
THE UNIVERSITY OF NEWCASTLE UPON TYNE
DEPARTMENT OF COMPUTING SCIENCE

UNIVERSITY OF
NEWCASTLE UPON TYNE

A Trade-off Model Between Cost and Reliability

During the IKSgn Phase of Software Development

by

Robert C Burnett
NEWCASTLE UNIVERSITY LIBRARY

095 50669 8

PhD Thesis

October 1995

Abstract

This work proposes a method for estimating the development cost of a software

system with modular structure taking into account the target level of reliability for

that system. The required reliability of each individual module is set in order to

meet the overall required reliability of the system. Consequently the individual cost

estimates for each module and the overall cost of the software system are linked to

the overall required reliability.

Cost estimation is carried out during the early design phase, that is, well in

advance of any detailed development. Where a satisfactory compromise between cost

and reliability is feasible, this will enable a project manager to plan the allocation

of resources to the implementation and testing phases so that the estimated total

system cost does not exceed the project budget and the estimated system reliability

matches the required target.

The line of argument developed here is that the operational reliability of a soft­

ware module can be linked to the effort spent during the testing phase. That is, a

higher level of desired reliability will require more testing effort and will therefore

cost more. A method is developed which enable us to estimate the cost of devel­

opment based on an estimate of the number of faults to be found and fixed, in

order to achieve the required reliability, using data obtained from the requirements

specification and historical data.

Using Markov analysis a method is proposed for allocating an appropriate re­

liability requirement to each module of a modular software system. A formula to

calculate an estimate of the overall system reliability is established. Using this for­

mula, a procedure to allocate the reliability requirement for each module is derived

using a minimization process, which takes into account the stipulated overall re­

quired level of reliability. This procedure allow us to construct some scenarios for

cost and the overall required reliability.

The foremost application of the outcome of this work is to establish a basis for

a trade-off model between cost and reliability during the design phase of the devel­

opment of a modular software system. The proposed model is easy to understand

and suitable for use by a project manager.

Key-Words: Software Cost Modelling, Trade-off Cost-Reliability, Development

Cost, Software Testing, Markov Analysis

Acknow ledgements

First and above all I thank Almighy God. On the many occasions that I resorted

to Him, I always found spiritual comfort and, somehow, reassurance in my doubts.

I express my heartfelt thanks to Prof. Tom Anderson, my supervisor, for his co­

operation and invaluable and constructive criticisms which provided the foundation

that enabled me to accomplish this task.

My deepest gratitude to Dr. Chris Phillips and Dr. Chris 'Woodford for their

attention and their very helpful comments throughout this work.

I also wish to thank Alcides Calsavara, Antonio T\larinho Barcellos, Ram Chakka,

Shirley Craig, Trevor Kirby and Raimundo Macedo for their help and support.

Thanks to the Centro Federal de Tecnologia do Parana - CEFET PR - (Fed­

eral Centre of Technology of Parana-Brazil) and Ponticia Universidade Cat6lica do

Parana -PUC PR - (Pontifical Catholic University of Parana-Brazil) for their sup­

port and interest in this research.

My special thanks to Ana Lucia, my wife and friend, for being so supportive and

understanding through all these years.

Finally, I acknowledge the financial support from the C~Pq - Conselho Nacional

de Pesquisa - Brazil, through the grant 200487/92-2. which allowed me to undertake

this research.

III

I dedicate this work to my wife Ana Lucia, my sweetheart daughter

Eliana

and

my parents Osmarina and George Burnett

Contents

Abstract

Acknowledgements

List of Figures

List of Tables

1 Introduction

2 Cost Estimation Methods

2.1 Introduction

2.2 Cost Estimation Before the Coding Stage.

2.2.1 How to estimate the cost

2.2.2 Expression for effort of developing.

2.2.3 Example of how to obtain Edev

2.2.4 Reliability requirement as a cost driver

2.2.5 Software size estimate

2.2.6 Cost estimation using theoretical data

2.2.7 Other cost estimation models

2.2.8 Summary

lli

Vlli

Xl

1

9

9

11

11

12

13

16

19

'r _I

29

:31

2.3 Cost Estimation During the Testing Stage

2.3.1 Software release policies

2.4

2.3.2 Goel-Okumoto model .

2.3.3 Stopping rule considering cost and reliability.

2.3.4 Release policies with modular structure .

Conclusion

3 Trade-off between Cost and Reliability

3.1 Cost of Development: Structure ...

3.2 Underlying Relationship for the Required Reliability.

3.2.1 Relationship between N and required reliability

3.2.2 Considerations on f3 ..•.....•..•.

3.2.3 How to estimate the expected number of faults.

3.3 Effort of Testing

3.3.1 Estimated effort to remove one fault

3.3.2 Expression for Etes

3.4 Estimated Cost of Development

4 Overall System Reliability

4.1 Basic Concepts

4.1.1 Stochastic process.

4.1.2 Markov chain ..

4.2 Constructing the Transition Matrix

4.2.1 Transition matrix

4.2.2 Procedures to obtain the transition matrix

4.2.3 Formalizing the problem

4.3 Determination of the Reliability of a System

32

33

35

38

40

42

43

43

48

49

52

53

55

56

61

62

65

65

65

66

68

69

73

76

76

4.3.1 Example of utilization

4.4 Allocation of the Reliability .

5 Scenarios for Cost and Reliability

5.1 Problem Description

5.2 Framework of the Minimization

5.3 Example.....

5.3.1 Definition

5.3.2

5.3.3

5.3.4

Some examples of scenarios

Comments on the results obtained.

Considerations

6 Sensitivity Analyses

6.1 Introduction ...

6.2 Expression for Sensitivity.

6.3 Sensitivity of the Cost of Development

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

Sensitivity due to Pdev and Ecod

Sensitivity due to I .

Sensitivity due to (3 .

Sensitivity due to F

Sensitivity due to 8 .

6.3.6 Summary of the sensitivity analyses .

6.4 Sensitivity of the Overall Reliability.

7 Conclusion

Bibliography

80

83

85

8.5

8i

96

9i

101

110

115

118

118

121

123

124

125

127

129

130

132

135

136

144

List of Figures

1.1 Software cost estimation)

1.2 Relationships analysed in cost of development 5

1.3 Overview of the procedures in the trade-off model 6

2.1 Relationship between reliability and cost, according to COCO~IO 19

3.1 Activities during the testing and debugging phase 47

3.2 Quantities of faults 48

3.3 Each fault requires a different effort to fix 58

3.4 Cost of development versus reliability 64

4.1 Processing in a modular structure ..

4.2 Overview of the procedures to obtain the transition matrix

4.3 Example of a matrix using four modules ..

4.4 Probability of reaching state T from state 1

4.5 Overall probability of reaching state T from state 1

4.6 System with 3 modules

5.1 Framework of the minimization

5.2 Modular software system used in the example

5.3 Transition matrix for the example

SA Plots of Cdev against R for individual modules

Vlll

66

68

72

79

79

82

89

98

99

112

5.5

7.1

Plot of Cdev against R for the whole system ..

Basic relationships that link cost and reliability

11-1

138

List of Tables

2.1 Values from past projects .. 14

2.2 Differences between actual values and estimates 15

2.3 Classification of reliability requirement, according to COCOMO 18

2.4 Scale for evaluation of the characteristics . .. 22

2.5 Number of lines of code to build one Albrecht function point 23

5.1 Input data employed in the example 102

5.2 Cost estimate for each scenario 103

5.3 Scenario for cost of development with Rreq = 0.75 104

5.4 Scenario for cost of development with Rreq = 0.80 105

5.5 Scenario for cost of development with Rreq = O.S.S 106

5.6 Scenario for cost of development wih Rreq = 0.90 . 107

5.7 Scenario for cost of development with Rreq = 0.95 108

5.8 Scenario for cost of development with Rreq = 1.0 109

6.1 Example of Cdev for different I . 126

6.2 Examples of Cdev for different f3 128

6.3 Example of Cdev for different F 130

6.4 Example of Cdev for different 8 . 131

6.5 Summary of the sensitivity analysis: "minimum" values 133

x

6.6 Summary of the sensitivity analysis: "median" values . .

6.7 Summary of the sensitivity analysis: "maximum" values

133

133

Chapter 1

Introduction

In a software project the possibility of control and measurement stems from the fact

that software development exhibits a characteristic of behaviour that enables us to

predict in advance its various steps, having pre-defined phases which any project

should follow. This characteristic can help in avoiding procedures that could result

in overly expensive projects [58J and, in principle, enables us to establish effective

cost control. These phases in the general structure of software system development

may be characterised as follows [55J: requirement analysis, requirement specifica­

tion, system design, implementation (coding), testing (testing and debugging) and

operation (use). Within this framework the implementation and testing phases, for

complex software systems, frequently present difficulties for project management

with regard to cost control [7, 55J. There is a real risk that, during these phases,

the cost of the software system could run out of control.

Software project managers recognise the value of adopting techniques which help

to estimate the effort (for example: man-months) and cost needed to complete the

development of a software system. Then, taking into account the estimation outcome

and a specific upper limit for cost, the project cost could be brought under control.

1

Chapter 1 Introduction 2

Project managers need to be able to estimate how long a software project will take

and how much it will cost.

In order to make that estimation it would be helpful to know, before beginning

the implementation phase and taking into account the project profile (such as a

required level of reliability), the amount of effort that should be allocated during

implementation and testing. Indeed, the cost should be estimated as accurately as

possible so that an implementation team with suitable skills can be selected in order

to address the constraints of cost and required reliability. To help in this task of

software cost estimation, methods have been proposed [7, 12, 43, 57] which yield an

estimate of the amount of effort required for development, such as the number of

people needed and the development schedule.

Estimate of .----____ ----,

Size Parameters Size

----i~~ Size Modelling

Other Cost Drivers r :..:.:...:...:=--

Software
Cost

Estimation

Figure 1.1: Software cost estimation

Cost and Schedule
Estimates -

Several different methods for estimating the cost of developing a software module

have been devised, such as those cited above; all of these methods basically utilize

the structure of figure 1.1, where:

Size Modelling represents a group of checklists and/or algorithms, which support

estimating the size of a module; 1

Software Cost Estimation is the activity of estimating the cost that will be ex-

pended with the software development;

1 Document [65] is a good example of this modelling approach, containing an extensive list of

guidelines and mechanisms for estimating software size reasonably accurately.

Chapter 1 Introduction 3

Size Parameters refers, for example, to the number of functions to be executed,

the number of physical files to be manipulated or the number of inputs/outputs that

a module has to handle;

Estimate of Size is an estimate of the module size, \vhich is usually obtained

either in lines of code or function points, as discussed in section 2.2.5 ;

Other Cost Drivers refer to the use of software tools, reusability, complexity and

characteristics of utilization (such as distributed processing) in the implementation

of the module;

Cost and Schedule Estimates are the amount of time and person-period (for

instance, man-months) necessary to develop the module.

Currently available software cost estimation methods do not usually consider the

desired level of reliability as a cost driver, as will be discussed in chapter 2. However,

as illustrated in [2, 45, 80], the cost of a software system is strongly influenced by

reliability requirements; that is, a system with high required reliability needs more

development effort and consequently costs more than if the same system had lower

reliability requirements. These papers confirm that the cost of a system increases

when the level of reliability required from it increases.

In spite of there being many software reliability models very few of them provide

any guidance, before these phases begin, on how much effort (in relation to desired

reliability) should be spent during the implementation and test phases. Research

has concentrated on "release policies" for software systems, i.e., when to stop testing

and deliver the system [44, 45, 53, 80, 83]. These policies do not assist the project

manager in advance of implementation; they only provide guidance during testing.

In addition, matters dealing with reliability in a modular software system are

scarcely treated in the literature; very few papers address the modularity issue, as

is emphasized in [35, 45].

Chapter 1 Introduction 4

In this context, this work proposes a method for estimating the cost of devel­

opment of a modular software system, given a desired level of reliability for that

system, as well as a budget that represents the upper cost limit. Estimation is

carried out during the design phase, that is, before implementation begins using

historical data and the expected number of software faults for each module.

In this work the cost of development Cdev of a module is taken to be specifically

the cost spent during the coding and testing phases only. As analysed subsequently,

the estimate of the cost of testing is based on the level of reliability R required for

the module, which is linked to the number of faults (introduced during the coding

phase) which need to be removed (found and fixed) during the testing phase.

To connect cost and reliability a line of argument is developed which suggests that

achieving a required level of reliability is strongly associated to the effort devoted to

testing, which in turn depends on some intrinsic characteristics of the module under

consideration. Based on this reasoning, we plan to estimate Cdev using formulas

that enable us to represent the "chain" of relationships depicted in figure 1.2.

• Estimated Cost of Development (Cdev) is formulated here as the estimated

cost that will be expended on the coding and testing phases. The latter, as

shown subsequently, is associated with achieving a specific reliability level.

• Required Reliability for the System represents the overall level of reliability

required for the software system, which is assumed to be known in advance of

the design phase;

• Required Reliability of a 110dule is set at a level which enables a given overall

required reliability for the system to be achieved, as developed in chapters 4

and 5;

• Characteristics of a Module are obtained from the requirement specification

Chapter 1 Introduction

Required Reliability of

Module i

t
Required Reliability

for the System

Characteristics of Module i

1 - Effort of Development ESTIMATED COST
of Module i-of MODULE i

Historical Data from _______ -.11
Past Projects

Note: A _ B means that B depends on A

Figure 1.2: Relationships analysed in cost of development

5

for the software, and include various factors which can influence the cost of

development, for instance, module size and the expected number of faults to

be removed during testing;

• Historical Data from Past Projects allow us to formulate fundamental corre-

lations between some of the data, using regression analysis;

• Effort of Development of Module is the effort needed for coding and testing the

module, taking into account the number of faults that have to be found and

fixed during the testing phase so that a required reliablity will be achieved.

Applying the procedures for estimated cost of development and overall estimated

system reliability a trade-off model between cost and reliability is defined. Using

the results of this trade-off model a project manager could plan the allocation of

resources to the implementation and testing phases so that the estimated total

system cost does not exceed the project budget and the estimated system reliability

meets the required target.

Chapter 1 Introduction 6

Requirement
Specification I User I

I overallJ1~~~~i~tY Bldget

r --r -p-roril~::~~:rG ~ -----l---1-------:
I System R = f(R) I

: Reliability ~ Trade-off :

: Cost and Reliabi.lity. . Analysis I III

I Parameters /" I
I Cost and /
I I RelIabIlIty ./ Ci = g(Ri) Reliability and I
I '" A I I
I na yses Cost Proposed I
I . for each Module I

L E~'~n_P~,:"e_o~S"f,-w:,=-~c"-el"p~,,n=-- - - - - - - - - - - - -r ----~

I Project Managerl

Figure 1.3: Overview of the procedures in the trade-off model

Chapter 1 Introduction -j

The overall procedure to set up a trade-off between cost and reliability during

the design phase is envisaged as shown in figure 1.3, where the

• Probability Matrix is the result of the analysis of the expected pattern of usage

of the system under consideration, derived from a requirement specification.

This transition probability matrix expresses the envisaged pattern of interac­

tion between the modules.

• Overall System Reliability is the definition of a formula that will enable us to

estimate the system reliability based on the target reliability of each module.

• Cost and Reliability Analyses represent the study of how to link cost and

reliability during the design phase of software development. This link between

cost and reliability is made through the number of faults that need to be

removed during the testing phase so that the overall required reliability will

be achieved.

• Trade-off Analysis represents a process of minimizing the total cost of devel­

opment. As a result of this process the cost and target reliability for each

module are obtained.

As shown in [35], the testing phase has to be managed wisely. To do this a project

manager should have sufficient information to allow him to control overspend. The

point of this work is to aid progress in this direction.

To address the points noted above this thesis is arranged as follows:

• Chapter 2 considers some of the methods available for estimating the cost

of software development, focusing on how reliability requirements influence

the estimate and how the effort of coding can be obtained, based on some

Chapter 1 Introduction 8

published methods. This chapter also discusses methods applied in advance

of the coding phase as well as during the testing phase.

• Chapter 3 defines how the cost of development is dealt with in this work.

This will enable us to establish a trade-off between cost and reliability during

the design phase of software development. A formula is proposed that links

the number of faults to be fixed to a required level of reliability based on the

expected number of faults present in the module before starting the testing

phase. In addition, the factors that are involved in the effort of testing are

defined and a proposal is made for estimating the effort of finding and fixing

one fault during the testing phase. Then, a formula for the estimated cost of

development is established using the results achieved in the previous sections.

• Chapter 4 proposes a formula to estimate the overall reliability of a modular

software system, which is linked to the reliability of each module and the

probabilities of transition between modules, using Markov Analysis.

• Chapter 5 develops a procedure to allocate the reliability requirement for each

module utilizing the outcomes obtained in chapters 3 and 4 and using a mini­

mization procedure, which enables us to construct some scenarios for an esti­

mated cost and the overall required reliability. An example is also presented,

using hypothetical data, which serves to illustrate the procedures developed.

• Chapter 6 focuses on the analysis in the formulas of cost of development and

overall estimated reliability for the parameters employed in those formulas. A

numerical expression of these sensitivities is made and a comparison of the

sensitivity among the parameters is presented.

• Chapter 7 provides the conclusion and outlines future work.

Chapter 2

Cost Estimation Methods

2 .1 Introduction

Software cost estimation is mainly concerned with providing a cost estimate before

any lines of code have been written, taking into account the many factors that are

thought to have a direct effect on cost. The outcome is an estimate of the effort,

such as the number of man-months, required to develop the software, which converts

directly into cost. The factors that enable us to estimate the effort are primarily

the estimated size of the software and some adjustment factors called cost drivers

[7, 12,33,43]. These cost drivers are applied so that the cost estimation takes into

account some of the software characteristics, such as desired software reliability,

software complexity and the programming language to be used, all of which are

thought to influence the software cost.

We have chosen to widen the above characterization of software cost estima­

tion in order to include also the estimation performed after the coding phase, even

though these methods cannot strictly be considered as cost estimation methods.

Nevertheless, these estimation techniques provide some interesting alternatives for

9

Chapter 2 Cost Estimation Methods 10

associating cost with reliability. Hence it could be said that there are two ways of

dealing with software cost estimation:

• before the coding phase, which aims to provide a cost estimate when no lines

of code have been written or tested, and is based on historical data derived

from previous projects; and

• after the coding phase, that is, during the testing phase using data that are

collected during this phase (after this phase has progressed for awhile), thus

aiming at estimating the testing time in this phase, such that a desired value of

software reliability can be attained. Based on this testing time, the estimated

cost to complete the testing phase may be calculated.

In examining these two approaches, we focus on the factor that is well-known

to be of paramount importance for cost estimation, namely, the software reliability

requirement. This factor, considering a modular software system, can be defined as

the probability that a module will operate according to its specification when called

and will transfer control correctly when finished.

In the first approach (cost estimation before the coding phase) the reliability

requirement is used to adjust the estimate of effort and consequently the cost (see

section 2.2). In the second approach, cost estimation is treated by software release

policies (section 2.3) which employ a required level of reliability in order to establish

when to stop the testing. As shown subsequently, these policies can also be used in

the estimation of cost using reliability as a major factor.

This chapter considers some of the methods available for estimating the cost

of software development focusing on how reliability requirements influence the esti­

mate. It may also help in understanding why certain solutions were employed in the

model developed in this work; this model, as discussed on the following chapters,

Chapter 2 Cost Estimation Methods 11

combines features of the two above mentioned approaches, estimating the cost be­

fore the coding phase, without requiring any data from the testing phase, but using

the desired level of software reliabili ty as a key parameter.

2.2 Cost Estimation Before the Coding Stage

In this section we summarize how software cost is currently estimated before the

coding phase, using different approaches, and discuss how a reliability requirement

is/is not taken into account in these approaches. A discussion on software size

estimation methods is also presented. It should be emphasized that this chapter is

not a review of the literature on cost estimation models but specifically a survey as

to how the reliability requirement is/is not handled in this estimation. More details

about cost estimation models can be found in [7, 12, 16,27,32,43].

2.2.1 How to estimate the cost

The cost of developing software, here represented by Cdev , is directly related to

the effort Edev (expressed, for example, in man-months) spent in that development.

This effort has in turn been said to be mainly dependent on the size of the software

[7, 12, 32, 55].

This dependency is represented in two ways: either using essentially historical

data from past projects or based on so-called "theoretical data". The first of these

is discussed below, whereas the latter is treated in section 2.2.6. Other known and

well-referenced cost estimation models, which have some similarities with the models

analysed here and in section 2.2.6, are outlined in section 2.2.7.

In sequence we briefly outline how an estimate of the effort of development Edev'

which is utilized for estimating the development cost Cdev , can be obtained. The

Chapter 2 Cost Estimation Methods 12

outline given here, which is based on published works, should be seen as a very brief

introduction on how to obtain this parameter. An example is also presented on how

to estimate the effort of development using (hypothetical, but realistic) historical

data. A view in more depth can be acquired from the references indicated.

2.2.2 Expression for effort of developing

It is well-known that the effort needed to implement a software module, here repre­

sented by E dev , is strongly related to the size of the module, as can be seen in most

of the software cost models that are available in the literature [7, 12, 43]. The effort

Edev can be expressed as:

(2.1)

where

• a and b are constants usually derived by regressIOn analysis between Edev

and the software size S of previous projects. It might be suggested that one

difficulty in applying these models is that either a or b might not be suitable

for a particular user's installation, and this would produce inaccurate effort

estimates. Thus, it would be recommended that the user should establish a

and b for their own software systems. The result would be a model calibrated

for the user's installation. A typical method of carrying out this task is to use

standard regression analysis l to determine these values, using the precedent

of past projects, where effort in person-period and system size is available .

• S is the system size as estimated during the design phase, either in function

points (FP) or thousands of line of code (KLOC). In section 2.2 .. 5 there is a

IFor details, see, for example, [12].

Chapter 2 Cost Estimation Methods 13

discussion of how the parameter 5 can be estimated .

• D(X) is an adjustment multiplier that depends on cost-drivers, represented

here by the vector x. Development effort is clearly influenced by other at­

tributes referred to as effort (or cost) drivers, for example, module application

domain2 and technical complexity [7]. Each of these attributes should be eval­

uated on a suitable scale producing a figure D(X) that represents the level of

influence of drivers on the effort. Depending on this value for D(X) the effort

Edev can be adjusted appropriately.

An example of this multiplier can be seen in Boehm's COCOMO model [7,

page 118]. Recent works, such as [33], suggest that in many development

environments a small sub-set of Boehm's cost-drivers would be sufficient.

In this work we merely assume that there exists some D(X), corresponding to

Boehm's cost-drivers and tailored for the environment, that enables an appro­

priate adjustment of Edev . Subsequently, we analyse how software cost models

deal with a reliability requirement, discuss in detail some characteristics of

D(X), and more specifically examine how software reliability is handled.

2.2.3 Example of how to obtain Edev

An example of how to establish a and b using hypothetical (but realistic) data is

outlined below.

Suppose that an installation has a historical precedent providing data on coding

effort in man-months and program size in KLOC for a series of programs. Typical

values are shown in Table 2.1, which has been adapted from [7]. All programs (used

in Table 2.1) belong to the same category (for example: business application) and

2For instance, business and real-time applications.

Chapter 2 Cost Estimation Methods 14

Program Coding Effort Size

1 4 5.0

2 3 4.5

3 5 6.5

4 11 12.5

5 5 7.0

6 3 4.2

7 11 13.5

8 12 15.0

9 7 8.9

10 7 9.0

Table 2.1: Values from past projects

with D(X) = 1.03 .

Applying regression analysis between effort and size we obtain the following

formula for the effort of coding (because we are using coding effort as historical

data):

Edev = 0.634 . S1.09 (2.2)

To examine the accuracy of this formula4 we can calculate the differences between

the actual values for effort that are indicated in Table 2.1 and those estimated using

the formula (2.2). These differences are shown in Table 2.2.

The average magnitude of the absolute relative error [16, 30] is a suitable measure

380, we are hypothesizing that the influence of each cost driver on the effort is "nominal" [7].

4We are assuming zero-intercept, that is, there is no constant overhead.

Chapter 2 Cost Estimation Methods 15

Program Estimated Edev Difference % Difference

1 4.336 0.336 +6.7

2 2.733 -0.267 -5.6

3 5.123 0.123 +2.5

4 5.106 0.106 +2.1

5 4.173 -0.287 -6.0

6 2.97 -0.03 -0.6

7 11.18 0.18 +3.6

8 11.87 -0.13 -2.6

9 7.131 0.131 +2.6

10 7.046 0.046 +0.9

Table 2.2: Differences between actual values and estimates

for determining the quality of performance of the formula (2.2). This value is given

by

~ . t I Yi - Yi
est I

n ;=1 Yi
(2.3)

where

Yi is the actual effort of development (Table 2.1) and Yi est
is the estimated value

of}li (Table 2.2);

Applying formula (2.3), the foregoing absolute average relative error magnitude

is then 0.04135, i.e., about 4%.

This value is much less than the 0.25 that is recommended in [16, page 148].

Hence, for this example, the predictive quality of the formula (2.2) is quite good. and

as a consequence it may be suggested that the hypothetical user of this estimation

Chapter 2 Cost Estimation Methods 16

formula may have reasonable confidence in predictions obtained using the formula

for other programs with similar characteristics of development.

In this example the formula used for Edev was simply Edev = a . Sb, because, as

hypothesized, D(X) = 1.0. It can be observed that the value obtained for b is of

the same magnitude as has been found in other cost modelss, such as are shown

in [7, 12, 43]. However, the value obtained for a is considerably smaller. This is

because we are analysing just the effort of coding while the references cited (usually)

estimate the effort that will be spent in total during design, coding and testing. In

other words, the effort of development shown is equal only to the effort of coding,

hence the term "coding effort" in Table 2.2.

2.2.4 Reliability requirement as a cost driver

Examining the expression (2.1) for the effort of development Edev. we observe that

if we stick to this formulation and we want Edev to take the reliability requirement

into account, then there is only one opportunity-which is to use this requirement as

a cost driver.

As can be seen subsequently, there is no reference in the software cost models

analysed as to the influence that the software reliability requirement might have on

software size during the coding phase. It might be suggested that the influence,

if any, of reliability requirement on software size should be dealt with during the

requirement specification phase, that is, prior to the design phase. This aspect is

beyond the scope of this work.

To analyse the foregoing alternative, we focus our discussion on Boehm's CO­

COMO model [7]. The reason for doing so is that COCO?\IO is the best known

5We should bear in mind that b may have a wide variation among different environments (due

to non-linearity between effort and size), as can be seen in [4).

Chapter 2 Cost Estimation Methods Ii

and best documented cost model, widely used as "inspiration" for other cost models

[12, 32,43], and constitutes a typical specimen of a cost model that uses the concept

of cost drivers.

The reliability requirement, which is termed "Required Software Reliability" in

COCOMO, is one out of 15 cost drivers defined there6
• The effect of the cost drivers

in the cost estimation is determined by assigning ratings for each factor on a scale

(very low, low, nominal, high, very high and extra high), and then associating a

numerical value7 to each rating, as shown in Table 2.3 . These numerical values,

whose product constitutes D(X) and consequently serves as a multiplier for Edev ,

allow us to adjust the cost depending on the significance of the cost driver to the

software being estimated (once obtained, these 1.5 numerical values (scores) are

multiplied together to give D(X)).

To characterize the reliability requirement as a cost driver Boehm uses a concept

of "nature of loss". The requirement has to be rated depending on the loss that

a user would suffer if the software yielded a wrong outcome. The scaling factors

proposed in CO COMO to incorporate the relia.bility requirement are presented
8

in

Table 2.3.

Despite the expression "Required Software Reliability" used in cOcO~10, which

refers to the general behaviour of the software, rather than to a specific value for the

required reliability, there is no unequivocal correlation between "Impact of a wrong

outcome for a user" with a desired level of reliability.

However, it may be conceded that (without undue concern for accuracy) a high

or low figure for the required reliability is likely to be influenced by the consequences

6COCOMO has the expression for cost estimation as in equation (2.1).

7These numerical values were established by Boehm empirically.

8There is no "Extra High" rating for the reliability requirement in COCO~IO.

Chapter 2 Cost Estimation Methods 18

Impact of a wrong Ratings Numerical
outcome for a user Values

Slight inconvenience Very Low 0.75
Easily recoverable loss Low 0.88
Moderate loss Nominal 1.00
High financial loss High 1.15
Risk to human life Very High 1.40

Table 2.3: Classification of reliability requirement, according to COCO~10

that a wrong outcome could yield for the user. On this basis, working with ratings

would only give us a very crude idea of the influence of a required reliability in the

cost of development.

Indeed, it may be noted that even if two software modules required different

levels of reliability, they could be classified with the same rating9 • If this was the

case they would have the same adjustment factor for the estimated effort (when

only the effect of the reliability requirement considered). Nevertheless, in order to

increase slightly the reliability of a software system, more testing would need to be

undertaken, which would presumably imply more effort and consequently more cost.

The ratings proposed in CO COMO are too coarse to accommodate this situation.

The kind of relationship between ratings and numerical values, shown in figure

2.1, can arguably be attributed to the fact that as the reliability requirement becomes

"tighter" (tends to "Very High"), a great deal more effort (and consequently cost)

is needed than would be the case if the requirement was less stringent. Hence,

increasing the reliability requirement from "Nominal" to "High" is less costly than

9Furthermore, we see in Table 2.3 that there exists only a 1.87 : 1 ratio between "risk to human

life" and "slight inconvenience", which seems to be rather too small.

Chapter 2 Cost Estimation Methods

Numerical (adjustment oC cost)

Value

1.6

1.4

1.2

1.0

0.8

0.6 Very Low Low Nominal

0.4

High

Ratings

(reliability requirement)

Very High

19

Figure 2.1: Relationship between reliability and cost, according to COCOMO

from "High" to "Very High". In other words, there is a non-linear variation between

"Very Low" and "Very High" which could be justified by the fact that the latter

would demand more testing effort than the former which, obviously, would mean

more cost.

It can reasonably be inferred that if the ratings were replaced by a more precise

notion, such as an explicit figure for the required reliability. then we could obtain a

more accurate relationship between the precise values for reliability and the factors

utilized for cost adjustment.

2.2.5 Software size estimate

As shown in the previous sections, the software size is a key factor in the cost

estimation methods. Thus, it is worth discussing how the software size is estimated

during the design phase.

An estimate of the size of software is usually made using one of two units-lines

Chapter 2 Cost Estimation Methods 20

of code (LOC) or function points (FP). The latter is discussed in some detail here,

and then the former is briefly summarized.

Besides its popularity as a software metric (as has been emphasized in [2.1]),

the reason for our interest in the function point approach is that the FP method

allows us to take some size drivers into consideration in estimating software size-the

reliability requirement may be a case in point.

However, there is an obvious difficulty in estimating the size of software during

the design phase when some details are not known about its characteristics. In

addition there is the problem of defining what source lines of code means [59]. To

avoid this problem, one solution is to base the total development effort estimates

on the "functions" that a software system has to perform instead of using the LOC

as a measure of software size. The FP method tries to provide a less "subjective"

manner of estimating software size. Besides, it should be emphasized, the number

of LOC can be estimated from the number of FP, as will be shown later.

The FP method enables us to estimate the software size through "function

points" based on some characteristics of the information processing and a technical

complexity factor [1, 28, 29, 60, 73, 74]. In addition FP are available for measure­

ment rather than estimation at an earlier stage in the development process than the

source lines of code.

Another reason why LOC seems to be a weaker method than FP is that it

IS difficult to use analysis and analogy for sizing a software system as is usually

employed for estimating the size in lines of codes, because often our past experience

may not give us the capability for predicting the software size. It may be suggested

that a case in point is when we are distributing functions that were previously

centralized.

A brief summary of the best known FP methods follows.

Chapter 2 Cost Estimation Methods 21

• Albrecht's function point method

To cope with the problems of estimating software size, Albrecht [1, 73, 55] proposed

that the "functions" the software should perform could be used to measure software

size, where for each function a weight is attributed. Taking into account the relative

weights, the outcome of Albrecht's method indicates the software size in a unit called

function points. This unit does not directly quantify the program size in the way

that lines of code do, and is said to be a measure of the problem si::e [73].

Albrecht developed a method of estimating the number of functions (as seen by

the end-user) that a software system has to carry out, based on the number of inputs

utilized, outputs produced and the number of interfaces employed. The components

selected to define the software size in the Albrecht model are: number of user inputs,

number of user outputs, number of user inquiries, number of files and number of

external interfaces.

Each component is associated with a weight 10, which can be classified as "simple,

average or complex" depending on the number of data elements in each component,

that reflects the relative value of the component to the user. The weighted sum

of these components is called "Function Points". This total of function points ob­

tained, according to Albrecht, needs to be adjusted further to take into account

some characteristics of the development environment. After this adjustment the

final outcome of software function points is obtained.

Because of the importance of this method for size estimation, some studies have

been published [28, 29, 46, 49] that discuss how to obtain FP more accurately than

by using Albrecht's method. Other studies [60, 73] show some extensions to the

original Albrecht function point method and review its weak points [25, 73]. Despite

the criticisms that have been made of its features, FP has become an established

lOIt should be noted that the weights were determined by "debate, trial and error"' .

Chapter 2 Cost Estimation Methods 22

Ratings Numerical

Values

Not Present or No Influence 0

Insignificant Influence 1

Moderate Influence 2

A verage Influence 3

Significant Influence 4

Strong Influence 5

Table 2.4: Scale for evaluation of the characteristics

industry standard of size measurement for software (as stressed in [28]) and has

generated a specific research field.

We focus here on how the adjustment factor works in Albrecht's method. The

adjustment factor is composed of a group of 14 characteristics that can be considered

as size drivers:

* Data Communication; Distributed Functions; Performance; Heavily Used Con-

figuration; Transaction Rate; On-line Data Entry; End-User Efficiency; On-

line Update; Complex Processing; Re-usability; Installation Ease; Operational

Ease; Multiple Sites; and Facilitate Changes l1
.

Each one these characteristics has to be evaluated on a scale from 0 to 5 as shown

in Table 2.4. The values attributed to the 14 characteristics are added together

producing a total, which represents the overall degree of influence of the environment

on the software size (estimated function points).

11 Note that the software reliability requirement is not included in these characteristics.

Chapter 2 Cost Estimation Methods

LANGUAGE

Assembly
C

LOC per FP

300

Cobol
Pascal
Modula 2
Ada
Object-Oriented Language

Fourth-generation language
Code generators

130
100
90
80
70
30

20
15

Table 2.5: Number of lines of code to build one Albrecht function point

23

The adjustment factor is then formulated to be equal to 0.65 + 0.01 L:~l \1;,

where Vi is the numerical value attributed for each characteristic. So, the overall

degree of influence can give an adjustment factor of ± 35% in the number of FP.

However, we usually need to utilize LOC instead of FP as a direct measure of

size. A straightforward way to do this would be to determine the size in FP and for

each environment to use its own method to convert FP to LOC. This can be done

using regression analysis between FP and LOC, as shown in [1].

Table 2.5, which is reproduced from [55], gives a rough estimate of the relationship

between LOC and FP, for the main programming languages. It can be seen, for

instance, that one function point would require 130 LOC in C language .

• MARK II function points

A well-known variant of the Albrecht function points is Symons' ~IARK II [73, 74]

which offers a different approach to estimating the number of function points and to

evaluating the adjustment factor. Let us examine particularly the adjustment factor

since, contrary to Albrecht's method, this can be calibrated in the environment of

Chapter 2 Cost Estimation Methods 24

the user.

* The adjustment factor in MARK II is composed from the same 14 charac­

teristics present in Albrecht's method plus five additional ones-requirements

of other applications, special security features, direct access for third parties,

documentation requirement and user training facilities.

Again, the reliability requirement is not explicitly cited. However, a key differ­

ence is that any other additional characteristic suggested by the user can be defined

for this adjustment. The procedure of adjustment is carried out as in Albrecht's

method as described previously.

Hence, we may include reliability requirement as a new characteristic, using the

same ratings as defined in Table 2.4.

Examining the ratings shown in Table 2.4 and considering the inclusion of the

reliability requirement as allowed in MARK II, the influence of the reliability require­

ment would be linear, which does not seem to match with the reality of software

development .

• Function points and software science

Albrecht's function point method and MARK II are intended to deal with business

applications, where the internal complexity of the system is mainly due to the process

of validation and interactions with stored data. This could limit their validity for

applying them in scientific or technological systems, where the internal complexity

is the hard core.

To overcome this possible limitation, Reifer has proposed the Asset-R (Analytical

Software Size Estimation Technique Real-Time), described in [60], which is thought

to be useful in business data processing, but is mainly applicable to scientific and

Chapter 2 Cost Estimation Methods 25

real-time systems, combining the concepts of function points and software science.

A summary of this model follows.

The basic formula that estimates the size is

S = ARCH· EXPF· ((FP(adi)· LEG) + A1VOL)RF

where

* S is the size of the system in source lines of code;

* ARCH is the architectural constant (which was derived empirically), a value

depending on the system architecture, for example, centralized (ARCH =

1.0), distributed with central data-base (ARCH = 1.8) or fully distributed

(ARCH = 2.1);

* EX P F is the expansion factor for size drivers, including the following drivers:

requirements volatility, data base size, degree of real time, use of modern pro­

gramming techniques, use of software tools, analyst capabilities, applications

experience, environment experience and language experience. For each driver

there is a range of numerical values associated with it, which were derived

by Reifer "through extensive statistical analysis of existing sizing data bases" .

Note that the reliability requirement is not included as a size driver in Asset-R.

* F P(adi) is the count of function point adjusted, which is obtained similarly to

Albrecht's method, but using other weighting factors.

* LEC is the language expansion factor, that is, the number of lines of code that

are required to implement one function point. Thus, the product (F P(adi) .

LEC) provides the conversion of function points counts to lines of code. This

factor LEC depends on the language that the software will be coded as shown

in Table 2.5.

Chapter 2 Cost Estimation Methods 26

* MVOL is the mathematical volume, that is, the size estimators, either number

of operators (any symbol or keyword that specifies an action) and operands

(any symbol used to represent data, as well as, variables, constants. labels and

most punctuation marks), or number of algorithms;

* RF is the re-use factor. This factor is usually set to 1, but its calculation "is

internal to the system" [60].

For scientific systems the number of function points adjusted F P(adj) is calculated

using: the number of inputs, the number of outputs, the number of master files, the

number of modes, the number of inquiries and the number of interfaces. For real­

time systems two other parameters are included-the number of stimuli (response

relationship) and the number of rendezvous are added. For these two types of appli­

cation the formula does not contain any weighting factors or complexity adjustment

factor12.

If we need to estimate the size in lines of code for software classified as real­

time or scientific and want to take advantage of the characteristics of Asset-R, we

should bear in mind that the model does not take into consideration any reliability

requirement as a size driver.

• Size in lines of code

If a home-made procedure for sizing software is preferred it is worth reading ref­

erences [65] and [67]. The former is a document from the Software Engineering

Institute (SEI), at Carnegie Mellon University [65]. which covers mechanisms for

defining and estimating software size; the outcome achieved is a measure of the size

12Rook indicates in [62] that scientific systems should also utilize the weight factors, whereas

Reifer states just for business data processing.

Chapter 2 Cost Estimation Methods 27

of the source code13
. The latter deals with the subject of software metrics, where

code metrics is a case in point.

It should be noted, as highlighted in [33], that if size is adjusted by some fac­

tors we should not use cost drivers based on those same factors, in order to avoid

adjusting Edev twice with the same factors.

2.2.6 Cost estimation using theoretical data

For this class of cost estimation model we have chosen to discuss Putnam's model

[57, 58]14 since, as emphasized in [32], this model can be regarded as a typical and

well-known method based on theoretical data; it enables us to make decisions about

cost, time of development and the risks of software development.

The basic assumption in this modeP5 is that manpower utilization during soft­

ware development follows a Rayleigh-type curve16
. This model is said to be the­

oretically based because it is supported by mathematical laws that the software

development process is assumed to follow [12].

130ther references that may serve as starting points for creating a software sizing method are

[23, 36, 72], which contain some checklists to help one make better estimations, and [78], which

describes an approach to software size estimation, based on some factors that affect the software

Size.

141n [58], which represents a series of three articles about this model, Putnam describes his model

in detail. A compact perspective on this model can be found, for example, in [12, 32, 43].

15The software product called 5111\1, which stands for Software LIfe-cycle Methodology, was

developed by Larry Putnam in the late 1970s and incorporates his approach to cost estimation,

being a direct application of his model.

16The Rayleigh-curve is characterized by the fact that the curve increases rapidly towards a

peak, after which it steadily decreases towards zero. A discussion of the behaviour of this curve

can be found in [32, page 508].

Chapter 2 Cost Estimation Methods 28

A very brief summary of some results obtained from Putnam's model are:

• Effort of Development (Edev)

Edev = 0.3945 * - * -1 (S)3
T4 C

* T is the development time in years;

* S is the estimate of software size in LOC;

* C is the technology factor. It reflects the effect on productivity of numer­

ous factors, such as hardware constraints, program complexity, personnel

experience levels and the programming environment. Putnam has pro­

posed using a discrete spectrum of 20 values for C, ranging from 610 to

57,314. A value for C may also be determined from historical project

data.

From the equation for Edev above, the most important observation is that for a

software product of a given size and fixed development environment the effort

varies inversely as the fourth power of the development time.

Despite the fact that it is well-known that human effort and time cannot be

traded directly in a software development, it remains to be seen under what

conditions the above relationship may be valid1
";" .

• Difficulty Metric (D)

The constant D takes on discrete values corresponding to the difficulty of the

software to be developed (hardware constraints and programming environ-

ment, for example).

171t is said in [32] that "this relationship has been strongly disputed by researchers. Putnam

himself reported investigating 750 software systems and found that it held for only 251 of them".

Chapter 2 Cost Estimation Methods 29

With K = O~'t45 then

According to Putnam's model, for a software of high complexity, the value of

D would be about 7.3, while for relatively straightforward software the value

of D would be about 27. The Putnam model has six discrete values for D

ranging from 7.3 to 89.0.

Putnam's method intends to bring the problems of estimating, scheduling, and

project control within reasonable limits, attempting to convert an estimate of system

size into effort, and consequently cost.

We may clearly see Putnam's method as a COCOMO-like model, where the

parameter C would have the same function as cost drivers. Once again, there is no

discussion in this model as to how to include a software reliability requirement as a

factor which could influence the cost. The difficulty metric D is not related to the

reliability requirement ei ther.

2.2.7 Other cost estimation models

In this section we highlight some other cost estimation models that have particular

characteristics or are well-referenced.

Firstly we outline ESTIMACS, a software product which was developed for a

consulting company, being a proprietary model. Therefore, its internal details, such

as the equations used, are not available. Keremer [27] makes an assessement of

ESTIMACS, indicating that it is one of the most used software cost estimation

products. A summary of its characteristics, based on the description of [32, 62],

follows.

Chapter 2 Cost Estimation Methods
30

As input ESTIMACS has some size variables which contain some similarities

with the input parameters for Albrecht's method and :\fARK II, product variables,

which could be seen as the cost drivers, and other environment factors.

Among the product variables there are constraints related to reliability require­

ments. However, the references [32, 62] do not contain any more detail about this

aspect. Thus, ESTIMACS is cited here only as a reminder that this software product

might include some treatment of the reliability requirement.

As output, ESTIMACS produces the effort (in man-hours). size in LOC and FP,

and cost among some other results. There is no reference in these results to anything

related to the reliability requirement.

Secondly, we very briefly mention the software product called SOFTCOST18,

which was developed at the Jet Propulsion Laboratory and which is said to be an

attempt to gather the best features present in other models.

SOFTCOST assumes that there is a linear relationship between software size

and the effort of development. This product has a great many more factors of

effort adjustment (cost drivers) than COCOMO, but without, seemingly, producing

a better result. The input required and outputs produced do not indicate any

relationship with a reliability requirement.

Therefore, glossing over its features, it is merely noted that SOFTCOST does

not have any special treatment for the reliability requirement.

The Walston-Felix Study [12, 32] is an early model of software estimation (de­

veloped in 1977), which works with the same structure for effort of implementation

as that shown in section 2.2.2. This model is considered important because it iden­

tifies 29 characteristics that should be taken into account as possible cost drivers.

18A concise analysis of this software cost estimation model can be seen in [12,32). A comparison

between SOFTCOST and CO COMO is included in [12).

Chapter 2 Cost Estimation Methods 31

This study and set of characteristics seem to have had a considerable influence on

Boehm's model. However, as can be seen in [12, page 244-245], there is no evidence

that the software reliability requirement is considered in this early model.

The Bailey-Basili meta model [3] is another known model (or rather, methodol­

ogy) that contains some equations for effort and considerations for cost drivers. This

model has some similarity with the concepts of COCOMO, where the latter could

be seen as far more complete than the former. As emphasized in [32], its overriding

contribution seems to be the suggestion of a methodology that may help in the task

of building one's own software estimation modeL which is also highlighted in [12]

as being an alternative that is worth further exploration. As for the other models,

there is no specific focus on reliability requirements for the cost drivers handled.

To avoid becoming too repetitive, we simply cite several other software products

that also have features for software cost estimation but seemingly do not include

any special features for dealing with software reliability requirements: PRICE SP

[12, 32], MERMAID [61] and COPMO [12].

2.2.8 Summary

If some conclusions can be drawn from these analyses of some relevant software cost

estimation models that are applied before the coding phase, we should stress:

• None of the models deal directly with a figure of required reliability.

• Some of the models enable some handling of the reliability requirement, but

use a very limited approach as to how this requirement should be taken into

consideration.

• Approaches for obtaining the software size are often utilized in cost estimation

but none of these approaches use the reliablity requirement as a size driver.

Chapter 2 Cost Estimation Methods 32

• To allow for requirement reliability in software size estimation methods. it

appears that the best option might be to build one's own sizing method.

• A software cost estimation procedure that makes use of relevant features of

good existing models (the aim of SOFTCOST) but with the inclusion of a

focus on reliability requirements would seem to be a valuable contribution to

this subject of cost estimation.

The outcome of this thesis is a step in this direction.

2.3 Cost Estimation During the Testing Stage

This section surveys briefly those cost estimation procedures that are employed

during the testing phase, and can make use of a value for the required software

reliability. To do this, we outline three representative approaches for "software

release policies", which enable us to estimate when to stop the testing phase and

transfer the software to operational use, taking into account either an estimate of

cost, or of required reliability, or both.

As shown subsequently, these policies may enable a cost estimate to be associated

with reliability.

Determining when it is best to stop the testing phase, which is referred to in the

literature as the optimal software release policy, is the main approach for verifying

whether it is feasible or not to define a trade-off between cost and reliability during

the testing phase [21, 37, 45, 53, 79, 80, 83]. In this approach a project manager

verifies whether the required trade-off is feasible and when it is no longer relevant

to continue the testing stage. The outcome reached by the chosen policy fixes the

software release time, i.e., the total testing time, for which both reliability and cost

requirements may be considered.

Chapter 2 Cost Estimation Methods 33

2.3.1 Software release policies

As is well-known, a significant matter of practical concern during the software testing

phase of software development is to know how to achieve a compromise between the

requirement for reliability and the cost of obtaining that reliability. In fact, this

matter arises in finding out what level of reliability is achievable within the available

budget. This can generically be termed a trade-off of cost against reliability during

the testing phase.

As cited in [51], in any application the number of distinct input combinations

that one would usually need to validate a software system is enormous, which is

said to result [83] that the longer the software is tested the more reliable it tends to

be. Thus, the testing phase can involve an enormous amount of effort, in terms of

human resources and time, in order to produce more reliable software. Because of

this it is vital to establish a deadline at which to stop the testing stage, taking into

account the fact that there is a point beyond which the cost of obtaining significant

improvements in reliability may rise significantly.

Since the early 1980s research has been conducted in this area, with the objective

of determining the "optimum" time19 when testing should stop and the system could

be considered ready for operational use (see, for example, [34, 44, 51, 53, 79,80,82,

83]). To achieve this aim, two main criteria have been utilized-required reliability

and expected cost; using these criteria, the optimum testing time for the system is

obtained, i.e., when to stop testing and deliver the system to the user.

In determining the optimum release time, there are two main approaches:

i Reliability and cost criteria are considered separately. The testing time is

19This expression "optimum" only represents the optimum stopping time in the sense that it is

meant to denote the best (minimum) required time to stop testing in order to achieve the required

reliability, considering all of the factors involved.

Chapter 2 Cost Estimation Methods 34

established from either reliability or cost requirements. An example of this

approach is given in [53];

ii The testing time is dependent on the relationship between cost and reliability.

In these models a function is formulated considering cost and reliability re­

quirements, so that the testing time obtained is that which yields the required

reliability. An example of this approach is given in [80].

When the reliability criterion is to be utilized, there are two ways of working

with the reliability requirements:

a Based on an acceptable number of remaining faults in the software. In this

case testing is terminated when the estimated number of faults remaining is

lower than a pre-established number [83];

b Based on an acceptable failure intensity level, that is, a specific value for

reliability. In this case, the testing time problem is usually formulated using

a software reliability growth model-SRGM20 (see [6, 41, 42]).

Among the many software release policies that have been published (see refer­

ences cited), we choose to summarize three of them, since these policies may be seen

as typical of models in this area. However, each of these models assumes a particular

distribution for the manifestation of faults, i.e., a specific software reliability growth

model (SRGM). If an analysis in depth of were to be developed then this would need

to consider other types of SRGM, such as those shown, for example, in [6, 42].

20 A model used for software reliability assessment during the testing and operational phases is

called a software reliability growth model. This is only true if the model assumes that software

faults are fixed when found.

Chapter 2 Cost Estimation Methods 35

2.3.2 Goel-Okumoto model

The Goel-Okumoto model [21, 53] is an early and (perhaps) the most referenced

approach to the optimum software release time policy; its concepts are widely em­

ployed in many other relevant software release models. This model does not take into

account the reliability and cost criteria simultaneously. Hence, the user of the model

has to estimate the testing time based on either reliability or cost requirements .

• Using reliability criterion

The criterion used is to stop testing when the predicted reliability at a specified

time t, during the testing phase, is equal to some required value. Thus an equation

is formulated to express the reliability required R, as a function of t, testing time T

and the cumulative number of faults found and fixed m(t). The required value T is

then found, yielding the final formula.

It is shown that

R = exp [_m(t)e- bT
] (2.4)

where

* t is the period of time during the testing phase that is utilized for making the

estimation;

* m(t) is the expected number of software faults found and fixed by time t;

* a represents the expected number of software faults to be found and fixed in

total;

Chapter 2 Cost Estimation Methods

* b is the fault detection rate during the testing phase21 ;

* R is the reliability required;

* T is the testing time sought;

Then, rearranging the equation and solving for T, we have

T = ~ [lnm(t) -lnln ~]

36

The user at time t (again, referring to the time spent III the testing phase)

estimates the reliability based on data collected until that moment. T is measured

in the same units as t, e.g., days, weeks, months, etc.

With the formula above for testing time the user can verify the sensitivity of T

in relation to Rand m(t). In others words, the user can determine when a long

testing time T is required to obtain a highly reliable software system, or when the

compromise sought is not feasible.

As can be seen from the above formulation, there is no parameter of cost in

this first approach. However, knowing the time T, i.e., how long the testing phase

is estimated to last so that a required reliability R can be achieved, means that a

value for the estimated cost in that phase may be obtained .

• Using cost criterion

The time spent in software testing and debugging delays the transfer of the system

to the user and consequently results in a higher development cost. The aim in this

second approach of the Goel-Okumoto model is to determine the optimum testing

time to minimize the cost, considering all of the factors involved. Another aspect

21The term (ae- bt) represents the expected number of remaining faults.

Chapter 2 Cost Estimation Methods 37

considered in this cost model approach is that the cost of finding and fixing a fault

is supposed to be much less during testing than during operation.

The following variables are used:

* Copt(T) is the estimated software cost;

* Pfix_tes is the estimated cost of finding and fixing a fault during testing;

* P/ix_ope is the estimated cost of finding and fixing a fault during operation,

* P tes is the estimated cost of testing per unit time;

* Pfix_tes, Pfix_ope and Ptes are assumed to be known in advance;

* t is the software life-cycle length;

* T, m (t), a and b are as defined previously.

The expression for Copt(T) is then

Where

1 --+ is the cost of finding and fixing faults during the testing phase;

2 --+ is the cost of finding and fixing faults during the operational phase;

3 --+ is the testing cost.

The objective is to find the best value of T that minimizes Copt(T). This is found

in this model by differentiating Copt(T) with respect to T and equating the result

with zero. This produces

Chapter 2 Cost Estimation Methods 38

As we must have T > 0, it can be noted that a solution only exists when

• Observations on the Goel-Okumoto model

* Using the reliability criterion the estimated testing time is not linked to any

cost constraints. Therefore, if the cost that would correspond to testing time

T is required equation (2.5) should be used.

* Conversely, the formulation using the cost criterion does not take any figure

for reliability into consideration. The option that remains is to determine the

value for R which would be achievable with testing time T (that would produce

the cost Copt(T)), using equation (2.4).

Therefore, a straightforward trade-off model between cost and reliablity is not

obtained using the Goel-Okumoto model.

2.3.3 Stopping rule considering cost and reliability

In this case the decision policies on the optimum software release times consider

both software cost and software reliability criteria simultaneously. Presented here is

a method proposed in [80], for an exponential SRGM:

where

* Rest(xlt), the estimated software reliability, is defined as the probability that

a software fault does not occur in the time interval (t, t + x), given that the

last fault occurrence time is t ~ 0, (x ~ 0);

Chapter 2 Cost Estimation Methods 39

* bj is the fault detection rate at time t;

* mj(t) represents the expected number of faults of type i to be found and fixed

during time interval (0, t) (similarly to section 2.3.2);

* i = 1,2 means types i of faults-it is assumed that there are just two types

of fault: type 1 faults which are "easily" found and fixed, whereas type 2 are

"difficult" to find and fix (a clear explanation of how to define an "easy" or

"difficult" fault is not provided by [80]);

The software cost Copt(T) is given by the same expression as in equation (2.5).

However, in this approach we seek to determine the optimum software release time

which minimizes Copt(T) subject to the condition that Rest(xIT) is not less than the

required reliability R.

The optimal software release problem is formulated as follows.

For specified operational time x 2: 0, minimize Copt(T), subject to Re .. t(xIT) 2: R

and T 2: O. As shown in [80], the optimum software release time T is then obtained

as a result of the minimization procedure .

• Observations on cost and reliability combined

* This model employs the same concepts as the Goel-Okumoto model but in

this model both cost and reliability are considered simulteanously;

* The formulation in this model leads to an analysis of the trade-off between cost

and reliablity during the testing phase. However, some period of time during

the testing phase must have passed, so that we can estimate the parameters

required in the model (defined in section 2.3.2), before any trade-off can be

studied.

Chapter 2 Cost Estimation Methods 40

* As this model enables us to analyse the required trade-off, one very tempting

thought is to explore whether an adaptation of this model or its concepts

may be accomplished, so that we can apply it during the design phase. It is

clear that we cannot use this model directly in the design phase since some

parameters in the formulas are obtained during testing. A combination of the

concepts of this model and those of the software estimation models could turn

out to be a very reasonable approach for the trade-off of cost against reliablity

during the design phase.

2.3.4 Release policies with modular structure

As is emphasized in [45], the influence of modular structure on the software release

time has been largely ignored in previous research. The following model, which is

proposed in [45], is a policy for determining the release time of software systems

composed of modules, during the testing phase, taking into account the amount of

use of the modules during their execution.

Main problem: after a period of time T, should the software system be released

or should testing be continued?

The concept behind this model is to work with the probable profit that earlier

release may produce. So, to answer this question, a function p(T) is proposed in [45]

describing the profit obtained by releasing the software system (which is composed

of modules) after further testing of duration T. A very brief summary follows.

where

* Vi(t) is the value of the software system at time t, based on the cost of each

module;

Chapter 2 Cost Estimation Methods 41

* V2(t) is the average system cost due to undetected software faults and depends

on the period of time in which a module is executed; the period of time in

which the software system is in use during the test period; the length T of the

testing period; and the number of faults found and fixed in each module.

* V3(t) is the cumulative running cost of software testing up to time t (consid­

ering all modules involved) when the release time is t.

The value p(O) and p(t) for some t > 0 are then compared. If p(O) ~ p(t), the

test is stopped and the software system is released at time T. Otherwise the test is

continued until time T + t, at which time, by replacing T by T + t, this comparison

procedure is repeated. This procedure is continued until the software release time

is determined.

In [45], some statistical procedures are developed for estimating the number of

software faults for individual modules, and an algorithmic procedure is described

for determining the values Vi(t), V2(t) and V3(t); the determination of the software

release time is then discussed in detail.

• Observations on policies for modular structure

* This model does not contain a software release policy considering cost and re­

liability simultaneously. However, the formulation proposed considers a mod­

ular software system, which does not happen in the previous models described.

* The equations for Vi (t), V2(t) and V3 (t), as shown in detail in [45], are rather

complex for a project manager to handle. As noted in [36], project managers

often refuse to use any model that contains other than "simple arithmetic

formulae" .

* In spite of above issues, this model appears to be closer to the practical aspects

Chapter 2 Cost Estimation Methods 42

involving the "real life" of software development and more comprehensive than

the other two.

2.4 Conclusion

It may be concluded that the current software cost estimation models available in

the literature, either by themselves or through sizing software models, do not have

any special approach to deal with the trade-off between cost and reliablity before

the coding phase.

As outlined, a real discussion on the trade-off between cost and reliability can be

established during the testing phase through software release policies. However, the

input data for these policies are obtained only during the testing phase which may

represent an impediment for their utilization in the earlier phase of the life-cycle of

software development, such as at the design phase.

Chapter 3

Trade-off between Cost and

Reliability

3.1 Cost of Development: Structure

As stated in chapter 1, we are interested in estimating the development cost of a

modular software system during the design phase, taking into account a required

level of reliability for each module. In this section a method of estimating this

development cost is proposed, based on some factors that are related to the cost

and reliability of a module. The acquisition of some of the factors employed in the

method were considered in chapter 2.

It has to be stressed that we are not analysing the entire cost of developing a

module1 but, more specifically, the cost spent during the coding and testing phases.

To accomplish this task we use the most common technique for costing any

engineering development project [55]. that is. to employ effort estimation. Firstly.

1 If this were the case, we should also need to consider the cost spent during the design and

previous phases, and the cost of putting the software system into operation.

43

Chapter 3 Trade-off between Cost and Reliability 44

the number of person-periods (the effort) needed to perform coding and testing

(including debugging) is estimated and then a cost is associated with each unit of

effort so that an estimated cost is obtained.

A project manager knowing the outcome of this estimation, namely, effort and

cost, and considering a required reliability, could then plan the resource allocation

for the coding and testing phases, aiming at avoiding the known problem of cost

overrun in these phases.

The estimated cost of development of a software module is defined here as the

cost to implement all functions identified in the requirement specification taking into

account a required level of reliability R, so that the module can be considered ready

for operation. This cost quantifies the effort spent during the coding and testing

phases and is represented by

(3.1)

where

• Cdev is the estimated cost of development of a module (taken to be the cost

of coding plus testing, taking into account a reliability level R), based on the

effort of development Edev . The total development cost of a system will be the

sum of each individual module cost for all of the modules in the system .

• Pdev is the cost of development per person-unit time. In this thesis. it IS

assumed that the cost per person-unit time spent in either the coding or testing

phases is indistinguishable. Hence, the single cost Pdev is used here to quantify

the cost of both the coding and the testing phases. However, if they are to be

Chapter 3 Trade-off between Cost and Reliability 45

regarded as different, this simply means that Peod and Pte~ would have to be

estimated separately.

The value of Pdev will be a characteristic of each user's installation and is ,

related to the skill of the programming team allocated to those phases. It is

assumed here that Pdev includes the direct costs of human resources (salary,

tax, etc.), as well as other costs such as use of computational resources, support

staff (management, secretary, etc.) and overheads (heat, light, rent, etc.). The

value Pdev must be available for each skilled person that can be allocated during

those phases. The unit of Pdev is pounds per unit time.

During the design pha.se the project manager must be able to indicate which

profile of human resource he is going to employ to develop each module. Based

on this information the cost Pdev is then assigned2
.

• Eeod is the effort required to implement (i.e., code) the module in, for instance,

man-months. It is estimated based upon an analysis of the cost of previous

projects within the organization and using data from "similar developments,,3

so that a correlation can be substantiated between the effort expended on

those projects, taking into account various module sizes and functions.

When we need to recover information from previous projects (a case in point is

module size versus the effort that has been expended in their implementation)

2In the case that team members have distinct costs (Pdev); then considering m to be the number

of team members
m

Cdev = L (Pdev);(Edev);
;=1

3 As suggested in [13], "the user defines what this means". A comprehensive approach on how

to define similar software can be seen, for example, in [.55, 64].

Chapter 3 Trade-off between Cost and Reliability 46

we need to ensure that we are employing data from previous software which

resembles, as far as possible, the software that is currently being estimated.

To establish that resemblance we have to define some sort of classification that

allows us to homogenize the data.

However, there does not seem to be an obvious definition for similar develop­

ment, which is suitable for any software project and that allows us to establish

a precise classification of a software application. An initial attempt for such a

classification is to classify the software to be developed by the type of applica­

tion for the software. A suggestion of potential macro-categories to enable a

crude classification, as proposed in [55], would be: system software, real-time

software, business software, engineering and scientific software, embedded soft­

ware, personal computer software and artificial intelligence software.

In addition to this macro-classification, it is suggested that the user, namely,

the project manager, should split each category into sub-categories as neces­

sary, to adapt further the classification within his environment.

• Etes is the effort spent in verification and validation of a module during

the testing phase. A comprehensive definition for the terms verification and

validation4 can be obtained from [55]:

1. Verification is defined as being "the set of activities that ensure that the

software correctly implements a specific function". Boehm in [7] says that

verification aims at answering the following question: "Are we building

4 Verification and Validation (v&v) can have a wider meaning. As defined in [84], "V&V is a

collection of analyses and testing across the ful/life cycle and complements the efforts of other qual­

ity engineering functions". Here, however, we are using the term v&v just for activities performed

during the testing phase.

Chapter 3 Trade-off between Cost and Reliability 47

the product right?";

11. Validation "refers to a different set of activities that ensure that the

software that has been built is traceable to customer requirements". The

question that validation tries to answer, according to Boehm, is "Are we

building the right product?".

Even though the words testing and debugging are often casually used with the

same (or similar) meaningS, they are, in fact, distinct activities, as is emphasized in

[55,68]. Testing is the activity of finding situations in which the results do not match

those expected, that is, a failure of the software has occurred, while debugging is

the activity of diagnosing and correcting the fault (bug) that produced the failure,

as depicted in figure 3.16.

Additional Tests Testing .-f - - - - - - - - - - -- - - - - - - - - - - -: All match;./

r---------------------------------I
Begin _: Test Cases _ Execution _ Compare Results: - End

Testing Phase ~ ___ j ________ ~f_ ~~:.s ___ ~~t~ ~~o~eJ~J~.P!~t~<!. ~

Proceed with tests Do not match

r--- ---------------------- ------1

Testing Phase

Additional _ Fault _ Diagnosis 1

1 Tests Correction 1 L _________________________________ I

Debugging

Figure 3.1: Activities during the testing and debugging phase

However, Etes is used here to represent the sum of the effort of testing (considered

separate from debugging activities) and the effort of debugging. Thus, the testing

5Software release policies [44, 45, 53, 80, 83] deal with testing and debugging as a single activity.

6In figure 3.1, the test cases and additional tests are prepared by the developer.

Chapter 3 Trade-off between Cost and Reliability 48

and debugging activities are dealt with as a single task. On page 61 some arguments

are presented which may clarify why we adopt this approach.

Subsequently the components of equation (3.1) are expanded, where, it should

be highlighted once more, we are interested in finding a way of expressing Cthv in

relation to a required level of reliability R for an individual software module.

3.2 Underlying Relationship for the Required Re-

liability

Three quantities of software faults are utilized in our analysis of cost and reliability,

as indicated in figure 3.2, where

Found during testing After testing
I I

~ ~

-EE;...---- N ----~~ I--A ~
I

E F

Before testing

Figure 3.2: Quantities of faults

• F is the estimated number of faults that will be introduced into the module

during coding;

• N is the estimated number of faults that will be found and fixed (correctly)

during the testing phase;

Chapter 3 Trade-off between Cost and Reliability 49

• A is the estimated number of faults that will remain in the module after

finishing the testing phase. It is assumed that A = F - N (perfect debugging).

3.2.1 Relationship between N and required reliability

It is generally agreed that the reliability R of a module is conceivably dependent

on the number of faults A that remain in the module after testing and debugging

have finished; as A decreases the probability that the module works according to its

specification will increase, that is, R will vary inversely with A.

For a given level of reliability R we need to estimate the testing plus debugging

effort needed to achieve R. This effort is determined by N, the number of faults

needed to be fixed to reduce the faults from F to A, where A is sufficiently low that

the reliability is R.

Thus we need to estimate N, based on a relationship between Nand R.

To make this association the following arguments are considered:

1) Suppose a module with S lines of code has A remaining faults. Assuming that

each line of code can hold just one fault, we have A faulty lines among the S

lines.

2) Let f3 be the probability of an individual faulty line being executed and causing

a failure during an invocation of the module, where we assume that f3 is the

same for each faulty line. f3 then represents the probability that for one run

of the module a specific faulty line will produce a failure. So, for example,

f3 = 0.005 (considering just one faulty line) means that for 1000 executions of

the module (using different input data), on average five failures will be caused

by this particular faulty line. This parameter is briefly analysed below.

This same assumption is adopted, for instance, in the early software reliabil-

Chapter 3 Trade-off between Cost and Reliability 50

ity models of Jelinski-Moranda, Shooman and ~1usa [6, 761. Results obtained

with this assumption have been claimed to yield, in many situations, an overly

optimistic estimate for the behaviour of faults in a software module, as anal­

ysed, for example, in [421. Many later models have been proposed to overcome

this deficiency. However, it should be stressed that these models rely on data

collected during the testing phase. This data is not available to be used in the

model developed here.

In spite of the clear limitations of the above assumption, the results obtained

from the whole model developed in this work may still be sufficiently valid, in

this early phase of the life-cycle of a software module.

3) We also assume that the manifestation of a fault does not depend on the

occurrence of other faults (i.e., the remaining faults occur independently).

In general, using P(Bi) to denote the probability that fault i does not manifest

itself for one run of the program, then the probability that none of the faults

1, ... , A occur during one run of the program is equal to

and it would then be necessary to estimate the conditional probabilities

P(B
i
IB

1
B

2
••• Bi- 1

) (probability that ith fault does not occur given that 1st,

2nd, ... , i - lth faults do not occur).

With the simplifying assumption of independence, we have

P(BdB I B 2 •• • Bi-l) = P(Bi), and, therefore,

P(B
1
). P(B2 IB l) . P(B3 IB I B2) •.• P(BA IB1B2 ••• BA - 1) reduces to

P(B1) • P(B2) ••• P(BA).

Of course, in practice there often is a knock-on effect; the occurrence of one

Chapter 3 Trade-off between Cost and Reliability 51

fault may give rise to the occurrence of another fault. However, we cannot

build this possibility (the conditional probabilities) into our analysis during

the design phase, because it is completely unknown at the design phase, how

a fault (which has not yet been created) might cause other faults to occur.

Then, considering the reliability of a software module to be the probability that

when called the module will operate according to its specification and will transfer

control correctly when finished (as will happen if none of the I\. faults contained in

the module occurs), we then have that the reliability R of the module is given by

So,

As I\. = F - N, then

R = (1 - (3)A

In R = I\.ln(l - (3)

N = F _ InR
In(l - (3)

(3.2)

(3.3)

Observe that since the right-hand side of equation (3.3) must be non-negative,

a very small value for {3 will imply a very large value for R.

As defined previously, the parameter F represents the estimated number of faults

that will be present in a module after coding. As analysed in [38, 39, 75], there are

some factors, related to characteristics of development, that have a direct effect on

Fj these factors can be called fault drivers, for example, difficulty of programming,

program-team's skill (programming experience of each member of the programming­

team) and module size. One method, described in [75], is to estimate Fusing

regression analysis between the factors cited above and the expected number of

Chapter 3 Trade-off between Cost and Reliability 52

faults. Another approach, discussed in section 3.2.3, is to use an adjustable formula,

as proposed in [71], which is related to the module size and some parameters that

may characterize its complexity.

3.2.2 Considerations on {3

We do not derive an explicit expression for 13 in this work. Rather we assume that

13 is estimated during the design phase based on the historical data of past projects

of the same category as the module under development.

We may estimate 13 from previous project data if we know A and the failure rate

per run for the modules of earlier projects. For a specific module, let TJ represent

the failure rate/run, so that

Example: Suppose a module contains five faults. Suppose that in 1000 runs

of the module 10 failures occur, that is, TJ ~ l~gO = 0.01 failures per run. Then

13 = O.~l = 0.002. This means that if we have "similar" (see page 45) software we

might estimate the "failure rate per fault" (the probability that a remaining fault

will produce a failure) as being 13 = 0.002.

Further work should address the issue of assessing which, if any, factors have a

strong influence on 13, so that an expression for 13 can be established. It might be

suggested, for example, that factors such as programming language, software size

and technical complexity might exert a direct influence on 13·

Based on these factors and using regression analysis (see an example of regression

analysis in section 2.2.1) an expression for 13 as a function of these parameters may

be defined.

Chapter 3 Trade-off between Cost and Reliability 53

3.2.3 How to estimate the expected number of faults

The parameter F represents the number of faults initially present (that is, intro­

duced) in a module. This value can be estimated during the design phase, if we take

account of the evidence [19, 38, 54] that there is a close relationship between the

module size and number of faults.

a) Using software science

Research on this topic [19, 38, 39, 71] enables an estimate to be made of the

fault density, that is, the relationship between the number of faults and the

number of lines of code based on factors that are available during the design

phase. As the number of lines of code can be estimated, it follows that the

number of faults can be estimated.

Using the formulation proposed in [38] and improved in [71], which appears

to produce results which are close to the actual number of faults, we have the

following expression for F

F- --·10 S·K (8·K·S)
- 3000 g2 1 + 8 ·log2(K . S) - 9 ·log2(1og2(K· S)) (3.4)

where

- S is the number of lines of code, which should be estimated as discussed

in chapter 2;

K is a constant expressing the average number of operators and operands

used per line of code7
• This constant can be acquired from a table pro-

7These concepts were proposed by Halstead (12) and they have the following meaning: an

operator is any symbol or keyword that specifies an action, for example, add, multiply and move;

an operand is any symbol used to represent data, including variables, constants and labels.

Chapter 3 Trade-off between Cost and Reliability 54

posed by Halstead that associates K. with the programming language uti­

lized for implementing the module, or K. can be evaluated locally for

similar developments using the same programming language8 .

For example: an algorithm implemented in assembler language may have

K. = 2.67, whereas if it were developed in Fortran, we would expect K. = 7.5

[54].

At first glance it would seem that line for line a Fortran program has

more faults than an assembler program, an observation that is hard to

believe. However, it has been said that in assembler language [38] "four

times as many lines of code are needed to implement a given algorithm as

compared to Fortran". So, for the same algorithm, the assembler program

could be four times bigger in size, meaning that it would have more faults

than a similar program implemented in Fortran, as expected.

The outcome of applying equation (3.4) is reasonably precise, as is demon­

strated in [38, 71].

Example:

Number of faults F expected for a module with the following characteristics:

S = 4000 lines of code; the programming language is Fortran, so in this case

the parameter K, is 7.5, as stated in [54].

Evaluating equation (3.4) in this case we obtain F = 115 faults. That is,

we can expect 115 faults to be introduced during the coding of that module,

which implies that almost 3% of the lines of code will be defective.

b) Using a direct, local method

SIt is worth stressing that there exist some criticism about Halstead's theory, as can be seen in

[66].

Chapter 3 Trade-off between Cost and Reliability 55

Another way to estimate F, as proposed in [75], is through analysis of the

relationship between faults in a program and the factors that may have a

direct effect on the number of faults to be introduced, instead of just size and

programming language.

However, this method requires some data, such as frequency of program spec­

ification change and volume of program design document, that will only be

available after finishing the design phase. Therefore, it would not serve our

purpose to produce the estimate during the design phase. For this reason, this

alternative is not considered here.

3.3 Effort of Testing

It is argued in this work that the magnitude of the effort of testing can be related

to the required level of reliability R. We have to find and fix N faults in order

to achieve the level of reliability R required and we can estimate N from R using

equation (3.3), if we have estimates for F and {3. We can estimate F using equation

(3.4), by estimating S and establishing a value for 11:; {3 must be estimated from

prior data.

Next, we need to establish a suitable expression for the effort of testing (finding

and fixing N faults during the testing phase).

The overall effort E tes to be spent during the testing phase, so that the remaining

faults A correspond to the desired reliability R, is thus hypothesized to depend

directly on two factors: the number of faults N to be removed (we will use "removed"

to mean "found and fixed" in this work) and the effort Tj to remove the jth fault

during testing. On this basis, we express the effort of testing as being the sum of

the effort of removing the first, second, ... , Nth faults. Therefore,

Chapter 3 Trade-off between Cost and Reliability 56

Etes = Tl + T2 + ... + TN (3.5)

3.3.1 Estimated effort to remove one fault

The underlying assumption that enables us to estimate Tj, as analysed in [54], is that

the expected average amount of effort required to remove the jth fault is propor­

tional to the total effort required to implement the module divided by the expected

number of faults. This assumption apparently gives a very reasonable approxima­

tion for the sought effort, according to examples shown in [54], and is based on the

hypothesis that "if there are F bugs expected in a software module, one would have

to understand to some degree J of the program on average for each bug found".

This assumption is represented here by

where:

Ecod
Tj = Ctj·_-

F
(3.6)

• Ecod is the effort required to implement (coding) the module, which can be

estimated as analysed in section 2.2.3;

• F is the expected number of faults, as analysed in section 3.2.3;

• Ctj is a factor of proportionality that is employed here to characterize the effort

required to remove the jth fault.

Since no detailed data are available about Ctj, we make an assumption based

partly on intuition and partly on mathematical convenience which allows us to

establish an expression for this parameter:

Chapter 3 Trade-off between Cost and Reliability 57

• The effort to remove a fault is assumed to increase during the testing phase,

that is, the effort of removing the jth fault is greater than the effort of removing

the (j - l)th fault. So, 0'1 < 0'2 < '" < aN.

At the beginning of testing, for an allocated level of effort (for example, man­

months), a certain quantity of faults are removed leading to a sharp decrease

in the number of remaining faults. Later in the testing, for the same allocated

effort, many less faults will be removed, because they are more "hidden".

As analysed in [68], once the curve shown in figure 3.3 begins to approach a

vertical asymptote, this means that testing is either nearing completion or has

become transfixed, without achieving any further significant improvements.

It does not mean that all faults have definitely been removed, but that the

current test method has almost achieved the maximum number of corrections

possible with that method. Following our line of reasoning, each fault will

require a different increasing effort to be removed.

Thus, it can be said that removing faults during the final stages of testing

requires a great deal more effort than at the beginning in a behaviour that is

clearly not linear, as envisaged in figure 3.3.

The graph of figure 3.3 shows Tj increasing exponentially with j during the

testing phase.

On the basis of the above points, it is proposed that the parameter aj should

vary exponentially in relation to j, taking on the behaviour roughly depicted

in figure 3.3.

Now we have to find a manner of expressing aj so that the stated conditions are

fulfilled. A suitable expression which fulfils all the required properties is:

Chapter 3 Trade-off between Cost and Reliability

T' J

1 2 3 N F J

Figure 3.3: Each fault requires a different effort to fix

58

(3.7)

where sand p are constant parameters that control, respectively, the steepness

and amplitude of the curve showed in figure 3.3.

Hence,

Ecod)',S
Tj = p. --e

F
(3.8)

It should be noted that the assumed exponential behaviour of Tj during testing

roughly agrees with the data collected in [68J. A likely explanation for this be-

haviour, in the real environment of testing, is that in the beginning of testing with

a small amount of effort (person-period) one fault can be removed. After that, the

amount of effort needs to be increased in order to remove one fault, because, as

mentioned previously, the faults will be more obscure. Therefore, in the final phase

of testing, to analyse the circumstances that a fault occurred, understand the failure

Chapter 3 Trade-off between Cost and Reliability 59

and determine a proper correction will sharply require more manpower than in the

beginning of the testing, which can explain that exponential behaviour.

To establish a final expression for Tj, expressions for p and s need to be derived .

• Expression for s

An expression for s (the rate at which Tj increases) is now derived using the following

line of argument.

From equation (3.8) we see that the effort of fixing the Nth fault is given by

And the effort of fixing the first fault is given by

Then,

In 8
s = N -1

(3.9)

where it is assumed that there exists a parameter 8 = 7; (which can be used for

the software under estimation) which reasonably represents the ratio between the

effort of finding and fixing the Nth and first faults9
• To simplify the representation

of 8, it is not denoted here as bei ng 8 N .

Further work should address this issue, in order to establish an expression for 8

based on data that are available during the design phase.

gIn [7, page 40] it is suggested that 1 < 8 < 10, for smaller software projects.

Chapter 3 Trade-off between Cost and Reliability 60

• Expression for p

To obtain an expression for p, we introduce a factor that enables the estimator (for

instance, the project manager) to set an upper bound for the estimated effort that

will be expended during the testing phase. So, we can say that

F

L Ti = 'Y . Ecod
i=1 --..-...
'-..;-" **

(3.10)

*
where the factor marked wi th (*) represents the effort required to remove all

F faults and the factor marked with (**) represents the maximum effort of testing

that is envisaged by the estimator. The lat ter is expressed in terms of the effort of

coding Ecod, where'Y characterizes the relationship between the effort of coding and

the maximum effort of testing10 • In the same way as observed for the parameter

8, it is assumed that the parameter 'Y is available during the design phase to be

employed for the software under estimation. Then, substituting equation (3.8) in

equation (3.10), we have

Ecod.{-. i·s - E PF we - 'Y cod
3=1 -----t

where the term ma.rked with (t) is the sum of a geometric progression with rate

eS
• Then,

Ecod (se
Fs

- 1) E P-- e = 'Y cod
F es -1

(3.11)

lOSome of the evidence shows that 0.4 < I < 2.5, as can be seen, for instance, in [31, 55].

Therefore, according to these figures, O.4Ecod < (Ete')max < 2.5Ecod.

Chapter 3 Trade-off between Cost and Reliability

3.3.2 Expression for Etes

Considering the expression for Etes in equation (3.5). we have that

N

Etes = LTj
j=l

E ~ (e" - 1) 1 Eeod .,
te" = ~ IF ---eJ

. eF " - 1 e" F J=l

61

where the factor marked with (t) is again the sum of a geometric progression

with rate eS
• Then,

(3.12)

One may argue why not link cost and reliability considering testing and debug­

ging separately. An argument follows.

The effort expended during the testing phase is composed of two factors:

i) The effort required to check that the software is working according to its

specifications. This effort may be seen as being:

- mandatory effort required to attend to the demands of v&v during the

testing phase, without taking into account any figure for the required

reliability as an element of decision;

Chapter 3 Trade-off between Cost and Reliability 62

- supplementary effort of verification and validation to find sufficient soft­

ware failures and faults to achieve the desired reliability.

ii) The effort of relating each software failure to a software fault, which will result

in fixing the fault.

The former we can associate with the effort of testing in itself, whereas the latter

can be associated with the effort of debugging.

If testing and debugging efforts were considered separately, it can be concluded

that new parameters should be introduced, and therefore estimated, in order to

establish separately the efforts of finding and fixing a fault. If it were the case, it

can be said that all procedures developed here to establish Etes would be roughly

the same; however, where we call "effort of removing" should then be separated in

two different efforts, perhaps "effort of detecting" and "effort of debugging". Yet,

effort of detecting plus effort of debugging must be equal to Etes !

Thus, there does not seem to be any significant advantage in using this approach.

This approach would instead produce complicated formulas with more difficult pa­

rameters to be estimated, and without a clear advantage in the final result.

3.4 Estimated Cost of Development

Substituting the value for Etes obtained in equation (3.12) in equation (3.1) we now

obtain the final expression for the cost of development.

where N = F - In~~~.a) (equation (3.3)).

Considerations on equations (3.3) and (3.13):

(3.13)

Chapter 3 Trade-off between Cost and Reliability 63

• Values known in advance:

Rand Pdev

The cost Pdev must be available, based on the type of human resources to be

allocated in the coding and testing phases.

The level of required reliability R for each module is known in advance and

is linked with the overall reliability of the software system, as described in [9J

and analysed in the next chapter.

• Values estimated using formulae developed in this work

N (equation 3.3) and s (equation 3.9).

• Values estimated using data from the design specification and past projects

Ecod, F, /3, /, 8 and S.

In section 3.2.3 the estimation of the parameter F was briefly outlined, using

equation (3.4) to relate it to size S.

There must be historical data of previous projects, using similar characteris­

tics of development in the installation under consideration, that allow us to

estimate the parameters above .

• The relationship between the development cost Cdev and the required level

of reliability R is roughly depicted in figure 3.4 (in chapter 5 there is a more

precise graph and an explanation for why there is a "flat" section in this curve).

As we might expect, the cost rises markedly when the required reliability

approaches 100%. Taking into account the assumptions that have been made

already, we can estimate in advance of the coding and the testing phases how

much that cost will be for a required level of reliability.

Chapter 3 Trade-off between Cost and Reliability 64

I

0.0 1.0 R

Figure 3.4: Cost of development versus reliability

• One might question in the established formula, why there is a finite cost Cdev

to achieve reliability R = 1.0, (that is, 100% reliability), when a common

feeling says that this value might be infinite.

The reason is that, in this work reliability is linked to the number of faults that

remain in the module, which is assumed to be finite. So one can estimate this

number of faults and the effort required (man-months) to fix all these faults.

The crucial matter, which is not addressed in this work at all, is how to apply

software engineering practices, if any, such that the estimated effort Ete~ be

effectively able to find and fix all of the N sought faults, and certify that this

has been achieved. If this matter is not fully dealt with during the testing

phase, the cost may indeed turn out to be infinite!

Chapter 4

Overall System Reliability

4.1 Basic Concepts

To avoid the problems of complexity which the design of a single monolithic soft­

ware system creates, it is usual to divide software into separate components called

modules, which are subsequently integrated to satisfy problem requirements [5.5].

Modular software systems consist of a set of modules which carry out a range of

different tasks. Among these modules there exists a pre-defined struct ure of "who­

calls-who", which is known from a detailed requirement specification. This work

considers a particular form of module interaction, where after a module has com­

pleted its execution, the control of the system is passed to another module, on either

a deterministic or stochastic basis (as exemplified in figure 4.1).

4.1.1 Stochastic process

The execution of a system with modular structure can be regarded as a stochas­

tic process, because its processing occurs by stages (corresponding to the mod­

ules), over a period of time; processing follows a sequence of stages 50 ,51 , ••• , Sn.

6.5

Chapter 4 Overall System Reliability

If X = 0 calls A

If X > 0 calls V
Module D

Module A

! calls B

Module B Deterministic

~ calls C

Module C

~If X < 0 calls E

Module E]
Figure 4.1: Processing in a modular structure

66

Stochastic

where one can predict the likehood of this behaviour, since the combined probability

P(5o,5}, . .. , 5n) for any specific sequence is known.

As is well-known, the combined probability for a generic sequence can be ex­

pressed by:

That is, the behaviour of any stage is conditioned by the outcome of all previous

stages.

4.1.2 Markov chain

A Markov Chain is a stochastic process where the transitions between states do not

depend on past history, nor on the current time, but only on the current state. So the

probability of a given module being invoked. in a system with modular structure, is

a function of the module currently being executed and the given module only. Then,

the probabili ty of a sequence 5 0 ,51 , ... ,5n in a I\'1arkov Chain can be expressed as:

Chapter 4 Overall System Reliability 67

Any modular structure that follows this particular form of interconnection among

the modules (which is known as a Markov property) is called a first order Markov

chain. The modular systems considered in this work are assumed to have this

Markov property.

It should be emphasized that the assumption of a Markov process is a good

representation of the actual control exchange process in many applications, and is

frequently used in software engineering practice [10], with the states of the Markov

process representing software modules. An example can be seen in [35], where it is

assumed that the transitions between modules follow a Markov property.

A Markov chain can be regarded as a 3-tuple (5, P, 50), where 5 is a finite set of

states, 50 is the initial state (50 E 5) and P is a probabilities transition relation that

indicates the probability of moving from one state to another. P is usually expressed

as a matrix, where the states are the indices and the transition probabilities are the

elements of this matrix. Thus, the probability that the next transition from state

i will be to state j will be the matrix entry in the ith row and the jth column,

denoted here by Pij. This matrix is called the transition matrix of the Markov

chain. In section 4.2.1, for the context of this work, this matrix and its elements are

defined.

Using the transition matrix P we can determine the probability of transition

from state i to state j in a sequence of n steps, by taking powers of the transition

matrix. For example: for n = 2, we have that the probability of transition from

state i to state j in exactly two steps as being the element P ij of p2.

Another concept utlized in a Markov chain is that of absorbing states. Once

an absorbing state is entered it is never vacated. Hence, if, for example, F is an

Chapter 4 Overall System Reliability 68

absorbing state, then PFj is zero for all j.

4.2 Constructing the Transition Matrix

To apply Markov analysis to a modular system during the early stage of the design

phase, we must firstly obtain the transition matrix for the Markov chain that ex­

presses the behaviour of the system in terms of the probabilities of transition among

states (as characterized in the previous section).

In the context of the work developed in this chapter, the first and main task

in constructing the transition matrix is to obtain a behavioural view of the system

based on its requirement specification. The outcome of this view is a hierarchical

decomposition of the system into macro-processes, which can be associated with

software modules, and the probabilities of transition among processes can be as-

signed.

These activities, which are desired to be performed during the early stage of the

design phase of software development, are summarized in figure 4.2 (the meaning of

each term used in figure 4.2 will be defined subsequently).

Requirement

Specification - -Hierarchlcal view

of the system
L...-__ ----I'\..

Macro-processes

r------,/
Transition probabilities

among processes

Transition

Matrix

Figure 4.2: Overview of the procedures to obtain the transition matrix

It can be observed that there exist many software engineering techniques, em­

ploying a varied degree of formality in their approaches, which can guide the project

Chapter 4 Overall System Reliability 69

manager in obtaining a hierarchical view of the system from a requirement specifica­

tion, as can be seen, for example, in [11, 15, 17, 22, 55, 68, 81]. Then, using what is

noted in [86] as being "a creative design step and not an algorithm", the transition

matrix can be constructed.

At this point, we must stress that in this work we do not attempt to assess

available methods or propose new methods for constructing a transition matrix.

Indeed, we simply assume that the transition matrix exists with the properties that

are defined in detail in the next section. The section 4.2.2 provides more details of

how this transition matrix may be constructed.

4.2.1 Transition matrix

When a software system has a modular structure it is apparent that the overall level

of system reliability that will be experienced by the user depends on the sequence of

modules to be executed and, naturally, on the reliability of each individual module

[10,40]. The reliability of any software system also depends, of course, on the profile

of use, that is, the dynamic characteristics of a typical execution of the system in a

particular user environment-a system operating in two distinct environments will

exhibit different levels of reliability, depending on the utilization of the modules in

each of the environments.

A transition matrix can be defined that expresses the pattern of interaction

between the modules; this matrix can be used to represent (some aspects of) the

behaviour of the modular structure. This matrix underlies the relationship between

the overall system reliability and the reliability of each module.

The following definitions are employed in defining the transition matrix used

throughout this work:

Chapter 4 Overall System Reliability 70

• Mj represents a generic module i and forms a "state S;" of a system with n

modules (n = 4 in the example to follow);

• Rj is the reliability of module Mi. There are two ways of dealing with software

reliability [8]:

* Failure rate over time

The reliability is the probability that a module Af, operates according to

specifications for a given period of time before a failure;

* Failure rate per demand for service

The reliability is the probability that module 1\1, will operate according

to its specification when called and will transfer control correctly when

finished.

The latter approach is utilized in this thesis. As can be observed in the next

chapter, we do not work with "time" in our formulation;

• Pij is the probability that the transition between modules Mi and Mj will be

taken, given that control is at module !IIi and execution is completed according

to its specification. The values Pij have to be obtained from the requirement

specification of the system (0 ~ Pij ~ 1), as, for example, suggested in [86]

and discussed in the next section;

• RjPij thus represents the probability that the execution of module Mi com­

pletes according to its specification and control of the system is then trans­

ferred to module A1j;

• Ml is the start module, that is, S1 is the initial state of the system;

Chapter 4 Overall System Reliability 71

• F is an absorbing (terminal) state that is reached when a module produces a

result not conforming to its specification, that is, when a failure of that module

occurs. This state is reached from module Mi with the probability

PiF = (1 - R;). This is a state of the model. The actual operating softwa.re

does not necessarily reach a "failed" state that can be recognized as such.

• T is an absorbing (terminal) state which is reached when the system of software

modules completes its overall task successfully. ~Iore precisely, a module .\/,

will make a transition to state T, with probability RPiT • if the execution of

Mi completes according to its specification and ,\1, should not then make a

transition to any other module M j . So 2::j=l P ij + PiT = 1;

• Rreq is the overall reliability of the system that the user needs to achieve. The

value for this reliability is known in advance of the design stage;

• Rest is the reliability of the system obtained from the transition matrix using

Markov analysis. It is the probability of reaching the terminal state T from

the initial state MI. This represents the probability that the system completes

its execution without failing.

As an example, the transition matrix shown in figure 4.3 describes a modular

structure having four modules.

Chapter 4 Overall System Reliability 72

F T

F o o o o 1 o

T o o o o o 1

Figure 4.3: Example of a matrix using four modules

Chapter 4 Overall System Reliability 73

4.2.2 Procedures to obtain the transition matrix

To provide a very brief introduction for this topic, we summarize next how the

transition matrix can be obtained. The elements in figure 4.2 are outlined, following

the definitions given in [55], as well as the research developed in [47, 86], which,

in our opinion, can satisfactorily serve as the starting point for constructing the

transition matrix.

• Software Requirement Specification

A document produced in the phase that precedes the design phase in the life­

cycle of software development, which is a direct result of a software requirement

analysis l .

Following the suggestion made in [55, page 199], among other information,

the software requirement specification needs to hold: a detailed functional

description (which should enable subsequent identification of the processes that

will be implemented as software modules), a behavioural description (system

states, events and actions) and validation criteria (containing characteristics

of performance and constraints, such as an overall desired reliability for the

system).

• Hierarchical View of the System

A decomposition of the system functions, identified in the software requirement

specifications, in a model which contains what are called in [47] "the process

states"; these are, in fact, the computational functions to be performed, and

also those data or events which produce control information, reports or dis­

plays, that influence how the system moves from one process to another.

1 Software requirement analysis is an earlier phase in the development life-cycle, where the basic

characteristics of the software to be developed are captured from the user.

Chapter 4 Overall System Reliability 74

As stated at the beginning of section 4.1, we focus our work on a particular

type of modular system. We make the fundamental assumption that this

hierarchical functional view must yield a modular structure, such that module

interaction behaves as decribed in section 4.1, that is, either in a deterministic

or stochastic basis, according to Markovian property .

• Macro-Processes (or Process States)

One "process state" (or a group of them) should correspond to a likely software

module which will be accurately defined later in the development life-cycle,

during the design phase. Each such process state can then be regarded as a

"state" in the Markov chain.

• Transition Probabilities A mong States

The last step to complete the Markov chain is to assign the probabilities of

transition among states.

In this task, we must observe that a module can have three possible behaviours

(the exact meaning of the elements introduced below was discussed in the

previous section):

I. A module i passes control to a module j successfully, that is, according

to its specification, with probability Pij ;

II. A module i completes its task successfully and goes on to a terminal state

T with probability PiT, without passing control to another module;

Ill. A module i produces a result not in accordance with its specification,

with probability PiF, and "goes" to a terminal (absorbing) state F called

"failure". The real problem with software is that a module i does not

behave according to its specification but nevertheless may transfer control

Chapter 4 Overall System Reliability 75

to some other module j. This situation would also mean "'to go1' to state

F.

Then, the software developer has to be able to assign the values Pij and PiT,

for all modules identified from the hiearchical view. This task is very likely to

lead to a misinterpretation of the system behaviour, because there may be a

high degree of subjectivity involved.

The way these probabilities are assigned can be classified in three different

ways [86]:

1. The informed approach

Used when information about the actual sequences in which the modules

are called is known in advance. This may be the case when a prototype

has been used during the procedure of producing the software requirement

specification or when a prior version of the system is available.

11. The intended approach

Used when the probabilities are assigned based on some hypotheses as to

how the modules will be called.

lll. The uninformed approach

Used when no information is available about the system behaviour. In

this case, the usual technique is to assess the probability for all transitions

as being equal.

As discussed in [86], the informed approach is the best, followed by the intended

approach. As a last resort the uninformed approach is used, which can produce

"anomalous results in the light of knowledge or intuition".

Chapter 4 Overall System Reliability 76

4.2.3 Formalizing the problem

An iterative process can be used to refine estimates of R = R1 ,···. Rn so that

the Markov analysis would yield a result Rest ~ Rreq with Rest as close to Rreq as

possible (since this will keep software development costs down). It is well known that

to achieve a higher figure for system reliability than Rreq would entail spending more

time and cost during development; aiming at a minimum acceptable reliability Rest

indicates that we seek to keep the development cost of the software to a minimum.

The values obtained for each of the ~ from this iterative process constitute the

proposed reliability allocation for the modules Mi.

This problem may be stated in the following form.

Find a value for R such that Rest is minimized

subject to

(i) 0 < Ri < 1, where i = 1, ... , n

(ii) Rest(R) - Rreq ~ 0

Any set of values < R1 , ••• , Rn > that satisfies the conditions above would be an

acceptable set. The problem is to find an acceptable set which allows a compromise

between the reliabilities Ri and other contraints of the system; a case in point would

be cost. The result obtained here addresses this problem.

In section 4.3 a formula is derived for calculating the overall reliability Rest from

the transition matrix and R. The allocation of values Ri is treated in chapter .5.

4.3 Determination of the Reliability of a System

The transition matrix defined in section 4.2.1 describes a finite Markov process with

two absorbing states T and F, and a set of n transient states 51 ,5n . The matrix

Chapter 4 Overall System Reliability

can be depicted in the following form:

p= S

A

77

S A

Here A represents the absorbing states and S represents the transient states.

The matrix Q contains the probabilities of transitions between the transient states.

The block matrix H contains the transition probabilities from the transient states

to the absorbing states.

The transition probabilities matrix that represents the transformation of the

system after k steps is given by forming powers of the single step matrix P, that is,

p k [77]. This k-step transition probability matrix pk has the following form

[
Qk HIl pk=

° I

The Qfj entry of the matrix Qk denotes the probability of arriving in transient

state Sj after exactly k steps starting from transient state Si [77]. The block matrix

H' is of no use in our formulation and therefore will not be analysed.

Hence the probability of arriving in transient state Sj after (exactly 0, or exactly

1, or ... , or exactly k) steps, starting the system from transient state Si, is given

by Wij where

k

W = I + Q + Q2 + ... + Qk = L Qi
i=O

It is shown in [IS] that if Qk ---+ 0, when k ---+ 00 (which is the case here since Q

is a matrix of probabilities), then

Chapter 4 Overall System Reliability 78

Hence the limiting value of W as k increases is very close to the matrix inverse

(I - Q)-l j this is called the fundamental matrix of the Markov chain [77].

The matrix (I - Q)-l, which we will now refer to as W, enables us to calculate

the transition probabilities we need. The probability of the system reaching state j

after some number of steps, starting in state i, is Wij •

Now we can calculate the probability of reaching state T, after starting the

system in state Sl (corresponding to module Md.

Given that

• W1i is the probability of reaching state i from state 1 (after an unspecified

number of steps) and tells us whether a state has been reached at some stage,

as analysed in [77, page 312]. For a non-absorbing state control may have been

passed on .

• ~PiT is the probability of reaching state T from state i in one step;

Let PSi be the probability that starting from state 1 the system reaches state Si

after an arbitrary number x of steps and then in one further step reaches T directly

from Si (figAA). As the probability RiPiT does not depend on W1i , then

The estimated overall reliability of a system Rest will then be the probability

that starting in state 1 the system enters the absorbing state T, from any state Si

(figA.5). Then

n

Rest = P S1 + P S2 + ... + PSn = L P s.
i=l

Chapter 4 Overall System Reliability

6:) x-steps
State •

1 Wli

Figure 4.4: Probability of reaching state T from state 1

Figure 4.5: Overall probability of reaching state T from state 1

n

Rest = L W1iRiPiT
i=I

79

(4.1)

Formula (4.1) allows us to determine the overall reliability Re .. t of a system from

the reliability of each module ~, and the transition probabilities P ij and PiT. In

chapter 5 this formula is utilized to find the values of R; corresponding to Re .. t. P ij

and PiT, which are known in advance, where a cost constraint is introduced. Thus,

we claim, we will be able to analyse the feasibility of the trade-off between a cost

against a required reliability, during the early stage of the design phase.

Formula (4.1) is a generalization of that given in [10], where here there are no

restrictions on the number of states that can reach state T. In [69] this formula is

Chapter 4 Overall System Reliability 80

briefly cited.

4.3.1 Example of utilization

An example of the utilization of formula (4.1) is shown below.

For a system with three modules, the general transition probabilities matrix P

IS

o

o

o o o 1 o

o o o o 1

The transition probabilities matrix Q within the transient states is

o R1P12 R1P13

o

so that

~,
~'

Chapter 4 Overall System Reliability

1

The inversion of a 3 x 3 matrix L is given by

b2C3 - b3C2 a3c2 - a2c3

-1 1
L = TL1 b3Cl - b1C3 a1c3 - a3c1

b1C2 - b2Cl a2cl - alc2

Hence

a2b3 - a3b2

a3bl - a1~

a1b2 - a2bl

(1 _ Q)-1 = W = 1 x
II - QI

Using formula (4.1) we have

81

Chapter 4 Overall System Reliability

1
II _ QI . {(I - R2P23R3P32)(RIPIT) +

(RIPI3R3P32 + RIPI2)(R2P2T) +

(RIPI2R2P23 + RIPI3)(R3P3T)}

82

As an example of an application of this formula, consider a system with the

simple transition structure shown in fig. 4.6.

t Starting module

Figure 4.6: System with 3 modules

Given

PI2 = 0.6; PI3 = 0.4; PIT = 0; Rl = 0.9;

P2I = 0; P23 = 0; P2T = 1; R2 = 0.99;

P3I = 0; P32 = 0; P3T = 1; R3 = 0.9;

Then Rest = 0.8586, that is, the probability that the system produces a final

result in according with its specification will be 85.86%.

Chapter 4 Overall System Reliability 83

4.4 Allocation of the Reliability

As an illustration of the application of the formula (4.1), we will ouline a method

for allocating the values Rt so that if the modules M, attain reliability R; then the

desired overall software system reliability Rreq will be achieved. There are no other

constraints. In the following chapter this problem is re-examined, by focusing on

how to find the reliabilities Ri so that the development cost is a minimum.

This problem can be summarized as follows.

We seek values of < R1 , ••• , Rn > which will give a value of Rut close or equal

to Rreq, but we can only use values of R; with 0 < R; < 1, and such that we obtain

Rest;::: Rreq.

We know:

a. the required reliability Rreq, which is given in advance;

b. the transition probabilities Pij and PiT, which are obtained from the require-

ment specification;

To accomplish this task we have the following formulae, which are described in

section 4.3:

We can summarize this problem description as follows:

Find values of R such that Rest is minimized, subject to

Rest{R) - Rreq ;::: 0; 0 < Ri < 1, where i = 1, ... ,n

Chapter 4 Overall System Reliability 84

The resulting solution of this minimization problem2 will be the allocation of the

reliabilities RI, ... , !In.

It should be noted that if it was known in advance that the required reliability

could always be achieved exactly, then a more direct method could be used to solve

the problem. An appropriate root-finding technique, such as Newton's method,

could be employed to find values of R which satisfy

f{R) = Rest{R) - R,.eq = 0

However, the problem of constraining the permitted values for R;, would com-

plicate this approach. In general, we cannot expect a value of Rest equal to R,.eq

to be attainable and hence the minimization approach suggested here has a wider

application.

2 A complete solution for this problem, with examples, can be seen in [9]. This solution makes

use (roughly) of the same framework discussed in chapter 5 (this being the reason why it is not

discussed in this chapter) where the NAG routine E04VDF is used for the minimization procedure.

Chapter 5

Scenarios for Cost and Reliability

5.1 Problem Description

In this chapter we describe how some scenarios for estimating the overall cost of de­

velopment associated with an overall required reliability can be constructed. These

scenarios enable us to know, during the design phase, before any line of code has

been coded or tested, the minimum overall cost of development of a modular soft­

ware system. This cost is considered here to be the cost of the coding plus the

testing phase, taking into account different levels of overall required reliability. As

a direct outcome of these scenarios, the estimated cost and targeted reliability for

each individual module are obtained.

The task above is carried out by employing the results obtained in chapter 3-

the development cost of a module linked to its reliability; and chapter 4-overall

estimated system reliability based on the reliability of each module.

To accomplish this task we develop in this chapter a minimization method that

enables us to allocate values R; (the le\·el of reliability that should be aimed at for

each module), such that if the modules JIi attain reliabilities Ri then the estimated

8,)

Chapter 5 Scenarios for Cost and Reliability 86

overall software system reliability Rest will at least be equal to the overall required

reliability Rreq. Our minimization method produces a set of values ~ such that

the (presumed) minimum overall cost of development will be achieved, taking into

account the reliability constraints.

By knowing the predicted values ~, (Cdev)i' Rreq and the overall cost of develop­

ment Ctot for a number of scenarios, a project manager could evaluate these different

scenarios for cost and reliability before allocating the resources for the coding and

testing phases.

This minimization problem can be summarized as follows:

Find a value for R such that Ctot = L:~I (Cdev)i is minimized, subject to

This constraint is to ensure that the set of reliability levels ~ allocated to

each module will yield an overall estimated reliability that is at least equal to

the required reliability.

Rest = L:i=1 WIi~PiT (equation 4.1)

where W = X-I with Xij = { 1
-RiPij

Z = J

i = 1" .. ,n (number of modules in the modular system under estimation)

• 0 < Ni ~ Fi

As the number Ni of faults to be removed during the testing phase is linked

to Rj , as defined in equation (3.3), then this constraint must be established to

avoid allocating a value for Rj that produces a meaningless figure for Ni . This

erroneous situation might occur, such as N < 0, depending on the values of

Ri and f3i that are used in equation (3.3). Hence, the values for Ri should be

established so as to avert that inconsistency.

Chapter 5 Scenarios for Cost and Reliability 87

.0<.R;<1

Although the maximum theoretical value for reliability is 1.0, that is, a mod­

ule reliability equal to 100%, this value is probably never achieved in practical

software systems. Thus, the minimization method has to take into considera­

tion this constraint, so that the maximum resulting values for each ~ be set

less than 1.0.

The resulting solution of the minimization problem described above will be an

allocation of the reliabilities R l , .•. , Rn. Consequently, the individual cost (Cdev),

of each module can be estimated, as well as the overall cost Ctot , as discussed sub­

sequently.

5.2 Framework of the Minimization

To deal with the problem stated above the following points are considered:

a. It is not of concern that the minimization method yields the "optimum" solu­

tion (performance, response time, precision or whatever the term means) for

the problem described. It is intended to employ a simple and easy-to-handle

method that produces a sound result, demonstrating the feasibility of con­

structing the scenarios discussed earlier. So, any method that yields a result

taking into account the inputs and constraints required may be used l
.

b. The method must be simple to use and easily understood by a project manager.

1 In [5, 63] can be found other methods, which are employed in other contexts, that deal with

the reliability optimization problem for a modular software system. These methods deal with the

application of optimization to determine the optimal redundancy level of fault-tolerant software

systems, in order to maximize overall software reliability.

Chapter 5 Scenarios for Cost and Reliability 88

c. The intrinsic features of the method, that is, the internal details of the al­

gorithm embodied in the minimization program, are not a matter of direct

concern here. The algorithm will be treated as a black-box.

Allowing for the points described above, the published NAG routine E04UCF

[52] (which is able to handle the specified inputs and constraints, to produce the

desired outcome) is employed for the minimization. The routine is used as depicted

in figure 5.1 and commented upon subsequently.

Briefly summarized2
, it can be said that the routine E04UCF is designed to

minimize3 an objective function subject to constraints, which may include bounds

on the variables, and linear and non-linear constraints. In the context of this work:

• the objective function is the function Ctot{R) that we want to minimize.

• bounds on the variables represent the acceptable range of variation for the

values Ri .

• non-linear constraints are the constraints on Rest{R) and Ni discussed in sec-

tion 5.1.

In addition the NAG routine F04AAF is also utilized, which solves a system of ,

equations with multiple right-hand sides and thereby allows us to calculate WIi , as

analysed subsequently.

2 As noted previously, the algorithm of minimization is treated in this work as a black-box.

Anyone interested in details about the algorithm used by E04UCF should consult the reference

[52], as well as the reference [20], which is said in [52] to provide a detailed discussion of the features

of the method of E04 U CF .

3It has to be stressed that the routine E04UCF finds a local minimum only, that is, the final

result produced by E04UCF is not guaranteed to be the global minimum.

Chapter 5 Scenarios for Cost and Reliability

Begin Program

Reliability required Rreq; Supply

Supply Upper bounds on reliabilities ~, as constraints for routine E04UCF· ,

Supply Data required for C dev; *see Note 1*

Supply Transition matrix (values P ij and PiT);

Supply Control parameters for E04UCF; *see Note 2*

Begin E04 UCF *minimization routine*

Count-of-iterations= OJ

Repeat

Generate Rl ... D. , ,..LLn, *see Note 3*

Call Routine to evaluate W1i and constraints; *see Note 4*

Call Routine to calculate Ctotj *see Note 5*

If R1 , ••• , Rn constitute an optimal solution *see Note 6*

then R1 , ••• , Rn are the results needed;

Return-code= 0;

Exit E04UCF;

Endif;

If E04UCF considers it is pointless to continue *see Note 7*

then Return-code:rf 0

Exit E04UCFj

Endif;
Increment Count-of-iterations;

Until Limit on maximum number of iterations has been reached;

Return-code= 4j *see Note 8*

End E04UCF;

If Return-code= 0

then the values RI,' .. ,Rn produced by E04UCF are the results requiredj

calculate C tot ;

else examine the return-code generated; *see Note 9*

Endif;

End Program.

Figure 5.1: Framework of the minimization

89

Chapter 5 Scenarios for Cost and Reliability 90

Regarding figure 5.1, notes are used in relation to points that are worth discussing

in order to make clear some of the procedures performed. These notes are explained

below.

Note 1

The following data are required to estimate the cost (Cdell)i of development for each

module, and thus the overall cost Ctot . For each module considered, the following

data must be supplied, as discussed in chapter 3.

The cost of development per unit time to be applied for all modules, which

must be consistent with the unit of effort that is being used. If the effort

of development is expressed, for example, in man-months, then Pdev must be

expressed in pounds per man-month.

The effort of coding, which is estimated as shown in chapter 2. Again, the

unit utilized for this effort must be consistent with the unit used for Pdev ·

• f3i

The probability that a residual fault will produce a failure in the module,

where 0 < f3i ~ 1. As discussed in section 3.2.2, further study should address

how to obtain a good estimate of f3i. It is assumed here that there exists a f3i

for each module under estimation .

• Fi

The number of faults assumed to be present in the module after the end of the

coding phase (section 3.2.3). It must be emphasized that Fi is presumed to

Chapter 5 Scenarios for Cost and Reliability 91

depend on the module size, which, in turn, is estimated as discussed in chapter

2.

As characterized in chapter 3, these two parameters represent, respectively,

the ratio between the effort of removing the Nth and the first fault, and the

relationship between the effort of coding and the maximum effort of testing.

Note 2

The routine E04UCF requires some control parameters, such as initial crude es­

timates for Rt,"" Rn , accuracy required for the solution, maximum number of

iterations that should be performed when finding a solution, and which first deriva­

tives (gradients) are supplied. It must be emphasized that the initial estimates for

Rt, ... ,Rn have a significant effect on the outcome of the minimization, since the

function Ctot(R) appears to have several local minima.

Note 3

This is the fundamental procedure performed by E04UCF. The routine generates a

new set of values R1 , ••• ,Rn derived from the values used in the previous iterations

to find a point that is feasible (complies with the defined bounds and constraints).

The nonlinear constraints will not generally be satisfied until an "optimal" point is

reached (see note 6).

Initial estimates must be supplied, because the routine requires a starting point

for each ~. However, there is no precise guidance as to how to choose this initial

estimate. As stated in [52], these initial estimates must be "an initial estimate of

the solution" .

Chapter 5 Scenarios for Cost and Reliability 92

By experiment it was found that taking initial estimates for each R; in the

interval between Rreq and the upper bound on the acceptable module reliability

limit produced satisfactory results. Then, the initial estimates, in the minimization

method developed, are established based on the upper bounds for the reliability of

each module and the level of overall required reliability. The formula representing

this situation is as follows.

• SPi is the starting point for reliability of the module i;

• bUi is the upper bound for the reliability of the module i. As stated on page

88, the bounds on the variables Ri must be supplied. The lower bound for R;

is zero. Although the maximum theoretical value for reliability is 1.0, it is not

achieved in practical software systems. Thus, the upper bound must be set

less than 1.0. In the following examples, the upper bounds bUi are set to 0.99.

• adji is the factor of adjustment for choosing a suitable value between R..eq and

bUi as the starting point. This value was determined by trial and error (the

values utilized are shown in each example).

Note 4

A routine was developed to calculate {WIi} and the constraints considered (Re8t

and N;).

To calculate {WI;}' the NAG routine F04AAF is utilized. This routine, as stated

earlier, solves a system of equations with multiple right-hand sides and thereby

calculates lVIi •

As analysed in chapter 4, {~VI;} is the first row of an inverse matrix with the

following characteristics:

Chapter 5 Scenarios for Cost and Reliability 93

Z = J

To find the first row of X-I, that is, {WIi }, we have

and so solving

1

o

o

will give us r.T as the required answer {WIi }. Putting the problem in this form

means we can take advantage of standard routines, as provided by the NAG routine

F04AAF. This routine can be used to solve the equation A~ = Q, where, in this case,

A = X T , ~ = r. and Q = (1, ... , O)T.

The relation r.T = [Wn , ... , WIn] is obtained using the following line ofreasoning:

Xu X12 X1n

X-I =
X2I X 22 X 2n

X n1 Xn2 ... Xnn

Chapter 5 Scenarios for Cost and Reliability

Then

And

1

o

o

r.=

r.=

1

o

o

1

o

r.T = [Xn X 12 ••• Xln]

94

To use E04UCF, as many first partial derivatives as possible should be provided

for constraints functions and objective function. Unspecified derivatives are approx­

imated by finite differences. Thus, in addition to the evaluation of Ni and Real. the

Chapter 5 Scenarios for Cost and Reliability
95

first partial derivatives of the function Ni with respect to ~ are also required. The

first partial derivatives of the function Rest are not provided, due to the complexity

of its formulation.

Note 5

A routine was provided which calculates the objective function C ="~ (C)
tot L....=l dev i'

using the data mentioned in Note 1.

Note 6

According to [52], an optimal solution is found when:

a. The partial derivatives of the function Ctot (R) with respect to ~ are suffi-

ciently small, considering the accuracy required4 ; and

b. The residuals5 of constraints are sufficiently small, again considering the ac­

curacy required; and

c. The values for R1 , .•• , Rn do not change significantly between iterations.

As analysed in [52], "there are several optional parameters in E04UCF which

define choices in the behaviour of the routine. In order to reduce the number of

formal parameters of E04UCF these optional parameters have associated default

values that are appropriate for most problems. Therefore the user need only specify

those optional parameters whose values are to be different from their values". The

optional parameters function precison and feasibility tolerance provide, respectively,

the accuracy required and the tolerance for the residuals.

4Differences between two consecutives calculations for the objective function.

5Differences between the value provided to and that established by E04UCF.

Chapter 5 Scenarios for Cost and Reliability 96

Note 7

In this case the routine E04UCF terminates and a return code is generated to

indicate the likely cause of this abnormal exit (see I\'ote 9). Some situations can

arise that prevent E04UCF from progressing, such as no feasible point can be found

for the nonlinear constraints, the accuracy required cannot be achieved (because it

is too small), or the upper bounds limits do not permit the location of a feasible

solution.

Note 8

If the program terminates with a return code equal to 4, the limit on the maximum

number of iterations has been reached without any feasible values for R1 ,"', Rn

being found. If it is decided that the routine needs to perform more iterations to

find a solution, then the value of the limit on the number of iterations should be set

higher and the program re-run.

Note 9

Depending on the return code generated, the values yielded by E04UCF may still

be considered valid results for R1 , ..• ,Rn. The user should examine the return code

[52] and the messages produced and, if necessary, change the parameters required

and re-run the program.

5.3 Example

To illustrate the utilization of the method developed, an example will be presented

using mainly hypothetical (but realistic) data, which serves to clarify how a project

manager can obtain the scenarios for cost and reliability.

Chapter 5 Scenarios for Cost and Reliability 97

The reason for using mainly hypothetical data is that, as discussed in chapters

3 and 4, there are some parameters introduced in this work for which there are

no suitable data available in the literature. Incidentally, it is pretty clear that the

utilization of the data from real software development would be a better way to

evaluate our approach. However, to collect the data that would be needed was

not feasible during the development of this research. So, the example shown below

contains a mixture of real data, where these are available, and hypothetical data for

the remaining parameters.

In section 6.3 the sensitivity of cost of development in relation to each parameter

is analysed, and the influence that a bad estimate may have on Ctot is discussed.

5.3.1 Definition

Consider a hypothetical project, where what is needed is to construct scenarios

for the overall cost of development depending on the level of the overall required

reliability.

During the design phase the structure for the software system, and how control

is passed between modules, is obtained. These are assumed to have the behavioural

features characterized in chapter 4; this behaviour and structure for the example

are depicted in figure 5.2. The hypothetical example utilized in this chapter is an

adaptation of the example shown in [55, page 222], which characterizes a software

that enables a homeowner to configure the security system in his house when it is

installed, monitors all sensors connected to the security system and interacts with

the homeowner through a key pad and function conatined the the system control

panel.

The six modules involved are:

• Ml - Interact with the user; M2 - Configure system; Jh - Activate/deactivate

Chapter 5 Scenarios for Cost and Reliability 98

system; M4 - Monitor sensors type 1; Ms - Display messages and status: .\h -

Monitor sensors type 2.

We would like to clarify that the concept of module utilized throughout this

work is to be seen as a functional unit which is identified during the architectural

design. The "module" should be, as close as feasible to obtain in this early stage of

software development, the actual software module that will be implemented during

the coding phase.

I

I PST
I

t

P1T
---->

~P6S8
:P6T

t

Figure 5.2: Modular software system used in the example

The transition matrix corresponding to the modular system is shown in figure

5.3, where T represents the terminal state.

The following information is also proposed for the system under consideration:

• Module sizes

Chapter 5 Scenarios for Cost and Reliability 99

1 2 3 4 5 6 T

1 0.00 0.25 0.30 0.20 0.10 0.05 0.10

2 0.00 0.00 0.00 0.00 0.90 0.00 0.10

3 0.00 0.00 0.00 0.00 0.30 0.00 0.70

4 0.00 0.00 0.00 0.00 0.00 1.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 1.00

6 0.00 0.00 0.00 0.00 0.10 0.00 0.90

Figure 5.3: Transition matrix for the example

It is hypothesized that the following module sizes (in lines of code) have been

estimated for each module:

Ml = 4000; M2 = 1500; M3 = 4000; M4 = 1500; Ms = 1500; Ms = 3.500.

• Effort of coding

Shown in [31] are some relationships between the effort of coding (man-months)

and software size S (thousands of lines of code) for software developed in

an Algol-like language, where all projects are system utilities, such as job

scheduling and tape management. The effort of coding in relation to software

size S in KLOC (thousand of lines of code) is indicated there
s

to be

E 1 - 5°·82
cod = .1'

(5.1)

6The formula shown in [31] enables us to estimate the overall effort expended in a system utilities

project; this effort is said to be E = 4.27 .5°.82 • A percentage break-down of effort by phase is

presented, which permits us to say, very roughly, that Ecod ~ O.4E. Then Ecod ~ 1.7· so 82 .

Chapter 5 Scenarios for Cost and Reliability 100

Hypothesizing that estimation for our example can be based on formula (5.1),

then the effort of coding Eeod for each module is estimated as:

(Eeod)1 = 5.3; (Eeod)2 = 2.4; (Ecod)3 = 5.3; (Ecod)4 = 2.4; (Ecod)s = 2.4;

(Eeod)6 = 4.7 .

• Number of faults present in each module

Allowing for the module sizes indicated above and the assumption of an Algol­

like programming language, the following values for the number of faults ex­

pected to be present in each module after the coding phase are estimated using

formula (3.4):

Fl = 115; F2 = 38; F3 = 115; F4 = 38; Fs = 38; F6 = 99.

• Cost of development

It is hypothesized that Pdev =£2,000.00 per man-month, which indicates that

a junior programming team could be employed for the coding and testing

phases.

• /3
As there is no suitable data available that enable us to obtain directly /3,

we have to assume a value for this parameter. It is hypothesized that the

probability that a fault produces a failure is /3 = 0.005 for all six modules. To

verify, very crudely, that this value for /3 is not disparate, the following line of

argument is utilized.

* It has been suggested [6, 681 that a standard expression for software

reliability is given by R = efj·t, where 7J is the failure rate in any time

interval and t is the length of the time interval in which the reliability is

estimated.

Chapter 5 Scenarios for Cost and Reliability 101

* Let us consider t = 1 run, that is, the time interval corresponds to 1 run

of the software module. Then, there are 1/ = -In R failures per run.

* Suppose a high value for R, say, R = 0.96. Then, TJ = 0.04 failures per

run, which, following the example of estimation of /3 shown on page 52,

produces f3 = 0.008.

Thus, it can be said that a hypothesis of f3 = 0.005 seems to be reasonable .

• h and I

These are parameters for which there are no precise data available. Therefore,

they need to be hypothesized. Although h clearly varies with the number of

faults to be removed, we will assume here that h is constant for the purpose

of this example. As will be seen in chapter 6, Cdev is not very sensitive to 6.

Consequently, using a constant value for 8 in this hypothetical example should

not produce significant distortions in the results produced for Cdev •

It is hypothesized that for every module 8 = 5.0 and / = 1.0, since these

appear to be reasonable values (see footnotes on pages 59 and 60).

5.3.2 Some examples of scenarios

To produce some examples of scenarios, a program written in Fortran 77 was devel­

oped so as to implement the minimization method proposed. This program follows

the steps and requirements depicted in figure 5.3. In all scenarios the basic input

data were the same and equal to the data discussed in section 5.3.1. These data are

summarized in Table 5.1.

Using the input data shown in Table 5.1, some scenarios for the overall cost of

development are built up, where different values for the overall required reliability

Chapter 5 Scenarios for Cost and Reliability

Module Ecod F

1 5.3 115
2 2.4 38
3 5.3 115
4 2.4 38
5 2.4 38
6 4.7 I 99

I
I --------- - - -- - ---- - - - -- - ---

For all modules:

Pdev =£2,000.00

Upper bound (reliabilities):0.99

f3 = 0.005
8 = 5.00

1=1.00

Table 5.1: Input data employed in the example

102

Rreq are employed in each case. These results are summarized in Table 5.2. A

detailed view of each scenario is depicted in Tables 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8.

In all scenarios the following information is yielded for each module:

* R is the estimated reliability that is achieved if N faults are removed.

* N is the estimated number of faults that have to be removed in order to achieve

the reliability R.

* Cdev is the cost of development.

* Edev is the estimated effort of development, which is obtained using CpdCR
•

dcv

The values estimated and required for the overall system reliability are also

presented in all scenarios, as well as the values employed as a starting-point for

Chapter 5 Scenarios for Cost and Reliability 103

Scenario I R..eq Ctot (£) Table I
I I I _______ L ________ L ___________ L ________

1 0.75 58689.19 5.3
2 0.80 63610.65 5.4
3 0.85 68686.47 5.5

4 0.90 74626.28 5.6
5 0.95 81624.97 5.7

6 1.00 90000.00 5.8

Table 5.2: Cost estimate for each scenario

the reliabilities (see Note 3 on page 91). The scenarios and results obtained are

commented upon in sequence.

Chapter 5 Scenarios for Cost and Reliability

I
I

Module Edev N
I

R Cdev (£)
I

I
I

1 9.5078 103 0.943 19015.65

2 2.9229 21 0.921 5845.73

3 6.1370 57 0.748 12274.03

4 2.4697 13 0.884 4939.39

5 2.9229 21 0.921 5845.73

6 5.3843 48 0.778 10768.65

--------~---------- ------- --------- -------------

29.3446 Ctot - 58689.19

Rest = 0.755
Starting point for the reliability of each module: 0.894
Factor of adjustment for this starting point: 0.6

Table 5.3: Scenario for cost of development with ~eq = 0.75

104

Chapter 5 Scenarios for Cost and Reliability

I
I
I Module Edev N R Cdev (£) I
I I

1 9.6859 105 0.952 19371.84
2 2.5420 15 0.894 5083.92
3 8.3971 90 0.884 16794.11
4 2.5420 15 0.892 5083.92
5 3.0952 23 0.928 6190.50
6 5.5432 51 0.789 11086.37

--------~---------~-------- --------- -------------

31.8053 Ctot -
Rest = 0.80
Starting point for the reliability of each module: 0.912
Factor of adjustment for this starting point: 0.592

63610.65

Table 5.4: Scenario for cost of development with Rreq = 0.80

105

Chapter 5 Scenarios for Cost and Reliability

I I
I I

Module
I

Edev
I

N R Cdev (£) : I
I

1 10.0470 109 0.974 20094.08
2 2.4059 9 0.867 4811.75
3 10.2299 111 0.985 20459.85
4 2.4059 9 0.867 4811.75
5 3.5975 28 0.955 7194.94
6 5.6570 53 0.797 11314.09

--------~--------- --------~--------- -------------

34.3432 Ctot - 68686.47

Rest = 0.85
Starting point for the reliability of each module: 0.945

Factor of adjustment for this starting point: 0.68

Table 5.5: Scenario for cost of development with Req = 0.85

106

Chapter 5 Scenarios for Cost and Reliability

I
I
I Module Edev N R Cdev (£) I
I I

1 10.2299 111 0.982 20459.85
2 3.8207 30 0.963 7641.37
3 9.8657 107 0.964 19731.36
4 2.7039 18 0.907 5407.82
5 3.9361 31 0.968 7872.26
6 6.7568 69 0.861 13513.62

--------~--------- -------- --------- -------------

37.3131 Ctot -
Rest = 0.90
Starting point for the reliability of each module: 0.913
Factor of adjustment for this starting point: 0.15

74626.28

Table 5.6: Scenario for cost of development wih Rreq = 0.90

107

Chapter 5 Scenarios for Cost and Reliability

Module Edev
I

N R Cdev (£) I
i

1 10.3219 112 0.989 20643.84
2 3.9361 31 0.969 7872.26
3 10.1383 110 0.979 20276.60
4 3.5975 28 0.954 7194.94
5 4.1737 33 0.980 8347.49
6 8.6449 91 0.964 17289.86

-------- --------- -------- --------- -------------

40.8125 Ctot - 81624.97

Rest = 0.951
Starting point for the reliability of each module: 0.954
Factor of adjustment for this starting point: 0.1055

Table 5.7: Scenario for cost of development with Rreq = 0.95

108

Chapter 5 Scenarios for Cost and Reliability

Module Edev N R Cdev (£)

1 10.6 115 1.0 21200.00

2 4.8 38 1.0 9600.00

3 10.6 115 1.0 21200.00

4 4.8 38 1.0 9600.00

5 4.8 38 1.0 9600.00

6 9.4 99 1.0 18800.00

--------~---------~-------- --------- -------------

45.0 Ctot - 90000.00

Rest = 1.00
Starting point for the reliability of each module: 1.00
Factor of adjustment for this starting point: 0.0

Table 5.8: Scenario for cost of development with Rreq = 1.0

109

Chapter 5 Scenarios for Cost and Reliability
110

5.3.3 Comments on the results obtained

Some supplementary comments and observations are made below about the example

scenarios, and also on the general behaviour of Cdev'

• In addition to the scenarios 1 to 5 summarized in Table 5.2 (scenario 6 is just a

special scenario), a minimum (Cmin) and maximum (Cmar) cost of development

are also estimated.

As can be seen from equation (3.13), we can regard the minimum cost of

development as being the cost of coding. So, for m modules

m

Cmin = L PdevEcod
i=l

Consequently, for the example system Cmin = 2000(5.3 + 2.4 + 5.3 + 2.4 + 2.4 +
4.7) = £45,000.00.

To obtain Cmax , which would happen if Rreq = 1.0, we relaxed the constraint

of upper bound for Ri, such that Ri ~ 1. As shown in Table 5.8, the outcome

is that each module also has to have reliability equal to 1.0 .

• For the two scenarios shown in Tables 5.3 and 5.7, we note that the value of

Rest obtained is slightly bigger than Rreq . This is because it is not always

possible to find values of Ri satisfying the constraints such that the resulting

Rest is exactly equal to Rreq-thus the value of Cdev may be slightly higher than

Rreq requires .

• Modules with the same characteristics (software size, /3, 8, etc.) can obviously

have different development cost, as can be seen in the results obtained for

the modules 1 and 3, and modules 2, 4 and 5. Clearly this is because the

cost depends on the reliability required for each module, as established by

Chapter 5 Scenarios for Cost and Reliability III

the minimization procedure. In figure 5.4 the curve of Cdev plotted against

R is depicted for the three different sizes of module in the example. With

this curve, a project manager would be able to estimate the value of Cd~,

depending on the required level of reliability for the software.

• In figure 5.4 we see that the cost of development, for example, for the 4000-

lines-of-code modules, is in the range £10,600.00-£21,200.007 . The lower end

of the range corresponds to the situation in which the software is just coded

(and not tested at all); the upper end represents the theoretical situation for

reliability equal to 100%.

It is worth emphasizing that the horizontal section of the curves shown in figure

5.4 indicates that below a certain level of required reliability, the estimated

development cost is practically constant (and equals Ccod). Consider module

1; having spent Ccod on coding the software, we obtain R ~ 0.6. If our

requirement is R < 0.6 for this module, we still have to spend Ccod , and

obtain Rest = 0.6.

The level of required reliability mentioned above, can be estimated using in

equation (3.3) N = 1. By so doing, we are estimating the reliability that would

be achieved after just one fault having been removed. This value is estimated

as follows.

7 As i = 1.0, the maximum E te• = Ecod. Therefore, the maximum Edev = 2 . Ecod.

Chapter 5 Scenarios for Cost and Reliability

22.0

20.0

18.0

16.0

14.0

12.0
10,600+-_________________ -~

9,400 _ -
8.0

." ."
.. '

..... ,..
.,'

.I ,

J
6.0 /

,/
4,800 .. - - - - - - - - - - - -- - - - - - - - - - - - -,

4.0

2.0

0.1 0.2 0.3

Modules 1 and 3

Modules 2, 4 and 5

Module 6

0.4 0.6 0.7 08 0.9

. 21,200

l ~.I<I)O

I

I 9,600

I
I

112

1.0 Rr-eq

Figure 5.4: Plots of Cdev against R for individual modules

Chapter 5 Scenarios for Cost and Reliability
113

- Modules with 4000 lines of code

1 = 115 _ In R
In (1 - 0.005)

R = 0.564

- Modules with 1500 lines of code

1 = 38 _ InR
In (1 - 0.005)

R = 0.830

- Module with 3500 lines of code

1 = 99 _ InR
In (1 - 0.005)

R = 0.611

Hence, when R > 0.564 (4000-lines-of-code module), R > 0.83 (1500-lines-of­

code module) and R > 0.611 (3500-lines-of-code module), each fault removed

results in a significant increase in the cost Cdev ' Below these thresholds CdelJ

is nearly constant .

• Considering the entire modular system, some further observations can be

made:

* The relationship between Cdev and the required reliability Rreq is similar

to that for an individual module, where the explanation for the flat area

in the curve is the same as already discussed above.

* It can be observed in figure 5.5 (as discussed for figure 5.4) that for

0.5 < R < 0.6 there is a gradual increase of the exponential curve. This

can be attributed to the fact that for the modules with 4000 lines of

code, which exert a leading influence in CdelJ' the reliability achieves a

value between 0.5 and 0.6 when just one fault is removed, as analysed

previously.

Chapter 5 Scenarios for Cost and Reliability
114

80.0

72.0

64.0

56.0

48.0

45.000~----------------~

40.0

32.0

24.0

16.0

8.0

I

0.1 0.2 0.3 0.4 '0.5 0.6 0.7 08 0.9 1.0 Rreq

Figure 5.5: Plot of Cdev against R for the whole system

Chapter 5 Scenarios for Cost and Reliability 115

5.3.4

* Another conclusion that may be drawn from the example shown is that

the increase in the cost of each module does not follow the same pattern

of the whole system. In other words, an increase of, say, 10% in Cdev does

not necessarily imply, as can be seen, that a general increase of 10% for

each module ensues.

* The graph also allows us to perform inverse interpolation-given an upper

limit on the budget, we can estimate the reliability that can be achieved.

Considerations

Despite the fact that we are using hypothetical (but as far as possible realistic) values

for some parameters, which makes a precise comparison impossible, we present a very

rough analysis of the results obtained here in comparison with other data available

in the literature, in which, it should be stressed, a target reliability is not clearly

cited. This comparison indicates that the results produced here, using the developed

formulas, yield a reasonable outcome. A module with 4000 lines of code (modules 1

and 3 in the previous example) is used for this comparison.

Two different sources are used:

• Source 1-+ Using Boehm's formulas ([7]).

Despite the fact that there are some criticisms of the results that Boehm's

formula can produce in different environments, we make this comparison to

have a first impression of our results in comparison with a well-known method.

Considering Boehm's basic model, "which is suitable for most of the small to

medium size projects, where the problem to be solved is sometimes unique",

and supposing that our module with 4000 lines of code is classified in this sort

of model, we have the following formula in [7J to estimate the total effort E

Chapter 5 Scenarios for Cost and Reliability

required (design+code+test) to produce software.

E = 3.0 X 81.12, where 8 is the module size in thousands of line of code.

Hence

E = 3.0 X 41.12 = 14.2 man-month.

116

Boehm recommends for his method that the effort spent in the coding and test­

ing phase Ecod + Ev&v should be aproximately 60% of the total effort estimated

above. So

Ecod + Ev&v = 14.2 x 0.6 = 8.52 man-month.

Thus the total cost of coding, testing and debugging a module of 4000 lines

of code, where no required level of reliability has been stated, using Boehm's

formula would be

Cdev = 8.52 x 2000 =£17,040.00 .

• Source 2-+ Using data from [31].

Total effort E of development (design +code+ test) has the following formula

in [31], which is based on real data gleaned in several different environments.

E = 4.27 X 4°·82 ::::: 13.3 man-months.

The percentage of effort spent in the coding and testing phases represents

aproximately 80% of the value calculated above, again according to data shown

in [31]. Thus Ecod + Ev&v = 13.3 x 0.8 ~ 10.64 man-month.

Thus the total cost of coding and testing, using the data acquired in [31] would

be Cdev ::::: 10.64 x 2000 =£21,280.00.

Hypothesizing that the module with 4000 lines of code has a high required re­

liability, say, higher that 90%, it can be seen in figure 5.4 (and in Tables 5.3 to

Chapter 5 Scenarios for Cost and Reliability 117

5.7) that the cost of development for this module is estimated here as being around

£20,000.00.

So, we have the following estimates:

• From Boehm's method - £17,040.00

• From [31] - £21,280.00

• From our model- ~ £20,000.00

Therefore, it may be said that the result produced here as expected has yielded

a reasonably consistent estimate when compared with these two sources 8, however,

it should again be emphasized, that a required level of reliability was used in the

estimate.

It is claimed that the representation proposed here for Cdev is a reasonable es­

timate for the cost of development, and this estimate can be acquired during the

design phase. The relationship between cost and reliability is modelled realisti­

cally and produces outcomes which are in line with other models. Furthermore, we

are also incorporating the required level of reliability in the method, which, to our

knowledge, has not been done elsewhere.

SOur result is even consistent with Boehm's method, which uses a completely different dataset

in its formulation.

Chapter 6

Sensitivity Analyses

6.1 Introduction

This chapter presents an analysis of the sensitivity of the formula for t he cost of

development to variations in the parameters employed in that formula. Some ex­

pressions for these sensitivities are obtained, and a comparison of the sensitivity of

the parameters is made.

Firstly, some features which are thought to be useful in judging the goodness

of a model are briefly discussed. As shown in [1:2. pages 2{,5-276], there are some

subjective criteria that can be used for this purpose. According to [12] these criteria

are:

• Objectivity

a) Are the final estimates based on measurements and data that are obtained

algorithmically?

b) Do the estimates depend on subjective factors that can \'ary significantly

with different estimators (for instance, the project managers) ?

118

Chapter 6 Sensitivity Analyses 119

The answer to question a) is (essentially) yes, because all parameters used. for

establishing the cost of development can be based on historical data and are

supposed to have been obtained through regression analysis, which involves

an algorithmic routine.

To question b) the answer is therefore no; as noted above, none of the param­

eters utilized are based on judgements or guesses by an estimator. However,

as can be observed in Chapter 5, in this thesis we have "guessed" some pa­

rameters (guided by data that are available in the literature, when possible).

The method can, in principle, be very objective-but, as stated previously,

a lack of opportunity to obtain realistic data means that some parameters in

our examples have, of necessity, been assessed subjectively.

Nevertheless, it can justifiably be claimed that our method should be charac­

terized as reasonably objective .

• Ease of Use

a) Is the data needed for the model easy to obtain?

b) Is too much data needed?

c) Is the information needed available early in the life cycle?

In response to question a), it cannot be realistically claimed that the data

required are very easy to acquire. Instead, it can be argued that they are

"feasible" to collect, which may involve considerable effort and some overheads

during the design, coding and testing phases of previous system development.

As can be seen, there are several parameters involved in the method. To obtain

some of these parameters a great deal of data will be handled. So, the answer

to question b) is yes, in the sense that we would prefer to have a method which

Chapter 6 Sensitivity Analyses 120

required rather less data to be processed.

As to question c), the answer is yes; the data are expected to be available

during the early stages of design phase where the developed method is thought

to be applied.

Thus, it cannot be claimed that this method is easy to use, in view of the

effort required to acquire data on previous developments. However, the actual

procedures are then straightforward and easily automated .

• Transportability

Is the model so dependent on local data that it cannot be used in a different

environment?

The straightforward answer is yes, because the method should be calibrated for

a specific environment, using local data. This fact is a common characteristic

of software estimation methods and has the benefit of enabling a more accurate

estimate (it may provide closer estimates based on a local reality).

The method is generic, and can be applied in a range of environments. How­

ever, it remains to be seen, whether the method based on data for a given

category of development, for example, business applications, can be applied

in other environments in the same category with few, or no, adjustments. If

we infer from the experience of other models (a case in point is Boehm's), it

might be suggested that this kind of extrapolation is not very likely .

• Sensitivity

Does a small change in one or more input parameter lead to a relatively large

change in the model estimate?

The issue of sensitivity is the subject of the next section.

Chapter 6 Sensitivity Analyses
121

Examining the issues of objectivity, easy to use and transportability we have some

positive points which may suggest that it is a workable model (with respect to its

"goodness") .

6.2 Expression for Sensitivity

In mathematical algorithms a very small change in the intial data may sometimes

cause extreme variations in the final outcome. A system that exhibits such charac­

teristics is said to be ill-conditioned.

An analysis of sensitivity is an attempt to identify combinations of data values,

within permissible limits, that can cause particularly significant variations in the

results (as defined in [55]).

It is well-known that a partial derivative (gradient) of a function in relation to

a single variable gives a clear indication of the effect that changes in that variable

would have on the value of the function. Thus, the partial derivative of a function

can enable us to assess the sensitivity of the function to changes in its parameters.

It is worth recalling (see [26]) that the idea involved in using partial derivatives

is that we hold all of the independent variables in a function constant, except one,

at some value of interest. Therefore, the function then becomes a function of the

single remaining independent variable. We may then differentiate the function as if

it were a function of that one variable.

To develop an expression that represents the concept of sensitivity outlined

above, the following line of reasoning is used, where an example serves to illustrate

the explanation.

Given a function u = f(x,y), then the magnitude of sensitivity to x (or y) is

represented by the relationship between the proportional variation of x (or y), and

Chapter 6 Sensitivity Analyses 122

the proportional variation of u. This notion can be represented by

l~ul = 0 x 'l~xl (6.1)

l~ul = 0 y 'I~YI
where,

• D.u means either a positive variation (an increment) or negative variation (a

decrement) of the value of the function u.

• D.x, D.y mean a positive or negative variation of x and y, respectively.

• I ~u I is the magnitude of the proportional variation of u.

• 16.:1, 171 are the magnitudes of the proportional variations of x and y, re­

spectively.

• 0 x and 0 y represent relationships between changes III x and y, and their

consequent effect on u.

The value of 0 x (the same reasoning is applied to 0 y) can be interpreted as

follows:

• 0 < 0 x < 1

Then I ~u I will be less than I ~x I, which means that variations in x will affect

u in a lesser proportion, that is, u will change more "slowly" than x.

Then I ~u I = I ~x I, meaning that variations in x will affect u in exactly the

same proportion.

Chapter 6 Sensitivity Analyses 123

• ex> 1

Then I ~u I > I ~x I, meaning that variations in x will affect U III a greater

proportion, that is, u will change more "rapidly" than x.

In this case u is not affected at all by variations in x.

It can therefore be concluded that ex provides the required sensitivity function.

Hence, for instance, if the value of function ex (for some set of values of the param­

eters x and y) is less than the value of function ey (for the same values of x and y),

this fact enables us to conclude that u is more sensitive to changes in y than in x.

Now, rearranging the equation (6.1)'

It is well-known that when the variation .6.x tends to 0, then the term I ~~ I tends

to the partial derivative I~~I. That is,

lim - - -l.6.u I 1 au 1
Clx-O .6.x - ax

Then, the expression for sensitivity is given by

ex = I:.· au 1
u ax

(6.2)

Equation (6.2) will be utilized in the following sections to analyse the sensitivity

of the parameters involved in the estimated cost of development Cdev.

6.3 Sensitivity of the Cost of Development

To clarify the sensitivity aspect of formula (3.13) for the parameters involved, we

calculate the partial derivative of Cdev . For each parameter a brief discussion is given

Chapter 6 Sensitivity Analyses 124

on the influence that changes in its value would exert on Cdev , and a comparison of

sensitivity among parameters is presented. The module with 4000 lines of code is

used for illustration, considering the values employed in the example of Chapter 5.

From formula (3.13) (repeated below) we see Pdev , Ecod, I, N and s need to

be estimated. As analysed in Chapter 3, the parameters N and s are estimated

based on the parameters f3, F and 8. So, we select the following parameters for our

sensitivity analysis:

• Pdev (page 44); Ecod (page 45); 1 (page 60); f3 (page 49); F (page 53); and 8

(page 59).

Cdev = PdevEcod (1 + I:~;=i) (equation 3.13)

6.3.1 Sensitivity due to Pdev and Ecod

Let the sensitivities due to Pdev and Ecod be denoted, respectively, by 0 pdev and

0
Ecod

• Using equation (6.2) the following results are obtained.

As can be seen from equation (3.13), Cdev varies linearly and in direct propor­

tion to Pdev, which is confirmed below.

oC (eNS - 1) oP::: = Ecod 1 + 1 eFs - 1

So,

I
p (eNS - 1) I

0 Pdev = C:::· Ecod 1 + 1 eFs - 1

Chapter 6 Sensitivity Analyses 125

Substituting the expression for Cdev obtained from equation (3.13), it is im­

mediately found that

• 8E cod

Then, similarly, we have

8E = 1 cod

Thus, it can be concluded that variations in P dev and Ecod produce the same

proportional variation in Cdev. So, C dev has the same sensitivity for those two

parameters.

6.3.2 Sensitivity due to I

Let 8-y denote the sensitivity of Cdev due to ,. From equation (6.2) we have that,

, eNs - 1
8-y = -C . Pdev . Ecod· Fs 1

~v e -

,(eNs - 1)
8 - --...:....:...--~--:­

-y- (eFs _1)+,(eNs -1)

(6.3)

Chapter 6 Sensitivity Analyses 126

I Cdev e / I
I

..,
I I

- - - - --, -- - -- - - - -r - - - - --

0.50 13945.46 I
0.193 I

0.75 15618.19 0.303
1.00 17290.91 0.387
2.00 23981.83 0.586

2.25 25654.56 0.617

Table 6.1: Example of Cdev for different /

In Table 6.1 are several examples which illustrate the behaviour of Cdev as /

varies. These examples consider the same values utilized in the example of Chapter

5, for a module with 4000 lines of code, with a required reliability R..eq = 0.9.

To obtain the results presented in Table 6.1 we need to set a reasonable range

for /. It can be found in the footnote on page 60 that a typical range for / can

be 0.4 < / < 2.5. In the example analysed in Chapter 5 we have used / = 1.0.

So, from this range, we select five values for /, which, in our opinion, may serve to

illustrate the influence of / on Cdev • In Table 6.1 we then have:

• Value for / = 0.5, which is 50% of the value utilized in the example of Chapter

5, and greater than 0.4.

• Value for / = 0.75, which is a medium point between the value above for /

and that utilized in Chapter 5;

• Value for / = 1.0, as in the example of Chapter 5.

• Value for / = 2.0, which is twice the value in that example, and less than 2.5.

• Value for / = 2.25, which is slightly smaller than the maximum value (that is,

2.5).

Chapter 6 Sensitivity Analyses
127

From Table 6.1 it can be seen that ELf is always less than 1.0. Thus, it can

be concluded that Cdev appears to be less sensitive to '"'f than to Pdev and E
cod

. A

comparison with other parameters is presented subsequently.

If / changes, Cdev varies considerably, as expected, but not in the same proportion

to /, e.g., a 2-fold increase in / results, in this example, only in a 1.39-fold increase

in Cdev •

6.3.3 Sensitivity due to (3

The parameter (3 is used in formula (3.3). As can be seen in that formula (3.3), /3

affects N, which, in turn, also affects s (formula (3.9)). And both exert influence

The sensitivity of Cdev with respect to (3, from equation (6.2), is

0{3 = IL . 8C
dev I

Cdev 8/3
(6.4)

The result for a~~!1 is a rather complicated expression. An expression for f)~~cv

was obtained using the software MATHEMATICA [87]. When used in equation

(6.4) and employing the same data as the example in Chapter 5, we have the results

shown in Table 6.2.

To obtain the results shown in Table 6.2 we needed to select a suitable range of

values for (3, in order to illustrate the influence of (3 on Cdev .

Suppose that for the 4000-lines-of-code module, a reliability of 0.90 is required.

We know that N = F - ln~~~i3) (formula 3.3).

Since N cannot be a negative number, and assuming that N is always different

from zero, we have ln~~~(3) < F. Rearranging this expression we have that

(3 > 1 - (fR.

For the values utilized in the example of Chapter 5, and using the expression

Chapter 6 Sensitivity Analyses
128

f3 N I
Cdev I 9 p

I I

---------~-----------------~------

0.002
I

62 I 12814.76 0.4i5
0.0025 72 14073.62 0.413
0.005 93 17290.91 0.205
0.01 104 19193.32 0.098
0.05 112 20643.84 0.018

Table 6.2: Examples of Cdev for different f3

above, we have f3 > 0.001. So, the range for f3 may be set l as 1.0 ~ f3 > 0.001. We

select to use five representative values of f3 (Table 6.2):

• f3 = 0.005 is employed in the example of Chapter 5;

• f3 = 0.002 is just greater than the minimum, i.e., 0.001;

• f3 = 0.01 and f3 = 0.0025 represent, respectively, twice and half of the value

utilized in the example of Chapter 5. These values will be utilized for com-

parison among parameters.

• f3 = 0.05 constitutes an artificially high value for {3. As discussed in Chapter

3, this value of {3 means that for 100 executions of the module, on average 5

failures will occur;

As can be seen in Tables 6.1 and 6.2, 8-y > 8/3, when we utilize the same variation

for both parameters.

If {3 decreases, the number of faults to be removed to achieve a required reliability

decreases gradually. So, if it is the case, for smaller values of {3, the flat area in figure

1 Recall that the value of f3 represents a probability, therefore 1.0 ~ f3 ~ O.

Chapter 6 Sensitivity Analyses 129

5.4 would be larger than that using /3 = 0.005, because with just 62 out of 115

faults removed the reliability would be 0.90. Thus, considering smaller values for {3,

the cost of development would be cheaper for a larger values of required reliability

(because less faults will need to be removed in order to achieve R).

As R = 1.0 corresponds to the maximum cost, we then have (for smaller values

of /3) that the exponential curve for Cdev plotted against R..eq would rise up sharply,

for 0.90 < Rreq < 1.0.

By contrast, as /3 increases, the probability that a remaining fault will produce

a failure increases, and there is a more gradual effect of changes in {3 on N, and

consequently on Cdev .

Summing up: the value of /3 affects the number of faults to be fixed in a marked

way, which, in turn, influences Cdev as well, but not in the same proportion.

6.3.4 Sensitivity due to F

This parameter has a direct effect on N, as can be seen in formula (3.3). Here, the

sensitivity of Cdev with respect to F is given by

8F = i~· OCdevi
Cdev of

(6.5)

The software MATHEMATICA was again consulted to find a~ty·

Based on the examples shown in [38], we consider a range from half the estimated

F using formula (3.4) to double the latter. So, we have in Table 6.3 five scenarios

which illustrate the behaviour of Cdev as F varies. They are:

• F = 57 represents approximately 50% of the value utilized in the example of

Chapter 5 .

• F = 76 represents approximately 2/3 of the value utilized in the example.

Chapter 6 Sensitivity Analyses
130

• F = 115 is utilized in Chapter 5.

• F = 172 is 50% higher than the value utilized in Chapter 5.

• F = 230 is twice the value utilized in Chapter 5.

F C dev 8 F
I I ------,---------.--------

57
I

13846.26 0.509

76 15464.03 0.322
115 17290.91 0.206

172 18543.59 0.133

230 19198.74 0.09S

Table 6.3: Example of C dev for different F

In Tables 6.2 and 6.3, it is seen that C dev is more sensitive to F than to {3.

6.3.5 Sensitivity due to 0

In formula (3.13) it can be seen that C dev varies inversely to the parameter s. That

is, if s increases the expression (e Fs - 1) will increase more rapidly than (eN. - 1),

which means that Cdev will decrease. As s varies in the same direction as 8 (formula

(3.9)), then it can be concluded that C dev varies inversely to 8. The sensitivity of

C dev with respect to {) is

8
6

= 1_8_ . 8Cdev 1
Cdev 88

(6.6)

To verify the above conclusion, the software MATHEMATICA was again em-

ployed to find an expression for 8~1c!1.

Chapter 6 Sensitivity Analyses
131

In the footnote on page 59 it was noted that a typical range for 0 is 1 < 0 ~ 10.

In the example of Chapter 5 we use 0 = 5.0. Based on this range for 0, we choose

here five values to illustrate the typical influence of 0 on Cdev (see Table 6.4).

• 0 = 1.5 is just greater than the minimum (that is, 1.0).

• 0 = 2.5, half of the value used in the example of Chapter 5.

• 0 = 5.0, just as in that example.

• 0 = 7.5 is a medium point between the value utilized in Chapter 5 and the

maximum value (that is, 10.0) .

• 0 = 10.0, double the value utilized in that example.

0
I Cdev

I 8 6 I I
I I
I I ------,---------,-------

1.5
I

18736.43
I

0.061 I I
2.5

I
18141.23

I
0.064 I I

I I

5.0 I 17290.91 I 0.069 I

I 7.5
I

16791.99 0.070 I

10.0
I

16444.47 I 0.071 I I
I I

Table 6.4: Example of C dev for different [)

Comparing the value of 8 s to the previously analysed parameters, it may be

concluded that 0 affects C dev the least.

Therefore, a large error in the estimate of [) would result in considerably less

error in the estimate of Cdev, in the opposite direction. Thus, it can be said that

C dev is not markedly sensitive to o.

Chapter 6 Sensitivity Analyses 132

6.3.6 Summary of the sensitivity analyses

The sensitivity of Cdev with respect to the parameters Pdev , Ecod , " (3. F and 6,

has been examined. Some typical values of these sensitivity factors were obtained,

and some quantitative analysis has been done. By doing so, we are able to gain an

indication of how much influence an inaccurate estimate for one of these parameters

might exert on Cdev '

Tables 6.5, 6.6 and 6.7 display not only numerical results, but reflect a clas-

sification for level of influence for the parameters analysed. This classification is

represented in each table by four levels. Each row in the table corresponds to a

level. The levels are:

• Levell: minimal influence (0 < 0 ::; 0.1).

• Level 2: moderate influence (0.1 < 0 ::; 0.5).

• Level 3: steady influence (0.5 < 0 ::; 1.0).

• Level 4: large influence (1.0 < 0).

Table 6.5 shows the minimum values found for the sensitivities; Table 6.6 shows

the sensitivity for the values used in the example of Chapter 5; and Table 6.7 shows

the maximum sensitivities obtained.

Analysing Tables 6.5, 6.6 and 6.7, it may be suggested that Cdev is not ill-

conditioned and is not excessively sensitive to any of the parameters involved.

Chapter 6 Sensitivity Analyses 133

{3 F i
............ ~ ~ :
1: : ~ 0.061 ···2·······1···················1"·················r···· 0.018 0.098

............. _ -.

0.193
···3·······r·····i:O·······(····i:O········~············
···4·······r··················r···················j···

Table 6.5: Summary of the sensitivity analysis: "minimum" values

{3 F i
............. : : : : -_ -:

1 : ~ 0.069 :
.. _ _-_ .. · . . .

2 ~ : : ~ 0.205 : 0.206 ~ 0.387
••••••••••••• ;. •••••••••••••••••• ..: •••••••••••...••.••• : ••...•...••..••...• .: •••••••••••••.• - ... ,.: •••••••••••..•• ••••• j. ••.•••...•••••.•••• ·

3 ~ 1.0 : 1.0 ~ : : ~ : : : -:........ -: ~
· .' · . · . · . · . 4

Table 6.6: Summary of the sensitivity analysis: "median" values

{3 F i
. .

·············t····················t···················.: : - .. ~

.. .1 : ~ L. 0.071 : " .---................ -c

2 ~. : 0.475 : 0.509 ~ 0.617
............ .,:,: : : __: :.

... : : ~:.~ ·t······ .1:.~ T··············· ····r········ :

Table 6.7: Summary of the sensitivity analysis: "maximum" values

Chapter 6 Sensitivity Analyses
134

It can also be said that,

• There is no parameter classified as exerting "large influence" on C
dev

'

• An inaccurate estimate for 8 does not affect Cdev very much. This conclusion,

as discussed previously, enabled us to use a constant value of 8 throughout the

examples shown in Chapter 5.

• Variations in Pdev and Eeod produce the same (linear) proportional variation in

Cdev ' Thus, inaccurate estimates for these parameters will affect Cdev directly

in the same proportion.

• The remaining parameters exert an influence, but not dangerously high, on

Cdev '

• Based on Tables 6.5, 6.6 and 6.7, it may be suggested that " f3 and F exert

(roughly) the same influence on Cdev , and 8 exerts the least influence.

A more rigorous and complete sensitivity analysis may be possible if the param­

eters f3, , and 8 can be expressed as functions of even more basic parameters (to be

figured out) that exist in a software development process (a case in point might be

software size). In such a case, we may be able to learn more about the interaction

among the parameters and the behaviour of Cdev as these parameters vary. Thus,

we may be able to establish, for example, what would be the sensitivity of Cdev due

to software size.

It also has to be said that a combination of changes in different parameters may

result in changes in Cdev , which is not easy to predict. Therefore, the classification

indicated in Tables 6.5, 6.6 and 6.7 should be used just as a preliminary guideline

to the sensitivity of Cdev with respect to the parameters utilized.

Chapter 6 Sensitivity Analyses
135

6.4 Sensitivity of the Overall Reliability

To construct scenarios between cost and reliability, as analysed in Chapter 5, equa­

tion (4.1), which estimates the overall system reliability, is employed. This formula,

which is repeated below, contains the coefficients Pii (see page 70) and PiT of the

transition matrix (see page 71) which must be predicted.

Rest = L:i=l Wli~PiT (equati{OU

1

4.1) , =)

where W = X-I with Xii =

-~Pij i =lj
i = 1,· .. ,n (number of modules in the modular system under estimation).

L:7!:1 (Pii + PiT) = 1.

The two parameters sets of Pii and PiT may be analysed to determine how the

overall estimated system reliability Rest is affected by changes in their values. In this

way the sensitivity of Rest with respect to changes in Pii and PiT might be assessed.

However, as can be seen, the general expression for Rest depends on the number

of modules under consideration and how they are linked. Thus, it seems to be

infeasible to define the sensitivities to Pii and PiT without knowing a closed form

for the expression of Rest. Furthermore, we should bear in mind that changes in

PiT result in changes in Pii as well. Moreover, any change in Pii or PiT results in

changes to other coefficients in the same row and column, and, consequently, in the

entire matrix. As analysed in Chapter 4, L:J=l Pij + PiT = 1.

Hence, we consider it unworkable to develop expressions for the sensitivity of the

overall system reliability with respect to the transition matrix.

Chapter 7

Conclusion

The main issue dealt with in this work is how to estimate the cost of developing

a modular software system, during the early design phase of software development,

taking into account a required level of reliability for the system.

By examining some relevant software cost estimation models, which are applied

during the design phase, we confirmed that these models do not usually treat reli­

ability requirements as a cost driver. Even when they do, no explicit figure for the

required reliability is utilised in their formulation. The treatment of a reliability

requirement is invariably broad rather than precise, yielding an outcome which can

only roughly indicate the influence of reliability in software cost estimation, and

which certainly does not constitute any step towards supporting an effective trade­

off between cost against reliablity during the design stage. Software size, which can

be argued to be the foremost factor in relation to the software cost, is also discussed.

Thus, it may be. concluded that current software cost estimation models avail­

able in the literature, either on their own or through software sizing models, do

not provide any special approach in dealing with a trade-off between cost against

reliability before the coding phase.

136

Chapter 7 Conclusion 137

As is outlined in Chapter 2, a real discussion on the trade-off between cost against

reliability can be established during the testing phase by means of software release

policies. However, the input data for these policies can only be obtained during

the testing phase, which constitutes a clear impediment for their utilization in the

earlier phases of the life-cycle of software development, such as at the design phase.

Therefore, it seems to be worth considering whether software release policies,

might be adjusted, or their concepts utilized, so that we may apply them, combined

with software estimation models, to obtain the desired trade-off during the design

phase. The model developed in this work is a step in this direction.

The line of argument developed here is that the reliability of a software module

is closely linked to the effort spent during the testing phase, meaning that a higher

level of desired reliability requires more testing effort and, consequently, will cost

more. On this basis, a straightforward decomposition technique is used to estimate

the cost of development, based on the number of faults which will have to be found

and fixed to achieve a required reliability, using data obtained from the requirement

specification and historical data. The model proposed was developed and investi­

gated solely on the basis of hypothetical data, guided (where available) by published

data values. Figure 7.1 represents the basic chain of relationships that is utilized to

link cost and reliability (although only a few of the parameters actually appear in

figure 7.1).

It is well known that a high reliability requirement means that a software system

will need more time and cost for its development. For this reason it is assumed that

the minimum acceptable value for the overall reliability of the software is known

in advance. On this basis, this thesis elaborates a proposal for allocating reliability

levels to individual modules of a software system; a formula was obtained that allows

us to calculate the overall system reliability using l'.larkov analysis.

Chapter 7 Conclusion

Effort of
coding

Module size

Expected number
of faults present

/ ~

Required level of
module reliability

Expected number

138

Estimate effort of removing one
fault during testing phase of faults to be removed

~
Effort of testing

!
Faults remaining after

testing phase

!
Module reliability
after testing phase

Figure 7.1: Basic relationships that link cost and reliability

Chapter 7 Conclusion
139

From that formula, and using a standard minimization approach, a reliability

level for each module can be selected to ensure that the overall system cost is mini­

mal.

A point that it is worth highlighting is that if reuse is employed in the software

development, we can see this fact as a bonus. In this situation it may be suggested

that the number of faults to be removed would be smaller (than normal software

development without reuse), consequently, the software would cost less.

In line with recent published papers [33, 36], which assert that project managers

wish to utilize simple methods for estimating development cost, this work has pro­

posed an uncomplicated method to estimate the cost of coding and testing a software

system. This estimate is based on data available at the design phase, i.e., before

beginning the coding phase, and, as the main contribution of our work, taking into

account a required level of system reliability.

Some formulas were derived that enable a project manager to obtain the required

estimates in a relatively straighforward way. The results obtained show a reason-

able behaviour for the method proposed. Despite being still very preliminary, the

outcome of this work allows us to say that the method proposed here is clearly a

step forward in formulating a trade-off between cost and reliability during the design

phase.

Necessary sensitivity analysis has been carried out in order to evaluate the be­

haviour of the proposed formula for the development cost, with respect to variations

in the several parameters involved. By means of this analysis, we have been able to

verify that this formula is not ill-conditioned and the sensitivities found are numer­

ically within acceptable limits, in all our examples.

From this research a number of open problems arise for further investigation. \Ve

have used several parameters in our formulae, and some of these parameters we have

Chapter 7 Conclusion 140

assumed to be known. In reality, that may not be exactly the case. An important

research item would then be to develop appropriate expressions for those parameters,

in terms of even more basic parameters present in the software development process.

Furthermore, our model needs to be evaluated and, if possible, refined, based on

long-term data collected in a real software development environment.

So, the following themes are suggested for future research:

• Analysis of the parameters introduced in Cdev

The parameters f3 (page 49), 8 (page 59) and I (page 60) utilized in Cdev need

to be studied in order to find a suitable expression for them (again, in terms

of more basic parameters, for example, software size). For the parameters

Pdev , Ecod, F and 5, if there exist data of previous projects (using similar

characteristics of development in the installation under consideration), we may

use the methods already available in the literature for estimating them, as

discussed earlier.

It can be argued that these parameters can be estimated using data from

projects with similar characteristics of development. Thus, to enable a project

manager to take full advantage of the method developed in this work, the

following points should be considered:

* a) How can "similar characteristics of development" be characterized?

* b) How can data best be gleaned to obtain a sound estimate of each

parameter?

* c) Which analysis techniques should be used to yield the best estimate

for each parameter?

* d) Can a software measurement and analysis procedure be established so

that these parameters may be applicable to a different environment by

Chapter 7 Conclusion 141

an ordinary project manager?

Finding the answers to the above questions will definitely provide very chal­

lenging research workl .

• Contructing a transition matrix

As presented in Chapter 4, it is required to assess available (or propose new)

methods for constructing a transition matrix; such a matrix is based on a

hierarchical view of a system, and obtained using the software engineering

techniques employed during the design phase of development.

Such work could refine the methods for constructing the transition matrix,

in the early stage of design phase, such that the estimated probabilities of

transition between modules can as accurately as possible be assigned (some

preliminary ideas are presented in Chapter 4) .

• Validation of the method developed

There should be a validation procedure of the method developed here. The

trade-off model, as discussed, was developed using hypothetical data in its

procedures. Some topics could be dealt with in this validation:

* Analyse how the proposed trade-off model shapes up in a real software

development environment, that is, compare the results yielded by the

proposed model with those of the real one.

* Reassessment of the several assumptions made throughout this work,

which may enable one to verify that the assumptions work properly or

need to be adjusted.

1 [12, 16, 67] provide a thorough treatment of software metrics, containing an extensive bibliog­

raphy in this subject, which may serve as a starting-point for this research.

Chapter 7 Conclusion 142

In relation to this validation procedure and the proposed model. there is a

point that might be emphasized. This is the fact that at the end of the day

the results we want involve (i) allocating resources among different parts of

a given project and (ii) estimating the additional resources needed to achieve

reliability results above a given base line. That is, they involve relations among

things rather than the things themselves. The point about this is that even

if the assumptions made about the things are occasionally inaccurate, those

assumptions apply everywhere and are probably inaccurate to a similar extent

everywhere, so the relations could well be accurate.

Even if the numbers are slightly imprecise, the relationships need not be, and

could well be better than the educated guesses people use at present (though

this would have to be checked). So while it would be preferable if absolute

quantities could be measured in some way, we can still have enough information

to make good managerial decisions even if the estimates are slightly inaccurate,

provided they are applied consistently.

The above points remain to be seen during the procedure of validation.

• Another view of the cost of development

Consider figure 5.4 (the graph of development cost against reliability). This is

a plot of equation 3.13 for three sets of values of parameters.

If a whole set of curves was produced for various sets of values (specifically

values that appear to make sense in practice) then it may be possible to use a

curve fitting algorithm as a way of finding a possibly simpler characterisation

of the essential behaviour of the curves. This issue may be dealt with as

follows.

Suppose that, after examining the cost versus reliability curves like those in

Chapter 7 Conclusion
143

figure 5.4, an executive decision is made that they are of the form

(7.1)

where,

- Cdev is the cost of development; a, band c are constants; and R is the

required reliabili ty.

Then, to find out the curve in any particular case, the three constants a, band

c need to be determined. That is, it is sufficient to know the values of Cdev

at three different points R (e.g., the start-up cost if the reliability is equal to

zero, which gives us a + b).

These values may be derived from partial observations of the real system devel­

opment. So, the suggested work cited above could be complemented with this

and so may enable one to obtain a simpler expression for cost of development

using data from real software development.

With the suggested points for development, we have an interesting and applied

research field in this subject, it can be claimed.

Considering the method developed in this thesis, we would claim a project man­

ager could deal with various scenarios of estimated total cost and overall required

reliability before allocating the resources for the coding and testing phases, which

could lead to better management of the software project as a whole.

Bibliography

[1] Albrecht, A.J. and Gaffney, J. Software function, source lines of code,

and development effort prediction: a software science validation IEEE

Transactions on Software Engineering, SE-9(6):639-648, November 1983

[2] Ashrafi, N. and Zahedi, F. Software reliability allocation based on struc­

ture, utility, price and cost IEEE Transactions on Software Engineering,

17(4):345-356, April 1991

[3] Bailey, J.W. and Basili, V.R. A meta model for software development

resource expenditures Proceedings of the Fifth International Conference on

Software Engineering, pp 107-116, 9-12 March, 1981, San Diego, California

[4] Banker, R.D and Kemerer, C.F Scale economies in new software, IEEE

Transactions on Software Engineering, 15(10):1199-1204, 1989

[5] Berman, O. and Ashrafi, N. Optimization models for reliability of

modular software systems IEEE Transactions on Software Engineering,

19(11):1119-1123, November 1993

[6] Bittanti, S., Bolzern, P. and Scattolini, R. An introduction to software reli­

ability modelling Lectures Notes in Computer Science, l\' .341:43-67, October

1988

144

Bibliography
145

[7] Boehm, B.W. Software engineering economics Prentice Hall, 1981

[8] Brown, D. A method for obtaining software reliability measures during

development IEEE Transactions on Reliability, R-36(5):573-580, December

1987

[9] Burnett, R. and Anderson, T. Reliability allocation for a system with

modular structure Proceedings of the VIII Brazilian Symposium of Software

Engineering, pp 37-48, 25-29 October, 1994, Curitiba, Brazil

[10] Cheung, R. A user-oriented software reliability model IEEE Transactions

on Software Engineering, SE-6(2):1l8-125, 1\larch 1980

[11] Cohen, B. The specification of complex systems Addison-Wesley 1986

[12] Conte, S.D., Dunsmore, H.E. and Shen, V.Y. Software engineering metrics

and models The Benjamin/Cumming Publishing Company, 1986

[13] Corbett, M. and Kirakowski, J. An analogical approach to cost estimation

Proceedings of European Software Cost Modelling Meeting 1992, (without page

numbering), 27-29 May, 1992, Munich

[14] Cox, D.R. and Miller, H.D. Theory of stochastic processes Methuen, 1965

[15] DeMarco, T. Structured analysis and system specification Prentice-Hall

1979

[16] Fenton, N. Software metrics: a rigorous approach Chapman Hall, 1991

[17] Fickas, S. and Nagaraju, P. Critiquing software specification IEEE Soft­

ware, 5(6):37-47, November 1988

Bibliography 146

[18] Fox, L. An introduction to numerical linear algebra Monographs on Nu­

merical Analysis, Oxford Science Publications, 1964

[19] Gaffney, J.E. Estimating the number of faults in code IEEE Transactions

on Software Engineering, SE-I0(4):459-464, July 1984

[20] Gill, P.E., Murray, W. and Wright, M.H. Practical optimization, Academic

Press, 1981

[21] Goel, A. and Okumoto, K. Time-dependent error-detection rate model

for software reliability and other performance measures IEEE Trans­

actions on Reliability, R-28(3):207-211, August 1979

[22] Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R.,

Shtull-Trauring, A. and Trakhtenbrot, M. STATEMATE: A working en­

vironment for the development of complex reactive systems IEEE

Transactions on Software Engineering, 16(4):403-414, April 1990

[23] Heemstra, F.J. and Kusters, R. Software cost estimation and control:

lessons learned Proceedings of the European Software Cost Modelling 1992,

(without page numbering), 27-29 May, 1992, \lunich

[24] Hihn, J. and Habib-agahi, H. Cost estimation of software intensive

projects: a survey of current practices Proceedings of 13th International

Conference on Software Engineering, pp 276-287. 13-17 May, 1991, Austin,

Texas, USA

[25] Jeffery, D.R, Low, G.C. and Barnes, ~1. A comparison of function point

counting techniques IEEE Transactions on Software Engineering, 19(5):529-

532, May 1993

Bibliography 147

[26] Jeffrey, A. Mathematics for engineers and scientists, Chapman-Hall, 1992

[27] Keremer, C.F. An empirical validation of software cost estimation mod­

els Communication of ACM, 30(5):416-429, May 1987

[28] Keremer, C.F. and Porter, B.S. Improving the reliability of function point

measurement: an empirical study IEEE Transaction on Software Engi­

neering, 18(11):1011-1024, November 1992

[29] Keremer, C.F. Reliability of function points measurement: a field ex­

periment Communications of ACM, 36(2):85-97, February 1993

[30] Khoshgoftaar, T.M., Bhattacharyya, B.B. and Richardson, G.D. Predicting

software errors, during development, using nonlinear regression mod­

els: a comparative study IEEE Transactions on Reliability, 41(3):390-395,

September 1992

[31] Kitchenham, B. and Taylor, N.R. Software project development cost es­

timation Journal of Systems and Software, 5:267-278, May 1985

[32] Kitchenham, B. Software development models in Software Reliability Hand­

book (ed. Paul Rook), Centre for Software Reliability, Elsevier Applied Science,

1990

[33] Kitchenham, B. Empirical studies of assumptions that underlie software

cost-estimation models Information and Software Technology, 34(4):211-

218, April 1992

[34] Kubat, P. and Koch, H. Optimal release time of computer software IEEE

Transactions on Software Engineering, SE-9(3):323-327, May 1983

Bibliography 148

[35] Kubat, P. Assessing reliability of modular software Operation Research

Letters, 8(1):35-41, February 1989

[36] Lederer, A.L. and Prasad, J. Nine management guidelines for better cost

estimating Communications of ACM, 35(2):51-59, February 1992

[37] Leung, Yiu-Wing. Optimum software release time with a given budget

Journal of System and Software, 17:233-242, 1992

[38] Lipow, M. Number of faults per line of code IEEE Transactions on Soft­

ware Engineering, SE-8(4):437-439, July 1982

[39] Lipow, M. Comments on "Estimating the number of faults in code"

and two corrections to published data IEEE Transactions on Software

Engineering, SE-12(4):584-585, April 1986

[40] Littlewood, B. Software reliability model for modular program struc­

ture IEEE Transactions on Reliability, R-28(3):241-246, August 1979

[41] Littlewood, B. Forecasting software reliability Lecture Notes in Computing

Science, No.341, Software Reliability Modelling and Identification (ed. Bittanti,

S.), pp 141-209, Springer-Verlag, 1987

[42] Littlewood, B. Modelling growth in software reliability in Software Reli­

ability Handbook (ed. Rook, P.), pp 137-154, Elsevier Science Publishers Ltd,

1990

[43] Londeix, B. Cost estimation for software development Addison-Wesley

Publishing Company, 1987

Bibliography 149

[44] Maghsoodloo, S., Brown, D. and Deason,W.H. A cost model for determin­

ing the optimal number of software test cases IEEE Transactions on

Software Engineering 15(2):218-221, February 1989

[45] Masuda, Y., Myiawaki, N., Sumita, U. and Yokoyama, S. A statistical ap­

proach for determining release time of software system with modular

structure IEEE Transactions on Reliability, 38(3):365-372, August 1989

[46] Matson, J.E., Barret, B.E. and Mellichamp, J.M. Software development

cost estimation using function points IEEE Transactions on Software En-

gineering, 20(4):275-287, April 1994

[47] McCabe, T.J., John Jr, F.C., Adams, K.A. and Sturgill, A.M. Structured

real-time analysis and design Proceedings of COMPSAC85, pp 40-52,9-11

October, 1985, Chicago, Illinois, USA

[48] Mills, H.D. and Dyson, P.B. Using metrics to quantify development IEEE

Software, 7(2):14-16, March 1990

[49] Mukhopadhyay, T. and Kekre, S. Software error models for early esti­

mation of process control applications IEEE Transactions on Software

Engineering, 18(10):915-924, October 1992

[50] Musa, J., lannino, A. and Okumoto, 1<. Software reliability: measurement,

prediction, application McGraw-Hill, 1987

[51] Musa, J. and Ackerman, A.F. Quantifying software validation: when to

stop testing? IEEE Software, 6(3):19-27, May 1989

[52] The Numerical Algorithms Group Limited NAG Fortran Library, MARK

14 (1st Edition), Oxford, 1990

Bibliography 150

[53] Okumoto, K. and Goel, A.1. Optimum release time for software systems

based on reliability and cost criteria The Journal of Systems and Software

1:315-318, January 1980

[54] Ottenstein, 1. Quantitative estimates of debugging requirements IEEE

Transactions on Software Engineering, SE-5(5):504-514, September 1979

[55] Pressman, R.S. Software engineering: a practitioner's approach McGraw

Hill, 1992

[56] Pucci, G. On the modelling and testing of recovery block structures

IEEE Transactions on Software Enginering, SE-18(2):1.59-167, February 1992

[57] Putnam, 1.H. A general empirical solution to the macro software sizing

and estimating problem IEEE Transactions on Software Engineering SE-

4:345-361, July 1978

[58] Putnam, 1.H. and Fitzsimmons, A. Estimating software costs, Datamation,

September 1979 (Part 1),25(10):188-198; October 1979 (Part 11),25(11):171-

178; November 1979 (Part III), 25(12):137-140, 1979

[59] Ratcliff, B. and Rollo, A.1. Adapting function point analysis to Jack­

son system development Software Engineering Journal, 1.5(1):79-84, Jan-

uary 1990

[60] Reifer, D.J. Asset-R: a function point sizing tool for sientific and real­

time systems Journal of System Software, Vol.11, pp 159-171, 1990

[61] Riet, R.W.N. The mermaid project Proceedings of European Software Cost

Modelling 1992, (without page numbering), 27-29 ~lay, 1992, ~lunich

Bibliography 151

[62] Rook, P. Tutorial:software sizing techniques Seminar IN: UK Regional

Meetings of European CO COMO User's Group, (without page numbering),

22nd January 1993, Milton Keynes, England

[63] Sarper, H. No special schemes are needed for solving software reli­

ability optimization models IEEE Transactions on Software Engineering,

21(8):701-702, August 1995

[64] Schreiber, B.M. and Zwegers, A.J.R. Software cost data collection Pro­

ceedings of European Software Cost Modelling Meeting 1998, (without page

numbering), 22-24 March, 1993, Bristol

[65] SEI Software size measurement, with applications to source statement

counting (draft for review) Size Subgroup of the Software ~letrics Definition

Working Group Software Engineering Institute (SEI) , Carnegie Mellon Univer-

sity USA, August 1991

[66] Shepperd, M. and Ince, D. Derivation and validation of software metrics

Oxford Science Publications, 1993

[67] Shepperd, M. Foundations of software measurement Prentice Hall, 1995

[68] Shooman, M.L. Software engineering McGraw Hill, 1983

[69] Siegrist, K. Reliability of systems with Markov transfer of control IEEE

Transactions on Software Engineering, SE-14(7):1049-1053, July 1988

[70] Siegrist, K. Reliability of systems with Markov transfer of control,

II IEEE Transactions on Software Engineering, SE-14(1O):1478-1480, October

1988

Bibliography
152

[71] Stetter, F. Comments on "Number of faults per line of code" IEEE

Transactions on Software Engineering, SE-12(12):1145-1145, December 1986

[72] Stutzke, R.D. Size estimation: helping the neophyte in Proceedings of

European Cost Modelling Meeting 1992, (without page numbering), 27-29 May,

1992, Munich

[73] Symons, C.R. Function point analysis: difficulties and improvements

IEEE Transactions on Software Engineering, 14(1):2-11, January 1988

[74] Symons, C.R. Software sizing and estimation:MK II FPA Wiley Series

in Software Engineering Practice, John Wiley and Sons, Inc., New York 1991

[75] Takahashi, M. and Kamayachi, Y. An empirical study of a model for

program error prediction IEEE Transactions on Software Engineering,

15(1):82-86, January 1989

[76] Trachtenberg, M. The linear software reliability model and uniform

testing IEEE Transactions on Reliability, R-34(1):8-16, April 1985

[77] Trivedi, K.S. Probability and statistics with reliability, queuing and

computer science applications Prentice Hall 1982

[78] Verner, J. and Tate, G. A software size model IEEE Transaction on Software

Engineering, 18{ 4):265-278 April 1992

[79] Yamada, S and Osaki, S. Cost-reliability optimal release policies for soft­

ware systems IEEE Transactions on Reliability, R-34(.5):422-424, December

1985

Bibliography 153

[80] Yamada, S. and Osaki, S. Optimal software release policies with simulta­

neous cost and reliability requirements European Journal of Operational

Research, 31:46-51, 1987

[81] Your don , E.N. Modern structural analysis Prentice-Hall 1990

[82] Yun, W. and Bai, D.S. Optimum software release policy with random

life cycle IEEE Transactions on Reliability, 39(2):167-170, June 1990

[83] Xie, M. On the determination of optimum software release time Pro­

ceedings 1991 International Symposium on Software Reliability Engineering, pp

218-224, 17-18 May, 1991, Austin, Texas

[84] Wallace, D. R. and Fujii, R. U. Software verification and validation: an

overview, IEEE Software, 6(3):11-17, May 1989

[85] Whittaker, J. Markov chain techniques for software testing and reli­

ability analysis PhD Thesis, The University of Tennessee, Knoxville, May

1992

[86] Whittaker, J. and Poore, J. Markov analysis of software specifications

ACM Transactions on Software Engineering and Methodology, 2(1):93-106, Jan-

uary 1993

[87] Wolfram, S. MATHEMATICA - A system for doing mathematics by

computer, Addison-Wesley Publishing Company, 1988

	283771_0001
	283771_0002
	283771_0003
	283771_0004
	283771_0005
	283771_0006
	283771_0007
	283771_0008
	283771_0009
	283771_0010
	283771_0011
	283771_0012
	283771_0013
	283771_0014
	283771_0015
	283771_0016
	283771_0017
	283771_0018
	283771_0019
	283771_0020
	283771_0021
	283771_0022
	283771_0023
	283771_0024
	283771_0025
	283771_0026
	283771_0027
	283771_0028
	283771_0029
	283771_0030
	283771_0031
	283771_0032
	283771_0033
	283771_0034
	283771_0035
	283771_0036
	283771_0037
	283771_0038
	283771_0039
	283771_0040
	283771_0041
	283771_0042
	283771_0043
	283771_0044
	283771_0045
	283771_0046
	283771_0047
	283771_0048
	283771_0049
	283771_0050
	283771_0051
	283771_0052
	283771_0053
	283771_0054
	283771_0055
	283771_0056
	283771_0057
	283771_0058
	283771_0059
	283771_0060
	283771_0061
	283771_0062
	283771_0063
	283771_0064
	283771_0065
	283771_0066
	283771_0067
	283771_0068
	283771_0069
	283771_0070
	283771_0071
	283771_0072
	283771_0073
	283771_0074
	283771_0075
	283771_0076
	283771_0077
	283771_0078
	283771_0079
	283771_0080
	283771_0081
	283771_0082
	283771_0083
	283771_0084
	283771_0085
	283771_0086
	283771_0087
	283771_0088
	283771_0089
	283771_0090
	283771_0091
	283771_0092
	283771_0093
	283771_0094
	283771_0095
	283771_0096
	283771_0097
	283771_0098
	283771_0099
	283771_0100
	283771_0101
	283771_0102
	283771_0103
	283771_0104
	283771_0105
	283771_0106
	283771_0107
	283771_0108
	283771_0109
	283771_0110
	283771_0111
	283771_0112
	283771_0113
	283771_0114
	283771_0115
	283771_0116
	283771_0117
	283771_0118
	283771_0119
	283771_0120
	283771_0121
	283771_0122
	283771_0123
	283771_0124
	283771_0125
	283771_0126
	283771_0127
	283771_0128
	283771_0129
	283771_0130
	283771_0131
	283771_0132
	283771_0133
	283771_0134
	283771_0135
	283771_0136
	283771_0137
	283771_0138
	283771_0139
	283771_0140
	283771_0141
	283771_0142
	283771_0143
	283771_0144
	283771_0145
	283771_0146
	283771_0147
	283771_0148
	283771_0149
	283771_0150
	283771_0151
	283771_0152
	283771_0153
	283771_0154
	283771_0155
	283771_0156
	283771_0157
	283771_0158
	283771_0159
	283771_0160
	283771_0161
	283771_0162
	283771_0163
	283771_0164
	283771_0165

