment of switch-SPIE at each 

switch, rather than at a central network location. Furthermore and as was suggested, if this port is 

unavailable then the Simple Network Management Protocol can be used to query the switch. It is 

of interest to empirically deduce the feasibility of either approach. For instance, how much faster 

is the console port compared to SNMP if at all? What is the delay between a MAC address being 

changed in the switch MAC-table and this being updated in the switch-DGA MAC-table? 

In switch-SPIE we are essentially trying to implement logging 'in switch'. That is, each switch

DGA logging host is receiving traffic explicitly forwarded to it (through port mirroring) by its local 

switch. Thus, the ideal location for switch port resolution and logging more generally would be from 

within the switch operating system itself. As was discussed, a switch already performs a MAC

table lookup for all frame destination addresses to determine the appropriate egress port. The 

switchport resolution algorithm of switch-SPIE consists of a MAC-table lookup based on the source 

MAC address. Thus, a second avenue of research is whether logging and switch port resolution can 

be implemented by adapting an open source switch operating system. Such an approach would 

alleviate the reliance of switch-SPIE on the switch port mirroring mechanism for network traffic. 

In COTtaSE, the issue of implementing logging 'in switch' is not so clearly advantageous. Recall 

that COTtaSE uniquely used the MAC-tables from both adjacent switches for the switchport reso

lution algorithm. If one were to implement logging 'in switch' then only the MAC-table of the local 

switch would be available. 
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7.3.2 Develop a full deployment of COTraSE 

You may recall that our implementation of COTraSE as discussed in Chapter 5 was designed with 

memory requirements in mind. A full deployment of COTraSE would allow us to further establish 

its feasibility as a traceback system for sensitive network environments. One research direction is 

to establish the reliability of SNMP for the MAG-table updates from either adjacent switch (the 

console port approach is ruled out here). Another is to establish the feasibility of a cheap ethernet 

tap implementation consisting of an ethernet hub; for instance, what is the performance penalty due 

to the addition of a collision domain between the two switches? 

7.3.3 Investigate a better translation record logging mechanism 

Recall that in COTraSE, translation records are a mapping between connection identifiers before and 

after any of the address fields are re-written (e.g., due to NAT). In COTraSEour approach is simple 

in that a direct mapping is maintained between data before and after modification. We are confident 

that a more elegant solution is possible and further investigation is warranted. 

7.3.4 Survey commonly used Data-link layer technologies 

Both switch-SPIE and COTraSE are designed with switched ethernet as a deployment network. We 

saw that this is interesting because it allows us to perform switchport resolution and so address 

sender spoofing. Furthermore, this allows us to identify a specific network access point via {sID, 

pNO}. However, in other physical transmission media one can expect different traceback results. 

For instance in 802.11 wifi and as we saw in Chapter 3 at best we can identify an access point 

(the first encountered malicious node in a MANet). Another example is DOCSIS ('cable' Internet) 

where a common cable network is shared between subscribers in an area (e.g. a residential street). 

It would be of interest to compile a list of commonly used transmission media and what their 

characteristics are with respect to traceback. A primary concern is the availability of network traffic 

(e.g., traditional vs switched ethernet) and whether any maintained state can allow a switchport 

resolution like process. 

7.3.5 Research legislative and technical differences between EUDRD im

plementations 

One can already expect slight variations in the national provisions and technical implementations of 

the EUDRD. For instance the directive allows a retention period of between 6 months and 2 years, 

to be resolved at a national level. Denmark has already implemented the EUDRD [126] and as we 

saw the UK home office currently has an open consultation on the UK implementation. Beyond 

periods of retention, of particular interest is who will be required to retain data. Furthermore and 
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as discussed the technical differences between implementations may vary considerably. For instance 

what processes make the logging accurate (e.g., through security policies) and reliable (Le., false 

positives are unacceptable). 

7.3.6 Develop a standard querying language and protocol for traceback 

request processing 

What are the queries that the EUDRD will be required to service? In order for this to be standardised 

there of course needs to be agreement across the European Union. After all one of the primary 

aims of the directive is to harmonise data retention provisions in order to ensure cooperation and 

availability of data for law enforcement. Any standard querying language and protocol would need 

to be preceded by legislative provisions, which are not currently in place as member states are still 

in the process of implementing directive 2006/24/EC. 

7.4 Concluding Remarks 

The European data retention legislation 2006/24/EC will impact all citizens of the Union in a very 

personal way. It is thus imperative that any implementations are 'right' and especially mindful of a 

person's right to respect for his private life and his correspondence, under Article 8 of the European 

Convention for the Protection of Human Rights and Fundamental Freedoms. We have remained 

neutral by avoiding any discussion of the rights and wrongs of data retention in general. We merely 

underline the importance of all work in the areas of message traceback (IP, L2 or connection-chain) 

to directive 2006/24/EC. Our L2 traceback work allows us to expose the subtleties of reliably and 

accurately logging data. We would like to emphasize the importance of the various trade-offs that 

should be considered in any designs, especially with regards to encryption of logged data. 

It is possible to do logging right but this will only occur if we go beyond merely expressing concern. 

We must be active in averting the negative implications to our privacy that can easily be brought 

about, if nothing else through lack of understanding of the technical challenges. We must be com

pelled to get involved and make it right. One part of this is the promotion of much further work in 

all areas of message traceback. We have no choice but to dance with the devil. 
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