
Qualitatively Modelling Genetic Regulatory
Networks: Petri Net Techniques and Tools

Thesis by

Richard A Banks

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

Newcastle University
Newcastle upon Tyne, UK

2009
(Defended March 17, 2009)

NEW CAS TL E UNIVER SI TY LI 8RARY

20732 7 6 6/,

Contents

Acknowledgements

Abstract

1 Introduction
1.1 Contributions
1.2 Organisation of Thesis

2 Background
2.1 Existing modelling approaches
2.2 Boolean networks

2.2.1 The Boolean idealisation
2.2.2 Basic notations
2.2.3 Update semantics

ii

2.2.4 Attractor dynamics and random Boolean networks
2.2.5 Constructing Boolean models of genetic networks

2.3 Petri nets
2.3.1 Basic notations ..
2.3.2 Structural analysis
2.3.3 Dynamical analysis

2.4 Modelling and analysis of biological systems using Petri nets
2.4.1 Standard Petri nets .
2.4.2 Coloured Petri nets.
2.4.3 Stochastic Petri nets
2.4.4 Hybrid Petri nets . .

2.5 Tool support for modelling and analysing biological systems
2.6 Summary

3 Boolean Models of Genetic Regulatory Networks:
proach
3.1 From Boolean networks to Petri nets

3.1.1 Obtaining compact next-state equations .
3.1.2 Constructing a qualitative Petri net model
3.1.3 Partial models.

3.2 Implementation issues

A Petri Net Ap-

v

vi

1
3
5

6
6
8
8
9

10
12
13
15
16
18
20
24
24
27
28
28
30
31

32
33
33
34
38
39

III

3.3 Applying and validating Petri net framework .
3.3.1 Response to carbon starvation in E. coli
3.3.2 Sporulation in B. subtilis .

3.4 Discussion
3.4.1 Conclusions
3.4.2 Future work
3.4.3 Sources ..

41
41
46
51
51
53
53

4 A Generalised Petri Net Framework for Genetic Regulatory Networks 54
4.1 Multi-valued networks 55
4.2 High-level Petri nets
4.3 From multi-valued networks to Petri nets

4.3.1 Obtaining compact next-state equations
4.3.2 A safe Petri net approach ...
4.3.3 A high-level Petri net approach
4.3.4 Partial models

4.4 Framework comparison
4.5 Response to carbon stress in E. coli ..

4.5.1 Constructing high-level Petri net model.
4.5.2 Validating model

4.6 Initial comparisons between E. coli models
4.7 Discussion.....

4.7.1 Conclusions
4.7.2 Future work
4.7.3 Sources ..

57
58
58
60
65
66
68
70
70
71
74
75
75
77
77

5 Relationships Between Models at Different Levels of Abstraction 78
5.1 Developing a refinement theory 79

5.1.1 Basic notations 79
5.1.2 Relating state spaces between models. 81
5.1.3 Refinement theory: a relationship assumption 84

5.2 Investigative application 86
5.3 Algorithm development. 90

5.3.1 Calculating the refinement set 90
5.3.2 Validating a refinement. 99

5.4 Benchmarking......... 100
5.5 Application to E. coli models 102
5.6 Discussion..... 103

5.6.1 Conclusions 103
5.6.2 Future work 104
5.6.3 Sources .. 105

iv

6 Developing Realistic Asynchronous Boolean Networks
6.1 Signal transition graphs
6.2 Speed-independent circuits: properties and construction.

6.2.1 Boundedness and consistency
6.2.2 Complete state coding
6.2.3 Output persistency
6.2.4 Additional properties

6.3 Constructing SI STGs from circuits
6.3.1 Translating circuits into STGs .
6.3.2 Identifying output-persistency violations
6.3.3 Resolving output-persistency violations
6.3.4 Properties of violation resolution '"

6.4 Implementation issues
6.5 Case study: lysis-lysogeny switch in phage).. .

6.5.1 Model construction
6.5.2 Model analysis and refinement .

6.6 Discussion
6.6.1 Conclusions
6.6.2 Future work
6.6.3 Sources ..

7 Concluding Remarks
7.1 Conclusions
7.2 Future work

Bibliography

106
108
110
113
113
114
116
117
117
119
121
127
129
129
130
131
134
134
135
135

136
136
142

143

v

Acknow ledgements

First and foremost, my parents Paul and Sue, as well as my sister Charlotte, have given
me nothing but love and support throughout this work, and for that I am very grateful.

I would like to thank my supervisor Jason Steggles, who has gone above and beyond
his duties as a supervisor, and has always made time for meetings to ensure that the
work has run smoothly. Thanks also go to Neil Wipat and Victor Khomenko for many
useful discussions, as well as Matthew Pockock, Keith Flanagan, Jennifer Hallinan and
the rest of the bioinformatics group at Newcastle University.

Outside of work, I thank Colin and Sylvia Brown for many enjoyable meals, Simon
Carter and Claire Hines for giving me somewhere to lodge during the last three months,
the departmental basketball people for some interesting games and the infamous Lahore
takeaway on Normanton Road in Derby for producing the best kebabs ever. I also thank
the now-flattened cushion in the dining room for making the last year of write up a
comfortable experience.

On a more serious note, my girlfriend Lejla, along with her mum and dad Lida and
Ferid, have offered me much support, encouragement and tasty Yugoslavian snacks. For
this I say hvala za hranu i smjestaj u vasoj kuci. I thank Lejla especially throughout all
this for her love, understanding, and remarkable patience, as well as her nagging for me
to work!

VI

Abstract

The development of post-genomic technologies has led to a paradigm shift in the way we
study genetic regulatory networks (GRNs) - the underlying systems which mediate cell
function. To complement this, the focus is on devising scalable, unambiguous and auto
mated formal techniques for holistically modelling and analysing these complex systems.

Quantitative approaches offer one possible solution, but do not appear to be com
mensurate with currently available data. This motivates qualitative approaches such as
Boolean networks (BNs) , which abstractly model the system without requiring such a
high level of data completeness. Qualitative approaches enable fundamental dynamical
properties to be studied, and are well-suited to initial investigations. However, strength
ened formal techniques and tool support are required if they are to meet the demands of
the biological community.

This thesis aims to investigate, develop and evaluate the application of Petri nets
(PNs) for qualitatively modelling and analysing GRNs. PNs are well-established in the
field of computer science, and enjoy a number of attractive benefits, such a wide range
of techniques and tools, which make them ideal for studying biological systems.

We take an existing qualitative PN approach for modelling GRNs based on BNs, and
extend it to more general models based on multi-valued networks (MVNs). Importantly,
we develop tool support to automate model construction. We illustrate our approach
with two detailed case studies on Boolean models for carbon stress in Escherichia coli
and sporulation in Bacillus subtilis, and then consider a multi-valued model of the former.
These case studies explore the analysis power of PN s by exploiting a range of techniques
and tools.

A number of behavioural differences are identified between the two E. coli models
which lead us to question their formal relationship. We investigate this by proposing a
framework for reasoning about the behaviour of MVNs at different levels of abstraction.
We develop tool support for practical models, and show a number of important results
which motivate the need for multi-valued modelling.

Asynchronous BN s can be seen to be more biologically realistic than their synchronous
counterparts. However, they have the drawback of capturing behaviour which is unreal
isable in practice. We propose a novel approach for refining such behaviour using signal
transition graphs, a PN formalism from asynchronous circuit design. We automate our
approach, and demonstrate it using a BN of the lysis-lysogeny switch in phage A. Our
results show that a more realistic asynchronous model can be derived which preserves
the stochastic switch.

1

Chapter 1

Introduction

The regulatory processes governing the growth and development of cellular organisms are
so unimaginably complex that they will probably elude our understanding for many years
to come. Despite some notable precursors, this understanding has only recently been
accelerated by the tremendous developments in post-genomic technology of the ninetees
[33]. Now in the 21st century, our goal is to unite research from the mathematical,
computational and biological disciplines, to model organisms holistically at multiple levels
of organisation, and to simulate their behaviour closely in vivo [112].

To achieve this goal, however, we must work from the ground up. Indeed, the Ameri-
can physicist Richard Feynman, who also had a deep interest in biology, once stated [66]:

"Everything is made of atoms. That is the key hypothesis. The most impor
tant hypothesis in all biology, for example, is that everything that animals do
atoms can do. In other words, there is nothing that living things do that can
not be understood from the point of view that they are made of atoms acting
according to the laws of physics. "

Thus, our understanding of complex cellular organisms first requires an understanding
of the underlying processes which mediate their function.

At a high level, these processes can be conceptualised as interlinked control structures
which work together in an orchestrated fashion, and are often referred to as signal trans
duction pathways (STPs) [170], metabolic pathways (MPs) [89] and genetic regulatory
networks (GRNs) [206,212]. STPs control how the cell receives, processes and responds
to information from the environment, whereas MPs control the intake and usage of en
ergy in the cell for it to perform its function. However, the general focus of this thesis is
on GRNs, which control the complex process of gene expression. Specifically, GRNs con
trol the synthesis of gene products (or proteins) by transcribing the genetic information
coded by the gene into mRN A, and then translating this into the resulting protein.

An abstract example of a GRN for the mammalian cell cycle (taken from [65]) is
shown in Figure 1.1. Specifically, interactions can be either activation (denoted by di
rected arrows) or inhibition (denoted by fiat arrows). Even for this small system, we
observe that incredibly rich behaviours can be manifested due to the tight integration of
local interactions. This complexity increases further when we consider that gene expres
sion can be regulated at numerous stages in the process, and synthesised proteins can

2

Figure 1.1: A high-level regulatory representation of the interactions present in the mam
malian cell cycle network (taken from [65]), where directed edges represent activation
interactions, whilst fiat edges represent repression.

regulate other genes (including the gene from which they were synthesised), act as en
zymes catalysing metabolic reactions or form components in a signal cascade [98]. Thus,
there is an impending requirement for mathematically sound, unambiguous, scalable and
systematic formal techniques which facilitate the study of the "sum of the parts" .

Quantitative approaches offer one possible solution by facilitating realistic and de
tailed simulations, but are widely regarded as being incommensurate with currently
available data [91]. This motivates qualitative approaches such as Boolean networks
(BNs) [102]' which abstractly model the system without requiring such a high level of
data completeness. Qualitative approaches enable fundamental dynamical properties to
be studied, and are well-suited to initial investigations. However, strengthened formal
techniques and tool support are required if they are to meet the demands of the biological
community.

In this thesis, we explore this issue by considering the Petri net (PN) formalism
[147,156]. PNs are well-established in the field of computer science, and enjoy a number
of attractive benefits which make them a promising framework for studying biological
systems. This leads us to state the high-level aim of this thesis.

This thesis aims to investigate, develop and evaluate the application of Petri
nets (PNs) to qualitatively model and analyse GRNs.

PNs are based on directed bipartite graphs (for example, see Figure 1.2(a)) consisting
of: places (denoted by circles) which represent biological entities such as genes or proteins;
transitions (denoted by rectangles) which represent events such as chemical reactions;
weighted arcs (denoted by directed arrows) which connect together places and transitions;
and tokens (denoted by black circles) which represent a quantity or concentration. Tokens
can be moved around the places of the PN by firing the transitions [147]. A transition
can fire if all its input places contain sufficient tokens (this is discussed more in Section
2.3).

3

Glucose Ethanol Glucose Ethanol
••

••

(a) (b)

Figure 1.2: PNs modelling the conversion of glucose into ethanol Glucose+2~+2ADP+
2H+ -------> 2Ethanol + 2C02 + 2AT P + 2H20 [80]: (a) initial marking representing quan
tities of each substance; and (b) subsequent marking after reaction.

For example, Figure 1.2(a) illustrates a PN modelling the well-known conversion of
glucose into ethanol. The tokens present on its places represent the initial amounts of
each substance in the reaction, and are sufficient so that the transition can fire. In this
case, firing represents the conversion from glucose into ethanol, and the PN in Figure
1.2(b) shows the new token arrangement to reflect this.

A key advantage of PN s is that they are able to capture both the structural and dy
namical information required to comprehensively model GRNs in a concise, executable
and refinable way (we will explore this in more detail in Section 2.3). Furthermore, they
are extensible with additional information (for example, time delays) whilst preserving
the underlying net structure [44], thus supporting the incremental process of model de
velopment through both the qualitative and quantitative domains. Finally, PNs are a
mature and developed formalism [1] with a wealth of techniques and tools to support the
study of GRNs. Indeed, this thesis will explore how these key benefits can be exploited
to strengthen qualitative techniques for modelling and analysing GRNs, with a particular
emphasis on ensuring that these are available to the biological community.

1.1 Contributions

This thesis aims to investigate, develop and evaluate the application of PNs to quali
tatively model and analyse GRNs. In particular, the contribution of this thesis is at a
number of levels which we will now discuss.

Systematic PN framework for qualitative modelling GRNs

BNs [101,102] are a logical formalism for qualitatively modelling GRNs which have re
ceived much attention in the literature [6,7,107,203]. However, their analysis techniques
and tools appear to require strengthening if they are to meet the demands of the biologi
cal community, and they do not cope well with the uncertainty that can plague practical
data sets.

4

We address this in Chapter 3 by developing a systematic PN modelling framework
based on BNs, and then generalise it in Chapter 4 by catering for MVNs [146,206].
In particular, this work builds upon and strengthens similar approaches (for example,
see [45,46]) in a number of important ways: (i) a range of PN representations for MVNs;
(ii) the application of efficient logic minimisation techniques [146,169] for compactness
and scalability; (iii) catering for both synchronous and asynchronous MVNs in the PN
environment; and (iv) coping with partial models. Importantly, we develop much-needed
tool support to automate model construction. Thus, we contribute an important link
which strengthens the availability of powerful PN techniques and tools to the biological
community.

A further key contribution is made by considering the use of a PN formalism from
asynchronous circuit design called signal transition graphs (STGs) [55]. STGs do not
appear to have been applied before to G RN s, but offer a promising approach for the
refinement of asynchronous models. In particular, we utilise STGs in a unique initial
study which considers the refinement of asynchronous BN s.

Application and validation of qualitative techniques using case studies

We consider a number of detailed case studies which allow us to explore the application
of our PN modelling approaches on practical systems. In particular, these case studies
demonstrate the application of our tool support, as well as a number of existing PN
analysis techniques and tools based on unfolding [109] and model checking [51].

Chapter 3 applies our Boolean PN framework to model part of the GRN for carbon
stress response in E. coli [167]. We then consider a larger GRN for initiating sporulation
in B. subtilis [99]. Both are well-studied in the literature, and this allows us to explore the
correctness of our approach straightforwardly. Chapter 4 then applies our generalised PN
framework by revisiting the E. coli GRN, and this highlights some interesting behavioural
differences with the Boolean model which form the basis for a novel investigation in
Chapter 5.

Chapter 6 applies our STG modelling approach to an asynchronous BN model of the
lysis-lysogeny switch in phage A [206]. We utilise powerful PN-based circuit analysis
techniques in conjunction with our developed tool support to identify a number of key
insights, and show how a more realistic asynchronous model can be developed which still
captures the fundamental switch.

Relationship between models at different levels of abstraction

Case studies in Chapters 3 and 4 identify some key behavioural differences between the
Boolean and multi-valued E. coli models. This raises a number of interesting questions
concerning the scope and limitations of Boolean modelling, as well as when the extra
expressive power of multi-valued modelling is required.

Chapter 5 presents an initial investigation by developing a framework for reasoning
about the relationship between MVN s at different levels of abstraction. At its founda
tion is the proposal of a formal refinement theory capturing an assumption about this
relationship, and we develop algorithms for its systematic application accordingly. This
work highlights a number of important results which motivate the need for multi-valued

5

modelling, and sheds light into the initial behavioural differences noted between the two
E. coli models. At a higher level, this work forms the foundation for promising future
developments in biological model analysis.

Asynchronous qualitative model refinement techniques

Asynchronous BNs can be argued to be more biologically realistic than their synchronous
counterparts [86]. However, such models have the problem of capturing too much infor
mation - some of which is unrealisable in practice - thus hampering analysis and inter
pretation. To address this, Chapter 6 proposes a novel application of PN techniques from
asynchronous circuit design based on STGs [55]. We develop a systematic approach for
incrementally developing realistic asynchronous BNs, and apply it to a case study on the
phage A lysis-lysogeny switch [206]. Our results show clear promise for the refinement of
more generalised asynchronous models, and contribute a novel and interesting applica
tion of PN techniques which do not appear to have been explored before.

Integrated tool support

We place a strong emphasis on ensuring that the qualitative techniques developed are
available to the biological community. As such, we implement a suite of integrated tools
to enable the systematic construction and refinement of PN models.

1.2 Organisation of Thesis

This thesis is organised as follows.

Chapter 2 introduces BNs and PNs, and explores their application in the literature
to biological modelling and analysis.

Chapter 3 builds upon an existing PN modelling framework for BNs by developing
tool support to make it practical to the biological community, and by investigating its
application to case studies on E. coli and B. subtilis.

Chapter 4 generalises this modelling framework to handle MVNs, and revisits a case
study on E. coli, which raises some interesting questions concerning the relationship be
tween MVN s at different levels of abstraction.

Chapter 5 formally investigates this relationship, and presents some important insights
which motivate the MVN modelling framework of Chapter 4.

Chapter 6 develops a technique for incrementally developing realistic asynchronous
BN s with a novel application of PN techniques from asynchronous circuit design.

Chapter 7 concludes this thesis by discussing the key insights gleaned, as well as future
developments to take this work forward.

6

Chapter 2

Background

This chapter focuses primarily on the qualitative modelling and analysis of genetic regula
tory networks (GRNs) , which have received much attention in the literature to date [98].
We start by briefly outlining some of the existing approaches that have been employed
to model and analyse GRNs. We then focus on the key formalisms used throughout this
thesis by introducing the background and theory of Boolean networks (BNs) [101,102]
and Petri nets (PNs) [147]. Finally, we review some of the success that PNs have enjoyed
in the literature, and summarise a selection of available PN-based tools (amongst other
approaches) for systematically modelling and analysing biological systems.

2.1 Existing modelling approaches

A wide variety of qualitative and quantitative techniques have emerged in the rapidly
maturing area of systems biology (see [57,98,100] for comprehensive reviews). Here, we
note some of the most prominent.

Boolean and multi-valued networks

BNs [57,98,101,102,137,188] and their generalisation to multi-valued networks (MVNs)
[172,206,208] model the underlying regulatory system discretely as a circuit of intercon
nected entities [139]. BNs in particular provide a suitable starting point for understanding
complex systems, are scalable, and capture a number of properties which have been jus
tified in the biological context [77,86,183,188]. However, they appear to suffer from
relatively limited analysis techniques and tools for comprehensively studying biological
systems, and cannot cope straightforwardly with the uncertainty that is often present.

Petri nets

PNs [147] are a well-studied formalism for modelling concurrent, distributed systems that
have received much attention in the biological community [44,155,160]. PNs offer a num
ber of benefits to the biologist, including a graphical notation underpinned by a formal
mathematical semantics, an ability to model and analyse biological systems at multiple
levels of detail, and a wealth of available techniques and tool support. For these reasons

7

and more, PN s have been utilised to address the shortcomings of other approaches, such
as BNs [45], and we will investigate this partnership in more detail throughout this thesis.

Bayesian networks

Bayesian networks [17,67,68,148] are directed acyclic graphs of nodes representing ran
dom variables following a joint probability distribution [98]. Bayesian networks have solid
foundations in statistics and probability theory, are well-suited for modelling complex
stochastic processes and can cope with sparse and noisy data sets [182]. Furthermore,
they allow for the discovery of multiple coherent models which best fit some experimental
observation. However, they appear to be hampered by a number of shortcomings: (i) an
inability to represent self-loops (i.e. the possibility of self-regulation); (ii) an NP-hard
learning procedure for model construction; and (iii) an inherent static nature [182] which
only appears to be addressed by extensions such as dynamic Bayesian networks [148],
which result in further learning complexity. For these reasons, stochastic extensions to
BNs [182] are often preferred.

Graph clustering

The idea of graph clustering approaches [26, 129, 175] is to group together regulatory
entities whose behaviour over time is similar based on some metric. Regulatory entities
belonging to the same cluster can therefore be viewed abstractly as a meta-entity and
treated essentially as one functional unit. The problem is then to deduce the nature of
the regulatory interactions between each meta-entity. Such clustering is therefore ad
vantageous as it can reduce potentially large networks into smaller ones, aiding state
space analysis and interpretation. However, clustering is computationally-intensive (of
ten based on multiple heuristics) [181] and is usually employed in conjunction with other
formalisms such as BNs [186] for analysis.

Piecewise-linear differential equations

To address the problems associated with constructing systems of quantitative differential
equations with limited data, piece-wise linear differential equations (PLDEs) [23,40,71,
77,99,143] have been proposed. PLDEs are qualitative and use the notion of internally
continuous, externally discrete variables which yield a number of desirable mathematical
properties. In particular, PLDEs replace the non-linearity of sigmoidal curves found in
traditional differential equations with discrete step functions. This discontinuous approx
imation has been justified based on the observation that genes often exhibit switch-like
behaviour between different expression levels [105,182,203]. PLDEs allow the qualitative
evolution of entity concentrations to be simulated through the phase space, and for a
number of properties such as stability to be analysed. This formalism is also backed by
tool support [21] which has been extended to allow for the possibility of more advanced
analysis techniques such as model checking [22-25]. However, at present PLDEs appear
to currently lack the mature and developed range of tools and techniques required for
biological systems (although they could be modelled as PN s to address this), as well as
an intuitive means of describing the dynamics and parameters of the system under study.

8

Stochastic 7f-calculus

Stochastic 7f-calculus [62,162] provides a stochastic extension to a calculus developed
for mobile communicating processes [144]. Based on a grammatical representation, this
calculus allows for the incremental development of models in a compositional manner.
Since its development, a graphical representation has also been proposed to overcome
problems concerning the unintuitive syntax [158], and a number of tools have been de
veloped to support its simulation and analysis [159]. However, the calculus has no notion
of invariants which can provide many structural and global insights into a system. Fur
thermore, the description of (often) straightforward systems can be troublesome, making
it a language for experts [211].

The rest of this chapter will now discuss BN sand PN s in more detail, as these form
the foundation of this thesis. Note we discuss the generalisation of BNs to MVNs in
Chapter 4.

2.2 Boolean networks

Boolean networks (BNs) [101,102] are a qualitative formalism that have received much
attention over the last few decades from both the bioinformatics (see [57,98,137,188] for
good reviews) and physics communities (see, for example, [61,82,184,189]). A BN is a
directed graph where entity can be either on or off The behaviour of each entity is then
described by a Boolean function over a subset of other entities (possibly including itself)
which directly affect it.

This Boolean approximation for modelling complex networks can be traced back
to the early sixtees with the work of Sugita et al. [198, 199] who analysed chemical
systems using logic circuits. This work was then built upon by the seminal work of
Kauffman in 1969 [101,102] who introduced BNs as a formalism for modelling complex
natural systems, and provided a comprehensive mathematical study of their properties
[77,103-105,189]. Around the same time, Thomas developed a sequential logical approach
[203,204,207] which provided a purely asynchronous logical description of a GRN using
Boolean discretisation.

2.2.1 The Boolean idealisation

The representation of an entity using only two values is subject to much debate (see [77]
for early studies, and [86,183,188] for interesting discussions). On one hand, genes are
observed to make the transition between a floor and maximum level of expression in a
switch-like fashion [105,182,203]' and so a Boolean approximation of this steep sigmoidal
curve appears to be justified. In addition, there is often a substantial amount of noise at
the level of regulation which can result in some degree of uncertainty [138], making the
reliability of more detailed approximations questionable [183]. Furthermore, Kauffman
showed that BNs still capture a rich amount of behaviour present in practical GRNs
despite their simplicity [105].

9

However, BNs have some obvious shortcomings. Firstly, they are not always capable of
capturing behaviours present in finer-grained models [77,188] (we will formally investigate
this more in Chapter 5). In addition, Mestl et al. [142] argued that the order in which
gene products became active and inactive in a BN should be consistent, if nothing else,
with that provided by differential equations. However, this has been shown to not always
hold [188].

Despite this, BNs have become an important tool for modelling and analysing large
GRNs [83,107,186,194,200,206,208,214]. For example, Shmulevich et al. [186] presented
an approach for analysing gene expression data completely in the Boolean domain using
a combination of binary discretisation and normalisation. Their approach offered both
noise resiliance and computational efficiency, and was successfully applied in identifying
different tumour subclasses. Furthermore, Thomas et al. [206,208] showed that many of
the dynamics present in GRNs manifest themselves in BNs; moreover, the results they
showed were coherent with those obtained using differential equations, and so provided
further confidence in their application.

2.2.2 Basic notations

We now formally introduce BNs and their related notations which will be used throughout
this thesis.

Definition 2.1 (Boolean network). A Boolean network BN with k entities is a di
rected graph BN = (G, N, F) where: G = {gl, ... , gk} is a finite set of entities; N =
(N(gl), . .. , N(gk)) is a finite list of sets, where N(gi) ~ G is the neighbourhood of gi
containing all the entities which directly affect its behaviour; and F = (191, ... ,f9k) is a
finite list of next-state Boolean functions, where f9)lli IN(9i)l-t llli defines the next state of
gi·

Note in a slight abuse of notation, we use gi to denote both the identity and state of
entity gi. We therefore write gi and gi to represent gi being on (gi = 1) and off (gi = 0),
respectively.

The structure of a simple BN with three entities gl, g2 and g3 is illustrated in Figure
2.1(a) [6]. Such a representation specifies the neighbourhood N(gi) for each entity gi using
directed connections (either activation or repression). For example, the neighbourhood
of entity gl is g2, since g2 activates gl. To accompany this network structure, the state
transition tables in Figure 2.1(b) describe the next-state functions F, i.e. the functional
interactions between each entity. Such tables capture for each entity gi, the next state
reached [gil for each possible input state of N(gi). If IN(gi)1 = m, then there are 2m

possible input states to consider. For example, the state transition table for entity g2
contains 22 = 4 input states, and shows us that one situation in which it will turn off
is when gl is off and g3 is on. Note throughout this thesis we may simply refer to a
BN using its state transition tables, since they capture both its structure and behaviour
precisely.

A more compact representation of the next-state functions F can be derived using logic
minimisation techniques and is referred to as the next-state equations (we will discuss

10

----e Repression

-.. Activation o Entity

[gl] g2

gl g3 [g2]
0 0 0

[g2] gl g3
[g3] - gl

g2 [gl] 0 1 0 gl [g3]
0 0 1 0 0 0 1
1 1 1 1 1 1 0

(a) (b) (c)

Figure 2.1: (a) Diagrammatic representation of a BN with three entities, (b) the state
transition tables capturing the corresponding next-state functions F, and (c) an equa
tional representation of F after logic minimisation.

this in Section 3.1.1). This compact equational representation in disjunctive normal
form (DNF) is shown in Figure 2.1(c), where the notation x + y and x y is used to
represent Boolean disjunction and conjunction, respectively. For example, the next-state
equation for entity g2 shows us that it turns on when gl and g3 are on, and we see that
this relationship is reflected in its state transition table.

The collective state of each entity in a BN is called a global state. For example, if we
have gl = 1, g2 = 0 and g3 = 1 then the global state is written gl g2 g3, or sometimes in
shorthand as 101 where it does not cause confusion. The state space of a model EN is
therefore the set of all possible global states, which we denote by SBN. It is clear that if
EN has k entities, then ISBNI = 2k.

2.2.3 Update semantics

The dynamics of a BN can be interpretted using either synchronously or asynchronously,
and we refer to these as the update semantics [86].

Definition 2.2 (Update semantics). Let EN = (G, N, F) be a Boolean network. Then
EN can be interpreted synchronously by applying each fgi to N(gi) for each gi E G in
unison. Similarly, BN can be interpreted asynchronously by applying fgi to N(gi) for
only one gi E G chosen randomly.

Figure 2.2 shows the state graphs illustrating the dynamics of the BN in Figure 2.1
under both the synchronous and asynchronous semantics. States are represented by nodes
and edges denote instantaneous transitions between states. Even for our simple model,
the differences between the two update semantics are apparent. For example, consider
global state 010. Under the synchronous semantics shown in Figure 2.2(a), there is only
one possible next state, 101 resulting from the simultaneous application of fgl' f g2 and
f g3 to state 010. As such, there is a deterministic pathway through the state graph from
any initial state. However, under the asynchronous semantics in Figure 2.2(b), there are

11

three possible next states resulting from independent application of the corresponding
next~state functions to state 010, namely: 110 if we apply f 91; 000 if we apply f92; and
011 If we apply f 93' Thus, multiple pathways can exist through the state graph under
the asynchronous semantics, resulting in non-determinism.

(a) (b)

Figure 2.2: State graph showing the dynamics of the BN in Figure 2.1 under: (a) the
synchronous semantics; and (b) the asynchronous semantics.

A sequence of state transitions from some initial state is called a trajectory [217].
For example, in Figure 2.2(a), one such trajectory is 111 -----7 110 -----7 100. Since the
state space of a BN is finite, a trajectory will eventually fall into a cycle, which is often
called an attractor cycle (see [105,217] for a comprehensive study). In Figure 2.2(a),
there are two attractor cycles: 001 -----7 001 (called a point attractor or steady state), and;
010 -----7 101 -----7 010 (called a cyclic attractor or periodic cycle). The number of states
present in an attractor cycle is referred to as its period. For example, the period of the
cycle 010 -----7 101 -----7 010 is two.

Point attractors exist and are inescapable under both the synchronous and asyn
chronous semantics [113]. However, Harvey et al. [86] showed that whilst numerous
point attractors can exist under the synchronous semantics, the number of expected
point attractors under the asynchronous semantics is one independent of network con
nectivity. The same authors also showed the presence of so-called loose attractors (cyclic
behaviour from which it is possible to escape) under the asynchronous semantics, which
result from the inherent non-determinism of random updates. As such, they argued
that cyclic attractors seldom exist in asynchronous models. This is illustrated in Figure
2.2(b); the cyclic attractor 010 -----7 101 -----7010 present in Figure 2.2(a) disappears under
the asynchronous semantics. Instead, three pathways emerge from state 010 which all
end at the point at tract or 001 -----7 OOL

A state outside an attractor cycle is called a transient state [216]. The combination
of transient states and attractor cycles is refered to as a basin of attraction [216], since by
definition transient states will eventually fall into the cycle. In Figure 2.2(a), there are
two distinct basins of attraction, whilst in Figure 2.2(b) there is one. Note the dynamics
of attractor cycles have been extensively studied, and we discuss some of this work in the
next section.

Historically, the synchronous semantics appears to be favoured, especially in the bio-

12

logical community, as it avoids the need to consider the different reaction rates present in
the underlying GRN by assuming they are all equal [86]. In addition, there is a determin
istic pathway through the state space of a synchronous BN, which is appealing for both
interpretation and automated analysis. Thus, it appears that the synchronous semantics
is more readily used than its (more biologically-realistic) asynchronous counterpart, as it
is simpler to interpret [56] and has more abundant tool support (for example, the DDLab
software suite by Andrew Wuenshe1

). Indeed, this thesis goes some way to address this
issue.

There is also substantial work which supports the synchronous update semantics
[5,6,120,195,214,216]. For example, Wuensche [216] argued that since gene regulation
at the molecular level comprises of discrete events occurring concurrently, a synchronous
view is acceptable. In [214], Wen et al. showed that some systems exhibited natural
synchrony; gene expression patterns in cervical spinal chord tissue were detected which
occurred in a synchronous fashion. However, in [86], it is argued that the synchronous
idealisation is only acceptable if fine time-splicing is used, and that this is exactly what
BNs do not provide. See [86] for further interesting discussions on the comparison between
the synchronous and asynchronous semantics, and [70] for a computational analysis of
the differences between the two approaches.

2.2.4 Attractor dynamics and random Boolean networks

Attractor cycles are widely considered to represent the different cellular types, such
as proliferation, apoptosis and differentiation [93-95,183]. Thus, their theoretical and
practical implications have warranted much attention in the literature (for example,
see [61,118,190,224]). Kauffman used so-called random Boolean networks (RBNs) to
investigate the affect of neighbourhood size and functional connectivity on attract or dy
namics [102,105]. In an RBN, a random neighbourhood size and next-state function is
assigned to each entity (for a comprehensive introduction and literature survey, see [73],
and for biological justification, see [105]). By considering randomly wired BNs of up to
IGI = 10000 entities, Kauffman postulated that for small neighbourhood sizes (one or
two): (i) the average number of attractors was approximately }fGf; and (ii) the average
length of an attractor grew proportionally to }fGf. These measures appear to be con
sistent with experimental knowledge. For example, [183] noted that the human genome
has approximately 40000 known genes, and so we would expect 200 attract or cycles rep
resenting the various cell types, such as proliferation, apoptosis and differentiation. This
approximation is remarkably close to the 254 known cell types in an adult human (the
authors reference [12]).

Kauffman also observed that network dynamics were highly ordered for small neigh
bourhood sizes of one or two, but increasingly chaotic above that [104,105]. In particular,
a neighbourhood size of two was found to be the critical parameter in separating order
from chaos (see [86] for more discussion on neighbourhood sizes). Such models are of
ten called critical Kauffman models (CKMs) , and are the subject of much study as it is
thought that complex organisms also operate at this critical balance between order and

1 DDLab can be downloaded from http://www.ddlab.com/

13

chaos [105,106]. The rationale for this is that under the order found with a neighbour
hood size of one, the network is very stable and robust to perturbations. In other words,
if the system is perturbed it will most likely remain in the same attractor (the same
cell type). However, this appears to go against the principles of evolution, which require
flexibility and adaptability. On the other hand, the network becomes very unstable and
susceptible to perturbations in the chaotic phase. Again, this disagrees with the idea that
an organism must have a certain level of stability in order to survive adverse conditions.

To date, a substantial amount of work in the literature has focused on the mathemat
ical properties of CKMs and attractors. More recently, Samuelsson et al. [171] proved
that, in fact, the number of attractors grows superpolynomially with IGI for neighbour
hoods of size two - much faster than originally suggested by Kauffman. Drossel et al. [61]
built on these results by proving that both the average number and length of attractors
scales superpolynomially for neighbourhoods of size one. Whilst it appears that proving
superpolynomial growth for attractor lengths with neighbourhoods of size two is still an
open question, Drossel et al. noted that, if this property does indeed hold, then it sug
gests that the number and length of attractors is too large to model cell differentiation
realistically.

Shmulevich et al. [184] developed a method for measuring the importance of a Boolean
function based on its sensitivity. Using this metric, they showed how the type of network
(ordered or chaotic) could be determined without undertaking computationally-intensive
simulations. In [82], Greil et al. investigated the effect of introducing delays on the
number and length of attractors. Their findings showed that in the presence of delays,
the average length of attractors naturally increased whilst their frequency decreased,
and the size of the basins of attraction increased, making the network more stable.
Similarly, Sontag et al. [190] investigated the relationship between negative feedback
loops and attractor cycles. They too observed that as the number of negative feedback
loops increased in a network, the average length of the attractors increased whilst their
frequency decreased.

2.2.5 Constructing Boolean models of genetic networks

Since an initial study by Thomas [203], substantial work has focused on the application of
BNs for learning the structure of GRNs from experimental data, such as microarray time
series [33]. Liang et al. [125] proposed an information theoretic approach for network
inference with the development of the reverse engineering algorithm REVEAL. This
algorithm uses the Shannon entropy [176] to assess the mutual information between
input-output pairs in the state transition table of the BN. In particular, REVEAL
addresses the problem of inferring BNs from incomplete data. The authors showed that
for small neighbourhood sizes, REVEAL performed well and was able to infer the original
network structure from only O(log k) out of the 2k state transition pairs, where k was the
number of entities. They also outlined ideas for parallelising the algorithm, and discussed
how it could be adapted to handle multi-state entities.

Akutsu et al. [4,5] took a different approach by considering the results of multiple
gene disruption and overexpression experiments. Here, the behaviour of one or more

14

genes was mutated so that they remained at either a high or low level of expression.
By analysing the effects of this abnormal behaviour on the network, they showed how
the neighbourhoods and next-state functions could be inferred to describe the behaviour
of the underlying G RN. Furthermore, they used this method to develop a simulator
and identification system for inferring the underlying GRN using O(k3) experiments.
Although their method appears to work well with relatively small networks, it does not
scale to more practical data sets, and is only applicable to networks with a maximum
neighbourhood size of two.

Akutsu et al. later considered this scalability issue in [6] by: (i) formally proving
the soundness of the REVEAL algorithm; and (ii) proposing a simpler set of algorithms
which made mathematical analysis more tractable. In particular, they applied techniques
from computational learning theory to BNs (see [108] for an introduction), such as the
consistency problem paradigm, which is the problem of determining the existence of a
network which is consistent with the data. In [7], the authors then extended this suite of
algorithms by incorporating an efficient Monte-Carlo randomised method based on com
bining matrix multiplication with an efficient hashing function, resulting in substantial
speedups. Furthermore, they extended their notion of a BN to incorporate a noise factor,
which leaned away from the traditional deterministic view provided by BNs and more
towards stochastic modelling.

The noise element in practical data sets results in a level of uncertainty [138] which
must be addressed in order to reverse engineer meaningful qualitative models. As such,
many subsequent strategies have been suggested to address this issue since the work
reported in [7]. Shmulevich et al. [185] argued that the consistency problem paradigm
was insufficient in the presence of noise, and applied a generalised paradigm from com
putational learning theory called the best-fit extension problem (see [30] for an exten
sive study). The best-fit extension problem is solvable in polynomial time, making it
applicable in practice, and aims at inferring the underlying BN whilst making as few
mis-classifications as possible. This approach was later successfully applied in [120] to
the cdc15 yeast gene expression time series data.

Yun et al. [220,221] proposed an information-theoretic approach called the discrete
function learning (DFL) algorithm, which is superior to REVEAL in efficiency, flexibility
and robustness to noise. In particular, DFL is a generalised approach and is able to infer
the underlying GRN from both Boolean and multi-valued data. The authors compared
DFL to a Bayesian network model using a yeast time series data set, and noted that DFL
identified a network that more closely represented the known regulatory relationships
reported in the literature.

In [182]' Shmulevich et al. introduced a stochastic extension to BNs called proba
bilistic Boolean networks (PBNs) , which relaxed the deterministic constraints imposed
by traditional BN s. In a PBN, the behaviour of each entity may be described by a set
of Boolean next-state functions with associated probabilities. The rationale behind this
is that, due to noise factors, it may not be possible to select a next-state function which
best describes the behaviour of an entity; however, a most probable set of next-state
functions can be determined which fit the data (for further justification of the rationale
behind PBNs, refer to the later work of Shmulevich et al. in [183]). The authors also

15

considered the natural comparison between PBNs and Bayesian networks due to their
similar probabilistic approach. They demonstrated that PBNs were advantageous over
Bayesian networks because they are able to model networks with self-loops and were
more efficient to compute (see [119] for further discussion). Since then, a comprehensive
study [124] has indicated that whilst PBNs are indeed more efficient to compute, they
do not seem able to identify as many regulatory interactions. For further work which has
used PBNs, see [10,96,223].

Martin et al. [129] argued that multiple consistent candidate models should be inferred
in the presence of noise. They developed an approach combining clustering techniques
with standard BN inference. The clustering algorithm used a force directed graph layout
and produced a two dimensional representation of the genes by grouping those with
similar expression profiles. They then applied support vector regression (see [37] for
a comprehensive tutorial) to fit a curve to the expression profile of each cluster, and
binarised these to produce a progression of Boolean states over time. Finally, they
applied logic minimisation techniques [140] to the Boolean profiles to infer a compact
representation of the next-state functions describing the behaviour. The multiple inferred
networks were then themselves clustered in a further processing step if they shared similar
attractor dynamics, resulting in a relatively small number of candidate networks. This
approach was further developed by the authors in [130] and successfully applied to two
data sets. However, whilst their approach appears to combine many novel techniques,
there are questions concerning its scalability due to the pipeline of intensive processing
steps required.

Finally, there have been attempts at developing hybrid Boolean models which marry
together Boolean and continuous formalisms. For example, McAdams et al. [139] con
structed a model for the lysis-lysogeny switch mechanism in phage A using a hybrid
circuit consisting of both Boolean and continuous components, and through simulation
showed that it faithfully captured the dynamics of this well-studied system. However, it
is unclear how such models and related parameters can be inferred in practice without
both significant knowledge of kinetic parameters and substantial computational power.
Indeed, the inference of quantiative models still appears to be a problematic task, and
this is a key motivation for using the qualitative formalisms discussed in this thesis. For
studies following on from this work, see [8,9,11,219]' and for further discussion into this
hybrid approach, refer to [137].

2.3 Petri nets

The theory of Petri nets (PNs) [147] combines a graphical notation with a formal math
ematical semantics for modelling and reasoning about complex concurrent systems [147].
With their ability to model synchronous and asynchronous events, true concurrency, re
source sharing and conflicts, PNs have been applied to many problem domains (see [226]
for industrial applications), including system verification [151,177,210]' manufacturing
processes [3, 225], hardware design [166] and more recently biological systems [53, 79]
(also, see [215] for examples of how PNs have been used in chemistry and medicine).
In fact, the inventor of PN s, Carl Petri, noted their suitability for modelling natural

16

processes from the start [156J.
Specifically, PN s offer a number of key advantages for modelling biological systems:

• they have an intuitive graphical representation underpinned by a rigorous and well
understood formal semantics;

• they are able to capture both the static structure and dynamical behaviour of a
system in a concise way;

• they support incremental model development by allowing further information such
as time to be added whilst preserving the underlying net;

• they are able to model a system both qualitatively and quantitatively;

• they support analysis at varying levels depending on the completeness of the model,
from purely structural through to behavioural through to timed behavioural;

• and they have a wealth of formal techniques and tools for simulation and analysis [1 J.

In this section, we investigate these key motivations in more detail by formally introducing
PNs and related notations. We then discuss some properties of PNs and their biological
significance. For a more detailed introduction to PNs, we recommend [147J.

2.3.1 Basic notations

A PN (see Figure 2.3) is a bipartite graph consisting of places, which represent conditions
or resources, and transitions, which represent events or actions. The places of a PN can
contain tokens which indicate the presence of a resource, and the distribution of tokens
represent the state of the PN called a marking. Tokens can then be moved around the net
by firing transitions, which can only occur if the input places to the transitions contain
sufficient tokens.

We now give a more formal definition of a PN.

Definition 2.3 (Petri net). A Petri net PN is a tuple PN = (P, T, F, W, Mo) where:
P = {Pl, ... ,Pn} is a finite set of places; T = {tl,' .. ,tm } is a finite set of transitions,
such that P n T = 0; F ~ (P x T) U (T x P) is the flow relation specifying connections
between places and transitions; W : F ---+ N+ is the weight function which assigns a
weight to each arc f E F; Mo : P ---+ N is the initial marking specifying the number of
tokens on each place.

A PN can be represented diagrammatically, where the set of places P is denoted by
circles, the set of transitions T is denoted by boxes and the flow relation F is denoted
by directed arcs. Furthermore, the weight function W is denoted by labelling each arc
with a weight to indicate its multiplicity (we do not label arcs whose weight is 1). If all
arcs have a weight of one, then the PN is said to be ordinary. The initial marking Mo
gives the distribution of tokens on places and is denoted by small black circles. Note we
represent a marking M : P ---+ N formally as a tuple (M(Pl)," . ,M(Pn)) which gives the
number of tokens for each place in the net.

17

(a) (b) (c)

Figure 2.3: (a) Simple PN in initial marking with transitions tl and t2 enabled, (b) PN
after firing tl with t2 enabled, and (c) PN after firing t2 with t3 now enabled.

A simple example of an ordinary PN is shown in Figure 2.3(a), consisting of four
places PI, P2, P3 and P4, and three transitions t l , t2 and t3. Its initial marking is such
that only places PI and P2 contain a token, and so we write Mo = (1,1,0,0) to represent
this, where M(pd = 1, M(P2) = 1, M(P3) = 0 and M(P4) = o.

A place pEP is called an input place (resp. output place) to a transition t E T if
there exists an arc f E F from P to t (resp. t to p). For example, in Figure 2.3, place
P3 is an input place to t3, whilst PI is an output place of t3. The set of all input places
to a transition t is called the pre-set of t, and is denoted -t where -t = {p I (p, t) E F}.
Similarly, the set of all output places of a transition t is called the post-set of t, and is
denoted t- where t- = {p I (t, p) E F}. In our running example, transition t3 has pre-set
-t3 = {P3,P4} and post-set t3- = {PI,P2}.

The dynamic behaviour of a PN is governed by the transition firing rule, which we
now formally define.

Definition 2.4 (Firing rule). For a transition t and a marking M, we say that t is
enabled at M, denoted M[t), if for every place P E -t, we have that M(p) 2: W(p, t). If
t is enabled, then it may fire, resulting in marking M', denoted M[t)M', where M'(p) =
M(p) - W(p, t) + W(t,p) for every place pEP.

Note PN s are a non-deterministic modelling formalism, and so a single transition is
chosen at random to fire when more than one is enabled. A sequence of transitions is
called a firing sequence, written cr = (t l , ... ,tn), if each transition is able to fire (according
to Definition 2.4) in the order specified. As such, a marking M' is said to be reachable
from M if there exists a firing sequence which transforms Minto M'. The set of all
possible markings reachable from M is denoted by RM(M).

To illustrate these ideas, consider Figure 2.3(a) which shows the PN in its initial
marking Mo = (1,1,0,0). Places PI and P2 contain sufficient tokens to enable transitions
tl and t2, and so we have a non-deterministic choice between two firing sequences. If we
fire t l , then a token is removed from PI and deposited on P3, resulting in the marking MI =
(0,1,1,0) shown in Figure 2.3(b). In marking MI, only transition t2 is enabled, since
transition t3 requires both MI (P3) = 1 and MI (P4) = 1 to hold. Thus, our only choice
is to fire t2 , resulting in marking M2 = (0,0,1,1) which is shown in Figure 2.3(c). Now
that both P3 and P4 are marked, we can fire transition t3, and this returns us back to our
initial marking Mo = (1,1,0,0) shown in Figure 2.3(a). Our firing sequence was therefore

18

(/1 = (t1h,t3). However, since both t1 and t2 are enabled in Mo, another possibility
would be (/2 = (t2,t1h), resulting in markings M3 = (1,0,1,0), M2 = (0,0,1,1) and
Mo = (1,1,0,0), respectively. Therefore, the set of reachable markings from Mo is
RM(lvIo) = {Mo,M1,M2,Md·

(a) (b)

Figure 2.4: (a) Simple PN with read arcs in initial marking with transition t1 enabled,
and (b) PN after firing transition t1.

In some cases, bidirectional arcs called read arcs may be used to allow transitions
to read (but not change) the tokens on places. For example, let us consider the PN in
Figure 2.4(a), which contains read arcs between transitions t1 and t2 and places P3 and
P4, respectively. In the initial marking, only transition t1 is enabled. When we fire t1,
we obtain the marking shown in Figure 2.4(b), where a token has been removed from
P1 and added to P2 only; the tokens on places P3 and P4 have not changed and were
simply used as a firing condition. Now t2 is enabled, and firing it returns us back to
the initial marking shown in Figure 2.4(a). As such, the markings constantly oscillate
between Mo = (1,0,1,1) and M1 = (0,1,1,1).

In the remainder of this section, we consider some of the properties of PN s which can
be analysed using the wide range of tools and techniques available [1], and discuss their
biological significance.

2.3.2 Structural analysis

The topology of a PN can be used to gain many insights into its properties through
structural analysis. Such analysis is advantageous for the following reasons: (i) it does
not rely on any initial marking - in fact, it applies to any marking, and so provides a
useful means of studying fundamental behaviour; and (ii) it does not suffer from state
space explosion, which sees an exponential blowup in possible states.

A PN is a directed bipartite graph whose structure can be described by a IFI x ITI
incidence matrix A = [aij] of integers, such that for each entry aij we have:

In other words, each aij describes the change in tokens on place Pi resulting from firing
transition tj, for i = 1, ... ,IPI and j = 1, ... ,ITI. For example, the PN from Figure 2.3

19

has the following incidence matrix:

(
-1 0 1
0 -1 ~1) 1 0
0 1 -1

Each column of the matrix shows the effect that firing the corresponding transition
has on the four places. For instance, when tl is fired (first column), a token is taken
away from place PI (first row) and added to P3 (third row). As tl is not adjacent to
places P2 and P4, no tokens can be affected and so we write 0 for the second and fourth
rows. Note although non-adjacency implies a zero entry in the matrix, the reverse does
not hold; if we have a place Pi connected to a transition tj with a read arc, then aij = o.
Thus, PNs with read arcs can be problematic for structural analysis. However, these
can be transformed into pure PNs which contain no read arcs, thus enabling meaningful
structural analysis to be performed. Although we do not discuss this transformation
here, we refer the reader to [147], and simply note that: (i) this transformation can be
automated2

; and (ii) the PN in Figure 2.3 is pure.
:From the incidence matrix, a number of structural properties can be analysed using

linear algebraic techniques [89,91,147]. Two of the most common structural properties
are place invariants (P-invariants) and transition invariants (T-invariants):

• P-invariants represents state quantities which, starting from an initial state, are
conserved throughout the running of the system. In biological terms, a P-invariant
could represent a conservation relation. More formally, a P-invariant x is a non
zero vector solution to the linear equation x . A = 0, i.e. the places and their
corresponding token count which are conserved from some marking M .

• T-invariants are sequences of transitions which, when fired, reproduce a given mark
ing. In biological terms, a T-invariant represents an attract or cycle or elementary
mode [173] . Formally, aT-invariant y is a non-zero vector solution to the lin
ear equation A . y = o. A T-invariant is only realisable in practice, however, if
a marking is reachable such that all the transitions in the T-invariant are able to
fire. Thus, in some cases, it is necessary to consider the dynamics of the PN when
tokens are introduced in conjunction with invariant analysis.

For example, we can calculate the T-invariants for the PN in Figure 2.3 by deriving all
column vectors y such that:

(

~1 ~1 ~)
1 0 -1 . Y = 0,

o 1 -1

2PETRIFY can perform many such transformations on a PN, and can be downloaded at
http://www.lsi.upc.es/jordicj/petrijy/home.html.

20

and we find that there are infinitely many solutions y = (a, a, a), where a > 1. These
solutions correspond to firing t l , t2 and t3 a total of a times each, and we can see that no
matter what marking we start from, we will return to this after such a firing sequence.
Note in practice, we only need to consider a = 1.

2.3.3 Dynamical analysis

Structural analysis of a PN has the advantage that it avoids state space explosion, since
only the network topology is considered. However, properties inferred in this way are
not always realisable in practice, and so we often have to consider the dynamics of a PN
when tokens are introduced. Of course, such analysis is reliant on the choice of initial
marking, which requires additional knowledge of the underlying system and the proper
ties that one wishes to study. Here, we discuss a number of PN properties along with
their biological significances. For a more detailed discussion of these properties, see [147].

Reachability analysis

Reachability analysis is a fundamental technique, and forms the basis for checking many
other properties, such as boundedness, deadlocks and mutual exclusion [147]. Specifically,
reachability analysis allows one to check whether some marking is reachable from another.
More formally, given a marking M, we check to see whether M E RM(Mo) holds, where
Mo is the initial marking.

Biologically, reachability analysis can prove to be an insightful technique. For ex
ample, one might wish to check whether two proteins can ever be present at a high
concentration; a property that could possibly indicate positive feedback [206]. In the PN
model, this could be formulated as a mutual exclusion problem, and reachability analysis
would therefore check for the existence of a marking representing the two proteins being
high, i.e. a counter-example. Of course, the absence of such a marking would indicate
that this property holds.

Reachability analysis is normally computed based on the so-called reachability graph
[147], whose set representation is RM(Mo). The reachability graph is a directed graph
where nodes represent markings and edges represent transitions firing, and is constructed
by a breadth-first search3 from Mo until no new markings are discovered. For example,
consider Figure 2.5(a) which shows a PN, and Figure 2.5(b) which shows the correspond
ing reachability graph from initial marking Mo = (1,1,0,0,0,0).

From the initial marking Mo = (1,1,0,0,0,0), we see that both transitions tl and t2
can fire. If we fire transition t l , then we obtain marking Ml = (0,1,1,0,0,0) for which
there are a further two enabled transitions. This breadth-first search continues until we
reach marking Ms = (0,0,0,0,1,1), whereby firing transition t5 returns us to the initial
marking.

Even for this small example, we can see that the reachability graph grows quickly
(often exponentially) due to state space explosion caused by concurrency in the PN. As
such, reachability is known to be a decidable property [136], although it takes exponential

3 A depth-first search can often fail to find all reachable markings.

21

P4

(a) (b)

Figure 2.5: (a) PN with six places and five transitions, and (b) the corresponding reach
ability graph representing RM(Mo) .

time and space to verify [39]. In practice, the reachability graph can therefore be too
large to compute and verify in reasonable time.

Numerous studies have considered this problem, and have looked at improving the ef
ficiency of constructing and representing the reachability graph [109,110,145]. Unfoldings
and their canonical prefixes have received much attention [63,109,110]' as they provide
a compact representation of the state space whilst capturing the desired behaviour. In
particular, canonical prefixes are often exponentially smaller than the reach ability graph,
cope well with concurrency, are finite and are complete in the sense that they capture
all the behaviour of the reachability graph. Model checking techniques [109] which use
these prefixes to check for properties such as reach ability, deadlock-freeness and mu
tual exclusion can then be utilised for efficient dynamical analysis. In fact, this thesis
makes extensive use of the parallel PN unfolder PUNF and the linear programming model
checker eLP, both of which were developed in [109].

Boundedness

Boundedness imposes an upper limit k on the number of tokens that the places of a PN
can contain from an initial marking, and so puts an upper limit on IRM(Mo)l. A place is
said to be k-bounded if it never contains more than k tokens from some initial marking.
A PN is therefore said to be k-bounded if all its places are k-bounded from an initial
marking, or more formally that for each ME RM(Mo) and for each pEP, we have that
M(p) ~ k. A PN is said to be safe if the respective bound is one [147].

An example of a safe PN is shown in Figure 2.6(a). Figure 2.6(b) illustrates a 2-
bounded PN; here we have W(t2,P3) = W(P3, t3) = 2. Thus, firing transition t2 puts
two tokens on place P3, which are then removed when t3 fires. Finally, Figure 2.6(c)
illustrates an unbounded PN, since the addition of an extra arc between t3 and P2 results
in the premature firing of t 2 , thus allowing an infinite number of tokens on Pl·

22

(a) (b) (c)

Figure 2.6: (a) Safe PN, (b) 2-bounded PN, and (c) unbounded PN.

Boundedness is an important property to check for during model construction; indeed,
its significance is context-dependent. For example, in a PN model of a buffer system
(which are always bounded), we may wish to verify whether the PN is bounded, otherwise
there may exist hazardous buffer overflows which will have a detrimental impact on the
system. Genes also appear to respect a notion of boundedness, since their expression is
observed to vary between a floor and maximal value [105,182,203]. Thus, boundedness
can prove a useful validation strategy before further analyses are performed.

This thesis focuses primarily on safe PNs, as they appear to be more efficient to
analyse and are amenable to a wider range of techniques and tools. Note although it is
possible to transform any bounded PN into a safe PN with equivalent behaviour [147],
such transformations can often result in an unnecessarily large PN. This is therefore a
clear motivation for focusing on the construction of compact safe PN.

Deadlocks and liveness

We say that a marking M is deadlocked if it does not enable any transitions. A PN
is therefore deadlock-free if none of its markings contain a deadlock. As an example,
consider Figure 2.7(a) which illustrates a PN with a deadlock and Figure 2.7(b) which
shows the deadlocked marking.

There are a number of firing sequences which ensure the normal running of the net,
such as 0"1 = (tl' t3, t2, t4, t6) or 0"1 = (t2' tl, t3, t4, t6). However, when we have M(P5) = 1
and M(P6) = 1, transitions t5 and t6 are enabled. If t6 fires then we reach the deadlock
marking M = (0,0,0,0,0,1,1) in which no transitions are enabled.

In most cases, deadlocks do not represent intended behaviours of the system; in fact,
they can often represent modelling errors or detrimental scenarios. Biologically, deadlocks
can represent stable states of the system which may correspond to phenomenon such as
apoptosis. In any case, deadlock detection plays an important part of system validation
and can be automated by numerous tools such as CLP (see [109] for efficient model
checking approaches to deadlock detection).

On the other hand, liveness is a property which relates to the complete absence of
deadlocks. More specifically, a PN is said to be live if at any marking M reachable from

23

(a) (b)

Figure 2.7: (a) PN in initial state with a deadlock, and (b) PN in deadlocked marking.

Mo, it is possible to fire any transition t E T via some further firing sequence (J. However,
this property is costly to verify, and so the notion of liveness for a transition t E T is
categorised into different levels:

• LO-live (dead) if t can never be fired for any sequence from Mo;

• Ll-live if t can be fired at least once for some sequence from Mo;

• L2-live if t can be fired at least k times for some sequence from M o, where k E N"+;

• L3-live if t can be fired infinitely for some sequence from Mo;

• L4-live if t is Ll-live for each M E RM(Mo).

Biologically, the liveness property may correspond to a guarantee of a reaction or regula
tory interaction occurring. Liveness can be checked for automatically by numerous tools
such as INA, which is freely available for academic use from http://www2.injormatik.hu
berlin. del starkelina.html.

Choice and persistency

A choice exists between two transitions if they are both enabled at some marking M,
and where firing one disables the other. A simple example of this is shown in Figure
2.8(a). One can see that transitions t I , t2 and t3 are enabled in the specified marking,
and that firing one of them will disable the others.

Persistency is a property of PNs related to the absence of such choices. More specif
ically, a persistent PN is one in which any enabled transition will not be disabled by
some other transition. An example of a persistent PN is shown in Figure 2.8(b); at no
reachable marking is there an enabled transition which can disable another.

Choices in the PN can represent non-deterministic events with only one outcome.
Biologically, choices can represent race conditions between chemical reactions or compet
ing proteins; the winner of the race will produce the corresponding chemical products or
become synthesised first, respectively. As such, the identification of choices can be an

24

PI P2

(a) (b)

Figure 2.8: (a) Choice modelled in PN, and (b) persistent PN with no choices.

interesting means of analysing a biological PN model, and we discuss this in more detail
in Chapter 6.

2.4 Modelling and analysis of biological systems us
ing Petri nets

Having introduced the basics of PN theory, we go on to discuss some of the success that
PNs have enjoyed in the literature for modelling and analysing biological systems. We
start by looking at some of the studies that have applied standard PNs to GRNs, as
well as metabolic and signalling pathways. Then, we consider a number of extensions
which add additional information to the underlying PN graph structure, and review
their application in this area. For further comprehensive reviews of PN s in biology, we
recommend a number of detailed articles [44,84,155,160,215]

2.4.1 Standard Petri nets

Although Carl Petri noted the suitability of PN s for biological systems back in the
1960s [156] (and more comprehensively in the 1970s [157]), it was not until the work
of Reddy et al. [163,164] that the study of PNs became mainstream in the biological
community. Reddy et al. motivated the use of PN techniques for qualitatively modelling
metabolic pathways {MPs}. More specifically, they proposed a mapping mechanism which
translated key biochemical features into PN structures, with a particular application to
the combined glycolytic and pentose phosphate pathways in erythrocytes (this study was
later extended with a thorough analysis in [115]). The idea of the mapping was to rep
resent biochemical species using places, reactions using transitions, molecular quantities
using tokens and reaction directions using arcs. As such, this representation provided
a convenient means of capturing the stoichiometry of biochemical reactions, and thus
formed the basis of many other subsequent studies [47,72,115,222].

25

In addition, Reddy et al. were the first to comprehensively investigate the relation
ship between PN theory and biochemical theory. In particular, the main result was the
relationship drawn between the incidence matrix of the PN and the stoichiometric matrix
of the biochemical system. Due to the clear parallels, it was shown how the computation
of P- and T-invariants could be used to shed light on conservation relations within the
biochemical reactions [163] (note this relationship has been investigated further more re
cently in [174]). Specifically, many properties of PNs were shown to have corresponding
properties in the biochemical domain, such as the correspondence between T-invariants
and elementary modes [213,222]. Subsequently, PNs are recognised as an insightful for
malism for analysing biological systems, and this is demonstrated by approaches such as
that of Shaw et al. [179]' who considered a translation for biological models specified in
SBML into the PNs formalism so that they are amenable to their wealth of techniques
and tools.

Structural PN analysis has since played a key part in understanding fundamental
properties of pathways. The main motivation for this is the apparent lack of reliable
kinetic parameters needed for constructing quantitative models; indeed, this ability to
analyse PNs at multiple levels of detail is one of their prime advantages. Furthermore,
by analysing the structure of a PN, one circumvents the requirement to explore the state
space of a model by considering fundamental dynamics only.

Koch and Heiner et al. [90] focused on the study of P- and T-invariants to validate
constructed models of MPs prior to further analysis. Specifically, they focused on path
way models for apoptosis, carbon metabolism in the potato tuber and the glycolysis and
pentose phosphate metabolism. In all studies, they identified the critical invariants re
lating to the fundamental processes governing these systems. In a later paper [114], the
authors revisited the potato tuber pathway, and provided a more comprehensive analysis
of this system by investigating both the structural and behavioural properties of their
PN model.

Sackmann et at. [170] took these ideas further by considering how different functional
forms of protein could be modelled within the PN framework. In particular, by means of
a case study on the mating pheromone response pathway for budding yeast, they showed
how structural analysis could provide a meaningful mechanism for network decompo
sition; something which they argued was crucial for understanding large systems. This
decomposition based on structural properties was recently explored further in [80], where
T-invariants were used to break up biochemical networks in to modules. Specifically, clus
ter analysis was used to biologically classify these T-invariants, and the approach was
evaluated using both a signal transduction pathways (STPs) and GRN with promising
results.

Work by Gilbert et al. [74] has also demonstrated how PNs can be used for both qual
itative and quantitative analysis. Furthermore, their work highlighted how quantitative
analysis can often be complemented by qualitative analysis. Gilbert et al. showed how
qualitative techniques could prove a useful first step in deriving more detailed quanti
tative models by proposing a bridge between PN s and ordinary differential equations.
In particular, they demonstrated how standard PNs could be used to derive the initial
molecular concentrations of the continuous differential equation representation via an in-

26

termediate continuous PN model. This technique was then applied to model the inuence
of the Raf Kinase Inhibitor protein on the extracellular signal Regulated Kinase signalling
pathway, where they were able to identify all reasonable initial amounts which resulted
in the desired behaviour specified in temporal logic. This work was later extended in
a comprehensive report which considered the application and comparison of three PN
approaches to modelling this pathway [123].

Hardy et al. [85] applied PN theory to develop a new technique for analysing the
dynamics of signal propagation in STPs. In particular, they demonstrated how their
approach could be used to infer temporal information about the signals in the pathway,
and they developed a simplified graphical representation of the network. Moreover, they
showed how their approach could be used to classify signaling routes in the network.
Dill et at. [58] developed a PN framework for STPs, and implemented their theory in
a support tool PATHALYZER, which was able to calculate reachable pathways, perform
knockout analysis and calculate relevant subnets.

Moving away from STPs, PN theory has also been used in the study of GRNs where
the semantics of interactions are different (regulators are usually not consumed) [44,180].
This therefore exemplies the flexibility of PNs in modelling a range of fundamentally dif
ferent systems. Chaouiya et al. [45,165] considered the development of a rigorous rewrit
ing mechanism from BNs to PNs in order to address the shortcomings of the former.
In addition, focusing on the asynchronous update semantics of BNs, they outlined how
redundant transition removal and logic minimisation [32] could be used to reduce the
size of the PN model. They then considered a detailed case study which looked at the
construction and analysis of a PN model of the Drosophila cell cycle of the flowering Ara
bidopsis, where reachability analysis techniques were applied to verify known properties.
However, their approach does not appear to apply logic minimisation systematically to
reduce the constructed PN, nor does their PN architecture scale to large models. Fur
thermore, they do not appear to make provisions for partial model, as they replace the
non-deterministic choices with deterministic ones. In Chapter 3, we address these three
issues by building upon and extending their approach.

Chaouiya et al. later extended their initial rewriting approach in [44] and generalised
it to cater for multi-level logic. This approach was then applied by Simao et al. [187]
to the regulated tryptophan biosynthesis pathway in E. coli and by Faure et al. to the
budding yeast cell cycle [64] and mammalian cell cycle [65] (in the latter, Faure et al.
also provided an interesting discussion on the affect of synchronous and asynchronous
updating, and considered a combination of the two by introducing a notion of priority
classes). Here, non-safe PNs were used to cater for the possibility of entities with multiple
states, and the primary focus was on the integration of metabolic and regulated systems
under the PN formalism. Their case study results indicated a close agreement with
experimental knowledge, increasing confidence in the application of PNs in this setting.

Finally, Gambin et al. [69] proposed an approach for finding all steady states of a
PN model with a particular application to GRNs. They demonstrated how their fully
automated method was able to find all steady states in a model by considering a case
study on the flower morphogenesis of A. thaliana.

In some cases, however, standard PNs may be too low level to describe some of the

27

complex dynamics of regulatory systems in a concise and intuitive manner. Indeed, some
approaches such as that by Peleg et al. [154] have considered combining PNs with other
formalisms such as workflows, to gain the benefits of both formalisms. On the other hand,
a number of extensions to the underlying PN framework have also been proposed over
the years, and we will now review some of these in the context of biological modelling.

2.4.2 Coloured Petri nets

A coloured Petri net (CPN) [97] extends the underlying PN by allowing places to con
tain distinguishable data types called colours, and Boolean expressions to describe both
the enabling conditions and firing results of transitions. As such, CPNs provide a more
expressive formalism than standard PNs, and facilitate the description of complex dy
namics whilst maintaining a relatively simplistic structure. Furthermore, a key advantage
of CPNs is that they are amenable to established techniques from PN theory [48,49,152].

Genrich et al. [72] proposed a CPN modelling framework for MPs to address the dif
ficulty in visualising network structures from differential equations. Their approach al
lowed for the semi-automatic construction of a CPN model using data from the BRENDA
database on enzymatic reactions (see http://www.brenda-enzymes.inJo/). In particular,
they used colour to differentiate the name of the substrate and its concentration, and
considered two modelling frameworks using CPNs. They evaluated both approaches for
their simulation efficiency, and found that a more compact representation using a sin
gle transition in which the metabolic dynamics were encoded yielded significantly faster
simulation times, but that it could be unintuitive to see pathway structures.

Heiner et al. [91,213] developed an alternative CPN approach for MPs in which colour
was used to distinguish the source and destination of molecules of the same metabolite.
In particular, they focused on qualitative analysis by studying the P- and T-invariants of
the underlying net, and use a combination of structural and dynamic analysis to compute
and study its steady states. Their results showed the correct confirmation of metabolite
preservation laws as well as regenerative reactions.

In a similar manner, Taubner et al. [201] considered applying CPNs to model, simulate
and analyse the TLR4 pathway, but took a more manual approach. They started by
developing an object-orientated view of the pathway using UML diagrams to capture
its static structure. Then, they looked at the iterative construction of its dynamics by
considering each pathway interaction individually from a database. In particular, this
work demonstrated the importance of human judgement in the modelling process, since
a complete knowledge of such pathways is often unavailable from the database alone.

Comet et al. [53] proposed a CPN framework for modelling GRNs based on Thomas'
generalised logical approach [206]. Their approach encoded the regulatory dynamics of
the GRN into a single transition, and they used colours to represent model parameters.
The idea was then to generate all possible models, and to filter these by specifying
hypotheses expressed as temporal logic formulae. Only the models whose dynamical
behaviour fitted the logic specified remained after such a process, and these were then
analysed further.

Finally, in [122], Lee et al. included a timing element to quantitatively model and

28

analyse the epidermal growth factor signalling pathway, and provided an interesting dis
cussion about the trade-offs between modelling power and analysis efficiency. Moreover,
their results showed a close agreement with those obtained by differential equation ap
proaches.

2.4.3 Stochastic Petri nets

In order to cope with the stochasticity of molecular interactions, stochastic Petri nets
(SPNs) [16,79, 192J have been developed. SPNs extend the underlying PN by associating
an exponentially distributed timing delay to each transition; the same rules for enabling
and firing still apply. As such, SPNs are suitable for capturing quantitative descriptions
of small interacting systems [138, 193J, are amenable to probabilistic simulation and model
checking techniques and tools such as PRISM [117], and are biologically justified [15, 76,
79,128J.

The first attempt at applying SPNs to biological systems appears to be by Goss
and Peccoud [79], who motivated their use as a format for replicating, transfering and
extending knowledge between researchers. The authors used SPNs to model and simulate
the affect of the Rom protein on CoIE1 plasmid replication by making use of the MOBIUS
tool (available from http://www. mobius. uiuc. edu). However, whilst their study motivated
the applicability of SPN s for small molecular systems, it did not appear to yield any
further insights over differential equation approaches of the same system.

Srivastava et al. [192J used SPNs to model the (J32 stress circuit in E. coli in the
presence of heat and ethanol shock. Their SPN model was able to reproduce data which
corresponds well to that observed by experimentation. Shaw et al. [178,180J addressed the
problem of parameter estimation and stochastic simulation costs by employing SPNs. In
particular, they developed a distributed stochastic simulator using the CONDOR platform
[202J. They evaluated their approach using a case study on the stress pathway in E. coli
which was able to correctly derive a coherent set of model parameters in correspondence
with knowledge from the literature. However, it also identified a number of improvements
relating to the efficiency of the genetic algorithm, which need to be addressed for their
approach to scale to more practical models.

Gilbert et al. [75, 123J described a unifying framework for biological systems based
on SPNs, which amalgamated the qualitative, continuous and stochastic PN approaches
to modelling. The result was a family of models with a high analytical power. They
showed the relationship between their SPN model and a standard PN and continuous
representation using differential equations, and then evaluated these three approaches
on a case study of the ERK signally pathway, with a particular emphasis on the model
checking that could be performed.

2.4.4 Hybrid Petri nets

To address the lack of tools and techniques for managing ordinary differential equation
models of biological systems, hybrid Petri nets (HPNs) [132J have been proposed. HPNs
extend the PN formalism by including continuous places with associated real values in
addition to standard discrete ones. Furthermore, they allow for continuous transitions

29

which fire continuously at some fixed rate, whilst discrete transitions can fire after a
determined delay. As such, HPNs provide a rich and expressive environment for modelling
biological networks both qualitatively and quantitatively.

Perhaps the most active work in this area has been that of Matsuno and collabora
tors [60,132,134,135,149,150]. In [132]' a HPN framework for GRNs was proposed. This
framework built upon and extended the hybrid circuit approach of McAdams et al. [139]
by enabling both circuit and differential equation descriptions to be united under a com
mon formalism which was then amenable to analysis. They showed how this framework
could be utilised to incrementally develop models in a modular fashion, and illustrated
their approach with a case study on the early stages of gene expression in phage A.

A further extension to HPN s (based on [209]) was proposed by Matsuno et al. specif
ically for biological systems, namely hybrid functional Petri nets (HFPNs) [135,150].
HFPNs allow for the firing rates of transitions to depend on the values of the corre
sponding input places, and are supported by the dedicated tools GON (Genomic Object
Net) and CELL ILLUSTRATOR [131,149].

HFPNs were proposed as an integrating approach for so-called biopathways (GRNs,
MPs and STPs) in [59,135]. Here, HFPNs and the support tool GON [131] were evaluated
against a number of biopathways, allowing for detailed simulations to be carried out. In
[150], HFPNs were further extended with notions of object types, variables and methods,
and were used to simulate various biological processes including Huntington's disease.
In [133], Matsuno et al. used HFPNs to suggest the addition of an interaction in the
mammalian circadian gene regulatory mechanism which was not currently known about,
and showed that its presence resolved a number of observed discrepancies.

Whilst HFPNs offer a unified framework for biological processes, they appear to have
a number of shortcomings. Firstly, their analysis appears to be currently limited to
simulation, which will not scale for large models. In fact, it was Reddy who noted the
trade-off between modelling power and analysis potential [163]; that is, as the expres
siveness of a model increases, its availability to analysis techniques significantly reduces.
This is exemplified by the current lack of analysis techniques for HFPNs such as model
checking and invariant analysis. Moreover, there appears to be no suitable way in which
HFPNs can be translated into simpler varieties of PN so that they are amenable to such
techniques.

A second hinderance with HFPN s is that there seems to be no provision for the
automatic model construction required for practical models, since many parameters and
significant user knowledge is needed. One attempt at estimating parameters using HFPNs
was proposed by Koh et al. [116], who used a decompositional approach based on the
network topology to partition the model into subnets and estimate the parameters inde
pendently. Their results indicated significant improvements in estimation over existing
attempts, but more case studies are clearly required to gain confidence in the biological
assumptions made.

Finally, there appears to be little theoretical backing for the HFPN formalism which
proves its completeness and justifies its correctness in the biological context. Moreover,
the simulation algorithms do not appear to be documented, so it is hard to assess the
quality of the results obtained.

30

2.5 Tool support for modelling and analysing biolog
ical systems

In this section, we briefly review some of the existing software support for constructing
and analysing models of biological systems.

GINsim

GINs1M [78] is a modelling and simulation tool for GRNs based on Thomas' generalised
logical approach [206]. A regulatory network can be specified intuitively by drawing the
genes and their interactions as a directed graph. For each gene, the number of states
can be specified, and arcs can be assigned with activation or inhibitory influences, along
with the thresholds at which they become realisable. Once the genes and interactions are
specified, GIN S1M provides a number of functions to the user. Simulations may be run
on the network, resulting in the generation of the state graph under both the synchronous
and asynchronous update semantics, as well as priority classes. Searches for functional
circuits as well as steady states can also be performed, as well as the translation to PN s
and the export to a number of formats for further analysis. GIN S1M is freely available
from http://gin.univ-mrs.frj.

GNA

GNA [21] allows for the specification of a regulatory network using PLDEs [23,40,71,77,
99,143]. The equations enable the qualitative description of the network to be specified
using thresholds of influence under which the levels of biological entities tend towards
some target value. G N A is then able to perform qualitative simulations on the sys
tem of equations, calculate steady states and export the model to a number of different
formats for model checking with external tools. GNA is freely available from http://www
helix. inrialpes.fr / article122. html.

Cell Illustrator

CELL ILLUSTRATOR [131] is based on HFPNs and allows the user to comprehensively
model a range of biological systems by providing a powerful drawing canvas onto which
the biological entities, variables and interactions can be specified. CELL ILLUSTRATOR is
then able to perform efficient simulations on the constructed models, draw graphs of the
results and produce publication quality illustrations. Furthermore, CELL ILLUSTRATOR
interfaces to a number of biological databases and supports the import of models in a
range of formats including SBML and CellML. CELL ILLUSTRATOR is available commer
cially from https:!/www.cellillustrator.com.

E-Cell

E-CELL is an object-orientated software suite resulting from the collaboration of a num
ber of international research groups, which aims at providing precise whole cell simulation.
E-CELL consists of modelling, analysis and simulation modules which form part of a well
developed architecture, and interfaces with various data sources. In particular, a number

31

of simulation algorithms and analysis techniques appear to have been implemented as
plugins for this growing software suite, which is currently maintained by a substantial
team of developers. E-CELL is available commercially from http://www.e-cell.org.

Biocham

BroCHAM [38J is a rule-based environment for specifying and simulating biochemical
systems. A model can be specified using a rule-based syntax, and then simulated and
analysed using powerful temporal logics. Furthermore, BIOCHAM provides an interface
to external model checkers as well as a machine learning system for auto-completing
models and estimating their parameters. BroCHAM is freely available for academic use
from http://contraintes. inria.fr /biocham.

2.6 Summary

This chapter has introduced BNs and PNs, the formalisms at the core of this thesis, as
well as some of the key studies in which these have been applied in the literature. These
studies have reflected some of the substantial work on qualitative modelling and analysis;
in particular, the ability to construct models of biological systems, analyse them and then
refine them in light of additional knowledge forms an important model development cycle.
However, these studies have also highlighted an apparent lack of systematic PN model
construction techniques. In the next chapter, we address this by combining the BN and
PN formalisms introduced into a systematic modelling framework for GRNs, and develop
much-needed tool support to make this available to the biological community.

32

Chapter 3

Boolean Models of Genetic
Regulatory Networks: A Petri Net
Approach

Boolean networks (BNs) provide an abstract modelling approach for genetic regulatory
networks (GRNs) that allow each regulatory entity to be in one of two states [101,102].
Due to this simplistic view, BNs provide many modelling advantages over finer-grained
approaches: (i) they are scalable; (ii) they support the observation that genes exhibit
switch-like behaviour [105,182,203]; (iii) they are robust to noisy data sets [138,183];
and (iv) they capture fundamental behaviour, making them ideal for initial studies.
However, there appears to be limited formal analysis techniques and tools in the biological
community for studying BN s, and they do not cope well with the uncertainty that plagues
most practical data sets.

Petri nets (PNs) [147] have emerged as a rich framework for modelling biological
systems (see [84,155,160] for interesting reviews). With their strong mathematical foun
dation, non-deterministic firing semantics and abundant analysis techniques and tool
support, PNs appear to be well-suited for this area. Moreover, by translating BNs into
PNs (see, for example, [45,165]), the latter has been shown to address the shortcomings
of the former. Despite this, little appears to have been done in ensuring that model con
struction is systematic and compact. Furthermore, there appears to be a lack of support
for both the synchronous and asynchronous semantics of BNs, including partial models.

Steggles et al. [194-196] built upon and extended [45,165] by considering the appli
cation of efficient logic minimisation techniques [32, 127] to obtain compact PN models,
catering for both the synchronous and asynchronous semantics of BNs and coping with
non-determinism. The result was a flexible qualitative PN modelling framework for
BNs. However, efficient tool support is now required to make this approach systematic
and practical, and this is the key contribution of this chapter.

We introduce a tool called GNAPN (Genetic Networks as Petri Nets) which com
pletely automates the theory reported in [196]. We then consider investigating and
validating its application using two comprehensive case studies: the first considers the
GRN responsible for carbon stress response in E. coli; and the second focuses on the

33

larger GRN responsible for initiating sporulation in B. subtilis. In particular, we apply
a range of existing PN analysis techniques and tools to verify known properties of our
models, and hence gain confidence in the correctness of the approach.

The rest of this chapter is structured as follows. In Section 3.1, we describe the
systematic approach to translating BNs into PNs based on [194-196]. In particular, we
show how both the synchronous and asynchronous semantics of BN s are catered for in
the PN model, as well as how partial models can be represented in a useful way. Then,
in Section 3.2, we discuss how this approach is automated by our Java tool GNAPN. We
then investigate and validate the application of GNAPN in Section 3.3 using two case
studies on carbon starvation in E. coli and sporulation in B. subtilis. Finally, Section 3.4
presents some concluding remarks.

3.1 From Boolean networks to Petri nets

In this section, we present the systematic approach for translating BNs into PNs proposed
in [194-196]. We firstly show how the next-state functions F describing the regulatory
relationships between each entity in a BN can be specified more compactly using logic
minimisation techniques [32, 127]. We then show how this more compact representation
can be used to construct PN models.

3.1.1 Obtaining compact next-state equations

Let BN = (G, N, F) be a BN with k entities as defined in Section 2.2.2 . The next-state
functions F can be completely specified by k state transition tables, or by a single global
table with 2k rows. For example, consider the state transition tables shown in Figure 3.1
for a BN with three entities.

gl g3 [g2]
0 0 0

g2 [gl] 0 1 0 gl [g3]
0 0 1 0 0 0 1
1 1 1 1 1 1 0

Figure 3.1: State transition tables from Figure 2.1 for three entities.

Alternatively, the behaviour of these state transition tables can be represented equa
tionally as:

[gl] = g2, [gl] = g2, [g2] = gl g3, [g2] = gl g3 + gl g3 + gl g3, [g3] = gl, [g3] = gl,

which specify the conditions for each entity gi to be on and off in the next state [gil· For
example, we see that g2 will be on in the next state if gl = 1 and g3 = 1. Each logical
conjunction of variables is called a term [32], and the logical disjunction of such terms
captures the behaviour for the corresponding entity in disjunctive normal form [32].

34

Collectively, such equations completely capture the behaviour of each entity in the
BN, but often contain redundant logic which can be removed without changing the
behaviour they specify. Since our PN construction approach relies on the translation of
this logic, it is therefore advantageous to ensure that such redundancy is removed. This
can be achieved with the application of logic minimisation techniques [32,127]' which
enable an expression to be syntactically simplified whilst preserving its semantics. The
basic idea is to eliminate redundancy by merging terms which differ by only one variable
in an exhaustive fashion. For example, the only equation above that contains more than
one term is for when g2 turns off, and so we will look at how it can be minimised into a
more compact description.

We start by considering the first term g1 93 and notice that it can be merged with
the second term 91 g3, since it differs in only one variable 93. This therefore results in
the compact term g1 which is logically equivalent [32J to the original two. In a similar
way, we can also merge the first term with the third g1 g3, resulting in the compact term
g3' We then consider the second term 91 g3 and compare it to the last term only (since
we have already compared it to the first) and note that they differ in both variables,
meaning that they can not be merged. Finally, after one complete pass, we are left
with two terms g3 + 91 which cannot be merged any further, and which are logically
equivalent to the original expression [32J. Thus, our complete set of next-state equations
after minimisation is:

These minimised next-state equations completely describe the dynamics of each entity
in Figure 3.1 in a compact way, which is advantageous for the PN translation discussed
in the next section. For a comprehensive introduction to logic minimisation, see [32J.

3.1.2 Constructing a qualitative Petri net model

We now consider how these compact next-state equations can be represented as PN struc
tures, so that their logic can be simulated and analysed using the wide range of available
PN techniques and tools [lJ. In particular, this work extends similar approaches [45J by
catering for both the synchronous and asynchronous semantics of BN s. Note we focus on
constructing safe PNs (where each place can contain no more than one token) since they
lend themselves better to automated analysis.

Asynchronous update semantics

Since PN s fire transitions asynchronously, it is straightforward to model the asynchronous
update semantics of a BN in this setting. We adopt the standard approach based on
representing the Boolean state of each entity gi using two complementary places Pi and
Pi (for example, see [45]). The idea is that gi is on if Pi contains a token, and off if Pi
contains a token (note the combined number of tokens on places Pi and Pi is always one).
The PN construction process for a given BN can then be specified formally as follows.

35

Definition 3.1 (Asynchronous Boolean network to Petri net). Assume we have a BN
with n entities gl, ... , gn' A corresponding P N modelling its asynchronous update seman
tics can be constructed as follows:

• For i = 1, ... , n, we add two complementary places Pi and Pi, such that M(Pi) +
M(Pi) = 1 always holds.

• Consider each minimised next-state equation [gil = Tl + ... + T m which defines
when gi turns on. For each product term Tj , for j = 1, ... , m, we add a transition
ti/j such that: (i) place Pi is an input place and Pi is an output place of ti/j; and
(ii) for each variable gk (respectively gk) in Tj , we add a read arc connecting Pk
(respectively Pk) to ti/j. The same approach is then used to model the minimised

next-state equation [gil = Tl + ... + Tm which defines when gi turns off. We add
a transition ti/j to model each product term Tj , for j = 1, ... , m, using the same
scheme as detailed above, but with Pi (respectively Pi) replaced by Pi (respectively
Pi) in part (i).

As an example, consider the compact next-state equation for g2:

which we would model using transition tl in Figure 3.2(a). Note transition tl is only
enabled when M(P2) = 1, M(pd = 1 and M(P3) = 1. When tl fires, a token is then
removed from P2 and placed on P2. We can then apply the same approach for when g2
turns off, by considering the next-state equation:

where transition t2 represents term g1 and t3 represents term g3.
Applying the construction process of Definition 3.1 to the remaining entities yields

a PN modelling the asynchronous semantics of our example BN. More specifically, any
sequence of global states obtained from asynchronous simulation of the BN can be rep
resented by a corresponding sequence of markings in the constructed PN. Furthermore,
it can be observed from Definition 3.1 that if we have a BN with n entities, where each
has an on and off minimised next-state equation consisting of a total of m terms, then
the corresponding PN will contain 2n places and mn transitions (equivalent to [45]). In
contrast, without logic minimisation, the resulting PN would contain (2n)n transitions
to cater for each possible state update that could occur.

Synchronous update semantics

In order to model the synchronous update semantics of a BN within the asynchronous
PN framework, we make use of a two-phase commit protocol to synchronise updates in
the PN model. In phase one, each entity decides what its next state will be and records
this decision. When all the entities have made a decision about their next states, the
second phase of the protocol begins, and the state of each entity is updated according to
the recorded decisions. The process for constructing such a PN can be specified formally.

36

P2/off

(a) (b)

Figure 3.2: (a) PN structure for asynchronous semantics with transition it modelling
next-state equation [92J = 91 93, and transitions t2 and t3 modelling next-state equation
[92J = 91 + 93, and (b) PN structure for phase one of synchronous semantics modelling
next-state equations [92J = 91 93 and [92J = 91 + 93·

Definition 3.2 (Synchronous Boolean network to Petri net). Assume we have a EN with
n entities 91, ... , 9n. A correspondin9 P N modelling its synchronous update semantics
can be constructed as follows:

• For i = 1, ... ,n, we add places Pi, Pi, Pi/on (to record 9i as on), Pi/off (to record gi
as off), Pi/start (to indicate when a decision about the next state of gi is required),
Pi/syn (to indicate when an update decision has been made), Pi/com (to indicate when
the recorded decision should be committed) and Pi/done (to indicate that the decision
has been committed). Note in the initial marking, either Pi or Pi (but not both)
must contain a token, and Pi/start will contain a token, for i = 1, ... ,n. All other
places must be unmarked.

• Phase One: Consider each minimised next-state equation [giJ = T1 + ... + T m

which defines when 9i turns on. For each product term Tj , for j = 1, ... , m, add a
transition tifj such that:

- place Pi/start is an input place and Pi/on and Pi/ syn are output places of tifj;

- for each variable 9k (respectively 9k) in T j , add a read arc connecting place Pk

(respectively Pk) to ti/j.

We now use the same approach to model the minimised next-state equation [9iJ =
T1 + ... + Tm which defines when gi turns off. We add a transition tifj to model
each product term Tj , for j = 1, ... , m, using the same scheme as detailed above,
but with Pi/on replaced by Pi/off as an output place for the transition.

• Phase Two:

37

We add a transition to initiate the update process which has input places Pi/ syn
and output places Pi/com, for i = 1, ... ,n.

For each entity gi, we add four transitions to update the state of gi based on
the recorded decisions:

* move token from place Pi to Pi;

* leave token on Pi;

* move token from place Pi to Pi;

* and leave token on Pi.

In addition, each transition takes input from place Pi/com and outputs to Pi/done.

We add a transition which has input places Pi/done, for i = 1, ... ,n, and output
place Pjinish (used as a convenient means of indicating when phase two has
finished). An additional transition is then used which has input place Pjinish
and output places Pi/start, for i = 1, ... ,n which resets the protocol.

As an example, Figure 3.2(b) shows the PN structure of phase one used to record the
update decision for g2. Once gl and g3 have also made their decision (in a concurrent
fashion), places Pl/syn, P2/syn and P3/syn will be marked, allowing the transition in Figure
3.3(a) to start phase two of the protocol. With places PI/com, P2/com and P3/com marked,
each entity is then able to commit the recorded changes concurrently. For example,
the four transitions required to achieve this for g2 are shown in Figure 3.3(b). Finally,
once all three entities have committed their recorded changes, the transition shown in
Figure 3.3(c) will be able to fire. Note place Pjinish will be marked in between phase two
finishing and phase one beginning, and is simply used for model checking convenience
(for example, see the case study in Section 3.3.1).

PI/done P2/done P3/done

Pl/syn P2/syn P3/syn

PI/com P2/com P3/com PI/start P2/start P3/start

(a) (b) (c)

Figure 3.3: PN structures for phase two of the protocol using running example: (a)
initiating phase two; (b) update of entity g2; and (c) reset network for phase one.

A PN constructed from a BN using the process of Definition 3.2 will model the
synchronous update semantics. More specifically, any sequence of global states resulting

38

from a synchronous simulation of the BN will be representable in the PN by considering
only those markings reachable after complete passes of the two-phase protocol (all other
intermediate markings are necessary only for the synchronisation logic, and can thus be
safely ignored). Intuitively therefore, if we were to hide the extra places and transitions
involved in the synchronisation logic of the two-phase protocol, the sequence of markings
we would observe would directly correspond to the global states of the BN under the
synchronous update semantics.

It can also be observed from Definition 3.2 that if we have a BN with n entities ,
where each has an on and off minimised next-state equation consisting of a total of m
terms, then the corresponding PN will contain 8n + 1 places and nm + 4n + 3 transitions.
Thus, the overhead of the synchronisation logic adds only 4n + 3 extra transitions, and
therefore becomes negligible for large BNs where n « m often holds. In particular, we
avoid the potential 2n transitions required to capture each possible state update under
the synchronous semantics.

3.1.3 Partial models

So far, we have assumed that we always start with complete and consistent state tran
sition tables. However, this may not always be the case in practice, as the underlying
G RN may not be fully understood; indeed, this is one important reason for modelling
such systems. The tables may be incomplete in the sense that information is missing
about what happens in certain states, or they may be inconsistent in that they contain
conflicting information. The result is that the behaviour of some entities under certain
conditions may be non-deterministic.

Non-deterministic behaviour is problematic to model for BNs, as they are a deter
ministic formalism. Work in the literature has looked at a number of potential methods
for making BNs more robust to uncertainty, including: stochastic extensions [182,183];
algorithms for inferring complete BNs from sparse state transition specifications with a
noise factor [7,125,221]; and noise-resiliant clustering and binarisation approaches [186].
However, to the best of our knowledge, no PN construction approaches appear to cater
for this.

We propose a straightforward method for modelling uncertainty which makes use of
the non-deterministic firing semantics of PN transitions. As such, our approach requires
no extension to the underlying BN. The idea is to identify the problematic states for
each entity, and then include these in both next-state equations, thus representing the
uncertainty as a choice in the PN (see Section 2.3.3). For example, consider the state
transition table for some entity 91 shown in Figure 3.1.3, where the '-' represents an
unknown outcome for state 92 93.

Since the behaviour of 91 is unknown at this state, we simply include state 92 93 in
both next-state equations for 91:

[91] = 92 93 + 92 93, [91] = 92 93 + 92 93 + 92 93.

Applying logic minimisation to these next-state equations then gives us:

[91] = 92 93 + 92 93, [91] = 92 + 93,

39

92 93 [9Il
0 0 0
0 1 1
1 0 -

1 1 0

Figure 3.4: State transition table representing Boolean behaviour of 91 with unknown
behaviour.

which can be modelled using four transitions under both the asynchronous (see Figure
3.5(a)) and synchronous (see Figure 3.5(b)) update semantics. Note when places P2 and
P3 are marked, transitions t 2, t3 and t4 are enabled, and so a non-deterministic choice
exists between 91 becoming active or inactive.

P2 PI P2

(a) (b)

Figure 3.5: PN structures modelling unknown behaviour for 91 under: (a) the asyn
chronous semantics; and (b) the synchronous semantics.

Such non-deterministic choices can be taken into account when analysing the dynamic
behaviour of a PN, and so meaningful investigations are still possible. Furthermore, as
more data becomes available for a GRN, the PN model can be refined to reduce the
amount of non-determinism it contains. Thus, PN s provide an interesting means of
documenting the progression of knowledge for a GRN.

3.2 Implementation issues

Whilst the modelling approach presented is theoretically well-founded, it remains imprac
tical without support tools to automate model construction. In this section, we discuss
the development of such a tool called GNAPN (Genetic Networks as Petri Nets).

GNAPN is a Java tool which completely automates the translation process from
a BN representation of a GRN to a PN. BNs can be supplied to GNAPN either by
defining the regulatory interactions using a GUI, or automatically from an input file of

40

state trans.it.ion tables. In both cases, GNAPN represents the BNs in memory using
state .t~ansitIOn table d~ta structures (note binary decision diagrams (BDDs) [35] offer a
promIsmg future extensIOn to GNAPN to allow B:\'s to be represented more compactly).

A key feature of GNAPN is the application of logic minimisation techniques to the
BN prior to PN construction. For this, GNAPN uses the auxiliary tool MVSIS [146];
the state transition tables are serialised and passed transparently to MVSIS, which then
processes them and outputs a compact equational representation to file. GNAPN then
parses these equations back into data structures, resulting in a set of compact next-state
equations.

~ ·0 GNaPN:. Gene Networks as Petri Nets

(Open Model)
-------._--

Rm ! 0 :1 ~ Normal '-=' Fixed [JAil --..

I
Sig r 0 ~ n Normal ~ Fixed o All

I , ,
I

TapA [1 ~ o Normal o Fixed ~AII

GyrAB ~ __ u __ l1 . ~ Normal ~ Fixed 0 All

Fis r 0 --:1 o Normal ~ Fixed C=' All ,

Cya
[-0-- ':1 ~ Normal o Fixed r-:I All

CRP I 0 --m ~ Normal [J Fixed [JAil
------~~ -------~

Petri Net Type i Upd", ',m,""" -:]
8 LL 0 HL OSTG , o Sync f~\ Async

.---- -

Export

(PNML) C ____ P_E_P __) ' __ A_ST_G __ '\

Figure 3.6: GUI of GNAPN allowing user to select initial states, specify update semantics
and mutants as well as export formats.

GNAPN facilitates the construction of PNs for both the synchronous and asyn
chronous semantics of BNs. This is a crucial feature which so far does not appear to
have been catered for. Furthermore, GNAPN can also cope with partial BNs following
the approach described in Section 3.1.3. The GUI (see Figure 3.6) allows the user to
specify initial markings for the PN as well as mutant models, by enabling the states of
one or more entities to remain fixed once set. Constructed PNs are stored internally
as graph structures, which GNAPN can then export to PNML (the de facto standard),
PEP [81] (for use with the PEP tool) and ASTG [54] (for use with PETRIFY).

It is important to note here that GNAPN is implemented in a generic way that enables
it to handle both BNs and their generalisation discussed in Chapter 4. GNAPN is freely
available for academic use for Windows and Linux platforms only (since it requires the
platform-specific binary MVSIS) and can be downloaded from bioinf. ncl. ac. uk/ gnapn.

41

3.3 Applying and validating Petri net framework

We now focus on exploring the application of our PN approach using two independent
case studies based on well-studied systems. In the first study, we consider a BN model
of the carbon starvation stress response network in E. coli [167]. The second case study
then considers the larger BN model for the initiation of sporulation in B. subtilis [99].
Both studies involve the application of G N APN and a range of PN techniques and tools.
In particular, we make use of the PEP tool [81] to analyse our PN models, as well as the
PN unfolder PUNF and linear model checker CLP [109] for dynamical analysis. Note both
case studies focus on the synchronous semantics of BN s, as it is interesting to investigate
within the asynchronous PN framework.

3.3.1 Response to carbon starvation in E. coli

In this section, we apply the techniques introduced to construct and validate a PN model
based on an adapted GRN for carbon starvation response in the bacterium E. coli [167].

Constructing the Petri net model

Under normal conditions with sufficient nutrient availability, the bacterium E. coli is able
to develop rapidly entering an exponential growth phase [92]. However, under adverse
conditions when the nutrient availability is depleted, E. coli enters a stationary phase
in which a substantial slow down in growth occurs to help the bacterium survive. The
GRN underlying this response for carbon starvation is shown abstractly in Figure 3.7
(adapted from [167]).

Legend

G=:> Entity

C. __ .E __ J Implicit Entity

___________ Activation

_ Inhibition

Figure 3.7: High-level GRN for the carbon starvation response network in E. coli.

The network has a single input signal indicating the presence of carbon starvation,
which is transduced by the activation of adenylate cyclase (eya), an enzyme which results
in the production of the metabolite cAMP. This metabolite immediately binds with and
activates the global regulator protein eRP, and the resulting cAMP.eRP complex is
responsible for controlling the expression of key global regulators including Fis and eRP
itself. The global regulatory protein Fis is central to the stress response and is responsible

42

for promoting the expression of stable RNA from the rrn operon [167]. Thus, during
the exponential growth phase, high levels of Fis are normally observed and the mutual
repression that occurs between Fis and cAMP. CRP is thought to play a key role in the
regulatory network.

The expression of fis is also promoted by high levels of negative supercoiling being
present in the DNA [18]. The level of DNA supercoiling is tightly regulated by two topoi
somerases: GyrAB (composed of the products of genes gyrA and gyrE) which promotes
supercoiling; and TopA which removes supercoils. An increase in DNA supercoiling re
sults in increased expression of TopA and thus prevents excessive supercoiling. A decrease
in supercoiling results in increased expression of gyrA and gyrE, and the resulting high
level of GyrAB acts to increase supercoiling. For a more detailed introduction to the
carbon starvation stress response network in E. coli, see [167].

Using the data provided in [167], we are able to derive state transition tables defining
the Boolean behaviour of each regulatory entity in the carbon stress response network.
For example, the state transition table defining the behaviour of Cya is shown in Fig
ure 3.3.1. Note following the approach in [167], the states of cAMP.CRP and DNA
supercoiling are not explicitly represented in our model.

CRP Cya Signal [Cya]
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Figure 3.8: State transition table representing Boolean behaviour of Cya.

Next, we apply logic minimisation to the state transition tables to derive the compact
next-state equations describing their regulatory behaviour (see Figure 3.9). From these,
we can construct a PN consisting of 45 places and 49 transitions modelling the syn
chronous update semantics based on the process detailed in Definition 3.2. This process
is fully automated by GNAPN, and the model file and resulting PN can be downloaded
from bioinf. ncl. ac. uk/ gnapn.

Simulation

We first consider simulating our PN model to ensure that it captures a reasonable rep
resentation of the switch between the two fundamental growth phases [167]. The idea is
to initialise our PN model to a given marking of interest, and then simulate it to observe
the progression of behaviour after each synchronous state update.

The first simulation we perform is to ensure that the PN correctly switches from the
exponential to the stationary growth phase in the presence of carbon stress. We therefore
initialise our model to a marking representing the exponential growth phase (see [167])

[Cya]

[Cya]

[CRP]

[CRP] -

[GyrAB]

[GyrAB]

[TapA]

[TapA]

[Fis] -

[Fis]

[SRNA]

[SRNA]

43

Signal + Cya + C RP

(Signal Cya CRP)

Fis

Fis

(GyrAB Fis) + (TapA Fis)

(GyrAB TapA) + Fis

(GyrAB TapA Fis)

Gyr AB + TapA + Fis

(Fis Signal Gyr AB TapA) + (Fis Cya Gyr AB TapA) +
(Fis CRP GyrAB TapA)

(CRP Cya Signal) + Fis + GyrAB + TapA

Fis

Fis

Figure 3.9: Minimised next-state equations for E. cali.

and activate Signal to indicate carbon stress. The resulting simulation showing how the
system responds to carbon starvation is shown in Figure 3.3.1; the first column shows the
initial state and each subsequent column shows the progression of states after subsequent
synchronised updates.

Signal 1 1 1 1 1
CRP 0 0 1 1 1
Cya 1 1 1 0 1

GyrAB 1 0 1 0 1
TopA 0 1 0 0 0

Fis 1 0 0 0 0
SRNA 1 1 0 0 0

Figure 3.10: Simulation results showing the switch from the exponential to the stationary
growth phase in the presence of carbon stress.

The simulation shows that the PN model correctly makes the switch from the ex
ponential to the stationary growth phase when carbon starvation stress is present. An
attract or cycle of period two is entered (last three columns) in which Fis (and conse
quently SRNA) is not present at significant levels. Similarly, we can show that the model
correctly switches back from the exponential to the stationary growth phase when Signal
is inactive. Taking a marking representing stationary phase conditions from Figure 3.3.1,
we switch Signal off and observe the resulting behaviour shown in Figure 3.3.1

The simulation shows how the PN model correctly returns back to the exponential
growth phase by falling into an attract or cycle in which the level of Fis and SRNA oscil-

44

Signal 0 0 0 0 0
CRP 1 1 1 0 1
Cya 0 1 1 1 1

GyrAB 0 1 0 0 1
TopA 0 0 0 0 0

Fis 0 0 1 0 0
SRNA 0 0 0 1 0

Figure 3.11: Simulation results showing the switch back from the stationary to the ex
ponential growth phase in the absence of carbon stress.

late. This corresponds to the physiological conditions present in the exponential phase,
and is consistent with the behaviour described in [167].

Dynamic properties

We next consider using our PN model to investigate experimental hypotheses which we
formulate using the literature and our simulations so far. In particular, we make use
of powerful model checking techniques to achieve this. As an example, it appears that
GyrAB and TopA should be mutually exclusive [167]; they should never both be active
at the same time. In order to prove this property holds on our model, we need to verify
that it holds from each possible initial state. We achieve this by inserting a simple PN
control structure around the complementary places of each entity to enable us to explore
all possibilities. For example, the control structure for entity Fis is illustrated by Figure
3.12.

Fis

Figure 3.12: PN structure to enable both initial states of entity Fis to be explored.

When Fisinit is marked, the model checker CLP is able to explore both markings in
which Fis is on and off using the non-deterministic transition firing semantics of PNs.
By inserting this control structure around the remaining entities (this is automated by
GNAPN), CLP is able to explore all possible behaviours. We then check for mutual
exclusion between GyrAB and TopA using the following constraint:

Gyr AB + TapA> 1, Pjinish = 1

which characterises a marking in which the mutual exclusion property does not hold
(where the condition Pjinish = 1 is used to ensure we only consider markings reached
after a complete pass of the two-phase commit protocol). The results are shown below,

45

and they correctly confirm that no state satisfying this constraint is reachable from any
initial state, thus proving that GyrAB and TopA are indeed mutually exclusive in our
model.

solving: 0.01 sec.
6 compatible vectors explored

the marking is unreachable

We can attempt to prove a similar mutual exclusion property for entities CRP and
Fis using the same approach. However, this time a marking satisfying the constraint is
confirmed, as shown below:

solving: 0.01 sec.
10 compatible vectors explored

_SEQUENCE:
t47,t49,t51,t53,t56,t57,t59,tO,t6,t17,t22,t35,t43,t4,t1,t13,t9,
t20,t19,t31,t26,t39,t38,t45,t44,tO,t8,t15,t29,t35,t43,t4,t1,t12,
t9,t21,t16,t31,t30
path length: 39

the marking is reachable

This execution trace describes the firing sequence necessary to reach the offending
witness marking, thus proving that CRP and Fis are not mutually exclusive in our PN
model.

Mutant analysis

The final part of our study investigates the affect of "fixing" the state of a single entity
to observe how the normal function of the model is affected. This corresponds with
the experimental method of gene knockout and overexpression, and provides a means of
testing the robustness of the model when key components do not function as normal. In
order to fix the state of an entity, we ignore its corresponding state transition table so
that it becomes an input to the model like Signal.

We investigate the affect that knocking out and overexpressing crp, cya, gyrAB and
tapA has on the production of Fis and consequently the expression of the rrn operon.
Specifically, we look at two situations: where SRNA can be prevented from being active
in the absence of carbon stress; and where SRNA can become active in the presence
of carbon stress. We perform these tests by first setting Signal, Fis and SRN A to be
inactive, and then we knock out and overexpress the remaining entities in turn. We then
repeat this process with Signal on. The observed results of this analysis are summarised
in Figure 3.3.1, where 'Yes' indicates that SRNA was able to become active, 'No' that
this did not occur, and's' the presence of carbon stress.

j

46

Entity Knock out Overexpressed Knock out (s) Overexpressed (s)
CRP Yes Yes Yes Yes
Cya Yes Yes Yes Yes

GyrAB No Yes No Yes
TopA Yes No Yes No

Figure 3.13: Results of mutant analysis, where os' represents the presence of carbon stress.

We see that when both CRP and Cya are knocked out and overexpressed, the level of
SRN A is able to become active. This is interesting as it indicates that they are in some
way decoupled from the rest of the system under the Boolean abstraction. However,
when we knockout GyrAB with no carbon stress, we see a special case in which SRNA
does not become active. This can be explained by noting that since GyrAB indirectly
activates Fis via supercoiling, TopA is allowed to reduce the amount of supercoiling
without competition and so reduces the level of Fis. Meanwhile, the cAMP.CRP complex
represses Fis, and so overall SRN A is repressed.

Another interesting case is when carbon stress is present and we overexpress GyrAB.
One should note that under normal conditions when Signal is active, SRNA should never
become active. However, with GyrAB overexpressed, the level of supercoiling increases
without affect from TopA, and thus Fis increases. This increased level of Fis also reduces
the amount of the cAMP.CRP complex and so its repression on Fis is reduced. Thus,
the level of SRNA is activated under these abnormal conditions, which appears to be
consistent with [167].

3.3.2 Sporulation in B. subtilis

We further explore our approach with a larger case study which focuses on the GRN
responsible for sporulation in B. subtilis [99,197].

Constructing the Petri net model

The soil bacterium B. subtilis is able to survive adverse environmental conditions by
forming resistant dormant spores [197]. This process of sporulation is controlled by a
complex regulatory network, a small part of which is shown abstractly in Figure 3.14
(adapted from [99]).

The presence or absence of extreme environmental conditions, such as nutrient star
vation, is represented by the signalling entity Signal: when Signal is present, it indicates
that the bacteria is under nutritional stress and that sporulation should occur. At the
center of the network is the phosphorylation of the protein SpoOA, which in turn actives a
cascade of sigma factors which direct the transcription of genes that initiate sporulation.
This phosphorelay [99] transfers a phosphate from the kinase kinA (amongst others) via
a number of intermediate steps to activate the protein SpoOA by producing SpoOArvP.
This in turn activates the production of SigF, a key sigma factor whose expression we
take as an indication that the sporulation process has been initiated. The phosphotase
SpoOE is able to reverse the phosphorylation of SpoOA, thereby inactivating SpoOA

j

47

Legend

~ Entity

~ Sigma Factor

--.. Activation

___ Inhibition

- 8- Binding

Figure 3.14: High-level GRN for initiating sporulation in B. subtilis

and preventing sporulation. The above interactions form part of a complex regulatory
control mechanism involving a number of other genes which act as transition state regu
lators to inhibit or activate the sporulation process. For a more detailed account of the
sporulation process, see [99].

Using the data provided in [99], we are able to derive state transition tables defining
the Boolean behaviour of each regulatory entity in the sporulation network. For our case
study, there are twelve entities: SigF, KinA, SpoOA, SpoOArvP, AbrB, SpoOE, SigH,
Hpr, SinR, SinI, SigA and Signal. For example, entity AbrB is affected by three entities,
namely SigA, AbrB and SpoOArvP, and its resulting behaviour is shown by the state
transition table in Figure 3.3.2.

SigA AbrB SpoOArvP [AbrB]
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Figure 3.15: State transition table representing Boolean behaviour of entity AbrB.

Note SigA and Signal are not regulated within the scope of this network, and as such,
their state remains fixed once initialised. Next, we apply logic minimisation to the state
transition tables to derive the compact next-state equations describing their regulatory
behaviour (see Figure 3.16). From these, we can construct a PN consisting of 75 places
and 91 transitions modelling the synchronous update semantics based on the process
detailed in Definition 3.2. This process is fully automated by GNAPN, and the model
file and resulting PN can be downloaded from bioinf ncZ. ac. uk/gnapn.

.J

[AbrB]

[AbrB]

[Hpr]

[Hpr]

[KinA]

48

(AbrB SigA SpaOA",P)

SpaOA",P + STgA + AbrB

- (Abr B SigA SpaOA",P)

SpaOA",P + STgA + Abr B

- (SigH SpaOA",P)

SpaOA",P + SigH [KinA]

[SigF]

[SigF]

[SigH]

[SigH] -

(SigH SinI SpaOA",P) + (SigH SinR SpaOA",P)

SpaOA",P + SigH + (SinI SinR)

(AbrB SigA)

SigA + AbrB

[SinI]

[SinI]

[SinR]

[SinR]

[SpaOA]

[SpaOA]

[SpaOA'vP]

[SpaOA"P]

[SpaOE]

[SpaOE]

Simulation

-

-

-

(AbrB Hpr SigA SinI SinR SpaOA",P) +

(AbrB Iliff SigA SinI SinR SpaOA",P)

SpaOA",P + SigA + Hpr + Abr B + (SinI SinR) + (SinI SinR)

(Abr B Hpr SigA SinI SinR SpaOA",P) +
(AbrB Iliff SigA SinI SinR SpaOA",P)

SpaOA",P + STgA + Hpr + AbrB + (SinI svnR) + (SinI SinR)

(SigH SinI SpaOA",P) + (SigH SinR SpaOA",P) +

(SigA SpaOA",P)

SpaOA",P + (SigA srgH) + (SigA SinI SinR)

(KinA Signal SpaOA SpaOE)

SpaOE + SpaOA + Signal + KinA

(AbrB SigA)

SigA+AbrB

Figure 3.16: Minimised next-state equations for B. subtilis.

The main control structure is the phosphorelay [197], which is responsible for the phospory
lation of SpoOA under nutritional stress conditions to activate the expression of sigF,
thus initiating sporulation. To assess whether this control structure has been correctly
modelled, we perform some straightforward simulations to ensure that they capture the
fundamental behaviour documented in [99].

We begin by considering an initial marking representing vegetative growth conditions,
and we turn Signal on to signify the presence of nutritional stress. The sequence of states
resulting from this simulation is presented in Figure 3.3.2, where the first column of
the table represents the initial marking, and each subsequent column the next observed
marking after a synchronised update.

j

49

SigF 0 0 0 0 0 1 0
KinA 0 0 0 1 0 0 0

SpoOA 1 1 1 1 1 0 1
SpoOArvP 0 0 0 0 1 0 0

AbrB 1 0 1 0 1 0 1
SpoOE 1 0 1 0 1 0 1

SigH 0 0 1 0 1 0 1
Hpr 1 1 0 1 0 0 0
SinR 1 0 0 0 0 0 0
SinI 0 0 0 0 0 0 0

Signal 1 1 1 1 1 1 1
SigA 1 1 1 1 1 1 1

Figure 3.17: Simulation results in the presence of nutritional stress.

The simulation shows that SpoOArvP accumulation is allowed to occur and SigF
production is correctly activated, indicating that the bacterium is able to sporulate. We
then turn Signal off to represent the absence of nutritional stress, and simulate the model
again. The results of this simulation are shown in Figure 3.3.2.

SigF 0 0 0 0 0
KinA 0 0 0 1 0

SpoOA 1 1 1 1 1
SpoOArvP 0 0 0 0 0

AbrB 1 0 1 0 1
SpoOE 1 0 1 0 1
SigH 0 0 1 0 1
Hpr 1 1 0 1 0
SinR 1 0 0 0 0
SinI 0 0 0 0 0

Signal 0 0 0 0 0
SigA 1 1 1 1 1

Figure 3.18: Simulation results in the absence of nutritional stress.

The simulation correctly shows that sporulation does not occur when Signal is ab
sent; SpoOArvP is not produced from the phosphorelay and so sigF is not expressed. It
also shows that the model enters an attractor cycle of period two which describes the
physiological conditions present in the exponential growth phase [99J.

Dynamic properties

We further validate our PN model using the model checker CLP to confirm that basic
properties are respected. For example, we know that in the absence of nutritional stress,
sporulation should never be initiated [99J. We can use CLP to show that this holds

50

by proving that no reachable marking exists in which SigF is on from any initial state
where Signal is off, SigF is off and SpoOArvP is off. We achieve this by inserting the PN
control structure shown in Figure 3.12 around the two complementary places of every
other entity whose initial state we wish to explore, and then verify that SigF cannot turn
on by checking the following condition:

SigF + Pfinish = 2

where P finish is used to ensure that we only consider states reached after a complete pass
of the protocol. Having explored every possible behaviour vector, CLP is able to correctly
verify that SigF never becomes active.

Having gained some confidence in the correctness of our model, we now investigate an
important relationship noted in [99J between SigF and SpoOArvP; the phosphorylated
protein SpoOArvP is reported to activate the production of SigF but also repress its own
production. Thus, it seems likely that the two entities should be mutually exclusive. To
verify this, we set SigF and SpoOArvP off, and insert the additional PN structures shown
in Figure 3.12 around all other entities. We then use CLP to check for mutual exclusion
between SigF and SpoOArvP using the following constraints:

(SigF + SpoOArvP) = 2, Pfinish = 1

The output from CLP is shown below, and it correctly confirms that no reachable marking
exists which satisfy the constraints, thus proving that SigF and SpoOArvP are indeed
mutually exclusive in our model.

solving: 0.01 sec.
4 compatible vectors explored

the marking is unreachable

The above model checking technique provides a template which can be used to test
other types of relationships between entities in a model. For example, by inspecting the
simulation results above (see Figure 3.3.2 and 3.3.2) it appears that SpoOE and AbrB
always have the same state. We can attempt to verify this hypothesis by using CLP

to check if a contradictory state can be reached, which we specify using the following
constraints:

(SpoOE + AbrB) = 1, Pfinish = 1

The results of CLP show that a contradictory state is in fact reachable, thus disproving
our hypothesis.

solving: 0.01 sec.
254 compatible vectors explored
_SEQUENCE:
t89,t92,t94,t96,t97,t99,t101,t103,t106,t108,t7,t19,t24,t35,t42,
t46,t54, t66,t70,t81,t10,t9,t22,t21,t30,t27,t37,t36,t44,t43,t52,

51

t49,t60,t56,t69,t67,t79,t73,t87,t83,t8,t20,t24,t35,t42,t46,t54,
t61,t70,t84
path length: 50

the marking is reachable

eLP returns a transition firing sequence which leads to a contradictory marking in
which SpoOE and AbrB have different states as a counter example, and this can then
be automatically simulated in PEP, giving important insight into how this behaviour
occurs.

Mutant analysis

We complete our study by investigating the affect of fixing a gene in the model to either
be permanently active or inactive. In particular, we apply this technique to a range of
entities in the sporulation model to investigate how it affects the sporulation process.
The observed results are summarised in Figure 3.3.2 and correspond well with the ex-

Entity
KinA

SpoOA
AbrB

SpoOE
SigH
SinR

Knock out
No sporulation
No sporulation
No sporulation

Normal
No sporulation

Normal

Overexpressed
Normal
Normal

No sporulation
No sporulation

Normal
No sporulation

Figure 3.19: Results of mutant analysis.

perimental results available in the literature [99]. Interestingly, we see that abrB is the
only gene which has an affect when either knocked out or overexpressed. This fits with
our understanding of abrB being a transition state regulator gene that lies at the center
of three competing feedback loops [99,197].

3.4 Discussion

3.4.1 Conclusions

BNs have been studied extensively in biological modelling [105,182,203]' but suffer from
a number of shortcomings which can be addressed with PNs. In this chapter, we took as
our starting point the work of Steggles et al. [194-196]' who developed a systematic and
flexible PN framework for BNs. This approach builds upon previous work for translating
BNs into PNs [45,165] in a number of important ways: (i) supporting both update
semantics; (ii) coping with partial models; and (iii) the application of logic minimisation
techniques [146] to enable a compact and systematic construction of the final PN model.
The contribution of this chapter, however, has been the development and application of
much-needed tool support to make this approach practical to the biological community.

52

GNAPN is a Java tool that was developed to completely automate the PN con
struction process [194-196]. Key features of GNAPN are its ability to model both the
synchronous and asynchronous semantics of BNs within the PN framework, the appli
cation of logic minimisation techniques to construct compact PNs, and its ability to
handle partial models in a useful way. Altogether, GNAPN provides a comprehensive
tool which completely automates the systematic approach of [196], and thus contributes
much needed support for PN model construction to the biological community.

We demonstrated our approach in Section 3.3 with two comprehensive case studies
on carbon stress response in E. coli [167] and sporulation in B. subtilus [99,197]. These
studies exemplified the fact that complex behaviours can be manifested even in modest
sized models, thus motivating the formal PN techniques discussed. We automatically
constructed PN models of both systems using our support tool GNAPN, and proceeded
with some straightforward simulations using PEP. These simulations enabled us to gain
initial insights into the fundamental qualitative behaviours of the models (for example,
to verify that the switch from sporulation to normal growth was correctly captured for
B. subtilis). The ability to perform such simulations plays a crucial part in validating
and understanding complex models, and also allows hypotheses to be formulated which
can then be used to incrementally refine the model. This is therefore a key benefit of
PNs, and so motivates our approach.

We also utilised powerful PN analysis techniques, such as model checking [51,109]'
which provided many deeper and more useful insights. For example, we hypothesised
from our simulations on E. coli that GyrAB and TopA should be mutually exclusive,
since they worked in opposite directions to affect Fis. Such an investigation would prove
problematic from manual inspection of the models' behaviour, but model checking en
abled such properties to be checked automatically and efficiently. In order to prove that
this property held in all cases, we used G N APN to automatically insert additional PN
structures to allow each possible initial marking to be explored. The model checker
CLP was then able to confirm that no marking violating mutual exclusion existed, which
confirmed our theory. We were therefore able to demonstrate how efficient PN analysis
techniques could be used to formally prove properties of the models; something which
does not appear to be as straightforward using BNs alone.

Apart from their wide range of analysis techniques and tools, PNs also provide a
convenient means of documenting our knowledge of a GRN concisely, by representing
both static and dynamic information unambiguously in both a mathematical and visual
way. Incomplete knowledge which is troublesome to represent in a BN can be captured
usefully with the non-deterministic firing semantics of PN transitions, and later refined
when more information is available. This is a clear advantage of our approach as it avoids
the need for computationally-expensive learning techniques [125] or stochastic extensions
to the underlying BN [182,183] by allowing for all possible behaviours. Furthermore, PNs
cater for modularity in a natural way, which supports the idea that genes often function
in independent units [80]. This offers many attractive prospects for constructing and
analysing models in a compositional fashion (see [48-50,121,126] for studies), which will
aid interpretation as well as result in more efficient analysis. Our approach does, however,
suffer from an inability to capture certain subtle regulatory interactions [87,188] due to

53

its high level of abstraction, and we address this in Chapter 4.

3.4.2 Future work

Although BNs scale to large GRNs, they cannot always represent the qualitative be
haviours captured by finer-grained models [77, 142, 188], and so this motivates us to
consider extending our approach to cater for multi-valued networks (MVNs) [146] in
Chapter 4. In an MVN, each entity assumes a range of discrete states and its dynamics
are described using multi-valued functions. They therefore provide a means of capturing
the possibility for multiple levels of interaction between entities, which are required for
modelling more complex regulatory systems [206]. However, their increased modelling
power results in a significant increase in possible behaviours, and so a key focus will be
in ensuring that the resulting PN model is compact and amenable to analysis tools.

In addition, our framework can cater for both the synchronous and asynchronous
semantics of BN s, but we focused on the synchronous semantics, as it appears to be
widely used in the biological community [31]. Further work is now required for the
analysis of practical GRNs under the asynchronous semantics. In particular, techniques
are required for coping with the increase in state space complexity resulting from the
inherent non-determinism present in asynchronous BNs. We will develop an approach
for addressing this concern in Chapter 6.

Another consideration is investigating more expressive model checking techniques for
PN s. In particular, we intend to strengthen our analysis by investigating the application
of temporal logics such as computational tree logic [41]. Finally, we are interested in
developing techniques for refining qualitative models (such as those based on BNs) into
quantitative ones when more data is available; in particular, the development of system
atic and automated translation techniques is crucial in ensuring that these are practical
(see [161] for an initial study).

3.4.3 Sources

The theoretical PN modelling approach was proposed by L.J.Steggles and is presented
in [196]. The development of the tool GNAPN and its application to the two case studies
was primarily the authors own work. The application of the approach to the case study
on E. coli appears in the proceedings of the International Conference on Computational
Methods in Systems Biology in Trento, October 2006 [195]. Furthermore, the application
to the case study on B. subtilis was published in Bioinformatics journal in November
2006 [194]. GNAPN and the model files used in this chapter can be freely downloaded
for academic use from bioinf. ncl. ac. uk/gnapn.

.I

54

Chapter 4

A Generalised Petri Net Framework
for Genetic Regulatory Networks

BNs have enjoyed much success in biological modelling, but are limited by the fact that
they cannot discriminate different levels of interaction [77,142,188]. This motivates the
use of multi-valued networks (MVNs) [77, 141, 146, 205, 206], which generalise BNs by
allowing for ranges of discrete values. As such, MVNs provide a compromise between
the simplicity of BN s and more expressive differential equations, and have proven to be
a promising qualitative approach for modelling GRNs [206,208]. However, apart from
some notable extensions (for example, see [27]), they too appear to require strengthened
techniques for model construction and analysis.

To address this, we generalise the PN framework from Chapter 3 to cope with MVNs.
The first key contribution is with the application of multi-valued logic minimisation tech
niques [146], which enable compact behavioural specifications of MVNs to be obtained.
We then focus on developing efficient PN models to capture this compact but more com
plex logic. Specifically, we propose two complementary approaches: the first considers a
novel technique using standard safe PN structures to minimise the number of transitions;
and the second employs high-level Petri nets (HLPNs) [28], which provide an expressive
modelling environment for describing complex logic whilst remaining amenable to stan
dard PN techniques and tools. We investigate the application of HLPNs to develop a
visually-compact generalised framework for MVNs, and show that, in general, it also
offers superior analysis efficiency.

We implement both PN approaches as extensions to our support tool GNAPN, and
demonstrate its application by revisiting the carbon stress response network in E. coli
[167]. We automatically construct an HLPN model, and then apply a range of PN analysis
techniques and tools to gain confidence in its correctness. In particular, this study
identifies a number of behavioural differences between the corresponding BN model from
Chapter 3, thus raising some interesting questions concerning their formal relationship.

A number of similar works developed around the same time as ours can be found in
the literature. Chaouiya et al. [46] proposed a set ofrewriting rules for translating MVNs
into PN (see [187] for an application of this approach to tryptophan biosynthesis in E.
coli). However, they do not make provisions for the synchronous network semantics, cater

..

55

for partial models or apply logic minimisation systematically. Furthermore, they utilise
non-safe PNs which are not always amenable to the range of PN analysis techniques and
tools that safe ones are. Comet et al. [53J proposed a compact HLPN framework for
MVNs, but focused more on the derivation of consistent asynchronous PNs using model
checking.

The rest of this chapter is structured as follows. In Section 4.1, we introduce MVNs.
Then, in Section 4.2, we give a brief introduction to the theory of HLPN s. Section 4.3
describes the development of our two PN frameworks for modelling MVNs, and shows
how logic minimisation techniques [146J can be utilised to achieve this compactly. We
also outline an approach for coping with partial models in a useful way. In Section 4.4,
we discuss these extensions to our support tool GNAPN, and then compare the safe
and HLPN frameworks developed for analysis efficiency. In Section 4.5, we apply our
framework with a detailed case study which revisits the carbon stress response network
in E. coli. Section 4.6 then considers an informal comparison between our MVN and BN
models, and highlights a number of interesting behavioural differences. Finally, Section
4.7 presents some concluding remarks.

4.1 Multi-valued networks

In this section, we introduce MVNs [46,206,208]' a generalisation of the BN model
which have also been extensively studied in circuit design (for example, see [146,169])
and successfully applied to modelling GRNs [46,208J. Note another variation of this
approach is the so-called qualitative networks discussed in a recent paper [172J.

An MVN model MV consists of a set of k logically linked entities G = {gl, . .. ,gd
which regulate each other in a positive or negative way (note as with BNs, and in a slight
abuse of notation, we use gi to denote both the name and current state of an entity, and
the shorthand notation gi E MV to denote the fact that gi EGis an entity of model
MV). In particular, an MVN generalises upon the BN model by allowing each entity
gi E MV to be in one of two or more states gi E Y(gi), where Y(gi) = {O, ... , mi},
for some mi ~ 1. Note therefore that an MVN model MV is a BN if, for each entity
gi E MV, we have that Y(gi) = {O, I}.

Biologically, the rationale behind having two or more states is that an entity may
interact at different points in the system, each at distinct threshold levels. The idea is
therefore that an entity gi involved in m interactions will have as many as m distinct
threshold levels that split its real concentration range into m + 1 discrete regions [206J:

OJ < Of < ... < or;.
These regions can then be naturally interpreted in a logical fashion by assigning a logical
value to each depending on their relation with the thresholds:

gi =

o
1
2

if gi < ot
if ot < gi < Or
if Or < gi < Of

56

Each entity gi has an associated neighbourhood N(gi) <;;;; G of entities that directly
affect it. Note we allow gi E N(gi) if gi auto-regulates itself. The affect of one entity on
another can therefore either be that of activation (Le. an increase in state) or inhibition
(i.e. a decrease in state). Furthermore, interactions between one entity and another only
become functional if the state of the source entity is sufficiently above some threshold
level (this threshold level is always at least one), and the result is that the state of the
target will tend (or remain, depending on its current state) towards a new state. Note
MVN s therefore allow one to discriminate between the strengths of different interactions,
something which BNs are unable to capture.

As an example, consider Figure 4.1(a) which shows the structure of a small MVN
consisting of three entities gl, g2 and g3, such that Y(gl) = {O, I}, Y(g2) = {O, 1, 2} and
Y(g3) = {O, I}, respectively. The idea is that entity gl acts as an inhibitor to g2, whereas
g2 inhibits gl when g2 = 2 and activates g3 when g2 > 1. In addition, g3 acts as an
activator to gl; the corresponding functional ranges of the interactions are represented
by the edge labels. Furthermore, the inhibitory affect of g2 on gl is "overpowered" by g3
when both interactions are functional, i.e. the state of gl will tend to one.

1+

____ Repression

~ Activation o Entity

(a)

Y(gl) = {O, I}

Y(g2) = {O, 1, 2}

Y(93) = {O, I}

g2
0
0
1
1
2
2

g3 [gl]
0 1
1 1
0 1
1 1
0 0
1 1

gl g2 [g2]
0 0 1
0 1 2
0 2 2 g2 [g3]
1 0 0 0 0
1 1 0 1 1
1 2 1 2 1

(b)

Figure 4.1: (a) An MVN with three entities, and (b) the state transition tables repre
senting the corresponding next-state functions F.

As with BN s, the behaviour of each gi can be precisely defined by a logical next-state
function fgi which calculates the next-state of gi given the current states of the entities in
its neighbourhood. By applying the next-state function fgi to each neighbourhood state
of gi, one derives a state transition table which completely captures this behaviour. For
our example MVN, this is shown in Figure 4.1 (b). The behaviour captured by the state
transition tables can often be simplified using logic minimisation techniques [146] which
will be discussed in Section 4.3.

We can now define an MVN more formally as follows.

Definition 4.1 (Multi-valued network). A multi-valued network MV with k entities
is a four-tuple MV = (G, Y, N, F) where: G = {gl, ... , gd is a finite set of entities;

57

Y = (Y(gd,···, Y(gk)) is a finite list of sets, where each Y(gi) = {O, ... , mi}, for
some mi ~ 1, is the state space for entity gi; N = (N(gd, ... , N(gk)) is a finite list
of sets, such that N(gi) ~ G is the neighbourhood of gi; and F = (191,"" f gk) is a
finite list of next-state multi-valued functions, such that if N(gi) = {gill"" gin} then
fgi : Y(giJ X ... X Y(gin) ----t Y(gi) defines the next state of gi'

The collective state of each gi E MV is called a global state, and the same rules
for synchronous and asynchronous updating apply here as they do for BNs [86J. The
state space of a model MV, denoted SMV, is therefore the set of all possible global states
SMV = Y(gl) x ... x Y(gk). An important focus of this work will therefore be in ensuring
a compact PN representation of this state space. Finally, we remark that although entity
states are usually considered to tend towards some focal value, the state transition tables
place no restriction on this. Thus, multi-state jumps can either be left in the model if
they can be biologically justified or guarded against; both of which represent important
modelling decisions which should be documented.

4.2 High-level Petri nets

In this section, we introduce high-level Petri nets (HLPNs) [28J at a level suitable for the
chapter. For a more comprehensive introduction to HLPNs, we refer the reader to [28J.
In the sequel, we assume the reader is familiar with PNs (see Section 2.3).

An HLPN [28J is a PN in which tokens can be distinguished, for instance, by Boolean
values, integers an so on. The idea is that each place is associated with a set or type
specifying the tokens it can hold. Note the tokens of an HLPN include standard PN
tokens for consistency. For example, in Figure 4.2(a), place P2 has token type {O, ... ,5}
which restricts tokens for that place to integers between ° and 5, and we observe that
P2 currently contains tokens 2 and 3. Note that multiple copies of the same token are
allowed on places, i.e. places contain multi-sets of tokens. In a similar way to PNs, the
marking an HLPN maps each place to the multi-set of tokens it contains. For example,
the current marking M of Figure 4.2(a) is defined by M(Pl) = {I}, M(P2) = {2, 3} and

M(P3) = n·

PI : {a, ... ,5}

P3 : {O, ... , 10}

(a)

P2 : {O, ... ,5}
2

P3 : {a, ... ,10}

(b)

Figure 4.2: (a) A simple example of an HLPN, and (b) new marking after firing tl from
enabling binding {a t-+ 1, b t-+ 3, c t-+ 2}.

58

Each arc is associated with a variable which binds to the tokens of the place it comes
from (called an input variable) or goes to (called an output variable). Furthermore, each
transition is associated with a Boolean expression called a guard which evaluates to true
or false for a given binding. A transition t therefore becomes enabled with a binding if:
(i) the token value assigned to each input variable resides on the associated input place;
and (ii) the transition's guard evaluates to true with the binding. An enabled transition
may then fire by removing tokens from each of its input places and adding a new token
to each output place as specified by the enabling binding. Note, as with PNs, if more
than one transition is enabled then a transition is chosen non-deterministically to fire.

In Figure 4.2(a), transition tl is enabled by the binding {a f-+ l,b f-+ 3,c f-+ 2}.
Note that binding {a f-+ 1, b f-+ 2, c f-+ 2} would also enable t l , but we assume that the
former is chosen non-deterministically. Transition tl can therefore fire, which results in
token 1 and 3 being removed from places Pl and P2, respectively, and a new token 2
being added to place P3· The new marking M' is therefore M'(pd = {}, M'(P2) = {2}
and 1vf'(P3) = {2} which we show in Figure 4.2(b). Note the normal definition of firing
sequence and reachability for PNs also applies to HLPNs (see Section 2.3.3).

Overall, HLPNs provide an expressive and natural mechanism for modelling MVNs,
by separating behaviour from representation, and by using high-level token types and
transition guards. Furthermore, a key advantage of HLPNs is that they are amenable to
the wide range of PN analysis techniques and tools [1 J via the process of unfolding [109,
111J. Normally, the idea is that a HLPN is first expanded into a standard PN and then
unfolded to obtain the canonical prefix over which analysis can be performed. However,
this often proves a costly operation, since the intermediate PN can be exponentially larger
than its corresponding prefix [109J. This issue was recently addressed by Khomenko et
al. [109, III J who developed an unfolding approach for generating the canonical prefix
directly from the HLPN. This approach has been implemented in the parallel PN un folder
PUNF which we will use later in Section 4.5 to unfold our HLPN model for E. coli.

4.3 From multi-valued networks to Petri nets

In this section, we incrementally develop a generalised PN modelling framework for
MVNs. Firstly, we show how the behaviour of an MVN can be compactly specified
as next-state equations using logic minimisation techniques [146, 169J. We then propose
a novel safe PN approach for modelling this behaviour compactly which aims to minimise
the number of transitions. Finally, we explore the use of HLPNs for compactly modelling
MVNs, and after a comparison between the two, discuss why, in general, the HLPN one
is superior.

4.3.1 Obtaining compact next-state equations

Let MV = (G, Y, N, F) be an MVN as defined by Definition 4.1, whose behaviour F is
specified by a series of state transition tables (e.g. see Figure 4.1 (b)). This behaviour can
be equivalently represented using Boolean terms called literals that formalise when an
entity gi is in one of the states in Y(gi). Literals have the form giS, where s ~ Y(gi), and

59

are defined to evaluate to true when 9i E s, and to false otherwise. For example, the
literal 9dO, I} will evaluate to true only when 91 = 0 or 91 = 1, and to false otherwise.
As with Boolean functions (see Section 3.1), we refer to the conjunction of such literals
as terms.

For example, from the table for 91 in Figure 4.1(b), we can see that [91] = 0 when
91 = 0,92 = 2 and 93 = 0; in other words, when term 91 {0}92{2}93{0} evaluates to true.
The complete next-state equation specifying the conditions when an entity 9i updates
to some state j E Y(9i), written [9i{j}], is therefore the disjunction of all corresponding
terms. Continuing with our example, we derive the following next-state equations which
completely specify the behaviour of 91:

91{0}92{2}93{0} + 91{1}92{2}93{0}

91 {0}92{0}93{0} + 91 {0}92{0}93{1} + 91 {0}92{1 }93{0} +

91{0}92{1}93{1} + 91{0}92{2}93{1} + 91{1}92{0}93{0} +

91 {1}92{0}93{1} + 91{1 }9d1}93{0} + 91 {1}92{1 }93{1} + 91 {I }92{2}93{1}

These equations can often contain redundant logic, and so can be simplified using
l09ic minimisation techniques [146,169]. Since our approach translates these equations
into PN structures, it is important that they are compact. Logic minimisation for multi
valued functions works in a similar way to Boolean minimisation (see Section 3.1) in that
we merge terms which differ by only one literal. For example, consider the next-state
equation for [91 {O}]:

We note that these two terms can be merged, since they differ only by the value of 91,
giving us:

[91{0}] = 91{0, 1}92{2}93{0}

Now, we observe that the literal 91 {O, I} will always evaluate to true, and so it is redun
dant with respect to the result of this expression. We therefore remove it, leaving:

which correctly captures the only logical condition in which 91 reaches state O.
We also observe that similar simplifications can be made to the next-state equation

for [91{1}]. Starting with the first term 91{0}92{0}93{0}, we compare it against all other
terms, and notice that it can be merged with 91 {0}92{0}93{1}, 91 {0}92{1 }93{0} and
91 {I }92{0}93{0}, giving us the additional three merged terms (shown in bold) below:

[91{1}] = 91{0}92{0}93{1} + 91{0}92{1}93{0} + 91{0}92{1}93{1} + 91{0}92{2}93{1} +

91{1}92{0}93{0} + 91{1}92{0}93{1} + 91{1}92{1}93{0} +91{1}9 2{1}93{1}+

91 {I }92{2}93{1} + g1 {O}g2{O} + g1 {O}g2{O, 1 }g3{O} + g2{O}g3{O}

Note we have removed the first term as we know its logic has been covered. We then
perform the same process with the second term; removing it if it merges with another

60

term and keeping it otherwise, and adding any new terms created. Performing this
process exhaustively until no more minimisation can be performed gives us the following
simpler next-state equation:

[gl{I}] = g3{1} + g2{0, I},

which captures the original logic specified using ten terms in only two.
These techniques are automated by tools such as MVSIS [2], and can be applied to

each state transition table to obtain compact next-state equations representing F. The
complete minimised next-state equations for our example MVN are given below:

[gl{O}]

[gl {I}]
[g2{0}]

[g2{1}]
[g2{2}]

[g3{0}] -

[g3{1}]

g2{2}g3{0}

g3{1} + g2{0, I}
gl {I }g2{0, I}
gl {0}g2{0} + gl {I }g2{2}

gl {0}g2{1, 2}

g2{0}

g2{0, I}

We consider developing a PN modelling approach to enable the logic specified by these
compact equations to be analysed using the wide range of available PN techniques and
tools. For this, we will start by proposing a safe PN framework, and then explore the
use of HLPNs.

4.3.2 A safe Petri net approach

In this section, we develop a safe PN modelling framework for the compact next-state
equations derived previously. We propose a novel use of PN structures to model each
logical term using a single transition. We then address the exponential blowup in possible
state updates that occurs under both the synchronous and asynchronous semantics, and
show how the two-phase commit protocol discussed in Section 3.1.2 can be adapted to
cope with this compactly.

Compactly modelling logical terms

Let gi E MV be an entity with state space size IY(gi)1 = n. These states can be modelled
using n places Pi{j}, where j E Y(gi). For convenience, we will refer to such places as
the state places for gi, and will denote these SPgi • In order to model the state of gi
using S Pgi , we consider adopting a slightly less obvious approach which we will justify
shortly. The idea is to capture all the states that gi is not in by using a token on each
corresponding place in S Pgi . The current state of gi is thus represented by the only place
in SPgi that does not contain a token.

Whilst this approach may appear excessive, it turns out that the negative information
present in logical terms can prove useful in modelling them compactly. For example,
consider the minimised next-state equation:

61

which we derived in the previous section from the MVN in Figure 4.1. This says that
entity g2 updates to state 2 when gl = 0 and g2 = 1 or g2 = 2. Normally, one would
model these two conditions as two separate transitions: one for when gl = 0 and g2 = 1,
and one for when gl = 0 and g2 = 2. However, by utilising the negative information
present in this term, we can equivalently say that g2 updates to state 2 when gl i= 1 and
g2 i= 0, and thus we only require the single transition shown in Figure 4.3(a) to model
this. We can now specify this approach more formally.

Definition 4.2 (Transition wiring using negative information). Given a term T =
gh S1gZ2 S2 ·· ·gznsn, we define a transition t such that for each v E {I, ... ,n}, we have
read arcs connecting Pu and t for each u E (Y (gzJ - sv).

It is clear that for any term T = ghS1gZ282 ... gzn8n, only a single transition t will
be required to model its logic using the approach based on negative information, and
that t will be enabled to fire iff T evaluates to true. Without utilising the negative
information, however, we would require a transition to capture each possibility in the
cartesian product 81 x 82 X .•• X 8 n , which is significantly larger in most cases (except
when each 8i is a singleton set, for i = 1, ... , n).

P2/{O} P2/{1} P2/{2}

P1/{1}

P2/{O} P2/com

(a) (b) (c) (d)

Figure 4.3: (a) Transition modelling next-state equation [g2{2}] = gl {0}g2{1, 2} from
running example, and PN fragments for two-phase protocol under asynchronous seman
tics: (b) entity g2 recording update to state 0; (c) flushing tokens from SPg2 ; and (d)
SPg2 repopulated with tokens to reflect new state O.

With a compact means of representing each term in the next-state equations, we
go on to discuss how both the synchronous and asynchronous semantics of MVN scan
be implemented compactly using safe PN structures. In particular, we build upon the
two-phase commit protocol from Section 3.1.2, and show how both update semantics of
MVN s can be catered for in this way.

Asynchronous update semantics

As the state space of each entity increases, there is a need to handle the combinatorial
blowup in possible state updates. To address this, we revisit the two-phase commit

62

protocol developed in Section 3.l.2 and adapt it to cater for the asynchronous update
semantics. In particular, we combat the number of possible state updates for an entity
gi by first flushing SPgi of tokens and then repopulating them to reflect the new state.
This strategy can be shown to reduce the number of transitions required to commit the
recorded decision for gi from P to 2j, where IY(gi)1 = j. We now formally introduce this
adapted two-phase protocol.

Definition 4.3 (Asynchronous multi-valued network to Petri net). Assume we have
an MVN with n entities g1, . .. ,gn, denoted MV. A corresponding PN modelling the
asynchronous update semantics of MV can be constructed as follows:

• For each entity gi E MV, we add places Pi/com (to indicate that an update decision
has been made) and Pi/clear (to indicate when a decision should be committed).
Furthermore, for each state j E Y(gi) of gi, we add places Pi/{j} (the state places
SPgi representing the actual state of gi) and Pi/dee{j} (to record the update decision
for gJ Finally, we add a single place Pstart (to ensure that only one entity can
perform both phases of the protocol). Note that in the initial marking, SP

gi
will

be marked accordingly, and Pstart will contain a token. All other places must be
unmarked.

• Phase One: Consider each minimised next-state equation [gi{j}] = Tl + ... +
T m which defines when gi updates to state j. For each product term Ta, for a =
1, ... ,m, add a transition ti/a as specified in Definition 4.2. In addition, place Pstart
is an input place and Pi/dee{j} and Pi/com are output places ofti/a .

• Phase Two:

- For each gi E MV and for each state j E Y(gi), we add a transition whose
input places are Pi/com and Pi/{q} , for each q E Y(gi) - {j}, and whose output
place is Pi/clear. Note only one transition will be enabled depending on the
current state of gi.

For each gi E MV and for each state j E Y(gi), we add a transition which
has input places Pi/dee{j} and Pi/clear, and output places Pstart and Pi/{q}, for
each q E Y(gi) - {j}. Note firing this transition commits the recorded state to
Y(gi) and remarks Pstart so that some gi E MV can update its state.

As an example, Figure 4.3(b) shows the transition in phase one modelling the term
gl{1}g2{0, I} in the next-state equation for [g2{0}]. When the transition fires, it marks
P2/dee{O} to record the fact that g2 will update to state 0, and P2/com to indicate that an
update decision has been made. In order to then commit this recorded decision and avoid
the combinatorial blowup in possible cases, we first flush SPgi as shown in Figure 4.3(c).
Depending on the current state of g2, only one of these transitions will be enabled, which
when fired, will mark Pi/clear to indicate that the new state can be commited. Finally,
Figure 4.3(d) shows the transition for committing the new state 0 to SPg2 • When fired,
this transition remarks Pstart so that the protocol can begin again for a single entity in the
model. With minor changes, we can adapt this protocol to also model the synchronous
semantics of MVN s.

63

It can be observed from Definition 4.3 that if we have an MVN with n entities, where
each entity has j states and a total of m logical terms in its minimised next-state equa
tions, then the corresponding PN will contain 2jn+2n+1 places and mn+2jn transitions.
Without logic minimisation, however, the PN would contain (jn)n transitions to cater
for each possible state update that could occur.

Synchronous update semantics

We now discuss how we adapt the protocol for the synchronous semantics. The key
difference is that instead of only allowing one entity gi E MV to perform both phases
of the protocol, we now allow all entities to perform phase one concurrently, followed by
phase two concurrently.

Definition 4.4 (Synchronous multi-valued network to Petri net). Assume we have an
MVN with n entities gl, . .. ,gn, denoted MV. A corresponding PN modelling the syn
chronous update semantics of MV can be constructed as follows:

• For each entity gi E MV, we add places Pi/start (to indicate that gi can make an
update decision), Pi/syn (to indicate that an update decision for gi has been made),
Pi/com (to indicate that gi can begin phase two), Pi/clear (to indicate when a decision
for gi should be committed) and Pi/done (to indicate that a decision for gi has been
committed). Furthermore, for each state j E Y(gi) of gi, we add places Pi/{j} (the
state places SPg; representing the actual state of gi) and Pi/dee{j} (to record the
update decision for gi). Finally, we add a single place Pfinish for model checking
convenience, indicating when a complete pass of the protocol has been made for all
entities. Note that in the initial marking, SPg; will be marked accordingly, and
Pi/start will contain a token, for i = 1, ... ,n. All other places must be unmarked.

• Phase One:

Consider each minimised next-state equation [gi{j}] = Tl + ... + Tm which
defines when gi updates to state j. For each product term Ta, for a = 1, ... , m,
add a transition ti/a as specified in Definition 4.2. In addition, place Pi/start is
an input place and Pi/dee{j} and Pi/syn are output places of ti/a·

We add a transition to model the fact that we want to wait for all entities to
concurrently record a decision before they commit. The transition has input

places Pi/syn and output places Pi/Com, for i = 1, ... ,n.

• Phase Two:

For each gi E MV and for each state j E Y(gi), we add a transition whose
input places are Pi/com and Pi/{q} , for each q E Y(gi) - {j}, and whose output
place is Pi/ clear . Note only one transition will be enabled depending on the

current state of gi'

For each gi E MV and for each state j E Y(gi), we add a transition which
has input places Pi/dee{j} and Pi/clear, and output places Pi/done and Pi/{q} , for
each q E Y(gi) - {j}.

64

We add a transition which has input places Pi/done, for i = 1, ... ,n, and output
place P finish' A n additional transition is then used which has input place P finish
and output places Pi/start, for i = 1, ... ,n, which resets the protocol.

As an example, Figure 4.4(a) shows the transition in phase one modelling the term
gl{1}g2{0, I} in the next-state equation for [g2{0}]. When the transition fires, it marks
P2/dec{O} to rec.o~d the fact that g2 will update to state 0, and P2/syn to indicate that
an update decIslOn has been made. To ensure that all entities can record their update
decision concurrently before phase two begins, we require the transition shown in Figure
4.4(b). Once this transition fires, each entity is then allowed to commit its recorded
decision concurrently. First, the state places SPg2 are flushed of tokens as previously
shown in Figure 4.3(c). Then, the new state 0 is committed to SPg2 using the transition
shown in Figure 4.4(c). When fired, this transition also marks P2/done, and once the
remaining entities have also committed their new state, the transition shown in Figure
4.4(d) will be enabled which subsequently resets the protocol.

PI/done P2/done P3/done

PI/syn P2/syn P3/syn

PI/= P2/com P3/= PI/ start P2/ start P3/ start

(a) (b) (c) (d)

Figure 4.4: PN fragments for two-phase protocol under synchronous semantics: (a) entity
g2 recording update to state 0; (b) control structure to wait for all entities to complete
phase one before beginning phase two; (c) state places for g2 repopulated to reflect new
state 0 by committing recorded state; and (d) control structure to reset protocol.

It can be observed from Definition 4.4 that if we have an MVN with n entities,
where each entity has j states and a total of m logical terms in its minimised next-state
equations, then the corresponding PN will contain 2jn + 5n + 1 places and mn + 2jn + 3
transitions. Without logic minimisation, however, the PN would contain jn transitions
to cater for each possible state update that could occur.

This section has discussed the development of a novel safe PN framework for modelling
MVNs under both the synchronous and asynchronous semantics. Although a number of
additional control structures are used, these can be justified as they avoid the exponential
blow-up in transitions required to model the possible combinations of state updates.
Despite this, such a framework can become verbose for large MVNs. In the next section,

65

we investigate the application of HLPNs to modelling MVNs. HLPN provide a more
natural and expressive means of modelling complex systems, often resulting in a simpler
visual representation.

4.3.3 A high-level Petri net approach

This section proposes an HLPN modelling approach for MVNs which enjoys a compact
visual representation whilst remaining amenable to the wide range of PN analysis tools
and techniques.

We model each gi E MV using a single place Pi, whose token type (i.e. the tokens
it can hold) corresponds to the integer values Y(gi). A place Pi communicates with a
transition t using two arcs: one arc from Pi to t labelled with the input variable C(Pi);
and one arc from t to Pi labelled with the output variable n(pi). Each input variable c(pd
binds to the tokens on the corresponding input place Pi, and is used to specify a Boolean
expression in HLPN syntax [81] describing the enabling conditions of t. Similarly, each
output variable n(Pi) binds to the tokens going to the corresponding output place Pi and is
used to specify the result of firing t. The key to our approach is to keep the structure of the
HLPN simple and encode the minimised next-state equations describing the behaviour as
transition guards. This is achieved using the transition guard translation (TGT) operator
15 which we now define.

Definition 4.5 (The TGT operator). Let 15 denote the TGT operator and giS be a literal,
where s = {Xl, . .. , xn} for n ~ 1 such that {Xl, ... , Xn} ~ Y (gi). We apply 15 to obtain
the HLPN syntax [81] as follows:

15 (giS) ";;1 (C(Pi) = Xl I ... I C(Pi) = xn),

where I represents disjunction. We can then apply 15 to a term % sp ... gin Sq naturally as:

where & represents conjunction. We then lift 15 to the next-state equation:

for some j E Y(gi), where each Ta , for a = 1, ... , m, is a term:

J([gi{j}] = 71 + ... + Tm) d,g (n(pi) = j & (15(71) I '" I J(Tm))),

where n(Pi) = j denotes the result of firing the transition using the output variable n(pi).
Finally, to obtain the complete behaviour of some entity gi E MV, such that Y(gi) =
{O, ... ,r}, for r ~ 1, we apply 15 to each next-state equation [gi{j}] = ej, for j E Y(gi):

where ej denotes the terms of the equation.

66

For example, we can apply 5 to the next-state equation [91{0}] = 92{2}93{0} from our
running example as follows:

As such, we can obtain the complete behaviour of 91 in HLPN syntax by applying 5 to
its full set of minimised next-state equations:

resulting in the following:

92{2}93{0}

93{1} + 92{0, I}

5([91{0}] = 9d2}93{0}, [91{1}] = 93{1} + 92{0, I}) ~
(n(Pl) = 0 & (C(P2) = 2) & (C(P3) = 0)) I

(n(9d = 1 & (C(P3) = 1 I (C(P2) = 0 I c(P2) = 1)))

Having defined 5 for translating the next-state equations into HLPN syntax, it is then
straightforward to implement the synchronous and asynchronous semantics of MVNs.
The basic idea for the synchronous semantics is to capture the behaviour of all entities
using a single transition. Thus, we apply 5 to all the next-state equations, and then
use their conjunction to form a corresponding transition guard. More specifically, for an
MVN with k entities, we require a single transition t, whose guard encodes the complete
behaviour of each entity 9i E MV for Y(9i) = {O, ... ,nJ, given by:

On the other hand, the asynchronous semantics are modelled using a single transition
for each entity. More specifically, for an MVN with k entities, we require k transitions.
The complete behaviour of each entity 9i E MV, where Y(9i) = {O, ... , nJ, is then
encoded in its corresponding transition as:

For example, the HLPN modelling the asynchronous semantics of the MVN from our
running examply is shown in Figure 4.5. Note we omit transition guards for brevity.

The result is a flexible generalised framework for modelling MVNs which provides a
simple visual representation whilst remaining amenable to the wide range of PN analysis
techniques and tools. We will explore how this framework compares to our safe PN one
shortly.

4.3.4 Partial models

In this section, we extend our approach for handling partial BNs, thus providing much
needed support in more general models .. Let 9i E MV be an entity, such that Y(9i) =

67

P3 : {O,I}

Figure 4.5: HLPN structure modelling asynchronous semantics of MVN from Figure 4.1,
with the transition guards omitted for brevity.

{O, ... , m} is its state space for some m ~ 1 and N (gi) = {gh, ... , gin} is its neighbour
hood. Suppose for some current neighbourhood state gil' .. gin E Y(gil) X ... X Y(gin)
that the next state [gil is unknown; in other words, it could be any state j E {O, ... ,m}.
Since we lack knowledge of the precise behaviour of gi for this state, the most natural
strategy for qualitatively modelling this phenomenon is to err on the side of caution and
non-deterministically choose some next state j E Y (gJ

To model this, we therefore add the term representing the problematic state to each
next-state equation defining [gi{j}], for j E Y(gi), before logic minimisation is applied.
The result is that each compact next-state equation evaluates to true for the problematic
state, and we then use a non-deterministic choice in the PN to cope with this.

gl g2 [gl]
0 0 0
0 1 0
0 2 -

1 0 0
1 1 0
1 2 2
2 0 1
2 1 1
2 2 2

Figure 4.6: Non-deterministic state transition table for an entity gl'

For example, consider the state transition table for entity gl with state space Y(gl) =
{O, 1, 2} in Figure 4.6, which specifies using the wild card '-' that the next state [gl] is
unknown when gl = 0 and g2 = 2, and as such can assume any of the values in Y(gd·
In order to obtain the next-state equations for gl, we simply add the term go{1}g2{2}
representing the unknown state to the equations for [gl {O}], [gl {I}] and [gd2}], resulting

68

in the following equations after logic minimisation:

[gl {O}J
[gl{I}J

[gl {2}J -

gl{O} +gl{O,I}g2{O,I}

gl{O}g2{2} +gl{2}g2{O,I}

g2{2}

Note that all three equations now evaluate to true when gl = 0 and g2 = 2, thus
modelling the fact that all three values are possible next states. Note for brevity, we do
not show the PN model here, but simply remark that both frameworks can naturally
cope with this situation without further modification.

It is also interesting to consider the case where we possess sufficient information to
be able to impose restrictions on the possible next state [giJ at current state gil . .. gin E

Y (9ir) X Y (gin)· More specifically, we may know that [giJ assumes a value from a subset
OfY(gi). For example, Figure 4.7 refines our example from Figure 4.6 with the knowledge
that [g1J can only be the values 0 or I when gl = 0 and g2 = 2.

gl g2 [g1J
0 0 0
0 I 0
0 2 {O,l}
I 0 0
I I 0
I 2 2
2 0 I
2 I I
2 2 2

Figure 4.7: Non-deterministic state transition table for an entity gl.

In this case, the next-state equations are obtained straightforwardly by simply adding
term go{l}g2{2} to the equations defining [gl{O}J and [gl{I}J and applying logic minimi
sation. As such, it is straightforward to refine the model in light of additional information,
and PN s provide an interesting means of documenting this progression.

4.4 Framework comparison

The generalised modelling approaches presented in this chapter were used to extend
the core implementation of GNAPN from Chapter 3. This was straightforward, since
the existing data structures and construction algorithms were implemented generically.
GNAPN provides a straightforward GUI for constructing PN models. Such models can
either be specified as interactions in the interface, or can be loaded from an MVN file
specification. In particular, logic minimisation techniques are applied prior to PN con
struction using MVSIS, both update semantics of MVNs are catered for and support is

69

in place for handling partial models. Altogether, GNAPN provides the biological com
munity with a completely systematic means of studying MVN models of GRNs within the
PN framework, and can be downloaded freely for academic use at bioinf ncl. ac. uk/gnapn.

We now utilise GNAPN to assist in an interesting comparison which investigates the
efficiency of the two PN frameworks against a number of MVN models. In particular,
we focus on measuring the size of the canonical prefixes of the PN unfoldings [109J for
both frameworks, as this appears to be a suitable means of ascertaining an approxima
tion of their efficiency for analysis. Specifically, for each MVN model considered, our
benchmarking approach is as follows:

• use GNAPN to construct both a safe and HLPN representation;

• use the tool PEP to expand the HLPN model into an equivalent safe one;

• record the number of places (IFI) and transitions (lTI) for both safe PN models;

• use the unfolder PUNF [109J to obtain canonical prefixes of both safe nets;

• record the number of events (lEI), which represent transition firings, and the num-
ber of cut-offs (lei), which represent terminated behaviour due to repetition.

We take the value lEI - lei as a suitable size metric for the canonical prefix 1 and thus
an indication of its efficiency for analysis (see [109J for a comprehensive discussion of
unfolding). The table below presents our results for the following models:

(1) BN from Figure 2.1 consisting of three entities [6J;

(2) Artificial MVN consisting of three entities; two Boolean and one with three states;

(3) BN model for the lysis-lysogeny switch in Lambda phage [206], consisting of five
entities;

(4) BN case study model for carbon stress response in E. coli taken from Section
3.3.1 [167J.

The "Safe PN" column shows results corresponding to our safe PN approach, whilst the
"HLPN" column shows those corresponding to our HLPN one after expansion with PEP.

We observe in the ITI column of both models that our safe PN framework enjoys
substantially less transitions than the expanded PN produced by PEP. In fact, the
number of transitions in our standard PN framework appear to increase in a linear fashion,
whilst those from the expanded equivalent increase exponentially. This is due to the fact
that PEP performs a naive translation without considering any logical minimisation
techniques.

Interestingly, however, the same cannot be said for the canonical prefix of our safe
PN framework; in all cases, IEI- lei is significantly smaller for the expanded one. This
appears to be due to the fact that the expanded PN exhibits more concurrency than our

IThis metric was identified as a suitable measure for the size of the canonical prefix via personal
communication with Victor Khomenko.

70

Model Safe PN HLPN

IPI ITI lEI ICI IEI-ICI IPI ITI E C IEI-ICI
1 25 19 18 6 12 6 24 6 5 1
2 28 22 60 17 43 7 36 24 17 7
3 41 34 440 141 299 10 160 160 129 31
4 57 53 2662 1065 1597 14 896 896 769 127

Figure 4.8: Table comparing the standard and HLPN frameworks against a number of
MVN data sets.

safe PN framework (which restricts concurrency in a number of areas due to the protocol
it employs). As such, previously explored events are more readily visited by PUNF, and
so the unfolding can be cut in more places, resulting in a smaller prefix. Thus, it appears
that our HLPN framework is both more visually compact and more efficient to analyse.
Similar results for different HLPN models have been reported in [72].

Note for the purpose of this comparison, we used PEP to expand the HLPNs into
safe one before unfolding it with PUNF. However, PUNF is also able to calculate the
canonical prefix directly from the HLPN, thus avoiding the costly translation into an
(often) exponentially larger safe PN representation (see [111] for a comprehensive discus
sion). This further motivates the use of our HLPN framework for both its simple visual
representation and efficiency for analysis.

4.5 Response to carbon stress in E. coli

In this section, we demonstrate our HLPN approach by revisiting the carbon stress
response network in E. coli [167] (see Section 3.3.1 for initial Boolean study). This study
applies GNAPN to a practical modelling situation, and makes use of a number of existing
PN techniques and tools. In particular, we use PEP [81] to simulate and visualise our
HLPN model, PUNF [109] to unfold it for analysis and CLP [109] for model checking.
Note we focus here on the synchronous update semantics of MVNs following the approach

taken in Chapter 3.

4.5.1 Constructing high-level Petri net model

Using the comprehensive data provided in [167], we are able to derive state transition
tables defining the generalised logical behaviour of each regulatory entity in the carbon
stress response network. For example, the state transition table defining the behaviour

of SRNA is shown in Figure 4.9.
We then apply the logic minimisation techniques discussed in Section 4.3 to each state

transition table to extract the minimised next-state equations shown in Figure 4.10.
Finally, these equations are used to construct a HLPN model following the approach
detailed in Section 4.3, which consists of seven places and a single transition with the
behaviour of the MVN under the synchronous update semantics encoded as a transition

71

Fis [SRNA]
0 0
1 0
2 0
3 1
4 1
5 1

Figure 4.9: State transition table showing SRNA behaviour under varying levels of Fis.

guard. Note this model construction process is fully automated by GNAPN, which is
freely available for academic use at bioinj.ncl.ac.uk/gnapn, along with the model file.

4.5.2 Validating model

We now consider validating and exploring our HLPN model to see whether it captures a
reasonable representation of the behaviour reported in [167]. In particular, we illustrate a
range of PN techniques, from simulation through to model checking and mutant analysis.

Simulation

We simulate our HLPN model in PEP to ensure that it switches correctly between the
exponential and stationary growth phases reported in [167]. To start, we check that our
model captures the switch from the exponential to the stationary growth phase in the
presence of carbon stress, by initialising the model to a marking representing exponential
growth and by activating Signal. The sequence of steps resulting from this simulation are
shown in Figure 4.11; the first column represents the initial marking and each subsequent
column represents the observed behaviour thereafter.

The results show that our model correctly switches growth phases by entering a strong
attract or cycle of period two that correctly represents the physiological conditions present
in the stationary growth phase [167]. In particular, we see as expected that the level of
SRNA and Fis decline to very low levels with the increasing concentration of CRP.

From this marking, we turn Signal off to represent an absence of carbon stress, and
test that the model returns to the exponential growth phase. Figure 4.12 shows the
trace of the simulation for each entity; the model enters an attractor cycle of period
eight equivalent to the damped oscillationary behaviour observed in [167] caused by the
mutual inhibition of fis and crp.

Dynamic properties

With a basic confidence in the correct working of our model, we now consider the ap
plication of more powerful analysis techniques based on model checking [109] to gain
deeper insights into key behaviours. For example, it can be seen from the literature that
the level of SRNA should remain low when Signal is active [167]. We can check this by
considering all possible initial markings in which Signal is active (i.e. Signal = 1) and
SRNA is inactive (Le. SRNA = 0) using a similar idea to that presented in Figure 3.12

ISRNA{O}j

ISRNA{l}j

ICrp{l}j

ICrp{2}j

ICrp{3}j

ICya{l}j

ICya{2}j

ICya{3}j

IFis{O}j

IFis{l}j

IFis{2}j

IFis{3}j

IFis{ 4}j

IFis{5}j

IGyrAB{O}j

[GyrAB{l}j

IGyrAB{2}j

IGyrAB{3}j

[TopA{O}j

ITopA{l}j

ITopA{2}j

Fis{O, I, 2}

Fis{3, 4, 5}

72

Crp{O} + Crp{O, I, 2}Fis{l, 2, 3, 4, 5}

Crp{3}Fis{l, 2, 3, 4, 5} + Crp{1}Fi8{O}

Crp{2,3}Fis{O}

Cya{O}

Cya{1} + Crp{3}Cya{l, 3} + Signal{l}

Cya{2, 3}Signal{O} + Cya{2} + Crp{O, 1, 2}Cya{2, 3}

Crp{l, 2, 3}Cya{l, 2, 3}Fis{O,l}Signal{1}

Fis{O}Signal{O} + Fis{O, 1}Signal{O}TopA{2, 3} + Fis{2}TopA{2, 3} +
Fis{O,l}GyrAB{O, l}Signal{O} + Fis{2}GyrAB{O, I} + Cya{O}Fis{O} +
Crp{O}Fis{O} + Cya{O}Fis{O, 1}TopA{2, 3} + Crp{O}Fis{O, 1}TopA{2, 3} +
Cya{O}Fis{O, l}GyrAB{O, I} + Crp{O}Fis{O, l}GyrAB{O, I} +
Crp{l, 3}Cya{1, 3}Fis{2}Signal{1} + Crp{2, 3}Cya{1, 3}Fis{2}Signal{1} +
Crp{l, 3}Cya{2, 3}Fis{2}Signal{1} + Crp{2, 3}Cya{2, 3}Fi8{2}Signal{1}

Fis{3}GyrAB{O, I} + Crp{l, 2, 3}Cya{l, 2, 3}Fis{3}Signal{1} +
Fis{3}TopA{2, 3} + Crp{O}Fis{1}GyrAB{2, 3}TopA{O, I} +
Cya{O}Fis{1}GyrAB{2, 3}TopA{O, I} + Fis{1}GyrAB{2, 3}Signal{O}TopA{O, I}

Fis{4}GyrAB{O, I} + Crp{l, 2, 3}Cya{l, 2, 3}Fis{4}Signal{1} +
Fis{4}TopA{2, 3} + Crp{O}Fis{2}GyrAB{2, 3}TopA{O, I} +
Cya{O}Fis{2}GyrAB{2,3}TopA{O, I} + Fis{2}GyrAB{2, 3}Signal{O}TopA{O, I}

Fis{5} + Crp{O}Fis{3, 5}GyrAB{2, 3}TopA{O, I} +
Cya{O}Fis{3, 5}GyrAB{2, 3}TopA{O, I} +
Fis{3, 5}GyrAB{2, 3}Signal{O}TopA{O, I}

Crp{O}Fis{4}GyrAB{2, 3}TopA{O, I} + Cya{O}Fis{4}GyrAB{2, 3}TopA{O, l} +
Fis{ 4}GyrAB{2, 3}Signal{O}TopA{O, I}

Fis{4, 5}GyrAB{O, I}

Fis{4, 5}GyrAB{2} + Fis{O, I, 2, 3}GyrAB{O}

GyrAB{3}TopA{O} + Fis{O, I, 2, 3}GyrAB{1} + Fis{ 4, 5}GyrAB{3}

Fis{O, l, 2, 3}GyrAB{2} + Fis{O, 1, 2, 3}GyrAB{3}TopA{1, 2, 3}

TopA{l} + GyrAB{O, l}TopA{O, I} + Fis{O, I, 2, 3}TopA{O, I}

Fis{4, 5}GyrAB{2, 3}TopA{O, 2} + TopA{2}

TopA{3}

Figure 4.10: Minimised next-state equations for E. coli MVN.

from Chapter 3. We then use CLP with the constraint:

SRNA> 0,

resulting in the output shown below which correctly confirms that SRNA does not become
active under these conditions.

solving: 0.01 sec.
1 compatible vector explored

the marking is unreachable

A similar check can be performed to see if entities TopA and GyrAB can both become
inactive simultaneously during the stationary phase, as they appear to work in opposite
directions to affect Fis. We check all possible initial states in which TopA and GyrAB
are not simultaneously inactive with the constraint:

TopA + GyrAB = 2,

73

SRNA 1 1 1 0 0 0 0 0 0
Crp 1 1 1 1 1 2 3 3 3
Cya 3 3 3 3 3 3 3 3 3

TopA 0 0 0 0 0 0 0 0 0
Fis 4 3 2 1 0 0 0 0 0

Signal 1 1 1 1 1 1 1 1 1
GyrAB 2 3 2 3 2 3 2 3 2

Figure 4.11: Simulating the switch from exponential to stationary phase in E. cali.

SRNA 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1
Crp 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1
Cya 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

TopA 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Fis 0 1 2 3 4 5 4 3 2 1 2 3 4 5 4 3

Signal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GyrAB 2 3 2 3 2 1 0 0 1 2 3 2 3 2 1 0

Figure 4.12: Simulating re-entry from stationary to exponential phase in E.cali.

which specifies a state violating the mutual exclusion property, and CLP is able to con
firm that no such state exists, which appears to be coherent with [167J.

Mutant analysis

The final step in our study is to investigate the affect of "fixing" the state of an entity
in the model. In order to achieve this, we simply ignore the state transition table for
the entity so that it becomes an input signal. This corresponds to the experimental
approach of creating mutants in which genes are knocked out or overexpressed, and
provides a means of investigating the robustness of the network when key components
do not function as normal. Furthermore, the results of such tests provide useful insights
and allow hypotheses to be formed which can then be verified in the laboratory.

We investigate the affect that knocking out and overexpressing the entities crp, cya,
gyrAB and tapA has on the production of Fis and consequently the level of SRNA. In
particular, we consider whether SRN A can be inhibited in the absence of carbon stress,
and alternatively whether it can become inactive when no stress is present. We perform
these tests by first setting Signal = Fis = SRNA = 0 and then by knocking out and
overexpressing the remaining entities one at a time. We then repeat the analysis with
Signal = 1. The observed results are summarised in Figure 4.13.

When carbon stress is absent, we notice that knockout and overexpression of crp and
cya allows for the production of SRNA. However, this does not occur when we knockout
and overexpress gyrAB and tapA, respectively. In the case of knocking out gyrAB, a
low concentration of GyrAB prevents an increase in negative DNA supercoiling; thus Fis
production is reduced and so SRNA production is low. On the other hand, overexpression
of tapA inhibits the amount of negative DNA supercoiling, thus reducing Fis production

74

Entity Knock out Overexpressed Knock out (s) Overexpressed (s)
CRP Yes Yes Yes No
Cya Yes Yes Yes No

GyrAB No Yes No No
TopA Yes No No No

Figure 4.13: Results of knocking out and overexpressing entities, where (s) denotes that
carbon stress is present.

and subsequently SRNA [167J.
When carbon stress is present, however, we notice different behaviour; knocking out

both crp and cya allows for the production of SRNA even under carbon stress. This is
due to the reduced activation of the implicit complex cAMP.CRP, which in turn does
not repress fis so strongly. Thus, SRNA is allowed to acculmulate. However, when we
overexpress crp and cya, the opposite occurs and SRNA is not produced as expected [167J.

4.6 Initial comparisons between E. coli models

Our case study demonstrated the application of a range of PN techniques and tools to
validate our approach. In Section 3.3.1, we considered a similar study using Boolean
modelling, and showed that a number of key dynamics could be captured that appeared
to be consistent with the literature [167J. This therefore naturally raises questions about
the relationship between these two models; one in particular is whether the Boolean
model provides a "sufficient" representation of the E. coli network.

It is well understood that continuous models based on differential functions capture
behaviour that does not correspond with that observed in the Boolean domain (see
[77, 188J for studies). However, such a distinction does not always appear to be so obvious
for the discrete models considered here, especially when one starts to look at larger
systems. It is therefore interesting to explore this in a little more depth by comparing
and contrasting our two models for this E. coli GRN.

On inspection, both models appear to capture similar fundamental behaviour, and
correctly switch between the two growth phases depending on whether carbon stress is
present or not. Furthermore, the mutual inhibition between fis and crp, which plays an
important part in the switch from the exponential to the stationary phase [167]' appears
to be faithfully represented in both models. However, we observe that TopA erroneously
reaches an activated level in the BN model during the switch from the exponential to
the stationary growth phase. In the MVN model, the level of TopA correctly remains
low, allowing the amount of DNA supercoiling to increase. In fact, the only time that
TopA can temporarily rise in the MVN model is when TopA = 0, Fis = 5 and GyrAB =
3; TopA then immediately becomes inactive. The BN representation, however, is unable
to model this intermediate level for TopA, and so when Fis and GyrAB are fully active,
TopA also becomes fully active, leading to questionable results.

Another interesting comparison concerns the results of mutant analysis. In both case
studies, we performed the same mutant analysis on the entities crp, cya, gyrAB and tapA

75

to compare how the production of SRNA is affected. In Figure 4.14, we show the mutant
analysis results for the BN representation, and highlight in bold any discrepancies with
the MVN equivalent.

Entity Knock out Overexpressed Knock out (s) Overexpressed (s)
CRP Yes Yes Yes Yes
Cya Yes Yes Yes Yes

GyrAB No Yes No Yes
TopA Yes No Yes No

Figure 4.14: Results of entity knock out and overexpression in the BN model.

The results show that in a number of cases, SRNA reaches an activated level in the
Boolean mutants, whereas it remains inactive in the MVN model. This appears to be
due to the BN model being less restrictive with respect to the activation of Fis; in other
words, there are less conditions required for Fis to become active.

Although there are many similarities between the two models, we have noted some
cases which indicate some possible limitations with the BN model. However, it is unclear
whether this means that BNs are insufficient for this particular modelling task; indeed,
it would be interesting to see if there exists an alternative BN model which does capture
the required behaviour.

These considerations lead to more general questions concerning the level of detail
required in a model to capture some desired behaviour. In particular, it is unclear how
one reasons about such behaviour, and how "insufficient" models can be determined.
Indeed, what we require is a formal framework for answering these questions, and we
present this in Chapter 5.

4.7 Discussion

4.7.1 Conclusions

To address limitations with Boolean modelling, this chapter extended our PN approach
from Chapter 3 to cater for MVN s [206]. In particular, efficient logic minimisation tech
niques [146] formed an integral part of model construction to ensure compactness. We
developed two complementary PN approaches. The first was a novel safe PN framework
which utilised the negative information present in the logical terms to significantly reduce
the number of transitions required. This modelling technique was made possible by util
ising the extra places in safe PNs, and so appears to be advantageous over non-safe ones
for both compactness and amenability to analysis (for example, see [46,187] for a similar
approach using non-safe nets). In particular, the increased number of places enabled us
to model each logical term using only a single transition, and so offers promising scope
for future approaches with compact safe PN s. Our second approach considered the use of
HLPNs [28], and we showed how a visually-compact model could be systematically con
structed by translating the next-state equations into transition guards. This resulted in a

76

generalised HLPN modelling framework which offers both visual simplicity and analysis
potential.

We compared both PN frameworks to investigate how efficient they were to analyse,
and the results were surprising. Whilst our safe PN framework was significantly more
compact than the expanded HLPN equivalent, it turned out that this was not the case
for the corresponding unfoldings. In fact, we found the unfoldings of the HLPN to be
a factor of ten smaller in general using the lEI - lei metric. This appeared to be due
to the fact that our safe PN approach imposed restrictions on the concurrency, and so
it took more events before repetition was detected. On the other hand, the expanded
HLPN had significantly more transitions with high concurrency, allowing more cut-offs
to be inserted into the prefix. This therefore indicated that the HLPN framework was
both visually-compact and more efficient to analyse than the safe framework. However,
we argued that visual compactness could sometimes hamper the study of the regulatory
interactions, and so proposed the safe PN framework as an interesting alternative in such
situations.

The approaches presented have been used to extend our PN construction tool GNAPN.
This was a straightforward task since the core classes of GNAPN were implemented in
a generic way, highlighting their extensibility to future work. GNAPN is able to auto
matically construct safe and HLPN models of an MVN under both the synchronous and
asynchronous semantics, utilise logic minimisation techniques with the auxiliary logic
minimisation tool MVSIS [42] and cope with partial models. Furthermore, it facilitates
the export of PN models into a number of widely used formats. Thus, GNAPN provides
what appears to be one of the most comprehensive PN model construction approaches
for MVNs, and contributes much-needed support to the biological community. GNAPN
is freely available for academic use at bioinf. ncl. ac. uk/gnapn.

We demonstrated our HLPN framework by revisiting the carbon stress response net
work in E. coli. We used GNAPN to automatically construct a synchronous HLPN
model from the comprehensive data provided in [167], and demonstrated the application
of a number of PN analysis techniques which confirmed reported properties in the liter
ature. We started by performing qualitative simulations using the PEP tool to ensure
that the model captured the fundamental switch between growth phases. For example,
we started the HLPN from an initial marking representing exponential phase conditions,
and turned Signal on to represent the presence of carbon starvation. As such, we were
able to verify that our model correctly captured this essential switch.

We then considered the application of powerful model checking techniques to our
HLPN to further investigate these hypotheses. For instance, we observed from the litera
ture [167] and from simulations that the level of SRNA should never become active during
the stationary phase. Using the model checking tool eLP and unfolder PUNF [109], we
were able to show that this property held from all reachable states in the stationary
phase. Thus, we demonstrated the application of powerful model checking proofs which
are not directly amenable to MVNs. Indeed, we also applied model checking to the study
of mutants. We investigated the effects of knocking out and overexpressing key network
entities, by fixing their state to both high and low values. We performed this one entity
at a time, and observed how SRNA production was affected in the presence of abnormal

77

conditions. This yielded results consistent with biological intuition from the literature ,
thus providing further confidence in our model.

This case study also identified some interesting behavioural differences with the BN
E. coli model from Chapter 3 which raise questions concerning their formal relationship.
In particular, it has highlighted potential limitations which Boolean modelling, and led
us to consider the level of detail required by a model to capture certain behaviours
correctly. Clearly, for the purposes of analysis and interpretation, it is desirable to
consider the simplest model which correctly captures the property of interest. However,
it is not always clear whether a model is sufficient for purpose, or indeed whether it can
be further simplified. For example, although we have shown doubt that the Boolean
model captures certain subtle behaviours correctly, it is unclear whether this means it
is an 'incorrect' representation; indeed, how do we define 'incorrect'? Moreover, does
there exist an alternative Boolean model which is 'correct'? In order to answer these
questions, we require a formal framework for reasoning about such models, and this is
the contribution of Chapter 5.

4.7.2 Future work

Further case studies are now required to investigate the application of our HLPN frame
work and support tool G N APN. In particular, we are interested in considering the asyn
chronous semantics of MVN s and the techniques required to cope with the inherent
increase in behavioural complexity this entails.

In addition, the questions concerning the relationship between the two E. coli models
are intriguing and call for further investigation. Specifically, the development of formal
and systematic techniques appear to be of paramount importance if they are to cope
with the challenges of large biological networks, and we address this in Chapter 5.

Compositional model construction and analysis appear to offer much promise for
our techniques (see [29,36,52,218] for studies). A compositional approach to model
construction would be consistent with the biological intuition that GRNs function as
a number of interlinked sub-units [87], and could lead to improved analysis efficiency.
Specifically, we see compositional model checking techniques [36, 218] as an important
area of research here.

Finally, we wish to investigate techniques for visualising the complex behaviour of a
GRN. Model checking is a powerful analysis technique and can provide many insights
in to the dynamics of a system, but can be hard to apply meaningfully if one does not
have a basic understanding. We see the intuitive visualisation of a model's behaviour
as crucial for obtaining this initial understanding, and techniques for coping with the
subsequent state space explosion will need careful consideration.

4.7.3 Sources

The work presented in this chapter was presented at the 4th Integrative Bioinformatics
Workshop 2007 [20]. Initial ideas for the HLPN framework were taken from [53]. Fi
nally, the metric for determining the size of a canonical prefix was given by personal
communication with Victor Khomenko.

78

Chapter 5

Relationships Between Models at
Different Levels of Abstraction

Chapters 3 and 4 incrementally developed a generalised qualitative PN modelling ap
proach for GRNs, and we demonstrated its application with case studies of the carbon
stress response network in E. coli under both Boolean and multi-level discretisation.
This then formed the basis of an interesting comparison in Section 4.6, in which we were
able to compare and contrast the relative properties of the simpler Boolean and more
expressive multi-valued models in an informal setting. Whilst this study found there to
be significant agreement between the two approaches, it also highlighted a number of
behavioural differences. Specifically, we found behaviours of the MVN model which did
not appear to be captured in the BN equivalent. This therefore raised more general ques
tions concerning their relationship. In particular, it is interesting to consider the scope
and limitations of Boolean modelling and the situations in which multi-valued modelling
is necessary.

Studies in the literature have considered comparisons between BNs and differential
descriptions [14,77, 142J (see [188J for a good review). All studies confirmed that steady
state dynamics captured by BNs do correspond qualitatively to analogous steady states
in the differential description (but that the converse it not always true), whilst cyclic
behaviour in BNs does not always correspond. Glass et al. [77J exemplified the latter
with the idea of a simple feedback loop where entity gi activated gj whilst gj repressesed
gi. In the BN, this feedback loop yielded a four-state cycle, whilst in the differential
description it fell into a single steady state. This led Glass et al. [77J (and later [14J who
considered similar work) to develop a technique for determining whether cyclic behaviour
in small BNs would appear in the differential description. However, there do not appear
to be any such investigations for MVNs, nor much-needed systematic approaches for
practical modelling.

In this chapter, we begin to address these concerns with an initial investigation into
the development of a systematic framework for reasoning about the relationship between
MVNs at different levels of abstraction. We propose a formal refinement theory which
captures an assumption of what it means for an MVN to be representative of a more
complex one, and consider the development of algorithms based on this for systemati-

79

cally deriving and validating such models. Application of our approach provides some
interesting insights which motivate the necessity for multi-valued modelling in certain
situations, and sheds light on the relationship between the BN and MVN models of the
E. coli from Chapters 3 and 4. At a higher level, this work contributes the foundations
of new techniques for systematically reasoning about a model's behaviour, and has real
practical implications for addressing state space explosion in analysis.

The rest of this chapter is structured as follows. Section 5.1 provides an introduction
to the notation, theory and properties of our proposed refinement theory assumption. We
then demonstrate the application of our framework using a small example which motivates
the need for multi-valued modelling in Section 5.2. In Section 5.3, we develop algorithms
for systematically simplifying and validating MVNs according to our refinement theory.
A detailed benchmarking analysis of these algorithms is presented in Section 5.4 based
on their implementation as a Java tool REFINER. In Section 5.5, we then revisit the
two case study models for E. coli from Chapters 3 and 4, and apply our framework to
shed light on the behavioural discrepancies noted. Finally, Section 5.6 provides some
concluding remarks.

5.1 Developing a refinement theory

In this section, we introduce the basic notations, properties and theory of our framework
for reasoning about MVNs at different levels of abstraction.

5.1.1 Basic notations

Consider Figure 5.1(a), which shows a simple MVN (see Definition 4.1) model MV1

consisting of two entities gl and g2 with state spaces Y(gl) = {O, I} and Y(g2) = {O, 1, 2},
respectively.

Yg, = {O, I}

Yg2 = {O, 1, 2}

(a)

1-

2- g2
0
1
2

[gl]
1
1
0

(b)

gl g2 [g2]
0 0 1
0 1 2
0 2 2
1 0 0
1 1 0
1 2 1

Figure 5.1: (a) An MVN model MV 1 with two entities, and (b) the state transition
tables defining the corresponding next-state functions F.

The corresponding state transition tables shown in Figure 5.1 (b) describe the com
plete behaviour of MV1 (as previously discussed, the state transition tables are a rep
resentation of the next-state functions F). The idea is that entity gl inhibits g2, and g2
inhibits gl when g2 = 2. Note throughout the remainder of this chapter, we will simply

80

use the state transition tables to represent MVN s for convenience, and in a slight abuse
of notation, will denote these tables as MV.

In order to reason about MVN models, it is often convenient to formalise an individual
input-output pair in the state transition table of an entity gi, which we call a rule. Note
rules are just a way of representing rows in the state transition table for an entity.

Definition 5.1 (Rule). Let gi E MV be an entity with neighbourhood N(gi) = {gil" " ,gin}'
A rule for gi is a tuple r = (gi' IS ~ fg;(IS)) where IS E Y(gd x ... x Y(gn) and fg;
is the next-state function for gi; in other words, a function capturing the state transition
table of gi·

For example, one possible rule for entity gl E MV I would be r = (gl, 0 ~ 1). A
state transition table for an entity gi is therefore deterministic if there exists exactly one
rule for each possible state of N(gi) (for instance, all tables for MVI are deterministic),
and non-deterministic if there exists more than one rule for some state of N(gi). Note
in this chapter, we will assume deterministic models unless otherwise stated.

A trajectory of global states from some initial state in a model is called a trace. Note
the sequence of these states depends on the update semantics used, but here we focus on
the synchronous update semantics (see Section 2.2.3).

Definition 5.2 (Trace). Let So E SMV be a global state. A trace is a state list O"(So) =
(So, SI, ... ,Sn) containing the sequence of global states, such that for each global state
in the sequence, the next global state is obtained by updating each entity simultaneously,
resulting in a synchronous simulation of MV. Furthermore, we have that So,·· . ,Sn-l
are unique and Sn = Si for some i E {O, ... , n - I}.

Note that traces are infinite objects under the synchronous semantics since they will
eventually fall into a cycle. Thus, the above definition defines a finite canonical repre
sentation which specifies a trace up to the first repeated state. For example, one possible
trace of MV I is 0"(00) = (00,11,10,10). The complete set of traces starting from each
state S E SMV therefore captures the complete behaviour of some model MV under the
synchronous semantics, and is referred to as the trace semantics.

Definition 5.3 (Trace semantics). The trace semantics of a model MV is the set of
traces TS(MV) = {O"(S) I S E SMV}.

For example, MV I has a state space of size ISMVII = 6, and so TS(MVl) consists of
the following six traces:

0"(00)

0"(01)

0"(02)

0"(10)

0"(11)

0"(12)

(00, 11, 10, 10)

(01,12,01)

(02,02)

(10,10)

(11, 10, 10)

(12,01,12)

81

The trace semantics form a foundational part of this work, since it completely char
acterises the behaviour of an MVN, and thus acts as a medium through which models
can be reasoned about. When comparing two models MV' and MV, we assume that
they both deterministic, and have the same entities and structure (i.e. same neighbour
hoods and number of interactions). We then regard MV' as being simpler than MV
(i.e. at a higher level of abstraction) if, for some entity g~ E MV' with corresponding
entity gi E MV, we have that Y(gD c Y(gi), and for every other entity g' E MV' with
corresponding entity gj E MV, we have that Y(gj) = Y(gj) (of course, it may be the
case that multiple entities in MV' have smaller state spaces). Note we may also refer to
one model being more complex than another, but this definition is now clear.

This chapter proposes a refinement theory which formally captures a relationship
specifying what it means for a deterministic MVN to be represented by a simpler one.
The basic idea is that the trace semantics of the latter should be consistent with the
trace semantics of the former. However, before we can define this consistency, we must
first introduce a means of relating the state spaces of the two MVN s.

5.1.2 Relating state spaces between models

The state space of an entity in an MVN represents a logical interpretation of the threshold
levels at which it interacts at various points in the network. Intuitively, reducing this state
space therefore corresponds to merging some of these thresholds at which interactions
occur. Thus, such a reduction appears to provide a biologically-justifiable simplification,
as well as an interesting means for exploring the necessity for the thresholds. We now
formalise this with the notion of a state mapping.

Definition 5.4 (State mapping). Let gi E MV be an entity such that Y(gi) = {O, ... ,m}
for some m > 1. Then a state mapping cPgi for gi is a surjective mapping cPgi : {O, ... , m} ---+

{O, ... ,n} where ° < n < m.

The idea is that a state mapping reduces the states that an entity can be in by
mapping its current state space to a smaller set of states. As such, the behaviour of the
MVN is simplified as the range of states it can be in is restricted. Note we only consider
state mappings with a codomain larger than one, since a singular state entity does not
appear to be of biological interest.

As an example, consider entity g2 E MV1 from Figure 5.1 which has state space
Y(g2) = {O, 1, 2}. Since it is only meaningful to simplify g2 E MV1 to a Boolean entity,
one possible state mapping to achieve this would be:

cPg2 = {O 1---* 0, 1 1---* 0,2 1---* 1},

which merges states ° and 1 into a single state 0, and translates state 2 into 1. In general,
a state mapping can be applied to the trace semantics of an MVN and its state transition
tables using the following approach.

Definition 5.5 (Model translation). A state mapping cPgi can be applied to a global state
S = Sl ... 8k E SMV as cPgi (81 ... 8k) = 81 ... cPgi (8i) .. . 8k. We can then lift cPgi to a trace

82

o-(So) from some initial state So E SMV by applying it to each global state it contains
rP9i((SO, ... ,Sn)) = (rPgi(So),···,¢gi(Sn)). Finally, we can lift rP9i to the trace semantics
TS(MV) of a model MV by applying it to each trace a-(S) E TS(MV) for S E SMV,
i.e. ¢gi(TS(MV)) = {¢9i(0"(S)) I O"(S) E TS(MV)}. Similarly, we can apply ¢9i to the
state transition tables of a model MV (i. e. ¢9i (MV)) in the obvious way by translating
each occurrence of gi in the corresponding rules.

In some cases, a trace may be translated by a state mapping resulting in a new
sequence of states which is non-deterministic. For example, suppose we have the trace

0"(00) = (00,01,02,12,02),

which we translate with state mapping ¢92 = {O 1---+ 0, 1 1---+ 1, 2 1---+ I} (where g2 is the
second component of the global state). The resulting sequence of states is

0"(00) = (00,01,01,11,01),

and it can be observed that this is now non-deterministic, since global state 01 leads
to both 01 and 11. Such behaviour cannot possibly be captured by a deterministic
model, and so we distinguish these sequences as invalid traces and ignore them during
the refinement process (see Section 5.3).

Continuing with our running example, ¢92 can be applied to the trace semantics
TS(MV1) shown above, resulting in the translated trace semantics ¢g2(TS(MV1)) in
which the states of g2 have been reduced accordingly:

¢92(0"(00))

¢92(0"(01))

¢g2(0"(02))

¢g2(0"(10))

¢g2(a-(11))

¢g2(0"(12))

(00,10,10)

(00,11,00)

(01,01)

(10,10)

(10,10)

- (11,00,11)

It can be noted that ¢g2(TS(MV1)) is now non-deterministic, as we have two different
traces beginning with the same state 00. This occurs as we are viewing the more complex
set of behaviours captured by TS(MV1) from a simpler perspective. We can also apply
rP92 to the state transition tables of Figure 5.1 (b), and we show this in Figure 5.2. Again,
we can see that this non-determinism is manifested in the table for g2, since there are
two rules for input state 00 (highlighted in bold) which give different outputs.

Usually, there is more than one state mapping which can be applied to reduce W(gi)1
from m to n states, for 1 ::; n < m. The complete set of all such state mappings is
formalised by the mapping set.

Definition 5.6 (Mapping set). The mapping set Ms;:--->n of an entity gi, for 1 ::; n < m,
is the set M s;:--->n = {¢9i I ¢g; : {O, ... , m - I} --t {O, ... , n - I}} containing all possible
state mappings which reduce IY(gi)1 from m to n states.

gl g2 [g2]
0 0 1
0 1 2

g2 [gl] 0 2 2
0 1 1 0 0
1 1 1 1 0
2 0 1 2 1

83

¢g, = {O >-> 0, 1>-> 0,2>-> I}

~
g2
0
1

[gl]
1
0

gl g2
0 0
0 0
0 1
1 0
1 1

Figure 5.2: Mapping (1) applied to the state transition tables of Figure 5.1.

It can be shown that I Ms;-m I will contain

m-n+l

L m-1cj . n!
j=l

[g2]
0
1
1
0
0

state mappings, where n! is the number of isomorphic mappings for some n 1. That is,
we view this as the problem of counting the number of arrangements in which the same
character can appear j times in an m - 1 bit string (to ensure that the codomain of the
mapping is two or more), where j cannot exceed m - n + 1 for the reason that all n states
must be present in the codomain.

For example, g2 E MV1 can be mapped to a Boolean entity by six state mappings,
and so M S:;2 contains:

(1) CPg2 {O f--+ 0,1 f--+ 0,2 f--+ I}

(2) CPg2 {O f--+ 0, 1 f--+ 1,2 f--+ I}

(3) CPg2 {O f--+ 0,1 f--+ 1,2 f--+ O}

(4) CPg2 {O f--+ 1,1 f--+ 1,2 f--+ O}

(5) CPg2 {O f--+ 1,1 f--+ 0,2 f--+ O}

(6) CPg2 {O f--+ 1,1 f--+ 0,2 f--+ I}

Furthermore, we observe that there are 2! = 2 isomorphic state mappings for each con
figuration in MS:;2: (1) ~ (4); (2) ~ (5); and (3) ~ (6). Interestingly, it turns out that
we can ignore such isomorphic mappings in M s;-m, as shown by the following theorem.

Theorem 5.1. Let CPgi and CP~i be two isomorphic state mappings for some entity gi E

MV. Then cpgi(TS(MV)) ~ cp~i(TS(MV)).

Proof. Follows directly from the definition of an isomorphism. o

Intuitively, a trace can be seen simply as a sequence of symbols which have no meaning
in this context. Thus, two traces which have the same structure but with consistently

lWe say two mappings ¢g and ¢h are isomorphic to one another, written ¢g ~ ¢h, if there exists a
bijective mapping 'ljJ such that 'ljJ 0 ¢g = ¢h and 'ljJ-l 0 ¢h = ¢g.

84

different symbols (Le. they are isomorphic to one another) can be seen as equivalent. As
such, the size of M s;;:----+n now becomes

m-n+1

~ m-1c·
~ J'
j=l

and consists of only structurally unique state mappings. For example, M S:;2 for g2 E

MV1 now only consists of the state mappings (1), (2) and (3) (although any combination
of the three structurally-unique mappings is sufficient).

To generalise the link between the state space of an MVN and a simpler one, we
define a mapping vector.

Definition 5.7 (Mapping vector). For a model MV with k entities, the mapping vector
¢ is the vector ¢ = (¢91' ... '¢9k)' where each ¢gi' for i = 1 ... k, either reduces Y(gi) or
is the identity mapping 19i : Y(gi) --+ Y(gi), such that 19i(X) = x for all x E Y(gi).

A mapping vector completely relates the state space of an MVN and a simpler one
by specifying a mapping for each entity. Note ¢(TS(MV)) and ¢(MV) are performed in
the obvious way by iteratively applying each mapping in the vector to the corresponding
entity using the methodology presented in Definition 5.5.

5.1.3 Refinement theory: a relationship assumption

Having introduced mapping vectors as a means of relating the state spaces of two MVNs,
we now define our refinement theory by introducing the notion of a refinement; an MVN
whose behaviour is simpler yet consistent with another.

Definition 5.8 (Refinement). Let MV and MV' be two deterministic MVNs with the
same structure, and ¢ be a mapping vector which translates the state spaces of the entities
in MV to those in MV'. Then we say that MV' refines MV under ¢, denoted MV' <]<P

MV, ifJTS(MV') ~ ¢(TS(MV)) holds.

Observe that refinements are deterministic models, whilst ¢(TS(MV)) can be non
deterministic (as shown previously). Refinements therefore nearly always capture less
behaviour than the more complex model under ¢, although we will consider the exception
to this shortly. Subsequently, an MVN may have a number of possible refinements, and
we formalise these with the notion of a refinement set.

Definition 5.9 (Refinement set). A refinement set Ref tv for a model MV is the set
of all refinements Ref tv = {MV' I MV' <]¢ MV} under mapping vector ¢.

In practice, the derivation of this refinement set becomes intractable for all but the
smallest of MVN s. Specifically, if we have k entities each with n states, then we have a
worst case upper bound of (nnk)k possible candidate models to consider. For instance,
there are (223)3 = 16777216 possible BNs consisting of just three entities! An interesting
observation arises, however, by noting that for some model MV and mapping vector

85

c/J, the trace semantics of the translated MV (i.e. TS(c/J(MV))) is not the same as
translating the trace semantics of MV (Le. c/J(TS(MV))). In fact, it turns out that an
important relationship emerges between the two, in that T S(c/J(MV)) will always contain
at least the traces of c/J(TS(MV)) , as shown by the following theorem.

Theorem 5.2. For a model MV and a mapping vector c/J, we have that c/J(TS(MV)) ~
TS(c/J(MV)).

Proof. Let CJ E TS(MV) be an arbitrary trace in model MV with k entities, and CJm --t

CJm+l be an arbitrary state step in CJ. This results in a state step c/J(CJm) --t c/J(CJm+l) under
c/J and we show that this step is present in T S (c/J(MV)). Let j E {I, ... , k}, then the step
can be broken up into k components CJm --t CJ::n+l' where j represents the j-th component
of the state. Now c/J(CJm) --t ¢(a1m+1) under ¢ and this is equivalent to a rule in c/J(MV).
Thus, c/J(TS(MV)) ~ TS(¢(MV)) as required. 0

From this result, it is clear that the trace semantics of any refinement MV' must also
be contained within TS(¢(MV)).

Corollary 5.1. MV' <Jet> MV =? TS(MV') ~ TS(¢(MV)).

Proof. Follows directly from Definition 5.8 and Theorem 5.2. o
Corollary 5.1 represents an important and useful relationship, since we know that the

trace semantics of any refinements must be contained within TS(¢(MV)), resulting in a
significantly smaller search space. Indeed, this relationship is exploited by our algorithms
in Section 5.3.

In special cases, a refinement MV' may capture all the behaviour of an MVN under a
mapping vector ¢. We distinguish this strong case with the notion of an exact refinement.

Definition 5.10 (Exact refinement). A refinement MV' exactly refines MV under map
ping vector ¢, written MV' ~et> MV, ijjTS(MV') = ¢(TS(MV)).

Exact refinements are interesting as they can indicate redundant entity thresholds
which have no affect on the qualitative behaviour of an MVN. Subsequently, an exact
refinement MV' provides a simpler representation of an MVN whilst capturing all its
behaviour under ¢. Note exact refinements occur precisely when ¢(MV) is deterministic,
as shown by the following theorem.

Theorem 5.3. Let MV be a model and ¢ be some mapping vector. Then we have the
following:

(1) if ¢(MV) is deterministic, then ¢(MV) is an exact refinement;

(2) if ¢(MV) is non-deterministic, then no exact refinement can exist under ¢.

Proof. To prove (1), we observe that if ¢(MV) is deterministic, then TS(¢(MV)) must
also be deterministic. As such, there must exist exactly one trace CJ(S) E TS(¢(MV))
for each state S E SMV' From Theorem 5.2, we have ¢(TS(MV)) ~ TS(¢(MV)).

86

Thus, ¢(TS(MV)) = TS(¢(MV)) must hold in this case. Therefore, only one pos
sible deterministic model can exist which captures this behaviour completely, and so
from Definition 5.10, we can see that it must be an exact refinement MV' such that
TS(MV') = ¢(TS(MV)).

To prove (2), we simply note that if ¢(MV) is non-deterministic, then no single
deterministic model can exist which captures this behaviour. 0

Note for an exact refinement MV' of a model MV, we have that MV' = ¢(MV), and
so the refinement set Ref tv will be the singleton set Ref tv = {¢(MV)}. However, the
converse is not necessarily true; if we have a refinement set Ref tv = {MV'} for some
model MV', then it does not imply that MV' is exact. With this proposed refinement
theory, we now go on to investigate its application.

5.2 Investigative application

In this section, we apply our approach to a small example to demonstrate its methodol
ogy. This walkthrough not only clarifies the ideas presented, but allows us to show an
interesting result which motivates the need for multi-valued modelling. We then explore
some of the limitations of analysing refinements with respect to the original model. Fi
nally, we compare our results with existing work which considers the differences between
BNs and continuous systems of differential equations [14,77,142] (see [188] for a good
review), and we show that the same relationships do not hold between BNs and MVNs
in the discrete modelling domain.

We start by revisiting model MV1 from Figure 5.1(a), which consists of two entities
gl and g2, such that Y(gl) = {O, I} and Y(g2) = {O, 1, 2}. Here, we will refine g2 to
a Boolean entity as defined by Definition 5.8. From Section 5.1.2, we know that the
mapping set M S:;2 for g2 consists of three structurally unique state mappings, and so
we have the following three mapping vectors to consider:

(1) ¢
(2) ¢

(3) ¢

(¢91,¢92) ,

(¢91'¢~2) ,
(¢91, q;;2) ,

where ¢92 = {O 1------+ 0,11------+ 0,21------+ I}, ¢~2 = {O 1------+ 0,11------+ 1,21------+ I}, ¢~2 = {O 1------+ 0,11------+
1,21------+ O} and ¢91 is the identity mapping. For the purpose of this example, we will refine
MV1 under mapping vector (1) as a refinement is known to exist. We start by applying
(1) to the trace semantics TS(MVd, which results in the following non-deterministic
trace semantics ¢(TS(MV1)) in which only entity g2 has been translated:

0"(00)
0"(00)

dOl)
0"(10)

dl1)

(00,10,10)

(00,11,00)

(01,01)

(l0, 10)

(11,00,11)

87

In order to calculate the refinement set ReftVl' we search for all deterministic models
whose trace semantics is contained within ¢(T S(MVd). Using the results from Corollary
5.1, we therefore translate the state transition tables MV1 using mapping vector (1), and
this gives us the non-deterministic state transition tables shown previously in Figure 5.2.
We can see that the behaviour of 92 is non-deterministic when 91 = 0 and 92 = O. As
such, we have two possible candidate models MV~ and MV; shown respectively by
Figure 5.3(a) and Figure 5.3(b), where the rules highlighted in bold are the only that
differ.

91 92 [92J 91 92 [92J
0 0 0 0 0 1

92 [91J 0 1 1 92 [91J 0 1 1
0 1 1 0 0 0 1 1 0 0
1 0 1 1 0 1 0 1 1 0

(a) (b)

Figure 5.3: (a) Candidate model MV~, and (b) candidate model MV;.

In order to verify that MV~ and MV; are indeed refinements according to our theory,
we check that their trace semantics are contained within ¢(TS(MVd). The correspond
ing trace semantics for MV~ and MV; are shown in Figure 5.2(a) and Figure 5.2(b),
respectively. Now we can observe that MV~ is not a refinement according to Definition

0"(00) - (00,10,10) 0"(00) - (00, ll, 00)

0"(01) (01,00,10,10) 0"(01) (01,01)

0"(10) (10,10) 0"(10) (10,10)

O"(ll) - (ll, 00,10,10) O"(ll) (ll, 00, ll)

(a) (b)

Figure 5.4: (a) Trace semantics for MV~, and (b) trace semantics for MV;.

5.8, since TS(MV~) ~ ¢(TS(MV1)); in other words, its behaviour is not regarded as
being consistent with MV1. On the other hand, we find that MV; is a refinement as
TS(MV;) ~ ¢(TS(MV1))' Thus, we have the refinement set ReftVl = {MV;} for
mapping vector (1).

In some cases, however, there may exist regulatory interactions in an MVN which are
too subtle to be represented in the Boolean domain using our theory. This comparison
between Boolean and multi-valued modelling is interesting to consider, and the following
theorem applies our approach to show an important result motivating the latter.

Theorem 5.4. Not every MVN has a Boolean representation.

Proof. Suppose that we consider the addition of a third entity 93 to model MV 1 which is
repressed by 92 when 92 :2: 1. This new MVN is shown in Figure 5.5 and will be denoted

88

gl g2 [g2]
0 0 1
0 1 2

g2 [gl] 0 2 2 g2 [g3]
0 1 1 0 0 0 1
1 1 1 1 0 1 0
2 0 1 2 1 2 0

Figure 5.5: Model MV3 with a third entity g3, where Y(g3) = {O, I}.

MV3· We now see that g2 E MV3 acts in two subtly different ways: on one hand gl is
inhibited when g2 = 2; and on the other hand, g3 is inhibited when g2 ~ 1. This subtle
behaviour can prove problematic for Boolean modelling according to our theory. For each
possible ¢, we: (i) enumerate each possible deterministic model MV' from ¢(MV3); and
(ii) check it for consistency TS(MV') ~ ¢(TS(MV3)). Under all three possible vectors,
we find that no refinement MV' exists such that MV' <Jet> MV3, thus concluding the
~~ 0

Of course, this result is centered around the relationship assumption formalised by our
refinement theory, but it nevertheless represents an important application in reasoning
about the expressive power of different models. In particular, it provides motivation for
multi-valued modelling and the framework proposed in Chapter 4.

Let us now look more closely at the behaviour captured by an MVN and its refine
ments; in particular, the scope and limitations of the latter. For this, we first define some
additional notations, starting with the notion of corresponding states.

Definition 5.11 (Corresponding state). Let S' E SMV' be some global state of refinement
MV', and S E SMV be a global state of the original model MV, such that MV' <Jet> MV for
mapping vector ¢. Then we say that S' and S correspond with respect to ¢ iff s' = ¢(S).

In other words, there is a many-to-one relationship between a global state in an MVN
and a global state in its refinements, since different states in the former can be merged
into the same state in the latter. This then leads to the notion of a corresponding trace.

Definition 5.12 (Corresponding trace). Let O"(S) E TS(MV) and dS') E TS(MV')
be the respective traces of models MV and MV', where MV' <Jet> MV. Then we say that
O"(S) and O"(S') correspond with respect to ¢ iff ¢(O"(S)) = O"(S').

Despite this, corresponding traces can be quite different due to the many-to-one
relationship between analogous states. For example, suppose we have the following trace
for some model with two entities ga and gb:

0"(00) = (00,11,02,12,01,11)

which has a cycle of period four. Now suppose we apply the mapping vector ¢ = (¢9a,¢9b)'
where ¢9a is the identity mapping and ¢9b = {O f-+ 0,1 f-+ 1,2 f-+ I}. This results in the
following trace:

¢(O"(OO)) = (00,11,01,11)

89

which now contains a simpler cycle of period two analogous to the original. One can
quite easily see that it is also possible for a cycle of states in the original trace to be
merged into a single steady state in the translated trace, which although corresponding
according to our theory, represents quite different dynamics. Note it is also easy to see
that since global states of a refinement are expanded in the more complex MVN, then a
steady state of the former must correspond to either steady or cyclic states in the latter,
and cyclic states of the former must correspond to cyclic states of the latter.

This therefore highlights the scope and some important limitations with the behaviour
captured by a refinement. Despite this, reachability properties of a refinement will corre
spond to reach ability properties in the more complex MVN. For this, we first introduce

the notation Sl ~ S2 to express the fact that global state S2 E SMV is reachable from
global state Sl E SMV for some model MV.

Theorem 5.5. Let MV' <]4> MV for some mapping vector ¢. If S~ ~ S~ then there

exists two corresponding states Sl E SMV and S2 E SMV such that Sl ~ S2'

Proof. Since S~ ~ S~, then there must exist a trace O"(SD E TS(MV') containing
S;. From Definition 5.8, we know that TS(MV') s,;;; ¢(TS(MV)) must hold. There
must therefore exist a corresponding trace dS1) E TS(MV) containing S2, such that

MV' ¢(O"(Sl)) = O"(SD· Thus, Sl ---+ S2 must hold. D

In other words, reachability properties of refinements have corresponding reachability
properties in the more complex MVN. However, since refinements normally capture less
behaviour than the original model, there are further limits on what can be deduced from
the refinement, as shown by the following corollary.

Corollary 5.2. Reachability properties of a model MV are deducible in exact refinements
and semi-deducible otherwise.

Proof. Let S~ ~ S; be some reachability property which holds in refinement MV'
of model MV. From Theorem 5.5, we therefore know that there exists a correspond-

ing reachability property in MV. However, suppose S~ ~ S; does not hold. If
MV' ~4> MV, then from Definition 5.10 we have that TS(MV') = ¢(TS(MV)), and so
we can deduce that the property also does not hold in MV. Hence, we say that reacha
bility is a deducible property for exact refinements. For non-exact refinements, however,
we have that TS(MV') c ¢(TS(MV)), and so we cannot deduce whether or not this
property holds in MV since some important traces may be missing. Hence, we can only
verify reachability properties that hold in a non-exact refinement, and so we say that
reachability is semi-deducible. D

In contrast, existing studies have tended to focus on comparisons between logical
and differential descriptions [14,77,142,206]' and these have identified different results
to the ones discussed here. For example, it is known that a steady state in a BN will
correspond, qualitatively, to an analogous steady state in the differential representation,
and that a steady state in the differential representation will not always correspond to

90

a steady state in the BN. However, whilst the latter is consistent with our view that
refinements normally capture less behaviour than the more complex MVN, the former is
not. As discussed above, if we have a steady state in a refinement, such as a BN, then
it may either correspond to a steady state in the more complex MVN, or to a cycle of
states according to our theory.

Furthermore, it is known that cyclic behaviour in a BN will not always correspond to
cyclic behaviour in the differential description. The example given by Glass et al. [77] was
that of a simple feedback loop where entity gi activates gj whilst gj represses gi. In the
BN representation, this feedback loop yields a four-state cycle, whilst in the differential
description it falls into a single steady state. However, from Definition 5.12 and the
example that immediately follows, we have observed that cycles in the BN must always
correspond to cycles in the more complex MVN according to our theory, although in
some cases the cycles in the latter may have a larger period.

This has therefore formed an interesting study and application area for our refine
ment theory. We have investigated the scope and limitations of analysing more abstract
MVN models, and have shown a result which identifies a situation in which multi-valued
modelling is required. Although this initial investigation is reliant on our relationship
assumption, it nevertheless begins to shed light on some of the questions raised from the
previous two chapters regarding the level of detail required to model certain dynamics.
Further investigations are left as an interesting area of future work.

5.3 Algorithm development

With our refinement theory introduced, we now consider how systematic approaches can
be used to make it practical. In particular, we develop algorithms for both calculating the
refinement set and for verifying whether one MVN is a refinement of another according
to Definition 5.8.

5.3.1 Calculating the refinement set

We start by considering an exhaustive algorithm EXHAUSTIVEREFINEMENT, which au
tomates the methodological approach presented in Section 5.2 by simply enumerating
and checking all derivable deterministic models. Whilst this method identifies all refine
ments, its complexity is determined by an exponential number of possible models, and it
is naIve to termination properties.

To address these shortcomings, we develop a more efficient tree-based algorithm
TREEREFINEMENT which computes the refinement set using logical deduction. This
improved algorithm is shown to depend on the size of the refinement set which is in most
cases significantly smaller than the number of possible models. Furthermore, it can de
tect termination properties early to avoid unnecessary computation when no refinements
exist. We also outline further improvements by filtering the translated trace semantics
prior to tree construction in a separate algorithm TREEREFINEMENTPF.

Although TREEREFINEMENTPF enjoys significant speed-ups over EXHAUSTIVERE
FINEMENT it can be hindered when the refinement set is large. A parallelised extension ,

91

PARALLEL TREEREFINEMENT is therefore proposed which enables the refinement set to
be computed concurrently across multiple processing nodes, making it practical and scal
able to large MVN s.

An exhaustive approach

The EXHAUSTIVEREFINEMENT algorithm (see Algorithm 1) takes as input a model MV
and mapping vector ¢, and calculates the refinement set Ref tv by exhaustively searching
for all possible deterministic models MV' such that MV' <J<P MV. In particular, it
makes use of Corollary 5.1 to significantly reduce the search space for such models. This
is achieved by enumerating each possible deterministic model MV' derivable from the
state transition tables ¢(MV) (see the example in Section 5.2 for how this is done) and
by checking that TS(MV') ~ ¢(TS(MV)) holds.

Algorithm 1 EXHAUSTIVEREFINEMENT: calculates Ref tv from model MV and map
ping vector ¢.
Inputs: Model MV, Mapping vector ¢
Outputs: Set of refinements Ref tv

1: Ref tv {-- 0
2: for all deterministic models MV' derivable from ¢(MV) do
3: if TS(MV') ~ ¢(TS(MV)) then
4: Ref tv {-- Ref tv U {MV'}
5: end if
6: end for
7: return Ref tv

Note an example application of this algorithm is provided in Section 5.2. If we let
PossMV denote the total number of possible deterministic models MV' derivable from
¢(MV), then the worst case complexity of this algorithm is O(PossMV . ITS(MV')I) if
we use a suitable data structure to represent the trace semantics, e.g. a hash table.

A tree-based approach

The EXHAUSTIVEREFINEMENT algorithm exhaustively enumerates all possible deter
ministic models MV' from ¢(MV) and checks that their trace semantics TS(MV') is
contained in ¢(TS(MV)). As such, EXHAUSTIVEREFINEMENT can struggle with large
MVNs, and is naive to termination properties which indicate when no refinements exist.

Here, we propose an improved algorithm TREE REFINEMENT which works with the
individual rules of ¢(TS(MV)). Whereas EXHAUSTIVEREFINEMENT blindly enumerates
all possible deterministic models from ¢(MV), TREEREFINEMENT searches for determin
istic models directly from ¢(TS(MV)), resulting in an exponentially smaller search space
(this can be easily observed from the results of Theorem 5.2). Furthermore, since such
deterministic models inherently obey the translated trace semantics, they must therefore

be refinements by Definition 5.8.
The core of TREEREFINEMENT is the construction of a tree ofrules from ¢(TS(MV))

using a recursive percolate-up approach, where: (i) the root node contains rules common

92

to all refinements; (ii) each node contains rules which extend its parent node (i.e. they
are disjoint); and (iii) the set union of all nodes on the path from the root to any
leaf in a completed tree gives us the deterministic rules for a single refinement. Thus,
one advantage of this structure is that we obtain a memory efficient representation of the
refinement set Ref tv' Moreover, it facilitates the efficient detection of rule contradictions
which enable early termination of the algorithm.

Definition 5.13 (Rule contradiction). Let r = (gi,5 ----t 5') be a rule for entity gi, and
let Node be a node in the tree. We say that r contradicts Node if there exists a rule
r' E Node such that r' = (gi,5 ----t 5"), where 5' =1= 5".

Rule contradictions indicate the presence of non-determinism which should be avoided,
since refinements must be deterministic. That is, if we traverse the tree from some leaf
node to the root with a rule, and find that the rule contradicts an existing node, then
we can deduce that the rule is not part of that particular refinement. More powerful
than that, however, is the fact that we can now also ignore any traces containing this
rule with respect to the refinement, thus providing a means of significantly pruning the
search space.

Example application

To illustrate the logic behind TREEREFINEMENT before providing a more formal defini
tion, let us revisit model MV1 from Figure 5.1. As with the example given in Section
5.2, we will perform the refinement use mapping vector (1):

where <P92 = {O f--t 0,1 f--t 0,2 f--t I}. Based on this, we obtain the following translated
trace semantics:

(7(00)

(7(00)

dOl)
(7(10)

(7(11)

- (00,10,10)

(00,11,00)

(01,01)

(10, 10)

(11,00,11)

We start by constructing the root node of the tree, denoted Root, which consists
of the rules which are common to all refinements. Essentially, these are all the non
contradictory rules derivable from the translated trace semantics above, and are shown

in Figure 5.6(a). .
We then take a systematic approach to building the tree by considering all traces WhIC~

start from a particular global state 5, denoted by the set AllTracess· For example, If
we take 5 = 00, then we have that AllTracesoo = {(OO, 10, 10) , (00, 11,00)}. The rules
for both traces are shown below:

(91.0-> 1)
(91,1 -> 0)
(92,01 -> 1)
(92,10 -> 0)
(92,11 -> 0)

(a)

(g1o 0 -> 1)
(g1, 1 -> 0)
(g2, 01 -t 1)
(g2, 10 -t 0)
(g2,11 -+ 0)

(b)

93

(g1,0 -+ 1)
(g1. 1 -t 0)
(g2, 01 -+ 1)
(g2, 10 -+ 0)
(g2, 11 -+ 0)

(c)

Figure 5.6: (a) Non-contradictory rules of 1>(MV1) forming root node Root, (b) tree after
all traces starting from global state 00 have been checked against Root, and (c) final tree
after all global states S E 1>(S MV1) have been considered.

Taking each trace of AllTracesoo in turn, we then simply check that the corresponding
rules do not contradict the rules of Root shown in Figure 5.6(a). For the first set ofrules,
we can see that (gI,O --> 1) and (g2, 10 --> 0) already exist in Root, whilst (g2, 00 --> 0)
neither exists nor contradicts. Similarly, for the second set of rules, we can see that
(gI, 0 --> 1) and (g2, 11 --> 0) already exist in Root, whilst (g2, 00 --> 0) neither exists
nor contradicts. As such, both traces are acceptable and the rules which are not already
present in Root are used to create two new leaf nodes, which we show in Figure 5.6(b).

We then consider global state S = 01, where AllTraces01 = {(Ol, 01)}. The rules for
this trace are shown below:

and we can see that neither rule contradicts the two leaf nodes; in fact, they are already
present in Root. We therefore move to the next global state S = 10, where AllTraceslO =
{(lO, 10)}. The corresponding rules are:

and we note again that both are already present in Root. Finally, we consider the
remaining global state S = 11, where AllTraces11 = {(11, 00, 11)}. The rules for this
single trace are shown below:

When we compare these rules against the left leaf node, we notice a contradiction; rule
(g2, 00 --> 1) of the trace contradicts (g2, 00 --> 0) (see Definition 5.13). Since these are
the rules of the only trace starting from global state 11, we can remove the left leaf node
as it cannot represent a valid refinement. In contrast, there are no contradictions with
the right leaf node, and so we terminate the algorithm with the tree shown in Figure
5.6(c). Note the set union of these rules gives us the same refinement as shown in Figure
5.3(b) which was derived by EXHAUSTIVEREFINEMENT.

94

We can now introduce this refinement process more formally. In order to check whether
some rule r can be part of a refinement, we use the recursive algorithm RULECONSIS

TENT (see Algorithm 2), which takes r and the corresponding leaf node Leaf and checks
for a contradiction. If a contradiction is found (Le. the addition of r to Leaf results
in non-determinism), then RULECONSISTENT returns false. However, if r is already
contained in Leaf then RULECONSISTENT returns true since we know at this stage that
r has been previously accepted. Otherwise, we recurse to the parent of node Leaf and
perform the same checks up to and including the root node (in which case we return true
to indicate the absence of a contradiction).

Algorithm 2 RULECONSISTENT: recursively checks whether a rule r can be part of a
refinement.
Inputs: Rule r, Node Leaf
Outputs: Boolean

1: if r contradicts Leaf then
2: return false
3: else if r E Leaf or Leaf = Root then
4: return true
5: else
6: return RULECONSISTENTFROMNoDE(r, PARENT(Leaf))
7: end if

Thus, we can check whether a trace a E ¢(TS(MV)) contradicts a leaf node Leaf by
applying RULE CONSISTENT to each rule r of trace a, as shown by TRACECONSISTENT

in Algorithm 3. Note in order to ensure that trace a is deterministic (i.e. valid and
hence part of any potential refinements), we record the rules from previous iterations
over a in the set AcceptedRules, and check first whether the current rule r contradicts
AcceptedRules before traversing the tree. If any single rule r contradicts AcceptedRules
or any node on the path from the leaf node Leaf to the root Root, then TRACECONSIS

TENT returns false, otherwise it returns true.
With this, TREEREFINEMENT (see Algorithm 4) computes the full tree representing

the refinement set Ref tv from ¢(T S(MV)) by considering each set of traces AllTracess
in turn, such that AllTracess = {a(S) E ¢(TS(MV)) IS E ¢(SMV)}. TREEREFINE

MENT checks the rules of each trace a E AllTracess against each leaf node Leaf E

Leaf Nodes using TRACECONSISTENT. If TRACECONSISTENT returns true for some
leaf node Leaf, then the corresponding trace a is stored in the set AcceptedTraces
to indicate that its rules are non-contradictory with respect to Leaf. Note initially
Leaf Nodes = {Root}, where Root contains all non-contradictory rules of ¢(TS(MV))
(in other words, rules that must be part of all potential refinements).

Once all traces in AllTracess, for some S E ¢(SMV), have been checked against some
leaf node Leaf, two cases are considered:

(1) I AcceptedTracesI = 1: The rules of the single trace a E AcceptedTraces are added
to the leaf node Leaf, and Leaf is then added to the set New Generation which
stores the next generation of leaf nodes after an iteration using AllTracess;

95

Algorithm 3 TRACECONSISTENT: checks to see whether trace (J contains rules for a
refinement.
Inputs: Trace (J, Node Leaf
Outputs: Boolean

1: AcceptedRules f-- 0
2: for all rules r of trace (J do
3: if r contradicts AcceptedRules or RULECONSIsTENT(r, Leaf) = false then
4: return false
5: else
6: AcceptedRules f-- Accepted U {r }
7: end if
8: end for
9: return true

(2) I AcceptedTracesI = x for x 2: 2: We create x new leaf nodes N ewLeaf which ex
tend the parent Leaf with the corresponding rules of (J E AcceptedTraces that are
not already present in the branch, and add these new leaf nodes to N ewGeneration.

Once all leaf nodes have been covered by the traces in AllTracess, for some S E
¢(SMV), we will have I NewGeneration I 2: O. In the case that INewGenerationl = 0, we
terminate TREEREFINEMENT since determinism has been violated, making it impossible
for refinements to exist. Otherwise, we consider the next S E ¢(MV) and compare all
traces starting from S against the new generation of leaf nodes until all S E ¢(MV) have
been covered.

As each iteration of TREEREFINEMENT compares the set of traces AllTracess for
some S E ¢(SMV) against each leaf node Leaf, its performance depends on IReftvl;
in contrast, the performance of EXHAUSTIVEREFINEMENT is dependent on the number
of all possible deterministic models PossMV derivable from ¢(MV), Le. O(PossMV '
ITS(MV')I), where IReftvl « PossMV . Thus, in the worst case, the performance of
TREE REFINEMENT is

O(IReftvl'I¢(TS(MV))I),

since we must consider each trace in the translated trace semantics against each leaf node.
However, the average and best case performance of TREE REFINEMENT is significantly
better than that of EXHAUSTIVE REFINEMENT due to its ability to detect properties for
terminating early and for discarding traces which can not be part of refinements.

A tree-based approach with pre-filtering

In this section, we present an optimisation to the TREEREFINEMENT algorithm called
TREEREFINEMENTPF (pre-filtering) based around the fact that ¢(TS(MV)) can be
filtered prior to tree construction. Note we present the filtering algorithm only, and refer
the reader to TREEREFINEMENT discussed previously for details of the tree building
process once filtering is complete.

The rationale behind this optimisation is based around the observation that Root
contains all non-contradictory rules of ¢(MV) (rules which must be part of all potential

96

Algorithm 4 TREEREFINEMENT: calculates Reft.v by constructing a tree of rules
using auxiliary algorithm TRACECONSISTENT.

Inputs: Node Root, Model MV, Mapping vector ¢
Outputs: Set of refinements Reft.v

1: Reft.v ~ 0
2: Leaf Nodes ~ {Root}
3: for all S E ¢(SMV) do
4: N ewGeneration ~ 0
5: AllTracess ~ {o-(S) E ¢(TS(MV)) IS E ¢(SMV)}
6: for all leaf nodes Leaf E Leaf Nodes do
7: AcceptedTraces ~ 0
8: for all 0- E AllTracess do
9: if TRACECONSISTENT(0-, Leaf) = true then

10: AcceptedTraces ~ AcceptedTraces U {o-}
11: end if
12: end for
13: if I AcceptedTraces I = 1 then
14: 0- E AcceptedTraces
15: Add rules of 0- to Leaf
16: N ewGeneration ~ N ewGeneration U {Leaf}
17: else if I AcceptedTraces I ~ 2 then
18: for all 0- E AcceptedTraces do
19: Create new leaf node N ewLeaf to extend Leaf
20: Add rules of 0- not already in branch to N ewLeaf
21: N ewGeneration ~ N ewGeneration U {N ewLeaf}
22: end for
23: end if
24: end for
25: if N ewGeneration = 0 then
26: return 0
27: else
28: Leaf N odes ~ N ewGeneration
29: end if
30: end for
31: return Reft.v from tree representation

97

refinements). As such, the traces of any refinements must have rules which d t
contradict those of Root . . The idea is therefore to check the set of traces AllTr:ce~~,
for each S E ¢(S MV), ~g~ms~ Root before tree construction begins, and to remove any
traces where a contradIctIOn IS found. This process is performed by FILTERTRACES as
shown by Algorithm 5.

Algorithm 5 FILTERTRACES: filters ¢(TS(MV)) against the rules of Root.
Inputs: Node Root, Model MV, Mapping vector ¢
Outputs: Boolean

1: for all S E ¢(SMV) do
2: AllTracess f----- {O"(S) E ¢(TS(MV)) IS E ¢(SMV)}
3: for all 0" E AllTracess do
4: if TRACECONSISTENT(O", Root) = false then
5: AllTracess f----- AllTracess - {O"}
6: end if
7: end for
8: if I AllTracess I = 0 then
9: return false

10: else if IAllTracessl = 1 then
11: 0" E AllTracess
12: Root f----- Root U GETRuLES(O")
13: AllTracess f----- AllTracess - { 0" }

14: end if
15: end for
16: return true

Once all traces 0" E AllTracess have been compared against Root, we will have one
of three possible situations:

• I AllTracess I = 0: We can terminate here as all traces for some S E ¢(SMV) have
been removed, making it impossible for any deterministic model to exist;

• IAllTracessl = 1: We add the rules of 0" E AllTracess to Root, since they are also
non-contradictory, and then we remove 0". Not only does this reduce the remaining
traces to consider when building a tree, but it also tightens the criteria that other
traces must respect;

• I AllTracess I :::: 2: Such traces contain non-contradictory rules with Root, but can
be contradictory with each other. We therefore leave such traces in ¢(TS(MV))
so that they can be revisited during tree construction and separated into different
models.

Once FILTERTRACES has completed, Root will contain all non-contradictory rules,
and the number of remaining traces to consider during tree building will be significantly
reduced in most cases. TREEREFINEMENT can then be used on the remaining traces in
the translated trace semantics as previously discussed. Since FILTERTRACES performs

98

a complete iteration over ¢(TS(MV)), its complexity is O(I¢(TS(MV))I). Thus, the
worst case complexity of TREEREFINEMENTPF is

O(I¢(TS(MV))I + IReltvl·I¢(TS(MV))I)

if FILTERTRACES removes few traces prior to tree construction. Despite this, FILTER
TRAcEs will significantly reduce the size of the translated trace semantics in the best
and average cases, and so will minimise the number of incorrect leaf nodes (i.e. leaf nodes
which are created and later removed). Furthermore, we have the advantage of being able
to detect immediately if no refinements exist, avoiding the potentially costly process of
tree building.

A parallel tree-based approach

In this section, we outline a parallel adaption of the TREEREFINEMENT algorithm called
PARALLELTREEREFINEMENT, which aims to alleviate (to some extent) the problem
of tree building when a large number of refinements exist. In fact, in the worst case
the number of leaf nodes can increase exponentially with each iteration of global state
S E ¢(SMV), and so TREE REFINEMENT can soon struggle for resources on a single
processor.

A key property of the trees built by TREE REFINEMENT is the immutability of all
non-leaf nodes, since we only add new rules to the leaf nodes. As such, leaf nodes are
independent of one another, and so can be processed in parallel. The idea is that instead
of iterating over all leaf nodes of the tree with the set of traces AllTracess, for some
S E ¢(S MV), we perform TREEREFINEMENT on each leaf node in parallel across multiple
processors.

In reality, there are two strategies for performing this computation in parallel. The
first is a 'breadth-first' approach which compares the traces starting from one S E ¢(SMV)
against all leaf nodes in parallel before the next S is considered. Whilst this approach
proves useful for TREEREFINEMENT, it relies on a notion of synchronisation which is not
suited to the possibility of a heterogenous computing environment.

A more suitable strategy is to compute the tree in parallel asynchronously; that is,
each processor performs TREEREFINEMENT independently without synchronising. In
this case, computation of Ref tv is successful if each processor performs TREEREFINE
MENT until each S E ¢(S MV) has been covered, and only terminates if TREEREFINE
MENT terminates prematurely on all processors. In addition, we introduce a parameter
TreeSize which denotes the maximum number of leaf nodes that must be present in the
tree before it is split up. Thus, TREE REFINEMENT is performed as normal until the
number of leaf nodes in the tree exceeds TreeSize, in which case the tree is partitioned
and further processed in parallel. As such, the algorithm can be tuned to avoid the set
up costs of parallel computation for small models. The PARALLEL TREEREFINEMENT
algorithm is abstractly outlined by Algorithm 6.

If we have N processors, then the complexity of PARALLELTREEREFINEMENT is

O(I¢(TS(MV))I + IReftvl . I~TS(MV))I),

99

Algorithm 6 PARALLELTREEREFINEMENT: performs TREEREFINEMENT in parallel
by partitioning tree.
Inputs: Node Root, Model MV, Mapping vector ¢, Integer TreeSize,
Outputs: Set of refinements Ref tv

1: Ref tv ~ 0
2: Perform FILTERTRACES to reduce size of ¢(TS(MV))
3: Perform TREEREFINEMENT until number of leaf nodes exceeds TreeSize
4: for all leaf nodes L in parallel do
5: Perform TREEREFINEMENT on L using ¢(TS(MV))
6: if TREEREFINEMENT returns 0 then
7: terminate process
8: end if
9: end for

10: if TREEREFINEMENT terminates prematurely on all processors then
11: return 0
12: else
13: return Ref tv from tree representation
14: end if

if we perform FILTERTRACES on a single processor and then parallelise TREEREFINE

MENT. Thus, we only gain a linear speed-up to an exponential problem, but this can
still benefit the refinement of larger models. Furthermore, its performance relies on the
TreeSize parameter. Indeed, it would be interesting to investigate methods for deter
mining a suitable value for such a parameter in order to strike a balance between the
set-up costs of parallel computation and the costs of performing TREEREFINEMENT on
a single processor.

5.3.2 Validating a refinement

We conclude by considering the problem of verifying whether one MVN MV' is a re
finement of another MV. In contrast to searching for models which refine another as
discussed previously, here we search for mapping vectors under which the refinement
occurs.

Here, we consider a straightforward exhaustive approach. The idea is that for an
entity gi E MV, a mapping set Ms;:-m contains all possible state mappings which
reduce Y(gi) to Y(gD, for g~ E MV'. Note if Y(gi) = Y(g~), then the mapping set will
just contain the identity mapping. Assuming that we have k entities, the total number
of possible mapping vectors which map each entity is then given as the cartesian product
of each mapping set:

Msm1->m x ... x MSmk->nk·
91 9k

This search can be done exhaustively as shown by Algorithm 7.
Note we will apply this exhaustive approach in Section 5.5 to verify whether our BN

model for E. coli is a refinement of the corresponding MVN according to Definition 5.S.

100

Algorithm 7 VERIFYREFINEMENT: verifies for two MVN models MV and MV'
whether TS(MV') ~ ¢(TS(MV)) holds by checking all possible mapping vectors ¢.
Inputs: Model MV, Model MV'
Outputs: Boolean

1: for all possible mapping vectors ¢ such that ¢(SMV) = SMV' do
2: if TS(MV') ~ ¢(TS(MV)) then
3: return true
4: end if
5: end for
6: return false

5.4 Benchmarking

In this section, we benchmark the performance of EXHAUSTIVEREFINEMENT (ER),
TREEREFINEMENT (TR) and TREEREFINEMENTPF (TRpF)' To achieve this, we have
implemented a prototype Java tool REFINER to act as a test bench for these three algo
rithms. REFINER provides a basic GUI for loading in, refining and saving MVN models,
and integrates closely with our PN support tool GNAPN. REFINER is freely available as
a separate tool for academic use from bioinJ. ncl. ac. ukj gnapn.

We consider using REFINER to benchmark our algorithms against a range of MVN
models. For each model MV and for each algorithm, we calculate the refinement set
Ref tv under a number of different mapping vectors ¢. We record I¢(SMV)I (the size
of the translated state space), IGI (the number of entities gi E MV), I Potential I (the
total number of possible deterministic models derivable from the non-deterministic state
transition tables ¢(MV)) and IReftvl. Algorithm run times are shown in seconds, and
we record a '-' where completion does not occur in a reasonable time. These results are
shown by the following table. Note all tests were performed on a 2.8GHz Pentium 4 with
2GB memory.

As expected, the run times for EXHAUSTIVEREFINEMENT become increasingly large
as I Potential I increases, since for each model it must check for the trace semantics con
tainment property of Definition 5.8. Thus, even for modest values of I Potential I (e.g.
256), we begin to see substantial algorithm run times, irrespective of whether refinements
exist or not. Indeed, for model (4), the number of potential models becomes so large
that it takes over five minutes to find all refinements, and for the third mapping which
has I Potential I = 2097152, EXHAUSTIVEREFINEMENT fails to find all refinements in a
reasonable amount of time (we estimate it to take approximately 160 minutes).

In contrast, we observe the performance of TREEREFINEMENT and TREEREFINE
MENTPF to be substantially lower in all cases, since their run time depends on IReftvl·
For the smaller models (1) - (3) (and surprisingly for (6), the largest model tested), these
run times are consistently less than 0.01 seconds when little or no refinements exist. This
is due to both their ability to detect when no refinements exist early, and to converge
quickly to a solution. Moreover, for the medium sized model (4) in which EXHAUS
TIVEREFINEMENT struggled, we see run times of less than half a second for the first two
cases, and for the third mapping vector under which EXHAUSTIVEREFINEMENT failed

101

I Model II¢(SMV)I IIGI I I Potential I I I RejiP I I ER [sJ I TR [J I TR [] I MV S PF S

4 2 2 0 < 0.01 < 0.01 < 0.01
(1) 4 2 4 1 0.03 < 0.01 < 0.01

4 2 16 1 0.13 < 0.01 < 0.01
16 3 288 0 0.24 < 0.01 < 0.01

(2) 16 3 2048 0 1.14 < 0.01 < 0.01
16 3 4096 0 2.22 < 0.01 < 0.01
24 3 32 1 0.08 < 0.01 < 0.01

(3) 24 3 64 0 0.12 < 0.01 < 0.01
24 3 256 0 3.02 < 0.01 < 0.01
128 4 65536 1 318.82 0.2 0.2

(4) 128 4 65536 64 302.54 0.31 0.13
128 4 2097152 1024 - 5.42 3.99

3072 7 2.79 * 1041 8 - 9.04 2.30
(5) 3072 7 3.56 * 1044 16 - 16.67 5.54

3072 7 2.79 * 1044 512 - 534.17 61.98
4608 7 128 0 109.94 < 0.01 < 0.01

(6) 4608 7 256 0 227.89 < 0.01 < 0.01
4608 7 2.79 * 1041 4 - 5.37 1.52
4608 7 2.79 * 1041 8 - 12.00 2.54

Figure 5.7: Benchmarking results for refinement algorithms.

to terminate, we see run times of no more than five seconds; a substantial improvement
over 160 minutes!

Apart from showing clear improvements over EXHAUSTIVEREFINEMENT, these re
sults also exemplify important differences between TREE REFINEMENT and TREERE
FINEMENTPF. More specifically, the pre-filtering performed by TREEREFINEMENTPF
yields significant improvements over TREEREFINEMENT, since it removes all invalid
traces and thus minimises the number of erroneous leaf nodes that are added to the
tree during construction. In fact, in some cases, the pre-filtering offers a tenfold reduc
tion in run time.

Despite these promising results, there are indications that TREEREFINEMENTPF will
struggle when the models become larger and when the number of refinements increases
(an interesting area of future work would be to investigate these practical limitations).
As such, further improvements are clearly required if these techniques are to be scalable
and manageable. One improvement which we discussed previously is the use of parallel
computation, but as mentioned this can only yield a linear improvement to an exponential
problem in the best case. Therefore, there is a real motivation for the the development
of more intelligent algorithms which exploit key properties between a model and its
refinements, but further theoretical understanding will be required to achieve this. In
particular, heuristic techniques which approximate the refinement set may be required
to solve this problem in a practical timescale.

102

5.5 Application to E. coli models

The key motivation for this chapter was the comparison presented in Section 4.6, which
looked at the similarities and differences between our BN and MVN models of the carbon
stress response network in E. coli [167]. Specifically, we noted a number of behavioural
differences between the two, and this led to some more general questions concerning their
relationship. However, with the lack of techniques for reasoning about the two models,
we had no means of answering this question. Note we will denote the BN as BNecoli and
the MVN as MVecoli.

In this section, we investigate their relationship by formalising a validation problem
to see whether BNecoli is a refinement of MVeco1i ; that is, whether BNecoli <J¢ MVeco1i
holds, where ¢ is unknown. To achieve this, we must therefore check all possible mapping
vectors which map the states of each entity in MVeco1i to those in BNecoli.

We start by considering the individual state spaces for each entity in MVecol(

IY(Fis)1 6,

IY(Cya)1 4,

IY(Crp) I 4,

IY(Top) I 4,

IY(GyrAB) I - 4,

IY(SRNA)I 2,

IY(Signal) I 2.

Based on this, mapping sets can be specified containing all possible ways in which these
state spaces can be translated into the Boolean domain using the results of Theorem 5.1:

I MS6-:-+2 I Fts 31,
I MS4--+2 I Cya 7,

I MS4--+2 I Crp 7,

IMS4--+2 I TapA 7,

IMS&;'~BI 7,

IMS~RRrAI - 1,

IMS~;;all - 1.

Thus, the total number of possible mapping vectors is given as the cartesian product of
each mapping set:

IMS~-:2 x MSi:;; x MSi:;2 x MSj,;~ x MS&;'~B X MS~RRrA X MS~;;all = 74431.

For each possible mapping vector ¢, we then simply check whether TS(BNeco1i) ~
¢(TS(MVeco1i)) holds using the approach of Algorithm 7. This process is autom~ted
by our support tool REFINER, which, upon completion, is able to verify that no pOSSIble
mapping vector ¢ exists such that BNecoli <J¢ MVeco1i . As such, we are able to conclude
that BNecoli is not a refinement of MVeco1i according to our theory.

lO3

This result. is not surp~ising, as BNecoli was constructed manually by judging the
manner by whIch the multI-valued states should be thresholded into Boolean values. As
such, there may exist inconsistencies in the way certain states were translated. This could
explain why we noted behavioural differences between BNecoli and MVeco1i in Section
4.6, such as the erroneous activation of TopA in BNecoli during the stationary phase
which was not captured in MVeco1i ' Of course, this result is based on our relationship
assumption, but it nevertheless offers a means of shedding light into their relationship,
and provides a promising foundation for future development. Indeed, and to the best
of our knowledge, this appears to be the first attempt at systematically answering such
questions.

Work is now required to address another problem: whether there exists an alternative
BN which does respect our refinement theory. For this, we would have to calculate the
refinement set by considering each possible mapping vector in turn until a refinement is
discovered. This is a challenging task and is left as an interesting area of future work.

5.6 Discussion

5.6.1 Conclusions

This chapter has proposed what appears to be the first approach for systematically
exploring the relationship between MVNs at different levels of abstraction. This was
motivated by some interesting behavioural differences observed between the BN and
MVN E. coli models from Chapters 3 and 4 which raised questions concerning their
relationship. In particular, more general questions were raised as a result, such as the
scope and limitations of Boolean modelling, and the identifcation of situations where
multi-valued modelling is required.

We developed a refinement theory which captured an assumption of what it meant
for a simpler MVN to be representative of another. The basic idea was to relate the state
spaces of the two MVNs using a mapping, and to check that the simpler one captured
consistent behaviour with respect to the other. Based on this relationship assumption,
we then developed algorithms for deriving and validating refinements, thus making our
approach amenable to practical modelling in the biological community. In particular,
some important issues were addressed during this development to improve efficiency. We
started with a straightforward exhaustive approach for deriving refinements, and proved
an interesting property in Theorem 5.2 that significantly reduced the search space. We
showed that the complexity of this exhaustive approach was dictated by an exponential
number of possible models, and so proposed a tree-based algorithm whose complexity de
pended on the number of refinements. Since we observed that the number of refinements
was often relatively tiny in comparison to the number of possible models, this therefore
represented a significant optimisation, as shown in our benchmarking. A parallel adap
tion of this algorithm was also proposed along with an implementation strategy, but this
was left as an interesting and much-needed area of future work.

Based on our refinement theory assumption, we demonstrated how some interesting
insights could be obtained into the above mentioned considerations. We gave an example

104

in Theorem 5.4 which motivated multi-valued over Boolean modelling. The example
involved an entity in which one state was used to perform two different interactions.
Although valid in practical modelling, it hinted at situations in which subtle behaviours
could not be adequately represented by higher levels of abstraction. Indeed, more work
is now needed to investigate more general motifs of behaviour which are problematic to
model more abstractly.

The scope and limitations of analysing refinements were also identified. In partic
ular, we showed a correspondence between reachability properties in an MVN and its
refinements in Theorem 5.5, but identified in Corollary 5.2 that these were in fact semi
deducible for most refinements. Thus, there is a certain amount that one can deduce
about an MVN using its refinements, but it is clear that further developments are needed
to investigate more useful notions of refinement geared towards analysis. In particular,
we see this essential in addressing a major application area of this work: circumventing
state space explosion by deriving the simplest model which can answer the particular
question of interest.

Finally, we showed how our framework could be applied to address the initial moti
vation for this chapter, by investigating the relationship between the Boolean and multi
valued models for E. coli. We demonstrated how this could be formulated as a verification
of whether the Boolean model was a refinement of the multi-valued one, and discovered
that this relationship did not hold according to our theory. This too demonstrates promis
ing potential for this work, and thus motivates further development. In particular, the
biological significance of the refinement theory proposed has been justified, but may re
quire adaption for future investigations. Specifically, it would be interesting to assess
whether a more relaxed or strict theory could provide a 'better' relationship, but 'better'
needs to be biologically justifiable.

Overall, this work has indicated much potential for systematic reasoning in biological
models, as well as the development of invaluable techniques for addressing state space
explosion in practical analysis tasks.

5.6.2 Future work

Improved algorithmic approaches for systematic refinement are required if these tech
niques are to be applied to large practical models. A good starting point would be the
implementation of the PARALLEL TREEREFINEMENT algorithm. This parallel adaption
to TREE REFINEMENT was proposed based on the observation that the rule tree could
be computed concurrently. Furthermore, since the worst case performance of TREERE

FINEMENT occurred when the refinement set was large, computation would be greatly
optimised by using multiple processors working on sub-trees. One possibility for this
would be to use a distributed computing framework such as Condor [202J in conjunction
with a database to implement a shared memory environment.

We are also interested in exploring the extent to which entities need to be considered
during refinement. Currently, refinement is based on a global view of the system where
all entities are considered. This guarantees that the refinement is indeed consistent with
the original model, but involves computation of the complete state space. If, however,

105

only a subset of the total number of entities can be used, then this will significantly
improve the performance of any algorithms.

Finally, it would be interesting to develop more efficient and systematic approaches for
verifying whether one model is a refinement of another. In Section 5.5, we used REFINER

to search for a mapping vector under which our BN model for the carbon stress network
in E. coli refined our MVN model of the same system. This involved searching over 70000
possible mapping vectors and checking for trace containment. Further studies would be
to see if all mapping vectors are required, or whether symmetry properties can be used
to reduce the search space.

5.6.3 Sources

Initial ideas and motivation for the refinement approach presented in this chapter form
part of the paper [20] which was presented at the 4th Integrative Bioinformatics Workshop
2007.

106

Chapter 6

Developing Realistic Asynchronous
Boolean Networks

BNs [101,102] are traditionally interpreted in a synchronous fashion, and this has been
reflected by their wide body of literature in the biological community [6,101,103]. In
particular, synchronous BNs are often favoured for their simplicity, since they avoid the
need to consider reaction rates. However, the assumption that all entities update their
state at exactly the same time can be argued to be biologically unrealistic [86], and so
this raises concern on the analysis of such models.

Motivation is therefore placed on their asynchronous counterparts [206]. In an asyn
chronous BN, each entity can update its state independently, which fits better with our
understanding of gene regulation occurring at different rates [86]. However, asynchronous
BNs also have shortcomings: they address the issue of reaction rates by erring on the side
of caution and allowing for all possible scenarios to occur. The result is that they can of
ten capture too much behaviour - some of which is unrealisable in practice. Furthermore,
this behaviour is often highly non-deterministic due to non-converging choices, making
analysis and interpretation problematic.

In theory, such choices can often be resolved either by assuming that the environment
of the biological system is slow enough to allow its behaviour to stabilise, or by having
some knowledge of the necessary reaction rates; that is, the system exhibits much less
non-determinism than the model suggests. In practice, however, it can be unclear what
these critical choices are and how to resolve them, since very little kinetic data is currently
available (this appears to explain why synchronous networks have mostly been favoured
by the biological modelling community [86]).

In this chapter, we begin to address these concerns by applying PN techniques from
asynchronous circuit design based on speed-independent (S1) circuits [55,191] and signal
transition graphs (STGs) [54,168]. 81 circuits are a subclass of asynchronous circuits
that function correctly according to their specification regardless of gate delays, and we
argue that they are also well-suited to biological systems.

The foundation of this work is therefore the methodological assumption that biologi
cal systems can be qualitatively modelled by S1 circuits, and we argue that if this is not

107

the case, then it implies that the model is either incorrect or misses some important
information. Note due to clear similarities, we will use the terms 'BN' and 'circuit' in
terchangeably, and will sometimes refer to the nodes of a BN as 'gates'.

It turns out that whether a circuit is SI or not almost always depends on the behaviour
of its environment, and we show that this environmental information cannot be correctly
captured by the circuit alone. This consideration therefore motivates STGs, a PN for
malism developed specifically for the specification of SI circuits [55,191J. In particular,
STGs enable the modeller to capture in a natural way both the behaviour of the circuit
and its environment - something which is crucial for comprehensively modelling GRNs.

We investigate how the sufficient conditions ensuring that an STG can be implemented
by an SI circuit can be interpreted in the biological context for GRNs. We observe that
these properties provide important insights into a model and highlight areas which need
to be refined. In particular, the violation of the output-persistency (OP) [55J condition
indicates the presence of choices that either require further information to resolve or
indicate some stochastic effects in the system that should be carefully documented. STGs
provide a formal means of documenting and refining this information, and thus provide
a well-supported formal framework for GRNs that allows realistic asynchronous models
to be incrementally developed and analysed.

In order to make our STG approach practical, we develop appropriate tool support to
enable STGs to be automatically constructed and refined. We extend the PN construction
tool GNAPN from Chapters 3 and 4 to cater for STGs, and then develop a new tool
STGToOL to enable the automatic identification and resolution of OP violations in the
constructed model. In particular, STGToOL highlights only those choices which affect
the qualitative behaviour of the system, and allows the user to resolve these by requesting
relative (rather than absolute) reaction rates.

We demonstrate our proposed approach and tool support by considering a case study
in which we develop and analyse a model of the GRN controlling the switch between the
lysogeny and lysis cycles in phage A. We begin by constructing an STG model based on
the asynchronous BN presented in [206J. We then refine this by finding the points where
the STG violates SI, and appropriately resolving the problems. In particular, we see how
some violations of OP highlight timing assumptions about the environment's behaviour,
whilst some represent the stochastic switching mechanism between the lysis and lysogeny
modes which cannot be resolved and are modelled using arbitration.

The rest of this chapter is organised as follows. We start by briefly introducing STGs
in Section 6.1. We then introduce the concepts and properties of SI circuits in Section 6.2
by considering the manual construction of an STG capturing the high-level behaviour of
the B. subtilis sporulation network from Section 3.3.2. In Section 6.3, we show how STGs
can be derived from circuit specifications, since these are what one often starts with in
practice. Moreover, we propose an algorithmic approach for identifying OP violations
in the constructed STG, and then develop a mechanism for refining these violations,
ultimately resulting in an SI STG. In Section 6.4, we discuss the implementation of a
tool STGToOL which automates the theory presented. In Section 6.5, this theory and
tool support are demonstrated using a detailed case study on the lysis-lysogeny switch in

108

phage A. Finally, Section 6.6 concludes by summarising our results and discussing some
future work.

6.1 Signal transition graphs

An STG [55, 168J is a particular type of labelled PN developed for the specification of
asynchronous digital circuits. In an STG, a set of Boolean variables called signals is
associated to the underlying PN, which collectively represent the global state of the
digital signals (i.e. wires) within the actual circuit. The states of these signals are
then changed by the transitions of the PN, which are labelled accordingly as follows:
a transition label a+ indicates that signal a goes from 0 to 1, and a label a- indicates
that signal a goes from 1 to O. Note in some cases there may be several transitions with
the same label (e.g. a+), and so these are named a+, a+/1, a+/2, and so on. Thus,
the underlying PN specifies the causal relationship between signals which captures the
behaviour of the circuit, and as such, the standard enabling and firing rules of PNs still
apply. Moreover, STGs are amenable to both established PN techniques and tools [1 J,
as well as specialist STG tools such as PETRIFY [54J.

The signals of an STG are partitioned into input, output and internal signals. The
input signals are controlled by the environment of the circuit - an abstraction representing
its surroundings, such as the output of another circuit. The output signals, on the other
hand, represent those produced by the circuit. Finally, the internal signals represent
those signals inside the circuit that are required in order for it to work correctly, and are
therefore invisible to the environment. For convenience, the output and internal signals
are often referred to collectively as local signals, since they are the signals that the circuit
must directly implement. Note the appropriate partitioning of signals into these three
types represents an important design step when developing an STG model.

For example, Figure 6.1(a) shows a commonly used component in asynchronous circuit
design called a Muller C-element [55J. The C-element takes two inputs a and b from the
environment and produces a single output c back into the environment (there are no
internal signals). The idea is that once the environment has raised a and b, the C
element raises c and it remains high until the environment has dropped both a and b.
This behaviour can be completely captured by the state transition table in Figure 6.1 (b),
and specified by the STG shown in Figure 6.1(c) (note unlike PNs, we use common
shorthand notation for STGs, where transitions are simple denoted by their labels and
non-marked places with only one input and one output transition are contracted).

From the initial state specified in Figure 6.1 (c) in which all signals are low, the system
waits until the environment raises (in any order) the inputs a and b (transitions a+ and
b+) before raising the output c (transition c+). Note the environment is assumed not
to reset the raised inputs until c+ fires. Then the environment resets (in any order) the
inputs a and b (transitions a- and b-), and in response the system resets its output c
(transition c-); again, the environment is assumed not to raise the inputs until C fires.

Intuitively, an STG captures a contract between the circuit and its environment, in
that it specifies how the circuit should react to changes in the environment, and what the
environment should expect from the circuit. More specifically, this contract is as follows:

109

a b c [c]
0 0 0 0
0 0 1 0
0 1 0 0

Environment 0 1 1 1
1 0 0 0

a 1 0 1 1

b 1 1 0 1
1 1 1 1 c

(a) (b) (c)

Figure 6.1: (a) A Muller C-element, (b) state transition table for C-element, and (c)
8TG capturing behaviour of C-element using shorthand notation.

• if an input signal transition is enabled, then the environment is allowed (but not
obliged) to send this input (the environment is not allowed to send inputs which
are not enabled);

• if a local signal transition is enabled, then the system is obliged to eventually
produce this signal (unless it is disabled by the firing of another transition, which
we will consider later), and is not allowed to produce a signal if it is not enabled.

In other words, the 8TG specifies that the system must be able to cope with at least the
specified inputs and produce all and only the specified outputs.

In this chapter, we interpret STGs biologically as follows. Signals are used to rep
resent the states of biological entities and transitions are used to capture changes in
these states, e.g. through chemical reactions or fluctuations in protein concentration. In
particular, the input signals from the environment can be used to represent factors such
as temperature, or simply the output from other sub-systems in the organism, and the
internal signals can be used to represent any auxiliary biological entities that are required
for the system to function correctly. The output signals can therefore be interpreted as
the result of these environmental factors and internal mechanisms, such as a change in
protein concentration.

It turns out that the ability of STGs to capture both the circuit and its environment
is key for the modelling and analysis discussed in this chapter. Firstly, accounting for
the behaviour of the environment is crucial in understanding how complex biological
systems adapt to their surroundings. More important for this chapter, however, is the
fact that environmental assumptions are critical for the development of SI circuits (and
thus, according to our methodological approach, biological systems), since it is possible
for a circuit to be 81 in one environment yet non-SI in another.

For example, the STG in Figure 6.1 (c) captures a circuit which is 81 in the environ
ment specified. This is because the environment must raise a and b before the output
signal c is raised (and is assumed not to reset either of them until after this has occurred),
and then the environment must drop a and b before c is dropped (again, the environment
is assumed not to raise either before c has dropped). As such, the output signal c is

110

produced correctly no matter what delays are associated with signals a and b. However
in a slightly more demanding environment where the environment can drop a before ~
rises, this STG becomes non-SI. In this particular case, this is due to the violation of an
important property known as output-persistency (OP) [55] which we will discuss in more
detail later.

Of course, there are other properties apart from OP that a circuit must satisfy to be
81, and we will introduce these in the next section. In particular, we discuss why their
violation can be used to indicate model construction errors or missing information in the
context of biological systems.

6.2 Speed-independent circuits: properties and con
struction

In this section, we introduce the properties which ensure that a circuit is 81, and relate
these to the identification of missing or erroneous information in an asynchronous model
of a GRN. To accomplish this, we revisit the sporulation network for B. subtilis [197]
from Section 3.3.2, and consider the step-by-step construction of an STG which models
its high-level behaviour. As an overview, the properties that we will discuss here for SI
to hold are boundedness (see Section 2.3.3), consistency (signal changes always alternate
between rising and falling for each signal), complete state coding (CSC) (CSC ensures
that the circuit always knows what to do next for any reachable state) and OP (a local
signal cannot be disabled). We will then discuss some further properties which are not
directly required for SI, but whose violation is nevertheless suspicious and should be
investigated.

The B. subtilis sporulation model from Section 3.3.2 is a BN consisting of 12 entities,
but here we consider a much simpler version for illustrative purposes. Specifically, we
focus on a high-level representation requiring only three entities: Signal, which indicates
the presence of nutrient starvation and which must be present for sporulation to occur
as shown in Section 3.3.2; SigA, a sigma factor whose presence we showed was required
for sporulation to occur in [194]; and SigF, a sigma factor whose presence we use as an
indication that sporulation has occurred.

As already mentioned, the partitioning of input and local signals represents a key
design step. In our case, we therefore assign Signal as an input because it represents an
environmental condition. Also, since SigA is regulated outside the scope of the model
from Section 3.3.2, we will also treat it as an input signal from the environment. On the
other hand, SigF is used as an indication for sporulation, and should therefore be an
output of the STG to the environment. This high-level circuit, which we will refer to as
the bacillus-circuit, is shown abstractly in Figure 6.2.

The idea then is that we want to construct an STG which captures the behaviour of
the bacillus-circuit in response to its environment. From what we have already discussed,
we know that sporulation should only occur (i.e. SigF raises) in the presence of Signal
and SigA. Moreover, sporulation should continue as long as both are present; that
is, if either Signal or SigA drop then sporulation should stop and vegetative growth

111

Environment

SigA

Signal

Figure 6.2: The bacillus-circuit, an abstract view of the B. subtilis sporulation network.

should occur (i.e. signal SigF drops). Note such behaviour can be implemented by an
AND-gate, but we will nevertheless discuss the construction of this 8TG to introduce the
properties of 81 circuits.

In order to formalise this behaviour, we begin to construct an 8TG by first deciding
upon a suitable initial state. In most cases, it is prudent to choose a stable initial state
in which the circuit is awaiting a request from the environment (note in general the
choice of initial state is outside the scope of this chapter, and so we just remark that
typically biological systems have cyclic behaviour, and that any state in the cycle can
be chosen). We therefore choose an initial state in which all signals are low, where the
bacillus-circuit waits for the environment to raise Signal and SigA. The idea then is
that once Signal and SigA have risen (in any order), the bacillus-circuit can raise SigF
to represent sporulation (note the environment is assumed to be relaxed and does not
reset either Signal or SigA before this has occurred). This 8TG fragment is shown in
Figure 6.3(a).

\ /

0--Signal+ \ / Sj9nal-

~\// ~
Si"f.f+ SigF-

//\~ /
0--SigA + / \ SigA-

/ \

(a) (b)

Figure 6.3: (a) 8TG fragment showing that circuit must wait for environment to raise
Signal and SigA before sporulation can occur, and (b) incorrect 8TG for dropping SigF,
since it does not allow sporulation to stop until both Signal and SigA have been dropped.

Once SigF has been raised, the bacillus-circuit is again stable, and waits for the
environment to drop Signal and SigA. One possibility is for the circuit to wait for the
environment to concurrently drop Signal and SigA before dropping SigF, as shown in
Figure 6.3(b). However, whilst this situation accounts for when the environment is faster
than the circuit it does not include all the behaviour that we want, since sporulation ,
should also stop when either Signal or SigA are low. We therefore need to account for
two additional situations in the 8TG in which only one signal has been dropped. As

112

such, the following three environmental behaviours need to be considered: only Signal
is dropped, only SigA is dropped and both are dropped (i.e. the environment is fast
enough to drop both before the circuit can react). The STG fragment capturing these
three situations is shown in Figure 6.4.

Figure 6.4: STG representing termination of sporulation in all three behaviours of the
environment.

In the case where both Signal and SigA have dropped, there will be two tokens on
the pre-place for SigP-, and thus we say that this place is 2-bounded; from here, SigP
should drop to reset the STG to its initial marking. In both other cases, however, there
will be only one token, and so SigP- should be allowed to drop whilst still allowing the
input which has not dropped to do so (again, we assume the most relaxed environment
for the purpose of this example, which does not raise either input signal before this has
occurred). These three situations can be compactly modelled with the use of a so-called
dummy transition, which does not produce a signal and simply acts as a synchronisation
mechanism. We show this logic in the STG in Figure 6.5.

Signa~ /nal

SigP+

/~
SigA+ SigA-

Figure 6.5: Incorrect STG with dummy transition.

The causal conditions for the dummy transition require that SigP- fires first, thus
accounting for all three situations discussed before. Then, assuming that both input
signals have dropped, the dummy will be enabled to fire, and will reset the STG to the
initial marking. Therefore, this STG seems to capture the desired behaviour at first
glance, but closer inspection reveals a problem: currently, it is possible for SigP to
drop twice consecutively. This leads us to discuss our first two properties, boundedness
and consistency, which all SI specifications must respect (note a third property called
deadlock-freeness is also violated here, but is not required for SI and so will be discussed
shortly).

113

6.2.1 Boundedness and consistency

Boundedness, as already discussed in Section 2.3.3, is a property which ensures that
the number of tokens on places can never exceed some bound k. The rationale for this
is that if all places are bounded, then the reachable markings of the STG will also be
bounded. Since any digital circuit can have only finitely many reachable states, we
therefore require the STG to have finitely many reachable markings. Note boundedness
is a necessary implement ability requirement for any digital circuit, not just those with
S1.

The STG in Figure 6.5 is bounded; specifically, it is 2-bounded, as the pre-place to
SigP- can contain up to two tokens. However, the implicit post-place of SigP- has
been assumed to be safe, but since SigP- can fire twice, it is now also 2-bounded. If
the STG has been constructed based on the assumption that this post-place is safe, then
this clearly highlights a modelling error which must be addressed.

In fact, this boundedness violation is a direct result of the violation of another prop
erty, called consistency. Consistency is a property which requires that the transition
labels for each signal a alternate between a+ and a-, and always begin with the same
sign; in other words, the reachable signal values are binary. Note consistency, like bound
edness, is a necessary implement ability requirement for any digital circuit, not just SI
ones.

In this case, signal SigF does not respect this property, and so we need to ensure
that SigP cannot fire twice consecutively. To achieve this, we use an additional input
place to SigP- to allow it to fire only once, resulting in the new STG shown in Figure
6.6.

Figure 6.6: SI STG for bacillus-circuit in the most relaxed environment.

Now we observe that this STG respects boundedness and consistency. In fact, it turns
out that it also respects another requirement implement ability property, called complete
state coding (CSC).

6.2.2 Complete state coding

Two reachable markings in an STG are said to be in a complete state c~ding (~SC)
confict if the values of all signals coincide, but the sets of enabled local SIgnals dIffer.
Thus an STG satisfies the CSC property if no two reachable states are in a CSC conflict.

I~tuitively, during the execution of the circuit, it can 'see' only the values of its signals,
but not the marking of the STG. Hence, if two semantically different reachable states

114

with the same values of all the signals exist, the system cannot distinguish between them,
and so cannot know what to do next. At the circuit level, CSC conflicts are resolved
by inserting new. in:ernal sig~als he~ping to distinguish between the conflicting states, in
such a way that Its external behavIOur does not change. Intuitively, insertion of a signal
introduces additional memory into the circuit, helping it to trace the current state.

In an STG modelling a biological system, CSC conflicts can be interpreted as a lack
of information about its internal workings. That is, they indicate the presence of some
auxiliary internal entities (e.g. proteins) which are not visible to the environment but
help the system to accomplish its function. Discovering CSC conflicts during model
construction can therefore prove useful for indicating the possibility of incomplete data,
and should be documented as part of the development process.

6.2.3 Output persistency

Whilst boundedness, consistency and CSC are necessary properties for an STG to be
implement able as a digital circuit, the final property, called output-persistency (OP) ,
is required for it to be S1. In particular, OP guarantees the robustness of the circuit
under any delay of its gates, and violations of OP indicate the presence of choices in the
model that require further information to be resolved. Thus, we use such choices as a
means of highlighting areas of the model where further knowledge of reaction rates and
environmental behaviours is required.

The OP property requires that once a signal is enabled, it cannot be disabled before it
is produced. The rationale for this in circuit design is that once a signal becomes enabled,
its voltage starts to change, and if it is disabled unexpectedly before this has completed,
then it could be incorrectly interpreted by other gates listening to it. For example, if some
signal a becomes enabled, its voltage may start to (say) rise from 0 to 1. However, if a is
disabled unexpectedly during this process, its voltage is pulled down, resulting in a non
digital pulse on the corresponding wire which can be interpreted differently depending
on whether the voltage has crossed the threshold between 0 and 1 or not. Hence, the
behaviour of the circuit becomes non-deterministic (of course, these intermediate states
can be handled when we introduce extra states, such as in the MVNs discussed in Chapter
4, but we do not consider this case here). Note we can interpret OP from a biological
point of view by replacing voltage with, for example, protein concentration.

Visually, if OP is violated then there exists a choice between two transitions t and
t' in the STG, where both are enabled simultaneously and where firing one disables the
other. We can formalise this choice with the following notation.

Definition 6.1 (Choice). Let t and t' be two transitions in the underlying PN of the
STG. Then we write t ---'- t' if at some reachable marking, both t and t' are enabled and
firing t' disables t.

However, OP violations in the STG represent a stronger property than simply the
existence of such choices. More specifically, for some choice t ---'- t' to be classed as an
OP violation in the STG at a reachable marking, the following additional conditions are
required:

115

(1) t and t' must be transitions of different signals;

(2) at least one transition must be labelled with a local signal;

(3) the signal of t must be disabled when t' fires.

Condition (1) is obvious, but (2) is more interesting, as it rules out choices between
two input transitions. This is because such choices model a non-deterministic choice in
the environment (for instance, a non-deterministic increase or decrease in temperature),
and so does not need to be implemented by the system itself. Thus, SI circuits can still
be obtained from STGs with input choices, as long as the other conditions are also met.

Even if t --'- t' satisfies conditions (1) and (2), it may still not be an OP violation if it
does not satisfy condition (3). To explain this, consider a transition a+ of some signal a.
If a+ is disabled by another transition of a different signal, then it is possible that some
other enabled transition a+ /1 was not disabled, or that the new marking enables a+ /I.
In both cases, signal a persists, and so an observer will not see it drop. Based on this,
we can now formalise an OP violation.

Definition 6.2 (OP violation). A choice t --'- t' at some reachable marking M is an OF
violation, denoted t ~ t', if: (i) t and t' are labelled with different signals; (ii) at least
one of those signals is local; and (iii) firing t' disables the signal of t.

Biologically, an OP violation can represent some missing information regarding the
outcome of two competing reactions. This can therefore provide a crucial first step to the
biologist in identifying precisely the information that should be gathered through further
experimentation.

It can be observed that the STG in Figure 6.6 respects OP, since there are no choices
involving local transitions. As this STG also respects boundedness, consistency and CSC,
we therefore say that it is SI in the environment specified (recall that this is the most
relaxed one). However, suppose we consider a slightly more demanding environment in
which Signal can drop before SigF has been raised. This environmental behaviour is
shown in Figure 6.7.

• Signal+ /nal-

Signal- /1.6--Si9F+

/~
SigA+ SigA-

Figure 6.7: STG modelling bacillus-circuit in more demanding environment with an OP
violation.

Now we see that if both Signal and SigA are raised, SigF+ becomes enabled as
before. But, the input transition Signal- /1 is also now enabled, and if the environment

116

is faster than the circuit, Signal- /1 can fire before the circuit has had time to raise
SigF. We therefore have an OP violation SigF+ ~ Signal- /I.

Methodologically, OP violations can be automatically identified, but their resolution
requires input from the user (we will discuss both of these issues later). In particular, two
types of OP violation need to be considered: violations involving both input and local
transitions; and violations involving only local transitions (recall that choices involving
only inputs are not OP violations). The former is usually straightforward to resolve by
assuming that the environment is slow enough for the circuit to stabilise. The latter is
not so straightforward, since they require extra knowledge of the reaction rates, which
are not always available. Nevertheless, such violations can be used to identify precisely
the information required by the biologist, who can then focus on obtaining it through
experimentation.

In some cases, it may not always be possible to resolve the latter if they represent
some truly stochastic phenomenon, such as the lysis-lysogeny switch in phage A (see
Section 6.5). One should therefore leave such violations in the model, thus representing
the stochasticity as a non-deterministic choice, and document this decision. Note such
choices can still be handled in an SI manner using arbitration [55], but we will not elab
orate on this here.

An STG is therefore implement able as an SI circuit (and thus, by our methodologi
cal assumption, a biological system) if it is bounded, consistent, has esc and is OP. For
example, the STG shown in Figure 6.6 can be implemented by the SI circuit [SigF] =
Signal SigA, which, as previously mentioned, is called an AND-gate.

6.2.4 Additional properties

There are a number of other properties which are not directly required for SI, but whose
violation is nevertheless suspicious and should be documented. At least, such properties
can be used to identify potential model construction errors or indicate missing informa
tion.

Deadlock-freeness

A deadlock (see Section 2.3.3) occurs when no transitions are enabled at some reachable
marking. Deadlocks indicate that the system can stop functioning, which in most cases
is probably not an intended behaviour. Our SI STG in Figure 6.6 is free from deadlocks.

No self-triggering

A signal a is called self-triggering if firing one of its transitions (say) a+ can immediately
enable another of its transitions (say) a-. Self-triggering can yield the same effects as
OP violations (Le. non-digital pulses) as well as cause esc conflicts (note all the signals
have the same values before firing the first transition and after firing the second one).
In the context of biological systems, self-triggering could indicate some missing auxiliary
internal entities whose transitions would separate the pair of transitions involved in self
triggering. Our SI STG in Figure 6.6 does not contain self-triggering.

117

Divergency-freeness

If infinitely many internal transitions of an STG can be executed from some reachable
marking, then it is said to have divergency. Biologically, divergency can be interpreted
as some infinite unproductive process in the system which, nevertheless, consumes re
sources. Our SI STG in Figure 6.6 respects the divergency-freeness property.

Note the properties introduced throughout this section can be automatically checked
for using STG tools such as PETRIFY [54].

6.3 Constructing SI STGs from circuits

We now consider applying these analysis techniques to more practical modelling situa
tions. In particular, we assume that we start with a circuit specification of a biological
system - a BN derived by some means, such as from time series data - and show how an
STG can be constructed to capture its behaviour. We then discuss how violations of SI,
which, according to our methodological assumption, represent unrealisable behaviour,
can be identified in the STG and refined.

6.3.1 Translating circuits into STGs

As introduced earlier, the bacillus-circuit should raise SigF (to represent sporulation)
only when SigA and Signal are high, and should drop SigF (to represent vegetative
growth) when SigA or Signal are low. This behaviour was captured by the STG in
Figure 6.6 (which is SI in the environment specified), but can also be described by the
state transition table in Figure 6.8, which represents the circuit specification that one
would normally start with in practice.

SigA Signal SigF [SigF]
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Figure 6.8: State transition table for bacillus-circuit representing next-state funct~on
of SigF, which after logic minimisation, can be described by the next-state equatIOn
[SigF] = SigA Signal.

By applying the logic minimisation techniques discussed in Section 3.1 to this table,

118

we obtain the next-state equation [SigF] = SigA Signal which directly corresponds
to the logic of our SI STG from Figure 6.6. However, further study reveals one crucial
difference: it is impossible to deduce the environmental behaviour from the equation alone
(indeed, we have already seen an environment in Figure 6.7 where this circuit is not SI).
In short, the environmental behaviour shown in Figure 6.6 has somehow been lost. This
therefore exemplifies the key advantage of STGs in capturing both the circuit and the
environment, and shows that having an STG specification can be much more useful for
analysing a system than the circuit definition alone.

We therefore want to be able to translate this circuit into an STG to capture these
environmental assumptions naturally. In fact, it turns out that any digital circuit can be
modelled as an STG using a similar approach to the asynchronous PN construction of
Definition 3.1, which we call the circuit-STG construction.

Definition 6.3 (The circuit-STG construction). Let BN = (G, N, F) be a circuit. Then
an STG can be constructed from BN as follows:

• Each signal (i. e. regulatory entity) gi EGis represented by two places gi and gi
which indicate whether the entity is active or inactive, respectively. Exactly one of
these places is marked at any time.

• Since we do not have any information about the environment's behaviour, it is taken
to be the most general, i. e. it can always change the value of any input. This is
modelled for each input signal gi by adding transitions gt (consuming a token from
gi and depositing a token on gi) and gi (consuming a token from gi and depositing
a token on gi).

• For each local signal gi the circuit computes the next-state value [gil of gi using the
corresponding minimised Boolean equation [gil = Ei (e.g. [SigF] = SigA Signal
for our running example). For each term mj in the minimised disjunctive normal
form of Eilgi=o {where Eilgi=b denotes the Boolean expression resulting from sub
stituting gi by b E {O, I} in Ei), we add a transition gt / j which switches on gi.
We add an arc from place gi to gt / j and from gt / j to place gi which switches on
gi· Then, for each gk (resp. gk) occurring in mj, we connect gt fj to the place gk
(resp. gk) by a pair of arcs going in opposite directions (to model testing for the
presence of a token without consuming it). We use a similar process to define the
transitions gi fj which reset gi based on Ei Igi=l'

Using this circuit-STG construction process, we can translate the next-state equation
[SigF] = SigA Signal into the STG shown in Figure 6.9. One can see that as the
behaviour of the environment could not be derived from the circuit, the most general
environment was modelled. As such, the STG in Figure 6.9 strictly includes the behaviour
of our manually constructed STG in Figure 6.6. However, now the STG captures too
much behaviour which we argue to be unrealisable in practice. Thus, the next step is to
apply the properties of SI circuits discussed in the previous section (i.e. boundedness,
consistency, esc and OP) to identify areas of the STG model where more information
is required, and where this unrealisable behaviour can be removed.

119

SigA- SigA+

Si~Si9F
SigP+

Si9n<Si9F

Signal+ Si nal-

Figure 6.9: STG constructed by the circuit-STG process modelling the most general envi
ronment in which Signal and SigA can oscillate freely. This STG respects boundedness,
consistency and esc, but does not respect OP.

It turns out that STGs constructed from circuits using the circuit-STG process inher
ently respect boundedness, consistency and esc, and so do not require checking for these
properties. In fact, STGs constructed by the circuit-STG process respect some stronger
properties: they are always safe, a strong boundedness property where the respective
bound is one; and they respect universal state coding, a stronger property than esc,
requiring that no two different states have the same values of all the signals (note there is
a one-to-one correspondence between the reachable markings and encodings of an STG
derived from a circuit). In addition, STGs with at least one input signal are always free
from deadlocks, since these inputs can oscillate freely.

However, OP is not always respected by the circuit-STG construction process, as the
extra environmental behaviour captured can cause violations involving input and local
transitions (of course, this is in addition to any violations between local transitions).
We therefore require a means of identifying OP violations in an STG model so that the
unrealisable behaviour can be removed.

6.3.2 Identifying output-persistency violations

The identification of OP violations for modest-sized STG models can often be achieved
straightforwardly by visual inspection. For example, one can see that the STG in Figure
6.9 has the following OP violations between input and local transitions (remember, these
are now present because the most general environment was modelled):

SigP- /1 ~ SigA +, SigP- ~ Signal+, SigP+ ~ SigA -, SigP+ ~ Signal-.

For larger practical STG models, however, it is clear that we require automated tech
niques for such identification. Indeed, PETRIFY provides this functionality, but does

120

not appear to identify the actual transitions involved. To address this, let us start with
an STG model STg, which has been constructed from a circuit using the circuit-STG
process from Definition 6.3. We know that STg respects boundedness, consistency, CSC
and deadlock-freeness, but that it does not necessarily respect OP. We must therefore
check STg for OP violations, and we do this by searching through each possible reach
able marking M E RM(Mo) of STg from some initial marking Mo.

A model checking problem:

We formulate this search as a model checking problem. The idea is that at each marking
M reachable from Mo, there will be one or more enabled transitions (we know this since
STGs constructed from circuits are deadlock free) which, when fired, will yield a new
marking M'. Therefore, at each marking M, we fire each enabled transition t in turn to
give a new marking M'. Then, by inspecting which transitions t' have been disabled at
M', one can identify all the choices in ST 9 . Of course, just because some transition t'
has been disabled by the firing of some t, it does not mean that t' -" t is an OP violation
(see Definition 6.2). However, if t' -" t is a violation of OP, then we record the choice.
This process is then repeated for the other enabled transitions at marking M before the
next marking M E RM(Mo) is considered (i.e. we do a breadth-first search of the reach
ability graph).

Clearly, this is a somewhat exhaustive approach for identifying OP violations in an STG,
since an exponential number of markings must be checked. Whilst the development of
more efficient approaches is outside the scope of this chapter, some improvements are
worth mentioning:

• The first improvement can be made by noting that choices between transitions can
be identified structurally; that is, two transitions which share some common pre
places. Whereas not all structurally-identifiable choices are actually realisable once
tokens are introduced, their discovery will nevertheless be useful in reducing the
search space for OP violations.

• A second improvement could be to use binary decision diagrams (BDDs) [34], which
provide a compact and canonical representation of the state graph.

• Another improvement would be to use model checking approaches [109] which work
on the unfolding of the STG (which is often exponentially smaller than its reacha
bility graph). In such a case, a Boolean expression formulating the conditions for
OP violations could be used for their efficient identification.

OP violations highlight the critical points in the STG model where there is uncerta~nty
about the outcome of choices. The STG is therefore not SI, and thus captures behavIOur
which is unrealisable in practice according to our methodological assumption. With this
in mind we now focus on the resolution of OP violations and the derivation of an SI ,
STG.

121

6.3.3 Resolving output-persistency violations

Whilst the identification of OP violations can be automated, their resolution requires
user-given information, since it is impossible for a tool to derive this from the circuit.
For example, the user may know that the environment is slow enough to allow the system
to stabilise if the violation is between a local and input transition, or they may have some
knowledge of reaction rates if the violation is between local transitions only. In practice,
measuring reaction rates is a very effort-consuming task, but our approach addresses this
issue by requiring only relative rates; that is, it is sufficient to know that one reaction is
faster than another.

The approach we take to solving OP violations is to give priority to one of the transi
tions in the violation, so that it will always fire before the other in situations where they
are both enabled. Of course, which transition is given the priority must be specified by
the user. We therefore formalise such priority assumptions with the following notation.

Definition 6.4 (Transition priority). Let t <2.5: tf be an OP violation. Then we write
t f--t tf to denote the fact that, when both t and tf are enabled simultaneously, priority
should be given to t.

Note that since t is disabled by tf (but not the other way around) in the case where
t ---' tf, then assuming t f--t tf will still allow tf to fire afterwards (provided that it is not
disabled by t). For example, we can now formally express a slow environment for the
STG in Figure 6.9 as follows:

SigP- /1 f--t SigA +, SigP- f--t Signal+, SigP+ f--t SigA -, SigP+ f--t Signal-.

With this, we now discuss how such priority assumptions can be enforced as a transfor
mation of the STG. In particular, we develop an initial approach, and then demonstrate
with a counter-example a special case in which it can fail to resolve the violation. To
address this shortcoming, we extend the definition of this transformation so that it is
commutative, and formally prove that this property holds. Note in a slight abuse of no
tation, we will use t f--t tf to denote both the priority assumption and the corresponding
transformation in the STG.

(1) A first approach

Lets assume that we want to express the priority t f--t tf. The basic idea is to replicate
the transition with lower priority (in this case tf) to capture each situation in which
t is not enabled and tf can fire safely. We therefore formalise this as the firing order
enforcement (FOE) transformation.

Definition 6.5 (Firing order enforcement (FOE) transformation). Suppose t 7. tf has
been assumed and let {PI, ... ,Pn} = et etf. If n = a then t is enabled whene~er t ~s, and
so tf along with all incident arcs can simply be removed from the STG, as ~t can never
fire under the assumption t f--t tf. Otherwise, tf is replicated n - 1 times so that there
are n copies (denoted t~ = tf, t;, ... ,t~) of tf in total. All such replicas are labelled by
the same signal as tf and have exactly the same connections. Furthermore, a read arc ~s

122

added between t; and Pi for each i = 1, ... , n, where Pi is gj if Pi corresponds to gj, and
gj if Pi corresponds to gj. The FOE transformation guarantees that: (i) if t is enabled by
some marking M, then none oft~, . .. , t~ are enabled; and (ii) ift is not enabled by some
marking M, but tf is enabled by M in the original STG, then at least one of t~, ... , t~ is
enabled in the modified STG.

In other words, if t f-+ tf has been assumed, then the FOE transformation will resolve
the choice between t and tf to favour t. For example, we can enforce the slow environmen
tal assumptions specified above to the STG in Figure 6.9, resulting in the STG shown
in Figure 6.10(a), where the additional read arcs (shown as dashed arcs) specify these
environmental assumptions. This STG can then be simplified using PETRIFY [54], which
returns the STG shown in Figure 6.10(b).

Si9A~-___ Si9A~ S. F - __ , 1,g -.....
SigA ,:

\ /

~
Si9F~\

Signal __ /~ __
_ - --~/ SigF

Signal+ Si nal-

(a)

~--------------------SigF-/2~--------------------------,

Signal+ ~ . Si9F-._

Signal- SigA+ /1 S1,gA- /14szgnal /2

'---+I • ?-Si9F+ -c< . _
SigA- Signal+ /1 Signal- /1-cr-SZ9A /2

Si9A+~ SigF-/l

(b)

Figure 6.10: (a) STG from Figure 6.9 with slow environment assumptions, and (b) STG
after simplification with PETRIFY.

Having resolved the four OP violations using the FOE transformation, the STG in

123

Figure 6.10(b) is now S1. Unsurprisingly, it contains less behaviour than the STG in Fig
ure 6.9, since our assumptions have been used to remove unrealisable environmental be
haviour. Interestingly though, it captures more behaviour than the manually-constructed
STG in Figure 6.6. In particular, it can be observed that it is now more robust to the
behaviour of the environment, since it poses fewer constraints on it. For example, the
environment is now allowed to oscillate Signal and SigA from the initial marking, but
once both have been raised, they are assumed to remain high so that the circuit can
raise SigF (thus avoiding an OP violation). Similarly, once SigF has dropped as a
result of either Signal or SigA dropping, the environment is now allowed to raise the
corresponding signal again.

Intuitively, resolving OP violations is equivalent to the removal of arcs in the state
graph [55] of the STG. The state graph is closely related to the reachability graph, but
captures signal changes as opposed to transition firings. For example, the state graph
for the STG in Figure 6.9 (modelling the most general environment) is shown in Figure
6.11(a), where the initial state Signal = 0, SigA = 0, SigF = ° is highlighted. Now,
consider OP violation SigF- /1 ~ SigA+, which can be seen at state 101; SigF can
drop at this state, but if SigA rises then this is prevented. Resolution of this violation
is therefore equivalent to removing the outgoing arc SigA + from state 101. Solving
the remaining violations therefore gives us the state graph in Figure 6.11 (b), which
corresponds to the STG in Figure 6.1O(b).

igA· igA+

ignal+

igF-

(a) (b)

Figure 6.11: (a) State graph for the STG in Figure 6.9 modelling most general environ
ment, with initial state Signal = 0, SigA = 0, SigF = ° highlighted, and (b) state graph
for SI STG in Figure 6.10(b).

124

This intuitive view of arc removal fits with our understanding that OP resolution re
moves unrealisable behaviour. In addition, since we clearly obtain the same state gra h
irrespective of the order in which the arcs are removed, then the order in which the viofa
tions are solved should also not matter - a property known as commutativity. It therefore
follows that the FOE transformation on the STG should be commutative; the STG after
solving a set of OP violations in any order should be the same. However, the following
counter-example shows that this is not always the case.

Counter-example:

Consider the STG shown in Figure 6.12(a), which has the following OP violations:
b- ~ a-, C ~ a- and c- ~ d-. Suppose we look at resolving the first two viola-

(a) (b) (c)

Figure 6.12: (a) STG with OP violations b- ~ a-, C ~ a- and c ~ d-, (b) resolving
with priorities b- t---t a- then c- t---t a-, and (c) resolving c- t---t a- then b- t---t a-.

tions in both orders using the FOE transformation. If we apply assumptions b- t---t a
then c- t---t a-, a read arc from b is added to a- (to resolve the first violation), and then
a- (and the new arc) is replicated to form new transitions a- and a-/l which capture the
two conditions for resolving the second violation. This STG with the additional dashed
arcs is shown in Figure 6.12(b). On the other hand, if we apply assumptions C t---t a
then b- t---t a-, we replicate a- to form new transitions a- and a- /1 which capture the
two conditions for resolving the second violation, and then add the read arc from b to
a- only. This different STG is shown in Figure 6.12(c), and one can clearly see that it is
still possible for a- /1 to fire before b-, thus preserving the original OP violation.

The STG in Figure 6.12(b) correctly captures the slowness of a-, whereas the STG
in Figure 6.12(c) does not. Thus, there appears to be a discrepancy between the state
graph view of arc removal and the FOE transformation view of transition prioritisation
which clearly requires addressing for the correct resolution of OP violations. This dis
crepancy can be explained by noting that arc removal in the state graph works at the
signal level, whereas the FOE transformation works at the transition level. Thus, for the
FOE transformation to work at the signal level also, we propose a possible extension to
its definition to make it commutative.

125

(2) A commutative approach to firing order enforcement

A commutative extension to the FOE transformation can be made by introducing the
notion of a transition group; a 'virtual' set used for book-keeping which simply enables
replicated transitions from the same originator to be treated as a logical unit. Each
transition t is associated with such a group, denoted TG(t), which initially contains only
t itself. The idea then is that when t is replicated during some transformation, the
replicas are added to this group, so that future transformations consider all transitions
and do not miss any (as observed above).

For example, consider once again the STG from Figure 6.12(a). Initially, the transition
group of all four transitions simply includes the one transition, e.g. TG(a-) = {a-}.
Suppose we solve violation b- ~ a- first. As before, this only involves the addition of a
read arc between a- and b. Solving violation c- ~ a-, however, involves the replication
of a- to capture the two conditions under which a- can fire (and c- cannot), and so
we create a replica transition a- /1 and add this to the group TG(a-). We then add a
read arc between a- and 13 and a read arc between a- /1 and d as before, resulting in the
correct STG shown in Figure 6.12(b).

On the other hand, if we resolve c- ~ a- first, we replicate a- to give us a- and
a- /1, and then add a- /1 to TG(a-). Read arcs between a- and 13, and between a- /1 and
d are then used as before. Then, when we resolve b- ~ a-, we consider both transitions
in TG(a-), and add a read arc to place b for both of them. Again, this results in the
correct STG shown in Figure 6.12(b).

We now formalise this extended transformation, which we refer to as the transition
group firing order enforcement (TGFOE) transformation.

Definition 6.6 (TGFOE transformation). Suppose t t--t t' has been assumed and let
TG(t') be the transition group of t'. Then, we apply the FOE transformation to all
til E TG(t'), and add any new replicated transitions to TG(t').

The TGFOE transformation essentially creates the cartesian product of conditions
for the slower transition to fire, and thus its application for a given set of OP violations
will result in the same STG regardless of ordering. We show that this commutativity
property holds more formally with the following theorem.

Theorem 6.1. The TGFOE transformation is commutative.

Proof. It suffices to consider two transformations Tl and T2. Then, we need to show that
the resulting STG after applying Tl and T2 in both orders is the same. Specifically, there
are two cases that should be considered:

(1) Assume Tl and T2 involve transforming two different transitions. This is trivial,
and does not lead to the problems highlighted previously by our counter-example,
since the two transitions are independent of one another. It is straightforward to
see that their application is therefore commutative.

(2) Assume Tl and T2 involve transforming the same transition t. Let Tl enforce the
priority assumption ta t--t t and T2 enforce the priority assumption tb t--t t, where
{p P } = -t ,,-t and {Pb ... Pb } = -tb " -t. We need to consider a further ai, ... , aj a 1,' k

two cases:

126

(i) Let j = O.or k = O. Here, ta or tb are enabled precisely when t is, respectively.
Thus, t wIll not be able to fire under either timing assumption, and so can be
removed from the STG, along with incident arcs. Furthermore, since for each
t' E TG(t), we have that -t' n -t =1= (/) by definition, then these too will not be
a~le to fi.re ~nder either timing assumption, and so should be removed along
wIth all mCldent arcs. Clearly, in either case, the resulting STG will be the
same.

(ii) Let j > 0 and k > O. Suppose TG(t) = {t l , ... , tm}. If we apply transfor
mation TI first, then for each transition in TG(t), we create j - 1 replicas
with exactly the same connections, add these to TG(t), and then link each
to the corresponding place in eta using read arcs. Thus, TG(t) is now the
set TG(t) = {tt, ... , ti,.··, t~, ... , ttn}. Then, we apply T2 by creating k - 1
replicas of each transition in TG(t), adding them to TG(t), and by linking
them using read arcs to the corresponding places in -tb. Thus, TG(t) is now
the set:

TG(t) - {tl,l tl,k tj,l tj,k tl,l tl,k tj,l tj,k}
- I'···, 1 , ... , 1 , ... , I'···' m'···' m'···' m'···' m .

Similarly, applying transformation T2 first then Tl results in the transition
group TG(t) being:

TG(t) - {tl,l t l ,] tk,l tk,j tl,l tl,j tk,l tk,j}
- I , ... , I'···, 1 , ... , 1 , ... , m'···' m'···' m'···' m .

Notice now that for every transition t~,q E TG(t) after the first ordering, there
is a corresponding transition t;.'p E TG(t) after the second ordering, with
exactly the same incident arcs. Hence, the resulting STGs are the same.

Since we have shown that commutativity holds for any two TGFOE transformations, we
have therefore shown that it holds for any sequence of TGFOE transformations, thus
concluding our proof. 0

From this, we observe that there is now a direct correspondence between the TGFOE
transformation and the state graph, thus avoiding the problems identified by our counter
example for the FOE. In addition, the SI properties discussed in Section 6.2 which
hold for STGs produced by the circuit-STG approach are preserved by the TGFOE
transformation:

• boundedness and consistency are preserved, since the set of reachable markings can
only be reduced by the transformation;

• since STGs constructed by the circuit-STG approach respect USC, and the TGFOE
transformation preserves USC (as it can only eliminate reachable states and never
adds new ones), then CSC is preserved also, since USC implies CSC;

• deadlock-freeness is preserved, since TGFOE can only disable some (but never all)
of the transitions enabled at a reachable state.

In the next section, we go on to look at some of the interesting properties that emerge
when violations are resolved.

127

6.3.4 Properties of violation resolution

So far, we have looked at the construction of STGs from circuits, the automatic iden
tification of OP violations and their correct resolution. We now consider some of the
interesting phenomena that can arise through OP violation resolution.

Introduction of new violations

In some cases, it is possible that resolving an OP violation can introduce one or more
new ones. To illustrate this, let us consider a cut-down version of the STG in Figure
6.12(a),. with the addition that signal b can oscillate, which we show in Figure 6.13(a)
along WIth the corresponding state graph in Figure 6.13(b).

b a

(a) (b) (c) (d)

Figure 6.13: (a) STG with OP violation b- QK a-, (b) corresponding state graph, (c) new
violation a- QK b+ introduced by resolving b- QK a-, and (d) corresponding state graph.

Initially, the only violation is b- QK a-. After resolution using the priority assumption
b- t4 a- under the TGFOE transformation, we get the STG shown in Figure 6.13(c),
whose corresponding state graph is shown in Figure 6.13(d). The dashed read arc en
sures that a- can only fire once b- has fired. However, now we notice that this added
dependency on transition a- has introduced a new OP violation a- ~ b+; that is, a
can now be disabled by the firing of b+.

This phenomenon can also be observed at the state graph level. In Figure 6.13(d),
this introduced violation occurs at state 10, where both b+ and a- can occur. If b+ occurs
first, however, then a- cannot occur at the next state 11, whereas it could originally in
Figure 6.13(b) before we prioritised b-.

This result is intuitive, as resolving violations involves the insertion of read arcs which
can add more dependencies. Further work is therefore needed to investigate whether such
phenomenon should be avoided or not, and what this could mean biologically.

Implicit resolution

We have so far considered the explicit resolution of OP violations by enforcing some
priority into the STG. However, in some cases it is possible that the subsequent implicit
information added to the STG from the priority enforcement can resolve other violations.
For example, consider the STG in Figure 6.14(a) with three signals, where a and care

128

outputs and b is an input. Initially, this STG has three OP violations: a+ ~ b+;
c+ /1 ~ b+; and c+ ~ a-.

(a) (b) (c)

Figure 6.14: (a) STG with OP violations a+ ~ b+, c+/1 ~ b+ and c+ ~ a-, (b)
application of TGFOE to resolve a+ ~ b+, resulting in implicit resolution of c+ /1 ~ b+,
and (c) application of TGFOE to resolve c+ /1 ~ b+, resulting in implicit resolution of
c+ ~ a-.

Suppose we resolve a+ ~ b+ using the priority assumption a+ t---+ b+ under the
TGFOE transformation. This assumption is enforced using the dashed arc in Figure
6.14(b), which ensures that b+ must wait for a+ to fire. However, it turns out that by
doing this, we also solve violation c+ /1 ~ b+, leaving only c+ ~ a- remaining.

The reason that this occurs is that in the original STG in Figure 6.14(a), transitions
c+ /1 and b+ are enabled from the initial marking, and it is possible for b+ to fire first,
thus disabling c+ /1 and causing the violation (note this is possible when transition c+
is not enabled). However, in the refined STG in Figure 6.14(b), this behaviour cannot
occur, because now b+ must wait until a+ has fired, by which time c+ is now also enabled.
Thus, when b+ does fire, it still disables c+ /1, but c+ is now enabled and so this is not
an OP violation.

A similar phenomenon can also occur by resolving c+ /1 ~ b+ in the original STG
with assumption c+ /1 t---+ b+ under the TGFOE transformation. The resulting STG is
shown in Figure 6.14(c), and now we find that violation c+ ~ a- has also been resolved,
leaving only a+ ~ b+ remaining. This is explained by noting that a- has to wait in the
original STG for b+ to fire before it can fire. In the refined STG, however, there is also
an additional dependency enforced between b+ and c+ /1, in that b+ must wait until c+ /1
has fired (or alternatively c+). The result is in some sense an implied transitive priority
assumption c+ t---+ a-, because a- can only fire after b+, which itself can only fire after c
has been raised.

Intuitively, these phenomena arise when a transformation eliminates so much be
haviour that other violations are resolved as a result. Interestingly, though, the three
violations in Figure 6.14(a) are in some sense linked, in that resolving a+ ~ b+ implicitly
resolves c+ /1 ~ b+, which itself implicitly resolves c+ ~ b-. There is therefore a notion
of a dependency relationship between violations which requires further investigation. In
particular, the ability to detect such dependencies and causal relationships could prove

129

useful to the modeller. For instance, it may be desirable to resolve violations which do
not implicitly resolve others, as this will prevent more behaviour than necessary from
being removed. These interesting considerations are left as an area of future work.

6.4 Implementation issues

The circuit-STG approach from Definition 6.3 has been implemented as an extension to
GNAPN (see Section 3.2), facilitating the automatic construction of STGs as well as
PNs. Note currently only BNs can be translated into STGs, although the extension to
cater for MVNs is a relatively straightforward area of future work. In addition, we
have implemented a tool STGToOL, which reads the STGs produced by GNAPN,
automatically identifies all OP violations and allows the user to resolve them interactively
via an intuitive GUI. The development of STGToOL was motivated by the apparent lack
of existing tools for providing detailed information on OP violations and for resolving
them in an automated fashion.

Once an STG has been loaded into STGToOL, all OP violations are displayed in a list
to the user, who can then interactively resolve them by specifying which transition should
be given priority. Solved OP violations are displayed in a separate list for documentation
purposes, and any new violations are dynamically calculated. Furthermore, STGToOL
provides a useful feature for allowing the user to undo previously solved violations, thus
allowing them to backtrack through the solve history. Note this is implemented as a
stack, and therefore the user can only undo resolved violations in the order they were
solved.

The combination of STGToOL and GNAPN represent a key contribution to the bi
ological community in supporting the incremental development of realistic models within
the PN framework. Both tools are available for academic use at bioinfncl.ac.uk/gnapn.

6.5 Case study: lysis-lysogeny switch in phage ,\

In this section, we illustrate the STG modelling techniques introduced by developing an
SI STG model of the GRN responsible for the lysis-lysogeny switch in phage A [153J.
Using the Boolean model presented in [206J as a starting point, we construct and refine
an STG model of this GRN, utilising both the support tool PETRIFY [54J and STGToOL
presented in the previous section. The model is refined by finding the points where it
violates the S1 conditions (in particular, OP violations) and then applying appropriate
assumptions about the environment's behaviour and relative reaction rates to resolve the
associated hazards. Since the lysis-lysogeny decision is a stochastic phenomenon, it is
not resolved and remains in the final SI model (recall that this can still be handled in an
S1 way using arbitration [55]).

130

6.5.1 Model construction

The temperate bacteriophage .\ [153] is a virus which infects the bacteria E. coli, and has
been studied extensively in the literature. After infection of the host cell, a stochastic
decision is made by .\ based on environmental factors between two very different methods
of reproduction, namely the lytic and lysogenic cycles [206]. In most cases, .\ enters the
lytic cycle, where it generates as many new viral particles as the host cell resources allow.
Upon resource depletion, an enzyme is used to break down and lyse the cell wall, releasing
the new phage into the environment. Alternatively, the .\ DNA may integrate into the
host DNA and enter the lysogenic cycle. Here, genes expressed in the .\ DNA, now a
prophage, synthesise a repressor which blocks expression of other phage .\ genes including
those involved in its own excision. As such, the host cell, now a lysogen, establishes an
immunity to external infection from other .\ phages, and the prophage is able to lie
dormant, replicating with each subsequent cell division of the host. A high-level pictorial
representation of this GRN is presented in Figure 6.15(a).

(a) (b)

Figure 6.15: (a) A high-level representation of the GRN of the phage .\ switch, and (b)
STG automatically constructed by G N APN from next-state equations using circuit-STG

approach.

Integration of the .\ DNA into the host DNA requires the presence of the integrase
Int. Furthermore, the .\ DNA remains integrated unless the excisionase Xis is also
present. Thus, integration and excision occurs in both directions when both Int and
Xis are present, and so the stochastic lysis-lysogeny choice is qualitatively modelled as a
non-deterministic one [206]. The signal Intg is used as an output to indicate the status
of this process, taking the value 1 if the .\ DNA is integrated and 0 if it is not integrated
or has been excised. Both Int and Xis are repressed by the .\ repressor GI, which we
regard as an input since it is regulated outside the scope of this model. However, Int is

131

also activated by GIl, itself under negative control from GI. This additional control of
Int therefore favours integration over excision [206].

The behaviour of each entity can be specified using the following set of Boolean next
state equations:

[GIl] GI

[Int] - GIl + GI

[Xis] GI

[Intg] Intg Int + Intg (Int + Xis)

From these equations, we can construct an STG describing the behaviour of the A circuit
based on the circuit-STG construction approach. We define GI as an input signal from
the environment (and it is thus able to oscillate freely to model the most general one),
Intg as the output signal produced by the circuit, and GIl, Int and Xis as internal
signals which are invisible to the environment. Furthermore, we choose the initial state
in which the values of all signals except GI are low. The construction of this STG is fully
automated by our PN construction tool GNAPN, and is shown in Figure 6.15(b).

As explained previously, STGs constructed from the circuit-STG process are bounded
(in fact, safe), consistent, deadlock-free and have CSC (in fact, USC), and these properties
are preserved by the subsequent TGFOE transformations.

6.5.2 Model analysis and refinement

We now analyse our STG model with respect to the properties introduced in Section
6.2. We begin by running the model through PETRIFY, which shows, as predicted by
our theory, that the STG satisfies boundedness, consistency, CSC and deadlock-freeness
properties. However, it does not satisfy OP, resulting in non-deterministic behaviour
which suggests that some of it may not be realisable in practice (note PETRIFY refers to
violations of OP as non-semimodularity, but the two can be regarded as the same):

The STG has CSC.
Warning (non-semimodularity): signal CII disabled by signal CI
Warning (non-semimodularity): signal Int disabled by signal CI
Warning (non-semimodularity): signal Int disabled by signal CII
Warning (non-semimodularity): signal Xis disabled by signal CI
Warning (non-semimodularity): signal Intg disabled by
Warning (non-semimodularity): signal Intg disabled by

**
* Warning: the STG is not output-semimodular *
* Unable to generate a speed-independent circuit *
**

signal Int
signal Xis

In order to identify precisely the transitions involved in the OP violations above, we
then apply our support tool STGToOL, which identifies the following:

(1) Xis+ !25: CI+
(5) CII+ !25: CI+
(9) Intg+ !25: InC

132

(2) Xis- !25: CI-
(6) CII- !25: CI
(10) Int+ /1 !25: CII-

(3) Int+ !25: CI+ (4) InC !25: CI
(7) Intg- !25: InC (8) Intg- !25: Xis-

These violations of OP indicate the areas of the STG which require refinement with
additional information about the environment's behaviour or relative reaction rates. We
therefore proceed by considering OP violations (1)-(6) which involve choices between
inp~t and lo:al transitions. Such choices can often be resolved by assuming that the
envIronment IS slow enough to allow the circuit to stabilise, and so we apply the following
TGFOE transformations:

Xis+I--->CI+, Xis-I--->CI-, Int+I--->CI+, InCI--->CI-, CII+I--->CI+, CII-I--->Cr,

and these are shown by dashed arcs in Figure 6.16(a).

I t+

Intg+

~9I"
Intg-

(a) (b)

Figure 6.16: (a) STG from Figure 6.15(b) after TGFOE transformations (dashed arcs)
expressing relative slowness of environment have been applied, and (b) SI STG from part
(a) of this figure after simplification with PETRIFY.

Interestingly, it turns out that violation (10) is also resolved as a result of the above
TGFOE transformations (see Section 6.3.4), leaving only violations (7)-(9) in the new
model. Violations (7) and (8) show that excision (represented by the firing of Intg-) when
Int and Xis are high can be preempted if Int- or Xis- fires first, whilst violation (9)
shows that integration (represented by the firing of transition Intg+) can be preempted if
InC fires first. These remaining OP violations represent the heart of the lysis-lysogeny
switch in A for our high-level model (which is a stochastic phenomenon in practice [206]),

133

and so are not resolved. The resulting STG is shown in Figure 6.16(b) after simplification
with PETRIFY.

The new STG in Figure 6.16(b) is much less cluttered than the original one as
the unrealisable behaviour under the TGFOE transformations listed above has been
stripped away, making it significantly simpler to interpret and analyse using e.g. model
checking [51]. Moreover, this simplified STG clearly separates into two components,
which capture the crucial mechanisms governing the lysis-lysogeny switch:

• Component 1 (top) involves the input signal GI and the internal signals GIl, Int
and Xis. From the initial stable state, it waits for the environment to lower signal
GI indicating the absence of immunity, after which GII+, Int+ and Xis+ can fire
in any order. This component then waits for the environment to raise signal GI,
resulting in the firing of transitions Xis- and GIl- (in any order), with the latter
followed by InC, which returns the component to its initial state.

• Component 2 (bottom) is a simple flip-flop for signal Intg, which is controlled by
the values of the signals Int and Xis in the first component. Note that the only
connections between the two components are read arcs between places of the former
component and transitions of the latter one, i.e. the latter component accesses the
former one in the read-only fashion and hence does not affect its behaviour.

After Component 1 has raised Int, transition Intg+ is able to fire representing the inte
gration of the A DNA into the host cell. Once Component 1 has raised both Int and Xis,
Intg can freely oscillate, i.e. there are no stable states in the absence of immunity [206].
Similarly, once the environment has raised GI, Component 1 executes Xis- concurrently
with GII- followed by InC; the outcomes of the arbitrations between Intg+ and InC
and between Intg- and InC or Xis- determine the stable state of signal Intg in the
presence of immunity. These arbitrations exactly correspond to the OP violations (7)-(9)
still remaining in the STG in Figure 6.16(b) and involve only local transitions.

Note that GII- 'delays' InC, modelling that the presence of GIl causes lambda to
favour integration over excision; however, the latter is not a qualitative effect, and cannot
in fact be formally derived neither from this STG nor from the equations in Figure 6.15(b)
due to the arbitrary gate delays. In fact, one can see that GIl can be removed from
the model without affecting its qualitative behaviour, as its only role is to change the
probabilities involved in the stochastic choice made by A. Thus, it is no longer required
once this stochastic choice has been qualitatively modelled by a non-deterministic one.

Finally, the output signal Intg in Figure 6.16(b) is self-triggering (note that the cor
responding next-state equation is binate in Intg) , and there is a divergency involving
Intg (when Int and Xis are 1). This indicates that some auxiliary signal is missing from
the model (which is not surprising due to its high level of abstraction), and so can pro
vide a useful means of identifying areas which require careful documentation and further
refinement in light of additional knowledge.

134

6.6 Discussion

6.6.1 Conclusions

In this chapter, ~e addressed the problem of unrealisable behaviour in asynchronous
models by proposmg a novel approach for model refinement using PN techniques based
on STGs and SI circuits [55]. STGs are established in asynchronous circuit design for the
specification of SI circuits, and are supported by a wide range of techniques and tools
which do not appear to have been explored in biological modelling. In particular, the
foundation of this work was the methodological assumption that biological systems can
be qualitatively modelled by SI circuits, and that if this is not the case, then it suggests
missing or erroneous information in the model.

We considered modelling asynchronous BN s using STGs, and used the properties of
SI circuits to identify the key areas that required refining with additional information. A
crucial advantage of STGs is that they enable both the behaviour of the environment and
circuit to be captured naturally; we showed that this was essential for the derivation of SI
circuits and that this could not be modelled by the circuit alone. In particular, we focused
on the OP property for guaranteeing the robustness of the circuit under any gate delay,
and showed how its biological interpretation could shed light on missing information
regarding reaction rates. In general, few reaction rates affect the qualitative behaviour
of a system, but these can nevertheless be difficult to identify by simple inspection of
the circuit. This property is therefore of key importance to the biologist, as it represents
precisely the points in the model which require further investigation. Specifically, the
biologist can use violations of OP to identify only those rates which affect the qualitative
behaviour of the model, and then conduct focused experimentation to shed light on these.

Existing studies in this area (for example, see [65,70]) seem to have relied heavily on
the manual construction of realistic asynchronous models. In contrast, we have presented
a systematic formal approach which is amenable to practical models, by developing tech
niques for identifying and resolving OP violations based on model checking and priority
transformations. These techniques have strengthened those available for STGs, and have
represented a key contribution of our work. Indeed, the proposed extension to our PN
construction tool GNAPN and development of STGToOL have formed an insightful
new modelling resource for the biological community, and offer an important link for
exploiting established circuit design techniques and tools such as PETRIFY [54].

We demonstrated our approach to a model of the phage .A decision circuit [206]. We
automatically constructed an STG model of this system, and this immediately made
it amenable to SI analysis. PETRIFY was used to automatically check well-formedness
properties such as boundedness, consistency and esc, and then STGToOL was utilised
to find all the points in the model where OP was violated. As demonstrated by our
theory, we were able to derive a more realistic STG which still captured the fundamental
stochastic switch as a non-deterministic choice. In particular, this simpler STG split into
two distinct components which tightly corresponded with our knowledge of the switch
ing mechanism [206]. Interestingly, we were also able to observe some deeper insights
regarding the fact that signal ell appeared to be redundant. Such an observation was
not derivable from the next-state equations nor the STG due to arbitrary gate delays,

135

and thus represented a powerful type of simplification technique to complement analysis.
This initial investigation has therefore demonstrated much promise for the application of
STGs to realistic model development, and forms an interesting bridge between the fields
of computing science, biology and circuit design.

6.6.2 Future work

A number of important developments are required to take this work forward. Firstly,
we are interested in generalising our STG approach to handle MVNs. This is a rela
tively straightforward extension, but careful consideration will need to be paid to the
consistency property.

In addition, we are interested at the prospect of utilising structural PN analysis
techniques based on T-invariants to derive relative reaction rates. A study of this was
reported by Popova-Zeugmann et al. [161] for bridging the gap between standard and
timed PNs, but we see this as a promising complementary approach for our OP resolution
techniques.

Further research into the dependencies between OP violations highlighted in Section
6.3.4 could provide many useful insights. In particular, we are interested in exploring
methods for detecting such dependencies, for investigating their biological implications
and for exploiting them during the resolution process.

Finally, we wish to investigate the application of these circuit design techniques to
the area of synthetic biology [13,43,88]. Synthetic biology concerns the design of artificial
biological systems which perform a certain task, and we see the application of STGs as
a highly suitable approach for this. STGs could be utilised for designing complex bi
ological systems in a compositional manner, where each sub-circuit is interfaced to its
environment with input and output signals. In particular, the techniques presented could
be used to develop a mechanism for testing each sub-circuit before it is "deployed" into
its environment by identifying violations of SI. Furthermore, interfaces to databases such
as BioBricks (see http://bbf. openwetware. org) could prove useful to facilitate the auto
matic construction, deployment and testing of such circuits using community-developed
components.

6.6.3 Sources

The application of techniques from asynchronous circuit design was proposed by Victor
Khomenko, along with the biological interpretation of properties for SI circuits and initial
ideas for the FOE transformation. This work was presented at the 2nd International
Meeting on Membrane Computing and Biologically Inspired Process Calculi in September

2008 [19].

136

Chapter 7

Concluding Remarks

7.1 Conclusions

In this thesis, we have set out to investigate, develop and evaluate the application of
PNs for qualitatively modelling, analysing and refining GRNs. The focus on qualitative
techniques has reflected the fact that quantitative approaches appear to be incommen
surate with the quality and completeness of data currently available to the biological
community. The PN formalism has formed the core of this work, owing to its numerous
modelling advantages, including: (i) an intuitive graphical representation coupled with
a well-studied formal mathematical semantics; (ii) an ability to capture both structure
and behaviour in a concise and executable format; (iii) straightforward extensibility, by
enabling extra information (such as time delays or probability) to be added whilst pre
serving the structure of the underlying net; (iv) modelling and analysis of systems at
multiple levels of detail, from qualitative through to quantitative; and (v) a mature and
well-developed base of theory, techniques and tool support.

We have systematically explored these key benefits with a specific application to
GRNs. In particular, this research has resulted in the following key contributions:

(1) a new systematic PN approach for qualitatively modelling GRNs;

(2) a range of detailed case studies to demonstrate and validate our modelling approach;

(3) an investigation into the formal relationship between MVNs at different levels of
abstraction;

(4) an approach for refining asynchronous Boolean models using PN techniques from
asynchronous circuit design [55J;

(5) a suite of integrated tool support to make these qualitative modelling and refine
ment techniques amenable to the biological community.

We will now discuss each of these key contributions in more detail.

137

(1) Systematic PN framework for qualitatively modelling GRNs

PNs have been applied to a wide range of qualitative and quantitative biological studies
(see [215] for a bibliography), but these have generally required models to be manually
constructed for the specific G RN under investigation, resulting in substantial modelling
effort [45,155,160]. To improve the applicability and accessibility of PNs, well-developed
systematic construction approaches were required, and this was addressed in Chapters
3, 4 and 6. We took a PN approach for modelling BNs proposed by Steggles et at.
[194-196]' and generalised it to cater for MVNs [146,206]. In particular, this work
extended similar approaches (for example, see [45,46]) in a number of important ways: (i)
a range of PN representations for MVN s; (ii) the application of efficient logic minimisation
techniques [146,169] for compactness and scalability; (iii) modelling both synchronous
and asynchronous MVNs in the PN environment; and (iv) coping with partial models in a
useful way using non-determinism. Importantly, this work has contributed much-needed
tool support for the biological community, thus forming an important link to powerful
PN analysis techniques.

Our approach catered for three PN representations: safe, high-level and STG. Chap
ters 3 and 4 first considered a novel and compact safe PN framework which was then
extended to exploit the expressive power of HLPNs. The key result was a visually
compact HLPN framework for MVNs which, interestingly, was also shown to be more
efficient to analyse due to efficient unfolding techniques [111]. STGs formed a key fo
cus and enabling technology for the development of new asynchronous model refinement
techniques in Chapter 6, and were motivated by a crucial requirement for capturing
both environmental and system behaviour. Indeed, this contribution offers unique and
strengthened analysis prospects for asynchronous MVNs, by bridging the gap between
the biological and circuit design communities.

In particular, this work has addressed three important considerations for MVN mod
elling in the PN framework:

• Scalability issues associated with realistic sized MVNs were addressed by exploit
ing efficient logic minimisation techniques [146,169] made available by the MVSIS
tool [42]. Indeed, this formed an integral part of our model construction process, re
sulting in significantly more compact PN s which still captured the same behaviour,
and which are more efficient to analyse. Although the potential for such tech
niques has been noted in the literature [46], no systematic applications appeared
to have been reported for PN construction, and so this has formed an interesting
contribution to the biological community.

• Both synchronous and asynchronous MVN s were catered for to reflect their wide
interest in the literature [6,83,206,208]. This proved to be challenging since PNs
are asynchronous, but we addressed this in a compact and extensible way using
novel control logic (in the safe PN case) and transition guard conjunction (in the
HLPN case). This has therefore opened up the study of synchronous MVN s to PN
techniques and tools; something which did not appear to have been addressed.

• Partial models of GRNs often occur in biology, and this is a key motivation for mod
elling them. Existing PN approaches in the literature appeared to have favoured

138

deterministic systems, but we showed how one of the most fundamental features
of PN s - their non-deterministic firing semantics - could offer a useful solution.
As such, our framework enables partial models to be documented executed and
refined in a meaningful way. '

Tool support was crucial for making these techniques practical to realistic models.
Our PN support tool GNAPN has made PN modelling of GRNs readily accessible to the
biological community, and has strengthened the critical link between MVN s and the PN
techniques and tools required to interpret them. As such, GNAPN formed an integral
enabling technology for the case studies reported throughout this thesis, as well as some
external ones (for example, see [178]).

(2) Application and validation of qualitative techniques using case studies

A number of detailed case studies have been presented throughout this thesis to demon
strate and validate our modelling techniques. In particular, Chapter 3 considered Boolean
models for E. coli [167J and B. subtilis [99], Chapter 4 considered a multi-valued model for
E. coli and Chapter 6 considered a Boolean model of the phage). decision circuit [206J.
All systems were well documented in the literature, thus representing good example
GRNs to demonstrate and validate our PN techniques with.

GNAPN played an important link between the data and the PN tool community,
and facilitated the study of practical models which would otherwise have been difficult
to construct manually. In addition, PN s were shown to offer powerful analysis prospects
for MVNs, as they are supported by advanced unfolding techniques [111J for coping
with large state spaces. Combining GNAPN and these powerful techniques therefore
formed an invaluable duo for gaining important insights in silica. One particular feature
of GNAPN that we exploited in Chapters 3 and 4 was its initial marking capabilities,
which enabled model checking to be performed over a constrained portion of the state
space. This provided an extremely powerful proof mechanism for exploring whether
global properties held, and formed the basis for mutant analysis experiments allowing
us to investigate the robustness of our models under adverse conditions. Indeed, mutant
analysis in the multi-valued E. coli study was the catalyst for Chapter 5, by identifying
key behavioural differences with the Boolean representation.

The study on phage). using STG techniques in Chapter 6 opened up a new avenue
for PN modelling and analysis by linking biological studies with highly efficient circuit
theoretical techniques. This study made use of both GNAPN and STGToOL as well as
the circuit tool PETRIFY to incrementally develop a realistic model (based on the data
from [206]). The key result from this case study was the identification and resolution of
the missing relative reaction rates. This gave us a simpler STG which clearly separated
into two components: the internal stochastic switch mechanism modelled as a non
deterministic choice; and the oscillating output based on this. Some deeper insights were
also gleaned; in particular, the redundant role of GIl in this switch. Such insights were
not derivable from the STG nor the next-state equations due to arbitrary gate delays,
and thus demonstrated a potentially powerful type of simplification technique for practi
cal model development. STG techniques have therefore been shown as an invaluable tool
for systematic model development, analysis and verification in the biological community.

139

(3) Relationship between models at different levels of abstraction

We noted some interesting behavioural differences between the Boolean and multi-valued
E. coli models from Chapters 3 and 4, and this led us to investigate their formal relation
ship. In particular, it raised more general concerns about the scope and limitations of
Boolean modelling, and the situations which required multi-valued expressiveness. Chap
ter 5 explored this by proposing a refinement theory which captured an assumption about
this relationship. A number of insights were gleaned as a result. Notably, we showed an
example motivating multi-valued over Boolean modelling in Theorem 5.2, where a sin
gle state for an entity performed two different interactions. Although valid in practical
modelling, it nevertheless hinted at situations in which subtle behaviours could not be
adequately represented by higher levels of abstraction. Indeed, more work is now needed
to investigate problematic motifs of behaviour.

Furthermore, we identified the scope and limitations of analysing refinements derived
from our theory. In particular, the results of Theorem 5.5 and Corollary 5.2 indicated that
one could deduce a reasonable amount about an MVN using its refinements. However, it
also showed that further developments were required for this work to address its major
application area: circumventing state space explosion by deriving the simplest model
which can answer the particular question of interest. For this, it will be necessary to
explore different refinement theory notions to assess whether they provide a 'better'
relationship for analysis, but 'better' needs to be biologically justifiable.

Finally, interesting insights into the relationship between the Boolean and multi
valued E. coli models were obtained. In particular, we deduced that the Boolean model
was not a valid representation according to our theory, thus providing a possible explana
tion for the behavioural differences noted. Indeed, due to limitations with our algorithms,
we did not answer the other key question concerning the existence of a valid alternative
Boolean model, but this is clearly an important area of future work.

On one hand, this work has therefore developed what appears to be the first systematic
framework for reasoning about the behaviour of MVNs at different levels of abstraction,
and on the other it has provided the foundation for promising future developments in
combatting state space explosion for practical modelling.

(4) Asynchronous qualitative model refinement techniques

Asynchronous BN s can be argued to be more biologically realistic than their synchronous
counterparts [86]. However, such models have the problem of capturing too much infor
mation - some of which is unrealisable in practice - thus hampering analysis and inter
pretation. Chapter 6 addressed this by proposing a novel approach for model refinement
using PN techniques based on STGs and SI circuits [55]. In particular, the foundation
of this work was the methodological assumption that biological systems can be qualita
tively modelled by SI circuits, and that if this is not the case, then it suggests missing or
erroneous information in the model.

STGs are established in asynchronous circuit design for the specification of SI circuits,
and are supported by a wide range of techniques and tools which did not appear to have
been explored in biological modelling [54]. Furthermore, they enable both the behaviour

140

of the environment and circuit to be captured naturally; we showed that this was essen
tial for the derivation of SI circuits and that this could not be modelled by the circuit
alone. Existing studies in this area (for example, see [65,70]) seemed to rely heavily on
the manual construction of realistic asynchronous models. In contrast, we presented a
systematic formal approach for identifying and resolving unrealisable behaviour based on
output-persistency (OP) [55] violations.

We showed how the biological interpretation of such violations could shed light on
missing information or stochasticity regarding reaction rates. In general, few reaction
rates affect the qualitative behaviour of a system, but these can nevertheless be difficult
to identify by simple inspection of the circuit. OP is therefore of key importance to
the biologist, as it represents precisely the points in the model which require further
investigation. Specifically, the biologist can use violations of OP to identify only those
rates which affect the qualitative behaviour of the model, and then conduct focused
experimentation to shed light on these. Our identification and resolution approach has
therefore provided an insightful and novel technique for documenting this knowledge
using PNs.

STGToOL represents a crucial enabling step to make these techniques practical. It
completely automates the identifcation of OP violations in STGs produced by GNAPN,
and guides the user through model development by requesting only the required informa
tion. This has therefore strengthened links between the three established disciplines of
computing science, biology and electronic engineering, and has opened up new analysis
potential for biological networks. In particular, it has demonstrated the applicability of
highly efficient and well-founded circuit theory, and now calls for further development to
more general asynchronous models.

(5) Integrated tool support

Tool support has been a key contribution throughout this thesis to make the qualitative
techniques presented applicable and available to the biological community. In particular,
three tools have been developed to address the modelling, analysis and refinement of
MVNs using PNs

• a PN construction tool GNAPN to automate the techniques of Chapters 3 and 4 ;

• a prototype tool REFINER to automate the techniques of Chapter 5;

• an incremental model development and documentation tool STGToOL to auto
mate the techniques of Chapter 6.

These have been tightly integrated to form a suite of tools which offers much flexibility
and application potential to practical systems.

GNAPN supports the three key PN modelling approaches developed: safe PNs,
HLPNs and STGs. Efficient logic minimisation techniques using the auxiliary tool MV
SIS [42] enable compact PN to be rapidly constructed modelling MVNs under both
synchronous and asynchronous semantics. A particularly insightful feature for biologists,
and one which we explored in our case studies, was the rapid development of mutant
models. Here, the biologist is able to knockout and overexpress any number of entities,

141

thus enabling an exploration of robustness under adverse conditions from within the PN
environment. For powerful model checking of global properties, GNAPN supports spe
cial initial marking configurations, and we used these in the case studies of Chapters 3
and 4. Constructed PNs can be exported to a number of interchange formats, opening
them up to mature and insightful analysis techniques and tools. Furthermore, GNAPN
can produce STGs from BNs for use in STGToOL, thus forming an important link in
the incremental model development process. Overall, GNAPN has played an integral
part throughout all case studies in this thesis, as well as others (e.g. see [178])

REFINER provides a straightforward interface to the systematic refinement and veri
fication algorithms proposed in Chapter 5. REFINER takes as its input the MVN model
files used by G N APN, thus allowing simplified MVN to be analysed using PN techniques.
REFINER has been a key factor for the investigations in Chapter 5, and was used to for
mally reason about the relationship between two models of the E. coli carbon starvation
network.

STGToOL automates the STG approach for incremental model development pro
posed in Chapter 6, and thus contributes new tool support to the biological community.
In particular, its straightforward interface lists all OP violations and allows the biologist
to interactively resolve and document them using relative rates based on priorities. A
solve history provides an easy way to record previously resolved violations, and the abil
ity to backtrack through this history at any point encourages the biologist to experiment
with new hypotheses and dynamically observe their implications. We used STG TOOL
in a case study to develop a realistic BN model of the phage A decision circuit, resulting
in a simpler model which still captured the fundamental switch.

All three tools are freely available for academic use from bioinj.ncl.ac.uk/gnapn, and
work is now ongoing to fully integrate these into a single qualitative workbench for mod
elling, analysing and refining G RN models using PN s.

At a more abstract level, this work balanced a number of important considerations.
The first is that meaningful models have been constructed to reflect the quality of the
input data; something which we have argued is not currently in balance with quantita
tive techniques. The effort and scalability of these techniques has also been addressed,
especially with the tool support developed. Finally, the output produced has been com
mensurate with the inputs - in fact, a key point has been that PNs can often add value,
by providing important insights which can then feedback to improve this input. As a
result, we have motivated PNs as a self-contained environment for modelling, analysing
and refining GRNs.

As the quality of data improves, however, quantitative techniques may become in
creasingly utilised in the biological community to facilitate ever more comprehensive
studies. One possible way to achieve this switch is through hybrid approaches, which
amalgamate the two under one formalism [132,135]. The attraction of these is that
they allow qualitative techniques to do the "filtering" and quantitative techniques to do
the "focusing". Complex models could therefore be incrementally developed by allowing
quantitative components to replace qualitative ones as more information is acquired.

Ultimately, such approaches may change the very way in which biological study is

142

conducted. Indeed, the advances in post-genomic technology of the ninetees [33] changed
what was a model-driven conceptual view to a data-driven one. However, this paradigm
of study could shift back to being model-driven - with highly efficient and cost-effective
experimentation conducted purely in silico - and if PNs continue to mature in the same
way they have been, they could play an integral part in realising this goal.

7.2 Future work

This thesis has investigated the development of a wide range of qualitative techniques
for GRNs based on PNs. We now see a number of interesting areas of future research to
take this work forward:

(1) We intend to increase the range of import and export formats for our PN modelling
techniques. In particular, SBML [179] would greatly improve the exchange and
study of these models.

(2) We intend to extend the PN modelling framework from Chapters 3 and 4 to en
compass GRNs, as well as metabolic and signaling pathways in a unifying way, to
take into account stochastic affects and time delays, and to remain amenable to
proper analytical techniques, such as advanced model checking based on temporal
logics [41]. In particular, we see compositional model construction and analy
sis [36,52,218] crucial for achieving this in a scalable and useful way.

(3) Analysis and interpretation of practical biological models can be hampered by state
space explosion. Taking the techniques of Chapter 5 as a starting point, we intend to
investigate approaches for deriving the simplest model which captures the necessary
behaviour for a particular analysis task.

(4) We indend to address efficiency issues with an existing distributed SPN simulator
called NASTY [178,180] for missing parameter estimation. In particular, we will
investigate how OP violations in STGs can reduce this search space by identifying
the key reaction rates that require estimating.

(5) We are interested in the development of systematic techniques for deriving qual
itative reaction rate information in STGs. Currently, these must be specified by
the user, but a possible solution could be to consider the use of T-invariants, as
discussed by Popova-Zeugmann et al. [161].

(6) The qualitative techniques presented, especially STGs, appear to offer a promising
technique for synthetic biology [13,43]. Here, synthetic biological circuits are devel
oped to perform a given task, and we see STGs as a potentially invaluable method
for achieving this.

Work is now ongoing to develop these ideas into an integrated workbench for com
prehensively modelling and analysing biological systems within the PN framework. In
particular, the field of synthetic biology is attracting much interest, and we see the ap
plication of these techniques as a promising avenue into this potentially lucrative area.

143

Bibliography

[1] Petri net world. Petri Net World, www.informatik.uni-hamburg.de/TGI/PetriNets.

[2] Mvsis: Logic synthesis and verification. MVSIS, 2008.

[3] R Agarwal and M Tanniru. A petri-net based approach for verifying the integrity of
production systems. International Journal of Man-Machine Studies, 36(3):447-468,
1992.

[4] T Akutsu, S Kuhara, 0 Maruyama, and S Miyano. Identification of gene regula
tory networks by strategic gene disruptions and gene overexpressions. Theoretical
Computer Science, 298(1):235-251, 1998.

[5] T Akutsu, S Kuhara, 0 Maruyama, and S Miyano. A system for identifying genetic
networks from gene expression patterns produced by gene disruptions. Genome
Informatics, 9:151-160, 1998.

[6] T Akutsu, S Miyano, and S Kuhara. Identification of genetic networks from a small
number of gene expression patterns under the boolean network model. Pacific
Symposium on Biocomputing., pages 17-28, 1999.

[7] T Akutsu, S Miyano, and S Kuhara. Algorithms for Identifying Boolean Networks
and Related Biological Networks based on Matrix Multiplication and Fingerprint
Function. 2000.

[8] T Akutsu, S Miyano, and S Kuhara. Algorithms for inferring qualitative models of
biological networks. Pac Symp Biocomput, pages 8-14, 2000.

[9] T Akutsu, S Miyano, and S Kuhara. Inferring qualitative relations in genetic
networks and metabolic pathways. Bioinformatics, 16(8):727-734, 2000.

[10]

[11]

Tatsuya Akutsu, Morihiro Hayashida, Wai-Ki Ching, and Michael K Ng. Control
of boolean networks: hardness results and algorithms for tree structured networks.
Journal of Theoretical Biology, 244(4):670-9, 2007.

R Albert and H Othmer. The topology of the regulatory interactions predicts
the expression pattern of the segment polarity. Journal of Theoretical Biology,

223(1):1-18,2003.

144

[12] A Alberts, D Bray, J Lewis, M Raff, K Roberts, and J.D Watson. Molecular biology
of the cell. New York, Garland, 1983.

[13] E Andrianantoandro, S Basu, D Karig, and R Weiss. Synthetic biology: new
engineering rules for an emerging discipline. Mol Syst Biol, 2, 2006.

[14] R Bagley and L Glass. Counting and classifying attractors in high dimensional
dynamical systems. Journal of Theoretical Biology, 183(3):269-284, 1996.

[15] G Balbo. On the success of stochastic petri nets. Petri Nets and Performance
Models, pages 2-9, 1995.

[16] G Balbo. Introduction to stochastic petri nets. Lectures on Formal Methods and
Performance Analysis, 2090:84-155, 2001.

[17] P Baldi and A Long. A bayesian framework for the analysis of microarray expression
data: regularized t-test and statistical inferences of ene changes. Bioinformatics,
17(6):509-519, 2001.

[18] V L Balke and J D Gralla. Changes in the linking number of supercoiled dna
accompany growth transitions in escherichia coli. J Bacteriol, 169:4499-4506, 1987.

[19] R Banks, V Khomenko, and L J Steggles. A case for using signal transition graphs
for analysing and refining genetic networks. In 2nd International Meeting on Mem
brane Computing and Biologically Inspired Process Calculi (Me CBIC) , 2008.

[20] R Banks and L J Steggles. A high-level· petri net framework for genetic regulatory
networks. Journal of Integrative Bioinfomatics, 4(3), 2007.

[21]

[22]

[23]

[24]

G Batt, D Bergamini, H De Jong, H Garavel, and R Mateescu. Model checking ge
netic regulatory networks using gna and cadp. Lecture Notes in Computer Science,
2989:158-163,2004.

G Batt, H De Jong, J Geiselmann, and M Page. Analysis of genetic regulatory
networks: A model-checking approach. Working Notes of the Seventeenth Interna
tional Workshop on Qualitative Reasoning, pages 31-38, 2003.

G Batt, D Ropers, H de Jong, J Geiselmann, R Mateescu, M Page, and D Schnei
der. Validation of qualitative models of genetic regulatory networks by model
checking: analysis of the nutritional stress response in escherichia coli. Bioinfor
matics, 21(1):19-28, 2005.

G Batt, D Ropers, H De Jong, M Page, and J Geiselmann. Symbolic reachability
analysis of genetic regulatory networks using qualitative abstractions. Automatica,
44(4):982-989,2007.

[25] G Batt, B Yordanov, R Weiss, and C Belta. Robustness analysis and tuning of
synthetic gene networks, 2007.

145

[26] A Ben-Dor, R Shamir, and Z Yakhini. Clustering gene expression patterns. Journal
of Computational Biology, 6, 1999.

[27] G Bernot, J Comet, A Richard, and J Guespin. Application of formal methods to
biological regulatory networks: extending thomas' asynchronous logical approach
with temporal logic. Journal of Theoretical Biology, 229(3):339-347, 2004.

[28] E Best, H Fleischhack, W Fraczak, R P Hopkins, H Klaudel, and E Pelz. A class of
compos able high level petri nets. Application and Theory of Petri Nets, 935:103-
120, 1995.

[29] R Blossey, L Cardelli, and A Phillips. Compositionality, stochasticity, and cooper
ativity in dynamic models of gene regulation. HFSP Journal, 2(1):17-28, 2008.

[30] E Boros, T Ibaraki, and K Makino. Error-free and best-fit extensions of partially
defined boolean functions. Information and Computation, 140:254-283, 2000.

[31] J Bower and H Bolouri. Computational modelling of genetic and biochemical
networks. MIT Press, 2001.

[32] K Breeding. Digital Design Fundamentals. 1992.

[33] P 0 Brown and D Botstein. Exploring the new world of the genome with dna
microarrays. Nat Genet, 21(1 Suppl):33-37, 1999.

[34] R Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans
actions on Computers, 35:677-691, 1986.

[35] R Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24:293-318, 1992.

[36] T Bultan, J Fischer, and R Gerber. Compositional verification by model checking
for counter-examples. International Symposium on Software Testing and Analysis,
21:224-238, 1996.

[37] C Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2:121-167, 1998.

[38]

[39]

[40]

L Calzone F Fages and S Soliman. Biocham: an environment for modeling biologi-, ,
cal systems and formalizing experimental knowledge. Bioinformatics, 22 (14): 1805-
1807,2006.

E Cardoza, R Lipton, and A Meyer. Exponential space complete problems for petri
nets and commutative semigroups (preliminary report). STOC '76: Proceedings of
the eighth annual A CM symposium on Theory of computing, pages 50-54, 1976.

R Casey, H De Jong, and J L Gouze. Piecewise-linear models of genetic regulatory
networks: Equilibria and their stability. Journal of Mathematical Biology, 52:27-56,
2006.

146

[41] N Chabrier-Rivier, M Chiaverini, V Danos, F Fages, and V Schchter. Modeling
and querying biomolecular interaction networks, 2004.

[42] D Chai, J Jiang, Y Jiang, Y Li, and A Mishchenko. Mvsis 2.0 user's manual.
Department of Electrical Engineering and Computer Sciences.

[43] K Channon, E Bromley, and D Woolfson. Synthetic biology through biomolecular
design and engineering. Current Opinion in Structural Biology, 18(4):491-498,
2008.

[44] C Chaouiya. Petri net modelling of biological networks. Bioinformatics, 8(4):210-
219,2007.

[45] C Chaouiya, E Remy, P Ruet, and D Thieffry. Qualitative modelling of genetic
networks: From logical regulatory graphs to standard petri nets. Lecture Notes in
Computer Science, 3099:137-156, 2004.

[46] C Chaouiya, E Remy, and D Thieffry. Petri net modelling of biological regulatory
networks, 2008.

[47] M Chen and R Hofestadt. Quantitative petri net model of gene regulated metabolic
networks in the cell. In Silico Biology, 3:347-365, 2003.

[48] S Christensen and L Petrucci. Towards a modular analysis of coloured petri nets.
Lecture Notes in Computer Science; 13th International Conference on Application
and Theory of Petri Nets, 616:113-133, 1992.

[49] S Christensen and L Petrucci. Modular state space analysis of coloured petri nets.
Proc. 16th Int. Conf. Application and Theory of Petri Nets (ICATPN'95), 935:201-
217, 1995.

[50] S Christensen and L Petrucci. Modular analysis of petri nets. The Computer
Journal, 43:224-242, 2000.

[51] E Clarke, 0 Grumberg, and D Peled. Model checking. Springer, 1999.

[52] E M Clarke, DELong, and K L McMillan. Compositional model checking. Logic
in Computer Science, pages 353-362, 1989.

[53] J.-P Comet, H Klaudel, and S Liauzu. Modeling multi-valued genetic regulatory
networks using high-level petri nets. LNCS, 3536:208-227, 2005.

[54] J Cortadella, M Kishinevsky, and A Kondratyev. Petrify: A tool for manipu
lating concurrent specifications and synthesis of asynchronous controllers. IEICE
TRANSACTIONS on Information and Systems, 1997.

[55] J Cortadella, M Kishinevsky, A Kondratyev, L Lavagno, and A Yakovlev. Logic
synthesis for asynchronous controllers and interfaces. Springer- Verlag, 2001.

147

[56] F Dellaert and R Beer. Toward an evolvable model of development for autonomous
agent synthesis. Artificial Life IV, Proceedings of the Fourth International Work
shop on the Synthesis and Simulation of Living Systems, 1994.

[57] P D'haeseleer, S Liang, and R Somogyi. Genetic network inference: from co
expression clustering to reverse engineering. Bioinformatics, 16:707-726, 2000.

[58] D Dill, M Knapp, P Gage, C Talcott, and K Laderoute. The pathalyzer: A tool
for analysis of signal transduction pathways. Lecture Notes in Computer Science,
2007.

[59] A Doi. Constructing biological pathway models with hybrid functional petri nets.
In Silico Biology, 4(3):271, Jan 2004.

[60] A Doi, M Nagasaki, H Matsuno, and S Miyano. Simulation-based validation of
the p53 transcriptional activity with hybrid functional petri net. In Silico Biology,
2006.

[61] B Drossel, T Mihaljev, and F Greil. Number and length of attractors in a critical
kauffman model with connectivity one. Physical Review Letters, 2005.

[62] R Durrett. Stochastic calculus: A practical introduction. 1996.

[63] J Esparza. Model checking using net unfoldings. Science of Computer Program
ming, 23:151-195, 1994.

[64] A Faure, C Chaouiya, A Ciliberto, and D Thieffry. Logical modelling and analysis
of the budding yeast cell cycle. feedback, 8(8), 2007.

[65] A Faure, A Naldi, C Chaouiya, and D Thieffry. Dynamical analysis of a generic
boolean model for the control of the mammalian cell cycle. Bioinformatics,
24(14):124-131, 2006.

[66] R.P Feynman. Atoms in motion. in T. Ferris (ed.), The world treasury oj physics,
astronomy and mathematics, Boston, pages 3-17, 1991.

[67] N Friedman, M Linial, I Nachman, and D Peer. Using bayesian networks to analyze
expression data. volume 7, pages 601-620, 2000.

[68] N Friedman, D Peer, and I Nachman. Learning bayesian network structure from
massive datasets: The sparse candidate algorithm. Pmc. Fifteenth Conf. on Un
certainty in Artificial Intelligence, pages 206-215, 1999.

[69] A Gambin, S Lasota, and M Rutkowski. Analyzing stationary states of gene regu
latory network using petri nets. In Silico Biology, 6, 2006.

[70] A Garg, A Di Cara, I Xenarios, L Mendoza, and G De Micheli. Synchronous versus
asynchronous modeling of gene regulatory networks. Bioinjormatics, 24(17):1917-

1925, 2008.

148

[71] J Gebert, N Radde, and G Weber. Modeling gene regulatory networks with
piecewise linear differential equations. European Journal of Operational Research,
181:1148-1165, 2007.

[72] H Genrich, R Kuffner, and K Voss. Executable petri net models for the analysis
of metabolic pathways. International Journal on Software Tools for Technology
Transfer, 3:394-404, 2001.

[73] C Gershenson. Introduction to random boolean networks. Workshop and Tutorial
Proceedings, Ninth International Conference on the Simulation and Synthesis of
Living Systems (ALife IX), pages 160-173, 2004.

[74] D Gilbert and M Heiner. From petri nets to differential equations-an integra
tive approach for biochemical network analysis. Petri Nets and Other Models of
Concurrency (ICATPN), 4024:181-200, 2006.

[75] D Gilbert, M Heiner, and S Lehrack. A unifying framework for modelling and
analysing biochemical pathways using petri nets. Lecture Notes in Computer Sci
ence, 4695:200, 2007.

[76] D.T Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340-2361, 1977.

[77] L Glass and S Kauffman. The logical analysis of continuous, non-linear biochemical
control networks. J Theor Biol, 39(1):103-129, 1973.

[78] A Gonzalez, A N aldi, L Sanchez, and D Thieffry. Ginsim: A software suite for the
qualitative modelling, simulation and analysis of regulatory networks. BioSystems,
84(2):91-100, 2006.

[79] P J E Goss and Jean Peccoud. Quantitative modelling of stochastic systems
in molecular biology by using stochastic petri nets. Proceedings of the National
Academy of Sciences, 95:6750-6755, 1998.

[80] E Grafahrend-Belau, F Schreiber, and M Heiner. Modularization of biochemical
networks based on classification of petri net t-invariants. BMC Bioinformatics,
9(90), 2008.

[81] B Grahlmann. The pep tool. Computer Aided Verification, LNCS, Springer,
1254:440-443, 1997.

[82] F Greil, B Drossel, and J Sattler. Critical kauffman networks under deterministic
asynchronous update. New Journal of Physics, 9(373), 2007.

[83] Simone Gupta, Siddharth S Bisht, Ritushree Kukreti, Sanjeev Jain, and Samir K
Brahmachari. Boolean network analysis of a neurotransmitter signaling pathway.
Journal of Theoretical Biology, 244(3):463-9, Feb 2007.

149

[84] S ~ardy a~d P Robilla~d. Modeling and simulation of molecular biology systems
usmg petn nets: modelmg goals of various approaches. Journal of bioinformatics
and computational biology., 2:595-613, 2004.

[85] S Hardy and P Robillard. Petri net-based method for the analysis of the dynamics
of signal propagation in signaling pathways. Bioinformatics, 2008.

[86] I Harvey and T Bossomaier. Proceedings of the Fourth European Conference on
Artificial Life (ECAL97.

[87] J Hasty, D McMillen, F Isaacs, and J Collins.. .. Computational studies of gene
regulatory networks: in numero molecular biology. Nat. Rev. Genet, 2:268-279,
2001.

[88] M Heinemann and S Panke. Synthetic biology-putting engineering into biology.
Bioinformatics, 22(22):2790-2799, 2006.

[89] M Heiner and I Koch. Petri net based model validation in systems biology. ICATPN
LNCS, 3099:216-237, 2004.

[90] M Heiner, I Koch, and J Will. Model validation of biological pathways using petri
nets-demonstrated for apoptosis. BioSystems, 2004.

[91] Monika Heiner, Ina Koch, and Klaus Voss. Analysis and simulation of steady states
in metabolic pathways with petri nets. pages 15-34, 2001.

[92] R Hengge-Aronis. The general stress response in escherichia coli. Bacterial Stress
Responses, American Society for Microbiology Press, pages 161-178, 2000.

[93] S Huang. Gene expression profiling, genetic networks, and cellular states: An
integrating concept for tumorigenesis and drug discovery. Journal of Molecular
Medicine, 77:469-480, 1999.

[94] S Huang. Genomics, complexity and drug discovery: insights from boolean network
models of cellular regulation. Pharmacogenomics, 2(3):203, 2001.

[95] S Huang and D Ingber. Shape-dependent control of cell growth, differentiation, and
apoptosis: Switching between attractors in cell regulatory networks. Experimental
Cell Research, 261(1):91-103, 2000.

[96] I Ivanov and E Dougherty. Modeling genetic regulatory networks: continuous or
discrete? Journal of Biological Systems, 671:307-340, 2006.

[97] K Jensen. Coloured petri nets - basic concepts, analysis methods and practical use.
EATCS Monographs on Theoretical Computer Science, Springer- Verlag, 1, 1992.

[98] H De Jong. Modelling and simulation of genetic regulatory systems: A literature
review. Journal of Computational Biology, 9:67-103, 2002.

150

[99] H De Jong, J Geiselmann, G Batt, C Hernandez, and M Page. Qualitative simula
tion of the initiation of sporulation in b. subtilis. Bull. Math. Biol., 66(2):261-299,
2002.

[100] G Karlebach and R Shamir. Modelling and analysis of gene regulatory networks.
Nature Reviews: Molecular Cell Biology, 9, 2008.

[101] S Kauffman. Homeostasis and differentiation in random genetic control networks.
Nature, 224:177-178, 1969.

[102] S Kauffman. Metabolic stability and epigenesis in randomly constructed genetic
nets. J Theor Biol, 2(3):437-467, 1969.

[103] S Kauffman. Gene regulation networks: a theory for their global structure and
behaviors. Curr Top Dev Biol, 6(6):145-82, 1971.

[104] S Kauffman. Antichaos and adaptation. Scientific American, 265:78-84, Jan 1991.

[105] S Kauffman. The origins of order: Self-organization and selection in evolution.
Oxford University Press, New York, Jan 1993.

[106] S Kauffman. At home in the universe: The search for laws of self-organization and
complexity. Oxford University Press, USA, Jan 1995.

[107] S Kauffman, C Peterson, B Samuelsson, and C Troein. Random boolean network
models and the yeast transcriptional network. Proceedings of the National Academy
of Sciences of the USA, 100(25):14796-14799,2003.

[108] M Kearns and U Vazirani. An introduction to computational learning theory. MIT
Press, 1994.

[109] V Khomenko. Model Checking Based on Prefixes of Petri Net Unfoldings. PhD
thesis, 2003.

[110]

[111]

V Khomenko, A Kondratyev, M Koutny, and W Vogler. Merged processes - a
new condensed representation of petri net behaviour. Lecture Notes in Computer
Science, 3653:338-352, 2005.

V Khomenko and M Koutny. Branching processes of high-level petri nets. Tools
and Algorithms for the Construction and Analysis of Systems: 9th International
Conference, TACAS 2003, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, Lecture Notes in
Computer Science" 2619:458-472, 2003.

[112] H Kitano. Computational systems biology. Nature, Jan 2002.

[113] K Klemm and S Bornholdt. Stable and unstable at tractors in boolean networks.
Physical Review E, Jan 2005.

151

[114] I Koch, G Junker, and M Heiner. Applications of petri net theory for modelling and
validation of the sucrose breakdown pathway in the potato tuber. Bioinjormatics,
21:1219-1226,2005.

[115] I Koch, S Schuster, and M Heiner. Using time-dependent petri nets for the analysis
of metabolic networks. In Hojest adt, R., Lautenbach, K., Lange, M. (eds): DFG
Workshop: Injormatikmethoden zur' Analyse und Interpretation gro Yer genomis
cher Datenmengen, Magdeburg, pages 15-21, 2000.

[116] G Koh, H Teong, M Clement, and D Hsu. A decompositional approach to parameter
estimation in pathway modeling: a case study of the akt and mapk pathways and
their crosstalk. Bioinjormatics, 22(14):271-280, 2006.

[117] M Kwiatkowska, G Norman, and D Parker. Prism: Probabilistic symbolic model
checker. Lecture Notes in Computer Science, pages 200-204, Jan 2002.

[118] Yung-Keun K won and K wang-Hyun Cho. Boolean dynamics of biological networks
with multiple coupled feedback loops. Biophys J, 92(8):2975-81, 2007.

[119] H Uihdesmaki, S Hautaniemi, I Shmulevich, and 0 Yli-Harja. Relationships be
tween probabilistic boolean networks and dynamic bayesian networks as models of
gene regulatory networks. Signal Processing, 86(4):814-834, 2006.

[120] H Lahdesmki, I Shmulevich, and 0 Yli-Harja. On learning gene regulatory networks
under the boolean network model. Machine Learning, 52:147-167, 2003.

[121] T Latvala and M Makela. Ltl model checking for modular petri nets. Applications
and Theory oj Petri Nets, 3099:298-311, 2004.

[122] D Lee, R Zimmer, S Lee, and S Park. Colored petri net modeling and simulation
of signal transduction pathways. Metabolic Engineering, 2006.

[123] S Lehrack. Three petri net approaches for biochemical network analysis. Technical
Report 1-01, page 33, Jan 2006.

[124]

[125]

Peng Li, Chaoyang Zhang, Edward J Perkins, Ping Gong, and Youping Deng. Com
parison of probabilistic boolean network and dynamic bayesian network approaches
for inferring gene regulatory networks. BMC Bioinjormatics, 8 Suppl 7:S13, 2007.

S Liang, S Fuhrman, and R Somogyi. Reveal: a general reverse engineering algo
rithm for inference of genetic network architectures. In Pacific Symposium Bio
computing 1998, pages 18-29, 1998.

[126] M Makela. Model checking safety properties in modular high-level nets. ICATPN
2003, LNCS, 2679:201-220, 2003.

[127] M Mano. Digital design. Prentice Hall, 1984.

152

[128] M Marsan. Stochastic petri nets: An elementary introduction. Advances in Petri
Nets, Jan 1989.

[129] S Martin, G Davidson, E May, J Faulon, and M Werner-Washburne. Inferring ge
netic networks from microarray data. IEEE Computational Systems Bioinformatics
Conference (CSB?04j, pages 566-569, 2004.

[130] S Martin, Z Zhang, A Martino, and J Faulon. Boolean dynamics of genetic regula
tory networks inferred from microarray time series data. Bioinformatics, 23(7):866-
874,2007.

[131] H Matsuno, A Doi, R Drath, and S Miyano. Genomic object net: Object oriented
representation of biological systems. GENOME INFORMATICS SERIES, 2000.

[132] H Matsuno, A Doi, M Nagasaki, and S Miyano. Hybrid petri net representation of
gene regulatory networks. Pacific Symposium on Biocomputing, 5:338-349, 2000.

[133] H Matsuno, S Inouye, Y Okitsu, Y Fujii, and S Miyano. A new regulatory interac
tion suggest by simulations for circadian genetic control mechanisms in mammals.
Journal of Bioinformatics and Computational Biology, 4(1):139-153, 2006.

[134] H Matsuno, C Li, , and Miyano. Petri net based descriptions for systematic un
derstanding of biological pathways. Transactions on Fundamentals of Electronics,
Communications, and Computer Sciences, E89-A:3166-3174, 2006.

[135] H Matsuno, Y Tanaka, H Aoshima, A Doi, and M Matsui. Biopathways represen
tation and simulation on hybrid functional petri net. In Silico Biology, 3, 2003.

[136] E Mayr. An algorithm for the general petri net reachability problem. Proceedings
of the thirteenth annual ACM symposium on Theory of computing, pages 238-246,
1981.

[137] H McAdams and A Arkin. Simulation of prokaryotic genetic circuits. Annual
Review of Biophysics and Biomolecular Structure, 27:199-224, Jan 1998.

[138] H McAdams and A Arkin. It's a noisy business! genetic regulation at the nanomolar
scale. Trends in Genetics, 1999.

[139] H McAdams and L Shapiro. Circuit simulation of genetic networks. Science,

269:650-656, 1995.

[140]

[141]

P McGeer, J Sanghavi, R Brayton, and S Vincentelli. Espresso-signature: A new
exact minimizer for logic functions. IEEE Transactions on VLSI, 1:432-440, 1993.

L Mendoza, D Thieffry, and E R.Alvarez-Buylla. Genetic control of flower morpho
genesis in arabidopsis thaliana: a logical analysis. Bioinformatics, 15(7):593-606,

1999.

153

[142] T Mestl, C Lemay, and L Glass. Chaos in high-dimensional neural and gene net
works. Physica D: Nonlinear Phenomena, 98:33-52, 1996.

[143] T Mestl, E Plahte, and S Omholt. A mathematical framework for describing and
analysing gene regulatory networks. Journal of Theoretical Biology, Jan 1995.

[144] R Milner, J Parrow, and D Walker. A calculus of mobile processes-part i.
topps.diku.dk, 100(1):1-40, 1990.

[145] A Miner and G Ciardo. Efficient reachability set generation and storage using
decision diagrams. Application and Theory of Petri Nets, Jan 1999.

[146] A Mishchenko and R Brayton. Simplification of non-deterministic multi-valued
networks. volume 2, pages 557-562, 2002.

[147] T Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77:541-580, 1989.

[148] K Murphy and S Mian. Modelling gene expression data using dynamic bayesian
networks. University of California, 1999.

[149] M Nagasaki, A Doi, H Matsuno, and S Miyano. Genomic object net: 1. a plat
form for modelling and simulating biopathways. Appl Bioinformatics, 2(3):181-184,
2003.

[150] M Nagasaki, A Doi, H Matsuno, and S Miyano. A versatile petri net based ar
chitecture for modeling and simulation of complex biological processes. Genome
Informatics, 15(1):180-197,2004.

[151] D Nazareth. Investigating the applicability of petri nets for rule-based system
verification. IEEE Transactions on Knowledge and Data Engineering, 5(3):402,
1993.

[152] A Ohta and K Tsuji. On some analysis properties of coloured petri nets using
the underlying net. 47th IEEE International Midwest Symposium on Circuits and
Systems, 3:395-398, 2004.

[153] A Oppenheim, 0 Kobiler, and J Stavans. Switches in bacteriophage lambda devel
opment. Annu Rev Genet, 39:409-429, 2005.

[154] M Peleg, I Yeh, and R Altman. Modelling biological processes using workflow and
petri net models. Bioinformatics, 18(6):825-837, 2002.

[155] Mor Peleg, Daniel Rubin, and Russ Altman. Using petri net tools to study prop
erties and dynamics of biological systems. Journal of the American Medical Infor
matics Association: JA MIA , 12:181-199, 2005.

[156] C Petri. Kommunikation mit automaten. PhD thesis, Bonn, 1962.

154

[157] C Petri. Interpretations of net theory. GMD, Interner Bericht, 1976.

[158] A Phillips and L Cardelli. A graphical representation for biological processes in the
stochastic pi-calculus. Transactions in Computational Systems Biology, 4230: 123-
152,2006.

[159] A Phillips, L Cardelli, R Blossey, and L Goldstein. The stochastic pi machine
(spim) online at http://research. microsoft. com/ aphillip/spim, Jan 2007.

[160] J Pinney, D Westhead, and G McConkey. Petri net representations in systems
biology. Biochem. Soc. Trans, 31(6):1513-1515, 2003.

[161] L Popova-Zeugmann, M Heiner, and I Koch. Time petri nets for modelling and
analysis of biochemical networks. Fundamenta Informaticae, 67:149-162, 2005.

[162] C Priami. Stochastic -calculus. The Computer Journal.

[163] V Reddy, M Liebman, , and Mavrovouniotis. Qualitative analysis of biochemical
reaction systems. Computers in Biology and Medicine, 26:9-24, 1996.

[164] V N Reddy, M L Mavrovouniotis, and M N Liebman. Petri net representations in
metabolic pathways. International Conference on Intelligent Systems for Molecular
Biology., 1:328-336, 1993.

[165] E Remy, P Ruet, L Mendoza, D Thieffry, and C Chaouiya. From logical regula
tory graphs to standard petri nets: Dynamical roles and functionality of feedback
circuits. Concurrent Models in Molecular Biology, 4230:52-72, 2004.

[166] 0 Roig, J Cortadella, and E Pastor. Verification of asynchronous circuits by bdd
based model checking of petri nets. 16th Int. Conf. on Application and Theory of
Petri Nets, 935:374-391, 1995.

[167] Delphine Ropers, Hidde De Jong, Michel Page, Dominique Schneider, , and Geisel
mann. Qualitative simulation of the carbon starvation response in escherichia coli.
Bio Systems., 84(2):124-152, 2006. 10.1016jj.biosystems.2005.10.005.

[168] L Rosenblum and A Yakovlev. Signal graphs: From self-timed to timed ones.
International Workshop on Timed Petri Nets table of contents, pages 199-206, Jan
1985.

[169] R Rudell and A Sangiovanni-Vincentelli. Multiple-valued minimization for pIa
optimization. IEEE Transactions on Computer-Aided Design, CAD-6, 1987.

[170] A Sackmann, M Heiner, and I Koch. Application of petri net based analysis tech
niques to signal transduction pathways. BMC Bioinformatics, 7:482-482, 2006.

[171] B Samuelsson and C Troein. Superpolynomial growth in the number of attractors
in kauffman networks. Physical Review Letters, 90(9), 2003.

155

[172] M Schaub, T Henzinger, and J Fisher. Qualitative networks: A symbolic approach
to analyze bio-Iogical signaling networks. feedback, 1 (4), 2008.

[173] S Schuster, D Fell, and T Dandekar. A general definition of metabolic pathways
useful for systematic organization and analysis of complex metabolic networks. Nat
Biotechnol, 18(3):326-332, 2000.

[174] S Schuster, T Pfeiffer, F Moldenhauer, and I Koch. Exploring the pathway structure
of metabolism: decomposition into subnetworks and application to mycoplasma
pneumoniae. Bioinformatics, 18(2):351-361, 2002.

[175] R Shamir and R Sharan. Algorithmic approaches to clustering gene expression
data. Current Topics in Computational Biology, pages 269-300, 2001.

[176] C Shannon. Prediction and entropy of printed english. Bell System Technical
Journal, Jan 1951.

[177] S Shatz, S Tu, T Murata, and S Duri. An application of petri net reduction for
ada tasking deadlockanalysis. Parallel and Distributed Systems, 7(12):1307-1322,
1996.

[178] 0 Shaw. Modelling bacterial regulatory networks with petri nets. PhD Thesis,
Newcastle University, page 262, Sep 2006.

[179] 0 Shaw, A Koelmans, J Steggles, and A Wipat. Applying petri nets to systems
biology using xml technologies. ATPN 2004, page 39, 2004.

[180] 0 Shaw, L Steggles, and A Wipat. Automatic parameterisation of stochastic petri
net models of biological networks. Electronic Notes in Theoretical Computer Sci
ence, 151:111-129,2006.

[181] 0 J Shaw, C Harwood, L J Steggles, and A Wipat. Sarge: a tool for creation of
putative genetic networks. Bioinformatics, 20(18):3638-40, Dec 2004.

[182]

[183]

I Shmulevich, E Dougherty, S Kim, and W Zhang. Probabilistic boolean net
works: a rule-based uncertainty model for gene regulatory networks. Bioinformat
ics, 18(2):261-274, 2002.

I Shmulevich, E Dougherty, and W Zhang. From boolean to probabilistic boolean
networks as models of genetic regulatory networks. Proceedings of the IEEE,

90:1778-1792, 2002.

[184] I Shmulevich and S Kauffman. Activities and sensitivities in boolean network
models. Physical Review Letters, 93 (4), Jan 2004.

[185] I Shmulevich, 0 Yli-Harja, and J Astola. Inference of genetic regulatory networks
under the best-fit extension paradigm. In Proceedings of the IEEE-EURASIP
Workshop on Nonlinear Signal and Image Processing (NSIP-Ol), pages 3-6, 2001.

156

[186J I Shmulevich and W Zhang. Binary analysis of optimization-based normalization
of gene expression data. Bioinformatics, 18:555-565, 2002.

[187J E Simao, E Remy, D Thieffry, and C Chaouiya. Qualitative modelling of regulated
metabolic pathways application to the tryptophan biosynthesis in e.coli. Bioinfor
matics, 21(2):190-196, 2005.

[188J P Smolen, D Baxter, and J Byrne. Modeling transcriptional control in gene
networks-methods, recent results, and future directions. Bulletin of Mathematical
Biology, 62:247-292, Jan 2000.

[189J J Socolar and S Kauffman. Scaling in ordered and critical random boolean networks.
Physical Review Letters, 90(6), Jan 2003.

[190J E Sontag, A Veliz-Cuba, R Laubenbacher, and A Jarrah. The effect of negative
feedback loops on the dynamics of boolean networks. Biophys J, Mar 2008.

[191 J J Sparso. Asynchronous circuit design. page 182, Apr 2006.

[192J R Srivastava, M S Peterson, and W E Bentley. Stochastic kinetic analysis of the
escherichia coli stress circuit using sigma-32 targeted antisense. Biotechnology and
Bioengineering, 75:120-129, 2001.

[193J R Srivastava, L You, J Summers, and J Yin. Stochastic versus deterministic mod
elling of intracellular viral kinetics. Latest Issue of Journal of Theoretical Biology,
218:309-321, 2002.

[194J L J Steggles, R Banks, 0 Shaw, and A Wipat. Qualitatively modelling and
analysing genetic regulatory networks: a petri net approach. Bioinformatics, Nov
2006.

[195J L J Steggles, R Banks, and A Wipat. Modelling and analysing genetic networks:
From boolean networks to petri nets. pages 127-141, 2006.

[196J L J Steggles, R Banks, and A Wipat. Modelling and analysing genetic networks:
From boolean networks to petri nets. CS-TR 962, Newcastle University, UK, 2006.

[197J P Stragier and R Losick. Molecular genetics of sporulation in bacillus subtilis.
Annual review of genetics, 30:297-241, 1996. 10. 1146/annurev.genet.30. 1.297.

[198J M Sugita. Functional analysis of chemical systems in vivo using a logical circuit
equivalent. J Theor Biol, 1:415-430, 1961.

[199J M Sugita and M Fukuda. Functional analysis of chemical systems in vivo using
a logical circuit equivalent. 3. analysis using a digital circuit combined with an
analogue computer. J Theor Biol, 3:412-425, 1963.

157

[200J Z Szallasi and S Liang. Modeling the normal and neoplastic cell cycle with "realistic
boolean genetic networks": Their application for understanding carcinogenesis and
assessing therapeutic strategies. Pacific Symposium on Biocomputing, 3:66-76,
1998.

[201J C Taubner, B Mathiak, A Kupfer, and N Fleischer. Modelling and simulation of
the tlr4 pathway with coloured petri nets. Engineering in Medicine and Biology
Society, Jan 2006.

[202J D Thain, T Tannenbaum, and M Livny. Distributed computing in practice: the
condor experience. Concurrency and Computation: Practice and Experience, 17(2-
4):323-356, 2005.

[203J R Thomas. Boolean formalization of genetic control circuits. Journal of theoretical
biology., 42:563-585, Dec 1973.

[204J R Thomas. Kinetic logic: A boolean approach to the analysis of complex regulatory
systems. Springer- Verlag, 1979.

[205J R Thomas. Regulatory networks seen as asynchronous automata: A logical de
scription. Theor. Bioi., 153:1-23, 1991.

[206J R Thomas and R D'Ari. Biological Feedback. 1990.

[207J R Thomas, A Gathoye, and L Lambert. A complex control circuit. regulation of
immunity in temperate bacteriophages. FEBS Journal, 71:211-227, Jan 1976.

[208J R Thomas, D Thieffry, and M Kaufman. Dynamical behaviour of biological regula
tory networks - i. biological role of feedback loops and practical use of the concept of
loop-characteristic state. Bulletin of mathematical biology., 57:247-276, Mar 1995.

[209J R Valko Self-modifying nets, a natural extension of petri nets. Lecture Notes in
Computer Science, pages 464-476, Jan 1978.

[210J W van der Aalst. Workflow verification: Finding control-flow errors using petri
net-based techniques. Business Process Management: Models, 2000.

[211 J W van der Aalst. Pi calculus versus petri nets: Let us eat "humble pie" rather
than further inflate the "pi hype". BPTrends, Jan 2005.

[212J Evan Someren, L Wessels, E Backer, and M Reinders. Genetic network modeling.
Pharmacogenomics, 3(4):507-525, 2002.

[213J K Voss, M Heiner, and I Koch. Steady state analysis of metabolic pathways using
petri nets. In Silico Biology, 3:367-387, 2003.

[214J X Wen, S Fuhrman, G Michaels, D Carr, and S Smith. Large-scale temporal gene
expression mapping of central nervous system development. Proceedings of the
National Academy of Sciences, 95:334-339, Jan 1998.

158

[215] J Will and M Heiner. Petri nets in biology, chemistry, and medicine-bibliography.
Computer, pages 1-36, Jan 2002.

[216] A Wuensche. Genomic regulation modeled as a network with basins of attraction.
Pacific Symposium on Biocomputing, 3:89-102, 1998.

[217] A Wuensche and M Lesser.
delta.cs.cinvestav.mx, 1, 1992.

The global dynamics of cellular automata.

[218] W J Yeh and M Young. Compositional reachability analysis using process algebra.
TAV4: Proceedings of the symposium on Testing, analysis and verification, pages
49-59, 1991.

[219] C Yuh, H Bolouri, and E Davidson. Genomic cis-regulatory logic: Experimental
and computational analysis of a sea urchin gene. Science, 279(5358):1896-1902,
1998.

[220] Z Yun and K Keong. Dynamic algorithm for inferring qualitative models of gene
regulatory networks. Computational Systems Bioinformatics Conference, Jan 2004.

[221] Z Yun and K Keong. Reconstructing boolean networks from noisy gene expression
data. Control, Automation, Robotics and Vision Conference, 2: 1049-1054, Jan
2004.

[222] I Zevedei-Oancea and S Schuster. Topological analysis of metabolic networks based
on petri net theory. In Silico Biology, 3(3):323-345, 2003.

[223]

[224]

S Zhang, W Ching, M Ng, and T Akutsu. Simulation study in probabilistic boolean
network models for genetic regulatory networks. International Journal of Data
Mining and Bioinformatics, 1(3):217-240, 2007.

Shu-Qin Zhang, Morihiro Hayashida, Tatsuya Akutsu, Wai-Ki Ching, and
Michael K N g. Algorithms for finding small attractors in boolean networks.
EURASIP journal on bioinformatics fj systems biology, page 20180, 2007.

[225] M Zhou and F DiCesare. Petri net synthesis for discrete event control of manufac
turing systems. Springer- Verlag, 1993.

[226] R Zurawski and M Zhou. Petri nets and industrial applications: A tutorial. IEEE
Transactions on Industrial Electronics, 41:567-583, 1994.

159

Index

BN Boolean network .. vi

GRN genetic regulatory network .. vi

PN Petri net .. vi

MVN multi-valued network ... vi

HLPN high-level Petri net .. 54

S I speed-independent .. 106

STG signal transition graph ... 4

STP signal transduction pathway .. 1

M P metabolic pathway .. 1

RBN random Boolean network ... 12

CKM critical Kauffman model .. 12

PBN probabilistic Boolean network ... 14

CPN coloured Petri net , , 27

S P N stochastic Petri net ... 28

HPN hybrid Petri net ... , 28

HFPN hybrid functional Petri net , 29

OP output-persistency ································· 107

CSC complete state coding , , 110

FOE firing order enforcement .. 121

TGFOE transition group firing order enforcement 125

PLDE piece-wise linear differential equation ... 7

BDD binary decision diagram , 40

TGT transition guard translation ... 65

DNF disjunctive normal form ... 10

	500904_0001
	500904_0002
	500904_0003
	500904_0004
	500904_0005
	500904_0006
	500904_0007
	500904_0008
	500904_0009
	500904_0010
	500904_0011
	500904_0012
	500904_0013
	500904_0014
	500904_0015
	500904_0016
	500904_0017
	500904_0018
	500904_0019
	500904_0020
	500904_0021
	500904_0022
	500904_0023
	500904_0024
	500904_0025
	500904_0026
	500904_0027
	500904_0028
	500904_0029
	500904_0030
	500904_0031
	500904_0032
	500904_0033
	500904_0034
	500904_0035
	500904_0036
	500904_0037
	500904_0038
	500904_0039
	500904_0040
	500904_0041
	500904_0042
	500904_0043
	500904_0044
	500904_0045
	500904_0046
	500904_0047
	500904_0048
	500904_0049
	500904_0050
	500904_0051
	500904_0052
	500904_0053
	500904_0054
	500904_0055
	500904_0056
	500904_0057
	500904_0058
	500904_0059
	500904_0060
	500904_0061
	500904_0062
	500904_0063
	500904_0064
	500904_0065
	500904_0066
	500904_0067
	500904_0068
	500904_0069
	500904_0070
	500904_0071
	500904_0072
	500904_0073
	500904_0074
	500904_0075
	500904_0076
	500904_0077
	500904_0078
	500904_0079
	500904_0080
	500904_0081
	500904_0082
	500904_0083
	500904_0084
	500904_0085
	500904_0086
	500904_0087
	500904_0088
	500904_0089
	500904_0090
	500904_0091
	500904_0092
	500904_0093
	500904_0094
	500904_0095
	500904_0096
	500904_0097
	500904_0098
	500904_0099
	500904_0100
	500904_0101
	500904_0102
	500904_0103
	500904_0104
	500904_0105
	500904_0106
	500904_0107
	500904_0108
	500904_0109
	500904_0110
	500904_0111
	500904_0112
	500904_0113
	500904_0114
	500904_0115
	500904_0116
	500904_0117
	500904_0118
	500904_0119
	500904_0120
	500904_0121
	500904_0122
	500904_0123
	500904_0124
	500904_0125
	500904_0126
	500904_0127
	500904_0128
	500904_0129
	500904_0130
	500904_0131
	500904_0132
	500904_0133
	500904_0134
	500904_0135
	500904_0136
	500904_0137
	500904_0138
	500904_0139
	500904_0140
	500904_0141
	500904_0142
	500904_0143
	500904_0144
	500904_0145
	500904_0146
	500904_0147
	500904_0148
	500904_0149
	500904_0150
	500904_0151
	500904_0152
	500904_0153
	500904_0154
	500904_0155
	500904_0156
	500904_0157
	500904_0158
	500904_0159
	500904_0160
	500904_0161
	500904_0162
	500904_0163
	500904_0164
	500904_0165

