
t~ 5

NEWCASTLE UNIVERSITY LIBRARY

084 09682 1
---~-----------------------

\ 'heS\S ~~,O 6

Computer Architectures for
Functional and Logic Languages

by
Roger C. Millichamp

Ph.D. Thesis
December 1983

Computing Laboratory,
University of Newcastle Upon Tyne.

- I -

ABSTRACT

In recent years interest in functional and logic languages has

grown considerably. Both classes of language offer advantages for pro

gramming and have an influential group of people promoting them. As yet

no consensus has formed as to which class is best, and such a consensus

may never form. Future general-purpose computer architectures may well

be required to support both classes of language efficiently. Novel

architectures designed to support both classes of languages could even

add impetus to the area of hybrid functional/logic languages.

Treleaven et al[68] have proposed a classification of computational

mechanisms which they believe underly several types of novel computer

architecture (i.e. control flow, data flow and reduction). The classif

ication partitions novel general-purpose architectures into the follow

ing classes: control driven - where a statement is executed when it is

selected by flow(s) of control, data driven - where a statement is exe

cuted when some combination of its arguments are available, and demand

driven - where a statement is executed when the result it produces is

needed by another, already active instruction.

This thesis investigates the efficient support of both functional

and logic languages using an architecture that attempts to be general

purpose by embodying all the mechanisms that underly the above classifi

cation.

A novel packet communication architecture is presented which inter

grates the control driven, data driven and demand driven computational

mechanisms. A software emulator for the machine was used as the basis

for separate implementations of functional and logic languages, which

were in turn used to evaluate the effectiveness of the computational

- II -

mechanisms described in the classification. These mechanisms allowed

functional languages to be implemented wi th ease, but caused severe

problems when used to support logic languages. The difficulties with

these mechanisms are taken as signifying that they do not provide ade

quate support for logic languages. The problems encountered led to the

development of a novel implementation technique for logic languages,

which also proved to be a good basis for a combined functional and logic

model. This model is believed to provide a sound foundation for a

parallel computer system that would support functional and logic

languages with equal elegance and efficiency, and would therefore also

support hybrid languages. The design for such a computer is described

at the end of this thesis.

- III -

ACKNOllLEDGEHENTS

I would like to thank Prof. Brian Randell and Dr. Philip Treleaven

for their help during my research at Newcastle, particularly for sug

gesting the project upon which this thesis is based. I would like to

express my gratitude to Prof. Peter Henderson for his invaluable assis

tance while I was attempting to understand functional programming and

combinators, and to Dr. Simon Jones for several discussions concerning

various aspects of logic. I am also indebted to those people who read

drafts of my thesis and made useful comments.

The research reported in this thesis was supported by a grant from

the Science and Engineering Research Council of Great Britain.

1
1.1
1.2
1.3
1.4
1.5

2
2.1

2.1.1
2.1.2
2.1. 3
2.1. 4

2.2
2.2. 1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8

3
3.1

3.1.1
3.1. 2

3.2
3.3
3.4
3.5

4
4.1
4.2
4.3
4.4
4.5
4.6

4.6.1
4.6.2
4.6.3

4.7
4.8
4.9
4.10
4.11

- IV -

CONTENTS

INTRODUCTION ••••••••
Machine Architecture ••••
Computational Mechanisms ••
Functional Languages •••
Logic Languages • • . •
Outline of the Thesis

FUNCTIONAL AND LOGIC LANGUAGES.
Functional Languages ••••••••
Structure of Functions •••••
Lambda Conversion . • . • • •
Calculi of Lambda Conversion.
Characteristics of Functional Languages
Logic Languages • • • •• •••.
Logic Execution Viewed as a Search .•
Logic Program Format. • •• • ••••
Resolution Theorem Provers •••
Unification Algorithm •••
Application of Resolution • • • • • • •
Relation Names as Terms • •
Negation as Failure • • • • •••
Characteristics of Logic Languages ••

1
2
3
4
6

• 10

12
• 12
• 12
• 20

26
27
28
29

• 32
• 35
• 39
• 43

• • 45
• 45

49

CLASSIFICATION OF NOVEL COMPUTER ARCHITECTURES.
Models of Computation

• 50
• 50

Data Mechanisms •••
Control Mechanisms.
Control Flow •••••••
Data Flow
Reduction

51
• • 51

• • • 53
. 54

• • •• •••••• 55
Using the Models of Computation •• 57

GENERAL-PURPOSE MACHINE ARCHITECTURE. • • 63
Data Format • • . • •
Instruction Format.
Packet Format . • • •
Memory Organisation
Program Execution • •
Implementing the Models
Control Flow ••
Data Flow
Reduction • • • •

· 65
• • • • • • 66

• • • • • 69
· 70

• • • • • • • • • • 71
of Computation. • • ••••• 76

• • • • • • ••• 76
• • • • • • • 77

Operation Codes • • • • • • • • • • ••••
77
]'oj

Implementing Conditionals • • •••••• • 82
83 Implementing Functions and Procedures • •

Assessment of the Architecture ..•
Rules for Architecture Modification ••

• • •• 85
. 88

- v -

5 IMPLEMENTATION TECHNIQUES FOR FUNCTIONAL LANGUAGES. . . 89
5. 1 Combinators · · 89
5.2 Graph Reduction · · · 93

5.2.1 Graph Structure · · 93
5.2.2 Graph Manipulation. · . 96
5.2.3 Performing Reductions · · · · 100
5.2.4 Assessment of Graph Reduction 104

6 GRAPH REDUCTION ON THE MACHINE ARCHITECTURE · 107
6.1 Instruction Format. · 107
6.2 Program Format. · · · · · · · · · 108
6.3 Instruction Execution · · · · . . 109
6.4 Implementing Functions. III
6.5 A Problem with Lazy Evaluation. 112
6.6 Assessment of Combinator Implementation 113

6.6. 1 Parallel Execution of Combinators · · · · 113

7 IMPLEMENTATION TECHNIQUES FOR LOGIC LANGUAGES · 117
7.1 Summary of Logic Languages. · 117
7.2 Search Tree · · · · 118
7.3 Unification 119
7.4 Structures. 121
7.5 Negation. . · 121
7.6 Variable Binding. · 123

7.6. 1 Copying Pure Code · · 123
7.6.2 Structure Sharing · 124
7.6.3 Assessment of Variable Binding. · 126

7.7 Parallelism in Logic Languages. 126
7.7.1 OR-Parallelism. · · · · · 126
7.7.2 AND-Parallelism · · · · · · 127

7.8 Parallel Implementation · 128
7.8. 1 Storage Schemes · · · · · · · · · 129
7.8.2 Control Mechanisms. · · · 131
7.8.3 An Alternative Execution Scheme · 133

8 LOGIC LANGUAGES ON THE MACHINE ARCHITECTURE · 141
8.1 Instruction Format. · · · · · · · · 141
8.2 Clause Format · · · · · · 143
8.3 Program Format. · · · · · · · 143
8.4 Process Format. · · · · 144
8.5 Execution Cycle · · · · · 144
8.6 Implementing Unification. · 146
8.7 Implementing Negation · · · · 147
8.8 Architecture Modification · · · · · · · 149
8.9 Implementing Functors · · · · · 151
8.10 Assessment. · · · · · · · · · · · 155

9
9. 1
9.2
9.3

9.3.1
9.3.2

9.4
9.4.1
9.4.2
9.4.3

9.5
9.5.1
9.5.2
9.5.3

9.6
9.6.1

9.7

10
10.1
10.2
10.3
10.4
10.5

11

1.
1.l.
1. 2.
1. 3.
1. 4.
1. 5.
1. 6.
1. 7.
1. 8.

2.
2.1.
2.2.

2.2.1.
2.2.2.

2.3.

- VI -

COMBINED FUNCTIONAL AND LOGIC ARCHITECTURE.
Combining Functional and Logic Models •
Structure of the Combined Architecture.
Structure of Programs •••••
Functional Programs •••••
Logic Programs. • • • • • • • • •
Program Execution •
Demand Forwarding
Parameter Passing •
Calling Functions and Relations •
Hybrid Programs . •
Simple Programs • • • • • • •
Complex Programs.
Parallelism • •. ••••
Hybrid Languages •••
Treating Programs as Data
Assessment ••••

CONCLUSIONS AND FUTURE WORK.
Conclusions • • • • • •
AND-Parallelism • • •
Combinators in Logic.
Hybrid Languages •••••
Hybrid Computer Architecture.

REFERENCES ••.

APPENDICES

MACHINE ARCHITECTURE IMPLEMENTATION •
Instruction Format ••
Program Source Format
Instruction Execution Cycle
Calling a Procedure •
Returning from a Procedure.
Emulator Errors • •
Emulator Commands ••
Example Programs ••••

EXTENDED EXPLANATION OF COMB INA TORS
Compilation to Combinators ••

. Recursion using Combinators •
Efficiency Considerations for
Improved Abstraction Rules ••

Combina tors • •

Graph Reduction •••••••

158
158
159
160
160
164
167
167
167
168
176
176
179
1l:S0
181
184
185

189
189
194
203
210
212

214

220
220
221
222
224
230
230
230
233

246
246
250
254
257
262

3.
3. I.
3.2.
3.3.
3.4.
3.5.

4.
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

5.
s.l.
5.2.
5.3.
5.4.
5.5.
5.6.

- VII -

FUNCTIONAL LANGUAGE IMPLEMENTATION ••
Instruction Format •••••
Program Format ••••
Instruction Execution Cycle
Garbage Collection ••
Example Program • • • • • • •

LOGIC LANGUAGE IMPLEMENTATION
Activation Record Format.
Instruction Source Format ••••••••
Program Source Format
Instruction Execution Cycle •
Program Execution .
Garbage Collection .••••••••
Example Program • •

COMBINED FUNCTIONAL AND LOGIC LANGUAGE IMPLEMENTATION
Structure of Activation Records
Format of Instructions.
Token Format ••.•••
Instruction Execution
Instruction Opcodes ••
Assessment.

2 i 1
271
272
273
27.)

274

281
281
283
284
284
287
287
2h7

293
293
294
29,
297
299
304

CHAPTER ONE

INTRODUCTION

In recent years a considerable amount of interest has developed in

two distinct, but related fields. The first is that of parallel machine

architecture, and the second is functional and logic languages. As yet

no consensus has formed as to which type of language is best, and one

may never form. Future computer architectures may therefore be required

to support both classes of language; particularly if hybrid

functional/logic languages become desirable. This thesis investigates

the design of archi tec tures which support both functional and logic

languages efficiently.

In 1981 Treleaven, Brownbridge and Hopkins[68] published a classif

ication of parallel architectures in terms of several computational

mechanisms which the authors felt to be fundamental to the implementa

tion of control flow, data flow and reduction. The purpose of the work

reported here is to investigate the claimed generality of these mechan

isms to see if they can be used as a common base for both functional and

logic languages.

The investigation was conducted by designing a machine architecture

capable of providing equal support for all the computational mechanisms

described in [68], and then writing a software emulator for the archi

tecture. The mechanisms provided were then employed to implement both a

functional and a logic language. In doing so it was possible to evalu

ate the usefulness of these computational mechanisms when implementing

- 2 -

functional and logic languages and also draw some conclusions about the

claims of generality made by Treleaven et al. The claims were not sub

stantiated and so the investigation was extended in order to produce a

common base for both classes of language.

The purpose of this chapter is to give simple explanations of some

concepts used throughout the thesis. These concepts are developed into

more appropriate and sophisticated ones as the thesis progresses.

1.1. Machine Architecture

The form of machine architecture chosen for the investigation of

functional and logic language implementation is based on packet communi

cation [68]. This type of organisation consists of a circular instruc

tion execution pipeline in which processors, communications channels and

memories are interspersed with pools ~ work. This is illustrated in

Figure 1.1. The organisation views an executing program as a number of

independent information packets, all of which are conceptually active,

and that split and merge. For a parallel computer, packet communication

is a very simple strategy for allocating packets of work to resources.

Each packet to be processed is placed with similar in ones in a pool of

work. When a resource becomes idle it takes a packet from its input

pool, processes it and places the modified packet in an output pool, and

then returns to the idle state. Parallelism is obtained either by hav

ing a number of identical resources between pools or by replicating the

circular pipelines and connecting them by the communications channels.

memory

MI·· .Mm

- 3 -

processor
~---1 Pl ••• Pp

communications
C1 • •• Cc

Figure 1.1: Simple packet communication architecture.

1.2. Computational Mechanisms

The computational mechanisms implemented by the packet communica-

tion architecture, and which are proposed by Treleaven et al as genera~

purpose, are as follows:

Control Driven. Each instruction must wait for a certain number of

control signals, each of which request the instruction to execute.

Only when all signals have been received w-ill the instruction be

obeyed. When the execution of the instruction is completed it will

signal other instructions to execute.

Data Driven. An instruction is only executed when it has received

data for all its arguments. When the instruction has been exe-

cuted, its result will be sent to further instructions.

Demand Driven. An instruction is executed when its result is

demanded. This instruction may in turn demand its input data from

further instructions, and so on until an instruction receives a

demand, but does not propagate one. This instruction generates its

result, and passes it back to the instruction which demanded it.

Each instruction produces its result when its demands have been

satisfied, until finally the program's result is generated.

- 4 -

In this architecture control driven, data driven and demand driven com

putational mechanisms are represented by control, data and demand

tokens, respectively. A token is a message passed between one instruc

tion and another.

1.3. Functional Languages

This section gives a superficial description of tuuctional

languages, and is intended to serve as a simple introduction to the sub

ject.

A functional language, as the name implies, is based on the use and

manipulation of functions, and as such has only one operator, that of

function application. All other features of the language are provided

as functions, be they primitive or user defined. Functional languages

are closely related to Lambda Notation[lS], a description of which will

serve as an introduction to the subject. Lambda Notation illustrates a

pure form of functional languages: a pure functional language is one

whose functions do not have side-effects.

Consider the expression 4*x+4*y+3. If this were represented as a

function of x using Lambda Notation, it would have the form:

The A can be considered as a binding operator. lhe identifier to ri5ht

of the A, x in this case, is the formal parameter. When the function is

applied to an argument each occurrence of x in the function is replaced

by the argument value. Thus:

(Ax.4*x+3*y+3) 5 is equivalent to 4*S+3*y+J

To name such a function one would write the following:

- ~ -

Functions of more than one argument are defined as:

To invoke such a function one would write g 4 3, giving the result:

The argument supplied to a function may be a simple value, an

expression, or another function which is to be used within the body ot

the called function. For example:

f Ax.+ 1 x
h o.g.+(g 1) 2) f

+ (f 1) 2
+ «Ax.+ 1 x)l) 2
+ (+ 1 1) 2
+ 2 2
4

Any practical language will include some feature which allows con-

ditional evaluation, for the purpose of this work the conditional form

below will be used.

if P then e 1 else e 2

Notice that since a function must always return a result both the "then"

and "else" arms of the conditional must always be present.

Execution of a Functional Program

This section explains how a functional program is evaluated to pro-

duce its result.

- 6 -

A functional program is usually built from a set of function defin-

itions and an expression that calls them. The expression is evaluated

to produce its result, and in doing so calls the functions to which it

refers, binding the formal and actual arguments as it does so. The

bodies of these functions are then evaluated themselves, calling mort!

functions, and so on until no further calls are made. At this point the

result of the program can be produced. For example:

f = AX.+ 1 x
g AX.+ 2 x

* (f 1) (g 2)

1.4. Logic Languages

* «Ax.+1 x)1) «Ax.+2 x)2)
* (+ 1 1) (+2 2)
* 2 4
8

Logic is the second type of language which the architecture

described in the thesis aims to support. This section provides a simpl~

explanation of logic languages and their execution.

The major difference between functional and logic languages is that

the latter deals with relations rather than functions. A function takes

some input and produces a result from it, a relation specifies how its

arguments are related to one another. There is no concept of speclfic

parameters being used for input or output values, any parameter may be

used for either.

A logic program is built from a collection of relations, each of

which consist of a set of clauses. Each clause specifies part of the

behaviour of the relation. A clause has the form:

- 7 -

and is read as "H is true if Gl ••• Gn are true". That is: H is implied

by the conjunction of Gl to Gn • A clause is therefore sometimes calicd

an implication. H is the head and G
l

to G
n

form the body of the clause.

The head contains the name of the relation to which the clause b~longs,

and a list of formal parameters:

h(A,b,c,d)

Logic commonly applies a convention to the use of identifiers: upper

case identifiers are variables and lower case identifiers are literal

constants or relation names. Each G. is called a goal and contains the
l ----

name of the relation which the goal calls, together with a list of

actual parameters:

g(A,b,c,d)

A clause with no body is written as:

H.

Such a clause is an assertion and states that H is always true because

there is no body which constrains H to only be true in certain cir-

cumstances. A clause without a head is written:

and means that the clause body is never true, nothing can be impliea

from the body. Such a clause is used as the question which initiates

the execution of the program. The question asks what values the parame-

ters of G to G must have in order for the question to be true. These
1 n

values are the results the user requires.

- 8 -

A logic program consists of a number of relations and a clause body

which asks the question the program must answer. It is the goals in the

question which drive the execution of the program.

parent(fred,bert).
parent(fred,joan).
parent(bert,clive).
parent(joan,john).

grandparent(X,Y):-parent(X,Z),parent(L,Y).

:-grandparent(fred,GP).

Figure 1.2: Complete logic program

For instance parent(fred,bert) means that fred is the parent of bert.

The question in Figure 1.2 asks for all the grandparents of fred, these

values are returned in GP.

Logic languages, for the purpose of this thesis, are restricted to

Horn clause logic[39]. Horn clauses differ from general clauses in that

Horn clauses are only allowed to have one head, general clauses may have

any number of heads. The restriction to Horn clauses is one that is

commonly made in for logic languages; the reasons for this restriction

are explained in Chapter Two.

Execution of a Logic Prograa

The following section describes how a logic program is executed;

the description is simple and is commonly used.

The execution of a program is driven by the execution of the

program's question. In the program in Figure 1.2 the question has only

one goal. This goal will call the grandparent relation which consists

of a single clause.

- 9 -

When a clause is invoked by a call the formal parameters of the

clause and actual parameters of the goal are matched by a process callea

unification. This matching will pass constant actual parameters into

the clause, and arrange for the results of the clause to be passed out.

If constants appear in the same positions in the formal and actual

parameters they must have the same values. If the values are not the

same the unification fails and the clause will not be executed, but this

failure does not cause the whole relation to fail, all unifications thaL

succeed will have their clauses executed.

In the case of the goal in the question the unification will be

successful. The unification of the parameters causes the formal parame

ter X to be given the value "fred", and the parameter Y is bound to GJ:>.

The goals which form the body of the clause will now be executed to find

values for Y, and in so doing will find values for Z that are acceptable

to all the goals in the clause. The first goal will find two values tor

Z because the called relation, parent, has two clauses whose flrst for

mal parameter is fred. These values of Z will be bert and joan. 'lhe

second goal will find two values for Y, namely clive and john, because

the two values of Z are successfully unified with the clauses in the

parent relation which produce these values as results.

This illustrates an important feature of logic programming, namely

that one goal may produce several results, all of which must be con

sistent with the values produced by the other goals in the clause. It a

set of values for the variables are acceptable to all the goals in the

clause, then the clause is said to have succeeded; it has found a set of

results. Since the unification of Y and GP link both variables

together, the results for Yare sent to GP. Upon completion ot the

grandparent clause the original question is complete and the values ot

- 10 -

GP printed. These values are clive and john.

Negation of a Goal

Until now we have implied that a clause will only succeed if all

the goals in its body succeed. This is not always appropriat~. Often a

situation arises in which a clause should succeed only if some of the

goals in its body fail. To meet this requirement many practical logic

systems implement negation, but in doing so step outside the bounds of

Horn clause logic (for reasons explained in Chapter lwo).

A negated goal is written as -g(t
1

, .• ,t
n

) and is interpreted as: if

the calIon g fails then -g(t 1, ••• ,tn) succeeds, and if the g succe~ds

then -g(t
1

, ••• ,t
n

) fails. Negation is interpreted as failure. A clause

body is now said to built from literals: where a literal may be a goal

or a negated goal. An example of negation may be taken from the tele

phone system. The phone rings if the number is correct and the phone is

not engaged. A clause which represents this is written:

ring(P,N):-correct(N),-engaged(P).

1.5. Out1ine of the Thesis

Having briefly presented the background to the thesis, its struc

ture will now be described.

Chapter TWo describes the background theory for both functional and

logic languages.

Chapter Three explains the classification of computational mechan-

isms by Treleaven et al. Chapter Four describes a novel archi tec ture

which implements these computational mechanisms.

- 11 -

Chapter Five surveys implementation techniques for functional

languages. Chapter Six explains how the chosen implementation technique

was transferred to the architecture.

Chapter Seven surveys implementation techniques for logic

languages. Chapter Eight describes how the selected technique was

transferred to the architecture.

Chapter Nine describes a novel architecture which combines func

tional and logic languages. Lastly Chapter Ten summarises the conclu

sions drawn from the work reported in this thesis and gives an indica

tion of the direction of future work.

- 12 -

CHAPTER TWO

FUNCTIONAL AND LOGIC l.ANGUAGES

This chapter describes the background theory for both functional

and logic languages. The chapter explains most of the important con-

cepts which form the basis of the language implementations described

later in the thesis.

2.1. Functional Languages

This section describes the terms and theory that underly functional

languages using the Lambda notation introduced in Chapter Une. 'ih",

topics covered include important aspects of program representation and a

comparison of two evaluation strategies, and in particular the termina

tion properties of those strategies.

2.1.1. Structure of Functions

In chapter one the expression

was given as an example of a function. Here x is the bound variable ot

the function; the expression to the right of the "." is the body of the

function, and y is said to be free in the function because it is not an

argument. The complete Lambda expression is said to be composed by

abstraction: that is the bound variable x is abstracted from the body

producing a function of one argument. The reverse of abstraction is sub-

- 13 -

stitution and is carried out when a function is applied to an argument.

Again this was illustrated in Chapter One:

(Ax.4*x+3*y+3) 5
gives

4*5+3*5+3

It is important to distinguish between a function:

and the expression f 3, which denotes the result of applying f to J.

Arguments and Results

The class of argument values for which a function is defineCl is

called its domain. A function is said to be defined for 0. particular

argument value if it is able to return a result for that argument. Ine

class of values from which the result is selected is called the

function's range. A function will map each member of its domain onto

the single corresponding member of its range.

A function's type is denoted by the expression:

A ~ B

which means that A is domain of the function and B is the range of the

function. A function which both takes and returns an integer would have

the type:

integer 7 integer

A function with several arguments will have a type:

as for example:

integer * integer ~ real

- 14 -

A function is said to be partial if it is unable to map every element of

its domain into its range. Suppose the domain of the reciprocal func

tion is considered to be the class of reals. Then the function is par

tial because it is unable to map the value 0 into its range. A function

which is able to establish the correspondence between each element of

the domain and a value in its range is called a total function.

Higher Order Functions

A higher order function is a function which allows other tunctions

to be either its result or an argument or both. This allows functions

to be in both the domain and range of a func tion. Higher order tunc

tions are the most powerful feature of functional languages.

Consider the example:

(AX. if x=1 then (Ay.y+1) else (Ay.y-l» 1 2

Here the result of the first function is (Ay.y-1); which is then applied

to 2. Thus the first function yields another function as its result.

Higher order functions permit two features commonly found in func

tional languages to be incorporated with ease. The first feature is

functions of two or more arguments which are written as shown below:

g = Ay·AX.4*x+4*y+3

A function of one parameter is composed by abstracting the bound vari

able from its body. To produce a function of two arguments: initia.lly

compose a Lambda expression by abstracting the first bound variable x.

Then abstract the second bound variable, y, from the result; which

yields g, a function of two arguments. When such a function is appli~d;

a function with n arguments returns a function of n-1 arguments, which

- 15 -

in turn yields a function of n-2 arguments and so on. In the above

example if g was applied to an argument, say 1, the result will be a

function of one argument:

Constructing a multi-argument function in this way is called Curryint;

(after the mathematician Curry, but in fact due to Schonfinkell66j).

The second language feature provided by higher order functions is

the ability to declare functions which are local to others. This

enables one to qualify a function with auxiliary definitions, for exam-

pIe:

fun AX.(if x=1 then f
where f

g

else g)
Ay.y+1
Ay.y-1

Figure 2.1: A qualified function.

This program fragment may be written as a Lambda expression:

Af.Ag.AX.(if x=1 then f else g)(Ay.y+1)(Ay.y-l)

=AX.(if x=1 then (Ay.y+1) else (Ay.y-1»
•

Thus higher order functions allow local functions to be declared by

passing them as argument values to the function that uses them.

C10sures

Closures are an important concept for the implementation of func-

tional languages, and one which will be referred to several times in the

following chapters. A closure is used as a way of representing a func-

tion at the time it is defined, and at any point during its execution.

- 16 -

Whenever the function fun, in Figure 2.1, is applied the environ-

ment in which its body is obeyed must include f,g and x. The auxiliary

definitions f and g are provided by a static binding established at

definition; while x is provided when the function is called. The func-

tion fun must therefore be represented by a structure which holds the

code for its body together with an environment which represents the

binding of f and g. This structure is called a closure:

code for fun environment

closure for f
closure for g

Figure 2.2: Closure for the function fun.

A closure .is used to represent a function whenever its execution is

suspended. Since a function could be considered suspended between its

definition and its call, it is represented by a closure. If a function

is applied but later suspended for some reason, it will again be

represented by a closure, but in this case the closure will be a copy of

the original; with the argument bound into it. A closure is necessary

because when the execution of the function is restarted, the execution

must take place in the same context as that in which it was suspended.

A closure allows the context to be carried from the point of suspension

to the point of continuation.

When a function g is returned as the result of another function f,

g's execution is suspended until it is applied to its own arguments, so

g must be represented as a closure. When g is applied its execution

must continue in the environment in which it was created. This is the

- 17 -

environment created by the call of f, supplemented by g's arguments. 10

the example below, the environment of g will contain the binding of x to

1. When g is called it is this binding that gives x its value, not the

binding which exists at the point in the program where g (the result ot

f 1) is used.

f

x

).x.g
where g
2

(f 1) 3 =) g 3

The result will be sin(1)+3.

Scope in Functiona1 Languages

).y.(sin(x)+y)

Auxiliary definitions introduce the notion of scope. In the exam-

pIe in Figure 2.1 the scope of f and g are restricted to the body of the

Lambda expression. This is the simplest form of scoping; f and g may

not to be called from their own bodies: recursion is therefore impossi-

ble. The bodies of f and g may however be qualified by further func-

tions:

fun).x.(if x=1 then f else g)
where
f).y.(h y)+1

where h
g).y. (h y)+l

where h

y/2

y*y

Here the scopes of both h's are restricted to the bodies of the Lambda

expressions which they qualify.

Recursive qualifications are possible however using the qualifier

whererec instead of where:

- 18 -

fun AX.(if x=1 then f else g)
whererec
f Ay.if y=O then 1 else f(g 1)
g = Ay.y-1

Here the bodies of the functions defined in the whererec may contain

references to themselves and to the other functions defined along side

them. The environment for f in the where qualification will only con-

tain y, but for the whererec qualification it will also contain f and g.

In short whererec introduces a cyclic environment which contains the

qualified function. The closure for fun will therefore have the form

shown in Figure 2.3.

+
A

/ '\
code for fun environment

closure for g
closure for f

Figure 2.3: Recursive closure for f.

Hence forth all qualified expressions will be considered to be qualified

recursively. The qualifier "where" will now be taken to mean whererec.

Function Composition

Function composition defines some rules which control the way func-

tion applications may be combined to produce expressions.

Brackets in expressions are left associative by default:

f g x

has the same meaning as the expression below:

- 19 -

(f g)x

The "." operator l."n the "f expreSSl.on .g x means apply g to x and apply f

to the result:

f.g x = f(g x)

The II " is therefore less binding than function application.

Representing Recursion

This section describes how recursion, which is an important feature

of functional languages, may be represented by Lambda Notation. Hecur-

sion may be represented in in two ways, firstly by using the name of the

function in it own body:

f = ••• f •••

and secondly by supplying the function as an argument to itself:

f = O,g. • •• g •.•)f

This is another example of the use of higher order functions and is one

which allows a non-recursive function to be made recursive by self-

application.

Recursion introduces the possibility of a situation called

"Russell's paradox". Consider the function:

selfzero = Af. if f(f) = 0 then 1 else 0

If this function is applied to itself, the following expression is

obtained:

selfzero(selfzero) = (if selfzero(selfzero) = 0 then 1 else U)

If the predicate is true because selfzero(selfzero)=U then the result of

the function call, selfzero(selfzero), is 1. The application

- 20 -

selfzero(selfzero) is therefore both 1 and 0 at the same time. had the

function not been used within itself this situation would not have

arisen. A practical interpreter could attempt to execute such a tunc-

tion call but it would never terminate.

2.1.2. Lambda Conversion

In this section the evaluation of a Lambda expression is descrlbea

in more detail. Any architecture which evaluates a functional program

must follow the rules explained in this section.

The value of the expression depends solely on the values of l ts

subexpressions. Therefore rules a) to c) hold:

a) if M=N then Ax.M=Ax.N
b) if F=G then FAG A
c) if A=B then F A = F B

There are three additional rules for converting one Lambda expression

into equivalent expressions.

1) Ax.M=Ay {y/x} M providing y does not occur within M.

This means that the choice of bound variable in a Lambda expresslon

does not change the meaning of the expression. The term {y/x} is a

singleton substitution replacing x by y in M. In general a substi-

tution is a set of term/variable pairs which replace all

occurrences of the variable by the associated term in an expression

tha t is applied to the substi tution. One may also change the fret:!

variable in an expression without changing its meaning. Ihe only

qualification is that the new variable must not already occur in M.

This is the Alpha (~) rule.

- 21 -

2) nx.M)N = M{N/x} provided the bound variables of Mare distl.nct

from the free variables of N.

This means that the binding of an argument into a Lambda expression

has the same effect as substituting the argument value into the

body of the function. This is called the Beta (p) rule. The con

straint on the application of this rule is necessary because l.f N

has a free variable which is bound in M, then each occurrence of

the variable in N will become bound when the substitution is car-

ried out. If the function under consideration is Curried then the

Beta (p) rule must be applied several times, once for each nested

Lambda expression.

3) (M where x=N) = AX.M N

The expression on the left has the same meaning as M would have if

N were substituted for x throughout. This rule follows from the

description of auxiliary functions as arguments to Lambda expres-

sion, and from rule 2) above.

In rule 2) the problem that occurred when passing one function to

another can be illustrated as follows. Suppose that a Lambda expression

is being passed as an argument:

x = 1
(Ag.AX.g+4*xl)(x2*3)3

Here there are two occurrences of the variable x, denoted by Xl and Xz
to distinguish them. The variable Xl is bound in the called function

and x
2

is free in its argument. After one substitution the result 1S:

x = 1
(AX.x2*3+4*xl)3

The variable x
2

is free in the first expression (and has the value 1),

- 22 -

but bound in the second (and has the value 3). Consequently the

variable's value has been changed because it has been passed in a param

eter. To avoid this problem the free variables in the arguments of the

function f must be distinct from f' s bound variables. This may be

accomplished in a practical implementation of the Lambda notat~on by

systematically replacing each variable by a unique number at compile

time. This number is generated from the type of variable, tree or

bound, and from its position in the expression.

If an expression A can be obtained from another expression B by the

application of rules one to three, then A and B are said to be converti-

ble. If rule 2) is applied in such a way as to replace a function

application by the body of the function after the argument has been sub

stituted, the expression is said to have been reduced. If rule Z) is

used in the reverse direc tion the expression is said to have been

expanded. If A is convertible to B using only rule 1) plus reduction

steps, then A is reducible to B.

The repetition of reduction steps provides a method of evaluat~ng

an expression and producing its normal form. lhe normal form of an

expression has the same meaning as the original, but it is now in its

. simplest form. The normal form can therefore be considered to be the

expression's result. Reduction therefore provides a method of

transforming an expression into its result. In producing the resulL Lhe

rules 1-3 above never change the meaning of an expression, only its

form. The expression (+ 1 2) has the same meaning as j. There is con

sequently no distinction between expressions and data; they are just

different ways of denoting the same thing. However some expressions

have no normal form. For example reduction will not change the expres

sion:

- 23 -

(AX. X x)(Ax. X x)

After one reduction the result would be:

(AX. x x)(Ax. X X)

Evaluation Strategies

Given that there are a number of function applications in an

expression a choice must be made as to the order in which the~r reouc-

tions are to be carried out. The Church-Rosser theoremllbJ states thaL

if two different evaluation sequences are used on a given Lambda expre$-

sion, and both give a result in its normal form, then both normal forms

will be equivalent up to the renaming of variables.

In the interpretation of functional languages there are two evalua-

tion sequences of interest: innermost and outermost; both of which are

described below. The former evaluates an expression by evaluating the

lowest level subexpressions first; the ones which have no subexpressions

nested within them. All data in these subexpressions will be directly

available. When the expressions at the lowest level have been

evaluated, the expressions in the level above will have direct access to

the results, so they can be evaluated, and so on until the final result

is produced:

(* (+ 1 2) (- 3 4)
(* 3 -1)

-3

In this example the + and - are obeyed first followed by the *. lnner-

most reduction is driven by the availability of data.

- 24 -

Innermost evaluation unfortunately introduces a pro.blem. It is no.t

always appropriate to o.bey a subexpressio.n simply beCause it has all the

necessary data. An example of this is the co.nditio.nal expressio.n:

if p then e 1 else e
2

When a conditional expression is executed the predicate sho.uld be o.beyeo

first and the appro.priate arm o.f the conditio.nal then selected acco.rding

to. the result. Ho.wever if the evaluatio.n fo.llo.wed the innermo.st rule

then the predicate and bo.th arms o.f the co.nditio.nal wo.uld be evaluated

in parallel. This could lead to an erro.neo.us program if o.ne o.f the arms

caused an error, o.r did no.t terminate. If the predicate was executed

first and selected appro.priate arm fo.r execution the situatio.n may no.t

have arisen. Thus innermo.st evaluatio.n takes no acco.unt o.f the co.ntext

of an expressio.n; if an expressio.n can be executed it will be.

Outermost evaluatio.n will always o.bey the o.utermo.st functio.n appli-

cation first, and in so. doing it will request the values o.f its argu-

ments. The arguments may also be expressions which will in turn request

the values of their subexpressions, and so o.n until a value is fo.und fo.r

all the arguments o.f a functio.n. The pro.cess is then reversed, each

expression returning a result to its parent. For example in:

* a b
a: + 1 2
b: - 3 4

the * is the outermo.st functio.n and is evaluated first, and so. requests

the values of a and b, which are then evaluated:

* a b
a: 3
b: -1

This in turn allow the result of the complete expression to. be fo.und

- 25 -

* 3 -1
-3

Outermost evaluation allows the implementation of the by-need mechanism

in which each function only requests the value of those arguments which

are necessary to produce the resul t. In particular a conditional

expression would evaluate its predicate and then evaluate either the

"then" or "else" expression. In this way redundant, or possibly errone-

ous, computation is avoided. Such a computation is known as safe

because errors occur only if they are unavoidable. Evaluation by-ne~d

implies the use of the by-name parameter passing mechanism because each

parameter must only be evaluated when its value is required and must

therefore be passed in an unevaluated form.

A variation of the by-need evaluation strategy is lazy evaluation

which can be considered as using the by-name mechanism, but replacing

the expression wi th its resul t once the resul t has been produced. A

shared expression is therefore evaluated when its result is required,

but once the result has been produced it is remembered so as to avoid

repeatedly calculating it when required by other users.

The Church-Rosser theorem states that if an expression has a normal

form then the by-need evaluation scheme will find it. This is true

because evaluating the outermost expression first allows the evaluat10n

of those subexpressions whose result is not required to be stoppeu at

the earliest opportunity. This avoids evaluating any expression that

does not haye a normal form. The selection of an evaluation scheme will

therefore affect the termination properties of a program, but not its

result if the program does terminate. Outermost evaluat10n will ter-

minate for the largest possible class of programs.

- 26 -

The implementation of by-need evaluation requires that the execu

tion of the function application be delayed until its result is

required.· In addition execution must take place in the environment: in

which the function was created and not that of its use. For this reason

a closure must be built to represent the suspended function. When the

suspended function's result is required the closure is executed to pro

duce it.

If the "lazy" variation of the by-need mechanism is to be imple

mented each closure must be flagged to show if it has been reduced to

its result. If the flag is set, the closure must be reduced to the

resul t. If not the result may be accessed directly. This form of a

closure is called a recipe [35].

The above section describes how an expression may be evaluated.

The next section relates the rules which govern the termination of pro

gram to rules concerning the program's structure.

2.1.3. Calculi ox Lambda Conversion

There are two calculi of Lambda conversion, namely Al and AK. Hoth

of these are based solely on the three rules of Lambda conversion and

therefore do not contain conditional expressions. In the former there

must be at least one occurrence of each bound variable in the function

body. Each bound variable represents a subexpression which is suppliea

as an argument. This implies that if the complete expression is to have

a normal form then each subexpression must also have a normal form

because each subexpression must be present. The Al calculus corresponds

to strict functions. A strict function is one which must have values

for all its arguments before it will produce a result. Since every

- 27 -

sUbexpression must be reducible to normal form it does not matter the

order in which the reductions are carried out. Any evaluation strate~y

may therefore be used.

The latter calculus, AX., relaxes the restriction placed on bound

variables by AI and allows a bound variable to be omitted from the func

tion body. This means that not every subexpression need have a normal

form if the complete expression has a normal form; some subexpr~ssions

can be ignored. A language which allows conditional expressions implies

the use of AX. conversion because one of the arms of the conditiona~ must

be cancelled. An expression conforming to the rules of AX. must be

evaluated by-need, for the reasons explained by the second section of

the Church-Rosser theorem. Namely one must cancel redundant expressions

at the earliest opportunity to maximise the possibility of termination.

For example:

AX y.x

obeys the rules of Ax., since the value of y is not required to produce

the result of the function.

2.1.4. Characteristics of Functional Languages

An important characteristic of a functional language is the lack of

an assignment statement. This means that there can be no side effects

from a function, which ensures that a function's result is defined

solely by its arguments. A function therefore has the same meaning no

matter where it is used, the so-called referential transparency property

of functional languages.

- 28 -

Referential transparency is important if both higher order func

tions and by-need evaluation are to be of practical use. Both these

features leave a function in a suspended state: higher order functions

because a function may be returned as a result but only applied at a

later time; and by-need evaluation because the evaluation of the expres

sion is delayed until its result is required. As a result of this, it

is difficult to know when a particular expression is going to be

evaluated because the expression will be passed around in this suspended

state. Referential transparency ensures that a function's behaviour

remains unchanged while it is suspended, because is does not allow any

of the global variables to which the function refers to be changed. Any

modification to global variables would make the task of writing a large

program almost impossible, because the programmer could not predict what

result a suspended expression would yield. Thus referential tran-

sparency is important if the use of higher order functions and by-ne~d

evaluation is to be practical.

Referential transparency allows the manipulation of programs as

mathematical entities. Each function is an equation and can be manipu

lated to change its form without changing its meaning. Ihis allows the

correctness of a program to be proved and also permits use of transfor

mations which modify the behaviour of a program without affecting its

correctness.

2.2. Logic Languages

This section describes the theory which underlies the use of horn

clauses as a programming language, a development which was made possible

by the introduction of Resolution theorem proving techniques by Robinson

in 1963[60]. This in turn relies on the Unification algorithm that was

- 29 -

described briefly in Chapter One.

The explanation of logic starts with a description of an alterna

tive view of the execution of a logic program; one that is used for the

remainder of the thesis. The unification algorithm is described in

enough detail to allow it to be implemented, and important aspects ot

the implementation of negation are also explained.

2.2.1. Logic Execution Viewed as a Search

In Chapter One the execution of a logic program was described in

terms of procedure calls. Here the execution of a logic program is

viewed as a search for the program's result. By viewing the execution

of the program as a search, an explanation of a program's execution is

able to describe what the program does, not how it does it. The use ot

searches to describe the execution of a logic program also revea..lS a

connection with reduction.

The description of program execution by searching has two parts:

the first describes how a clause may be used to specify the results the

search must produce, and the second introduces a graphical representa

tion of the search itself.

The question posed by the user can be regarded as a specitication

to which the program's results must conform. The search proceeds by

repeatedly transforming the specification into an equivalent ones that

are a step closure solution. The search for a program's result can be

illustrated using the program:

- 30 -

parent(fred,bert).
parent(fred,joan).
parent(bert,clive).
parent(joan,john).

grandparent(X,Y):-parent(X,Z),parent(Z,Y).

:-grandparent(fred,GP).

The question asks for the grandparents of fred, which is the initial

specification of the results the program must produce. When the ques-

tion is executed the grandparent relation is invoked, which transforms

the specification into:

parent(fred,Z),parent(Z,&P)

The new specification still specifies the grandparent of fred, but in a

different form. The grandparent of fred is the parent of fred's parent.

If the first goal in the new specification is executed Z will be given

two values: bert and joan, because the goal parent(fred,Z) matches with

two assertions in the parent relation. These two values give rise to

two versions of the second goal in the specification above, both are

specifications of the grandparent of fred:

parent(bert,GP)
parent(joan,GP)

When these goals are executed GP is given two values, one from each

goal. These values are clive and john because the two clauses in the

parent relation which match the goals listed above give GP these two

values. The grandparents of fred are therefore clive and john, satisfy-

ing all the specifications produced during the execution of the program.

The description of the execution of a logic program given above is

related to reduction because of the way specifications are transformed

into equivalent ones. In reduc tion expressions are reuuced by

transforming them into equivalent ones. The difference belween

- 31 -

searching and reduction is that in reduction the expression 1S simpli

fied until it becomes the result; while in logic the specification is

simplified until it specifies the result in a way that can be satisfied

directly by the assertions of the program.

A diagram of the execution of a program will take the form of a

tree; the so-called search tree, the structure of which reflects the

structure of the search for the result. For example the execution of

the grandparent program will produce the search tree shown in below •

• grandparent(fred,GP)

• parent(fred,Z),parent(Z,G¥)

/\
parent(bert,GP) • • parent(joan,GP)

parent(bert,clive) • • parent(joan,john)

Figure 2.4: Search tree for "grandparent(fred,GP)".

Each node in Figure 2.4 represents a specification ot the results

the search must produce; the arcs of the tree join one gt!neration of

specifications to the next. The top node is the question posed by the

user and beneath it is the specification of a grandparent: the body of

the sole clause in the grandparent relation. Both specify the

grandparent of fred. At this point the tree divides into two branches

because two assertions match the first goal of the grandparent clause.

The first goal of the grandparent clause produces two values for £.:

these are bert and joan. The nodes at the top of each branch are th~

- 32 -

second goal in the grandparent clause with the values for Z substituted.

The two specifications in these nodes still specify the grandparents of

fred, they are the parents of bert and joan. The nodes at the bottom of

each branch of the tree are the final specifications of the grandparents

of fred, they give the parents of bert and joan, namely clive and john,

which are the final results of the program. Notice each leaf only pro

duces one resul t, because only the leaves will match the assertions of

the program which produce the result values. In a full search tret:!

there will be branches which lead to failure.

included in this example for reasons of clarity.

Theoretical Basis for Logic

They have not been

Most logic interpreters are based around resolution theorem

provers. The resolution algorithm may be used to prove theorems, but is

in fact a refutation procedure. A refutation procedure is an algorithm

which disproves theorems. To use a refutation procedure to prove a

theorem correct, the theorem must be negated and the negative reiutt:!d.

This is what occurs during the execution of a logic program.

2.2.2. Logic Progra. Format

Before describing Resolution it is important to understand why a

logic program takes the form it does. This description of logic program

format has two sections, the first gives a more detailed description of

the syntax of a goal, and the second describes why the question of a

logic program appears on the right of an implication symbol.

- 33 -

In Chapter One the format of a program was described as consisting

of a collection of relations, and a question about them. Ihis wo~d be

written as a set of clauses as shown in the grandparent program above.

Each goal or head has the form:

In the case of the head, the name specifies the relation to which the

clause belongs. All clauses with the same name at their head belong to

the same relation, the relation being known by this name. The terms in

the head define the formal parameters of the clause. Thus for a goal

the name specifies the relation which is to be called and the Lerms form

the actual parameters.

A term may consist of a variable, a constant or a more complex

structure built from function applications (or functors as they are

referred to in logic). Functors are not functions in the usual sense,

since they do not return values but are in fact constructors. Construc

tors are func tions which build struc tures; cons is a popular example

which returns a cell with two components. A head or goal can therefore

have the form such as shown below.

a(l,X,cons(Y,cons(Z,l»)

Here "a" is the relation name, 1 is a constant parameter, X is a vari

able being passed as a parameter and cons is a functor. Ihe third argu

ment is a structure built from nested functor applications. In general,

a term which uses a functor may have the form:

functor(term1,···,termn)

A term may not have the name of a relation as its value. Logic there-

- 34 -

fore does not have higher order relations, the logic equivalent of

higher order functions.

The following paragraphs explain why the question given to a 105ic

program must appear on the right of an implication. Suppose that all

the relations of the program are represented by the clauses Al to An'

and the question by a conjunction of literals B. If all the impl~ca-

tions in the program hold for the data supplied by B, then one may state

that the clauses imply B also holds, which may be written:

where A means conjunction (and). It is the task of the theorem prover

to show that this implication does indeed hold. The resolution tecll-

nique is a refutation procedure which can only prove that a theorem does

not hold. To prove a theorem by refutation one must disprove its nega-

tive. Resolution must therefore prove that -(B:-A1A ••• AAn) does not

hold.

An implication may be expressed as the truth table given below, in

which truth values for P and Q are specified together with the third

column which signifies if the implication holds.

P Q P:-Q -Q v P
T T T T
T F T T

F T F F
F F T T

v means disjunction (or) and - means not

So an implication may also be written as -Q v P which may be represented

by the same truth table.

- 35 -

Given that P:-Q is the same as -Q v P, we may rewrite:

as:

which of course must be negated for a refutation procedure such as reso-

lution. This gives:

Simplifying

which corresponds to the clauses:

A
n

;-B

So to apply the resolution theorem proving technique, the question Is

must be negated to turn it into a refutation, which is why B appears on

the right hand side of an implication without a head. As was expla~ned

in Chapter One, such an implication is never true, it specifies that b

does not hold and therefore that -B does hold.

2.2.3. Resolution Theorem Provers

Resolution is the theory which underlies the use of logic as a pro-

gramming language; most schemes for implementing logic, will in fac t,

implement resolution in some way.

- 36 -

As was mentioned earlier resolution is a refutation procedure which

means it proves that a set of disjunctions of literals is false (that

they are inconsistent). Resolution operates by finding complementary

literals and cancelling them.

The program -BAAl A ••• AAn must therefore be transformed into a set

of disjunctions. We may rewrite the conjunction of literals as a set,

without any loss of information. Thus the expression now has the form:

All that remains is to transform each clause into a disjunction. This

may be done by representing the implication P:-Q as P v -Q. lhe symbol

Q denotes a clause body, which is now negated. If

then by De Morgan's Theorem

-Q=-QI v ••• v -~

so the implication may now be rewritten as

-QI v ••• v -~ v P

which is a disjunction. The program has now been transformed into. a set

of disjunctions; the form the resolution algorithm requires.

Resolution is based on the notion of a clash. A clash may be

defined as follows: given a set of clauses

{AI' ••• ,An ,B}

each literal in B, called L, must have a complement, -L, which appears

in only one of A.. For any clash:
~

- 37 -

{AI' .•• ,An ,-B},

we may construct the resolvent:

defined as:

(A1-{-L1}) v ... v (A -{-L }) v (B-{L
1

, .•• ,L })
n n n

It is known that if the resolvent is the empty clause, denoted by 0,

then there is no way of assigning truth values to the literals in Al to

An and B, so as to make the expression (A1A ••• AA
n

A-B) true (see l14j for

a proof). In short we have now disproved:

so by refutation we have proved that:

and so the question B is implied by the clauses A. of the program. If
1

no resolvent 0 is found after all clashes have been resolved then B is

Instead of proving a theorem in one resolution step it may be

proved be repeated application of the resolution principle to clashes of

individual literals, as shown below[14J:

s: -po
U:-s.
p.
:-u.

Rewriting the implications as disjunctions we have:

1)
2)
3)
4)

s v
U v
p

-u

-p
-s

- 38 -

which together constitute the set of disjunctions. Now it is possible

to begin to resolve the clashes: initially that between 2) and 4) is

resolved giving the resolvent:

5) -S

which replaces clauses 2) and 4). A resolvent may replace a clash

because the resolvent is a logical consequence of the two clauses which

clash (see [14] for a proof). Next the clash between 5) and 1) \</hich

gives the sixth resolvent:

6) -p

This leaves the clash between 6) and 3) whose resolvent is O. Since

each clash is replaced but its resolvent, and the resolvent is a logical

consequence of the clash, clauses 6) and 3) are a logical consequence of

the original program. The resolvent of clauses 6) and 3) is theretore

the resolvent of the whole program. Thus W is the resolvent of clauses

1) to 3), and so U follows from 1) to 3), as can be verified by inspect-

ing the original program.

This entire process is called a deduction and can be illustrated

graphically as shown in Figure 2.5 [14].

2) U v -S • • (4 -u

5) -S
1/

· (l S v -p .

6) -p 1/
• (3 P .

7)0 1/
Figure 2.5: Graphic representation of a deduction.

Here node 7) is the empty clause. Clauses 2) and 4) torm a clash whose

resolvent is clause 5). This in turn clashes with clause 1) with

- 39 -

resolvent clause 6). The resolvent of the clash between clauses 6) and

3) is the empty clause.

Resolution therefore allows a theorem to be refuted by cancelling

complementary literals. If the result is the empty clause the theorem

does not hold.

2.2.4. DDification Algorithm

The role of the Unification algorithm in resolution is to recognise

clashes but, for reasons of simplicity, many descriptions of logic

languages describe unification as a parameter passing mechanism. A more

formal and precise description is given here. The unification algorithm

is the feature of logic languages which allow them to deal with reLa

tions rather that functions.

The clashes which occur during resolution are independent of the

choice of variables, but dependent on the constant terms in the

literals, which must be equal. The unification algorithm ensures that

corresponding constant terms in the literals are the same, and renames

variables in such a way as to allow clashes between literals which use

different variables to be identified.

Given a set of terms S, the unification algorithm will find a sub

stitution that will make all the terms identical. Such a substitut10n

is called the unifier of S. If there is more than one unifier for any

given S then the most general unifier is the one which has the smallest

number of substitution pairs {t/v}. The unification algorithm hnds the

most general unifier.

- 40 -

For example, take the set of terms

{p(A,X,f(g(Y»),P(Z,f(Z),f(U»}

which when applied to the substitution {1/X,2/A}:

{p(A,X,f(g(Y»),P(Z,f(Z),f(U»} {1/X,2/A}

produces the set:

{p(2,1,f(g(Y»),p(Z,f(Z),f(U»J

Here all occurrences of X have been replaced by 1 and all those of ~ by

2, as the substi tution specifies. The most general unifier for the

terms is {A/Z,f(A)/X,g(Y)/U}:

{p(A,X,f(g(Y»),p(Z,f(Z),f(U»} {A/Z,f(A)/X,g(Y)/U}

This give the following expression when the substitution is carried out:

{p(A,f(A),f(g(Y»),p(A,f(A),f(g(Y»)j

The unification algorithm operates by passing over all the terms in

a set, looking for positions in which symbols of each term are dif

ferent. The algorithm constructs a set D of all the symbols that

disagree at a particular position. If it finds such symbols it performs

the following steps:

1) If D contains only constants then they must be equal; it not the

Unification fails.

2) If D contains a variable v and a term t; add {t/v} to the sub

stitution being constructed providing t does not contain v. Other

wise the unification fails.

- 41 -

3) If D contains two variables construcL the substitution { /
vi vLJ

4) Repeat steps two and three until D is exhausted.

All the expressions in the set must have the same number of terms, and

every expression must always have a representative in D. lhe con-

straint made in alternative 2), that v must not occur in t, is made to

avoid a cyclic substitution. Suppose that the term tis:

t = p(X,Y)

and that v is X. The substitution created by the unification algorithm

is t/v, i.e. p(X, Y)/X. If this substitution is applied to the literal

eX) then the substitution process will never terminate. After one sub-

stitution the result will be:

(p(X,Y»

now X must be substituted again, giving:

(p(p(X, Y) , Y»

and so on. As was stated earlier; a substitution replaces all the

occurrences of the variable, so each new X leads to another substitu-

tion. To avoid non-termination one must use the occur check which fails

the unification if v is an element of t. In practice the occur checK is

seldom incorporated into an implementation of logic because the such

cycles arise infrequently, and are expensive to detect. Many inter-

preters will represent a cyclic substitution by a cyclic list because

such structures can be useful. The example substitution will therefore

have the form:

Q,y)

- 42 -

If two literals can be unified, and one is negated, then the two

form a clash. The literals which clash are usually contained in

clauses; it is these clauses which must be applied to the unitying sub-

stitution, not just the two literals. For example suppose that a pro-

gram was written to prove that the angles indicated in the diagram below

are equal[14].

a b

~
d

The program will have the form:

p(X,Y,U,V):-t(X,Y,U,V)

e(X,Y,V,U,V,Y):-p(X,Y,U,V)

t(a,b,c,d)

:-e(a,b,d,c,d,b)

c

if X,Y,U,V is a trapezium then
X,Y is parallel to U,V

the angles X,Y,V and U,V,Y are
equal if the lines X,Y and U,V
are parallel

a,b,c,d forms a trapezium

are the angles a,b,d and c,d,b
equal?

which when transformed into disjunctions produces:

1) p(X,Y,U,V) v -t(X,Y,U,V)
2) e(X,Y,V,U,V,Y) v -p(X,Y,U,V)
3) t(a,b,c,d)
4) -e(a,b,d,c,d,b)

which produces the resolvents:

5) -p(a,b,c,d)

6) -t(a,b,c,d)

7)0

resolvent of 4) and 2). Notice
that the resolvent has been
applied to the unifier
{a/X,b/Y,d/V,c/U}

resolvent of 5) and 1)
unifier={a/X,b/y,c/U,V/aJ

resolvent of 0) and J)
unifier={}

- 43 -

The unification algorithm is therefore an essential aspect of any imple

mentation of resolution. It is unification which allows clashes to be

recognised so that the resolution algorithm may cancel them.

2.2.5. Application of Resolution

Resolution is a theorem proving technique which can be applied to

logic programs by viewing the program as a theorem. In the descriptions

given above the clause B corresponds to the question, and the clauses a,
1

to the program.

The Resolution algorithm uses clauses that have been transformed

from implications to disjunctions in order to reveal the clashes, and

then selects those to be resolved. This differs from the descript10n,

given in Chapter One, of the way a logic program is interpreted.

Firstly no transformation of the program is carried out and secondly the

choice of which clash to resolve is made according to some simple rules.

These discrepancies may be reconciled as described below.

Since the transformations from clausal form to disjunctions is

accomplished by the application of some simple rules there is no point

in carrying out the transformation if the clashes can be identified

without doing so. The transformation of each clause produces one posi-

tive literal for the head; while the remaining goals are negated because

they come from the body. The question of the program is on the right-

hand-side of an implication, which when transformed to a disjunction

results in each goal becoming negated. The literals of the question

therefore form clashes with the heads of all the clauses referred to by

the question. Thus every goal in the question identities a clash and

there is hence no need to to transform the clauses into disjunc Uons.

- 44 -

The resolvents of these clashes will be the body of the clause whose

head is part of the clash. The goals in the body refer to the other

clause heads and create clashes in the same way.

Consider the clauses

PI:-Q·

:-P
2

where the subscripts of P denoted different versions of P not, different

clause names. When the two clauses are transformed into conjunctions,

P2 will become negated while PI will not. PI and P
2

will therefore form

a clash. The clash can however be identified without performing the

transformation because P
2

is on the left of an implication and P
1

is on

the right.

Any practical interpreter will follow some simple rules thac select

which clashes to resolve. In most Prolog interpreters these rules

involve resolving the goals in a clause body from left to right, and

trying the clauses in the called relation in a top to bottom manner to

do so. Other strategies are possible and include the parallel ones

described in Chapter Seven. Any goal may form clashes with the heads of

several clauses, each of which may lead to an independent refuta t10n.

The nondeterminism of logic languages comes about by following to com

pletion the resolutions of all clashes created by a goal.

After a theorem has been proved using resolution the substitutions

carried out by the unification algorithm will have assigned values to

all the variables in the question.

user requires.

These values are the resul ts th~

- 45 -

2.2.6. Relation Ha.es as Terms

As was stated above, a term may not have a relation name as its

value. Hence Horn clause logic is unable to provide higher order

clauses, the logic language counterpart of higher order functions. If

such a feature is provided it will allow the programmer to ask what

relation could produce a given result when suplied with specified dat4.

This is a very difficult question for an interpreter to answer.

2.2.7. Negation as Failure

Negation is an important aspect of many practical logic languages

because programs must often be able to test for the failures of goals as

well as their success. This section explains precisely what negation as

failure means from a programmers point of view, and how negation affects

other parts of logic languages. Towards the end of the sec tion a

description of the less obvious, but very important, aspects of the

implementation is given.

The restriction of Horn clauses only having one head makes the

introduction of negation desirable. Consider the implication:

PI v P2:-Q·

which reflects the way PI and P2 are related to Q. If one construe ts

the truth table for such an implication it would have the form:

- 46 -

PI P2 Q PI v P2 PI v P2:-Q

F F F F T
T F F T T
F T F T T
T T F T T
F F T F F
T F T T T
F T T T T
T T T T l'

If one wants PI to be true when Q is true then P
2 must be false, because

if it is true the implication will hold regardless of the value of Pl.

That is:

Consider the example:

sad(X) v angry(X):-rain.

which is read, X is sad or X is angry if it is raining. If one callea

sad and the body proved to be true, one could not be certain if saa had

been satisfied or if angry had been satisfied. Either implication could

hold, so one can not determine which result to return to the caller of

sad, true or false. This is the reason Horn clauses are restricted to

one head. If the implication holds, then to be certain that x is sad, A

must not be angry. This gives the stronger clause:

sad(X):-rain,-angry(X).

Negation of a goal is therefore an important part of a practical logic

language, and may be provided by interpreting negation to mean "failure

to prove". To prove -P attempt to prove P by all possible means, and if

no proof can be found then -P succeeds.

Negation as failure makes the so-called closed world assumption:

which means that all information about a particular relation is held by

the program. The definition of an implication

- 47 -

P:-Q.

sta tes that if Q is true then so is P, but not the converse. ~uppose

that the above clause is the only one in the P relation, and that some

where there is a call -Po This call will be true if the interpreter

fails to prove P. In other words -P will be true if Q is false. Thus

the result of Q becomes the result of P. Hence "implication" has become

equality. Consider the example:

rain:-hot,humid.

This implication means that if it is hot and humid then it is raining.

If the closed world assumption is applied and this is the only clause

that defines rain, then the fact that it is not hot or not humid means

that it is not raining. Rain is entirely defined by the values of hot

and humid.

Implementing Negation

This section describes how negation must be implemented. ~everal

problems can occur when interpreting a negated goal. For instance, it

g(X) succeeds then care must be taken when interpreting the -gel'..). The

literal -g(X), in which X is not bound, means that there exists a value

of X which makes -g(X) succeed. If g is successful, and binds a value

to the previously unbound X, then following a simple minded interpre~a

tion of negation, -g(X) should fail because g succeeded. To ta11 -g(x),

however, is to state that there is no X which makes -g(X) true. Simply

because one value has been found which makes -g(X) fail, one is not jus

tified to assume that there is no value of X which makes -g(X) succeed,

therefore one is not justified in failing -g(X). Unfortunately -g(X)

cannot be allowed to succeed either because the value of X wh1ch makes

- 48 -

it succeed has not been found, therefore one may not assume it exists.

The result of -g(X) is consequently unknown, and the only course op~n to

an interpreter in this situation is to stop the program and print an

error message. There is no difficulty if X has a value beiore -g~A) is

obeyed because one is simply finding out if g holds for X or not. It is

the occasions where g binds a value to X the cause the problems.

If g(X) fails then -g(X) will succeed, but a successful literal may

be expected to produce the value for X which allowed it to succeed.

There will, however, be no value for X because g failed and "not" will

be unable to produce one for itself. The program must thereiore con-

tinue with X being undefined, a situation which is not entirely satis-

factory.

A further problem which occurs when interpreting negation as

failure can be illustrated by the following example.

P:--P.

This expression may be rewritten as:

P v -(-P) P v P
P

so the original implication for P should be proved true. If the inter-

preter tries to find this solution it will never succeed because in

order to evaluate not(P) it must first evaluate P, which leads to infin-

i te recursion. In some circumstances it is possible to detect these

loops, but such checks are seldom included in practice.

In spite of the deficiencies described above, negation as fau.ure

is an important and useful part of any practical logic language.

- 49 -

2.2.8. Characteristics of Logic Languages

Logic languages derive their power from two sources. The first is

their ability to deal wi th relations rather than functions, and the

second is the way they search for results.

Dealing with relations avoids redundancy because one relation may

be used in several ways. In func tional languages separate func tions

must be written for each different mode of use.

Searching for results relieves the programmer of the task of expli-

" citly describing how results are produced. Logic languages also sutfer

from one drawback in this resect. Logic languages are not allowed to

modify their data, and may not therefore use the power of searching on

data acquired at run time. This is a considerable disadvantage. ~ome

logic languages therefore allow assertions to be added at run time even

though this will introduce the problems described earlier. An interest-

ing area of current research is the development of meta logical opera-

tions which, amongst other things, will allow data to be included at run

time without causing any difficulties.

- 50 -

CHAPTER THREE

CLASSIFICATION OF NOVEL C~ ARCHITECTUKES

This chapter describes the classification of Treleaven et al, 1n

which the authors propose a collec tion of mechanisms which, they argue,

form the basis for a general purpose computer archi tec ture. If the

authors' claims are justified the mechanisms described in this chapter

can be used as a common base for the implementation of functional and

logic languages. The declared aim of the work reported in thlS thesis

is to find such a common base, and the classification is taken as the

starting point of the work.

The classification proposes a set of data mechanisms and control

mechanisms which can be used to construct models of computation by

selecting a member of each set.

3.1. Models of Computation

A model of computation is an abstract description of the way

instructions are selected for execution, and the way data is passed

between instructions. Such a model may be divided into two parts, the

data mechanism and the control mechanism. The various mechanisms pro

posed by the classification together provide the generality the authors

claim for the classification.

- 51 -

3.1.1. Data Mechanisas

The data mechanism defines how data is shared or accessed by

instructions. The two types are listed below:

Value: Each instruction that uses an argument is sent a separate

copy of the value.

Reference: Each instruction that uses an argument holds its address,

which is used to access the argument's value.

The value mechanism implies that instructions hold a copy ot the data

items they require. This gives great scope for parallelism because

there will be no contention for data. In contrast the reference mechan

ism allows the use of a shared memory to hold values, which implies that

contention will occur if several instructions attempt to access a value

simultaneously.

3.1.2. Control Mechanisms

The control mechanism defines how processors execute a program:

mor~ precisely how the execution of one instruction causes the execution

of another, and thus how the pattern of control is built up throughout

the program. There are three types of control mechanism:

Control Driven: An instruction is executed when selected by expliciL

flows of control.

- 52 -

Data Driven: An instruction is executed when its data is available.

Demand Driven: An instruction is executed when its result is requested.

The control driven mechanism only allows an instruction to execute

as a result of explicit control signals; indeed it may need many such

signals before it will execute. Although a control signal is often sent

to indicate the availability of data; this is by no means the only r~a-

son. The control driven mechanism is the most general of the three

because one can use any combination of conditions to trigger the execu-

tion of instructions. Unfortunately it does force the responsibility

for controlling the execution of the program onto the programmer. In a

parallel machine the problem (of specifying flows of control) is made

more acute by the need to avoid the non-determina.cy which can result if

the execution of instructions is not synchronised properly.

The data driven mechanism will execute an instruction when all its

operands are available. Data driven execution is thus the same mechan-

ism used by the innermost execution of functional languages, and conse-

quently suffers from the same problems. The data driven mechanism

relieves the programmer of the responsibility of managing the execution

of the program.

Lastly the demand driven mechanism executes an instruction when its

resul t is requested by an already active instruction. Demand driven

execution has two phases: propagating demands for data, and passing
I

results back. Demand driven execution is frequently used to implement

need driven execution, where the demand for a result is only propagated

when the resul t is necessary. If need-driven execution is not used,

some other way of deciding when a demand is to be propagated must be

- 53 -

found.

There are three common models of computation which are be built

from the above data and control mechanisms: control flow, data flow and

reduction. Each will be examined in turn.

3.2. Control Flow

The control flow model uses the control driven control mechanism

and the reference data mechanism. Each instruction expects a specific

number of control signals to arrive before it will execute. Each

instruction's data values are held in separate memory locations, the

addresses for which are embedded in the instruction.

A control flow program may be viewed as a directed graph in which

the nodes represent instructions and each arc defines the the path along

which a "control token" may flow, carring with it the signal to execute.

at-___ ~
b
c
dl--------l

e
f 1------1

g

g=(a+b)*(c-d)

Figure 3.1: Simple control flow program.

Control flow is the most flexible of the three models because it is the

most primitive, but the programmer must also manage every aspect of the

program's behaviour.

- 54 -

3.3. llata now

A data flow model uses the data driven control mechanism and the

value data mechanism. (In the model, the control mechanism and the data

mechanism are supported by a single device called a "data token".) A

data flow instruction will only execute when all its data is available.

The data is embedded in the instruction by the time it is executed.

A data flow program may also be viewed as a directed graph, namely

a collection of instructions joined by arcs along which the data tokens

flow. A data token is used to pass data between instructions and con

sists of the address of the destination instruction, together with the

value. Not only must the token be specify the correct instruction but

also the correct argument position within instruction. A data token

therefore signals the availability of the data, and passes the value to

the destination.

- Figure 3.2: Simple data flow program.

In summary, the data flow model allows great parallelism, because the

execution of the program is constrained only by the availability of

data. The model also relieves the programmer of the task of managing

the execution of the program.

- 55 -

3.4. Reduction

The reduction model has two basic forms: string reduction and graph

reduction. The former uses a data driven control mechanism and a valu~

data mechanism; while graph reduction uses a need driven control mechan-

ism and a reference data mechanism.

As was explained in Chapter Two, reduc tion is the manipulation of

expressions by simple rules until the expression is in its simpl~st

form. Code and data are considered the same, and are held together in

the same memory, this equivalence is one of the significant differences

between reduction and control flow or data flow. A reduction machine

does not allow the value of data to be changed.

The two variations of reduction, string reduction and graph reduc-

tion, are described below.

String Reduction

A string reduction program is represented as a nested set of

expressions: it is evaluated by finding subexpressions containing only

literal values and then reducing the subexpressions to their result. In

the example below the subexpressions (+ 1 2) and (- j 2) will be reduced

first:

(* (+ 1 2) (- 3 2))
to give
(* 3 1)

The resulting multiplication has no subexpressions, and consequently may

be reduced to give the final answer, namely 3.

- 56 -

Grapb Reduction

In graph reduc tion a program is represented as a graph. Each

subexpression of the program can be considered to be an instruction.

Demand tokens, carrying the demands for data, will be propagated down

the arcs which join consumers of data with its producers. lhe producer

instructions will demand their own input data if necessary, and will

then be reduced to their results. lhese results will pass bacK along

the arcs to their consumers.

As an example consider the expression (* (+ 1 2) (- 3 l)):

/ .. ~
(+ 1 2) (- 3 2)

The "*" instruction will be started by a demand to obtain the result.

It will propagate a demand to each of its arguments causing them to be

reduced:

(* • .)

/~
3 1

Finally the multiplication will be reduced to give the result, 3.

The particular combinations of control and data mechanisms used by

string and graph reduction are appropriate for the following reasons.

In string reduction the only effective means of communication between

sections of the string is by having the two communicating components

adjacent to one another. Adjacency is used for communication becCiuse

accessing separate sections of the string forces the processor to skip

the intervening portion of the string to find the addressed sec tion.

- 57 -

This will be a very inefficient operation. The value data mechanism is

used because having functions adjacent to their arguments implies that

each function application must have a copy of its components; the func

tion body and the argument value. The value data mechanism will provide

each subexpression with its own copy of all the data it uses. The data

driven control mechanism is used because only the immediate context of

an instruction is required to determine if it will execute or not. This

control mechanism therefore requires information only about adjacent

subexpressions.

Graph reduction uses the reference data mechanism and the demand

driven control mechanism because the use of graphs to represent programs

allows subexpressions to be addressed at will. To be efficient demand

propagation requires direct access to the expression whose result is to

be requested. The reference data mechanism provides the access

required, and also permits common subexpressions to be shared. Graph

reduction can also be data driven by starting at the leaves of the tree

and working up the tree towards the root.

3.5. Using the Models of Coaputation

This section highlights some problems that a model of computation

must overcome to be practical; it examines the implementation of pro

cedures and iteration. Both of these topics are important aspects of

programming languages; any deficiencies in these areas will have repro

cussions when the architecture is applied practically.

- 58 -

Procedure Ca.11s

In control flow, data flow and reduction procedures are implement~d

by having a separate process for each invocation. Consequently an

instruction will have a two part address, namely the process identifier,

and the instruction's location wi thin the process. (Addresses for the

data memory used by control flow will also have the same forma.t.) An

address therefore has the form:

P/L
P process identifier
L location

The process identifier of the process for the called procedure is

generated by a separate instruction and then passed to the instructions

which will call the procedure and pass the parameters. The return

address will contain the identifier of the calling process which allows

the results to be returned.

newp

I
all p -------r\ -----j)~ procedure p

I
I
I
I

x ~--------+I--------~)r- receive par

I

y --------~I--------~)r_receive par

~('--------r----------- re turn

Figure 3.3: Procedure calling in control flow and data flow.

The code to the left of Figure 3.3 is the calling code while that to the

- 59 -

right is the procedure. The new process identifier is generated by the

newp instruction and passed to the call instruction and the "par"

instructions. The call instruc tion sends the return address to the

called procedure, and the "par" ins true tions each pass one parameter.

Each parameter is received by an instruction in the called procedure.

The parameters are then sent to all the procedure's instructions which

require them. When the result produced it is passed to the return

instruction which sends it to the instruction whose address was speci

fied in the return address.

Iteration

Iteration involves the repeated use of a section of code and its

associated memory locations. Iteration therefore incurs problems of

ensuring the uniqueness of each instruction and memory location. If

each iteration is allowed to execute in parallel there will be severai

copies of an instruction active at once. Thus memory locations; or

instruction arguments, will need to hold multiple values, one for each

execution of the loop body. There are two solutions to the problem

[68]:

1) Do not allow parallel execution of the loop bodies. lhis is com

monly used by control flow and may be achieved by using an extra

"synchronisation" token. This token is released at the end of the

loop; the first instruction in the loop is forced to wait for this

token, which holds up the execution of the entire loop until it

arrives. Once one execution has been started (by means of an ini

tial token) the subsequent one will wait until the previous one hab

finished.

- 60 -

i:=1

< T-if DI0

F

loop body

t
i:=i+l

Figure 3.4: Iteration using a synchronisation token.

2) Implement iteration by means of tail recursion. This is commonly

used by reduc tion as well as control flow and data flow. If each

iteration is represented by the recursive call of a procedure con-

taining the body of the loop, then each iteration will have its own

process, and therefore its own unique locations, thus avoiding con-

flicts.

for i := 1 to 10
do print(i)

iterative

procedure printloop(i)
begin

print(i)
if i < 10
then printloop(i+l)

end

printloop(l)

tail recursion

Figure 3.5: Comparison between iteration and tail recursion.

- 61 -

In Figure 3.5, the iteration section represents the ~ay the code is

usually written; the tail recursive section illustrates ho~ the

same effect can be achieved using recursion.

Data flow[l] and control flow machines sometimes provide an additional

solution to the problem of iteration:

3) An additional level of process identifiers are provided ~hich are

used purely for providing a separate address for each i teratl.on.

This process identifier is an iteration number ~hich is generated

by incrementing the iteration number of the token which arrives at

a special controlling instruction at the head of the loop. An

address will now have the form:

P/I/L
P process identifier
I iteration number
L location

Each iteration of a loop will have consecutive iteration numbers.

Unfortunately this simple scheme will not work if loops are nested.

Consider the nested loops:

for i := 1 to 10
do for j .- 1 to 20

do

When the first inner loop is started the iteration number passed to

it will be 1, so the first iteration number of the inner loop ~ill

be 2, the same as the number for the second iteration of the outer

loop. So the program will fail. To overcome this ~ill require

either a more sophisticated way of generating iteration numbers, or

a separate number for each loop. Hoth would be clumsy, so in gen-

eral solutions 1) or 2) are usually preferred.

- 62 -

The computational mechanisms described above will form the basis of

the investigation to find a common way to support both functional and

logic languages. The next chapter describes an archi tec ture \oIhich

implements the computational mechanisms, and which allows programs using

a mixture of the models described above to be executed.

- 63 -

CHAPTER FOUR

GENERAL-PURPOSE MACHINE ARCHITECTURE

This chapter describes a general-purpose architecture based on the

computational mechanisms described in Chapter Three. An emulator for

the architecture was implemented to allow the evaluation of the computa

tional mechanisms for the implementation of functional and logic

languages. A more detailed description of various aspects of the archi

tecture, together with some examples of program execution, are given in

Appendix One.

The architecture described here has three major components: the

processor, the active memory, and the passive memory. The processor

obeys the instructions; the active memory AM, holds "active instruc

tions", namely instructions that have received at least one token. AM

also transmits packets, generated by the processor, to destinations in

AM. The passive memory PM holds the data for the processes created dur

ing the execution of the program. In addiCion, PM holds the definition

of the program being executed in an area referred to as the definition

memory, DM. This architecture, shown below, forms the basis of the emu

lator used in this thesis.

- 64 -

processor AM PM

DM

J

Figure 4.1: Packet Communication Architecture.

In terms of the example packet communication architecture described in

Chapter One, AM and PM together form the memory. The "pool of work"

between the processor and memory is implemented as a queue of executable

instructions which are held in AM. There is no packet pool for holding

packets generated by the processor; it is simpler to synchronise the

ac tivity of the processor and AM on a single processor machine. The

communication resources have been omitted from the above architecture

because the architecture has only one pipeline.

A basic objective of any architecture is to gather the operators

and operands of an instruction together, so that the instruction can be

obeyed. The architecture must also arrange for the instruction to be

obeyed at the correct time. In a packet communication architecture both

objectives are met, at least in part, by passing messages between

instructions. These messages are held in packets which will typically

contain the address of the packet's destination and some data. In data

flow, for example, a packet is used to implement the data token. The

address specifies the instruction and argument position of the destina

tion, while the data in the packet will be one of the operands the des-

tination is waiting for.

implemented as a packet,

- 65 -

In control flow a control token will also be

but it will only contain the dest1nation

address. In reduction a demand token will contain the address of the

source of the demand, so that the destination instruction may return the

result when it is produced.

The generation of tokens also controls the flow of execution in the

program. Each instruction will have certain arguments which expect

tokens, while others generate tokens. The processor will deal with each

argument of an instruction at the time the argument value is required by

the instruction's operation.

This thesis uses three versions of the architecture described in

this chapter; but all three are founded on a common base which imple-

ments the computational mechanisms. The following sections described

operation of the common base and the format of the data structures it

uses.

4.1. Data Format

The data held in both AM and PM are complete instruction arguments,

not just simple values. This also applies to the contents of data

tokens. The architecture therefore allows one instruction to supply a

complete argument of another instruc tion, instead of just a simple

value, which provides great flexibility in the formation of instruc

tions.

- 66 -

4.2. Instruction For.at

The format of an instruction is similar to the control and data

flow instructions described in Chapter Three. Each instruction consists

of the opcode, a token count, and a number of arguments holding the data

upon which the instruction will operate. These arguments also include

the information necessary to dispatch the results to other parts of the

program.

Each instruction therefore has the format:

count opcode arg 1 ••• arg n

Figure 4.2: Instruction format.

1) count. The number of data or control tokens that must be received

before the instruction may be executed

2) opcode. The operation code for the instruction.

3) arguments. A set of arguments, each conforming to the rules given

below.

Argument Format

An argument may hold either an input operand or an output destina-

tion. The sections of the instruction which hold the arguments are

referred to as argument slots. Each argument consists of three fields:

- 67 -

1) The argument type.

2) An integer value, which is usually the operand of the instruction.

3) A machine address referencing a memory location.

Argument Types for Input

Each input argument specifies how an instruction is to obtain one

operand, input arguments reside in the lower numbered argument slots of

an instruction. The number of arguments used for input depends on the

instruction. The input argument types are:

1) unk: unknown. The argument has an undefined value at present but

will be replaced by the contents of a data token. This argument

type is a data token acceptor. The token count of the instruction

must be greater than or equal to the number of unk arguments.

2)

3)

4)

5)

litv literal value. The argument has a literal value; an

integer.

pm : PM address. The argument is held in a PM location, the

address of which is held in the current argument.

am : AM address. The argument is held in an AM location, the

address of which is held in the current argument.

prop propagate demand. The argument is to be demanded from

another instruction, the address of which is held in the current

argument.

- 68 -

Argument Types for Output

An output operand is the destination for the result produced by an

instruction, although in control flow an output argument may also be

used to send a control token. Output arguments reside in the higher

numbered argument slots of an instruction. The output argument types

are:

1) spare: There is no argument in this slot. The demand propagation

mechanism uses spare output arguments to hold the return address

for the resul t.

2) unk: unknown. The destination will be supplied by a data token.

This argument is therefore a data token acceptor even though it

will eventually be used as an output argument.

3) sig: signal. This will send a control token to the instruction

whose address is in the argument.

4) pm passive memory address. The result is to be stored in the PM

at the address given in the argument.

5) am: active memory address. The result is to be stored in a data

token and sent to the instruction whose address is held in the

argument. The address also indicates the argument slot to which

the token is to be sent.

6) prop : propagate demand. The output argument is to be demanded

from the instruction whose address is in the current argument.

- 69 -

4.3. Packet Format

Packets are used to implement tokens, of which there are three

basic types, a control token which is used to trigger the execution of

other instructions: the data token which allows data to be sent from one

instruction to another, and a demand token which signals the request for

data to the instruction which is to produce it. Each packet consists

of: a type field, the address of the destination instruction including

the number of the argument slot within the instruction to which the

packet is to be sent, and the argument being transmitted. The packet

argument is. a complete instruction argument, as described above, and not

just a simple value. A packet has the format:

type destination argument

Figure 4.3: Packet format.

A packet's type can be:

1) cont: control token. The token only contains the address of the

destination.

2) data: data token. The argument in the token is copied into the

slot specified by the destination address of the token.

3) dem: demand token. The token holds the AM address of the sender

in its argument field, the slot number of the address refers to the

argument that propagated this demand.

- 70 -

4.4. ~ry Organisation

Both the AM and PM are divided into processes and accept the same

type of address. An address has the fields:

process id location argument slot

The process identifier, location number and the argument slot are all

integers. The slot number has no significance to PM and so it is

ignored. The process identifier "-I" has a special meaning: whenever an

instruction refers to such a process the emulator will replace the -1 by

the identifier of the process that the instruction belongs to, this is

termed relocation. Relocation allows the code for a process to be writ

ten without knowing the identifier of the process the code will eventu

ally occupy, which in turn allows the code to be executed in any pro-

cess.

Each location within AM or PM can only hold an instruction; if an

instruction argument is to be held in the location then by convention

the value is held in argument one.

DM is a specific process in PM which is divided into procedures,

each one of which occupies a specific range of locations. For example

DM could have the format:

- 71 -

location

o

main body
of program

500

procedure 1

1000

procedure 2

1500

Figure 4.4: Format of DM.

4.5. Program Execution

This section describes how the structures used in the common base

architecture are used in the execution of an instruction. The same

sequence of operations is used in all versions of the emulator.

When the code to be executed is initially loaded into DM a check is

made to see which instruc tions in the "main body" of the program are

executable. Those instructions that are found to be suitable are placed

on the queue of executable instructions, and are copied into AM. IL is

these instructions that are responsible for triggering the execution of

the entire program.

When an instruction is loaded into DM the count field must be equal

to the total number of control and data tokens the instrucLion expects

to receive. Each argument which expects to receive a data token must be

of type unk. An instruction becomes executable in two stages: first it

is copied from DM to AM when it receives its first token, and secondly

- 72 -

it is placed in a queue of executable instructions when it becomes Iully

executable.

When a token is sent to an instruction the instruction will nor-

mally be resident in AM. If the instruction is not in &'1, {:henVe. prcc* ~

load it from DM. The destination address of the token must be mapped

into a DM address so the prototype of the destination may be accessed.

This mapping is carried out by copying the destination address and

replacing the copy's process number with the process number ot DM. The

location number of the destination of the token and the prototype 1n uh

will be the same, so the modified address now points to the correct pro-

totype. A copy of the prototype is then placed in the AM locanon

specified by the destination address of the token.

An instruction will only be considered for execution once the count

of data or control tokens expected has become zero and, in general, 11

it has at least one output argument. An instruction's count 1S decre

mented each time i t receives a data or control token. All executable

instructions are placed on a queue in AM from which the processor

selects the top one for execution.

Once an instruction has been selected for execution the processor

will inspect the operation code and carry out the required task. l'hlS

will involve accessing each input argument when its value is required;

those which are not needed are ignored. Accessing arguments is carrled

out in the following manner:

1) litv: no action is necessary, the instruction may use the value

directly.

2)

3)

4)

- 73 -

pm the new argument is loaded from the specified location in PM.

am the new argument is loaded from the specified location in AM.

prop this will

instruction whose

result in a demand being propagated to the

address is held by the argument. Having pro-

pagated the demand the count of expected tokens will be incre

mented by one to signify that the data token carrying the result

must be awaited. Demand propagation is explained in more detail

below.

5) unk: there should be no arguments of this type because the count

in the instruction is zero.

Once the processor has produced the instruction's result it will be

dispatched to the destinations specified by the output arguments. This

will be carried out in the following manner:

1) sig: a signal will be sent to the instruction whose address is in

the argument.

2) pm store the result in the specified location in PM.

3) am: send a data token to the specific argument in the spec~tiec1

instruction.

4)

5)

prop the output argument is to be produced as the result of

another instruction. A demand for the argument is propagated to

that instruction in the same way as for an input argument.

spare there is no consumer pointed to by this argument.

- 74 -

6) unk: there will be no arguments of this type because the count is

zero.

Having been completed the instruction may either be deleted, or

retained in AM. Appendix One describes the details of this operation.

The fact that the objects referred to by arguments are themselves

arguments gives great flexibility. For example an argument may pro

pagate a demand and receive as the result another argument which may

propagate a further demand, and so on.

Demand Propagation

Demand propagation is the most sophisticated of the computation

mechanisms; it uses arguments of type prop, the only input argument type

which generates tokens. The demand token carries with it the address of

its source; the source must await the arrival of the result before it

may resume execution. The destination instruction for the demand will

receive the demand token and place the source's address in its first

"spare" output argument. The source will therefore be sent the result

when it is produced. For example take the two instructions below:

1) o op prop 2

2) ? op spare

Question marks are used in this section to denote undefined addresses or

values. Instruction one has an input argument of type prop: the desti-

na tion for the demand token is ins truc tion two. When the processor

attempts to access the prop argument it will propagate the demand token

- 75 -

to the destination. The demand token will have the format:

dem 2 1/2

The type of the token is "dem", the destination is instruction two, and

the source is instruction one, argument slot two. Both addresses would

normally include a process number, but these are omitted here for sim

plicity. When the demand token arrives at the destination it is placed

in the first spare output argument, transforming instruction two in the

way shown below:

2)1~?~_·_·_··_·_·_·~a_m __ 1_/2~

After transmitting the token instruction one will be transformed to:

1) I 1 unk

The prop argument has been changed to an argument of type unknown, and

the count set to one. Instruction one must therefore wait for a data

token.

When instruction two has produced its result it will dispatch it to

the destination specified by its output arguments. One of these desti

nations is argument slot two of instruction one. Instruction one will

therefore receive a copy of instruc tion two's result, and will become

executable because receiving the data token will reduce the count to

zero.

- 76 -

4.6. I.plementing the Models of Co.putation

This section illustrates the generality of the architecture by

describing how the three important models of computation may be imple

mented on it.

An instruction may use the control flow, data flow or reduction

styles of computation, and even a combination of them. All that is

necessary is to put arguments of the appropriate type in the instruc-

tion. If a mixture of control flow and data flow is used, the token

count of an instruction must initially be set to the total number of

control and data tokens the instruction expects.

The following sections describe the way each of the models of com

putation may be implemented.

4.6.1. Control Flow

A control flow instruction will have either literal values or PM

addresses as' its input arguments. The output arguments will be of two

sorts: the PM addresses of the locations that are to hold the resul t,

and arguments of type sig which contain the address of the instructions

to which a control token must be sent.

Ini tially an ins truc tion' s count will be equal to the number of

control tokens it expects; when the count becomes zero, due to receiving

tokens, the instruction is executed. A control flow instruction could

therefore have the format:

n op pm ? pm ? pm ? sig ? sig ?

- 77 -

The first two arguments get values from PM, and the third places the

result in PM after is has been calculated. The sig output arguments

send signals to those instructions which use the result. The output

arguments are dealt with from left to right. A PM address which places

data in a memory location must therefore appear to the left of the sig

nals to instructions that will load data from that location.

4.6.2. Data Flow

In data flow input arguments will either be unknown or literal

val ues • The output arguments will all be AM addresses. The initial

token count will equal the number of unknown arguments. A data flow

instruction could therefore have the format:

2 op unk unk am ? am ? am ?

The first two arguments receive data in tokens while the remaining three

dispatch the result. When all the data tokens have been received the

result is calculated and sent in data tokens to the destinations speci

fied in the output arguments.

4.6.3. Reduction

Reduction execution can be driven in two ways: by the availability

of data or the need for data. Both forms of reduction replace an

instruction by its result. This is achieved by retaining the reduced

form of the instruction in AM, as explained further in Appendix One.

- 78 -

By Availabi1ity

For "by-availability" the executable instructions in the "main

block" of the program will have literal values as their arguments, a

count of zero and at least output argument. These instructions will

therefore execute immediately, produce their results and then be

retained in AM. A control token will be sent from each output argument

to the consumers, which will load the result from the location in AM

that previously held the producer instruction, and which now holds the

reduced form of the instruction. AM is therefore used to hold data as

well as instructions which is consistent with functional languages which

do not distinguish between the two.

A reduction instruction which is driven by the availability of data

could have the form:

1 op litv ? am ? sig ? sig ?

The input arguments will be a mixture of literal values and AN

addresses, all output arguments will send signals.

Alternatively, the result could have been retuned in a data token

instead of being held in AM. In this case the instruction will not need

to be retained because each consumer has a copy of the result. This, in

fact, corresponds to data flow.

By Need

For "by-need" the only instruction that will be executable when the

program is loaded is the one which will propagate the initial demand for

data. All other instructions will have either literal values or

- 79 -

arguments of type prop as the input arguments. All output arguments

will be of type spare so they can be used to hold the addresses of the

sources of the demands propagated to the instruction. An instruction

could therefore have the format:

n op litv ? prop ? prop ? spare spare

Each instruction will access the arguments it needs. In the case of

prop arguments this will result in a demand being propagated to the

~nstruction which will produce the data. When the producer of the

result is executed it will return the value calculated in a data token

to all the instructions which left their addresses in its output argu

ments. This will allow them to proceed with their own execution.

4.7. Operation Codes

This section describes the top layer of the architecture which pro

vides a set of instructions that allow programs to be written for any of

the models of computation. These instructions do not form the basis of

the architectures for functional or logic languages; they are included

solely to allow programs to be written which demonstrate that all the

computational mechanisms are supported. Examples of these programs are

given in Appendix One.

Arithmetic Instructions

add,sub,mul,div,rem,lt,le,eq,ge,gt,ne

Each arithmetic instruction takes the first two arguments as its

input operands and distributes the appropriate result to the output des

tinations held in the remaining arguments. A boolean result is returned

- 80 -

from the compar ' s operat "It" "" . 1 on ors, to ne, and 1S represented by an

integer value, the number one for true and zero for false.

Distribution Instructions

dist ,distl

Both instructions take their first argument and distribute it to

the output destinations specified by the remaining arguments. The

instruction "dist" will dereference any address and propagate any demand

specified by the first argument. Addresses will only be dereferenced

once by the dist instruction but demands will be propagated repeatedly

as described above. The "distl" instruction will distribute the first

argument exactly as it is, the distl instruction will "distribute

literally". If either instruction is to distribute an address it is

first relocated. This allows an address to be sent which points into

the current process' address space, in either AM or PM.

Other Instructions

read

Reads an integer from the user and dispatches it to the <1est1.na-

tions in its arguments.

print

Prints the integer value of its first argument and distributes this

value to the destinations specified by its remaining arguments.

- 81 -

cond

The conditional instruction. This instruction first gets the value

of the predicate, which is the instruction's first argument. The predi

cate will be either a literal value, an AM or PM address, or an argument

of type "prop". Having got the predicate value one of the two arms of

the conditional are selected. Argument two is selected if the predicate

is true (returned one) and argument three is chosen if it is false

(returned zero). The arms will usually have one of two argument types:

sig: If selected a control token is sent to the address specified by

the argument.

prop: A demand is propagated to obtain the result from the selected sec

tion of code. When the result returned it is dispatched to the

output destinations specified by arguments four and above of the

conditional instruction.

If the arm is to have no effect when it is selected then it should

be of type "spare", any other type will result in the argument being

distributed via the output arguments.

call

The call instruction is responsible for calling a procedure or

function and has only one input argument, this is the procedure identif

ier. The procedure identifier is an index into DM which identifies the

procedure to be called. The call instruction will generate a new pro

cess for the procedure to execute in and pass the return address to it.

- 82 -

param

The param instruction is placed immediately before a call in a dat~

flow program. Each parameter will be sent to a particular argument slot

of the param instruction in data tokens. When all the parameters have

arrived the instruction will perform two tasks. It will signal the call

instruction that the parameters are ready, and send each parameter to

the instruction which will pass the parameter to the procedure.

ret

The return instruction, which will have at most two arguments. The

first argument will be the return address, and the second the value to

be returned. The return instruction will send a token to the instruc

tion pointed to' by the return address, and the token will contain the

result if there is one.

4.8. Implementing Conditionals

A conditional instruction may either be data-driven, or need

driven. To implement the former the instruction must be made to wait

until the tokens which indicate the availability of its arguments have

arrived. The data may be sent in data tokens, or be held in memory and

its availability signaled by a control token. Need driven execution can

be implemented by making each argument propagate a demand for its value.

A conditional instruction will always look at its arguments in the order

it needs them, thus only those results that are required will be

demanded.

- 83 -

4.9. Implementing Functions and Procedures

Recall that in data and control flow procedures are construct~<l

using processes. The call instruction must create the new process,

start its execution and pass the return address to it.

In contrast, a function call for a reduction machine must be imple

mented differently because the function body should, conceptually at

least, overwrite the call. In practice a different approach is adopted.

Once the called function has been invoked the call instruction will be

modified to become an instruction that will hold the r~sult. The return

instruction is sent the return address (the address ot the call instruc

tion) when the function is invoked, and will dispatch the result to this

address when it is received from the body of the function.

Procedure Format

The procedure format has two sec tions, the parameter passing and

return section, followed by the procedure body. At the top of the pro

cedure there will be a "distI" instruction whose first argument is a

literal value equal to the number of parameters the procedure expects.

This instruction is never executed, it is there simply to provide a

record for the call instruction to consult. The next instruction WiLL

be a return instruction. The first argument of the return instruction

is the return address, which is sent by the call instruction. Following

the return instruction there are n instructions that are responsible tor

distributing the n parameters within the procedure body. lhe body of

the procedure can be any combination of instructions, but i t mu~t

arrange for the return instruction to be executed when the body of the

procedure has been completed.

- 84 -

The format for a procedure will therefore be:

Procedure Call Format

distl,n

ret

distl,unk

distl,unk

procedure
body

Figure 4.5: Procedure Format

A procedure call is constructed from the call itself, followed by n

"dist" or "distl" instructions. The first argument of these distribu-

tion instructions will hold the value which is to be the procedure

parameter, the second argument will be the address wi thin the called

procedure of the corresponding parameter handling instruction. This

address is passed to the instruction by the call instruction when it has

generated the new process. The second argument of the dist instructions

will initially be of type unk so the distribution instruction can

receive the address in a data token. A call will therefore have the

format:

call,p
dist[l] ,"parameter value",unk

dist [1] ,"parameter value" ,unk

Figure 4.6: Procedure call.

- 85 -

The procedure parameters will generally be of two sorts, either an

input value or an address to which a result must be sent.

4.10. AssesS1Ilent of the Architecture

Several problems were encountered during the implementation of the

architecture. The first of these concerns instructions in the body ot d

called procedure which are immediately executable. Such instruct!.ons

must be executed immediately the procedure is called. To implement this

could involve searching the entire body of the procedure to find such

instructions, alternatively the instructions could chained together 1n

some way, possibly with the head held by an argument of the distl

instruction at the top of the procedure. Both these alternatives aad

somewhat to the complexity of the architecture, but neither will help

demonstrate the computational mechanisms the architecture implements.

For this reason the problem was ignored. Any immediately executable

instructions must be, in effect, compiled out and the results they would

have produced placed in the correct arguments of the instructions wh1ch

require the results.

The second difficulty involved functions used in reduction, and was

resolved as described earlier. A function call in a reduction machine

will usually be overwritten by the body, but this is difficult in a

packet communication architecture because it implies that both the func

tion body and the calling code will have the same process identifier.

Thus the distinction between several invocations of the same procedure

will be lost because the locations used by the instructions will clash.

An alternative scheme will be to change the location of each instruction

as it is copied into the calling code so that each address is again

unique. This is impractical, however, because the input and oUtpUL

- b6 -

arguments of the instructions also contain addresses, which must 1n turn

be modified. As a result the compromise solution described earlier was

adopted.

The last problem concerns garbage collection. Normally a return

instruction will delete a process and all its data, but this will remove

the possibility of returning results which are held in the generaLing

processes data area. To allow this, and to do garbage collection as

well, will either involve some way of allOwing the program to explic1tiy

delete a structure when it is no longer useful, which is difficult to

determine, or alternatively a mark scan garbage collector could be us~d.

The former is the most efficient because exactly what storage 1S to be

freed is always known, a garbage collector is easier to implement.

Since the garbage collector does not help demonstrate the implementation

of the computational mechanisms it is not included.

The flexibility provided by allOwing memory locations and data

tokens to hold instruction arguments proved most useful, particularly

when implementing procedure calls.

Of the other packet communication architectures in the literature

two are related to this project. The first is ALICE (Applicat1ve

Language Idealised Computing Engine) which has been developeu by Dar

lington and Reeve at Imperial College [27], and the second is ZAPP (~ero

Assignment Parallel Processor) which has been produced by Sleep at the

University of East Anglia [67].

ALICE is aimed at the implementation of functional languages and is

based a round red uc tion • The architecture is a packet communication

architecture which implements control flow. In ALICE an instruct10n may

have two states: asleep or awake; an instruction is only executed wilen

- 87 -

it is awake and has all the data it requires. Execution by neeo is per

formed by giving all instructions (bar one) a sleep status when the pro

gram is loaded into the machine. When an instruction requires tht:

result of another it places its own address in an output argument of the

producer of the data, and wakes producer. The instruction which

requires the data goes to sleep to await the result. When the the pro

ducer has been reduced to its result it wakes all the instructions which

asked for the result, which in turn load it from the location which held

the producing instruction. ALICE is therefore an architecture whose

mechanisms are used to support reduc tion. Interestingly the archi tec

ture implements reduction in terms of control flow; the active 1nstruc

tion becoming the passive result to which the consumer reiers. Iht=

architecture used in this thesis, however, implements reduction in terms

of data flow. Unfortunately ALICE may suffer from contention for access

to the result, but the archi tec ture used in this thesis does not. To

avoid contention the architecture described here makes use of the token,

which must be sent to signal the availability of the result, to carry

the result to the instructions which demanded it. In this way each

instruction receives a copy of the result and so there is no contention.

ALICE implements its pool of executable instructions as a pool of pack

ets containing the instructions which.are distributed amongst the pro

cessors. The architecture described here implements the pool as a queue

for the architecture's single processor. Both methods would seem to be

appropriate for the architecture that uses them.

The ZAPP architecture supports functional languages using data

flow. This architecture is a particular way of evaluating combinator

expressions, which can be used to implement functional programs. A

topic which is described in Chapter Five. The paper describing ZAPP

- 88 -

gives scant details of how the design will be realised, so it is diffi

cult to make detailed comparisons with the architecture described here.

The evaluation scheme used is essentially demand driven, but demands are

propagated before it is known if the result is needed. This is termed

rash evaluation and allows greater parallelism than the pure by-need

mechanism. The termination properties of the latter are preserved by

only allowing each rash evaluation a limited amount of resources. when

these are exhausted the evaluation is suspended until the resources are

renewed. In this way rash evaluation may s till be controlled, and

stopped when it is discovered that the result which it will produce 1s

not needed.

4.11. Rules for Architecture Modification

The architecture described above will be used in the rema;/uer of

this thesis as the basis of an investigation into the support of a func

tional and a logic language. By using the architecture it will be pos

sible to evaluate the computational mechanisms described in (''hapter

Three for supporting both types of language.

The architecture may be thought of as being divided into two

layers. The bottom layer implements the computational mechanisms, and

the top layer implements the operation codes of the instructions. When

implementing either of the languages it will be necessary to modify the

top layer to incorporate the operation codes required by the language.

No modification of the bottom layer should, however, be made. If such a

modification to the computational mechanisms proves necessary it indi

cates a flaw in the classification in Chapter Three, and demonstrates

that the computational mechanisms described are not able to support the

language in question.

- 89 -

CHAPTER. FIVE

lHPLKHENTATION TECHNIQUES FOR FDliCTIONAL LANGUAGES

Perhaps the most common way to implement a functional language is

to use Landin's SECD machine[49]. The architecture described in Chapter

Four is, however, tailored to reduc tion as a mechanism for supporting

functional languages. Unfortunately the SECD machine is not a reduction

machine because it separates program and data, so it will not be con

sidered further. The form of reduction that will be used in this thesis

is graph reduc tion, in particular the scheme proposed by Turner l b~ J •

The description of graph reduction given in this chapter is divided into

two sections: the first section is devoted to a description of combina

tors, the operators used in Turner's graph reduction scheme. The second

section describes Turner's graph reduction scheme itself. The descrip

tion of combinators is confined to the three simplest exampl~s because

these are sufficient to illustrate the principles involved. A descr1p

tion of the remaining combinators may be found in Appendix Two.

Using combinators, and particularly graph reduction, provides an

elegant way of implementing a functional language. Several of the

features required by such languages are provided implicitly.

5.1. Combinators

This section describes combinators, which are the instructions usea

in graph reduction to bind a function's arguments into the func oon' 5

body. A combinator is an operator which has as its arguments severd~

- 90 -

expressions, and a value, and which applies these expressions to the

value.

The central notion of both Lambda Notation and combinators is to

substitute an argument value into a function body. The Lambda notation

searches the function body for each occurrence of the bound variable,

and replaces the each occurrence by the argument value. Comb ina tors

operate by distributing the function argument throughout the function's

body so that a copy of the argument arrives at each element in the body.

As the argument arrives it is either rejected, and the original element

kept, or it is accepted and the original element overwritten. Two com

binators are used as the acceptor and the rejector of arguments. These

combinators are:

1) I, the identity function: takes the identity of its argument. This

is the acceptor of a function argument and is defined by the rule:

Ix = x

The function argument x is passed to the I, whose operation leaves

x as the result. So if an I appears in an expression it will even

tually be replaced by the function argument.

2) K, Keep: keeps its first argument and rejects the second. This is

the rejector of function arguments and is defined by the rule:

Kyx Y

The identifier y is the symbol in the expression which is to be

kept, and x is the function argument which is to be rejected. The

combinator is applied to both its operands, it retains y and dis

cards x.

- 91 -

The way these combinators may be used to accomplish argument bind-

ing may be demonstrated using the function:

fun x = g h x

When represented using K and I the function body will have the form:

(Kg)(Kh)I

The symbols which are not the bound variable are protected by Ks, and

each occurrence of the bound variable is replaced by an I.

If the function fun is applied to an argument, say the value I, the

argument must be distributed throughout the function's body. When the

argument value arrives at each segment of the body, the combinators will

either accept or reject it, for example:

fun 1 => (Kgl)(Khl)(Il)
=> g h 1

The Ks reject the 1 and keep the symbol, g or h, and the I accepts the

argument and is replaced by 1.

The K and I combinators perform the accepting and rejecting of the

function arguments, but a third combinator is required to carry out the

distribution. This is the S combinator, which is defined thus:

3) S, Substitute: substitutes its third argument into it first two

arguments. S is defined by the rule:

Sfgx
or more clearly

fx(gx)
(fx)(gx)

The S combinator applies f and g to the function argument x. The

symbols f and g denote the expressions into which x is substituted,

they may also contain S combinators which will cause further dis-

tributions.

- 92 -

To use the 5 combinator the function's body must be divided as tollows.

First add all the default brackets, which are left associate as

explained in Chapter Two. This transforms the function body into:

((Kg) (Kh)) I

The left-hand part of each function application is known as the operator

(the function) and the right the operand (the argument). This scheme

applies recursively to subexpressions, so Kg is the operator of the

operator and Kh the operand of the operator. The division stops when

the subexpressions which contain the Its and Is are reached. For each

operator/operand pair introduce an 5 combinator to distribute the func-

tion argument to the operator and operand. The introduction of S combi-

nators starts at the highest level operator/operand pair and adds an 5

to distribute the bound variable. This gives the expression:

5 ((Kg) (Kh)) I

The introduction of the 5s works progressively down the levels of nest-

ing, finally producing the expression:

5 (5 (1f)(Kg)) I

When the combinator expression for fun is applied to 1, the following

reductions take place:

fun 1 =) 5 (5 (Kg)(Kh» I 1
=) 5 (Kg)(Kh) 1 (II)
=) (Kgl)(Khl) 1
=) g h 1

1st 5 reduced
2nd 5 and I reduced
both Its reduced

Therefore applying a combinator expression to an argument value repro-

duces the function body with the argument value substituted in place of

the bound variable. The compilation process transforms an expression

into combinators, which define how the argument is to be subst1tuted

into the expression. Substitution reverses the compilation process and

- 93 -

re-creates the original expression, but now with the argument Value in

the correct positions.

5.2. Graph Reduction

The combinators described in the previous section provide an

elegant way to represent functions, and can form the basis for an imple-

mentation of a functional language. Such an implementation can either

use the combinator expressions themselves or the graphical repre:senta-

tion of them. Turner[69] suggests using the latter.

5.2.1. Graph Structure

Turner's graphs are built using the operator/operand structure of

the combinator expression, and take a form which approximat:es to a

binary tree. Each node in a graph represents a function application and

contains two fields: the left one is the operator and the right the

operand:

operator operand

Each field in a cell may contain either a pointer to another cell, or d

literal value such as a piece of data or a combinator such as S. The

graph may be constru~ted from an expression by successively dividing it

into operator/operand pairs and introducing a cell for each. For exam-

pIe take the expression S f g x. It will initially be dividea to pro-

duce the expression (S f g)x, which will be represented as the node:

Jill
Sfg

- 94 -

where x is assumed to be a literal. If the operator is divided again

the result will be (S f)g:

Sf g

Sf is now divided to produce the final graph:

f

In the discussion so far only the outer-most combinator of the

expression has been converted to a graph; the remainder of the expres

sion is held in the outermost combinator's arguments. Each of these is

now converted in turn using the same algorithm. For example the expres

sion:

S(S(Kf) (Kg» I

- ~5 -

will produce the graph:

A more realistic example could be based on factorial:

factorial An.(if x o then 1
else n * fac(n - 1))

The combinator representation of which is[69j:

factorial = 5 (C ((B if) (= 0)) 1) (5 * ((B factorial) (C - 1)))

This expression uses a simplified representation of recursion, the usua~

representation is described in Appendix Two. The graph constructtO from

the expression is:

- 96 -

5.2.2. Graph Manipulation

The graphs described above are a particular way of representing an

expression; reduction operates by reducing one expression to another

until the final result is obtained. It follows therefore that graph

reduction must manipulate the graph which represents the program until

the graph represents the program's result.

The reduction of a function is carried out in two stages: the first

uses the combinators to substitute the argument value into the funct10n

body, and the second reduces the function body to its result. 'lhe

reduction is controlled by the combinators, and other operators such as

plus, which the graph contains. Each operator defines a reduction rule

which specifies how the graph is to be manipulated.

- 97 -

The following three sections give the graphl."cal . representatl.on ot

the reduction rules for S,K and I.

I Combinator

The graphical representation of I is:

I x

The reduction of I has no effect, the node is retained in the same form

so x may be accessed by other combinators.

K Combinator

The reduction of K may be represented by the graphs:

=) I y

The graph on the left is modified so that the top node becomes the one

shown on the right. The root of the result must represent the reduced

form of K, which is the value y. The I combinator is introduced becaus~

each node must have an operator, the I is chosen because it will not

change the meaning of y.

- Y8 -

S Coabinator

The reduction of S may be represented by the graph:

=)

g

f

The top cell of the graph on the right is modified to reflect the r~sult

of S, which is (fx)(gx). The two lower nodes of the resulting graph are

new - they are not nodes from the old graph modified to hold the new

function applications - only the top node is retained and modified.

Protecting Function Definitions

In the above descriptions of graph reduction only the top node of a

graph has been modified. Any other nodes in the resulting graph ar~

new, they are not nodes from the old graph given new uses. The old

nodes may not be re-used because they may be shared by other parts of

the graph.

The generation of new nodes is an essential feature of the opera

tion of S and the related combinators (B,C,S',B',C' explained in Appen

dix Two). The use of new nodes is necessary because whenever a bound

variable is substituted into a function body a copy of the body must be

taken to avoid corrupting the function definition. For example taKe ttle

following code which represents a function definition used in two calls:

· - 99 -

g

f

The lower two cells represent the function definition, and the top two

cells represent two function applications. This graph will be reduced

to:

Both reductions above have been carried out using the root of each

graph to provide the third operand of S, so both roots have been modi

fied to reflect the reduction of S. Neither reduction has affected the

function definition which is left undistubed in the resulting graph.

- 100 -

Copying function bodies when binding arguments could introduce dit

ficulties when implementing lazy evaluation. Any reductions performed

on the copied body will not benefit any future callers of the function

because the caller refers to the function definition, and not the copy

upon which the reductions are carried out. In practice combinators

avoid this problem because they only copy those parts of the tunc tion

body which contain the bound variable. The sections of the function

which are constant with resect to the bound variable are the only subex

pressions whose reduction should benefit future callers. These constanc

subexpressions are retained in the definition and referred to by

pointers from the copied body. The reduction of such subexpressions is

therefore carried out in the definition of the function, and their

reduction will therefore benefit future callers.

So far the description of graph reduction has concentrated on the

operations carried out by each combinator. No attempt has been made to

give an account of how these operations are actually implemented. This

omission is corrected in the following section.

5.2.3. Performing Reductions

This section covers· two topics: firstly the order in which the

reductions are carried out, and the properties this confers on the pro

gram. Secondly how graph reduction can be implemented.

The reduction of an expression is driven by need; so the outer-most

combinator must be reduced first. The outer-most combinator will be the

one contained in the leaf cell at the extreme left of the tree. In the

example below the outer-most combinator is the S.

- 101 -

f

Once the outer-most combinator has been found the processor reach~s bacK

up the tree to find its operands, and then performs the required reduc-

tion. This reduc tion will manipulate the graph; which will usually

result in another operator becoming the left most in the graph. This 1S

the operator which must be reduced next. Often the operator to be

reduced will not be a combinator, but another instruction such as if or

plus. The construction of a combinator expression is such that wh~n an

argument is substituted far enough to allow the result to be partially

evaluated, this evaluation is carried out. For example consider the

reduction of the expression:

(f x) (g x)

when applied to the value 1. The combinator expression which represents

(fx)(gx) is:

S (S (1£) I) (S (Kg) I) 1

The reduction using the outer-most rule will be:

S (S (1£) 1) (S (Kg) I) 1 => S (K f) I 1 (S (K g) I 1)
=> K f 1 (II) (S (K g) I 1)
=> f (II) (S (K g) I 1)

Now f is applied to I 1 because it has become the left most operacor.

Notice that the argument of f, namely I 1, is not even reduced before it

- 102 -

is substituted into f, because f may not need the value of its argument

to produce its result. The second half of the expression has not been

reduced at all. Substitution is only carried out as far as necessary to

produce the result; if the result could be produced without the value or

gx, the argument value is never be substituted into that pan. of the

expression. In short always reducing the outer-most left-most operator

is in fact reduction be need.

There are two accepted ways of performing reduc tions on a single

processor machine. One using a stack[69] and the other reversea

pointers[17].

Using a .stack

A stack can be used to record the path followed down the trte to

find a reducible combinator. As already explained the processor always

follows the leftmost branch of the tree to find a reducible expression.

When the combinator is reduced the processor uses the earlier entr1es on

the stack to find the combinator's arguments. An exampl.e ot using a

stack to represent a reducible expression is:

f

- 103 -

Using Pointer Reversal

Pointer reversal arranges that as the processor progresses down the

operator chain it reverses the pointers to record the path. When the

leaf cell is found the combinator is removed from the node and held

separately to make room for the last reversed pointer. The chain of

reversed pointers is then used to access the combinator's operands:

S f

When the S combinator is reduced it reaches back up the tree using

the reversed pointers. Following the operator chain is, in fact, demand

propagation. Recording the path followed corresponds to retaining the

address of the instruction to which the result is to be returned.

As an alternative to reaching back up the tree the processor can

follow a scheme which adheres more strictly to the rules of reduction.

The rules of reduction require that each function application is

replaced by its result, which applies to user defined functions and com-

binators alike. Taking S as an example, the application of S to f

should return a result Sf:

Sfgx =) Sf g x

- 104 -

The new "combinator" Sf is then applied to g:

Sfgx =) Sfg x

Only now can the final result be produced:

Sfgx =) fx (gx)

Each stage in the combinator's reduction produces a new combinator which

is applied to the remaining arguments. This scheme will either require

nodes to expand in order to hold each new combinator (because the node

must hold the values of the arguments incorporated into the new "combi-

nators"), or alternatively pointers to be used to point to nodes which

represent the new combinators. The latter of these two schemes will be

the easiest to implement but it could be argued that the normal pointer

scheme does this anyway. The operator pointer of a cell points to the

function application that produces a new combinator, so it points to a

cell which represents the new combinator. Reaching back up the tree 1S

therefore an acceptable optimisation of true reduction.

5.2.4. Assessment of Graph Reduction

The basic task of combina tors is to bind func tion arguments into

function bodies. Without them this is carried out by a rather complex

side effect of the call instruction, as in the SECD[4~j machine for

example. However if combinators are used this is no longer the case.

The binding of arguments becomes the responsibility of a set of simple

instructions that can be incorporated easily into a machine. This is

one of the most elegant aspects of combinators: they allow argument sub

sti tution to be defined in terms of simple reduc tion rules. lhis

elegance complements the elegance of the call/return mechanism of reauc

tion. As was explained in Chapter Three, the called body overwrites the

- 105 -

call instruction, the result then overwrites the body, and therefore the

call, thereby accomplishing the return. Incorporating binding as a side

effect of function calls spoils the elegance of this call and return

mechanism.

The main disadvantage of combinators is that a new copy of the

function body is taken each time a bound variable is bound inw the

body. This is, arguably, an inefficient operation in both space and

time. However, graph reduction provides many of the features required

by a functional language in an elegant way, since they arise naturally

from the way that graph reduction is implemented. The simplicity thaL

results does much to outweigh the inefficiency.

The elegance mentioned above can be illustrated by the two most

important features of functional languages: higher order functions, and

evaluation by-need, particularly when incorporating laziness. Both con-

siderably increase the power of the language, and both rely on the

notion of a closure for their implementation. As was described in

Chapter Two, a closure represents the association of a function body and

its environment. The purpose of a closure purpose is to allow the exe-

cution of a function to be suspended, and then restarted.

Combinators implement closures as a natural consequence of their

operation. Consider the example:

fAX.g x
where g = Ay.sin(x)+y

f 1

The function f is applied to the argument 1 which is substituted

throughout f and the body of g, at least in principle. In actual tact

the substitution will not have been carried out but instead will hc.ve

- 106 -

been suspended until g is called. The evaluation of a combinator

expression is carried out by-need. The substitution of the argument

will be suspended until the evaluation of f must resume in order to pro

duce g. The suspended substitution of the value of x represents a clo

sure and is implemented as a partially evaluated combinator expression.

For the above reasons combinators have generated considerable

interest, and have given rise to several machine designs which use them

for argument binding, amongst these the ZAPP architecture, described in

Chapter Four, and SKIM[17], developed at Cambridge, are the best known.

- 107 -

CHAPTER SIX

GRAPH REDUCTION ON THE MACHINE ARCHITECTURE

This chapter describes the implementation of graph reduction on the

emulated architecture described in Chapter Four. The aim of the imple

mentation is to demonstrate that the architecture is able to support

graph reduction.

6.1. Instruction Format

As described in Chapter Four the instruction format used by the

architecture is:

count op code argl •••• arg n

Figure 6.1: Instruction format.

Combinators and the other basic operators in the machine are implemented

as instructions. For example the operation code of an instruction could

contain S or K combinators. An apply cell from Turner's graphs will be

built from an "apply" instruction (see Appendix Three), the first two

arguments of which form the operator/operand pair of the cell.

The only modification to the instruction format is to allow input

arguments to be of type "spare", for reasons that will be explained

later. In addition, the argument types of "unk" and "am" will be used

during the execution of the program in order to implement demand

- 108 -

propagation, but they should not appear in the source of a user's pro-

gram.

6.2. Program Format

A program is a textual representation of its graph. Each node is

formed by an instruction; the arguments of which are either pointers to

other instructions or literal values. For example the graph for Sfgx

is:

f

which is represented by the program:

1: apply, prop 2, x
2: apply, prop 3, g
3: S, f

Figure 6.2: Program for Sfgx.

The top two nodes of the graph are represented by instructions one and

two, while the bottom node is represented by instruction three. The

arcs between the nodes of the graph are represented by the prop argu-

ments in the program.

- 109 -

6.3. Instruction Execution

This section describes the way instructions are executed. lne

scheme used is based on pointer reversal and the . 1 d part1a re uction ot

expressions as explained in Chapter Five. The following paragraphs

describe how the scheme is mapped onto the architecture.

The execution of the program in Figure 6.2 will start when instruc-

tion one receives a demand; the return address for which is represented

by a "*,,. h f 1n t e igure below:

1: apply prop 2, x, *
2: apply prop 3, g
3: S f

Instruction one will now be executed and argument one will propagate a

demand to instruction two. The prop argument is changed to unk and the

address of the source of the demand is placed as an output argument in

the destination:

1 : apply, unk, x, * 2: apply, prop 3, g, 1
3: S, . f

Instruction two now has an output argument and so it will execute and

propagate a demand to instruction three. Again the prop argument is

replaced by lIunk ll and the return address placed in an output argument ot

the destination. Instruction three will, however, eventually have thre~

input arguments, so space must be left for them. For this reason two

extra input arguments are placed in the instruction, both of which are

of type spare. The return address for the demand is then placed in the

first output argument. This technique is used for all the instructions

implemented on the architecture. The program will now have the format:

- 110 -

1: apply, unk, x, *
2: apply, unk, g, 1
3: S, f, spare, spare, 2

The chain of reversed pointers is now complete. In a sequential incer-

preter the leaf of the tree will now reach back up the chain of reversed

pointers to find its arguments and perform the required reduction. In

this implementation a different approach is adopted. When the demand

arrives at the third instruction it will execute. The rules for execut-

ing an instruction have been modified from those used previously, an

instruction is now considered executable if all its input arguments have

values, as before, or if some of its input arguments are of type spare.

When an instruction executes it inspects its input arguments, and if

some are of type spare it will return the its own address as its result.

In the example therefore, the S instruction will return its own address

as its result to the apply instruction:

1: apply, unk, x, *
2: apply, 3, g, 1
3: S, f, spare, spare, 2

Instruction two will now execute because it has values for all its input

argUments. When an apply instruction executes it overwrites its~lf with

the instruc tion whose address held in argument one. In doing so the

apply instruction places its second operand in the first spare input

slot of the copied instruction, and then copies across its own outpuc

arguments. The program will now have the form:

1: apply, unk x, *
2: S , f, g, spa re , 1
3: S, f, spare, spare

Note that instruction three is not modified in any way; it is still

available for use in any other sections of the program that share it.

Notice also that although the form of the second instruction has been

- 111 -

changed, its meaning has not, the instruction still applies "s flO to g.

The new version of instruction two will immediately execur.E:, and

the process repeated to produce the program given below. Again tlle

apply instruction will copy the result of its demand and add its own

input and output arguments:

1 : S, f, g, x, * 2: S, f, g, spare
3: S, f, spare, spare

Instruction two is retained so it may be used by other sections of the

program. The complete S instruction will be reduced since all its ar~u-

ments have values. The final result will be the program:

1 : apply, prop 4, prop 5, * 2: S, f, g, spare
3: S, f, spare, spare
4: apply, f, x
5: apply, g, x

Instructions four and five are the two cells introduced by the operation

of S which apply f to x and g to x. The execution of all instructions

therefore follows the rules of reduction throughout.

6.4. Iap1eaenting Functions

In the original architecture functions were implemented by

processes. In particular the processes used for reduction were implt!-

mented so that the result overwrote the call. The processes were neces-

sary to keep the addresses for each invocation of a function unique.

The technique relied on a new copy of a function body being taken from

DM whenever it was needed. This is not appropriate for graph reduction

because the operation of combinators ensures that a copy of a function

body is taken every time the function is applied. As a result the call

instruction is not used by graph reduction; the use of combinators makes

- 112 -

it completely redundant. Since combinators handle all the copying ot

function definitions the entire graph can now be held in on~ proc~ss in

AM.

6.5. A Problem. with Lazy Eva1ua.tion

In the original architecture, an instruction will be copied into AM

when it receives its first token. This is still the case, but the us~

of lazy evaluation presents a potential problem. After a copy of an

instruction is taken from DM it will be executed and its result will

reside in AM. The reduction will not therefore benefit future callers

of the code held in DM. Such a situation could occur if a function body

contained a constant expression, + 1 2 for example. This expression

must be reduced in such a way as to allow future users of the body he~d

in DM to benefit from the result. In actual fact the addressing scheme

used in the architecture ensures that this is the case. When a token is

sent to an instruction it is assumed to reside in AM; since all the des-

tination addresses for tokens specify AM locations. li the instruct:.ion

is not present it is found in DM by performing a simple mapping on the

address. When a constant expression is reduced, the demand tokens sent

to it will force a copy of the expression to be taken from DM. The

expression is therefore reduced in AM, and the result also held in AM.

When the next user of the expression tries to access it, the new user

will refer to the same address as the original demand. So the resul t.

held in AM will be found. Consequently there will be no need to reier

to the code in DM. In this way the result masks the code in Dh that

produced it, thereby allowing future users of the expression to benetit

from the first reduction. Usually the result overwrites the expression

in reduc tion, but the masking described above has the same eflec t.

- 11j -

Unfortunately this problem was not discovered until graph reduCLion ~dS

implemented.

6.6. Assessaent of Combinator lapleaentation

In this section the implementation of combinators on the architec

ture is assessed and the decisions taken justified.

6.6.1. Parallel Execution of Combinators

Two possible ways of implementing graph reduction were consiaerea:

using a stack, or pointer reversal. The problems wi th using each will

now be described to demonstrate why the system employed was chosen.

Using Stacks

When performing graph reduction using stacks each stacK represents

a demand chain. In the parallel execution of a program there will be

several demand chains active at any time, it follows theretore that

there will be several stacks. Each stack is used to allow the combina

tors being reduced to reach up the tree to find their operands. Untor

tunately none of the computational mechanisms provided by the emuldteu

architecture make use of stacks, so this method of graph redUCLion 1.S

not suitable for the work described here. To use stacks at all wOUJ.d

require the computational mechanisms to be modified, a situation which

should be avoided if at all possible. The use of stacks it is therefore

not considered further.

- 114 -

Using Pointer Reversal

If graph reduction is performed using pointer reversal ~ach demand

chain is represented by the chain of reversed pointers. Each chain

leads back to the root of the expression being reduced. If two chains

clash for the use of a shared section of code then one wil.L arrive

before the other. The first to arrive will proceed to reverse the

code's pointers in the usual way, since it cannot detect that the code

is shared and consequently cannot treat it in a special way. when the

second demand arrives it will find no forward chain to follow and will

therefore have to wait until the previous reduction has been compl~teu

and the pointers restored. This scheme is not ideal becaus~ it requires

the execution of shared code to be preformed sequentially, and there is

no mechanism within the architecture which allows waiting users to be

informed when the shared code is free. In short to deal wi th each

demand sequentially will require demand propagation to be modified. 10

modify demand propagation in this manner would be to admit that the

mechanisms embodied in the archi tec ture are inadequa te. This shoula

only be done if there is no alternative because to do otherwise may

invalidate the results of the work. The scheme described earlier over

comes this problem because no combinator reaches up the tree.

Pointer reversal also imposes a performance overhead. lbe primary

reason for this lies in the optimisation used when reducing an instruc

tion to its result. The reader will recall that the instruction reaches

back up the tree to find its arguments, and in doing so effectively

flattens the graph which represents it. If a section of code is shared,

and each user is dealt with in turn, then each user flattens the tree.

Thus the optimisation of reaching back up the tree actually increases

- 115 -

the overheads because the same section of the tree is repeatealy flat

tened. If the operation of demand propagation is followed throughout

the situation could be improved. The demand propagation scheme of

reducing combinators adopted for the architecture flattens the instruc

tion in stages. Each time a stage is complete, those instructl.ons whicl.

share the result are informed and passed the address of the reducea

instruction. Each section of the tree is therefore flattened only onc~.

The scheme of graph reduction proposed in this chapter is, ther~

fore, both more efficient than simple pointer reversal, and more suit

able for the architecture.

SlDUI8.ry

Most of the above comments refer to the implementation techniques

available for graph reduction and few to the mechanisms provided by the

architecture. This is indicative of the fact that: no major problems

were encountered when implementing graph reduction. Only one minor

change to the emulator was necessary, which allowed input arguments to

be of type spare. This modification allows partially evaluated instruc

tions to be held in memory for future use. When combinators were imple

mented they presented no ~ajor difficulties; the code necessary was o~y

slightly longer than that required to implement the instructions of the

architecture described in Chapter Four.

All the modifications made to the emulator were made to the top

layer of the architecture referred to in Chapter Four, the .i.ayer which

implements the instructions. No modifications were made to the :Lower

level, the layer which implements the computational mechanisms described

in Chapter Three. This indicates that the mechanisms described in the

- 116 -

classification are able to support functional languages, and in particu

lar graph reduction.

- 117 -

ClIAPTER. SEVEN

I1fl'LEHEJIT.ATON TECHNIQUES FOR LOGIC LANGUAGES

The purpose of this chapter is to describe the various options

available when implementing logic languages, and to justify the choices

made when implementing logic on the emulated architecture.

Before commencing the main body of this chapter the description of

logic given earlier in the thesis is summarised.

7.1. Summary of Logic Languages

A logic program is built from a collection of relations. Each

relation consists of several clauses which collectively define how a

relation's parameters are related to one another.

grandparent relation:

For example the

grandparent(X,Y) :- parent(X,Z),parent(Z,Y)

relates X and Y in such a way as to make Y the grandparent of X.

Each clause in a relation defines part of the relation's behaviour,

typically it will define the relation for certain combinations of input

parameter values. Each clause consists of a head and a body, and the

body in turn consists of a set of goals. The head, which specifies the

formal parameters, is to the left of the implication symbol, ": _", and

the body is to the right. Each goal in the body calls the relation it

names and passes the specified actual parameters.

- 118 -

There are two special types of clause in a logic program. One with

no body is an assertion:

parent(fred,bert)

and specifies that the formal parameters are always related, in this

case that fred is the parent of bert. A clause with no head is a ques

tion:

:- grandparent(fred,GP)

and asks in what circumstances the relation holds, in this case what

values of GP exist such that each value is a grandparent of fred.

7.2. Search Tree

The concept of a search tree was introduced in Chapter Two and is

important in this chapter. The description given in Chapter Two is

therefore summarised here. Recall that the execution of the program

starts with the execution of the user's question, which specifies the

result the user requires. A goal is selected from this specification

and executed. Each clause which is successfully unified in the called

relation gives rise to a modified form of the specification. Each new

specification is then executed, and a goal selected from it. The whole

process is then repeated.

Each time a goal is executed a new activation record is created

which reflects the modified form of the specification. The whole pro

cess gives rise to the search tree described in Chapter Two, and illus

trated again below. Each node represents an activation record.

- 119 -

• grandparent(fred,GP)

• parent(fred,Z),parent(Z,GP)

/\
parent(bert,GP) • • parent(joan,GP)

parent(fred,clive) • • parent(joan,john)

Figure 7.1: Search tree for "grandparent(fred,GP)"

7.3.Uni£i~tion

In Chapter Two the unification algorithm was described as producing

substitutions which make elements of a set the same. In a prac tical

interpreter the substitutions· are implemented as parameter bindings.

The elements of the set to be unified will be the parameters of the goal

and the head of the called clause.

Consider the example:

{g(X) ,g(Y)} .

the the element to the left is the caller, and the one on the right is

the head of the called clause, therefore X is the actual parameter and Y

the formal parameter. Constant terms in the two literals (i.e. the head

and goal) to be unified must be equal, as before. If one of X or Y is a

variable, and the other is a constant, then the substitution will be

it/v}, where t is the constant term and v is the variable, as explained

in Chapter Two. Suppose X is a constant value, and that Y is a vari-

able, the value X must be substituted into the body of the clause of

- 120 -

which g(Y) is the head. The substitution to be chosen must therefore be

{X/Y}, namely substitute X for Y. If Y is a constant and X a variable

then the {Y/X} substitution must be chosen because it allows the result

to be passed back to the caller. If both terms are variables, then Y

will eventually have a value to be passed back to the caller, so one

must chose the same substitution as one would if Y were constant in the

first place, namely {Y/X}.

When implementing logic the binding of two parameters with unknown

values is usually represented as a pointer from the formal parameter to

the actual parameter. When a value is bound to the formal parameter,

the pointer is followed and the actual parameter used to hold the value,

thereby accomplishing the substitution of the formal parameter for the

ac tual parameter. In this way the result generated by the clause is

passed to the caller. If a single formal parameter has two actual

parameters unified with it, then one of the actual parameters is made to

point to the other. For example consider the equal relation, written:

equal(X,X) •

If the equal relation is called by the goal:

equal(A,B)

then after X and A have been unified the binding will be:

formal actual
X ----------~. A

Now X and A are the same variable, so the unification of X and B is in

fact the unification of A and B, giving the final binding of:

formal actual
X ----------~~ :)

- 121 -

The binding of A and B remains in existence after the execution of equal

has finished; any value bound to A or B is automatically bound to the

other, thereby ensuring the equality of A and B.

7.4. Structures

Structures are built from functors applications, and may cause some

problems when implementing logic. Each structure will typically contain

references to variables belonging to the clause which created the struc

ture. If the structure is returned as a result then the variables the

structure refers to must persist after the clause which generated the

structure has terminated. For this reason many interpreters use an aux

iliary stack to hold variables referred to from structures. Activation

records on the auxiliary stack are only popped when the structures which

refer to the activation record are deleted. This occurs when the vari

able which holds the structure is deleted, or when the branch of the

tree which created the structure fails.

7.5. Negation

As described in Chapter Two, when a goal is negated its success is

interpreted as failure, and its failure as success. In terms of the

search tree, when a negated goal gives rise to a subtree, the failure of

one of the subtree's branches means that the negated goal has succeeded

in that branch. As with any other goal, if a goal is successful then

the branch which gave rise to the success will execute the next goal in

- 122 -

the clause containing the successful goal. Consider the example below,

which is true if there are only two generations to X's family, i.e. that

X is a parent but not a grandparent.

twogen(X) :- -grandparent(X,Y),parent(X,U)

A search tree for twogen(john) would have the form:

• twogen(john)

• -grandparent(john,Y),parent(john,U)

• parent(john,Z),parent(Z,Y)

The goal at the leaf fails because john has no children. The subtree

was generated by -grandparent(john,X), so the -grandparent(john,X) goal

has succeeded. The next goal to be executed is parent (john, U) • The

same would be true no matter how many nodes lie between the one which

executed the negated goal and the goal which failed. For example:

• -grandparent(john,Y),parent(john,U) •

• parent(john,Z),parent(Z,Y)

the next goal to be executed is still parent(john,U). If a goal which

is negated succeeds, then the clause to which it belongs fails. This

failure is treated in the same way as the failure of any other clause.

If the branch of the tree was created by a negated goal, the goal fol

lowing the negated goal must be executed. If the branch was not created

by a negated goal, the branch is not pursued any further in the search

for results.

- 123 -

7.6. Variab1e Binding

There are two standard ways to implement variable binding in logic:

1) Each variable is a pointer to a concrete representation of a term.

2) Each variable is implemented as a pointer to a shared template of

the term. A template represents the format of a structure. The

pointer or molecule has two components, the first points to the

template for the term, and the second to the environment in which

the variables of the template should be dereferenced.

The first method is referred to as "copying pure code"[56] and the

second as "Structure Sharing"[22].

Both methods hold the values for variables in environments, or

activation records, which are created when a clause is called. The

environment will hold the values for all the variables used in the

clause, and all the goals within a clause refer to these variables by

using an index into the environment.

7.6.1. Copying Pure Code

Each time a term is constructed a concrete representation of the

term is buil t • If the term contains any constants, the concrete

representation of the term will hold a pointer to the values. If the

term refers to variables wi th undefined values, the representation of

the term will contain a pointer to the variable's location in the

activation record where the variable was introduced.

- 124 -

7.6.2. Structure Sharing

Structure Sharing seeks to reduce the number of copies made of

items by using templates to represent every structure used in a program.

In doing so it avoids the need to create a concrete copy of any struc-

ture. The variables referred to by the template are implemented as

indexes to their entries in an environment. The molecule which points

to the structure will specify the environment in which the variables

will be dereferenced. There are two types of structure that may be

represented by templates: goals and terms. A goal only contains con-

stant values: an index into the environment for a variable or a literal

constant. Each instance of a goal is therefore pure and may share one

template.

Structure Sharing can also result in the saving of space because of

its ability to share a single template of a term, or the components of a

term. Consider the example of append:

append(nil, L, L) •
append(cons(H,T),L,cons(H,TL):-append(T,L,TL).

:-append(cons(1,cons(2,nil)),cons(3,nil)),A).

The first execution of the append relation will result in its second

clause being executed within the environment:

H 1
T cons(2,nil)
L cons(3, nil))
TL= undefined

- 125 -

Instead of copying terms which form the value of a variable, it is

possible to simply store a molecule which points to the original tem-

plate:

ar 0 :A m(~arl, ~ cons(R, TL) (template from body of append)

ar 1

ar
m
~arn

:R ;(~aro, ~ cons(2,nil) T (template from

L m(~arO, ~ cons(3,nil) (template from
TL= undefined

activation record
molecule(environment pointer,template pointer)
a pointer to activation record n

the question)

the question)

In the figure above arO is the activation record for the question, and

arl the activation record for the execution of the second clause of the

append relation.

The second call of append will be handled in the same way:

ar 0 :A m(~ar1, ~ cons(R, TL)

ar l:R 1 ~
T m(~arO, f) ~cons(2,nil)

L m(~arO, ~ cons(3,nil)

TL= m(~ar2, ~ cons(R, TL)

ar 2 :R
T
L
TL=

2
nil r'\
m(~ar1, f) ~ cons(3,nil)
undefined

The second activation record is created by the recursive call to append

made from ar1's clause.

By sharing terms a great deal of copying and rebuilding of struc-

tures is avoided. The functor cons was chosen above because it is the

most common. In both diagrams the environments for the failed calls of

append(nil,L,L) are not shown for reasons of clarity.

- 126 -

7.6.3. AssesS1IleD.t of Variable Binding

The copying of pure code will consume a significant amount of space

because each functor cell must be created as required. Accessing a

term's components will be fast because one may go directly to the

appropriate part and obtain the desired value; there is only a limited

need to access the environment.

In contrast Structure Sharings allows binding to be established

quickly because the structure need not actually be created, but access

to values may be less efficient because the interpreter must repeatedly

refer to the environment.

7.7. Parallelism in Logic Languages

There are two ways in which a logic program can give rise to paral-

leI execution. These are termed OR-parallelism and AND-parallelism;

they are both described below.

7.7.1. OR-Parallelism

The name OR-parallel is used because parallelism occurs only where

execution of alternative clauses from the same relation occurs: that is

each branch of the search tree is pursued in parallel with the others.

From the search tree shown in Figure 7.1 one can observe that all the

branches are independent of one another. If several branches share a

variable, then each branch in fact refers to a different instance of

the variable, thus the independence of each branch is ensured.

- 127 -

AND-parallelism occurs within a clause, and is generally more dif

ficult to achieve than OR-parallelism. Consider the sole clause in the

grandparent relation:

grandparent(X,Y):-parent(X,Z),parent(Z,Y).

Normally the goals in a clause will be selected from left to right, but

when using AND-parallelism both the goals are obeyed at the same time.

The difficul ty of implementing AND-parallelism lies in the way

variables are shared between goals of a clause; all goals must agree on

the value for a particular variable. There are two ways to achieve

this. Firstly all goals in a clause can be run to completion and the

values returned for each variable can be compared so that a consistent

set is found. This is the could be called an atomic execution scheme

and suffers from the disadvantage that many results are produced but

then discarded, wasting the processing effort put into them. Consider

the grandparent clause, above, when executing the question:

:-grandparent(fred,GP).

When using the atomic scheme the first goal will produce two values for

Z: bert and joan. The second goal will produce four pairs of values for

Z and Y because it is not aware of the values for Z chosen by the first

goal, because the goals are obeyed in isolation. Of the four pairs of

values produced by goal two, only two are satisfactory; those which have

bert and joan as the value for Z. If the value for Z had been available

to goal two during its execution this goal could have avoided producing

the superfluous results.

- 128 -

The second alternative is described by Pollard[59] and starts all

goals in parallel but makes use of values produced by one goal to direct

the search of the other goals in a clause, even during their execution.

As each value for a variable is created any part of the search tree

which has an inconsistent value for the same variable will be deleted,

and therefore as little computation as possible will be wasted. Only

branches that are likely to lead to acceptable solutions will be fol-

lowed. This scheme is rather complicated, and may have considerable

overheads. It remains to be seen if the overheads are worth the extra

parallelism.

An AND-parallel scheme will usually include OR-parallelism, giving

a search tree:

Figure 7.2: AND/OR search tree.

The top subtree represents the parallel execution of the clauses from

one relation, while the bottom one represents the parallel execution of

the goals in a clause.

7.8. Parallel Imp1ementation

From this point onwards only the implementation of OR parallelism

is considered. The reasons for this are explained at the end of the

following chapter.

- 129 -

7.8.1. Storage Sche.es

The major problem that occurs when implementing an OR parallel

scheme is that for managing the storage of the alternative values of

each variable. Each time the search tree branches, the possibility of

producing an additional answer to the user's question is introduced.

This implies that additional space for the answer, and all intermediate

results, must be created. In general it is not easy to determine in

advance which variables will be required to hold additional resul ts.

The only choice therefore is to allow any variable to hold the results.

In the following three sections possible ways of dealing with these

difficulties are outlined.

A Simp1e Storage Sche.e

A simple way of producing space for each result is to make a copy

of every uninstantiated variable when the search tree branches. This

makes each branch of the tree totally independent except for shared

results which have been generated higher up the tree. Each branch may

now be executed independently.

One So1ution at a Tiae

Conery and Kibler[24] describe a scheme which produces results by

OR-parallelism, but only returns the results to the caller one at a

time. If the first result is not satisfactory the caller asks the goal

for an alternative, and continues to do so until the results have been

exhausted. The scheme would be better if Conery and Kibler had allowed

several searches to continue concurrently by passing all results to the

- 130 -

following goals simultaneously. In their scheme any results which have

not been demanded are stored in the producer awaiting a demand. The

paper does not describe how these results are to be held. The scheme

therefore produces resul ts by OR parallel execution, but does not use

them in parallel. In view of the sacrifice of parallelism made, the

implementation scheme would not form a good foundation for the evalua

tion of a set of mechanisms in which parallelism is the predominant

feature. The scheme is not, therefore, considered further.

MUlti-Value Variables

The last way of allocating space for the alternative results of a

logic program is to allow a variable to hold more than one value [59] •

This implies that each variable has a flexible structure in which there

is one partition for each value. As each value is produced it is stored

in a newly created partition of the appropriate variable. Now there is

no longer any need to duplicate the environment of a branch every time

the search tree divides. Instead each variable is able to store any

results that may be produced. Since the variable must be shared between

all the parts of the search tree beneath the node where it is intro

duced, it follows that its storage space must reside in the activation

record corresponding to this node.

Comparison of Storage Sche.es

When comparing these storage schemes, the simpler OR scheme suffers

from the obvious disadvantage of consuming large amounts of space. Most

environments will be used by searches that will ultimately fail. These

searches are unlikely to make full use of the environment because they

have not run to completion. Only successful searches will use every

- 131 -

variable because only they will provide values for variables introduced

near the root of the tree. A lot of space is therefore wasted.

Multi-value variables are more efficient in their use of space

because new partitions are only created when required. This does how

ever imply a flexible data structure with the inherent overheads of

pointers and management.

7.8.2. Control Mechanisms

The other major choice for the implementor concerns the control

mechanism. There are two types available: one follows from the pro-

cedural description of logic, and the other from the search tree. Both

schemes use the same mechanism when calling a relation. A new activa

tion record is created for each clause in the called relation and a

unification with each clause head is attempted. All successfully called

clauses proceed wi th their execution while the remainder are deleted

since they have failed. The two schemes differ in the way activation

records and the results are manage on the completion of a clause.

Procedure Model

When using the procedure calling model, the activation record for a

is clause is deleted when clause is complete. The procedure model must

therefore use the auxiliary stack to hold results. It is the responsi

bili ty of the clause receiving the resul ts to pass them onto the next

goal in the clause's body, and therefore to start an instance of the

goal for each result tuple retuned.

- 132 -

Search Tree Hodel

The second scheme follows the structure of the search tree. As

each goal is executed a new activation record is created for all the

clauses in the called relation whose heads were successfully unified

wi th the goal. The resul ts are extrac ted when the las t goal of the

question gives rise to a branch of the tree which is unified wi th an

assertion. Nodes will only be deleted from the tree when a branch fails

or successfully reaches a conclusion.

Assessment of the Control Mechanisms

The procedure calling model 'will use as little space as possible

because memory is reclaimed at the earliest opportunity. Against it,

however, is the complexity of using several results returned from one

goal to start several versions of the next goal.

The disadvantage of following the search tree model is obvious; it

creates an activation record for each goal executed and maintains it

until the branch terminates due to success or failure. The benefits of

this scheme come from the simple way alternative searches are dealt

with. There is no need. for a clause to start a parallel execution of a

subsequent goal because there is no set of alternative values for the

goal to operate on. Each branch of the tree only produces one value for

each variable, consequently each branch is responsible for starting the

single execution of the next goal selected.

A good way to implement a logic language is to use a combination of

the procedure model and the search tree model. The procedure model will

be used to allocate storage, and the search tree model to control the

- 133 -

flow of execution.

Pollard[59] describes a scheme which combines multi-valued vari-

ables and the search tree model. This scheme has the simplicity of the

search tree model and the efficiency of the procedure model, but with

the overheads of multivalues variables. Pollard also describes a way of

associating a result with the branch of the tree which produced it. In

the following section an alternative is described.

7.8.3. An Alternative Execution Scheae

The scheme proposed below uses the search tree model and the simple

storage scheme, but copies the stack in a piecemeal fashion. This has

several advantages over Pollard's scheme.

When the program commences execution, the first goal in the user's

question is obeyed. All clauses in the corresponding relation which are

successfully unified with the goal are allowed to proceed with their

execution in parallel. Each will now execute the first goals in their

bodies, so new activation records are created, and the successfully

called clause allowed to execute. The generation of activation records

for a particular branch will proceed until a node is created which

represents an assertion. For instance if one considers the grandparent

relation, the tree at this stage in its execution will have the form:

• grandparent(fred,GP)

{GP/Y,fred/X}

• parent(X,Z),parent(Z,Y)

{bert\Z}~ ~joan\z}
parent(fred,bert) • • parent(fred,joan)

In the figure above the substitutions on the arc are the result of the

- 134 -

unification carried out when the goal at the head of the clause for the

node above the arc is executed. The symbol \ denotes a subs ti tution

that passes a result back to the caller.

The leaf nodes of the diagram above have each found an assertion

which satisfies the goal parent(fred,Z). The remaining goal to be exe-

cuted is parent(Z,Y), the second goal in the body of the grandparent

clause. Since the first goal has been executed it may be removed from

the tree.

1) • grandparent(fred,GP)

{GP/Y,fred/X}

2) • parent(Z,Y)

{bert\Z}~ ~joan\z}
parent(fred,bert) • (3 4). parent(fred,joan)

All nodes now represent clauses which have started their execution, but

have not completed it. Nodes 3) and 4) have finished executing their

bodies but have yet to return their results, whereas node 2) still has

one goal outstanding. Since both the leaf nodes provide a value for Z,

node 2) may now be executed using the two values produced. This is

achieved by copying down node 2) into nodes 3) and 4), and placing the

value for Z into each as this is done. The arcs of the tree point from

one generation to the previous one so each node can refer to the node

which called it.

1) • grandparent(fred,GP)

{GP/Y}~ ~GP/Y}
parent(bert,Y) • (3 4). parent(joan,Y)

The new goals in nodes 3) and 4) are executed to provide values for Y.

Notice that node 2) has been deleted because it is only connected to its

- 135 -

parent, nodes 3) and 4) have taken over its operation. After the execu-

tion of the goals belonging to nodes 3) and 4) is completed the tree has

the form:

1) • grandparent(fred,GP)

{CIIVe\GP~ ""{jOhn\GPI

parent(bert,clive) • (3 4). parent(joan,john)

Both the leaf nodes now have values for Y, and since the execution of

the clauses they represent has finished, node 1) may be copied down and

executed:

grandparent(fred,clive) • (3 4) • grandparent(fred,john)

Node 1) has now been deleted because it is disconnected from the tree.

When nodes 3) and 4) terminate, they will attempt to copy down their

callers. On finding that there are no nodes above them they will print

their results.

The operation of the model may be summarised as follows:

1) When a relation is called, an activation record is created for each

clause in the relation.

2) Next a unification of the calling goal and the called clause is

attempted.

3) Failure will lead to deletion of the activation record.

4) Lastly, the relation specified by the first goal in each clause

body is called. The whole process is then repeated.

- 136 -

Steps one to four are repeated generating as many nodes and branches as

are necessary to reach the assertions of the program. When a branch

reaches a leaf cell it will proceed to step five:

5) When a clause finishes execution, or an assertion is unified with

the calling goal, the parent's activation record is copied down

into the activation record for the terminated clause. As this is

carried out any results produced by the terminated clause are put

into the new copy of the parent's activation record.

6) The clause belonging to the copied activation record is allowed to

continue its execution using the new copy, which it does by return

ing to step one.

Garbage collection of redundant activation records may be achieved

in either of two ways:

1) In step 3) a failed unification will cause its activation record to

be deleted. The parent of this activation record could maintain a

count of all active descendants. Upon termination of a descen

dant, the parent's count is decremented, and its activation record

deleted if the count becomes zero. This process would ripple up

the tree deleting as many activation records as possible.

2) A mark scan garbage collector could be implemented by starting the

mark phase from each active goal. Each branch that is still active

will have such a goal, but the redundant ones will not. The

activation records in redundant branched will not therefore be

marked and consequently be reclaimed by the scan phase.

- 137 -

Unification in the Alternative Logic Sche.e

As described earlier, the unification algorithm often requires the

modification of actual parameters before the body of the clause can be

executed. For example the actual parameters may need to be chained, as

was the case for the equal relation. It follows therefore, that if two

branches of the tree are to be executed in parallel then each branch

must have a copy of all the actual parameters which are modified during

unification. One way to achieve this would be to use the formal parame

ter to hold the result, and copy it into the caller's activation record

when the caller is copied down. Unfortunately this is not possible

because a result will often require several pieces of data, such as the

result its self and the information necessary to build a chain of actual

parameters, which is more than the formal parameters can hold. Thus

instead of using the formal parameters to hold the resul t, a copy is

made of each actual parameter which is modified. These copies may then

be chained together and used to hold the result. When the clause's

caller is copied down, the information contained in the copies of the

actual parameters is used to pass the result of the terminated clause

into the copied version of the caller's activation record.

Assessaent of the New Logic Scheae

The alternative logic scheme described above is believed to have

the simplicity of the search tree model together with the efficiency of

the procedural model. The main advantage it has over the use of multi

valued variables is that it avoids contention for data, and that the

storage structure used in the new scheme is more efficient.

- 138 -

In the multi-valued variable scheme all the values for a variable

are held at the node of the search tree which introduced the variable.

In order to access the values of the variable the program must refer to

the processor which holds that node. Any references to a variable will

therefore give rise to contention, both for access to the processor, and

the communication paths which lead to it. By keeping all branches of

the tree totally independent, all contention of this type is avoided.

Each variable in a multi-valued scheme will have a complex struc-

ture built from cells containing values and pointers to other cells.

Each time the value of a variable is required, the structure must be

searched to find the correct instance of the variable. Performance may

be improved by using, for example, binary trees or hash tables, but in

both cases space will be consumed by collision chains etc. Even so, no

matter how efficient the search is, it must still be performed. A sim-

p1e indexed addressing scheme cannot be used for a multi-valued variable

because only some of the potential values of the variable will exist at

anyone time. Thus implementing parallelism with multi-valued variables
e..4e

imposes an efficiency penalty. By comparisoDtnew logic scheme consumes

space only when making copies of some actual parameters. These copies

contain values that would be created, and therefore stored, no matter

which logic scheme was chosen. The parameters which are copied are only

those which are given values during the execution of the clause. The

new logic scheme does not therefore waste space. The storage structure

used in the new logic scheme is as simple as that used in a sequential

logic interpreter, and therefore has the same efficiency when being

accessed.

- 139 -

Garbage collection of multi-valued variables will require all

accesses to a variable to be suspended until the garbage collection of

redundant elements is complete. This is because the data s truc ture

which represents the variable may enter an inconsistent state during the

garbage collection, and may therefore deliver spurious data if it is

accessed at this time. The new logic scheme, in contrast, does not gar

bage collect individual values from an activation record, only complete

activation records, and then only after all their users have ceased to

exist. There is no need, therefore, to suspend access to an activation

record during garbage collection, and hence garbage collection may

proceed in parallel with program execution, the two are isolated.

One potential disadvantage of the new model is the overhead of

copying the parent's activation record down, which is carried out for

every goal in the program. Any logic implementation must, however,

create an activation record for each clause of the called relation. So

the new scheme does not introduce any new overheads, indeed it gains

because it re-uses existing activation records. Another potential prob

lem is the possibility that the parent's activation record is larger

than the childs, which will mean that the latter must be expanded when

the parent's activation record is copied into it. In practice a paral

lel machine architecture will probably allocate memory in fixed length

sections to simplify memory management. Analysis of some logic programs

may show that a certain size of record will be sufficient for virtually

all clauses. Should this prove to be the case it would be possible to

build most activation records with one segment of that size. The over

head of expanding activation records will therefore have almost disap

peared.

- 140 -

In summary the new logic scheme simplifies several aspects of an

OR-parallel implementation of logic, and is more efficient than multi

valued variables.

- 141 -

CHAPTER. EIGHT

LOGIC LANGUAGES ON THE MACHINE ARCHITEC'.ITJRE

This chapter describes the imple~entation of OR-parallelism on the

the architecture specified in Chapter Four. A more detailed description

of the modifications to the original emulator may be found in Appendix

Four. The aim of the implementation is to demonstrate that the mechan

isms provided by the architecture are able to support logic. The scheme

used as the basis of the implementation is that described at the end of

the previous chapter. Functors have been omitted from the implementa

tion because they add considerably to the complexity of the interpreter,

wi thout providing any additional information about the sui tabili ty of

the computational mechanisms for logic. The way functors could be

implemented is described in order to illustrate the extra work and to

demonstrate the low value of the additional results. The implementation

of logic described here uses s truc ture sharing to reduce the memory

requirement as much as possible; this allows more space for the activa

tion records produced by OR parallelism.

8.1. Instruction Format

Four instructions are used

clauses:

be the architecture to implement

- 142 -

1) clause :This is the head of a clause, and provides two pieces of

information in its arguments. The first argument is the

length of the clause's activation record, the remaining argu

ments form the list of formal parameters. Each parameter may

either be a literal value or a PM address.

2) goal: This instruction corresponds to the goal in a clause body. It

provides two pieces of information: the first argument is the

"procedure" index for the relation being called, the remaining

arguments are the actual parameters of the goal. Each parame

ter may either be a literal value or an index into the activa

tion record. The value held in the activation record may

either be a literal or an argument of type unknown.

3) ngoal: This instruction implements a negated goal, but in all other

respects it is identical to the goal instruction.

4) fail: This instruction causes the clause to which it belongs to

fail. This instruction is used when implementing negation.

5) endc: This instruction is placed at the end of a clause. Its main

responsibility is to copy down its parent's activation record.

Since the instruction is the last in the clause its execution

implies that the clause has been successful.

In the logic implementation there are five arithmetic operators,

and six comparisons; all those described in Chapter Four are provided.

Each arithmetic operator is implemented as an individual instruction

with three arguments. The instruction uses the arguments one and two to

calculate argument three. For example add gives argument three a value

equal to the sum of arguments one and two. If only two of arguments

- 143 -

have values, the third will be produced as the result. Less than two

values will cause an error. Each comparison is implemented as a

sepa rate ins truc tion which takes two values, and compares them in the

appropriate way. The operation is successful if the comparison returns

true, and fails if it is false. Should less than two parameters be sup

plied; the instruction will abort.

8.2. Clause Format

A clause starts with a clause instruction, and is followed by any

number of goal instructions. The last instruction in every clause will

be an endc instruction. An example of a clause is:

clause 2,1,2,PM address
goal 1,1,1
goal 2,2,1
endc

Figure 8.1: Example of a clause.

8.3. Program. Format

A logic program is divided into two parts: the user's question, and

the relations that will be used to answer the question. Both have

broadly the same format: the question is a clause body (a clause without

a "clause" instruction), and a relation is a set of clauses whose format

is like that shown above. Both the endc instruction at the end of the

question, and the one at the end of the last clause in each relation

have one operand which is a literal of any value. This is used to sig-

nify the boundary between definitions when the clauses reside in 00.

The skeleton format of a program is:

goal
goal
endc 0
clause •••
goal
goal
endc
clause •••
goal
goal
endc 0

- 144 -

users question

start of relation

second clause in relation

end of relation and program

Figure 8.2: Skeleton program.

8.4. Process Format

Whenever a relation is called all its clauses are allocated a pro-

cess in which clause's instructions will be obeyed. The memory belong-

ing to the process corresponds to the activation record of the clause.

Each activation record includes the following information:

1) The length of the activation record.

2) The address of the next goal to be executed in the clause which

belongs to this activation record.

3) The address of the goal which called this clause.

8.S. Execution Cycle

The execution cycle of the machine has two major phases, firstly

that of calling a relation and performing the corresponding unifica-

tions, and secondly copying down the parent's activation record when a

clause has finished executing. When a clause is executed each success-

ful instruction is responsible for triggering the following goal's exe-

cution. If a goal fails the steps needed to implement negation are

- 145 -

followed. A successful goal triggers the next goal's execution by send

ing it a control token. The count of all instructions should therefore

have an ini tial value of one, because each will receive one control

token. The first instruction in the question must have a count of zero

because it triggers the execution of the entire program and therefore

must be executable when the program is loaded.

In the following two sections the two halves of the execution of a

goal, the call and the return, are described in more detail.

Calling a Relation

When a goal calls a particular relation all the clauses within the

relation start executing. The operation of the goal instruction will

generate a process for each clause in the relation and set up the

clauses' activation records. The first instruction to be executed

within the clause is the clause instruction itself.

The primary task of the clause instruction is to carry out the

unification of the formal and actual parameters. In doing so it copies

all actual parameters into its environment. If the unification is suc

cessful the first goal in the clause body is executed, whereas if the

unification fails the appropriate action is taken (see the description

of negation).

Finisbing a Clause

The endc instructibn is situated at the end of every clause body in

the program including the user's question. When this instruction is

executed it takes a copy of its parents activation record and merges the

copy with the results from its own clause. Should the clause which has

- 146 -

finished executing have no parent the values of all variables in the

activation record are printed.

8.6. Imp1ementing Unification

The implementation of unification on the emulated architecture

proved to be more complex than expected, mainly because of difficulties

encountered when accessing locations belonging to one process, while

executing another. Accesses of this nature must be carried out to

obtain the values of actual parameters. Unification in the new logic

scheme also requires those actual parameters which are modified to be

copied into the called clause's activation record. To access the copied

parameters one would want to have an indexed addressing scheme in which

the position the argument occupies in the goal gives the index into the

table of copied parameters. Unfortunately this would mean wasting space

because only modified parameters are copied. This means that the table

must be padded to ensure the indexes remain correct. An alternative way

to access the copied actual parameters is via an indirection table, in

which each location points to the copy of an actual parameter. The

index into the indirection table for a parameter will be the same as the

index for the parameter in the goal, but only certain elements will

point to locations. These are the locations copied during unification.

In this wayan indexed addressing scheme may s till be used, and the

minimum possible space consumed. The indirection table is only required

during unification and may be discarded afterwards, it will not consume

space in the activation record. The implementation of this scheme was

found to be undesirably complex because of the addressing problems the

architecture creates. So the logic implementation but does in fact copy

all actual parameters into the called clause's activation record. Copy-

- 147 -

ing all parameters overcomes the difficulties the architecture has when

accessing parameters because both the formal and actual parameters

reside in one process, and because there is no need for an indirection

table. To further simplify the unification algorithm the occur check is

not included.

8.7. Implementing Negation

Negation is implemented using a combination of three instructions:

ngoal, fail and endc. The call of a negated goal has the form:

ngoal
fail
goal 1

the first two instructions form the negated goal, while goal 1 is the

next goal of the clause. When the ngoal instruction calls a relation

all the activation records for the relation are marked as being negated,

and contain a pointer, the negated pointer, to the node which executed

the ngoal instruction. The address of goal 1 is recorded as the next

goal to be executed in the calling clause. When any of goals which are

descendants of the negated goal are executed, the negated pointer is

passed on to the called clause, but the negated flag in the new node is

not set. This gives the tree the form:

- 148 -

~.~al'fail.g0al1 •.•

goal ••• endc * * goal ••• endc

endc

goal ••• endc • • goal ••• endc

Figure 8.3: Search tree with negated pointers.

The nodes "*" are the one which have the negated flag set. There are

two possibilities which are of interest: the failure of one of the

branches of the tree descended from the negated goal, and the success of

one of these branches.

If a branch fails then goal 1 must be executed because the negated

goal has succeeded. This is achieved by copying down the node pointed

to by the negated pointer of the failed clause, and executing the clause

belonging to the copied node.

If a branch is successful then all the nodes in the branch will

have terminated successfully and will have copied down their callers.

Eventually the endc instruction for the "*" nodes will be executed.

When the endc instruction is executed it will inspect the negated flag,

discover the clause is negated, and force the fail instruc tion in its

parent to execute. The clause containing the ngoal instruction will

therefore fail. If the failed clause is also descended from a negated

goal, it too will have a negated pointer, and the process of negation

will be repeated. If it has no negated pointer the execution of the

- 149 -

clause will stop.

8.8. Architecture Modification

This section describes a modification to the emulator which over-

comes a particular difficulty concerned with recursion. The problem

involves the clash in the use of memory locations in AM, which is

brought about when a recursive clause copies down its ancestor. Unfor-

tunately the problem was only discovered when recursive programs were

run on the finished emulator.

In the original architecture an instruction is copied from the OM

into the AM when it receives its first argument. Once in the AM it

remains there until it is executed, at which time it can either be

retained in AM or deleted. This scheme causes a problem when used to

implement logic; consider a relation in which a clause is tail recur-

sive:

r(
r(

) .
): - • r() .

When the clause reaches the end of its recursions, because a call

matched only the assertion within the relation, the tree will have the

form:

1) endc(a)

2) endc(b)

3) endc(c)

The next instruction to be obeyed for each process is endc. The bottom

node represents the activation record for the assertion, and the ones

above are those for the recursive calls that led to the bottom node.

- 150 -

Both endc instructions for the top two nodes are copies of the same

instruction in DM because nodes 1) and 2) are instantiations of the same

clause, namely the one that is tail recursive. Both instructions there

fore have the same location number in their addresses, but belong to

different processes. When the endc for node 3) is executed it will copy

down node 2). The endc(b) instruction will, therefore, have moved from

the process for node 2) to that of node 3). The endc(b) instruction is

now executed and is copied into AM. During the execution of the endc(b)

instruction it will copy the activation record for node 1) down into

no.de 3), and then signal the corresponding endc, namely endc(a) • It is

at the this point in the execution that the problem occurs. The execut

ing endc (i.e. endc(b)) is in the process corresponding to node 3). The

signaled endc instruction belongs to the activation record which has

just been copied down into node 3), and therefore belongs to the same

process as node 3). When the signal arrives at the endc(a) instruction

the processor will try and copy the endc(a) instruction into AM. As was

stated earlier both endc(b) and endc(a) have the same location, but

unfortunately they now have the same process. Thus when the processor

tries to load endc(a) into AM there will be a clash of addresses which

will cause a processor error.

A solution to the above problem is to move every instruction

directly from the DM to the execution queue when the instruction is sig

naled, providing it is immediately executable, which will be the case in

a logic program. Since the queue allows more than one copy of an

instruction to be held, the clash will not occur.

The modifications required to the emulator were fortunately fairly

minor; whenever an instruction is put on the queue of executable

instructions it is now removed from AM instead of remaining there, as

- 151 -

occurred in the original architecture. If full use had been made of the

features of the architecture when implementing logic additional problems

could have occurred. For example if instructions were retained in AM

after they have been executed, the clash could still occur. In addition

the solution adopted would not have worked if a logic instruction

required more than one token before becoming executable. Had this been

the case, the instruction would have to be moved from the DM into the AM

to await its full complement of tokens, thereby allowing the possibility

of a clash. The solution, therefore, only works because of the simple

way control tokens are used in the implementation. If the full general

ity of the computational mechanisms were required an alternative solu

tion would have to be found.

8.9. Implementing Functors

Recall that functors were not implemented because they would not

provide any worthwhile information about the computational mechanisms

implemented on the architecture, and because of the complexity of their

implementation. The following section illustrates the complexity by

describing some aspects of the way functors can be implemented. The

details given are not important in themselves, they are used to illus

trate the complexity functors would introduce.

Functors would be implemented by a new instruction "func" whose

arguments provide two pieces of information. The first argument is a

literal value which corresponds to the compiled form of the functor

name. The remaining arguments are the parameters of the functor which

may be: simple values, pointers to other functor applications or indexes

into activation records.

- 152 -

As mentioned in Chapter Seven, implementing functors requires an

auxilia ry s tack to hold the variables referred to by s true tures which

are returned as results. The variables used in the structure belong to

the clause which generated the structure, but must remain in existence

after the clause has terminated. These variables are therefore held in

the auxiliary s tack, which is only poped when the variables are no

longer required. Variables which need not persist after the clause has

terminated are held in the ordinary stack. The auxiliary stack will be

implemented in AM; while the ordinary stack resides in PN.

At present the process number within an address identifies the

memory in AM and PM which belongs to that process. This view will not

hold for logic. When the parent's activation record is copied down into

a terminated clause's activation record, the values in PN may be

overwritten (as described above), but those in AM must not be destroyed

because they will be the results of the terminated clause and must

therefore remain accessible. The new user must however copy down its

own activation record in AM. In order to allow the new user of the PM

activation record to keep its own results in AM, a new section of AM

must be allocated. Thus one activation record may occupy two processes;

one for the memory in PM and another for that in AM.

The splitting of a logic activation record across two processes

poses an additional problem when fetching operands of an instruction.

Until now the activation record for an instruction could be identified

by referring to the process number of the executing instruction. This

method will still work for variables which are sited in PM, but not for

those in AM. To overcome this problem a link between the activation

record in PM and that in AM is placed in the head of the PM section of

the activation record.

- 153 -

Functor expressions are always pointed to by molecules. If a func-

tor expression need not persist after its clause has terminated the ,

variables referred to by the expression may reside in either AM or PM.

The entry in the expression which refers to the variable will give the

correct index into the appropriate memory to obtain the value. If the

location is in PM the processor identifies the correct process by using

the process number in the molecule. If the location is in AM the pro-

cessor finds the correct process by following the link from PM to AM.

If a functor expression is to persist however, the variables referred to

must all reside in AM. The process number in the molecule which points

to the expression will identify the correct process in AM. A molecule

which points to a local structure (one which will not persist) will

therefore have a PM address; a molecule which refers to a structure

which is to be a result will have an AM address. In both cases the pro-

cess number in the molecule will refer to the activation record which

holds the expression's variables.

The construction of a molecule introduces a further problem, namely

that all the pure code is held in DM. The address the code for the

functor expression will, therefore, have two components: the process

identifier which specifies DM, and the location within the process for

the code itself. Unfortunately this exhausts the fields available in a

machine address (argument slots are of no use here). A molecule

requires the process number for an activation record as well as the

pointer to the pure code. Thus it is not possible to hold a molecule

in a machine address. To overcome this problem the location in a

molecule will be treated by convention as a pointer to DM, while the

process will specify the activation record containing the structure's

variables. If the molecule is of type AM the variables reside in AM,

- 154 -

and if it is of type PM the variables reside in PM or AM, as described

earlier.

There are two remaining facets to the implementation of functors,

namely unification and garbage collection. For unification two of the

pos~ible cases are of interest here:

1) If two structures are unified then the algorithm will pass along

them to unify their components; the variables and constants within

the structures are unified in the way described in Chapter Two. At

each stage, functors in the two structures which correspond to one

another must have the same name, i.e. the literal value of the

first argument of the functor must be the same.

2) The unification of an undefined variable and a structure can occur

two ways:

a) If the undefined variable is an actual parameter and the struc

ture is a formal parameter, then the structure's variables will

reside in AM because the structure must outlive its clause. The

actual parameter is made to hold the molecule which points to the

structure.

b) In the reverse situation to a) the formal variable will be made

to hold a molecule pOinting to the actual parameter.

Garbage collection of PM activation records proceeds as described

in Chapter Seven. The activation records can be removed when a particu

lar branch of the tree fails. The AM processes may be collected using

the mark-scan algorithm. Those AM processes that belong to a branch may

be marked by folloWing the the pointers from every molecule in the

branch, and the links from the PM activation records of the branch. The

- 155 -

scan phase will now pass through both PM and AM.

It may be seen from the above description that to include an func

tors in the implementation of logic (on the architecture described in

Chapter Four) would have required a considerable amount of work. How

ever the results obtained would not have been particularly relevant to

this thesis because all modifications are to the architecture itself and

not to the computational mechanisms implemented. It is the evaluation

of the computational mechanisms which forms the basis of the work

reported here.

8.10. Assessment

When the scheme described in Chapter Seven was implemented on the

emulator, severe problems were encountered. Most of these were

discovered while the implementation was being designed. This section

describes these problems and discusses the conclusions that may be drawn

from them.

When implementing an OR-parallel logic scheme on the emulator for

the architecture described in Chapter Four, only a small percentage of

the original facilities proved useful. Neither data flow nor the demand

propagation facilities were used, and control flow is only used in the

limited fashion mentioned above. Although one can in principle demand

the result (success or failure) from the relation which a goal calls,

the complexity of dealing with several results returned in reply to one

demand makes this alternative too complex. To implement logic by demand

propagation at all would require modification to the mechanism because

one demand t,lsually produces only one result. The data flow model is

even less appropriate to the implementation of logic. In an OR-parallel

- 156 -

scheme all the clauses of a relation are used, hence there is no firing

rule associated with the operation. In the OR-parallel scheme being

used the goals within a clause are obeyed left to right, so the flow of

data has no effect on the flow of control. Wise[80] has proposed a data

flow implementation of logic which forces the programmer to annotate his

program to make the flow of data explicit. This provides further evi

dence that data flow is not able to deal with a pure logic program.

As only control flow proved useful the features of logic had to be

build from the primitive operations that this model provides. In effect

one is forced to resort to the lowest level features of the emulator to

achieve any success at all. It is only the flexibility of control flow

that prevented total failure, which serves to emphasise the inadequacies

of the mechanisms described in Chapter Three. In short this architec

ture is no more amenable to logic than the conventional von Neuman

machine.

As the mechanisms provided by the architecture were not very help-

ful in supporting logic, one may conclude that logic does not fit into

the classification described in Chapter Three. The primary reason for

this would appear to be that none of the existing mechanisms allow for

the parallel execution of alternative forms of a

procedure/function/clause, each of which return their own results. To

use any of the mechanisms provided by the architecture would effectively

mean writing a simulator for the logic machine using the model of compu

tation chosen, rather than implementing logic in terms of the model.

The OR-parallel scheme which was adopted simplified the task of

implementing logic considerably and therefore allowed the problems pro

duced by the mechanisms to be isolated from those produced by the archi-

- 157 -

tecture. Had another more complex scheme been used the problems of the

architecture may well have swamped those of the mechanisms, thereby cal

ling into doubt the validity of the above comments. It is the diffi

culty of allowing one calIon a relation to return several results which

led to the scheme described in the previous chapter being devised. The

main virtue of the new scheme, from the implementation point of view, is

that it keeps the results produced by clauses separate from one another.

This simplified the task of writing the emulator for the logic machine

considerably because it minimised the complexity of memory management.

The problems encountered when trying to handle dynamic data structures

in the type of memory used (see Appendix one) were considerable. The

whole of the original emulator relied on the mechanisms provided by the

architecture to drive the memory. When those mechanisms were discarded

the logic emulator had to use the memory in its raw state, which proved

a complex task particularly when trying to unify and merge parameters.

It was the desire for simplicity that led to AND-parallelism being

omitted from the implementation. To implement a powerful scheme one

would want to follow ideas related to those of Pollard[59]. To do this

all the values for each variable must be stored together, which in turn

implies that multi-valued variables must be used. It was the desire to

avoid the complexity that this entails which led to the adoption of the

OR-parallel scheme already described. Since it was the inadequacy of

the mechanisms and architecture which led to the complexity of multi

valued variables becoming unmanageable in the first place, there seemed

little point in proving the mechanisms inadequate for a second time by

trying to cope with the additional complexity of AND-parallelism.

- 158 -

CHAPTER. NINE

COMBINED FUNCTIONAL AND LOGIC ARCHITECTURE

In this chapter an architecture which is able to support both func

tional and logic languages is described. Until now the computational

mechanisms employed in the architectures described have been those

defined in Chapter Three. It has, however, been shown that these

mechanisms are not suitable for the efficient support of logic; in this

chapter the mechanisms will be modified in the search for a combined

architecture for functional and logic languages.

9.1. Combining Fonctiona1 and Logic Models

In Chapter Seven a new scheme for the parallel execution of logic

programs was described. It was based on the notion that upon completion

of a clause, the clause will copy down its caller and take over its exe

cution, thereby keeping branches of the search tree independent. Thus

when a clause at a leaf terminates it pulls down its caller and executes

the remaining goals of the caller. When the caller terminates the

clause above the caller is pulled down, and so on until finally the root

is pulled down into the leaf and the results are printed.

Reduction also builds a tree, but since the program only produces

one resul t there is no need to pull the root down to the leaves J so

instead the tree is collapsed upwards, effectively pulling the results

at the leaves progressively towards the root.

- 159 -

This observation can be used to form the basis of a combined func-

tional and logic language architecture. Both types of language will ,

build a tree in the same way, but then manipulate it differently. In

effect the tree is built by demand propagation, and the result returned

in two ways. Single resul ts pass up the tree, multiple resul ts are

copied down. This architecture therefore introduces a new form of

demand propagation: demand propagation with multiple results.

9.2. Structure of the Combined Architecture

The new architecture is based on packet communication and consists

of a processor and three memories: the instruction memory 1M, the data

memory DM, and the structure memory SM:

+ t t t

Processor 1M DM SM

+- t f t
Figure 9.1: Logic machine architecture.

The instruction memory holds all instructions whether active or not.

The data memory will hold all activation records each location holds an

instruc tion argument rather than just a value. Las tly the s truc ture

memory is used when building structures. It may either hold the auxili-

ary stack, or a garbage collected heap.

- 160 -

9.3. Structure of Progra.s

This section describes the way both functional and logic programs

are represented in the machine. Function, relation and clause defini

tions are held in processes allocated by the compiler and which consist

of code, held in IM, and skeleton activation records held in DM.

9.3.1. Functional Programs

Functional languages have the notion of scope (described in Chapter

Two) which the structure of activation records must reflect. In partic

ular activation records must reflect the structure of recursive qualifi

cations (whererec).

A closure is represented by a process, where the 1M section

represents the closure's code and the DM section represents the

closure's environment (i.e. activation record). A function, f's, defin

ition is represented by a closure. The first instruction of the func

tion is a "clo" instruction which builds a closure for the function when

a demand is propagated to it. The second instruction of the function is

a "func" instruction which is responsible for binding the function argu-

ment into the activation record. The activation record contains a

pointer to a separate process which in turn points to all the functions

that are in f' s qualifying list. This process has the form of a pro

gram: that is a list of pointers to closures. The first instruction in

a program process points to the first and last entries in the list of

closures, while the remaining instructions point to one closure each and

contain the name of the function which the closure represents. Func

tions and relations are known by names as well as addresses for reasons

that will be explained later. The data structure which represents the

- 161 -

program is:

'f
A ,

DM IM
,

1M

clo r+ prog
func link

link clo sures
link

args
~

Figure 9.2: Structure of a closure.

Since the environment will be recursive, the closure must appear in its

own qualifying list, as shown in Figure 9.2.

In addition, if nested qualifications are used, as in the example

below, then the structure of the closures must reflect the nesting:

fun AX.if x=l then f else g
where
f Ay.if y=O then 1 else f.g 1
g = Ay.h(y-1)

where
h = h.y*y

The closure for fun will have the format: ,
r , ___ ~A ,

1M DM 1M

func
r+ prog

link ,closure for
clo

link closure for
args I • " I'C

~

Figure 9.3: Closure for qualified function.

f
g

This has the same format as in Figure 9.3, but if the closures for f, g

- 162 -

and h are added then the complete structure will be that shown in Figure

9.4.

A r ~

-------closure for fun

IM DM IM

clo r7'" prog
func link

link ~ closure for f+--
link ~ closure for g+-

args
r-

I

r A , r J.-. ,
IM DM IM IM DM

clo r- prog clo
func . link r--- func

args args

f t-- ~

,

J
(closure for h--

r'
.A ,

IM DM

clo
func

args

-- ... ,

...

Figure 9.4: Complete structure of a qualified function.

In Figure 9.4 each qualifying function is represented by a pointer to a

closure. The activation record for "fun" points to the closures for f

and g. If one of the qualifying functions is itself qualified then the

additional qualifying functions will give rise to additional pointers.

- 163 -

In the example g is itself qualified, so its activation record will con-

tain two pointers. The first pointer will be to the list of closures of

which g is a member, so that recursive calls can be made; and the second

pointer to the new functions introduced by the new qualifications, h in

the example above. Here the definition of h is not qualified no new

functions will be introduced. The function h must, however, be able to

refer to itse'lf, and to f and g. The environment for h will therefore

contain pointers to the lists containing these functions.

Each time a new set of qualifications are introduced the closures

for the new functions inherit the qualification lists from the expres-

sion they qualify. This applies only to functions introduced by

whererec (the defaul t in the example). If the qualification is not

recursive the list of qualifying functions will only include those func-

tions introduced by the where. The closure for the qualified expression

will therefore have only one pointer to the list of functions, as illus-

trated by Figure 9.5:

fun Ax.if x=l then f else g
where (non recursive)
f Ay.y+l
g = Ay.y-1

- 164 -

1M DM 1M

clo r-- prog
func link r--closure for f

:
I I

~

I
link (---closure for gl args

J-

.A. A.. r r ,
1M DM 1M DM

clo clo
func func

args args

Figure 9.5: Nonrecursive qualification.

9.3.2. Logic Programs

The format of a logic program differs from that of functional pro-

grams because it is unusual for logic languages for have any notion of

qualified clauses, though this may be useful in large programs. Conse-

quently there is no notion of scope in logic, so any clause may refer to

any relation. Each logic program will therefore give rise to a single

process which contains pointers to each relation in the program. The

program process will have the same format as the corresponding processes

of a functional program, namely a prog instruction followed by a

sequence of link instructions each of which refers to a single relation.

Each relation is represented by a single process which refers to the

relation's clauses. The relation process consists of a clo instruction

followed by a single reI instruction which are followed by a sequence of

rlink (relation link) instructions, each of which points to the closure

- 165 -

for a clause.

A clause is represented by a single process, the 1M section of

which holds the code for the clause and the DM section holds the

clause's skeleton activation record. The code for the clause starts

with a "clause" instruction, which is responsible for controlling the

execution of the goals in the clause. Each argument of the clause

instruction points to one goal in the clause body. The skeleton activa-

tion record holds all constant formal parameters and a pointer to pro-

gram process.

Consider the program:

r(...) --
r(...) --

s(...) --
s(...) --

The data structure which represents the program is:

progra
proces

- 166 -

~ I

r A..
1M 1M 1M

r relation 1st clause
prog LJ clo clause
link reI
link r-- rlink f--

m rlink f--

s

I

, A..

1M
2nd clause

clause

,

I

A
(

1M 1M
s relation 1st clause

4- clo clause
reI

rlink '--

rlink -

r .A.
1M

2nd clause
clause

Figure 9.6: Structure of a logic program.

1
1M

of r

args

locals

,
DM

of r

args ,

locals

1

1M

of s

args

locals

,
1M

of s

args

locals

- 167 -

9.4 • Program Execution

Both functional and logic languages base the execution of a program

around calling functions or relations. These two operations are

described in this section. The mechanisms employed for program execu

tion were chosen for their simplicity rather than their efficiency.

9.4.1. Demand Forwarding

In order to simplify the implementation of function and relation

calls a slightly modified form of demand propagation is introduced,

called demand forwarding. Normally when an instruction receives a

demand it will propagate its own demand in order to obtain the data it

requires. The instruction will then satisfy the original demand by

sending its own result to the source of that demand. When using demand

forwarding, the demand received by an instruction is sent unchanged to

other instructions pointed to by arguments of type "forward". As a

result the destination instruction receives the demand as if it has come

directly from the original source. The destination is unaware that the

demand has passed through any other instructions to reach it. Only the

final destination will satisfy the demand by sending its result to the

original source of the demand.

9.4.2. Parameter Passing

Both functional and logic languages are based around the notion of

calling functions and relations. Thus an efficient implementation of

ei ther type of language must pay particular attention to this topic.

The following two sections describe two important aspects of functions

and relation calls: the way calls will be carried out, and parameter

- 168 -

passing.

Functional Parameters

Function parameters must be suspended as long as possible in order

to provide the semantics of lazy evaluation. When a closure is

evaluated it must be replaced by its result; the closure is therefore a

recipe.

Logic Parameters

For compa tibili ty wi th functional languages logic parameters will

be implemented using the copying pure code technique because functional

languages create concrete copies of all structures they need. If the

same technique is applied to logic it will provide a unified scheme for

the combined architecture.

9.4.3. Calling Functions and Relations

This section describes how functions and relations may be called in

the new architecture.

Representing Names

One important aspect of function and relation calls in the combined

archi tec ture is the use of names. Each function or relation has a

unique name which is represented as an integer. It is the responsibil

ity of the compiler to ensure that each symbolic representation of a

name in the source of a program is given a unique integer to represent

it. The reasons for this are due to some features that may be desirable

in a hybrid language, and which are described later.

- 169 -

Calling a Function

The task of calling a function is carried out by the call instruc

tion which has the arguments:

1) the name of the function or a pointer to its closure

2) The actual parameter of the function (each call only supplies

one parameter)

A call instruction may only carry out a function call when the function

is represented by a closure. Therefore if the first argument of a call

is a name, the name must be transformed to a closure. The call instruc

tion transforms a name into a closure by propagating a demand to the

named function. The function will then build its own closure and return

the closure's address to the call instruction, which will apply the clo

sure to the argument. The generation of the closure is carried out by a

"clo" instruction which is always the first instruction of a function.

When a call instruction has a closure as its first argument it will

propagate a demand to this closure. The first instruction of a closure

will usually be a "func" instruction; which carries out argument bind

ing. If a closure expects no arguments its first instruction will be

the first instruction of the function's body.

A function is represented by two, conceptually nested, closures.

The outer closure is used when a function is referred to by name, and

the inner one when it is referred to by a direct pointer. The outer

closure contains only the clo instruction, while the inner one contains

the func instruction and the function's body:

- 170 -

clo

~
~

When a call instruction refers to a function by name, it refers to the

outer closure, when the outer closure receives a demand, it returns the

inner closure as its result. When the inner closure receives a demand

it returns the function's result in the normal way. Both phases of a

call will now be described in more detail, first the dereferencing of a

name.

The name which appears in a call instruc tion has two components:

the name of the function itself, and the identifier of the process which

holds the list of all the functions in the program. This name may be

held in the calling function's activation record if required. When a

call instruction issues a demand for the closure to which a name refers,

the demand arrives at the prog instruction at the head of the program.

The demand contains the name of the function to be dereferenced. The

prog instruction will forward the demand to first link instruction in

the program (see Figure 9.4). Each link instruction contains the name

of the function to which it refers. If the name in the link matches the

one in the demand, the demand is forwarded to the function. If the

names do not match the demand is forwarded to the next link in the pro-

gram.

- 171 -

When a demand arrives at a function it is received by the clo

instruction. The clo instruction returns the inner closure of the func

tion as its result. The closure has two components, the process iden

tifier of the process containing the definition of the function, the one

which holds the skeleton activation record in DM, and the the address of

the func instruction.

The second phase of a function call involves propagating a demand

to the inner closure. When the demand is received by the func instruc

tion, it takes a copy of the activation record belonging to closure and

binds the argument into the copy. For example if the call was

call f x

the closure will now have the form:

func

body

x

The func instruction will propagate a demand to the function body after

the argument has been bound to obtain the result of the function. This

result. will be returned to the call.

Multi argument functions are constructed by nesting closures

deeper. For example a function with two arguments has the form:

- 172 -

clo 1)

func 1)

clo 2)

func 2)

body

The call of such a function will have the form:

1)

2)

CallI) propagates a demand to call 2) to obtain the closure to apply to

x. Call 2) produces the closure by applying f to y. Call 2) must first

generate the closure of f, which it does by propagating a demand to clo

1). The closure returned to call 2) points to the func 1) instruction.

Call 2) now applies. this closure to y by propagating a demand to the

closure. The result of which is applied to x. The closure is created

by clo 2) and contain the activation record constructed by func 1); the

one which contains the value of y. This closure is returned to call 1)

as the result of its demand. Now callI) propagates a demand to the

func 2), which binds x and produces the final result.

- 173 -

Qualifying functions will inherit values from the functions they

qualify. For example in the function below both g and h inherit values

form f.

fAX.Ay.if x=g then g else h
where
g z-1
h = Ay.f(x+y)

The values of x and yare inherited from the qualified function when the

closures for g and h are created. This will occur when they are called

from the qualified expression or when they a·re to be returned as the

resul t of the qualified expression. In both cases a demand is pro-

pagated to the clo instruc tion at the head of the qualifying func tion.

The clo instruction will in this case generate a new closure and place

the inherited values in it. The closure is then either called directly

by the qualified expression, or passed out as the qualified expression's

result and called later.

Executing a Function Body

When executing a function body, the func instruction propagates a

demand to the body of the function. The instruction which receives the

demand will propagate its own demands, and so on. Eventually all

demands will be satisfied and the result of the body returned to the

func instruction which returns the result to the caller.

~zy Evaluation

To implement lazy evaluation one must be able to propagate a demand

to a piece of code and have the code overwritten by its result. This is

easily accomplished if the code to be reduced is in the same process as

the instruction which requires the result. Each instruction simply

- 174 -

propagates a demand to the code, the first to arrive causes the code's

reduction, and the remainder access the result directly. If the code to

be reduced resides in another process, and in particular if it is a

qualifying function, then demand propagation is not enough to provide

lazy evaluation. The reduction of such a function will therefore

requires the following steps. If the qualifying function inheri ts

values then a copy of the defining closure must be taken when the first

demand arrives, as described above. The copied closure is the one which

will be reduced, and it is also the closure to which the other demands

must be sent. Unfortunately only the instruction which issues the first

demand is aware of the process id given to the closure which is to be

reduced. To overcome this difficul ty all demands to the closure are

propagated via a location in the environment. This location will ini

tially hold the name of the qualifying function. Each demand propagated

to a qualifying function will be issued by a call instruction, each call

instruction will refer to the function via the location which holds the

function's name. When the first demand is propagated to the named func-

tion, the process id of the function's closure is returned as the

result. This id is stored in the location which originally held the

function's name. When the function has been reduced, its result may be

accessed by the other call instructions because the calls refer to the

function via the location which points to the reduced closure. In this

way all users of the qualifying function benefit from its reduction.

Calling a Relation

When calling a relation, the operation of the call ins true tion

will be identical to that of the function call. If the call has a name

in its first argument it will propagate a demand to the relation via the

- 175 -

prog and link instructions. The first instruction in the relation will

be a clo instruction which will return the closure as its result. The

call will then propagate a demand to the first instruction in the clo-

sure. This will be a reI instruction, which will be followed by a

sequence of rlink instructions. The reI instruction will forward the

demand to the first rlink instruction, which will in turn forward it to

its clause, and the following rlink. This process continues until all

the clauses have received a demand. By using demand forwarding the

demand appears to have come directly from the call.

Execution of a Clause

When a demand is propagated to a clause it will arrive at the first

instruction, which will be a clause instruction. This instruction will

start a new process and copy the skeleton activation record into it.

The clause instruction will then unify the formal and actual parame

ters, placing the appropriate values in the locations of the new activa

tion record. The clause instruction then propagates a demand to each of

the goals pointed to by its arguments in turn. If all the goals are

successful, the clause instruction will reach up to the calling process

and copy this process down into its own process, merging the results as

it does so.

If a goal fails then the clause instruction will delete its own

process and attempt to garbage collect all processes above it in the

tree which have no other descendants.

If the clause is descended from a negated goal the combined archi

tecture will implement negation in the way described in Chapter Seven.

- 176 -

9.5. Hybrid Programs

Since the above representations of functional and logic programs

are closely related it is possible to have programs that combine both

types of language. In particular hybrid programs allow one type of

language to manipulate the other as data. Functional languages may

therefore be used as meta languages for logic and vice versa. Languages

may also be their own meta language. The next section describes simple

hybrid programs which are just a mixture of functional and logic code,

while the section following describes how programs involving meta opera

tions may be encoded.

9.5.1. Simple Programs

Hybrid programs may be divided into two areas, namely calling func

tional programs from logic programs and vice versa. The former is the

simplest and is therefore described first.

Calling Functions fro. Clauses

When a function is called from a clause, the function returns a

single result, which will be assigned to a logic variable. The called

function will be passed the values of other logic variables as parame

ters. The func and clo instructions of the function will operate in the

way already described, the clo instruction will return a closure and the

func instruction will start a process and bind the argument into it. If

the function had several arguments it will be curried. All that is

necessary therefore is to embed some functional code in the clause as if

it were a goal, and provide an interface between the logic code and the

functional code. The interface is formed by a "store" instruc tion will

- 177 -

be at the root of the functional expression which will store the

expression's result in the clause's activation record. When the store

instruction receives a demand from the clause instruction, it will pro

pagate a demand to the functional expression and await its result. When

this is received the result is stored in the activation record and the

clause instruction informed just as for a successful goal. The code for

a functional expression embedded in a clause will therefore have the

form:

Cal1ing Re1ations from Functions

In contrast, the calling of relations from functions is more com

plex because a single question may yield several results, each of which

consists of a tuple of values. Both these concepts are alien to the

functional style of language.

A logic question ~n a hybrid program will be compiled as a clause

and held in a separate process to that of the functional expression that

calls it. The call will be accomplished using a normal call instruction

- 178 -

formated as a goal which will pass some variables across to act as

parameters. The interface between the logic code and the functional

code is provided by a "get" instruction. The get instruction is passed

a demand from the functional code and then propagates its own demand to

the call instruction which acts as the goal providing the value required

has not already been produced. When the goal is complete it returns the

result (success) to the get instruction which loads the desired result

from the activation record location where the called clause placed it.

The get instruction then passes the result back to the functional code

as if it were its own result.

When the goal instruction receives a demand it will call the rela

tion, which will in turn result in several clauses being executed. The

execution of each clause will proceed in the usual way, generating a

search tree. The leaves of the tree will pull down their ancestors, and

eventually reach the functional expression which made the initial call.

Each leaf process will copy down this function. Now there are a set of

copies of the function each pursuing their own results. When they ter

minate they must copy down their caller so that the different results

may still be pursued in parallel. In this way a functional program

which uses logic will produce a set of results, not just one. The code

for calling a goal from a function will have the form:

In order to create a parallel set of functions the func instruction must

- 179 -

have its operation extended to copy down its caller when appropriate. A

flag in the activation record indicates if the copying is necessary.

9.5.2. Complex Prograas

Calling functional programs from logic will never be more complex

than the cases described above, because a function will only produce one

result, which may easily be accommodated in the logic scheme which

allows several results. In contrast calling a clause from a function

produces several results, each of which are pursued by separate copies

of the caller, as described above. There are si tua tions, however, in

which it will be desirable to group all results together and manipulate

them as a whole. This can be achieved because the resul ts of a goal

collectively form a relation, the name of the relation will be the same

as the name in the goal. Consider the example in Figure 1.2.

results of this are effectively the relation:

grandparent(fred,clive)
grandparent(fred,john)

The

So to gather all the results of a goal together, a new relation must be

created, and the results stored in it.

The facilities described above are provided by the "all" instruc-

tion. In most respects the all instruction works in the same way as the

call instruction, namely it calls the relation referred to by its first

argument and holds the parameters for the call. In addition, however,

it sets a flag, "a", in the activation record of the calling function to

signify that the function is obeying an all instruction. It is this

flag which will cause all the results to be gathered together. The call

instruction also creates a new process to hold the relation which will

contain the results. This process will eventually hold links to all the

- 180 -

assertions returned as results of the call. Having called the goal the

all instruc tion modifies itself to an I (Identi ty) instruc tion, which

points to the new process, and waits for all the results to be returned.

~r-------~new relation

clauses of the called relation

When a clause instruction comes to copy down an activation record it

will find that the "a" flag is set. The return address of the clause

will point to the I instruc tion which gives the process number of the

relation that is to hold the results. The clause instruction will add

its own process to the list already present, thereby adding its result

to the list of results.

9.5.3. Parallelism

Hybrid programs introduce new possibilities for parallelism; which

is the topic of this section.

Parallelism in logic can cause problems if it is not implemented

cleanly. One of the advantages of following the search tree when exe

cuting logic, described in Chapter Seven was that it kept each branch of

the tree independent. This meant that there was no need to pass multi

ple results produced by one goal along to the next.

If this simplicity is to be retained, the execution of clauses in

hybrid programs must also be sequential. Consider the example:

- 181 -

f X+Y

goal! (••• , X)
goal2 (••• , Y)

The "+" operation is strict and so in a conventional functional language

X and Y will be evaluated in parallel. If X and Y each produce several

values this should give rise to several parallel executions of f, one

for each combination of X and Y. Thus by allowing X and Y to be

evaluated in parallel the problem of dealing multiple results has been

re-introduced. This can be seen more clearly if the program is

translated into logic:

goal(••• ,x),goal(••• ,y),add(x,y,f)

The parallel execution of the goals, in fact, corresponds to AND-

parallelism. The logic scheme described in Chapter Seven only deals

with OR-parallelism. In a hybrid program, therefore, the only source of

parallelism must arise from the parallel execution of clauses. Notably

all strict operators must be obeyed sequentially in a hybrid program.

For example, X+Y could be rewritten as +XY and if the default brackets

are added this will become (+ X) Y. Thus X will be evaluated first.

9.6. Hybrid Languages

Although this is a thesis primarily concerned with computer archi-

tecture it seems desirable to describe the way the hybrid program

features described above can be used to provide a hybrid language.

There are two important aspects to this, firstly calling one language

from another, and secondly using a program as data.

- 182 -

Calling Functions fro. Relations

Calling functions from logic could be accomplished by writting an

assignment as if it were a goal:

g(•••.):-gl(••••),X=+(f l)(h 2),g3(•..•).

The assignment will be executed in sequence with the other goals. The

complete clause giving rise to the codes:

Calling Relations frca Functions

The calling of relations from functions in hybrid languages is more

difficult because a goal with several parameters may produce values for

more than one of them as a resul t. The call will take the form of an

auxiliary definition:

f + X (* Y Z)
where
X,Y goal1(••• ,X,Y)

Z = goa12(••• ,Z)

Here a demand for X or Y implies the execution of goal1, and a demand

for Z implies the execution of goa12. This program will be compiled

into the code:

- 183 -

Normally the input parameters of the goal will be defined by the time

the goal is obeyed. If they were not, however, the call instruc tion

could have an argument which will demand the parameters. For example:

f + X (* Y Z)
where
X,Y goall(••• ,X,Y)

Z goaI2(a, .•• ,Z)
a = h 1

Here "a" is provided by a function, the code for which will be:

Alternately a could be provided by a clause:

which compiles to:

- 184 -

f + x (* Y Z)
where
X,Y goaU(••• ,X, Y)

goa12(••• ,A, Z)
goa13(••• ,A)

Z
A

9.6.1. Treating Programs as Data

goa13

Instructions are able to refer to programs because they are

represented by a process holding link instructions, so instruction argu-

ments are able to refer to programs because arguments can refer to

processes. References to programs allows a program to be passed between

one instruction and another, and also held in DM locations. In short,

programs may be used as data. For example one could write:

f prog x g x
where
g = h x using prog

in which the definition of h is held by prog. The name in the call

- 185 -

instruction will point to the location in the activation record that

holds prog and gives the integer which represents the compiled form of

the original name. This will be used by link instructions to forward a

demand to the correct closure as already been described. The same can

be done for logic:

goal1(X,prog) :- goa12(X) using prog

Thus hybrid programs can be written in the same way:

f Y = X
where
X = goal1(Y,X) using prog

goal(X,prog,Y) :- Y = f(X) using prog

and programs can also be passed as results.

Since a particular goal or function call is obeyed in the context

of the program being treated as data, prog in the example, the context

may change because prog may change. The value of prog passed as a

parameter may not be the same each time f is called. This is why the

"name" argument type is necessary. It can be used to identify the

desired relation or function in any program that contains it.

9.7. Assessment

In this section the architecture described in this chapter is

assessed both in isolation and from the point of view of language imple-

mentation.

The architecture described in this chapter uses demand propagation

as its sole computational mechanism, and yet it is able to cope with a

relation producing several results, a situation which the previous

chapter stated was impossible. These two facts are reconciled by

- 186 -

returning resul ts differently to the way used before. The original

scheme passed all results back to the instruction which propagated the

demand. The present scheme returns the result of a clause (success of

failure) by copying down the caller, and then sending a token to the new

copy of the caller. In this way there are as many copies of the caller

as there are results. Each copy of the caller, therefore, only receives

one result.

Unfortunately the architecture is more complex than is desirable.

This arises because using activation records to implement functional

languages is more complex that using combinators, and because programs

may be treated as data.

Logic is mostly implemented using activation records, and therefore

processes, which means that for the architecture functional languages

must be implemented in the same way. Unfortunately function calls which

cross process boundaries are difficult to achieve because they do not

really follow the rules of reduction. Strictly speaking the call should

be replaced by the called function's body, but this cannot occur if the

call and the body must lie in different processes. The architecture

must therefore give the effect of reduction, without actually doing it.

This requires a complex interface between the called function and its

caller. This situation is made worse in the combined architecture by

the introduction of names.

Allowing programs to be treated as data is desirable because it

introduces a limited from of higher orderedness, which is particularly

useful in logic. Unfortunately it also introduces the complexity of

dereferencing names. It remains to be seen if the flexibility produced

by treating programs as data is worth the complexity.

- 187 -

The introduction of the "forward" argument type considerably sim-

plifies the task of implementing calls, and is most helpful when dere-

ferencing names. The argument type allows a demand propagated by one

instruction to be steered to its destination by others. This relevies

the originator of the demand from the work necessary to identify the

destination precisely. It simply sends the demand to an instruction

which decides where to forward the demand to. This process is repeated

until the demand reaches the desired destination. The destination

instruction sees the demand as coming directly from the originator, and

is therefore unaware of the complexity of the path followed by the

demand.

The new architecture differs from that described in Chapter Four in

that there is no active memory, instructions reside in IM whether they

are active or not. This modification allows reduction to be implemented

more cleanly. Consider the example:

f * g g
where
g = h(+ x y)

The qualifying function g should only be evaluated once. If the concept

of the active memory had been retained g will have been moved into the

active memory to be executed when g was first called. A way of allowing

future callers to benefit from its reduction will therefore have to be

found. This was achieved in the original architecture by allowing the

reduced code to mask the code in the definition memory. This architec-

ture avoids the problem by allowing code to be reduced in IM, the origi-

nal definition of a function will therefore contain the result produced

by the reduction of a constant expression, g in the example.

- 188 -

The structure of programs and relations used in this architecture

was chosen for their simplicity. The sequential execution of links in a

program will mean that a call will incur a large overhead. There is no

reason, however, why a program needs to be a sequence of links. Another

alternative approach would be to represent the program as a binary tree.

- 189 -

CHAPTER. 'I:EN

CONCLUSIONS AND FlJTDRE \lORK

This chapter summo.rise. the conclusions reached in the thesis and

gives an indication of the directions of future work. The work

described has covered three major topics: the design of a packet commun

ication architecture, and the implementation on this architecture of

functional languages, and logic languages. The packet communication

architecture has been found to adequately support functional languages.

Unfortunately the initial architecture provided inadequate support for

logic languages. It was therefore necessary to design another architec

ture which supports "demand propagation with multiple results", a new

computational mechanism which can support both functional and logic

languages.

10.1. Conclusions

This thesis set out to develop a parallel computer architecture

which was capable of supporting functional and logic languages. The

initial packet communication architecture was based on the classifica

tion of Treleaven et al[68]. The authors claim that their classifica

tion describes a set of computational mechanisms which collectively sup

port any type of computation. These claims were evaluated by attempting

to implement graph reduction and logic on the packet communication

architecture.

- 190 -

In retrospect there is at least one change that would be desirable

in the emulated architecture described in Chapter Four. Demand propa

gation is implemented in such a way that, providing lazy evaluation is

not used, the architecture behaves differently depending on the timing

of demands. A set of demands arriving simultaneously at an instruction

will result in the instruction being reduced once, if the same demands

arrive sequentially the instruction is reduced separately so satisfy

each demand. This is an undesirable property in an architecture which

is intended to evaluate computational mechanisms because one would wish

the mechanisms to be implemented in their purest form. It would there

fore be better if the machine behaved the same no matter what the timing

of demands. This means each demand should give rise to a separate exe

cution of the instruction, each instruction will be reduced, and pass

its result back to the source of its demand. Reducing an instruction

once for several demands is in fact an optimisation of reducing the

instruction separately because the result of the instructions will be

the same in each case (assuming a pure reduction scheme). The optimisa

tion is so obvious that the fact that it is an optimisation was over

looked when the architecture was designed. Fortunately this oversight

has no effect on the resul ts because demand propagation has only been

used lazily in the work reported here.

Graph reduction was implemented on the emulated architecture

without undue difficulties, although some modifications to the architec

ture were required. The modifications were confined to parts of the

archi tec ture which are not associated with the implementation of the

computational mechanisms; it is therefore possible to conclude that the

computational mechanisms implemented by the architecture are capable of

supporting graph reduction, and therefore functional languages.

- 191 -

When logic was implemented on the same architecture severe diffi

culties were encountered. These centred around the inability of the

computational mechanisms to support a single instruction producing

several results. All the computational mechanisms are based on the

premiss that an instruction only produces one result. This meant that

virtually all the computational mechanisms had to be discarded. Logic

was implemented using control flow, which in effect meant that a logic

interpreter had to be written using control flow, rather than the compu

tation mechanisms being used to support logic directly. Even so the

storage of multiple resul ts in memory s till presented problems. The

memory used in the packet communication architecture has quite a complex

structure. The coding necessary to hold several resul ts was long and

cumbersome because the architecture's memory was only designed to pro

vide the facilities required by the computational mechanisms. To over

come these difficulties each result had to be made independent of the

others. This was achieved by generating a separate copy of a calling

goal for each result, each copy of the caller therefore dealt with only

one result. This scheme is in fact a novel way of executing a logic

program using OR-parallelism.

The idea of creating a copy of a goal for each result it receives

can be used as a way of implementing demand propagation with multiple

results. Instead of a demanded result being returned to the caller the

caller is copied down to the resul t. If there are several resul ts ,

several copies of the caller are created. This allows functional and

logic languages to be implemented using a single computational mechan

ism. Logic languages use demand propagation, and copy down the calling

activation record, reduction uses demand propagation, and copies the

result up to the caller. The use of a single mechanism allows func-

- 192 -

tional and logic code to be mixed freely. An architecture based on this

notion was described in Chapter Nine.

One undesirable feature of the scheme is the different ways results

are treated in logic and functional languages: the caller is copied down

in logic, but the result copied up in reduction. It would have been far

better to always copy down the caller, but in a functional language only

create one copy. This would provide an more uniform way to implement

functional and logic languages. Unfortunately one may not copy a caller

down to the result in a functional program because reduction requires an

expression to be overwritten by its result. Consequently the result may

not be copied to a different point in the graph.

Another problem with the architecture described in Chapter Nine is

its complexity. This is due, at least in part, to using a mixture of

demand propagation and activation records. Logic uses activation

records to provide the flexibility which allows any goal to produce a

piece of data, and allow any goal to access it. This flexibility is

necessary because it is difficult to predict which goals in a clause

will produce data and which consume it. Using activation records means

that combinators cannot be used to implement reduction, and so all the

features which they supply automatically, such as- closures, must be pro

vided explicitly in the combined architecture. When this complexity is

added to the complexity of using names, the reasons for the complexity

of the architecture become clear.

Lazy evaluation in both the original architecture, and the new com

bined functional and logic architecture, in not implemented very

cleanly. In the original architecture there is no way for a function

definition to be reduced in such a way as to allow future callers of the

- 193 -

function to benefit from its reduction. The reduction is carried out in

AM, but all the callers refer to the definition in~. The combined

functional and logic architecture implements lazy evaluation com-

pletely, but not in a very elegant way. The inelegance arises because

both architectures rely on demand propagation as their control mechan-

ism, and use a reference data mechanism. This combination is not suffi-

cient, however, to determine all the operations the architecture must

carry out to implement lazyness. For example any constant section of a

function must be reduced in the function definition, while non-constant

sections of code must be executed in the copy of the code created by the

function's application. Any architecture which implements lazy evalua-

tion must have some mechanism which determines when a section of code is

to be copied before it is reduced, and when is should be reduced in its

definition. It is not enough simply to create a new process for each

invocation of a function. Combinators provide such a strategy impli-

citly by only copying those sections of a function's definition which

contains the bound variable. Had combinators not provided this feature

it would have been necessary to provide it explicitly in the implementa-

tion of functional languages described in Chapter Six. One may there-

fore conclude that to implement functional languages with demand propa-

gation one would wish to use a scheme similar to that of combinators.

The work reported in the thesis can, with some justification, claim

to have made some progress towards a simpler way of implementing OR

parallelism, and to providing a unified way of implementing functional

and logic languages; it cannot, however, claim to have solved the prob-

lem completely. To solve the problem completely a way must be found to

avoid implemeJ~:logiC using activation records. This means identifying

the producers and consumers of data wi thin a clause. If activation

- 194 -

records are no longer required, then processes are no longer required,

so the complexity of implementing reduction across process boundaries is

removed. This may allow combinators to be used, perhaps in a modified

form, to implement logic. If this is the case then all the features

provided automatically by the combinators will no longer have to be pro-

vided explicitly, thereby simplifying the architecture.

The remainder of this chapter is devoted to explanations of possi-

ble ways of achieving the above objectives.

10.2. AND-Parallelisa

'$
AND-parallelismfone aspect of the implementation of logic which is

difficult to accomplish efficiently unless one knows which goals in a

clause produce data, and which consume it. A solution to the problems

of AND-parallelism may provide a solution to the problems described

above.

AND-parallelism allows the goals of a clause to be obeyed in paral-

leI, but it is complex to implement because all goals must agree on the

values for each shared variable. AND parallelism also allows relations

to be completely flexible. Consider the example below, if the goals of

a clause are obeyed sequentially, the clause can only be used in a call

which provides values for the parameters A and B.

g(A,B,C):-A)B,g1(A,B,C).

If either A or B were undefined (i.e. have no values) in a call of g

then the comparison of A and B will cause the execution of the program

to stop, even if g1 is able to provide values for A and B given C. In

an AND-parallel scheme the execution of the comparison will be suspended

until g1 can produce values for A and B. A sequential execution of the

- 195 -

goals forces the producer/consumer relationship between the goals to

follow a predefined pattern, which in turn restricts the ways a relation

can be used, since a relation may not be called in a way which requires

an incompatible producer/consumer structure. Another problem that can

arise from the sequential execution of goals wi thin a clause is that

relations may produce an infinite number of redundant answers, instead

of the intended ones. This results from calling a relation with insuf

ficient defined values. For example concat(l ,X, Y) will produce all

pairs of lists such that Y contains 1 as its first element and X is any

list at all. If this goal is part of a clause, and the order of the

goals in the clause is changed, it may be possible to avoid this situa

tion by allOWing other goals to produce values for X and Y before concat

is called.

The new implementation scheme for logic introduced in Chapter Seven

only allows a clause to be obeyed sequentially, and so the scheme will

suffer from both the problems described above. One direction that

future work could take is to attempt to provide some of the flexibility

of AND-parallelism. This can be achieved using modes to indicate if the

relation is able to produce a result for a given call. The concept of a

mode is used in Edinburgh Prolog [74] where it specifies which actual

parameters must be defined in a call and which must not. For example

the mode (+,+,-) means that the first two parameters supply values to

the relation, and the last is the result received from it. In Edinburgh

Prolog the programmer must annotate his code to indicate the modes a

clause is able to handle, and also annotate the goals wi thin the

clause to show which produces or consumes data. This forces the pro

grammer to consider the way his program is going to execute, which seems

undesirable. A better solution is to derive the modes automatically at

- 196 -

compile time, an novel algorithm for which is described in the next sec-

tion. For each mode for which clause may be executed, the new inter-

preter for logic will have a particular order of goals to follow which

will avoid the problems described earlier.

Mode Derivation

The mode derivation algorithm proceeds by finding all acceptable

modes for the assertions of a relation and then tests them against those

clauses of the relation that have bodies to see if the clauses are well

behaved for the chosen mode. An acceptable mode is one for which the

clause is able to return a value for all undefined parameters. The

algorithm starts by making a list of acceptable modes for all the asser-

tions in the relation. For example consider the following assertion and

the list of all possible modes:

r(a,X,X).

1) +,+,+
2) -,+,+
3) +,-,+
4) -,-,+
5) +,+,-
6) -,+,-
7) + - -, ,
8) , ,

The formal parameter "a" is a constant while X is a variable. An

acceptable mode may have either "a" as + or - because a can either check

an input value or supply a resul t. The remaining two arguments will

force the parameters supplied to be the same. If two constants are

passed they must be equal. If one value and one variable are passed,

the unification algorithm will assign the value to the variable. If two

variables are passed, the unification algorithm will make o~ point to

the other; effectively making them the same variable for the remainder

- 197 -

of the execution of the calling clause. The unification does not how-

ever provide a value for X. Any mode which does not provide a value in

such a situation is unacceptable because it does not allow the program

to progress towards a solution. This means that modes 7) and 8) are

unacceptable, leaving modes 1) to 6).

Another example could be the assertion:

r(a,X,Y).

where "a" is a constant, and X and Y are variables. The only modes

which are acceptable are:

1) +,+,+
2) -,+,+

All the others leave either X or Y undefined after the call because they

give ~hese variables a mode of " -"

This process is repeated for all the assertions of the relation. A

list of modes which are acceptable to all assertions is then con-

structed. If modes acceptable to only some assertions were included it

will mean that the relation will produce some solutions, and then start

to behave badly.

The modes selected by the above algorithm must be tested against

the clauses of the relation with bodies. For each mode derived above an

ordering of the goals within each clause must be found. Each goal in

the clause may only use the acceptable modes of the called relations.

If no such order for the goals in a clause can be found the mode being

check is deleted from the list. Finding an ordering for the goals in a

clause means knowing the acceptable modes of all the called relations,

which in turn introduces some difficul ties when deriving modes for

recursive relations. The algorithm needs to know the acceptable modes

- 198 -

for a recursive relation in order to derive the modes for the same rela-

tion. Consider the following clause:

g(A,B) :- h(l,C),g(A,C),f(C,B)

If the clause is called wi th mode -, - the recur si ve call is made wi th

mode -,+ because h delivers the value of C. Thus to know if mode -,- is

acceptable to the g relation, one must know if mode -,+ is acceptable to

the g. If we assume that mode -,+ is acceptable then mode -,- is also

acceptable. The mode derivation algorithm will therefore move on to the

other clauses in the g relation. Now suppose that the algorithm dis-

covers that one of the other clauses finds mode -,+ unacceptable. This

means that the mode -,- is no longer acceptable because the clause above

can longer make its recursive call. In some circumstances it may be

possible to re-order the goals of to change the mode of the recursive

call, but in the example this is not possible. The removal of mode -,-

from the list of acceptable modes may mean that other clauses in the

relation can no longer make their recursive calls because they use mode

-,-, so more modes will be deleted. Mode derivation for recursive rela-

tions will in the most general cases lead to a significant overhead.

The situation may be illustrated by the table:

-,-

recursive goal -,+ *
mode

+ -,

+,+

acceptable mode

-,+ + -, +,+

Figure 10.1: Mode table for a clause.

The columns contain the list of modes acceptable to the relation, and

- 199 -

the rows indicate the modes for the recursive call in the clause g.

Each acceptable mode gives rise to a particular mode for the recursive

call, indicated by character in the appropriate square. The square

marked n*n is the one for the case, described above. The other modes

form the complete picture of the way the modes of the recursive call in

the clause g are related to the acceptable modes of the relation.

Recursion therefore introduces severe difficulties which may result

in the repeated re-ordering of clause bodies to take account of modes

which have been deleted. The problem arises because recursion relates

one acceptable mode to another: clauses called with one mode give rise

to a recursive call with another mode. Thus when one mode is deleted it

may result in other modes being deleted because of the relationship

between modes created by recursion. The deleted mode is the one used by

the recursive call, which leads to the deletion of the mode used when

the recursive clause is called. The problem is worse if there are two

recursive goals in a clause, because one acceptable mode will probably

be related to two others. Mutual recursion will relate the acceptable

modes of several relations.

There is one type of recursion which will cause no problems. If

each acce,ptable mode for a relation is supplied to a recursive clause,

and the recursive goal in the clause uses the same mode, then the table

will have a series of dots along the leading diagonal:

-,+,-

recursive goal +,+,
mode

+,-,+

-,+,+

+,+,+

- 200 -

acceptable mode

+,+,- +,+,- +,-,+ -,+,+ +,+,+

Now suppose that mode +,+,+ is used by a recursive clause, but the mode

is later found to be unacceptable to another clause in the relation.

The mode +,+,+ is therefore removed from the list of acceptable modes.

The recursion described by the above table does not cause any difficul-

ties because the mode which the recursion dictates should be removed is

the same as the one which has been removed anyway. The difficul ties

only arise if recursion dictates that a different modes must be deleted.

Fortunately most recursions are of the simple type illustrated by the

table above, so recursion may not cause the overheads described above in

most cases.

An example which illustrates the use of the algorithm described

above is:

1) delete(H,cons(H,T),T).
2) delete(X,cons(H,T),cons(H,DX»:-delete(X,T,DX).

This relation deletes the first occurrence of parameter one from parame-

ter two and returns the result in parameter three. If the first parame-

ter is not contained in parameter two the relation fails.

- 201 -

The acceptable modes for clause 1) are:

1) +,+,+
2) -,+,+
3) +,-,+
4) +,+,-
5) -,+,-

The following modes are omitted because the variables Hand T are shared

between parameters, and may not therefore have both occurrences unde-

fined:

6) -,-,+
7) +,-,-
8) "

The selected modes must now be checked against clause 2). Further modes

will only be deleted if the goal of clause 2) tries to make a recursive

call with an unacceptable mode. All the modes are in fact satisfactory

because all the recursive calls are made with the same mode as the call

on the relation; recursion will not therefore cause any problems. The

table for the recursive will have dots along the leading diagonal.

Does delete behave well for all the acceptable modes? A call with

no unknowns will behave well because it simply checks to see if X has

been deleted. Those with one unknown will take the two defined values

and return the third, there is only one possible value for the result in

each case. There is only one mode with two unknowns, namely mode 5).

This will produce pairs of results,' one pair for each member of the list

supplied as the second parameter. Each pair will consist of one member

of this list, and a copy of the list with the member deleted. The

number of such pairs will be equal to the number of elements in the

list. The relation is, therefore, well behaved for all acceptable

modes.

- 202 -

In the delete example the modes which were removed all have bad

behaviours. Mode 8) will obviously produce an infinite number of

results. Mode 7) will produce all pairs of lists whose only difference

is the membership of the first parameter. Mode 6) will produce an

infinite number of results. It asks for any atom which when deleted

from any list produces the specified list. The algorithm has therefore

successfully identified those modes for which the delete relation is

able to produce a result.

As a final example consider the member relation which returns true

if parameter one is a member of the list passed as the second parameter:

1) member(H,cons(H,T»
2) member(X,cons(H,T»:-member(X,T).

The complete list of modes will be:

1)
2)
3)
4)

+,+
-,+
+,-

The last is deleted by the assertion because the parameters of clause 1)

share H. Mode 3) is deleted because it will not supply a value for H.

The resulting list has only those modes for which the relation is well

behaved.

1) +,+
2) -,+

Mode 1) checks to see if parameter one is a member of parameter two.

Mode 2) produces a set of results which contains all the elements of the

second parameter. The deleted modes both behave badly. Mode 3) will

produce an infinite number of of lists which had the first parameter as

a member. Lastly mode 4) will obviously produce an infinite number of

results.

- 203 -

The mode derivation algorithm described above is somewhat simpli

fied because it assumes that a parameter is either completely undefined

or completely defined. If the parameter is a structure it may contain

some defined variables and some undefined ones. The algorithm must

therefore be extended to apply to variables contained by parameters,

instead of just the complete parameters.

The ideas of mode derivation allow the producers and consumers of

data to be identified, and therefore go some way to solving some of the

problems associated with the architecture described in Chapter Nine.

Since the modes of all goals in a clause are now known it is even possi

ble to implement logic using data flow. It also possible to use combi

nators, which is the topic of the next section.

10.3. Coabinators in Logic

Combinators have been used by Turner [69] to implement functional

languages. If the mode derivation algorithm outlined above is practical

it may be possible to use combinators to implement logic.

Each mode defines input and output parameters, so each mode res

tricts the relation in such a way as to turn it into a function. If

there is a different version of a clause for each mode then combinators

can be used to substitute the arguments into the clause body. Wi thin

the body of the clause the modes used by each goal are also known. This

allows the goal which produces the value for a particular variable to be

identified. Combinators can now be used to distribute the result to the

other goals of the clause.

- 204 -

The combinators used to represent a clause will be the same as

those used for functions but with one addition; the R combinator .. hich

is used to return a clause's result.

Returning FrOlll a Cl.ause

The results of a clause are returned by the R (Result) combinator,

of which there will be one for each resul t the clause returns. There

are in fact two versions of the combinator: Rand R'. The reduction

rules for Rand R' are:

R X E => E X
R' X El E2 => El (E 2 X)

where E and E2 represent the body of the calling clause, and El is a

combinator expression. The variable X denotes the clause's result. The

R combinator is used to return a single resul t, and R' if there are

several. For example if there are three results the first two will be

returned using R' and the last be R. Both combinators always appear at

the end of a clause and are applied to the resul t, returning it to the

calling clause.

The graph for the reduction of R will be:

calling clauses body

- 205 -

After the reduction of R has been performed the result will be:

calling clauses body

As has already been mentioned the calling clause's body will contain the

combinators necessary to distribute the result to those goals that

require it. Applying the body to the result causes this distribution to

take place.

The R combinator is in fact the graph reduction equivalent of the

endc instruction (introduced in Chapter Eight), and as such must copy

down the caller. In fac t this occurs automatically because Sand

related combinators will peal off a copy of the caller's body as the

substitution of the result is carried out.

The R' combinator is used if several results are to be returned

from a clause, each resul t is returned using a separate R' combinator,

except that the last one will be returned using an R combinator. If two

results, X and Y, are to be returned the expression which will carry out

the task will be:

R' X (R Y) E

where E is the body of the calling clause. When R"' is reduced the

expression becomes:

R Y (E X)

and after the reduction of R it becomes:

E X Y

Thus E will be applied to both the resul t, and both resul ts will

- 206 -

therefore be substituted into E. If the reduction of the expression

R' X (R Y) E

is drawn as a graph it will have the form:

E =>

The reduction of R will give the graph:

The introduction of the R combinator therefore allows the results of one

clause to be returned to another, and the result substituted into the

calling clause's body.

Abstraction

Each clause in a program must be compiled into combinators, this

compilation is carried out by abstracting variables from the body of the

clause. The abstraction process starts by dividing a clause into

opera tor / operand pairs. This is achieved by taking the first goal as

the operator and the remainder of the clause as the operand. The

- 207 -

operand is then divided in the same way giving the structure:

Each goal is also divided into operator/operand pairs, for example:

g(a,b,c) =) ((g a) b) c

Having divided the clause into operator/operand pairs the clause may be

compiled into combinators. The compilation is carried out by abstract-

ing variables and has three sections. The simplest abstraction is that

of input parameters which is explained first.

Each input parameter (one with mode + in a head) is abstracted from

the body in turn, starting with the leftmost parameter. For example,

given the clause below, the result of abstracting X will be (only S, K

and I are used):

grandparent(X,T) .- parent(X,Z),parent(Z,T)
=) (parent X Z)(parent Z Y)

[X] grandparent(X,Y) =) S(S parent (K Z»(K (parent Z Y»

The same process will be repeated for Y if it also has a mode of +.

Another section of the compilation process is the abstraction of

local variables. Any goal which produces a result will give rise to an

abstraction of that result from the goals to the producer's left. The

combinators introduced will be the ones which distributed the result

throughout the clause. The local variables of the clause are abstracted

by moving through the clause looking for a goal which has a mode of +

for a local variable, and then abstracting the corresponding variable

from the rest of the clause body. All consumers of the value will

appear to the left of the producer in the clause body. For example, if

the first goal of the grandparent clause produces a value for Z, the

resul t of abstracting this variable from the clause body will be the

- 208 -

expression:

[Z] grandparent(X,Y) =) parent X Z (8 parent (K Y»

The execution of the first goal will produce a value to which the

expression on the right of the goal is applied. The means by which this

is achieved depends on of the way results of clauses are returned, which

is the subject of a later section.

The final section of compilation to be described is the abstraction

of results. The results of a clause are abstracted in much the same way

as local variables. A result variable is selected from the head (the

variable will have a mode of -) and the body of the clause is searched

for the goal which has a mode of + for the same variable. This vari-

able is then abstracted from the remainder of the clause so any goals
~.:" "'C'~IUC. _ ,-a"

which use the resuld. An R combinator is added to the end of the clause

as if it were a goal, and the combinators generated so that R will be

applied to the resul t. In this way R is applied to the resul t, and the

resul t is returned to the calling clause. If X is the resul t of the

grandparent clause its abstraction will produce the expression:

[X] grandparent(X,Y) =) parent X Z (8 (K (parent Z Y» R)

The sections of the abstraction algorithm are not performed in the

order in which they were described, they must be performed in the

reverse order to substitutions. The first substitution is that of the

input parameters, so these must be abstracted last. The order of

abstractions of local variables and results depends on the position in

the clause of the goals which produce them. The abstraction algorithm

moves throughout the clause looking for goals with a mode of + for any

variable. When it finds such a variable it decides if it is a local

variable or a result, and performs the appropriate abstraction.

- 209 -

Calling a Re1ation

When a relation is called it will only be called by a goal using

one of the acceptable modes. Suppose a goal g(A,B,C) uses a mode of

+,+,-, then the call will have the form:

g++- A B

The subscript of the goal denotes the mode it uses. Each clause in the

g relation will be represented by a set of different versions, one ver

sion for each acceptable mode. In the example the particular version of

g for mode +, +, - is called and passed the input parameters: A and B.

The output parameter, C, is not passed because the combinators render it

red undant , C need not be subs ti tuted into the clause, and is not

required to pass the result out. The substitution of the parameters A

and B will be not occur throughout the clauses of g, but will only be

carried out as far as for the first goal of each. If the goal is suc

cessful the substitution will be pushed further down the each clause.

At each stage any results returned by a goal are substituted into the

rest of the clause's body. Eventually all the goals will have been

obeyed, and so the result of the clause must be returned.

As sessaent

The use of combinators to implement logic will reduce the complex

ity of a combined architecture compared to that described in Chapter

Nine. Unfortunately using combinators has the same drawbacks as for

functional languages, namely that the body of clause is copied for each

use. Thus there will be a copy for each branch of the tree. The logic

scheme proposed in Chapter Seven saved space by re-using activation

records, but when using combinators there are no activation records.

- 210 -

However when one clause finishes and returns its result to the caller,

the body of the called clause is discared and the body of the caller

copied down. The garbage collector will have reclaimed the cells of the

discarded body, and will therefore allow them to be re-used to construct

the body which is now being copied down. The space efficiency is still

present, therefore, but now with the overhead of a garbage collector.

Clearly additional work on this topic is needed to demonstrate that the

ideas expressed above are practical, and attempt to simplify the

abstraction algorithm for logic, perhaps by introducing more appropriate

combinators.

10.4. Hybrid Languages

Hybrid languages offer some of the advantages of both functional

and logic languages and are becoming an important research topic. The

best known attempt so produce such a language has been made by Robinson

and Sebert [64] . when they produced LogLisp. This language allows logic

to be called from Lisp, and the resul ts returned in Lisp data s truc-

tures. The results returned may be a list of all results, or just one.

LogLisp does not, however, allow programs to to be treated as data. It

only allows a logic program to be consul ted to obtain the desired

results.

The logic scheme described in Chapter Seven allows programs to be

treated as data, and also allows logic and functional code to be mixed

freely. This permits goals to be curried in the same way as functions.

For example:

f x y z
where

z = goal(x,y,z)

- 211 -

The goal is in effect curried by enclosing it in a function, one may now

write the following:

g = f 1

The ability to pass programs as data opens the way to the use of higher

order logic programs, for example:

f p z
where

z = goal(x,y,z) using p

where z is produced by calling goal, the definition of which is held in

the program p. This technique does not give the same power as higher

order functions do in functional languages. In a functional language a

function:

f g = g 1

allows any other function to be supplied as an argument to f. When a

function is passed as an argument its name is effectively changed to g,

and is then applied to 1. In a logic program the name of the goal to be

called is fixed, in the example above it is "goal" so the relation in p

to be called must always have the same name. This reduces the flexibil-

ity that the feature is able to provide. To achieve the power of higher

order functions in logic one must make z point to a location in the

activation record, and place the name of the goal to be called in that

location. This will allow the function below to be written:

f goal z
where

z = goal(x,y,z)

where goal is now any relation. In other words one must pass relations,

as well as programs, as data.

- 212 -

As was mentioned in Chapter Two higher orderness in logic can cause

problems because one may write:

clause(GOAL,X) :- GOAL(X)

which asks which goal is true of X because the value of GOAL may be left

undefined when clause is called. One cannot write this using a func

tional notation because the value of goal must be defined before it is

used, as is the case with all objects used in functions. Thus so long

as higher order relations are only used wi thin functions the problem

outlined in Chapter Two will not arise. Only allowing relations to be

passed to functions does, however, limit the usefulness of the tech

nique.

Any future work based on the ideas expressed above must devise an

elegant set of features for a hybrid language which combine the useful

features of functional and logic languages.

10.5. Hybrid Co.puter Architecture

Finally, we will discuss the design of (parallel) hybrid computer

architectures. Such designs are attractive because they could effi-

ciently support functional, logic and hybrid languages, all of which are

likely to be important topics in future research. A computer architec

ture based on the ideas described in Chapter Nine, but now incorporating

more than one processor, could be viewed as complementing other packet

communication architectures such as the Manchester Data Flow computer,

and the ALICE reduction machine being produced at Imperial College Lon

don.

- 213 -

The Manchester computer supports a pure data driven form of

instruction execution, which although ideal for certain types of

language (i.e. Single-Assignment) may present problems for logic, as was

mentioned at the end of Chapter Seven. In contrast, ALICE is more

general-purpose because it incorporates the possibility of controlling

program execution using control driven mechanisms. The advantage of a

parallel computer architecture based on the scheme described in Chapter

Nine, should be its simplicity. The scheme is able to support both

functional and logic languages with one mechanism, whereas ALICE may be

viewed as needing two mechanisms. Such a hybrid architecture could rea

sonably claim to be a general-purpose alternative to Japan's so-called

Fifth Generation computer.

- 214 -

REFERENCES

[1] Arvind and K. P. Gostelow, "A Computer Capable of Exchanging Pro
cessors for Time.", IFIP J..!...., pp. 848-854 (1977).

[2] J. Backus, "Reduction Languages and Variable Free Programming", IBM
Research RJ1010 (7th April 1972).

[3] J. Backus, "Can Programming be Liberated from the Von Neuman Style?
A Functional Style and it's Algebra of Programs", CACM Vol. 21(8).

[4] K.J. Berkling, "A Computing Machine Based on Tree Structures", IEEE
Transactions on Computers (April 1971).

[5] K.J. Berkling, "Reduction Languages for Reduction Machines", Proc.
2nd International Symposium on Computer Architecture, pp .133-140
(1975). -

[6] C. Bohm and W. Gross, "Introduction to the CUCR", in Automo.ta
Theory, ed. E.R. Cainiello, Academic Press (1966).

[7] R.S. Boyer and J.S. Moore, "The Sharing of Structure in Theorem
Proving Programs", in Machine Intelligence 7.

[8] J.M. Brady, The Theory of Computer Science, A Programming Approach,
Chapman and Hall.

[9] M. Braynooghe, "An Interpreter for Predicate Logic Programs. Part
1.", Report CW 10, Applied Mathematics and Programming Division,
Katholieke Universteit, Leuven, Belgium (1976).

[10] W.R. Burge, Recursive Programming Techniques, Addison-Wesley.

[11] R.M. BurstaJJ. "Design Considerations for
Language" , Proc. of Infotech State
(Copenhagen) (1977).-

a Functional Programming
of the Art Conference

[12] R.M. BurstaJJ and J. Darlington, "A Transformation System for
Developing Recursive Programs", JACM Vol. 24(1) (January 1977).

[13] R.M. BurstaU, D.B. Macqueen, and D.T. Sannella, ROPE: An Experimen
tal Applicative Language, Dept. of Computer Science, University of
Edinburgh (1980).

[14] C. Chang and R.C. Lee, Symbolic Logic and Mechanical Theorem Prov
ing, Academic Press (1973).

[15] A. Church, The Calculi of Lambda Conversion, Princeton University
Press (1941~951).

[16] A. Church and J.B. Rosser, "Some Properties of Conversion", Tran
sactions of the American Mathematical Society Vol. 39, pp.472-482
(1936) •

- 215 -

[17] T.J.W. Clarke, P.J.S. Gladstone, C.D. MacLe d A C an, an ••
"SKIM - The S, K, I Reduction Machine", in LISP-80.

Norman,

[18] K.L. Clark, F.G. McCabe, and S. Gregory, "IC-Prolog Language
Features", Imperial College Report Doc 81/31 (October 1981).

[19] J.J.W. Clark, P.J.S. Gladstone, C.D. Maclean, and A.C. Norman,
"SKIM-The SKI reduction Machine", Lisp-80.

[20] K.L. Clark and S. Gregory, A Relational Language for Parallel Pro
gramming, Imperial College, Dept. of Computing Science.

[21] K. L. Clark, "Negation as Failure", pp. 2293-2324 in Logic and Data
Bases, ed. Gallaire and Minker (1978).

[22] K. L. Clark and S.A. Tarland, "Predicate Logic as a Language for
Parallel Programming", in Logic Programming, Academic Press (1981).

[23] W.F. Clocksin and C.S. Mellish, Programming in Logic, Springer Ver
lag.

[24] J.S. Conery and D.F. Kibler, "Parallel Interpretation of Logic Pro
grams", ACM Conference on Functional Programming (September 1981).

[25] D. Comte and N. Hifdi, "LAU Multiprocessor: Micro-Functional
Description and Technical Choices", 1st European Conference on
Parallel Processing (14th February 1979).

[26] H.B. Curry and R. Feys, Combinatory Logic, North Holland (1968).

[27] J. Darlington and M. Reeve, "A Reduction Machine for the Parallel
Evaluation of Applicative Languages", Imperial College, London
(18th March 1981).

[28] J .B. Dennis and D.P Misunas, "A Preliminary Architecture for a
Basic Data Flow Processor", Proc. 2nd Annual Symposium on Computer
Architecture, pp.126-132 (January 1975).

[29] J.B. Dennis, D.P. Misunas, and P.S. Thiagarajan, Data Flow Computer
Architecture, MIT Project Mac Computational Structures Group Memo
104.

[30] R.B.K. Dewar and E. Schonberg, Elements ~ SETL style.

[31] D. P. Friedman and D. S. Wise, "Aspects of Applicative Programming
for File Systems", Proc. ACM Conference for Reliable Software.

[32] D.P. Friedman and D.S. Wise, "Aspects of Applicative Programming
for Parallel Processing", IEEE Transactions on Computers Vol. c-
27(4) (April 1978).

[33] D.P. Friedman and D.S. Wise, "A Note on Conditional Expressions",
CACM Vol. 21(11) (November 1978).

[34] D.P. Friedman and D.S. Wise, "An Indeterminate Constructor for
Applicative Programming", Conference Record of the 7th Annual ACM
Symposium .£!! the Principles of Programming Languages (January
1980).

- 216 -

[35] Peter Henderson, Functional Programming, Prentice Hall.

[36] P. Henderson and J. H. Morris, "A Lazy Evaluator", Proc. 3rd ACM
Symposium on the Principles of Programming Languages,- pp. 95-103
(January 1976).

[37] J.R. Hindley, B. Lercher, and J.P. Seldin, Introduction to Combina
tory Logic, Cambridge University Press, Cambridge (1972)-.-

[38] C.J. Hogger, "Concurrent Logic Programming", Dept. of Civil
Engineering, Imperial College, London (October 1981).

[39] A. Horn, "On Sentences that are True of Direct Unions of Algebras",
Journal ~ Symbolic Logic Vol. 16, pp.14-21 (1951).

[40] R.P. Hopkins, P.W. Rautenback, and P.C. Treleaven, A Computer Sup
porting Data Flow, Control Flow and Updatable Memor~

[41] s. B. Jones, "The Performance Evaluatio~ of Interpreter Based Com
puter Systems", Ph.D. Thesis, University of Newcastle Upon Tyne
(1981).

[42] S.C. Kleene, Origins of Recursive Function Theory.

[43] W.E. Kluge, Co-operating Reduction Machines, GMD Bonn.

[44] W.E. Kluge, "The Architecture of a Reduction Language Hardware
Model", GMD ISF-Report 79.03 (August 1979).

[45] K. Furakawa, K. Nitta, and Y. Matsumoto, Prolog Interpreter Based
on Concurrent Programming.

[46] R. Kowalski, "Predicate Logic as a Programming Language", IFIPS 74,
pp.569-574.

[47] R. Kowalski, "Algorithm=Logic+Control" , CACM Vol. 22(7) (July
1979) .•

[48] R. Kowalski, Logic for Problem Solving, North Holland.

[49] P. J. Landin, "The Mechanical Evaluation of Expressions", Computer
Journal Vol. 6, p.308.

[50] P. J. Landin, "The Next 700 Programming Languages", CACM Vol. 9(3)
(March 1966).

[51] P.J. Landin, "A Correspondence Between ALGOL 60 and Church's Lambda
Notation, Part 1", CACM Vol. 8(2) (February 1965).

[52] P. J. Landin, "A Correspondence Be tween ALGOL 60 and Church's Lambda
Notation, Part 2", CACM Vol. 8(3) (March 1965).

[53] J. McCarthy, "Recursive Functions of Symbolic Expressions and their
Computation by Machine, Part 1", CACM Vol. 3(4), pp.184-195 (1960).

- 217 -

[54] G.A. Mago, "A Cellular Computer Architecture for Functional Pro
gramming", Technical Report, University of North Caralina.

[55] Z. Manna, Mathematical Theory ~ Computation, McGraw Hill.

[56] C.S. Mellish, "An Alternative to Structure Sharing in the Implemen
tation of a Prolog Interpreter", Research Paper 150 De t f A I , po.. ,
University of Edinburgh (1980).

[57] N. Nilson, Problem Solving Methods in Artificial Intelligence,
McGraw Hill.

[58] E.S. Page and L.B. Wilson, Information Representation and ~~nipula
tion in ~ Computer, Cambridge University Press (1978).---

[59] G.H. Pollard, "Parallel Execution of Horn Clause Programs", Ph.D.
Thesis, University of London.

[60] J.A. Robinson, "Theorem Proving on the Computer", JACM Vol. 10,
pp.163-174 (1963).

[61] J.A. Robinson, "Computational Logic, The Unification Algorithm",
Machine Intelligence ~, Edinburgh University Pres (1971).

[62] J.A. Robinson, Logic: Form and Function.

[63] J.A. Robinson, "A Review of Automatic Theorem Proving Techniques",
Proc. of the Symposia in Applied Maths Vol. 19, American Mathemati-
cal Society (1967). -

[64] J.A. Robinson and E.E.
School of Computer and
(December 1980).

Si bert, LogLisp-An Al terna ti ve to Prolog,
Information Science, Syracuse University

[65] J. Schwartz, "An Introduction to the Set Theoretic Language SETL" ,
in Computers and Mathematics with Applications, Pergeman Press.

[66] M. Sconfinkel, "On the Building Blocks of Mathematical Logic", in
From Frege to Godel, a Source Book in Mathematical Logic 1879-1931,
ecr:--E.H. Maden, Harvard University Press.

[67] M.R. Sleep, "Applicative Languages, Data Flow, and Pure Combinatory
Code", Compcon~.

[68] P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins, "Data Driven
and Demand Driven Computer Architecture", Computing Surveys Vol.
14(1) (March 1982).

. [69] D .A. Turner, "A New Implementation Technique for Applicati ve
Languages", Software Practice and Experience Vol. 9, pp.31-49.

[70] D.A. Turner, "Another Algorithm for Barcket Abstraction", Journal
of Symbolic Logic Vol. 44(2) (June 1979).

[71] M. Van Emden and R. Kowalski, "Semantics of Prolog as a Programming
Language", JACM Vol. 7(3), pp.733-742 (1976).

- 218 -

[72] W.W. Wadge, "Programming Constructs for Non Procedural Languages",
University of Warwick: Theory of Computation Report 123.

[73] W. W. Wadge, "An Extensional Treatment of Data Flow Deadlock", p.
285 in Semantics of Concurrent Computation., Spinger Verlag.

[74] D.H.D Warren, "Implementing Prolog", 30, 40,
. Univeristy of Edinburgh (1977).

Dept. of A. I. ,

[75] D.H.D. Warren and L.M. Pereira, "Prolog-The Language and its Imple
mentation Compared with Lisp", SIGPLAN Vol. 12(8) (August 1977).

[76] D.H.D. Warren, "Logic Programming and Compiler Writing", Software
Practice and Experience Vol. 10, pp.97-125 (1980).

[77] 1. Watson and J. Gurd, "A Prototype Data Flow Computer With Token
Matching", Proc. AFIPS Conference Vol. 48 (1979).

[78] W.T. Wilner, "Recursive Machines(I)", Xerox Palo Alto Research Cen
tre.

[79] W.T. Wilner, "Recursive Machines(II)", Xerox Palo Alto Research
Centre.

[80] M.J. Wise, "A Parallel Prolog: The Construction of a Data Driven
Model", ACM Symposium on Lisp and Functional Languages (1982).

- 219 -

Appendices

- 220 -

APPENDIX ONE

MACHINE ARCHITECTURE Dfi'LEHENTATION

This appendix describes the use and implementation of the first

version of the emulator. The purpose of this program is to emulate the

packet communication architecture upon which control flow, data flow and

reduction can be implemented as described in Chapter Four.

1.1. Instruction Format

The description of an instruction format given in Chapter Four is

repeated below in more detail.

The following fields form an instruction:

demands arg 1 •.. arg 6

Figure 1.1: Instruction format •

. 1) demands: The flag is true if demands are expected by this instruc-

tion. If a demand is received and this flag is false the

emulator will generate an error.

2) retain: This flag is true if the instruction is to be retained in Ml

once it has been executed.

3) count:

- 221 -

This is the number of control and data tokens which this

instruction must receive before it can be executed.

4) opcode: The operation code of the instruction, described in Chapter

Four.

5) arg: Any number of arguments up to the maximum defined by the

maxarg constant in the emulator, six at present. Arguments

are described in Chapter Four.

1.2. Program Source Fonsat

The source of the program consists of a sequence of procedures, the

first one of which is the main body of the program; this is the code

from which the initially executable instructions will be selected. Each

of the subsequent procedures must have a "II" before the first instruc

tion of the procedure. The "II" must be on its own line. Each procedure

is referred to by a number, the number will be n if the procedure is the

nth to be given, one for the first, two for the second and so on. The

main body of the program has the number zero. All procedures start at a

DM location whose address is an exact mUltiple of the maximum allowed

size of a procedure. The maximum number of instructions a procedure may

have is limited to five hundred. In this implementation the main pro

gram starts at location zero, the first procedure at location five hun

dred, the second at one thousand, and so on.

- 222 -

An instruction in source form has the format:

<instruction>
<control>
<arguments>
<address>
<value>
<process>
<location>
<slot>

default values
r
d
process =
location
slot =

=

false
false
-1
0
1

r is the retain flag
d is the demands flag
[] means optional

<control><arguments>
[r] [d]/count/opcode
up to 6 of: argument type[/<value> or <address>]
([<process>]/[<location>]/[<slot>])
integer
natural number
natural number
1. .6

Figure 1.2: Instruction source format.

1.3. Instruction Execution Cycle

A simple description of the instruction execution cycle is given in

Chapter Four, the details of its implementation will be given here.

An instruction is copied into AM when it receives its first token,

and will be obeyed by the processor when it becomes executable. An exe-

cutable instruction will be one whose count is zero and that has at

least one output argument, but there are five exceptions. These are the

cond ,call ,print ,ret and param instructions which may all be executed

with no output arguments. A cond, call or print instruction can be exe-

cutable with no output arguments only if the demands flag is false. All

three of these instructions can be executed without producing a result,

although they are all capable of doing so if required. The instructions

will therefore be executable with no output arguments if no result will

- 223 -

ever be expected from them. This is the principle reason for the inclu

sion of the demands flag in the instruction format. If this is false no

demands are expected by the instruction so no output arguments will ever

be present in the instruction. The instruction may therefore be exe

cuted if the flag is false, even if there are no output arguments

present. If demands flag is true the instruction expects a demand and

will therefore not be executed until a demand has been received. A ret

instruction never needs an output argument because it, in effect, uses

those of the call instruction that its return address refers to. A

param instruction has implicit output destinations, all slots in the

instruction are used for input and so a param instruction may execute

providing its count=O.

Once an instruction has become executable it is placed on a queue

of instructions which the processor inspects whenever it needs a new

task. The execution of the program stops when this queue becomes empty.

When the processor has selected an instruction for execution the

instruction will be obeyed in the way described in Chapter Four. If the

retain flag is set the instruction will be held in AM for future refer-

ence once its execution is complete. If the instruction produces a

result it will be modified to become a distl instruction and the result

wi~l be placed in argument one. The value produced by the instruction

may then be obtained by accessing it directly using an AM address, or by

propagating a demand to it. If no resul t is produced the executed

instruction is held in an its original form. The retain flag allows

reduction to be implemented in two ways. Using a by-name mechanism,

whenever a result is demanded it is recalculated, which will occur when

the retain flag is false. Using lazy evaluation, the result is retained

for future use by setting the retain flag.

- 224 -

1.4. Calling a Procedure

This section describes how procedures should be coded for each

model of computation. The description also includes an explanation of

how the various common parameter passing mechanisms can be implemented.

The call instruction should be executed according to the rules for

the computation mechanism being used. For demand driven execution this

will be when the result is demanded. When using a model of computation

which relies on the availability of data, the call instruction should

only be executed when the parameters are ready. For control flow this

means sending the signals which indicate this to the call instruction.

For data flow an additional instruction is used to collect the

procedure's parameters. This is the the param instruc tion, which is

placed immediately before the call in the program. Any data token which

contains a parameter for the called procedure is sent to this instruc

tion. The param instruction will only allow the call to proceed when

all the parameters have arrived. Further details are given below.

The call instruction must send the return address to the called

procedure. The return address is always the address of the call

instruction itself.

Using the mechanism described above it is possible to implement any

of the common type of parameter passing schemes.

- 225 -

Control Flow

The call will pass the return address to the called procedure. The

call instruction is then retained as a distl instruction, with a first

argument of type spare. When the modified call instruction is res-

tar ted , by a signal from the return instruction, it will signal those

instructions specified by its output arguments. A call will therefore

have the form

call p, sig , sig , ••• ,sig

The following parameter mechanisms can be implemented:

Value:

Result:

The parameter passing instruction in the calling code must be

a dist instruction which should have a literal value for its

first argument by the time the call is executed. This

instruction will send the parameter to the procedure, where it

will be stored in PM by a parameter distribution instruction.

call

call,p
dist,v

procedure

distl,n
ret
dist,unk,"PM address"

The result will be copied from the procedure's area of PM into

the calling code's area. The caller should pass the PM

address of the location where the result is to be stored using

a distl instruction. When the address arrives at the called

procedure it should only be sent to the instruction that per-

forms the final operation that produces the result. This will

mean that the only the final version of the resul t will be

returned to the caller.

- 226 -

call

call p
distl "PM address"

procedure

distl n
ret
distl unk

Reference : The address in PM of the parameter is passed using a distl

Name:

instruction as before, but this address is distributed though

out the procedure body so that every reference to the parame-

ter directly accesses the location which holds the value.

call

call,p
distl,"PM address"

procedure

distl,n
ret
distl ,unk, •••••

The value passed as a parameter should be the DM index of the

procedure that will produce the required data. The procedure

index will be an integer which will become the first argument

of every call which produces the value of the parameter.

call

call,p
dist,n

procedure

distl,n
ret
distl,unk,"IM address a"

a:call,unk{procedure name}

- 227 -

Data Flow

The call instruction calls the procedure and is then deleted.

There is no need to inform the calling code when the results are ready

because the results are passed directly to the calling code in data

tokens.

Input: The param instruction to gathers all the parameters for the

called procedure together, and then sends them to the parame-

ter passing instructions. When all the parameters have

arrived at the param instruction it also signals the call

instruction to start executing. The parameter passing

instructions send the parameter to the procedure in a data

token, the parameter is then distributed through out the

called procedure's body by the parameter handling instructions

in the procedure's head. Using the param instruction imposes

a limit on the number of input parameters that can be used for

a procedure. There can only be as many input parameters as

there are arguments in the instruction; this is the maximum

number of parameters the param instruction can hold.

call

param,unk
call,p
dist[l],value

procedure

distl,n
ret
dist [1] ,unk

output:

Reduction

- 228 -

The calling code must send the addresses of the all its

instructions which will need the result. These are distri-

buted in the procedure to those instructions which produce the

results. The result will be send directly to the consuming

instructions in the calling code which the result is produced.

call

param,unk
call,p
distl,address

procedure

distl,n
ret
distl ,unk, .••

By Availability

The call instruction will expect one signal for each parameter.

The parameter passing instructions will load the parameter values from

the instructions which produced them and pass the parameters into the

called procedure. Having made the call, the call instruction is

retained as a distl instruction which awaits the result. Upon receiving

the result the distl (i.e. the old call) instruction signals the consu-

mers of the result, which load the result for themselves.

input: The call will be as for data flow but the call instruction

will have signal arguments.

call

call,p,sig , ••• ,sig
distl,unk

procedure

distl,n
ret
distl,unk

result:

By Need

- 229 -

The result will be sent to the return instruction of the pro

cedure which will pass it out to the modified call.

The call is executed when a demand is propagated to it. After hav-

ing made the call, the call instruction is retained as a distl instruc-

tion so it may return its result to the consumers who demanded the

result.

Input:

Result:

To preserve the need driven scheme used in graph reduction a

function argument must not be evaluated until its value is

required. To achieve this the parameter sent must be an argu-

ment which will propagate the demand for the value when the

time comes. The parameter must therefore be of type "prop".

The parameter can be evaluated using either a by-name mechan-

ism, or lazy evaluation.

call

call,p
distl,"prop address"

procedure

distl,n
ret
distl,unk

The result will be sent to the return instruction of the pro-

cedure from where it will be sent to the caller for distribu-

tion though out the code.

The instructions used by the machine have a fixed format and there

fore do not allow structures to be held, or passed as parameters. To

overcome this pointers to the structure must be used instead.

- 230 -

1.5. :Returning frOli. a Procedure

In control flow all resul ts are passed back via the procedure's

parameters. Only the return address will therefore be present in the

return instruction, which restarts the calling code by sending signal

to this address.

In data flow the return instruction will not be executed because

data tokens are used to pass results directly back to the instructions

in the calling procedure which require them.

In reduction both arguments of the return instruction will be

present. The result will be sent to the instruction specified by the

return address which will then distribute the result in the calling

code. This will be the modified call instruction.

1.6. Emulator Errors

If an error occurs, either during the reading of a program or the

program's execution, the user is informed and the activity of the emula

tor is stopped. If the error occurred during the execution of a program

the emulator will ask the user if he wants a postmortem dump of the

state of the emulator, or an dump of the last sixty four Pascal state

ments executed.

1.7. Emulator Commands

The emulator supports two features that can be invoked by the user,

these are: the tracing of a program the emulator is executing, or

obtaining a list of the last sixty four Pascal statements executed in

the event of an emulator error. All commands are typed in reply to the

- 231 -

prompt "?<".

1) finish

The emulator will return to shell.

2) trace

Turns tracing on. A trace will print the state of the machine before

each instruction is executed, but the contents of DM are omitted. The

trace will include the instruction being executed and a dump of the con-

tents of both AM and PM, listed in process number and location order.

Each instruction will be listed in full and is preceded by its address.

The latter will include a slot number of one that should be ignored. If

an emulation error occurs a postmortem dump will also be produced. This

will show the state of the emulator at the point during the execution

cycle at which the error occurred. An example of a trace is given

below.

{put "1" in pm location for the print instruction}
/O/distl,litv/I,pm/(/O/),sig/(/I/)

{print the value in pm location O}
/I/print,pm/(/O/)

Figure 1.3: Program to print "I"

3) no trace

- 232 -

trace of program to print "1"

instruction being executed
(O/O/1):/O/distl,litv/1,pm/(/O/1),sig/(/1/1)

AM
(O/O/1):/O/distl,litv/1,pm/(/O/1),sig/(/1/1)

PM

instruction being executed
(O/l/l):/O/print,pm/(/O/l)

AM
(O/l/l):/O/print,pm/(/O/l)

PM

(O/O/1):/O/distl,litv/1

1

Figure 1.4: Program trace.

Turns tracing off

4) dump

This command may be issued when the emulator has returned to the user

after it has detect an error during the execution of the program. It

will print the state of the machine at the time the command is given.

5) edebug

The Pascal system used to implement the emulator supports a feature

known as edebug which records, in a cyclic buffer, the line numbers of

the last sixty four statements executed. Whenever a Pascal runtime

error occurs the contents of this buffer are dumped into a file named

em1_las t. If an emulator error occurs while obeying a program a dump of

the most recently used Pascal statements can be produced by deliberately

- 233 -

causing a Pascal runtime error, by taking the log of a negative number.

If the edebug option of the emulator is turned on this is what will hap

pen. The dumped information will include the statements which were used

to cause the Pascal error, the user should bear this fact in mind when

inspecting the dump. The lines are ordered so that the the most recent

is placed last.

6) no edebug

Turn the edebug option off.

7) programs

If the user gives any reply other than those listed above it is

assumed to be the name of a file, and an attempt is made to open it. If

this fails the message "cannot open file" is printed, but otherwise the

file is read and the program it contains is executed.

Input Required During Execution

If during the execution of a program it requires data form the user

the prompt "integer?<" will be printed, to which the user may reply with

an integer value.

1.8. Examp1e Programs

The programs below illustrate the use of the emulator. The first

three all implement a program which will find the factorial of a number

read from the user. The instruction numbers on the right, the comments,

and the blank lines must not be included in a program to be executed by

the emulator. Each program is followed by an abbreviated trace: only

the executing instructions are shown.

- 234 -

Control Flow

o

1

2

3

4

{read a value, put it in PM and signal the data's user}
/O/read,pm/(/O/),sig/(/l/)

{call procedure one, signal instruction 4 when return}
/1/call,litv/1,sig/(/4/)

{sent the first parameter to the procedure, parameter is n}
/l/dist,pm/(/O/),unk

{send the address of the location which is to hold the result}
/l/distl,pm/(/l/),unk

{print the result}
/l/print,pm/(/l/)

{the procedure factorial}
II

{the number of parameters: 2}
500 /0/distl,litv/2

{return instruction, return address supplied by call}
501 /2/ret,unk

{distribute the first parameter, n, into the procedure}
502 /1/dist,unk,pm/(/0/),sig/(/4/),sig/(/7/),sig/(/11/)

{distribute the address for the result into the procedure}
503 /1/distl,unk,am/(/6/2),am/(/11/3)

{n=O?, put result in PM (location 1) and signal conditional}
504/1/eq,pm/(/0/),litv/0,pm/(/1/),sig/(/5/)

{get result of n=O? signal appropriate section of code according
to result}

505/1/cond,pm/(/1/),sig/(/6/),sig/(/7/)

{here if n=O. put "1" in result location and signal return instruct
ion}

506 /2/dist,litv/1,unk,sig/(/1/)

{here if n<>O. calculate n-1, save it for call of factorial}
507 /2/sub,pm/(/0/),litv/1,pm/(/2/),sig/(/8/)

{factorial (n-1)}
508 /1/call,litv/1,sig/(/11/)

{parameter instruction for n-1}
509 /1/dist,pm/(/2/),unk

{parameter instruction for location to hold result}
510/1/distl,pm/(/3/),unk

{multiply result of factorial(n-1) by n. send signal to return}
511 /3/mul,pm/(/0/),pm/(/3/),unk,sig/(/1/)

- 235 -

trace of control flow factorial

{read the value whose factorial is required}
(O/O/I):/O/read,pm/(/O/I),sig/(/l/l)

integer?< 1

{calculate factorial(l), first argument identifies factorial procedure}
(0/1/1):/0/call,litv/l,sig/(/4/l)

{sent the parameter, 1, to factorial (the second instruction)}
(0/2/2):/0/dist,pm/(/0/1),am/(1/502/1)

{send the address of the location which is to hold the result}
(0/3/2):/0/distl,pm/(/1/1),am/(l/503/1)

{first instruction of factorial, distribute n into the body}
(1/502/1):/0/dist,litv/l,pm/(/500/l),sig/(/504/l),sig/(/507/1),sig/(/511-
/1)

{distribute the address of the location which will hold the result}
(1/503/1):/0/distl,pm/(0/l/l),am/(/506/2),am/(/511/3)

{is n=O? save result and signal conditional}
(1/504/1):/0/eq,pm/(/500/1),litv/0,pm/(/501/1),sig/(/505/1)

{signal appropriate sections of code according to result of n=O}
(1/505/1):/0/cond,pm/(/501/1),sig/(/506/1),sig/(/507/1)

{n<>O, therefore calculate factorial(n-l). first calculate n-1}
(1/507/1):/0/sub,pm/(/500/1),litv/l,pm/(/502/1),sig/(/508/1)

{now make recursive call of factorial with 0 as parameter}
(1/508/1):/0/call,litv/l,sig/(/511/1)

{send 0 to factorial}
(1/509/2):/0/dist,pm/(/502/l),am/(2/502/1)

{send address of location for result of factorial(O)}
(1/510/2):/0/distl,pm/(/503/1),am/(2/503/1)

{distribute n'-1 (0) into body of new activation of factorial}
(2/502/1):/0/dist,litv/0,pm/(/500/1),sig/(/504/1),sig/(/507/1),sig/(/511-
/1)

{distribute the address of the location to hold the result of factorial-
(O)}
(2/503/1):/0/distl,pm/(1/503/1),am/(/506/2),am/(/511/3)

{is n=O?}
(2/504/1):/0/eq,pm/(/500/1),litv/0,pm/(/50l/l),sig/(/505/1)

{signal appropriate sections of code according to the result of n=O}
(2/505/1):/0/cond,pm/(/501/1),sig/(/506/1),sig/(/507/1)

{n'=O. use "1" as the result of factorial(O), signal return instruction}
(2/506/2):/0/dist,litv/l,pm/(1/503/1),sig/(/SOl/1)

- 236 -

{signal caller that factorial(O) has been calculated}
(2/501/1):/O/ret,am/(1/508/1),spare

{signal user of factorial(O)}
(1/508/1):/O/distl,spare,sig/(/511/1)

{calculate l*factorial(O) and signal return for factorial(l)}
(1/511/1):/O/mul,pm/(/500/1),pm/(/503/1),pm/(O/1/1),sig/(/501/1)

{signal caller that factorial(l) has been calculated}
(1/501/1):/O/ret,am/(O/1/1),spare

{signal user of factorial(l) that it has been calculated}
(O/1/1):/O/distl,spare,sig/(/4/1)

{print factorial(l)}
(O/4/1):/O/print,pm/(/1/1)

{factorial(l)}
1

- 237 -

Data Flow

o
{read the value whose factorial is required}
/O/read,am/(/l/l)

1

2

3

4

5

{gather all the parameters for the call}
/l/param,unk

{call factorial}
/l / call, I itv / 1

{send the value of n to factorial}
/2/dist,unk,unk

{send the address of the instruction which is to receive the resu
It}
/1/distl,am/(/5/1),unk

{print the result}
/ l/print, unk

{the factorial function}
/I

{there are two parameters}
500 /0/distl,litv/2

{the return instruction, which is never used}
501 / l/ret

{distribute the value of n into the body}
502 /1/dist,unk,am/(/4/1),am/(/7/1),am/(/12/1)

{distribute the address of the instruction to receive the result}
503 /1/distl,unk,am/(/6/2),am/(/12/3)

{is n=O?}
504 /1/eq,unk,litv/0,am/(/5/1)

{signal appropriate sections of code according to the result of n=O}
505 /1/cond,unk,sig/(/6/),sig/(/7/)

{here if n=O. "1" is the result so send to instruction requiring result}
506 /2/dist,litv/l,unk

{here if n<>O. calculate n-l for factorial(n-l)}
507 /2/sub,unk,litv/l,am/(/8/1)

{gather the parameters for recursive call of factorial}
508 /l/param,unk

{call factorial}
509 /l/call,litv/l

{send n-l(from parameter) to factorial}
510 /2/dist,unk,unk

{send address of instruction requiring factorial(n-51) to factorial}
511 /1/distl,am/(/12/2),unk

- 238 -

{n*factorial(n-51), send to calling instruction which requires resu
It}

512 /3/mul,unk,unk,unk

- 239 -

trace of data flow factorial

{read the value whose factorial is required}
(O/O/I):/O/read,am/(/I/I)

integer?< I

{gathered the parameter, "I"}
(O/I/I):/O/param,litv/I,spare,spare,spare,spare,spare

{call factorial, the first arg identifies the function}
(O/2/I):/O/call,litv/I

{send n to factorial}
(O/3/I):/O/dist,litv/I,am/(I/s02/I)

{send the address of the instruction which requires factorial(l)}
(O/4/2):/O/distl,am/(/s/I),am/(I/s03/1)

{first instruction of factorial(n=l), distribute n into body}
(1/s02/1):/O/dist,litv/l,am/(/s04/I),am/(/507/1),am/(/512/1)

{distribute the address of the instruction requiring the result}
(1/s03/I):/O/distl,am/(O/s/1),am/(/506/2),am/(/s12/3)

{is n=O?}
(1/s04/1):/O/eq,litv/I,litv/O,am/(/sOs/I)

{signal appropriate section of code according to the result of n=O}
(1/sOs/I):/O/cond,litv/O,sig/(/s06/1),sig/(/s07/1)

{n<>O. calculate n-I for factorial(n-I)}
(1/s07/1):/O/sub,litv/l,litv/l,am/(/s08/1)

{gather parameters for recursive call}
(1/s08/1):/O/param,litv/O,spare,spare,spare,spare,spare

{call factorial, first arg identifies function}
(1/s09/I):/O/call,litv/1

{send n-I(O) to factorial}
(1/slO/I):/O/dist,litv/O,am/(2/502/I)

{send the address of the instruction requiring factorial(O)}
(1/sll/2):/O/distl,am/(/512/2),am/(2/s03/1)

{first instruction of factorial(O), distribute n' into body}
(2/s02/1):/O/dist,litv/O,am/(/s04/1),am/(/507/I),am/(/512/1)

{distribute the address of the instruction requiring factorial(O)}
(2/s03/1):/O/distl,am/(1/512/2),am/(/506/2),am/(/s12/3)

{n'=O?}
(2/s04/I):/O/eq,litv/O,litv/O,am/(/505/1)

{signal the appropriate section of code according to the result of n'=U}
(2/s0s/1):/O/cond,litv/I,sig/(/506/1),sig/(/s07/1)

- 240 -

{n'=O. "I" is the result, send it to the instruction which requires it}
(2/506/2):/0/dist,litv/1,am/(1/512/2)

{l*factorial(O), send result to the calling instruction which requires it}
(1/512/1):/0/mul,litv/1,litv/1,am/(0/5/1)

{print factorial(l)}
(0/5/1):/0/print,litv/1

{factorial(l)}
1

- 241 -

Reduction

{print factorial(n)}
o /O/print,prop/(/I/)

{call factorial, first arg identifies function}
1 dr/O/call,litv/l

{the param is the instruction which will generate n}
2 /1/distl,prop/(/3/),unk

{read n}
3 dr/O/read

{factorial function}

{l parameter}
500 /O/distl,litv/l

{demand result to be returned to caller}
501 /1/ret,unk,prop/(/3/)

{distribute parameter into the body of factorial}
502 /1/distl,unk,am/(/4/1),am/(/5/1),am/(/8/1)

{get the result of factorial(n) depending on whether n=O or not}
503 dr/0/cond,prop/(/4/),litv/l,prop/(/5/)

{is n=O?}
504 dr/l/eq,unk,litv/O

(n*factorial(n-l)}
505 dr/l/mul,unk,prop/(/6/)

(factorial(n-l)}
506 dr/O/call,litv/l

{parameter is instruction which will calculate n-l}
507 dr/l/distl,prop/(/8/),unk

{n-l}
508 dr/l/sub,unk,litv/l

trace of reduction factorial

{print factorial(n)}
(O/O/l):/O/print,prop/(/l/l)

- 242 -

{call factorial, first argument identifies function}
(0/1/1):dr/0/call,litv/1,am/(0/0/1)

{demand result of factorial from the body of the function}
(1/S01/1):/0/ret,am/(0/1/1),prop/(/S03/1)

{pass prop arg which will produce the parameter of the function}
(0/2/2):/0/distl,prop/(/3/1),am/(1/S02/1)

{demand result of n=O, and then demand the result of factorial}
(1/S03/1):dr/0/cond,prop/(/S04/1),litv/1,prop/(/SOS/1),am/(I/SOl/2)

{distribute the parameter into the body of factorial}
(1/S02/1):/0/distl,prop/(0/3/1),am/(/S04/1),am/(/SOS/l),am/(/S08/l)

{is n=O?}
(1/S04/l):dr/O/eq,prop/(O/3/1),litv/0,am/(I/S03/l)

{need n, so read it}
(0/3/1):dr/0/read,am/(I/S04/1)

integer?< 1

{now can find out if n=O}
(1/S04/1):dr/0/eq,litv/I,litv/0,am/(l/S03/1)

{n<>O, demand result of n*factorial(n-I)}
(1/S03/1):dr/0/cond,litv/0,litv/l,prop/(/SOS/l),am/(l/SOl/2)

{propagate demands for nand factorial(n-I)}
(I/SOS/I):dr/0/mul,prop/(0/3/1),prop/(/S06/1),am/(l/SO3/3)

{the old read instruction, now returns n}
(0/3/1):dr/0/distl,litv/1,am/(1/S0S/1)

{make recursive call of factorial}
(1/S06/1):dr/0/call,litv/1,am/(1/S0S/2)

{return for recursive call, demand result of factorial n'(=n-l)}
(2/S01/1): /O/ret , am/ (1/S06/1)-,prop/(/?03/l)

{send parameter to recursive call; parameter propagates demand for n-l}
(1/S07/2):dr/0/distl,prop/(/S08/1),am/(2/S02/1)

{propagate demand for n=O?}
(2/S03/1):dr/0/cond,prop/(/S04/1),litv/1,prop/(/SOS/l),am/(2/S01/2)

{distribute n into body}
(2/S02/1):/O/distl,prop/(1/S08/1),am/(/S04/1),am/(/SOS/1),am/(/S08/l)

{is n=O?}
(2/S04/1):dr/0/eq,prop/(I/S08/1),litv/O,am/(2/S03/1)

- 243 -

{n'=n-l}
(1/S08/l):dr/O/sub,prop/(O/3/l),litv/l,am/(2/S04/l)

{the old read instruction, returns n}
(0/3/l):dr/0/distl,litv/l,am/(1/S08/l)

{now calculate n-l}
(1/S08/l):dr/0/sub,litv/l,litv/l,am/(2/S04/l)

{now n'=O?}
(2/S04/l):dr/0/eq,litv/0,litv/0,am/(2/S03/l)

{propagate demand for factorial(n')}
(2/S03/l):dr/0/cond,litv/l,litv/l,prop/(/50S/l),am/(2/501/2)

{result of factorial(n') is l}
(2/S0l/l):/0/ret,am/(1/506/l),litv/l

{return result of factorial(n') to instruction which demanded it}
(1/S06/1):dr/0/distl,litv/l,am/(1/SOS/2)

{calculate n*factorial(n-l)}
(1/SOS/1):dr/0/mul,litv/l,litv/l,am/(1/503/3)

{return result to instruction which demanded it from the conditional}
(1/S03/l):dr/0/cond,litv/0,litv/l,litv/l,am/(1/501/2)

{return factorial(n) to caller}
(l/SOl/l):/O/ret,am/(O/l/l),litv/l

{old call for factorial(n), send result to instructions which demanded
it}
(O/l/l):dr/O/distl,litv/l,am/(O/O/l)

{print factorial(l)}
(O/O/l):/O/print,litv/l

{factorial(l)}
1

- 244 -

The following program illustrates reduction driven by the availa-

bility of data. It prints the result of (1+2)*(3-4).

{print the result of (1+2)*(3-4)}
o r/1/print,am/(/1/)

{multiply (1+2) and (3-4)}
1 r/2/mul,am/(/2/),am/(/3/),sig/(/O/)

{1+2}
2 r/O/add,litv/1,litv/2,sig/(/1/)

{3-4}
3 r/O/sub,litv/3,litv/4,sig/(/1/)

trace of availability reduction

{1+2}
(O/2/1):r/O/add,litv/1,litv/2,sig/(/1/1)

{3-4}
(O/3/1):r/O/sub,litv/3,litv/4,sig/(/1/1)

{multiply (1+2) and (3-4)}
(O/1/1):r/O/mul,am/(/2/1),am/(/3/1),sig/(/O/1)

{print (1+2)*(3-4)}
(O/O/1):r/O/print,am/(/1/1)

{(1+2)*(3-4)}
-3

- 245 -

The following program illustrates control flow i tera tion using a

synchronisation token. It prints the values 1 and 2.

{initialise counter and start loop}
o /O/dist,litv/l,pm/(/O/),sig/(/l/)

{the first instruction of the loop, print the counter}
1 /1/print,pm/(/O/),sig/(/2/)

{increment the counter}
2 /1/add,litv/l,pm/(/O/),pm/(/O/),sig/(/3/)

{is counter=3?}
3 /1/ne,litv/3,pm/(/O/),pm/(/1/),sig/(/4/)

{start another iteration if counter<>3}
4 /l/cond,pm/(/l/),sig/(/l/)

trace of iteration

{set counter to I}
(O/O/l):/O/dist,litv/l,pm/(/O/l),sig/(/l/l)

{print the counter}
(O/1/1):/O/print,pm/(/O/1),sig/(/2/1)

{the counter at start of first iteration}
1

{increment the counter}
(O/2/1):/O/add,litv/l,pm/(/O/1),pm/(/O/1),sig/(/3/1)

{is counter=3}
(O/3/1):/O/ne,litv/3,pm/(/O/1),pm/(/1/1),sig/(/4/1)

{start another iteration, counter<>3}
(O/4/1):/O/cond,pm/(/1/1),sig/(/1/1),spare

{next iteration, print the counter}
(O/1/1):/O/print,pm/(/O/1),sig/(/2/1)

{the counter at the start of the second iteration}
2

{increment the counter}
(O/2/1):/O/add,litv/l,pm/(/O/1),pm/(/O/1),sig/(/3/1)

{is the the counter = 3 now?}
(O/3/1):/O/ne,litv/3,pm/(/O/1),pm/(/1/1),sig/(/4/1)

{yes, don't start another iteration}
(O/4/1):/O/cond,pm/(/1/1),sig/(/1/1),spare

- 246 -

APPEHDIX NO

EXIENDED EXPLANATION OF C(J{BIHATORS

This appendix gives a more precise description of the compilation

of an function into combinators. The appendix also introduces addi

tional combinators for which it provides the graph reduction rules.

2.1. Coapilation to Coabinators

The compilation process establishes a relationship between the ori

ginal source code of a function, and the combinator expression which the

compilation produces. To compile an expression into combinators the

bound variable is abstracted from the body in much the same way as for

Lambda Notation, but now the result is a combinator expression and not a

lambda expression.

The abstraction process operates by dividing the outer-most func

tion application in the source code its the operator and operand. The

abstraction is then performed recursively on the inner function applica

tions. As each division is made an S combinator is introduced. The

first two arguments of this combinator are the operator and operand of

the application just divided. Both the operator and operand will now

have the bound variable abstracted from them in turn. If either the

operator or the operand is a single identifier or constant, a K or I

combinator must be introduced. If the identifier is the bound variable

then it is replaced by an I to ensure that the function argument is

accepted. If however, the identifier is not the bound variable it is

- 247 -

prefixed by a K so that the function argument will be rejected.

The abstraction algorithm for each combinator may be summarised as

follows, where [x]E means abstract x from the expression E.

1) s.

2) 1.

3) K.

rule:

Here E1 is the operator and E2 the operand. To abstract from the

complete expression introduce an S and abstract x from the operator

and the operand.

[x]x =) I

Abstracting the bound variable from itself will require the intro

duction of an I so the function argument will be accepted.

[x]y =) Ky

Abstracting the bound variable from a different identifier, or from

a constant, means that the symbol must be prefixed by a K to ensure

that the function argument will be rejected.

In general the abstraction process is defined by the following

E ([x]E)x

Substituting the bound variable into an abstracted expression regen

erates the original expression (the above equation applies equally well

to Lambda Notation). Therefore applying a combinator expression to a

- 248 -

function argument will reverse the abstractions given above.

A compiler which will abstract a bound variable and produce a com-

binator expression is shown in Figure 2.1.

abstract x E if id(E)
then if E = x

then I
else K E

else S(abstract x (operator E»
(abstract x (operand E»

Figure 2.1: Combinator compiler[10].

The functions operator and operand select the appropriate parts of the

expression supplied as their argument, and the function id returns true

if E is only one identifier long.

For example take the expression fgx, which is to have x abstracted

from it. The compilation follows the steps below:

a) Divide the expression into its operator and operand

operator fg operand = x

b) Introduce an S combinator, and abstract x from the operator and

operand according to compilation rule 1):

S ([x]fg) ([xl x)

c) [x] x =) I according to rule 2).

d) [x]fg. Divide the expression into its operator and operand:

operator f operand g

- 249 -

e) Introduce an 5 combinator and abstract x from the operator and

operand according to rule 1):

5 ([x] f) ([x] g)

f) [x] f =) I(f by rule 3).

g) [x] g =) I(g by rule 3).

h) Now substitute results f) and g) back into expression e):

5 (1(f)(Kg)

i) Now substitute results c) and h) back into expression b):

5 (5 (I(f)(1(g» I

which is the result of the abstraction.

To translate a multi-argument function such as AX.Ay.XY, the

abstraction algorithm must be applied several times, just as abstraction

should be applied several times in the Lambda Notation. Each argument

is abstracted in turn, starting with the innermost one, x. The result

of one abstraction is the subject of the next abstraction. To compile

the example, first abstract x and then abstract y from the result. Any

combinators introduced in first abstraction are treated as constants in

the second one. For example, the 5 combinators introduced in the first

abstraction will have to be prefixed by K combinators in the second

abstraction, to ensure that the 5 is kept for the substitution of the

first bound variable.

[y]xy =) 5(Kx)I
[x]([y]xy) =) [x](5(Kx)I)

=) 5(5(KS)(5(KK»I) (KI)

The substitution will be carried out in the reverse order to abstrac-

- 250 -

tion; outermost bound variable first, as with x in the example.

2.2. Recursion using Co.binators

Recursion poses special problems for combinators, because in order

to remove the recursive references from the function body, one must

introduce a cyclic structure, which is difficult to encode.

f = •••• f ..•• f ••••

t I
Fortunately, Fixpoint Theory[55] provides a solution, but to follow it

one must first understand the a meaning of a fixpoint. The fixpoint (p)

of a function (f) is the value which is returned as the result, when the

same value is given as an argument:

p f p

For example the fixpoint of the function double is 0:

double x
o

2*x
double 0

Since we are going to use a fixpoint to represent a function, the fix-

point itself must be a function. For a recursive function f to have

another function as its fixpoint, f.must be a functional, denoted F. A

functional is a function that has another function as its arguments and

result. A function may have several, or indeed an infinite number of

fixpoints, of which the least fixpoint is the most important here. The

least fixpoint is the one which is least defined. In terms of functions

this means the function which produces a result for the smallest section

of its domain.

- 251 -

Fixpoint Theory provides a way of representing recursion because

the least fixpoint of a functional derived from a recursive function f. ,

is equivalent to f. Since such a least fixpoint is not recursive, sub-

stituting it for the original function removes the recursion. Kleene

(see [42]) has shown that every recursive function has such a least fix-

point, providing certain constraints are imposed upon the function,

which need not concern us here.

The first stage in finding the least fixpoint is to convert the

recursive function into a functional. This is done by abstracting the

function name from its own body. In this way all the recursive refer-

ences in the function body are replaced by one, the argument.

f = .••• f •••• f •••.
= ([f](•••• f. ... f. ...))f

where [f](•••• f •••• f ••••) is the functional F

For example take the factorial function:

fac n = if n=1 then 1 else n*fac(n-l)
([fac] (if n=1 then 1 else n*fac(n-l)) fac

In order to find the least fixpoint of the functional, a new combinator,

Y, is introduced, which when applied to the body of a functional returns

its least fixpoint, lp.

lp Y([f] (•••• f •••• f ••••))

or lp YF

Since Y manipulates one function and returns another, it will appear to

be a very sophisticated combinator indeed, but this need not be the

case, as will be shown below.

- 252 -

The Y combinator is used to represent recursion without cyclic

references, but semantically its result is equivalent to the original

function. Thus when the function is compiled into combinators, Y is

used to represent the recursion, and preserve its meaning, without

introducing a cyclic structure.

represented as:

For example factorial will be

fac n = Y ([fac](if n=l then 1 else n*fac(n-l»)

When the function comes to be evaluated, finding the least fixpoint can

be avoided by allowing the recursion to be unwound by replicating the

function body. This replication is caused by the substitution rule for

Y, which can be derived from the original definition of a fixpoint (or

the least fixpoint (lp) in this case):

lp F lp

Since the lp YF

YF F(YF)

where F is the functional body

[f](•••• f. ... f. ...)

Thus if YF is the least fixpoint of f, and YF is evaluated we have

F(YF), which in terms of the functional body is:

(•••• (YF) •••• (YF) ••••)

because YF will replace each occurrence of f in the F. We denote this

by F'. Now both YFs will be reducea, giving:

(•••• F(YF) •••• F(YF) ••••)

- 253 -

according to the reduction rule for Y, and if the substitution into F is

carried out:

(•••• (•••• (YF) •••• (YF) ••••) •••• (•••• (YF) •••• (YF) ••••) ••••)

which we denote F". Now the inner Ys can be reduced and the whole pro

cess can be repeated. If F" is represented in terms of the reduction

rule for Y it will have the form:

F" = F(F(YF))

The complete reduction of Y performed so far therefore is:

YF F(YF)
F(F(YF))

Now the innermost YF will be reduced giving:

F(F(F(YF)))

This expansion may continue infinitely, but it will usually stop because

no recursive calls are made at a particular level. In this situation

the reduction of YF is replaced by the result the function f would pro-

duce if f did not make a recursive call. For factorial this result is

1, which gives the expression:

F(F(••• (l) .••))

To produce the resul t of the recursion all substitutions in the this

expression must be carried out, and the resulting expression reduced.

If a least fixpoint is applied to an argument x the expansion

starts with (YF)x. The Y will be reduced first giving:

F(YF)x

and the least fixpoint is substituted into F gives F' as before. Now x

will be substituted into F'. Each recursive call in F' will have the

form (YF)x', where x' is the parameter of the recursive call. If this

- 254 -

call is evaluated the whole process is repreated. First Y is reduced

giving F(YF)x', and then F" is produced by substituting YF into F, and

so on.

2.2.1. Efficiency Considerations for Coabinators

As each variable is abstracted from an expression, an exponential

growth of the expression occurs compared to the original. This is due

to the way combinators from one abstraction are treated by subsequent

ones. Since the introduction of combinators obviously make the expres-

sion longer there will be more operator/operand pairs, and consequently

more Ss will be needed to distribute the next abstraction's bound vari-

able over the expression. In addition each combinator carried from one

abstraction to the next will need a K to protect it from the latest

bound variable. Combinators from one abstraction lead directly to extra

combinators in the following one, which in turn lead to more in subse-

quent abstractions, producing an exponential growth overall.

In fact the length of the new expression is:

where b
and len

newlen b+2*(len-b)+(len-l)
3*len-b-l

the number of occurrences of the bound variable
length of the expression before abstraction.

This can be explained by referring to the first equation. The first

term (b) is the number of Is that will be introduced into the combinator

expression, since every bound variable in the original must be replaced

by an 1. The second subexpression deals wi th the introduction of Ks.

There will be len-b free variables or constants; a K will added for each

.giving 2*(len-b) identifiers. Lastly an S is introduced for each

operator/operand pair, there being len-l in total.

- 255 -

The exponential expansion can cause efficiency problems because it

will result in a large storage requirement. There are basically two

ways to control this problem, the first is to recognise simplifications

in the combinator expressions, and the second is to employ new combina

tors to represent commonly occurring subexpressions.

1)

2)

There are two simplifications:

Since E1 and E2 are constants which do not use the bound variable,

the variable may be rejected from both E1 and E2 simultaneously,

rather than distributed to each for individual rejection •.

The above expression results when the argument is abstracted from a

simple function application, as in [xl(E l x), where El is the func

tion. The reason for E1 replacing the usual combinator expression

lies in the definition of abstraction:

([xl E)x E

Given that E E
1
x, it follows from the above that:

because substituting E1 for ([xl E) in the abstraction definition

produces the original expression, E1 x. So E1 can replace the nor

mal abstraction result of S(K E1) I.

- 256 -

There are two extra combinators which are useful:

1) B, Bracket, groups the last two operands together.

This combinator is used if the operator (E
1

) does not use x. Thus

only E2 need have it abstracted, and substituted back. It is the

substitution rule that gives B its name since to substitute x back

into E2 only, one must bracket the last two operands of B, as shown

below.

2) C, Converse,. swaps its last two arguments.

C is the opposite to B, only the operator uses the bound variable,

so when substitution occurs only E1 will need x, consequently the

last two operands of C must be swapped to apply E1 to x:

The two combinators above must only be used once the simplification

rules described earlier have been applied. These rules apply only to

expressions that contain S, K and I, so if Band C were introduced

before the simplification rules were applied the opportunity to use them

will be missed. This will mean that superfluous combinators will be

re tained , because they will have been converted to Band C before the

simplification rules could have removed them.

- 257 -

2.2.2. Iaproved Abstraction Rules

Although the above techniques help control the size of abstraction

results, they do not prevent an exponential growth occurring. Consider

the expression EI E2• As each abstraction is performed the expression

grows because the combinators produced by one abstraction form the

expression submitted to the next[70]:

5 E ' E '
I 2

5(B 5 E ") E "
I 2

S(B 5(B(B 5) EI "')) E2'"

first abstraction

second abstraction

third abstraction

The number of apostrophes denote the number of abstractions performed on

To overcome the problem of growth, Turner[70] has introduced three

more combinators, which are slightly modified versions of S, Band C,

denoted by 5',~1 and C'. Their behaviour may be understood by studying

just one, 5'.

The problem with the standard abstraction rules is that they place

a combinator in front of the expression being abstracted from. In the

next abstraction additional combinators must be introduced in order to

protect these combinators from the current bound variable when it is

substi tuted, and to distribute the bound variable over the now larger

expression. Turner's new combinators overcome this problem by introduc-

ing a new argument that does not have the bound variable substituted

into it. This argument becomes the combinators introduced by earlier

abstractions, but it can be any constant expression:

5' k f g x = k (f x)(g x)
where k is the constant expression

- 258 -

The combinator "reaches over" the constant expression k and then applies

the normal S rule to the remaining arguments. The example sequence of

abstractions now becomes:

S E ' E '
1 2

S' S E " E "
1 2

S' (S' S) E ", E ",
1 2

Only one combinator is introduced into the expression for every abstrac-

tion, so the growth is now linear.

The definitions of C' and I' are:

C" k f g x k (f x) g

I' k f g x = k f (g x)

Both combinators copy the first argument, and apply the usual C or B

rule to the remaining three.

The. abstraction rules for S', C' and B' are the same as for their

simpler counterparts, but with the constant expression added. To com-

plete the description of the new combinators their abstraction rules

are:

1) S'.

2) C'.

where E1 is constant.

[](E E E) =) C' E1 ([x] E2) E3 x 123

where both E1 and E3 are constant.

- 259 -

3) B'.

The abstraction rule for B' is similar to the ones above, but the

situations in which it is used are complex, and require some expla

nation. Consider:

where EI and E2 are constant

The expression EI is the constant that must be stepped over while

E2 and E3 form the usual abstrac tion rule for B. Al though this is

a valid use of B', it is not the combinator expression Turner will

produce. Instead he uses the original B, as shown below, prefer-

ring to use the new combinators only when absolutely necessary.

Since EI and E2 are constant they can be grouped together to form

the constant expression in the abstraction rule for B. The B' com-

binator will only be used if the grouping of El and E2 does not

occur. Such a si tua tion will arise if a second abstrac tion were

performed on the expression above, in which only E2 uses the second

bound variable. This has the effect of dividing El and E2 since

only the latter needs the the new bound variable when it is substi-

tuted. Ignoring the combinators introduced for the moment, this

means performing the abstractions below, in which the subscripts of

x denote the order in which they are abstracted; xl first and x2

second:

Of course E and E could be kept together by putting combinators
1 2

- 260 -

round the EI to make it reject x2 when it was substituted, but this

introduces more combinators, which is precisely what the new rules

seek to avoid.

In order to reverse the abstraction correctly the appropriate com-

binators must be selected. The expression, including the values to

be substituted, will have the form:

The substi tution of x2 into E2 will be accomplished using C', (see

its rule above):

EI «[x2] E2)x2) ([xl] E3) xl

EI E2 ([xl] E3) xl

Notice that the last expression is that which was originally given

f~r B', so the substitution of xl can be achieved using that combi-

nator:

EI E2 «[xl] E3) xl)

EI E2 E3

The complete combinator expression will therefore be:

resulting from the abstraction rule:

where E is constant E constant with respect to xl and E3
I ' 2

stant with respect to x
3

•

con-

- 261 -

At present only E2 uses x2 ' but it is quite possible that E3 will

use x 2 as well. Since it is C' that handles the substitution of x
2

this will need to be changed. The combinator S' would seem to be

the correct replacement because it substitutes the variables into

both the second and third arguments instead of just the second.

Thus the abstraction rule will be:

and substitution will be:

S'(B'EI)([X2]E2)([X2]([Xl]E3))X2 Xl

B'EI«[x2]E2)x2)«[x2]([xl]E3))x2)xl

B' El E2 ([xl]E3) Xl

El E2 «[xl]E3)xl)

El E2 E3

where EI is constant, E2 constant with respect to Xl and E3 con

stant with respect to neither Xl or x 2 •

What of the case when only E3 used x2 ; will S' be replaced by B'?

The answer to this is no, because now El and E2 are both totally

constant and consequently only B will be used, as in the original

rule:

Both combinators introduced are B because the substitution of Xl

and x
2

only effects E
3

•

- 262 -

2.3. Graph Reduction

This section completes the description of graph reduction started

in Chapter Five. The description includes all the graph manipulation

rules used for the combinators mentioned above.

The B and C Coabinators

The Band C combinators will have a similar result to S except that

only f or g is applied to x. The operation of Band C are illustrated

below:

=)

g g

f

The operation of B.

=)

g f

f

The operation of C.

- 263 -

S' Coabinator

The operation of S' may be illustrated by the graph:

g => k

k f g

In the above graph of S' the top cell is modified to reflect to the

reduction of S', the result of which is k(fx)(gx). The combinators B'

and C' will have similar results.

Y Combinator

The reader will recall that the Y combinator is used to represent

recursion because it returns the fixpoint of the recursive function. A

fixpoint represents recursion wi thout introducing a cyclic struc ture.

The most obvious way to implement recursion is to use graphs whose

structure reflects the expanding fixpoint expression given earlier:

YF = F(YF)
= F(F(YF»

etc.

The graph will start by applying the fixpoint of a function to its argu-

ment, (YF)x, because the fixpoint will produce the desired result from

x:

- 264 -

First Y is reduced using the reduction rule:

YF = F(YF)

giving the graph which represents the expression (F(YF))x:

F

Next the pointer to YF is distributed into F's body using the combina

tors generated when the function f was turned into the functional F.

The combinators are generated by abstracting f from its own body. This

generates F', the function referred to in Section 2.2.

- 265 -

/ ,
/ ,

/ ,
/

I
,

the body of F'
,

\
\

\
\

\ , ,
\ \ , \ ,

\

\

Now F' is applied to x, and x is bound into the function body. During

the reduction of F' a recursive call could be made. The recursive call

will have the format:

- 266 -

The variable x' is the argument of the recursive call. When the recur

sive call is made will Y be reduced, giving:

F

So YF is distributed into F again, and the combinators will therefore

take a new copy of F.

I '\
I ,

I '\

'\
'\

'\ ,
'\

'\ '\
'\ '\ ,

, '\

'\ '\ ,
\ ,

,

- 267 -

Now the parameter of the recursive call is distributed and another

recursive call made if necessary. The whole process is repeated, gradu

ally building up a tree of recursively call Fs, until no more recursive

calls are necessary. The graph will than be reduced to give the final

result.

An alternative and more efficient method of implementing recursion

involves the use of cyclic struc tures [69]. This method recreates the

original cyclic references of the recursive function f. Initially the

graph will have the same structure as before

but its reduction will produce a different result. The result of reduc

ing ~ reflects the reduction rule for Y, namely:

YF = F(YF)

If the cyclic reference is replaced by a cyclic pointer, we have:

The reduction of YF is therefore:

Y F =)

F

- 268 -

Thus the reduction of (YF)x produces:

F

The combinators produced when f was turned into the functional F will

now distribute the cyclic pointer to the cells where the recursive calls

were made. The result is f, the original recursive function:

the body of f /
I

/
/

I
I

I
I ,

I

I

I
I

,
\

\ ,

,
,

Whenever f is applied to an argument, a copy of the body will be taken

by the S combinators which distribute the argument value. Each copy of

f produced will retain the pointer back to the definition of f.

I

copy of f I
I

I
I

I

I
I

I
I

\

\

- 269 -

------~definition of f

A recursive call will point back to the definition of f and the reduc-

tion of the call will result in another copy of f being taken; the whole

process is repeated as many times as necessary.

The cyclic representation of recursion is more efficient because it

does not repeatedly bind YF into the function body. In addition the

cyclic structure allows infinite data structures to be represented in

finite space. For example:

ones = cons(l,ones)

will be represented by the graph:

ones

1

Figure 2.2: Cyclic representation of the function ones.

This form of graph however does introduce the problem of garbage col

lecting a cyclic list. This can only be accomplished by the mark-scan

technique, which may not be ideal for a parallel archi tec ture. The

- 270 -

first scheme for implementing recursion does not suffer from this draw

back as it does not rely on cyclic graph structures. A full discussion

of this topic is beyond the scope of the work reported here.

- 271 -

APPENDIX THREE

FUNCTIONAL LANGUAGE lHPLEMElITATION

This appendix describes the modifications made to the emulator to

enable it to support graph reduction.

3.1. Instruction Format

The following combinators are implemented by the emulator:

I,K,S,B,C,S1,B1,C1

The last three correspond to S',B' and C'.

Each of the combinators operates as described in Chapter Five, and

uses the pure reduc tion scheme outlined in Chapter Six. As before the

lower numbered slots are used for input arguments, and the higher num-

bered slots for output arguments.

The format of all the other instructions used by reduction remain

the unchanged form that described in Chapter Four. Instruc tions are,

however, allowed to have input arguments of type spare, although these

need not be specified in the program's source. Any missing arguments in

the source of an instruc tion are assumed to be of type spare. This

allows the graph structure to be built using instructions with the for-

mat shown in Chapter Six. For example:

1: apply, prop 2, 1
2: add, 2

- 272 -

3.2. Prograa Foraat

The program format is the same as described in Appendix One, but

four rules must be followed when writing combinator programs. The first

rule concerns the values of an instruction's flags: all instructions are

retained after their execution in order to implement lazy evaluation.

All instructions must therefore have the "r" flag set. All instructions

will receive demands, except the instruction which propagates the demand

that starts the program's execution. All but one instruction therefore

have the "d" flag set.

The second rule concerns the count field. Since no "unk" arguments

should be specified by the program, and no instructions receive control

tokens, the count field of every instruction should be zero.

The third rule restricts argument to be of type "spare","prop","pm"

or "litv". These are the only types that should be necessary to write a

combinator program.

The fourth rule concerns the use of instructions such as "mul" as

operands. In the example of factorial given in Chapter Five there were

several nodes of the form:

-I 5 I *

These nodes cannot be used in a program for the emulated architecture

because it is not possible to have an argument of type opcode. Instead

if the argument of an instruction should be of type "opcode", then the

argument must propagate a demand to an instruction containing this

opcode. The node above will therefore be written:

- 273 -

0: dr/O/S,prop/(/l/)

1: dr/O/mul

3.3. Instruction Execution Cycle

When an instruction executes it inspects its input arguments to see

is they all have values. If some input arguments are of type spare the

instruction returns its own address as the result of the demand. The

source of the demand should be an apply instruction which will be used

as explained in Chapter Six. If all the instruction's arguments have

values the instruction will be reduced to its result, which is returned

to the source of the demand.

3.4. Garbage Collection

A mark-scan garbage collector has been added to the emulator, in

which the mark phase of the algorithm starts with the execution queue.

The mark phase proceeds by marking every instruction on the queue, and

then follows each pointer from the ins true tions on the queue and marks

the locations addressed. The pointers form these instructions are then

followed and the locations referred to are marked, and so on. If an

argument is of type "am", "sig" or "prop" then although the address in

the argument points to an AM location, it also refers to a DM location,

the one that will be used if AM does not contain the instruction

addressed. If an AM location referred to by any of these types is

marked, the the corresponding DM location is also marked.

The scan phase passes through both AM and PM and places all

unmarked cells of the free chain.

- 274 -

3.5. Exa.ple Prograa

The program shown below is the factorial example given in Chapter

Five. The program is followed by an abbreviated trace; only the execut

ing instructions are shown.

{print factorial(n)}
o r/0/print,prop/(/2/)

{read n when n is demanded}
1 dr/O/read

- 275 -

{apply factorial to n, cell forms the root of the outer-most S}
2 dr/0/apply,prop/(/3/),prop/(/I/)

{second cell of the outer-most S}
3 dr/0/apply,prop/(/4/),prop/(/11/)

{the outer-most S}
4 dr/0/S,prop/(/5/)

{second cell of C, contains 'then' arm of the conditional}
5 dr/0/apply,prop/(/6/),litv/l

{distributes n to the conditional}
6 dr/O/C,prop/(/7/)

{second cell of the conditional}
7 dr/0/apply,prop/(/8/),prop/(/10/)

{distributes n to comparison with O}
8 dr/0/B,prop/(/9/)

9 dr/O/cond

{is n=O?}
10 dr/O/eq,litv/O

{the else arm of the conditional}
11 dr/0/apply,prop/(/12/),prop/(/14/)

{distributes n into the else arm}
12 dr/0/S,prop/(/13/)

13 dr/O/mul

{second cell of B}
14 dr/0/apply,prop/(/15/),prop/(/16/)

{distributes n and contains the cyclic pointer to factorial}
15 dr/0/B,prop/(/3/)

{calculate n-l}
16 dr/0/apply,prop/(/17/),litv/l

{distribute n into 'n-l'}
17 dr/O/C,prop/(/18/)

18 dr/O/sub

- 276 -

trace of combinator factorial

{print factorial(n)}
(O/O/1):r/O/print,prop/(/2/1)

- 277 -

{apply factorial to n}
(O/2/1):dr/O/apply,prop/(/3/1),prop/(/1/1),am/(O/O/1)

{bind n into factorial}
(O/3/1):dr/O/apply,prop/(/4/1),prop/(/11/1),am/(O/2/1)

(O/4/1):dr/O/S,prop/(/5/1),spare,spare,am/(O/3/1)

(O/3/1):dr/O/apply,am/(O/4/1),prop/(/11/1),am/(O/2/1)

(O/2/1):dr/O/apply,am/(O/3/1),prop/(/1/1),am/(O/O/1)

(O/19/1):dr/O/apply,prop/(/5/1),prop/(/1/1),am/(O/2/1)

(O/5/1):dr/O/apply,prop/(/6/1),litv/l,am/(O/19/1)

(O/6/1):dr/O/C,prop/(/7/1),spare,spare,am/(O/5/1)

(O/5/1):dr/O/apply,am/(O/6/1),litv/l,am/(O/19/1)

(O/19/1):dr/O/apply,am/(O/5/1),prop/(/1/1),am/(O/2/1)

(O/21/1):dr/O/apply,prop/(/7/1),prop/(/1/1),am/(O/19/1)

(O/7/1):dr/O/apply,prop/(/8/1),prop/(/lO/1),am/(O/2l/l)

(O/8/1):dr/O/B,prop/(/9/1),spare,spare,am/(O/7/1)

(O/7/1):dr/O/apply,am/(O/8/1),prop/(/lO/1),am/(O/2l/1)

(O/21/1):dr/O/apply,am/(O/7/1),prop/(/1/1),am/(O/19/1)

{select result of factorial according to the result of n=O?}
(O/9/1):dr/O/cond,spare,spare,spare,am/(O/21/1)

(O/21/1):dr/O/apply,am/(O/9/1),prop/(O/22/1),am/(O/19/1)

(O/19/1):dr/O/apply,am/(O/21/1),litv/1,am/(O/2/1)

(O/2/1):dr/O/apply,am/(O/19/1),prop/(O/20/1),am/(O/O/1)

(O/22/1):dr/O/apply,prop/(/lO/1),prop/(/1/1),am/(O/2/1)

{is n=O?}
(O/lO/1):dr/O/eq,litv/O,spare,am/(O/22/1)

(O/22/1):dr/O/apply,am/(O/lO/1),prop/(/1/1),am/(O/2/1)

{need n so read it}
(O/1/1):dr/O/read,am/(O/22/2)

- 278 -

integer?< 1

{is n=O?}
(O/22/1):dr/O/eq,litv/O,litv/l,am/(O/2/1)

{select factorial result. n=1 so result = n*factorial(n-l)}
(O/2/1):dr/O/cond,litv/O,litv/l,prop/(O/20/1),am/(O/O/1)

(O/20/1):dr/O/apply,prop/(/II/I),prop/(/1/1),am/(O/2/3)

(O/II/I):dr/O/apply,prop/(/12/1),prop/(/14/1),am/(O/20/1)

{distribute n into code for n*factorial(n-l)}
(O/12/1):dr/O/S,prop/(/13/1),spare,spare,am/(O/II/I)

(O/11/1):dr/O/apply,am/(O/12/1),prop/(/14/1),am/(O/20/1)

(O/20/1):dr/O/apply,am/(O/11/1),prop/(/1/1),am/(O/2/3)

(O/23/1):dr/O/apply,prop/(/13/1),prop/(/I/I),am/(O/20/1)

{n*factorial(n-l)}
(O/13/1):dr/O/mul,spare,spare,am/(O/23/1)

(O/23/1):dr/O/apply,am/(O/13/1),prop/(/1/1),am/(O/20/1)

(O/20/1):dr/O/apply,am/(O/23/1),prop/(O/24/1),am/(O/213)

(O/I/1):dr/O/I,litv/l,am/(O/20/1)

(O/24/1):dr/O/apply,prop/(/14/1),prop/(/1/1),am/(O/20/2)

(O/14/1):dr/O/apply,prop/(/15/1),prop/(/16/1),am/(O/24 II)

(O/15/1):dr/O/B,prop/(/3/1),spare,spare,am/(O/14/1)

(O/14/1):dr/O/apply,am/(O/15/1),prop/(/16/1),am/(O/2411)

(O/24/1):dr/O/apply,am/(O/14/1),prop/(/1/1),am/(O/20/2)

{distribute n'(=n-l) into recursively called factorial}
(O/3/1):dr/O/apply,prop/(/4/1),prop/(/11/1),am/(O/24/1)

(O/4/1):dr/O/S,prop/(/5/1),spare,spare,am/(O/3/1)

(O/3/1):dr/O/apply,am/(O/4/1),prop/(/11/1),am/(O/24/1)

(O/24/1):dr/O/apply,am/(O/3/1),prop/(O/25/1),am/(O/20/2)

(O/26/1):dr/O/apply,prop/(/5/1),prop/(O/25/1),am/(O/24/1)

(O/5/1):dr/O/apply,prop/(/6/1),litv/l,am/(O/26/1)

(O/6/1):dr/O/C,prop/(/7/1),spare,spare,am/(O/5/1)

(O/5/1):dr/O/apply,am/(O/6/1),litv/l,am/(O/26/1)

- 279 -

(O/26/1):dr/O/apply,am/(O/5/1),prop/(O/25/1),am/(O/24/1)

(O/28/1):dr/O/apply,prop/(/7/1),prop/(O/25/1),am/(O/26/1)

(O/7/1):dr/O/apply,prop/(/8/1),prop/(/lO/1),am/(O/28/l)

(O/8/1):dr/O/B,prop/(/9/1),spare,spare,am/(O/7/1)

(O/7/1):dr/O/apply,am/(O/8/1),prop/(/lO/1),am/(0/28/1)

(O/28/1):dr/O/apply,am/(O/7/1),prop/(O/25/1),am/(O/26/1)

{select result of factorial(n') according to result of n'=O?}
(O/9/1):dr/O/cond,spare,spare,spare,am/(O/28/1)

(O/28/1):dr/O/apply,am/(O/9/1),prop/(0/29/1),am/(0/26/1)

(O/26/1):dr/O/apply,am/(0/28/1),litv/l,am/(O/24/1)

(O/24/1):dr/O/apply,am/(O/26/1),prop/(0/27/1),am/(O/20/2)

(O/29/1):dr/O/apply,prop/(/lO/I),prop/(O/25/1),am/(0/24/1)

{is n'=O?, now must calculate n'(=n-l)}
(O/10/1):dr/O/eq,litv/O,spare,am/(O/29/1)

(O/29/1):dr/O/apply,am/(O/10/1),prop/(O/25/1),am/(O/24/1)

(O/25/1):dr/O/apply,prop/(/16/1),prop/(/I/I),am/(0/29/2)

(O/16/1):dr/O/apply,prop/(/17/1),litv/l,am/(0/25/1)

(O/17/1):dr/O/C,prop/(/18/1),spare,spare,am/(0/16/1)

(O/16/1):dr/O/apply,am/(O/17/1),litv/l,am/(0/25/1)

(O/25/1):dr/O/apply,am/(0/16/1),prop/(/1/1),am/(O/29/2)

(O/30/1):dr/O/apply,prop/(/18/1),prop/(/I/I),am/(O/25/1)

(0/18/1):dr/O/sub,spare,spare,am/(O/30/1)

(O/30/1):dr/O/apply,am/(O/18/1),prop/(/1/1),am/(O/25/1)

(O/25/1):dr/O/apply,am/(O/30/1),litv/l,am/(0/29/2)

(0/1/1):dr/O/I,litv/l,am/(O/25/1)

(O/25/1):dr/O/sub,litv/l,litv/l,am/(0/29/2)

{have calculated n', so is the value=O?}
(O/29/1):dr/O/eq,litv/O,litv/O,am/(0/24/1)

{select result, n'=O so result =l}
(O/24/1):dr/O/cond,litv/l,litv/l,prop/(O/27/1),am/(0/20/2)

- 280 -

{factorial(n)=n*factorial(n-l)}
(0/20/l):dr/0/mul,litv/l,litv/l,am/(0/2/3)

{now return result selected by the first call of factorial,
ie n*factorial(n-l)}
(0/2/l):dr/0/cond,litv/0,litv/l,litv/l,am/(0/0/l)

{print factorial(n)}
(O/O/l):r/O/print,litv/l

{factorial(l)}
1

- 281 -

APPENDIX FOU1l.

LOGIC LANGUAGE IMPLEMENTATION

In Chapter Eight an outline of the implementation of OR-parallelism

was given, here the implementation details are described.

4.1. Activation Record Format

An activation record has the format shown below, each line

represents the contents of one location:

negated flag

activation record length

next goal in this clause

calling clause
,

s process

·
·

variables

·
·
·
·

actual parameters

·
·

Figure 4.1: Activation record for logic.

- 282 -

negated flag

The value of the first argument slot in this location is set to one

if the clause is called by a negated goal (an ngoal instruction) , and

zero otherwise. The second argument slot contains the process number of

the activation record belonging the nearest clause in the branch which

executed a negated goal (see Chapter Eight for a description of the

implementation of negation).

activation record length

The first argument of this location is a literal whose value is the

number of locations in the activation record, excluding the four loca

tions which form the head.

next goal in this clause

The first argument slot in this location holds the address of the

next instruction to be obeyed in the clause to which the activation

record belongs.

calling clause's process

This location holds the process number of the activation record of

the calling goal.

- 283 -

variables

These are the variables of the clause. Each value is held in the

first argument of the location, if the value is undefined the argument

type is unk.

actual parameters

These are the actual parameters copied into the activation record

by the unification algorithm. An actual parameter will have the

parameter's value as its first argument, and the address of the parame

ter in the caller's activation record as its second argument.

4.2. Instruction Source Format

Instructions have the same format as described in Appendix One.

Each instruction specifies the flags "r" and "d", neither of which are

set for logic instructions, followed by the count, which will be one

because each instruction expects one signal. The next item on the line

is the instruction mnemonic, followed by the instruction's arguments.

In the case of a goal instruction the first argument holds a

literal value which is the "procedure" index for the relation to be

called. The following arguments of the instruction are the actual

parameters of the goal. Literal values are specified in the usual way

while indexes into the activation record are specified as PM addresses,

where the location is equal to the index. For example, a goal instruc

tion which calls a clause whose "procedure" index is 2, and with three

parameters the first two of which are literals, and the last an index of

two into the activation record, is be written:

- 284 -

/l/goal,litv/2,litv/l,litv/lO,PM/(/2/)

A clause instruction will hold the length (excluding the head) of

the activation record it needs in its first argument. The remaining

arguments will be the formal parameters, and have the same format as the

parameters of a goal. For example a clause whose activation record is

four locations long and with two formal parameters, one a PM address and

the other a literal value, will have the form:

/l/claus,litv/4,pm/(/5/),litv/O

The comparisons and arithmetic instructions may have either literal

values or activation record indexes as their arguments.

4.3. Program Source Format

The format of a logic program has already been described in Chapter

Eight, but in addition the first line of the program is a number which

specifies the length of the activation record for the process which will

obey the user's question.

4.4. Instruction Execution Cycle

The arithmetic and comparative instructions operate by carrying out

their functions and passing control to the next instruction in the

clause if they were successful. Failure is used to provide negation in

the way described in Chapter Eight. Should too few parameters be

present the instruction will abort, which will in turn cause the proces

sor to stop obeying the program.

- 285 -

The five remaining instructions implement relation calling and are

described in detail below:

goa1

This instruction calls the relation which corresponds to the index

held by its first argument. It sets up a process for each clause in the

called relation and creates the corresponding activation record. Next

the goal instruction sets up the four locations of the head in each new

environment, and then signals the claus instruction to execute by send-

ing it a control token. All clauses of the relation will therefore exe-

cute in parallel. At this point the head of each will be:

negated 0

length length of activation record specified by the first argument
of the claus instruction in the called clause +
the number of parameters passed to it.

next goal for clause = the address of the first goal in clause

calling clause's process = the process number of the goal

ngoa1

Performs in the same way as the goal instruction but sets the value

of the negated flag to one and stores its own address in the second

argument.

fai1

d part of the implementation of nega-This instruction is execute as

tion and fails the clause it belongs to. The implementation of negation

is explained in Chapter Eight.

- 286 -

claus

The claus instruction is the first to be executed in a clause. Its

prime function is to perform the unification of the formal and actual

parameters. To achieve this it looks at its own parameters and those of

the calling goal. These may be found by referring to the "calling

clause's process" entry in the head of the new clause's acti~ation

record. When performing the unification a copy of all values passed as

actual parameters are placed the activation record.

endc

This instructions primary task is to copy the calling clause's

activation record into current clause's activation record. This task

will only be carried out if the clause which has terminated has a

parent, signified by the value field of the "next goal in caller" loca-

tion being nonzero. If there is no parent all the variables of the

activation record are printed since they will contain the answer to the

users question. The format of the output is:

proved
l:v
l:v

where "1" is the location in the activation record where the result

resides, and v is the result value.

If the clause is negated, because the negated flag is set, then the

endc instruction will force the fail instruction in the caller's clause

to execute. This is done by moving the "next goal in clause" pointer of

the caller back one location so that it now points to the fail instruc

tion instead of the goal it would normally execute. See Chapter Eight

- 287 -

for a description of the implementation of negation.

Once the activation record is set up the next goal in the clause is

signaled, and the "next goal].·n clause" po].·nter d move on.

4.5. Prograa Execution

Program execution is started by the first goal in the users ques-

tion, it is the only instruction in the program which has a count of

zero, and therefore is immediately executable. Execution continues

until there are no instructions on the processor queue or an instruction

is aborted.

4.6. Garbage Collection

Garbage collection uses the reference count strategy outlined in

Chapter Seven. As each clause terminates the garbage collector is

invoked and passes up the branch of the tree to which the clause

belongs, as it does so it deletes all redundant activation records.

4.7. Example Program

parent(1,2).
parent(2,3).

descendant(X,Y) .- parent(X,Y).
descendant(X,Y) :- parent(X,Z),descendant(Z,Y).

question descendant(A,B).

The program above is coded as shown in the example below. Numbers

are used to represent the names in the example as they are the only type

of literal permitted by the implementation. The program is followed by

- 288 -

an abbreviated trace in which only the executing instructions are shown.

{two locations in question's activation record}
2

{call descendant relation}
o /0/goal,litv/2,pm/(/5/),pm/(/6/)

{end of question}
1 /l/endc,litv/O

{parent relation}

{'I' is the parent of '2'}
500 /1/claus,litv/2,litv/1,litv/2

{end of the first clause of the descendant relation}
501 /l/endc

{'2' is the parent of '3'}
502 /1/claus,litv/2,litv/2,litv/3

{end of the second clause of the descendant relation}
503 /l/endc,litv/O

{the descendant relation}

{the first clause descendant(X,Y):-parent(X,Y)}
1000/1/claus,litv/4,pm/(/5/),pm/(/6/)

{call parent relation}
1001 /1/goal,litv/1,pm/(/5/),pm/(/6/)

{end of the first clause}
1002 /l/endc

{ {second clause: descendant(X,Y):-parent(X,Z),descendant(Z,Y)}
1003 /1/claus,litv/5,pm/(/5/),pm/(/6/)

{call parent relation}
1004/1/goal,litv/1,pm/(/5/),pm/(/7/)

{call descendant relation}
1005 /1/goal,litv/2,pm/(/7/),pm/(/6/)

{end of descendant relation}
1006 /l/endc,litv/O

- 289 -

trace of family tree

{the question}
(O/O/1):/O/goal,litv/2,pm/(/5/1),pm/(/6/1)

{the first clause in the descendant relation}
(1/lOOO/1):/O/claus,litv/4,pm/(/5/1),pm/(/6/1)

{the second clause in the descendant relation}
(2/1003/1):/O/claus,litv/5,pm/(/5/1),pm/(/6/1)

{the call of the parent relation in the first descendant clause}
(1/lOOl/1):/O/goal,litv/l,pm/(/5/1),pm/(/6/1)

{the call of the parent clause in the second descendant clause}
(2/1004/1):/O/goal,litv/l,pm/(/5/1),pm/(/7/1)

{the first clause from the parent relation}
(3/500/1):/O/claus,litv/2,litv/l,litv/2

{the second clause of the parent relation}
(4/502/1):/O/claus,litv/2,litv/2,litv/3

{the first clause of the parent relation}
(5/500/1):/O/claus,litv/2,litv/l,litv/2

{the second clause of the parent relation}
(6/502/1):/O/claus,litv/2,litv/2,litv/3

{the end of one clause of parent, copy down caller}
(3/501/1):/O/endc

{the end of the other clause of parent, copy down caller}
(4/503/1):/O/endc,litv/O

{the end of clause one of parent, copy down caller}
(5/501/1):/O/endc

{the end of clause two of parent, copy down caller}
(6/503/1):/O/endc,litv/O

{the end of the first clause of descendant, copy down caller}
(3/1002/1):/O/endc

{the end of the first clause in descendant, copy down caller}
(4/1002/1):/O/endc

{the second goal of the second clause of descendant}
(5/1005/1):/O/goal,litv/2,pm/(/7/1),pm/(/6/1)

{the second goal of the second clause of descendant}
(6/1005/1):/O/goal,litv/2,pm/(/7/1),pm/(/6/1)

- 290 -

{the end of the question, print result}
(3/1/1):/0/endc,litv/0

{a result: '2' is the descendant of 'I'}
proved

S:litv/l
6:litv/2

{the end of the question, print a result}
(4/1/1):/0/endc,litv/0

{a result: '3' is the descendant of '2'}
proved

S:litv/2
6:litv/3

{the first clause of descendants, started by recursive call}
(8/1000/1):/0/claus,litv/4,pm/(/S/1),pm/(/6/1)

{the second clause of descendant started by recursive call}
(9/1003/1):/0/claus,litv/S,pm/(/S/1),pm/(/6/1)

{the first clause of descendant started by recursive call}
(10/1000/1):/0/claus,litv/4,pm/(/S/1),pm/(/6/1)

{the second clause of descendant started by the recursive call}
(11/1003/1):/0/claus,litv/S,pm/(/5/1),pm/(/6/1)

{the call of the parent relation made in clause 1 of descendant}
(8/1001/1):/0/goal,litv/l,pm/(/5/1),pm/(/6/1)

{the call of the parent relation made in clause 2 of descendant}
(9/1004/1):/0/goal,litv/l,pm/(/5/1),pm/(/7/1)

{the calIon parent made by the clause 1 of descendant}
(10/1001/1):/0/goal,litv/l,pm/(/5/1),pm/(/6/1)

{the calIon parent made by clause 1 of descendants}
(11/1004/1):/0/goal,litv/l,pm/(/S/1),pm/(/7/1)

{the first clause of the parent relation}
(12/500/1):/0/claus,litv/2,litv/l,litv/2

{the second clause of the parent relation}
(13/S02/1):/0/claus,litv/2,litv/2,litv/3

{the first clause of the parent relation}
(14/S00/1):/0/claus,litv/2,litv/l,litv/2

{the second clause of the parent relation}
(lS/S02/1):/0/claus,litv/2,litv/2,litv/3

- 291 -

{the first clause of the parent relation}
(16/500/1):/O/claus,litv/2,litv/1,litv/2

{the second clause of the parent relation}
(17/502/1):/O/claus,litv/2,litv/2,litv/3

{the first clause of the parent relation}
(18/500/1):/O/claus,litv/2,litv/1,litv/2

{the send clause of the parent relation}
(19/502/1):/O/claus,litv/2,litv/2,litv/3

{the end of the clause 2 of parent, copy down the caller}
(13/503/1):/O/endc,litv/O

{the end of the second clause of parent, copy down the caller}
(15/503/1):/O/endc,litv/O

{the end of the first clause of descendant, copy down the caller}
(13/1002/1):/O/endc

{the second goal of clause 2 of descendant}
(15/1005/1):/O/goal,litv/2,pm/(/7/1),pm/(/6/1)

{the end of the second clause of descendant}
(13/1006/1):/O/endc,litv/O

{first clause of descendant started by second recursive call}
(20/1000/1):/O/claus,litv/4,pm/(/5/1),pm/(/6/1)

{the second clause of the descendant clause called by the second
recursive call}
(21/1003/1):/O/claus,litv/5,pm/(/5/1),pm/(/6/1)

{end of the question, print a result}
(13/1/1):/O/endc,litv/O

{a result: '3' is the descendant of 'I'}
proved

5:litv/l
6:litv/3

{the first goal of the first clause of the descendant relation}
(20/1001/1):/O/goal,litv/1,pm/(/5/1),pm/(/6/1)

{the calIon parent made form the second clause of descendant}
(21/1004/1):/O/goal,litv/l,pm/(/5/1),pm/(/7/1)

{the first clause of the parent relation}
(22/500/1):/O/claus,litv/2,litv/l,litv/2

{the second clause of the parent relation}
(23/502/1):/O/claus,litv/2,litv/2,litv/3

- 292 -

{the first clause of the parent relation}
(24/500/1):/O/claus,litv/2,litv/l,litv/2

{the second clause of the parent relation}
(25/502/1):/O/claus,litv/2,litv/2,litv/3

{none of the unifications with the parent relation succeeded, so the
program's executions stops}

- 293 -

APPENDIX FIVE

COMBINED FUNCTIONAL AND LOGIC LANGUAGE lllPLF.KENTATION

This appendix describes some of the details of the proposed imple

mentation of the combined functional and logic scheme.

5.1. Structure of Activation Records

Both logic programs and functional programs will share the same

form of activation record:

Flags

Number of Arguments

Number of Locals

Number of Descendants

Negated Pointer

Arguments

Local Variables

Figure 5.1: Combined logic/functional activation record.

- 294 -

The flags consist of the following:

1:

n:

a:

i:

true if this is a logic activation record. Causes a clause or

function which has just terminated to copy down its caller.

true if the call which created this activation record is negated.

true if the activation record belongs to a function which is obey

ing an "all" instruction.

true if the activation record is to inherit values from the expres

sion it qualifies.

The other enties in the activation record are explained when necessary.

5.2. Format of Instructions

Each instruction has the format:

f r I p o I c I opcode ••• arguments •••

f: true if the instruction is part of a function. Used to control the

behaviour of arithmetic instructions.

r: If true the instruction is retained after it has been executed.

p: true if the instruction is to be obeyed in parallel. Each demand

starts a parallel execution of the instruction. This allows the

instruction to deal with several demands in parallel, one per copy.

0: if true the instruction remains in its defining process when exe-

cuted. This is so that the instruction can refer to is defining

process during its execution.

- 295 -

c: the count of arguments in the instruction

opcode:the operation code of the instruction

arguments:provide the values upon which the instruction will operate.

Argument Format

There are two types of argument, a basic argument and an instruc

tion argument. The first has the format:

type address or value

An address has the same format as for the general-purpose architecture

described in Chapter Four, it comprises of a process number, a location

number and an argument slot number.

integers.

The values of all of these are

The type of a basic argument may be:

spare:

unk:

the argument is not in use.

the argument has an unknown value.

the results of a demand.

This is used to receive

closure: The address of a closure. Gi ves the address (process and

location) for the instruction at the root of the function and

the process number of the activation record.

forward: forwards all demand tokens received by the instruction to the

instruction whose address in this argument.

im:

prop:

name:

dm:

sm:

- 296 -

instruction memory address.

gives the address to which a demand must be propagated.

the name of a function or relation. Consists of the actual

name, an integer, and a pointer to the activation record loca

tion that points to the program which contains the named

object.

data memory address

structure memory address

An instruction argument may be a basic argument, or a more complex

one. They have the format shown below.

instruction argument's data basic argument

The types provided are:

litv:

basic:

lpar:

a literal value. The basic argument is the value.

the argument is a basic argument. The type of the basic argu

ment is to be used to determine which action is to be carried

out for this instruction argument.

the argument is a formal logic parameter. The basic argument

holds the value of the logic parameter. The remainder of the

instruction argument points to the actual parameter which this

parameter is unified with.

- 297 -

5.3. Token Foraat

A token will contain the fields:

IM address of the sender basic argument

A token is therefore able to pass values between . 1nstructions, no just

signify that a demand has been propagated.

5.4. Instruction Execution

An instruction is only executed when it has received at least one

demand. When the demand arrives the instruction will be placed on the

queue for ~he processor. When obeying an instruction the processor will

attempt to obtain values for all the arguments necessary for its execu-

tion. The operations necessary to deal with each argument type are

described below. The instruction argument type will be "basic" so the

types listed below are those of the basic argument held by the instruc-

tion argument:

DM address: The address gives the process and location for a value. The

contents of the location will be an argument which should be

dealt with in the manner appropriate to its type.

prop: This will result in a demand being propagated to the

instruction specified by the code address. The process

number of the address will identify the definition process

for the code, and the location will identify the particular

instruction. The destination can therefore reside in a dif-

ferent process to the instruction that propagated the

forward:

closure:

- 298 -

demand. When the demand reaches the destination a copy of

the instruction is placed in the same process as the sender

providing the "0" flag is not set. The return address for

the demand will an argument of type im whose address points

to the caller. The argument is placed in the first spare

argument slot.

When the instruction is executed it performs whatever task

is required of it, but also sends a copy of the demand it

received to the instruction whose address is given in the

forward argument. In all other respects the demand is like

tha t produced by an argument of type prop. The demand

therefore appears to have come from the originator, not the

current instruction.

this argument type will usually be used in a call instruc

tion and identifies the function to be called together with

its activation record.

1M address: This is used as the return address for a demand and may

point to any instruction in any process.

name: The name argument type operates in much the same way as an

closure type does. The difference is that an closure argu

ment points directly at an function whereas a name refers to

it by name. This name must be dereferenced to give the

relation or function. The name section of the argument

identifies the function or relation in the program. A

demand is propagated to the program containing the name of

the function or relation.

litv:

- 299 -

This argument type simply holds a value.

itself an argument.

The value is

Having obtained all necessary arguments the instruction will carry out

its task and dispatch the result to the instructions which appear in its

output arguments. When completed it will be converted to hold the

result and retained if the "r" (retain) flag is set, or otherwise

deleted.

5.5. Instruction Opcodes

The following opcodes are provided by the architecture, each

description indicates what flags will usually be set. The "f" flag is

always set if the instruction is part of a function.

prog: program instruction. This instruction is the first in the pro

cess which represents a collection of functions or relations.

It has two arguments.

1) the address of the last instruction in the process.

2) the address of the first link instruction in the program

held in a forward typed argument.

Flags: p

When i t receives a demand it forwards it to the instruc tion

pointed to by its second argument.

- 300 -

reI: The first instruction in a process which represents a relation.

link:

rlink:

It has two arguments.

1) the address of the last instruction in the process.

2) the address of the first rlink instruction in the relation.

held in a forward type argument.

Flags: p,o

When it receives a demand it forwards it to rlink instruction

pointed to by the second argument.

A member of the sequence of pointers to relations or functions

which form a program, it has three arguments.

1) the closure for the function or relation held in an argument

of type forward.

2) the name of the function, relation or clause

3) the address of to the next link instruction, held in argu

ment of type forward.

Flags: p,o

a relation link, a member of the sequence of links which make a

relation. It has two arguments.

1) the closure for a clause, held in a forward type argument.

2) the address of the next rlink instruction held in a forward

type argument

- 301 -

Flags: p,o

The instruction forwards any demand it receives to both argu

ments.

clause: The first instruction of a clause. It controls the execution

of the goals in the clause and copies down its caller if all

the goals are successful. Each argument points to a goal in

the clause except the last one which holds the return address

for the clause.

func:

Flags: 0

It creates a copy of its defining process and transfers it exe

cution to that. The 0 flag is set so that the instruction ini

tially starts executing in the defining process, but later

transfers itself to the new copy.

The first instruction of a function. It demands a result from

the instructions which form the body of the function and return

it to the caller. The instruction has three arguments

1) the address of the instruction to which the demand for the

result must be propagated.

2) the number of arguments expected by the function

3) the return address

Flags: 0

call:

ncall:

- 302 -

This instruction calls a function or clause. It propagates a

demand token containing the name of the function or relation to

the prog instruction at the head of the appropriate program.

The instruction has the following arguments.

1) the name of the function or clause to be called, or a clo

sure for either.

2) the arguments of the call.

this instruction is the same as the call instruction but is

intended to be used for negated goals in a logic program. It

therefore sets the "n" flag in the called clauses activation

record.

The following instruction are intended to provide an interface between a

functional program and a logic program:

get: This instruction allows a functional program to call a goal.

It has two arguments.

1) a prop argument which points to the call instruction for the

goal.

2) the DM address of the location in which the goal will leave

the desired result.

The instruction checks the contents of the DM location and if

the value in unknown it demands the result of the goal(success

or failure). When this is received the instruction gets the

value returned by the goal from DM and passes it back as if it

were its own result.

store:

- 303 -

This instruction allows functional expressions to made a goal

in a clause. It has two arguments:

1) a prop argument pointing to the root instruc tion for the

functional expression.

2) the location in TIM where the result is to be stored

When the store instruction is executed it propagates a demand

to the root of the functional expression and awaits its result.

When it is received it stores it in the location specified by

its second argument. This may be accessed by the other goals

in the clause.

all: This instruction is like call but is intended to be used by a

functional program when it wishes to have a list of the results

produced by a calIon a goal. The results are represented as a

relation which consist's entirely of assertions.

Arithmetic and Belated Opcodes

The usual collec tion of arithmetic operations are provided, but

each has two versions. The first is intended for functional programs

and demands its operands in parallel. The second is intended for use in

hybrid programs and demands its arguments one at a time. Both types of

instruction use the first two arguments as input values and put the

resul t in the place specified by the third. This may either be a DM

address, in which case the value is stored in the activation record, or

an 1M address in which case the resul t is placed in the specified

instruction at the specified argument position. All arithmetic opera

tions are capable of dealing with up to one unknown argument, and pro-

- 304 -

duce the value for it from the other two. An unknown value may either

be represented by an unknown argument, or a DM location whose contents

are an argument whose type is "unk". If the "f" flag is set the

instruction is obeyed when it has three arguments, if it is not set the

count must be four before it will be executed.

The Conditional Instruction

This instruction is only used in a functional program, it demands

the result of its first argument, the predicate, and then demands the

result of the second or third argument depending on its value.

Constructors

The way constructors are implemented depends on the parameter pass

ing mechanism. If the copying pure code technique is used the construc

tor will reside in SM and will have the form shown below •

name • • • arguments •••

Each argument has the same format as an instruction argument.

5.6. Assessment

The proposed scheme for implementing functional and logic languages

is likely to be simpler than the architecture described in Chapter Four

because it is based around one computation mechanism; demand propagation

with multiple results. There will of course be more instruction opcodes

to implement than on an architecture which supports only one type of

language, but not twice as many. Both functional and logic languages

- 305 -

use the same form of code for a call, both share the arithmetic opera

tions, and both share some instructions which are used in a function or

relation definition, for example the clo instruction. The architecture

described in this appendix does have the additional complexity of dere

ferencing names, but that complexity provides extra capabilities, and so

is justified. The architecture described will therefore provide a sim

ple unified scheme for functional and logic languages.

	349782_0001
	349782_0002
	349782_0003
	349782_0004
	349782_0005
	349782_0006
	349782_0007
	349782_0008
	349782_0009
	349782_0010
	349782_0011
	349782_0012
	349782_0013
	349782_0014
	349782_0015
	349782_0016
	349782_0017
	349782_0018
	349782_0019
	349782_0020
	349782_0021
	349782_0022
	349782_0023
	349782_0024
	349782_0025
	349782_0026
	349782_0027
	349782_0028
	349782_0029
	349782_0030
	349782_0031
	349782_0032
	349782_0033
	349782_0034
	349782_0035
	349782_0036
	349782_0037
	349782_0038
	349782_0039
	349782_0040
	349782_0041
	349782_0042
	349782_0043
	349782_0044
	349782_0045
	349782_0046
	349782_0047
	349782_0048
	349782_0049
	349782_0050
	349782_0051
	349782_0052
	349782_0053
	349782_0054
	349782_0055
	349782_0056
	349782_0057
	349782_0058
	349782_0059
	349782_0060
	349782_0061
	349782_0062
	349782_0063
	349782_0064
	349782_0065
	349782_0066
	349782_0067
	349782_0068
	349782_0069
	349782_0070
	349782_0071
	349782_0072
	349782_0073
	349782_0074
	349782_0075
	349782_0076
	349782_0077
	349782_0078
	349782_0079
	349782_0080
	349782_0081
	349782_0082
	349782_0083
	349782_0084
	349782_0085
	349782_0086
	349782_0087
	349782_0088
	349782_0089
	349782_0090
	349782_0091
	349782_0092
	349782_0093
	349782_0094
	349782_0095
	349782_0096
	349782_0097
	349782_0098
	349782_0099
	349782_0100
	349782_0101
	349782_0102
	349782_0103
	349782_0104
	349782_0105
	349782_0106
	349782_0107
	349782_0108
	349782_0109
	349782_0110
	349782_0111
	349782_0112
	349782_0113
	349782_0114
	349782_0115
	349782_0116
	349782_0117
	349782_0118
	349782_0119
	349782_0120
	349782_0121
	349782_0122
	349782_0123
	349782_0124
	349782_0125
	349782_0126
	349782_0127
	349782_0128
	349782_0129
	349782_0130
	349782_0131
	349782_0132
	349782_0133
	349782_0134
	349782_0135
	349782_0136
	349782_0137
	349782_0138
	349782_0139
	349782_0140
	349782_0141
	349782_0142
	349782_0143
	349782_0144
	349782_0145
	349782_0146
	349782_0147
	349782_0148
	349782_0149
	349782_0150
	349782_0151
	349782_0152
	349782_0153
	349782_0154
	349782_0155
	349782_0156
	349782_0157
	349782_0158
	349782_0159
	349782_0160
	349782_0161
	349782_0162
	349782_0163
	349782_0164
	349782_0165
	349782_0166
	349782_0167
	349782_0168
	349782_0169
	349782_0170
	349782_0171
	349782_0172
	349782_0173
	349782_0174
	349782_0175
	349782_0176
	349782_0177
	349782_0178
	349782_0179
	349782_0180
	349782_0181
	349782_0182
	349782_0183
	349782_0184
	349782_0185
	349782_0186
	349782_0187
	349782_0188
	349782_0189
	349782_0190
	349782_0191
	349782_0192
	349782_0193
	349782_0194
	349782_0195
	349782_0196
	349782_0197
	349782_0198
	349782_0199
	349782_0200
	349782_0201
	349782_0202
	349782_0203
	349782_0204
	349782_0205
	349782_0206
	349782_0207
	349782_0208
	349782_0209
	349782_0210
	349782_0211
	349782_0212
	349782_0213
	349782_0214
	349782_0215
	349782_0216
	349782_0217
	349782_0218
	349782_0219
	349782_0220
	349782_0221
	349782_0222
	349782_0223
	349782_0224
	349782_0225
	349782_0226
	349782_0227
	349782_0228
	349782_0229
	349782_0230
	349782_0231
	349782_0232
	349782_0233
	349782_0234
	349782_0235
	349782_0236
	349782_0237
	349782_0238
	349782_0239
	349782_0240
	349782_0241
	349782_0242
	349782_0243
	349782_0244
	349782_0245
	349782_0246
	349782_0247
	349782_0248
	349782_0249
	349782_0250
	349782_0251
	349782_0252
	349782_0253
	349782_0254
	349782_0255
	349782_0256
	349782_0257
	349782_0258
	349782_0259
	349782_0260
	349782_0261
	349782_0262
	349782_0263
	349782_0264
	349782_0265
	349782_0266
	349782_0267
	349782_0268
	349782_0269
	349782_0270
	349782_0271
	349782_0272
	349782_0273
	349782_0274
	349782_0275
	349782_0276
	349782_0277
	349782_0278
	349782_0279
	349782_0280
	349782_0281
	349782_0282
	349782_0283
	349782_0284
	349782_0285
	349782_0286
	349782_0287
	349782_0288
	349782_0289
	349782_0290
	349782_0291
	349782_0292
	349782_0293
	349782_0294
	349782_0295
	349782_0296
	349782_0297
	349782_0298
	349782_0299
	349782_0300
	349782_0301
	349782_0302
	349782_0303
	349782_0304
	349782_0305
	349782_0306
	349782_0307
	349782_0308
	349782_0309
	349782_0310
	349782_0311
	349782_0312
	349782_0313

