
THE CONSTRUCTION OF RECOVERABLE HULTI-LEVEL SYSTEHS

Joost S.M. Verhofstad

Ph.D. Thesis

Computing Laboratory,
University of Newcastle upon Tyne, England.

August 1977

-~-

Abstract

Systems structures and data structures which make
possible the state restoration of user objects, are
described in this thesis. Recovery is linked with types,
which suggests making a distinction between recoverable and
unrecoverable types. For convenience, recovery is discussed
in terms of recovery blocks as developed at the University
of Newcastle upon Tyne. Recovery is taken to mean restoring
the values of recoverable types.

Recoverable multi-level systems are considered. On the
one hand levels in such systems can be backed out. On the
other hand these levels provide explicit recovery for new
types they introduce, and so can be called on to restore
states of objects used in higher levels. The concepts and
issues are discussed and explained; mechanisms and
techniques for building such systems are presented.

Recovery techniques for complex global data structures
and techniques to maintain consistency at any time, even
when recovery is impossible such as after a crash, are
described and compared.

Many of the presented techniques are employed in an
implemented recoverable two-level system, with a recoverable
filing system. This two-level system is described in detail.

It is argued that in order to implement recoverability
in multi-level systems with efficiency and flexibility, the
interfaces of the system should provide both recoverable and
unrecoverable types.

It is also shown that the way in which complex data
structures are updated is of major importance if recovery is
to be provided in a "reasonably" efficient way and
consistency is to be guaranteed after a crash.

-ii-

Acknowledgements

Professor B.Randell, who has been the supervisor for my
Ph.D. study, has been a constant source of encouragement and
helpful suggestions. I would like to thank him for his
critical reading of many of my memos, reports and early
drafts which finally resulted in this thesis. His
criticisms and comments were always of such quality that I
regard myself extremely lucky in having been given the
opportunity to be one of his students, hard taskmaster
though he is.

My special thanks are due to Dr. T.Anderson and Hr.
P.M. Melliar-Smith who have been invaluable sounding boards
for many of my ideas and have spent a great deal of time
with me discussing these ideas in detail.

I would also like to thank everybody in the Computing
Laboratory who has helped me by reading, criticizing and
discussing earlier drafts of (parts of) this thesis, and for
explaining and discussing their ideas on recovery.

I gratefully acknowledge the financial support I
received for twelve months from the Netherlands Organisation
for the Advancement of Pure Research (Z.W.O.),

IBM UK Scientific Centre kindly allowed me to use their
facilities to produce the thesis as presented here.

-iii-

CONTENTS

· . 1 1.0 Introduction •....•••
1.1 The goal of the thesis
1.2 ~ummary of thesis ••.

• • • j

• 7

2.0 A survey of techniques for recovery and crash
resistance. 9

2.1 Introduction. . • . . . • • • . 9
2.2 The categorization of the techniques .. 12
2.3 Salvation programs . . • • . . .18
2.4 Incremental dumping. • . .19
2.5 Audit trail. •.•.. 21
2.6 Differential files 2.4
2.7 Backup and current versions. •. .•.•. .27
2.8 Multiple copies. . . ••.. 30
2.9 Careful replacement. •31
2.10 Summary and conclusions. . . . • . . .37

3.0 Partially recoverable interfaces in multi-level
systems . ,

3.1 Introduction ..•...••..
3.2 Definition of multi-level system and
recoverability

3.3 Basic principles .•.•••..
3.4 Completely recoverable interfaces ...
3.4.1 Level: programs and data objects ..
3.4.2 Interpreters for CRI-levels •...

3.5 The disadvantages of completely recoverable
interfaces.
3.5.1 An alternative CRI-scheme: "bottom level"

· .41
· .41

· .42
.47
.49

· .49
· .56

• .58

recovery only .•••.•...•.•..•..•• 60
3.6 Partially recoverable interfaces••.. 61
3.7 The problems and constraints of the PRI-scheme .64
3.7.1 The logging mechanism . ..••• .65
3.7.1.1 An implementation of the logging
mechanism. . . • . ••.• . .68

3.7.1.2 The relation between the logging and the
cacheing mechanism.••• 72

3.7.1.3 The properties and constraints of
PRI-levels .76

3.7.2 The data structure of the log.. . ••. 78
3.7.3 Systems consisting of PRI-levels. . . .81

3.8 A two-level prototype system ...••..••. 86
3.9 Recoverable types as a basic concept for
recoverable multi-level systems. . • . . .89
3.9.1 A recoverable lineprinter manager on top of

the recoverable file manager. • • . . • . .89
3.9.2 Recoverable types versus recoverable
operations in a multi-level system. . • . •. .91

3.10 Conclusions and relation to other areas •... 94

4.0 Recovery for complex data structures .. · .96

-iv-

4.1 Definitions •.•...•.••..•...... 96
4.2 An example of a complex data structure: a
filing system ..•••.••.•••••....•. 98
4.2.1 The structure of the filing system •.••.. 98
4.2.2 The mechanisms to provide recoverability
for .files ••..••. · 102
4.2.2.1 The mechanisms for updating and cacheing
of files , . . . • , , . 103

4.2.2.2 Processing of caches and files after the
acceptance test. , • • • . 106

4.3 Cacheing for complex data structures ...•. 108
4.3.1 Separating data providing an abstraction

and information carrying data . . , • • , 109
4.3.2 The cacheing problems for complex data
structures .•.......
4.3.2.1 A general solution and two specific
implementations. . . • .• •••

4.3.2.2 A comparison of the two methods, .• ,
4.3,3 Alternative solutions to the cacheing

· III

113
• 118

problem 120
4.3.4 Main conclusions. • . • 121

4.4 Maintaining consistency in recoverable complex
data stuctures . . • . . • • . • • . . . • . 122
4.4.1 Crash and crash resistance •........ 122
4.4.2 The provision of crash resistance with
recovery ..•..•..••• •••• I • 125
4.4.2.1 The critical updates.

4.4.3 Conclusions •..•.•

5.0 A cost analysis of the implemented recoverable

. .. 126
128

prototype system. . • . . • • • • • . • • • . • •• 129
5.1 Introduction •....•••..•••.••. 129
5.2 Basic principles of the cost analysis .•... 130
5.3 Execution times: an analysis of the overhead
in disk accesses .. ••••....•. , 131

5.4 Program sizes .•..•.•••..• · 137
5.5 Cache space••••...
5.6 A comparison with other techniques .•••.
5.7 Some experimental results. •• • •••.

· 137
• 138
· 141

5.7.1 A little test program •.•
5.7.2 A real-life utility program. • ••.

5.8 Conclusions •.•••••..•...•

· 143
. • 144
. • 146

6.0 Directions for future research and conclusions •.. 147
6.1 Directions for future research•... 147
6.1.1 The construction of complete acceptance
tests 150

6.1.2 A single computation •••...••..•• 151
6.1.3 The construction of acceptance tests from
abstract specifications • • • . • . • • . • . . . 152

6.1.4 An acceptance test problem in multi-level
systems • 157

6.2 Conclusions ••..••..••• • 159

-v-

References 162

-1-

1.0 INTRODUCTION

Recovery techniques can be used to restore data in a
system to a. usable state. Such techniques are widely used in
filing systems and data base systems, in order to cope with
failures. A failure of a system occurs when that system
does not perform its service in the manner specified, so a
failure is an event. These failures can be of different
natures, such as failures caused by hardware faults (e.g. a
power failure or disk failure), software faults (e.g. bugs
in programs or invalid data) or human errors (such as when
the operator puts a wrong tape on a drive, or a user does
something he did not intend doing). A failure occurs when
the system is in an erroneous state and the normal
algorithms of the system continue processing (HeR76). The
term error is, in this context, used for that part of the
state which is "incorrect". An error is thus a piece of
information used as a casual equivalent for erroneous state.
A fault is a mechanical or algorithmic cause of an error.

A system can be designed to be fault tolerant by
incorporating into it additional components and abnormal
algorithms which attempt to ensure that occurences of
erroneous states do not result in later system failures, or
which deal with these failures and restore the system to a
"correct" state from which normal processing (using the
normal algorithms) can continue. These additional
components and abnormal algorithms will in this thesis be
termed recovery techniques and are the subject of the
present thesis. There are many kinds of failures and
therefore many kinds of recovery possible. For the
recoverable systems considered here, the recovery mechanisns
and redundant data maintained to make recovery possible
(recovery data), form an integral part of the system. There
is always a limit to the kind of recovery that can be
provided. If a failure not only corrupts the ordinary data,
but also the recovery data, then there are obviously
problems. As described by Randell (RLT77), a recovery
mechanism will only cope with certain failures. The failures
it does not cope with may, for example, be rare, or not have
been thought of, or have no effects, or it could be too
expensive to provide recovery to cope with them. For
example, a head crash on disk may not only destroy the data,
but also the recovery data. It would therefore be preferable
to maintain these recovery data on a separate device.
However, there are obviously other failures which may effect
that separate device (for example failures in the machinery
that writes the recovery data to that storage device).
Recovery data can itself be protected from the consequences
of failures by the provision of a yet further form of
recovery data to provide the ability to restore the
"primary" recovery data in the event of a failure which

-2-

corrupts those recovery data. This progression could in
theory go on indefinitely. In practice of course, there ~ust
be some total reliance on the reliability of some ultimate
recovery data (or rather, some degree of acceptance of the
fact that such recovery data is not totally reliable).

Reliability, or some level of reliability of a system,
can be achieved by avoiding faults or by tolerating them.
The second approach, fault tolerance, is a common way of
dealing with (certain types of) hardware faults; read after
write plus retry as a means of tolerating faults is an
example. This fault tolerant approach has been used
extensively for hardware where very high reliability is
needed (Avi71), (Wen72), (Bor72), (Sk176).

The traditional, and often satisfactory, approach to
achieving reliable software has been based on avoiding
faults. This approach has been termed fault intolerance by
Avizienis (Avi75). The aim of this approach is to build
systems such that all the causes of failures are eliminated
as much as possible. Occasional system failures are accepted
as a necessary evil, and (usually manual) maintenance is
provided for their correction. Over the past years a variety
of methods and utilities have been developed which can be
used to try to obtain reliable software using the fault
intolerant approach. Examples of such utilities are
debugging facilities (Sat72), (IBMa), (IBMb) and methods of
systematically testing programs. In the area of program
testing a method capable of demonstrating the absence of
erors using condition tables has been reported (GoG75). Also
methods ensuring that all of the possible paths through the
program will be traversed have been developed (MiM75). The
latter methods, however, do not demonstrate the absence of
errors. However, all of these testing methods seem to have
been defeated by theoretical difficulties and practical
problems, so they have not yet led to any practicable
utilities. Systems have been built to allow the symbolic
execution of programs which can be used to test and debug
programs (Kin76) or to find test data (Boy75). Much work has
also been done in the area of program design (DDH72),
(Jac75) and language design (WLS76), (Ast75) to facilitate
the construction of more reliable programs. Also
specification methods used to give abstract specifications
of programs such that more reliable software can be
obtained, have been developed (Par72a), (Par72b), (Rob75),
(Gut76). One method on which a lot of work has been done and
goes as far as you can go to obtain reliable software using
the fault intolerant approach, is the proving of correctness
of programs by formal analysis. Much work has been done in
this area (BaW76), (Els72), (Gut76), however, the practical
accomplishments in this area so far fall short of a tool for
routine use.

There are two major reasons why the fault intolerant

-3-

approach is not a complete solution for software for which
high reliability is required:

1. All the strategies and techniques based on the fault
tolerant approach have in common that at some stage a
program is assumed to be correct (i.e fully debugged or
proven or demonstrated by testing to be correct).
However, none of the strategies and techniques
guarantee that the final program will be 100% correct.
If the program is large then it will probably still
contain some errors, as indeed even small apparently
proven programs can do (see (GoG75)).

2. The correct working of the program, i.e. the required
reliability and availability, does not only depend on
the correctness of the program. A failure can be
caused by any other part of the system in which the
program is running, for example, by the operator, a
mechanical defect or other programs in the system.

Since the fault intolerant approach may not be
sufficient if high reliability is required, fault tolerance
can be sought, not as an alternative, but rather as a
complementary technique. The key to fault tolerance is
redundancy. The three principle forms of software redundancy
for obtaining fault tolerance, which were also distinguished
by Avizienis, are:

1. Multiple storage of programs and data.
Kopetz (Kop74) shows with a mathematical model how
great the improvements in reliability are when stand by
software is used (different algorithms should be used
for the processing modules and spare modules). Several
applications of this principle are mentioned by Gilb
(Gil74).

2. Tests to detect errors.
The results of programs have to be tested, in order to
guarantee reliability for these programs. A stand by
module will only be invoked after the main processing
module fails its test. (An alternative is to do
majority voting as is used, for example, in the space
shuttle computers (Sk176).) Hardly any work at all has
been done so far on the design and implementation of
run time tests which are built in programs to guarantee
that the programs are performing correctly if their
tests do not fail.

3. Executive programs for restart and recovery.
After an error has been detected, the module that
failed to perform correctly is recovered and the stand
by module is invoked (or the module is retried after
certain errors have been corrected). Any system that
uses recovery to provide fault tolerance needs such an

-4-

executive program. Most of the
been done for data base systems
in a subsequent chapter) or for
reconfiguration or graceful
(Wen72), (Bor72), (Sk176).

work in this area has
(see the survey given
systems that implement
degradation (Avi7l),

An example of a system, which has many of the features
of fault tolerant systems (even though these features were
included for obtaining efficiency) has been described by
Lampson (Lam7S). The system described makes use of "hints",
for example to find a file. A hint is information provided
solely to improve efficiency of the implementation.
Whenever a hint is used, it is checked against some
"absolute" (a non redundant information item which is
presumed to be always correct) to confirm its continued
validity. If a hint appears to be wrong then an alternative
and less efficient algorithm is used to do whatever the
program that initially used the hint wants to do. Several
schemes for fault tolerance are used in a number of systems
at present, such as input validation schemes or schemes
designed to tolerate hardware faults. However, it is only
recently that effords have been undertaken to extend the
fault tolerant approach to include design faults. The three
forms of software redundancy described above have been
incorporated in a scheme facilitating (a certain degree of
hardware and software) fault tolerance, designed and
implemented by the project team on highly reliable software
at the University of Newcastle upon Tyne, England (Hor74),
(Ran7S). The scheme is called the recovery block scheme.

A recovery block is a set of alternative program
blocks, each of which is an alternative implementation
intended to satisfy the same abstract specification.
Associated with a recovery block is an acceptance test,
which is a piece of program which tests the results or-in
alternative against the abstract specification (which is the
same for all alternatives of a recovery block). The first
alternative will be invoked when the recovery block is
entered. When the alternative has been executed, the
acceptance test will be evaluated. If the acceptance test is
successful (i.e. the results conform to the specification)
then the recovery block will be exited. If it is not
successful then the effects of the first alternative will be
undone and the next alternative invoked. In that case the
first alternative is said to be backed out. (The term
recovery is used for data, the term backing-ollt is used for
programs and processes.) This sequence will be repeated
until one of the alternatives passes the acceptance test; if
none of the alternatives passes the acceptance test then
this causes an error to occur. If an error occurs (an error
may occur for various reasons such as an exhaustion of
recovery block alternatives or a failing of the acceptance
test) within an alternative of a recovery block then this
alternative is backed out (and the next alternative is

-5-

invoked without performing the acceptance test). Recovery
blocks can be nested and if an error occurs during the
execution of the last alternative of the outermost recovery
block or if this alternative fails its acceptance test, then
the program in which this recovery block is used has to be
aborted.

The term "recoverability" will be used in this thesis
for the kind of recoverability provided by the recovery
block scheme. The recovery and recovery techniques
discussed in the present thesis are based on these three
forms of redundancy mentioned above. Since the recovery
block concepts appear to have all of the features for fault
tolerance as discussed in this thesis, recovery is discussed
in terms of recovery blocks. Recovery blocks provide a very
convenient forum for discussing the recovery techniques of
this thesis. However, the work on recovery presented in
this thesis stands on its own and need not be incorporated
in a system providing recovery block stuctures.

1.1 The goal.£!. the thesis

The main results of the research work on fault tolerant
systems in Newcastle so far consist of:

* The recovery block scheme.

* The design and implementation of a mechanism and machine
architecture (the fault tolerant interpreter) which
provide recoverability for program variables inside
recovery blocks.

* Techniques, rather limited at present, for extending
these ideas so as to provide recoverability for systems
involving asynchronous processes.

The research on recovery blocks and mechanisms to
implement them has mainly dealt with the problems of
providing recoverability for simple variables, for example
integer variables, real variables and boolean variables in
user programs.

The goal of the present thesis is to examine how the
recovery block concepts and principles can be used,
generalized and implemented for the construction of
recoverable multi-level systems and recoverable abstract
(and complex) data types such as files.

The levels in
considered are levels
higher levels. A type

the recoverable multi-level systems
that provide new recoverable types to
(which is defined by the operations on

-6-

the type and the mapping function mapping the type onto
lower level types) and the recoverability of that type
(which is provided by the recovery mechanisms) are
implemented by the level providing the type. The levels can
be backed out themselves and can be called on to recover
states of .obj ects of the recoverable types they provide,
used in higher levels.

This thesis concentrates on the problems, requirements
and constraints of providing recovery for objects in
multi-level systems and for complex data types. Different
approaches and a number of techniques and mechanisms that
can be used to implement recovery for multi-level systems
and complex data types are described and compared. A
prototype system implementing many of the techniques and
mechanisms described, has been built and evaluated.

Mechanisms and system structures to facilitate the
multiple storage of programs and data, and the incorporation
of executive programs for restart and recovery, are
described. The problems of error detection (i.e. the
construction of good tests) are largely ignored; a little
discussion on some initial work done is given at the end of
this thesis.

Recovery between interacting processes will not be
dealt with at all. The problems of providing recovery for
interacting processes have been described elsewhere (Ran75),
(GiS76), (Ast76), (RLT77) and appear to be a major topic for
research in their own right. A major problem is that if
processes interact somehow and one process needs to be
backed out, then a IIdomino ll -effect (Ran75) may result. If
parallel processes do not interact, but instead only share
data such that these processes do not need to run
concurrently, but could progress independently, then a
mechanism that would prevent the interactions ~"ould avoid
the recovery problems for interacting processes. A resource
locking scheme, as for example described by Gray (Gra76),
could be used to achieve this. If processes have to
interact in order to make progress then something like
conversations, as defined be Randell (Ran75), will be
needed. If several processes need to interact to progress
then, in fact, they co-operate to perform a task, or do
subtasks of a bigger task. A conversation incorporates the
processes working on one task and prevents other tasks from
reading or wr1t1ng objects updated by this task. The
checkpoints and commitment points of processes involved in a
conversation are synchronized, such that if one process
fails all the processes involved in the conversation can be
backed out to undo their parts of the task performed so far.
In recovery block terms this will mean that entering and
exiting of recovery blocks is to be synchronized for
interacting processes. A full discussion on these problems,
in very general terms, is given elsewhere (RLT77).

-7-

l.~ Summarr of thesis

A description of how recoverable multi-level systems
can be constructed by distinguishing between recoverable and
unrecoverab~e types forms the first major topic of the
thesis. A special mechanism that copes with the problems of
operating on unrecoverable types inside recovery blocks has
been developed. The implementatoin of a prototype system
which incorporates the most important techniques is
described.

The second major topic is the presentation of
techniques that can be used to provide recoverability for
complex data structures. A recoverable filing system. which
is incorporated in the prototype system. is used to
illustrate the problems and techniques discussed.

However. the thesis first gives, in chapter two. a
comprehensive survey of the techniques used in filing
systems, data base systems and operating systems for
recovery. restart and the maintainance of consistency.
Examples of existing systems using the various techniques
and descriptions of the ways in which these techniques are
implemented, are given.

Chapter three deals with the requirements and
constraints of the architecture of a single level in a
recoverable multi-level system. Several possible solutions.
designs and mechanisms satisfying the requirements and
constraints are described. An implementation of a
recoverable two-level prototype system ~s described for
illustration.

Chapter four describes the problems of providing
recoverability for complex global data structures. A number
of recovery techniques are described and compared. Several
mechanisms that assure consistency and recoverability at any
time have been found and are described. The recoverable
filing system that is implemented as the second level in the
prototype two-level system is described and used to
illustrate the problems.

Chapter five gives a cost analysis of the
recoverability provided in the prototype recoverable system.
The three criteria used for the cost analysis are a) the
extra execution time needed for programs that make use of
the recoverability provided, b) the impact on the sizes of
the system programs due to the provision of recoverability.
and c) the extra data space necessary to provide the
recoverability.

Finally chapter six gives some directions for future
research and presents the conclusions of this research. One

-8-

of the main conclusions is that the distinction between
recoverable and unrecoverable types leads to a better
understanding of the problems and issues involved 1n
recoverable multi-level systems. It is shown that in order
to implement recoverability in multi-level systems with
efficiency. and flexibility, the interfaces of the system
should provide both recoverable and unrecoverable types.
Another main conclusion is that three factors are of major
importance if recovery for complex data structures is to be
provided with "reasonable" efficiency and if consistency of
the data is to be guaranteed after a crash:
1) The structure used to implement the complex data.
2) The redundant information maintained to make recovery

possible.
3) The way in which the data structures are updated.

-9-

2.0 A SURVEY OF TECHNIQUE S FOR RECOVERY A:~D CRASH

RESISTANCE

2.1 Introduction

This survey describes techniques and utilities that can
be used for recovery, crash resistance, and mainta~n~ng
consistency after a crash. The techniques and utilities
describe how data structures should be constructed and
updated, and how redundancy should be retained to provide
these facilities.

This survey deals with
data bases; not with other
processes operate on data,
protection (Lin76).

recovery for data structures and
issues that are important when
such as locking, security and

For the purpose of this survey the notions of filing
system and data base system are treated as synonymous. The
definition of the notion of data base given by Martin
(Mar76) is used here, and is: "adatabaSe is a collection
of interrelated data stored together with controlled
redundancy to serve one or more applications in an optimal
fashion; the data are stored so that they are independent of
programs which use the data; a common and controlled
approach is used in adding new data and modifying and
retrieving existing data within the data base".

A data base may consist of a number of files. A file is
a logical unit in the data base, used to group da~The
data that can be retrieved by users from the data base forms
the information in the data base. If some of the data stored
in the data base cannot be retrieved, then some of the
information put in the data base is lost.

The notions of data base, file and information are
logical. In physical terms the data base ~s held on
secondary storage. Secondary storage is permanent storage
space, which is separate from the computer and retains the
data base whether it is on-line (mounted on a storage device
unit and readable by a computer) or not. Secondary storage
consists of records, which are the smallest (fixed length)
accessible units.

A data base ~s an abstraction of secondary storage
provided to the user by a data base system. The data base

---,- d system implements the user operat~ons on the data base an
implements the data structures on secondary storage.
Objects are the substructures from which these data
structures are built. Examples of objects are: a logical

-10-

record, a header of a file, a linked list of pages or
records and an entry in a directory.

Users may add data, delete data and update data in a
data base. A data base is in the correct state if all t~e
information in the data base consists of the data which is
stored in the data base by users, and is in its most recent
state (after the last updates), minus the data deleted by
users. A data base is in a valid state if all the
information in the data base consists of data stored in the
data base by users. The data base is in a consistent state
if it is in a valid state and the information held satisfies
the users' consistency constraints. It is assumed here that
a correct state is also consistent. The notion of
consistency will have to be a well-defined notion for every
data base. Different sorts of consistencies (possibly at
different levels of abstraction) or degrees of consistencies
(Gra76) may be defined. No exacter definition of
consistency will be given here, since it is assumed that the
notion may be defined differently for different data bases.

For example, suppose that a user maintains a source
file and a text file (produced by a compilation of a source
file). The data base will then be in a correct state if the
most recent source and text files are available. The data
base is will be in a valid state, for example, if a source
file and a text file, but not necessarily the most recent
ones, are available. The data base may be in a consistent
state if a corresponding source and text file are available.

A failure of the system occurs when that system does
not perform its service in the manner specified (HeR76).
Recovery is the restoration of the data base after a failure
to a state that is acceptable to the users. The notion of
"acceptable" is different for different environments; in
general it will be correct, valid or consistent. There are
many sorts of failures and therefore many sorts of
recoveries possible. A recovery technique provides recovery
from certain kinds of failures. One data base system may use
different recovery techniques to provide recovery from
different failures. Typically, if several recovery
techniques are used then the sets of failures from which
they provide recovery are subsets of each other. The
recovery technique which provides recovery from the biggest
set of failures is, in general, the least efficient and
least used technique, and may involve the loss of some
information (i.e. the data base may not be restored to the
correct state). The recovery technique which provides
recovery from the smallest set of failures, is usually the
most efficient technique involving none or little loss of
information.

A recovery technique maintains recovery ~ to make
recovery possible. A recovery technique provides recovery

-11-

from any failure which does not affect the recovery data nor
the mechanisms used to maintain these data and to restore
the states of the data in the data base. A failure with
which a recovery technique can cope is said to be a crash of
the system with respect to that recovery technique in case
no normal ~ontinuation of processing is possible without
using the recovery technique to cope with the failure. A
failure with which a recovery technique cannot cope 1S
called a catastrophe with respect to that technique.

A system using three recovery techniques could. for
example, consist of the following subsystems (see also
Fig.2.l) :
A) The data base system without any recovery techniques.
B) A plus a recovery technique that uses built-in redundant

pointers in data structures to be able to recover from
certain failures causing particular errors 1n the data
structures.

C) B plus a recovery technique that does not use built-in
redundancy in data structures, but maintains backup
copies of (parts of) the data structures.

D) C plus a recovery technique that keeps a complete backup
copy of the data base on a separate device.

These systems could be built using an approach similar
to the so-called safe programming approach described by
Anderson (And75). The bigger the damage the cruder the
recovery technique used. Restoration of the correct state is
most desirable and can be done. say, in B. However, if the
damage is such that recovery in B is not possible then the
restoration to a consistent, but not the correct state may
be the only alternative in C, and so on.

-12-

The states assumed
during processing
without failures.

The states that can
be assumed in B.

The states that can
be assumed in C.

The states that can
be assumed in D.

The states after failures
from which no recovery is
possible.

Fig.2.l, The state space for a data base system with
several recovery techniques, coping with
subsequently larger sets of failures.

No recovery technique, nor any series of recovery
techniques, will cope with every possible failure. Many
different kinds of recovery techniques have been developed,
each with its own particular advantages and disadvantages.
These recovery techniques are therefore used to cope with
different kinds of failures in different environments. This
survey describes recovery techniques known and used at
present; an attempt is made to make this survey complete by
categorizing these techniques. First the categories of
recovery techniques considered are briefly described, the
kinds of recoveries they provide and the relationships
between the techniques are given. Then the different
techniques are defined and described ~n detail, and the
purposes for which they can be employed and existing systems
using them, are described. Finally some conclusions are
drawn and some developments in the techniques in recent
years are identified and anticipated trends are described.

2.2 The categorization £! ~ techniques

The different kinds of recovery for a data base
considered are:

-13-

1. Recovery to the correct state.

2. Recovery to a state which existed at some moment in the
past (i.e. a checkpoint).

3. Recovery to a state which is effectively a previously
existing state (such as a set of previously existing
states of logically independent files, which may not
have existed at exactly the same moment in time).

4. Recovery to a valid state.

5. Recovery to a consistent state.

6. Crash resistance. If the system is always left in a
state from which normal continuation of processing is
possible after a failure of the kind a particular
recovery technique used copes with, then that recovery
technique is said to provide crash resistance. Crash
resistance is different from other kinds of recovery in
the sense that the other kinds of recovery involve
explicit state restoration, while crash resistance does
not. Crash resistance is provided by techniques used
during normal processing, which ensure that state
restoration 1S done implicitly at the time of a
failure; no special actions are required. The
differences between crash resistance and other kinds of
recovery are fully explained in the descriptions of the
various recovery techniques in this survey. The notion
of crash resistance is defined as vaguely as the notion
of consistency was. For example, different degrees of
crash resistance could be defined. However, making such
distinctions is not of importance for the purpose of
this survey; the definition of crash resistance can be
tied in with the definition of consistency given above.

A checkpoint is a state which existed in the past,
which can be restored, and mayor may not have been
established explicitly, for example by taking a snapshot.
Checkpoints are used by recovery techniques of kinds 1, 2
and 3. Checkpoints can be established for files or the
whole data base. The creation of a checkpoint is called
checkpointing. If a checkpoint is established explicitly
then this implies that a backup version is created. A backup
verS10n is a complete copy of the checkpointed file or data
base.

The term backing out is related to processes or
transactions. A process iS1backed out if all the effects of
the operations performed by that process are undone. This
means that only files affected by that process are restored.
Backing out of some processes may be required, for example,
to resolve a deadlock, or to undo the operations of a
failing process. Backing out is a special sort of recovery

-14-

of kind 3.

The survey of techniques described is intended to be
complete, although the categorization is the responsibility
of the author and definitely not the only possible one. The
seven categories into which the techniques used for
recovery, restart and maintenance of consistency are divided
in this chapter are introduced below and their relationships
briefly described.

* Salvation program.

*

A salvation program is run after a crash to restore the
system to some valid state, without using recovery data.
This program is needed after a crash if other recovery
techniques (using recovery data) fail or are not used,
and if no crash resistance is provided. This program
scans the data base after a crash to ascertain the
damage and to restore the data base to some valid state.
This program rescues the information that it can still
recognize in the data base after a crash.

Incremental dumping.
Incremental dumping involves the dumping
files onto archive storage (usually tape)
has finished or at regular intervals.
dumping provides checkpoints for updated
provides backup copies of files which can
after a crash.

of updated
after a job
Incremental
files. It

be restored

* Audit trail.
An audit trail records, "who did what to which files,
and in what sequence". An audit trail can be used to
restore files after a crash to the state they were in at
the time of the crash, to back out processes and for
certifying the integrity of the system (i.e. verifying
that rules and laws are obeyed). An audit trail keeps
track of operations performed by processes, whereas
incremental dumping, for example, keeps track of updates
made on files. An audit trail thus also provides the
means to back out a process while incremental dumping
just provides the means to restore files to previous
consistent states.

* Differential files.
A file can be implemented such that it consists of a
main file, which is kept unchanged, and a differential
file to register the alterations made to the file. At
regular times the main files must be merged with the
differential files, after which the differential files
are empty again. Records in the differential files can
be stored with the process identifier, a time stamp and
other identification information to provide special
facilities, such as recovery or crash resistance. In a
sense the differential file could be regarded as a

-15-

special audit trail in a system where the forming of the
audit trail is the only effect of file updates. So
facilities similar to audit trail facilities are
provided. Since the differential file is part of the
logical file it may be used to provide other facilities
such aa crash resistance.

* Backup and current version.
The files containing the present values of existing
files form the current version of the data base. Files
containing previous values (values that existed earlier
in time), which form a consistent data base, comprise a
backup version of the data base. Backup versions can be
used to restores files to previous values.

* Multiple copies.
More than one copy of each file is held. The different
copies always have the same value, except during update
of course. An inconsistent copy can always be recognized
either by voting or an "update-in-progress" bit. So
after a crash during update the most recent consistent
state of a file can always be retrieved. Consequently,
this technique provides crash resistance and may be used
to detect faults if the different copies are maintained
on different devices or by different processors and the
validity of the data can be checked.

* Careful replacement.
Under the careful replacement scheme no part of a data
structure is ever updated "in place". Altered parts are
instead copied into new objects. Therefore during update
there are two copies of the data structure which overlap
in identical parts (objects). One copy contains the
pre-update value, the other one is in a transition to a
new value. At the end of the update the copy containing
the pre-update value is destroyed (only objects which
are not shared with the other copy are released). The
difference with all of the other methods is that two
copies exist only during update. The two copies have the
same structure (so it is not a differential file
scheme), but will overlap in identical objects that form
part of the structure. The technique is used to provide
crash resistance. The pre-update copy will always be
available after a crash during update, the other copy
will then be lost.

A cross-reference table showing for which kinds of
recovery the recovery techniques described above, can be
used is given in Fig.2.2.

-16-

1) 2) 3) 4) 5) 6)
correct previous eff. prev valid consistent crash
state state state state state resista:-.cE

~alvation
program * *
ncrement

dumping *
~udit
trail * * *

~iff •
files * * *

packup
urrent * *

tnultiple
copies *

t-areful
~eplacem. *

Fig.2.2, A cross reference table indicating for what purposes
the various recovery techniques can be used.

From the description of the techniques and Fig.2.2 the
following relationships between the techniques are apparent:

* The differential file technique makes incremental
dumping very easy to implement. Incremental dumping, in
general, copes with failures the differential file
technique cannot cope with. Thus the two techniques may
complement each other very well.

* The audit trail technique is an alternative technique to
differential files, careful replacement or multiple
cop~es, that can be used to provide the facility of
restoring the correct state after a crash. Audit trail
is therefore hardly ever used as a recovery technique in
one system together with differential files, multiple
copies or careful replacement.

*

*

*

-17-

It will be shown in this survey that multiple copies and
careful replacement may be used as alternative
techniques, but also to complement each other to provide
crash resistance against similar or the same set of
failures.

Also the incremental dumping, the audit trail, the
differential files and the backup current version
techniques can be used as alternative techniques or to
complement each other to provide recovery from different
failures.

The salvation program is a recovery technique
used if all other techniques fail. It cannot
data base back to a previous state, because it,
rescues what is left in the data base.

which is
put the

in fact,

These seven techniques could be
recovery, crash resistance and maintenance
one of the following three ways:

said to provide
of consistency in

* The way in which the data is structured.
The mUltiple copies, differential files and backup
techniques, are techniques to structure the data or data
base such that the required facilities are provided.

* The way in which the data is updated and manipulated.
The careful replacement technique is a crash resistant
way of updating complex data structures. It will be
shown ~n this thesis that this also sets special
constraints and requirements for the data stuctures.

* The provision of utilities.
The salvation program, incremental dumping and audit
trail are utilities which have nothing to do with the
way in which the data is structured or updated. They
could be regarded as external utilities which can
usually be added to any data base system without great
difficulty.

The division of the techniques in the three groups
could be misleading in cases where techniques complement
each other or are alternatives. The seven techniques will
therefore be discussed separately. The categorization of
the techniques, however, is partially justified by
distinguishing the three groups of techniques. For example,
the backup and current version technique is in a different
group than incremental dumping. It is therefore justified to
distinguish them as two different techniques.

The seven techniques are described
following seven sections. Examples of
techniques are given for illustration.

in detail in the
systems using the

-18-

2.3 Salvation programs

A salvation program in a data base system is used after
a crash to restore the data base to some consistent state.
The salvati.on program tries to restore the state of the data
base as it was before or at the time of the failure.
However, in general some files or data may be lost. A
salvation program basically scans through the data
structures and tries to reconstruct the data base or restore
consistency, possibly at the cost of deleting some files or
data.

A salvation program is needed after a crash if the data
kept on secondary storage is not kept in a consistent state
all the time and other recovery techniques to restore all
the data to a consistent state are not available or cannot
cope with this crash. Otherwise no salvation program ~s
needed.

One of the reasons for the data on secondary storage to
be left in an inconsistent state after a crash could be, for
example, the loss of buffers kept in main storage. The
reasons for having to delete some inconsistent files could
be (SmH72): i) the violation of standard error checks on
reading a file, ii) a conflict because the same storage
appears to have been assigned to more than one file, iii) a
conflict (e.g. on the file length) determined from redundant
information (e.g. from a file header).

A system may use buffers for the data base (data
buffers) and for audit trail tapes (audit trail buffers).
After a crash there is in general no way to tell which
updates recorded in the audit trail have been written to the
data base and which were still in data buffers, and
similarly which updates made in the data base are recorded
on audit trail tape or were still in buffers (GiS76). Using
the audit trail to restore the data base to what it waS at
the point of failure may therefore not be possible. Several
systems such as IMS (IBM) or the CMIC system (GiS76) first
use a salvation program which tries to rescue the contents
of the buffers in main storage, after a failure, in order to
close the audit trail tapes properly. However, main storage
may be lost in wich case restoration of the correct state is
not possible.

A system in which a salvation program is of great
importance is the HIVE system (Tay76) (here the program is
called the recovery procedure). The system consists of a
fixed number of virtual processors (VPs) which are assigned
permanently to execute particular functional application
programs in a cyclic manner. A processor cycle, performing
such a particular function, is triggered by a message
received from another VP or from outside the network of VPs.

-19-

Capabilities for the necessary code and permanent data areas
are given to the VPs at system build time and the cessage
routes between VPs are also set up permanently. Basically
only the files for which permanent capabilities have been
created at system build time can be restored after a crash.
However,
a) Transaction checkpoints

of each transaction into
checkpoint file, which
after a crash.

can be made by wr~t~ng the data
a common, permanent, safeguarded
can be accessed and recovered

b) Files may be created dynamically and capabilities for
them may be put in special files called cap-files.

The recovery procedure run after a crash restores in core
the read-only core image, which also contains recovery code.
The main task of the recovery procedure is to perform a
garbage collection in the the data base by scanning all
files. Files for which capabilities are kept in cap-files
are processed first. For each version of each file (several
versions of each file are maintained) the check sums are
evaluated to detect partially updated and corrupted pages,
and where possible the appropriate updating and backtracking
from other versions is carried out. (At most one version can
be corrupted after a crash, and if so, the corrupted state
will be detectable using the check sums. Only a catastrophe,
such as an fire in the computer centre, may corrupt more
than one version.) The checkpoint files are used to
initialise the transactions represented in those files.

Other systems in which a salvation program is used to
recover the disk contents after system failure have been
described, for example, by Lockemann and Knutsen (LoK68),
Daley and Neumann (DaN65) (salvage procedure), Fraser
(Fra69) (start-up procedure) and in the EMAS system (E}~7~).
(See also the surveys in (Ton75) and (Mas73).)

2.4 Incremental dumping

Incremental dumping is used to copy updated files onto
archive storage (usually tape); it checkpoints files that
have been altered. Incremental dumping will normally be
done after a job has finished and can also be done at
regular intervals, while continued use is made of the files,
in order to get checkpoints more frequently. The
incremental dump tapes can be used to bring all the files to
their last consistent state again after a crash has occured.
Jobs completed before the crash, will not have to be rerun.
All of the updates performed by jobs running at the time of
the crash will not be restored completely by the processing
of the incremental dump tape after a crash; the effects of
these updates may be restored partially. Fraser (Fra69)
gives a very good description of the technique as used at

-20-

Cambridge, which makes complete copies of updated disk files
every twenty minutes.

In the MULTICS system (DaN65), for example, all of the
disk files updated or created by the user are copied when he
signs off, ~nd every N hours all newly created or modified
files which have not previously been dumped, are also copied
to tapes.

The EMAS system (EMA74) provides an automatic
checkpointing facility for files. Files are part of the
user's virtual memory and cannot be accessed through the
paging mechanisms until they have been connected (i.e. the
virtual memory disk address mapping has been set up). When
a user process is created its virtual memory space is
created, initialised and copied to disk. When the process is
run the working set is in core and pages are transferred
back and forth between core and drum. A page may be forced
to disk, because the drum gets full or the process becomes
dormant again. If a page is forced to disk then all of the
updated virtual memory pages are forced to disk at the same
time. This mechanism is required by the so-called
consistency rule in the EMAS system. Therefore a suitable
restart copy of the virtual memory of a process (which
includes the files) is provided on the disk. The problem of
having inconsistencies between the state of the process and
the states of its associated files are avoided, because the
filing system uses the resources provided by the paging
system. The paging system assumes complete responsibility
for maintaining a consistent backup copy of all of the state
variables of the process (including files). Consequently,
if the consistency rule is always obeyed then automatic
checkpointing is provided.

Incremental dumping can be done as a part of an audit
trail scheme (Mas7l), (Ran70), (Mas73). An audit trail only
gives the changes made to files from given states onwards.
These states are redefined regularly for reasons of
efficiency (in order that audit trail journals do not become
too long). For example, in a system described by Wimbrow
(Wim7l) files are dumped when they have to be reorganized,
because they become disorderly as a result of the operations
performed. In the CMIC system (GiS76) all files are
checkpointed regularly at moments when no user has the data
base open.

Another scheme used in System R (Lor77), works as
follows (see also Fig.2.5). Segments (which are similar to
what we called files) consist of page tables with pointers
to the data pages. Associated with each pointer in the page
table are three bits: a shadow bit, a cumulative shadow bit
and a long term shadow bit. When a segment is updated a
backup and a current copy are maintained (in a way which
will be described in one of the following sections). For

-21-

every page which is updated during a transaction, the shado~
bit and cumulative bit are set in the relevant page table cf
the segment. When the current state of the segment is saved
(i.e. replaces the old copy) at the end of the transaction,
then the shadow bits are switched off and the old pages (of
the backup ~ersion) which are replaced by the new versions
of the current copy, are released. Checkpoints of all the
segments are taken regularly. This involves the copying of
all the page tables for which at least one cu~ulati,e shadow
bit is switched on, the cumulative bits are copied into the
long term bits and then switched off, and a so-called
process P is started. Process P copies onto tape all of the
pages for which the cumulative shadow bit is on at
checkpoint time. The long term checkpoint bits are used to
make sure that subsequent saves will not release the pages
before P has copied them.

A special checkpoint file is used in HIVE (Tay76) to
checkpoint transactions. Information put in the checkpoint
files can be recovered after a crash to restart those
transactions. Individual transactions can also be
reprocessed selectively using this checkpoint file.

2.5 Audit trail

An audit trail records "who did what to whom, and in
what sequence" (Bj075), by keeping track of all of the
operations performed. All the relevant information about
the operations is registered in the audit trail, such as:
the effects of the operations, the times and dates at which
the operations toke place and the identification codes of
the user (or user program) issuing the operation.

as:

1.

Audit trails can be used for different purposes such

Crash recovery.
Backup versions of files can be
audit trail can then be used to
what they were at the time of the

re-installed and an
restore the files to
crash (Cur77).

2. Backing out.
If a system crashes (without damaging second~ry
storage) the files affected by the processes runn~ng
during the failure can be restored to what they were
before those processes started. In other words the
audit trail can be processed backwards for backing out.

-22-

3. Certifying the integrity of the system by providing
means for verifying that rules and policies cictated by
laws, business agreements, etc., are being followed by
the application (Bjo75).
It is for this reason that Bjork concludes that audit
trail will be the major integrity tool for shared data
usage for the late 1970s and beyond. This could,
however, well prove to be a rather controversial
conclusion. For example, differential files combinec
with the incremental dumping technique could provide
the same facilities, although the provision of
integrity verification by this combination of
techniques depends on how the differential file is
implemented and on the requirements for verification.

Recovery techniques as described, for example, by
Fraser (Fra69) and often used for filing systems, may, as
described in a previous section, cause the loss of the
effects of the most recent operations performed on the
filing system. Incremental dumping, as used by Fraser,
checkpoints files at regular intervals. The effects of
operations performed on files since their last checkpoint
was made, will be lost. This may not matter in many
operating systems, because jobs can be resubmitted or
operations can be redone. However, for systems where updates
are made online from different sources, such as in banking
or airline reservation systems (Mas71), (Ran70) , (Wim7l) ,
(Ton75), this may be impracticable. One cannot afford to
lose any update in the event of a failure in such systems.
In systems like these an audit trail, kept say on tape, can
provide a solution. Before a transaction is done on a data
base an audit trail entry is written onto tape. The writing
of audit trail entries must normally be done without the use
of buffers (Wim7l) to make sure that crash recovery is
possible at any time; the use of buffers (see also Fig.2.3)
may lead to inconsistencies between the data base and the
audit trail (GiS76). (However, another possibility would be
to salvage the buffers from main storage after a system
crash, thus making possible the proper closing of the audit
trail tape. This is, for example, tried, but not always
successful, in IMS (IBM) and in the CMIC system (GiS76).
The salvaging of the buffers is not possible in case the
contents of main storage is lost after the crash.)

The audit trail can be used to back out a process. This
process may have interacted with another process in such a
way that that other process will have to be backed out. The
audit trail can be used to back out that other process which
may have interacted with again some other process, and so
on. Thus using an audit trail to back out unfinished
transactions performed by interacting processes, leads in
general to a so-called domino effect (Ran75) (GiS76)
(Cur77). A locking scheme, as used in System R (Ast76), may
avoid these problems by making these interactions

users processes

-23-

data base
buffers

audit trail
buffers

CURRENT AUDIT TRAIL

audit tra i 1 on
secondary storage

The current data base is always consistent with the current
audit trail, however the data base on secondary storage is.
in general t not consistent with the audit trail on secondary
storage.

Fig.2.3, A general data base system using audit trail.

impossible. (Practicable only when the interactions are
accidental, rather than deliberate.) This will make the
undoing of partially finished transactions possible using an
audit trail (or a "log" as it is called in System R).
Another solution would be to checkpoint all files while no
user is active (GiS76). This would always stop the domino

-24-

effect at that point. However, such occasions may Occur too
infrequently for this scheme to be much help, and frequent
forcing of all users to become inactive may be
impracticable.

Audit. trail schemes can appear in rr.any guises. For
example, in a system described by Lampson and Sturgis
(LaS76) so-called intention lists are used. An intention
list specifies the operations to be performed by a
processor. A processor, which is a node in a network, may
receive an intention list, containing the specifications of
the operations to be performed on its local data base.
Intention lists, like the audit trail used in the CMIC
system (GiS76), can if kept, be reprocessed if processing is
interrupted without backing out the interupted process.
Intention lists, once received and accepted, cannot be lost
unless a catastrophe, such as a head crash, occurs, because
they are stored on disk at a fixed place known to the
system, and are not altered when processed. So unless the
processor breaks down and is never repaired the operations
specified in the intention list will always be done. An
intention list could be regarded as (an entry) in an audit
trail. The difference between intention lists and audit
trails is that audit trails are made as a result of issued
data base updates, intention lists are created first. As
far as processors processing intention lists are concerned,
they could also be regarded as the programs issuing the
update operations (like audit trails when they are
processed, not when they are created). During crash
recovery or backing out, the intention lists and audit
trails are not different.

2.6 Differential files

Under the differential file (also called "change set")
scheme the main files are kept unchanged until
re-organisation. All changes that would be made to a main
file as a result of transactions performed are registered in
a differential file. A file as seen by the user is
implemented as a fixed main file and a differential file.
As a result of this the differential file will always be
searched first in case data is to be retrieved. Data not
found in the differential file is retrieved from the main
data base.]he most recent entry for a given record in the
differential file must always be retrieved.

Severance and Lohman (SeL76) fully describe the
technique and an efficient hashing method to implement it
(see also Fig.2.4). A small associative memory in the form
of a bit map, accessed by the hashing scheme, is used to
reduce the probability of making an unnecessary search in

The data base

read/wri te
di fferenti a
fi 1 e

-

bit map

-25-

recii-~nlv data ba e

o 11 1010 II 0 •• ..

hashing function(record r) = -bit pattern-

The data base
system operating
on the data base

The bit map suggests that record r is in the differential file.
because the bits set in the bit pattern produced by the hashing
function are set in the bit map.

Fig.2.4. A differential file technique using a hashing scheme.

the differential file. Severance and Lohman show
analytically how to keep the probability of a filtering
error (i.e. the bit map suggests that that a record is in
the differential file while it is not. because the relevant
bits are set to represent other records) low. They also
describe the advantages of differential files for the
prov~s~on of recovery. integrity. the implementation of
(incremental) dumping schemes and other general advantages
such as the simplicity of software. Another advantage
claimed is the possibility to perform queries which do not
need the exact values of all files; such queries get a

-26-

suitable (but out of date) view of the data without locking
out the update transactions.

The disadvantages of the approach using differential
files are (Lor77):

* An access to a data element must first search the
differential file; if the data element is not among the
modifications then it must be fetched from the data
base. However, Severance and Lohman show that, using a
hashing scheme, this problem can be almost completely
overcome. They also show how to construct a good
hashing scheme for particular systems.

* Eventually a merge of the modifications and the main
data base must be performed, and this operation can be
time consuming. This will certainly be a big problem if
the system needs to be available without interruption.

* Since an update can affect an element which has already
been modified, the organization of the differential
files must accommodate such cases. If hashing schemes
described by Severance and Lohman, are used or a scheme
similar to the one described by Rappaport (Rap75) in a
system called VADIS, then this problem may be avoided.

Differential files are, for example, used in the VADIS
system (differential files are called MODFILEs). For every
file in the system there is a MODFILE. The system has been
developed to facilitate recovery after power failure; this
has been implemented by providing resistance from crashes
due to power failure. So after a power failure the system
can restart as if nothing had happened. Uncompleted
transactions before the failure are not undone, rather the
effects of these operations are ignored using the MODFILEs
and a TRNSDONE file as follows:

* Each entry in a MODFILE has a header with: record type,
transaction code, pointer to previous modification of
the same record, time, transaction number and some other
identification codes.

* There is a file TRNSDONE which contains the numbers of
the completed transactions.

* For every record fetched from a MODFILE the transaction
number is compared with the TRNSDONE numbers and the
current transaction number.

-27-

* If the number is neither in TRNSDONE nor is the nu~ber
of the current transaction, then the previous version of
the record is taken (the one pointed to by the retrieved
entry from the MODFILE, or in the main file), because
this means that the record was put in the HODFlLE by an
uncompl~ted transaction before a failure.

Differential files are used in a system, described by
Titman (Tit74), for both efficiency and reliability reasons.
The way in which ordinary files are kept makes insertions or
deletions very expensive. In Titmans system the files are
binary relations which are stored, in a highly compressed
form, in fixed length blocks. Elements are identified by a
block number and the sequence number of the element in the
block. An insertion or deletion requires the complete
re-organization of the file giving the elements new
identifiers. So, for efficiency reasons, an "add set" and a
"delete set" of inserted and deleted elements are kept for
each file. For reliability purposes a "change set" is also
kept for each file, which is used to register the changed
records. The "add set", "delete set" and "change set"
together form the implementation of a differential file.
The main files are kept on a separate device which is never
written on except during re-organization. These files can be
duplicated on tapes for recovery. Checkpointing is carried
out by saving the add, delete and change sets.

2.7 Backup and current versions

Backup versions of
order to make possible
previous state.

files or data bases can be kept in
the restoration of the files to a

For example, many file-editors produce a complete new
version of a file while a user is editing a file. The
original file remains unchanged during the edit-session.
The new version is a complete new copy; it is not achieved.
for example, by using a differential file. If a user
notices during the edit session that he has made a blunder,
for example deleted 100 lines instead of 10, he does not
replace the original copy of the file.

Incremental dumping (of current versions) can be used
as a utility to maintain a backup version of a filing system
or data base: altered files are copied, which can
subsequently be used to update a backup version of the whole
system or data base. This is done in the Cambridge filing
system (Fra69), where two processes are used: one makes
incremental dumps and the other creates backup versions of
the system.

-28-

Similarly, complete copies of the data base can be made
regularly in order to make possible the restoration cf the
data base to an earlier state. For example, ~n ~'XLTICS
(DaN65) a weekly dump is prepared of all files which have
been used within the last M weeks plus all of the system
files necessary to run the system.

An optimised version of this technique (see also
Fig.2.5) is used in System R (Lor77) for so-called segments
(synonymous to our notion of files). For each segment a
page table is used to point to the data pages. There are two
copies of each page table, which are identical when no
transaction is in progress. If a page of a segment is
altered during a transaction then its new value is put in a
newly allocated page and the current version of the page
table is updated to point to the new page. The backup
version remains unaltered. At the end of a transaction the
current version is copied into the backup version and the
replaced or deleted pages are released. This releasing of
pages causes the bit map used to indicate the free pages to
be updated. Two copies of the bit map are maintained. A
MASTER table points to the current map. The current bit map
always reflects a consistent state of the system (i.e. all
of the pages pointed to by the backup versions of the page
tables). At the end of a transaction the ~~STER table is
then made to point to the up to date bit map. This scheme
provides the possibility of restoring a segment to its last
consistent state (held in the backup version) and of
restoring consistency after a system failure (the operations
of unfinished transactions, performed before the failure
will be lost; these transactions will have to be restarted).

Physically completely separate backup and current
versions of the page table provide logically completely
different, but physically overlapping. backup and current
versions of the segment under this scheme. The logically
different versions of a segment overlap (physically) in
their implementation where they are equal.

-29-

. DATA PAGES

SEGMENT Sp SEGMENT Sq ~'ASTER
current page

4 7 o 9 3 8

, 411 •• 0 0 0 1 1 0 1
1 0 1 1 1
0 0 0 0 0 0 0

b k bl ac up Dage ta e

4 7 110 ~l 6 8 n3 D7

0 0 0 o 0 0 0 0

1 0 1 1 0 1 0 0

0 0 0 o 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13
000 1 0 1 1 101 001 bit map

bit map

Fig.2.5, The implementation of segments in System R.

-30-

2.8 Multiple copies

*

*

The technique of multiple copies involves either:

Keeping more than two copies of the data so that they
can be compared when needed. If a majority of the
copies have the same value, then that value is taken.
This technique is then called majority voting.

or,

Holding two copies with flags indicating
"update-in-progress".
suspicious copy) is
because of the flags
update the flag will

An inconsistent copy (or
always recognizably inconsistent,

used; if the system crashes during
still be set after the crash.

Except during update the mUltiple copies must always
have the same value. If the different copies are updated by
the same processor then a flag "update-in-progress"
(sometimes called "damage flag" (Cur77)) is used if there
are only two copies, in order to provide crash resistance. A
consistent copy can always be retrieved after a system
restart; this copy will either have the value it had before
the update in progress during the crash, or the new value.
The inconsistent copy can always be recognized as such and
discarded. The keeping of more than two copies provides
crash resistance. The use of two copies plus flags also
safeguards against crashes. Majority voting may also be
used to detect incorrectly performed operations, which is
especially useful if different processors update the
different copies. Faulty processors can then be detected and
ignored or disconnnected.

The important difference between the mUltiple copies
technique and other techniques such as backup and current
version, and careful replacement, is that with the multiple
copies technique the different copies always have the same
value, except during update. The mUltiple copies also exist
all of the time and are implemented as physically different
files which may not overlap. Schemes, for example, using
different backup or archive versions, are therefore
definitely not implementations of the mUltiple copies
technique as described here.

Majority voting on data has
space flight applications, such
system where four computers are
same input data and calculate the

been used extensively for
as in the space shuttle
configured to receive the
same outputs (Sk176).

The technique of two copies with flags is
provision of recovery for segments in System R
MASTER table is used to indicate which segments

used in the
(Lorn). A

are open or

-31-

closed and which bit map (two copies are held) is the up to
date one (see Fig.2.5). Two copies of the ~1ASTER table,
both containing the same information, are kept to ensure
that if the system crashes while the ~STER table is being
updated, always at most one copy will be left behind in an
inconsistent state; the other copy either has the new state
or the state the table was in before the update started.
The copy that is in an inconsistent state can always be
identified.

Similarly two copies
filing system of GEORGE 3
bits to make possible the
invalid copy after a crash

of the ~STER-directory in
are maintained (New72), and
distinction between a valid

during update.

the
two
and

System HIVE (Tay76) maintains two read-write versions
for every file. This provides one of the characteristics of
a cycle (see section 3) which is that the local effects can
be undone as long as the cycle has not yet finished. During
a cycle one of these two versions is updated. At the end of
the cycle this version is copied into the other version.
The system knows which of the two versions is the one
updated during a cycle. Crash resistance is therefore
provided for individual files. Apart from this, a sum check
is maintained for each version. This, generally, enables
partially updated or corrupted files to be detected (this of
course depends on the kind of crash, but it is the case for
most likely kinds of crashes). In general two copies and
two flags (bits) are sufficient to provide crash resistence.
The flag indicates whether a copy is suspicious or not. If
the two copies are updated immediately after each other, as
in System R, then a copy is very likely to be inconsistent
if its flag is set. In system HIVE, however, the two copies
are kept on separate storage devices, so the check sum
provides extra facilities: it makes the detection of
incorrectly performed operations possible; in other words
faults can be detected. System HIVE is one of the few
existing systems in which more than one complete copy for
every safeguarded file are maintained to provide crash
resistance. One copy is updated during a cycle and the
second copy is updated in pages which correspond to the
changed pages of the first copy to reduce the overhead.

2.9 Careful replacement

This technique implies arranging that, as far as
possible, no data structures are ever updated "in place".
Instead updated objects (records, pages, disk blocks) that
are part of a data structure, are copied into other objects
and the updates are made there. The same is done for objects
in the data structure which point to those objects. During

-32-

the update there will be two copies of the data structure,
which overlap such that the same objects (for example pages)
are used for both data structures, for those objects that
have the same values in both data structures. One copy
contains the pre-update value and the other copy is i~ a
transition.from that value to the new value and ~ill only be
~n a valid and consistent state (from the users point of
view) when the update is completed. Once the update is
completed the copy containing the pre-update value is
destroyed (only objects which are not shared with the other
copy are released). Only during update are there two copies
(which overlap in identical objects). If no update is in
progress then the data structure contains the normal current
value. This is different from the differential file
technique where there is one copy all the time, which
remains unaltered, and a differential file to register
updates made to the file. (Careful replacement could be used
to merge the main file with the differential file when
merging is done.)

The important difference between the careful
replacement technique and other techniques is that with
careful replacement two "virtual" copies are held only
during an update (or perhaps within a recovery scope
specified by the programmer (Ver77)) to make the update or
sequences of updates as safe as possible (i.e. reduce the
chance of being left with a inconsistent copy or mutually
inconsistent set of files, in the event of a crash).

This technique is fully explained by Gamble (Gam73) who
describes a filing system in which this technique is used.
Files consist of data pages pointed to by a tree of
directory pages. A master directory points to each top
directory page of the files. If files are updated using
careful replacement then they can always be restored in
their pre-update consistent states.

This approach resembles the differential approach.
However, the three disadvantages of differential files
(Lor77), mentioned above, are avoided. Instead the major
disadvantages of careful replacement are:

1. The file or data structure must be such that the
technique is feasible. For example, if a file was
implemented as a list of linked pages, then this
approach would be impossible (or incur prohibitive
costs), because if a page is replaced then the page
pointing to it is to be updated and may therefore have
to be replaced, which will require the updating of the
page pointing to that page, and so on. The constraints
and requirements careful replacement sets for the data
structures are fully described elsewhere (Ver76)
(Ver77) (and in later chapters of this thesis).

-33-

2. There is a certain overhead in (disk) accesses. In
GEORGE 3, by using the technique only for files, but
not for the much more heavily used ~~STER-directory,
the measured overhead reported by Newell is
surprisingly insignificant. The method is also ~sed in
the MUS system (Gam73), so also the overhead in that
system must at least be acceptable.

Files in the system described by Lampson and Sturgis
(LaS76) are updated using careful replacement, during the
processing of the intention lists. Segments in System R
could be said to be updated using careful replace~ent as
well; certainly the basic idea is used.

Basically the same technique is used in the CMIC system
(GiS76). The storage structure used is similar to those of
B-trees (Knu73). If an insertion is made in a full track
then two new tracks are obtained and the contents of the
full track plus the new entry are put in these two new
tracks (see also Fig.2.6). The same is done for the index
(the table containing pointers to the data tracks). This
method of updating is combined with the use of the
leaf-first rule. This rule states that copying of
information to slower memory (e.g. from main storage to
drum, or from drum to disk) is done such that no descriptor
or pointer can ever reference a block at a faster level of
the device hierarchy. In this way the following two things
are ensured:

1. The (sub-)structure on mass storage is always valid,
because this (sub-)structure will always be a valid and
consistent tree.

2. No data on mass storage is ever removed from the
structure during update. Instead replacement is used
by using new tracks when necessary.

The careful replacement technique is often used in
filing systems using a hierarchy of devices by employing the
leaf-first rule and the root-segment rule (see also
Fig.2.7). The root-segment rule states that if a data page
is on a particular level of storage ~n the hierarchy, then
every directory page between it and the root of the file is
on that level or a faster level (the root is the top
directory in the tree of directory pages). These two rules
mean that careful replacement is used at every level in the
hierarchy. So if, for example, the contents of core is lost
after a crash then the drum and disk will still have two
copies of the file: the disk copy contains an old value, the
drum copy (of which some pages are on drum and the others on
disk) contains a newer value of the file. Fig.2.7 shows how
updates of a file, made in core, are subsequently made to
the copies of that file held on drum and disk using these
two rules, thus always maintaining a valid and consistent

1)

'll
T1

AO

Al
A2
A3
A4
A5

3)

Tl

AO
A1
A2
A3
A4

AS

- -

index

T1

~ T2

index

r---

r-

... ,

T5
T9
T2

T5

AO
A1
A2

" , T2

BO

B1
B2

B3

B4

-J,
T9

A3
A4

A5
A6

-34-

free space
stack

T5
T9
T7
T13

f ree
stac

space
k

T 7
T 13

~
T2

BO

B1

82

B3

B4

T

I
I

2)

'1/
Tl

AO
A1
A2
A3
A4

AS

4)

'1/
T5

AO
A1
A2

index

Tl

,- T2

T5

AO
A1
A2

index

r--

r--

T5
T9
T2

~
T9

M
A4

A5
A6

T9

~3

A4

A5
A6

Fig.2.6. The insertion of an entry A5 in a full track in a
storage structure as used in CMIC. in four steps.

J,

free SS2:e
s :e.ck

T7
Tl 3

~
T2

80

81

82

83

84

free space
stack

Tl
T7
Tl3

T2

-35-

copy at every level. Although pages are updated "in place"
this technique can be classified as being a careful
replacement technique, because of the way in which the total
structures are updated (the replacement takes in fact place
on other devices and updates are consolidated on the
device(s) ~intaining the files) and because every valid
tree structure, in systems using these rules, is by
definition a consistent structure. If the contents of both
core and drum are lost then there will still be a consistent
copy on disk. If the contents of core are lost then the
updates which were reflected in the core copy (which LS

partially in core, partially on the drum, and partially on
disk) and not in the drum copy will be lost. If the contents
of the drum are lost as well then the updates which were
reflected in the drum copy, but not yet in the disk copy,
will be lost too. A system using these rules has been
described by Schwartz (Sch73). Files are trees of pages
which are either index pages (i.e. directory pages) or data
pages. A file descriptor is the root of the index table in
the system described by Schwartz and a directory file
contains the descriptors. In that system, and in CHIC too,
the directory file is updated "in place". If absolute crash
resistance was to be provided in this system then the
multiple copies technique could be used for the directory,
as is done in GEORGE 3 (New72).

The careful replacement technique provides an easy way
of restoring the state of a data structure as it was before
an update or transaction started. The technique can also be
used to provide crash resistance.

If the recovery is to be provided for transactions
consisting of more than one update then replaced pages (or
newly allocated ones in case of insertions or extensions)
can be updated "in place". This technique has been used at
Newcastle (Ver77) (and is fully described in subsequent
chapters of this thesis) to provide recovery for files
within user defined scopes, which can be nested. The
nesting means that a copy of a file is maintained for every
level of nesting in which the file has been operated upon
(these copies overlap in identical pages). The current
value of the file is in the latest copy. Recovery means
restoring the copy as it was before the current recovery
scope was entered. Exiting a recovery scope successfully
means the replacing of the copy, as it was before the
recovery scope was entered, with the latest copy.

1 -36-
2

DRUM

1

CORE dD
I 2 15 11

IE]E]B
Three possible subsequent situations.

where: Vi = a value of a data page.

3
8

3
9
7

3

3 9

1:6!h

1

c[J
9LJ

Fig.2.7, The careful replacement technique in a hierarchy
of devices.

-37-

2.10 Summary and conclusions

Many of the techniques to provide backing out, cras~
recovery and crash resistance and to maintain consistency,
which are .known and used at present, have been describec.
One of the main conclusions is that the techniques can be
used in different environments or for different purposes or
complement each other. None of the techniques is out of
date, although some are older than others. All the
techniques described are still used for different purposes
and in different environments.

In order to show which combinations of techniques are
used in practice (see also the introduction and Fig.2.l), a
cross-reference table, showing which techniques discussed ~n
this survey are used in particular systems, is given ~n
Fig.2.8.

System IMS George HIVE MUL Cambr EHAS cme VADIS New-
R 3 TICS idge, castle

Fra69 Ver77

salva-
tion * * * * * * *
program

incre-
mental * * * * * * * *
dumping

audit * * *
trail

differ-
ential *
files

backup * * * ~, * * * * *
current

mUltiple * * *
copies

careful
rep lac- * * *
ement

Fig.2.8, A cross-reference table of systems and recovery
techniques.

-38-

This table may not be complete for the systems it
covers (e.g. System R may have some sort of salvation
program), but it shows the most important features of the
systems as far as recovery and crash resistance are
concerned.

It appears that for filing systems, where short term
losses are not considered serious, the combination of
incremental dumping, having a complete backup version of the
system and a salvation program suffices. This is for . ,
example, used 1n MULTICS, the Cambridge system and E~~S. A
salvation program may be needed for "clean up" purposes
after a crash, which may lead to the loss of some data.

This combination can be improved, by using an audit
trail, to guard against the loss of any updates, as is
possible in IMS. The recovery facilities in IMS, however,
seem very ad hoc; there is no general approach and there is
no dominant technique as in the Cambridge system or VADIS.
IMS provides an enormous range of facilities, 50% of the
code is said to be for recovery purposes (Inf75). However,
the application programmer, it seems, needs to build his own
mechanisms and utilities, certainly if high integrity is
required. The programmer also has to make explicit
checkpoints if they are required.

The loss of any completed update can also be avoided by
using careful replacement or mUltiple copies as in GEORGE 3,
HIVE, CMIC and System R. It may also avoid the need for a
salvation program (e.g. as in GEORGE 3). Also the
differential files technique is very powerful and can be
used to provide recovery facilities and crash recovery.

Audit trail with backup, or incremental dumping with
backup, or audit trail with incremental dumping and backup,
or multiple copies could be used for recovery from more
serious failures which other recovery techniques cannot cope
with depending on how serious short term losses are.
Rappaport doe~ not say in his paper what has been used for
VADIS.

It is difficult to make a costs/overheads comparison
between the various techniques, however some general
statements can be made:

* If failures do not occur often then the differential
file technique and the careful replacement technique
give an extra overhead, because other recovery
techniques, such as incremental dumping or backup
current version or a salvation program are, in general,
needed anyway for failures with which these two
techniques cannot cope. However, the failures these two
techniques do cope with, are coped with much better (t~e
data base is crash resistant, thus the correct state 1S

*

*

*

*

-39-

maintained) and more efficiently (no separate tapes, for
example, need to be mounted and processed).

The multiple copies technique as, for example, used in
HIVE coul~ be .regarded as a sledgehammer approach: the
overhe~d l~ hlg~. However, the technique does provide
very hlgh lntegrlty such as was required in HI'~.

The overhead with audit trail is high, because every
operation on the data base may cause an audit trail
entry to be created. The audit trail technique as a
recovery technique is therefore, In general, only
justified if the audit trail is required for certifying
the integrity of the system anyway, or if recovery must
almost always (even after for example a head crash)
involve the restoration of the correct state.

The incremental dumping and backup current VerSlon
technique are, in general, the best technique for
providing recovery from failures that cause extensive
damage, such as a head crash on disk, if the recovery
technique does not necessarily have to restore the
correct state, but if instead the restoration of a
consistent state is acceptable. The overhead of these
techniques lS not very big, because it involves
checkpointing of the files or the whole data base only
once every N minutes or N updates.

The costs of a salvation program completely depend on
the number of crashes, because overhead is only inccured
when the program is used, not during normal processing.

One of the techniques which is used increasingly for
multi-user environments (or multi-machine environments) is
the careful replacement technique, either explicitly (New72~
(Gam73), (LaS76),(GiS76) (and in fact also in (Lor77)) or by
the use of the root-segment rule and leaf-first rule In
systems using a hierarchy of devices (Sch73). The
combination of careful replacement with multiple copies has
recently received much attention (GiS76), (Ast76), (Ver77).
Also the differential file technique is written about more
than in the past (Rap75), (SeL76).

The attention that has been paid to these techniques
during the last few years makes it reasonable to assume that
they will be used more widely during the next decade. The
techniques ensure that data integrity is unlikely to be
corrupted through failures and the extra costs w:igh l:ss
heavily than they did a number of years ago. Data lntegrlty
is becoming a more important issue than efficiency, because
machines are becoming much faster and cheaper and, at the
same time the complexity and volume of the data maintained
is increasing.

-40-

The techniques described in this survey are special to
provide recovery for data bases (on secondary storage), The
present thesis generalizes the basic concepts involved and
describes system structures in which recovery is provided
for different complex data types (not just files). The
problems o.f incorporating general recovery techniques to
provide recovery for different types in different levels of
a multi-level system are discussed. An analysis of how the
techniques can be used to provide "nested recovery" as
provided by recovery blocks and a detailed analysis of what
the notion of careful replacement implies are given. It
appears, for example, that the choice of the objects to
replace is of importance for the feasibility of the
technique, and that there are different ways in which this
careful replacement technique can be implemented.

-41-

3.0 PARTIALLY RECOVERABLE INTERFACES ~ MULTI-LEVEL SYSTE~'fS

3.1 Introduction

This chapter presents an approach to the construction
of recoverable multi-level systems and a mechanism to
implement this approach. The recovery considered will, as
was mentioned in chapter one, be described in terms of the
particular system structure which has been developed at
Newcastle upon Tyne, England, to facilitate fault tolerance,
namely recovery blocks (Ran75). Recovery blocks provide a
good framework within which recovery systems in general can
be discussed and described.

A particular view of how to build fault tolerant
multi-level systems (which is similar to a view described by
Randell (Ran75)) is compared with the alternative approach
described in this chapter. Some of the basic principles are
compared with the principles used in a new approach being
developed by Banatre and Shrivastava (BaS77).

First the definitions of the terms used in this chapter
are given in section two. Then section three describes the
basic principles on which the chapter is based. The most
important principle of the approach taken in this chapter is
to provide recoverability for types. This approach is
compared with an approach whereby recoverability is provided
for operations (BaS77). Section four describes a particular
scheme for implementing recoverable multi-level systems
built with so-called completely recoverable interfaces; a
scheme which is based on that view is described by Randell
(Ran75). The disadvantages of this scheme are described in
section five. Section six gives an alternative approach
where partially recoverable interfaces are used and shows
that there are good reasons for using this approach. The
problems and constraints of implementing a multi-level
system using that alternative approach, and a special
mechanism to overcome these problems are described in
section seven. A multi-level prototype system, which shows
that the ideas discussed in this chapter can be used in
practice, is described in section eight. Section nine shows
how the mechanism can be used to build up a system of
recoverable type managers each of which adds new recoverable
types, implemented in terms of unrecoverable types, to an
existing interface. A full comparison between the "rec~ver!,
for types" approach and the "recovery for operat~ons
approach is made. Finally, section ten gives some general
final conclusions.

-42-

3.2 Definition of multi-level system ~ recoverability

Before the
"recoverability" can
have to be specified.

notions "multi-level
be defined, a number

system"
of other

and
terms

A level is a set of programs which provides (to a
higher level) a more abstract view of the machine on which
it is running. A level is very similar to a class in SI>fl'lA
(Bir73); a program can be provided with a more abstract view
of the machine by prefixing it with a class ~n SI~lliLA.

The more abstract view of the machine given by a level
is provided by one or more new types implemented by that
level. Some of the existing types may be hidden by a level,
however the ways in which this can be done are outside the
scope of this thesis. A user can write programs to run on
this level. (That is the programs are effectively-executed
by the new, more abstract, machine.)

The new abstract view provided by a level is called an
interface. A description of an interface consists of a
definition of types (and/or resources), (for example: core
words, arrays, files or an operator's console) and the
operations that can be performed on objects of these types.
A user's program specifies a sequence of operations on
objects of these types provided in the interface. Issues
concerning the languages in which the user has to specify
his sequences of operations are irrelevant for the purpose
of this thesis.

In a multi-level system
procedures) can be grouped
following properties hold:

programs (or program parts or
in sets La to Ln where the

1. Every group Li provides one or more new abstract types.

2. Every ~rogram in group Li is the implementation of an
operat~on on a new type provided by Li.

3. Programs of any group Li invoke programs of one or more
of the groups La to Li, but not programs from groups
Li+l to Ln. In other words group Li uses the
abstractions provided by groups La to Li-l.

4. A group Li may be an inter~reter. Li is an interpret:r
if no level Lj, j>i, can d~rectly invoke any program ~n
any level Lk, k<i. A group Li could also consist of a
set of programs which interpret (see definition below)
only some of the instructions of the user program, the
other instructions being interpreted by groups Lj, j<i.

A program P in a group Lk is said to invoke an

operation R (i.e. a program) in a group Lm, Ukk; the
program R invoked is said to interpret an operation for
program p.

An example of such a multi-level system is given by
Madnick anq Alsop (MaA69). and shown in Fig.3.1.

8 user program

7 access method

6 logical file system

5 basic file system

4 file organization strategy modules

3 device strategy modules

2 input/output control system

1 central processor, peripheral devices, etc.

Fig.3.1 A multi-level file system. designed
by Madnick and Alsop.

Every group Li is a level in a multi-level system.
Every level provides a new interface. The new types provided
in an interface are mapped on (represented by) types
provided in the interface of the underlying machine (i.e.
the interface provided by the lower levels). The underl~ing
machine of a level i is defined in the interface provide by
level i-r-(see defInition of interface) and is implemented
by levels 0 to i-I. Thus in Fig.3.1 level 7, the access
method, provides the different types of files, such as fixed
length record files. sequential variable length record
files. and so on, Level 6 maps file names on file
identifiers and thus provides type: named file. Level 5
converts the file identifier into a file descriptor which
gives the logical structure of the file (e.g, a tree, a
list or a network, possibly with a separate header) and thus
provides type: file. Level 4 provides type: file structure
(it map logical virtual addresses on real addresses), level
3 provides type: physical data structure (it does clustering
of file records and maintains a list of free records), and
level 2 provides type: record (it performs the I/O to the
devices),

A level Li which ~s not an interpreter level is termed
a procedural level.

-44-

The definitions of level and multi-level system are
very similar to notions defined elsewhere (Dij68), (Par72b),
(HoR73). There are several reasons for building multi-level
systems rather than systems consisting of one level. One
important reason, for example, is that it is preferable to
split up programming problems into subproblems, that is to
make one abstraction at a time.

For example, in an operating system levels could be
devised to implement a nucleus, a paging mechanism, a
scheduler and a filing system (not necessarily in that
order), Similarly, in data base systems, multiple levels
(or "schema") are used for purposes of providing
abstractions (sometimes also called views) pertinent to
different data base users. These abstractions can be
effectively integrated and consistently maintained, As
shown below, the need to enhance the reliability of the
whole system by providing recoverability may give an
additional strong incentive to implement a system in levels.

This chapter therefore considers the problem of
extending the recovery block scheme to multi-level systems.
A full description of recovery block structures has been
given elsewhere (Ran75), (Hor74). A brief description of the
working of a recovery block has been given in chapter one,

An error in a program is either:

* a breach in the interface rules (such as a division by
zero)

* an unsuccessful acceptance test

* a user call of ERROR.

Operation ERROR forms part
facilities.

of the recovery block

An error is not necessarily associated with the program
"detecting" the error. One could say that the underlying
machine detects a perpetration of a breach in the interface
rules while the program itself detects an error if an
acceptance test is unsuccessful or if ERROR is called. This
chapter however will not be concerned with error • • detection; it only deals with mechanisms,that can be used
for the implementation of recoverable mult~-level system,

When the objects of a recoverable ~ (i.e. a type for
which recoverability is provided) are used in a recovery
block and an error occurs in that recovery block then the
underlying machine will restore the values of those objects
to their state when the recovery block was entered. (The
next alternative of the recovery block will then be invoked
by the underlying machine,) If a type is not a recoverable

-45-

type then it is an unrecoverable type.

Objects of a recoverable type are termed recoverable
objects and objects of an unrecoverable type are
unrecoverable objects. Unrecoverable objects are not
restored when a recovery block alternative is backed out.
s~ ope:ating on unrecoverable objects inside recovery blocks
w~ll ~n general lead to unpredictable effects unless
special precautions are taken. '

The term "type" will be used rather loosely in this
chapter, because if one object is recoverable and another
object is unrecoverable then they are not of the same type.
If however, the recoverability/unrecoverability is the only
difference between two objects then this thesis will refer
to them as being recoverable and unrecoverable objects of
the same type.

If all types in each interface are recoverable in the
scheme used, then this scheme will be called the Completely
Recoverable Interface (CRI) scheme. This in fact is the
sort of scheme describe~by Randell (Ran75). The scheme
proposed in this thesis is a scheme whereby interfaces
generally contain recoverable and unrecoverable types and
will therefore be called the Partially Recoverable Interface
(PRI) scheme.

A fault tolerant level is a level which provides new
recoverable abstract types, thus extending the recovery
block facilities. Both the type mechanisms and recovery
mechanisms are provided explicitly. Ways in which this can
be done are discussed in this chapter.

A fault tolerant interpreter (as defined by Randell
(Ran75)) is an interpreter which provides recovery block
facilities. According to the definition, all of the types in
the interface provided by this interpreter are recoverable,
although recoverability is not explicitly associated with
types, but with "effects" (which can be undone). This
strict requirement will not be imposed on the definition of
"fault tolerant interpreter" in this thesis. A fault
tolerant interpreter may provide an interface with both
recoverable and unrecoverable types.

If the interface provided by a level i contains
recoverable types (and recovery block facilities are
provided to the user) then the underlying machine of level
i+l is said to be a fault tolerant machine. This machine is
in fa~t the full set of levels up to level i. A recoverable
multi-level system is a multi-level system of whose levels
one or more are fault tolerant levels.

A fault tolerant level L implements user operations on
objects of the provided recoverable and unrecoverable

-46-

abstract types. If a user operates on such objects i~sice a
recovery block then level L must be able to undo these
operations in case an error occurs in the user program. In
order to be able to do this, level L will have to store
information about the changing states of the objects such
that undoing can be performed when necessary. A cache is a
data structure local to the level (invisible to--rhe user
running on it) which is used by the level to store such
information. The cache is said to be associated with the
user. If the cache is used to undo operations on objects of
a particular type (which may be a shared resource) then it
could be said to be associated with the type. Although
recovery in this thesis is associated with the types
provided to the user, caches will be said to be associated
with users, to indicate that the undoing is done on behalf
of users; the caches are used to restore user objects in
order to back out the users.

Several variant implementations of a particular fault
tolerant interpreter have been described elsewhere (AnK76),
(Hor74), (Ran75). In those implementations recoverability is
provided for program variables. When a variable which is
not a local variable ~n the current recovery block ~s
updated inside an alternative for the first time, then the
interpreter will record its old value in the cache.

The phrase ~~ cache ~ o?eration will be used in this
thesis to denote the maintain~ng of sufficient information
in the cache, by the fault tolerant level, in order to be
able to undo the effects of the combination of that
operation and all of the previous operations on the same
object in the current recovery block, should this be
necessary. Processing the cache of a level is the act of
restoring of the user's--objects or -the recoverable types
provided by that level, to the (abstract) states they were
in before the current recovery block was entered. This
chapter will not distinguish between the various different
schemes that could be used to achieve this restoring.
Examples have been described elsewhere (AnK76), (Hor74),
(Von76). Processing the cache in those examples means
simply using the cache to restore the old values of objects
that have been updated in the alternative being backed out,
and subsequently removing the relevant entries (made in the
current recovery block) from the cache.

The cache in a level could also consist of, for
example, a list of entries as maintained in System R
(Ast76), a data base system, for the backing out of
transformations. For every operation performed during a
transaction an entry is made, which consists of suf:icient
information to undo the operation performed. Process~ng the
cache then consists of processing this ordered list of
entries in reverse order, to undo the operations performed
during the transactions. The cache could also be a means of

-47-

holding conventional checkpoints (i.e. copies of the entire
state), or more exactly. of all objects which could be
modified.

3,3 Basic principles

This chapter is based on the following principles:

1, Recovery lS provided for types.

Whenever an object of a particular recoverable type is
to be restored then:

a, the abstract state of the object at the time the
current recovery block was entered lS known,

b. the present state is known (which may be useful for
efficient state restoration), and

c. this (and only this) knowledge is used to restore
the state of the object.

This is very different from the principles discussed
and used in a scheme described by Banatre and
Shrivastava (BaS77) where recovery is provided for
operations rather than for types. Every operation
performed may cause a corresponding reverse operation
to be performed when backing out is done. (This could
be said to be a "reversed-audit-trail" scheme.)

2. In general interfaces will contain recoverable and
unrecoverable types.

A level implements new abstract types in terms of
recoverable or unrecoverable types or a combination of
both. This is different from the original view of
recovery blocks and multi-level systems (Ran75), where
in each interface every operation and type was
recoverable. The fact that input/output operations.
for example, in the implemented fault tolerant
interpreter originally were unrecoverable, was regarded
as a deficiency or incompleteness of the system.

3, If a program operates on objects of unrecoverable types
inside a recovery block then it will be the
responsibility of that program to make sure that no
inconsistencies or other problems arise if an
alternative of the recovery block is backed out and the
program continues with the next alternative.

-48-

4. If a level L consists of a set of procedures providi~g
new abstract types which are mapped onto recoverable
types, then there is no need for this level to
explicitly provide recoverablity (i.e. implement a
cacheing mechanism) for these new types. If the level
L+l program (which invokes procedures of level L)
generates an error, then the objects used for the
representations of objects of types provided by L ~ill
be automatically restored (by the underlying machine of
L). (See also Fig.3.6, where level i maps objects of
types Tl, .•. ,Tn, on recoverable objects of types tl,
••• ,tm; an error in level i+l causes the underlying
machine of level i to restore objects of types tl, ... ,
tm. thus restoring objects of types Tl, ,Tn.)
Procedures implementing operations on objects of types
provided by level L may be invoked from inside a
recovery block in level L+l. Levels are levels of
abstraction so the underlying machine of level L ~ill
also restore level L+l. So the values of the objects of
the abstract types used in level L+l will be restored
if the underlying machine of level L restores level L.
In this case recovery is provided implicitly for the
new abstract types provided by L.

There are, however, two good reasons for building
multi-level systems consisting of levels that
explicitly provide recoverability (i.e. by performing
cacheing) for the new abstract types they implement.
These reasons are:

a. Flexibility and efficiency in restoring the state
of the machine as seen by the user.
A level providing a new type can take advantage of
the fact that more than one concrete representation
may exist for a particular abstract state of the
machine as seen by the user. For example, in a
level concerned with the management of buffers it
may not always be necessary to restore exactly the
contents of all of the buffers in order to undo
buffer management operations.

b. Recovery for concurrent processes.
In some cases when concurrent processes share data
or acquire and release resources, "it may be
impossible to continue usefully by restoring the
concrete representations of the abstract types
(except at prohibitive penalty). However, this ~s
outside the scope of this thesis and is the top~c
of ongoing research discussed elsewhere (BaS77),
(MeS77), (RLT77).

3.4 Completely recoverable interfaces

The multi-level systems considered in this section
consist of levels that explicitly provide recoverability for
all types in every interface (such levels are CRI-levels).
These systems are in fact the sort of systems described by
Randell (Ran75); every interface contains recoverable types
only, and when an alternative of a recovery block in a
program is backed out then the state of the machine as seen
by that program will be restored completely to what it was
just before the alternative was entered.

The recoverable multi-level systems described in this
section consist of levels which are fault tolerant
interpreters (all of which provide recoverable types only).
It will be shown that using interpreter levels is the only
way in which the CRI-scheme can be implemented if different
levels provide recovery for the new types explicitly. The
reasons for describing the CRI-scheme are to give the reader
an introduction and a better insight into the general
concepts of recoverable multi-level systems. Everything in
the CRI-scheme is easy to understand and very
straightforward; a description of the CRI-scheme serves as a
good introduction to the (more realistic and more
sophisticated) PRI-scheme.

3.4.1 Level: programs ~ ~ objects

A CRI-level provides recovery block facilities and
performs cacheing, as necessary, for all of the types it
supports. These new recoverable types are mapped by the
level onto recoverable types of the underlying machine.

Since all types in all interfaces are recoverable, the
local program data of a level L, including data structures
used for the cache maintained by this level will be
recoverable. The level itself is a set of programs written
to run on another fault tolerant level (except perhaps a
"bottom level", which can for that reason not use recovery
blocks and be backed out if an error occurs). Consequently
programs in this level L, which run on an underlying fault
tolerant machine, can also use recovery blocks. If a program
in level L (see Fig.3.2) generates an error and is backed
out then all of the operations on objects used by that
program will be undone by the recovery mechanism (which is
termed "UNDO") in the lower level. The lower level UNDO
undoes all of the operations performed on the cache (in
level L) associated with the user, locally used data, and
all operations on data used for the representation of user
data. The program being backed out generally implements

-50-

(part of) a transformation in the next level up
level). When a program in level L is backed out,
alternative of its recovery block will be invoked.
alternative will then try to implement something
of the user, in an alternative way.

(the user
the next

This next
on behalf

This can be illustrated by the following example (see
Fig.3.3):

* Suppose that a user uses a complex number C1 which has a
value 1,3. The user then uses complex operation ADD
to add the constant 5,4 to C1 inside a recovery block.

* The level below the users level, the complex level,
represents CI by reals R1 and R2. Before the user
updates CI, RI has value I and R2 has value 3. The
complex level interpretes the user's add-instruction by
updating RI and R2, which will be given values 6 and 7
respectively. Since the user makes the update inside a
recovery block, the complex level will cache this by
storing tuples RI,I and R2,3 in its cache. The
complex level uses reals RIOO, RIOI, RI02 and so on, as
cache. The interpretation of the user's add-instruction
is done by a program called ADD COMPLEX in the complex
level, which itself uses two diIferent recovery blocks
in which it updates RI and R2 (see Fig.3.3).

* The level below the complex level, the word level,
represents reals RI and R2 by words WI and W2 and reals
RIOO, RIOI, RI02 and so on, by words WID, WII, Wl2 and
so on. Assignments to reals performed in the complex
level are interpreted in the word level, by program
ASSIGN REAL. Since the complex level updates the two
reals of the complex to be updated, inside recovery
blocks in ADD COMPLEX, the word level will cache the
changes made to reals RI, R2, RIOO, RIOI, RI02 and so
on. The word level uses words WIOO, WIOI, WI02 and so
on, as cache.

USER
OBJECTS .. · .

-51-

USER PROGRAM

(---~
ERROP

USER
LEVEL

, • ('UNDO'-.
'.1 ~ ERROR ~

~ERROR LEVEL L

:'1 r-:='\ " ---
: :\' ~ Ii ---

=J •

: :~ ; CAC HE """

~m~mS ~
· . · .

& •

•

• ..
•

.

• . .

..) .
~

. -
LOCAL
DA TA

UNDO

•
• .. , . '''C' .--:.-, . .-.- .----
• •
: k·~·'··:·~· .' ' I • CACHE ~
~ ".' . UIJJI:.CI::' +"A...J

• .' . ,

~~8~@~2~~V el objects

Fig.3.2, A CRI multi-level system.

Wh ere:

UNDERLYING
FAULT
TOLERANT
MACHINE

____ >~ denotes: program invokation
• • •.)- den 0 t e s: t y p e map pin 9 (r e pre sen tat ion)
__ . _.~ den 0 t e s: pro 9 ram use s d a tap 0 i n ted a t

)-
RI

V
WI

-52-

CI:=(1,3)

C I: =ADD (C I, (5,4)) ;

CI

. .
" ADD COMPLEX ..

[UPDATE_REAL (.)

UPDATE REAL

~PDATE_REAL (.) CACHE
REAL REAL

-- .~.-"-. '-.

I
V

.
R2~

,

.
ASSI _ CACHE_

cache

l.
RI02
RIOl
RlOO

" ' .
,

I

,

USER

L.t:'?EL

COt-1PLEX

LEVEL

WORD

Li~\rEL

r;JO .. . cache

(
._, - '_"). _0,

r .-.
, ,

Y
, I j,:. f. V

W2...-' ~ WIO,WII,WI2, ..

Fig.3.3, An example of a CRI-multi-level
system, providing "complex" data.

Where:

WI02
WIOI
WIOO

___ ~) denotes: program i nvokat ion
, , , .. "~ denotes: type mappi ng (representati on)
-' - '" denotes: f'rogram uses data poi nted at

*

-53-

The following sequences of states are now possible if
no errors occur:

1

before
ADD

Cl 1,3

Rl 1
R2 3

cache empty

Wl 1
W2 3
W10 0
Wll 0
W12 0
W13 0

cache empty

where

2 3 4
after after out
first first first
ASSIGN CACHE rec.

REAL -
und

6
3

empty

6
3
0
0
0
0

Wl,l

@Ri
und

REAL block -
und und

6 6
3 3

Rl,l Rl,l

6 6
3 3
@Rl @Rl
1 1
0 0
0 0

Wll,O
W1O,O
Wl,l empty

address of Ri
undefined.

5 6 7 8
after after after after

2nd. 2nd. ADD user
ASSIGN CACHE COHPLEX rec.

REAL REAL block

und und 6,7 6,7

6 6 6 6
7 7 7 7

R2,3 R2,3
Rl,l Rl,l Rl,l empty

6 6 6 6
7 7 7 7
@Rl @Rl @Rl 0
1 1 1 0
0 @R2 @R2 0

° 3 3 0

Wll,O
W1O,O

W2,3 \-12,3 empty empty

Fig.3.4, A sequence of states that could occur in
the system of Fig.3.3.

If an error occurs in the user
instruction, but before the user
(situation 7), then the complex
restore situation 1.

program after the ADD
recovery block is left

level uses its cache to

* If an error occurs in the complex level in ADD COMPLEX
inside the second recovery block, just after the return
from CACHE REAL (situation 6) then the following
sequence of- states will be gone through if the second
alternative of that recovery block performs the same
operations and no subsequent errors occur:

-54-

6 9 10 11 12 13
after after after after after after
2nd. error 2nd. 2nd. ADD user
CACHE in ADD ASSIGN CACHE COHPLE}I rec.
.-REAL COMPLEX REAL REAL block - -

Cl und und und und 6.7 6 , 7

Rl 6 6 6 6 6 6
R2 7 3 7 7 7 7

R2 , 3 R2.3 R2.3
cache Rl,l Rl,l Rl.l Rl,l Rl.l empty

Wi 6 6 6 6 6 6
W2 7 3 7 7 7 7
W10 @Rl @Rl @Rl @Rl @Rl 0
W11 1 1 1 1 1 0
W12 @R2 ° 0 @R2 @R2 ° W12 3 0 0 3 3 °

Wll,O Wll.O
W1O,O W1O,a

cache W2.3 empty W2.3 W2.3 empty empty

Fig.3.S. A sequence of states that could occur ~n
the system of Fig.3.3.

* If an error occurs in the user level in situations 8 or
13 then the user program will be aborted.

Summarising. the following characteristics of a level
in a CRI multi-level system are important:

* A fault tolerant level distinguishes its data between:

Data used to represent the objects of the new
abstract types provided.

A cache associated with the user.

Local data used in and by this level such as: work
data. housekeeping data.

*

*

-55-

The underlying machine of a level L (see also Fig.3.2)
will restore objects used inside a recovery block if an
error occurs in that level. In other words an er-ror in
level L invokes the lower level UNDO which restores all
data operated upon in level L (i.e. cache, local cata
and other objects of types tl, ••• ,tn used to represent
user objects).

If an error occurs inside a recovery block in a user's
program interpreted by a level L, then this level will
use the cache which it associates with that user to undo
the operations on objects performed by the user inside
that recovery block. Level L maps these user objects on
lower level objects. Consequently it will change those
lower level objects such that the user's view of these
data is restored to what it was before he entered his
current recovery block. Since it is the user's program
that is to be backed out, this does not necessarily mean
that the objects used for the representation of objects
of the newly provided type have to be restored by this
level exactly as they were when the user program entered
its recovery block. In other words there may be ~any
representations of the same state of the machine as seen
by the user. A level may take advantage of this when
backing out a user program. Backing out of a user
program is normal progress of level L.

An example of operations on a level, implementing a
recoverable buffer management system, illustrates this:
Suppose that a user has available a buffer A. He then
enters a recovery block and subsequently:

- claims a buffer B
- claims a buffer C
- updates buffer A
- updates buffer B
- updates buffer C
- releases buffer C

If subsequently an error occurs, these operations have
to be undone. The buffer management level can undo
these operations by performing the following operations:

- free buffer B
- undo the updating of buffer A.

If recovery would have been provided at a lower level of
abstraction, say at the word level, then the buffers A,B
and C would have been restored completely, thus
requiring more recovery data (cached data) and more
processing for recovery. The more abstract buffer
management level can take advantage of the knowledge it
has about the use of these buffers and the different
states of the core areas which represent the same state
of the buffers as seen by the user. So, for example, the
contents of a released buffer do not matter, so buffer C
can remain unaltered and B only has to be released.

-56-

If an error occurs inside a level and there is no
containing recovery block then that will lead to the
abandonment of this level and with it any higher levels. It
is up to the next level down, which deals with the error to
decide what to do next. '

If a program in a level exhausts all of its
alternatives then that means that it fails to interpret (a
part of) the user's program successfully. Consequently a
sensible last alternative of the programs in a level, would
be to back out the user of that level and see if the next
alternative of the user's program will be more successful.
Obviously this will only have a chance of success if that
user's program happens to be inside a recovery block (and
not in the last alternative of that recovery block). A
similar technique has been employed in a fault tolerant
interpreter which was implemented at Newcastle (AnK76).

3.4.2 Interpreters for CRI-Ievels

In order to show
recovery for new types,
interpreter rather than
following situation:

why a level providing explicit
under the CRI-scheme, has to be an
a set of procedures, consider the

Suppose that a level i is a set of procedures that do
not implement all of the types in the new interface (see
Fig.3.6). An error in level i+l will require the processing
of the cache in level i, for the restoring of values of
objects of the newly provided types. This error will also
require backing out by the underlying machine of level i,
for the restoring of the values of objects of all the other
types used in level i+l. In other words an error in level
i+l invokes the UNDO of level i and the UNDO in the
underlying machine. The UNDO in level i restores values of
types Tl, .•. ,Tn, while the UNDO of the underlying machine
restores objects of types tl, ... ,tn. The UNDO in level i
only operates on objects of types tl, ••• ,tm, which are
used to represent objects of types Tl, ••. ,Tn. The UNDO of
the underlying machine will operate on objects used to
represent objects of types tl, ... ,tm used in levels i and
i+l, in order to restore all objects of types tl, ••. ,tm
used. This, however, means that the whole cacheing in level
i has no effect with respect to the restoration of the
states of objects in level i+l, because the underlying
machine of level i will restore the level i+l objects of the
newly provided types anyway (by restoring the objects onto
which they are mapped). Thus there is no need to do any
cacheing in a procedural level in a CRI-system. Such a leve~
cannot even provide explicit recovery and therefore level 1

would have to be an interpreter-level in order to make the

~57-

explicit restoring of level i+l objects of the new types, by
level i, possible. Explicit recovery is only performed by
the interpreter levels in a CRI-system.

If level i consists of a set of procedures then the
processing of the cache in level i would be useful, i: level
i provided recoverable types by using unrecoverable types of
the underlying machine. The rest of this chapter will
discuss this feature in greater detail.

O,(tl, ..

__ ~ERROR

,tm) 02(Tl, ,Tn)
. .

•
-----UN D 0 ~~I ___ -I

r----
'r: I· --;:--...,
iL.~

CACHE

~U;;..:..N=D~O_.,

1---
'f--I. ---........
·~·4

. '. I CACHE

~)J

PROGRAMS

Fig. 3.6, A procedural level in a CRI system.

Wh e re :

LEVEL ;+1

PROCEDURAL
LEVEL i

FA UL T

TOLERANT
UNDERLYING
MACH Hi E

> denotes: program invokation .
denotes: type mapping (representatlon)
denotes: program uses data pointed at

... ,. ~
-.....-~

-58-

3.5 The disadvantages 2f completely recoverab~ interfaces

There are major disadvantages in building recoverable
multi-Ieve~ systems in the manner just described. In order
to illustrate these disadvantages an example will be used.

Consider a level in a multi-level system. implementing
a filing system and providing recoverable files which it
maps onto recoverable disk pages in the underlying machi~e.
The filing system will then use the available set of
recoverable disk pages both for storing files and for
cacheing purposes. Suppose that the lower level, the device
access level, provides a set of recoverable disk pages which
it maps onto recoverable disk blocks. This lower level then
needs separate disk blocks for representing the provided
recoverable disk pages and for cacheing purposes.

Now consider the following situation (see also
Fig.3.7): a user has a file called FILEI. which consists of
three data pages PI, P2 and P3. in which the user data are
stored. The user calls ,from inside a recovery block, a
standard procedure CONVERT to alter all occurences of a
character A into a character B. The filing system then
changes pages Pl. P2 and P3 and caches these changes, which
implies, in this case. that pages P4. P5 and P6 are used to
keep the previous values of PI, P2 and P3. Pages P4, P5 and
P6 are thus part of the cache maintained by the filing
system. The device access level, which maps pages on real
disk blocks, updates blocks BLI to BL6 when the filing
system updates pages PI to P6. If the filing system updates
PI to P6 inside a recovery block then the device access
level will cache the updates made to BLI to BL6 by placing
the previous values of BLl to BL6 into, say, BL7 to BL12.
which are part of the cache. So eventually 9 extra disk
blocks are needed to update a file consisting of 3 disk
blocks.

Thus. in general. this scheme results in a fairly
substantial loss of hardware resources. A big overhead (in
time) due to cacheing will also occur. If a user operation
would normally cost three disk writes (in a system that does
not support recoverability) then a recoverable filing system
may interpret this particular disk write as six disk writes
and the device access level may interpret this as twelve
disk writes. Thus in order to let the user write three file
pages inside a recovery block. the whole system may have to
do many extra disk writes.

-59-

CONVERT (FILEl,A,B)

1
I

FILElr

BLOCK

.
I
. . 'J' . ·

V ~ ~ ~. 'J,: .
C'r'T' -r'~'i 1:.'

BLI EL2BL3Bt4Et5 BL6 .

cache

p5

•

cache

rSER

FILING

SYSTDi

LEVEL

P6

DEVICE

ACCESS

LEVEL

Fig.3.7, An example of a CRI-multi-level system
providing a filing system.

YIhere:
---....;')~denotes;. program invokation
•.•••..•);denotes: type mapping (representation)
_. _) denotes: profjram uses data poi nted at

-60-

Thus the major disadvantages of the scheme are:

1. A loss in hardware resources: the user of the system
can only use a small part of the resources.

2. A loss. in efficiency: the system may spend most of its
time performing cacheing rather than actually
performing the operations on behalf of the user that
would happen in a non-recoverable system.

So even if a multi-level system consisting of
interpreters is wanted, as for example in an APL system as
described by Randell (Ran75), then the extra overhead in the
total system incurred by implementing fault tolerant
interpreters in every level and using recovery blocks in
every level, may be enormous. However, in general one would
not always want to build a multi-level system using an
interpreter for each level (as is required for the
implementation of the eRI-scheme); so the approach is
unrealistic anyway. It is clear that an alternative
approach is required, if levels in a multi-level syste~ are
to provide recoverable types explicitly.

The major advantage of the eRI-scheme is that there are
no problems in providing high reliability, because recovery
blocks can be used in every level (except perhaps ~n a
"bottom level"). It may, however be possible that
reliability is adversely affected by the fact that much
extra work is to be done.

3.5.1 An alternative eRI-scheme: "bottom level" recovery

Because of the disadvantages of the scheme described,
it may seem sensible to consider the following scheme to
implement a recoverable multi-level system, consisting of
interpreters, more efficiently:

Only the "bottom level" (i. e. the first software level)
is a fault tolerant level providing recoverability as
described in the previous section (by implementing a cache
mechanism and providing a recovery block structure).
Recoverability provided by all of the higher levels is based
on "bottom level" recovery ("bottom level" objects are
restored to restore all objects of types in higher levels.).
Since the levels are interpreters, the implementation of
this scheme is not a trivial exercise. The interpreter must
interpret the entering of a recovery block in the next level
up (i.e. the program being interpreted) by entering a
recovery block itself. Similarly an error in the program
being interpreted will have to cause the interpreter to

-61-

generate an error itself, thus causing the "concrete
machine" to be restored and with it the program being
interpreted. There is also the complication of ensuring
that the user's next alternative is entered.

Altho~gh the disadvantages mentioned above are not
present under this scheme, the two major advantages of
providing recovery explicitly (i.e. recovery can be provided
more efficiently and recovery may be possible for parallel
processes by providing the recovery at a higher, more
abstract, level) in different levels are not present under
the scheme either.

For this reason the alternative scheme to provide
recoverable multi-level systems, as described here, is not
satisfactory.

3.6 Partially recoverable interfaces

A level in a partially recoverable interface (PRI)
multi-level system provides a new interface with, in
general, both recoverable and unrecoverable types. Any of
these types can be mapped onto recoverable types,
unrecoverable types or even a combination of both (although
no useful application of such a mapping has yet been found).

An example is given below to show that the provision of
recoverable types by mapping them on unrecoverable types can
be very efficient, in time and space.

Suppose that a new level implements a filing system
providing recoverable files (see Fig.3.8). These files are
mapped onto unrecoverable disk pages of the underlying
machine. The two disadvantages of the CRI-scheme described
previously are avoided for the following obvious reason.
Lower levels only provide unrecoverable disk pages so no
cacheing will be done in lower levels if disk page
operations are done for the implementation of file
operations. Only the filing system performs cacheing for
files or disk pages. Thus the loss of hardware resources
and overhead in time, due to cacheing in subsequent levels,
1S restricted to a minimum.

If a user program generates an error (see Fig.3.8) then
the UNDO of the filing system (the procedural level) will be
invoked to restore files and the UNDO of the underlying
fault tolerant machine will be invoked to restore all of the
other recoverable user objects.

-62-

('- .-

I

USER PROGRAM

___ ~ERROR

r-"---.

o u (t 1 t [l) 0 r (t g ,t ~ 0 I (~ .il e t1 , .
('-U'N~' --~p.' -~ PROGRAMS

t. ..
. .

I 'r- L._.
I'I~==== , , . . .
. I . (

• J • 1 • •• . J ,-.~ J .. : . i. CACHE~ •

. · 'If' y~\
___ --- 0u (d1 s kpage ~ ..

'. ..
•

• •

, .' .. , . .
• •

•• t. 0' ,.
.. 0' :

y ~ ~ .. ~ ~
object'(j:' object~
used to used to
provide provide
unrec.o~i rec.ob

UNDO

(._--
.1----
I .
I L..~

CACHE
J

Fig.3.8, A procedural level
a PRI system.

(filing system) in

A set of unrecoverable

USER
LEVEL

PROCEDUR-'lL
LEVEL
(FILING
SYSTEM)

FAULT
TOLERANT
UNDERLYING
r·1A CHI NE

Where: 0u(tl, ~tp)=
o b j e c t s 0 f ty pes t 1, , t P .

,tr)= A set of recoverable
objects of types tp, ,tr.

--->~ denotes: program invokation
......... ~denotes: type mapping (representation)
_.--) denotes: program uses data pointed at

Efficient state restoration, as is possible under the
eRI-scheme, is also possible under the PRI-scheme. For
example, the filing system above can provide recoverability
for files efficiently. The filing system can take advantage
of the knowledge that many representations exist for one
state of the filing system as seen by the user (see also the
filing system described in chapter four). The filing system
may therefore have a more efficient way of restoring the
user's view of the files than just restoring all of the

-63-

modified disk blocks. For example, the values of free pages
do not have to be restored (as with the buffer managemen:
example).

As described previously, there is in general no point
in implementing a new recoverable type (and implementing a
cache to undo operations performed on objects of this type)
if this type is mapped onto recoverable types by a set of
procedures. Mapping a new recoverable type onto other
recoverable types will only make sense if the level
providing this new type actually implements all of the types
in the new interface and implements a new recovery block
structure, so the underlying machine will not have to do any
backing out if the user generates an error. Having to map
recoverable types on unrecoverable types in a procedural
level is, in the view of the author, not such a severe
restriction in general, because in many systems no further
abstraction of types file, buffer or lineprinter, for
example, are made on top of levels implementing the filing
system, buffer management or lineprinter package
respectively. If further abstractions are made then they can
generally be made by a set of procedures without providing
recovery for the new abstract type explicitly; the recovery
of the new abstract type can be based on the recovery
provided for the types used in its representation. If
further abstraction is to be made such that recoverability
for the new type is to be provided explicitly, then there
are basically two solutions:

1. Use an interpreter.
This could, for example, be done in a recoverable data
base query system, implemented using recoverable files.

2. Use unrecoverable objects to construct the new
recoverable type.
As will be seen, it is generally necessary to be able
to provide unrecoverable objects of the same types as
the recoverable types provided. In that case the data
base query system could be a set of procedures mapping
a recoverable data base onto unrecoverable files.

Finally it is worth mentioning another good reason for
providing some unrecoverable types (i.e. another good reason
for PRI-interfaces) or types of which both recoverable and
unrecoverable objects can be allocated, namely for debugging
purposes. Suppose, for example, that the programmer of a
system notices that the first alternative of a recovery
block in a system fails occasionally (this can be seen from
the error log that is maintained). If the programmer wants
to write values of variables and messages to a special file
in order to track down the error, the file must obviously be
non-recoverable. In general, unrecoverable objects will be
needed to monitor the software.

-64-

This section has shown that there is a case for using
the PRI-scheme rather than the CRI-scheme. The next section
will describe the problems and constraints of this scheme.

3.7 ~ problems and constraints £! the PRI-scheme

If a given level is a set of procedures providing new
types and mapping these types onto unrecoverable types then
these procedures in this level will operate on objects of
these unrecoverable types. If a user (in the next level up)
generates an error then the given level will restore all the
objects of the recoverable types it provides while the
underlying machine will restore all the other user objects
of recoverable types. However, if programs in the given
level use recovery blocks then their operations on objects
of unrecoverable types will not be undone when a program in
the given level is backed out.

For example, a user program running on a level that
implements a recoverable filing system by mapping files onto
unrecoverable disk pages, may use filing system operations
inside recovery blocks. If an error is subsequently
generated (see also Fig.3.8) then the filing system will
restore files and none of the levels below the filing system
level will restore anything used for the representation of
files (i.e. disk pages).

If, however, an error is generated by a program in the
filing system then the operations on (unrecoverable) disk
pages performed by that program cannot be undone. So if
filing system programs do use operations on unrecoverable
disk pages inside a recovery block, then the effects of
these operations will not be undone when an alternative of a
recovery block is backed out. However, if these filing
system programs were not allowed to perform operations on
disk pages inside recovery blocks then that would be a
restriction which defeats the aim of building a reliable
system by using recovery blocks in programs. There is
always the possibility of errors occuring inside procedures
of the filing system, so recoverability for disk pages,
inside the filing system procedures, would be valuable.
It is therefore reasonable for the procedures to be able to
use recoverable disk pages (for their own purposes).
Consequently, there seems to be a dilemma, because the
underlying machine must provide unrecoverable disk pages for
other reasons.

To cope with this problem a new mechanism has been
developed, which is described in this section. The general
problems and constraints of PRI-levels, where unrecoverable
types and recoverable types are used, are described.

-65-

l.L.l ~ logging mechanism

If a program operates on objects of unrecoverable types
and does so inside a recovery block, then it is that
program's own responsibility to make sure that it can
continue usefully if it is backed out and forced into its
next alternative.

Programs that use objects of unrecoverable types inside
a recovery block have to restore these objects themselves if
this is required, inside the next alternative. This,
however, is not the way in which recovery blocks are
intended to be used. Also, if the next alternative has to
undo the actions of the previous alternative explicitly then
this undoing may well be incomplete or incorrect.
Consequently it is preferable to devise a mechanism with
which it could be automated.

What is required is that whenever operations on objects
of unrecoverable types are performed inside a recovery block
(see also Fig.3.9) these operations have

1. to know that they are inside a recovery block,

2. to record sufficient information in a local "cache" in
order to be able to undo the effects of operations on
objects of unrecoverable types. This cache is local to
the programs operating on the unrecoverable types and
is not associated with the user, because this local
cache provides recovery for these programs, rather than
for the user.

This local cache is called ~, to distinguish it from
the cache which is used to denote the mechanism used to
restore objects of recoverable types provided to the user
(i.e. the next level).

A special mechanism
achieve these goals. The
mechanism (see Fig.3.9),
follows:

has been designed in order to
mechanism is called the logging
its basic principles being as

1. Whenever unrecoverable types are operated upon, these
operations are logged (by the programs that invoke the
operations) in order to make possible the restoration
of the states of these types to the states they were in
when the recovery block was entered. This logging is
done in the same way as cacheing, only logging is on
behalf of the programs themselves, while cacheing is
done on behalf of the next level up. Logging is for
programmed recovery, cacheing is for automatic recovery
for the next level up.

-66-

2. An ENTER-procedure is provided to initialise the
logging mechanism when a recovery block is entered.
This could for example include the placing of a barrier
in the log (similar to cache-marks (Hor74)) and perhaps
the increasing of a global variable such as
"curre.nt-level" to indicate the level of nesting of
recovery blocks.

3. An UNDO-procedure is provided to process the log and
undo operations performed on objects of unrecoverable
types such that the program can continue sensibly if
that program is to be backed out.

4. An ACCEPT-procedure is provided to process the log (and
objects of unrecoverable types if necessary) after a
recovery block in a program (using these objects of
unrecoverable types) is exited successfully. (See also
the filing system described in a following chapter.)

The basic idea is that programs operating on
unrecoverable types can specify a new recovery block
mechanism which is the original one extended with the
automatic invocation of ENTER, ACCEPT and UNDO at the
appropriate places. The way in which this could be
implemented depends on the architecture of the underlying
machine and the high level language compilers available.

Using this concept an error generated in a program (see
also Fig.3.9) causes the UNDO of the underlying machine to
restore all recoverable objects and the UNDO-procedure
operating on the log in the same level as the program, to
restore unrecoverable objects used.

One way in which this could be implemented in, for
example, a SIMULA-like language is by including the ENTER,
UNDO and ACCEPT procedures in classes providing new
(recoverable) types, which are mapped onto unrecoverable
types. The operations on the new type could be made to
perform logging. The underlying machine could then provide a
facility whereby it executes these three procedures when
necessary as part of the recovery block processing for
programs that use this class as a prefix.

A very similar concept is used for cacheing elsewhere
(BaS77) to invoke reverse-procedures of previously executed
operations, that are part of a resource allocation
mechanism. This implementation requires a mechanism provided
by the underlying machine whereby a (compiled) program can
specify reverse-procedures to be executed in case of a
subsequent error occuring in the current recovery block.

A second way in which this logging mechanism could be
implemented is by enveloping the given alternatives of
recovery blocks by these three procedures in the proper

:"67-

manner, (What this involves is shown in the next section,)
This enveloping could be done by a compiler,

o (r

\r
(

(

1

l

. _ . _ • _ ~ PROGRAfIS l
T UNDO_UR ',,- ERROR

r=~ l
i P R I -

\

I r---_::::l

l 0 (u

, I

J
'~ LOG

,I
)~

+-J ---

.. ".
"

(';: ',r
\ i :: f UNDO

"I .,)
. r-! -;-', -:='} r=--_

", i i : :1:! --If CACHE r,J
~~ ~ ,

) (

LEVEL

FAULT

TOLERANT

UrWERLYING

MACHINE

Fig.3.9, A PRI-level using the logging mechanism,

Where: 0 (tl, u

Or (tq ,

,tp)= A set of unrecoverable objects
of ty pes t 1, , t P ,

,tr)= A set of recoverable objects
of types tq, ,tr.

-----~~ denotes: program invokation
denotes: type mapping (representation)
denotes: program uses data pointed at

...... ~
.>

-68-

In principle there is very little difference between
these two implementations. In the first implementation the
underlying machine invokes the UNDO-procedure when a progran
is backed out, while in the second case the code is
organised in such a way that ll{DO is executed after an
alternative has been backed out. and before the next
alternative is invoked. Similarly ENTER and ACCEPT are
invoked at the appropriate places.

The second implementation is used in this section to
illustrate the logging mechanism. A multi-level system ~n
which this implementation has been used is described in
section 3.8.

3.7.1.1 An implementation ~ ~ logging mechanism

It is assumed that the underlying machine provides
recovery block facilities. These facilities are used to
provide an augmented recovery block mechanism (see
Fig.3.l0). This new recovery block mechanism envelops the n
alternatives of a recovery block given by the user. In doing
so the mechanism forms (n+l) new alternatives out of the n
user alternatives. The way in which this is done is
described below (the ENTER, ACCEPT and ll{DO-procedures
associated with the unrecoverable types are called E~TER UR,
ACCEPT UR and UNDO_UR respectively), and shown in Fig.3.To :

1. The first operation in the second through last
alternatives will be the UNDO UR operation which, using
the log, undoes the effects of operations on
unrecoverable types performed in the previously
executed alternative.

2. The first operation in the first alternative and second
operation in the second through last alternative is the
ENTER UR operation which tells this PRI-level that a
new aTternative is entered.

3. The next operation in each new alternative is the
invocation of the user defined alternative.

4. The next operation in each new alternative is the
invocation of the user defined acceptance test. The
result is stored in the local variable b.

5. The last operation in each new alternative is the
execution of ACCEPT UR if and only if b is true.
ACCEPT UR takes the appropriate actions on the log and
unrecoverable data after a successful acceptance test.

-69-

6. An extra new alternative, alternative (n+l), is
constructed consisting of 1~DO UR followed by an
operation that sets b to false.

The new recovery block structure passes the variable b
and the ne~ (n+l) alternatives as the acceptance test and
the alternatives to the original recovery block structure
provided by the underlying machine. The new recovery block
structure is thereby provided. In order to show how the
mechanism works the structure of the code at run time
providing the new recovery block structure 1S sho~~ 1n
Fig.3.l0 using a BCPL-like (Ric69) notation.

A compiler for a SIMULA-like language could produce
"object" code which would basically look like the code shown
in Fig.3.l0. The notation in a SIMULA-like language that
could be used to implement a level providing a recoverable
filing system mapping recoverable files onto unrecoverable
disk pages provided by a class "disk system" is shown in
Fig.3.ll. The recovery class, as the level is called, would
be used as a prefix by programs wanting to use the
recoverable filing system. The compiler would envelop the
users recovery block alternatives with the enter, accept and
undo procedure as shown in Fig.3.l0. User programs could use
the filing system operations such as create file and
read file.

If all of the programs operating on the unrecoverable
types now use this new recovery block structure instead of
the one provided by the underlying machine, then the undoing
of the effects of operations on unrecoverable types is
provided as necessary.

When programs operate on unrecoverable types they must
make entries in their log if these operations are performed
inside a recovery block. Whether or not an operation is
performed inside a recovery block can be checked by testing
a variable" current level" which is maintained by ENTER UR,
UNDO UR and ACCEPT DR. -

-70-

~ RECOVERY_BLOCK_NEW(origAT.origaltl •..•• origaltn) be
£(let b = undefined;

Tet newaltl be
-£ (ENTER UR;

. origaltl;
b := origAT;
if b then ACCEPT_UR;

£) -

let newalt2 be
-£(UNDO UR;

ENTER UR;
origalt2;
b := origAT;

£)
if b then ACCEPT_UR;

let newaltn be
-£(UNDO UR;

ENTER UR;
origaltn;
b := origAT;

£)
if b then ACCEPT_UR;

let newaltn 1 be
-£(UNDO UR;

b :=-false
£)

let newat = valof £(resultis b £)

RECOVERY_BLOCK(newat.newaltl •...• newaltn.newaltn_l)
£)

where: RECOVERY BLOCK(AT.altl •.••• altn) is the
block structure provided by the underlying
AT is the acceptance test and altl to altn
alternatives.

recovery
machine.

are the

Fig.3.l0: ~ ~ recovery block structure ~!£!.~

logging mechanism.

-71-

recovery class filing system:
begin integer array cache(l:length):

integer current_level;
enter procedure

begin

end

Fig. 3.11:

accept procedure

~ procedure

procedure create_file(f, •..);

procedure read_file(f, •••);

A "recovery class" in a SIMULA-like
as could be used to implement
providing a new recoverable type.

end

end

begin

end

begin

end

begin

end

notation,
a level

-72-

3.7.1.2 The relation between the logging and ~ caching

mechanism

The logging performed in a level is different fro~
cacheing, which is done on behalf of the user, in the sense
that entries are put in the cache associated with the user
if the user is inside a recovery block, while entries are
put in the log if the level itself is inside a recovery
block. Logging in a level has nothing at all to do with a
user. Logging is for the PRI-level program's own benefit
since it is knowingly using unrecoverable objects within a
recovery block.

If a fault tolerant level maps a newly provided
recoverable type T onto unrecoverable types (tl, ,tn)
then a cache is maintained in order to be able to undo user
operations on objects of type T (see also Fig.3.12). This
cacheing will be done in terms of objects of types (tl, •.. ,
tn). In the same way in which information is stored in the
cache, to enable undoing on behalf of the user. information
can be stored in the log. to enable undoing on behalf of the
level using unrecoverable types itself. A fault tolerant
level will check before it performs an assignment (on
objects used for the representation of recoverable user
types) whether cacheing is required; in the same way it can
check whether logging is required (when operating on
unrecoverable objects, which mayor may not be used for the
representation of user objects). Also. similar procedures
ENTER, ACCEPT and UNDO can be used by this level when a user
enters a recovery block or a program inside this level
enters a recovery block. when a user passes an acceptance
test or a program inside this level does. or when a user
fails an acceptance test or a program inside this level
does, respectively. For cacheing purposes these procedures
operate on the cache, for logging purposes they operate on
the log.

When a user (see Fig.3.l2) generates an error, the
UNDO cache in the PRI-level is invoked to restore objects of
type-T and the UNDO of the underlying machine is invoked to
restore the rest of the recoverable user objects. lfuen a
program in the PRI-1evel generates an error, the UNDO_log in
the same PRI-level is invoked to restore the unrecoverable
objects operated upon and the UNDO of the underlying fault
tolerant machine is invoked to restore the recoverable
objects operated upon by that program.

-73-

o (r

. .

_.,
--~ .

I

u S E P P P 0 GD :. :.'

---~:;;...
ERROR

USER

LE '.'EL

PRO G RA My #-_,_:-.;-OO-_-'-o-g--
PRI

L~VEL

r .----=)

CACHE +-f !~ ~. ':..iJ' -' LOG

0r(). 0u() 0u(tl, ,tn)
------------~ ------------.' ,

. .
, .

v~
(

.. , .
"
, , . .

" I
~V J

)

,

Vy
(

. .
• . ,

UNO

~---.~.--------

. .
~y

)

--~

I

Lt
CACHE

FAULT

TOLERANT

U~:DERLYrr~G

ii ,\ CHI N E

Fig. 3 .1 2, Age n era 1 P R I - 1 eve 1 .

,tp)= A set of unrecoverable objects
of types tl, ,tp.

,tr)= A set of recoverable objects
of ty pes t p, ,t r .

------~) denotes: program invokation
••••.. ~denotes: type mapping (representation)
--.-~denotes: program uses data pointed at

-74-

In the special case where a level satisfies the
following three conditions: 1) the level is a set of
procedures providing new recoverable types for which it
provides recovery explicitly. 2) these types are mapped onto
unrecoverable types of the underlying machine and 3) the
level does not use unrecoverable types for any other purpose
but to represent this new recoverable type. then the logging
and cacheing mechanisms can be combined into one mechanism
which serves both purposes. In that case the new recovery
block structure provided by the logging mechanism will also
be used by the next level as the recovery block structure
(see also Fig.3.l3). Such a level is called a recoverable
~ manager. So a recoverable type manager provides
recoverable types which it maps on unrecoverable types and
also uses the recovery mechanisms that are used to provide
the recovery for the user types. for its own purposes. (A
recoverable type manager can provide more than one type.)
Recoverable type managers are, because of the combining of
logging and cacheing. much simpler than general PRI-levels.
The minimum necessary to provide recovery is done while the
maximal possible advantage is taken from this recovery
mechanism; both the user and the programs providing the new
recoverable types can use this recovery mechanism.

-75-

USE R PRO G RA ','

USER
___ ~RROR LEVEL

0r(0r(Tl, ,Tn)

I : .
I
J .

~ :'
o () 0

, r · ~ , .. · ., ,-
o .' . o •

• • • · · . · . • 1 • . .
'ty
(

-.

·.f-
,\

:="\ .
~ .

\ PROGRAMS .
\...._--

r-: .
I

'0 I It CACHE
It

, tm) I LOG

UNDO

r:.---::'\

. . .
~V .

'f . .J

.
---I .

~ CACHE

RECOVERABLE
TYPE
r·1A N AG ER

)

FAULT
TOLERANT
UNDERLYIrlG
MACHINE

Fig.3.l3, A recoverable type manager.

Where: 0u(tl, ,tp)= A set of unrecoverable objects
of types tl, ,tp".

Ur(tq, ,tr)= A set of recoverable objects
of types tp, ,tr.

____ ~~~ denotes: program invokation
•• __ . __ ~ denotes: type mapping (representation)
.') denotes: program uses data pointed at

-76-

3.7.1.3 ~ properties and constraints ~ PRI-levels

The logging mechanism (see
requirementJ and constraints
properties which are worthwhile

also Fig.3.l0) imposes some
and has some interesting
mentioning again explicitly:

1. The UNDO DR operation in the newly formed alternatives
has to be the first operation in all but the first of
the new alternatives. The UNDO DR operation can not be
placed at the end of the new -alternatives (as: if b
then ACCEPT DR else UNDO DR), because an error occurlng
within the alternative wIll cause the alternative to be
backed out immediately and the next alternative to be
invoked, leaving the operations on objects of
unrecoverable types still to be undone.

2. Procedures ENTER DR, UNDO DR and ACCEPT_DR, used to
provide a new recovery block structure, are ordinary
programs in the same level as the programs that use
that new recovery block structure. If an error occurs
during the execution of one of these three procedures
then the underlying machine will restore all of the
recoverable types provided and the next (enveloped)
alternative will be invoked. The first operation to be
executed will then be UNDO UR. If the error in the
previous alternative occured during the execution of
UNDO DR then this next alternative may again generate
an error during its execution of UNDO DR, or may not be
able to function properly. In other-words if an error
occurs during the log processing then there is likely
to be serious trouble.

3. As a consequence of the previous point, one can say
that in general the ENTER_UR, UNDO UR and ACCEPT DR
operations can not use recovery blocks, because they
are operating on unrecoverable objects for which no
implicit nor explicit recovery is provided when they
operate on them. (So if UNDO log in Fig.3.l2 or UNDO
in Fig.3.l3 generates an error then the underlying
fault tolerant machine which deals with this error,
may have to abandon all higher levels on the machine.)

A solution to this problem could be to organise
the log (and perhaps the unrecoverable data) in such a
way that the ENTER UR, ACCEPT UR and UNDO UR can simply
be retried after failure. An-example of -this is given
by Lampson and Sturgis (LaS76) who describe a system
using "intention lists". If the system crashes during
the processing of an intention list then the system can
simply restart by processing the list from the
beginning again. Reprocessing the intention list
corresponds with an ACCEPT UR or UNDO DR procedure
being retried using the same-log.

4.

-77-

This mechanism copes with all
PRI-levels described in previous
involved is:

of the proble~s of
sections. All that is

a, The provision of a new recovery block structure,
w~ich, as shown above, is very simple.

b, The maintenance of a log, which means making
entries in a local data structure plus providing an
ENTER UR, ACCEPT UR and UNDO UR operation. If the
unrecoverable types operated upon are used to
represent a newly provided recoverable type, then
these three operations are necessary anyway (but
operating an a cache).

5. This mechanism does not introduce a new intermediate
level between the underlying machine and the PRI-level
using the logging mechanism. This mechanism does not
introduce new types either. The log is a data
structure used by both the procedures ENTER UR,
ACCEPT UR, UNDO UR and the level using -the
unrecoverable types. The mechanism processes the log
and possibly restores objects of unrecoverable types.
It does so with a built-in knowledge of what this level
does with these types, For example, if the buffer
system mentioned previously uses unrecoverable arrays
to provide recoverable buffers in the new interface
then the logging mechanism will have to provide
recovery for those unrecoverable arrays. Since the
level knows what the unrecoverable arrays are used for,
it can optimise recovery. In other words the mechanism
can take advantage of the fact that many
representations may exist for one abstract state as
seen by the user, in the same way as is done for
cacheing on behalf of the user. Thus if a buffer was
free before the buffer management level entered a
recovery block then it may not have to restore the
contents of the unrecoverable array if it fails an
acceptance test after having used that array inside the
recovery block, because it knows what the array is used
for (namely for the representation of a buffer) and
that the concrete state is not important.

The basis of the mechanism is that when this level is
backed out and the next alternative of its current recovery
block is entered, then the underlying machine will have
restored the recoverable types to exactly the states they
were in when the previous alternative was entered. The
logging mechanism is used to undo the effects of operations
on unrecoverable types (see also Fig.3.9). However, it may
possibly not restore the states of the unrecoverable types
exactly as they were when the previous alternative was
entered. (UNDO _UR may be "cleverer" than that,)

-78-

3.7.2 !!!!. ~ s truc ture ~ the ~

A PRI-level keeps track of its operations on objects of
unrecoverable types inside recovery blocks by using a log as
shown above .• When a level is forced into an alternative then
it uses this log to undo the effects of these operations.

If such a log were constructed from recoverable data
structures then an undo action by the underlying machine,
which is performed when the level under consideration is
backed out and forced into a next alternative, would also
undo all of the assignments performed on the log. In other
words, the log would be identical at the beginning of each
alternative of a recovery block. Thus all the information
entered in the log would be lost by the time this level
wants to undo its operations on unrecoverable types and is
therefore unable to do so. Consequently, the log used by a
PRI-1eve1 must be constructed from unrecoverable data.

A possible solution avoiding the need for an
unrecoverable log is to use the log in a check-point
fashion. This means that the values of the objects that may
be operated upon are copied just before the recovery block
is entered. Obviously this may lead to gross inefficiency,
because it may not be known in advance which objects will be
operated upon and which not. This scheme is therefore not
considered any further.

Another solution is to extend the recovery block
features to include the facility to declare UNDO-procedures
(and ACCEPT- and ENTER- procedures). If the
UNDO_DR-procedure could be invoked by the underlying machine
before any objects are restored to their previous states,
then the log would not have to consist of unrecoverable data
objects. The programmer would then have to specify the
enter, accept and undo procedures which would have to be
executed as part of the recovery block processing when
necessary. The fault tolerant machine on which the
(compiled) code ~s to run must provide (virtual)
instructions that make it possible to "declare" enter,
accept and undo procedures. The underlying machine would
place the entry points of these procedures in a cache area
and invoke them when necessary (similar to the use of
recoverable procedures as described elsewhere (Hor74)). The
compiler would produce code with the special (virtual)
instructions provided to "declare" the enter, accept and
undo procedures to the underlying machine.

-79-

.
---.~ . .,# P . , ': E:J dec 1 are (:)

\ ~ . \ . \ OP· \~ 1

\. IACCEPj
de c 1 are

[[
,

~

B [
1

CACHE

·
ENTER,ACCEPT,
UNDO

· · · · · barrier

· · · •
•

Fig.3.l4: An example to show a possible implementation
of a fault tolerant machine providing the
possibility to "declare" enter. accept and
undo procedures.

An implementation of this scheme could be as described below
and illustrated in Fig.3.l4.

Suppose that program P specified ENTER, ACCEPT and UNDO
as enter. accept and undo procedures. The object code of P
could. for example, contain the necessary "declare"
instructions at the start of each recovery block. which
causes the fault tolerant underlying machine to put the
entry points of ENTER. ACCEPT and UNDO in the cache. The
underlying machine starts executing P and if P generates an
error inside a recovery block then the underlying machine
will first execute UNDO and then process the relevant cache
area and invoke the next alternative.

;"':f
." ,' \ ~

.) \
~ USER --

LEVEL

FAULT
TOLERANT
UNDERLYING
MACHINE

-80-

Suppose that operations OPl to OPn are not declared
inside P. The object code of recovery blocks in OPl to C?~
could, for example, "declare" other enter, accept and undo
procedures. Some appropriate scope rules are needed to ~ake
sure that the correct enter, accept and undo procedures are
called during execution of recovery blocks in P, OPl to OPn
and other (lower level) operations used in OPl to OPn. These
problems, however, are not the subject of this thesis, but
are involved in the scheme described by Banatre and
Shrivastava (BaS77).

of
The fact that the log used
unrecoverable data has

consequences:

by a PRI-level must consist
the following important

1. If a PRI-level corrupts its own log then no recovery is
possible at this level, because it is unrecoverable.
As mentioned in the previous subsection this will most
likely give serious trouble. Consequently it is
important to protect these logs from corruption and to
ensure that log operations are very reliable. A lot
more protection is needed for logs in general than for
caches (associated with users) in interpreter-levels,
because these caches can be recoverable (if the level
implementing them runs on a fault tolerant machine). If
such a level corrupts a cache then it can simply fail
its acceptance test and the underlying machine will
undo the corruption and force the level into its next
alternative as described in section four.

2. It is not possible for a PRI-level to know which types
are required by a higher level for the use of a log.
Because of this it would appear to be preferable to let
that PRI-level provide unrecoverable objects of the
same types as the recoverable types that it implements.
An example of this was described in section 6. It is
clear that this is an important point which will have
to be taken into account when building recoverable
multi-level systems.

Another yet unmentioned problem in PRI-levels is that
updating of the log and operations on unrecoverable objects
always have to be organised such that an alternative can be
backed out at any time. For example, if an object is updated
and subsequently the log entry is made and an error occurs
in between these two events, then the operation on that
object will not be undone. The problems of providing complex
new types out of unrecoverable types are addressed in
chapter four.

It is clear that a cache in a procedural PRI-level has
to be constructed from unrecoverable data for the same
reasons as logs do (see Fig.3.l2).

-81-

1.1.1 Systems consisting of PRI-levels

Fig.3.l0 showed how a new recovery block structure can
be constructed from an existing recovery block structure.
such that the recovery block facilities of the existing
recovery block structure are extended. Here it is shown how
different recovery block structures can be used and
constructed in different kinds of PRI-levels.

I) ~ general PRI-level.

To understand the recovery block structures that have
to be implemented by a general PRI-level. as shewn in
Fig.3.l2. the following two things have to be considered:

1. Programs may operate on unrecoverable types
not used for the representation of newly
recoverable types. A logging mechanism is
required.

that are
provided

therefore

2. Logging the changes made to the unrecoverable types
operated upon by a PRI-level. has in principle nothing
to do with the recovery of the newly provided types. So
the cacheing mechanism has to be used.

Therefore two different recovery block structures are
implemented by a general PRI-level as shown in Fig.3.l5:
RECOVERY BLOCK NEW and RECOVERY BLOCK USER. RECOVERY -
BLOCK NEW is the recovery block structure provided by the
logging mechanism. and used by the programs internal to the
PRI-level. RECOVERY BLOCK USER is the recovery block
structure provided to-the user. The ENTER. ACCEPT and UNDO
procedures are the procedures that process the cache and the
recoverable types provided to the user when the user enters
a recovery block, passes an acceptance test or generates an
error, respectively. The ENTER UR, ACCEPT UR and UNDO UR
procedures similarly operate on the log for-programs in the
general PRI-level.

-82-

r

Fig.3.l5, A general PRI-level.

\~ here:

CACHE
L.~

USER

LEVEL

UNDERLVIr:

FAULT

TOLERANT

r.i A CHI N E

______ ~~ denotes: program invokation
....... > denotes: type mapping (representation)
_. -i'- denotes: program uses data pointed at

l!) ! recoverable ~ manager.

As described before and shown in Fig.3.l3, a
recoverable type manager maps the newly provided types on

-83-

unrecoverable types only. So the logging mechanisms is
sufficient to restore values of objects of the new types
provided to the user. If no other objects of unrecoverable
types are used by the PRI-level then no further logging will
be needed, so the log and the cache can be combined to serve
a dual purpose. The same mechanism can, in that case, be
used by the PRI-level and be provided to the user, as shown
in Fig.3.l6. (One data structure is now used as both log
and cache and should therefore be called, for example, a
cache-log. However, the term log will also be used for these
"cache-logs" in this chapter.)

----l PROGRAMS

-t---~ EN TE R-U R

USER

RECOVERABLE
TYP E

~'ANA GE R

D.
LOG

ECOVERY-BLOCK

Fig.3.16, A recoverable type manager.

W here:

FAULT
TOLERANT
U ii 0 E R L Y I il G

~1 A CHI N E

___ ----::') ... denotes: program invokation ~.
.. > :l e not e s: t y p e map pin g (r e pre sen t a - 1 0 n)
_. _.,:;:. denotes: p'rogram uses data poi nted at

-84-

The recovery mechanism in a recoverable type ~anager
will only have to undo the damage done to objects 0: the
types provided to the user. So internal and user recovery
both restore user types. Restoring user types is sufficient
for internal recovery, because the unrecoverable objects
operated upon are used only for the representation of
objects of the new user types. An interesting example
showing how this can be done is described in chapter four.

Programs have no way of knowing whether the recovery
block structure used is provided by a logging mechanism in a
recoverable type manager or whether they are running on a
fault tolerant interpreter.

III) A generalization of a recoverable ~ manager.

As mentioned before, it may be desirable to provide
recoverable and unrecoverable objects of a type (see, for
example, section 6 under 2.). If a recoverable type manager
implements new type Tl to Tn, which it maps onto
unrecoverable types, and it can provide recoverable and
unrecoverable objects of these types then the following
structure of the level, as shown in Fig.3.l7, is required:

* A recovery block structure RECOVERY BLOCK UT, is needed
to provide local recovery in the recoverable type
manager for unrecoverable objects used for the
representation of unrecoverable user objects.

* A recovery block structure RECOVERY BLOCK USER is
provided to the user to provide recovery for recoverable
objects of types Tl to Tn.

* This level (the recoverable type manager), however,
needs both of the previous recovery mechanisms. So the
structure required is one that provides recovery for the
unrecoverable objects used to represent recoverable user
objects and for the unrecoverable objects used to
represent unrecoverable user objects. Another recovery
block structure (RECOVERY BLOCK RT) is therefore built
to extend the recovery provided by RECOVERY BLOCK UT
with recovery for the unrecoverable objects-used to
represent recoverable user objects.

* The same recovery mechanism for providing recovery for
recoverable user objects and for providing local
recovery for the objects on which they are mapped can be
used (because the level is a recoverable type manager).
The log, ENTER, ACCEPT and UNDO used to build
RECOVERY BLOCK RT are exactly the same as those used for
RECOVERY-BLOCK-USER. RECOVERY BLOCK RT is the recovery
block structure used by programs in the level.

-85- LJSER

b -b--- °r(Tl, ,Tn) °u(T1, ,T_n_) __

PROGRM~S RECOVERY-BLOCK-USER,. ::

r I i§'i :: :~'~~~~:~ABLl
R E C 0 V E R Y _ B L 0 C K_ R • •)., A .;,: G E R

....
U f: DOl •

It" ;
p ,

ERY-BLOCK-UT ENTER_URT

(+-'f:-'~
ACCEPT_URT • I

. ',I Q.f-. -7-1
J ~., UNDO_UR'r :.

, L.~ - : ='. ::;::.. D·L. -7. !
'-. _ ._;~ ' ~, ,'1 .

. LOG '~ ~ LOG ~ • ~" :! : :! ;-
'-._. .~!-.~ :

.k.t'~.~ .. ~~ V
0' ~-(t 1, , t m) ~ ~ (t 1, ,t m)

~------- ------
RECOVERY-BLOCK

Fig.3.17, A recoverable type manager providing
recoverable and unrecoverable objects
of the same type.

Wh ere:

UNDERLYlfJG

FAULT

TOLERArn

r~AC H I fiE

__ ----~) denotes: program invokation
.•...... => denotes: type mapping (representation)
_. _~ denotes: program uses data pointed at

-86-

The schemes described here do not require complex scope
rules or a complex cacheing mechanism in the interpreter
providing the basic recovery block structure onto which
higher levels built new mechanisms. Once a designer or
programmer understands the basic principles described ~n
this chapter, then levels are very easy to construct.

3.8 A two-level prototype system

In order to show that the
chapter can be implemented, a
consisting of two PRI-levels
implemented successfully.

ideas put forward ~n this
two-level prototype system

has been designed and

The first level of this system consists of a fault
tolerant interpreter for recoverable basic OCODE (a
description of the OCODE machine has been given elsewhere
(Ric7l)). This interpreter runs on a Burroughs Bl700 machine
and is written in the microprogramming language B~~ (Del';3).

The interpreter provides recoverability for OCODE
variables. All of these variables are mapped onto (virtual)
machine words. The cache records changes made to the machine
words used for the representation of recoverable OCODE
variables. Input/output operations provided by this first
level are unrecoverable. Consequently the type disk page,
which is also provided, is unrecoverable.

The interpreter provides an instruction:
RECOVERY BLOCK VARS(AT,altl, ... ,altn)

Where:-AT o-the start address of the acceptance
test

alti= the start address of alternative i

This instruction provides the recovery block structure
which corresponds to the notation (Ran75):

ensure AT;
~ altl;

~~ altn;
~ error ;

A full description of the implementation of this
interpreter is given elsewhere (Ver76).

The interpreter also provides the instructions ERROR,
and PRIOR. The PRIOR operation takes one argument which is
the address of a variable; the value the variable had at the
time the current recovery block was entered is returnee.

-87-

This instruction can be particularly useful ~n acceptance
tests.

The second level of the prototype consists of
BCPL-programs that implement a recoverable filing system.
(OCODE is the result of a BCPL-program compilation.) This
level provides recoverable files which it maps onto
unrecoverable disk pages, provided by the first level. This
second level uses a logging mechanism as described in the
previous section and shown in Fig.3.l0. A full description
of the filing system and the way in which recoverability has
been provided for files is given in chapter four.

The logging mechanism provides a new recovery block
structure: RECOVERY BLOCK FS(AT,altl, ,altn) ~n the
manner described above. Programs of the filing system use
this new recovery block structure. The filing system is a
recoverable type manager, so users use the same recovery
block structure as the filing system, namely
RECOVERY BLOCK FS.

The filing system consists of the following parts:

1. Procedures ENTER FS, ACCEPT FS, and UNDO FS, which take
the necessary actions for the filing- system if a
recovery block in a filing system program or user
program is entered, an acceptance test has been
successful or unsuccessful respectively (these
procedures are particular examples of the ENTER UR,
ACCEPT_UR and UNDO_UR in Fig.3.l0). -

2. File operations for recoverable files. These operations
are log-oriented, which means that they maintain
sufficient information in the log to be able to restore
the states of the files used.

3. RECOVERY BLOCK FS providing the new recovery block
control flow structure.

The total structure of the two-level machine is shown
schematically in Fig.3.18.

-88-

USER -user1s program LEVEL -

/ unrecove7 Irecoverab 11 LEVEL 2: ble
files files (operating system

l OS/6 ... lith)
recoverable a recoverable
file ~ccess filing system
proce ures

I RECOVERY....BLOO ~
ENTER...,FS
ACCEPT....FS
UNDo....FS

r- I I /

fil e access fil e 1 ogg i n(\

procedures
mechanism

I
I

rrecovera;)~ecoverab:1 RECOVERY....BLOC~VARp
CODE-types CODE-types ENTEfLVARS

ACCEPT-VARS
UNDO_VARS

unrecoverab e recoverable
OCODE-type OCODE-type

LEVEL 1: I procedures procedures
a fault tolerant

OCODE-interpr
I Iter.

core vlord
access cacheing

procedures mechanism

I unrecoverable / I unrecoverable ftEVEL disk blocks core words
hardwa

Where:- parallelograms indicate data types occuring in
interfaces between programs.
rectangles indicate program modules performing a mapping.

- solid lines indicate invocations of programs by other prograns
(rectangles may occur on those solid lines between two
programs to i ndi cate the types used in the interface jet'..:een
those two programs).

- dashed lines are used to separate levels.

Fig.3.l8, The structure of the two level prototype syste~.

e-

0:

rE:

-89-

3.9 Recoverable types as a basic concept for recoverable

multi-level !Zstems

Recoverable type managers can easily be added to a
system. In other words the machine can be extended with new
levels each adding new recoverable types to an existing
interface by mapping them onto unrecoverable types of the
underlying machine (so long as the underlying machine
provides the recovery block structure).

In order to show the flexibility with which recoverable
type managers can be used to build up a recoverable
multi-level system, another example is given below.

3.9.1 A recoverable lineprinter manager on ~ of the

reeoverable file manager

Suppose that the two-level system described in the
previous section provides an unrecoverable lineprinter with
one (unrecove:able) operation: 'send_char_to-yrinter'. In
order to prov~de a recoverable and more abstract printer a
set of programs providing operations such as
'print integer', 'print file', 'new line', and so on, are
written. When these operations are invoked the output is not
printed immediately, because the operations would then be
unrecoverable. Instead the output is spooled to a
recoverable file. If the outermost recovery block is
successfully exited then the spoolfile will be printed.

In this way recovery is not provided by performing
operations and undoing their effects later if necessary.
Instead the effects these operations would have are recorded
and this record will be discarded when necessary. ~~en no
further undoing can follow (that is when the outermost
recovery block is exited) then the file used to register the
effects of lineprinter operations is used to actually print
the output. The file used is recoverable, so the effects of
user lineprinter operations are undone automatically if a
program is backed out.

A recoverable lineprinter manager providing this
recoverable lineprinter will consist of the following parts
(programs are given in a BCPL-like notation).

1. A procedure 'send char to recoverable-yrinter' is used
to replace 'send:char:t0:Yrinter'. This procedure ~s
shown below:

~ send_char_to_recoverable-yrinter(char) ~
£(if pr_level=O ~ send_char_to-yrinter(char)

-90-

£)
else add to file(printer file,char) - - - -

where: pr level is a recoverable variable the use of
whIch will be explained below.
printer file is the name of the recoverable
spoolfile.
add to file is a procedure that appends a
character string to a given file.

2. The procedures such as: 'print integer', 'print_hex',
'print_file', 'skip-yage', 'new_line'.

These procedures use 'send char to recoverable
printer' to map information to be-printed- on a stream
of characters for the line printer.

3. The procedures ENTER PR, UNDO PR and ACCEPT_PR, which
are given below: -

let enter-yr be £(if pr level=O then
-- - -eIDpty(printer file)

£)
pr_level:=pr_level+l -

~ undo-yr ~ £(£) II a null body.

let accept-yr be £(

£)

pr level:=pr level-l
if-pr level=O then
printIile(printer_file)

where: empty is a procedure to empty a file,
printfile ~s a procedure that prints a g~ven
file.

The variable pr level is used to indicate the
recovery block level of nesting.

If an error occurs during the execution of a
recovery block alternative then 'pr level:=pr level-I'
will be done automatically, - because
'pr level:=pr level+l' of ENTER PR will be undone by
the- underlying machine. UNDO-PR can be a null
procedure, because of the recoverable spoolfile and the
recoverable variable 'pr_level' used.

4. The new recovery block structure is provided by
'RECOVERY BLOCK PR' which is constructed from
'RECOVERY-BLOCK-NEW' in exactly the same way as
'RECOVERY-BLOCK-NEW' is constructed from 'RECOVERY
BLOCK' as-shown-in Fig.3.l0. The ENTER, UNDO and ACCEPT
procedures are given above.

The user can now use the recovery block structure
'RECOVERY BLOCK PR' and the recoverable printer. The
interface-provided by the recoverable file manager is thus

-91-

extended with a recoverable printer. The new recovery block
structure can also be used by the print procedures in the
recoverable lineprinter manager.

As mentioned above, the user of the new system is not
aware of the construction of the multi-level system usee.
The user cannot know whether subsequent levels perform
cacheing and logging in order to provide recoverable types,
or whether all of the recoverable types are provided by one
fault tolerant interpreter.

3.9.2 Recoverable types versus recoverable operations ~n a

multi-level system

The use of recoverable type managers gives a system
structure as shown in Fig.3.l9. Just before or after the
fault tolerant interpreter providing the basic recovery
block structure has restored the values of the recoverable
types it provides, the UNDO-procedures of all of the
recoverable type managers will be invoked.

Similarly all of the ENTER-procedures will be invoked
when an alternative is started and ACCEPT-procedures will be
invoked when an alternative finishes successfully.
Consequently after an alternative has been executed and,
say, failed its acceptance test, then all of the recoverable
type managers will check to see if any objects of the
recoverable types they provide have been altered. If so they
will restore the values of those objects (see Fig.3.l9).
Consequently, any recoverable type manager that has not been
invoked by the alternative will have its UNDO-procedure
invoked unnecessarily. However, if any objects of types
provided by the recoverable type manager have been altered
then the restoring of the states of the objects is
independent of the sequences of operations performed; the
type manager knows the present state (which may be useful
for optimisation of the restoring of the old state) and the
state to which to go back to. The original states will be
restored using this knowledge only. Methods of performing
recovery for complex data structures based on this
principle, are discussed in chapter four.

For example, consider a recoverable stack manager.
Suppose the user had invoked the operation PUSH ten times
and subsequently invoked the operation POP ten times and the
program is subsequently to be backed out (and the stack is
to be restored to its original state by the recoverable
stack manager). The UNDO of the recoverable stack manager
will in that case not do anything, because the present state
of the stack is identical to the state to which the stack is
to be restored.

• '. o.

,
• I

-92-

• • . · . · , ,

. ,
.' . . .

('

o (r
" ..
, .

USE R PRO G RAj.'

.- ,-~--
r:---

..._----I!

LOG

_._1-
f:'-----

USER
LEVEL

RECOVERABLE
TYPE
~1ANAG E R

RECOVERABLE
TYPE
MANAGER

RECOVERABLE
TYPE
MANAGER

Fig.3.l9, A multi-level system consisting of
recoverable type managers.

Where: 0u(tl, ,tp)= A set of unrecoverable objects
of types tl, ,tp.

0r(tq, ,tr)= A set of recoverable objects
of types tq, ,tr.

______ ~~ denotes: program invokation
...... .!). denotes: type mapping (representation)
_.-=)denotes: program uses data pointed at

-93-

This is very different from the approach presented by
Banatre and Shrivastava (BaS77) where the recovery block
structure is never redefined. In this approach, every
operation ~s made recoverable, so the action on an
acceptance test failure is to call the "undo"s of all the
operations performed in that alternative. Taking the stack
example above, it is possible, in this scheme, to make POP
and PUSH operations independently recoverable. The L~DO of
the recoverable stack manager would then cause the
invocation of operation POP REVERSE ten times and operation
PUSH REVERSE ten times. However, if the user had not used
the stack at all then the UNDO of the recoverable stack
manager would not be invoked at all. The scheme presented
by Banatre and Shrivastava is, however, sufficiently
flexible so that an optimised recovery scheme for the stack,
similar to the one described in the previous paragraph, can
be programmed.

Admittedly the stack example is certainly not a
yardstick to compare both approaches. The example is only
given to illustrate the differences in the approaches. There
may well be many environments where the recoverable type
manager approach is more efficient then the
reverse-operation approach, and vice versa. It is impossible
to make a general comparison of the efficiencies of these
methods.

It is interesting to note that System R (Ast76) employs
the basic principles of both techniques for two different
recovery mechanisms, although no nesting of scopes of
recovery is possible. In order to provide recovery for
segments (collections of logical address spaces used to
store the data) two page maps, called the current and
backup, are maintained. When a page is updated for the first
time in a transaction, its new value will be directed to a
new page pointed to by the current page map, while the
backup page map and the original pages are left intact. This
could be classified as type recovery.

The recovery for transactions is supported through the
maintenance of time ordered lists of entries, which record
information about each change to the recoverable data.
During transaction recovery, the listed entries for the
transaction are read in last-in-first-out order. Special
routines are employed to undo all the listed modifications
back to the recorded save point. This could be classified as
reverse procedure recovery.

The recovery for segments is used to create system
checkpoints. The listed entries can be used as an audit
trail to restore files to their original state, in case of a
system crash. The recovery for transactions basically
provides a scope within which the user can undo all his
operations (a very simple recovery block with one

-94-

alternative). The use of "inverse updates" in System R has
been justified elsewhere (EsC75). Eswaran and Chamberlin
define an integrity subsystem as a subsystem which permits
users to make assertions which define the "correctness" of
the data base, and to specify the actions to be taken when
assertions are not satisfied. An integrity subsystem depends
on a logging and recovery subsystem which can selectivelv
back out a given update request. This may be carried ou~
either by performing "inverse-updates" or by keeping a copy
of the data base that exists at the start of the execution
of the update request and resurrecting the copy.

It is, however, the author's personal view that
programs (or systems) should be built based on the data
types used (see for example a method described by Jackson
(Jac75)). Much research has been done in the area of
proving correctness of programs (see chapter one). However,
the results so far fall short of a tool for routine use and
different approaches have been sought. Much of the recent
research has been aimed at proving correctness of data types
and data structures (Gut76), (WLS76). Host recent research
in protection and security (Den76), (Lin76) has also been
based on data types (rather than on programs or program
structures and properties). Similarly it is the author's
view that recoverability should be provided for types,
rather than for pieces of programs executed, for which
"reverse-pieces of programs" exist.

3.10 Conclusions and relation to other areas

This chapter has described how recoverability can be
linked with types. The presence of both recoverable and
unrecoverable types in the interfaces of a multi-level
system can be efficiently used to construct a recoverable
multi-level system. The use of recoverable type managers,
which provide new recoverable types by mapping them onto
unrecoverable types in the interfaces provided by the lower
level, has been shown to be a flexible, reliable and
efficient way to implement levels in a recoverable
multi-level system. Programs in such a system operate on
both recoverable and unrecoverable types, which leads to
non-trivial recovery and consistency problems. A mechanism
devised to solve these problems and an implementation of
this mechanism in a recoverable two-level system have been
described in this chapter.

The scheme proposed has been described as part of a
possible way to construct recoverable multi-level syste~s.
The scheme could, as was mentioned already, be used as a
part of a mechanism to provide extended types. It was shown
how, for example, a recovery class could be specified. This

-95-

could be done for other purposes than just t:-,e
implementation of fault tolerant systems as described In
this chapter. If a programmer could also specify invariants
or assertions, as for example in ALPHARD (WLS76), then the
enter accept and undo procedures, specified as part of a
ALPHARD "form", could be invoked before an object of that
form was updated, after it was updated successfully (i.e.
the assertions and invariants were still valid) or
unsuccessfully respectively. If the accept procedure was
usually empty and most operations were perforcec
successfully, then overheads would be fairly small.
Similarly there are other ways in which the scheme could fit
in languages providing type extension facilities. Progracs
written in these languages will need to be compiled and this
chapter has dealt with the concepts and mechanisms needed at
run time. Language issues have not been addressed, but are
the subject of ongoing work at Newcastle (BaS77).

-96-

4.0 RECOVERY FOR COMPLEX DATA STRUCTURES

This chapter investigates mechanisms that can be used
to provide recovery and consistency for global data
structures. Consequently this chapter is basically
concerned with the problems of providing recoverability in
data base systems and filing systems, or more generally
systems providing complex data structures, that remain in
existence after the running of a job.

Several mechanisms are described and their advantages
and disadvantages are discussed. A recoverable filing
system, which has been implemented, is used to illustrate
the problems. This chapter also describes how consistency
in global data can be maintained at any time, even when
recovery is not possible such as when a system crash occurs.
Several mechanisms are described and compared.

4.1 Definitions

The terms defined in the previous chapters will also be
used in this chapter. Some new definitions necessary for the
purpose of this chapter are given.

A multi-level data structure is an abstract data type,
provided by levels--:u1 a multi-level system, by mapping
objects of this type onto objects of one or more types
provided by the underlying machines of those levels. See
also Fig.4.l.

level i+2
new interface T

level i+l

interface with --- (tl,t2, .•••• ,tn)
underlying--
machine

level i

where: T,tl,t2, ..• ,tn are types.
Fig.4.l, A multi-level data structure representation.

The mapping done by level i+l defines the
representation of the new type, T in level i+2.

A multi-level data structure could be represented as a

-97-

type T for which T=Ql(Q2(•.. Qn(tl, ••. ,tm), ... » where
every Qi is a mappings function providing a new abstract
type by representing it by a (possibly composite) data
structure. In the multi-level systems envisaged, mappings Ql
to Qn could be done in one level. For example, a level
implementing a filing system may map type file onto
<file_index, file_structure>. Type file_structure may be
mapped onto <file_header, file body>. Type file body may be
mapped onto type file-page. TThe filing system- of Madnick
and Alsop (MaA69), described in chapter three, is an example
~f this.) The ter~ com£lex data structure will be used
~nstead of the term mult~-level data structures", in order
to avoid confusion with the notion of level as used in the
present thesis, because these data structures can be
provided by one level in a multi-level system as discussed
in chapter three.

The notions of recoverable ~ and recoverability
provided for ~ type will be used ~n this chapter to mean
that such types can be reset to values held earlier, such as
needed for recovery blocks. So in terms of recovery blocks:
if a recovery block is used in a program then operations on
recoverable types performed inside an alternative will be
undone if the acceptance test fails, while operations on
unrecoverable types will not be undone. For convenience,
recovery is discussed in terms of recovery blocks, although
the mechanisms discussed are general recovery mechanisms
which need not be part of a system providing recovery
facilities in the (syntactic) form of recovery blocks.

Commitment of modifications made to global objects
(global to the program performing the modifications) inside
nested recovery blocks, occurs when the outermost recovery
block is left. The notion of outermost recover~ block is
used, in general, with respect to data to enote the
recovery block outside which no recovery for those data can
be done. (Either because it is the outermost recovery block
used and the data are globals, or the data objects are local
to that (outermost) recovery block.)

The term to cache is used to include the storing of any
data to aid later recovery. These data used to aid later
recovery form the cache. (Differences between a cache and a
log are irrelevant for the purpose of this chapter.) A
barrier is placed in the cache each time a new recovery
block is entered. At the end of a recovery block (after the
acceptance test has been evaluated) the information
subsequent to the latest barrier will be processed and the
barrier removed.

-98-

4.2 An example of a complex data structure: a filing syste::-.

A recoverable filing system has been implemented on a
B1700 compllter in the Computing Laboratory in ~ewcastle U?O:'.

Tyne, in order to test the ideas and mechanisms described in
this chapter. This filing system was part of the prototype
two-level system described in chapter three. The filing
system and basic principles on which the filing system and
recovery mechanisms are based, are fully described in this
section.

In order to implement the described recoverable filing
system, the filing system of OS6 (StS72a,b,c,d) has been
redesigned. The user interface has been kept unchanged. OS6
was chosen for several reasons. First of all the Computing
Laboratory at the University of Newcastle upon Tyne posesses
a version of OS6, which is running on a B1700 computer.
Furthermore, OS6 is written in the high level language BCPL
(Ric73) and is very modular: it is easy to replace parts of
it. Finally the system is a single user system (more users
exist but only one can be logged on at one time), This
allows the problems of protection and recoverability in
parallel systems (Ran75), (RLT77) to be avoided. This
example of a recoverable filing will g~ve the reader a
better understanding of the notions and mechanisms used,
such as cache, recovery and abstract data, and it is used in
the rest of the chapter to illustrate the general problems
and mechanisms discussed.

This section will not discuss the reasons behind the
choice of the particular mechanisms chosen. The following
sections will do this in a more general context, whereby the
filing system described in this section is referred back to
for illustration purposes.

4.2.1 The structure of the filing system

Files are regarded as sequences of objects of type
word. User programs running under OS6 may create and
destroy files. Files can also be freely assigned to
variables, and be passed as parameters or be the result of
function calls within a single program. A bottom-up
description of a file is given in this subsection.

* The file body.
At the conceptually lowest level a file consists of a
~ body consisting of one or more directory pages and
~ pages.

A directory page is used to point to the data

top-
di rectory-

page

-99-

pages. Both a directory page and a data page occupy one
disk block each. When there are more data pages than
entries in the directory page then a new level with a
new directory page (the new ~ directory) is created
which points to the directory pages which point to the
data pages, etc. Examples of possible file body
structures are shown in Fig.4.2, shaded areas indicate
unused words.

data-

data-
pages

pages

D D directory-

D top-

di rectory-

I
page

!

D D

Fig.4.2 Two examples of possible file body structures

-100-

* The header.
For each file there is a unique header which contains
general information about the file, such as: the address
of the top directory page, the address of the last page,
the date-last-accessed, the date-last-written and the
type of. the file. These headers are kept in a special
file: the Header file.

* The file index.
Each file has a unique index. This index is the index in
a table which contains the addresses of the headers for
all the files in the system (an address is a tuple: page
in Header file, offset). This table is kept in a special
file: the Master File List (MFL). The disk address of
the top-directory page -or-the MFL file is known by the
filing system (a constant which is initialised when the
system is set up).

* The file name.
Index files are used to associate names with file
indexes, in order to be able to use files in other
programs. An index file contains entries: file index,
file name. The System Index is the index file i,'hich
contains all the entries for all the system files. The
file index of this file (the system index) is known by
the filing system (it is a constant which is initialised
when the system is set up).

The data pages of the file body are the objects ~n
which the user data is stored (the user "sees" file, but
doesn't know about data pages). The directory--pages,
headers, file indices, and file names map higher level
descriptions of a file onto these data pages, thus providing
subsequent abstractions.

The MFL file, the Header file and the System Index are
special system files. There are two other special system
files. The first one is file "usercodes" which is an index
file containing as entries the tuples: userindex, username.
Each user has his own index file (a file directory) and when
a user logs on, the system will look up his user index and
set the system variable "current index" to the user index of
that user. The other special system file is the ~ Store
File (FSF) which is used to contain the addresses of the
free pages on disk. If a disk page is free then it is marked
"free" and its address is in the FSF.

* address~
fir s t r~ F L - f i 1 e
page
MFL

-101-

HEADER-file

iusercodes

~ (
I

s y s t e m ~--:,--,--=~!""4

i n d e x Io-oo"'--.:...-'--.L....I~
I

5

current~~~~~~

in de x 2

8

index file S Y S T U1 I N D E X "USERCODES"

9
i

i ---+ llsercode - - - - --

~--+i ndex fi 1

user name
"usercode "

fi le name
3 6

The two variables marked by a '*' are known to the system
and set during system initialization. The value 'current
index' is set when the user logs on, so after that the
search for a user file starts in the NFL-file from
'current index'.
Accesses 1-6 are made when a user logs on in order to
set up the current index.
Accesses 7-11 are made when the current user wishes to
access one of his files.

Fig.4.3, The structure of the prototype filing system.

-102-

If a user wants to access a file with a given na~e the
following steps are involved:

1. With the current index, the address of the header of
the user index file is looked up in the }WL file.

2. The header is read and the first page of the user index
file can be read.

3. The user index file is searched to find the index of
the file with the given name.

4. With the index of the file the address of the header of
that file can be found in the }WL file.

5. The header of the file can be read and used to access
the file itself.

4.2.2

The total structure of the filing system is shown ~n
Fig.4.3.

The mechanisms !£ provide recoverability ~ ~

Files are regarded as globals for each program, even if
they are created inside a recovery block. So only when the
acceptance test of the outermost recovery block used is
successful, final commitment of the filing system operations
performed in the recovery block (which may contain nested
recovery blocks) occurs. The updates for the filing system
are made in such a way that the state of the filing system
can be restored to what it was at a certain
programmer-determined point (e.g. at the point of entering
the current recovery block). The general principles upon
which the filing system and recovery mechanisms are based
are:

1. A m1n1mum of information is to be kept in order to
restore the state of the filing system (as seen by the
user) to the state it was in at recovery block entry.
The information must be sufficient to restore the state
no matter which operations have been performed in the
mean time. Since, for example, an audit trail scheme
or "reverse audit trail" scheme keeps track of all of
the operations performed and executes the reverse
operations in the reversed order in which the original
operations were performed, recovery may involve the
accessing and restoring of previous values of one
object, many times. The final value is then the value
to which the object was to be restored. In the
interest of storage usage recovery is to be linked with
data structures and values rather than with operations,

-103-

and an audit trail scheme or reverse audit trail scheme
is therefore unsuitable.

2. The choice of the level of abstraction at which
cacheing is to be done, (i.e. the logical units for
which .recovery is provided) is of extreme importance
for the efficiency with which the recovery is provided.
For example for file bodies, disk pages are cached
rather than disk words.

3. Updating of objects "in place" is avoided. The original
values are left in the original objects and the new
values are copied into new objects the first time these
objects are assigned to inside a recovery block. A
cache is used to maintain pointers to old and new
copies of the objects. Crash resistance is provided,
because new values are cached while original objects
are left unchanged. Subsequent assignments are
redirected to affect the new objects (cached values)
rather than the original ones. Using this scheme, reads
as well as writes trigger a search through the cache.
The original cache scheme updates all objects "in
place" and old values, as they were at the checkpoint
(at the point of entering the current recovery block),
of those objects are cached (Hor74). This scheme is
appropriate for simple program variables, but not for
complex global data types which will remain ~n
existence after the running of the program, because it
may leave the data in an inconsistent state if a
failure occurs during the running of the program.

4.2.2.1 The mechanisms for updating ~ cacheing of ~.

Updating and cacheing of files is done using a
technique which is very similar to the "careful replacement"
technique (see chapter two) which can be used to update
files as safely as possible, i.e. minimising the chance of
being left with an inconsistent filing system in the event
of anything going wrong. Using this technique two versions
of a file are kept when it is operated upon inside a
recovery block. The versions overlap in sharing unchanged
disk pages. A table is kept by the system to keep track of
which pages belong to the new version only, and which pages
they replace in the original version (if any; see below).
This table is called the ~ cache. For reasons, which are
described in subsequent sections, the MFL file and Header
file are treated differently. Whenever an MFL entry is
created, destroyed or updated an entry is placed in the ~
cache. Similarly a header cache is used to store entr~es
when headers are created, destroyed or updated. These two
"typed" caches contain all the cached information about

-104-

operations on MFL entries and headers. The pages of
original versions of files, which are not shared with new
versions, plus the three caches, form all the cached
information in the filing system.

The way in which the first operation on each file is
done after a (possibly nested) recovery block has been
entered is described in detail below, in order to show how
this cached information (recovery data) is formed and
maintained to support the nested recovery. When such an
operation is performed then the relevant data page to be
updated will be copied into a new disk page and the change
will be made in this new disk page. (This is for the case
when a data page is updated; the file can also be extended
by a data page in which case that new page is the newly
created one. When a data page is deleted from a file, that
data page will remain unaltered and not be copied into a new
page.) If the directory page pointing to the original data
page has not yet been changed inside the current recovery
block alternative, then the contents of that directory page
will be copied into another new page, and the pointer to the
original data page is replaced by a pointer to the new data
page. (This is for the case when a data page is updated;
when a data page is added to the file a new entry will be
placed into the new version of the directory, and when a
data page is deleted from the file then the entry will be
deleted from the new version of the directory page.) The
same is done for possible higher level directories. Thus the
new value of the file is defined by the new top-directory,
and the original value, i.e. the cached value, is defined by
the original top-directory. Thus inside a recovery block
two forms of the file are kept from the point when a file is
first changed inside that block. These two forms are the
file as it was before entering the recovery block and the
up-to-date version. When recovery blocks are nested then
several forms of the file can be kept. In general: suppose
that there are m nested recovery blocks and a file has
already been changed in k of the m levels of nesting, then
(k+1) versions of the file are kept in the innermost
recovery block.

In order to keep track of which page is replaced by
which other page a tuple <old page i, new page j> is put
into the page cache for each replaced page. A tuple <old
page i, new page j> in the page cache will be combined with
another such tuple after the latest barrier if possible.
Pairs of tuples are combined according to rules T1-T4:

T1) <page 1, page 2> & ~page 2, page 3> ==>
page 1, page 3 , page 2 is freed.

T2) <"new", page 1> & <page 1, page 2> ==>
"new", page 2 , page 1 is freed.

T3) <page 1, page 2> & <page 2, "deleted"> ==>
page 1, "deleted" , page 2 is freed.

-105-

T4) < "new", page 1> &< page 1, "deleted"> ==>
page 1 is freed.

(Note: rules
because page 2 in
but overwritten.
processing of the

Tl and T2 will never be applicable here,
Tl and page 1 in.T2 will not be replaced,
Those two rules w~ll be used, however, for
cache after an acceptance test.)

When the top-directory of a file is updated then the
header has to be updated as well. The header of the file is
then copied into a header cache, which in the prototype
filing system is kept in core, and the new value of the
address of the top-directory is placed in that header in the
cache. A few other fields in the header--ffiay have -ro~
updated too, such as "date last accessed". However, this is
not of importance for the mechanism. Similarly, a tuple
<file index, tag> is put into the MFL cache when a file is
changed. The tag field can have the values "changed",
"deleted" or "new", to indicate that the file has been
changed, deleted or newly created respectively, within the
current recovery block. A tuple <file index i, tagl> will
be combined with a previously stored tuple <file index i,
tag2> after the last barrier, if possible. Pairs of tuples
are combined according to rules T5-T8:

T5) <file index i, "new"> & < file index ~, "changed">
==> < file index i, "new">

T6) <file index i, "new"> & < file index i, "deleted">
==> nothing.

T7) <file index i , "changed "> & < file index i," changed">
==> < file index i, " changed">

T8) < file index i, "changed"> & < file index i, "deleted">
==> < file index ~, "de Ie ted ">

(A new tuple <file index i,"deleted"> causes a cached tuple
<file index i,"new"> (i.e. cached in the same recovery block
level) to be erased from the cache and the "deleted" tuple
will be discarded. This is done, because all it means is
that a file has been created and subsequently destroyed
inside the same recovery block alternative. Consequently no
further processing in order to undo or accept these
operations will be necessary after the acceptance test.)

Subsequent changes in the same disk page or file
header, made within the same recovery block level, are done
in the newest version of the page or header without any
further cacheing. As far as the ~WL cache is concerned, only
a deletion of a file can cause an already cached tuple to be
overwritten; other subsequent changes in the file in the
same recovery block level do not affect the MFL cache. The
same also holds for the page cache.

Each time
entry is sent

a page, header or MFL entry is changed, an
to the respective caches. The caches with

-106-

their routines decide what to do with the received en:r':.
Original pages, headers and MFL entries do not carry a~y
indication to show whether or not there is an updated
version of them (which is in the cache for headers and ~·:Fl
entries). Therefore, the definition of access paths has to
be changed to include the caches. In other words, the search
order for an MFL entry or header is changed to start the
search in the caches. The fact that three separate caches
are used instead of one cache is irrelevant. Because there
are logically three kinds of cache entries it is convenient
to speak of three caches. However, these three caches could
well be implemented as one cache in which each entry has a
type descriptor to distinguish its kind.

The given design and definition of files is well
structured in the sense that many versions of a file can be
kept without any unnecessary duplication of information.
Each version has the same structure and is defined by its
index (and header). No complicated merging (as with
differential files; see chapter two) after acceptance of the
operations, nor restoring of individual disk pages (as an
audit trail would require) after a failure, are needed.
Another advantage of the technique used is that by cacheing
new values rather than old values of }ITL entries and
headers, the original files are kept on disk and will remain
undamaged in case of a system crash.

4.2.2.2 Processing of caches and files after the acceptance

test

At the end of a recovery block alternative the page
cache is used to update the FSF (Free Store File) and to
free pages. It is important to note that changes in FSF are
not cached. The algorithms which process the page cache,
header cache and MFL cache after a recovery block acceptance
test are described here and an example of the page cache
processing is shown in Fig.4.4.

In the case that the acceptance test of a recovery
block has failed, all the "new pages" in the tuples <old
page, new page> in the page cache up to the latest barrier
in the cache, are freed. The cache is cleared up to the
barrier. If the acceptance test was successful then there
are two possible cases. The first possible case is that the
outermost recovery block has been successful, in which case
all the "old pages" in the tuples <old page, new page> in
the cache are freed, and the whole cache is emptied. The
other possible case is that an inner recovery block
acceptance test has been successful, in which case the
latest barrier is removed and all the tuples are moved up.
Pairs of tuples up to the next barrier are combined

2

-107-

THE TOP-DIRECTORY PAGE AT DIFFERENT STAGES (the address of the current page is
after success- after unsuc- given) outside

rec. b 1.

7

15

2

in outer
rec. b 1.

12

15

5

4

in inner
rec.bl.

19

23

9

4

ful inner cessfu1 inner
rec.b1. rec.b1.

19

23

Q

2
12

15

_Ii

after success- after success- after unsuccess- after unsuccess-
ful outer rec.bl+ ful outer and ful outer and full outer and
unsuccessful successful successful inner unsuccessful
;",,,aV'V'Cll"n 1. 'ClC n 1 'nnaV' V'ar ~ 1 •

12

15

5

4 19

23

9

THE PAGE CACHE

~12 ,,"

~ not~
accepted
result

(inner test)

7 7

15

pages 2,5 and 12
are freed.

pages 4,19,9 and
23 are freed.

15

not
accepted

?
~
accepted

not
accepted

I
~

accepted

(outer test)

V
pages 4,19,9 and
23 are freed.
the cache is emptied.

fpages 1,7 and 15
are freed.
the cache is emptied.

[

pages 2,5 and 12
are freed.
the cache is emptied.

[

pages 1 and 7 are
freed.
the cache is emptied.

Assumed is that no cacheing is done between the execution of the
inner and outer test.

Fig.4.4, PaQe cache processing: an example with a file \'Iith one directory oa("]e.

-108-

according to rules Tl to T4.
When an inner recovery block acceptance test ~s

successful then the headers in the header cache after the
latest barrier are merged with the headers between :~e
latest barrier and the next latest barrier. If the sa~e
header appears both before and after the latest barrier but
after the next latest barrier, the earlier header i~ the
cache is replaced by the most recent one. The latest
barrier is then removed and other headers r;:ove up to fill up
empty spaces in the cache. If an 1nner recovery block
acceptance test is not successful then the cache is emptied
upto and including the barrier. The MFL cache is processed
like the header cache. Pairs of tuples are combined
according to rules T5 to T8 in case an acceptance test has
been successful. When an acceptance test of an outermost
recovery block in a program is successful then the caches
are used to update the MFL file and Header file.

4.3 Cacheing for complex data structures

A generalization of the approach that is exemplified in
the filing system is given in this section. The problems
and constraints in designing a cacheing scheme for
recoverable complex data structures, and possible solutions
for those problems, are discussed.

The representation of an abstract object is a data
structure which can logically always be distinguished into
~ providing ~ abstraction and information carrying data
Information carrying data is used to store the user's data
(values) whenever he makes assignments to the abstract
object. These data are addressable from the higher level
through the system (a level providing the complex data
structures).

In order to provide a concrete representation of the
abstract structures, the relations between the components of
the structure must be represented in some way, and the
abstract operations interpreted in terms of these relations.
The extra data used to describe the representation will be
called "data providing an abstraction". In other words, this
data is additionally required to support the abstract view
of the data structure being provided. In effect, it is part
of the mechanism structure rather than the data structure.

For example in the prototype filing system decribed in
the previous section the directories, MFL entries and
headers are data that is used to describe the relationships
between the data pages and the file index. Directories, ~~L
entries and headers are therefore referred to as "data
providing an abstraction", 'Y'hich in this case provide an

-109-

abstraction that is called "file".

The general logical structure
structure is shown in Fig.4.S.

of a complex data

higher level
object

where:

represented by

lower level
objects

-

-solid arrows denote:
"represented by".

-dashed arrows
denote:
"provide an
abstraction on"

-
Fig.4.S, The logical structure of a complex data

structure.

The provision of recover ability for a type represented
by a complex data structure as shown in Fig.4.S, involves:

1. When an object of such a type is updated then the
information carrying objects have to be updated and
cached.

2. Depending on the way in which updating and cacheing is
done, the data providing an abstraction may have to be
updated.

4.3.1 Separating data providing an abstraction and

information carrying data

The approach which is nowadays becoming more important
as data base complexity grows, is to store the data
providing an abstraction (data that define the
"relationships" as defined by Hartin (Mar7S)) separately
from the information carrying data. The major objectives of

-llO-

this approach are to make possible faster data retrieval and
to provide more complete data independence (Har75).

It will be shown that not separating data providing an
abstraction and information carrying data in any data
structure ~y make recoverability prohibitively expensive.
This can be illustrated by an example:

Consider the example of the filing system described in
the previous section. Suppose that instead of using
directory pages to record the relationships between data
pages, pointers in the data pages themselves are used to
link the pages. If a data page is updated then this means,
under the scheme used, that the given page is replaced by
another page. Consequently the link in the page pointing to
the given page must be changed to point to the new page. The
page containing the link must then be replaced as well,
requiring an update in the link of the page pointing to it,
and so on. Thus a whole chain of pages will have to be
updated and cached. This chaining of pages is therefore
obviously totally impracticable if recoverability is to be
provided on a disk page basis as described. There are of
course ways to get around this such as only replacing a page
if the data part were changed and cacheing the changes to
links in a special link cache. Although it is difficult to
say anything about efficiency, it is clear that the
definition of a file becomes very messy. It will be shown
that also safely updating the file once the operations
performed are accepted becomes more difficult. For those
reasons these kinds of schemes are rejected.

In general it can be said that, whatever the structure
of the complex data structure is, for example a chain, ring,
tree, plex (Har75) or any other, if the information carrying
data is not separated, both physically and logically, from
the data providing an abstraction then the problems of
updating and providing recoverability may become
prohibitively expensive or impracticable as data structure
complexity grows.

Redundancy, such as redundant pointers to make linear
searching a little easier, or sumchecks, are part of the
data providing an abstraction, i.e. part of the mechanisms,
unless this redundancy is used as "hints" (Lam75). Hints
are, as described ~n the first chapter, always checked
against some "absolutes" and are used to optimise the
efficiency of operations on the data structures. It is,
therefore, unnecessary to maintain correctness of hints all
the time. Absolutes are data providing an abstraction,
which therefore must be always correct. If redundant
information items are not used as hints then they are part
of the data providing an abstraction. Consequently, it is
important to be careful with the choice and use of
redundancy in data structures.

-111-

4.3.2 The cacheing problems for complex data structures

In general, if a level (in a multi-level system)
provides a .type T, then it may use some specially reserved
objects of type T to store data necessary to support the
abstraction being provided (i.e. to store data that is part
of the mechanism used to operate on the co~plex data
structures). So these special system objects contain data
providing an abstraction. For example, the MFL file a~c
Header file in the filing system of the previous section.

If these special objects of type T are treated as
ordinary data structures, like all other objects of type T,
as far as updating and cacheing are concerned, then this IT.ay
cause the same sort of linked update problems as described
in the previous subsection. The problems now occur at a
higher level and at a larger scale:

Suppose that a data structure Dl is to be updated, and
this update has to be cached. As a result of this the data
providing an abstraction may also have to be updated. Again
this update may have to be cached. Suppose that the data
supporting an abstraction is stored in data structures which
have the same type as data structure Dl. Also suppose that
the data supporting the abstraction of the updated data
structure Dl is stored in data structure D2. Consequently
data structure D2 may have to be updated. As a result of
this the data providing the abstraction for this particular
data structure D2 may have to be updated and cached as well.
So the data supporting the abstraction of data structure D2
may have to be updated, and so on.

A particular example of this problem is (see Fig.4.6):
Consider the filing system described ~n the previous
section. A change made in a file within a recovery block
causes its top-directory to be changed. Consequently the
header has to be changed. If the header file is to be
treated as an ordinary file then this means that the disk
page in which the header to be updated is stored (in the
Header file) will have to be replaced. As a result of this
the addresses of the updated header and all the other
headers in the replaced disk page of the header file change.
The header of the header file also changes as a result of
this, and consequently several other headers may get a new
address. This means that for all these headers the
corresponding MFL entries will have to be changed. If the
MFL file is treated as an ordinary file then this implies
that all pages in MFL, in which an entry has to be changed,
have to be replaced. Obviously the header of the MFL file
also has to be changed. Again the Header file must be
changed. Thus each first change on the filing system within
a recovery block may cause a large part of the filing system
to be replaced (cached).

-112-

Summarising it can be said that data providing an
abstraction may use the same data structure as those 0:
which an abstraction is provided. but recovery for the~ ~ust
be provided separately.

MFL fil e HEADER file USER file

D D D

.

D
.

D
Where: a double arrow is used to indicate "replace for update".

The user updates page Pl, which causes also the data page
of the Header file containing the header of the user file
to be updated. This causes the data page of the MFL file
that contains the MFL-entry pointing to that header to be
updated as well. All the relevant directory pages are
also updated.
Other headers and MFL-entries are updated as well (see
text), causing more page replacements. However. these
updates are not shown in this diagram.

Fig.4.6. The explosion of updates that may be caused by a first
update of a file inside a recovery block \vhen careful
replacement is used and the Header file and MFL file are
treated as ordinary files.

Pl

-113-

4.3.2.1 ~ general solution ~ ~ specific implementations

The distinction between information carrying data and
data provid~ng an abstraction has already been stressed, and
will be necessary in this subsection for a solution to the
cacheing problem described above. The general solution to
this cacheing problem is as follows:

The cacheing for the information carrying data is done
by storing the original values of the objects in which this
data is stored. When the value of an object used to keep
information carrying data is changed then the data providing
an abstraction for that object may have to change, because
of the way in which updating and recoverability are
inplemented. The cacheing for data providing an abstraction
has to be done differently from cacheing for information
carrying data. Data providing an abstraction consists of
logical units, for example, headers, descriptor, addresses,
mapping tables or pointers. Rather than providing
recoverability for the objects in which the data providing
an abstraction is stored, recoverability will be provided
for the logically independent units.

For example in the filing system of the previous
section, data pages are the data objects used as information
carrying data. Data pages are cached when updated. The data
providing an abstraction consists of the headers and ~uL
entries. This data providing an abstraction is stored in two
files, but recovery is provided for headers and ~ITL entries,
as units of recovery rather than data blocks as for ordinary
files.

According to the definitions g~ven in this chapter the
directories, used in the filing system described in section
4.2, are data providing an abstraction. Yet in the
implementation recoverability for directory pages ~s
provided as for information carrying data, i.e. for each
object used to contain the data (the disk page). In the
implementation of the previous section this was possible for
two reasons:

1. One data or directory page always completely belongs to
one file. It is not possible that half the page is
used to store data of one file and the other half used
to store data of another file. In other words these
data and directory pages form the bricks out of which
data structures called file bodies, are constructed.
Obviously a directory cache could be implemented to
contain directory pointers, like the ~L cache and
header cache are used to contain ~ITL entries and
headers respectively. Using such a directory cache cay
even be more efficient under certain circumstances,
although it is impossible to make general statements

-114-

about this.

2. Directory pages are part of the data structure, called
file body, and not data providing an abstraction that
are stored in another data structure of the same type
as the one it is providing an abstraction of (like
headers and MFL entries are stored in files). A
distinction between these two kinds of data providing
an abstraction could be made. Directory pages could be
said to be used to define the "relationships" (as
defined by Martin (Mar7S)) of data objects in the data
structure. Headers and MFL entries provide an
abstraction of these data structures. However, it is
not felt to be necessary for the purpose of this thesis
to make this kind of distinction.

The main point is that from some level of abstraction
onwards, in a complex data structure, recoverability for
data providing the abstraction must be provided for each
type rather than for each physical object used. This
general solution breaks the vicious circle described above,
because objects containing data providing an abstraction are
treated as special objects for which the prov1s1on of
recoverability is independent of the type of data objects
used.

Two different ways in which this scheme can be
implemented are considered. The two methods look very
similar, but are in fact fundamentally different. The first
method (from now on referred to as method I) is to change
the data providing an abstraction when necessary and cache
the original values of the changed units. The second method
(from now on referred to as method II) is to leave the
original data providing an abstraction unaltered and cache
the new values of the units. This is the same distinction
as discussed earlier (in section two) with respect to update
"in place" and cacheing original values as opposed to
cacheing of new values. (See Fig.4.7, Fig.4.8, Fig.4.9.) In
order to show the differences, suppose that an update is
made to an object causing the data providing an abstraction
to be updated too. Also suppose that the object is a global
(either because it is declared outside the outermost
recovery block, or because it is a type which is always
global even if it is created inside an inner block, for
example a file on disk or some other resource). If the
update is made inside a nested recovery block then method I
will work according to the following principles (Fig.4.7
shows an example program and Fig.4.8 and Fig.4.9 show how
methods I and II, respectively, update objects and cache
values.):

-115-

(0)
~

change_file (a,vl)

create file (b)
change-file(a,v2)
change:file(c,v3)

change file(b,v4)
create-file (d)
destroy file (e)
des troy:) i le (b)

r
change file(c,v5)
change:file(f,v6)

(1)

(2)

(3)

(4)

change· file(f,v7)
change:file(d,v8)

(5) -

where: change file(fl,vl)
destroy file(f2)
create_file(f3)

gives file fl value vl
destroys file f2
creates file f3

used to mark the scope of a
recovery block

used to mark the scope of
an alternative

All files are global objects, even when they
are created inside a recovery block.

Fig.4.7, An example program operating on
global objects.

\

-116-

* The data providing an abstraction will be updated a~c
the previous value will be cached with a tag to indicate
the kind of update that has been done, e.g. change,
delete or create.

* Up-to-d.ate versions of the data providing an abstraction
are now kept while previous values are cached.

* The entries in the cache can only be thrown away when
the outermost recovery block acceptance test has been
successful, because the objects are globals to recovery
blocks.

* If there are several abstractions each providing a more
abstract view, thus implementing a complex data
structure, then a different cache will be associated
with each set of data providing an abstraction. This may
not be necessary in the case that one level implements
them, but it is irrelevant in that case whether there is
one cache with type-flags for each entry or different
caches. However, it is convenient to regard a separate
cache as being associated with each set of data
providing an abstraction. The processing of these
caches can now be done completely independently. ~o
information from other caches will be needed to process
a cache in order to accept or undo the operations
performed on a set of data providing an abstraction.

Method II
principles:

will work according to the following

* The objects in which data providing an abstraction are
stored will remain unaltered and new values will be
stored in a cache. The definition of the data providing
an abstraction is completely changed. The data providing
an abstraction now consists of the caches and the
original data providing an abstraction. So the-mapping
functions are different.

* If several sets of data providing an abstraction are
used then there may be a problem in constructing new
values of data providing an abstraction if an abstract
data type is operated upon inside a recovery block. This
problem can be shown in an example:

In the filing system described in the previous
section, the MFL file and Header file are not updated
immediately when a file is operated upon inside a
recovery block. Instead the new value of the header is
cached and an entry to indicate that the file has been
operated upon is put in the MFL cache. An MFL entry (in
the MFL file) contains a pointer to the corresponding
header in the Header file. However, if a new header is
cached then the ~WL entry can not be constructed yet.

-117-

place cache values of files

0

1

2

3

4

5

6

7

a b c d e f

empty va NE vc NE ve vf

a=va vl NE vc NE ve vf

a=va v2 empty v3 NE ve vf

b=new
a=vl
c=vc

a=va v2 NE v3 empty ill: vf

b=new
a=vl
c=vc

b=empty
d=new
e=ve

a=va v2 NE v3 empty NE vf

a=vl
c=vc
d=new
e=ve

a=va v2 NE vS v8 NE v7

a=vl
c=vc
d=new
e=vew
f=vf

a=va v2 NE vS v8 ~E v7
c=vc
d=new
e=ve
f=vf

empty v2 NE vS v8 NE v7

Where: NE means non-existent.

Fig.4.8, The cache contents and values of files at various
places in the program of Fig.4.7, while cacheing
method I is used and no errors occur.

*

*

-118-

Instead an ~ITL entry is made to indicate that a new file
has been created.

The entries in the caches can only be processed (i.e.
put in the sets of data providing an abstraction in
order to update the original sets) when the outermost
recovery block acceptance test has been successful.

As a consequence of these last two points the caches
associated with the different sets of data providing an
abstraction cannot be processed independently. When the
outermost recovery block acceptance test has been
successful, the data providing the lowest level
abstraction has to be updated first. Then the data
providing the next level abstraction can be updated, and
so on. So some communication or simultaneous processing
will be necessary between the procedures that process
these caches.

The last point is a characteristic difference between
method I, i.e. doing the actions immediately and cacheing
the previous states, and method II, i.e. delaying the
actions and recording the new states.

4.3.2.2 A comparison ~ ~ ~ methods

Both methods described above have their advantages.
Neither of the methods can be said to be Buperior under most
circumstances.

Method I has the advantage that caches can be processed
independently. Another advantage of method I is that the
definitions of data providing an abstraction are the same
for an unrecoverable system and for the recoverable system
with the same structure.

Method II has the advantage that the original values of
data providing an abstraction are kept so they remain
unchanged in the event of a system crash (unless the crash
occurs during the cache processing after a successful
outermost recovery block acceptance test). This is of
importance if data has a longer lifetime then the runtime of
the program, and is kept outside core. Another advantage of
method II arises when more than one user exists and there is
an access strategy providing multiple reads but exclusive
updates for the data structures. While an update proceeds,
and until it satisfies its acceptance test, other users can
use the previous version. The update program must exclude
other readers only during the actual cache processing and
updating of the original version when the outermost recovery

-119-

place cache values of files

0

1

2

3

4

5

6

7

a b c d e f

empty va NE vc NE ve vf

a=vl va NE vc NE ve vf

a=vl va NE vc NE ve vf

b=new
a=v2
c=v3

a=vl va NE vc NE ve vf

b=new
a=v2
c=v3

c=destr.
d=new
e=destr.

a=vl va NE vc NE ve vf

a=v2
c=v3
d=new
e=destr.

a=vl va NE vc NE ve vf

a=v2
c=vS
d=v8
e=destr.
f=v7

a=vl va NE vc NE ve vf

a=v2
c=vS
d=v8
e=destr.
f=v7

empty v2 NE vS v8 NE v7

Where: NE means non-existent.
Fig.4.9, The cache contents and values of files at various

places in the program of Fig.4.7, while cacheing
method II is used and no errors occur.

-120-

block acceptance test has been successful. If the test
fails other readers are completely unaffected. Even if t~e
test succeeds other readers could continue using the old
version. This involves constructing new mapping tables for
new files (new file directories), letting other readers
still use old mapping tables. However, these issues are
outside the scope of this thesis.

Summarizing:

* If an existing system is to be made recoverable then
method I is probably the most practicable one, because
mapping functions do not change. In general, however,
making an existing system recoverable will almost
certainly give many problems.

* It is expected that method II is more feasible in a
multi-user system with multiple reads but exclusive
update access strategy for the data structures.

* With method II the caches associated with the different
sets of data providing an abstraction cannot be
processed independently, while with method I they can.
This may complicate the cache processing with method II.

* Method II may have advantages in the event of a system
crash and has been chosen for this reason in the filing
system described in section 4.2.

4.3.3 Alternative solutions ~ the cacheing problem

It could be argued that cacheing file words rather
whole blocks would solve the problems described in
section. However, there are several other problems
this scheme.

than
this
with

In the first place, if method II is used for cacheing
then a linear scan through a file could be very complicated
and inefficient, because a stream of words rather than disk
pages is to be constructed from the original version of the
file and the cache. The cache will have to be implemented on
disk, because core store may safely be assumed to be too
small to contain such a cache. Consequently the method of
cacheing will have to be method I, which may be a
disadvantage in itself.

Secondly, if
undoing after an
cumbersome and
acceptable since
frequently.

method I is used for cacheing then the
unsuccessful acceptance test will be very
inefficient. However, this could be

acceptance tests are not expected to fail

-121-

Finally. the overhead in administration data in the
cache will be fairly big e.g. a page address plus offset for
each cached word. This would mean, for example. that only
33% of the cache would consist of cached words if the page
address and offset occupy a word each. The overhead can
under cert.ain circumstances be justified such as in the
special representations used for sparse matrices (i.e. if on
average only a few words per data page are updated).
Cacheing will in any case be complicated and probably
inefficient, because writing one cache entry to disk every
t~me a file word is changed would obviously be too big an
overhead. Consequently this will have to be optimised. which
may be complicated, because cache entries must be written
before the file is updated, in order to be able to cope with
errors occuring between these events, or system crashes.

The scheme looks in fact rather like one where bits are
cached to provide recoverabi1ity for integers. However. it
is not that this particular scheme is in all environments in
all cases a bad scheme, but rather that the problems
discussed in this section are real problems and the
solutions sought are feasible ones.

4.3.4 Main conclusions

The main conclusion drawn from the discussion on
recoverabi1ity for complex data structures is that data
providing an abstraction and information carrying data have
to be separated in different physical objects whenever
possible. They also have to be treated separately when
recoverabi1ity is to be provided for them.

The information
physical objects for
for data providing
preferably provided
from which the data

carrying data is preferably treated as
which recoverabi1ity is provided, while
an abstraction the recoverability is

explicitly for the logical units (types)
is composed.

In the filing system of section 4.2 the types that
could be distinguished at different levels of abstractions
were: word. page, directory pointer, header and ~ITL entry.
It was shown that recovery is to be provided for types
rather than for the physical objects used to store the data,
from some level onwards. Below that level recovery is to be
provided for those physical objects used. In the filing
system the recovery for types was provided for headers and
MFL entries: it could have been provided for directory
pointers and even words in data pages as well. However, that
would have been less efficient in the particular
environment.

-122-

4.4 Maintaining consistency ~n recoverable complex data

stuctures

So fa~ facilities to make state restoration possible
have been discussed. Another aspect of recovery is crash
resistance, which is, as described in chapter two, of
importance for data structures that remain in existence
after the running of the program has finished. It will be
shown that the same mechanisms that have been discussed ~n
sections 4.2 and 4.3 for providing recovery, can be used to
provide crash resistance.

The notion of recovery block provides a convenient way
of talking about the problems and will therefore be used in
relation to the techniques and mechanisms used for
recoverability and crash resistant systems. Recovery blocks
may be used to define the scope of recovery from crashes.
The scope of recovery from crashes is taken to be the ti~e
between entering and leaving the outermost recovery block.
(Only recovery for sequential processes is considered here.)
The use of a recovery block with a trivial acceptance test
and one alternative must assure the writer of the program
that unless a catastrophe occurs, so that data are lost,
everything he wants to do will be done or nothing will be
done at all. The kind of consistency considered is
explained by an example:

If a program inside a recovery block wants to update a
file header on disk (the header is a variable length block
which may be divided over more than one disk page), then
that header must either be updated completely, or must not
have been modified at all. Thus suppose that a header is
partially in disk page x and partially in disk page y. Then
a power failure could occur when x has been updated and y
has not been updated yet. This would leave the header
neither in its original nor in the new state and, therefore,
must be impossible.

4.4.1 Crash and crash resistance

The notions of crash and crash resistance have been
defined in chapter two of this thesis. These notions,
however, will be defined more precisely here for the purpose
of this chapter.

Program P, shown in Fig.4.l0, may have to be abandoned!
because a level j<=i fails and cannot continue. Level ~
performs operations on objects objl, ••• ,objn whenever it
interprets an operation on Ot in the user program P. If
level i has to abandon program P (or the interpretation 0:

-123-

an operation on Ot), because a level j (j<=i)
then this will be called a crash. It is assumed
at does not disappear with program P, but rather
which can be used again by a following program
finished.

Program P

declare at : T global;
recovery block

r---

1 st. alternative

alternative

A level mapping at onto objl,
of the underlying machine.

level i+l

,objn

level i

has f ailec.,
that object
is a global
after P has

underlyjng machine

Fig.4.l0, A diagram of a level on which a program using an
abstract type T provided by the level, is
running.

In order to show which sorts of crashes the system is
required to be able to cope with, all crashes are classified
in either one of the following classes:

1. None of the objects objl, .,. ,objn is corrupted,
because of the crash.

-124-

2. One of the objects obj 1, ... ,objn lS corr'.:?tec. ,
because the crash occured while a correct state
transltlon for at was in progress. Thus that object is
left in an invalid state.

3. k of t~e n objects objl, .• , objn are corrupted, with
2<=k<=n, because of some catastrophe.

For example, in the filing system described earlier in
this chapter a crash of class 1 occurs if the system crashes
while no disk write was in progress, or the disk write is
not affected once initiated successfully. A crash of class
2 occurs if a disk write is interrupted or unsuccessful. A
crash of class 3 occurs if a head crash occurs, or the
operating system fails to perform normally and goes on
writing to disk for a while, or the disk head does not
position itself correctly before a disk write.

A class 3 crash may corrupt the whole data base such
that repairing is impossible and built-in defense mechanis::-.s
are destroyed or have not worked properly. So, as described
in chapter two, other recovery mechanisms are required to
cope with such failures. Recovery from a crash of class 3
is possible is by keeping complete backup versions of all
the objects objl, ,objn on different physical storage
devices. (However, other failures may of course corrupt
these backup versions.) From now on the term "crash" is
used in this section to mean just one of the first two sorts
of crash, unless indicated differently. A class 3 crash is
called a "catastrophe". Crashes of class 2 are
distinguished separately, because in many systems there are
many kinds of failures that may cause the (so far correct)
execution of a program to be stopped abruptly, even when an
update of an object obji is in progress. It is therefore
useful to be able to cope with this particular class of
crashes.

The consistency requirement described means that after
a crash occurs while the system is in a recovery block, the
system as seen by the user must either be in the state it
was in before the recovery block was entered, or the new
state which is the one it would be in if the recovery block
had been left normally after a successful acceptance test.
The only concession that will be made is that some objects
on which the user objects are mapped, may have to be "freed"
by some sort of garbage collector, for reasons which will
become clear in the following subsection. If the system can
cope with crashes of class 1 and class 2 (in the way
described here) without requlrlng special recovery actions
after the crash, then it is called crash resistant.

-125-

4.4.2 The provision of crash resistance ~ recovery

There are several ways in which crash resistance can be
provided. Chapter two showed that the careful replacement
technique is one of the best techniques to provide crash
resistance. There will however, using careful replacement
always be some information which has to be kept in a fixed
place, because the software must have a "grip" on the data
structures (e.g.: the address of the first page of a system
directory in a filing system). This information dll
therefore have to be updated "in place".

There are of courSe other strategies that could be
used. A complete survey of techniques has been given ~n
chapter two. However, the careful replacement technique ~s
one of the most efficient ones and fits in nicely with the
recovery strategy discussed in sections 4.2 and 4.3.

It was argued that updates to an object Ot have to be
done as follows:

1. Cache the information carrying objects (see Fig.4.5)
which have to be changed and make the necessary
updates.

2. Cache new values for data providing an abstraction (see
Fig.4.5) and process the cache and the data providing
an abstraction after passing the recovery block
acceptance test.

Step 1 can be implemented by the careful replacement
scheme. The data providing an abstraction of step 2 then
comprise the information that has to be updated "in place".
Thus the careful replacement technique for providing crash
resistance fits in nicely with the recovery strategy
discussed. The original versions of objects that are
replaced (i.e. updated) are now the cached objects.
Consequently they are not thrown away after the operation on
Ot inside a recovery block has been completed, but are kept
until the appropriate recovery block acceptance test has
been successful. If this acceptance test fails then the new
vers~ons of the objects have to be thrown away.

For example, in the filing system described in this
chapter, file bodies, i.e. directory and data pages, are
updated using the careful replacement technique. New values
of data providing an abstraction, i.e. headers and MFL
entries, are kept in caches. Consequently whenever a user
operation on a file is performed inside a recovery block and
a crash occurs, the file will keep its original value. The
critical moment is when the data providing an abstraction
have to be updated "in place" after a successful acceptance
test.

-126-

~.~.~.l The critical updates

The strategy followed leads to the following situations
in the event of a crash occuring at different stages of the
processing pf user object at, using recovery blocks:

* If a crash occurs inside a recovery block before either
an "UNDO" or an "ACCEPT" has been executed for that
block then the user object at (see Fig.4.10) will not
yet have been changed, because the data providing an
abstraction still map onto the original version. (The
"ACCEPT" l.S the accept procedure after a successful
acceptance test. The "UNDO" is the backup procedure
after an unsuccessful acceptance test.) Only new
objects obji (see Fig.4.l0) will possibly have been
allocated by the level providing object at.

* The "UNDO" frees newly allocated objects obji and undoes
the cacheing of new values of data providing an
abstraction. "UNDO" does not affect the objects obji of
the original representation of at. Thus if a crash
occurs during the execution of the "UNDO" procedure then
at will remain unaltered.

* The "ACCEPT" for an inner recovery block processes
caches only and possibly frees some objects obji that
were newly allocated (for a detailed example see the
filing system described earlier). So the same holds for
such "ACCEPT" procedure as for the "UNDO".

* The "ACCEPT" procedure of the outermost recovery block
does update the data providing an abstraction "in
place". Other objects obji remain unchanged during the
"ACCEPT", because there is already an old and a new
version for every changed object. So only some objects
obji need to be freed. If the crash occurs during the
updating of the data providing an abstraction then this
could leave an inconsistent data structure behind (i.e.
the user object is in an invalid state).

Consequently the problem is now isolated to the
"ACCEPT" of the outermost recovery block, during which
information is updated "in place". This updating is called
the critical update.

Several approaches to this problem are possible, some
of these are:

-127-

1. The principle of multiple copies could be used. This
concept provides absolute crash resistance at any ti~e.

2. By using extra levels of indirection the amount of
information to be updated "in place" could always be
reduced to one object (see also (New72)). For exa~ple,
rather than updating the whole system catalogue "in
place", a new version of the catalogue could be made
and a fixed disk page could be used to contain the
address of the first page of the catalogue, thus
reducing the amount of information to be updated "in
place" to one word. The updating of the one object "in
place" could be done using one of the other approaches
described.

3. The probability of a crash occuring during the updating
of the data providing an abstraction in "ACCEPT" can be
so small that we can afford to update them "in place"
and still be very safe. If a crash occurs anyway then
it is to be treated as a class 3 crash.

4. If there is only one object to be updated "in place"
(or just a few) then an external device (or the
operator) could be used as a backup of the value of
this object (for example write it to a mini-tape or
type it on the operator's console and let the operator
type it in again In case a crash occured before the
"OK-message" is printed). In fact this could be
regarded as an implementation of the multiple copies
technique.

Many other schemes, possibly involving audit trail,
differential files, checkpoint/restart for the whole
process, or other techniques, could be devised. However, the
techniques described here are the most commonly used ones
and seem the most obvious ones.

For example, in the filing system described in this
chapter, strategy 3 has been chosen, because 1 and 2 are
both too cumbersome, and critical updates are not likely to
happen very often (only during the "ACCEPT" of an outermost
recovery block).

The advantage of strategies 1,4 and 2 (if method 1 or 4
is used for the single object to be updated "in place") is
that after a crash that occurs within any recovery block
(even the outermost) the system can usually just restart as
if nothing has happened. With strategies 3 and 2 (if method
3 is used for the single object to be updated "in place"),
however, some way of finding out whether the crash occured
during an update of data providing an abstraction "in place"
or not, is needed. If it did then the crash is to be
treated as a class 3 crash, if it did not then all is still
well. Two ways in which the system can find out when the

-128-

crash occured are using a salvation program and using a flag
to indicate "critical update in progress". A conditio:-. for
the use of a salvation program is that it must be possible
to validate the data structures (and data providing a~
abstraction). The same program could be used for other
purposes. for example if after a hardware failure it has to
be established whether a crash was a class three crash or
not. An implementation of a system with such a salvation
program (called a "verification procedure") is described by
Fraser (Fra69). A vector of the length of the number of
available disk blocks is kept. The directory of a file
points to an entry in this vector. which indicates the first
block of the file. Each entry points to another entry which
indicates the next block of the file. The validation program
checks the length of the file. which is kept in the
directory. with the number of disk blocks belonging to the
file. If there is any inconsistency then the file involved
is deleted. Many systems also use a flag "update in
progress" or. as it is sometimes called. a "damage flag"
(Cur77) •

4.4.3 Conclusions

This section has discussed how it can be ensured that
data structures are updated completely and correctly, or not
altered at all. Thus a crash occuring inside a recovery
block appears to the user as having happened just before the
outermost recovery block with respect to the values of the
global data structures. It is always possible to guarantee
such consistency in data structures at any time, even after
a system crash which may occur at any time.

Several strategies and solutions have been discussed
and in many cases there is a trade-off between efficiency
and reliability. However. it looks as if one may have to
pay a lot in terms of efficiency to get a system which is
crash resistance at any time during the processing. The
mechanisms used to update objects and cache modifications
may provide crash resistance while inside any recovery
block. Programs may be inside recovery blocks for 99% of
the time. Only during the "critical updates", which may be
done during 1% of the time. no crash resistance could be
provided. Implementing multiple copies or extra levels of
indirection to overcome this problem. may be very expensive.

Trade-offs are very difficult to make in general. All
that can be said is that the overhead with certain
strategies will be bigger than with some other strategies.
The costs of a crash of class 3 are completely dependent on
the specific application.

-129-

5.0 A COST ANALYSIS OF THE IXPLE~'!E~TED RECOVER .. \BLE

PROTOTYPE SYSTEM

5.1 Introduction

This chapter analyses the costs of the provision and
use of the recoverabi1ity in the recoverable (two-level)
system described in this thesis. In this two-level syste~
the first level (i.e. lower level) consists of a fault
tolerant OCODE interpreter, and the second level consists of
(an operating system with) a recoverable filing system.

The fault tolerant OCODE interpreter used ~n the
prototype system was built only to provide a fault tolerant
underlying machine, to the next level, with a partially
recoverable interface. The fault tolerant OCODE interpreter
provides an interface with recoverable OCODE types (24 bit
words), unrecoverable OCODE types and unrecoverable disk
blocks, as described in an earlier chapter. All of the work
for this thesis has concentrated on subsequent levels
(PRI-1eve1s on a fault tolerant machine). The efficiency of
the recoverable OCODE interpreter implemented was therefore
not important; so an implementation which was very efficient
in space (there was not much core space to spare) and could
be written with little effort, was chosen. The implemented
fault tolerant OCODE interpreter is, however, not very
efficient in run time ~n cases where many different
variables are updated inside recovery blocks. Details of
the run time overhead and a description of the
implementation details of the fault tolerant OCODE
interpreter have been g~ven elsewhere (Ver76), (Ver77a).

Comparisons and cost analysis of different ways in
which such fault tolerant interpreters can be implemented
have been made before (Hor74), (Ran75), (Ker74), (Von76) and
will therefore not be repeated in this thesis. The cost
analysis given in this chapter will concentrate on the
recoverable filing system.

The cost analysis given, consists of a formal
performance analysis (i.e. execution times of programs using
the recoverability provided) and an analysis of the extra
data space and program space required by the filing system
for the provision of recoverabi1ity. A comparison is made
with some alternative techniques that could have been used
and some experiments have been performed to measure the
overhead incurred by the use of recovery blocks.

-130-

5.2 Basic principles of the ~ analysis

The cost analysis of this chapter is based on:

1. The times necessary for the execution of the operations
provided.
The extra time used by the filing system for the
provision of recoverability for files, is estimatec by
considering the extra number of disk accesses necessary
to provide this recoverability.

2. System program sizes.
The total size of the programs providing a recoverable
filing system is compared with the total size of the
programs providing a filing system with an identical
structure and identical operations, but for which no
recoverability is provided.

3. The extra data space needed to keep redundant
information for potential backing up.
The filing system maintains three caches (in core) and
uses extra disk space, needed to keep cached pages.
The total amount of cache space needed by the system is
difficult to estimate in general. Some initial work in
this area has been reported elsewhere (Wye73). Only
some rather general statements can be made about the
sizes of these caches, since the amount of cache space
needed entirely depends on the use made of the system.

4. A formal analysis of the overhead incurred by the use
of recovery blocks.
The overhead in the number of disk accesses needed
during normal operations on files to provide
recoverability, is compared with the overhead that
would be required when alternative techniques were used
to provide the recoverability. Other advantages and
disadvantages of those techniques are also discussed in
order to make a reasonable comparison.

5. Some experiments measuring the overhead incurred by the
use of recovery blocks.
A number of experiments were done to measure the
overhead in the number of disk accesses needed during
normal processing, in order to provide recoverability.

These five aspects form a fairly comprehensive cost
analysis of the recoverability provided by the system.

The only
recoverability

way in which
provided could be

the benefits of
determined would be

the
by

-131-

measuring the availability and reliability of the syste~,
with and without the use of recovery blocks in real life
situations. For practical reasons this was not possible
within the framework of the work done. It would have
involved the monitoring of a system while used by a number
of users. The system built is a prototype and there are no
users on the system. The running of a general and
arbitrarily chosen set of user programs taken from similar
systems was impossible or impracticable. Such experi~ents
would require an appreciable effort and almost make a
project in itself. For these reasons the experiments were
restricted to the monitoring of a little test program and a
real life utility program.

A very important factor for the provision of high
reliability based on recoverability is the use of a good
error detection scheme. The costs of the tests involved
must, for every particular application, be taken into
account if the costs of reliability is to be determined,
rather than just the costs of recoverability. The costs of
such tests is completely ignored in the cost analysis given
here.

5.3 Execution times: an analysis of the overhead ~n disk

accesses

The execution times necessary for the file operations
are completely determined by the number of disk accesses.
(The system is a single user system, so there will be little
overlapping of CPU processing and disk accesses.) The
number of disk accesses required for operations in a filing
system that does not provide recoverability are compared
with the number. of disk accesses required for the same
operations in the implemented recoverable system.

If the operations on files in the recoverable filing
system are not done inside a recovery block then their
implementations will be identical to those of the operations
in the unrecoverable filing system. This makes the
evaluation of the overhead easy to analyse, both formally
and empirically.

If read access to a file is done inside a recovery
block then this may be cheaper in the recoverable syst:m
than a similar read access in the unrecoverable system. Th~s
is because access paths have been changed to include the
caches (see previous chapter), which are kept in core.
Consequently it may happen that a header does not have to be
read from disk, which may save several disk accesses.

If a header is updated then the number of disk accesses

-132-

necessary for this update are the same whether the update is
done inside or outside a recovery block. If this update is
done inside a recovery block then the update is postponed
until the (outermost) recovery block is left. When the
outermost recovery block is left the header is updated in
the way in . which updates are done outside recovery blocks.
However, if a header is updated several times within one
recovery block then this will lead to only one update of the
header on disk. So the use of recovery blocks as implemented
will save disk accesses in this situation.

MFL entries are only updated when files are created and
destroyed, and only read when the disk address of a header
is wanted. Again if a file is created and subsequently
destroyed inside a recovery block then this will have no
effects on the MFL-file. So using recovery blocks will lead
to the same number or less disk accesses to the ~ITL-file.

In order to compare the costs of writing a file inside
with not inside a recovery block, the actions perfo~ed and
disk accesses done for the implementation of the two basic
update operations: 'update_a_data-yage' and 'add a data~
page' are considered. (Operation 'delete a data page' ~s
basically similar to 'add_a_data-yage'.) -Tab~e 5.1 below
shows the operations performed on file bod~es for the
implementation of operations 'update_a_data-yage' and
'add_a_data-yage'.

operation

data-yage

I unrecoverable
system

1.1 read data
page

1.2 write new
value in
data page

II recoverable
system

i) The update action.

2.1 read data page
2.2 write new value ~n

newly allocated page
if this page has not
been updated inside
this recovery block
yet, else write
to original page
and goto (2.7)

2.3 read directory page
pointing to original
page that has just
been updated
(replaced)

2.4 write new value of
directory page to
newly allocated
page if this
directory page has
not been updated
inside this recovery

-133-

~ add_a_data- 3.1 write value
page of new data

page to new
ly allocated
page.

3.2 read the di
rectory page
that must
point to the
new data
page.

3.3 write new
value to
this direc
tory page.

Note: the case
where a
directory
page ~s

full and a
new one is
to be
allocated
for the
new entry,
is ignored
here.

block yet, else write
it to original page.

2.5 if the directory page
just updated was the
top directory page
or was overwritten
instead of replaced
then goto (2.6)
else goto (2.3).

ii) At the end of the
(outermost) recovery
block

2.6 free the original
data and directory
pages that have
been replaced.

2.7 finish.

i) The update action.
4.1 write value of new page

to newly allocated page.
4.2 read directory that must

point to the newly
allocated page.

4.3 like 2.4
4.4 if the directory page

just updated was
the topdirectory
page or was
overwritten instead of
replaced then goto
(4.5) else goto (4.2).

ii) At the end of the
(outermost) recovery
block.

4.5 free the original
directory pages
that have been
replaced.

4.6 finish.

Table 5.1, A comparison of file body operations in the
recoverable and unrecoverable system.

the
Free pages
Free Store

are marked "free" and their address
File. Updating of the Free Store

is ~n
Fi~e

-134-

involves very few disk accesses and will there:ore be
ignored.

In both the recoverable and unrecoverable syste~
freeing a page involves an extra disk write. The "free"--r::ark
in a page .is redundant, because there is a list of free
pages in the Free Store File (see a previous chapter).
Dispensing with this redundant "free"-mark in free pages
would also dispense with the extra disk writes necessary to
free pages. However, it is felt to be desirable to keep this
redundant mark in order to have a check in case the critical
update (see chapter four), i.e. the updating of the Header
file and MFL-file, goes wrong. Another reason for
maintaining "free" marks is that updates of the Free Store
File are buffered, so after a crash it may not contain all
the addresses of free pages, or addresses of pages that have
been allocated just before the crash. A free page is only
given on request if the address of that page is in the Free
Store File and the page is marked "free". Allocating a free
page therefore involves a disk read to check the "free"
mark. If the critical update is done in an absolute crash
resistant way (see previous chapters) and the Free Store
File is updated as first action of the critical update (part
of the Free Store File is kept in core and must be forced
out) then the "free" mark in free pages will not be
necessary.

The
operations
below.

number of
under the

A update_a_data_-
page

~ add_a_data-yage

disk accesses
two systems

I
(unrecoverable
system)

2

4

necessary for the
are given in Table

II
(recoverable
system)

between 2 and
4+4*number-of-

directory-
levels

between 4 and
6+4* (number-of-

directory-
levels - 1)

Table 5.2, The number of disk accesses necessary
for the two operations shown in Table 5.1,
when performed inside and when performed
outside a recovery block.

two
5.2

If free pages were not marked "free"
upperbounds for the two operations A and B under

then the
II (i.e.

-l35-

inside a recovery block) would be:

(2 + 2*number-of-directory-levels), and

(3 + 2*(number-of-directory-levels-l)), respectively.
The upperbounds given for an operation inside a reco'."ery
~lo:k represent the costs of the first update of a file body
~ns~de a recovery block. Every subsequent update inside the
same recovery block will be cheaper. In order to show this
an example is given below.

A few concrete examples of operations on a file Fare
described to show what these figures and formulae g~ven
above can mean in practice. Suppose that file F consists of
one directory page and 50 data pages (pointed to by this one
directory page).

If one disk page of file F is updated inside a recovery
block then this will cause: 4+4*1=8 disk accesses to be
done. If no "free" marks were used in free pages then it
would cause 2+2*1=4 disk accesses. (The allocation of two
pages costs two reads to check the "free" marks, the freeing
of two pages costs two writes. Thus four disk accesses are
saved by dispensing with the "free" marks.) If the update
is done outside a recovery block then 2 disk accesses are
needed. (The directory page is not updated, ~hich saves
another two disk accesses.)

If ten disk pages of file F are updated inside a
recovery block then this will cause: 4+4*1=8 disk accesses
for the first update and 9*6=54 disk accesses for the other
nine disk page updates. Thus in total 8+54=62 disk accesses
are done. Every subsequent update costs still 6 disk
accesses: one to read the data page, one to check the "free"
mark in the newly allocated page, one to write its new value
to a newly allocated page, one to read the directory page to
be updated, one to update that page and finally one to free
the replaced data page. If the 10 updates were done
immediately after each other and a good buffer management
system were used, then the reading of the directory page
from disk 10 times could be avoided, because the page would
probably still be in a buffer. Also writing of that same
directory page 10 times could be avoided. So by using such a
buffer management system, the 62 disk accesses could be
brought down to just 44 disk accesses. The ACCEPT FS and
UNDO FS (see previous chapters) would have to force buffers
to dIsk or "clean" buffers, if necessary, as part of the
filing system processing at the end of a recovery block
alternative.

If no "free" marks were used in free pages then it
would cause 2+2*1(for the first page) + 9*4(for the
rema~n~ng nine pages) = 40 disk accesses. A good buffer
management system could take this down to just 22 disk

-136-

accesses (if the updates are done without access to o~her
files in the mean time, which could cause the loss of the
directory page from the buffer.) If, however, the updates
are done not inside any recovery block then 10*2=20 disk
accesses are needed.

If the same page is updated (assumed is that it is
partially updated, so a read before write is required) 10
times, then this will require 4+4*1=8 disk accesses for the
first update and 2*9=18 for the other nine updates. This
totals 26 disk accesses. If no "free" marks were used then
this number would be 2+2*1=4 (for the first update) + 9*2
(for the other nine updates) = 22 disk accesses.

Consequently the more often disk
updated inside a recovery block, the
relative overhead.

pages of one file are
smaller will be the

Summarizing:

It is impossible
numbers of disk accesses
in the recoverable and
following reasons:

to generalise the differences 1n
necessary to do operations on files
the unrecoverable system, for the

* If recovery blocks are used then generally less disk
accesses will be necessary for reading and writing of
headers and MFL entries. (Clearly the standard system
could be changed to incorporate similar buffers.)

* Operations on file bodies will require more disk
accesses if recovery blocks are used; however, it is
hard to say how many more on average, because this
depends on the series of operations performed inside one
recovery block.

In general, however, it seems reasonable to expect that
operations inside recovery blocks will cost more disk
accesses than operations performed outside recovery blocks,
because the number of disk accesses necessary to update
headers and MFL entries is in the OS/6 environment 1n
general small compared with the number of disk accesses
necessary to update the file bodies.

The overhead in disk accesses in the implemented system
is as high as shown in Table 5.2 and the examples, for two
reasons:

1. A "free" mark is placed in free pages. Since updating a
page the first time inside a recovery block, involves
the replacing of that page by another page, a free page
is to be allocated (and checked) and the original page
is to be freed at the end of the recovery block. The
use of these "free" marks could be avoided as described

-l37-

above, which would save the extra disk accesses.

2. Since a data page is replaced, when updated (for the
first time) inside a recovery block, the directory page
pointing to it has to be updated as well. However, a
good puffer management system could bring down the
overhead incurred by having to update a directory page
many times if many pages it points to, are updated.

5.4 Program sizes

An unrecoverable filing system with exactly the same
structure as the recoverable system, was designed and
embedded in OS/6 (to replace the original OS/6 filing
system). This filing system occupies 9K bytes. The total
size of OS/6, with the filing system, is 23K bytes.

In order to make the filing system recoverable, the
cacheing mechanisms had to be incorporated. This meant that
many filing system programs had to incorporate operations
which make cache-entries, and the cache manipulation
programs and ENTER FS, UNDO FS and ACCEPT FS (the enter,
undo and accept procedures, see previous chapters) had to be
written. The new recoverable filing system now occupies
l6.SK bytes. Other programs, providing the new recovery
block structure (see a previous chapter) and supporting some
other facilities required (such as an allocation mechanism
for unrecoverable store, which is used for cache (log)
space, see a previous chapter) occupy about 0.5K bytes.
Therefore the total OS/6 system with recoverable filing
system, occupies 3lK bytes, an increase of about 30%.

5.5 Cache space

As shown in chapter three, "the cache" in the filing
system consists of:

1. The disk pages that are part of new versions of files,
but not of the original versions.

2. The page cache, header cache and MFL cache.

The header cache and MFL cache will generally not be
very big, because a user will not update many files within
one program. The page cache will generally not be very big
either, because a user will normally, in OS/6, not update
thousands of disk pages inside one program. Initial
experiments performed sofar seem to indicate that the sizes

-138-

of the caches (page cache, header cache and ~~L cache) will
not be significant; most users are not expected to need more
than a few hundred words of cache space (1 word = 3 bytes).

The number of extra disk pages needed for keeping
several ve~sions of files depends completely on the way in
which recovery blocks are used and on the operations
performed inside these recovery blocks.

5.6 A comparison with other techniques

The whole filing system has been designed and built in
such a way that recovery and crash resistance were provided
as features of the total system, rather than having been
grafted on. A careful replacement technique was used
together with the page cache, header cache and ~WL cache, to
provide these features. The careful replacement technique
used in combination with these three caches, therefore
implements a cacheing scheme. The three caches are kept in
core and the costs of mainta~n~ng them is negligible
compared with the costs of the disk accesses required. The
costs of the careful replacement technique, as used in our
system, is therefore compared with other techniques that can
be used to provide recovery as defined in the present thesis
and provided in our filing system.

Some of the most obvious and reasonable alternative
techniques (see also the survey given in chapter two) that
could be used to provide recoverabi1ity for files are
described in this section and compared with the careful
replacement technique used:

* An audit trail based technique.

An audit trail could be regarded and used as a
cache. However, if an object was updated more than once
within a recovery block then more than one entry would
be put in the audit trail, because the audit trail keeps
an entry for every operation performed. The audit trail
is thus likely to contain many more entries than a
standard cache. This would lead to gross inefficiencies
in the cache processing. The audit trail scheme does not
provide crash resistance either, but the system can
always be backed out after a crash if the writing to the
audit trail is not buffered.

The audit trail technique used in this fashion
could be optimised in the manner of a cacheing scheme so
that previous values of objects which are updated within
recovery blocks, are not written to the audit trail more
than once for each recovery block in which they are

-139-

updated. This is nothing more than the normal cacheing
scheme (Hor74), (Ran75) for disk pages, in our filing
system. Thus recoverability would be provided for disk
pages, and recoverability for files would be provided
implicitly by mapping files onto recoverable dis~ pages.
If the, cache is (partially) kept on disk then the
updates on the Free Store File should not be cached. A
table, similar to the page cache in the present systec,
could be used to indicate which pages (on disk or tape)
contain previous values of the updated pages. This
recovery technique cannot, as the careful replacement
scheme could, be used to provide crash resistance, but
recovery after a crash is possible using the cache.
This recovery is only possible after a class 1 crash
(see previous chapter). because if a page containing a
previous value is corrupted. no normal recovery as
discussed here is possible. This optimised audit trail
scheme is much more efficient than the ordinary audit
trail scheme. The ordinary audit trail scheme will
therefore not be discussed any further.

The optimised audit trail scheme. is in fact
similar to the cacheing scheme providing recovery for
file words, using method I. as described in chapter
four. That scheme was compared with the cacheing scheme
used in the implemented system. The scheme in the
implemented system has definite advantages with respect
to crash resistance and in multi-user environments,
because the original version of a file is not altered
and still accessable while a user is updating the file
(inside a recovery block). The provision of recovery is
embedded in the total design of the system. It was
argued in earlier chapters of this thesis that recovery
may impose special requirements on the system and data
structures. Embedding recovery in the system such that
it forms an integral part of that system was shown to be
almost essential if recovery is to be provided as in our
filing system. The data structures in our system remain
the same while operations are performed or backing out
is done. The audit trail technique, however. is in fact
an external tool which is grafted on the system and the
complete system, with the recovery techniques, will thus
be less structured. So the careful replacement scheme
is more structured and should therefore lead to better
and more reliable software.

The optimised audit trail scheme uses 3 disk
accesses if the cache is on disk. or 2 disk accesses
plus a tape write, when a disk page is updated for the
first time within a recovery block (assumed is that a
read before write is needed). The number of disk
accesses per update in the careful replacement scheme
used was shown to depend on a number of factors and
could on average be anything between just over 2. and 8

-140-

(if there is only one directory page in the file body).
If a series of pages is updated and no "free" marks are
placed in free pages and a good buffer management system
is used, then this average is likely to be around 3. So
the optimised audit trail scheme may be more efficient
but wil~ not always be more efficient, than the schem~
implemented. It entirely depends on the use made of the
system.

* A differential file based technique.

A differential file could be regarded and used as a
associative cache (Hor74) which is described as method
II in the previous chapter. A full description of the
differential file technique is given in the survey of
techniques in a previous chapter.

Basically the scheme is exactly like the optimised
audit trail scheme, but new values, rather than previous
values of disk pages are cached. The costs in number of
disk accesses required for each first update of a page
within a recovery block, are the same as for the
optimised audit trail scheme: so there are no obvious
general advantages ~n efficiency compared with the
present technique.

The disadvantages of the scheme are:

1. The differential files have to be merged with the
main files after a successful acceptance test of the
outermost recovery block. This may be expensive,
certainly if crash resistance is to be provided
during the merging. In the present system it merely
involves the freeing of some pages.

2. An access to a page must first search the
differential file. This could be solved by keeping
a table similar to the one described for the
optimised audit trail scheme (this table resembles
the page cache in the present scheme).

The two disadvantages of the optimised audit trail
scheme (with respect to crash resistance and multi-user
environments) compared with the present scheme, can only
exist for the differential file technique during the
merging of the differential files with the main files.
The main disadvantage is that merging has to be done and
may be expensive. Another advantage of the careful
replacement technique, compared with the differential
file technique, is that the scheme is more structured,
as described above, so the software should be more
reliable (for the same reasons as mentioned above,
although the differential file technique is more
integrated than an audit trail technique).

*

-141-

The only other technique that seems worth consideri~g 1S
the backup version and current version technique.

This technique would involve the creation o~ a
backup copy for every file operated upon inside a
recovery block. If recovery blocks are nested then r::2.:'.y
versions may have to be created. It is obvious that the
creation of a complete backup copy of a file before it
is u~date~ inside a recovery block will, in general, be
too 1neff1cient. The scheme could be optimised, as for
example for segments in System R (Lor77), using
different versions of page tables pointing to the files
data pages, such that the different versions of the
files overlap in identical pages. This, however, still
implies the dynamic creation of such a page table for
each file updated inside a recovery block. If a
particular page table fits in one disk page then this
scheme is identical to the careful replacement scheme
used (although no nesting of recovery blocks
(transactions) in System R is possible). If it does not
fit in one disk page then the overhead of having to copy
the whole page table will incur a bigger overhead then
the overhead in the present system. The significance of
this extra overhead depends on the number of disk pages
occupied by the page table and the average number of
updates of data pages inside a recovery block. This
page table versions scheme provides the same facilities
as the present scheme and has the same advantages and
disadvantages, but will generally be less efficient.

5.7 Some experimental results

Two experiments have been performed to examine the
overhead in disk accesses incurred by the use of recovery
blocks. The first one involved a little test program, which
was run without any recovery blocks and with recovery blocks
used in different ways. The second experiment involved a
real-life utility program, which was run to do certain tasks
both with and without using recovery blocks. The
experiments were such that the acceptance tests of all of
the recovery blocks used were trivial and always successful,
since we were only interested in measuring the overheads
incurred by the use of recovery blocks.

When considering the figures given in this section for
the number of disk accesses for different programs, the
following two aspects have to be taken into account:

-142-

1. The number of disk accesses required by a program may
not always be the same, if that program is run several
times. For example, the creation of a header will
require more disk accesses in case that header does not
fit in the last data page of the Header file, than when
it doe~ fit in that last page.

2. The filing system was developed as part of the research
done. The resulting prototype is, as most prototypes

·are, not very efficient, and no I/O buffers are used.
However, the experiments are still useful and give, in
the opinion of the author, a reasonable impression of
the overhead required even for more efficient
implementations.

-143-

5.7.1 A little ~ program

A little test program was written to examine the
overhead incurred by the use of recovery blocks in a
situation w~re it would be exactly known what was happening.
The program consists of two parts:
A: Create a file "TEST" and put a vector of 155 words in it

(data pages can contain 55 words).
B: Append another vector of 155 words to file "TEST".

This program was run in the following six structures:

1) A' 2) [;; 3) A' 4) E; 5) 6)

~:
, ,

B'

~ [I: ,
B· ,

B'

~
,

Where: [denotes: inside a recovery block.

The number of disk accesses performed for the running
of these programs has been subdivided into reads and writes
of free pages, directory pages and data pages. The measured
number of disk accesses are given in table 5.3.

disk accesses - program 1 2 3 4 5 6

writes: free pages 0 0 2 2 0 1

directory pages 7 8 8 8 7 9

data pages 14 15 16 l3 10 19

total 21 23 26 23 17 29

reads: free pages 7 8 8 9 7 9

directory pages 35 42 23 36 24 42

data pages 54 63 52 58 37 74

total 96 113 93 103 68 125

total number of accesses 117 l36 119 126 85 154
l'

Table 5.3, The measured number of disk accesses of a test
program using recovery blocks in different ways.

-144-

The only program which ~s cheaper than 1) is, not
surprisingly, program 5). A lot of disk accesses are sa\'ec
by not having to read the headers of TEST and the syste~
index (see chapter four) from disk every time: t~ey wi:l be
in the cache after the first time they are used, because a
field "date:-last-accessed" will be updated when a header is
read, causing the new header value to be cached.

The overhead is, in general, not very high. Only for
program 6 the overhead is just over 30% of the disk accesses
required when no recovery blocks are used. For the other
programs the overhead is about 15% or less.

5.7.2 A real-life utility program

Similar tests as with the test program in the previous
subsection, have been done with a BCPL compiler. There are
two good reasons for chosing the BCPL compiler to do these
experiments. The first reason is that the compiler is very
much a real-life program and, although the exact text ~2y
not have been published, it is generally known how the
compiler works. The second reason is that the compiler
operates on three files called TOKENS, OCODE and TEXT. It
empties these files and then uses them to store the tokens
in the TOKENS file, the produced OCODE vector in the OCODE
file and the final text in the TEXT file. So the compiler
uses the filing system fairly substantially. The compiler
basically consists of five parts which are invoked
subsequently:

LEX: the lexographical analyser, which reads the source code
from cards and writes the tokens to the TOKENS file.

SYN: the syntactical analyser, which reads the tokens from
the TOKENS file and produces an in-core tree.

TRN: the transformer, which transforms the identifiers into
internal addresses, so it resolves the addressing
problems. (This module transforms the in-core tree.)

OGN: the code generator, which takes the in-core
builds an OCODE vector which it writes to
file.

tree and
the OCODE

ASM: the assembler, which reads the OCODE from the OCODE
file and produces the final object code which it writes
to the TEXT file.

The program was run in the following four structures to
compile the same BCPL program (of about 30 lines of code)
for each case:

-145-

1) LEX; 2) 3) 4)
~X; SYN; LEX;

~EX; TRN; SYN;
OGN; TRN; ETI: ASM: OGN: fEYN; ASM;

ER..~;
feRN;

~GN; EGN;
~SM;

ESM;

Where: ~ denotes: inside a recovery block.

The number of disk accesses performed by the compiler
in these structures has been subdivided again into reads and
writes of free pages, directory pages and data pages. The
measured number of disk accesses are given in table 5.4.

disk accesses - program 1 2 3 4

writes: free pages 12 12 14 14

directory pages 12 12 12 12

data pages 40 28 46 48

total 64 52 72 74

reads: free pages 12 12 14 14

directory pages l2~ 82 164 208

data pages 182 98 336 324

total 31E 193 514 546

total number of accesses 382 244 586 620

T ble 5 4 The measured number of disk accesses of a BCPL a .,
compiler using recovery blocks in different ways.

-146-

The results are very similar to those obtained with the
little test program in the previous experiment. The figures
can be explained like with the little test program and need
no further commenting.

5.8 Conclusions

The recoverable filing system works exactly like the
standard filing system if no recovery blocks are used. If
recovery blocks are used then an overhead in disk accesses
will be incurred. This overhead will be significant if file
updates are sparse; if the number of updates of pages of one
file inside a recovery block is high, then the overhead will
be relatively small for the operations on that file,
especially if a good buffer management system is used. The
extra space necessary for the caches kept in core is
generally not expected to be much. The number of extra disk
pages necessary to maintain several versions of files is
difficult to estimate. The programs comprising the standard
filing system occupy 9K bytes, the programs comprising the
recoverable filing system occupy 16.5K bytes.

The major overheads are caused by the use of "free"
marks in free pages and the fact that the careful
replacement technique also causes directory pages to be
replaced whenever a data page is replaced (or added or
deleted), if that directory page has not yet been replaced
inside the current recovery block. Consequently, the more
pages of a file are updated inside a recovery block, the
less significant the overhead will be. (Pages are only
replaced once inside a recovery block: only one value needs
to be cached.)

The careful replacement technique used appeared to
compare well with other schemes. It is difficult to make
general conclusions about the efficiency of the technique
compared with other techniques, because much depends on the
use made of the system. However, certainly if a good buffer
management technique is incorporated in the system, keeping
directory pages as long as possible, and if free pages are
not marked "free", then the present technique is not
expected to incur a bigger overhead than other techniques.
The present technique was shown to have other advantages
over techniques that are more efficient under particular
circumstances. These advantages are the provision of crash
resistance and the structured way in which the provision of
recovery is embedded in the system, rather than having been
grafted on the system. These factors make the maintenance
of consistency in the system much easier.

-147-

~.£ DIRECTIONS FOR FUTURE RESEARCH AND CONCLUSIONS

6.1 Directions for future research

The present thesis has tackled the problems of
providing recovery in multi-level systems and for complex
data, but only in a uni-process environment. One of the
important topics of ongoing research is the provision of
recovery for parallel, possibly interacting, processes.
There are two ways in which this is approached at present
(these two approaches are basically also distinguished by
Curtice (Cur77)):

1. Prevent the interactions.

Clearly this approach is only feasible when the
interactions are not required, so that the results that
would be obtained by, for example, executing the
processes in sequences are acceptable. This can, for
example, be done by using a locking scheme, either
explicitly (Gra76) or implicitly (BaS77). The explicit
locking schemes are widely used in data base systems. A
user, or a program, can, in general, request access to
an object, in various modes. Gray, for example,
distinguishes six modes, such as exclusive access or
shared access. Several access modes are incompatible,
which means that if one user has access to an object in
a certain mode, then another user is refused access to
the same object in an incompatible mode. Thus such
locking schemes prevent unwanted interactions, while
still allowing shared access to objects in cases where
this will not lead to any unwanted effects of one
program on another program. Implicit locking by
programs is done if, for example, monitors (Hoa74) are
used to implement resource allocation algorithms.
Programs wishing to acquire and release resources
invoke appropriate monitor procedure calls. If these
locking schemes are used then basically uni-process
recovery techniques can be used, because the schemes
ensure that only one process at a time will update an
object and commit itself before releasing the object.
So other processes are prevented from updating that
object as long as the process which is updating that
object is in a unit of recovery, which may be, for
example, a transaction (Gra76) or a recovery block
(BaS77). A similar way in which the restrictions can
be enforced is by using a capability architecture
(Den76) to implement a high degree of error confinement
(Lin76). Compared with a lock, as used in a locking
scheme, a capability could be best described as a key;

-148-

a capability is a generalized permission to use storage
objects and procedures. Capabilities are, therefore.
in fact a means of implementing locking. The use of
capabilities prevents unwanted interactions like
locking schemes. and therefore limits the risk that
errors.will do much damage before being detected.

2. Synchronize the processes with respect to recovery.

Where interactions are intended and required, a
conversation, as described in chapter one, 1ncorporates
processes working on one task and prevents other tasks
from reading or writing objects updated by that task.
If one process involved in a conversation fails, then
the effects of the operations performed inside the
conversation by that process and all other processes
involved in the conversation will be undone. In order
to be able to back out all the processes involved
so-called recovery lines (RLT77) must exist. A recovery
line is a set of consistent recovery points (states
that can be reinstated by the recovery mechanism) for
the process which is 1n error, and for all other
processes affected.

These approaches are designed to overcome one of the
major recovery problems of parallelism. namely the so-called
domino-effect (Ran75). This effect occurs if no recovery
lines exist for the interacting processes. This means that
all the processes that have interacted with a failing
process. and all the processes that interacted with those
processes, and so on, will have to be backed out to their
"begin"-states. The two approaches above force the system
to progress such that recovery points always form recovery
lines, and so can be used if a failure occurs.

The present thesis has discussed recovery by state
restoration. Whenever a failure occurs, a state which is
hoped to be error-free is restored before attempting to
continue further operation. Other recovery techniques
deserve further investigation, for example:

* Error diagnosis and repair.
Instead of restoring a state when an error is detected,
an attempt could be made to identify the fault that
caused the error (RLT77), and repair the error(s) it has
caused. This may be very difficult, because different
errors may be caused by one fault and different faults
may cause the same error.

-149-

* Compensation.
Rather than undoing operations by state restoration, it
could be attempted to nullify the impacts of these
operations by compensating their effects. This can be
done by providing supplementary corrective information
(Dav72)., (RLT77). For example, if a data base had been
updated to indicate that an employee has been given a
£1000 wage increase, instead of an intended £100
increase, then a wage decrease of £900 could be g~ven as
compensation, rather than invoke some general form of
backing up of the data base.

Recovery techniques have been discussed and a survey of
existing techniques has been given. This thesis has not
concentrated on the costs of recoverability very much.
Different kinds of recovery can be used to provide recovery
for different kinds of failures or to provide different
degrees of recovery. For example, recovery may just restore
the data structures, such that they are in consistent or
valid states again, or it may restore the data to previously
existing valid states. Hardly any work has been done to
examine which failures recovery should cope with and what
degrees of recovery are required in different environments,
and what the costs are of providing them. The survey given
provides some general guide lines, rather than detailed
analyses of some degrees of recovery.

Apart from the costs of the recovery mechanisms used,
the costs of the error detection scheme used also have to be
taken into account. The error detection scheme used, and its
cost, will depend on the failures the recovery mechanism has
to cope with. Hardly any work, so far, has been done on
systematic approaches to error detection. Error detection is
absolutely essential to make recovery useful as a mechanism
for providing fault tolerance. Error detection, using
tests, could be done using the following two approaches:

1. Test if algorithms perform completely according to
their specifications.

2. Distinguish certain types of faults and errors, and
test for their presence (or absence).

Testing the validity of all of the input data and
parameters of procedures is an example of a systematic error
detection scheme based on the second approach. However, few
systematic ways in which tests can be constructed, using
either approach, are reported in literature (RLT77) and
little is known about the costs of error detection schemes.
Error detection in system software is generally done in an
ad hoc fashion using the second approach. Some initial work
on the construction of (run time) tests, using the first
approach, has been done and the results of this work and the
problems encountered are the subject of the rest of this

-150-

section.

6.1.1 The construction of complete acceptance tests

To date, hardly any work has been done on the
construction of run time tests for testing whether or not
the results of the programs comply with the specifications
of the programs. The notion of acceptance test, as used in
recovery blocks, will be used to denote such tests for the
purpose of this section. An acceptance test is just a
special (syntactic) form of error detection and can easily
be generalized to any other form of error detection. A
complete acceptance test is a test which tests whether all
the required effects-or-a computation have been achieved.

It is probably contrary to the spirit of acceptance
tests to expect or requ~re them to be as complete as
specifications of the programs they test, because they are
just a special form of error detection. Acceptance tests
could, for example, be used to check only redundant data or
check if the data are consistent (rather than whether they
have the correct value). However, the designer of the
acceptance test may want to know what would constitute a
complete acceptance test, so that he can decide what to put
in the (run time) test and what not. If a test is
constructed by trying to think of a few important effects of
the program to be checked then the designer of the test will
not have a very good idea of the degree of completeness of
the test; he doesn't know what the loopholes are, nor how
big they are.

A program designer may design his programs such that
redundant data, such as sumchecks, and tests on its
correctness are incorporated in programs and data. This may
increase the reliability of the programs enormously.
However, this approach will not be considered here. This
section will concentrate on acceptance tests that try to
test whether the required effects of programs were achieved
or not. Methods to find complete acceptance tests (which
may be cut down for efficiency reasons, in a particular
implementation) will be investigated.

To illustrate how difficult it is to construct complete
acceptance tests I will show a simple inconsistency in tests
used in a very simple example given in a report describing
the verification and abstraction in ALPHARD (WLS76).

ALPHARD provides the programmer a very nice framework
within which pre- and post-conditions for operations on
objects of the types being specified can be included. On
page 15 of this report the specification of type "stack" is

-151-

given to illustrate the concepts. The post-condition for
the operation "pop" on a stack is:

(s. sp=s. sp '-1)
where s = the stack

s.sp = the stack pointer
An apo.strophy is used to indicate the value before
the operation was performed.

So after a "pop" only the effects
are checked. This is of course not a
also the effects on the stack should be
the post-condition given for the

on the stack pointer
complete test since
checked. In contrast

complete, namely:
(s.sp=s.sp'+l) &

where s.v = a
a(v,n,x)

operation "push"

(s • v= a (s . v' ,s • s p , ,x))
vector used to represent the stack

a vector identical to v except that
v(n)=x.

~s

These kinds of errors in the construction of tests (or
conditions in ALPHARD) are very easy to make (even for very
simple types, as has been shown), unless these tests are
constructed such that their completeness and sufficientness
can be proven easily. This is still a big proble~. Another
big problem with the use of tests in multi-level systems is
an efficiency problem. It is shown that a system may spend
more time doing tests than actual processing, if complete
tests are used in multi-level systems.

6.1.2 A single computation

An abstract specification of a program specifies the
meaning and function of a program and the effects visible to
the user of the program. It does not specify actions to be
taken or operations to be performed for achieving these
effects and for implementing the program's functions. A
concrete specification of a program, however, does specify
these actions or operations.

If a program is a computation for which no abstract
specification exists, for example a numerical analysis
program built from a set of formulae (a very concrete
specification), then in general an acceptance test can only
be done by recomputing the result. The programmer may be
lucky in that that result (i.e. the effects of the program
which are visible to the user) can be checked easily. It
may also be possible that certain properties that must hold
for the result can be used to construct a number of tests
which may give a very good (possibly incomplete) acceptance
test. A test which simply does the same computation, is in
fact an application of majority voting rather than a
complete checking of the results.

-152-

6.1.3 The construction of acceptance tests from abstract

specifications

Programs in software systems considered in this thesis.
are programs that can be regarded as implementations of
operations on abstract types. There are several formal
methods in which data types and operations on them can be
defined. A very good survey of existing techniques is g~ven
by Liskov and Zilles (LiZ75). Formal specifications could
also be used to design and implement the acceptance tests
for the operations.

One of the most promising specification methods (for
building acceptance tests using specifications) is Guttag's
specification method for abstract data types (Gut75). This
is the only known specification method which disentangles
the abstract meaning of a data type from a particular
representation of it. The specification method consists of
two parts:

1. A syntactic specification

2. A set of relations (axioms).

As an example the specification of type "stack" might
be as follows:

1) Syntactic specification:
NEWSTACK --> stack
PUSH stack*integer --> stack
POP stack --> stack
TOP stack --> integer

2) Axioms:
TOP (NEWSTACK) c: error
TOP(PUSH(stackl.integerl)) = integerl
POP (NEWSTACK) = error
POP(PUSH(stackl.integerl)) stackl

Suppose that the specifications are given, then the
question is whether acceptance tests, for the operations
defined, can be constructed using the axioms. What is to be
checked by the acceptance test of an operation is whether
the operation performed did not contradict any of the
axioms. If it can be shown that the operation did not
contradict any of the axioms then it follows automatically
that the operation was performed according to the
specifications. If the acceptance test tests all of the
axioms then the correctness of the acceptance test is
implicit and does not have to be proven explicitlY.

In order to "construct" an acceptance test for an
operation on a type, using the axioms, the following is

-153-

done:

* Take all the axioms in which the operation occurs.

* Use these axioms to formulate an acceptance test :cr
that operation.

* Show that none of these axioms can ever be H'.
contradiction with the acceptance test.

To show how this could be
PUSHeS ,x) (see specification
follows:

done the acceptance test for
above) is constructed as

* There are two axioms ~n which PUSH occurs:
TOP(PUSH(S,x))=x
POP(PUSH(S,x))=S

* The acceptance test AT(PUSH(S,x)) is:
TOP(S)~x & POP(S)~ prior S.
(Note: S stands for the value of the stack after the
execution of PUSH(S,x), pri(r S denotes the value of S
before the execution of PUSH S,x).)
The operation ~ is a boolean operation which returns
"true" if both operands have equal value and "false"
otherwise.

* This acceptance test merely checks whether or not the
operation PUSH complies with its definition since it
just validates the results of the operation against the
axioms. It is obvious that the axioms are not
contradicted when the acceptance test is true, and if
the operation PUSH has been performed correctly then the
acceptance test must be true.

In general the axioms cannot be used so easily to
construct the parts of the acceptance test. To show this we
examine the construction of the acceptance test for TOP(S)
(x is the result of operation TOP(S)):

* There are two axioms in which TOP occurs:
TOP (NEWSTACK)=error
TOP(PUSH(S,x))=x

* The acceptance test for TOP(S) consists of two parts:

The first part is derived from the first axiom:
if result is error ~ prior S ~ l'o"'EI,'STACK

*

-154-

The second part is derived from the second axiom:
PUSH(?,x) ~ prior S,
The 7 in the expression is to be solved. This ~s
simply a matter of solving a number of equations:
the axioms and the equation above. Axiom
POP(PUSH(S,x))=S is used to solve "?":
POP(PUSH(?,x))=POP(prior S)=7.
So the second part of the acceptance test is:
PUSH(POP(prior S),x) ~ prior S.
The complete acceptance test is:
if result ~s error then S ~ NEWSTACK

else PUSH(POP(prior S,x) ~ prior S.

The proof of correctness of the acceptance test is very
trivial. The axioms involved can easily be used to show
that if the acceptance test is true then the axioms are
obeyed, and if the operation was performed correctly
(the axioms were not contradicted) then the acceptance
test will give the result "true". This proof will not be
shown here.

The acceptance tests obtained in the way shown above
are exactly the post-conditions in the specifications in
ALPHARD. These tests can also be "translated" into so-called
output assertions (WLS76), which are the post-conditions in
terms of the representation used for the type. The
acceptance test of an operation could be specified either in
abstract terms (the post-condition) or concrete terms (the
output assertion) and for the sake of efficiency could be
made incomplete. However, the complete test will be known
and the programmer will know the risks and loopholes if he
decides to use an incomplete test.

An acceptance test (for a certain operation on a type)
makes use of other operations on the type, but acceptance
tests for those operations are not incorporated in those
operations. Obviously this is not necessary, because if, for
example, always TOP(S)=x & POP(S)= prior S (operations TOP
and POP without acceptance test) after PUSH(S,x) then the
program tested provides a correct implementation of
PUSH(S,x).

At first sight the method used seems a good
Unfortunately, however, this method suffers from two
problems if complete acceptance tests are required.
first problem is called the "computability" problem,
second one is called the "constructability" problem.

one.
big
The
the

The first problem (the computability problem) is that
predicates on instances of the specified types are not
always computable given the operations on the abstract type.
For example the operation "~" for type stack is not given in
the specification of stack shown above. However, this
operation is needed in the acceptance tests of operations on

-155-

type stack.

A possible solution to this problem is to extend the
specification of type stack with an operation EQUAL? This
can be done as follows:

* Syntactic specification:
EQUAL? stack*stack --> boolean

* Axioms:
EQUAL? (NEWSTACK,NEWSTACK) true
EQUAL? (NEWSTACK,PUSH(S,x» IalSe
EQUAL?(PUSH(S,x),NEWSTACK) = false
EQUAL?(PUSH(Sl,xl),PUSH(S2,x2»=

EQUALINT?(xl,x2) & EQUAL?(Sl,S2)
(EQUALINT? is the operation ~ on integers.)

The acceptance test for EQUAL? is AT(EQUAL?(Sl,S2»=
(if result is (false) then (Sl=NEWSTACK&S2+NEWSTACK) or

--rsl~NEWSTACK&S2=NEWSTACK)
~ (Sl=NEWSTACK&S2=NEWSTACK»

or
trSl=PUSH(POP(Sl),TOP(Sl»&S2=PUSH(POP(S2),TOP(S2»&

EQUALINT?(TOP(Sl),TOP(S2»&EQUAL?(POP(Sl),POP(S2»)

The operation EQUAL? can now be used for ~ in the
acceptance tests for the other operations. However, it is
important to realize that this operation EQUAL? in that case
must be correct for the acceptance test to be correct.

If operations TOP, POP and PUSH in the implementation
work differently than intented then the implementation of,
for example, PUSH is still correct if TOP(S) ~ x & POpeS) ~
prior S is true after the execution of PUSH, If for the
operation ~ on stacks EQUAL? is used then this operation
must be correct.

The second problem (the constructability problem) is
that the construction of acceptance tests from the axioms
may not be as easy as suggested in the stack-example. To
illustrate this another example is given below.

The specification of type queue could be:

* Syntactic specification.
EMPTY --> queue
ADD queue*integer --> queue
REMOVE queue -- > queue
FRONT queue -- > integer
?EMPTY? queue -- > boolean

-156-

* Axioms.
1. ?EMPTY7(EMPTY) = true
2. ?EMPTY7(ADD(Q,i)) IaiSe
3. FRONT(EMPTY) error
4. FRONT(ADD(Q,i)) = if ?EMPTY?(Q) ~ i ~ FRO~T(Q)
5. REMOVE(EMPTY) --= error
6. REMOVE(ADD(Q,i)) if ?EMPTY?(Q) then EMPTY else

-- ADD (REMOVE (Q),T) -

The acceptance test for x=FRONT(Q) is not so easy to
construct. The construction of it is tried below.

*

*

Applying the third axiom gives: if result is (error)
~ prior Q = EMPTY ... (1).

Applying the fourth axiom gives: 2rior Q = ADD(?1,?2).
?l and ?2 have to be found. Apply~ng FRONT gives:
FRONT(prior Q) = FRONT(ADD(?1,72)) =(ax.4)
if 7EMPTY?(?l) then ?2 else FRONT (?l) ... (*)
AXiom 6 gives: Q=ADD(EMPTY,x) ==> REMOVE(Q)=E}~TY.
Using (*) this gives:
if ?EMPTY?(REMOVE(prior Q)) then prior Q=ADD(EMPTY,x). rr is still to be resolved in:---
if~?EMPTY?(?l) then FRONT(?l) = x.
The term.., ?EMPTY"?TIT) can be replaced by:
~?EMPTY?(REMOVE(prior Q)).
The biggest problem is to find a useful equivalent for
x=FRONT(7l). From the axioms it is obvious that 71 ~s
equal to prior Q without the element last put in. To
find ?l a "piece of program" which constructs ?l is to
be written, like given below:

ql = EMPTY
begin

y FRONT(q)
q REMOVE (q)
ql ADD(ql,y)

end repeat until ?EMPTY?(REMOVE(q))
After this program 71 = ql.

The correctness of this program is far from obvious.
Of course an operation to form 71 could be defined, but that
would be a rather strange operation for this type queue, and
its specification might be as difficult as proving the
correctness of the piece of program shown above.

Obviously this solution is not satisfactory at all. The
problem is that elements are put in the queue at the
"bottom" and taken away from the "top". The only way ~n
which the bottom element can be seen is by taking away all
elements from the "top" of the queue.

*

*

-157-

Summarizing:

If the specification method used exhibits a
representational bias then the acceptance test
programmer will probably have to know certain
impleme~tation details. This makes the proving of the
sufficiently completeness of both the specifications and
the acceptance tests very difficult. Therefore abstract
specifications seem most us~ful for the construction of
complete acceptance tests.

Abstract specifications merely specify a type (i.e. its
semantics and the operations on it).
Therefore they seem unsuitable for practical use for the
construction of for example acceptance tests.

6.1.4 An acceptance ~ problem in multi-level systems

If complete acceptance tests are used in programs in a
multi-level system, in the way suggested in the previous
subsection, then these tests may cause a pyramid effect in
tests being invoked.

An example to illustrate this effect is given below:
Suppose that in a multi-level system as described by Madnick
and Alsop (MaA69) the following routines exist in different
levels:
1) write in file
2) write-in-volume
3) write:in:Jage
4) write in disk block
Operation 1) invokes 2) which ~n turn invokes 3) which
subsequently invokes 4).

Suppose that every routine has a complete acceptance
test, then the acceptance test of 1) will be: read file(...)
plus a test on the data read. This operation -read file
invokes operation read volume. Operation read volume
invokes read-yage which Invokes read disk block. Operation
write in file invokes operation -write in volume. The
acceptance test for write in volume - will be:
read volume(•.•) plus a test on- the data read. This
operation read volume invokes read-yage which invokes
read disk block7 Similarly write in volume invokes
write_in~age, which has a complete acceptance test. And so
on.

So a pyramid effect is created. This effect can easily
cause the system to slow down to such an extent that it
spends more time performing acceptance tests than the actual
operations. For example, if write_in_file, in the example

-158-

above, causes one disk write then another four disk reads
will be done in the acceptance tests of the four operations
(provided that complete acceptance tests are used in the
four operations), So the whole operation will cost five disk
accesses in stead of one,

-159-

6.2 Conclusions

The first part of this thesis has investigated the
Completely Recoverable Interface (CRI) scheme and a
Partially R~coverable Interface (PRI) scheme. It ~as sho~
that in certain cases the PRI scheme is less extravagant in
space and time than the CRI scheme. The CRI scheme also
appears to be possible only for multi-level systems
consisting of interpreters. The PRI scheme has been sho~ to
be a good alternative.

The consequences of having recoverable and
interface and of mapping ne~
have been sho~. The main

unrecoverable types in a single
types onto unrecoverable types
consequences and conclusions are:

1. A special mechanism is needed to allo~ a PRI level to
use unrecoverable types inside recovery blocks. This
mechanism is called the logging mechanism. Basically
this mechanism provides, semi-automatically, sufficient
recoverability for those types. The recoverability is
not recoverability as defined in the beginning of this
report, because the state of the machine as seen by
this PRI level may not be restored exactly to its
original state (for example as in the buffer management
example described previously). User programs can use
the ne~ recovery block structure, provided by the
logging mechanism, and are not a~are of the ~ays in
~hich recovery is provided for files and variables in
the system. A logging mechanism has been implemented
in a t~o-level prototype system and, as expected, did
not lead to a great overhead in the programming effort.
A cost analysis of this prototype is described in
chapter four.

2. An unrecoverable data structure called a log is used as
part of that mechanism (for the implementation
described, see also Fig.3.5). The fact that this log
has to consist of unrecoverable data structures has t~o
main consequences:

a. Extra protection is needed for the log, since
recovery from corruption is not possible.

b. It seems preferable also to provide unrecoverable
objects of the same types as the recoverable types
that are provided. The reasons for this is that a
level does not kno~ ~hat types the next level up
~ill ~ish to use for the implementation of a log.
Another reason for this is, ho~ever, that higher
levels may ~ant unrecoverable objects of the ne~ly
provided types for the representation of more
abstract recoverable types (for ~hich these higher

-160-

levels wish to provide recovery explicitly).

As seen previously, it is also useful to have
unrecoverable objects for debugging purposes. So
even if a log does not have to be unrecoverable, as
WqS shown to be, possible in other implementations,
it would st~ll be preferable to provide
unrecoverable objects of the same types as the
recoverable objects provided.

In particular cases, where a level provides some new
recoverable types which are mapped onto unrecoverable types
of the underlying machine and does not change the interface
any further, the logging mechanism appears to be very
suitable for implementing what have been called recoverable
type managers. Levels in, for example, operating systems in
many cases can be regarded as extending an existing
interface by providing some new types. Recoverable type
managers appear to be very suitable for the construction of
such levels (in recoverable multi-level systems). The
flexible use of recoverable type managers has been
demonstrated in examples given and ~n the implemented
two-level prototype system.

If a procedural level provides new recoverable types by
performing the cacheing and providing a new recovery block
structure, then it would map these new types onto
unrecoverable types (it only makes sense if they are mapped
onto unrecoverable types). It was shown that this does not
have to be a restriction, because levels can be made to
provide recoverable and unrecoverable objects of a type in a
reliable way. Higher levels can then use unrecoverable
objects of that type to provide a new (more abstract)
recoverable type.

The
good way
approach
provided

recovery-for-types approach appears to be a very
to build up reliable multi-level systems. This

was compared with an approach whereby recovery is
for operations.

The major conclusion of the first part of the thesis is
that partially recoverable interfaces form a useful, and for
efficiency reasons probably necessary, concept for the
building of recoverable multi-level systems. It has been
shown that the concept is not only useful but also
implementable and flexible.

The problems of providing recoverability for complex
data structures have been discussed in the second part of
this thesis. It appears that using a recovery cache to
cache previous values of all objects is not a sufficient
mechanism as such. The kind of information cached and the
way in which updates are made appear to be of extreme
importance if recoverability is to be provided ~n a

-161-

"reasonably efficient" way. and to guarantee consistency of
the data structures after a crash (although no measure of
efficiency has been defined). Also the way in which complex
data structures are formed has been shown to be important if
recovery is to be provided for those structures.

A main conclusion is that data providing an abstraction
("mapping tables") and information carrying data have to be
separated both conceptually and physically whenever
possible. They have to be treated differently when
recoverabi1ity is to be provided for them.

Different strategies and mechanisms that guarantee that
the data structures will have the states they were in before
entering the (outermost) recovery block in case a crash
occurs have been described and compared. These mechanisms
are said to provide crash resistance. It appeared that
crash resistance can always be provided. but possibly at
very high costs. A prototype recoverable filing system
incorporating many of the mechanisms discussed has been
implemented successfully and has been described for
illustration purposes.

Finally a cost analysis of the implemented recoverable
two-level system (including the recoverable filing system)
has been given. It is difficult to make a cost benefits
comparison since benefits could not really be measured.
However. the costs of the recovery mechanisms used in the
filing system seemed justified. partly because the
programmer may decide not to use the recovery provided. in
which case there is virtually no overhead.

-162-

REFERENCES

And75
Anderson, T. ,
"Provably safe programs".
Technical Report 70, Computing Laboratory,
University of Newcastle upon Tyne, England,
February 1975.

AnK76
Anderson,T., Kerr,R.,
"Recovery blocks in action: a system supporting high
reliability".
Proc. 2nd. Int. Conf. on Software Engineering,
San Francisco, U.S.A., October 1976,
pp.447-457.

Ast75
Astrahan,M.M., Boyce,R.F., Chamberlin,D.D.,
Eswaren,K.P., Fehder,P.L., Mehl,J.W.,
" SE QUE L, Re 1 e a s e 2".
IBM Research Laboratory, San Jose, California,
February 1975.

Ast76
Astrahan,M.M., et aI,
"System R : Relational approach to data base management".
ACM Transactions on data base systems,
Vol.l,2, June 1976, pp.97-l37.

Avi71
Avizienis,A., Gilley,G.C., Mathur,F.P.,
Rennels,D.A., Rohr,J.S., Rubin,D.K.,
"The STAR (Self-Testing-and-Repairing) Computer:
an investigation of the theory and practice of
fault-tolerant design".
IEEE Transactions on Computers, Vol.c20,ll,
November 1971, pp.13l2-l32l.

Avi75
Avizienis ,A. ,
"Fault-tolerance and fault-intolerance:
Complementary approaches to reliable computing".
Proc. Int. Conf. on reliable software.
Los Angeles, April 1975, pp.458-464.
(SIGPLAN Notices 10,6).

-163-

BaS77
Banatre,J-P .• Shrivastava,S.K.,
"Reliable resource allocation between unreliable
processes".
Technical Report 99, Computing Laboratory,
Univers.ity of Newcastle upon Tyne, England,
April 1977.

BaW76
Bartussek,W., Wurges,R.,
"Proving that an implementation meets its abstract
verification".
Research group on operating systems.
T.R. Darmstadt, Germany,
Forschungsbericht BSI 76/2, Darmstadt, Hay 1976.

Bir73
Birtwistle,G.M., Dahl,O-J., Myhrhaug,B., Nygaard.K.,
"SIMULA BEGIN".
Auerbach Publishers Inc., Philadelphia, Pa., 1973.

BjD72
Bjork,L.A., Davies,C.T.,
"The semantics of the presentation and recovery of
integrity in a data base system".
IBM - Technical Report, TR 02.540, December 1972.

Bjo74
Bjork.L.A. ,
"Generalised audit trail (Ledger) concepts for data
base applications".
IBM - Technical Report, TR 02.641, September 1974.

Bjo75
Bjork,L.A. ,
"Generalised audit trail requirements and concepts for data
base applications".
IBM Systems Journal, Vol.14,3, 1975, pp.229-245.

Bor72
Borgerson,B.R. ,
"Dynamic confirmation of system integrity".
AFIPS Conf. Proe. Vol.4l, part I,
AFIPS Press, Montvale, New Yersey,
1972, pp. 89-96.

-164-

Boy75
Boyer,R.S., Elspas,B., Levitt,K.N.,
"SELECT. A formal system for test~ng and debugg' g • .L ~n progra::-.s
by symbolic execution".
Proc. Int. Conf. on reliable software.
Los Angeles, April 1975, pp.234-245.
(SIGPLAN Notices 10,6).

Cur77
Curtice,R.M. ,
"integrity in data base systems".
Datamation, Vol.23,5, May 1977, pp.64-68.

DaN65
Daley,D.C., Neumann,P.G.,
"A general purpose file system for secondary storage".
F]CC 1965, pp.2l3-229.

Dav72
Davies, C. T • ,
"A recovery/integrity architecture for a data system".
IBM, Technical Report TR 02.528,
May 1972.

DDH72
Dahl,O.]., Dijkstra,E.W., Hoare,C.A.R.,
"Structured programming".
A.P.I.C. Studies in Data Processing, No 8, 1972
(Academic Press London and New York).

Den76
Denning ,P.]. ,
"Fault-tolerant operating systems".
ACM Computing Surveys, Vol.8,4, December 1976, pp.359-390.

DeW73
De Witt,D.]., Schlansker,M.S., Atkins,D.E.,
"A micro programming language for the B-1726".
Preprints of the sixth annual workshop on
microprogramming.
ACM SIG HICRO, university of Maryland 1973, pp.21-29.

Dij 68
Dijkstra,E.W,
"The structure of the THE mUltiprogramming system".
Comm. ACH, Vol.ll,5, 1968, pp.34l-346.

-165-

Ela72
E1spas,B., Levitt,K.N., Wa1dinger,R.J.,
Waksman,A"
"An assesment of techniques for proving program correctness".
ACM Computing Surveys, Vo1.4,2, June 1972, pp.97-l47.

EMA74
EMAS-Report 2
EMAS-Report 3

EMAS-Report 4

Department of

EsC75

"The EMAS directory" (by Rees,D.J.).
"The standard EMAS subsystem" (by ~1illard,G.E.,
Rees,D.J., Whitfield,H.).
"The Edinburgh Multi-Access System scheduling
and allocation procedures in the resident
supervisor"
(by Shelness,N.A., Stephens,P.D., Whitfield,H.).

Computer Science of Edinburgh, April 1974.

Eswaran,K.P., Chamberlin,D.D.,
"Functional specifications of a subsystem for data base
integrity".
Proc. Int. Conf. on Very Large Data Bases,
Framingham, MA, September 1975, pp.48-68.

Fra69
Fraser ,A. G. ,
"Integrity of a mass storage filing system".
The Computer Journal, Vol.12,l, February 1969.

Gam73
Gamble,J.N. ,
"A file storage system for a multi-machine environment".
Ph.D. thesis, Victoria University, Manchester, England,
October 1973.

Gil74
Gilb,T.,

GiS

"Parallel programming".
Datamation, Vol.20,10, October 1974, pp.160-l6l.

Giordano,N.J., Schwartz,M.S.,
"Data Base Recovery at CMIC".
Proc. 1976 SIGMOD Int. Conf. on Management of Data,
Washington D.C., June 2-4, 1976, pp.33-42.

GoG75
Goodenough,J.B., Gerhart,S.L.,
"Toward a theory of test data selection".
Proc. Int. Conf. on Reliable Software.
Los Angeles, April 1975, pp.493-5l0.
(SIGPLAN Notices 10,6).

-166-

Gra76
Gray,J.N., Lorie,R.A., Putzolu,G.R.,
Traiger,J .L.,
"Granularity of locks and degrees of consistency in
a shared data base".
Modelling in data base management systems,
(Nij ssen,G.M., ed.),
North-Holland Publishing Company 1976, pp.365-394.

Gut75
Guttag,J.V. ,
"The specication and application to prograrmning of
abstract data types".
Ph.D. thesis,
Dept. of Compo Sc., University of Toronto, Canada,
1975.

Gut76
Guttag,J.V., Horowitz,E., Musser,D.R.,
"Abstract data types and software validation".
Information Science Institute, California.
ISI/RR-76-48, August 1976.

Hoa74
Hoare,C .A.R. ,
"Monitors: an operating system structuring concept".
Comma ACM Vol.17,10, October 1974, pp.549-557.

Hor74
Horning,J.J., Lauer,H.C., Melliar-Smith,P.M.,
Randell, B. ,
"A program structure for error detection and recovery".
Proc. Conf. on Operating Systems, IRIA,
1974, pp.177-l93.

IBMa
IBM, System/360 & System/370
"Fortran IV Language".
GC28-65l5-l0, File no S360/370-25.

IBMb
IBM, System/360 Operating system
"PL/I (F) Language Reference Manual".
GC28-820l-4, File no S360-29.

IBMc
IBM, Information Management System.
IMS/VS, "Utilities reference manual", SH20-9029
IMS/VS "Operators reference manual", SH20-9028
IMS/V~: "System programmer reference manual", SH20-9027

-167-

Inf75
"Infotech state of the art report,
data base systems".
Infotech Information Limited, ~ico1son House,
Maidenhead, Berkshire, England,
1975.

Jac75
Jackson,M.A. ,
"Principles of program design".
A.P.I.C. Studies in Data Processing, ~o 12, 1975
(Academic Press London and New York).

Ker74
Kerr,R. ,
"An alternative implementation of the recursive cache".
Internal memo SRM/79 , Computing Laboratory,
University of Newcastle upon Tyne, England.
March 1974.

Kin76
King,J .C.,
"Symbolic execution and program testing".
Comm. ACM, Vo1.19.7, July 1976. pp.385-394.

Knu73
Knuth,D.E.,
"The art of computer programming, Vo1.II1
searching".
Addison-Wesley, Reading, Mass., 1973.

Kop74
Kopetz,H. ,
"Software redundancy in real time systems".

sorting and

Proc. I.F.I.P., Stockholm. Sweden, 1974, pp.182-186.

Lam75
Lampson,B.W. ,
"An open operating system for a single-user machine".
Xerox Palo Alto Research Center,
Palo Alto, USA, January 1975.

LaS76
Lampson,B., Sturgis,H.,
"Crash recovery in a distributed data storage system".
Computer Science Laboratory,
Xerox Palo Alto Research Center, Palo Alto,
California, 1976.

-168-

Lin76
Linden,T .A.,
"Operating system structure to support security and
reliable software".
ACM Computing Surveys, Vol.8,4, December 1976,
pp.409-445.

Liz75
Liskov,B., Zilles,S.,
"Specification techniques for data abstraction".
Proc. Int. Conf. on reliable software
Los Angeles, April 1975, pp.67-72.
(SIGPLAN Notices 10,6)

LoK68
Lockemann,P.C., Knutsen,W.D.,
"Recovery of disk contents after system failure".
Comm. ACM, Vol.ll,8, 1968, pp.542.

Lor77
Lorie,R.A. ,
"Physical integrity 1n a large segmented database".
ACM Transactions on Database Systems, Vol.2,1,
March 1977, pp.9l-l04.

MaA69
Madnick,S.E., Alsop,J.W.,
"A modular approach to file system design".
AFIPS Conference Proc., Vol.34, 1969, pp.1-13.

Mar75
Martin,J. ,
"Computer data-base organisation".
Prentice-Hall Inc., 1975.

Mar76
Martin,J. ,
"Principles of data-base management".
Prentice-Hall Inc., 1976.

Mas 71
Mascall,A.J.,
"Studies of the reliability and performance of computing
systems at Barclays Bank".
Internal memo SRM/10, Computing laboratory,
University of Newcastle upon Tyne, 1971.

Mas73
Mascall,A.J. ,
"Checkpoint, backup and restart in a "reliable" system".
Internal memo SRM/37 , Computing Laboratory,
University of Newcastle upon Tyne, April 1973.

MeS77
Xelliar-Smith,P.M.,

-169-

"On reliability in data base systems".
(unpublished report, Computing
Laboratory, University of Newcastle upon Tyne, England).
1977 •

MeR77
Mel1iar-Smith,P.M., Rande11,B.,
"Software reliability: the role of prograrmned
exception handling".
ACM Conf. on language design for reliable software.
North Carolina, USA, March 1977, pp.95-l00.
(SIGPLAN Notices 12,3)

MiM75
Mil1er,E.F., Me1ton,R.A.,
"Automated generation of testcase datasets".
Proc. Int. Conf. on Reliable Software.
Los Angeles, April 1975, pp.5l-58.
(SIGPLAN Notices 10,6).

New72
N ewe 11 , G. B. ,
"Security and resilience in large scale operating
systems".
1900 Series Operating Systems Division.
International Computers Limited, London, S.W. 15,
England, 1972.

Par72a
Parnas,D.L. ,
"A technique for software module specification with examples".
Corom. ACM, Hay 1972, pp.330-336.

Par72b
P arnas , D • L. ,
"On the criteria to be used in decomposing systems
into modules".
Comm. ACH, December 1972, pp.1053-1058.

Ran70
Rande11,B. ,
"Visit to BOAC".
Internal memo SRM/5, Computing Laboratory,
University of Newcastle upon Tyne, 1970.

Ran75
Randell,B.,

-170-

"System structure for software fault tolerance".
IEEE Trans. on Software Engineering, SE-l,2
June 1975, pp.220-232.
(also published as Technical Report no 75, Computing
Laboratory, University of Newcastle upon Tyne, England).

Rap75
Rappaport, R. L. ,
"File structure design to facilitate on-line
instantaneous updating".
ACM SIGMOD Conf. May 1975, pp.1-14.

Ric69
Richards, M. ,
"BCPL: a tool for compiler writing and system
programming".
Spring Joint Computer Conference 1969, pp.557-566.

Ric7l
Richards, M. ,
"The portability of the BCPL compiler".
Software-Practice and Experience, Vol.l,
April-June 1971, pp.135-l46.

Ric73
Richards, M. ,
"The BCPL Programming manual".
The Computing Laboratory, University of Cambridge,
England, 1973.

RLT77
Randell,B., Lee,P.A., Treleaven,P.C.,
"Reliable computing systems".
Technical Report 102, Computing Laboratory,
University of Newcastle upon Tyne, England,
June 1977.

Rob75
Robinson,L., Levitt,K.N., Neumann,P.G.,
Saxena,A.R. ,
"On attaining reliable software for a secure operating
system".
Proc. Int. Conf. on reliable software.
Los Angeles, April 1975, pp.267-284.
(SIGPLAN Notices 10,6).

Sat72
Satterthwaite, E.,
"Debugging tools for high level languages".
Software-Practice and Experience.
Vol.2,3, 1972, pp.197-2l9.

-171-

Sch73
Schwartz,M. S.,
"A storage hierarchical addressing space for a cor::puter
file system".
Ph.D. thesis, Case Western University, U.S.A., 1973.
(also ayailable as Jennings report 1144.)

SeL76
Severance,D.G., Lohman,G.M.,
"Differential files: their application to the maintenance
of large databases".
ACM Transactions on Database Systems, Vol.l,3,
September 1976, pp.256-267.

Sk176
Sklaroff, J . R. ,
"Redundancy management technique for space
shuttle computers".
IBM Journal of Research and Development,
Vol.20,1, January 1976, pp.20-28.

Sno76
Snow, C. R. ,
"An exercise in the transportation of an operating syster..".
Technical Report no 94, Computing Laboratory,
University of Newcastle upon Tyne, England, December 1976.

SmH72
Smith,J.L., Holden,T.S.,
"Restart of an operating system having a permanent
file structure".
The Computer Journal, Vol.15,1, 1972, pp.2S-32.

StS72a
Stoy,J.E., Strachey,C.,
"OS6 - An experimental operating system for a small
computer.
Part 1: general principles and structure".
The Computer Journal, Vol.lS, 1972, pp.117-l24.

StS72b
Stoy,J.E., Strachey,C.,
"OS6 - An experimental operating system for a small
computer.
Part 2: input/output and filing system".
The Computer Journal, Vol.15, 1972, pp.195-20l.

StS72c
Stoy,J.E., Strachey,C.,
"The text of OSPub".
Oxford University Computing Laboratory.
Programming Research Group, July 1972.
Technical Monograph PRG - g t.

StS72d
Stoy,J.E., Strachey,C.,
"The text of OSPub".

-172-

Oxford University Computing Laboratory.
Programming Research Group, July 1972.
Technic.al Monograph PRG - g c.

Tay76
Taylor,J .M.,
"Redundancy and recovery in the HIVE virtual machine".
Royal signal and radar establishment, Christchurch,
England, Report no. 76010, May 1976.

Tit74
Titman,P.J. ,
"An experimental data base system using binary relations".
Data base management (Klimbie,J.W. and Koffeman,K.L. eds.)
North-Holland Publishing Company, 1974, pp.35l-360.

Ton75
Tonik,A. B. ,
"Checkpoint, restart and recovery:
selected annotated bibliography".
FDT, Bulletin of ACM - SIGMOD, Vol.7,3-4, 1975.
pp.72-76.

Ver76
Verhofstad,J,
"A recoverable OCODE machine, a technical note".
Internal memo SRM/158, Computing Laboratory,
University of Newcastle upon Tyne,
England, November 1976.

Ver77
Verhofstad,J.,
"Recovery and crash resistance in a filing system".
ACM SIGMOD Conf., Toronto, Canada, August 1977.

Ver77a
Verhofstad,J.,
"The costs of recoverability provided by a fault tolerant
OCODE interpreter".
Internal memo,
Computing Laboratory, University of
Newcastle upon Tyne, 1977.

Von76
Vong,Y.S.,
"A recovery cache mechanism using a highspeed buffer".
M.Sc. Thesis,
Computing Laboratory, University of
Newcastle upon Tyne, 1976.

-173-

Wen72
Wensley, J. H. ,
"SIFT - software implementation fault tolerance".
AFIPS Conf. Proc. Vol.41, part I,
AFIPS Press, Montvale, New Yersey,
1972, pp243-2SS.

Wim71
Wimbrow,J.H.,
"A large-scale interactive administrative system".
IBM Systems Journal, Vol.lO,4, 1971, pp.260-282.

WLS76
Wulf,W.A., London,R.L., Shaw,M.,
"Verification and abstraction in ALPHARD".
Carnegie-Mellon University, January 1976.

Wye73
Wyeth,D. ,
"Estimates for the size of the recursive cache".
Internal memo SRM/7l, Computing Laboratory,
University of Newcastle upon Tyne, England,
December 1973.

	476039_0001
	476039_0002
	476039_0003
	476039_0004
	476039_0005
	476039_0006
	476039_0007
	476039_0008
	476039_0009
	476039_0010
	476039_0011
	476039_0012
	476039_0013
	476039_0014
	476039_0015
	476039_0016
	476039_0017
	476039_0018
	476039_0019
	476039_0020
	476039_0021
	476039_0022
	476039_0023
	476039_0024
	476039_0025
	476039_0026
	476039_0027
	476039_0028
	476039_0029
	476039_0030
	476039_0031
	476039_0032
	476039_0033
	476039_0034
	476039_0035
	476039_0036
	476039_0037
	476039_0038
	476039_0039
	476039_0040
	476039_0041
	476039_0042
	476039_0043
	476039_0044
	476039_0045
	476039_0046
	476039_0047
	476039_0048
	476039_0049
	476039_0050
	476039_0051
	476039_0052
	476039_0053
	476039_0054
	476039_0055
	476039_0056
	476039_0057
	476039_0058
	476039_0059
	476039_0060
	476039_0061
	476039_0062
	476039_0063
	476039_0064
	476039_0065
	476039_0066
	476039_0067
	476039_0068
	476039_0069
	476039_0070
	476039_0071
	476039_0072
	476039_0073
	476039_0074
	476039_0075
	476039_0076
	476039_0077
	476039_0078
	476039_0079
	476039_0080
	476039_0081
	476039_0082
	476039_0083
	476039_0084
	476039_0085
	476039_0086
	476039_0087
	476039_0088
	476039_0089
	476039_0090
	476039_0091
	476039_0092
	476039_0093
	476039_0094
	476039_0095
	476039_0096
	476039_0097
	476039_0098
	476039_0099
	476039_0100
	476039_0101
	476039_0102
	476039_0103
	476039_0104
	476039_0105
	476039_0106
	476039_0107
	476039_0108
	476039_0109
	476039_0110
	476039_0111
	476039_0112
	476039_0113
	476039_0114
	476039_0115
	476039_0116
	476039_0117
	476039_0118
	476039_0119
	476039_0120
	476039_0121
	476039_0122
	476039_0123
	476039_0124
	476039_0125
	476039_0126
	476039_0127
	476039_0128
	476039_0129
	476039_0130
	476039_0131
	476039_0132
	476039_0133
	476039_0134
	476039_0135
	476039_0136
	476039_0137
	476039_0138
	476039_0139
	476039_0140
	476039_0141
	476039_0142
	476039_0143
	476039_0144
	476039_0145
	476039_0146
	476039_0147
	476039_0148
	476039_0149
	476039_0150
	476039_0151
	476039_0152
	476039_0153
	476039_0154
	476039_0155
	476039_0156
	476039_0157
	476039_0158
	476039_0159
	476039_0160
	476039_0161
	476039_0162
	476039_0163
	476039_0164
	476039_0165
	476039_0166
	476039_0167
	476039_0168
	476039_0169
	476039_0170
	476039_0171
	476039_0172
	476039_0173
	476039_0174
	476039_0175
	476039_0176
	476039_0177
	476039_0178
	476039_0179

