Contextual Governance for Service
Oriented Architecture Composition

Thesis by P. de Leusse

In partial fulfilment of the requirements for the degree of doctor of philosophy
NEWCASTLE UNIVERSITY LIBRARY
Theals L9466

Newcastle University
Newcastle upon Tyne, UK
2010

Acknowledgements

I am fortunate to have worked in the School of Computing Science at Newcastle
University in close collaboration with the Security Architecture Group at BT Design
and Innovate between 2006 and 2009. Many people in the School and at BT have
helped me during this period and I have received valuable feedback on my research
work. I do not have the space to acknowledge them all individually.

Several people deserve special mention with respect to the work in this thesis. First, I
thank my initial supervisors, Dr Panos Perriorelis and Dr Theo Dimitrakos, for their
supports, guidance and insights. It has been a privilege to work closely with Panos
and Theo, and with Professor Paul Watson and Mr David Brossard. Paul has had a
significant influence on the work I did at the school. David and I have worked
together closely on this topic during this period, which has been a rewarding
experience. I must also thank Dr Graham Morgan for useful discussions about this
thesis. He is not responsible for any misconceptions that may persist. In addition, as
reviewer, he has suggested a number of important improvements to this thesis. Dr
Nektarios Georgalas of BT Design and Innovate was equally helpful.

Finally, and most importantly, I thank Anna. I owe her an incalculable debt. This has
been a long journey for me. I know it must have seemed longer to her.

Abstract

Currently, business requirements for rapid operational efficiency, customer
responsiveness as well as rapid adaptability are driving the need for ever increasing
communication and integration capabilities of the software assets.

Functional decomposition into re-usable software entities, loose coupling, and
distribution of resources are all perceived benefits of the investment on Service
Oriented Architecture (SOA). This malleability can also bring about the risk of a more
difficult oversight. The same service is ideally used in different applications and
contexts. This situation forces a supporting infrastructure to allow and manage the
adaptability to these different contexts of use.

In this thesis, the author proposes to govern such variations in a cost efficient way by
composing the core business function offered by a service with other services
implementing infrastructure capabilities that fulfil varying non-functional
requirements.

However, as the number of services increases and their use in different contexts
proliferates, it becomes necessary to automate policy enforcement and compliance
monitoring. Furthermore, the composition of services into different business
applications over a common infrastructure intensifies the need for end-to-end
monitoring and analysis in order to assess the business performance impact.
Managing the full life-cycle of service definition, deployment, exposure and operation
requires management processes that take into account their composition with the
infrastructure capabilities that take of non-functional requirements. In addition,
policies may change during the life-time of a service. Policy updates may be the result
of various reasons including business optimisation, of reaction to new business
opportunities, of risk / threat mitigation, of operational emergencies, etc. It becomes
therefore clear that a well-designed governance architecture is a prerequisite to
implementing a SOA capable of dealing with a complex and dynamic environment.

Content

CONTENT 4
LIST OF FIGURES 6
LIST OF TABLES 8
1. INTRODUCTION 9
L.1. EXAMPLE APPLICATION..........oeceuetenteentercstnsescrsenestesensesentases st amsasasasasenessssesessamessstesssseseesas 12
111, Virtual music SI0F€ SCERATIO...........cccveeeeeueereeeeeeeeeeesteeteeeeee et eee e e eseee e s e 12

1.2. SCOPE OF WORKevvreeiiereeiteseeeseeesseanresseeereseseserseesnsesstassssenteseeeaeessssssesssesssessnsesmesssenes 15
1.3. THESIS CONTRIBUTIONS AND OVERVIEW OF THESIScoveutetieirienerreeinteseseseseeenvsnsosesssnena 17
L3.1. OVEIVIEW Of TRESISooveveeriieeecesrieiccen ettt ee e ess st 17

2. BACKGROUND 19
2.1. THE RECENT HISTORY OF MODERN INTEGRATION TECHNIQUESccceueeeutereeeeneeeeeeneeereeeeresnns 19
2.1.1. Evolution of middleware.................cccoiiiommimiiiniiiioiseeessieere e 19
2.1.2. ENterpriSe ServiCe BUS...............cccoeevevrrreeiieirintsieesiereeessse st ta s 22
2.1.3. Conclusions on the reCent RiSIOTY..........couuueaoumeceoiieiiieieeeeeeeeeeeeeeeee e, 23

2.2. MODELS AND ARCHITECTURES.oeetiittetieetteeeeeeeteeeseeeteeeeeansesteeseesensesaessaseeaeeeaeesseeeensseean 24
2.2.1. Reference models and architecture for SOA..........cccccooomeioiiiiiioiiiiiiiieieeen. 24
2.2.2. Autonomic computing based SOA governance modelc..c.ccoeeini.. 29
2.2.3. Service Delivery FYAMEWOFKc..c.cccoouiioemineseeiseeieieceeeeeieees e 30
2.2.4. Conclusions of reference models and architecturescccocovvoinrennnn.. 32

2.3. FLEXIBLE CONTEXTUALISATION.ccmiriitertiiimeniereemreutrraceacesteeesteasestaseesenceseesasseseesessesssssenas 33
2.3.1. Conclusions of flexible contextu@liSQUIONccccocovvvoeeeeeceenecieneiseeeeeeeeeeen, 35

2.4, SAFETY OF CONTEXTUALISATION......cccuvierriiteerieisereeeseeeseessssensessssesseesseseseesnssneesnssessessosenn 37
2.1. SOA GOVERNANCE.........cetiietiteeteritseaceseatsseeseesetsesststss st seesesaesea s asessasssensssetescaseanassssananns 38
2.2. CONCLUSIONS OF BACKGROUNDc.uoiiuiiiiiieticeeeeteeeeeeee et eeaeeeeeeaeeeaesenasenneeensenaseeseennssannas 39
2.2.1. Summary of research challengescccoveeioiiiencciiiioieiiei e 39

3. ANATOMY OF A SOA GOVERNANCE ARCHITECTURE 42
3.1. INTRODUCTION OF THE ANATOMY w..cuciimiiiieiereniteienreaentitestecseeassnestssseeseesnatesene sasseasassnssene 42
3.2. ANATOMY CONCEPTSoeeierreieenreriineressreeissseessssessssassessesesassessesesssseessanssssasessansssssssessessonns 42
3,21, CaDADIIILYoooviiiiecei ettt e ettt ae et ae s b st nten 42
3.2.2. POHICEES ...ueocuveiieeeeetee et ec et et e e e s e ae v et b e bt et et et e et et easa st eaeebentenaeenbente st araan 43
32,3, PROCESSES ..cucoiviiteieeieeeeeeesit sttt e sta st aste e e st e ae s e e e s b st e s et naeen e e bt ehe st n bt e b b 43
3,204, USFS.coeiiiiieit ettt st sttt st ettt b e ba Rt e e st b eae s ea bbb eieere 44
3.2.5. GOVEINANCE HIMESo.eeeeive e creetrenranteesesseeeaesteacsastesttastessassasssensessessesssessessssbesinanennens 44

3.3. DATA STRUCTURES ANATOMYooociiiiiiunrieunreerarisessesecssseesssserseessassessssssssssessneessssesassessasees 45
3.3, 1. IRfraSIUCHUFE PrOfUle ..ottt et 45
3.3.2. COMEEXL....eiiiniiieieteteeat ettt ra et ta s e st et e be et e b s e at et ee s h et 48
33,1, CONLEXt SELECIONcc.cciiiiiriieeeees ettt ae e se et g et 49
3.3.2. Summary of the data structure desSCriptionsccouoeeeeeeeieeaneeesieineeeeeneseseenes 50

3.4. COMPONENTS ANATOMY ..ccviniinirenetinit st ssssec st see st sn s ssenes s sassssasseresronsrssssanssnsns 51
3.4.1. Core infrastructure capabilities.....................couuueeuecveveieereerevriesrrreincsseeeaeesseenneeeeeaes 51
3.4.2. Profile management infrastructure capabilitiescceomraeeeoeenveaneeeeiinenieienes 52
3.4.3. Summary of the COMPONENIS AESCHIDHONS..............coevveeeeecreiriesiesesssesenaseseesensaesieenens 58

3.5. PROCESSES ANATOMYootititiiiienirieiineit st s es e sas et sas s essasssnsssasnssassesssensassnsanens 59
3.5.1. Define infrastructure capPabIility.................oooooeeereueeeeeeeeeeeeeeeieeeeeseeeeeiete e 59
3.5.2. Define policy temPlaLes................ccovouemeuevviieioiooeereeeereeeenesssesessesses s esee e 60
3.5.3. Define infrastructure capability dependenciescccoeoeemeeevevesenisieereeeene. 62
3.5.4. Define information flow...........c..uconivniioeeeeeeeeersesisesesesssssessss e sssssse st snneseaens 63
3.5.5. Define profile ManQgement DroCESSescoveeevecesieveeeerneracesneeeesnesesssssssseneonees 64
3.5.6. Select infrastructure profile InStance........................coeeeeevvveirreeerceiererssssessenesessensenens 65

3.5.7. Define service-specific policies
3.5.8. Define information flow
3.5.9. Define service expoSure Mmanagement DrOCESSESc.ecveeereerereseesssseesssessssassessesses 67
3.5.10. Publish SErviCe INSIANCE.....................ooeeeeeereveeretreeseereeeeeeeseessssesenenssseneeeesensaseseenaseeen 67

3.5.11. Summary of processes QRAIOMYcooovvveiviiiiiiimininiiiiee e 68

3.6. USAGE PATTERNS..........ovvveueerersecnsrcemsscneaceascsaestasnsessat ot st s ssss s s ecseatatstet et e e as e s stesesesesnssanes 69
3.6.1. Infrastructure capabilities deployment patterns...............oc.cccevoicenevmoveeovcncneeeenn. 69

3.6.2. Governance middleware deployment patterns...............ouuoeeveenieracneeaereseieneeeeen. 69

3.7. SUMMARY OF THE ANATOMYcvrveeemcmeemiuimiacamnssresesmasasesssessanssnsnessasestassasacasesscasesssnnessnsasasasn 72

4. IMPLEMENTATION OF RESOURCE CONTEXTUALISATION GOVERNANCE 73
4.1. GOVERNANCE MIDDLEWAREcovevtiumsiosiaracarmstsnsnsssssssnssssssenrsseecatatssssesessntasneesasesesesanases 73
4.2. VIRTUAL MUSIC STORE SCENARIOccccrumimerianineieetiresesinnnesnstsicscrscanssesesseeseenesnensesensenssas 74
4.2.1. DESCHIPHON ...t sttt st sttt 74
4.2.2. PArtners QRA TOLESeeeeeeeereeeeeeeeeteeee ettt et se e e ses s e e bt et neae e erenaon 74
4.2.3. SOA SECUFIY GOVEITANCE.oeeeeneeeneeeeeeeeeeeeeeeecteeee et sa s e e as st e s tan 77
4.2.4. Security governance life-cycle.............ovniiooiiiiiiiiiiii e, 78
4.2.5. FUNCHONAL LESES........c.oveeeeeeveeieeierieieeeeeeete ettt ettt et ba vt et abestassennnne e 87
4.2.6. AdADIADILIEY 1ESIS ...ttt et e 89

4.1. DISCUSSION ...eueiuiminiitiiamiareenirissestsss e essssss et seem st e aesess st eerat s eteaeeseae st abetensesseeonnas 91

5 SUMMARY OF CONTRIBUTIONS AND FUTURE WORK 94
5.1 SUMMARY OF RESEARCH CHALLENGEScoccciiiiimiiiniiiiieci ittt e 94
5.2 SOA GOVERNANCE MODEL AND SERVICE DELIVERY FRAMEWORKS ... 96
5.3. GENERAL SUMMARY ...oouiuiiimiiiiniristesissasss s srs st sssss st seas et aeassensaine 97
5.4, FUTURE WORK ...cociiiiiieiieeieeeiterateeestasaaeasaseesstesueesstteessasssseasssseanseanseeaseassanssarasesssassssnsssssnns 99
5.4.1. DIffeFent USE CASES.........c.oo.ccoeiieeuiiiiiiieieeeeee ettt e 99

5.4.2. Flexible SOI QOVErNANCecoouieeeieiiiiiiiiiiiiiseceetiet et 100

5.4.3. Improved profile expresSioneccoenieiiieiiiiiiiet e 100

5.4.4. Federated GOVEFNANCEc.coormeimeniiciniicinicict ettt 100

545, TPUSI BPOKEYING ..ottt ettt 101

54.6. SOA governance middleware performance improvementc.ccocvvvncerncn. 101

5.4.7. Monitoring and AUITINGc.coocooiiiiiniiet e 101

6. REFERENCES 102
LIST OF ACRONYMS 108
APPENDIX 110

List of figures

Figure 1. INteraction OVEIMANCEoeeeveueeteeereeeerenteeneseeteneeeeeee oo eeeeees e 11
Figure 2. To the right is the long tail; to the left are the few that dominate [9]........... 13
Figure 3. The Jazz Music Store VOccoeoeeeioiiiienieieeeeeeeveee e 15
Figure 4. Figure 1 Integration history [18]cccovevivrenneiiceceeeeeeee . 20
Figure 5. A Service-Oriented Architecture Maturity Model [23].......ccccooovviveneeennnn... 21
Figure 6. Integration approaches [25]......cccceeeerirtrenreneeee e 22
Figure 7. Generic ESB €Xample...........ccceceeoerumreoieieieeiiteeeceeeeeeeetee e 23
~ Figure 8. Execution Context [29].........c.coerirreirinineeeetie et 25
Figure 9. Relationship among types of governance [30]...........cc.ccoeveveiiievirinicennen.. 26
Figure 10. The Middleware View of the SOA Reference Architecture [31]............... 27
Figure 11. Conceptual SOA Governance Model - Global View [39]............ccccoce....... 29
Figure 12. Service Delivery Platforms.........cccoccooviiiiniiniieecercceeveeeeee e 31
Figure 13. TMF Service Delivery Framework Reference Model................................ 31
Figure 14. An Architectural Overview of the MDD framework proposed in [47]......34
Figure 15. SSB-based Composition of the Application with Security Components
[A9]. ettt bt n ettt ne b neane 35
Figure 16. Design time SOVEITIANCEcocvrueruerieieieiirteieeereseeesreseessssesesessesesesnnas 44
Figure 17. Run time GOVEIMANCEcc.eeirierireieiesiesiiereerc e eeeseeessessessesseseesseneeneens 45
Figure 18. Illustration of the Profile definition XML schema..........cccoeeevvevrinnrennne. 46
Figure 19. Profile description taXOnomyc..coeeeerererienieineneeneeeeree e 48
Figure 20. Hlustration of the Context definition XML schemacccococerninninen. 49
Figure 21. Illustration of the Context Selector definition XML schema...................... 50
Figure 22. Governance data model concepts and their relationships..........cccccccceuenen. 51
Figure 23. Architectural diagram of the governance framework — interactions at
ESIGN IIMEeeeveereieeeeiie ettt et e et stee st e e te e et e eeteeeeeeeseesansessaesaseensaessnesaseeseensnennes 53
Figure 24. Profile initiator interface description..........c.coccvueeenccceniiniiinncnienenns 54
Figure 25. Management interface OVEIVIEWcocoveueeimrieenieieeeinieececcceiccneeas 54
Figure 26. Profile composition interface description...........cccceeueireeccecnueieniccocnnccnes 54
Figure 27. Profile composition management interface descriptionc.ccecveeeunees 55
Figure 28. Profile life-cycle management interface description..........ccceceevevrecicnnne 55
Figure 29. Profile selector interface description.............cccevureeeeveenencocicicinincciencenens 56
Figure 30. Service management OVEIVIEWoeeueevevereereerenesseseeseneseseseseesenes 57
Figure 31. Profile management OVEIVIEWc.ccoouiviiiicueeniiieniceieieeeeeeeeeieeenenens 59

Figure 32. UML sequence diagram of the define infrastructure capability governance

PIOCESS. . ieieee ettt e e et e et esesasst e e e e ettt e s e ammee e e ee e e nee e ee ettt e aarnteeeeeentaeeeeeaeneeneans 60
Figure 33. UML sequence diagram of the define policy templates governance process
........ ettt et ettt et et et et e ae s et e s et et e stestantenseennent et nsentestantessanressessessertessesesssesnens O]
Figure 34. UML sequence diagram of the define service dependencies governance
PTOCESS . -.eeueveteeirieeeteeeeetteeesuesesaresesese s s s eaa s s aaea s et e e seteeanseeaesseeenbesesasssssasseossneenneneenenen 63
Figure 35. Infrastructure profile creation............cceeeceveeeneictnnnnineereeeceeeeeee e 65
Figure 36. UML sequence diagram of the select infrastructure profile instance
ZOVEITIATICE PTOCESS .veevverrrreanereaseriseesssesestresseeasessanteessrsausesastesasesassasssesssesssesssessesssesns 66
Figure 37. Business capability €XpOSUIE.............ccoeeueiriiricnieririereenieieiiesseee e 68
Figure 38. Governance life-Cycle.........ocooveriirinieiiiniiiieeeece e 69
Figure 39. Internal gOVernance patterncoevvecereeeriinierinieneieeseee et 70
Figure 40. Perimeter governance Patternccoeeveeieriesieeiueeieeiieie e eee e 71
Figure 41. Shared governance patternccccoceveriririeireeniese e 71
Figure 42. Federated governance pattern............coccerieiieriiriiennenensieseeseeseeesie e eseenvens 71
Figure 43. Virtual Music Store - user interfacecoceeeveeiinenineiencseece 75
Figure 44. Virtual music store scenario with security governance gateway................ 75
Figure 45. SOA security governance overview [81]ccccooviiiininiiincneeeceee 77
Figure 46. Governance user interface and “I Love My Classics Store” profile 83
Figure 47. CP1 EXposition Profilecccccooieiiiiiiiriininiiiiereencceeeecee e 85
Figure 48. Test 1 1€Sultcoiiiiiiiiii e 88
Figure 49. Test 1 validation test result.............c.ccoccovveniiininii e, 88
Figure 50. Mapping the Governance Model on the SDF standardc.c......... 97
Figure 51. Layered view of the governance architecture...........cceceecvicieiiniincncinnnnees 98

List of tables

Table 1. Comparison of modern approaches to integration 24
Table 2. Comparison of reference models and architecture for SOA 33

Table 3. Comparison of approaches investigating adaptability of contextualisation 37

Table 4. Comparison of approaches investigating safety of contextualisation 38
Table 5. Registration data of logging infrastructure 79
Table 6. Registration data of HTTP digest authentication and decoding infrastructure

80
Table 7. Registration data of SecPAL Authorization infrastructure 81
Table 8. Registration data of VMS business capability 82

Table 9. Contextual data for “CP3: I Love My Classics Store” profile in the VMS 83
Table 10. Context selector for “CP3: I Love My Classics Store” profile and the

“CreateContentQuery” operation of the business capability 84
Table 11. CP1 Exposition profile 85
Table 12. Implementation tests results 89
Table 13. Adaptability tests results 91
Table 14. Summary of research challenges 96
Table 15. WS-Profile XML Schema 112
Table 16. WS-Context XML Schema 113
Table 17. WS-ContextSelector XML Schema 115

1. Introduction

The way enterprises conduct business today is changing greatly. The enterprise has
become more pervasive with a mobile workforce, outsourced data centres, different
engagements with customers and distributed sites [1]. In addition, companies seeking
to optimise their processes across their supply chains are implementing integration
strategies that include their customers and suppliers rather than looking inward. This
increases the need for governing end-to-end transactions between business partners
and the customer (B2B2C and B2B2G) [2].

As pervasive organisations connect their heterogeneous environments and systems,
cross- and intra-enterprise compliance becomes more critical. The legal and
regulatory frameworks become more complex and less forgiving. Companies have to
comply with their own directives and regulations as well as comply with different
legislations and regulations depending on the region of operation and the client or
partner organisations’ rules and legal constraints. IT use in the corporate environment,
and in particular the governance of the IT infrastructure that enables business
services, will need to provide means to measure and control compliance.

Globalisation and agility of integration require more systems along with more
partners and more constraints and produce more complex environments where
decision making processes are equally increasingly complex and crucial for this
connected organisation. Change in a single process has the potential to impact more
than one partner and disrupt a wider range of business processes.

It is important for any enterprise to understand how its business has performed at any
given time in the past, present, and in the future. However, single partners no longer
have a full visibility of all processes and their consequences. It becomes much harder
for a single enterprise to therefore govern its collaboration with other enterprises in a
safe and controlled way, to understand the use of its information and resources across
the value chain, and to identify and assess the impact of violations of policies or
agreements. There is a need for well-orchestrated, end-to-end operations management
that provides controlled visibility, governance of network and IT state, timely
assessment of the impact of security policy violations and the availability of
resources. Hence, there is an increasing interest in Service Oriented Infrastructure
(SOI) dashboards [3] showing real-time state of the corporate infrastructure including
the B2B integration points.

Finally, another consequence of these changes in the organisational environment is
the emergence of the notion of Virtual Organisations (VO). These are defined in [4]
as “temporary or permanent coalitions of individuals, groups, organisational units or
entire organisations that pool resources, capabilities and information to achieve
common objectives”. According to this definition, VOs can provide services and thus
participate as a single entity in the formation of further VOs, hence creating recursive
structures with multiple layers of “virtual” value-adding service providers. The
required scalability, responsiveness, and adaptability, requires a cost effective
resource distribution management solution for dynamic VO environments.

Effective solutions addressing these challenges require interdisciplinary approaches
integrating tools from law, economics and business management in addition to
distributed or “Cloud” computing. However, in this latter category, there are three

main aspects, as illustrated in Figure 1 to achieving effective governance in the
context of high-value B2B interactions:

1.

Resource visibility - brings the best fit for purpose visibility into the IT
infrastructure used and its state. This aims at making sure that not only it is
possible to find the resource but also that its purpose and constraints are well
understood. With complex systems comprised of many resources (e.g. Web
service, policy) there is a strong requirement to increase the visibility of each
resource. Indeed a same functionality could be provided by different services
and advertised in different places. In addition, one of the strengths of SOA
being reuse and composition, there is an obligation to know how resources
communicate and are wired together. The relevant management of
dependencies amongst resources is indeed a crucial element of the visibility.
Furthermore, with a single resource involved in several collaborations or
discussions 1t is necessary to keep track of how this same functionality is
proposed (i.e. its attached constraints). Increasing the visibility includes
advertising its functionality as well as Non Functional Properties (NFP)
correctly and its issuer or provider.

Policy administration and management - administers policies coming from
different sources of authority and that may apply to different, potentially
interrelated, contexts and business collaborations. In an organisation, the
different levels of hierarchy manage their resources according to their
responsibilities. As such managers set up rules on how certain requests from
clients are going to be dealt with when the directors will set up the roles and
limits of the manager’s authority. As IT services attempt more and more to
support business functions, the same types of policies should be applied to
them, allowing for different levels of authority that apply in particular or more
general cases. The same apply for the different areas of expertise where an
account manager will dictate the pricing policy for a client and the lawyer will
know how to write legal contracts. IT services are dependants of the IT
specialists at different levels (e.g. deployment, security) as well as non-IT
specialists. This aspect also deals with managing the selection and integration
of the best policy decision and policy enforcement mechanisms to support the
optimal use of IT resources and services in a given context and in compliance
with corporate agreements. As introduced in the three points above, an SOA
will suffer from having many services that may be available in different
contexts and at different stages of their life-cycle. The management of the
SOA is made through the use of policies and as such it is crucial to be able to
manage how these are going to be used and enforced. In addition, such policy
administration and management should allow detecting potential conflicts
within the imbrications of services and their policies.

Service provisioning - deals with the processes that allow organisations to
effectively manage the exposure conditions of their services. This aspect of
governance aims at both allowing an efficient contextualisation of the service
interface provided to potential partners as well as supplying this
contextualisation with the processes necessary to render its governance
flexible.

10

—
—\ Adm : R T T T
Policy administration Exposition

e B & management | ll governance
[T T
—

|]

e

Figure 1. Interaction governance

In this thesis, the author aims to address the latter aspect of governance. The work
presented in this thesis concerns the flexible management of services interactions
where the properties of these exchanges are not a priori known. A related concern is
that services should not suffer security and performance disadvantages as a result
from exposing in this flexible manner. Thus governance can extend to supporting the
safety of the interaction and scalability of the infrastructure supporting the exchanges.

The main contributions of this work are the design and evaluation of a flexible
middleware architecture supporting the governance of B2B interactions. The author
designed this architecture to support two domains of action — design and run times —
that address requirements of the interactions management. The author shows how the
middleware architecture can be implemented with a set of middleware services. The
segregation of concerns proposed presents different advantages such as dynamic
composition of the interaction contextualisation and systematic auditing. Additionally,
this allows presenting an abstraction layer that is familiar from the enterprise context
while providing regulated interactions in B2B context. For example, governed
interactions can be used to secure exchanges in a more flexible manner than
traditional approaches (c.f. section 2).

In Section 1.1 of this chapter the author describes an example application that serves
to motivate the work presented in this thesis and provide requirements for that work.
Section 1.2 summarises the scope of the work. Finally, section 1.3 concludes the
chapter with the assertion of thesis contributions and an overview of the remainder of

the thesis.

1.1. Example application

This section describes a scenario that motivates the work in this thesis. This
application is in part used to derive research challenges defined in section 1.2. In
Chapter 4 , it also serves as proof-of-concepts for the implementation and discussion
of the interaction governance middleware that address the challenges.

The example application is a virtual music store. This music store is a public interface
that aggregates and resells content and services from different specialised providers
(e.g. Jazz or Classic music specialists).

This example does not mean that the proposed approach is limited to this type of
scenario. Indeed, a service oriented enterprise architecture with an environment of
services providing functions (e.g. payroll, fleet management) would have also been a
good motivation scenario. In the same manner, a service oriented e-health
environment where devices, data and functions are available through network
interfaces could have been used. Indeed, any scenario that would provide strong reuse
and exposition flexibility requirements could have been presented.

In the following text, the term profile is associated with a set of NFPs provided as a
managed composition of services.

1.1.1.Virtual music store scenario

1.1.1.1 Description

This section describes the virtual music store as an example of a Virtual Organisation
(VO). According to [5], VOs are frequently restructured, sustained to capture the
value of a market opportunity and dissolved again to give way for the creation of the
next VO from within the network of independent partners. This represents a need for
adaptability that current systems, such as the GOLD middleware [6] or the current
B2B gateway [7], attempt to address by providing one type of security profile.

The aggregated services are virtual music stores serving specialised markets or
communities of interest. The basic service providers include copyright owners of
musical recordings or their representatives who make these recordings available
online and syndicated blogs or review sites. The music stores reach agreement with
music providers enabling them to act as resellers of bundles of recordings from their
catalogues. The virtual store is a VO consisting of the music store operator as well as
content providers and it runs on top of an infrastructure provided by an infrastructure
provider.

This scenario is based on the increasing trend of Long Tail retailing. The Long Tail
concept describes the niche strategy of selling a large number of unique items in
relatively small quantities, usually in addition to selling fewer popular items in large
quantities. The concept was popularised by Chris Anderson in [8], in which he
mentioned Amazon.com and Netflix as examples of businesses applying this strategy.
Figure 2 illustrates the Long Tail concept.

Popularity

Long Tail

Products

Figure 2. To the right is the long tail; to the left are the few that dominate [9].

The end customer of the virtual music store will be a member of the public. What they
will see 1s a normal website where they will be able to search for and buy tracks and
read reviews and blogs. This could be presented to them in much the same way as
AbeBooks does, i.e. a search page and then each returned item is linked in from an
independent seller; or stores could hide the aggregated nature of the service.

1.1.1.2 Stakeholders
In the music store, the main categories of partner are:

* Infrastructure provider: This role involves providing the VMS with a Virtual
Hosting Environment (VHE), the B2B gateway. The purpose of the infrastructure is to
hide the technical complexity of the middleware involved to the different participants
in the virtual music store.

* Music content provider: This is a specialist content provider (e.g. record labels or
other copyright owners).

* Virtual music store operator: The broker of music. It is assumed that the store
operator will be the VO Initiator. As such the operator is responsible for instigating
the opening federation process.

* Value adding service provider: This is a third party entrusted with providing Value
Adding Services (VAS). These services provide non-functional proprieties (e.g.
security, audit, translation) and allow the content providers and music store operator
to leverage on the VHE to enhance their interoperability and quality of service.

1.1.1.3 VO Lifecycle

So let us look closer into the life-cycle of the virtual music store. The music store life-
cycle starts with the initial agreements and discovery of the potential partners, the VO
foundation. This is followed by the negotiation between these partners and the VO
initiator to reach a firm collaboration agreement, this stage is called the partners’
federation. Following this, the capabilities are virtualised and made available to the
partners in the newly formed VO. Finally the adaptability faculty of the virtual store
infrastructure is introduced.

VO foundation. Prior to any task and once the virtual shop has decided to establish
the music store, it needs to reach an agreement with the infrastructure provider. The
infrastructure provider is said to provide a VHE, on which it instantiates an ‘empty’
VO which is configured by the virtual shop operator. The VHE being in place, the
shop operator contacts the potential participants of the music shop (i.e. content
providers). Agreements are reached between these music providers and the shop
operator and access to the VO Manager is granted to the content providers to setup
their accounts and modify their data. The content providers can consequently publish
the business functions they want to expose. These selected capabilities are published
as services into a capability registry.

Partner federation. At this stage it becomes possible for the virtual shop operator to
put in place the different services offered by the music store.

To achieve this, as introduced above, the operator creates a new VO for each
federation of content providers it wants to create. Additionally, the operator defines a
collaborative process to describe the interactions between the different business
functions potentially present in the federation. Once this structure is in place, the
operator can search the capability registry for the specific business functions it wants
to aggregate and using the VO Manager sends a participation request to the relevant
providers.

The providers contacted can inspect the process description and interaction
description already provided by the store operator to take a decision upon
participating in this federation. Having accepted the invitation, the content providers
associate to the VO the VAS profile they want to apply to this federation. The VAS
profiles are defined for each capability by its provider.

These profiles include infrastructure services used to secure and monitor the services.
They are created and managed in much the same way as the federation between the
operator and the music providers but include the VAS providers. The services are
typically comprised of policy enforcement, authentication, authorisation and other
added value services such as billing or auditing. In addition, the profiles are composed
of policy templates that define the policies to be applied to each of the selected
infrastructure services in the profile.

Following this, the operator can review and select the best matches in the positive
answers it has received. With all the targeted business functions fulfilled, the virtual
shop operator can continue the VO creation process and sends a creation order.

The VO management tool subsequently interacts with each partner’s gateway. To
allow the different identity providers to recognise each other’s authority, it sends the
relevant list of business cards associated with each business partner (role). In addition,
the VO management tool sends the policies related to the implementation of the
collaboration management for each business function. These policies come on the top
of the security profiles setup and made available by the service providers.

Brokered services, such as the jazz music store aggregating the different content
providers’ services that offer jazz music, can be created along with their federation
data following this method. The jazz music store is illustrated in Figure 3.

14

Virtual Music Store

Lttt "
o y
e
SomeMusic Store RockYourWorld Store ILoveMyClassics Store
1
Contentprovider , Organisationborder > Profile exchange
"_\: Interaction profile —> Businessagreement

S

Figure 3. The Jazz Music Store VO

Capability virtualization. With the federation in place, it is possible for the
participants to finalise the configuration of the instances of the services they selected
and prepared for this specific VO. Before undertaking this, the gateway management
interface allows the participant to inspect the configuration of its infrastructure. At
this stage, the configuration of the infrastructure will have evolved as the services are
exposed and activated. Additionally, the selected Federated Identity Provider (FIP)
has built trust with the FIPs of the other partners in the VO. Furthermore, the baseline
policies that restrict who can issue access policies about which resources have been
activated.

Finally, the VAS profile that will be applied by the Partner for the business functions
it performs is stored in a specific registry. To keep track of the configuration, the
settings are associated with a unique collaboration ID. Upon configuration of the
infrastructure, provisioning of policy templates and establishment of trust between the
different VOs it becomes possible for the capability instances exposed to be invoked
within the context of the virtual music store.

Adaptability. A music provider might want to participate in several such federations
to increase its visibility. But different partners in various VOs will have distinct
security needs and settings. By adjusting the VAS profile used in each federation to
its specific needs, the content provider can more promptly offer its services.

1.2. Scope of work

The ever increasing amount of IT services along with all the potential states and types
of configurations necessitate the development of adequate methods and tools for
services governance. In [10], the concept of SOA governance is derived from
corporate and IT governances. Corporate governance is referred to as the set of
processes, customs, policies, laws and institutions affecting the way in which a
corporation is directed, administered or controlled. IT governance is a subset of

._.
i

corporate governance that focuses on the control, performance and risk of IT systems.
For SOA, the term governance refers to the processes used to oversee and control the
adoption and implementation of an SOA in accordance with recognised policies, audit
procedures and management policies. SOA governance aims at providing optimum
service quality, consistency, predictability and performance. An SOA governance
environment should offer the ability to define, administer and enforce a combination
of processes, practices and tools that facilitate the management of the life-cycle of the
services in the SOA as well as the life-cycle of the different policies that apply on
these services.

Functional decomposition into services, reuse, loose coupling, and distribution of
resources are all perceived benefits of the investment on SOA. This malleability can
also bring about the risk of a more difficult oversight. As the same service is used in
different applications the infrastructure will have to adapt to these different contexts
of use in order to provide variations in required functionality, quality of service,
billing schemes and security requirements. Achieving such variations in a cost
efficient way can be achieved by composing the core business function offered by a
service with other services implementing infrastructure capabilities that fulfil varying
Non-Functional Requirements (NFRs).

However, as the number of services increases and their use in different contexts
proliferates, it becomes necessary to automate policy enforcement and compliance
monitoring. Furthermore, the composition of services into different business
applications over a common infrastructure intensifies the need for end-to-end
monitoring and analysis to assess the business performance impact. Managing the full
life-cycle of service definition, deployment, exposure and operation requires
management processes that take into account their composition with the infrastructure
capabilities that take charge of the NFRs. Finally, policies may change during the life-
time of a service. Policy updates may be the result of various reasons including
business optimisation, of reaction to new business opportunities, of risk / threat
mitigation, of operational emergencies, etc. It becomes therefore clear that a well
designed governance model is a prerequisite to successfully deploying services in a
dynamic environment. More details on the objectives of such a SOA governance
framework are given in the following paragraphs:

e Resource contextualisation: Permits resources to be efficiently configured
for and managed at an end-to-end level is one of the main objectives of SOA
governance.

e Resource adaptation: Enables diagnosis and remediation in an as automated
as possible fashion. SOA systems can potentially become very complex, with
many different policies and services. This not only allows to adapt resources
to specific transactions in function of an organisation’s rules but to manage
this adaptation in a more configurable, reliable and secured way.

e Contextualisation safety: Manages the contextualisation so that contextual
information cannot infringe into another context. Safety mechanisms should
also ensure that the adaptation does not result in a loss or inadequate sharing
of data.

16

1.3. Thesis contributions and overview of
thesis

Section 1.2 identified three domains — resource contextualisation and adaptation as
well as safety of the contextualisation process — that provide broad coverage of B2B
interactions and a challenging set of requirements to support the governance of
exchanges. In this context, the author’s thesis contributes:

1. A set of middleware services that provide an efficient support for flexible
resource contextualisation.

2. This enhanced flexible contextualisation can be governed in such a manner
that it preserves the safety of the exchanges.

This statement will be justified by the design, implementation and deployment of
novel middleware.

The remainder of the thesis substantiates the claim of novelty with respect to these
systems. Before providing an overview of the thesis, the author elaborates on novel
contributions in these three areas.

1.3.1.0verview of thesis

The work presented in this thesis addresses the research challenges identified in
Section 1.2 by providing middleware to support the governance of B2B interactions.
To this effect, the author proposes an SOA based architecture where the infrastructure
capabilities providing support for NFPs that are not known a priori potentially come
from third party providers. The approach is to provide a coherent definition of the
interaction needs (i.e. in terms of NFPs) and compute these needs into an
implementable and manageable aggregation of services. The architecture proposed
also identifies the supporting — i.e. core — infrastructure necessary to provide the
governance. The inherent flexibility of the architecture ensures that its
implementation can be adapted to different application-specific requirements. Given
this architecture, the author develops a prototype implementation. In addition, a proof-
of-concepts application demonstrates the utility of the architecture implementation in
the domain of SOA security. The thesis has the following structure.

Chapter 2 provides an overview of related works. The chapter concentrates on work
on middleware that is fundamental to the architecture presented. The author also
surveys work on contract-mediated interaction, policy driven middleware and on
middleware support for flexible interactions management.

Chapter 3 describes the anatomy of the SOA based architecture for service exposure
governance that, along with its implementation and proof of concepts utilisation, are
the novel contributions. The services are based on an interceptor-mediated view of
interactions that: (i) allows end users (e.g. web service manager, other governance
system) to define their requirements in term of NFPs, (ii) supports the design of
adaptable services, and (iii) provides a set of processes to checks the safety of the
adaptation. This chapter develops work first reported in [11], [12] and [13].

Chapter 4 describes the implementation of the architecture described in Chapter 3. A
proof-of-concept application based on the example in Section 1.1.1 demonstrates the
utility of the implementation. In addition, this chapter describes a qualitative
evaluation of the proof-of-concept application. This is based on work first reported in
[14] and [15].

17

Chapter 5 concludes the thesis with a summary of contributions, including an
evaluation with respect to the requirements set out in this chapter, and an overview of
future work.

18

2. Background

In this chapter, the author introduces the reader to the domain of software integration
in distributed computing and reviews the most pertinent related. These are: software
architecture definition in an SOA, flexible resource contextualisation in an SOA, and
management of this contextualisation’s safety (c.f. section 1.3).

In section 2.1, the author introduces a short history of modem software integration
through middleware. This part comprises content about how SOAs came to be and the
development of the Enterprise Service Bus (ESB) concept which is a SOA based
software infrastructure that acts as an intermediary layer of middleware through
which distributed services and information can be made available. Section 2.2
identifies the principal reference models and architectures that could influence the
author’s definition of a concrete architecture for governance of safe and flexible
resource contextualisation in an SOA. Section 2.3 reviews the most relevant works in
the domain of flexible contextualisation while part 2.4 evaluates their counterparts in
the domain of contextualisation safety. Finally, a conclusion on the related work and a
summary of the different research challenges is proposed in section 2.2.

Throughout this chapter, the different elements described are assessed against
potential research problematic that are then summarised in section 2.2.1.

2.1. The recent history of modern
integration techniques

Distributed systems have become more and more complex. This is partly due to the
amount of technologies developed and the frequency in which they appear. In
particular the amount of platforms implemented (e.g. .NET, Java, Axis, WebSphere)
as well as the various specifications related to the different issues associated with
Enterprise Application Integration (EAI) or SOA (with several standardisation bodies
such as W3C, OASIS or WS-I) have rendered the middleware environment more
opaque. This situation, linked with the raise of inter-application communications [16]
and the possible repeated changes of partnerships in these interactions [17], have
caused a situation where Return On Investment (ROI) and ease of integration can be
difficult to reach.

The traditional opportunistic integration is generally achieved using conventional
application-to-application or point-to-point communication [18]. But these approaches
have their limits. The complexity grows exponentially with the number of
applications or points and the frequency they change. Furthermore, the maintenance
and integration costs increase as the application becomes more complex.

Therefore, one objective of more recent integration approaches is to reduce the
complexity of integration by replacing the point-to-point ad-hoc with systematic
integration through a specialised integration platform. In the next sections, this trend
will be analysed and its main outcome in term of integration practice for SOA.

2.1.1.Evolution of middleware

The first wave of integration practices aimed to provide APIs and interfaces between
systems. As shown on Figure 4, this was mostly achieved either using custom Remote
Procedure Calls (RPC) or messaging technologies like CORBA. This generation of
middleware primarily aimed to achieve point to point integration and most of the

19

connectors were custom built. This generally allowed heterogeneous systems to
communicate and in the case of messaging technologies, allowed to store and to
forward messages. On the other hand, specific interfaces had to be developed for
every system involved but at the same time the lack of widely spread communication
semantics meant that many different formats prospered, thus generating a low level of
reusability and rendering all coding and maintenance complex.

Generation next: Service

composition and orchestration,
BAM, SOA, WSRP

Generation Now: Java based
integration, Web services, Unified
product suites, Architecture First

2™ Generation: Message
broker, Hub and spoke,
application adapters, B2B

1" Generation: Point-fo-
Point, Custom, Messaging,
CORBA

Value to the Customer

Early 90's Late 90's Early 00's Early 10's

Figure 4. Figure 1 Integration history [18]

The next generation mainly aimed to improve the reusability as well as connectivity
issues and introduced the spoke-hub distribution paradigm. Common integration
infrastructures subsequently developed include, application servers and EAI brokers
such as hub-and-spoke architectures that can potentially offer features such as
message routing, transformation, business rules enforcement, transaction monitoring
and auditing. This approach allowed reducing the connection complexity as with n
nodes, a maximum of n - 1 routes are necessary to connect all nodes, compared to
(n(n - 1))/2 nodes that would be required in a point-to-point network. In addition, this
made possible to re-use and share the integration logic among multiple expositions.
These advantages provided connectors that were potentially faster to put in place and
easier to maintain. However, the broker or application server due to its hub-and-spoke
nature can create a bottleneck effect, impacting on the performance as well as creating
a single point of failure. Furthermore, although this type of infrastructure can support
exchange format standards, this aspect was still being neglected during this age.
Finally, this type of middleware links the connected systems together in a tightly
coupled fashion, as it often intertwines the application and the integration logic.

With inter-application integration passing from a consideration to one of the main
centres of interest, the current generation of middleware focuses on loosening the
coupling and developing common exchange semantics. This brought up the emerging
growth of the SOA paradigm and technologies such as Representational State
Transfer (REST) [19] or Web Services (WS) and Message Oriented Middleware
(MOM) in particular. With this concept, distributed systems can rely upon
independent services in which the application specific logic is independent from the
connection infrastructure. In addition, with the adoption of XML and the large effort
put into defining common specifications and standards, more flexibility has been
granted. Both software layers’ segregation and semantic rationalisation allow the

20

creation of applications that are built by combining loosely coupled and interoperable
end points. Services are widely used to abstract different application specific logics to
reflect business activities [20]. These activities can be reused and combined to
compose new services or processes [21] without impacting the underlying activities.
This is generally acknowledged as being the main commercial interest of SOA [22] as
it allows a faster and safer ROI. But one major factor that slows down the
development of efficient process composition is the fair amount of hard coding still
required by current middleware infrastructures to be connected to each other.
Furthermore, the extensive use of connecting infrastructures, their complexity and the
increasing need to connect them are rendering the middleware landscape more
complex.

The author acknowledges that the acronym SOA for some people is simply a
marketing term for the packaging of the communication infrastructure, which in
actual fact should not matter. Interoperability and connectivity issues have been
discussed for the past 20 years, however what SOA has brought about is the need to
integrate at the middleware level using standardised technologies.

It is indeed interesting to note that while SOA eases the diversity and heterogeneity
issues inherent to distributed systems; it does not completely solve them. In fact, the
present standardised ways to abstract and simplify application specific logic used by
middleware to address inter-software communication issues can also cause problems
between middleware structures. These issues are intrinsic to heterogeneous
environments where different interests and practices meet. The next generation of
middleware should respond to this challenge and alleviate inter-middleware
communications to allow more dynamic service and process compositions, thus
enabling more effective business collaboration. This is suggested in the SOA Maturity
model [23] which advocates that top level SOA infrastructures should be able to more
dynamically adapt to changes.

Optimized Optimization

Business
CMMI™; s
Optimizing Services
CMMI™ Measured Business Transformation
Quantitatively Services
Managed

Business Collaborative Responsiveness
CMMIE™ Services h Services
Defined a

Architected Services Cost Effectiveness
CMMI™: 2/
Managed

Initial Services Functionality
CMMI'™
Perlormed

Figure 5. A Service-Oriented Architecture Maturity Model [23]

21

2.1.2.Enterprise Service Bus

A possible way of potentially enhancing middleware adaptability has been found in
leveraging the infrastructures and practices produced during the evolution of
integration software previously introduced.

The hub-and-spoke architecture has the benefit of being centralised, which provides a
good structure for key features such as message routing or auditing as well as allows a
higher level of reusability. However it does not scale well across heterogeneous and
large distributed systems due to the centralised nature of the middleware itself. In
addition, the historical lack of common exchange semantics hinders the creation of
evolving collaborations. These issues were partially solved by SOA, but while
allowing a more loosely coupled model, it requires time consuming low level coding.
Moreover in a highly evolving environment, Message Oriented Middleware (MOM)
necessitates a higher level of abstraction to allow the reusability and integration levels
necessary for a fast ROL

Figure 6 shows some of the higher level qualities of these infrastructures and
introduces the concept of ESB. The ESB architecture applies knowledge learnt
throughout the evolution of middleware and attempts to leverage the technologies
subsequently developed [24]. Indeed the bus takes the centralised approached of the
application server, the abstracted nature of the EAI broker with the distributed nature
of MOM to provide a solution for rapidly adaptable middleware.

Application and

integration logic Traditional £sB
separated EAI
i b =rd Application Custom
integration logic
intertwined server code/MOM

Hub and spoke Distributed
integration integration

Figure 6. Integration approaches [25]

Although the exact definition of ESB varies according to author, company or features
it includes, it is possible to draw a general picture.

An ESB is a SOA based software infrastructure that acts as an intermediary layer of
middleware through which distributed end points are made available. It provides an
abstraction layer that acts as entry point to a bus. Once the messages have been
intercepted by the entry point, series of actions can take place in the bus. These
actions take the form of services which are called according to various elements such
as: message content, origin, destination and sets of rules predefined.

A |

Transfor

ESB endpoint mation

service

Clientinterface

Authentx
ation
service

a0y

Vil

Figure 7. Generic ESB example

Figure 7 shows a basic ESB infrastructure in which services can communicate
through an abstracted interface provided by the bus. Once a message is received by
the bus end-point, series of actions can take place. The type of actions taking place is
influenced by both the content of the messages received and the way the bus has been
configured to handle them. In this specific example the bus offers authentication,
transformation, content base routing and orchestration services. Finally, once the
messages have been treated it is sent to the appropriate end point with the suitable
data. A more detailed discussion on ESB can be found in [26].

2.1.3.Conclusions on the recent history

The concept of ESB tries to leverage different technologies and designs used
throughout the middleware landscape thus moving away from the opportunistic point
to point inter-software communication and adopting the centralised approach already
introduced by the traditional EAI broker. In addition, the ESB concept takes
advantage of the SOA paradigm benefits which jointly provides a potential
architecture for highly distributed and adaptable as well as loosely coupled
middleware. Table 1 summarises the key elements discussed in this section.

Tables 1-4 legend:

/ No support
L Light support
X Fully supported
1) (2) Shared 3)
Reusability of | communication | Decentralised
integration semantics model
layer
“First wave”
of integration / / /
practices
Spoke-hub
distribution L / /
paradigm
Custom built
SOA L L X
middleware
ESB L+ L+ L

Table 1. Comparison of modern approaches to integration

However, if it is possible to increase the number of interaction enhancing
infrastructures (.e.g. non-repudiation, message level security) offered by an ESB (c.f.
[26] for list), it is clear that simply aggregating them does not suffice. Indeed,
mechanisms to both define what infrastructures are to be used, how to use them and to
provide a control over the information flow between these infrastructures are
necessary.

2.2. Models and architectures

The main research challenge of this work is to investigate the two points listed in
section 1.3 and provide a concrete architecture that describes a potentially
implementable solution. There has been plenty of work from both academia and
industry around the definition of architecture and indeed more specifically,
architecture for SOA governance. Many of these works, such as [27] are not
mentioned this section as they have not reached a certain level of visibility and or do
not bring any addition to the models and architecture mentioned below. The following
section reviews briefly the major efforts in this domain and describes their influential
elements in the context of the current work.

2.2.1.Reference models and architecture for SOA

An abundance of specifications and standards have emerged from open standard
organisations such as OASIS, OMG or The Open Group on the topic of SOA. In [28]
the major instances are introduced and categorised.

These models and architectures, as expected from their status of “reference”, do not
present a readymade and expressive manner to implement a specific SOA. Indeed,
they rather introduce the reader to the main artefacts forming a SOA along with, for
some of them, guiding principles, processes, and technologies that could help
organisations in the process of defining their own SOA.

In [29] however, an Execution Context illustrates the set of technical and business
elements that form a path between those with needs and those with capabilities in the
context of service providers and consumers interaction. All interactions are grounded
in a particular execution context, which permits service providers and consumers to
interact and provides a decision point for any policies and contracts that may be in
force. On Figure 8, the Execution Context is represented with its links to the
Interaction and Contract & Policy elements. The presence of the Service and Service
description elements on this figure also give us a sign of their importance in this
context.

Interaction

Contract &
Policy

Figure 8. Execution Context [29]

Although this reference model provides valuable information on related concepts, it is
insufficient to define a concrete architecture or implement a SOA governance
infrastructure. Indeed, there is no description of the execution context itself or how it
can be manipulated. These sets of information are necessary in order to design the
contextualisation and adaptation processes which are key elements of the governance
this thesis aims to describe.

In [30], SOA governance is defined as: “Governance in the context of SOA is that
organisation of services: that promotes their visibility; that facilitates interaction
among service participants; and that directs that the results of service interactions are
those real world effects as described within the service description and constrained by
policies and contracts as assembled in the execution context.”

Figure 9 illustrates the vision of SOA governance in this report by lining the different
types of governances within an organisation.

25

Governance |

l l

(Other Governance | C00rdinate ||T Governance | C00rdinate |SOA Governance

L —r DOtWOEN | | between L pear
[coordinate I
between l
SOA [. Service Participant
Infrastructure | Inventory Interaction

- Governance | Governance Governance

Figure 9. Relationship among types of governance [30]

Always according to this report, SOA governance applies to three aspects of service
definition and use:

e SOA infrastructure — the “plumbing” that provides utility functions that enable
and support the use of the service

e Service inventory — the requirements on a service to permit it to be accessed
within the infrastructure

e Participant interaction — the consistent expectations with which all participants
are expected to comply

As introduced in section 1, this thesis specifically looks into supporting the first item
on this list, the SOA infrastructure.

With regards to this item, the Reference Architecture Foundation for SOA Version 1.0
defines ([30] page 95) a single requirement; a SOA governance architecture should
take into account:

e “Governance requires that the participants understand the intent of
governance, the structures created to define and implement governance, and
the processes to be followed to make governance operational.”

This point is focusing on the visibility and readability aspects of the governance
processes as well as the availability of these processes as SOA services.

Although this reference architecture provides valuable information on related
concepts and different requirements, it is insufficient to define a concrete architecture
or design a SOA governance architecture.

In [31] a SOA reference architecture is described. This reference architecture defines
a governance layer that mostly aims at managing different types of policies such as
QoS or security. It is unclear from its short description if this layer is meant to only
verify the compliance of services against these policies or if execution is also thought

of.

However as illustrated on Figure 10, the authors of the SOA reference architecture
take into account the challenge of contextualisation and interaction management.

Business Innovation & Optimization Services

|| Provide for better decision-making
Wil R S S o
Interaction Services Process Services Information Services % g
1 o
) =
Enables collaboration Orchestrate and Manages dwerse @ -
between people, i automate business data and content in a E]

processes & information processes unified manner

! " | A |

Partner Services Business App Services Access Services 2
Connect with trading Build on a robust, Faciltate interactions resources
partners scaleable, and secure with existing information
services environment and appéication assets
Infrastructure Services
Optimizes throughput,
availability and performance

Figure 10. The Middleware View of the SOA Reference Architecture [31]

This reference architecture does provide valuable information about different
requirements for SOA governance although they are not explicitly defined. Moreover,
there lacks a discussion on designing issues which renders the creation of a concrete
architecture and its implementation difficult to plan just from this reference
architecture.

The most promising development with regard to an emerging SOA Governance
architecture is the work conducted by the Open Group. Their proposal, presented in
[32], for a SOA Governance framework describes the governance activities that are
impacted by an SOA and puts forward some best-practice governance rules and
procedures for those activities. However, as of September 2009 it has only the status
of a Draft Technical Standard and still lacks essential elements such as a specification
of detailed accountabilities along the service life cycle or a sound taxonomy that
relates the core governance elements to each other.

Two of the main goals of this document are to provide a definition of a SOA
Governance Reference Model (SGRM) and its constituent parts as well as a SOA
governance vitality method to guide the customisation of the aforementioned model
for specific contexts. A relevant approach for this thesis in relation to these two points
would be to see how they are defined and can be elaborated upon in order to provide a
concrete architecture that allows designing an efficient SOA governance
infrastructure.

From the guiding principles listed in the SGRM and in the context of the current
thesis the following points must be taken into account:

e Contracts: provider and consumer contracts shall exist between service
providers and consumers in order to ensure the correct delivery of service.

e Service metadata: decisions and descriptions relating to services and their
contracts shall be stored in a well known location, including relationships
among services and their associated artefacts.

e Automated processes: SOA Governance processes need to be automated as it
improves the reliability and traceability of the governance.

The two first points on contract and service metadata are indeed crucial elements
when designing a SOA governance, as they impact on the ways the service
exposition, discovery and assembly processes will be achieved. But without a clearer
definition, all the work of investigating these points is left to the entity designing the
governance. These topics are complex research issues on their own and have seen
consequent research and industry efforts in the past, with the most widely accepted
outcomes being WSDL [33], SAWSDL [34], WSMO [35] and OWL-S [36]. But
many other solutions have been provided (e.g. WADL [37], METEOR-S [38]). It is
therefore unrealistic to go as far as advising a concrete technology or implementation
stack at the generic concrete architecture level as each approach will have its own
advantages and inconvenient. However, providing a set of general, but precise and
helpful, requirements falls into the role of an architecture and this point is lacking in
this work.

Regarding this last point on processes, the SGRM defines three governing processes:
compliance, dispensation, and communication which need to be performed on an
ongoing basis.

o Compliance: the purpose of this type of process is to define a method to ensure
that the SOA policies, Guidelines and Standards are adhered to. The
compliance process provides the mechanism for review and approval or
rejection against the criteria established in the governance framework (i.e.
principles, standards, roles, and responsibilities etc.).

e Dispensation: this type of processes has the reverse function of the
aforementioned type of compliance; it allows managing non compliance.

e Communication: these processes ensure access to and use of governance
information.

These processes are during the three different stages of governance that are planning,
design and operational. At the planning level, the processes are concerned with
portfolio management. At design and operational time the governance processes aim
at efficiently managing service and solution life-cycles.

In the context of this thesis, only design and operational times are relevant. For these
stages, the SGRM lists the principal following requirements:

e Establishing and approving service

e Publishing services to enable reuse

e Managing multiple versions of a service

e Enabling service assembly for building composite services and applications
e Validating service contracts, functional and non-functional requirements

e Ensuring change management for SOA services which includes accurate
impact analysis of deployed services

As for the contract and metadata points, this list of processes is a helpful hint of what
needs to be taken into account. However, this work is lacking a discussion of the
issues (e.g. virtualisation, management, safety) raised when designing these processes.

The TOG SOA Governance Framework mainly aims at describing SOA governance,
its goals and how it impacts on the enterprise from a management point of view.

28

There are relevant principles that can be learnt from it, such as the points listed in this
section. However, as of the time of writing, this work is still a draft. Additionally, it
lacks the level of details about contextualisation description and execution that are
vital for implementing contextualisation governance.

2.2.2.Autonomic computing based SOA governance
model

The authors of [39] explore the relation between SOA Governance and Autonomic
Computing, showing how principles and properties developed for the later can
support SOA Governance. This leads the authors to create the term of Autonomic
SOA Governance Infrastructures (ASGI) which is a governance infrastructure with
autonomic capabilities. Following this, the authors describe a conceptual model for
SOA governance based on the OASIS Reference Model for SOA, the work in [40],
[41] and [42]. This conceptual model is represented on Figure 11.

|Responslblllty }———-l Role |

= = - [GovemancaOrganimlicE]
1 1 1 "
1 1 ’]

4] SOAGovernanceModel L Ea -
GovernanceBehaviourModelI o l.— { Metric
T 1 Defined based on

GovernanceStrategy

1

1

Support

BehavipralPolicias

Suppori

}7 s {GovemancoPrlnclplcl

o
o
5 GovemancePolicies
g

I?oﬂcyEnforcememModal

PolicyAssertion PolicyScope

Figure 11. Conceptual SOA Governance Model - Global View [39]
On this conceptual model, policies and processes are divided in two stages:

e Design time governance: this group involves service identification, definition,
creation and reuse.

e Runtime governance: this comprises management of the service life-cycle (i.e.
deployment, consumption, versioning & change and retirement).

In this context, [39] defines the two key elements of the model as being policy and
processes.
Governance policies: specify rules that SOA parties must adhere to. These can differ
in function of the type, purpose and scope of the rule (e.g. business and corporate
policies, behavioural policies, process policies, technical policies, QoS policies,
testing policies).

29

Governance processes: identify actions that when executed contribute to achieve the
goals of SOA governance.

With this in mind, [39] then approaches the autonomic computing domain and map
the different types of governance policy to an autonomic property (Self-*). The
attribute relevant to the current thesis is that of Self-configuration and its domain of
application is defined according of the two stages aforementioned.

* Design time Self-Configuration concerns governance policies scope updating.
* Runtime Self-Configuration concerns enforcement of the governance policies.

This conceptual model does not specify any concrete pattern for the enforcement of
the policies it introduces, nor identifies what the governance processes are. However,
it gives information about the different stages the governance is active at and what are
the main concerns for each of these phases.

2.2.3.Service Delivery Framework

Twenty first century (21C) Communication Service Providers (CSPs) are currently
shifting their portfolios from traditional network-based to include more software-
orientated products and services. The boundaries between networks, Information and
Communication Technologies (ICT) and applications become very blurred allowing
for the integration of all these capabilities into new wave services. Service Delivery
Platforms (SDPs) [43] are the technology environments that facilitate this integration.
More specifically, an SDP aims at enabling rapid development and deployment of
new converged multimedia services. These services are composed of telecoms and IT
capabilities. As illustrated in Figure 12, an SDP sits in the middle and bridges across
to different sources of service capability. Examples of such capability include
telephony, wireless, IP, content, Operational Support Systems (OSS) and 3rd party.
Capabilities are exposed through standard functional interfaces. SDPs typically
provide a service control environment, a service creation/assembly environment, a
service orchestration and execution environment and abstractions for media control,
presence/location, integration and other low-level communications capabilities. They
are used for the composition of both consumer and business applications. In order to
make SDPs carrier grade, i.e. sufficiently reliable and scalable for CSP adoption, it is
current best practice to apply SOA principles to expose service capability, being
network, OSS or 3rd party, through SOA adapters into a SOA based SDP [44]. The
latter constitutes an IT platform, mostly an application server, using Web Service or
other SOA technology standards to integrate services and compose applications.

30

Expose Network
Revenue I and Services to
Sharing Partners

Sqy prepucisAepie g

|

oy P ¥
. Standard Standard

' Interfaces Networks 3

with Interfaces B

- 0OSS/BSS g

2

]

A

IT Domain Network Domain

Figure 12. Service Delivery Platforms

SDPs available today are optimized for the delivery of a service in a given
technological or network domain (examples include web, IMS, IPTV, Mobile TV,
etc.).

There is lack of standardization work for SDPs. This gave rise to the TM Forum'’s
Service Delivery Framework (SDF) programme [45]. In the context of SDF, services
are defined as components that expose their functionality via one or more functional
interfaces. A service becomes an SDF Service when it exposes one or more SDF
Service Management Interfaces (SDF SMI) which manage the service lifecycle. The
SDF programme focuses on the management of SDF Services, where management is
referred to SDF Service Lifecycle management.

SOFMSS o

functional fiterface
Management Servu:es

SDF Service
Functional Interface

8DF Semice
Management SDF Service —
Intefface Management

intefface <qualified name> SDF Services

S e s ISSl | f 1 l.l R =0 SDF
ik onsume Afrastructure Resource
Goreumer - © Consuner f‘cnstrne Service

SDF Inlvastrutluve buppon Semvice o ;
Functional Interface B _'_‘_MF___ alantl
./"_“ 5

— ,7 -

/CS—DF Infrastructure SupponSemcD’ ‘ /Resources~
((SDF 1SS} oy

e Infrastructure

s o

SDF Management
Support Services
(SDF MSS)

G
~—

—— e e

Figure 13. TMF Service Delivery Framework Reference Model

Figure 13, depicts a typical SDF service and the overall SDF Reference Model [46].
Functional capability of an SDF Service is exposed through service functional
interfaces (SDF SFIs), which are graphically shown as “lollipops™. Special case of
SFIs are the SDF SMIs, which contain lifecycle management capabilities of the SDF

Service. Such capabilities include, but are not limited to: configuration, performance
management, retirement, fault handling, versioning, monitoring and usage.

Finally, an SDF Service may itself rely on capabilities exposed by other services. This
is called SDF Service consumer and is graphically denoted by a “socket™. The rest of
Figure 13 illustrates the SDF Reference Model comprising: SDF Management
Support Services (SDF MSS): SDF MSS are responsible for the end-to-end SDF
Service lifecycle management. This includes the support for operational (e.g.
provisioning, installation, update/activation, monitoring capabilities) as well as
business process automation. SDF MSS capabilities may either invoke SDF SMI
capabilities, in which case they receive SDF Service management meta-data, or
invoke other support services from the Infrastructure or the Management Services
domains of Figure 13.

Infrastructure and SDF Infrastructure Support Services (SDF ISS): the Infrastructure
domain provides specific capabilities to Management processes or SDF MSS that are
usable across all SDF Services and facilitate their lifecycle management.

These capabilities constitute the SDF ISSs. Examples of SDF ISSs include: SDF
Service catalogues, metadata repositories, user data (specific information for
subscribers or other actors), resource management capabilities and charging
capabilities.

Resources: Resources are capabilities that can be used by SDF Services and are
exposed by network, IT infrastructure, OSS/BSS applications, or services on the
Internet. They can exist anywhere, within or outside the CSP’s domain, and offer their
capability to SDF Services through their functional interfaces.

Its issuance from existing implementations into a reference model and its concrete
approach make the SDF an interesting model to draw knowledge from. The main
components of the framework as well as their relationships and the way they interact
with their managed resources are described in the context of service delivery.
However the SDF does not take the contextualisation governance domain into account
and key elements such as policies or element visibility are note thought off.

2.2.4.Conclusions of reference models and architectures

The models and architectures for SOA, SOA governance and service delivery
introduced above define, to a certain extent, the main architectural elements forming a
SOA as well as the principal concepts related to governance. Indeed, these works
define key concepts such as run and design times governance together with their roles.
In addition the core concepts around service interaction (e.g. behaviour) are
introduced and the main elements needed to manage the delivery of services are
defined (e.g. management services). Table 2 summarises the key elements discussed
in this section.

Tables 1-4 legend:
/ No support

L Light support

X Fully supported

32

(4) Definition (5) High level (6) Technical
of SOA description of key | description of key
governance contextualisation contextualisation
and related elements and elements and their
concepts concepts relationships
OASIS Reference L
Model L | f
OASIS Reference L /
Architecture /
TOG SOA -
Reference L L /
Architecture
TOG SOA
Governance X L /
Framework
Autonomic
computing based
SOA governance X L /
model
SDF / L I

Table 2. Comparison of reference models and architecture for SOA

However, these references do not specify how to design the process of
contextualisation and manage the visibility of the different elements required to enact
it.

2.3. Flexible contextualisation

An area of interest that has focused on certain aspects of this investigation and that
has received interest from the research community is the management of NFPs as a
way to improve the adaptability of a resource exposed over the network.

Using previous work on NFP description (c.f. section 2.2 Conclusions of related
works) and how to allow a concrete separation between a resource’s functionality and
its NFPs has been investigated.

In [47] a solution is proposed to manage a Web service NFPs using handlers. This
work proposes a new model-driven development (MDD) framework, through the
notion of feature modelling, to explicitly and graphically model a series of non-
functional constraints in SOA. The framework consists of a:

e feature model: that defines non-functional properties in SOA.

33

* NFP profile: written using Unified Modeling Language (UML) to specify the
NFPs, called UP-SNFR [48].

* Model-Driven Development tool (MDD): called Ark, which generates
application code (program code and deployment descriptors) according to a

configuration (or instance) of the proposed feature model and a UML model
defined with UP-SNFRs.

he proposed MDD framework

Figure 14. An Architectural Overview of the MDD framework proposed in [47]

The architecture proposed by the authors of the MDD framework is illustrated in
Figure 14. By allowing developers to model NFP as features, the proposed framework
allows logically constructing and validating NFPs in SOA. Ark automatically
enforces NFPs in applications by transforming a feature configuration to application
code with UP-SNFRs.

The separation of concerns between the different levels of abstractions in the domain
model, the NFP as a feature descriptions and the generation of application code allows
decoupling the descriptions of the different types of NFPs possible from the specific
handlers implementing them and the way they will be aggregated to support the
exposure of the service.

However by using a strategy that provides NFPs by the way of handlers the authors
assume that the service providers take ownership of the NFPs implementations which
limits their reuse and availability. In addition, this framework does not provide any
support for the service life-cycle management which restricts the use of the service in
one particular context. Finally, the use of NFP profiles could allow the use of different
semantics and grammars, providing another level of flexibility, but current approaches
have not investigated this possibility.

In [49], the authors present a Security Service Bus (SSB), an infrastructure that relies
on a communication bus for providing flexible composition between application
components and security components and mutually between security components.
This SSB is evaluated against a scenario with a personal content management system
platform that aims to offer its users a uniform interface for managing and sharing their
personal content that is scattered over various devices.

PeCMan PeCMan Metadata Pany
% Client % Service rvice

Figure 15. SSB-based Composition of the Application with Security Components [49}].
In the SSB there are two types of component security and application bindings.

Security: this type provides the security functionalities. It is assumed in this
architecture that the security components are reusable modules that can be invoked,
managed and composed with applications and with each other. The functionality is
expressed through a security interface and the component can be configured through a
management interface.

Application binding: This type of component has two roles enforcing decisions and
providing policy information.

In this architecture, the aggregation of components is made through an artefact named
the security contract. This contract is expressed using the same data model as the one
used to define component interfaces. It comprised two parts: the required and
provided sections, defining what is expected from a contract and what is offered.

The SSB architecture describes a component based design that supports run time
aggregation of security related functionalities. However, this work only takes into
account security related functionalities, more complex exposure requirements that
encompass more than security may require a different type of architecture. In
addition, the SSB does not show how to support the life-cycle of the aggregation of
added functionalities which is an important factor when dealing with independent,
distributed components that could be, for instance, unavailable at times. Finally, the
SSB does not describe how to support the management of components fulfilling the
security contract. The author believes that such architecture should define at a more
concrete level this type of mechanism rather than stating the existence of a
management interface.

2.3.1.Conclusions of flexible contextualisation

The works discussed in the previous section present interesting characteristics as well
as limitations for the domain of flexible contextualisation. In this section, both
advantages and limitations are presented together with their impacts on the current
thesis.

Both MDD and SSB demonstrate that the hard coded handlers approach, which is
currently the most widely spread approach [50], has strong limits in terms of

35

flexibility and reusability. In an distributed environment where components could be
reused many times, the impact changes on these components could have on their
many clients could prove difficult to manage. Additionally, unless a strict control is
put in place and a physical track of what handler is used on what service kept, keeping
track of their usage in large scale systems seems effort consuming and further
advocates against this practice. Moreover, managing the exposition of a same service
in different contexts is difficult as the handlers are hard coded. Finally, hard coding
the handlers into the service themselves can be costly time wise as a developer is
required to understand how they work and how they can be assembled with the
service they are expected to support the exposition of,

The MDD [47] approach deals with this limitation by dynamically aggregating
handlers in a NFP profile through a model. This method presents the benefit of
dividing the representation of the contextualisation strategy (i.e. NFP profile) from the
complete domain definition (i.e. feature meta model) and from the run
implementation of the strategy. This allows for more flexibility and reuse. However,
the code enacting each NFP cannot be shared and allowed to evolve (e.g.
reconfigured).

The SSB approach attempts to mitigate this limit by using distributed components that
can be invoked and configured to fulfil the NFPs. For supporting the exposition of
services in large scale distributed systems, this technique of using discoverable and
configurable network enabled components looks more efficient in regards of early
comments. Not only does it allow reuse and configuration for specific contexts but
through the use of a common transport layer it permits to keep track of what
components are used in what context. Furthermore, it authorizes the governance
infrastructure to audit the message exchanges and evaluate how the components
perform.

Yet these different techniques still present strong limitations. They necessitate an
additional layer in order to allow using a resource in different contexts. In addition,
they do not allow controlling the life-cycle of the NFP profile, which would bring
further flexibility. Furthermore, they each use their own set of NFP description
semantics which can be a limited approach when dealing with distributed resources
that can be deployed in different organisations or countries.

Tables 1-4 legend:

/ No support
L Light support
X Fully supported
(10)
7) NFP Reusable
d()ri tion | (8 NFP profile | (9) NFP profile &
ese g 1 description instance manageab
o le NFP
providers

36

MDD < B
Framework X X
SSB L L ! / : X
(14)
(11) Run (13) Life-cycle Semantica |
time (12) Domain | management of the 1y
aggregatio agnostic aggregation of described
n of NFPs NFPs componen |
ts ‘
MDD .
Framework L X / ~
|
SSB X / / L
(13)
Semantic
agnostic
MDD /
Framework
SSB /

Table 3. Comparison of approaches investigating adaptability of contextualisation

2.4. Safety of contextualisation

There is no work, as far as the author is aware, that targets the safety of
contextualisation processes or middleware for distributed systems.

However, the domains of contextualisation can be, in this context, divided into two
parts, the validity of the contextualisation strategy (c.f. NFP profile in section 2.3) and
the security of the message exchanges between the different components enacting this
strategy and the infrastructure supporting these exchanges.

In the context of this work, the optimal solution to support a flexible contextualisation
strategy is an aggregation of distributed and reusable components that can be
managed. Indeed, section 2.3 demonstrates that this approach is optimal to provide
adaptive contextualisation for SOA. In order to control the safety of this strategy it is
therefore critical to control what components are selected and the manner they are
aggregated. Dynamic selection and composition of distributed components, such as
web services, is a complex research topic on its own and will not be discussed here.
The reader can instead refer to key works in this domain such as [51] or [52]. It 1s
however noticeable that dynamic composition of services aims at bringing flexibility
about the services selected, as opposed to allowing defining and enacting a
contextualisation strategy.

SOA security will not be examined in this work as it is a complex research topic on its
own.

Tables 1-4 legend:

/ No support
L Light support
X Fully supported
(14) support for end (15) verify validity
of the
to end message level e
. contextualisation
security
strategy
SOA security X /
Dynamic
selection and / L
composition

Table 4. Comparison of approaches investigating safety of contextualisation

The present work does not aim at making significant contributions in these two fields.
It aims however at leveraging on them in this new context in order to provide an
enhanced investigation.

2.1. SOA Governance

SOA governance has been much talked about over the past few years. Industry
middleware actors (e.g. SOA middleware vendors, consultants) have been the biggest
sources of both hype and innovation [10].

The term “SOA governance” has also sometimes been treated as a marketing term for
the packaging of the set of features that allow managing and improving the visibility
of distributed resources. Such issues are well understood and solutions have been
researched and developed for the past 10 years. In fact, SOA governance frameworks
build on top of such work by addressing the need to make the supporting service
management and monitoring layer interoperable and introduce processes that allow
governing multiple interrelated services and policies in SOA deployments as one
whole.

ESB vendors, services deployment platforms and Service registry providers (e.g. HP,
IBM) include what they define as governance tools in their products. These products
such as HP Systinet with its Governance Interoperability Framework (GIF) [55] or
IBM WebSphere Service Registry and Repository (WSRR) [56] are mainly providing
service registry and metadata (e.g. policy) repository services along with their
supporting features. Some of these products also provide some support for service
versioning and policy as well as service management. These are valuable
contributions towards a common SOA governance specification. However, these
products only address the challenges of visibility and for some of them policy

administration and management which, although are central issues, do not provide
solutions for the problem of service provisioning. Indeed, preparing SOA assets to be
used by consumers in a flexible and efficient manner is a key aspect of SOA
governance as it allows reducing integration expenses.

2.2. Conclusions of background

The work surveyed in section 2, and the short history of integration techniques, can be
viewed as the basis to provide resource exposition governance in a flexible and
efficient manner. The surveyed work illustrates the need to design the architecture of
the governance infrastructure as a distributed system where elements can be
discovered, assembled and managed adequately. An aim of this work is to provide a
concrete architecture that allows for safe and flexible governance of resource
exposition in SOA as proposed in section 3.

Another area of interest that has focused on certain aspects of governance and that has
received more interest from the research community is the description of Quality of
Service (QoS) attributes, NFPs, services functionalities and architecture descriptions.

Several projects have looked into different ways of defining and expressing NFPs,
using either Architecture Description Language [57], taxonomy [58] or ontology [59].
Some of these projects do not target any precise type of IT systems [57], while a few
specifically investigate the domain of SOA [58]. As underlined at several points (c.f.
2.2.2, 2.2.3) in the previous section on related works, being able to describe the
different components of a dynamic system is a critical element. However the author
feels that this topic has already reached the stage where efficient descriptions of
architectures, services and their properties can be used. Additionally, as illustrated
several times in the aforementioned works, knowledge can be delegated to a specific
layer of an architecture.

In the next chapter, the research challenges for flexible and safe resource
contextualisation in a SOA are summarised.

2.2.1.Summary of research challenges
Large scale and dynamic service-oriented systems require a set of technologies and
mechanisms to be deployed in order to be rendered more easily manageable and
transparent through governance. A wide spectrum of complementary concerns needs
to be taken into account when designing such a solution.

The following challenges have been defined using the scenario described in section
1.1 and the description of the related works listed in chapter 2.

1. Reusability of integration layer. The different functionalities forming the
governance infrastructure and Value Adding Services (VAS) that may be invoked
should be adequately segregated so as to allow reuse.

2. Shared communication semantics. Interoperability is a key element in
middleware design.

3. Decentralised model. The governance infrastructure should enable a flexible
resource location mechanism where the choice of the resource depends on contextual
information in addition to the network endpoint of the governed services.
Additionally, the infrastructure should support resource virtualisation, policy
segregation and execution state in multi-tenancy usage scenarios.

39

4. Definition of SOA governance and related concepts. For the readers of the
concrete architecture it is critical to explicitly make the goals understandable.

5. High level description of key contextualisation elements and concepts. For the
concrete architecture to be implemented, its different elements and their relationships
must be made understandable.

6. Technical description of Kkey contextualisation elements and their
relationships. For the concrete architecture to be implemented, the way its different
elements can be designed and assembled must be defined.

7. NFP description model. A model or sets of models allowing the different elements
potentially entering in the resource exposition governance should be provided.
Alternatively or in addition, this type of model should be extendable.

8. NFP profile description. A resource provider should be allowed to express
resource exposition requirements.

9. NFP profile instance. A same profile description can be enacted using different
middleware. This includes allowing the selection of infrastructure capabilities and the
corresponding policy schemes.

10. Reusable & manageable NFP providers. When relevant, the different elements
composing a resource’s exposition and its supporting infrastructure should be
proposed in such a manner that they can be configured for the specific interactions
they required for. In addition, the use of reusable elements should be supported.

11. Run time aggregation of NFPs. The composition of the different elements
composing a resource’s exposition and its supporting infrastructure should be
supported at run time.

12. Domain agnostic. The exposition governance should not be specialised into a
specific kind of exposition attribute. Additionally, it should not allow governing the
exposition of only a specific type of resource.

13. Life-cycle management of the aggregation of NFPs. The composition of
reusable and manageable elements supporting the exposition of a resource should be
made manageable as a process. As such, the governance infrastructure should allow
for the management of its life-cycle.

14. Semantically described components. The different elements entering in a
exposition and its support should be adequately describe to allow for their automatic
discovery and usage.

15. Semantic agnostic. The infrastructure should enable translating its own internal
understanding of what are the objectives for specific governance instances into a way
that is comprehended by partners.

16. Support for end to end message level security. The proposed architecture
should ensure a safe exposition of the services. Potential clients or threats should not
be able to bypass the governance capability put in place due to one of its capabilities
failure (e.g. security, bad design).

17. Verify validity of the contextualisation strategy. A resource provider should be
allowed to express its needs in a clear manner that doesn’t leave any ambigulty as to
how the governance should enact them. It should also support communicating

40

governance requirements to trusted partners and ensure consistency persists between
the internal governance logic and what is advertised or agreed persists.

As shown in this section, there currently is no model, architecture or technology that
fulfils the aforementioned sets of challenges. Instead, vendors have a tendency to
aggregate the different products they have developed over the years that supports the
management of distributed resources and academic works tend to investigate specific
issues related to this topic. Finally the architectures and models proposed by open

groups of experts are too abstract and general to allow implementing such
middleware.

These challenges, coupled with leveraging the technical advantages discussed in the
previous section on background, led to singling out a specific architecture which,
according to the author experience and previous work in this domain (c.f. section on

summary of contribution) sufficiently address the core need of exposition governance
for SOA.

41

3. Anatomy of a SOA governance architecture

In Chapter 2, the author described relevant background and related works. Four main
areas, evolution of middleware, models and architectures, flexible contextualisation
and safety of contextualisation have allowed the identification of 17 research
challenges.

3.1. Introduction of the anatomy

In the following section, the concrete architecture for governance of safe and flexible
contextualisation of resources for SOA governance is presented. Initially, the author
defines the main concepts necessary to the good understanding of the anatomy’s
description. Next, the data structures used in the concrete architecture are presented.
Then, the components forming the architecture are described and categorised in either
a core category or a management category. Finally, the processes that link these
different data structures and components are shown.

This architecture is meant to be platform and language independent and no specific
tools or frameworks will be discussed in this chapter.

The elements defined in this section are derived from the knowledge acquired through
Chapter 2. Additionally, the implementation described in section 4.2 relies on the
concepts, data structures, components and processes described in the current chapter.

3.2. Anatomy concepts

Prior to the descriptions of the concrete elements forming the architecture it is
necessary to define several key concepts: capability, policies, processes, users, and
governance times.

3.2.1.Capability

Capability: a capability is a functional unit in the governance context. Each capability
is assumed to be capable of being deployed as a web service with its own service
management, policy administration framework (control pane) and operational
interfaces (data pane). Each capability is also policy driven as this permits
configurability and flexibility. The different capabilities are meant to have their own
distinct grammars and policy languages in order to keep their own advantages,
capacities and evolution potential in their respective domains. For instance, the
identity and access management can be separated and can use different grammars.

The interoperability issues generated by this situation are addressed at the messaging
level, which is in itself a core capability, and through transformations that are possible
thanks to transformation policies as shown in the transformation process step (section
3.5 point 7).

This also enables the interchange of core capabilities within their categories and
according to the research challenges specified in section 2.2.4 when necessary. Non-
core capabilities (e.g. auditing) can also be added through the same manner.

All capabilities are either a business or an infrastructure:

Business capability: This is an organisation’s traditional function (e.g. accountancy,
fleet management, credit check). It is exposed as a service and can be the result of an

42

aggregation of other business capabilities. In the case of the virtual music store
content providers are business capabilities.

Infrastructure capability: This is a supporting capability fulfilling non-functional
requirements such as identity management or access control. In an SOA, a set of
infrastructures are typically aggregated to support the exposition of a business
capability. Infrastructure capabilities can be segregated in two categories: core and
non-core. Core infrastructures are functionalities that are vital to the governance
- architecture internal behaviour, these are described in section 3.4.1. The non-core
infrastructures can include all type of non-functional property providers (e.g. billing,
audit, transport protocol).

Some capabilities may be treated as business in a context and infrastructure in
another. For instance, an identity management service in the virtual music store use
case is treated as an infrastructure as it provides a non functional property. However,
the identity management service can make use of its own exposure governance in
which context it is treated as a business capability.

Section 3.4 on Components anatomy presents the components specific to exposure
governance.

3.2.2.Policies

Policies are documents describing behaviours that capabilities or processes must
comply with. They typically comply with different specific standards (e.g. WS-Policy
[63], XACML). The main issues about policy in the governance framework are their
enforcement and the potential necessity to translate same policies into different
grammars (e.g. an access control infrastructure could be using either XACML or
SecPAL). In the following paragraphs, the main policy types of SOA governance are
introduced.

Profile policies: Profile policies identify and define policies or template that applies
within their domains. The most important ones will regard the dependences and
constraints related to the use of a profile.

Infrastructure capability policies: These policies are attached to particular
infrastructures and consider potential I/O metadata, usage and management schemes.

Business capability policies: The business capabilities are similar to the infrastructure
but for the possibility to assign exposure strategies to them.

Section 3.3 on Data structures anatomy shows the data specific to exposure
management.

3.2.3.Processes
A process is a procedure that uses the above building blocks in order to meet exposure
governance objectives. A distinction can be made between governance as well as
policy and service management processes. The management processes target policies
(e.g. authoring, association, enforcement, reporting) and services (e.g. publication,
exposure) and are outside of the scope of this investigation. The governance processes
aim at coordinating management and exposure governance processes.

Section 3.5 on Processes anatomy describes the processes specific to exposure
governance.

43

3.2.4.Users

User: the entity, physical or logical that uses a service. More concretely. in the current
context, there are three types of user:

Business or infrastructure capability administrator: these users should be allowed to
define their requirements and/or to specify the context in which their resources should
be exposed. They can also change the configuration of the profiles they want applied
to their resources. An infrastructure administrator can also change the description of
its resources or when relevant change the context (e.g. SLA, type of client) the
infrastructure will be available for.

For instance, a music content provider, as a business capability is administered by a
user. The same applies to an infrastructure capability such as an identity management
service.

Governance administrator: much in the same way as the capability administrators,
this user can modify the configuration or change the services that serve as core
capabilities.

Another system: as specified in section 2.2.4 on research challenges, there is a need
for automation of management tasks. Through the management interface, other
systems such as another governance middleware or a management tool can extract,
modify or deleted data (c.f. section 3.6 on Usage patterns). This type of access is
managed in the same way as human user in regards to security.

3.2.5.Governance times

This governance architecture targets two phases, the design and run times of the
capabilities which contextualisation it is meant to govern.

Design time governance: at design time, users are allowed to define their choices in
terms of exposition behaviour. This phase is illustrated in Figure 16 where a user
configures part of the governance to suits its needs.

Configures

Figure 16. Design time governance

Run time governance: At run time, the governance enacts the requirements specified
at design time and allows for the conversations between the business capabilities, and
its clients to take place. This is achieved by brokering the messages forming these
interactions and by aggregating infrastructure capabilities which provide the NFPs.
This stage is shown on Figure 17 where the governance middleware links the business
capability to a client and call infrastructure capabilities to supply the NFPs for the
interaction. In this case, the infrastructures are sitting somewhere in the Cloud [66],
but different options for their deployments are proposed in section 3.6.1.

44

o ""’:j 0
"4"'"'} Governance Client . Governance
| middleware B v message flows
\eeiniibireias/
h e %
Business | ; Infrastructure Business
Businesscap, capablllty | Infra. cap. I Capablllty message ﬂows
S =

Figure 17. Run time governance

The separation between these two stages is not always as clear as it appears in Figure
16 and Figure 17. Indeed, the need to re-configure the properties or the quality of the
enactment of an interaction can arise during run time and requires the governance to
at least partially fall back to the design time phase. Additionally, the registration of
new infrastructure capabilities can happen at any moment, so do the potential changes
in their configurations or in the content of any policy they make use of.

3.3. Data structures anatomy

Following is the list of the core data elements that take part in the governance model
and their properties.

3.3.1. Infrastructure profile

Infrastructure profiles are descriptors that define which aggregation of infrastructure
capabilities (e.g. security services, audit) to use for the exposition of a business
capability along with the different constraints associated with the use of these
capabilities. Each profile associates infrastructures with their corresponding policy
schemes, dependences (policy and service) and management processes.

In order to achieve this, the NFP requirements of the resource exposed are expressed
in a normalised manner in a profile document which is used to define the way the
resource is exposed. Figure 18 illustrates the schema that formally defines the data
structure of the profile description. The XML schema can be found in appendix 1 and
an instance of a profile can be found in section 4.2.4. In the following paragraphs the
different elements forming the profile data structure are defined. Element names are

45

given in bold and concrete examples following the virtual music store use case in
italic.

[Weram e —t

|
l altridutes
|

= s-p value

=z
E=7
——=F
—=—F

|
I
|
I
l
|
l
|
|
l
l
|
l
|
I
l
I
|
|
l

i
i i_u;rohle j
B attrdutes ‘
.. |
R T e

Figure 18. Illustration of the Profile definition XML schema

A WS-Profile is the top element of the description, it is uniquely identified by a
number. Concretely, a profile could be use to “expose a music content provider
service” in the context of the virtual music store.

The profile is composed of one-to-many Service Types that provides the top level of
abstraction from a capability functionality and categorisation point of view. An
examples of service types are ‘“identity management” and ‘“access control
management”.

Each service types can provide different Interfaces that allow to further decompose
the logical structure of the profile. Examples of interfaces are “management” and
“operational”.

46

The next level of decomposition is the Functionality which allow to differentiate

practical aspects of the same interface. Examples of functionalities are “‘user
management” and “token management”.

Finally, the Operations permit to describe concrete pieces of distributed software in
the most granular manner. Examples of operations are “add user” and “delete token™.

It is noticeable that the structure defined above matches closely the structure of
WSDL [33]. This reflects the SOA nature of the architecture proposed while allowing
users to define their needs in terms of NFPs as well as the governance system to
locate and classify capabilities.

All Service Type, Interface, Functionality and Operation elements listed above
inherit from a common element Activity. Activities allows to specify Constraints to
these elements. A constraint permits to define the data flow between the different
elements of the profile. For instance, before using an “validate token” operation, the
operation “build trust” is required to be used. In the same manner, data types
requirements can be specified. A certain “X4CML access control policy template’ can
be attached to specific “evaluate assertion” operation.

This granular approach aims to allow the definition of different levels of abstraction
when writing the profile. For instance, a music content provider administrator may not
be knowledgeable in security but trusts the governance provider to be. In this case the
first could specify in its profile a simple “service type” “security”. The governance
through the taxonomy describing the infrastructure capabilities would then be able to
refine “security” into “identity management” and “access control” and subsequently
build a concrete exposition profile. Similarly, a music content provider administrator
user requesting a profile could specify two “service types” “access control” and
“identity management” and leave the selection of the appropriate specific and more
technical choices to the instance of the governance architecture that is governing its
exposure. On the other hand a knowledgeable business capability administrator could
go as far as specifying the anatomy of “access control” infrastructure capabilities it
wants with specific “security policy grammar” and “policy templates”.

The author is aware that methods for dynamic service selection based on taxonomy or
ontology exist. These methods can allow functionality based selection as well Quality
of Service (QoS) and Service Level Agreement (SLA). However it is not the objective
of the current work to investigate this topic. The proposed approach is to provide
answers to the challenges of dynamic selection of infrastructure capability and their
aggregation.

Management plan: The management plan is a specific type of WS-Profile and is
provided by infrastructure capability providers and compiles the necessary steps
necessary to achieve in order to include provided activities. For instance, a “XACML
policy decision point access control” infrastructure capability provider can specify
that before using the “evaluate access request” “operation” the “operation” “build
trust” needs to be successful.

Coordination plan: The coordination plan is another type of WS-Profile tha_lt' is
progressively assembled and completed with the business capability exposition
profile. The coordination plan is an ordered list of management plans that need to be
taken into account in order to activate an instance of the profile. Additional
coordination plans can be provided for the different stages in a profile life-cycle:
deactivate, reactivate and remove.

47

In Figure 19, the different entities forming the profile and their relationships are
shown.

s

o

/""‘_“)""\..‘ P P
Service | \ { i \ A
Interface . i ‘ ; i
b] \ -unctlonalltyﬁ Operation

Aggregates

References

Coordination

plan

Completes

Management

plan

Figure 19. Profile description taxonomy

3.3.2. Context

Contexts are documents that allow the specification of a) a domain of
contextualisation and b) what is the data specific to this domain. Another document,
called a context selector, allows c¢) associating profiles and contexts.

Figure 20 illustrates the schema that formally defines the data structure of the context
description. The XML schema can be found in appendix 2 and an instance of a
context can be found in section 4.2.4.

Context specific data: The context specific data is a combination of data passed to
the profile instantiation by the business capability and data created by infrastructure
capabilities passed to others through the governance model in order to configure
them. For instance, when requesting security in the exposition profile, a music content
provider can pass its own “credentials” in order to complete the context. In the XML
context definition, this part is defined by the configData element, the target being the
activity in the profile the data applies to.

48

..................

4 ws-c:configData

'
'

Figure 20. Illustration of the Context definition XML schema

3.3.1.Context selector

Association of profiles and contexts: This document allows to link different contexts
to the profiles their associated with.

Domain of contextualisation: The domain of contextualisation allows the
governance architecture to recognise what a context applies to. The interception
domain is a combination of a potentially shared scope and state. This allows linking a
profile to business capabilities or message exchanges. This part of the context is
typically formed by a “transaction ID”, a “federation ID” as introduced in [53], a
WS-Addressing [62] “message ID” or even an operation type the profile instance is
required for (e.g. “request” or “response”). In the XML context definition, this part is
defined by the configSelector, the target being the identifier of the document
containing the selection logic, the data being the potential representation of the
selection logic (i.e. if it is a simple XPath in the implementation proposed) and the
operation being request, response or both.

Up time: This element allows specifying the availability of the exposition. For better
performance, the profile and exposition logic can be requested to be maintained “al/
the time”. Alternatively, the exposition logic can be maintained “only when relevant”
or at “precise dates and times”. In the XML context definition, this part is defined by
the upTime, the type allowing to define periods the profile will be maintained for.

Figure 21 illustrates the schema that formally defines the data structure of the context
selector description. The XML schema can be found in appendix 3 and an instance of
a context selector can be found in section 4.2.4.

49

| ws-cstContextSelector

B attributes

|
|
I
|
|
|
I

Ews-cs:proﬂle '

1
Fws -csiinternalTarget

ws-cstValidity

[! ‘asssssmecasas
(==b g il

% attributes
" s costartdate

ws-csiSelector

—l ws-cs:configSelector :‘
1@

Figure 21. Illustration of the Context Selector definition XML schema

3.3.2.Summary of the data structure descriptions

Each exposure, with its data flows, dependencies, policies and management processes
is defined through the three data structures defined above: profile, context and context
selector. These elements, together with the capabilities they are attached to along with
their relationships are recapitulated in Figure 22.

Figure 21 illustrates that a profile instance is formed by the combination of a profile
and contextual data. This contextual data is divided into two categories: profile and
capability oriented.

Is exposed in

Business
// capability
/ Context Aggregates
4 ' Infrastructure
n’l"'.,, capability |S a
Profile instance o
1 Capability

References

Policy
" template *

Figure 22. Governance data model concepts and their relationships

3.4. Components anatomy

In the following chapters, the capabilities forming the governance middleware are
described. In a first time, the core and non specific infrastructures are listed and their
purposes in the current context explained. Subsequently, the key infrastructures that
are the profile management capabilities are described in more detail.

3.4.1.Core infrastructure capabilities
The core capabilities are the working base of the model as they each provide specific
functionalities that are necessary to the execution of either all or part of the
governance.

Following is the list of the governance model core infrastructures and their basic
properties. It is noticeable that all these capabilities, are not specific to the governance
anatomy. Therefore, describing them in details is out of the scope of this current
investigation.

User interface: the user interface is a set of capabilities that allow users (e.g.
administrator, other system) to access parts or all functionalities of the governance

middleware.

Access control: An access control infrastructure is used in order to check
authorization. It generally consists of a specialised service that checks security
assertions against access control requests. This is typically achieved through the use
of access control policies and security assertions written in specialised grammar such
as XACML [60] or SecPAL [61].

The role of the access control capability in the governance anatomy is to ensure end to
end control of the massages’ content access.

Identity management: The role of the identity broker is to allow users to identify
themselves. Authentication of the entity that acts as user is indeed a key aspect Qf
SOA where different domains (e.g. companies, branches) will interoperate. This is
generally accomplished by using security tokens. Depending on their anatomies,

51

security infrastructure capabilities can provide both access control and identity
management.

The role of the identity management infrastructure is to ensure that the different
capabilities and users are indeed who they claim to be.

Message interceptor: The message broker, often called the mediator, acts as an
intermediary between two points. It can receive messages from multiple destinations,
determine the correct destination and route the message to appropriate channels.

The role of the message broker is to allow the exposure governance infrastructure to
be seamlessly placed between the business capability and its client. Additionally, the
message broker allows the deployment of context based routing in order to assign the
relevant profile to a specific context.

Event notification engine: This capability allows infrastructures to send notifications
about a change in their states. For instance if a policy is changed, all capabilities that
depend from it will be informed.

The role of the event notification capability is to allow different infrastructures to
learn about a change of state and update their own behaviour accordingly.

Metadata repository: Often referred to as a policy store or simply a repository, the
role of this infrastructure is to allow storing metadata such as policies, taxonomies or
ontology. Together with the service registry, this is the most commonly found element
in existing governance solution.

Policy management: The policy management is a set of capabilities that allow
manipulating policies (e.g. apply metrics, detect and resolve conflicts). The author
assumes that policy management capabilities are provided and their specific
characteristics are left opened. Policy management is a complex topic in itself that is
investigated in both academia and industry. Throughout this document, as stated in
section 3.2.2, policies are meant as statements that define and constraint some aspect
of a capability’s behaviour.

Service registry: The service registry is a repository where Web services are listed.
On production of their credential, users and systems can then discover the services
which are potentially organised in different categories.

Service management: Service management comprises a set of capabilities that allow
manipulating (e.g. configure, instantiate) services and when relevant their instances.

3.4.2.Profile management infrastructure capabilities

The management model supports the interactions between the different elements of
the infrastructure. The main elements of this layer are the user interface, the profile
management, policy management and the service management services. In this
section, the author will describe the profile management and define its links with the
user interface, policy and service management capabilities.

Profile management: Profile management represents the key element of this research.
It aims at allowing the administration of profiles life-cycles and connects to the other
services in order to so. This is done to guarantee that profiles are defined, enabled,
monitored and disabled when relevant in agreement to user’s needs and
infrastructures requirements.

n
to

Figure 23 presents a top level view of the profile management infrastructures together
with the user interface, management infrastructures, registry and repository alontf with
their relationships. On this figure, it can observed that through the user imer?’ace a
user can define a profile and specify a context. This data is then sent to the profile
management that stores it in the meta data repository. When relevant, the policy
management infrastructure performs tasks related to policies such as indicating and
fixing inconsistencies. The profile management is also connected to the service
management, which enables tasks related to capability selection and usage. The
service management is connected to the service registry which stores ca~pabilitv
specific data including the location of the infrastructure capabilities. '

-

R

Metadatarep

Select profile
type

Policy mgt.

I
k o N\ I - ” 2 i
v :‘l'u} . - é
e S | I ! s !
ol 1 e, o,
| v_wf p

Interface

I

|

: o

\ ‘ \\J/

| XML
I

|

|

|

Specify context!
I

e

I
I
I
I
I
1

Clientdomain . Governance domain Infrastructure domain
|

po—— : =
I - Infrastructure Service &’ | Policy
; I capability management JML [management
l. Infra. ’ Policy mgt.

uu Metadata repository & Profile

: Service registry management

Rep. & Reg.

Figure 23. Architectural diagram of the governance framework — interactions at design time

In the following paragraphs the components related to profile management are
described in more detail.

Profile initiator: The first step of the profile management is to translate the external
request, received from the user interface, into the grammar used internally by the
components described in section 3.3. This flexibility in terms of language is meant to
bring an increase level of adaptability towards specific domains or types of users.

In order to allow for different grammars to be used, this component is based on the
abstract factory pattern [67]. The factory proposes a set of different functions that are
implemented by the instances and profile specific implementation for each case.
Using services allows improving the flexibility of the system by permitting physical
distribution as well as reuse of existing software.

The expected core functions of the profile initiator capability are illustrated in Figure
24.

«interface»
Profile initiator
+CRUDProfile(in profile_representation, out acknowledgement)
+CRUDContext(in context_representation, out acknowledgement)
+CRUDContextSelector(in context_selector_representation, out acknowledgement)

Figure 24. Profile initiator interface description

All the functions on this component (Create, Read, Update, Delete profile, context
and context selector) allow external users (e.g. human administrator, other governance
system) to interact with the documents holding the governance data.

Figure 25 illustrates how the factory pattern can be used in order to provide support
for natural language processing, an abstract profile grammar and a profile name or id
selection query system.

o
/A

Natural language

o] LD

L Profile ID

|

Grammar spe.
Interface fact.

_ Abstract profile

Figure 25. Management interface overview

Profile composition: The profile composition eng.in_e. selects the infrastructure
capabilities according to the requirement given by the initiator. The component works
recursively to deal with dependencies. At different stages of the infrastructure profile
life cycle, this engine will select infrastructures at dlfferent levels of abstraction, more
abstract (e.g. category in the taxonomy) at the beginning and more concrete (.g. Web
service) towards the enactment stage.

The core functions of the profile composition capability are illustrated in Figure 26.

«interface»

Profile composition
+composeAbstractProfile(in profile_reference, out abstract_profile_reference)
+composeConcreteProfile(in abstract_profile, out conctrete _proﬁle_reference)
+verifyProfile(in profile_reference, out acknowledgement)
+bindProfile(in profile_reference, in context_reference, out acknowledgement)

Figure 26. Profile composition interface description

The compose abstract profile function permits the definition of a complete and safe

profile at the abstract level (e.g. without the concrete services). This process is further
described in 3.5.1, 3.5.2 and 3.5.3.

The compose concrete profile function serves the same purpose as its abstract
counterpart but with the selection of concrete services that enact the infrastructure
capabilities required. This process is further described in 3.5.4 and 3.5.5. Given the
sequential nature of the profile composition process it is possible that an abstract
profile cannot be composed into a concrete one. This may occur when no service
implementation is available to enact a service type described in the abstract process.
In this case, mediation over the nature of the abstract process and whether it can be
modified has to take place between the Business Capability owner and the
Contextualisation Governance provider.

The verify profile function allows to go through the elements (e.g. dependencies,
usage policy) forming the profile in order to insure the completeness and safety of
execution.

Finally, bind profile is the function that connects the profile to the business capability
whose exposure it manages.

Profile composition management. When the composition engine has deemed a
profile to be complete, with no gap in the data flow, this one is sent to the profile
composition management. Upon reception, this one starts creating the profile
coordination plan to be able to manage the different infrastructures together.

The core functions of the profile composition capability are illustrated in Figure 27.

«interface»
Profile composition management
+composeAbstractCoordinationPlan(in profile_reference, out coordination_plan_reference)
+composeConcreteCoordinationPlan(in profile_reference, out coordination_plan_reference)

Figure 27. Profile composition management interface description

The compose abstract coordination plan builds the coordination plan at the abstract
level.

Compose concrete coordination is its counterpart at the concrete level.

Profile life-cycle management: The life-cycle management supervises the profile life-
cycle. It contacts the composition engine management when it's been informed that a
profile is ready to be instantiated (by the management counterpart) and according to
the up time agreement, requires the composition management to start the instantiation
according to the coordination process built by the profile composition management.
Additionally, the life-cycle management can request update(s) from the composition
engine when necessary (e.g. service not adequate anymore, etc).

The core functions of the profile composition capability are illustrated in Figure 28.

«interface»

Profile life-cycle management
+activateProfile(in profile_reference, out acknowledgement)
+deactivateProfile(in profile_reference, out acknowledgement)
+enactProfile(in profile_reference, out deployed_profile_reference}

Figure 28. Profile life-cycle management interface description

55

Activate profile allows to start and register the status of an exposition logic, deactivate
profile enforces the opposite. Both of these functions should assume that the profile is
ready to be used and expose the business capability when called.

The enact profile function is called in order to the finalise the instantiation and
exposed the profile enhanced business capability.

Profile selector: When relevant, the profile selector chooses the relevant profile using
a set of given parameters. Typically, the parameter is the context, however different
cases can arise when the profile selector can request the life-cycle management to
verify the profile and react accordingly. This separation of concern between the
profile selector and the life cycle management and the fact that the profile selector
advises its life-cycle counterpart, allows for different selection mechanisms that can
specialised according to data and environment.

For instance, when an event specifying that an used policy has been changed in an
infrastructure capability is triggered, the selector can then decide what profile it
should ask the life-cycle management to review first. This selection could be based on
how much resource (e.g. network, number of infrastructures involved) the different
active profiles use, for performance reason, or what is the SLA with the different
users involved.

The core functions of the profile composition capability are illustrated in Figure 29.

«interface»
Profile selector
+selectProfile(in context_reference, out acknoledgement)
+selectProfile(in parameter, out acknoledgement)

Figure 29. Profile selector interface description

Both select profile function of the profile selector infrastructure allow deciding on
what particular profile is relevant. In the top example, the context is used to make the
selection.

3.4.2.1. Service management requirements

Service management infrastructures are less commonly encountered pieces of
infrastructure than their policy management counterparts. In this regard, the author
felt it necessary to define the key requirements and expectations from the exposition
governance point of view.

As underlined in section 3.2.1 in the definition of the concepts, capabilities are
expected to be manageable when relevant (i.e. when it is sensible for configuration,
performance or security reason).

The capability management component should be comprised of a) a capability
instance factory, b) a capability selector factory and c) a capability management
factory. These three elements respect the abstract software factory pattern in order to
allow for a more flexible support of additional types of capabilities.

The management and instance factory elements are used to configure (e.g. setup with
context aware policy) and/or replicate a capability (e.g. copy service onto another
server). The latter is particularly useful for infrastructure capabilities that may have to
deal with heavy workloads (e.g. included in many or demanding profile instances). or
different requirements (e.g. a Service Level Agreement could necessitate high

56

availability). The management interface takes advantage of a management layer of a
service, typically implemented using WS-DM [68], in order to configure the said
service. This is also useful for infrastructures such as security service which require
some sort of interaction and configuration before they can be used.

The selection factory allows selecting capabilities according to specific characteristics
and grammars.

In Figure 30, the three functions previously introduced are illustrated along two
examples of factories for each. The capability instance factory is implemented in two
different manners, one making use of the Apache Muse [69] software, the other one
indicating that capabilities provided through it cannot be instantiated. The capability
selector instances drawn suggest that a QoS based and a user experience based
selections are available. Finally, the manager factory illustrates the choices between a
WS-DM and custom based remote capability management.

dl

Metadatarep.

A | a8 dl

Service reg.

Service management ﬁ Service management
wsoM | instance
manager

Figure 30. Service management overview

N
~J

3.4.3.Summary of the components descriptions

Profile management is divided into two main logical domains, the profile consistency
management and the profile life-cycle management.

These domains can be respectively split in several steps: defining the infrastructure
capabilities, the policy templates, the service dependencies and the information flow
for the first one and defining the profile management process as well as publishing the
infrastructure profile for the second.

The first aim of the profile management is to manage the life-cycle of the profiles.
This consists in allowing the profile to be defined, instantiated, maintained accessible.
updated and deleted.

In addition to the profile instance’s life-cycle management, an important task that is
attributed to the profile manager is to handle the adaptability of the profile instance.
This feature is needed to allow for an efficient interchange between the infrastructures
used.

Additionally, together with the policy management infrastructure, the role of the
profile management is to determinate the best possible way to achieve the profile in
the context requested. The decision making process is based on the requirements
given by the user, the capabilities held by the system along with their associated
constraints and the information contained in the context. The degree of automation of
this activity is directly related to the quality of the data held in the other core elements
as introduced before.

The principal components of the profile management are illustrated in Figure 31.
Please refer to Figure 23 to see the external connections. On this figure, the main
expected functionalities of the service and policy management are illustrated.

Define abstract proﬂle! \ ? i

L Metadatarep.

&

Profile initiator

Select mfrastructure

[2](31(4]

1
I
|
I
I
|
I
I
I
I
i

Profile
composition mgt

Profile life-
cycle mgt.

Profile selector

Governance domain

Profile management sub-domain

Figure 31. Profile management overview

This distribution of roles and the potential hierarchical anatomy of the model is meant
to reflect the unreliable nature of distributed systems where components. here
infrastructure capabilities, are provided by third parties and may not be always
available or present in the same state.

In this section, the author described the infrastructure capabilities forming the
exposure governance architecture. The roles of these infrastructures and their
communication interfaces have been defined. In the next section, the governance
processes that allow the infrastructures to work together are explained.

3.5. Processes anatomy

In the previous section, the author described the infrastructure capabilities forming the
exposure governance architecture. In this section, the governance processes that allow
the infrastructures to work together are explained.

The steps that lead to the creation of a safe and sound infrastructure profile are listed
in the following paragraphs along with the components they involve. Concrete
examples illustrating all the steps are shown in chapter 4 on implementation.

3.5.1.Define infrastructure capability

The first phase of the life-cycle is to gather all the information available about each
infrastructure type listed in the profile formed by the profile initiator.

This task is enacted by the profile composition infrastructure capability and only
targets infrastructures that are explicitly mentioned in the profile description
document.

This phase is typically activated by the profile life-cycle management infrastructure
upon reception of a request from the profile selector. In the case where the availability
of the profile is specified to be permanent, the profile life-cycle manager is sent a
request for profile activation upon the submission of a profile and of its associated
context and context selector by the profile initiator.

This phase is divided in four steps as follows (steps illustrated in Figure 32):

1. Define service description: in the taxonomy used to categorise infrastructures,
this corresponds to the type. The operation is repeated for each capability in
the profile.

2. Define capability policy scheme: this information is held in the constraints of
the infrastructure type.

3. Define capability usage policy: this information is held in the constraints for
the data flow part.

4. Define capability management process: this information is held in the
management plan.

59

Profile life-cycle management Profile comoosition -
_activateProfile LomposeAbstractProfile N eSerondaty
getServiceData
| {)
A L
compose profile :
define service description l
returns valid service description

— Ak~ ——————————— -~
0 T
define capability palicy scheme r

returns vald capability policy scheme

K~ Kk~~~ — e
0 T
.) =

define capability usage policy
returns valid capability usage policy

K— A e o
0 T
: : ! proces B

define capability managenwn! process
retumns valid capability management process
retums composad profile referance (- T T T

— =
1

e e e e -

|

]

]

| !

Figure 32. UML sequence diagram of the define infrastructure capability governance process

All this data is supplied within the profile description taxonomy depicted in section
3.3.1. This taxonomy is strictly based on the requirements of this research. The author
takes into account that more advanced description techniques such as ontology based
ones could be used. However complex the description is, these four basic steps remain
and would be subdivided in more technology specific ones.

It is assumed that the infrastructure providers have registered their infrastructures
correctly.

3.5.2.Define policy templates

The second phase aims at getting more information about each infrastructure’s type
policy templates and how to manage them. Amongst this information, the meta-data
transformations specify how to translate data from different grammars and policy
types into this particular type.

This step is also performed by the policy composition capability when composing a
profile (stages illustrated in Figure 33).

5. Select capability: the operation is repeated for each capability in the profile.

60

6. Define policy template: the policy templates are held as constraints in the
capability descriptions when relevant.

7. Define domain of meta-data transformations (/o meta-data): this step looks

into the data flow of this activity in the profile description and define if a
transformation is required.

8. Define policy management processes: when a transformation is required, the
profile composition looks for such transformation in the infrastructure
repository. This is achieved by looking at the data flows and usage of the
infrastructures registered as translators. Upon selection of the appropriate
translation infrastructure, this one is inserted accordingly in the profile.

Profile composition Service management Service management :

composeAbstractProfile getServiceData capabilitylookup

] I

| 1

M |

|

> select capability :

|

|

define policy template(s)
A
7
/
” e

AN
So > verify data flow
=

¥
|
|
i
J
[
[
|
|
I
|
I
/ retums policy template(s) :
1
[
|
1 I

[I

i 1

1 |

I i

> define domain of meta-data transformations : :
i 1

I 1

|

]

1

1

define transglation

retums transtation infrastructure reference

e e e —

> updates profile description

-
|
Figure 33. UML sequence diagram of the define policy templates governance process

In a similar manner as in the previous stage on infrastructure type definition, this data
is provided by the profile taxonomy when infrastructures are regls‘tered. Based on Fhe
level of complexity of the semantics used in an implementation, transforrnathn
strategies could be generated by the policy management capability. However, this
level of automation is both potentially complex and resource demanding and the

61

author assumes that it is more realistic for the translations to be provided as
infrastructure capabilities.

3.5.3.Define infrastructure capability dependencies

Once all the infrastructure types provided in the profile request have been defined and
their policies identified, the profile composition engine verifies if the profile is safe
and complete. In order to achieve this, this capability works recursively and identifies
potential gaps in the data flows and infrastructure usages. The capability management
process and usage policy are parsed and check for consistency against the other
infrastructure capabilities present in the profile at this stage. For instance, if an access
control capability type is present at this stage, depending on its anatomy, it may
require an external identity management infrastructure. In this case, this relationship
would be present in the usage or management policies of the specific access control
capability category. The stages forming this step are illustrated in Figure 34.

9. Select infrastructure capabilities: the operation is repeated for each capability
in the profile.

10. Define operation bindings: at this stage, the data flow is checked, the data
should pass from a capability’s operation into another operation without any
gap. If a gap is detected, the missing operation is looked after and the profile
composition capability goes through steps 3.5.1 and 3.5.2.

11. Define capability invocation pattern: for each operation registered in the
profile, when relevant, an invocation pattern is available and defines what
potential other operation would need to be invoked before it. This type of data
is stored as a constraint when the infrastructure is registered and defines it
behaviour. If a dependency is detected, it is looked after and the profile
composition capability goes through steps 3.5.1 and 3.5.2.

12. Validate capability dependencies: for each step in the profile this stage checks
if both steps 10 and 11 defined above are fulfilled.

62

Prof P e m Serv
composeAbstractProfile getServiceData capabili) :
capabilityl ookup
) i
|
A I I
1 |
1 1
select infrastructure capability 1 1
define operation bindings :
|
|
retums operation bindings :
e g e '
:]
o
; define missing operation
1
I
{
retums missing operation reference
e o s o - - - ——— - - - —

define capability invocation pattern

returns capability invocation pattern
i

0

define missing capability
i

> validate capability dependencies

|

Figure 34. UML sequence diagram of the define service dependencies governance process

—TTTT == = "r

retums missing capability reference

Following step twelve, the profile is stored and deemed safe and complete at an
abstract level by the governance.

3.5.4.Define information flow
At this stage specific services enacting the infrastructure capability categories listed in
the profile are selected. Additionally, the manner in which these services are
aggregated and the transformations needed in order for the relevant data to pass from
one to another are confirmed and validated.

13. Select infrastructure capabilities: the concrete service implementing the
infrastructure required in the profile is sought.

14. Define policy meta-data transformations: the meta-data transfonnat%on
specific to the service are resolved in the same manner as defined in section
3.5.2. It is noticeable here that according to how the semantics describing the

63

profile and the potential infrastructure forming it are defined, this stage could
be useless.

15. Validate policy dependencies: in the same manner as the previous stage for
meta-data j[ransformatlon, this stage looks into dependency validation specific
to the service as 3.5.3 at the infrastructure category level.

By step fifteen, the profile is a set of defined and ordered infrastructure capabilities
along with their specific management plans.

3.5.5.Define profile management processes

With a complete list of what services will allow enacting the profile, the profile
composition management capability attempts to order the management processes and
define an implementation strategy, named coordination process, which orders the
operations needed in order to create the profile instance.

16. Select service management processes: for each service, the profile
composition management infrastructure gather the management plan.

17. Select policy management processes: in a system where policies are managed
through defined and enforceable management processes, the later are also
obtained.

18. Define coordination process: the different services management plans are
correlated and duplicates when they exist are removed.

19. Bind management processes & coordination process: the coordination plan
document is assembled.

20. Validate dependencies: finally, the coordination plan is checked for
completeness.

Upon completion of the coordination process, the different management processes are
attached to it at their relevant positions. Following this, the profile instance is sent
back to the composition engine for validation.

Step twenty signifies that the profile is complete at the concrete level; it contains
information related to what services will be used, how to configure them and how to
pass data from one operation to the next. In this state, it only lacks contextual data to
render it operational as required.

These steps are summarised in Figure 35, where the transformation of profile into
profile instance with specific services fulfilling the infrastructure capabilities can be
visualised.

Define profile
management
process

. fDEf'"e Define policy Define capability
e templates dependencies ‘i
capabilities 7/

B LT T T ——— B T T T —— - -
-

: X X

s 5 DL D\ &
Defm.g RN Deflr}g Y Define . Definecapability >,
capability /> capability /) capability ‘1) management >
description /%’ policy scheme ,,’/ usage /5 process ’

Define
infrastructure
capability

v /
’

. ' T —————
N Define domain of ™

N

,,’s meta-data

VY ,,'/ transformation 4 process 5
4 s’

Define policy

Select ‘\\\ Define
templates

capability

Define capability

. Define | W o e
Select 2 e N Define N8 Validate 0N
dependencies

> : N 3 e
? capability [operational 74y capability > capabilty)
,l',' binding 77 usage ,4?" dependencies . 4

1
N 1
]
i
1
1
1
1
1
1
1
1
)
N\, 24
\\‘]
N
° 1
o]
&]
2 |
-
g2)
3 I
° 1
o 1
® 1
)
1
1
1
1
1
1
I
1
]
]
|
]
/,
2
N\ /7
N
\"I
(w]
28
g
o°§'m
39
7’
’
‘I

Define

i . . Select Define meta-data Va"‘:‘“e
informationflow |2 capability transformations policy "
SEChit - dependencies

Define
coordination
process

Bind management
& coordination
processes

Define profile
management
process

Select management
processes:
capability + policy

Validate
dependencies

Figure 35. Infrastructure profile creation

Once a profile is complete at the concrete level, the next stage is the instantiation.
Finally, the business capability can be enhanced with the instantiated profile and
exposed. This separation of logic insures that a profile can be reused with different
services. Additionally, the enhanced service is only used in the particular context that

is relevant to its specific users.

Once a profile has been validated (c.f. steps from one to twenty), it can be used in
order to allow the exposition of a business capability. The following steps define this
process.

3.5.6.Select infrastructure profile instance

The first stage of the business capability exposure sees the profile selector component
choosing the relevant profile instance. The selector then contacts the profile life-cycle
management, which upon receiving the request of business capability exposure,
requires the profile composition engine to define how the capability and profile
instance work together. The stages forming this step are illustrated in Figure 36.

1. Discover infrastructure profiles: this step makes use of the context and
context selector to find the relevant profile(s) associated with the targeted

exposure.
2. Select infrastructure profile(s): the relevant profile is selected.

3. Define bindings to business capability: the goal of this step is to define how
the business capability will be linked to the instantiated profile. Concretely,
the data flow between the business capability and the profile needs to be
completed.

4, Validafe servi?e dependencies: The previous step that looked into how to
operationally link the business capability to the profile may have necessitate

the inclusion of an additional set of capabilities. This step insures that this new
addition is safely made.

oo roding : Erofle ¥e-ycle mermosment Erosle composigon |
2 o s S
t : ' T
request govemance T ! 1 :
1 I]
I [}]
I [} i
> associate context wih profile(s) |l : |
]
I [} 1
|] |
select profile 1 []
I |
t !
]]
returns profile referance !)
_______________ i |
= 1 1
] i
reques! business capability exposire T !
1)
i |
t |
: request bindng to business cap
|
LJ [}
: : retums acknowledgement
;) e m e mm -
1 |
: 1 [}
1 1
: : validate serace owond'maos
’l returns acknowledgemant !
S I, !
1 Nl |]
. . i i
] [}
I 1

Figure 36. UML sequence diagram of the select infrastructure profile instance governance
process

Due to the relatively unreliable nature of such a large scale distributed system where
different entities provide components it is necessary to insure that the profile is still
complete and can still be instantiated.

3.5.7.Define service-specific policies

Steps five to seven allow the profile composition engine to refine the different
policies with the business capability data when relevant. This is the first step towards
the contextualisation of the profile.

5. Select infrastructure capability: This step is repeated for each infrastructure in
the profile.

6. Refine policy template: Existing templates are instantiated with contextual
data found in the context document.

7. Update service policies: The previously filled template is then pushed to the
service through its management interface when relevant.

3.5.8.Define information flow

The same actions are then taken with the transformation strategies in the next three
steps. This is made to insure that the transformations are adequate and match the filled
templates.

66

8. Select infrastructure capabilities: This step is repeated for each infrastructure
in the profile. F or performance reason, an implementation could here decide to
only take capabilities where translations are required into account.

9. Refine 1_Jolicy meta-data transformations: The existing transformation
template 1s here refined with context specific transformation logic.

10. Validate policy dependencies: Once again, the profile is checked for
completeness and safety. For performance reason, an implementation can

decide to either skip this step or target the specific infrastructures that the
previous step 9 looked into.

3.5.9.Define service exposure management processes

This phase defines how the profile enhanced business capability is going to be
exposed. The goal is to identify the chronological list of actions that need to take
place in order for the service exposure to take place in a safe manner.

11. Select profile management processes: All the management processes are here
selected again.

12. Select business capability management processes: the same is done for the
management processes relevant to the business capability.

13. Define coordination process: The coordination is validated and completed
when a gap in the data flow in found.

14. Bind management processes & coordination process: At this stage, the
business capability management processes are included in the profile
coordination.

15. Validate dependencies: The latest stage may have introduced new
infrastructures or translations, the dependencies are therefore validated along
with the overall data flow of the exposition logic management process.

3.5.10. Publish service instance

Finally, the coordination plan is executed, the different infrastructure configured and
their bindings is done. Additionally, policy stores are updated and the business
capability, now enhanced with the appropriate NFPs, is published.

16. Update capability policy stores: The goal of this stage is to update policy
stores with contextualised versions of the templates when relevant.

17. Update infrastructure bindings: During this phase, the specific bindings for
each service enacting an infrastructure capability is defined and updated.

18. Expose profile enhanced business capability to service endpoint: The
instantiated profile and the business capability are exposed as a service.

19. Publish service: Finally, the enhanced business capability exposed though the
instantiated profile is advertised as relevant and awaiting traffic.

The process of refining the policies with the contextual data and the exposition of the
governed business capability are illustrated end the profile management. These sFe.ps
that allow contextualising the profile and publishing the enhanced business capability
are summarised in Figure 37.

67

Define
information flow

Define capability
exposure
management process

Select
profile instance

............ = ey
Selagt \“\‘ Define profile \“\ Validate \\\

profile instance aciect profile /,') binding to /2> capability 4
,,,', capability /:/ dependencies I,’

Refine Validate y Validate

information flow infrastructures meta-data policy capability
transformations dependencies dependencies

Define capabili
expos’:lre i/ Pt L go EXSOSE’ bilit
4 S verned capability
|
management process pojcy sioee pRiICIE endpoint

Figure 37. Business capability exposure

3.5.11. Summary of processes anatomy

The four main stages of the governance life-cycle are illustrated in Figure 38. In stage
one, the profile is prepared and made ready to use in a specific context. At stage two,
the business capability and exposition context requirements and conditions are
inspected and prepared. Later on, at stage three the profile is refined and adapted to a
specific exposition context. Finally, the instantiated profile and business capability are
bound together and exposed to users.

The proposed approach divides the governance process in logical steps which are
enacted by specialised components. This permits increasing the flexibility and
reusability of the exposition logic as well as supporting the high level of distribution
of the infrastructure as a service paradigm.

68

O > Define profile Publish profile
Select Define
business exposure

capability

context

it L v
R e

Figure 38. Governance life-cycle

3.6. Usage patterns

In this section, the different situations the architecture described in the previous
sections can be used in are presented. Segregation is made between the deployment
options for the deployment of the infrastructures forming the governance middleware
and the usage of the governance itself.

3.6.1.Infrastructure capabilities deployment patterns

The core capabilities deployment patterns define how these capabilities are physically
deployed. This impacts the governance middleware in terms of performance, ease of
maintenance and accessibility for the capability providers.

Distributed pattern: In this pattern, the infrastructures are distributed over the
network. This pattern is used in the Virtual music store scenario presented in section
42.1.

Hub and spoke pattern: In order to reduce potential network latency or insure that
the physical location of the governance middleware is suitable for the workload it is
meant to handle, it is possible to deploy the core infrastructures at the same location.

Standalone pattern: The stand alone pattern encompasses that all infrastructures
potentially used in the governance are at the same location. This pattern can be
required when the context requires that the traffic network be minimal.

These patterns can be applied in an assorted manner. For instance, an environment
where the security related infrastructures are going to know of be very demanding
could take advantage of having only these specific capabilities deployed in a
standalone or hub and spoke pattern, with the rest of the infrastructures distributed

over the network.

3.6.2.Governance middleware deployment patterns

Governance patterns identify who has ownership of the governance mi.dd'le\\'are
configuration, the responsibility to monitor events and transaction characteristics and

69

therefore who defines and authorizes changes to the existing middleware. In addition

this defines who decides when and in what conditions new infrastructure services can
be added.

The patterns described in the following paragraphs are derived from studying how
other pieces of middleware such as brokers, message queues or Enterprisé Service
Buses (ESBs) are deployed and used.

Approaches to governance middleware deployment patterns range from internal to
federated: E

Internal governance: All the interactions requiring governance may lie wholly
within the organisation’s perimeter and not be accessible from outside of it. For
example, a single entity may span over several sites or country where each area uses
different software with different transport protocols or interface styles.

Business
capability

Business
capability

Business
capability

Business
capability

Organisation perimeter

Business
capability

Figure 39. Internal governance pattern

Perimeter governance: All business capabilities lying within one organisation are
made accessible to other organisations through the governance middleware. This
situation may arise when an organisation wants to leverage on the governance
middleware to expose its business capabilities to potential partners in a more flexible
manner than internally. This pattern is the one used in the Virtual Music Store
scenario in section 4.2.

70

Business
capability

(Organisation perimeter

Figure 40. Perimeter governance pattern

Shared governance: The business capabilities for which interactions are governed
belong to cooperating organisation that share the governance middleware.

&)

(Organisation perimeter | 1
Figure 41. Shared governance pattern
Federated governance: In this pattern the organisations governance middleware are

federated. The interactions between business capabilities inside of this federation can
take advantage of the collaboration between the governance middleware.

Figure 42. Federated governance pattern

71

These patterns can be applied as such, but they can also be mixed with one another.
For instance, an organisation could use the internal governance pattern within its
perimeter and the perimeter pattern to expose by default its business capabilities. The
same organisation could still choose to make use of both shared and federated
governance patterns for specific situations or partners.

3.7. Summary of the anatomy

In this section, the concrete architecture for governance of safe and flexible
contextualisation of resources for SOA governance was presented. Firstly, the author
defined the main concepts necessary to the good understanding of the anatomy’s
description. Next, the data structures used in the concrete architecture were presented.
Then, the components forming the architecture were described and categorised in
either a core or a management category. Finally, the processes that link these different
data structures and components were shown. Additionally, the governance
architecture usage patterns were briefly described.

In the chapter 4, the author will describe how the architecture presented in this chapter

was implemented in a concrete example of virtual music store as presented in chapter
1.1.1.

72

4. Implementation of resource contextualisation
governance

This chapt.er describes the implementation of the concrete architecture for resource
contextualisation governance in SOA defined in Chapter 3. The implementation is
used in the context of a Virtualised Music Store as presented in 1.1.1. Finally, a series

of tests are performed on the functional validity of the implementation and the results
are discussed.

The use of the resource exposure governance is essentially seamless. The resource
owner or the governance middleware administrator, depending on how the
responsibilities are shared, is responsible for inspecting when governance requests
(e.g. profiles) are sensible or can be a threat to the governed resource’s integrity (e.g.
conflicting business goal, inadequate security). Additionally, the only significant
supplementary effort, in comparison of not using any NFP support for the governed
resource, is the provision of adequately described infrastructure capabilities. This is
alleviated by the fact that infrastructure providers will want to expose their services in
order, for instance, to generate revenue.

The objective of this implementation is to implement a Virtual Music Store connected
to content providers. In this scenario, the role of the governance middleware is to
allow seamlessly connect content providers that are using different security settings.

4.1. Governance middleware

This section provides a brief overview of relevant aspects of Web Service
development with the Java language [70] and the Apache Axis2 [71] SOAP [72] and
WSDL [33] engine that has been chosen as the demonstrator platform for
implementation of resource contextualisation middleware services. Nevertheless, as is
apparent from the following discussion, the general approach to development of the
middleware is neither Axis2 nor Java specific.

The Apache Axis2 engine deployed on an Apache Tomcat [73] application server was
chosen because it provides straightforward mechanisms for developing, deploying and
using Web Services. It is also a widely used platform with which to experiment.

Each core infrastructure capability was developed, deployed and then registered in the
registry using the same registration data as the none core infrastructure capabilities
described further (c.f. Table 5 for example of infrastructure registration data). This
approach was used to allow sharing the same code to discover and enact all the
capabilities.

The registry itself was provided by an instance of the eXist-db Open Source Native
XML Database [74] which natively exposes the data it holds through a SOAP
interface provided by a servlet [75] mode based on Apache Axis. In addition, this web
enabled XML database can be queried using XQuery 1.0 [76] or XPath 2.0 [77]. All
these elements permit an efficient and straightforward manipulation of XML data
over the network.

Finally, the message interceptor was provided by Apache Synapse [78]. This cho.ice
was driven by the relatively well documented usage of this project, its updeman@mg
development and deployment requirements. In addition, the implementation required

73

a relatively efficient message broker as all the messages in the scenario were going to
pass through it.

4.2. Virtual music store scenario

4.2.1.Description

This section presents the virtual music store (VMS) scenario introduced in section
1.1.1. This presentation is a practical illustration of the concrete architecture proposed
in chapter 3. The security governance gateway presented intercepts messages
addressed to a VMS, enforces security policies and integrates the defined security
capabilities (e.g. identity management, authorization service) in order to secure the
VMS communications with its content providers.

With this scenario, the author aims to demonstrate that the concrete architecture
presented in section 3 can be applied to provide complex NFPs such as access control,
identity management and policy enforcement. Indeed, these security-related NFPs
necessitate configuration of the capabilities themselves, but also between them. For
instance, in a certain federation anatomy, a Secure Token Service (STS) [54]
providing identity management will not only need to be configured, but will also
require a process of trust establishment with the different STSs it is meant to interact
with. The situation can be different in different federation anatomies, thus
necessitating a tight management of how to control the assembly of capabilities in a
safe manner.

4.2.2.Partners and roles

In this scenario, the aggregated services are virtual music stores serving specialised
markets or communities of interest. The basic content providers include copyright
owners of musical recordings or their representatives who make these recordings
available online. The virtual music store reaches agreement with content providers
enabling it to act as re-seller of bundles of recordings from their catalogues. The VMS
is a VO consisting of the music store operator that communicates to content providers
through a security governance gateway whose security services are provided by
external security providers through the SaaS (Security as a Service) paradigm.

The end customer of the VMS will be a member of the public. What they will see is a
web site where they will be able to search for tracks. The user interface of the VMS
setup for the implementation is presented in Figure 43.

74

Browvise Pusic

Genres
Cool Jazz ® Milestones ~ Miles Davis
European Jaz Provider. BockYourorld Store
: ® Kindo g~
S et Ki xJ‘ JfEH';H: Mlles.Daws_
Provider: RockYouryWorld Stare
Latin Jazz
® Birth ofthe ¢ ~Miles Davis
Orchestral Jazz Provider; RockYour®orld Store
Smooth Jazz e 'Round About Midnight ~ Miles Davis

Provider: Some Music Store

® The Legendary Prestige Guintet Sessions ~ Miles Davis
Provider. Some Music Store

Sketches of Spain ~ Miles Davis

Provider: |LoveMyClazsics

® Hitches Brew ~ Miles Davis
Provider: ILovenyClassics

® |naSilent! ~ Miles Davis
Provider: |LoveMyClassics

Figure 43. Virtual Music Store - user interface

As shown in Figure 44, in the music store scenario, the main categories of partners
are:

Virtual Music Store

&) |&

it
inbrs

Organisation Infrastructure capabilities

perimeter

ILoveMyClassics Store

Figure 44. Virtual music store scenario with security governance gateway

Content Provider (CP): The CP is a stakeholder of the role music content provider
as described in chapter 1.1.1. It is a specialist content provider (e.g. reco.rd labgls or
other copyright owners). Three different content providers take part in this par_ncular
scenario. Each one of them is using a different security profile that it shares with the
VMS operator through the security governance gateway. The security proﬁles_ express
their requirements in term of security in a set of XML files using the formalised way

~J
N

illustrated in Figure 19. Following is the list of the content providers with an overview
of their security settings:

* CP1 “SomeMusicStore” requires HTTP digest access authentication (80].
CP1’s profile is fully presented in Table 11.

e CP2 “RockYourWorldStore” requires SecPAL for both expressing the access
control requests and identify the requesters.

» CP3 “ILoveMyClassicsStore” requires login and password with its own xml
schema for the token.

These three profiles have been selected as they represent the main approaches to
securing resource access in distributed systems and present three level of difficulty in
term of integration and contextualisation support.

HTTP Digest access authentication is a common way of controlling resources access
in internet oriented software. It requires the exchange of data such as user name,
password, nonce and Quality of Protection (QoP) and is none trivial. It does
necessitate the deployment of a specific infrastructure capability to support it (c.f.
Table 6). Because it is complex and yet does not require a lot of content (e.g. message
payload) to demonstrate, this profile will be used in the rest of this section to illustrate
the scenario.

SecPAL is used for expressing decentralised authorization policies. It is similar to
XACML in that it uses a set of subject, resource and action to define access control
rules and requests. Both technologies can be used together with WS-Trust [82]
standard. WS-Trust defines a trust model together with how to issue, renew and
cancel tokens that are used to identify users. This method for identifying user is
common in SOA.

The third method used to test the usability and efficiency of the architecture proposed
uses a custom made xml schema to pass user credentials in the message header.
Although this manner is not recommended, it presents with the opportunity to test a
simple contextualisation in term of infrastructure support needed.

Security governance provider: The security governance provider is a particular
stakeholder of the value adding service provider as described in chapter 1.1.1 that
provides the assembly and management of other value adding services. This role
involves providing the VMS with a security governance gateway. The purpose of the
gateway is to hide the technical complexity of the security middleware involved and
enhance the visibility of the security actions that need to be enforced. In addition, it
allows connecting the VMS to different content providers that expose their catalogs
using diverse security configurations.

Virtual Music Store (VMS) operator: The VMS is a stakeholder qf the virtual
music store operator as described in chapter 1.1.1. Ultimately, the administrator of the
VMS is responsible for selecting its different CPs partners.

Security as a Service (SaaS) provider: The SaaS provider is a stakeholdfar of the
value adding service provider as described in chapter 1.1.1. This is a third party
entrusted with providing a security service such as identity management, access
control or audit. These services are managed by the security governance and allow the
content providers and music store operator to leverage on the security governance
gateway to enhance their interoperability while keeping the necessary level of
security. In this experiment, these services, shown in Figure 44 are registered and

76

described using the same taxonomy as the one used in the security profile. Although
these providers are not known from the VMS and CPs, for the sake of this
experiment, it is assumed that these actors trust the security governance provider who
in turn trusts the security service providers. The author believes that in a production
environment this would be overcome by providing solutions such as QoS [83] or
dynamic trust based [84] selection of services.

4.2.3.SOA security governance

In the music store scenario, an instance of the governance middleware named security
governance is designed.

Figure 45 illustrates how security capabilities can be composed into a security
management solution during service operation. In this figure, the contextual
governance discussed throughout this document is part of the SOA Security
Governance Layer element. This solution intercepts messages addressed to a set of
resources, enforces security policies and integrates the defined core security
capabilities, such as identity brokerage, authorisation services, or other managed
security services in order to secure the resources’ communications.

It is noticeable that defining an independent enforcement layer (c.f. SOA Security
Governance Layer on Figure 45) connected through messaging middleware to the
security capabilities that are governed by another dedicated layer implies an
additional level of complexity. However this trade-off is compensated by the gains in
flexibility, dynamicity and by allowing auditing of the results of each action
separately if necessary.

IT Administrators &
Capability Managers

/ s/,

SOA Security Governance Layer

= —— P
.—-—"..:.':-“‘N.\'\.
= “~ ==
“ 7 7 S ///
Identity tfjg; f‘ SOA Security | [SOA Security
Brokerage Management Analytics Autonomics

...............

C i Business Functions &
ommon o :
s Application Services
Capabilities PP
p Managed
. o Capability Management/ Magagement
SOA Security Capabil : ? s - Service
bl Policy Provisioning & Update SO
7 i isi i ¢ Decision
0 Invocation of Decision Point Enforcement
Management Interface 00 Buring Policy Execution Layer = Point Invoked
ional | £ — Event Generation Notification Notification
Operational Interface ——— & Notification i [ss avsad) Eioet

Figure 45. SOA security governance overview [81]

4.2.4.Security governance life-cycle

This section describes the life-cycle of the virtual music store’s security. It starts with
the governance gateway configuration then continues with the initial agreements and
discovery of the potential partners which leads to the formation of a new VO. This is
followed by the security profile management that allows for the verification and
instantiation of the security profile given by content providers. Finally. the
adaptability faculty of the virtual store infrastructure is introduced.

Security governance gateway configuration. Prior to the VO formation and at any
time during the following steps, the security governance gateway is meant to reach
agreements with security service providers to use their services within a particular
context (e.g. VO) and/or with specific requirements (e.g. QoS) in order to be able to
provide security for the different content providers used by the VMS. In a production
environment, these agreements could be reached through Quality of Service (QoS)
based selection, commercial agreement after human or electronic negotiation. In our
case, different services are added, included relevant ones.

In the experiment presented, three infrastructure capabilities are registered as such in
the service repository. The infrastructure are: two security related services including a
HTTP digest authentication and a SecPAL Authorization as well as a logging service.

The logging service keeps a track of the text sent to it, in a preconfigured collection.
This logging infrastructure’s registration data is shown in Table 5. The XML schema
defining how capabilities can be registered is shown in Table 15. In this prototype, the
same schema is used for registering the capabilities and expressing the profiles.

In Table 5, the reader can see that the logging infrastructure capability posses two
interfaces, including one for management purpose that allows the creation and
removal of collections of logs. The other interface is defined for the actual
functionality of logging. Both interfaces link the related WSDLs and their locations. It
is noticeable that the functionalities are ordered through the use of the constraint
“BeforeorAfter”, allowing for automatic usage.

<ws-p:Capability ID="ac06e340-6763-11df-a08a-0800200c9a66" xmins:ws-p="com.bt.ws-
profile">
<ws-p:name>Logging</ws-p:name>
<ws-p:Interface ID="ac06e341-6763-11df-a08a-0800200c9a66">
<ws-p:name>Management</ws-p:name>
<ws-p:Functionality ID="8db%9cd54-676b-11df-a08a-0800200c9a66">
<ws-p:name>CreateLogEntriesCollection</ws-p:name>
<ws-p:Constraint ID="f8f0b7c1-6764-11df-a08a-0800200c9a66">
<ws-p:ActivityLocation>WSDL</ws-p:ActivityLocation>
<ws-
p:Location>muker.ncl.ac.uk:8080/LoggingInfrastructure/mgt</ws-p:Location>
</ws-p:Constraint>
</ws-p:Functionality>
<ws-p:Functionality ID="9d940791-676b-11df-a08a-0800200c9a66">
<ws-p:name>RemovelogEntriesCollection</ws-p:name>
<ws-p:Constraint ID="ac06e343-6763-11df-a08a-
0800200c9a66">
<ws-p:BeforeorAfter>before</ws-p:BeforeorAfter>
<ws-p:Activity>self:8db9cd54-676b-11df-a08a-

78

0800200c9a66</ws-p:Activity>
</ws-p:Constraint>
<ws-p:Constraint ID="a84e2761-676b-11 df-a08a-0800200c9a66™>
<ws-p:ActivityLocation>WSDL</ws-p:ActivityLocation>
<WSs-
p:Location>muker.ncI.ac.uk:8080/LoggingInfrastructure/mgt</ws-p:Location>
</ws-p:Constraint>
</ws-p:Functionality>
</ws-p:Interface>
<ws-p:Interface ID="ac06e342-6763-11df-a08a-0800200c9a66">
<ws-p:name>Functionality Logging</ws-p:name>
<ws-p:Functionality ID="d93e3051-676a-11df-a08a-0800200c9a66">
<ws-p:name>CreateEntrylLog</ws-p:name>
<ws-p:Constraint ID="ac06e343-6763-11df-a08a-
0800200c9a66">
<ws-p:BeforeorAfter>before</ws-p:BeforeorAfter>
<ws-p:Activity>self:8db9cd54-676b-11df-a08a-
0800200c9a66</ws-p:Activity>
</ws-p:Constraint>
<ws-p:Constraint ID="ac06e344-6763-11df-a08a-
0800200c9a66">
<ws-p:ActivityLocation>WSDL</ws-p:ActivityLocation>
<ws-
p:Location>muker.ncl.ac.uk:8080/LoggingInfrastructure/function</ws-p:Location>
</ws-p:Constraint>
</ws-p:Functionality>
<ws-p:Functionality ID="d93e3051-676a-11df-a08a-0800200c9a66">
<ws-p:name>RemoveEntryLog</ws-p:name>
<ws-p:Constraint ID="452ef0b2-676b-11df-a08a-0800200c9a66">
<ws-p:BeforeorAfter>before</ws-p:BeforeorAfter>
<ws-p:Activity>self:d93e3051-676a-11df-a08a-
0800200c9a66</ws-p:Activity>
</ws-p:Constraint>
<ws-p:Constraint ID="452ef0b9-676¢c-11df-a08a-0800200c9a66">
<ws-p:ActivityLocation>W SDL </ws-p:ActivityLocation>
<ws-
p:Location>muker.ncl.ac.uk:8080/LoggingInfrastructure/function</ws-p:Location>
</ws-p:Constraint>
</ws-p:Functionality>
</ws-p:Interface>
</ws-p:Capability>

Table 5. Registration data of logging infrastructure

In Table 6, the HTTP digest authentication and decoding infrastructure capability is

registered in much the same way.

<ws-p:Capability ID="218ee5e1-6836-11df-a08a-0800200c9a66" xmins:ws-p="com.bt.ws-
profile">
<ws-p:name>HTTP Digest Authz</ws-p:name>
<ws-p:Interface 1D="218ee5e3-6836-11df-a08a-0800200c9a66">
<ws-p:name>Management User</ws-p:name> .
<ws-p:Functionality ID="218ee5e5-6836-11df-a08a-0800200c9a66">
<ws-p:name>CreateUser</ws-p:name> .
<ws-p:Constraint ID="218ee5e7-6836-1 1df—a083-080020099366 >
<ws-p:ActivityLocation>W SDL</ws-p:ActivityLocation>
<WSs-
p:Location>muker.ncl.ac.uk:8080/HTTPDigestAuthz/UserMgt</ws-p:Location>

79

</ws-p:Constraint>
</ws-p:Functionality>
</ws-p:Interface>
<ws-p:Interface ID="5f913a01-6836-11df-a08a-0800200c9a66">
<ws-p:name>Functionality</ws-p:name>
<ws-p:Functionality ID="5f913a03-6836-11df-a08a-0800200c9a66">
<ws-p:name>ReadMessage</ws-p:name>
<ws-p:Constraint ID="5f913a07-6836-11df-a08a-0800200c9a66">
<ws-p:BeforeorAfter>before</ws-p:BeforeorAfter>
<ws-p:Activity>self:218ee5e5-6836-11df-a08a-
0800200c9a66</ws-p:Activity>
</ws-p:Constraint>
<ws-p:Constraint ID="5f913a05-6836-11df-a08a-0800200c9a66">
<ws-p:ActivityLocation>WSDL </ws-p:ActivityLocation>
<WS-~
p:Location>muker.ncl.ac.uk:8080/HT TPDigestAuthz/Function </ws-p:Location>
</ws-p:Constraint>
</ws-p:Functionality>
<ws-p:Functionality ID="639220c5-897d-4f52-8db4-5d03456d4eab">
<ws-p:name>GenerateHeader</ws-p:name>
<ws-p:Constraint |D="5f913a05-6836-11df-a08a-0800200c9a66">
<ws-p:ActivityL ocation>W SDL</ws-p:Activityl ocation>
<ws-
p:Location>muker.ncl.ac.uk:8080/HT TPDigestAuthz/Function</ws-p:Location>
</ws-p:Constraint>
</ws-p:Functionality>
</ws-p:Interface>
</ws-p:Capability>

Table 6. Registration data of HTTP digest authentication and decoding infrastructure

In Table 7, the SecPAL authorization infrastructure capability is registered in much
the same way.

<ws-p:Capability ID="6449fda1-6766-11df-a08a-0800200c9a66" xmIns:ws-p="com.bt.ws-
profile™>
<ws-p:name>SecPAL Authz</ws-p:name>
<ws-p:interface {D="6449fda2-6766-11df-a08a-0800200c9a66">
<ws-p:name>Management User</ws-p:name>
<ws-p:Functionality ID="9b2829e5-682a-11df-a08a-0800200c9a66">
<ws-p:name>CreateUser</ws-p:name>
<ws-p:Constraint ID="ac06e343-6763-11df-a08a-0800200c9a66">
<ws-p:BeforeorAfter>before</ws-p:BeforeorAfter>
<ws-p:Activity>self:6449fda3-6766-11df-a08a-
0800200c9a66</ws-p:Activity>
</ws-p:Constraint>
<ws-p:Constraint ID="93450270-6767-11df-a08a-0800200c9a66">
<ws-p:ActivityLocation>WSDL</ws-p:ActivityLocation>
<ws-
p:Location>muker.ncl.ac.uk:8080/SecPAL/UserMgt</ws-p:Location>
</ws-p:Constraint>
</ws-p:Functionality>
<ws-p:Functionality ID="9b2829e7-682a-11df-a08a-0800200c9a66">
<ws-p:name>UpdateUser</ws-p:name>
<ws-p:Constraint ID="93450270-6767-11df-a08a-0800200c9a66"/>
</ws-p:Functionality>
<ws-p:Functionality ID="9b2829e9-682a-11df-a08a-0800200c9a66">
<ws-p:name>DeleteUser</ws-p:name>

80

<ws-p:Constraint ID="93450270-6767-1 1df-a08a-0800200c9a66"/>
</ws-p:Functionality>
</ws-p:Interface>
<ws-p:interface ID="6449fda3-6766-1 1df-a08a-0800200c9a66">
<ws-p:name>Management Trust</ws-p:name>
<ws-p:Functionality ID="029887b9-682a-1 1df-a08a-0800200c9266">
<ws-p:name>CreateTrust</ws-p:name>
<ws-p:Constraint ID="95450273-6767-1 1df-a08a-0800200c9a66">
<ws-p:ActivityLocation>WSDL</ws-p:ActivityLocation>
<ws-
p:Location>muker.ncI.ac.uk:8080/SecPALfl'rustMgt</ws-p:Location>
</ws-p:Constraint>
</ws-p:Functionality>
<ws-p:Functionality ID="9b2829e1-682a-11df-a08a-0800200c9a66">
<ws-p:name>DeleteTrust</ws-p:name>
<ws-p:Constraint ID="95450273-6767-11df-a08a-0800200c9a66"/>
</ws-p:Functionality>
</ws-p:Interface>
<ws-p:Interface ID="644a24b0-6766-11df-a08a-0800200c9a66">
<ws-p:name>Functionality Token</ws-p:name>
<ws-p:Functionality ID="029887b7-682a-11df-a08a-0800200c9a66">
<ws-p:name>CreateToken</ws-p:name>
<ws-p:Constraint ID="ac2088f1-6767-11df-a08a-0800200c9a66">
<ws-p:BeforeorAfter>before</ws-p:BeforeorAfter>
<ws-p:Activity>self.6449fda2-6766-11df-a08a-
0800200c9a66</ws-p:Activity>
</ws-p:Constraint>
<ws-p:Constraint ID="ac2088f4-6767-11df-a08a-0800200c9%a66">
<ws-p:ActivityL ocation>W SDL</ws-p:ActivityLocation>
<ws-
p:Location>muker.ncl.ac.uk:8080/SecPAL/TokenMgt</ws-p:Location>
</ws-p:Constraint>
</ws-p:Functionality>
<ws-p:Functionality ID="87d36ee1-682a-11df-a08a-0800200c9a66">
<ws-p:name>EvaluateToken</ws-p:name>
<ws-p:Constraint ID="ac2088f1-6767-11df-a08a-0800200c9a66">
<ws-p:BeforeorAfter>before</ws-p:BeforeorAfter>
<ws-p:Activity>self:029887b9-682a-11df-a08a-
0800200c9a66</ws-p:Activity>
</ws-p:Constraint>
<ws-p:Constraint ID="ac2088f4-6767-11df-a08a-0800200c9a66"/>
</ws-p:Functionality>
</ws-p:Interface>
</ws-p:Capability>
Table 7. Registration data of SecPAL Authorization infrastructure

VO formation. Prior to any collaborative task and once the virtual shop has decidgd
to establish the music store, it needs to reach an agreement with the security
governance provider.

VO formation and management as such are out of the scope of the current work.
However, the author uses a form of virtual context that supports the level of
functionality required in order to demonstrate the feasibility of the proposed concrete
architecture. As suggested in section 5.4 on future works, collaboratiYe governance
spanning across multiple organisations and user domains of expertise should be
investigated in the future.

Therefore, in the current context, all negotiations between the different partners are
meant to take place outside of the scope of the implementation.

81

With a governance gateway in place, the VMS operator can register his business
capabilities. In this scenario, there is one business capability that has two
functionalities 1) consume music content (i.e. input point for content providers) 2)
send request for content (i.e. search query to content providers). The data used for the
registration of this business capability is shown in Table 8.

<ws-p:Capability 1D="8b73c250-6af7-11df-a08a-0800200c9a66" xmins:ws-p="com.bt.ws-
profile">
<ws-p:name>VMS</ws-p:name>
<ws-p:Interface 1D="8b73c251-6af7-11df-a08a-0800200c9a66">
<ws-p:name>Functionality Read Content</ws-p:name>
<ws-p:Functionality ID="8b73c252-6af7-11df-a08a-0800200c9a66™>
<ws-p:name>ReadMusicContent</ws-p:name>
<ws-p:Constraint ID="8b73c253-6af7-11df-a08a-0800200c9266">
<ws-p:ActivityLocation>WSDL</ws—p:ActivityLocation>
<ws-
p:Location>muker.ncl.ac.uk:8080/VMS/ReadContent</ws-p:Location>
</ws-p:Constraint>
</ws-p:Functionality>
</ws-p:Interface>
<ws-p:Interface 1D="8b73c254-6af7-11df-a08a-0800200c9a66">
<ws-p:name>Functionality Create Content Query</ws-p:name>
<ws-p:Functionality ID="8b73c255-6af7-11df-a08a-0800200c9266">
<ws-p:name>CreateContentQuery</ws-p:name>
<ws-p:Constraint ID="8b73c256-6af7-11df-a08a-0800200c9a66">
<ws-p:ActivityLocation>WSDL </ws-p:ActivityL ocation>
<ws-
p:Location>muker.ncl.ac.uk:8080/VMS/CreateContentQuery</ws-p:Location>
</ws-p:Constraint>
</ws-p:Functionality>
</ws-p:Interface>

</ws-p:Capability>

Table 8. Registration data of VMS business capability

Additionally, the VMS operator can contact the potential participants of the music
shop (i.e. content providers). Agreements are reached between these content providers
and the VMS operator regarding the conditions in which the business will be run and
the VO operated. Following this, the content providers deposit their security profiles
in the gateway together with the relevant data about their business functions (e.g.
music catalogue web service). These security profiles contain the data necessary for
the governance gateway to understand how to securely connect to the CPs services.
More precisely, this means that CP3’s security profile will comport a reference to ?he
appropriate login XML schema. CP2’s security profile on the other hand will provide
for instance a reference to the SecPAL assertion it expects and what service, interfgce
and operation the security governance gateway needs to contact in order establish
trust and therefore allow for its identity to be established.

Figure 46 shows the governance user interface that connects to the profile initiator
component in order to manipulate the different elements of the exposure governance.
In this figure, the “governance features” in the left menu allow accessing and
modifying business capabilities, abstract and concrete profiles, contexts and context
selectors. In the same illustration the profile used to govern the exposure in the

82

context of the content provider 3 is shown. This profile is remarkable as the
interaction with the content provider 3 does not require any infrastructure, the logging
infrastructure being added by the governance operator. The implemented governance

by convention, will add the given xml nodes in the SOAP header of t
which the profile is used.

Browse
Governance features
Business capabiidies
Add nevs
VIS
Abstract profiles
Add nevs
apSomeMusic Store
apRackYourWoridStore
apli.oveMyClassicsStore
Concrete profiles
Add news
cpSomeMusic Store
cpRockYourWorldStore
cplLoveMyClassicsStore
Contexts

he request for

Governance > Abstract profiles > plLoveMyClassicsStore

Profile name: :plLoveMyClassicsStore Activated?
1<Ws-p:WS-Profile ID="b6dc69d8-7d22-4025-b47b-504e49b1568a" xmins:ws-p=
<ws-p:name>CP3: I Love My Classics Store</ws-p:name>
<ws-p:Constraint ID="b625512a-e08d-4109-b249-eb171361c58¢">
<ws-p:misc>header</ws-p:misc>
<ws-p:value><![CDATA[
<cp3:auth xmins:cp3="cp3.auth™>
<ep3:logn><login-value/></cp3:logn>
<cp3:pwd><pwd-value/></cp3:pwd>
</cp3:auth>
1)></ws-p:value>
</ws-p:Constraint>
<ws-p:ServiceType ID="ac06e340-6763-11df-a08a-0800200c9266" >
<ws-p:name>Logging</ws-p:name>
<ws-p:Interface 10="ac06e342-6763-11df-a08a-0800200c9266">

<ws-p:Functionality ID="d93e3051-6762-11df-308a-0800200c9a66"/>
</ws-p:Interface>

“com.bt.ws-profie™>

</ws-p:ServiceType>

Add new </ws-p:WS-Profile>

cSomelusic Store

¢RockYourWorldStore

clLoveMyClassicsStore
Context selectors

Add new

csSomeMusic Store

csRockYourWorldStore

cslLoveMyClassicsStore
Infrastructure capabilties

Add new

iLogging

iSecPALAUth

iHTTPAuth

Delete |

Figure 46. Governance user interface and “I Love My Classics Store” profile

The contextual data for the “I Love My Classics Store” profile is shown in Table 9.
The configuration data specifies that for the given targeted element, particular values
are to be changed accordingly. The targeted element in the case illustrated is the
profile constraint shown in the “I Love My Classics Store” profile.

<ws-c:WS-Context ID="f80176e4-2dfa-45¢9-a36f-d160f3185335" xmins:ws-c="com.bt.ws-
context">
<ws-c:name>clLoveMyClassicsStore</ws-c:name>
<ws-c:configData>
<ws-c:target>b625512a-e08d-4109-b249-eb171361c58c</ws-c:target>
<ws-c:misc>
replace:;
<login-value/>=cp3
<pwd-value/>=pwd
</ws-c:misc>
</ws-c:configData>
</ws-c:WS-Context>

Table 9. Contextual data for “CP3: I Love My Classics Store” profile in the VMS

Finally, the context selector allows connecting a profile, a context, a business
capability and a routing definition. Table 10 shows the context selector data for the
CP3 profile and VMS business capability. This context selector specifies that when

83

the VMS business capability sends a request containing the “ILoveMyClassicsStore™
expression, the CP3 profile and CP3 context should be used. Additionally, the up time
property is set to always.

<ws-cs:WS-ContextSelector ID="d4b4bb5e-8e31-4140-a57c-7fb7d3e88ed0"
xsi:schemal.ocation="com.bt.ws-context-selector context-selector.xsd" xmins:ws-
cs="com.bt.ws-context-selector">
<ws-cs:name>cslLoveMyClassicsStore</ws-cs:name>
<ws-cs:profile>b6dc69d8-7da2-4025-b47b-504e49b1 b68a</ws-cs:profile>
<ws-cs:context>f80176e4-2dfa-45c9-a36f-d160f3185335</ws-cs:context>
<ws-cs:internalTarget>8b73c255-6af7-11df-a08a-0800200c9266 </ws-
cs:internalTarget>
<ws-cs:configSelector>
<ws-cs:data>ILoveMyClassicsStore</ws-cs:data>
<ws-cs.operation>request</ws-cs:operation>
</ws-cs:configSelector>
<ws-c:.upTime>
<ws-c:type>always</ws-c:type>
</ws-c:upTime>
</ws-cs:WS-ContextSelector>

Table 10. Context selector for “CP3: I Love My Classics Store” profile and the
“CreateContentQuery” operation of the business capability

Table 11 holds the profile registered for CP1: Some Music Store. The content of this
profile is shown in a more readable manner in Figure 47. The profile specifies the
VMS business capability interaction with CP1 for both request and response. From
this profile, the governance middleware knows that the interaction requires HTTP
digest authentication mechanism. The credentials expected are provided in the
context. Additionally, the governance middleware learns that the content of the
response message is “encrypted” and the method used to encrypt it. The method of
encryption is provided in the context.

The context and context selector for this interaction take the same form as the
examples given in Table 9 and Table 10.

<ws-p:WS-Profile ID="edf66321-683f-11df-a08a-0800200c9a66" xmins:ws-p="com.bt.ws-
profile">
<ws-p:name>CP1: Some Music Store profile</ws-p:name>
<ws-p:Capability ID="218ee5e1-6836-11df-a08a-0800200c9a66" xmins:ws-
p="com.bt.ws-profile">
<ws-p:name>HTTP Digest Authz</ws-p:name>
<ws-p:Interface ID="5f313a01-6836-11df-a08a-0800200c9a66">
<ws-p:name>Functionality</ws-p:name>
<ws-p:Functionality iD="639220c5-897d-4f52-8db4-
5d03456d4eab"/>
</ws-p:Interface>
<ws-p:Constraint ID="0e91d933-f999-465b-8b80-2126b151c5cc™>
<ws-p:misc>operation</ws-p:misc>
<ws-p:value>request</ws-p:value>
</ws-p:Constraint>
</ws-p:Capability>
<ws-p:Capability ID="218ee5e1-6836-11df-a08a-0800200c9a66" xmins:ws-
p="com.bt.ws-profile">
<ws-p:name>HTTP Digest Authz</ws-p:name>

<ws-p:Interface ID="5f913a01-6836-11df-a08a-0800200c9266">
<ws-p:name>Functionality</ws-p:name>
<ws-p:Functionality ID="5f913a03-6836-11df-a08a-0800200c9266"/>
</ws-p:Interface>
<ws-p:Constraint ID="d7acb749-eead-46dc-8ec8-d967dce88304">
<ws-p:misc>operation</ws-p:misc>
<ws-p:value>response</ws-p:value>
</ws-p:Constraint>
</ws-p:Capability>
<ws-p:ServiceType ID="ac06e340-6763-11df-a08a-0800200c9a66">
<ws-p:name>Logging</ws-p:name>
<ws-p:Interface ID="ac06e342-6763-11df-a08a-0800200c9a66">
<ws-p:Functionality ID="d93e3051-676a-11df-a08a-
0800200c9a66"/>
</ws-p:Interface>
</ws-p:ServiceType>
</ws-p:WS-Profile>

Table 11. CP1 Exposition profile

Requests content with digest HTTP authentication
'“fc':;;’b“i;:;"e Response with encrypted content &y

A

SomeMusic Store

Figure 47. CP1 Exposition profile

Security profile management. At this stage it becomes possible for security gateway
to validate and enact the different security profiles.

To achieve this, the profile management component of the gateway goes through a set
of actions that starts with the verification of the security profile proposed to the
definition of the processes necessary for the instantiation and management of the
future implementation of the security profile.

These domains can be respectively as described in section 3.5 split in several steps:
defining the infrastructure capabilities, the policy templates, the service dependencies
and the information flow for the first one and defining the profile management
process as well as publishing the infrastructure profile for the second.

More details on the specific stages of the profile management and how they execute
are given in the following paragraphs. Tests assessing the relevance and quality of
these stages are found in sections 4.2.5 and 4.2.6.

Define security infrastructure (c.f. section 3.5.1): The first stage of this process is to
check for each security service if the description given in the security profile is
adequate and complete according to the profile description taxonomy. If that test
passes, the abstract definition of the service as well as its requirements are gathered.
Please note that at this stage the governance has not selected a particular instance of
any running service but has selected the appropriate categories in the taxonomy.

o0
hn

The. sef:urity governance gateway does separate copies of the security profile at the
beginning and end of this process. This allows keeping a track of what the domain of

governance requested is as opposed to the profile that will be completed and
proposed.

Define policy templates (c.f. section 3.5.2): This second stage verifies if the policy
type that will be used require any translation (when using different grammars). In
addition, this stage checks how they need to be managed. In the described
implementation this stage is not necessary.

Define z'nfrastr.ucture dependencies (c.f. section 3.5.3): Following this individual
check, the relationships between the services, both on the managerial and operational
sides are verified.

The last stage goes through the security profile and check for missing components.
For instance, a content provider could have specified an access control method
without mentioning any identity management.

Following this, the VMS operator could review and select the best matches in the
positive answers it has received, potentially eliminating content provider with too
weak or too costly security configurations.

Define information flow (c.f. section 3.5.4): With the security profile complete and
safe, the fourth stage aims at checking how the data will flow from one operation to
the next. In addition, the governance determines, when relevant, whether a translation
process is necessary amongst them and/or with the content provider’s security
settings. Please note that translation mechanisms may be provided by external tools
and are not described in the current work. Finally, the concrete services enacting the
infrastructure capabilities are selected.

The result of this step is saved as a security profile that can be instantiated.

Define profile management processes (c.f- section 3.5.5): With the profile instance in
place and the services selected, the final stage is for the profile composition
management component to define the different steps that will be necessary in order to
call, configure and connect the security services. The result of this last stage is stored
together with the now complete and safe security profile as a coordination plan.

When necessary the security governance gateway can then enact this complete profile
through this management process.

Select infrastructure profile instance (cf section 3.5.6): When required to enact a
security profile, the gateway search into its database and selects it. It then makes sure
that the data can flow between the enacted security profile and the VMS interactions
they manage.

Define service-specific policies(c.f. section 3.5.7): The profile management goes
through all the concrete services selected in the security profile and instantiates the
policy templates by inserting the context data.

Define information flow (cf section 3.5.8): If necessary, the tra.nsformations
templates are also instantiated according to the results of the previous step on

translation.

Define service exposure management processes (cf. section 3.5.9): The profile
manager orders and binds the different management processes of the security profile
and the VMS interactions they manage.

86

Publish service instance (c.f. section 3.5.10): Finally, the policies created in step 26
are pushed to the different relevant stores (e.g. the SaaS capabilities driven by them)

through the' enactment of the management processes. To finish, the VMS clients of
the CP services are bound to their instantiated profiles and exposed.

Adaptability. A VMS will want to be able to include as many content providers as it
can, but different partners will have distinct security needs and settings. By reviewing
and accepting the different security profiles used by each partner according to its
specific needs, the VMS can more promptly make use of their contents. This
necessitates and is limited by the capability of the security governance gateway to
find security related services that provide for these different requirements.

4.2.5. Functional tests

In this section, the different tests done in order to evaluate if the Virtual Music Store
functions according to expectations are presented together with their results. For each
test, a parallel “witness test” is performed to ensure that the result is valid.

For the purpose of testing, the VMS does not perform any caching and any query is
directly forwarded to the Content Providers. This is possibly not an adequate practice
for this type of system in a commercial environment, but renders the testing easier.

Test 1: Content Provider 1 integration. For this first test, all the infrastructure
capabilities are registered in the governance gateway. However, only the first
exposition profile is made available. If the gateway is well implemented, the
infrastructures and profile description well written, this test is expected to pass.

Validation test. In order to insure that test 1 result is valid, in this validation stage, the
logging infrastructure capability is unregistered. As it has been marked as a
mandatory infrastructure in all profiles, this test is expected to fail.

Test 2: Content Provider 2 integration. For this second test, all the infrastructure
capabilities are registered in the governance gateway. However, only the second
exposition profile is made available. If the gateway is well implemented, the
infrastructures and profile description well written, this test is expected to pass.

Validation test: In order to verify test 2 result, the Functionality Token interface is
erased from the SecPAL Authz infrastructure description. As this renders the SecPAL
Authz infrastructure unsuitable for the contextualisation this test is expected to fail.

Test 3: Content Provider 3 integration. For this third test, all the infrastructure
capabilities are registered in the governance gateway. However, only the third
exposition profile is made available. If the gateway is well implemented, the
infrastructures and profile description well written, this test is expected to pass.

Validation test: In this validation test, the schema defining user credentials supported
by the custom authorization infrastructure used by CP3 is modified (username node 1s
changed to user). This test is expected to fail.

Test 4: All Content Provider integration. For this fourth test, all the infrastructure
capabilities are registered in the governance gateway. In addition, all the exposition
profiles are made available. If the gateway is well implemented, the infrastructures
and profile descriptions well written, this test is expected to pass.

Validation test: In this validation test, the HTTP digest infrastructure capgbility 1s
unregistered. The expected outcome of this test is that only content coming from

87

content providers 2 and 3 will appear on the VMS interface and therefore the test will

fail.

Table 12 shows the results of the tests. The result is set as passed when the adequate
music tracks per content provider are displayed on the web interface and failed
otherwise. As all the tests produce the expected outcomes, the exposition governance
implementation is therefore validated from a functional point of view.

Figure 48 and Figure 49 illustrate the outcomes of test 1 and its validation

counterpart.

Music

Figure 48. Test 1 result

Jriles Davis

Brovise
Genres

Cool Jaz
European Jazz
Jazz Fusion
Latin Jazz
Orchestral Jaz

Srnooth Jazz

Search

Music

® ‘REound About Midnight ~ Miles Davis

Provider: Somrie Music Stare

e The | egendary Pre cessions ~Miles Davis
Provider: Sarre Music Sto

Figure 49. Test 1 validation test result

Miles Davis|

Browse
Genres

Cool Jazz
European Jaz
Jazz Fusion
Latin Jazz
Orchestral Jazz
Smooth Jazz

rusii

\ Result Expected

L result
1 Passed Passed
1 validation Failed Failed
2 Passed Passed
2 validation Failed Failed
3 Passed Passed
3 validation Failed Failed
4 Passed Passed
4 validation Failed Failed

Table 12. Implementation tests results

4.2.6.Adaptability tests

The purpose of this evaluation is to demonstrate the adaptability of the security
governance middleware. In order to do so, the author has assessed its capacity for
integration with different systems and the capacity to manage this adaptability when
dealing with different types of unavailability, change or event.

Communications between the VMS and the security governance solution are secured
using the VMS security settings. The security of this type of middleware is assumed
to be equivalent to that of the security profiles it enacts. Indeed, the message
exchanges between the different components of the middleware are secured as well as
the exchanges with external services as provided by the external service. External
security services that are used to provide security requirements are trusted. For each
test, a parallel “witness test” is performed to ensure that the result is valid.

Adaptability to external factors

Test 1: Infrastructure capability change. This test is similar to “test 3: Content
Provider 3 integration validation test”. In order to demonstrate that the governance
middleware is capable to adapt to changes in the way the external infrastructure
capabilities behave, this earlier test was repeated. Once again, this test is expected to
fail.

Validation test. In order to insure that test 1 result is valid, in this validation stage, the
custom authorization infrastructure used by CP3 is registered twice. The first
registration makes use of the unmodified and valid node while the second one is
registered with the modified node as in the earlier test. This test is expected to pass.

Test 2: Introduction of new infrastructure capability. To ensure that the
introduction of new infrastructure capabilities is supported and does not hamper th_e
good functioning of the governance middleware, the same type of infrastructure 1s
deployed and registered several times. In this case, the custom auth.orizatlo.n
infrastructure used by CP3 is deployed and registered three times. This test 1s
expected to pass.

Valfdation test. In order to insure that aforementioned test’s result is valid, each
registered custom authorization infrastructure was in turn unregistered until none was

left. The first two tests are expected to pass while the third iteration leaves no
authorization service for CP3 is expected to fail.

Test 3: Change a profile. In this test, the mandatory logging infrastructure capability
is taken out of the abstract profile and is therefore not required anymore. This test is
expected to pass.

Validation test. In this validation test, the logging infrastructure capability is put back
in the abstract profile but unregistered from the service registry. This test is expected
to fail.

Test 4: Change a security policy In this test, the values of the username and
password are modified in the profile description and at CP3’s side authorization code.
This test is expected to pass.

Validation test. To verify the validity of the previous test, CP3’s side authorization
code is changed back to allow only the previous values to be accepted. This test is
expected to fail.

Adaptability to internal factors

Test 5: Swap a security component for another, similar, component. This test is
similar to “Test 2: Introduction of new infrastructure capability”. However, the HTTP
digest infrastructure capability was used instead of the custom authorization
infrastructure. This test is expected to pass.

Validation test. As for “Test 2: Introduction of new infrastructure capability”
validation test. The first two iterations are expected to pass while the third iteration
leaves no authorization service for CP1 is expected to fail.

Reusability

Test 6: Use an infrastructure capability in different profiles. With the presence of
the logging infrastructure capability in the abstract profile and the use of the abstract
profile as the base for all security profiles, this test has been performed through
previous tests. This test is expected to pass.

Validation test. In order to demonstrate that the governance middleware tolerates the
presence of a registered but unused infrastructure, the logging infrastructure was taken
out of the abstract profile, but still registered in the service registry. This test is
expected to pass.

Test 7: Reuse stored profile in a different context. An abstract profile has been
used, in order to define minimum requirements, as the base for all security profiles.
This test has therefore been performed through previous tests. This test is expected to
pass.

Validation test. In this scenario, the use of the abstract profile was made mandatory in
order to guaranty a minimum security. However, in different scenarios, this might not
be the case and it is trivial to deduce from the previous tests that this possibility, when
implemented can be supported by a governance middleware.

Table 13 shows the results of the adaptability tests. The result is set as passed when
the adequate music tracks per content provider are displayed on the web interface and

90

failed otheryvise. As all the tests produce the expected outcomes. the exposition
governance implementation is therefore validated from a functional point of view.

1 Féi‘l.é;d B 5 Faild ‘

1 validation Passed Passed

2 Passed Passed

2 validation Passed, Passed, | Passed, Passed,
Failed Failed

3 Passed Passed

3 validation Failed Failed

4 Passed Passed

4 validation Failed Failed

5 Passed Passed

5 validation Passed, Passed, | Passed, Passed,
Failed Failed

6 Passed Passed

6 validation Passed Passed

7 Passed Passed

7 validation / /

Table 13. Adaptability tests results

The potential scope of the contextualisation governance is wide and the concrete
architecture has been thought of to take into account complex scenarios as well as
simple ones. The tests presented in this section do not cover all aspects possible as
this would necessitate more effort than it is possible in the timeframe of this thesis.
Instead, the tests showed a practical illustration of the possibilities made available by
the use of a well-defined contextualisation governance architecture.

4.1. Discussion

The authors of [42] (cf. related work section 2.2.2), have devised six types of
adaptation that a flexible security middleware suite should support:

S1 Change a local parameter of a security component (e.g. the encryption method for
an audit service).

S2 Introduce new security functionality (e.g. add a secure logging component).

91

S3 Compose/recompos_e a deployed security component with one or more application
components. Application components depend on the security component but the

security component can also depend on the application component(s) (e.g. for
context-based access control).

S4 Swap a security component for another one (e.g. replace the authorization decision
engine).

S5 Compose a security component using a (new) third-party component that is
deployed elsewhere.

S6 Change a security policy. Since the security policy explicitly depends on

application-level concepts, any change in a security policy can require further
adaptations.

The system proposed in this paper, based on the security profile, is meant to introduce
flexibility to the way in which the NFP aggregation lifecycle is managed and user
requirements expressed. Therefore the following discussion points have been added:

S7 Enact the security profile at different stages in different situations (e.g. CP1 steps
1-39, CP2 steps 21-39).

S8 Express identical requirements using different semantics.

The objective of this discussion is to review the adaptability and to define its limits.
The security profiles submitted by the content provider to the security governance
middleware have been used in order to determine the scope of the adaptation,

S1 Changing a security service’s configuration requires the user to change the security
profile. With the change committed, the governance middleware will make use of
Service Management’s access to the security service’s management interface to
perform the change. However, the governance infrastructure will go through the
process of profile management to ensure that the change is valid and can be realized.
If the security service does not support this change a different one may be selected or
the modification rejected.

S2 If the relevant security services are registered as accessible in this context and with
these requirements, a security profile needs to be updated with the additional security
functionality.

S3 Composition of security as well as other value-adding services can be realized. Of
course, the quality of the segregation of a security service between different contexts
(e.g. different interactions and conversations) depends on its implementation and may
not be possible. For instance, a service may or may not support multi-domain
instantiations and configurations.

S4 As presented in section 3.5, replacing a security service with another, similar one
is achievable as long as a potential replacement is registered and accessible. If a
security service is found missing at runtime, it is possible to start again from step 13
onwards, to regenerate an instantiated profile while storing the incoming and outgoing
messages.

S5 The ability to compose external providers’ security services is the very foundation
of this work.

S6 In this model, modifying a security policy is equivalent to cha.nging‘ a security
component local parameter (c.f. S1). This is due to the expected policy driven nature

92

of the infrastructure capabilities. A component local parameter will be modified using
policy, in the same technical manner as an access control assertion (i.e. security
policy).

S7 It is possible to store a profile’s state at any stage of its lifecycle. However,
validation stages are required in most cases to ensure the profile’s validity at the time
of use (e.g. whether the security service is still available).

S8 This point has not been verified in this set of experiments. However, it depends on
the different semantic styles used as well as their interoperability.

93

5. Summary of contributions and future work

In the previous section, an implementation of the proposed concrete architecture was
presented. Subsequently, series of tests both functional and targeting the adaptability
were presented to demonstrate the validity of the implementation. Finally, a
discussion based on the evaluation of a similar approach was proposed.

In this chapter the author summarises the contributions of the work and then
concludes the thesis with suggestions for future work.

5.1. Summary of research challenges

In the following paragraphs, the author assesses the proposed approach with respect to
each of the research challenge provided in Chapter 2.

1. Reusability of integration layer. The separation of concerns in the architecture
proposed (c.f. Figure 17, Figure 23, Figure 31) aims at providing a coarse-grained
distribution of the components. In this architecture the level of granularity proposed
answers to the levels or reutilisation and potential performance optimisation
techniques (e.g. replication) that can be used in distributed systems. In addition the
message broker nature of the approach proposed offers a high potential for reusability.

2. Shared communication semantics. This requirement is principally dealt with by
the brokering nature of the architecture proposed and the service orientation that
brings ease of connectivity.

3. Decentralised model. The separation of concern and service orientation of the
architecture allows avoiding a central core and relying on distributed components.
The use of dedicated layers to administrate policies (c.f. policy management core
infrastructure in section 3.4.1) and potential components (c.f. service management
core infrastructure in section 3.4.1) permits the architecture to be flexible when
dealing with resource location.

4. Definition of SOA governance and related concepts. The core objectives of the
proposed architecture are presented in section 1 and further developed through a
practical example in section 1.1.

5. High level description of key contextualisation elements and concepts. Sections
3.2 and 3.3 present the different elements forming the governance architecture and
their relationships. Each element is described individually before a more global
definition where the components are presented together is proposed.

6. Technical description of Kkey contextualisation elements and their
relationships. In addition to the descriptions as mentioned in point 5, sections 3.4 apd
3.5 give a more detailed description of the key elements and a point by point
description of all the steps happening prior and during a contextualisation. These steps
are further divided into actions to give further details on the different processes taking

place.
7. Non Functional Property (NFP) description model. With the use of the
infrastructure profile definition proposed in section 3.3.1, potential partners (e.g. end

users, other governance middleware, NFP providers) and this current architecture are
able to express requirements in term of NFP and communicate them.

94

8. NFP profile description. The infrastructure profile along with the mechanisms that
allow selecting capabilities and their policies are described in Chapter 3 on the
anatomy of the infrastructure. The grammar used to describe the profile can be
adapted to fit specific needs. The selection of capabilities and policies are also
handled by dedicated layers enabling flexible and adaptable mechanisms.

9. NFP profile instance. The stages described in the series of steps necessary in order
to create a safe and complete profile and then instantiate it as well as expose the
business capabilities are described in section 3.5. The policy driven approach used in
the architecture presented along with a dedicated layer for service management (c.f.
section 3.4.2.1 on Capability management) allow specific management processes and
policies to efficiently specify and supervise the characteristics of the infrastructures
and profiles life-cycle. For the profile, these life cycles management processes are
used by a dedicated component (i.e. Profile Life-Cycle Management in Figure 31).
Finally the process of instantiating the profile and its different components (e.g.
services, policies) allows multi-tenancy usage scenarios.

10. Reusable & manageable NFP providers. The choice of service based
architecture was partly to be able to rely upon distributed pieces of software that can
be made configurable and reusable. As presented in point 9 above, the architecture
comprises a dedicated layer management to manage the different components and
allow for their optimal reusability. This in turn, allows for the governance to
interchange and reconfigure the different capabilities taking part in the governance
process.

11. Run time aggregation of NFPs. The stages described in the series of steps
necessary in order to create a safe and complete profile and then instantiate it as well
as expose the business capabilities (c.f. section 3.5) present such policy schemes and
how they can be contextualised. The transformation mechanism relies on three
elements, the policy template, the transformation policy and the contextualised data.
The first two elements are provided at design time while the later is given at run time.
This system is flexible but becomes more and more complex as the number of
transformation potentially necessary increase.

12. Domain agnostic. The limitations of the architecture proposed in terms of the
types of resources it can govern and the categories of contextualisation it can provide
are limited by the NFP description models it holds and the NFP providing
components (i.e. infrastructure capabilities) it is aware of.

13. Life-cycle management of the aggregation of NFPs. The stages described in the
series of steps necessary in order to create a safe and complete profile and then
instantiate it as well as expose the business capabilities are described in section 3.5.
These stages are progressing from an abstract profile with a high level view of what
the domain of exposition will be into an instantiated and enacted profile that is
complete and comprises concrete as well as configured instance of services.

14. Semantically described components. A normalised manner is used to define the
way infrastructure capabilities are exposed. This taxonomy is described in Figure 19
of section 3.3.1.

15. Semantic agnostic. The proposed architecture can be made to understand
different manners to express the domain of exposition thanks to the user interface

abstract service pattern used (c.f. section 3.4.2) and the policy driven approach of the
architecture. The limitation to this approach being that a translation between a new

95

semantic and an existing one, understood by the governance middleware. must be
provided.

16. Support for end to end message level security. By maintaining no visible link
between the final enhanced exposed resource and its pre-governance source (i.e. the
business capability), the architecture, within the scope of its contextualisation,
prevents threats from reaching the resource directly (c.f. steps 23 and 38 of the
business capability exposure in section 3.5). In addition, the state of the different
resources (e.g. NFP providers, policies) can be constantly monitored to prevent an
unwanted execution of a profile. Finally, in order to prevent information leaks,
security and auditing capabilities such as a logging service (c.f. section 4.2), when
available, can be seamlessly included in the profile to evaluate data miss-management

or prevent privacy issue. A tested scenario covering such requirement is described in
the evaluation section (c.f. section 4).

17. Verify validity of the contextualisation strategy. During the profile life-cycle,
dependencies are systematically sought and resolved. In addition, the profile usability
can be enhanced for particular environments using different ways to express the

exposition requirements through the user interface abstract service pattern (c.f. section
3.4.2).

Table 14. Summary of research challenges

Legend
L — supported

X - supported
and specified
in detail

[T

—not
supported

11

12

13

14

15

16

17

Proposed
concrete
architecture

Table 14 recapitulates the research challenges in the same manner as Table 1, Table 2,
Table 3 and Table 4, but specifying what points are fulfilled by the proposed concrete
architecture as opposed to those satisfied by the related works.

5.2. SOA governance model and Service

Delivery Frameworks

This section focuses on the framework's conformance to the principles of the standard
Service Delivery Framework developed by the TeleManagement Forum, introduced
in section 2.2.3 and more thoroughly described in [44].

Figure 50 presents the main SDF concepts overlaid by those of governance model,
showing the detailed mapping of the proposed governance model on top of the
standard framework.

96

"y
Interface |

A.A»/\ -
apablllty Profile /J Security Governance)
Management Managemen Management i

\
_,
__SDF WSS - S— K—\
lun tionatfiterface ;
Management Services

Bhagerrent spf
tefface
[SDF Management ,Vm = et Tt
Support Services
(SDF MSS)

S8 SOF 1SS l
= g Corsume: Infrastruciure Pmrp SOF
SOF Infrastructute Suppon Semvice Consumer Cons ,,(_l Serice
Functonal Interface t Consusras
@ra structure Support Sewé Ruourcos
= (SDF ISS)
[

Infrastructure

PFOCGSSGS @V-\

Figure 50. Mapping the Governance Model on the SDF standard

The governance model presented in the previous section has been dev eloped in full
compliance with the SDF standard of the TMF. This alignment extends the
applicability of the governance model in service domains that conform to SDF and
fulfils the respective research challenges 5 and 6 introduced in section 2.2.4.

The functional interface of the SDF in this mapping is the governance management
interface as it is the governance model interface that allows for the management of
capability.

The management service consists of the different components described in section
3.4. Specifically these are the Profile management, Capability management and the
governance layer base which allows cementing and managing the governance
enabling infrastructures.

The infrastructure support services are these governance enabling infrastructures that
allow for the governance model to run along with the potential infrastructure
capabilities that can be used to provide non functional support.

The SDF Infrastructure may host further supporting facilities for the remaining
governance model aspects. It can provide Policy-based Management facilities in order
to handle service policies and rules, as specified in the governance model description.
It can also use the service catalogue to capture dependencies of a service onto other
component artefacts. Finally, it can offer authentication and authorisation mechanisms
for access control in order to define and assign privileges regarding the scope of
operations entities can conduct within the SDF or capabilities they bear and can make
available to SDF.

5.3. General summary

In this thesis, the author has provided a description of an architecture for contextual
governance for SOA. This model is based on requirements that underline the need for
policy and process management, resource life-cycle management, visibility _and
contextualisation. One of the roles and tested use case of the proposed model is to

97

handle the security of web services exposed throu

: gh it by managing their security
configuration.

The chapter 1 identifies the domain for action as managing the contextualisation of a
resource in a SOA in a flexible manner. This creates the need to support the
integration and composition of as many infrastructures allowing the enhancement of
the exposure as well as the life cycle of the exposure thus created. Additionally. the
enhancement of the exposure must be made safe and secured. To this end, the author
proposed a model for governing the different aspects of the exposure. This model
describes a set of middleware services along with their interactions and an

infrastructure composition structure called profile. The core of the work in this thesis
comprises:

1. A set of requirements that define what is needed in order to establish the
governance of a service exposure.

2. A description of the architecture that fulfil these requirements.

3. An implementation of this model along with an evaluation against the
requirements aforementioned.

This work addresses the requirements for contextualisation governance specified in
Section 2.2.4.

A notable feature of the author’s approach is a careful separation of concerns and
modularity of the architecture. Figure 51 recalls the architecture presented in section 3
and presents a layered view of it.

. — - e b e -

Business Infrastructure External
capabilities capabilities capabilities

5
> T e
2= = Core managerial infrastructure Management
3 © capabilities layer
Q B e = 2o » w2 mm o w5 o s = wm o
a sl

6~re*op(e}rav_tignal_in_frastructure Al
~ capabilities

Operational
layer

Figure 51. Layered view of the governance architecture

The contextualisation governance is realised through a set of middleware that allow
enhancing the exposition of resources by composing external NFP infrastructures gnd
managing the composition. This set of middleware is itself separated in four logical
layers: the external capabilities that encompass both the business and inf.ra.s.tructu're
capabilities, the management layer that comprises core infrastructure capabllltle§ \'\illh
supervision roles, the operational layer which includes the functional core capabllm.es
such as event processing, repositories and registries and finally the datg and security
layers allowing to describe the components and secure the architecture. This
separation is fundamental to the flexibility of the middleware.

98

In these layers, each of these capabilities can be deployed as a components with its
own management, policy administration framework (control pane) and operational
interfaces (data pane). Each capability is also policy driven as this permits
configurability and flexibility. The different capabilities are meant to have their own
distinct grammars and policy languages in order to keep their own advantages,
capacities and evolution potential in their respective domains.

The interoperability issues generated by this situation are addressed at the messaging

level through transformation and governance as demonstrated by the transformation
steps (section 3.5.2 point 7).

This also enables the interchange of core capabilities within their categories when

necessary. Non-core capabilities (e.g. auditing) can also be added through the same
manner.

It is noticeable that choosing to have these components to be independent and follow
their own path implies an additional level of complexity. However this trade-off is
compensated by the gains in flexibility, dynamicity and by allowing auditing of the
results of each action separately if necessary.

The author has demonstrated the novelty of the design and implementation of the
contextualisation governance middleware with respect to the related work discussed
in chapter 2. Novel contributions include:

(i) the development of a flexible SOA based architecture that is based on
fundamental work on distributed systems flexibility,

(i) the provision of systematic support for exposure governance that is
adaptable to different application contexts,

(iii) the implementation of a governance middleware in order to secure the
exposure of resources in the shared domain.

In summary, as proposed in the introduction, through a SOA based architecture for
distributed resource contextualisation governance, the author has established that:

1. A set of middleware services can provide an efficient support
for flexible resource contextualisation governance.

2. This enhanced flexible contextualisation can be organised in
such a manner that it preserves the safety of the exchanges.

Annex 4 lists the published work related to the architecture described in this thesis.
The following section will present a discussion of potential future works that continue
the theme of exploring fundamental concepts in the context of realistic systems
implementation.

5.4. Future work

The current state of this work defines a concrete architecture for governance of safe
and flexible contextualisation of resources in a SOA. Future investigation could
evolve the material and expand on a variety of relevant topics. The following are
some possible areas.

5.4.1. Different use cases

Potential future works include the use of governance middleware in different types of
scenarios. Following is a list of potential use cases considered by the author:

99

* The Product and Service Assembly (PSA initiative) Catalyst [85), relies
on a set of catalogues grouped in an infrastructure named the Active
Catalog. One potential future research would be to investigate the place
of such complex registry in the governance architecture or alternatively
how the PSA initiative could take advantage of the architecture
presented in this thesis.

* The Internet of Things and Service (IoTS) could be another environment
where the governance architecture presented could play an interesting
role. In [86] the co-authors and I identify the interest of security
governance in the IoTS where Things could learn of potential threats and
how to deal with them from other governed Things. Scenarios in Service
Oriented Manufacturing chains are currently being discussed.

5.4.2. Flexible SOl governance

The investigation currently undertaken by the author and following this work
comprises the study of this architecture in the context of flexible Service Oriented
Infrastructure (SOI).

SOI provides a system for supplying information technology infrastructure as a
service. Key aspects of SOI include virtualisation of all configurable infrastructure
resources such as compute, storage, and networking hardware and software to support
the running of applications. Consistent with the objectives for SOA, SOI facilitates
the reuse and dynamic allocation of necessary infrastructure resources [53].

The main objective of this investigation is to determine how it would be possible to
provide support to end users of SOI through a high level dashboard providing user
centric semantics. Through this user centric layer, levels of NFPs and preferences
(e.g. performance, security) could be chosen and selected. These preferences would
then create sets of rules (i.e. profile in section 3.3.1) that would govern the SOI
through monitoring, dynamic selection of infrastructures and virtualisation.

5.4.3. Improved profile expression

In section 2.2, the author has established that investigating the semantics necessary to
describe IT system requirements is a legitimate and complex research topic on its
own. One potential topic for future work is to utilise the requirements presented in
paragraphs 2 on background in order to provide a more comprehensive and useable
profile description model.

Alternatively, future work could explore how different semantics used to describe
such requirements in different domains could be taken into account and used by
governance middleware.

5.4.4. Federated governance

In section 3.6.2 on deployment patterns, the federation of governance middleware is
introduced. The study of such use of governance middleware could attempt to
determine a) what are the processes and techniques necessary in order to achieve
efficient federation and b) what are the different types of federation achievable (e.g. 1
master with dependant governance middleware, equally ranked) and c) in what
context it would interesting to use them. In such environments it would then be
possible to investigate the potential of negotiating properties of the governance.

100

5.4.5. Trust brokering

In the context of governed interactions, service providers could find themselves in a
situation where they do not know what services and by extension which providers are
catering for different properties of the exchanges (e.g. security in the security
governance scenario in section 4.2). This presents the governance architecture with
the issue of allowing the different potential participants to express how they would
define the level of trust required for entities in order to enter in collaboration with

them. The following are some of the challenges of trust brokering in this type
environment:

e Allowing a coarse grained definition of the level of trust required: a participant
should be permitted to express what it expects from each property of the
interaction (e.g. identity management, access control, virtualisation).
Additionally, the participant should also be able to specify the level of trust
required to access certain types of data in the interaction.

* Dynamic trust allocation: in this type of rapidly evolving environment, a
participant’s life-span can be very short. How to define how trustable this
entity is when it has never been part of any collaboration and is potentially
unknown to all participants should be taken into account.

* Properties and enforcement of trust: with potentially many different actors
covering diverse aspects of a collaboration, defining what trust is and how it
should be enforced could also become a challenge and should therefore be
examined.

5.4.6. SOA governance middleware performance
improvement

In the SOA security governance middleware presented in section 4, policy templates,
instances and processes are exchanged over the network. In complex scenarios or
environments where the network is critical, this could create a stress on the physical
infrastructure and the core infrastructure capabilities used as the more complex the
profile, the more such data need to be exchanged.

One possible future research direction would be to investigate a) potential techniques
that could be used to reduce the amount of data necessary to exchange or b) the
number and types of the exchanges themselves between the core infrastructure
capabilities of the architecture while keeping the level of distribution as high as
possible.

5.4.7.Monitoring and Auditing
In chapters 3 and 5, the author introduces the relevance and possibility of introducing
elements of monitoring and auditing into the architecture. These elements could
further enhance the safety and reactivity of the architecture and allow further
investigations towards autonomous behaviours. Due to the loosely coupled and
distributed nature of the model, introducing such capabilities could be made on the
top of the architecture proposed.

101

6. References

[1] The long nimbus, from The Economist, 23 October 2008, available at:
http://www.economist.com/research/aniclesbysubject/displaystory.cfm?subjec
tid=348909&story_id=E1_TNQTTRGQ

[2] Gresty C., Dimitrakos T., Thanos G. and Warren P, Meeting Customer
Needs, BT Technology Journal, Vol 26, No 1, September 2008

[3] Deans P. and Wiseman R., Service-Oriented Infrastructure: Proof of

Concept Demonstrator, BT Technology Journal, Vol 26, No 1, September
2008

[4] BRKatzy, G.S,, The Virtual Enterprise. Information Age, 1995

[5] Katzy, B.R. Design and implementation of virtual organizations. in System
Sciences, 1998., Proceedings of the Thirty-First Hawaii International
Conference on. 1998. Pages?

[6] Periorellis, P., Cook, N., Hiden, H. et al. GOLD infrastructure for virtual
organizations. Concurrency and Computation: Practice and Experience Vol.
20(11), pp - 1273-1288, 2008. Use this one as standard to fix your references.

[7] Dimitrakos, T., et al. Contract performance assessment for secure and
dynamic virtual collaborations. in Enterprise Distributed Object Computing
Conference, 2003. Proceedings. Seventh IEEE International. 2003.

[8] Anderson, Chris. "The Long Tail" Wired, October 2004.

[9] The Long Tail, n a nutshell, available at:
http://www.longtail.com/about.html

[10] L. Frank Kenney, Daryl C. Plummer, Magic Quadrant for Integrated SOA
Governance Technology Sets, 31 March 2009, Gartner RAS Core Research
Note G00166481.

[11] de Leusse, P., Periorellis, P., Watson, P. and Maierhofer, A., Secure & Rapid
Composition of Infrastructure Services in the Cloud, In The Second
International Conference on Sensor Technologies and Applications,
SENSORCOMM 2008, 25-31, August 2008, Cap Esterel, France, pp 770-775,
IEEE Computer Society, 2008

[12] de Leusse, P., Periorellis, P., Watson, P. and Dimitrakos, T., A semi
autonomic infrastructure to manage non functional properties of a service, In
UK e-Science All Hands Meeting 2008, 8-11 September, Edinburgh, UK,
National e-Science Centre, 2008.

[13] de Leusse, P., Dimitrakos, T., and Brossard, D., A governance model for
SOA, IEEE 7th International Conference on Web Services (ICWS 2009), July
6-10, 2009, Los Angeles, CA, USA.

[14] de Leusse, P. and Brossard, D., Distributed systems security governance, a
SOA based approach, Third IFIP International Conference on Trust
Management, Springer, June 15-19, 2009, Purdue University, West Lafayette,
USA.

102

[15] fie Leusse, P.and Dimitrakos, T., SOA-based security governance
middleware, The Fourth International Conference on Emerging Security

Information, Systems and Technologies, IEEE Computer Society, July 18-25.
2010, Venice/Mestre, Italy.

[16] Natis, Y.V,, et al., Predicts 2007: SOA Advances. 2006.

[17] T Dimitriakos, G.L., et al, Towards a Grid Plateform Enabling Dynamic
Virtual Organisations for Business Applications. 2005.

[18] Radhakrishnan, S., Integrating Entreprise Applications: Backgrounder. 2005.

[19] Fielding, Roy. Architectural Styles and the Design of Network-based
Software Architectures (PhD Thesis). s.l. University of Irvine, California,
2000.

[20] Erl, T., Service-Oriented Architecture Concepts, Technology, and Design.
2005.

[21] Peltz, C., Web services orchestration and choreography. Computer, 2003.
36(10): p. 46 - 52.
[22] Erradi, A.M., P., wsBus: QoS-aware Middleware for Reliable Web Services

Interactions. e-Technology, e-Commerce and e-Service, 2005. EEE '05.
Proceedings. The 2005 IEEE International Conference on, 2005: p. 634 - 639.

[23] Bachman, J., S. Kline, and B. Soni, A New Service-Oriented Architecture
Maturity Model. 2005.

[24] Corporation, S.S., SONIC ESB: AN ARCHITECTURE AND LIFECYCLE
DEFINITION. 2005.

[25] Chappell, D., Enterprise Service Bus. Ist ed. Vol. 1. 2004: O'Reilly. 247.

[26] de Leusse, P., Periorellis, P., Watson, P., Enterprise Service Bus: An
overview, CS-TR No 1037, School of Computing Science, Newcastle
University, Jul 2007

[27] Arsanjani, A. Liang-Jie Zhang Ellis, M. Allam, A. Channabasavaiah, K., S3:
A Service-Oriented Reference Architecture, in IT Professional, May-June
2007, volume 9, Issue 3, pages 10 - 17, ISSN 1520-9202, IEEE Computer

Society.
[28] Kreger, H., Estefan J., Navigating the SOA Open Standards Landscape
Around Architecture, June 2009.

[29] OASIS Reference Model for SOA, Version 1.0, OASIS Standard, October
2006: docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

[30] OASIS Reference Architecture (Foundation) for SOA, Version 1.0, OASIS
Public Review Draft 1, April 2008: docs.oasis-open.org/soa-rm/soa-
ra/v1.0/soa-ra-pr-01.pdf

[31] The Open Group SOA Reference Architecture (The Open Group SOA RA),
Draft Technical Standard (to be published in 2009); refer to
www.opengroup.org/projects/soa-ref-arch

[32] The Open Group SOA Governance Framework, Draft Technical Standard
(to be published in 2009); refer to WWW.Opengroup.org/projects/soa-

governance

103

[33] W3C Note, Web Services Description Language (WSDL) 1.1, 15 March
2001, available at: http://www.w3.org/TR/wsdl

[34] W3C Recommendation, Semantic Annotations for WSDL and XML
Schema, 28 August 2007, available at: hitp://www.w3.ore/TR/sawsdl/

[35] W3C Member Submission, Web Service Modeling Ontology (WSMO), 3

June 2005, available at: http://www.w3.0re/Submission/WSMO and
http://www.wsmo.org/

[36] W3C Member Submission, OWL-S: Semantic Markup for Web Services, 22
November 2004, available at: http://www.w3.org/Submission/OWL-S

[37] W3C Member Submission, Web Application Description Language, 31
August 2009, available at http://www.w3.org/Submission/wadl

[38] Kunal Verma, Karthik Gomadam, Amit P. Sheth, John A. Miller, Zixin
Wu"The METEOR-S Approach for Configuring and Executing Dynamic
Web Processes"”, Technical Report . Date: 6-24-05

[39] José Antonio Parejo Maestre, Pablo Fernindez Montes, and Antonio Ruiz
Cortés, SOA Governance: Exploring Challenges & Benefits from an
Autonomic Perspective, 2nd Workshop on Autonomic and SELF-adaptive
Systems, 2009, San Sebastian, Spain

[40] Marks, E.A.: Service-Oriented Architecture Governance for the Services
Driven Enterprise. John Wiley & Sons (2008)

[41] Brown, W.A, Laird, R.G., Gee, C., Mitra, T., SOA Governance: Achieving
and Sustaining Business and IT Agility. IBM Press (December 2008)

[42] Bernhardt, J., Seese, D., A conceptual framework for the governance of
service-oriented architectures. In: Service-Oriented Computing ICSOC 2008
Workshops. Springer (2009)

[43] Bruce G., Streamlining the Telco Production Line, BT Technology Journal,
Vol 26, No 2, April 2009

[44] TeleManagement Forum Service Delivery Framework Programme, Service
Delivery Framework Overview, TMF TR139, September 2008

[45] Georgalas N., Achilleos A., Freskos V.and Economou D., Agile Pfoduct
Lifecycle Management for Service Delivery Frameworkss History,
Architecture and Tools, BT Technology Journal, Vol 26, No 2, April 2009

[46] TMFO061, Service Delivery Framework Reference Architecture, Release 1.0

[47] H. Wada, J. Suzuki and K. Oba, "A Feature Modeling Support for Non-
Functional Constraints in Service Oriented Architecture,” In Proc. of the 4th
IEEE International Conference on Services Computing (SCC), Salt Lake City,
UT, July 2007

[48] H. Wada, J. Suzuki and K. Oba, "Modeling Non-Functional Aspec'ts n
Service Oriented Architecture,” In Proc. of the 3rd IEEE International
Conference on Services Computing (SCC), Chicago, IL, September 2006.

[49] T. Goovaerts, B. De Win, and W. Joosen., Infrastructurgl support fqr
enforcing and managing, distributed application-level policies. Electronic
Notes, in Theoretical Computer Science, 197(1):31-43, Feb., 2008.

104

[50] Apache Axis, http://ws.apache.org/axis/

[51] Evren Sirin, , James Hendler, and Bijan Parsia. Semi-automatic composition
of web services using semantic descriptions. In Web Services: Modeling,

Architecture and Infrastructure workshop in ICEIS 2003, Angers, France,
April 2003.

[52] Liu, Y., Ngu, A. H., and Zeng, L. Z. 2004. QoS computation and policing in
dynamic web service selection. In Proceedings of the 13th international World
Wide Web Conference on Alternate Track Papers &Amp; Posters (New York,
NY, USA, May 19 - 21, 2004). WWW Alt. '04. ACM, New York, NY, 66-73.

[53] Dimitrakos, T., Brossard, D. and de Leusse, P., Securing business operations
in an SOA, BT Technology Journal Vol. 26, Issue 2, BT, 2009.

[54] Dimitrakos, T., Brossard, D., de Leusse, P. and Nair, S. K., Security of
Service Networks, In Handbook of Information and Communication Security,
Stavroulakis, P. and Stamp, M. (eds.), pp 351-382, Springer-Verlag, 2010,
ISBN 978-3-642-04116-7 -

[55] HP SOA Governance Interoperability Framework (GIF), Govemance
interoperability framework reference, February 2008

[56] Dudley, C., Rieu, L., Smithson, M., Verma, T., Braswell, B., WebSphere
Service Registry and Repository Handbook, Redbooks, IBM, March 2007

[57] Zhang, S. Integrating Non-Functional Properties to Architecture
Specification and Analysis, in Third International Conference on Information
Technology: New Generations, 2006

[58] Galster, M., Bucherer, E., A Taxonomy for Identifying and Specifying Non-
functional Requirements in Service-oriented Development, in IEEE Congress
on Services 2008, 2008

[59] Dobson, G., Hall, S., Kotonya, G., A Domain-Independent Ontology for
Non-Functional Requirements, in IEEE International Conference on e-
Business Engineering, 2007

[60] OASIS, Extensible Access Control Mark Up Language (XACML) v2, 2004,
available at; http://www.oasis-

open.org/committees/tc home.php?wg abbrev=xacml

[61] Moritz Y. Becker, Cedric Fournet, Andrew D. Gordon, SecPAL: Design and
Semantics of a Decentralized Authorization Language, Technical Report
MSR-TR-2006-120, Microsoft Research, September 2006.

[62] W3C Member Submission, Web Services Addressing (WS-Addressing, WS-
A), 10 August 2004, available at: http://www.w3.org/Submission/ws-
addressing/

[63] W3C Member Submission, Web Services Policy 1.2 - Framewor.k (WS-
Policy), 25 April 2006, available at: http://www.w3.org/Submission/WS-

Policy/
[64] WS-I, Basic Profile Version 1.0, 16 April 2004, available at: http://www.ws-
i.org/Profiles/BasicProfile-1.0-2004-04-16.html

[65] Microformats, hCard 1.0, available at: http:/microformats.org/wiki/hcard

105

[66] Armbrust, M., Fox, A., Griffith, R., Joseph, A., D., Katz, R., H., Konwinski.
A., Lee, G., Patterson D., A., Rabkin, A., Stoica, 1. and Matei ZahariaAbove
the Clouds: A Berkeley View of Cloud Computing (EECS-2009-28)

[67] Gamrr_la E., Helm R., Johnson R. and Vlissides J., (1993). Design patterns:
abstraction and reuse of object-oriented design. In Proceedings of the
ECOOP’93 Conference, Kaiserslautem, Germany; published by Springer
Verlag

[68] OASIS Web Services Distributed Management (WSDM), www.oasis-
open.org/committees/wsdm/

[69] Apache Muse - A Java-based implementation of WSRF 1.2, WSN 1.3, and
WSDM 1.1. available at: http://ws.apache.org/muse/

[70] Java Technology Reference, Oracle, available at:
http://java.sun.com/reference

[71] Apache Axis2/Java, The Apache Software Foundation, available at:
http://ws.apache.org/axis2/

[72] SOAP Version 1.2, W3C Recommendation (Second Edition), 27 April 2007,
available at: http://www.w3.org/TR/soap/

[73] Apache Tomcat, The Apache Software Foundation, available at:
http://tomcat.apache.org/

[74] eXist-db Open Source Native XML Database, available at:
http://exist.sourceforge.net/

[75] Java Servlet technology, Oracle, available at:
http://java.sun.com/products/servlet/

[76] XQuery 1.0: An XML Query Language, W3C Recommendation, 23 January
2007, available at: http://www.w3.org/TR/xquery/

[77] XML Path Language (XPath) 2.0, W3C Recommendation, 23 January 2007,
available at: http://www.w3.org/TR/xpath20/

[78] Apache Synapse Enterprise Service Bus (ESB), The Apache Software
Foundation, available at: http://synapse.apache.org/

[79] The Role of XML Gateways in SOA, Optimizing Performance, Security and
Policy Operations, Layer 7 Technologies, White Paper

[80} Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P,
Luotonen, A., Sink, E., and Stewart, L. 1999. HTTP authentication: Basic and
digest access authentication. Internet RFC 2617, June 1999.

[81] de Leusse, P., Brossard, D. and Georgalas, N., Securing business operations
in an SOA, Wiley SCN Journal, Special Issue on Security and Trust
Management for Dynamic Coalitions, 2010

[82) WS-Trust 1.4, OASIS Standard, 2 February 2009, Available at:
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-o0s.html

[83] Zeng, L., Benatallah, B., Ngu, A., H., H.,Dumas, M., Kalagnanam, J. and
Chang H., QoS-Aware Middleware for Web Services Composition, IEEE
Transactions on Software Engineering, p. 311-327, May 2004

106

[84] Galizia, S., Gugliotta, A. and Domingue, J., A Trust Based Methodology for
Web Service Selection, Proceedings of the International Conference on
Semantic Computing, p. 193-200, 2007, ISBN. 0-7695-2997-6, IEEE
Computer Society

[85] Product and Service Assembly Initiative, available at:
http://www.psainitiative.co.uk/

[86] de Leusse, P., Periorellis, P., Dimitrakos, T. et al., Self Managed Security
Cell, a security model for the Internet of Things and Services, In Proceedings.
The First International Conference on Advances in Future Internet, AFIN
2009, 18-23 June 2009, Athens/Glyfada, Greece, pp 47-52, IEEE Computer
Society, 2009

107

List of acronyms

ADL: Architecture Description Language
AS: Application Server

ASGI: SOA Governance Infrastructures
B2B: Business To Business

B2B2C: B2B To Customer

B2B2G: B2B To Government

BC: Business Capability

BSS: Business Support Systems

CORBA: Common Object Request Broker Architecture
CP: Content Provider

CPU: Central Processing Unit

EAI: Enterprise Application Integration

ESB: Enterprise Service Bus

GIF: Governance Interoperability Framework
IoTS: Internet of Things and Service

IT: Information Technology

ICT: Information and Communication Technologies
JSON: JavaScript Object Notation

MDD: Model-Driven Development tool
MOM: Message Oriented Middleware

NFP: Non-Functional Property

NFR: Non-Functional Requirement

OASIS: Organization for the Advancement of Structured Information Standards
OSS: Operational Support Systems

PSA: Product and Service Assembly

QoS: Quality of Service

REST: REpresentational State Transfer

ROI: Return On Investment

RPC: Remote Procedure Call

SAML: Security Assertion Markup Language
SaaS: Security as a Service

SDF: Service Delivery Framework

SDF ISS: SDF Infrastructure Support Services

108

SDF SMI: SDF Service Management Interfaces

SDF MSS: SDF Management Support Services

SDP: Service Delivery Platform

SecPAL: Security Policy Assertion Language

SLA: Service Level Agreement

SMC: Self-Managed Cell

SOA: Service Oriented Architecture

SOI: Service Oriented Infrastructure

SSB: Security Service Bus

TMF: TeleManagement Forum

TOGAF: The Open Group Architecture Framework
UDDI: Universal Description Discovery and Integration
UDP: User Datagram Protocol

UML: Unified Modelling Language

VAS: Value Adding Service

VHE: Virtual Hosting Environment

VMS: Virtual Music Store

VO: Virtual drganisation

W3C: World Wide Web Consortium

WS: Web Service

WS-A: WS Addressing

WS-I: WS Interoperability

WS-DM: WS Distributed Management

WSDL: WS Description Language

WSRR: WebSphere Service Registry and Repository
XACML: eXtensible Access Control Markup Language
XML: eXtensible Markup Language

XSL: eXtensible Stylesheet Language

XSLT: XSL Transformation

YAML: YAML Ain't Markup Language

109

Appendix

1. Profile description XML schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema" xmins:ws-p="com.bt.ws-profile”
targetNamespace="com.bt.ws-profile" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="WS-Profile” type="ws-p:tProfile">
<xs:annotation>
<xs:documentation>Schema for WS-Profile</xs:documentation>
</xs:annotation>
</xs:element>
<xs.element name="Constraint" type="ws-p:tConstraint">
<xs:annotation>
<xs:documentation>Schema for WS-Profile</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="tProfile">
<xs:annotation>
<xs:documentation>tProfile is the top level node of a WS-Profile. It
contains all the information expressed or required.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="ServiceType" type="ws-p:tServiceType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="Constraint" type="ws-p:tConstraint"
minOccurs="0" maxOccurs="unbounded"/>
<xs.element name="CoordinationPlan" type="ws-p:tProfile"
minQccurs="0" maxQOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ID" type="ws-p:tUUID"/>
</xs:complexType>
<xs:element name="Capability" type="ws-p:tServiceType"/>
<xs:complexType name="tServiceType">
<xs:annotation>
<xs:documentation>tServiceType is the top level of abstraction for an
activity in the WS-Profile.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="ws-p:tActivity">
<xs:sequence>
<xs:element name="Interface" type="ws-p:tinterface”
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="tInterface">
<xs:annotation>
<xs:documentation>tinterface may allow to differentiate different
parts of the same activity in the WS-Profile. For instance, one activity could have both
management and operational interfaces.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="ws-p:tActivity">
<xs:sequence> ‘
<xs:element name="Functionality" type="ws-

110

p:tFunctionality” minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="tFunctionality">
<xs:annotation>
<xs:documentation>tFunctionality may allow to differentiate different
functions of the same interface in the WS-Profile. For instance, one interface could allow to
manage users and items, these would be two different functionalities. </xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs.extension base="ws-p:tActivity">
<xs:sequence>
<xs:element name="Operation” type="ws-
p:tOperation” minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="tOperation">
<xs:annotation>
<xs:documentation>tOperation links to the concrete operations of a
functionality in the WS-Profile. For instance, one user management functionality could have
operations about deleted, updating or creating users.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="ws-p:tActivity">
<xs:sequence/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="tConstraint">
<xs:annotation>
<xs:documentation>tConstraint allows connecting constraints to the
different levels of abstraction in the WS-Profile. For instance, an operation could require
another one to called immediatly before in order to work.</xs:documentation>
</xs:annotation>
<xs:choice>
<xs:sequence>
<xs:element name="Policy Type" type="xs:string"/>
<xs:element name="Location" type="xs:string"/>
</xs:sequence>
<xs:sequence>
<xs:element name="BeforeorAfter">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="before"/>
<xs:enumeration value="after"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Activity" type="xs:string"/>
</xs:sequence>
<xs:sequence>
<xs:element name="ActivityLocation" type="xs:string"/>
<xs:element name="Location" type="xs:string"/>
</xs:sequence>
<xs:sequence>
<xs:element name="misc" type="xs:string"/>

111

<xs:element name="value" type="xs:string"/>
<xs:element name="Constraint” type="ws-p:tConstraint”
minOccurs="0" maxQOccurs="unbounded"/>
</xs:sequence>
</xs:choice>
<xs:attribute name="ID" type="ws-p:tUUID"/>
</xs:complexType>
<xs:complexType name="tActivity">
<xs:annotation>
<xs:documentation>TActivity defines an abstract component of the
Policy.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="Constraint" type="ws-p:tConstraint”
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ID" type="ws-p:tUUID"/>
</xs:complexType>
<xs:simpleType name="tUUID">
<xs:restriction base="xs:string">
<xs:pattern value="[a-f0-9]{8}-{a-f0-9]{4}-[a-f0-9}{4}-[a-f0-9){4}-[a-fO-
9{12}"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

Table 15. WS-Profile XML Schema

2. Context description XML schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema" xmins:ws-c="com.bt.ws-
context” targetNamespace="com.bt.ws-context" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="WS-Context" type="ws-c:tContext">
<xs:annotation>
<xs:documentation>Schema for WS-Context</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="tContext">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="configData" type="ws-c:tConfigData"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ID" type="ws-c:tUUID"/>
</xs:complexType>
<xs:complexType name="tConfigData">
<xs:sequence>
<xs:element name="target" type="ws-c:tUUID"/>
<xs:element name="data" type="ws-c:tUUID" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="misc" type="xs:anyType" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ID" type="ws-c:tUUID"/>
</xs:complexType>
<xs:simpleType name="tUUID">
<xs:restriction base="xs:string">
<xs:pattern value="[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]){4}-[a-f0-9){4}-[a-fO-
9){12}"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

Table 16. WS-Context XML Schema

113

3. Context Selector description XML schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema" xmIins:ws-cs="com bt ws-
context-selector” targetNamespace="com.bt.ws-context-selector”
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:element name="WS-ContextSelector” type="ws-cs:tContextSelector"/>
<xs:complexType name="tContextSelector">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="profile" type="ws-cs:tUUID" minOccurs="1"
maxOccurs="unbounded"/>
<xs:element name="context" type="ws-cs:tUUID" minOccurs="1"
maxOccurs="unbounded"/>
<xs:element name="internalTarget" type="ws-cs:tUUID"/>
<xs:element name="upTime" type="ws-cs:tValidity" minOccurs="1"
maxQccurs="1"/>
<xs:element name="configSelector" type="ws-cs:tSelector"
minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ID" type="ws-cs:tUUID"/>
</xs:complexType>
<xs:complexType name="tValidity">
<xs:sequence>
<xs:element name="type" type="ws-cs:tPeriod" minOccurs="0"
maxOccurs="1"/>
<xs:element name="when" type="ws-cs:tDateAndl_ength”
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="tPeriod">
<xs:restriction base="xs:string">
<xs:enumeration value="always"/>
<xs:enumeration value="on-request"/>
<xs:enumeration value="time-frame"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="tDateAndLength">
<xs:sequence>
<xs:element name="startdate" type="xs:dateTime" maxOccurs="1"/>
<xs:element name="period" type="xs:duration" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="ID" type="ws-cs:tUUID"/>
</xs:complexType>
<xs:complexType name="tSelector">
<xs:sequence>
<xs:element name="target" type="ws-cs:tUUID"/>
<xs:element name="data" type="xs:string"/>
<xs:element name="operation" type="ws-cs:tOperation"/>
</xs:sequence>
<xs:attribute name="ID" type="ws-cs:tUUID"/>
</xs:complexType>
<xs:simpleType name="tOperation">
<xs:restriction base="xs:string">
<xs:enumeration value="request"/>
<xs:enumeration value="response"/>
<xs:enumeration value="both"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="tUUID">

114

<xs:restriction base="xs:string">
<xs:pattern vaIue="[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}—[a-f0-9]{4}.[a-fo_
9){12})"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

Table 17. WS-ContextSelector XML Schema

115

Publications

Book chapter

[1]

Dimitrakos, T., Brossard, D. and de Leusse, P., Security of Service
Networks, Stavroulakis, Peter; Stamp, Mark (Eds.), 1st Edition., 2010, XX,
800 p. 250 illus., Hardcover, ISBN: 978-3-642-04116-7, 2010, available

from: http://www.springer.com/engineering/signals/book/978-3-642-041 16-
7

Refereed journal articles

[2]

(3]

Dimitrakos, T., Brossard, D. and de Leusse, P., Securing Business
Operations in SOA, BT Technology Journal, vol.27, no.2
(https://www.btplc.com/Innovation/Joumal/BTTJ/current/HTMLArticles/Vo
lume26/22Securing/Default.aspx)

de Leusse, P., Brossard, D. and Georgalas, N., Securing business operations
in an SOA, Wiley SCN Joumnal, Special Issue on Security and Trust
Management for Dynamic Coalitions, 2010

Refereed conference publications

[4]

[5]

[6]

[7]

[8]

9]

de Leusse, P. and Dimitrakos, T., SOA-based security governance
middleware, The Fourth International Conference on Emerging Security
Information, Systems and Technologies, IEEE Computer Society, July 18-
25,2010, Venice/Mestre, Italy

de Leusse, P., Dimitrakos, T., and Brossard, D., A governance model for
SOA, IEEE 7th International Conference on Web Services (ICWS 2009),
July 6-10, 2009, Los Angeles, CA, USA

de Leusse, P. and Brossard, D., Distributed systems security governance, a
SOA based approach, Third IFIP International Conference on Trust
Management, Springer, June 15-19, 2009, Purdue University, West
Lafayette, USA

de Leusse, P., Periorellis, P., Dimitrakos, T., and Srijith K. Nair, Self
Managed Security Cell, a security model for the Internet of Things and
Services, The First Interational Conference on Advances in Future Internet,
AFIN 2009, IEEE Computer Society, June 18-23, 2009,
Athens/Vouliagmeni, Greece, Best paper award

de Leusse, P., Periorellis, P., Watson, P. and Dimitrakos, T., A semi
autonomic infrastructure to manage non functional properties of a service, In
UK e-Science All Hands Meeting 2008, 8-11 September, Edinburgh, UK,
National e-Science Centre, 2008

de Leusse, P., Periorellis, P., Watson, P. and Maierhofer, A., Secure & Rapid
Composition of Infrastructure Services in the Cloud, In The Second
International Conference on Sensor Technologies and Applications,
SENSORCOMM 2008, 25-31, August 2008, Cap Esterel, France, pp 770-
775, IEEE Computer Society, 2008

116

[10] de Leusse, P., Periorellis, P., Dimitrakos, T. and Watson, P., An architecture
for non functional properties management in distributed computing,
Doctoral Consortium on Software and Data Technologies - Proceedings of
the Doctoral Consortium on Software and Data Technologies, DCSOFT
2008, In Conjunction with ICSOFT 2008, 2008, Pages 26-37

Non-Refereed Publications

[11] de Leusse, P., Periorellis, P. and Watson, P., CS-TR No 1037 Enterprise
Service Bus: An overview, School of Computing Science, Newcastle
University, Jul 2007

117

	544218_0001
	544218_0002
	544218_0003
	544218_0004
	544218_0005
	544218_0006
	544218_0007
	544218_0008
	544218_0009
	544218_0010
	544218_0011
	544218_0012
	544218_0013
	544218_0014
	544218_0015
	544218_0016
	544218_0017
	544218_0018
	544218_0019
	544218_0020
	544218_0021
	544218_0022
	544218_0023
	544218_0024
	544218_0025
	544218_0026
	544218_0027
	544218_0028
	544218_0029
	544218_0030
	544218_0031
	544218_0032
	544218_0033
	544218_0034
	544218_0035
	544218_0036
	544218_0037
	544218_0038
	544218_0039
	544218_0040
	544218_0041
	544218_0042
	544218_0043
	544218_0044
	544218_0045
	544218_0046
	544218_0047
	544218_0048
	544218_0049
	544218_0050
	544218_0051
	544218_0052
	544218_0053
	544218_0054
	544218_0055
	544218_0056
	544218_0057
	544218_0058
	544218_0059
	544218_0060
	544218_0061
	544218_0062
	544218_0063
	544218_0064
	544218_0065
	544218_0066
	544218_0067
	544218_0068
	544218_0069
	544218_0070
	544218_0071
	544218_0072
	544218_0073
	544218_0074
	544218_0075
	544218_0076
	544218_0077
	544218_0078
	544218_0079
	544218_0080
	544218_0081
	544218_0082
	544218_0083
	544218_0084
	544218_0085
	544218_0086
	544218_0087
	544218_0088
	544218_0089
	544218_0090
	544218_0091
	544218_0092
	544218_0093
	544218_0094
	544218_0095
	544218_0096
	544218_0097
	544218_0098
	544218_0099
	544218_0100
	544218_0101
	544218_0102
	544218_0103
	544218_0104
	544218_0105
	544218_0106
	544218_0107
	544218_0108
	544218_0109
	544218_0110
	544218_0111
	544218_0112
	544218_0113
	544218_0114
	544218_0115
	544218_0116
	544218_0117

