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ABSTRACT

Some computational graph problems are considered in this thesis
and algorithms for solving these problems are described in detail. The
problems can be divided into three main classes, namely, problems
involving partially ordered sets, finding cycles in graphs, and
shortest path problems. Most of the algorithms are based on recursive
procedures using depth-first search. The efficiency of each algorithm
is derived and it can be concluded that the majority of the proposed
algorithms are either optimal and near-optimal within a constant factor.
The efficiency of the algorithms is measured by the time and space

requirements for their implementation.
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INTRODUCTION AND BASIC DEFINITIONS

Introduction

Computational graph theory is an area of research which is
related to. both computing science and mathematical graph theory.
We can roughly characterize it as being the branch of computing science
concerned with solving graph theoretic problems, This characterization
explicitly has considered computational graph theory as part of computing
stience. However, it could be argued that computational graph theory
should be considered as an area of graph theory concerned with finding
algorithmic solutions for graph theoretic problems. Examining these two
characterizations, we observe that a basic difference exists between them,

namely the former mentions implicitly the use of the computer for solving

the graph problems, whereas the latter is more concerned with problems
of existence. This difference is fundamental. The time and space
constraints imposed by the use of the computer dictate the general
strategy to be adopted for the derivation of the solutions to the graph
problems. A "pure graph theoretician", for instance, ~ould perhaps
demonstrate little interest in the depth-first search of a graph
[TaT27. On the other hand, some fundamental graph theoretic theorems
as Kuratowski's planarity criterion [Ku307], have so far been of no
relevant interest for solving graph problems with a computer. The
implications of the use of the computer are reflected not only in the
type of approach to be adopted for solving the probdems, but even in
the selection of the actual problems of study. A pure graph theoretician
for instance is not likely to be attracted by problems as "find the

elementary cycles of a graph".



We mention the following quotation by Corneil [Co747 in the

section "History of the analysis of graph theoretical algorithms".

"In the late 1800's and early 1900's the interest in graph
theory was blossoming. The criterion for evaluating the algorithms
designed in this period was whether or not they worked. Since the
algorithms were designed for use 'by hand' very little consideration
was given to the timing requirements ; naturally, no consideration was
given to storage requirements. With the advent of electronic computers,
programmers were forced to look for effective algorithms to solve their
graph theoretical problems. Due to the cost and lack of computer
storage on early computers the main evaluation criterion was the
storage requirement of the algorithms. As storage became cheaper and mor
readily available, the timing of an algorithm became increasingly

important.”

In this thesis we are concerned with the computational solutions
of certain graph problems. In most cases, our primary preoccupation
is the efficiency of the solutions, i.e. the time and space required
for a computer implementation of the proposed methods. We employ
backtracking, or depth-first search, as a basic tool for solving
most of the considered problems. Backtracking has been commonly
used and described as an important strategy for solving some computational
problems (Knuth Kn75)], Golomb and Baumert [GoBa65]). It is perhaps
an old« = idea, but its full importamnce in solving computational graph
theoretical problems was not completely realized until the beginning
of this decade, when Hopcroft and Tarjan principally, initiated its
extensive use in many different gr;ph algorithms ([Ta72], [Ta73],
[Ta74], [Ta74a], [Ta74b], [HoTd73] , [HoTa74],[HoTa73a], among. others).

Clearly, the use of backtracking for solving graph problems started
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before the 70's (Roberts and Flores [RoF1667], for instance).
However its widespread use for computational graph problems has

been during the last three or four years.

The following are the problems that have been considered

in this thesis:

In chapter 1 we have examined the relationship between
a certain class of ternary trees (ternary search trees), and topological
sorting,. given a partially ordered set,
Ternary search trees and ternary sequence search trees have been
defined as natural extensions of the binary case. Topological sorting
by ternary tree insertion has also been considered as a natural general-
ization of binary tree (complete) sorting. On the other hand,
although the problem of quasi-topological sorting has been regarded as
a generalization of the topological sorting problem, it has been
shown to be soluble using ternary trees. A possible meaning of

topological searching is also presented.

Chapter 2 considers the problem of generating the complete
set of solutions of the topological sorting problem, given a partially
ordered set or given an acyclic digraph. A backtracking algorithm has
been presented which enumerates the topological sorting arrangements,
in a time at most propqrtional to the size of the digraph per arrangces
ment. Most of the contents of this chapter describe the results

which appears in [KnSz74].

Some cycle problems are considered in chapter 3. We first
approach the problem of finding the elementary cycles of a directed
graph. The most successful extant algorithms enumerating the

elementary cycles of a directed graph are known to be based on a



backtracking strategy. Such existing algorithms are discussed and

a backtracking algorithm is proposed, whose time is at most
proportional to the size of the digraph, per cycle enumerated. This
part of section 3 appears in [SzLa75]. Next we examine the problem

of generating a fundamental set of cycles of an undirected graph.

This problem has been shown to be simpler than the former and in fact

a backtracking algorithm has been presented, which generates such a set
in a time linear in the size of the graph. However, the explicit
output of the generated cycles requires a time at most proportional to
the product of the number of vertices and edges of the graph. The
problem of enumerating the elementary cycles of an undirected graph is
considered next. The strategy adopted was to modify the algorithm for
obtaining the elementary cycles of a directed graph, so as to operate
for undirected graphs. The modifications which were introduced did

not alter the overall itime bound.

Chapter 4 examines some different shortest paths problems
in acyclic digraphs. If a digraph has not cycles then it is possible
in some cases, to take advantage of this fact and present particular
algorithms that are more efficient than corresponding strategies
supposed to operate: in digraphs with cycles. In s ome cases the difference
in efficiency is substantial. For example, an algorithm has been
presented in this chapter, for finding the shortest path betweer two
given vertices of an acyclic digraph visiting a given subset of vertices,
which requires a time linear in the size of the graph. Known algorithms
for solving the same problem for general (not necessarily acyclic)
digraphs have a time bound exponential in the number of vertices of
the graph. The following algorithms for acyclic digraphs, have been

presented in this chapter: finding the shortest path between two



given vertices; from all vertices to a fixed vertex; from a fixed

vertex to all others; between all pairs of vertices; finding the shortest
path between two given vertices, visiting a specified subset of vertiices:
finding the k-shortest paths between two given vertices; from all
vertices to a fixed vertex; from a fixed vertex to all others; between
all pairs of wertices; finding the longest path of the digraph: finding
the k-longest paths of the digraph. The majority of these algorithms

are based on backtracking procedures.

The extension of the k-shortest paths algorithms, for handling
digraphs in which cycles are allowed, is the subject of chapter 5.
Unlike some other shortest paths problems, we found the k-shortest
pathsalgorithms for general digraphs to be nearly as efficient as the
k-shortest paths algorithms for acyclic digraphs. This result however
applies only for the part of the algorithm for finding the second,
third, ..., k-th shortest path. Methods for finding the shortest
path in general digraphs are known to be less efficient than

corresponding algorithms for acyclic digraphs.

A solution to a problem related to Dilworth's decomposition
theorem for partially ordered setsis presented in the appendix. The
problem consists of given a partially ordered set, obtain a minimal
covering by disjoint chains, from maximal antichains. The appendix
contains an example of a derivation of a recursive algorithm from a
mathematical proof by induction, in opposition to derivations of
proofs of correctness by induction from recursive algorithms, which

appear in some other parts of the thesis.

The algorithms presented in this thesis have been described
in a structured go-to-less ALGOL-like formulation, following Dijkstra

in [DaDiHo727]. Nearly all of them are based on recursive procedures.
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Practical computer experiments have been carried out using ALGOLW
([(Si71], [™ 727) and MTS, in operation at the Computing Laboratory,

University of Newcastle upon Tyne.

Basic Definitions

Next, we present the basic definitions which are relevant to
the contents of this thesis. The graph nomenclature that we have used
was mostly taken from Harary [Ha69] and Haray, Norman and Cartwright

[HaNoCab57.

A graph (V,E) is a finite non-empty set V, together with
a set E of pairs of distinct elements of V. The elements of V and
E are the vertices and edges, respectively of the graph. We denote
by N and M respectively the numﬁer of vertices and edges of a graph.

A directed graph (digraph) D(V, E) is a graph in which the edges are

ordered pairs. An undirected graph G(V, E) is a graph in which the

edges are unordered pairs. We denote an edge e by the pair of vertices
(¥, w) that forms it. At most one edge (v, w) may exist, for two
given vertices v and w. Given an edge e = (v, w), v and w are
adjacgnt and e is incident to both v and w. The degree of a vertex

v is the number or vertices which are adjacent to v,

In a digraph, an edge (v, w) is said to be from v to w;

the indegree and outdegree of a vertex v are the number of edges

to and from v respectively. We denote them by indegree(v) and
outdegree(v) respectively. A source vertex is a vertex v with indegree(v)

= 0, while a sink vertex v has outdegree(v) = 0.

A sequence of vertices vy, vy, ..., Vv, such that for every i

1 = i< k we have (v;, v{4,) € E, is called a path from v,to v, .
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The length of the path v,, v, ..., v, is defined as k - 1. Vertex
v, 1is said to reach v, . A trivial path is composed by a sole vertex.

A path is elementary if it contains no vertex twice.

A . weighted graph is a graph in which there is associated

a finite weight de to each of its edges (v, w). Given a path

Vi, Voy seey Vi in a wé%ghted graph, we define its weighted path length
as the sum of the weights of the edges which form the path. By
convention, the weighted path length of a trivial path is zero and

if there is no path from vertex v to w, we say that the weighted path
length from v to w is equal to infinity. When dealing with weighted
graphs, we may use the terminology "path length”, as referring to

"weighted path length".

A cycle is a pathvy, vy, ..., ¥ with v, = v, and
containing at least two different edges. A cycle vy, Vo, ceey V15 Yy
is_elementary if vy, v, ..., V,—; is an elementary path. If a graph
has no cycles it is called acyclic. Two elementary cycles involving

exactly the same edges are considered to be identical.

A graph (V', E') is a partial subgraph of a given graph (V, E)

if V' ¢V and E' ¢ E. If additionally for any v, w € V', (v, v) € E

implies (v, w) € E', the graph (V', E') is célled a subgraph of (¥, £).

A partial subgraph (V', E') of a graph (V, E) is a spanning par‘.al

subgraph of (V, E), if V =V',

An undirected graph is connected if there is a path between

every two vertices of the graph; otherwise it is disconnected.

A graph with no edges is totally disconnected. The maximal connected

subgraphs of an undirected graph are its connected components. A

digraph is strongly connected if for every (v,w) v,w,€ V, there
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is a path from v to w. The maximal strongly connected partial

subdigraphs of a digraph are called its strongly connected components,

A complete graph is a graph which has a maximum number of

edges, for the given set of vertices. A complete acvclic digraph

is an acyclic digraph in which the addition of any new edge, between

two of its vertices, creates a cycle.

A tree is a connected undirected graph with no cycles.

A set of disjoint trees is called a forest. A directed rooted tree

or simply a rooted tree is an acyclic digraph in which exactly one
vertex, the root, has indegree zero, whilst every other vertex has
indegree one. If there is a path from vertex v to w, in a directed
rooted tree, then v is an ancestor of w, and w is a descendant of

v. A subtree (rooted subtree) of a tree (rooted tree) T is a partial

subgraph of T, which is itself a tree (rooted tree).

A spanning tree of an undirected graph G is a spanning

partial subgraph of G which is a tree. It follows that an undirected
graph G has a spanning tree if and only if it is connected, otherwise
the set of spanning trees of its connected components definesa spanning

forest of G.

Given an elementary cycle c, we can represent it as a vecter
(ey) €5y eeey e}?, with e; = 1 if edge i belongs to the cyrle and
e, = 0, otherwise. The cycles of an undirected graph generate a

vector space called cycle vector space, with addition of cycles

c, and ¢y defined as the ring sum (or boolean addition) of
c, and ¢y, under the representation above. The ring sum of ¢,
and c; may produce either another cycle or an edge disjoint union of

cycles. A fundamental set of cycles, corresponding to a spanning

forest F of an undirected graph G, is a maximal set of elementary cycles



such that each cycle of the set contains exactly one edge of G, which
does not belong to F. If the graph has K connected components, then
a fundamental set of cycles has previsely M-N+K cycles. This number
of cycles is called the cycle rank of the graph. This set of

cycles isa basis for the cycle vector space of the graph,

The following are some matrices related to a graph

(V, E). The adjacencyrmatrix isa.Nx N matrix, such that each element

ay; is defined as a,,= 1 if (v, , vJ)G E and a;, = 0, otherwise.

The reachability matrix is a N x N matrix, where each element ay

is such that a, ;= 1 if vertex v, reaches vertex vy and a; ;= O otherwise,

For an undirected graph, the incidence matrix is a N x M matrix, with

each element 8y defined as a;y = 1 if edge e; is incident to

vertex vi and a;, = O, otherwise.

A binary (ternary) tree T is recursively defined as a finite

set of elements called vertices, that is either empty or consists of

a single vertex called the root, together with two (three) disjoint

binary {(ternary) trees, called left and right (left, central and right)
subtrees of the root respectively (see [Kn6871 for the definition of

t-ary trees). A vertex is a terminal vertex if all its subtirees are

empty. We denote by oot (T) the vertex which is the root of T

and by L(x), C(x) and R(x) respectively the left, central and right
subtrees of vertex x of a ternary tree. A path from a vertex X,

1o a vertex x,, is a sequence of distinct vertices X;, X3, «e¢y X

such that either Xy 41 is the roet of a subtree of x;, or x; is the root
of a subtree of x,,,, 1 <1< k. A path with k vertices is said to be
of length k - 1. The level of a vertex x is the length of the path
from x to the root. A binary (ternary) tree is balanced when (i) No

non-terminal vertex has any empty subtree and (ii) all terminal
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vertices have the same level. A binary (ternmary) tree is complete
when the deletion of the vertices with maximal level produces a
balanced binary (ternary) tree. The binary (ternary) tree consisting
of a single vertex is also complete, by convemtion. The (internal)

path length of T is the sum of the levels of all vertices of T,

A partially ordered set (poset) (S,=< ) is a set S together

with a binary relation <$ on S, which satisfies the following properties

for any elements x, y, z € S:(i) reflexivity: x< x; (ii) anti-symmetry:

xK y and y€ x implies x = y; and (iii) transitivity: x{y and y< z

implies x £ z. S is said to be partially ordered by &L and the

relation itself is called a partial ordering on S. The relation <

defined by x < y iff x4 y and x £y for every x, y € S, satisfies

the following properties for x, y, z € S: (i) irreflexivity: x £ x;

(ii) asymmetry: x <y implies .y 4 x; eand (iii) trapsitivity: x <y
and y < z implies x < z. The relation < defines similarly a poset

(S, <), which can also be characterized by the relation >~ defined by
x> y iff y < x, for every x, y € S. We use the following notation
[KnT4a7: x “y when x £y £ x, where x and y are distinct elements of
S. The elements x and y are called independent when xl!y. If S is
finite and non-empty - and we always assume so — then a posel (s, <)

can be represented by an inclusion diagram, in which there is a directed

line from x to y iff x < y and there exists no z, such that x < z <y,
for all x, y, z € S fMaBi67]. It follows from this definition that
an inclusion diagram is an acyclic digraph. A source is an element
x € S such that there is no y €S, with y < x. A sink is an element
x € S such that there is no y € S, with x <y. A chain is a subset
of S, in which any two elements are related by <. An antichain

is a subset of S, in which any two elements are independent.
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The problem of topological sorting is to obtain a permutation

Xy Xgeeo Xy of S, such that for every x;, x; if x; < x; then i < j.

Such a permutation is called a topological sorting arrangement of (S, <).
Clearly, the solution of the topologigél sorting problem is not unique.
In fact, for a given poset (S, <) there is at least one topoloegical
sorting arrangement and at most N!, depending on the relation -«

being maximél or minimal, with regard to its number of elements,

‘respectively.

Let D(S, E) be an acyclic digraph. Define the digraph D, (S,<)

by: (x, y) € < iff y is reachable from x in D and x # y, for all

X, y €S, D, is célled the transitive closure digraph of D. It

1

follows that D, is a poset since < satisfies the required conditions.

Also any spanning partial subdigraph D' of D, such that the reachability

of D, is preserved in D', can "represent" the poset (S, <). In particular
the inclusion diagram of the poset (S, <) corresponds to the minimal
subdigraph of D,, which can represent the poset. Observe also that

in terms of graphs, the topological sorting problem is equivalent to

the problem of finding an appropriate ordering of the vertices of an
acyclic digraph, such that all the edges are oriented in the same

way, from left to right, for instance, when drawing the digraph with

the vertices represented by points and the edges by directed lines.

There are many different ways of representing a graph in
a computer, For example, either the adjacency or incidence matrices
can be used for storing a graph defined as a matrix. Another usual
and in general convenient form of representing a graph inside a

computer, consists of storing it as a set of adjacency lists A,

with one list A(v) per vertex v of the graph. The members of A(v)

are the vertices w such that (v, w) € E. If there is no w such that
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(v, w) € E, then list A(v) is empty. For some other graph representations

see [Be731, [We71] for instance.

The performances of the algorithms proposed in this thesis
have been evaluated in terms of expressions in O-notation for the
time and space requirements of the algorithms. Assume that f is a
function defined Por the discrete variables n,, nz, ..., n,. The
notation Q(f) means that there exists a positive constant C, such that
the number m represented by O(f), satisfies Iml< C|f(n;, ..., n,)]|

(gee [Kn681).

Finally, we mention that we have assumed, throughout the
thesis, that the set V of vertices of a graph is V = {1, 2, ..., N},
unless otherwise stated. The symbols U, N, ¢ and "~ have their usual

meaning of set union, intersection, inclusion and difference respectively.
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CHAPTER 1

TERNARY TREES AND TOPOLOGICAL SORTING

1.1 Introduction

In this chapter we describe certain properties of ternary
trees, related to partially ordered and quasi-ordered sets. Ternary
search trees are defined and topological sorting is considered to be an
extension of the usual sorting, similarly ternary search trees are
extensions of the binary case. A particular case of searching -
topological searching -~ is also presented, as an example. These
operations are performed on (finite) partially ordered sets, or acyclic
directed graphs, and we will use either structure, whichever is more

convenient to our particular purpose.

Section 1.2 defines ternary search trees and shows how they
may be related to partially ordered sets. Ternary sequence search
trees are also defined and considered to be natural extensions of binary
sequence search trees. These trees suggest, naturally, the idea of
topological sorting and searching. However, one of our conclusions
is that practical implementations using these sorting and searching
methods should be restricted to a particular class of problems (those
whose structure provides an easy and quick way for finding the type of
relationship between any two elements). For such problems, this method
may be efficient although our aim is hﬁt to present a method of sorting,
but to point out some properties of ternary trees, when related to
partially ordered or quasi-ordered sets. Section 1.3 presents this
topological sorting with ternary trees. One interesting aspect of this
method is that it works in a similar way, with respect to input and

output, to the usual sorting, i.e. the "sort mechanism” converts an
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input permutation into a sorted output. The meaning of topological
searching is described in 1.4. Finally, section 1.5 presents the case
of quasi-topological sorting and some further general remarks are found

in section 1.6.

1.2 Ternary search trees

Let (S, <) be a poset. A ternary search tree associated with

(S, <) or simply a ternary search tree is a ternary tree T whose
vertices are the elements of S, and such that:

y € L(x) implies y « x,

y € C(x) implies y!‘x,

y € R(x) implies y » x,
for all x, y € 8, where L(x), C(x) and R(x) denote, respectively, the

left, central and right subtrees of x.

As an example, consider the poset of figure 1.1. It is
represented by an adjacency matrix (m,J), with my 4= 1 if x; < x; and
otherwise 0, for all x,, Xy € S. The ternary tree, shown in figure
1.4, is a ternary search tree associated with this poset. Figures
1.2 and 1.3 illustrate two different digraphs that represent the poset
(the digraph of figure 1.3 is the minimal digraph that represents it).
Therefore, the ternary search tree of figure 1.4 is associated with any

of the structuresof figures 1.1, 1.2 ar 1.3.

If follows from the definition above, that a given poset
does not uniquely determine a ternary search tree associated with it.
Nor does a given ternary search tree uniquely determine a poset with
which the ternary tree is associated. The ternary tree of figure 1.5,
distinct from that of figure 1.4, is another ternary search tree

associated with the poset of figure 1.1. On the other hand, the poset
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represented by the digraph of figure 1.é is distinct from that of

figure 1.1, and the ternary tree of figure 1.4 is also associated with it.
However, the ternary search tree of figure 1.5 is not associated with

the poset given by the digraph of figure 1.6, since in the ternary

tree, vertex E € C(G) and in the poset E <G.

Given a ternary search tree T associated with a poset (%, <),
an element y £ S and a relation <; between {y} and S, such that
(SUfyl, <), with < = <, U<y, is still a poset, we can construct a
ternary search tree T', associated with the latter poset, simply by
properly inserting a new vertex in the ternary tree T. In fact,
given T, y and «,, the ternary search tree T' is uniquely determined.
The basic idea for obtaining it is similar to that used for inserting
a new vertex y in a binary search tree [Hi62]. We find a path from
the root of T, to a vertex z of the ternary tree, such that if x is a
vertex of this path, then the vertex following x in the path is at
the left, centre or right of x, in T according to whether y < x, y||x
or y » x, respectively. If the vertex so defined - which should follow
x in the path - does not exist because the corresponding subtree is
empty, then x = z and y is inserted in T, in the place of that empty

subtree.

Algorithm 1.1 follows the above strategy. It uses a recursive
procedure INSERT which finds that appropriate path. It is assunad
that the vertices of the ternary tree T are stored in a list, with
one 4-field node in the 1list for each vertex of T. If p is the address

in the list, of a vertex x of T, then info(p) = x and left(p), central(p),

and right(p) are the addresses of the root of the left, central and
right subtrees of x, respectively. If a certain subtree of x is

empty, then its address is null. It is also assumed that a list
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pool contains the available memory space, from which the space Icr a

newly created vertex is to be taken.

The following is a formulation of this algorithm. The
symbols <, |! and > , correspond to the relation between {y} and
the elements of the poset with which the ternary search tree T is ass-

ociated. Clearly, this relation is assumed to be known.
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ALGORITHM 1.1:

begin comment an algorithm for inserting a new vertex in a ternary

search tree;

progedure .. EINSERT (pointer p, integer y);

begin if p = null then
begin p := address of an available space memory, from pool;

left(p) := central(p) := right(p) := null;
info(p) :=y
end
else if y < info(p) then INSERT (left(p), y)
else if y||info(p) then INSERT(central(p), y)
else INSERT (right(p), y)

comment since y # info(p)}, this last condition
corresponds to y > info(p);

end INSERT;

pointer q;
integer y;

read the ternary search tree T;

read the element y to be inserted in T;

q := address of the root of T;
INSERT (q, y)

end
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As a further remark about algorithm 1.1, observe that the
computation of each invoked call of the procedure INSERT can be performed
in, at most, a constant number of steps (excluding the computations of
the recursive calls that may occur in it), if the poset is given in a
suitable representation - its adjatewey matrix, for instance. Also
observe that if z is the vertex of T having that empty subtree in which
y was inserted, the total number of calls of procedure INSERT equals one

plus the number of vertices of T in the path from the root to vertex z.

Now, consider a poset (S, <) and a permutation Xy Xg e oo Xy of
S. Construct a ternary search tree associated with S, by first
choosing x, as its rbot and afterwards, iteratively inserting x5, X5, ...,xN
in the ternary search tree obtained in the previous iteration. Since
the insertion of a new vertex, in a ternary search tree, is an operation
that produces an unique new ternary search tree, we conclude that
the final such tree - obtained after the insertion of Xy = is uniquely

characterized by the poset and the permutation. We call it the

ternary sequence search tree associated with the poset (S, <} and the

permutation X;%x, ... X\ of S — briefly TSST. Clearly this idea

constitutes an extension of Hibbard's concept of binary sequence search

tree Hib2].

The construction of a ternary sequence search tree is implemented
by algorithm 1.2, which iteratively invokes the procedure INSERT

defined in algorithm 1.1,
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ALGORITHM 1.2

begin comment an algorithm for constructing a ternary sequence search tree:

procedure INSERT (pointer p; integer y);

begin ...
ses as in algorithm 1.1

end INSERT;

pointer q;

integer y;

read the poset (S, <);

read the permutation x,x,... Xys

INSERT (null, x,);

q := address of vertex x, in the ternary search tree;

for j :=2 step 1 until N do INSERT (q, xJ)

end
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As an example, the ternary search tree of figure 1.4 is the
ternary sequence search tree associated with the poset of figure 1.1

and the permutation ABECDGF,

As has been mentioned, a poset (S, <) and a permutation p of
S uniquely determine the ternary search tree T associated with them.
However, the same poset (S, «) and another permutation p' # p of S
may have as their associated TSST a ternary tree T' such that T' = T.
For instance, the poset of figure 1.1 and the permutation ACDGFEB are
also associated with the TSST of figure 1.4. The problem that we pose
now is to calculate the total number of such permutations that correspond

to the same TSST. In fact, the following problems are equivalent:

i) Find the number g of distinct permutations p of S,

lS\: N, which together with a poset (S, <) determine
the same ternary sequence search tree.

ii) Find the number o of distinct permutations p, of a set
of N numbers, which correspond to the same binary
sequence search tree T, according to the usual consvrucsticn
of T, starting from p. Such a construction has been
given by Hibbard [Hi62], Knuth Kn737], Page and Wilscn
[PaWi73], Harrison [Ha73], among others,

iii) Find the number g of ways to label the N vertices «f a
binary tree T, with the labels of {1, .... N1, such
that the label of each vertex is less than that belonging

to any subtree of this vertex.

For any of these 3 above problems, the value of ¢ can be
calculated by the following expression, which appears in [Kn73], as the

answer to the problem (iii):

N!

m |T(x)|
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where T(x) denotes the terhary (binary) subtrece whose root is x, and
lT(x)l is its numbery of verfices. The basic reason why this formula
solves those problems is that : if x is a vertex in the ternary
(binary) tree T, and y is another vertex belonging to one of the subtrees
of x, then x must necessarily precede y in any of the permutations p.
Hence, the total number of permutations p such that, in these permutaticns
x precedes every vertex belonging to any of its subtrees, is N!/‘T(x)].
By considering all vertices of the ternary (binary) tree, we obtain

the above formula for 4.

There are, for example 7!/7.4.3.1.1.1.1 = 60 permutations of
{4,B,C,D,E,F,G} which together with the poset of figure 1.1 determine
the ternary search tree of figure 1.4, There are 6!/6.3.2.1.1.1 = 20
permutations of {1,2,...,61 which correspond to the binary search tree
of figure 1.7. Similarly, there are 20 ways to label the tinary tree of
figure 1,%, with the labels {1, ..., 6}, such that the label of any

vertex is less than that belonging to any of its subtrees.

Once the shape of the ternary search tree is e<tablished bhv
the poset (S, <) and a permutation p of S, the value ¢ obtained v
the above formula is calculated disregarding the poset with which the
search tree is associated. This suggests that an algorithm for finding
the complete set of permutations p of S, which - together with a given
digraph - are associated to the same TSST,; does not need to manipilate

the digraph at all (see section 1.4, for a further comment on this

property).

Even when a digraph is disconnected, each asscciated TSST
is still well defined. In the extreme case, when the digraph is

totally disconnected, any TSST has L(x) = R(x) = empty, for all vertices

of x. For example, the ternary search tree of figure 1.9 is the T=>T
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associated with the digraph of figure 1.8 and with the permutatiocn

ABCDEF.

1.3 Topological searching

The ternary search tree suggésts a method for searching for
items in a data base whose structure could be represented by an acyclic
digraph. Consider such a case, and let T be a ternary search tree
associated with that acyclic digraph (S, ;), which represents the
poset (S, <). To search for a node x, for instance, we 'compare"
initially, x with root (T). If x # root(T) then according to which
of x < root(T), x ‘Iroot(T) mr;() root(T) is satisfied, the way
L(root(T)), C(root(T)) or R(rb;f(T)) respectively is chosen.

Afterwards x is compared with the root of the chosen subtree, and so on.

Observe that the term "compare", in this context, could mean the

computation of a function like f: S x S - {0, 1, 2, 3}, with

x, = Xp implies £(x;, x;) =0

1

]

X, < Xp implies f(xy, x5)

x| |xz implies f£(xy, x3) = 2

Il

Xy > X, implies f(x;, x3) =3, for all x;, x3¢f.
Clearly, this method of searching has practical interest only if f

could be easily and efficiently computed. By analogy with the u=us.

terminology, we call it topological searching.

Now suppos® we have an acyclic digraph D(S, E), S = {X15 eoey X3 )y
in which we want to search for an element of S and let us examine some
basic differences, between a binary and topological searching. The
binary case, is well known: ;btain a one-to—one mapping g: SaR, with R
o subset of the reals, and construct an optimal binary search tree, with

vertices g(x3 ), +ov, g(xp). The average number of operations tv
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perform ?his search is O(log,n). Por the topological searching, we
would co;sider, instead a ternary search tree associated with D, with
path length minimized. Unlike the binary case, a ternary search tree
which minimizes path length is not necessarily complete (the elements of
S, being considered equiprobably, with respect to searching), but is
the '"nmearest" possible to a complete one, which still maintains its
association with the digraph. For this reason, the average number of
operations to perform a topological searching depends also upon the
structure of D. Let M be the number of elements of the partial
ordering represented by the digraph D. If M = min = O then the
topological searching is equivalent to a linear search, and we have 0(n)
average operations. If M = max = n(n-1)/2, then the topological
searching is equivalent to the binary search. However, there is an
optimal inter,;l for M, in which the average number of operations is
minimum, being O(logyn). As an example, consider the case where the
elements to be searched for constitute the set S, of the poset (S, <),
where:

S = set of positive integers, which divide 120

x <y if and only if x divides y for all distinet x, y € S.

Figure 1.10 illust»ates a digraph that represents this poset.
Figure 1.11 presents a classical binary search tree, with minimal path
length, in which a binary search would be performed. The vertices of
this binary tree are the elements of S, and therefore, the function g,
in this case, is the identity function. Figure 1.12 pictures a ternary
search tree, associated with the digraph of figure 1.10 with minimal
path length, for accomplishing a topological searching. Observe that,
in this example, the topological searching would provide a search tree

with less path length than the binary searching.
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1.4 Topological Sorting

Given a ternary tree, we define its A-order traversal.

recursively, by: do nothing if the ternary tree is empty; otherwise:

i) Traverse the left subtree in A-order
ii) Visit the root
iii) Traverse the central subtree in A-order
iv) Traverse the right subtree in A-order

Actually this definition constitutes a slight extension of Knuth's
definition of symmetric traversal of binary trees [Kn68]. Ve

assert that if T is a ternary search tree, associated with a poset (S, <),
then the A-order traversal of T produces a topological sorting arrangement
of (S, <). A proof of this fact is presented in the next section. A
topological sorting arrangement of the poset represented in figure 1.1
obtained by the A-order traversal of the ternary tree of 1.4 is BAECDGF.
Observe that items ii) and iii) of the definition, can be swapped, and
the new permutation produced by such a traversal is still a topological
sorting arrangement. The particular solution of the ilopoiogical

sorting problem obtained with this method, depends on the particular

TSST which was used, i.e. depends on the permutation used for building

that ternary tree.

If we consider a TSST T corresponding to a poset (S, <), and we
define a relation p on S, by x A y if and only if y € T(x), for all
X, y € S, (which is clearly a partial ordering) then the value , given
in section 1.2 corresponds to the total number of distinct topological
sorting arrangements of the poset (S, A). Also a permutation pof S
is a topological serting arrangement of (S, A) if and only if T is the

TSST associated with (S, <) and p. This means that the problem of
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generating all permutations p of S, which together with the peset (%, <.
are associated with the same TSST T, is equivalent to the problem of
generating all topological sortings of the poset (3, A An algorithn

for solving this problem is presented in Chapter 2.

The average number of comparisons required to construct a
TSST associated with a given poset (S, <) and a random permutation p
of S depends on (S, <) (note that the average number of compariscns to
build a binary sequence search tree for {1, 2, «++, N} and & random
permutation of this set, depends only on N). The worst case for the
TSST corresponds, clearly, to a ternary tree having N - 1 vertices w.th
exactly 2 empty subtrees each and 1 terminal vertex (a "zig-zag"
ternary tree). In this case the number of comparisons is approximaetely
proportional to N2, The best case corresponds to a complete ternary tree
in which approximately Nlog,N comparisons are required in average.
Since the A-order traversal of a ternary tree can be performed in O(N)
steps, these two figures, O(N?) and O(NlogzN) respectively, give us an idea
of upper and lower bounds for the timing of a toupological zorting algorithn,
using this method, if we consider that the computation of a fuun:t.on like
f (of section 1.3) can be performed in a constant number of steps (it
is true if f were already availahie as the adjacency matrix of the puv=ct

for instance),

1.5 Quasi-topological sorting

Given a set S and a binary relation Q on S which satisfies
only reflexivity and transitivity, the pair (S, Q) is called a guasi
ordered set. Again we can relate a finite quasi-ordered set (S, Q)
to a digraph by a similar construction to that used for posets: the

quasi-ordered set (S, Q) can be represented by a digraph D(S, E).
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pPossibly with cycles, where D is a partial subdigraph of the digraph
D' (S, Q), such that reachability is preserved. We can also think
about a minimal digraph representing the quasi-ordered set, although,
unlike the poset case, this minimal digraph is no longer unique. We
adopt a notation which is similar to that used for posets:

X <y when xQy and yf@x

X >y when xf y and yQx

xl‘;y when x@y and y@x

X <>y when xQy and yQx,
and therefore for any x, y € S there are exactly five possibilities:
X<y, X > Y, xlly, X <» y Or X = Y. Observe, however that they
are not exclusive, since x = y implies x < » y. Given a quasi-
ordered set (S, Q) a permutation X1 Xg s e Xy of S, is called a quasi-

topological sorting arrangement when

Xy < Xy implies i < j,

for all i, j =1, ..., N. We define a ternary search tree associated

with the quasi-ordered (S, Q) as a ternary tree T such that:

if y € L(x) implies y < x
y € C(x) implies ny ory <> x
y € R(x) implies y » x,
for all x, y € T, and S being the set of vertices of T. As an example,
the ternary search tree of figure 1.14 is a ternary search tree =nszc.:iated

with the quasi-ordered set, given by the digraph of figure of 1.13.

The notion of a quasi-ordered set suggests a partition in the
set & of all directed graphs. Consider the digraphs D,(V,, E,)
D, (Vs, E;) € & and define the binary relation ~0 by :
D 1~ D, iff V; =V, and
vertex v, reaches v, in D, iff

vertex v, reaches vertex v. in I

for all v;, v; € V, = V,.
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It follows that the relation ~0 is an equivalence relation and the

quotient set g>/~Q is isomorphic to the set of all finite quasi-

ordered sets. The digraph with maximal number of edges in each class is

a quasi-ordered set and the class it?elf corresponds precisely to all
digraphs that represent this quasi—o;dered set. Any minimal digraph

in a class is clearly a minimal digraph representation of the corr-sponding
quasi-ordered set. A similar construction can also be defined for

posets considering (obviously) the set of all acyclic digraphs, instead

of the set & of all digraphs.

The following theorem gener%lizes the topological sorting

property of ternary trees, presented in the last section.
Theorem 1.1:

If T is a ternary search tree associated with a quasi-ordered
set (S, Q) then the A-order traversal of T produces a quasi-topological

forting arrangement of (S, Q).
Proof:

The proof is by induction on the traversal of the subtrees of
T. Consfider a subtree T' of T, with x = root(T'). If T' is empty then
there is no questions about whether or not their vertices are in an auprop-
riate ordering. Otherwise, assume that

Vi eee Yrs Z) eeo Zg DA Wy ... W
are the A—order traversals of L(x), C(x) and R(x), respectively, any
of these possibly empty. By the imduction hypothesis, each of these
sequencesy satisfies the definition of a quasi-tonological sorting,
i.e., in the first sequence

if y; <y; then i < j,

for all i, j =1, ..., T. Similarly for the other two sequences.
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The A-order traversal of T' would produce a sequence of the form
Yi vee YrXZ) eee Z Wy ee. Wy
and the proof consists of showing that any two vertices of it satisfy
the definition of quasi-topological sorting. From the definition of =
ternary search tree, we conclude that pairs of the form (yv,, x),
(x, zy) or (x, w ) are in an appropriate relative ordering in the
sequence. Now, we should examine the relative ordering between vertices
belonging to different éubtrees of T':
i) vy and z;:
The definition of quasi-topological sorting is not
satisfied only if y, > z;. Assume then that y> z,.
Since y; « xr:t follows that
x > y; and y, > z; implies x> z,,

5 which contradicts z; € C(x).

ii) y: and v :
The definition is not satisfied only when y; > w, .
Assume then that y; > w . Since w, > x, it follows
yi > W and w, > x implies y, > X,

which contradicts y,; € L(x).

iii) Z and w, :
The definition is not satisfied only when z, > W e
But since w, > x it follows that
z, > w and w > x implies z;> X,

which contradicts z; € C(x).

Observe that the transitivity of > follows from the transitivity of;'Q.

Hence the theorem is trye for any subtree T' and therefore is true for

T:’ T'o



34.

Clparly, a poset is a;particular case of a quasi-ordered set,
in which anti-symmetry holds. Thus, we hawe also shown the topological

sprting property of the ternary search tree. A complete (or linear)

ordered set is a particular case of a poset in which trichotomy (i.e.
aily two elements are related) hélds. So this also extends the-knawn
usual sorting property of binary search trees, with respect to symmetric

order traversal. Finally, we mehtion that the concept of quasi-topolo-~-

gical searching could be introduced, as a natural extension of

topological searching.

1.6 Conclusions

We have pointed out some properties of ternary trees, relating
these s?%ﬁctﬂihs to quasi-ordered or partially ordered sets, and quasi-
topologi;al or topological sorting. Topological sorting is an important
operation that we may wish to perform in acyclic digraphs - or partially
ordered sets. For example, in some cases a topological sorting is
performed as an initial step in an algorithm, for solving a more
complex problem, Some algorithms have been devised for obtaining
one solution for the topological sorting problem: [Kn68], [Ka63]

(La61], lKa62], among others. However, the premises for applying the
topological sorting method, presented in this chapter are slightls
different from those other algorithms, since as in usual (complete)
sorting the algorithm is given an input sequence and must produce a
sorted output sequence from it. Practical applications of the presented
methods -~ for both topological and quasi-topological sorting - should be
restricted to those cases for which there exists an easy and efficient way

of determining the type of relationship between two given elements of

the set.
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One aspect that we would emphasize is the close relation

which exists between this method for performing topological or quasi-
topological sorting and tree insertion (complete) sorting. The latter
method can be considered as a particular case of the former - whilst the
problems of topological sorting and (complete) sorting are generaliy
considered separately. In fact, the érdering of a set is complete if
and only 1if an associated ternary search tree has all its central
subtrees empty. In that case, the ternary search tree is equivalent

to the usual binary search tree, the topological sorting becomes the
usual sorting, the solution ef the sorting problem is unique, the presented
method of topological sorting becomes the usual tree insertion sorting,
and ~ what is relevant — the structure of the input/output data and the

algorithm work exactly in the same way.
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CHAPTER 2

GENERATION OF ALL TOPOLOGICAL SORTINGS

2.1 Introduction

4= mentioned in chapter 1, some algorithms are known that
obtain one solution farthe topological sorting problem. In particular,
the algorithm in [Kn68] requires O(N+M) time for producing cne topolng:cal
sorting arrangement, of an acyclic digraph with N vertices and M

edges.

The present chapter describes an algorithm which extends
that of Knuth, and finds all solutions of the topological sorting
probdem, for a given acyclic digraph. Most of the ideas explained in
this chapter are the result of a joint work with D. E. Knuth, reported
in [KnS8z747. In that paper, the algorithm for obtaining all topological
sorting arrangements was used as an example of structured programming
and a discussion of some techniques for changing recursion into
iteration. A more detailed appreciation of the recursion-iteration
translation can be found in [Kn74). Section 2.2 of this chapter
presents the algorithm for all topological sorting arrangements, and
a description of the method on which it was based, Its correctness und
performance constitute sections 2.3 and 2.4, respactively. Purtorr
remarks concerning the proposed method are found in section 2.5, a«nd

some conclusions form the last section.

2.2 The algorithm

The algorithm in [Kn68], for one topolcgical sorting
arrangement, assumes the acyclic digraph D(V, E) to be represented
by a set of adjacency lists A, The additional data structures used

are a vector count and a queue glink, For any vertex v € V, count(v)
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is initialised with the number of vertices w, such that (w, v) € E.

At any stage of the process, count(v) contains the number of above
vertices w which were not scheduled for output yet.A vertex v is
considered to be scheduled for outpug;fhﬁen all vertices w, such that
(w, v) € E, have also been scheduled, éome time before. The vertices
that are at a given moment, awaiting output are kept in the queue
qlink. This queue is therefore initialised as containing the vertices
with zero indegree in the digraph. Consider, now the exploration

of the first vertex v, in qlink. Since there is no vertex w, such
that (w, v) € E, v can be output, accoraing to the rules of topological
sorting. The algorithm proceeds by erasing all edges from v.

This is accomplished simply by decreasing by one, each count(w),

for each vertex w € A(v). Now, if the newly decremented count(w)
dropped to zero, this means that all vertices v', such that (v', w) ¢ E,
have already been scheduled for output (i.e., all edges to w have already
been explored.) Therefore, these vertices w can be transferred to qlink.
The vertex that now stands at the front §f the queue gqlink is after-
wards output and explored, and so on, until all vertices have be:n
explored and output, which is given by the condition that glink
becomes empty. The implementation has assigned to the count and

qlink structures the same space in memory. This can be done becanuse
of the fact that the vertices are not inserted in qlink, whilst

count(v)#£0.

The algorithm [KnSz747] finds all solutions of the topslogical
sorting problem by extending this scheme. A recursive backtracking
procedure ALLTOPSORTS(k) is used. This procedure will output all
topological sortiﬁg arrangements, which begin with a sequence of vertices
ViVs eeeVy, that has already been output. The count vector is retain. 1

from the original algorithm, but the queue qlink is replaced by an
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output-restricted deque U, where all deletions from U occur at its

“pight, and insertions may occur at either of its ends. At the

entry of the computation of ALLTOPSORTS(k), deque U contains precisely
those vertices v, for which count(v) = 0. The computation of this
procedure may change the contents of dique U, or those of count
fields, however both are restored to tgeir entry values,-ﬁpon exit.
The vertices for output are taken from the right of U and assigned

to a variable q. The output of the k-th vertex, of a topological
sorting sequence is performed by procedure ALLTOPSORTS(k~1), which has
depth k. A variable base is used for storing the value of the
rightmost vertex of U (when U is non-empty), at the start of each

computation of the recursive procedure.

Assume that v,v, ... v, is the current topological s?rting
subsequence that has already been output, and let us examine the

computation of ALLTOPSORTS (k).

(i) If U is empty then there are no more vertic.s to be
output in the present sequence. The depth of this cali
is therefore equal to N4+1, Exit from the procedure
occurs.,

(ii) If U is not empty and contains y;... y, an entry to
ALLTOPSORTS(k), the procedure will set  base := y, anl 3
Then it will erase all edges of the form (g, 30 by
decreasing each count(j) by one for each vertex j €A(q);
if 2z, ...,i2, are the values of j whose count drop to

zero at this time, U will be changed to y; ... Yr_1%;---

After outputting y, and performing ALLTOPSORTS, beginning

with subsequence v, ... v Yy;, the strategy consistsof

retrieving all edges of the form (q, j), with j € A(q).

1= Yo

s
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by adding one to each such count (j), and U is changed to y, ... v,_,.
The same process occurs again, withq =y, _,, y,_,, ..., ¥, until,

finally all topological sorting arrangements beginning with v,v. ... v,
will have been produced, and U is again y, ... y, . Exit from ALLTOPSORTS(k)

therefore, occurs.

The following is an ALGOL-like formulation of this algorithm,
The erasure and retrieval of the edges, which appear in the formulation
of the algorithm refer to those operations which were described in the

text of this section.



ALGORITHM 2.1 [KnSz74]

begin comment an algorithm for all topological sorting arrangements;

end

procedure ALLTOPSORTS (integer value k);
comment this procedure will output all topological sorting a - rance-
ments which begin with a sequence v, ... vy, that has
atready been output. Let R = {1, ..., NN\{vy, -e.. v}
be the set of all vertices not yet output. The proceuure
assumes that, for all y € R, the current value of global
variable count(y) is the number of edges (z, yv) for
z € R, and that there is a linear list U containing
precisely those elements y € R such that count(y) = O;
begin integer q, base;
if U not empty then
begin base := rightmost vertex of U;
repeat set q to rightmost vertex of U and delete it
from U;
erase all edges of the form (q, j);
output q in column K + 1;
if k = N - 1 then start a new output line;
ALLTOPSORTS (k+1) ;
retrieve all edges of the form (g, j);
insert q at the left of U;
until rightmost vertex of U = base;

end
end ALLTOPSORTS;
Tead the digraph and construct its adjacency lists 4;
initialise count(v) values;
comment count{v) = indegree(v), for all vertices v;
for v := 1 step 1 until N do
T if count(v) = O then insert v at the right of U;
ALLTOPSORTS(0) ;
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A previous version of the algorithm took base and q from the
left of U, while all insertions in U were performed on the right
only. This made U an input-restricted deque, sothat a two-way linking
for the implementation of U was originally needed. Thus, a slight mod-
ification of the strategy turned the deque to an output-restricted

one with only one-way linking required for its implementation.

2.3 Correctness

The correctness of the above strategy can be shown by the
following lemmas:
Consider an acyclic directed graph D(V, E), with N vertices,

input to algorithm 2.1:
Lemma 2.1:

If vy ... v, is the topological sorting subsequence, already
output at the start of ALLTOPSORTS(k), then deque U contains precisely
those vertices v, v £ Vi, Vgy esey Vi Such that count(v) = 0, at that

moment.

Proof:

Induction on k. If k = O the lemma holds trivially, since the
initialisation of the pro;ess ensures that the vertices v with count(v) = O
are precisely the vertices that constitute deque U. By the indaction
hypothesis, if vy ... V% _; is the topological sorting subsequence already
output at the entry of ALLTOPSORTS(k~1), then U contains those vertices v,
v £ vy, eeey Vg—y such that count(v) = 0. Suppose that the content of U,
at that moment, is y; ... y,, and assume without loss of generality
that y; = v The computation of ALLTOPSORTS(k-1) then sets base := v,

q := v and deletes w from U. Afterwards, all edges of the form

(v » j), for j € A(vk), are erased and if z,, ..., z; are such vertices
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J whose count dropped to zero, then U is changed to y;.c. Y. _ 121 .. 2.
In what follows, v, is output and the call ALETOPSORTS(k) occurs. At
that moment, deque U contains precisely those vertices v, such that

VAV, seey v, and count(v) = O.

Lemma 2.2:

If vy... v is the topological sorting subsequence, alread:
output at the entry of ALLTOPSORTS(k), then at the exit of this computation,
all topological sorting arrangements that begin with v, ... v, have been

output.,

Praopf:

Induction on decreasing k. If k = N then by lemma 2.1 deque
U is necessarily empty, which will produce an imnediate exit from
ALLTOPSORTS(k ). Consequently, the lemma holds trivially, in this case.
By the induction hypothesis, if v; ... Vv, V.4, 1s a topological sorting
subsequence that has already been output at the entry of ALLTOISORIS(k + ),
then all topological sorting arrangements starting with vy ... v v,
have been output, at the exit of this computation. Now assume

the computation of ALLTOPSORTS (), with deque U containing y, ... y,

w

and v; ... v, being the subsequence already output, at the entry of th.
procedure: the computation sets base :=y,  and q := y.. The ecrasure
of all edges (y,, j) occurs for all j € A(y,). Assume z,, ..., Z

to be those vertices j whose count drop to zero during this erasure.
Therefore U is changed to y; «.. y._; 2, ... 2, and y, is output.

The call ALLTOPSORTS(k + 1) occurs and by the induction hypothesis, all
topological sorting arrangements, starting with v, ... vy, have been

output, upon exit of this call. Next, the retrieval of the edges



43.

(y,s j) occurs for all j ¢ A(y,), which means that U is changed to
V1Y eee Yrq- Afterwards, y, is inserted in the left of U, which
becomes y, ¥y oo Yr_q- The same process occurs again with q = y__,.
Yr_zs e+ ¥y which cause calls ALLTOPSORTS(k+1) whose computations
output all topological sorting sequences starting with v,... Ve dr—a s
Vi eee VY¥ropy ssey V] eee V¥, Trespectively. By return of the last
of such calls and after retrieving the edges of the form (y,, j)
for all j € A(y,), and inserting y, at the left of U, the contents
of the deque is y; ... y,, which ensures exit from ALLTOPSORTS(k),
since base = y, is the rightmost vertex of U. Since, as a consequence
of lemma 2.1, the vertices of deque U, at the entry of ALLTOPSORTS(k) are
precisely those vertices which - by}the definition of topological sorting
arrangement — can follow vertex v, in such an arrangement, we conclude

that all ﬁopological sorting arrangements starting with v. ... v,

have been output at the exit of this procedure.

2.4 Performance

The performance of the method presented can be evaiiuated by

the following theorem:

Theorem 2.1:

Let D(V, E) be an acyclic digraph of N vertices ani M edges,
input to algorithm 2.1. Let T by the total number of distinct
topological sorting arrangements, of the vertices of D. Then the
algorithm requires O(N+M) space and O((N+M)T) time, for the output of

all such T arrangements.



Proof:

The space bound follows from the fact that the representatic
of the digraph by a set of adjacency lists requires O(N-M) space. and
the remaining data structures require O(N) space. For the time bound,
we observe that the cost of the output of one vertex v, in anyv
topological sorting arrangement corresponds, at most, to the cost of the
execution of one iteration of the repeat block - without considering
the recursive call of ALLTOPSORTS inside this block, whose cost is
charged to the corresponding vertices that are output in its computation.
The cost of each such iteration is O((outdegree(v)) and corresponds to
the erasure and retrieval operations, since all other computations,
inside this block, can be executed in a constant number of steps.

Since in each topological sorting arrangement, at most N vertices are
output - and they are all distinct - we conclude that O(N+M) time is
required, at most, per arrangement. On the other hand, precisely one
call of the type ALLTOPSORTS(N) is invoked for each arrangement;  these
calls find deque U empty and therefore require O(T) time, for the whole
process. Since O(N+M) time is spent by the algorithm, outsidc the
recursive procedure, we conclude that the total time bound, for the «ntir.

computation, is O((N+M)T).

2.5 Further remarks

As mentioned in section 2.2, the algorithm suppuses that the
input digraph is represented as a set of adjacency lists. Clearly, two
acyclic digraphs that correspond to the same partially ordered set will
cause the algorithm to produce identical sets of topological sorting
arrangements. However from theorem 2.1 we conclude that the fewer

the number of edges of the input digraph, the faster the process is likey
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to be. Theréfore, for a given partially ordered set, the best results
are obtained when the input corresponds to the minimal digraph represent-

ing the poset.

The ordering in which the topological sorting arrangements ars
output depends on the ordering of the vertices in the adjacency lists,
For instance, if z,, ..., z, are the vertices whose count dropped to
zero during the erasure of the edges of the form (y, j), for j e A(y) -
which occured when the subsequence already output was v, ... v, - and
assuming that if z, precedes zy in the adjacency list A(y) then i < j,
thus we can conclude that the ordering in which those vertices z; are
inserted in deque U is precisely 2y Zgoy ees Zge However, as they are
inserted at the right end of U, and also taken for output at its right
we conclude that the first topological sorting arrangement to be output
is of the form

Vi eeo ViV eee ZgZg_ 3 eee Zyees

The digraph of figure 2,1, if input as the following sequen:e
of edges

(1, 3), (2, 1), (2, 4), (4, 3) and (4, 5)
is represented by the set of adjacency lists shown in figure 2.2 and
causes:algorithm 2.1 to print the five topological sorting arrangements
as displayed in figure 2.3. Observe that redundant printinz has b-en
suppressed. Note also that the amount of work required to cutput a
certain arrangement is proportional to the number of vertices actually
printed in this arrangement plus the sum of their outdegrees. For
instance, in the output

13 5
of figure 2.3 - which corresponds to the topological sorting 24135 -

neither the vertices 2 and 4 nor the edges from them are manipulated.
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In fact, the number of times in the entire process that the upper time
bound O(N+M) per output arrangement is attained equals the number of
source vertices in the digraph. This value also equals the number of
arrangements which are "fully" printed, i.e. in which all N vertices are
explicitly printed. For the output of all other arrangements the bound

is not .attained.

If the set of edges of the digraph is empty, i.e. M = 0, anv
permutation of N is a topological sorting arrangement. Therefore, ihe
algorithm operates as a permutation generator and outputs all T = N!
permutations of N. Observe that, in this case, the total number of
elements (vertices) that are actually printed is

N + N(N-1) + N(N-1)(N=2) + ... + N! = LNle_‘ -1,

This follows from the fact that there are exactly N permutations in
which the first element is printed, exactly N(N-1) permutations in
which the second element is printed, and so on. From this result,
we conclude that the average number of elements that are printed per
permutation, is about e, and perhaps surprisingly, it is independent

of N. For instance, when N = 4 a total of 64 element: are printed

for the 24 permutations, and the average number of printings per
permutation is 64/24, about 2.66, When N = 5, a total of 325 elements
are printed, and the average is 325/120, about 2.70. The total time
bound O({(N+M)T), for the output of all T=N! permutations, becones
simply O(N!). This means that, within a constant factor, algorithm 2.1

is also efficient, as a permutation generator.

If N is large, the volume of output can be very large, as it
may be concluded from the above case. For this sort of digraphs an
interesting way of reducing the output has been suggested by Knuth in

[KnSz74]. The idea is to allocate O(2N) more memory cells and to
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modify the recursive procedure so that it "remembers” similar past
situations, A new global variable, which corresponds to the current
value of the set {v, , ...,vk} has to be added and the procedure
ALLTOPSORTS ought to remember which sets it has seer before and where
it occurred in the output. Whenever a set is repeated, the output

can now be replaced by a simple cross-reference to the appropriate
line, Figure 2.4 illustrates this new scheme of output, corresponding

to the input digraph of figure 2.1.

The feature of "remembering" past situations can be applied to
the problem of generating permutations with some additional simplifications,
suggesting therefore a scheme for obtaining all permutations of a given
set with reduced output. In fact, suppose we want the permutations
of {1, 2, ..., N} using a strategy similar to that of algorithm 2.1,
i.e. at every stage we are looking for permutations starting with the
sequence X;X; ... X that has already been output. If x; < X5 <ous <X
then this is the first appearance of this pattern. Otherwise, consider
the smallest j,1<j<N, such that x;_, > x,. Thus, the permutation that
the first output of the type x; ... x; ... shculd remember i3 precisedy
the first appearance of the pattern p; ... py, where pj... 1. and

X, ... X; are identical combinations, and p;<p,<... <p.. This can be

easily detected in the algorithm if we do mnot allow X;... X to <onvain
any X;., < Xj, 1 # k. Therefore, the algorithm can remember if a :zimiiar
pattern occurred before simply by applying this test. The remaining
problem is to find where that similar pattern occurred before, in the
output. This is also computable and therefore no patterns need to be
stored. To every permutation printed, a numeric label s is attached,

calculated by:

(i) s =1, for the first permutation printed
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(ii) If s is the label of the current permutation X, ... X eo..
then the next printed permutation will be labelled
s + (N - j)t,
wvhere j is the smallest index such that Xy_1 > X,

N

If no such j exists, then s = 1, and define J to be equal

to N.

Observe that if all permutations had been printed applyving
a strategy similar to algorithm 2.1, then s would have been the sequential
line number of the corresponding permutation. Now the permutation
Py+ss Py which ought to be remembered and referenced from Xy ees Xy,

has as label s, the value computed by:

s(py.e. py) =1 +—§‘ (N-i)!(p; - py—, -1), with p, = 0.

.

1=1

This scheme, therefore, can be implemented using just O(N) space.

As an example, with N = 5, instead of printing the permutation,
say (5)2341,-digits within parenthesis represent the redundant printing
mentioned earlier —the following would orcur: since 5> > 2, we have
J =2, Xx4x5 = 52 and p;py= 25. We know that the patierns ccrrespunding
to the set of permutations starting with 52 have alrecady been printed
before, and there are a total of (N-j)! = 6 such pattems, starting with
the label s, computed by:

s(25) =1 + 41(2-0-1) + 31(5-2-1) = 37~
Therefore, the printing of the permutations

(5) 72 3 4 1

(5) (2) 3) 1 4

(5) (2) 4 1 3

(5) (2) (4)

(5) (2) 1+ 3 4

(5) (2) (1)

W
—y

i
W
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which would have occurred in an algorithm like 2,1, would be replaced b

the single line

(5) 2 ... see 6 permutations from label 37

and label 37 would be:

Vi

37: (2) 5 1 ... see 2 permutations from label

o
-1

39: (2) (5) 3 ... see 2 permutations from label
41: (2) (5) 4 ... see 2 permutations from label 31
label 5 would be:
5: (1) (2) 5 3 4
6: (1) (2) (5) 4 3
label 27 would be:

27: (2) (3) 5

-
H

28: (2) (3) (5) 4 1
and label 31 would be:
31: (2) 4 5 1 3

32: (2) (4) (5)

(9]
-—
-

2.6 Conclusions

An algorithm for obtaining all topological sorting arrangement -
for a given acyclic digraph has been presented, The algorithm tilises
a recursive backtracking procedure which outputs each arrangement in at most
O(N+M) time. An iterative machine-oriented translation of the slgcrithm
appears in KnSz747]. Both versions of it - recursive and iterative - have
been implemented and as expected, the iterative version produced better

running times than the recursive one when both were applied to identical

inputs.

A simple test can be added to the strategy to enable it to

detect the presence of cycles in the input digraph which is supposed t
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be acyclic. If deque U is empty in any computation of ALLTOPSORTS(K)
except ALLTOPSORTS(N), this means that the subdigraph forred by the

subset of vertices not yet output is such that no vertex has outdegree
zero in it. Hence a cycle must exist. If a digraph D containinz cv.-les
is input to algorithm 2.1 as it stands, them the output cbtained is the
get of all topological sorting arrangements of a subdigraph D' of D

such that D' is the maximal subdigraph of D which does not contain any
cycle nor any vertex which is reachable from a vertex belonging to u

cycle of D.
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CHAPTER 3

SOME GRAPH CYCLE ALGORITHMS

3.1 Introduction

Some' problems, such as determining whether a grapn has certain
properties, or constructing a set of objects related to the grapl. admit
of algorithmic solutions which have a time bound linear in the size of
the graph. These include the problems of finding: the strongly connected
components of a directed graph [Ta72], the biconnected components of a
graph [Ta72], the graph from its given line graph [Ro73], [Le74],
partitions of a graph into simple paths HoTa73]. Testing planarity
of a graph can be performed in a time just proportional to the number of
its vertices [HoTa74]. Clearly, any algorithm for obtaining and
explicitly listing, a set of objects related to the graph must be at
least proportional to the total number of such objects., If this number
grows exponentially with the size of the graph, the algorithm has an
exponential running time. For such problems, a given algorithm may
be additionally characterized by introducing a time bound per object
obtained, and two algorithms can be compared according to their bounds
per object. The problem of finding all elementary cycles of a directed
graph falls into this category. Among the great number of cycl: a'gorithms
surveyed by Prabhaker and Deo [FrDe74] the algorithm by Johpson [ "¢73a]
presents the best time bound, namely a linear bound in the size of the
graph, per cycle. This algorithm was devised by imposing further constrain
on the backtracking performed by an already constrained backtracking

algorithm Ta73].

The present thesis proposes a cycle finding algorithm that has a

similar (worst case) time bound as [Jo73a]. However, while maintaining
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all the constraints of [Jo73a], we are proposing new strategies that rer:.-ent

further restrictions to the backtracking.

The elementary cycles algorithm for digraphs has been also
adapted for handling undirected graphs, resulting in an algorithm for
solving the problem of finding all elementary cycles for undirected graphs.
So far this method has been shown to be more efficient than algorithms

specially devised for undirected graphs.

Another cycle problem considered in this chapter consists of a
method for finding a fundamental set of cycles for an undirected graph,
This problem is less complex than finding all the elementary cycles, as
it can be verified from the discussion of the problem, later in this
chapter. Our proposed solution may be regarded as a variation of an

algorithm by Paton MPa69].

Section 3.2 to 3.6 of this chapter, handles the problem of finding
the elementary cycles of a digraph: a discussion of some existing methods
is the subject of section 3.2; section 3.3 presents our proposed
algorithm, which is shown to be correct in 3.4; the evaluation of its
performance appears in section 3.5; a more detailed appreciation of
Johnson's algorithm [Jo73a) and its comparison with our propcsed method
constitute section 3.6. Finding a fundamental set of cycles of an
undirected graph is the subject of sections 3.7 to 3.10: an overview
of some existing methods appears in section 3.7; our propcs«d strategy
is described in 3.8; and its correctness and performance are discussed
in sectioq53:9 and 3.10, redpectively. The problem of finding the
elementary cycles in an undirected graph is handled in sections 3.11 to
3.14: a general appreciation of the problem is presented in section 3.11;
our proposed method is described in section 3.12; remarks about its

correctness and an evaluation of its performance constitute sections 3.~
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and 3.14 respdctively. Finally, some further comments about th: resuit:
which appear in this chapter form the content of section 3.15. As already

mentioned, the contents of 3.2 to 3.6 was reported in [SzLa75].

3.2 Elementary cycles in directed graphs

Tiernan [Ti70] finds all elementary paths Vis eesy Vi,
vi<vi,1<is<kand 1 sksN. If (v, v;)€ E then the cycle
Vis eesy Vi, Vi is enumerated. This strategy corresponds to an
essentially unconstrained backtracking and was also presented by Roberts
and Flores MRoFl1667] and Berztiss [Be717. Floyd [F167] has described a
non deterministic version of this algorithm. Weinblatt [We72] also
searches for elementary paths, but proposes to improve execution time by
storing cycles already found and constructing new ones from these. In
[Ta72], Tarjan gives examples illustrating that the algorithms [Ti70] and
[We72] may take exponential time in the number of cycles enumerated.
Lauer [La73] discusses the generalisation of Tiernan!s algorithm to
different representations of digraphs, improves storage requirements
and proposes alternate proofs, Another backtracking algor.tvhm presented
by Berztiss [Be73)] has been shown by Prabhaker and Deo [PrDe74] also to
have a time bound exponential in the number of cycles. The algorithm
by Syslo [8y73, Sy75] is also based on a backtracking strategy and

constitutes a variation of Tiernan's method.

Tarjan's algorithm [Ta73] is based on Tiernan's depth-first method,
It makes use of two stacks, the point stack for stroing the path currently
being examined and a mark stack, as well as a boolean vector called mark
vector., The mark stack is used as a set of pointers to the mark vector.
Whenever a new cycle is found, all vertices in the current point stack

will eventually be unmarked when popped from this stack.
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If no cycle: is found involving a vertex, it will be deleted fror the
point stack, but continue to be marked. Some of the unnecessary work
done by Tiernan is avoided by the condition that if a vertex is reached
but is found marked, then it is not re-explored at this stage. However,
we mention two points where this algorithm still does unnecessary work.
Pirst, whenever a vertex v is going to be unmarked because a cycle
involving it was found, all the vertices that are above v in the mark
stack will also be unmarked, even if some of them are involved in no
cycle. Second, Tarjan follows Tiernan's principle of only searching
for elementary cycles vy, ..., % with vy < v, 1 < i <k, where v,

is the vertex at the bottom of the stack, called start vertex. The

inefficiency involved in this is discussed in section 3.6. The algorithm

[Ta73] is bounded by O(N.M(C+1)) time and O(N+M) space.

Another method was developed by Ehrenfeucht, Fosdick and
Osterweil [EhFoOs73] which includes both breadth-first and depth-first
search, and makes use of an additional phase for collecting information
about the digraph. This pre-processing requires O(N®) time and the actual
process enumeration of the elementary cycles is bounded by O(N. M) time

per cycle.

The algorithm by Read and Tarjan MReTa73] first determines the
set of all start vertices, to be used later during the search. tach
strongly connected component is processed separately, and a vertex s will
be used as a start vertex if there exists an edge (r,s) where r 1s a
descendant of s in a directed rooted tree, generated by a depth-first
search, For each start vertex s the algorithm invokes a recursive
backtracking procedure BACKTRACK(s), which initiates the construction
of an elementary path from s. If a recursive call BACKTRACK(v) occurred

then v had been added to the current path before, and is the end of this
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path. Assume the computation of BACKTRACK(v, ) and v, , Vo, «ee; ¥,

the current path. Initially, the set of connectable vertices is
determined. A vertex w is connectable if there exists a path from w to
s which does not involve any vertex of the current path. The path may
only be extended with a connectable vertex w such that (Vk’ w)€e E and
therefore any addition to the path is sure to lead to a new elementary
cycle. If w=s then such a cycle has been found. Otherwise a recursive
call BACKTRACK(w) occurs, unless there is exactly one edge (w,x) from w,
such that x is connectable. In this last alternative, x is assigned to
w and is added directly to the path, with no call BACKTRACK(x) . This
process is iterated until either w=s or there is more than one connectable

vertex x, with (w,x) € E.

The above strategy is therefore simple and elegant. However,
it has an important drawback, which is the cost of the determination of
the connectable vertices. Consider the digraph of figure 3.1, with
N=K°® -K+1 vertices, M=K?+K-2 edges and C=2K-2 elementary cycles, and a
numpering of the vertices as obtained by a depth-first search [Ta72].
The algorithm would find {1,2,...,K} to be the set of start vertices.
Let us examine the computation with start vertex 1. When a vertex
v €{2, ...,K} is added to the current path, at any stage of the
computation, there exist exactly two vertices w,(v,w) € E,
which are connectable, namely, a vertex from the subdigraph Bv, and
vertex v+1 if v # K or vertex 1 otherwise. Consequently, each time a
vertex v#£1 is added to the current path, a call BACKTRACK(v) occurs,
Therefore, for the enumeration of the K-2 elementary cycles (1,2,3,4,...,
K,1;5 1,3,4,...,K,1; ...;1,K-1,K,1) with start vertex 1, a total of
(K2 -K)/2 calls of BACKTRACK occur. Since for the computation of the
connectable vertices, in each of these calls, every one of the K® -K+1

vertices is explored (i.e. marked unconnectable), the algorithm requir -«
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at least O(K%4) time. This contradicts [ReTa737] which mentions the tim-

bound O(N+(C+1)M).

However, the algorithm [ReTa73] could be implemented in such
a way that by introducing a convenient scheme of lists, vertices that were
already unconnectable at the beginning of the computation for the current
connectable vertices, would not need to be marked unconnectable again.
For evaluating the performance of the algorithm in this case, consider the
digraph of figure 3.2. It was obtained from figure 3.1 by appending
K subdigraphsto the subdigraph B, , as indicated. Any subdigraph B;
of figure 3.2 is isomorphic to any subdigraph By, of figure 3.1, hence
we still have, for the digraph of figure 3.2, N=0(K®)M=0(K?) and C = O(K). If
vertex 1 is the start vertex, again a call BACKTRACK(v), v#1, follows
the addition of vertex v to the current path and therefore (K°~K)/2
calls of the procedure are invoked. Upon exit of any of the 0(K2)
calls of BACKTRACK(v), with v#£K and start vertex 1, all O(K®) vertices
of B, B¢,1, ..., By are connectable and therefore they ought to be
explored in every one of those O(K?) computations. Therefore O(K?*)
time is required for this digraph and we conclude that the time bound
is not O(N+(C+1)M) even if this more efficient implementation is

realized. A time bound for this algorithmis O(N+M+NMC).

The algorithm by Johnson [Jo73a] also employs the technigre
of constructing elementary paths from a start vertex, in a stack, for
each strongly connected component, the start vertex is chosen so as to be
the least vertex of this component. Subsequently, a new maximal strongly
connected partial subdigraph is obtained, which does not contain that
vertex. The new start vertex is chosen to be the least in this partial
subdigraph and so on. For each start vertex s, a recursive backtracking

procedure is invoked and its computation is similar to that of Tarjan's




[ Bk+2
o
Be+a
9 B,
Y
i b 3
€ 7
1
<
)

Figure 3,2

N



60.
algorithm, except for the marking system, which was considerably enhanc-d.
A vertex v is marked each time it enters the stack. Upon leaving the
stack, if an elementary cycle was found involving v and the start vertaex
s, then v is unmarked. Otherwise, it remains marked until another vertex
u is popped from the stack and such that an elementary cycle existed
involving u and s, and there exists a path from v to u consisting of
vertices that are marked and not in the stack. Johnson implements this
strategy efficiently, using ascheme of lists B, one list B(v) per vertex
TV At any given moment, B(v) contains those vertices u such that
(4,v) € E and u is marked and not in the stack. The actual unmarking
is performed by a procedure UNBLOCK(v) which will recursively call
"UNBLOCK(u), if u€B(v). This algorithm is bounded by O(N+(C+1)M) time
and O(N+M) space. Further remarks concerning this method and comparisons

with the proposed algorithm can be found in section 3.6.

3.3 The Proposed Algorithm

Our algorithm also uses a recursive backtracking procedure but
a more efficient system for detecting elementary cycles. This dete:tiun
occurs as soon as the elementary cycle is genecrated anywhere in the
current path under examination. This path is kept in a stack (Tarjan's
point stack). The boolean vector is retained but not the mark stack.
Instead, we have utilised and slightly modified Johmson's marking =y :vem
using one list B{v), per vertex v. A vertex u is inserted in lisu B(v)
if (u,v)€ E and the exploration of edge (u,v) has not lead to = new
elementary cycle. In addition to these structures, we use a position
vector and a boolean reach vector. If a vertex v is the j-th vertex
from the bottom of the stack, then position (v)=j; when v is deleted
from the stack then position (v)=N+1. If a vertex v has not yet left

the stack for the first time, then reach(v) = false, otherwise reach(v)
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= true, A vertex v is marked when it enters the stack, and the mark is
kept at least as long as this vertex remains in the stack. Upon leaving
the stack, v is unmarked only if a new elementary cycle was found with
v but not necessarily with the vertex at the bottom of the stack (start
vertex). If v leaves the stack with the mark on, then it will be
unmarked when a vertex z;is popped from the stack in such a way that

a new elementary cycle was found with z,, and there exists a path

Zy, Zy_1y e++ 5 2,,(z, =v) such that z, 4, € B(z,), K< i =1, at that

time.

The digraph is represented by a set of adjacency lists with one

list A(v) per vertex v. A pre-processing is performed to find the strongly

connected components of the digraph, using the method described in [Ta72].
For each strongly connected component a start vertex is chosen to be the
vertex with maximal indegree in this component. The present method
ensures that, when this start vertex is deleted from the stack, all

the elementary cycles of this component have been enumerated. Therefore
only one start vertex per component is required. As it can be observed
from the proposed strategy, if a start vertex would have beeci: chosen to he
an arbitrary vertex of the digraph - instead of a vertex with maximal
indegree in a strongly connected component - the algorithm could be
easily modified so as to avoid finding the strongly connected corpnnents,
The modified algorithm would have the same time bound as the oun-

currently described.

The basic idea of the algorithm is similar to all previously
described methods, namely to try to extend the current elementary path
under examination. Consider the case where the content of the stack is

ViVs ees Vi _y and edge (v, .y, v,) is reached:
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(1) If v, is not marked then necessarily v, 1is not in the stack,
the elementary path will be extended with vy, and an edge frum
vy will be examined.

(ii) If vy is marked and not in the stack then necessarily, there
can be no new elementary cycles generated from the path
Vi s Va5 sy Vg1, Vv, and therefore v, is not re-explored,
at this stage. Vertex v, _, is inserted in list B(v,) and

vy is deleted from A(v, _;).

(iii) If v, is marked and lies in the stack then an elementary
cycle was found, and it can be recorded at once. The algorithms
We727 and [Be73)] also consider this cycle at that stage.
However, some efficient algorithms as Ta73], TEhFo0s73],
[Jo73a]} and T ReTa737] disregard it, if v, is not the start
vertex. The problem that arises when considering such a
cycle with vk#vl, is that a mechanism for detecting duplicate
cycles must be set up. The nature of this mechanism
follows from the observation that a cycle is a new cycle,
if and only if at least one of its vertices had never been
deleted from the stack. The fact thatl it has not been deleted
before is indicated by setting a variable q, local to the
recursive procedure, For a given computation of this procedure
q indicates the top most vertex of the stack that has never
been deleted from it. Therefore, if positicn (v, ) <q a
new elementary cycle is found. Otherwise, th:s is a duplicate

cycle: v,_, is inserted in B(v) and v, is deleted from Alv, 1)

In cases (ii) and (iii), when v, is marked the elementary path
is not extended. If a certain elementary path cannot be extended any

more, the algorithm backtracks to the previous vertex in the stack, and
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50 omn. When the start vertex is deleted from the stack, a new strongly
connected component is considered,and so on, until allfsuch components

have been processed.

Below is an ALGOL-like formulation of the proposed algorithm,
The combined action of variables f and g ensures the correct propagation
of the information that a new elementary cycle was found with a certain
vertex v at the top of the stack, for all vertices that are below v in
the stack. The following procedure CYCLE processes only non-trivial
strongly connected components (those which have more than one vertex).
If this condition is relaxed then the algorithm would still be correct,

but corollary 3.1 of section 3.5 would have to be reformulated.
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ALGORITHM 3.1

begin comment algorithm for finding the elementary cycles of a digraph;
procedure CYCLE (integer value v,q; logical result f);

begin procedure NOCYCLE (integer value x,y);

begin insert x in B(y);
delete y from A(x)
EEQ NOCYCLE;

procedure UNMARK (integer value x);

begin mark(x) := false;
for y € B(x) do
begin insert x in A(y);
if mark(y) then UNMARK(y)
end;
empty Bfx)
end UNMARK;
logical Gj
mark(v) := true; £ := false;
insert v in the stack; |
t := number of vertices in the statk;
position(v) := t;
if — reach(v) then q := t;
for w € A(v) do
if — mark(w) then
begin CYCLE (w,q,g);
if g then f := true else NOCYCLE(v,w)
end
else if position(w) = q then
begin output cycle w to v from stack, then w;
f := true
end else NOCYCLE(v,w);
delete v from stack;
if £ thén UNMARK(v);
reach(v) := true;
position{(v) :=N#1.
end CYCLE;
read the digraph D;
find the adjacency lists A of the strongly connected components of D;
for j:=1 step 1 until N do mark(j):= reach(j) := false;

for each non-trivial strongly connected componentt do
begin s := vertex with maximal indegree in this component;

CYCLE (s, dummy, dummy)
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3.4 Correctness

Let D(V,E) be an input digraph with no trivial components.

Lemma 3.1:

Eve&y vertex v € V enters the stack at least once,

Let S denote the strongly connected component of D which
v belongs to, and s € V denote the chosen start vertex of S. Clearly
the call CYCLE(s, dummy, dummy) occurs and thus s enters the stack.
Since all vertices v, v#s of S are unmarked at the time of this cally
and since s reaches v, by induction it can be shown that every vertex

will eventually be added to the stack.

Lemma 3.2:

If v «.. v, constitutes the stack at a given moment, and a
new elementary cycle is found with v, then all vertices v; , «.., ¥
are unmarked upon leaving the stack.

At the time this cycle is detected, variable f is set to true,
which ensures that v, is unmarked upon leaving the stack. Becauﬁe of
the statement if g then f := true ... executed at the return of each
recursive call of CYCLE, an inductive argument shows that a call UNMARK(v, )
1sis% occurs when v, is popped from the stack. Therefore, each vy
is unmarked at that time.
Lemma 3,3

Let vy, ess ,V,y V3 be an elementary cycle, such that v; ... v
or a cyclic permutation of it have already appeared in the k top positions
of the stack at some earlier time, and at least one of these vertices
has b#en deleted from it befdre. If v; ... v, now occupy the k top

positions of the stack, then all v,, ..., Vg have already been deleted

from it.
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If exactly the configuration v, ... Vy appeared before as the
k. top positions of the stack, this means that the configuration of
the stack below v; on that occasion was different from that below
v, on the present one, because the backtracking search strategy ensures
that a given configuration of the stack can never be repeated once its
top vertex is deleted. Therefore, all v, , ..., v, have already left
the stack. If instead, a cyclic permutation Vieso Vy Vieoo Vy_ (i#41)
appeared before as the k top positions of the stack, we also conclude
that all these vertices later left the stack, since vy is above v,
in that configuration and below vy in the present one.

Lemma 3.4:

Let z; , ..., z be an elementary path, (z, ,v) € E, where v is
a vertex in the stack that has never been deleted from it, Then if
Zy 5 esey % are not in the stack, z, is unmarked.

By induction on the.index k, For z, the lemma holds, because
before the first time zZ, 1s reached, z, is unmarked (by the initialisation)
and because (zk,v) € E by lemmas 3.3 and 3.2, we ccuclude that z, is
unmarked each time it leaves the stack. By the induction hypothesis,
if z3, ..., z are not in the stack, z, is unmarked. Assume now that
Zyy Zpyy ssey Z, are not in the stack. If z;, has not been explored yet
or a new elementary cycle was found with z, in its last exploration, then
z, 1is unmarked, and the lemma is satisfied. Suppose then that no new
cycle was detected with z;, at the last time 2z; was in the stack. Therefore,
the exploration of edge (z,, z5) would cause z, to be inserted in B(z,),
and at the time z, left the stack with the mark on, 23 was also marked.
Hence if 2z, , 23, +..,% are now not in the stack, we can apply the induction

hypothesis and conclude that a call of UNMARK(z, ) occurred for unmarking z3e
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Since z; € B(zp) a recursive call UNMARK(z,) also occurred and z,

is unmarked.

Lemma 3.5:

Let v; ,¢.., v, ,V; be a convenient cyclic permutation for an
elementary cycle, such that v, was the first among Vi 1<j<k to ever
enter the stack. Then there exists a configuration of the stack, such
that before v, leaves the stack for the first time, v,vy ... vy, 1<jsk
appear in the j top positions of the stack,

Proof:

Induction on j. For j=1 the lemma holds, trivially by its
hypothesis. By the induction hypothesis, vy ... vy_; occupy the j-1
top positions of the stack and v; has not yet left the stack.

Since (Va—l’ VJ) € E this edge will eventually be reached. Because
vy, can only leave the stack after all the edges from it have been
examined, we conclude that when (v,_;, vy) is going to be examined

the j-1 top positions of the stack are still vy... vy_, and v, has not
yet left the stack. Also no vy, js<p<k, at that moment is in the stack,
because otherwise v, would be underneath v, , which contradicts the fact
that v; entered the stack before v, and has not left it. In addition,
Vys eees Vi is an elementary path and (Vk’ v,)€ E. Therefore, by lemma

3.4 we conclude that v, is unmarked and hence will be placed on top of

Vy_1, in the stack.

Comment: Because of lemma 3.1, the hypothesis of lemma 3.5
that vy was the first among v, ever to enter the stack, is consistent.
TLemma 3.6:

If a vertex is in the stack, it is marked.
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If a vertex enters the stack it becomes marked. We have
then to prove that it is not unmarked while in the stack. Note that an
unmarking process can only be initiated by a call UNMARK(z) where z is a
vertex which is presently being deleted from the stack, and which was
involved in a newly detected elementary cycle. Assume this is the
case and the problem is to show that UNMARK(z) will not unmark any vertex
in the stack. Suppose vertex w; is in B(z) at the time of this call.
Then when w; entered B(z), either w; was above z in the stack, or z was
marked and not in the stack. The latter alternative cannot occur, since
later z entered the stack, which ensures that z was unmarked and its
unmarking emptied B(z). Therefore w, was not in the stack when it was
unmarked. By an inductive argument it can be shown that if the call
UNMARK(z) invoked recursive calls UNMARK(w, ), then all w, entered the
stack necessarily after z, and hence are not in the stack at the time the
call UNMARK(z) occurs.
Lemma 3.7:

Each elementary cycle of D is listed at least crue.

Let vy, +e+y V%, VvV, be an elementary cycle of D, =uch that
v, was the first among vy, ..., Vg ever to enter the stack. By lemma
3.5, V3 «.. Vv will eventually occupy the k top positions of the stack
before v; leaves the stack for the first time. If v, has not yet
left the stack, at the start of the computation of CYCLE with v = vy,
reach (v,) = false and therefore q was set to position (vy). Thus, we
can conclude that parameter g passed to the computation of CYCLE with
v = v, satisfies position (v,) =q. In addition, by lemma 3.6 we conclude
that the examination of edge (v, , v,) in this last computation will find

mark (v,) = true. Hence, the cycle v; , ..., V,,V; is listed.
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Lemma 3,8:

Each elementary cycle of D is listed at most once.

Let v, ,..., V¢ ,vy be an elementary cycle of D which has
already been generated and assume Vy «.. % occupy the k top positions
of the stack. By lemma 3.3 we conclude that all V1 5 sy V, have
already been deleted from the stack some time before. Therefore,
reach (v,) = true at the start of any of the current computations of
CYCLE with v = v,, for 1sj<k. Consequently, position (v,) > q in any
of these computations. Thus, the exploration of the edge (v, , v,)

will not cause the cycle Vis «eoy Vg, V3 to be listed.

Theorem 3.1:
The proposed algorithm for finding all elementary cycles

of D, is correct.

Proof:
Lemmas 3.7 and 3.8.
3.5 Performance

Lemma 3.9:

Let D be a strongly connected component of a digraph input
to the program.. If a vertex v changes from marked to unmarked twice, a
new elementary cycle is enumerated.

Proof:

If v is in the stack and a new elementary cycle was found with
v the lemma is satisfied. Assume then that v left the stack with the
mark on, and let z denote the top most vertex of the stack with which
a new elementary cycle was later found, and whose unmarking would

eventually invoke a recursive call of UNMARK(v) . Assume this call
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occurred and denote by u, and u, respectively the top and bottom

vertices of the cycle to which z belongs (figure 3.3). Thus, there

exists an elementary path v, ..., z, ..., u,, whose vertives are all
unmarked by the return of this call. Therefore, if v enters the stack
afterwards, so does u,. Assume this case, and suppose that u, has not
left the stack in the meantime. Then the exploration of edge (“a’ “1)
would lead to a new elementary cycle u;,...,uz,u;. If on the other

hand, u; had left the stack when u; is reached, this means that at least
one nevw edge from a vertex w, below the first position of u; in the stack
was explored for the first time. Since the processed digraph is strongly

connected, a new elementary cycle ...,w,... is detected with this edge.
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Theorem 3.2:

Let D be a directed graph with N vertices, M edges and C
elementary cycles, input to the program. Then O(N+(C+1)M) time and
O(N+M) space are required to enumerate C elementary cycles.

Proot:

The space bound follows from the fact that the representation
of the digraph by adjatency lists requires O(N+M) cells, the B lists
require also O(N+M) cells and the remaining data structures require O(N).
The time bound follows from lemma 3.9. A vertex can enter the stack
at most twice between the output of two new elementary cycles. Conse-
quently, a given edge can be explored at most twice during this time.
Also because of lemma 3.9, a recursive call UNMARK(v) from the computation
of UNMARK(w), for (v,w)e E, can only occur at most twice between the
detection of new elementary cycles. The same results apply for the
situations before the first cycle is output and after the last one.

Also we observe that any deletion or insertion in lists A and B occurring
during the process can be performed in a constant number of steps. Thus

a time bound per cycle is O(N+M). If D,,...,D, are the strongly connected
components of D, having respectively, N; vertices, M edges and C
elementary cycles, 1<is<p, then an upper bound for the output of the C,
cycles of D, is O((N;+ M, )(C,+ 1)). If D, is non-trivial then M, > N,,
otherwise M; = 0, and consequently, this bound can be expressed Ly

O(N;+ M, C; ). Since finding strongly connected components of D, in the
initialisation of the process, consumes O(N+M) time, we conclude that the
total time bound is O(N+M(C+1)).

Corollary 3.1: A time bound per cycle is O(M) for any elementary cycle,

except for the first enumerated, whose bound is O(N+M).
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3.6 Critical Remarks

Prabhaker and Deo [PrDe74] have already shown that so far, the
most successful cycle-finding algorithms are those based on a backtracking
search strategy. Tiernan's algorithm adopts an essentially unconstrained
backtracking. The main difference between the algorithms of Tiernan and
Tarjan is that the latter has introduced a marking mechanism which avoids
the exploration of a vertex if this vertex is found marked when it is
reached. This situation can occur even if this vertex does not lie in the
path currently under examination. As a result the backtracking becomes
gonstrained. The basic difference between the algorithms by Tarjan and
Johnson is that the latter has modified and improved the marking system.

If an elementary cycle is found with a Certain vertex v, then upon v
leaving the stack, Tarjan unmarks v and all vertices of a set Z which is
the set of vertices which are marked, not in the stack, and which entered
the stack for the last time, after v. Instead, Johnson unmarks v and only
such vertices z€Z for which there exists a path from z to v, involving
solely vertices of Z. Also, all N vertices become start vertices in
Tarjan's algorithm, In Johnson's method, for each strongly connected
component the number of start vertices equals the number of vertices

v such. that there exists an edge to v, from a descendant of v in a
directed rooted tree, obtained by a depth-first search of this component.

These conditions represent further constraints to the backtracking.

The principal difference between Johnson's algorithm and the
present one is that we detect an elementary cycle, as soon as it appears
in the top positions of the stack. Consequently, while exploring a
vertex v we do not seek exclusively cycles involving v and the start
vertex, but any other new cycle is considered. Since this earlier
detection means that the algorithm will not initiate an explicit new

search aimed to find this cycle, as [Jo73a] does, this new strategy
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imposes a further constraint on the backtracking. Also unlike FJo73a’
for each non-trivial strongly connected component the present algorithm
considers exactly one start vertex. Another difference between the two
strategies lies in the marking system: if w is a vertex that is marked
and (v,w)€ E then in the proposed method only one unsuccessful exploration
of edge (v,w) can occur whilst w remains marked. 1In fJo73a] each time
vertex v is found unmarked, an exploration of edge (v,w) certainly occurs.
The effect of these differences in the actual manipulation of digraphs may

be appreciated in the following examples,

The digraph of figure 3.4 has N vertices, 2N-3 edges and N-2
elementary cycles. It has the property that certain vertices (1,2 and 3
in the e#ample) are involved in every possible existing cycle. Digraphs
with this property seem to provide favourable examples for Johnson's
algorithm because if one of these special vertices is the start vertex
then each elementary cycle is generated only once. In fact, for such
digraphs both algorithms(FJo73a] and the present) may perform exactly
the same number of steps, for identical adjacency lists. In figure 3.4
the start vertex is vertex 1 for both algorithms, and both would explore
each edge exactly once in the search for the N-2 elementary cycles,

I
thus requiring 2N-3 steps, for termination. Note that by number of
steps we mean the frequency of execution of a given statement which has the
highest frequency among all by the end of the process (this corresponds
to the number of edge explorations). If the digraph is re-labelled
such that the new vertex 1 is the previous vertex 2, Johnson's algorithm
would take 3N-6 steps, because the previous vertex 1 (and the edge
from it to the new vertex 1) suffers N-3 additional explorations. Since
this vertex is the vertex with maximal indegree, the present algorithm would

always consider it as start vertex and consequently would find all elementary
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Figure 3.4

Figure 3.5
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cycles in 2N-3 steps. For this class of digraphs, the worst case for
Johnson's algorithm occurs when the vertices are labelled as in tigure

3.5, in which the subdigraph composed of vertices N, N-1, N-2, is

explored N-2 times, the subdigraph composed of N, N-1, N-2, N-3 is explored
N-3 times, and so on. A total of N(N-2) steps are required for the
enumeration of the elementamy cycles of this digraph, using [Jo73a]

compared with 2N-3 using the present method.

Concerning the choice of the start vertex, we have adopted
a different strategy from [Jo73a]] which always chooses the least vertex as
start vertex. Our approach is based on the fact that if vy, Voseaey Vg, Vy
and v{, v, «e., ¥/, v{ are elementary cycles involving precisely the same
vertices, vy = v{ and there exists an index j, such that v, £ v/, then this
information is sufficient to recognise those cycles as non identical
(Johnson has imposed as a further condition - following [Ti70]- that v,
to be the least vertex of vy, vy, ..., vk). The alternative that has been
adopted in the present method consists of choosing for the start vertex,
one that is likely not to produce many unfruitful explorations of other
vertices, in the search for elementary cycles involving the start vertex.
If v; is the start vertex and vy is such that (vj, vl) € E, then every exploration
of vy leads to a new elementary cycle, hence is not unfruitful.
Therefore, the choice. for the start vertex to be a vertex with maximal
indegree among the vertices of the considered strongly connected component
seems to be perhaps more appropriate. Observe that a similar choice
could be made, as to which vertex to explore, among the vertices v,,(vy,v;)€ E

and v, the start vertex. Also, extend
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this strategy to which vertex vy to explore, among the vertices vy
such that (v,_,, v,)€ E, vy_; being the vertex of the top of the stack

and not having been deleted from it yet.

Next consider the digraph of figure 3.6, with N vertices, 2N-2
edges and N-1 elementary cycles. Johnson's algorithm wouﬂd consider
vertex 1 as start vertex, explore the path 1, ..., N, generate all
elementary cycles of the digraph, but since this algorithm only considers
cycles involving the start vertex, only the cycle 1,2,1 is enumerated, at
this sage. Next, vertex 1 is deleted and a similar process occurs for
the resulting subdigraph, with vertices 2, ..., N. Vertex 2 is the new
start vertex, path 2,...,N is again reconsidered, and sb on. It takes
N(N-1) steps for enumerating all N-1 elementary cycles using the above
strategy. The present algorithm would find all such cycles in the course
of exploring the paths j,j+1,...,N and j,j-1,...,1, where j is the start
vertex, consuming precisely 2N-2 steps, for termination. Digraphs of
this class have the additional property that for any start vertex chosen,
the present algorithm requires 2N-2 steps, whilst in [Jo73a7] there is no
possible choice of the start vertex for which the algorithm requires

just O(N) steps.

Consider now the complete digraph K,, with n vertices. Since
a new elementary cycle exists with every possible exploration of a given
vertex, any vertex is found unmarked, when reached, and this is true for
both algorithms. Therefore, in the course of finding the elementary
cycles involving the start vertex, all elementary cycles of K, are
generated, but fJo73a] would only enumerate those with the start vertex,
Assume now, a modified version of fJo73a] with the marking system of the
present algorithm incorporated. If T, is the total number of steps required

by the present algorithm to enumerate all elementary cycles of K, then
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n
this modified version of [Jo73a] would require ¥ T, steps, fcr the
J=2

digraph.K,.Consequently, the total number of steps T, required by the
actual Johnson's algorithm for enumerating all elementary cycles of K
satisfies T/ > %=2TJ, n> 2, Observe however, that %:aTJ tends to T,
as n increases.

It should also be noted that in FJo73a} it is stated that this
algorithm unmarks a vertex v, only if appending v again to some elementary
path is sure to lead to finding an elementary cycle, which includes the
path followed by wv. However, we observe that in both TJo73a] and in the
proposed algorithm, a vertex can be unmarked many times, without being
involved in an elementary cycle when explored afterwards as can be seen
inj the digraph of figure 3.7. The example of figure 3.7 with 3K+3
vertices, 6K+2 edges and 3K elementary cycles, was shown by Johnson
to be a worst case for Tarjan's algorithm. We can observe that both
algorithms would unmark and explore each vertex of the subdigraph composed
by vertices 2K+2, 2K+3, ..., 3K+3, for each elementary cycle existing with
vertex 1 as start vertex, although no vertex of this subdigraph is
involved in such cycles. For the enumeration of the 3K elerantary
cycles of this digraph, Johnson's algorithm requires 6K®*+11K-1 steps,
while the present algorithm requires 2K® + 6K or 7TK+1 steps, depending
on which vertex, K+2 or 2K+2 respectively, was chosen for the
start vertex. Note that in this last fortunate case (vertex 2K+2 the
start vertex), each edge of the digraph is explored ju-!t once during

the entire process, with the exception of edge (3K+3, 2K+2} which is

explored K times.

3.7 Fundamental set of cycles

We consider now the problem: Given an undirected graph, find
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a fundamental set of cycles of this graph. A strategy for solving this
problem, commonly adopted by some existing methods, consists of
performing the following steps:
(i) Find a spanning forest of the graph
(i) Obtain the fundamental set of cycles, from the spanning
forest, by successively considering edges from the

graph, which do not belong to the forest.

Welch FWe66) assumes the graph to be represented by an incidence
matrix B=(b;,;). For each column j of the matrix if possible, a row i
is chosen, such that i was previously unchosen and b,y= 1. If row i
was chosen label the edge of the j-th column by i, and replace any other
row k, such that b 4= 1, by the sum module 2, of rows i:and k. This
corresponds to the step (i) mentioned above. Each cycle of the
fundamental set (step (ii)) is obtained by combining an unlabelled edge,
corresponding to column j, with edges labelled k, such that by =1.
According to the analysis of Welch's algorithm by Gotlieb and Corneil
[GoCo67], the time and space bound for this method are 0(N2M) and
O(NM), respectively. Gotlieb and Corneil have also presented a modified
version of Welch's algorithm, which improved running time whilst adding
some extra space. However, the modifications introduced did not alter
the most significant figures in the expressions of time and space bounds,

and those remained the same: O(N2 M) and O(NM), respectively.

The algorithm FGoCo67)] operates with the graph G, assumed to be
connected, represented by an adjacency matrix A = (a,,).  Like IWe66],
this algorithm also performs the steps (i) and (ii) explicitiy. For
obtaining & spanning tree, the algorithm first constructs a N x N matrix

B = (b,J), such that: for i«<j, byy=1 if ayy= 1 and a;, = 0, for all
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k isk<j, and otherwise b;; = 0. Por i > j, it is defined by, = by,;.
Matrix B corresponds to an adjacency matrix of a forest, which is a

partial subgraph of G. Then a T x N matrix C = (¢;y) is constructed

where T is the number of trees in that forest. This matrix is defined

as follows: c¢;; =1 if vertex j belongs to tree i, and ¢y, = 0 otherwise.
Vertex 1 is defined as belonging to tree 1 and if vertex k belongs to

tree j, then clearly, all vertices reachable from k in B, also belong

to tree j. The next step consists of transforming B into an adjacency
matrix of a spanning tree of G by adding T-1 edges to it. This is
accomplished by examining the T-1 rows of C, with fewest 1's, There

must be one edge for each of these T-1 rows which joins the tree corresponding
to this row to another tree in the forest. Therefore, when examining row

i, if ¢yy =1 with a;, = 1 and by, = O then edge (j,k) is added to B,

i.e. we set by, =Dy = 1. The spanning tree is now complete. Each

edge that is now added to matrix B will produce a cycle in the fundamental
set. However, note that the cycles ought actually to be traced back from

B since, the simple addition of the edge in the matrix does not make the

cycle explicit. Clearly, if the graph is not connected, then the algorithm
is apblied separately to each of the connected components. Gotlieb and
Corneil have presented a detailed analysis of the algorithm from whieh it

is deduced that the time and space bounds are O(N3M) and O(NZ), rezpectively.

The algorithm by Paton [Pa6971 also utilises the graph represented
by an adjacency matrix A=(a(1) but constructs the spanning tree using links
from each vertex to its ancestor in the rooted version of the tree.

Unlike the two previous methods, in Pa697] step (ii) - obtaining the
fundamental cycles - is performed in parallel with step (i) - finding
a spanning tree. The idea of the algorithm is as follows: The first

vertex of the graph is considered to be the root of the spanning tree
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and each vertex in this tree is examined once. When one vertex i

is examined, all vertices j such that a;y= 1 are considered. If

J is already in the tree, then a cycle of the fundamental set has

been detected. This cycle consists of the path from j to i in

the tree, plus the edge (i,j). Otherwise, if j is not in the tree,
then j is added to the tree, with the link corresponding to vertex j
pointing to i, the ancestor of j. After the examination of edge (i,j),
a;y is set to zero to avoid considering this edge twice. After all the
edges incident to i have been examined, a new vertex already in the tree
but not yet considered, is chosen. Paton points out that the Hest

method for selecting this new vertex is the last element method, which

consists of always selecting a non examined vertex which entered the

tree last. This method has the advantage of simplifying the task of
tracing the cycles which have been detected. From Paton's analysis of
the algorithm, we conclude that both the time and space bounds are

O(N®). The time bound includes the input of the graph and the generation
of the cycles, but not its output. The actual output requires O(NM)
time, since there are O(M) cycles in a fundamental set, eacl cycle wilh
O(N) vertices. A modification to this algorithm has been suggested

by Jovanovich [Jo74] which requires N cells less of memory.

3.8 The proposed algorithm

The basic idea of our algorithm for finding a fundamental
set of cycles is similar to the three methods described, namely to
find a spanning forest of the graph and obtain the fundamental set of
cycles py successively considering edges of the graph which do not
belong to the forest. Like Paton's algorithm, we detect the cycles

concurrently with the construction of the forest.

The strategy of the present algorithm is based on two main

points. First, since any spanning tree corresponding to a given
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connected component of the graph, may be used to find the fundamental
set of cycles of this component, the simpler and more efficient the
method for finding such a tree, the better the process, Second,

since our aim is to generate a fundamental set of cycles and obtaining
the spanning forest is just a step towards that aim, we do not need to
construct the forest explicitly. Instead, when a given vertex v of
the digraph is being considered, we only store, the information that is
relevant to our purpose, namely the path from v to the root of the

spanning tree under consideration.

In relation to the first of the above points, observe that
& depth-first search of the graph, as stated by Tarjan [Ta72] produces
a spanning tree in O(N+M) time. Starting from the algorithm Ta72] we
add a mechanism for detecting the fundamental set of cycles and also,
we simplify the process slightly by avoiding the explicit construction

of the tree.

Our variation of Tarjan's depth-first search algorithm uses
a stack for storing dynamically the paths to the root of the tree.
We represent the graph as a set of adjacency lists A, wlith each edge
(v, w) of the graph represented twice, namely vertex v in A(w) and vertex
w in A(v). A vector position is also used. Before a vertex v is
examined, we have position(v) = O. If v belongs to the stack and is
its t-th vertex from the bottom, then position(v) = t. When v leaes
the stack, position(v) is set to N and remains unchanged until the end
of the process. The algorithm makes use of a recursive backtracking
procedure BASIS which attempts to extend the path kept in the stack.
Suppose that vertex v is at the top of the stack and edge (v,w) is

reached. The following cases may occur:
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(i) If position(w) = O then necessarily w is not in the staek
and w has not been examined yet. A call BASIS(w) will occur
which will insert w in the stack, so extending the path under
examination, An edge incident to w is then examined.

(ii) If position(w) = N then w has already been explored before
and has been deleted from the stack. Since a vertex only
leaves the stack after all the edges incident to it have been
explored, we conclude that edge (w,v) has already been considered
when w was at the top of the stack and v was underneath w,
in the stack. Therefore, we can nov disregard this edge
and choose another edge incident to v, for examination.

(iii) If position(w) = t-1, where t is the number of vertices
in the stack, then w is present in the stack, immediately
underneath v. This means that v has been inserted in the
stack during the computation of BASIS(v), whose call occurred
wvhile exploring edges incident to w. Thus edge (v, w)
has already bheen considered before and can now be disregarded.
Another edge incident to v is then selected.

(iv) If O < position(w) < t-1 then necessarily w is sonewhere in
the stack, not immediately below v. Hence this is the first
appearance of the edge (v,w) and a cycle of the fundamental
set has been detected. This cycle can be considered at
once and no extra work is required to trace it. The cycle
consists of w, the vertices above it in the siack, then w,
Again, the next edge incident to v is selected.

After the examination of all edges incident to v, vertex v is deleted

from the stack and the algorithm backtracks to the vertex immediately

below v, in the stack. When the vertex at the bottom of the stack is

deleted, a fundamental set of cycles, corresponding to the connected
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component of the graph which this vertex belongs to, has been obtained.
Another vertex not yet explored, becomes the root of the spanning tree of
the new connected component and so on, until all such components are
considered. Observe that case (i) above corresponds to the exploraticn
of an edge that is part of a spanning tree. Case (iv) corresponds to

an edge that does not belong to a spanning tree in the forest and which
produces a cycle in the fundamental set to be enumerated. Cases (ii)
and (iii) correspond to the second instance of the exploration of an
edge. Such exploration occurs since every edge is represented twice in
the adjacency lists of the digraph. It follows from these observations
that if the input graph has N vertices, M edges and K connected components,
then exactly N-K edges are explored in case (i), a total of M edges are

explored in (ii) and (iii), and exactly M-N+K are examined in case (iv).

Below we present an ALGOL-like formulation of the strategy.
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ALGORITHM 3.2

begin comment an algorithm for obtaining a fundamental set of cycles

of an undirected graph;

procedure BASIS (integer value v);

begin insert v in the stack;
t := number of vertices in the stack;
position(v) := t;
for w € A(v) do
if position(w) = O then BASIS(w)
else if position(w) < t-1 then
output cycle w to v from stack, then w;
position(v) := N;
delete v from the stack;
end;

read the digraph and construct the adjacency lists;

for j := 1 until N do position(j) := O;
for j = 1 until N do
if position(j) = O then BASIS(j)
end
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3.9 Correctness

Let G(V, E) be a connected graph with N vertices, input to algorithm
3.2 (if the graph is not connected we can assume, without loss of
generality that each connected component is handled separately):

Lemma 3.10
There exists a spanning tree T of G, such that, at any
arbitrary point of the computation of the algorithm the content of
the stack between any two vertices v and w which belong to the stack,
corresponds to the path in T between these vertices,
Consider the graph T(X, Y), where X is the subset of V,
whose vertices are at sometime inserted in the stack and for p, q.€ X,
(p,q)e Y iff p and q occupy consecutive positions in any possible
configuration of the stack through the process. By inspecting the
algorithm, we:conclude that a recursive call BASIS(w) can only occur
from the computation of BASIS(v) if w€A(v) i.e. if (v, w)€ E.
Therefore, Y c E and T is a partial subgraph of G. Next « . note
that since the graph is connected, any of its vertices is reachau'e froum
the vertex at the bottom of the stack. Because every vertex is inserted
in the stack after being reached for the first time, we conclude that
all vertices of G are eventually inserted in the stack, i.e. V=X and T
spans G. Finally, since the call BASIS(w) can only occur if w has
not been present in the stack before and since the content S of the stack
between w and a fixed vertex z below it, remains unchanged vitil w is
deleted from it, we conclude that there is an unique path in T between

w and z, given by S. Therefore T is a spanning tree of G.
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Lemma, 3.11¢

Let (v,w) be an edge of G, which is not in the considered

spanning tree T. Then when (v, w) is first explored, both v and w

belong to the stack.

Proof:

Let (v,w) be first reached when v is at the top of the stack.
If w does not belong then to the stack end has not been present in it
before, we have position(w) = 0, Therefore w will be inserted in
the stack, and the path between v and w in T, of lemma 3.10, will
include edge (v, w) since these vertices are consecutive in the stack.
This contradicts edge (v, w) not belonging to T. On the other hand, if
w does not belong to the stack and has already been present in it before
we have position(w) = N.  Therefore, all edges incident to v had been
explored sometime before, which contradicts the fact that edge (v, w)
has not been considered yet. Thus w also belongs to the stack.
Theorem 3.3:

Each cycle of the fundamental set .9f.G, corresponding to the
considered spanning tree T, is enumerated exactly once.

Let (v, w) be an edge of the digraph which does not belong to
T and suppose (v, w) is first reached when exploring the edges of v.
Then when this edge is examined, v is at the top of the stack and
by lemma 3.11, w is somewhere underneath v, in the stack. Therefore,
position(v) = t and O < position(w) < t, where t is the numter of
vertices in the stack. Since we are considering the first exploration

of (v, w), we conclude that wiis not immediately below v in the stack

and therefore position(w) < t-1. Thus, the cycle:of the fundamental

set, corresponding to edge (v, w) is enumerated at least once. Now,

after all nges incident to v have been explored, exactly once each,
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v is deleted from the stack and position(v) is set to N. Since w
still belongs to the stack at that moment, w will eventually occupy
the top position and another exploration of edge (v,w) occurs.
However, because position(v) = N and N > t, it follows position(v) > t-|
and therefore the cycle containing edge (v,w) is not enumerated again.
When w leaves the stack, position(w) is set to N and since position(v)
and position(w) are now both different from zero, v and w can not be
explored again. Therefore, no re-exploration of edge (v,w) can occur
and we conclude that the cycle of the fundamental set, corresponding to
edge (v,w) is enumerated exactly once.
Theorem 3.4 ¢

Only cycles belonging to the fundamental set, corresponding to
a spanning tree T, are enumerated by the algorithm,
Proof:

Let w...,yw be a cycle enumerated by the algorithm. Since
Ve .oy is taken from the stack, by lemma 3.10 we conclude thal w...v
is the path in T, between w and v. Therefore all edges of W..yv
belong to the spanning tree.  On the other hand, the edge (v,w) can
not belong to T, because T has no cycles. Thus, ...y~ 15 a cycle
with exactly one edge of the graph which does not belong to the spanning

tree. Hence w..,%w belongs to the fundamental set of cvcles, corresponding

to T.

3.10 Performance:

Theorem 3.5:

Let G(V,E) be a connected graph with N vertices and M edges,
input to algorithm 3.2.  Then a total of O(N+M) space and O(N+M) time

are required for the enumeration (without listing) of the cycles belonging
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to a fundamental set of the graph G.

Proof:

The space bound follows immediately from the fact that the
representation of the graph by adjacency lists requires O(N+M) space
and the remaining data structures require O(N) space. For the time
bound, observe that a vertex v can only be explored if it has not been
reached before, i.e. if position(v) = 0. Once v is reached, position(v)
becomes different from zero and since there is no way of re-setting
position(v) to zero, v can not be explored again. Since the
exploration of a vertex praduces the exploration of all edges incident
to it, we conclude that the N exploration of vertices (once each),
produces 2M explorations of edges (twice each). Therefore a total of
O(N¥M) time is required for enumerating (without listing) the cycles

of a fundamental set.

As already mentioned in section 3.7 the explicit output of
the cycles of the fundamental set requires O(NM) time. Therefore, if
this explicit output is desired, then algorithm 3.2 takes O(NM) time
for termination, although the actual generation of the cycles require:

only O(N+M) time.

Alternatively, we can modify algorithm 3.2, so as to produce
a reduced output of the cycles, with the aim of reducing the output
time. Consider the graph of figure 3.8. If we assume that its vertices
are in ascending order in the adjacency lists representation of the graph

then algorithm 3.2 would implicitly find the tree of figure 3.9, as a

spanning tree of the graph. Now let us consider the following alteration

to algorithm 3.2, in which each vertex is output by the time it leaves
the stack: if vertex v is being deleted from the stack and it occupied

a position in the stack lower than vertex w (w being the vertex output
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immediately before v), then vertex v is output underlined (v):

if vertex v occupied a position in the stack higher than w, then

vertex v is output with a bar (v); if v and w occupied the same
relative position in the stack or v is the first vertex in the sequence,
then vertex v is output neither underlined or barred. With such a
scheme, the output corresponding to the graph of figure 3.8 would be:

-_—

5 8 4 9 71 3 6 2 1

The above sequence uniquely determines the tree of figure
3.9. The ancestor of any given vertex v (v not being the root) is
the first underlined vertex w to the right of v in the sequence, such that
the number of underlines -~ from the right of v until and including w -
exceeds the number of bars. Now, let us consider the information
concerning the cycles. If vi,v2,...,%, vy is a cycle in the fundamental
set, with v; preceding v;4, in the output sequence (1 < i < k) then this
cycle is perfectly characterized by that output sequence with underlines
aﬁd bars and by the pair v;,v,. Therefore, we can simply add (Vx) to the
sequence, immediately after v, , with the parenthesis distinguishing the
notation of the cycle from the occurrence of the actual vertex v, 1in
the sequence. With this scheme of output, the fundamental set of
cycles of the graph of figure 3.8 is represented by the sequence:

5(1)8(3)4(2,1)9(3)7(2)3(1)6(1)2 1

Each vertex between parenthesis in the sequence corresponds
to a cycle in the fundamental set. In the example above, therefore
there are 8 cycles in the set. For obtaining the explicit form of
say the first cycle in that example, we proceed as follows: the
5(1) in the beginning of the sequence, indicates that there is a cycle
whose "first" vertex is 5 and "last" vertex is 1. Consequently,

starting from 5 we successively find the ancestors of the vertices in
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the cycle, until 1 is reached. The first vertex after 5, such that the
number of underlines exceeds the number of bars is 4 and therefore 4

is the ancestor of 5, Similarly, we find 3. as the ancestor of 4;

2 the ancestor of 3; and 1 the ancestor of 2. Hence the desired

cycle is 543215,

Using this technique, we can output a fundamental set of
cycles in O(N+M) time. Alternatively, we can decide to eliminate from
the output, the vertices that are involved in no cycles, which brings
the output time bound to O(M). Consequently, the whole process of
finding a fundamental set of cycles can be accomplished in O(N+M)
time, which makes the proposed strategy optimal within a constant

factor.

3.11 _FElementary cycles in undirected graphs

Given an undirected graph G(V,E) we consider now the problem

of finding the elementary cycles of the graph.

One possible approach to this problem consists ot modifying
an algorithm for finding the elementary cycles of a digraph (sections
3.2 to 3.6) to operate for undirected graphs. Basically, any elementary
cycle finding algorithm for digraphs can be adapted to handle undirected

graphs. This method is discussed in the next section.

Another way of solving the present problem c.-:ists of
finding the elementary cycles of the graph, by computing tr: elements
of the cycle vector space of the graph, The basic idea is first to
obtain a fundamental set of cycles (sections 3.7 to 3.10)- Next,
the elements of the cycle vector space are computed, starting from
that set. A test is performed to verify whether a newly computed

element of the space is an elementary cycle and if so the cycle can be
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output. Welch [We66] has attempted to produce all elementary cycles

of the graph, without considering all pessible elements of the vector
space, by conveniently ordering the cycles of the fundamental set.
Gibbs [Gi69] has shown however, that the ordering of [We66] does not
necessarily exist and as a consequence, Welch's method fails to enumerate
all elementary cycles, in some cases. Hsu and Honkanen [HsHo72] have
described a method for finding the cycles that [We66]misses. Prabhaker
and Deo [PrDe747] also find the elementary cycles by trying to reduce
the number of computations of elements of the vector space. However,
as it is shown in [PrDe74], there exjist worst cases for which this
algorithm has an exponential time bound. In this same paper, it is
pointed outthat all known methods for finding elementary cycles through

the cycle vector space, have also exponential time bounds.

3.12 The proposed algorithm

Oyr strategy consists of modifying algorithm 3.1 for finding
the elementary cycles of a digraph, to handle undirected graphs. Tkis
approach is justified by the fact that so far all atewnpts to produce
a "pure undirected graph cycle finding algorithm", based upon computations
of elements of the cycle vector space, have been shown to have an

exponential time bound, as mentioned above.

Let G(V,E) be an undirected graph with N vertices and M edges.

Consider the digraph version D of G, which is obtained by 1~placing

each undirected edge of G, by two directed edges having opposite
directions. Figure 3.11 illustrates the digraph version of the
undirected graph of figure 3.10, Comparing the cycles of G and D,

we observe that D contains all cycles of G, plus two additional classes

of cycles, which are not present in G: The first is composed by
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Figare 3.10

Figure 3.11
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the cycles of D having exactly two edges. These cycles correspond to
single edges in G and clearly there are precisely M such cycles. For
characterizing the other mentioned class, consider an elementary cycle

C = Vy,Vaseee,Ve_1,% vy (k> 2), of G. Clearly, D also contains the
cycle ef = vy ,Vz,ee0,V 1,V vy and since (v;,vy) and (v,,v,),

1<i, jsk are distinct edges in D, ¢} =v,,v,,V% _y,+0.,V2,v; and

c¢] are distinct cycles in D, However, both cycles ¢ and ¢j of D
correspond to the single cycle ¢ of G. We name c¢{ and ¢ as opposite
cycles each to the other. For example, the cycle 12341 of the undirected
graph of figure 3.10 corresponds to the opposite cycles 12341 and 14321
of the digraph of figure 3.11. Thus, if G contains C elementary cvcles

D will contain the total of C' = 2C + M.,

Now let us suppose that an algorithm for finding the elementary
cycles of a digraph is applied to D, aiming to obtain the cycles of G.
The problem that arises when proceding so is concerned with those two
classes of cycles which are in D, but not in G. The basic alterations
required, in order to make the algorithm operate correctly, consist of
finding a suitable way of detecting these classes of cicles and uvoiding
their output. The cycles composed by exactly two edges can be easily
recognised, simply by testing the number of edges in each newly generated
cycle. As for the other class of unwanted cycles, we wish to find a way
of detecting that a newly generated cycle ¢} of D is the opposite cycle
of another cycle c¢{ of D, which either has already been generated or
which eventually will be generated, The constraint that we impose
on the method of checking opposite cycles, is that the mechanism of
detection should not increase the time bound, i.e. the time bound of
the algorithms that find elementary cycles in directed and undirected

graphs should be the same. In order to describé this mechanism of
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detection, it is convenient to represent every cycle of G as

VisVaseees Vi s V) (k>2), with v, fixed and vp<v, . The elementary cycles
of the graph of figure 3.10, using this representation, are 12341,
12431, 13241, 1231, 1241, 1341 and 2342. Using this representation

we can divide all elementary cycles v} ,v.,...,v, v; of D, with more
than two edges, into .two sub-classes: those with v; < v, and those
with vo >v, , since v £ vy because k > 2, Clearly, the opposite cycle
of a cycle of one of these sub-classes, belongs necessarily to the other
sub-class. Therefore our problem of generating duplicate cycles can

be solved simply by testing whether v, < vy or v, > vy, in each newly
generated cycle and rejecting it if the latter is satisfied, for instance.
Clearly to each accepted cycle there corresponds a rejected one and a
cycle can be accepted either before or after the generation of its

opposite rejected one.

The implementation of this mechanism in algorithm 3 .1 is

straightforward. We replace the following block of that algorithm

output cycle w to v from stack, then w;
f := true
end

by the following:
begin
z := vertex immediately above w in the stack;

if z < v then output cycle w to v from stack, then w;

a
]

true
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The above implementation is justified by the fact that
every newly generated cycle v, ,v; ,...,V,V; corresponds to the
configuration of the stack being ...vivVo...Vy, With v, at the top.
Therefore, in terms of variables of algorithm 3.1, variable v contains
the value of v, , variable w contains the value of v; and conseq*ently
the vertex above w in the spack which is assigned to variable z, corresponds
to v,. Observe also that storing the stack in sequential allocation
form, seems to be advantageous since z can be immediately determined
in this case, by z := stack(position(w) +1). Finally, we mention
that in practical terms, one single comparison has been added to algorithm
3.1. This single test also solves the problem of rejecting the cycles
vhich have exactly two edges, because for these cycles v, = v, and

consequently z = v.

3.13 Correctness

The correctness of the proposed strategy follows directly
from the correctness of algorithm 3.1 and from the observations of the
previous section, concerning the introduction of the mechanism fou
detecting and rejecting cycles of the digraph version of the given

undirexted graph G, which do not belong to G.

3.14 Performédnce

Theorem 3.6:

Let G be an undirected graph with N vertices, M edges and
C elementary cycles. Then algorithm 3.1, with the modifications of
section 3,12 incorporated, enumerates the elementary cycles of G in

O(N4+(C+1)M) time and O(N+M) space.
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Proof:

The space bound is obvious. For the time bound, consider
the digraph version D of G. According to sections 3.5 and 3.12,
the C' = 2C+M elementary cycles of D are generated in at most
O(N+(C'+1)M) time. Now, let us divide the time required for generating
the C' = 2C + M cycles of D, into two parts: the time needed for generat-
ing those 2C elementary cycles and that needed for those M cycles.
Because the latter M cycles correspond to the cycles of D which have
exactly two edges, the time required for generating them is not
greater than O(N+M). On the other hand, O(N+(C+1)M) time is required
for the generation of thosg 2C elementary cycles. Consequently we

conclude that the total time bound is O(N+(C+1)M),

3.15 Conclusions

We have presented in this chapter, algorithms for finding the
elementary cycles in directed and undirected graphs as well as an algorithm

for finding a fundamental set of cycles of an undirected graph.

The latter algorithm consists basically of performing a depth-
first search of the graph and requires O(N+M) tim: for generating the
cycles, excluding the time required for thei r output. The explicit
output of the cycles consumes O(NM) time. However, an alternative
reduced form of listing the cycles has been also presented, which requires
O(N4+M) time. The proposed solution is optimal, within & conetant
factor. The algorithm by Paton [Pa69] - which is the best ¢ xtant
algorithm for solving this problem — although it can easily be modified
for generating the cycles (with no output) in O(N+M) time, as presented
in [Pa69] consumes O(N®) time for this task, plus the usual O(NM)

time for; the explicit output of the cycles. Also another difference
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between our algorithm and [Pa69] is that the latter is not a deptn-

first search algorithm, This contradicts what is reported in [Jo74].

The proposed strategy for finding the elementary cycles of
an undirected graph was obtained by adapting our algorithm for the
elementary cycles of a digraph. It should be noted that the modifica-
tions introduced in the latter, in order to make it operate for un-

directed graphs, did not increase the overall time bound.

The proposed algorithm for the elementary cycles of a digraph
is based on work done by Tiernan-Tarjan-Johnson. Although its
(worst case) time bound is similar to that achieved by Johnson, namely
O(N' + M) per cycle, we believe that the techniques for detecting an
elementary cycle anywhere in the path under consideration and its
enumeration as soon as the cycle is contained in this path - which
were used in our proposed algorithm - represent some important

features for cycle finding methods.

The present chapter has shown examples where unne:essary
work was done by some existing algorithmsfor finding elementary cvcles
in digraphs. The question that arises is : what about inefficiencies
of our ptoposed algorithm? Clearly they still exist because a vertex
or an edge may be unsuccessfully explored many times during the prccess.
However, these same inefficiencies are also present in the existing
backtracking methods. Sinpe we have eliminated some of the inefficicncies
of those methods, we believe that our proposed algorithm compares

favourably with them.

It shopuld be noted that a previous version of algorithm 3.1

[SzLa74] was an unsatisfactory attempt to devise a method that would
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explore unsuccessfully any vertex, at most once during the entire
process. An open question still remains about the existence of an
algorithm that would find all elementary cycles of a digraph, in such
a way that any edge or vertex would be unsuccessfully explored at
most a constant number of times during the entire process, Such an

algorithm would have an optimal time bound.
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CHAPTER 4

SHORTEST PATH PROBLEMS IN ACYCLIC DIGRAPHS

4.1 Introduction

Shortest path problems constitutes an important area in graph
algorithms, mainly because there is a wide range of different applications
which make explicit use of such algorithms. Probably due to this fact it
has received much research attention. In fact, an efficient soiution for
the shortest path between two given vertices of a digraph was devised
as early as 1959 by Dijkstra [Di59]. Observe that this’problem has no
interest from the "pure mathematical" point of view, where efficiency is
not considered. For, the following simple algorithm solves the problem:

consider all paths between the two given vertices;

choose the path with minimal length
end

In this chapter we deal with shortest paths problems in acyclie
digraphs, with weighted edges. Obviously, algorithms for solving these
problems in general (not necessarily acyclic) digraphs, would also operate
correctly the acyclic ones. However, if the digraph contains no cycle
some shortest path problems admit of more efficient algorithms. Further~
more, acyclic digraphs consitute an important class of digraphs, with many

specific applications.

Each of the sections of this chapter handles a differ-nt problem
related with finding shortest paths in acyclic digraphs. Sectica 4.2
contains an algorithm for solving the shortest path problem between two
given vertices. The extensions of this algorithm to find the shortest
paths from all vertices to a fixed vertex and from a fixed vertex to all
other vertices are described in sections 4.3 and 4.4, respectively. A

further extension to find the shortest paths between every pair of vertices
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is presented in section 4.5. The problem of finding a shortest path between
two given vertices, visiting some specified vertices is the subject of

4.6. Section 4.7 contains an algorithm for the k-shortest paths from all
vertices to a fixed vertex. k-shortest paths from one vertex to all others,
between every pair of vertices and between two specified vertices are
handled in sections 4.8, 4.9 and 4.10, respectively. An algorithm for the
longest path in an acyclic digraph is presented in section 4.11 and tne
k-longest path in such a digraph is considered in 4.12. Some furthesr

remarks form the last section.

The strategy for solving a shortest path problem - and the time
bound of the corresponding algorithm — may vary according to whether
or not the weights assigned to the edges assume negative values. For
instance, there exists an algorithm to find the shortest path between
two given vertices of a digraph (possibly with cycles) in O(N®) time,
only if all weights are non-negative. A corresponding algorithm that
operates for digraphs with negative weights allowed requires O(NM) time.
If the digraph contains no cycles such a difference is known not tu =2xist,
Therefore, unless otherwise stated (sections 4.11 and 4.12), the weights

of the considered acyclic digraphs may assume any real value.

4.2 Shortest path between two given vertices

Given a directed graph D(V,E) with weights diJ assigned to
its edges, the problem consists of finding a path from a to b which
minimizes the sum of the weights of their edges. Dreyfus [Dr69] has
surveyed and discussed a number of algorithms for solving this and other
related problems. The method by Dijkstra has a time bound of 0(N®) and

was devised for digraphs with non-negative weights. Algorithms were
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also presented or discussed by Nicholson [Ni66], Boothroyd (Bo67],

Dantzig [Da63], among others.

An algorithm for specifically finding a shortest path between
two vertices of an acyclic digraph was presented by Elmaghraby [E170].
It uses a "distance matrix" (aid) for representing the digraph, where
if (i,j) € E then a,, = d1J otherwise 8, is infinite. A pre-pass is
performed when a topological sorting arrangement of the vertices of
the digraph is obtained. This topological sorting is used for rearranging
the distance matrix, so that it becomes upper-triangular. Now the length
of the shortest path from vertex 1 to vertex k is computed as follows:
label vertex 1 as al = O and at any step j consider the set of vertices
i, such that (i,j) € E; +the label o of vertex j is found by calculating
o = min(ar1 + du)‘
When vertex k is finally labelled, %: is the length of the shortest path.
For determining the shortest path itself, another pass is performed as
follows: for each vertex j, determine vertex i, such that (i,j) € E and
o + d1J = a/J y for j = k,k-1,...,2.
The analysis of this algorithm is straightforward. As it stands, the
algorithms requires O(N®) time and space for termination. This follows
from the fact that O(Na) time is required for each of the three distinct
passes of the algorithm, namely, the topological sorting pass, the
computation of the length of the shortest path and the tracing back
pass. A similar algorithm can be found in [Wa70]. It should be pointed
out that a simple change in the representation of the digraph - by
adopting the adjacency lists representation - can alter the time and
space bounds to O(N+M), if the corresponding change in the strategy is

performed. Such an algorithm, with the latter bound, was presented by
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Johnson [Jo73]. Observe that the bound O(N+M) is realized in each of the

three distinct passes of the method.

Our present algorithm uses a backtracking recursive procedure
that performs a depth-first search of the digraph. At the end of this
search, the shortest path from vertex a to vertex b is determined. The
adjacency lists representation is used and the weights are also stored in
this list: d1J is supposed to be part of the node which contains vertex

jy in A(i). The vectors route and length are also used, so is the boolean

vector mark, all of size N. At the beginning mark(v) is set to false,

for all v,1%vSN, When vertex v is reached mark(v) becomes true, remaining

so until the end of the process. The content of length(v) equals finally the
length of the shortest path from v to vertex b, if there is one, and in-
finity, otherwise. The vector route is used to keep an updated version

of the shortest path itself, so that the tracing back of the path does not
require the examination of the whole digraph again. If vertex v reaches

b and v is reachable from a then at the end route(v) contains a link to

a vertex z,such that a shortest path from v to b isv,z,...,b.

The algorithm proceeds as follows: consider the case inwhich
vertex v,v#b, has been reached for the first time. Then all edges fr-n v
will be explored. Assume edge (v,w) is reached.
(i) If w has not been explored yet then mark(w) = false and
a call of the recursive procedure PATH(w) occurs. On
returning of this computation, the content of length(w)
equals the length of the shortest path from w to b and route(w)
contains the vertex following w in this path if there is one
or zero otherwise. Therefore if length(w) + de< length(v)
then length(v) is set to length(w) + d . and route(v) is

set to w.
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(i1) If w has already been explored before then mark(w) = true
and an action similar to (i) is undertaken except that no
call of PATH(w) is invoked.

After the last edge from v is explored, length(v) and route(v) contain
respectively the length of the shortest path from v to b and the value of
the vertex following v in this path or zero if no such path exists. The
algorithm then backtracks to the vertex in whose exploration the call
PATH(v) was invoked and so on. In the initialization of the process
mark(b) is set to true. Therefore no edge from b can be explored as it
is known that they do not lead to the shortest path from a to b. Thus
the depth~first search is not necessarily completed at the end of the

process.

The following is an ALGOL-like formulation of the algorithm.
The length of the desired shortest path is stored at the end, in length(a).
The shortest path itself is contained in the route vector: the first
vertex is a; +the vertex following any vertex v, v#b, is route(v) and the

final vertex is b.
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ALGORITHM 4.1

begin comment an algorithm for the shortest path from vertex a to

vertex b is an acyclic digraph;

procedure PATH (integer value v);

begin mark(v):=true;
for w € A(v) do
begin if —mark(w) then PATH(w);
if length(w) + de < length(v) then
begin length(v):=length(w) + d_;

route(v) :=w

end
end
end PATH;

integer a,b;

read the digraph and construct the adjacency lists A;

read the valuesof a and bj

for j:=1 watil N do

begin mark(j):=false;
length(j):=infinity;
route(j):=0

end

mark(b) :=true;

length(b) :=0;

PATH(a)

end
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The correctness of the proposed method can be verified by +the
following lemmas:

Let D(V,E) be an acyclic digraph with weights dld assigned
to its edges and a,b € V. Assume D is input to algorithm 4.1:
Lemma 4.1

If VoAV s eV, (azvl, b=w;) is a shortest path from a to b in
D, then at the end of the process, 1ength(vi) contains the length of
the shortest path from vertex v, to v 1518k,

By induction on decreasing i. For i=k the initialization of
the algorithm sets length(v;):O and mark(v;);jggg. The former is the
correct value of the length of the shortest path from v to itself.
The latter prevents length(vk) to be altered during the process, which
completes the proof for the base. By the inductim hypothesis we assume
that at the end of the process 1ength(vl) 2%iSk contains the value of the
shortest path from v, to v Now consider the exploration of vertex V..
When edge (vl,vz) is eventually reached, if mark(vz);iglgg a call of
PATH(vz) océurs. On returning, length(va) contains i*s final value in
the process, hence the length of the shortest path from v, to v;. The
algorithm then compares length(vz) + dv v with length(vl), which contains
the value of the length of a previous p;t; from v, to v - If the tirst of
these values is the smallest the algorithm assigns it to 1ength(vl).
Otherwise these values are equal and no action is taken. If mark(v2)=
true no call of PATH(VB) is invoked and length(vz) contains already its
final value, since the digraph is acyelic., A similar comparison and action
as above is undertaken. In any case, after the exploration of edge

(vl,v ), 1ength(vl) contains the value of length(vz) +dv v’ hence the
2 12
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length of the shortest path from v, to v - Also because of this fact,
length(vl) is not altered anymore after the exploration of (vl,va) which
completes the proof.

Lemma 4.2:

At the end of the process, route(vl)=v2, route(vz):vd...,
route(vk_2=vk and route(v;):O, where vl,vz,...,v;(a=vl, b:w;), is a
shortest path from a to b, in D.

The proof is similar to that of lemma 4.1.

Theorem 4.1:

Algorithm 4.1 is correct.

Lemmas4.1 and 4.2.
The performance of the algorithm is verified by the following
theorem.

Theorem 4.2:

Let D(V,E) be an acyclic digraph, having N vertices and M
weighted edges, input to algorithm 4.1. Then it is required O(N+M)
space and time, for finding a shortest path from a to b, a,b €V,
Broof:

The space bound is obvious. For the time bound observe *hat
the marking mechanism ensures that a vertex is explored ai most once.
Since the exploration of an edge (v‘,vJ) can only occur when vertex v,
is being explored, we conclude that any edge is also explored at most

once. Therefore, O(N+M) is a time bound, for the method.
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Corollary 4.1:

Let D(V,E) be an acyclic digraph, with weighted edges, having

N vertices and a,b € V., DefineZ CVand W CE by:
a’b— a ,b— ’

Za y = {V‘ € V, such that v, # b and v, is reachable from a through
’

a path that does not contain b}
wa’b = {(v, v, )€ E, such that v, v, €z > }.

Then, excluding the input of D, the program requires 0(N+|W;’b|) time
for termination and this bound is attained.

This can be verified by the following: the backtracking search
ensures that all vertices and edges which are not reachable from a are not
explored. Also, all vertices and edges which are reachable from a only
by a path containing b, are not explored because mark(b) is set to true
in the initialization which prevents their exploration. Therefore,
0(|Za’b|+|Wa’b|) time is required for the computation of procedure PATH.
Since the initialization of the process requires O(N) time, we conclude
that 0(N+|Wa’b|) is the total time bound. Since all vertices of Za’b are
explored, we conclude that this bound is attained.

The present algorithm approaches the problem in a different way
from the other algorithms mentioned: when computing the shorteszi path
from a to b, the paths are constructed from b backwards a, i.e. i v is
a vertex reachable from a, such that v reaches b, then the algorithm
computes the length of the shortest path from v to b, instead of computing
it from a to v. Also, note that the present method a voids the computation
of any additional pass. In particular, no computation for topological

sorting is required.
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4,3 Shortest paths from all vertices to a given vertex

Let D(V,E) be an acyclic digraph, with weighted edges d1J and
b a chosen vertex. The problem consists of finding the shortest paths

from all vertices, to vertex b.

Only small changes are required in the algorithm of the last
section which finds the shortest path from a vertex a to a vertex b to
transform it into an algorithm for finding the shortest paths from all

vertices to vertex b.

The modification consists of maintaining the same procedure
PATH, as in algorithm 4.1, but with a different invoking system. We
compute the set of source vertices and afterwards find the shortest

path from each vertex of this set to vertex b.

Suppose {sl,...,sk} is the set of source vertices. We first
find the shortest path from s to b, using a process similar to that
described in the previous section. Next, vertex s, is considered and the
objective is to find the shortest path from 52 to0 b. Suppose vertex v
is a vertex reachable from both, s, and 32. Then, at that stage, v
would have already been explored (mark(v)=true). This means that the
shortest path from v to b has already been calculated and there is no need
to recompute it again. Clearly, the same applies to all vertices reachable
from v. Therefore, at each stage j, when computing the zhortest path from
sJ to b, the only vertices that ought to be explored are those reachable
from sJ through a path that does not contain b, but which are not reachable
from s , for 1%i<j, also through a path that does not contain b.

The following is an ALGOL-like description of this method:
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ALGORITHM 4.2

begin comment an algorithm for finding the shortest paths from all
vertices to vertex b in an acyclic digraph;

procedure PATH (integer value v);

begin

cee the same as in algorithm 4.1

e o0

end PATH;

integer b;

read the digraph and construct the adjacency lists;

read vertex b;

for ji=1 wntil N do

begin mark(j):=false;
length(j):=infinity;
route(j):=0;

end

length(b) :=0;

mark(b) :=true;

find the set SO of source vertices;

for j €8 do PATH(j)

end
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At the end of the process, length(v) contains the length of the
s hortest path from v to b, for all v,1%vSN. Also, route(v) contains the
vertex following Vv, in a shortest path from v to b. If there is no path
from v to b, then length(v)=infinity and route(v)=0. Observe that all
shortest paths are stored in the single vector route, which corresponds
in fact to a representation of a rooted tree, with each vertex having a

pointer to its ancestor.

The proofs of correctness are similar to those of the previous
section. The same applies to the proof of performance - and algorithm
4.2 is bounded by O(N+M) space and time, being optimal to within a

constant factor.

4.4 Shortest paths from a given vertex to all vertices

Let D(V,E) be an acyclic digraph, with weighted edges and
a € V, a chosen vertex. The problem is to compute the shortest paths
from a to all vertices of D. This problem is similar to that of the
previous section and in fact, it can be reduced to it, by adopting the
following strategy.

Define the converse digraph D of D, by inverting the directions

of the edges of D, i.e. D(V,E') has (v,w) € E' iff(w,v) € E, for all
v,w € V and the weight of (v,w) in D is the same as the weight of {(w,v)
in D. Now, apply the algorithm of the previous section for finding the
shortest paths from all vertices to vertex a, in D. This soives the
problem because the shortest paths from all vertices to vertex a in

D correspond to the shortest paths from a to all vertices in D. The

following lemma proves the correctness of this assertion.
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Lemma 4.3:

Let D(V,E) be an acyclic digraph with weighted edges, D its
converse digraph and a € V., If MEASTEEPL A (v =a) is a shortest

2 -17 k  x

path from v to v in D, then v;,v;_l,...,vz,vl is a shortest path trom
v to v in D.
X 1
Proof:

The length of the path vl,vz,...,v;_l,v; in D is the same as
the length of v;,v;_l,...,va,vl in D. Therefore, if there exists another
path vk,wj,...,wi,vl in D, with a smaller length, then the path MO

ooV Y, in D is shorter than vl,vz,...,v;_l,v;, which contradicts the
hypothesis.

As for the performance o the present solution, observe that
inverting the directions of the edges of a digraph is an O(N+M) time
operation - if adjacency lists are used. Therefore the space and time
bounds remain O(N+M). Note also that if no copy of the representation

of the digraph D is required, we could construct directly the digraph

D from the input. In this case no pre-pass would be requirad.

4.5 Shortest paths between every pair of vertices

Given an acyclic digraph D(V,E), with weighted edges the probiem
consists of finding the shortest path between every pair of vertices of

Dﬂ

Several algorithms are known that solve the prublem for general
(not necessarily acyclic) digraphs. Floyd [F162] and Dantzig [Da66] have
presented solutions which require O(N®) time. A commonly accepted form
of measuring efficiency of algorithms for shortest paths consists of
computing the total number of additions and comparisons performed with
the weights of a complete digraph, when this complete digraph is input to

the algorithm. When computing shortest paths between every pair of vertices
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in a complete digraph with non-negative weights, [F162] and [Da66] are
known torequire N(N-1)(N-2) additions and comparisons. Yen [Ye72] has
presented an algorithm for finding all shortest paths from a single vertex
to all others, which requires IN® additions and N° comparisons, for a
complete digraph with non-negative weights. This method constitutes a
variation of Dijkstra's strategy, and by applying it iteratively N times,
Yen could solve the all shortest paths problem in %Na additions and N°
comparisons. A necessary correction to [Ye72] has been given by Williams
and White [WiWh73]. The algorithm by Spira [Sp73] requires 0(X°1og®N)
time in average, for a digraph with non-negative weights. However, as
mentioned in [Sp73] this algorithm has a worst case of O(NalogN) time.
The algorithm which presents the best time bound - which we know so far -
is given by Johnson [Jo73]. It requires O(Naﬁ; +NM) time - where
k=21 is independent of N — for finding all shortest paths in a general
digraph with N vertices and M edges.

Now let us consider restricting this problem to acyclic digraphs.
A first approach to the problem could consist of applying the strategy
of section 4.3 (for finding the shortest paths from all vertices of the
digraph to a fixed vertex b) iteratively, N times, for b=1,...,N.
After the last iteration the problem would have been solved. Siunce
O(N+M) time is required per iteration, the total time bound for this

method is O(N(N+M)).

However, we can improve this method so that in the worst case
we talke a smaller total number of additions and comparisons. Basically the
idea consists of choosing a sink vertex v, and applying algorithm 4.2 for
finding the shortest paths from all vertices to vertex v, and output

them. This operation is performed in the given digraph D=D1' Next,
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since v, is a sink vertex, it certainly does not belong to any of the
remaining desired paths and therefore v, - and all edges leading to v,o-
can be deleted. Let D2 denote the new digraph so obtained and choose a
sink vertex v, of Dz' Apply algorithm 4.2 for finding all shortest paths
from all vertices of D2 to v2 and output them. Delete vertex v, and

all edges leading to it. D3 is the new digraph, and so on. A total of
N-1 iterations are necessary for determining all shortest paths and at the
end of the (N-1)~th iteration the digraph is reduced to a single vertex.
Observe that the order in which the vertices are being deleted from the

digraph corresponds to a reverse topological ordering.

In order to maintain and update efficiently the information
concerning which of the vertices become sink vertices, we would require
some additional data structures. First, a vector containing the outdegrees
of all vertices. It would be updated each time a vertex is deleted, simply
decreasing by 1, the values corresponding to the vertices for which there
exist edges to the newly deleted vertex. Second, a list for storing the
s ink vertices. However, since we are deleting vertices from the digraph,
the information that a vertex has become a sink vertex can be obtained from
the representation of the digraph. This is indicated by the fact that the
adjacency list of a sink vertex is an empty list. This avoids the definition
of that vector of outdegrees. As for the list of sink vertices ncte that
when a vertex is deleted its adjacency list is empty and therefore the
existing pointer to it becomes idle. Therefore, these pointers can be
used for storing the list of sink vertices - and no additional storage
is required for those structures. However, for efficiently deleting an
edge (w,v) to a sink vertex v, we need to access the node v in the

adjacency list of w. We then use the representation by adjacency lists of
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the converse digraph.ﬁ of D with each node w, in the adjacency list of
v - corresponding to the edge (v,w) of D - pointing to the location of

edge (w,v) in D.

The following is the algorithm for solving the present problem.
R contains the set of vertices not yet deleted in the digraph and S0
contains the subset of R whose elements are source vertices. Each
deletion that occurs in sets R and So as well as each deletion of an edge

of the digraph, can be performed in a constant number of steps.
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ALGORITHM 4.3

begin comment an algorithm for determining the shortest paths between

every pair of vertices of anacyclic directed graph;

procedure PATH (integer value v);

begin
aos the same as in algorithm 4.1

.o

end PATH;

procedure INITIATE (integer value v);

begin for z € R do
begin mark(z):=false;
length(z):=infinity;
route(z):=0
end;
mark(v) :=true;
length(v):=0;
end INITIATE;
integer b;
read the digraph and construct the adjacency lists;
So:=set of source vertices of D;
R :=set of vertices of Dj;
for j:=1 until N-1 do
begin b:= any sink vertex of D;
if b £ So then
begin INITIATE(b);

for j €5 do PATH(j);
end
else delete b from So;
delete b from R and from the digraph;
output all shortest paths to vertex b;

end
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As an alternative, we could initially determine a reverse

topological sorting arrangement of the vertices of the diggraph, v v ...v
12

X ’

and iteratively set b=vlwé,...,vk. This would slightly simplify the data

structures used in an implementation of algorithm 4.3,

The correctness of this method follows directly from the
correctness of algorithm 4.2 and from the observation that a vertex that
is deleted in an iteration j would not have been involved in any shortest

path to be found in #erations k, k>j.

As for the performance, note that the algorithm requires O(N+M)
N-1
space and the time bound is F_lO(N1+M1) , where N1 and M1 are the number

of vertices and edges of the digraph Dl, immediately before the deletion of

the i-th vertex. Since we delete one vertex at each iteration, we have

N;N C(2) (N-1)
t=1 1 2 :

The contribution of the edge explorations, in the worst case - a complete
N-1 N-1
acyclic digraph with M=N(N-1)/2 edges - is 3 I N (N, —1)=?§l(j+1)j——;(Nd-N),

since at each iteration i with the digraph D , we explore N:(N1'1)/2

edges. Therefore,
N-1 1
0= z M $7 (N-N).

In terms of number of operations performed with the weights of an inpit

1.2
complete acyclic digraph, we therefore conclude that exactly E(N -N)

additions and comparisons are required.
4.6 Shortest path visiting a specified subset of vertices

Given an acyclic digraph D(V,E), with weighted edges, given
vertices a,b € V and a set H C V, the problem consists of finding the shortest

path from a to b, passing through all vertices of H. We assume that a,b £ H.
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Dreyfus [Dr697] discusses this problem for general digraphs and
presents an algorithm for solving it. However in [Dr69] it is pointed
out that the travelling-salesman problem is a particular case of the present
one, and since no efficient solution is known to the former, the same is

true for the latter.

If the digraph is acyclic however, we show that the problem is
considerably simplified - and, in fact, a simple and efficient solution is
presented in this section. This solution is optimal within a constant

factor.

We first find a topological sorting arrangement VIV ey of
the vertices of the digraph. Clearly, since any path from v, to vJ i<j,
contains possibly only vertices v;such that i%k=j, we conclude that a
necessary condition for the existence of a solution is that every vertex
u € H is such that u lies between a and b, in a topological sorting
arrangement. Furthermore, if vp and vq are vertices such that vp precedes
v; in a path from a to b, then there exists no path from a to b, which
contains vp and vq, with v; preceding vp. Therefore, if the digraph is
acyclic, the ordering in which the vertices of set H may be visited, in
any path from a to b, is unique -~ and it corresponds to the ordering in
which the vertices of H appear in a topological sorting sequence. Observe
that if two vertices ul,u2 € H are such that u precedes u2 in a1 certain
topological sorting sequence, and there exists another topdogical sorting
sequence such that u precedes u in it, then there exists no solution to
the present shortest path problem, since u and u2 are mutually non-
reachable, one from the other. Note also that what causes the present
problem toadmit an efficient solution for acyclic digraphs - in contrast
with general digraphs - is precisely this uniqueness in the ordering in

which the vertices o H may be visited. Clearly, this does not hold if the

digraph contains cycles.
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Let uluz...uk be an ordering of the vertices of H, such that

this ordering is embedded in some topological sorting arrangement v v ceeVy
12

of the vertices of D (i.e. for u =v,,

u=v ,, we have: if i<j then
5ot
i'<j'). If there exists a path from a to b, visiting all vertices of H,

thi th h the f P - = =
is pa as e form udPo,ul, 1,uz, ,uk,P;,u&+1 (uo a,uk_,_l b), where

PO,Pl,...,I; are (possibly empty) paths in D, such that PJ contains only

vertices that lie between uJ and u4+1’ in that topological sorting arrange-—
ment, of the vertices of D. PJ cannot contain any vertex u, € H, since

the digraph is acyclic. Among all such paths from a to b, the shortest is
precisely that which contains the shortest PJ, for all j, O%j%k, In other
words, the shortest path from a to b, visiting ul,uz,...,uk, in that order,
consists of the shortest path from a to ul, followed by the shortest path
from u to ua, and so on, until the shortest path from u.k to b is consid-
ered. The problem therefore, can be reduced to k+1 shortest paths problems
(k=|H|). Since O(N+M) time is required for solving each of these problems,

the total time bound would be O((N+M)k).

However, by slightly modifying the strategy and applying adequate
data structures, we can reduce the time to just O(N+M). For observe

, in a topological scrting,

that only vertices that lie between uJ and uJ+l

ought to be explored in the computation of the shortest path froem uj to uJ+1
To restrict the vertices that could be explored during that computation,

we need to manipulate properly the information given by the mark vector of
procedure PATH, in algorithm 4.1: At the beginning of the process, all
vertices v are initialised with mark(v)=true. Before the call of that
procedure for computing the shortest path from uJ to uJ+l we set mark(v)=

false, thus allowing the exploration at this stage of the vertices v that

lie between u, and uJ+l in the considered topological sorting arrangement
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(we recall that the exploration of a vertex w is a call of PATH(v) witl
v=w). If a certain vertex w lies after uj+1, in that topological sorting
arrangement, or has already been explored before, then mark(w):izgg and
therefore will not be explored. This strategy ensures that any vertex -

and consequently the edges from it — is explored at most once, during

the entire process.

The following is an ALGOL-like formulation of the algorithm.
The visit vector maintains the information of which are the vertices v,
such that a shortest path to v has to be computed: if v € H or v=b then
visit(v)=true, otherwise visit(b)=false. The boolean variable solution
is, at the end of the process, true if a,b £ H and all computed shortest
paths have non-infinite length. Otherwise solution is false. The existence
of a solution to the problem is guaranteed when, at the end of the process,
the variable solution has the value true and, in addition, a total of k1
shortest paths were computed. The number of times the computation of a
shortest path problem is invoked is stored in the variable count. The
variable total contains the desired lsngth of the shortest ratbh from
a to b, passing through the vertices of H. Clearly, this length is the
sum of the lengths of the k+1 intermediate shortest paths, which are
computed. The final shortest path itself can efficiently be obtained as
before from the route vector, which is properly set within the scop= of

procedure PATH.
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ALGORITHM 4.4:

begin comment an algorithm for finding the shortest path, in an acycli:
digraph D(V,E), from vertex a to b, visiting all vertices
of a set H, HC V and a,b ¢ H.
procedure PATH (integer value v);
begin
. e . the same as in algorithm 4.1
end PATH;
logical solution;
integer total, count, i, j;
read the digraph D and construct the adjacency lists Aj
read the k vertices of set H and vertices a,b;
find a topological sorting arrangement v_.v ...v,, of the vertices of D;
for w:=1 until N do toe N
begln markiw;.—true,
visit(w):=false;
length(w):=infinity;
route(w):=0;

end

for w € H do visit(w):=true;
solution:= (visit(a) or visit(b));
vigit(b):=true;

total:=count:=0;

ji:=index of v in v v ...v,, such that v =a;
3 12 N 3
while v #b and solution do
begin 1::3,

repeat mark(v ):=false;

Jji=j+
until visit(vd);

length(vl):zinfinity;
length(VJ)==0;

count:=count+1;
PATH(v, );

if length(v, )=infinity then solution:=false
else total:=total + length (vi)

end
if if solution and count=k+1 then output the desired shortfest path

else output TNO SOLUTION EXISTS(INFINITE PATH LENGTH)';
end
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The correctness of the presented strategy follows from the lemmas
enunciated below.
Let D(V,E) be an acyclic digraph with weighted edges, a,b €V

and HC V, with a,b ¢ H.

Lemma 4.4:
A shortest path from a to b, visiting all vertices of H, with
non-infinite length has the form

u ,P ,u ,P ,u,...,u ,P ,u
0?0?11 k7T k1

where: u =aj =bs {u ,u ,. u =H; u ,u y...,u are such that if
o 9 ’{192,“’k] b 1’2’ ’k

uk +1
i<j then u, precedes uJ in a topological sorting arrangement. Po,Pl,...,P
X

are (possibly empty) paths such that wPu  is the shortest path from u

to u1+1.

Lemma 4.5:

Let uo,Po,ul,Pl,uz,...,u&,Il,u&+l represent a shortest path from
a to b, visiting all vertices of H, as above. Then the only possible ver-
tices that could lie in any PJ, 0%jSk, are those which are between uJ and
ud+1, in a topological sorting arrangement of the vertices of D.

The performance of the presented method can be evaluated by

the following theorem.

Theorem 4.3:

Let D(V,E) be an acyclic digraph with weighted edges, a,b €V,
HCV and a,b £ H. Then algorithm 4.4, for finding a shortest path from
a to b visiting all vertices of H, requires O(N+M) space and time.

The arguments in which the proofs of the theorem and lemmas above

are based were informally given through this section.
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4.7 k—shortest paths from all vertices to a given vertex

Let D(V,E) be an acyclic digraph, with weights le assigned to
its edges and b € V. The problem consists of finding paths from all
vertices to b, such that each desired path from vertex v to b, has the

k-th smallest length, among all paths from v to b.

Elmaghraby [E170] has presented an algorithm for finding the
length of the k-—shortest path from a given vertex a to a given vertex b
in an acyclic digraph. The method [E170] is simple and short, although its
efficiency can be well improved. Actually, it finds the lengths of the
k=shortest paths from all vertices to vertex b. It proceeds as follows:
let qi denote the length of the j-shortest path from v to b; let vlvz...vp
(v1=b) represent a reverse topological sorting arrangement of the vertices
of D, up to vertex b; initialise ozbl.-zo and dj:af:...:d{f:infinity. Then the

desired k-shortest paths are obtainable from

o’ = min {f +a }, V=V 4,V ye00,V

v 0w vw 2" 3 P
j=1 ,Zycca,k
T=1,240004]

for all w - where (v,w) € E,

with minj representing the j-th minimum.

Consider the worst case analysis of this algorithm nam:ly a
complete acyclic digraph with b being the sink vertex. At each step
i (i=2,3,...,p), all k—-shortest paths from v, to b are calculated. Next
vertex v is considered and so on. Therefore, for each i a total of

1+1

(i-1)k additions are performed. Consequently the total number of
N
additions of weights required is1§2(1-1)k=kN(N—1)/2. As for the number

: . 1 . r
of comparisons, note that Qi may be obtained from av:mln{ah + de}.
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Also oP=min[{d/ s i .
50 v—mln[{ .+ de}\\{qv}], ai:mln[{a; + de}\\{QQ,Qi}], etc.
Clearly, this is more efficient than o =min {&" + 4 1}, oP=min {0’ + d_ },

v 1w W v 2 W W
etc., of the original algorithm. Using the first of these two schemes,
at each stage i, Qi requires one minimization of a set of (i-2)j+1

1
elements, which corresponds to (i-2)j+1 comparisons of weights. Theretore
for computing k minimizations, for all ai of a fixed vertex v,y we require
K 1
JEl(i—1)j+1=k(ki-2k+i)/2 comparisons. Thus the total number of comparisons
necessary to obtain the lengths of the k-shortest paths from all vertices
N

to vertex v, is T k(ki-2k+i)/2=k(N-1)[(k+1)(M42)-4k]/4, i.e. 0(N?k?).
Alternatively, instead of performing the comparisons step by step as
indicated, we can compute all additions necessary to find the k-shortest

paths and produce all o , for a fixed v , by finding the k smallest values
v 1

of the set composed by t;ose additions. Spira [Sp73] has shown that the
minimum k values of a set with S elements can be computed using S-1 + (k-1)
flogQS] comparisons., Therefore by adopting this strategy, a total of
(i=1)k = 1 + (k-1)[1og2(i—1)k] comparisons are required for obtaining the

k—-shortest paths from a fixed vertex v, to v . Consequently for the

entire process O(kN(N+log k)) comparisons are required.

The algorithm that we propose in this thesis, for finding the
lengths of the k-shortest paths from all vertices to vartex b uses a
recursive procedure LENGTHQ and convenient data structures for d:creasing
the total number of additions and comparisons required. It prevents the
computation of a j-shortest path from a vertex to vertex b, if this path
is known to have infinite length and avoids the exploration of an edge
(vyw), in the computation of the j-shortest path from v to b, if the (non-
infinite) longest path from w to b had been used before, in a i-shortest

path from v to b, i<j. With each edge (v,w) we associate two variables:
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tvwand You® After the computation of the j-shortest path (1) from v
to b, tvw equals one plus the number of i-shortest paths from v to b,
1%i<j, which contain edge (v,w); Y, @uals the weight of edge (v,w)
plus the length of the tvw-shortest path from w to b. Now, if we denote
by short(v,j) the length of the j-shortest path from v to b, then the

value of short(v,j) can be calculated simply by

short(v,j) = min{va, v € A(v)}
A vector way is also used, with way(v) containing the vertex following
v in the shortest path from v to w. Thus the problem consists basically
in keeping and manipulating efficiently these quantities through the

process,

Initially we find the lengths of the shortest paths from all
vertices to vertex b, using algorithm 4.2. During this phase we can
delete from the digraph all vertices whose shortest path length to
vertex b is infinite. Next, we initialise variables as follows: tvw= 1
for all edges (v,w); short(v,1)=length of the shortest path from v to b;
va=short(w,1) +d_ end way(v) is initialised as mentioned above. Next
wve pass to the actual computation of the k-shortest paths. The vertices
are processed in reverse topological ordering starting from the vertex
immediately succeeding b in this sequence. Vertex b is not processed and
short(b,2) is set to infinity. When returning from a call LENGTHG({v,2,way(v)),
invoked from the outside of the procedure, the length of the k-shortest
paths from v to b have been determined. So, if LR (up:b) is a
topological sorting arrangement — up to b - of the vertices of the digraph,
we first calculate all the desired shortest paths from vertex up_l to b,

then we consider vertex ub-z’ and so on. This strategy can be adopted
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because if the digraph is acyclic any j-shortest path from a vertex u to
q
vertex b depends only on i-shortest paths (1%i%¥j) from vertices u to b,
r

vhere r>q.

Now assume that a recursive call of the procedure was invoked and
LENGTHQ(v,j,q) is being computed. Then the strategy ensures that all
short(v,i), 1%i<j, have already been calculated, that short (v,j-1)< infin-
ity and that all k—shortest paths from all vertices succeeding v in the
topological sorting arrangement have already been determined. The parameter
q corresponds to the vertex immediately following v in the (j-1)-shortest
path from v to b, Since edge (v,q) was used in this last computed (j-1)-
shortest path from v to b, tvq must be incremented by one, and yvq updated.
The new yvq will contain the length of the (new) tvq-shortest path from
q to b, plus dvq' If, however, short(q,tvq) is now infinite, this means
that q will never again be part of any i-shortest path (i2j) from v to b
and therefore edge (v,q) can be deleted to avoid unsuccessful searches.

If the adjacency list of vertex v contained the sole edge (v,q),and this
edge has been deleted, then A(v) is now empty, which means that there are

no more unused paths from v to b, i.e. short(v,j) is infinite. In this
case, no calls of the procedure will occur to compute the (j+1)-shortest
path from v to b, since its length is known to be infinite. In the case
that A(v) is not empty, the length of the j-shortest path from v to b

is clearly the minimum of ally__, for w € A(v). By adopting this

strategy, we do not need to re-compute the value of the va's which were not

minimum. They remain and are eventually used in an i-shortest path (i>j)
from v to b.

The following is an ALGOL-like formulation of this algorithm for
computing the lengths of the k-shortest paths from all vertices of an acyclic

digraph, to the fixed vertex b.
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ALGORITHM 4.5:

begin comment an algorithm for finding the lengths of the k-shortest puths
from all vertices of an acyclic digraph D(V,E) to a vertex b;

procedure LENGTHQ(integer value v,j,q);

begin comment v,q,...,b was the (j-1)-shortest path from v to b;

t =t + 13
vqg vq 1
if short 1 < infinity th 1= ,
—_ (e, vq) Ry 208 Yeg short(q,tvq) * g

else delete edge (v,q) from A(v);
o if A(v) non-empty then
B: begin short(v,j)::min{y;w, v € A(v)}

comment let z denote the minimizing w;
if j<k then LENGTHQ(v,j+1,z)

end

else short(v,j):=infinity
end LENGTHQ;
read the digraph and construct the adjacency lists A;
read the value of k and vertex b;
find the shortest paths from all vertices to vertex bj
for vi=l until N do

if length shortest path from v to b = infinity then delete vertex v
else begin short(v,1):=length shortest path from v to t;
way(v):=vertex following v in a shortest path
from v to b (v#b)
end

for (v,w) € E do
begin tvw:=1;

va:=short(w,1) + de

end

find a topological sorting arrangement U .eu (up:b) of the
remaining vertices of the digraph;

short(b,2) :=infinity;
for i:=p-1 step-1 until 1 do LENGTHQ(u‘,Z,way(ul))
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The implementation of this algorithm is simple. 7I-°~ shorian’
paths from all vertices to vertex b can be found by algorithm 4.2 of
section 4.3; a topological sorting arrangement can be obtained by the
algorithm [Kn68]; the tvw and Y, Quentities may be stored in the adjacency
lists, i.e., each node of the A(v) list, corresponding to edge (v,w), would
contain the triple (w,tvw,va). The short (v,j) quantities can be stored
either as a Nxk matrix or a8 a set of linked lists, one list B(v) per
vertex v, of the digraph. In the latter more economical scheme, the above
tvw variables, are replaced by pointers pvw’ to the location of the

tvw—th node, corresponding to short(v,tvw),'in B(v); the statement corres-

ponding to tvqﬁ=tvq+1 is. replaced by pvq:=location of the next node in B(v)

list, and so on.

The correctness of the proposed method is based on the following

lemmas:

Let D(V,E) be an acyclic digraph, with weights dxg associated
with its edges, b € V, k™1, j such that 2%j%k and D' a digraph obtained
from D, by deleting all vertices of D, whose shortest path lengths to b
are infinite. Let u u ...u (up:b) be a topological sorting arrangement of
the vertices of D'. Let short(v,j) denote the length of the j-shortest

path from v to b in D'. Let D be input to algorithm 4.5.

Lemma 4.6:

If s<infinity and q is the vertex succeeding u 1%i<p, in the

(j-1)-shortest path from u to b, then both:
(i) At the point o of the computation of LENGTHQ (u’,j,q)

A(ui) is not empty and each tu v contains one Pplus the

1
number of r-shortest paths from £ to b that contained

v (1%r<j-1). Each y, contains the length of the shortest
vw
path from v to b through w not yet used in any comput-

ation of a r-shortest path from v to b , 15r3j-~1.
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(ii) At the point B of the same computation short (ul,j) is

set to the length of the j-shortest path from u to b,
Lemma 4,7:

If s=infinity, then either:

(i)  If the length of the (j-1)-shortest path from u to b
is non-infinite, then a call LENGTHQ(ui,j,q) eventually
occurs with g as above. At the point o of that computation
the 1list A(ul) is empty and therefore short(u!,j) is set
to infinity.

(ii) If the length of the (j-1)-shortest path from u to b is
infinite, then no call of LENGTHQ(ul,j,q) is ever invoked
and short (ui,j) is not referenced at any part of the
process.

Proof (lemma 4.6):

Before the first call of the procedure is invoked, the algorithm
finds a topological sorting uluz...up of D'. We now proceed by induction
on decreasing i, increasing j. Let he=max(i), such that snort(ur,z)(infinity.
For j=2, all tu v and Yu w contain their initial valuesx at the entry to
LENGTHQ(uh,Z,q)hbecause lhis is the first call with parameter v=u . For
the same reason q:way(uh) is the vertex following u in th2 shortest path
from u to b. Since the digraph is acyclic, q=u, ; for some h+1%47: and
therefore short(ut,2)=infinity and edge (uh,q) is deleted from A(uh).
Because there exist more than one path from uh to b, A(uh) is not empty at
the point o of that computation, and therefore at point g short(uh,2) is
set to min{y&w, w € A(uh)} which corresponds to the length of the second
shortest path from u to b. The induction step, for LENGTHQ(uh’j’q) is

similar to the case j=2, except that at the point a of the computation
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of LENGTHQ(uh,j,q), A(uh) contains j-2 fewer edges than at the same point of
LENGTHQ(uh,j,q). This follows from the fact that in each computation o*
LENGTHQ(uh,j',q), for all 25j'Sj, one edge is deleted, since each vertex

in A(uh) hay only one possible path to b. Now suppose the lemma holds

for vertex LA for some i, 1%i<h, and let us verify the case u . The

proof for vertex u, with j=2, is similar to that for uh with j=2, except that
the deletion of edge (ul,q) does not necessarily occur. Suppose then that
the lemma holds for vertex u with j-1 and let us verify the case u with
jSk. By this induction hypothesis (i) and (ii) of the lemma are satisfied
for LENGTHQ(ui,j-1,q), and a recursive call LENGTHQ(ui,j,q) occurs with q
being the vertex following u in the (j-1)-shortest path from u, to b.
Consider now the computation of LENGTHQ(ui,j,q) . The algorithm sets

t =t + 1. The value short (q,tu q) has already been computed because

uq ugq
1 1 1
since the digraph is acyclic q=u_for some 1, i+1%t<p, and t, q+1‘j. Now
1
if short(q,tu q) is infinite then all remaining paths from u to b through
1
q have infinite length and therefore edge (ui,q) can be deleted. Otherwise

yuiq is updated to its appropriate value, i.e. yuiq:zshort(q,iu‘q) + ﬂu’q'

In any case, the only difference between the values ot Yu M's at points «
1

and B of the computations LENGTHQ(u ,j-1,q') and LENGTHG (u, ,j,q) is in

Ya o which either was correctly updated or whose edge (ui,q) has he =
1
deleted. Therefore is s<infinity there exists at least one value of ¥

uw
1
which has not been used yet, and consequently at point o of this last
computation, A(ui) is not empty, tuiw and yuiw satisfy (i) and short(ui,j)
is set to the length of the j-shortest path from u, tc b at point B.

The proof of lemma 4.7 can be established similarly.

The performance of the present method can be evaluated by the

following theorem.
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Theorem 4.4:

Let D(V,E) be anacyclic digraph with weighted edges, input to
algorithm 4.5 and b € V. Then for calculating the lengths of the k-
shortest paths from all vertices to vertex b, O(Nk+M) space and O((N+M)k)
time are required, where N and M are respectively the number of vertices
and edges of the digraph. The number of additions and comparisons of weights,
performed within the scope of LENGTHQ are O(Nk) and O(Mk), respectively.

Proof:

The representation of the digraph by adjacency lists requires
O(N+M) space. Storing the short(v,j) quantities as a matrix requires
0(Nk) space and the remaining data structures require O(N+M). Therefore
O0(Nk+M) space is needed. For the time bound, observe that, in each com-
putation of LENGTHQ(v,j,q), at most one addition of weights and at most one
minimization are performed. This minimization consists of finding the minimum
of {va, w € A(v)]}. Therefore, at most outdegree(v) comparisons are
required per call of the procedure. Since LENGTHQ is invoked at most k
times per vertex v, we conclude that O(Nk) additions and O(Mk) compariscns
are required. Since the part of the algorithm outside LENGTHQ requires
0(N+M) time - finding the shortest paths from all vertices to vertex b;
initialising the variables; obtaining a topological sorting arrargement;

all require O(N+M) time — we conclude that the total time bourd is O({N=-M)k).

Now let us examine in more detail the behaviour <f the algorithm
in the worst case, namely a complete acyclic digraph, with b being the sink
vertex. We wish to find the length of the k-shortest paths from all
vertices to vertex b. Assume, without loss of generality, that the numbering
of the vertices {1,,.,N} of this digraph is such that the topological

sorting arrangement corresponds to the decreasing ordering of the vertices
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(then b=1 and N=the source vertex). For any vertex v, v/1, a maximal

number of computations of LENGTHQ(v,j,q) equals the number of different

paths that exist from v to b. Let P represent this number of different

paths, There exist exactly P, different paths from v to b through vertex

w, where (v,w) € E. Therefore P_= %;zpi, with P1:1° Hence pv:2v_2.

Cons;quently, another upper bound for the total number of calls of LENGTHQ
Nea

is 1§2p1=2 -1. This bound is attained only when we desire to obtain the

lengths of all possible paths, from all vertices to vertex t.
Since at most one addition of weights is performed per call of
LENGTHQ, we conclude that

total number of additions S min {Nk, 2% —1l.

For the number of comparisons, we recall that each minimization
at the point B of algorithm 4.5, in the computation of LENGTHQ(v,j,q)
is performed in a set of at most outdegree(v) elements. If we disregard
the deletions of edges, this number is exactly outdegree(v)=v-1., In this
case for each vertex v#1 there are at most (v--1)2v“2 comparisons. There-

N

- e N-.
fore, for the entire process we have at most 152(1—1)2i =(N~2)2 +1
comparisons. Since M=N(N-1)/2, we conclude that

. N
total number of comparisons = min{N(N=1)k/2, (N=2)2" “+1}.

Now let us consider the deletions of edges. The protlem that
arises when considering them is that the actual number of compariszons
becomes dependent on the particular values assigned to the weights.

This happens because of the fact that a deletion of an edge (v,w) occurs
precisely in the computation of a j-shortest path from v tc b, such that

the (j-1)-shortest path from v to b was found to be v,w,..,b, and this path
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is the last unused path from v to b through w. Consequently the more
the paths through w are used, the more likely it is that the edge (v,v)
will eventually be deleted -~ and this depends on the relative values of
the weights. Clearly the sooner edges are deleted from the digraph ti-
smaller the number of comparisons. Therefore we can consider a "worst
worst case" to be a complete acyclic digraph in which the velues uf the
weights are such that the deletions of the edges occur as late as ypcssiblee
Figure 4.1 is such an example, with N=5. Underlined numbers in this
figure correspond to the weights of the edges and the remaining numbers
correspond to the vertices. In this digraph, for each vertex v, v#l,
the v-1 longest (non-infinite) paths from v to 1 are of the form:
Vyo(v=1)ye0ey1 3v,(v=2),...,1 3v,(v=3),...41 ;... ;v,1. Consequently,
since every edge from v is involved in one of the v-1 last shortest paths
from v to b, they cannot be deleted before these paths are considered. In
fact the v-1 edges from v are deleted, respectively only in the last v-1
possible computations of LENGTHQ(v,j,q). We recall that a total of
2" calls of the procedure are invoked fcr each vertex v (clearly we are
considering the extreme case where all shortest paths ars desired). Heuce,
in each of the first 2v—2—(v—1) computations of LENGTHQ(v,j,q), v-1
comparisons occur. Subsequently one new edge is deleted in each of the
following v-1 computations of the procedure. Therefore, fur eacn vertex v,

V=1

at most (v=1)[2" “=(v-1)J+ F:li: (v=1)2""%2

—(v=1)(v=2)/2 compsrisons can

occur. Hence the maximum number of comparisons that may be performed

for all vertices during the entire process is
122[(1-1)2"2-(1-1)(i-2)/2] = (¥-2) "N (N-1), 6 1

Thus the following is satisfied for the "worst worst case':

N—
total number of comparisons%min{N(N-1)k/2,(N-2)[2 1 N(N-1)/61+11.
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There exists a "best worst case" corresponding to a complete
acyclic digraph in which the deletions of edges are performed in the earliest
possible time. The digraph of figure 4.2 is such an example with N=3. It
has the property that, for every vertex v, v#1, if V3W_ :eee,1 and v,wz,...,1
are two paths from v to 1, then the length of v,wl,...,1 iz smaller than
the length of v,wz,...,1, when w1<w2. Since edge (v,wp) can be deleted after
all paths v,wp,...,1 have been used, we conclude that it can be deletsd

before the consideration of any path v,w ,...,1, with g>p.
a

If the k-shortest paths themselves are required in addition to
their lengths, it is not recommended trying to trace them back starting from
the obtained lengths. Instead, the paths can be found during the actual

process of finding the lengths. Two Nxk matrices, vertex and order would

be required. For a certain vertex v, vertex (v,j) would contain the
vertex w, which follows v, in the j-shortest path from v i{o b. The content
of order(v,j) would be the integer i, such that the path w,...,b, in the
j=shortest path v,w,...,b from v to b, is the i-shortest path from w to
b. If the j—-shortest path from v to b is infinite then vertex(v,;)=0
and order(v,j) is undefined. The implemention of this strategy i=
simple: vertex(v,1) and order(v,1) are initialised according to the
results obtained in the step of finding the shortest paths from all v to
b with order(b,1)=0. Also, vertex(v,j) is initially zero for a:L v and
for all j, 2%5j%k. Now in algorithm 4.5 after the line

comment let z denote the minimizing w:
insert the following statements:

vertex(v,j) :=z;

order(v,J):=tvzi
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and this is sufficient for the purpose. The output of the j-shortest
path from vertex v to b at the end of the Process can be performed as
follows:
begin integer s;
repeat output v;
s:1=v;
vi=vertex(s,j);
je:=order(s,j)
until v=0
end

Clearly printing any path with such a method requires a number of

steps equal to the number of vertices in the path.

Instead of using the matrices vertex and order an alternative
scheme for obtaining the k-shortest paths can be proposed, which utilises
a linked list and one matrix. Each node q in the list consists of two
fields: vertex and link. The content of vertexq is the label v of a vertex
in  some j=shortest path. The field 1inkq points to the location of
the node in this list which contains the vertex following v in that j~-
shortest path. The Nxk matrix path is also defined, with path(v,i) poin-
ting to the node in the list whose vertex is the first in the j~shortest
path from v to b. If this path has infinite length then path{v, ]} should
contain a special symbol indicating this situation. An implementation
of this scheme can be easily accomplished, by a slight medification of
the proposed algorithm., Observe that such a list constitutes a rooted
tree with the node containing vertex b being the root. The link fields
correspond to pointers to ancestors in a represention of the tree. The

tree picturel in figure 4.4 shows all j-shortest paths (j=1,2,3) from all
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vertices of the digraph of figure 4.3 to vertex f. The superscript i,
which appears in the vertex field of a node in figure 4.4, simply denotes
that this node would be referenced from path(v,i), as containing the
first vertex in the i-shortest path from v to f. For example, path(g,2)
would point to the node whose vertex field is gz, meaning that a second

shortest path from g to f is gdef.

Ve can alter the proposed algorithm so that the total number
of comparisons of weights performed during the execution of the recursive
procedure is in general less than that of the original version presented -
but an overhead is added to the part of the algorithm outside the procedure.
Examining algorithm 4.5 we observe that in each call of LENGTHQ(v,j,q) a
minimization of Yy OCcurs. In any two consecutive recursive calls the
corresponding sets of va's differ by at most one element. This fact
suggeststhat the nodes of the adjacency list of vertex v may be kept
sorted according to increasing values of Yot Therefore the vertex w
for which {va,w € A(v)]} is minimized will always correspond to the first

node of the adjacency list.

In order to obtain the adjacency lists permanently sorted as
required, two actions are necessary: first, in the initialization of tl.=
process, i.e. before the first call of the procedure, every A(v) list must
be sorted so that va values are in increasing order. During this process
another slight improvement can be made. Let Youw 2 Yo e the va's
of A(v) in increasing order and q”k. Clearly inlany j»shgftest paths
(2%j%x) from v to b, at most the first k values of y _ are actually used
for computing the lengths of the paths. Therefore all Yeow ? t2k, my

t

be deleted from A(v) in the initialisation of the algorithm since they are

not involved in the computation of any j-shortest path, 25j%k. The
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pruning of the A(v) lists will contribute to decrease the number of
comparisons of weights performed later in the execution of the recursive
procedure. The second action required is to maintain the lists adequately
sorted during the actual process of finding the j-shoriest paths.

Assume that at the start of a given call of the recursive procedure for
finding the j-shortest path from v to b, the A(v) list is correctly

sorted. Since q is the vertex following w in the (j-1)-shortest path,

q is the first vertex of A(v). After increasing tvqby1,if short(v,tvq)<
infinity then the sum yvq:=short(q,tvq)+dvq is performed. In this case
the list A(v) has to be rearranged because the new first value yvq of

the va's is not necessarily the smallest among all va's. However,

since A(v) is necessarily sorted from its second node until the last

the rearranging of A(v) is equivalent to the problem of adequately inserting
a nevw element in a sorted list in such a way that the appropriate ordering
is mainteined. This can be accomplished in a number of comparisons, which
is on average less than |A(v)|, the number of nodes of A(v) - we recall
that the minimization in algorithm 4.5 requires exactly |a(v)| comparisons.
On the other hand, if short(v,tvq)=infinity then the edge (v,q) is deleted
from A(v). In this case no rearrangement of A(v) is necessary since the

sorting is preserved after the deletion.

The following is an ALGOL-like description of this new
variation. Note that the (third) parameter q of the recursive procedure
has been deleted. This is because the information represented by q in
algorithm 4.5 can be obtained from the first node of A(v) when it is
sorted. For the same reason the use of vector way of algorithm 4.5

can be avoided in this case.
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ALGORITHM 4.6:

begin comment an algorithm for finding the lengths of the k-shortest
paths from all vertices of an acyclic digraph D!V,E) to
vertex b;
procedure LENGTH(integer value v,j);
begin comment q denotes the first vertex in the A(v) list;
.—tvq+1;

beq
if short(q,tvq)<infinity then
begin yvq._short(q,tvq)+dvq,
rearrange list A(v) - by possibly moving its first
vertex - so that A(v) remains sorted in non-
decreasing values of y 's;
end ™
else delete edge (v,q) from A(v);
if A(v) non-empty then
begin comment z denotes the new first vertex of A(yv);
short(v,j)::yvz;

if j<k then LENGTH(v,j+1)

end
else short(v,j):=infinity;
end LENGTH;
read the digraph and construct the adjacency lists 4;
read the value of k and vertex b;
find the shortest paths from all vertices to veriex b;
for vi=1 step 1 until N do
if length shortest path from v to b = infinity then delete vertex v
else short(v,1):=length of shortest path from v to b;
for (v,w) €E do

begin tvw:=1;
vazzshort(w,1) +d

end

Sort each A(v) list according to non-decreasing “ajues of Yo 5
for vi=1 until N do

_-—.ii lAT;TTSk then delete the last ‘A(v)l-k nodes oif A(v);
find a topological sorting arrangement wu . (up:b), of the

remaining vertices of the digraph;
short(b,2) :=infinity;
for i:=p-1 step -1 until 1 do LENGTH(ui,Z)

end
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The space bound for algorithm 4.6 is the same as for algoritar
4.5 namely O(Nk+M). For the time bound observe that the number of
additions of weights performed in the recursive procedure is also the same
in both cases: O(Nk). The average number of comparisons performed in the
recursive procedure is less for algoritbm 4.6. However if linear sear-ch
is adopted for rearranging the A(v) lists in algorithm 4.5 +tre worst
case is also the same for both algorithms: O0(Mk) comparisons. The part
of the algorithm outside procedure LENGTH is bounded by O(min{MlogM,
NzlogN}) time, because of the sorting of the A(v) lists. Therefore, the
total time bound for algorithm 4.6 is O(min{MlogM,N®lcgN} + (N+M)k).
However, depending on the particular input digraph, this algorithm can
be faster. For example, in the digraph of figure 4.2, all the weights
are such that when the value of y&q ( which is contained in the first node
of A(v)) is altered by the sum y_ :=short(q,t_ ) + d__, then the new value

vq vq vq

of yvq is still the smallest of all va's. Therefore the rearranging of
the A(v) list will not alter the ordering of the nodes. Conse-
quently in each call of LENGTH at most a constant number of comparisoms
of weights is performed. Hence, the total number c¢f comparisons, per:r.rmed
inside procedure LENGTH, with the input digraph of fig.re 4.2 is 0(Jk)

and the total time spent inside this procedure is also O{Nk).

Now we add some further short comments in relation *. t*: algor-
ithms presented in this section. If we examine algorith.s 4.3 and 4.6
we observe that the progress of the computation is as follows: first,
all j-shortest paths, 25jSk, from vertex u;_l to up:b are found, where
up_1 is the vertex immediately preceding w in the topological sorting.
Next all j-—shortest paths from up_2 to u; are found, where u_ is the

vertex immediately preceding v in the topological sorting. Next
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u_. is considered and so on. Alternatively those algorithu: can be

modified to compute all second shortest paths from all vertices to

vertex b; after all third shortest paths, all fourth shortest paths, and

so on. As it is shown later , this alteration makes it possible to process

the vertices in any order so avoiding the topological sorting pass.

In the presented algorithms there is no menticn 2 speccial
procedures for resolving ties between different paths having the same
lengths from a vertex v to b. Some existing algorithms for finding the
k-shortest paths in (general) digraphs, require all paths to have different
lengths. When this is not satisfied a special treatment for tie resolution

is necessary in these algorithms.

4.8 k=shortest paths from a given vertex to all others

The problem consists of: Given an acyclic digraph D(V,E) ,
vertex a € V and an integer k, k™1, find the lengths of ibhe k-shortest
paths from a to all vertices of the digraph. The strategy to be adopted
is similar to that of section 4.4. From the digraph D obtain the converse
digraph D. Now simply apply the algorithms of section 4.7 with D i+ inrut
digraph and b=a. Thus we obtain the lengths of the k~shuriest pavhs fuiwu
all vertices to a in 3, which is equivalent to obtaining the lengths «f

the k-shortest paths from a to all vertices in D.

Clearly the remarks of the previous section concerailz tire
and space bounds, finding the actual k-shortest paths in zdilition te
their lengths, discussion of alternative algorithms and so on - are all

valid in the present case.

4.9 k-shortest paths between every pair of vertices

Given an acyclic digraph D and an integer k, k1, the problem is

to find the lengths of the k-shortest paths between every pair of vertizes
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of the digraph.

A straightforward and, in this case, efficient way of solving
this problem consists of applying at most N-1 times the method of
section 4.7, for finding the k-shortest paths from all vertices to a fixed
vertex of the digraph. When applying that method we recall that deletions
of certain edges of the digraph may occur. However, an cdge that is
deleted in the middle of the computation for the k-shortest pathsto vertex
v may be needed later in the computation for the k-shortest paths to vertex
W, w#v. Because of this fact we have to store the input digraph D', and
use an auxiliary digraph D. Let A' and A represent the adjacency lists
of digraphs D! and D, tespectively. Initially we define A, as being
A=A'., The towlogical sorting arrangement wu ..Uy of the vertices of
D' is obtained. Next for each p, p=N,N-1,...,2 such that up is not a
s ource vertex, the method of section 4.7 is applied for finding the lengths
of the k-shortest paths from ul,uz,...,up_l to vertex w. Note that
the digraph to be used by procedure LENGTHQ of algorithm 4.5 is digraph
D with adjacency list A and not the input digraph. Therctore, the deletion
of edges by procedure LENGTHQ is performed in digraph D. When this
step is completed vertex u may be deleted from D' since it is sure that
no paths can exist to up from vertices after up in the topological soriing
arrangement. D' is re-assigned to D, vertex up_1 is now considerel and

SO On.

If the lengths of the k-shortest paths obtained are to be used
only for output, no storing of all lengths is required. In fact when
the algorithm is computing the k-shortest paths from all vertices to
vertex v there is no reference to the length of the j=shortest path,

1$jSk, to any other vertex w, T

The following is an ALGOL-like formulation of the algorithm.




145.

ALGORITHM 4.7:

begin comment an algorithm for finding the lengths of the k-shortest

end
foleled

paths between every pair of vertices of an input acyelic

digraph;
procedure LENGTHQ(integer value v,j,q);
begin
o o the same as in algorithm 4.5

end LENGTHQ;

read the digraph D' and construct its adjacency lists A';

find a topological sorting arrangement .oy of the
vertices of the digraph;

for p:=N step -1 until 2 do

begin if w is not a source vertex then

begin A:=A';
comment A are the adjacency lists of an auxiliary

digraph D(V,E) to be used by procedure LENGTHQ;
find the shortest paths from all vertices to vertex ub

in digraph D;
for r:=1 until p do
1f length shortest path from u to u = infinity
then delete vertex u from D °

else begin short(u ,1)._1ength shortest path from
r u to u ;
r P
way(u ):=vertex following u (r#p) in
r r
a shortest path from u to up

end

for (v,w) € E do
begin tvw:=1;
y&wzzshort(w,1) + de

end;
short(u ,2):=infinity;

for r: —p—1 step -1 until 1 do LENGTHQ(u 2,way(u V)
output the values of the k-shortest paths to v 5

end;
delete vertex u from D'

end
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The correctness of the algorithm follows directly from the
correctness of the method for finding the lengths of the k-shortest paths
from all vertices to a fixed vertex. The same applies to its performarce

as can be seen from the theorem below.
Theorem 4.5:

Let D'(V,E) be an acyclic digraph with weighted edges input to
algorithm 4.7. Then for calculating the lergths of the k-shortest paths
between every peir of vertices of D', O(Nk+M) space and O((N+M)Nk) time
are required. The total number of additions and comparisons performed

within the scope of procedure LENGTHQ are O(N°k) and O(NMk), respectively.
Proof:

The space bound follows directly from theorem 4.4 because the
only additional structures that algorithm 4.7 requires, in relation to
algorithm 4.5, are the adjacency lists A of the auxiliary digraph D,
which require O(N+M) space. Therefore algorithm 4.7 requires O(Nk+M)
space. The time bound also follows from theorem 4.4. Algorithm 4.7 i
basically an interation of algorithm 4.5 at most N-1 times. Hence, proce-
dure LENGTHQ is invoked O(N®k) times, with 0(N°k) additions and O(NMk)

comparisons of weights performed. Therefore the time bound is O (N+M)Nk).

Now let us consider the evaluation of the algorithm in the worst
case, namely, when the input digraph is a complete acyclic digraph witk N
vertices. Assume the weights of the digraph to be such that the deletions
of edges which occur during the computation of the LENGTHQ procedure are
performed at the latest possible time , i.e., a "worst worst case", as
in the digraph of figure 4.1. It follows from algorithm 4.7, that finding

the lengths of the k-shortest paths between every pair of vertices of a
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complete acyclic digraph with N vertices corresponds to solving the problem
of finding the lemgths of the k-shortest paths from all vertices to the sink
vertex for a complete acyclic digraph with N vertices, then the same
problem for a complete acyclic digraph with N-1 vertices, then N-_ vertices
and so on. Consequently we can apply to this case the results of section
4.7 for determining upper bounds for the number of additions and comparisons
performed in the LENGTHQ procedure. From section 4.7 we know that the fotal
number of additions required for finding the lenpths of the k-shortest
paths from all vertices to the sink vertex in a complete acyclic digraph

N0,

is less than or equal to min{Nk,2 Consequently, the total number

of additions performed within LENGTHQ, for the all pairs of vertices
N N
problem, is less than or equal to min{igzik,igzg“*_1}. Hence
total number of additions S min{(N-1)(N+2)k/2, 2N-N}.
Similarly, we conclude that the total number of comparisons performed within

LENGTHQ, for the all k-shortest paths, is less than or equal to

N N
min{ £ i(i-2)k/2, I, (i-2)[2' 7 =i(i=1)/61+1}. Hence

N .
total number of comparisons S min{ (N+1)N(N=-1)k/6, (N=3) 2" =(N+1)N(N=1) (N-2)/

244+N+3 }e

Finally, we observe that it is also possible to present a varia-
tion of algorithm 4.7, which would make use of procedure LENGTH ot algorithm
4,6 (which assumes the adjacency lists to be sorted in increasing values

of va's), instead of procedure LENGTHQ.

4,10 k-shortest path between two given vertices

Given an acyclic digraph D(V,E) with weights dtg associated
with it s edges, the problem consists of finding the length of the k-
shortest path from a given vertex a to another given vertex b. The

methods presented in section 4.7 for finding the lengths of the k-shortest
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paths from all vertices to the fixed vertex b would find in particular
the k-shortest path from a to b and hence may be used for solving the
present problem. However in this case a more efficient algorithm can

be devised that takes advantage of the simpler nature of this probler.

The following definition was first given by Hoffman and Pavley
[HoPa59): A deviation from a shortest path from a to b, in a given
digraph, is a path that coincides with this shortest path, from a up to
some vertex v on the path (v=a or v=b are also possible); afterwards
deviates to some vertex w, such that (v,w) € E and w is not the vertex
that follows v in the shortest path; and finally proceeds from w to
b, via the shortest path from w to b. In [HoPa59) it is shown that the
second shortest path from a to b is a deviation from the shortest path.
Similarly, the third shortest path is a deviation either from the shortest
path or from the second shortest path, and so on. Therefore if vl,vz,...,
vp (v1=a, vp:b) is a shortest path from a to b, in D, in order to compute
the second shortest path from a to b we need just to compute the second
shortest paths to b, from all v , 1%i<p. Hence, if wfvi, 1%i<p, there
is no need to calculate the second shortest path from w to b, Similarly

for the third shortest path, and so on.

Our problem is to devise an algorithm that would efficiently
take advantage of this property and therefore reduce the total ruber of
computations required to solve the problem. An algorithr cn the lines of
algorithm 4.5 or 4.6 would be inadequate because those methods compute
2ll k-shortest paths from a vertex v to b in the iteration corresponding

to vertex v.
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Instead the algorithm that is proposed in this section initially
seeks the computation of the second shortest path from a to b. In this
process it also calculates the second shortest patls to b from the other
vertices that lie on the shortest path from a to b. Afterwards, it
seeks the computation of the third shortest path from a to b. In this
process it also computes the third shortest paths to b from the vertices
that belong to both the shortest path and the second shortest path from
a to b, Also during this process the second shortest paths to b are
calculated from the vertices that belong to the second shortest path from
a to b, but which do not belong to its shortest path. The process is
iterated, until the desired k-shortest path is computed. Thisstrategy
is similar to that used by Hoffman and Pavley. However, our algorithm
possesses a better time bound than (HoPa59] and avoids much of the
book-keeping existing in it. For instance we do not need to sort and

merge paths as [HoPa59] requires.

Basically the same data structures used in algorithm 4.5 are
required in the present one. The short(v,j),tvw and y__ quantities
have the same meaning as before. However, way(v) has now a different
interpretation; it now represents the vertex following v in the last
j-shortest path from v to b so far computed. For example if the fourth
shortest path from v to b has already been computed but the fifih kas
not, then way(v) contains the vertex that follows v in the fourth shortest
path from v to b. The information short(v,j) is considered processed
when the j~shortest path from v to b has been calculated (i.e. if a recur-
sive call of the procedure occurred, for computing this j-shortest path,

or the content of short(v,j) was set in the initialisation of the process).
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Otherwise if the j~shortest path from v to b has not yet been computed, the

information short(v,j) is said to be not processed. In an actual imple-

mentation of this method the not processed state would be indicated by

storing in short(v,j) a convenient special symbol distinguishable from any

path length.

Ve use a recursive procedure ABLENGTHQ. An interesting aspect
of it is that it naturally finds the vertices v and the integers j for
which the j-shortest path from v to b ought to be calculated in order to
find the k-shortest path from a to b. The way of finding these values
consists of testing whether short(q,tvq) has already been processed, in
the course of the computation of ABLENGTHQ(v,j). If it has not yet been
processed then a recursive call ABLENGTHQ(q,tvq) occurs that eventually
computes short(q,tvq). Vertex q denotes as before the vertex following
v in the (j-1)-shortest path from v to b. We do not need to pass it as

a parameter of the procedure because in this case q is precisely way(v).

The following is an ALGOL-like formulation of the elgorithm.
Note that the topological sorting pass no longer exists, since the
ordering in which the j-shortest paths are computed now is determined

"automatically" by the actual recursive procedure.
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ALGORITHM 4.8:

begin comment an algorithm for finding the length of the k-shortest
paths from vertex a to vertex b, in an acyclic digraph D(V,E):
procedure ABLENGTHQ(integer value v,j);
begin integer q;
q:=way(v);
1 =t 41
vq vq
if short(q,tvq)=not processed then ABLENGTHQ(q,th);

if short(q,t )<infinit 1= =
if rt(q, vq) infinity then yvq short(q,tvq) dvq

else delete edge (v,q) from A(v);
if A(v) non-empty then
begin short(v,j):=min VA € A(v) };

comment let z denote the minimizing w;
way (v) :=z;
short(v,j+1):=not processed
end
else short(v,j):=infinity
comment short(v,j) is now processed;
end ABLENGTHQ;
integer ij;
read the digraph D(V,E) and construct the adjacency lists Aj;
read the value of k, and vertices a,b;
find the shortest paths from all vertices to vertex b;
short (a,1):=infinity;
for v:=1 step 1 until N do
if length shortest path from v to b = infinity then delete vertex v
else begin short(v,1):=length shortest path from v to b;
short(v,2):=not processed;
way (v) :=vertex following v in the shortest path
from v to b (v#b)

end
for (v,v) €E do
begin tvw:=1;
va:=short(w,1) +d

end
short(b,2):=infinity; comment short(b,2) is now processed;
is=1;

while i<k do
if short(a,i) < infinity then
begin i:=i+1;
ABLENGTHQ(a,i)
end
else i:=k;
end
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.'The correctness of this strategy is based on the corrcctness
of algorithm 4.5 and on the fact that the k-shortest path from a to b

is a deviation from a j-shortest path from a to b, for some j, 1%5j<k.

For evaluating the performance of algorithm 4.8, we observe
that although the number of computations of the intermediate j—shortest
paths has been lowered,in terms of upper bounds there exists a worst

case which is similar to the worst case of section 4.7. If D(V,E) is a

-complete acyclic digraph, with a and b being respectively the source and

s ink vertices, then for a certain assignment of weights to the edges the
computation of the k-shortest paths from a to b may be equivalent to the
computation of the k—shortest paths from all vertices to vertex b as
performéd by algorithm 4.5. In fact O(outdegree(v)) steps are performed
per call of ABLENGTHQ(v,j) corresponding to the number of comparisons
required for the minimization of {va,w € A(v)); there are at most k-1
calls of ABLENGTHQ from outside its body (the calls ABLENGTHQ(a,i));
there are, at most, (k-1)(N-2) recursive calls of ABLENGTHQ; the part
of the algorithm outside the recursive procedure requires O(N+M+k) time.
Therefore, an upper bound for algorithm 4.8 is O((N+M)k) time. The

space bound is also equivalent to algorithm 4.5, namely O(Nk+M).

Finally, we add some more remarks about this method. The alter-
native strategy of maintaining the nodes of each A(v) list, sorted
according to increasing values of va's (as in algorithm 4.6), can also
be applied to this case. Also, it is obvious that (i) an algorithm for
finding the k-shortest paths from all vertices to the fixed vertex b,

(ii) an algorithm for the k-shortest paths from a fixed vertex to all
others, and (iii) an algorithm for all k-shortest paths, can be devised
based on the strategy of the present algorithm 4.8, These algorithms

would have bounds similar to those previouslydescribed.
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4,11 The longest path

Given an acyclic digraph D(V,E) with non-negative weights d1
associated with its edges, the problem consists of finding a path which
has the longest non-infinite length among all possible paths in the digraph.

When only positive weights are considered, such a path necessarily starts

with a source vertex and ends with a sink vertex.

The problem is directly related to PERT (zyoject Evaluation and
Review Technique) networks, for a critical path in such a network is
precisely the longest path in the corresponding digraph. Therefore the
present problem is also handled in the vast literature of PERT, CPM
(Critical Path Method) and scheduling project networks. Klein [K167],
Lass [La65], Chen and Wing [ChWi66], Leavenworth [Le61], Eisenman and
Shapiro [EiSh62], Elmaghraby [E170al, Charnes and Cooper [ChCo62],
Furtado [Fu73], Even [Ev73], Price [Pr71], among many others, have
approached the critical path (or longest path) problem and solutions
have been presented, which vary from efficient algorithms - such as
presented in [Fu73] or [(Ev73] - to less efficient meihods, as presented
in [ChWi66]. The algorithms [Fu73, Ev73)] require 0(N®) time for finding
the longest path in an acyclic digraph, but a minor alteration (bagically
adapting them to adjacency lists) transforms them into 0(N+M) mettndz.
The algorithm [Chwi66] for finding the longest path in the digrajh computes
initially the lengths of all longest paths between every pair of wvertices.
In addition it requires the computation of the reachability matrix of the
digraph. We can also mention that some of the methods for finding the
longest path in a digraph require a topological sorting of its vertices

to be performed before the actual computation of the longest path.
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Our proposed method uses a recursive backtracking procedure FATHL
which - besides some minor differences - is essentially similar to procedure
PATH of algorithm 4.1, At the end of the computation of a call PATHL(v),
the longest path of the digraph, starting from vertex v has been calculated.
The method does not require a topological sorting to be performed. It
starts by computing the sets Sl and So of sink and source vertices, res-
pectively. The vector mark is used for preventing the exploration of each

vertex more than once. The length and route vectors are used for storing,

for each vertex v, the length of the longest path in the digraph, starting
with v and the vertex that follows v in such a path, respectively. The
initialisation is executed as follows: If v is a sink vertex then mark(v)
is initialised with true, length(v) and route(v) are initialised with
zero. Otherwise,mark(v) is initially set to false and length(v) to
infinity. As before, the special symbol "zero" is used in the route
vector to indicate the occurrence of a last (sink) vertex in a longest
path. For each source vertex u, a non-recursive call PATHL(u) occurs,
which will compute the longest path which starts from u. The longest
path in the digraph is clearly the longest of all such paths from these
source vertices. In each computation of an invoked PATHL(v), mark(v)

is set to true and all edges from v are explored. Assune the computation

of PATHL(v) and the exploration of an edge(v,w).

(i) If w is found unmarked, this means that w has not been
explored yet and a call PATHL(w) occurs. ©Cn returning
of this call, length(w) contains the length of the longest
path in the digraph, starting from w. A test is therefore
made as to whether the path starting with v - and proceeding
by the longest path from w — is longer than the so far
computed longest path from v. In the affirmative cas<,
this path from v through w, becomes the new longest path

from v.
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(ii) If w is found to be marked then it will not be explored
again and no recursive call of PATHL(w) is invoked. In
this case, length(w) contains already the length of
the longest path in the digraph, starting with w.

A similar comparison and action as in (i) is therafore

undertaken.

At the end of the whole process variable total contains the
length of the longest path in the digraph and variable first points to the
first vertex in the longest path. This path can be obtained in the usual
way: if MEASTIIRA is the longest path, then v, = first, vd+l=route(v1)

for 15j<k , and route(v;):O.

The following is the algorithm for computing the longest path in

an acyclic digraph in an ALGOL-like notation.
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ALGORITHM 4.9:

begin comment an algorithm for finding the longest path in an acyclic
digraph D(V,E);
procedure ?A?HL(integgE value v);
begin mark(v):=true;
for w € A(v) do
begin if — mark(w) then PATHL(w);
if length(w) + de > length(v) then

begin length(v):=length(w) + d_s

route(v):=w
end
end
end PATHL;
integer first, total;
read the digraph and construct the adjacency lists A;
for j:=1 until N do
begin mark(j):=false;
length(j):=—infinity
end
Siz=set of sink vertices;

SO::set of source vertices;
for u € S, do

begin mark(u):=true;
length(u):=0;
route(u):=
end
total:==infinity;
for u € SN S, do

begin PATHL(u);
if length(u) > total then
begin total:=length(u);
firsti=u
end
end
end
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The correctness of the proposed strategy follows from the
lemma below whose proof can be basically established by induction on

the computations of PATHL,
Lemma 4,8:

Let D(V,E) be an acyclic digraph with non-negative weights
dig assigned to its edges. Consider D input to algorithm 4.5 and let
u € V be such that u is not a sink vertex. Then, during the execution of
this algorithm a call PATHL(u) occurs, and by the end of this computation
length(u) contains the length of the longest path of the digraph starting

from u.

The performance of the algorithm can be evaluated by the following
theorem, which also ensuresthat the present strategy is optimal within

a constant factor.
Theorem 4.6:

Let D(V,E) be an acyclic digraph with non-negative weights
diJ assigned to its edges. Consider D input to algcrithm 4.3. Then the
longest path of the digraph is computed in O(N+M) time, using O(N+M)
space. A total of M additions and M + |s;\\sil comparisons of weights are
performed, where So and S1 are the sets of source and sink vertices

respectively.

The time bound mentioned in the theorem above follows directly
from the fact that if u £ Sx then precisely one call PATHL(u) is invoked,
and otherwise no such call occurs. For each computation of PATHL(v)
precisely outdegree(v) additions and comparisons of weights are performed.

For each vertex v, such that v € S;\Si, one extra comparison of weights is
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made outside PATHL. Purthermore, O(N) time is spent in the part of the
algorithm outside the recursive procedure, beyond the O(N+M) time required

for the input of the digraph.

4.12 The k—longest path

Given an acyclic digraph D(V,E) with non-negative weights
dij assigned to its edges and an integer k, k™1, the problem consists
of finding the length of the k-longest (non~infinite) path, from a

source to a sink vertex, in the digraph.

Our approach to the problem consists of applying results from
section 4.11 in which a strategy for finding the longest path in the
digraph was presented, combined with results from section 4.10, which
contains a method for finding the length of the k-shortest path between

two given vertices of the digraph.

The data structures of the proposed method are the following:
we use the wa,y(v),tvw and y_ quantitites of algorithm 4.8 with similar
purposes, except that they now refer to j-longest paths trom v to sink
vertices, instead of j-shortest paths. The short(v,j) quantitites are
replaced by long(v,j), which contain the lengthsof the j-longest path in
the digraph, starting from v and ending with a sink vertex. If there
exists such a j-longest path, but there is no (j+1)-longest path, then
long(v,j+1) is defined to be equal to —infinity. In addition, we use the

length and index vectors. Denoting by So and S1 respectively the set of

source and sink vertices of the digraph we have for each v € S;\S!
length(v) storing the j-longest path from v to any sink vertex so far

computed and index(v)=j.
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A recursive procedure LENGTHQL(v,j) is used, which is similar
to procedure ABLENGTHQ of algorithm 4.8, except that the minimization is
now replaced by a maximization, and the absence of a j-longest path from
v to any sink vertex (which occurs when A(v) becomes empty) is now
indicated by setting long(v,j) to —infinity, whilst in algorittm 4.8

short(v,j):=infinity was used in the corresponding case.

The process is initiated by finding the longest path in the
digraph using algorithm 4.9. Next the variables are set to their initial
values in a similar way as in algorithm 4.8 except that they should refer
to longest paths. The long(v,2) quantities are set to "not processed",
which has & similar meaning as in algorithm 4.8. For all vertices v € S1,
the following additional initialisations occur, length(v) is set to the
longest path from v, index(v) is set to 1 and long(v,2) is set to ~infinity
therefore becoming "processed", The first call of the procedure is the
call LENGTH(u,2) where u is the first vertex in the longest path of the
digraph. At the end of this computation the length of the second longest
path from u to a sink vertex is stored in long(v,2). Now, if ws assign
this value to length(u), then the length of the second longest path in
the digraph from a source to a sink vertex is calculated simply by maxi-
mizing {1ength(v), v € So}. To calculate the length of the third longest
path from a source to a sink vertex of the digraph assign tov u tre value
of the first vertex of the second such longest path, call LENGTHL(u,index(u))
and repeat the process. The iteration is performed until the length of

the k-longest path is obtained, or it is detected that mno such path exists,

The following is an ALGOL-like formulation of this strategy. At
the end of the process, length(u) contains the length of the k-longest path
from a source to a sink vertex if there is one. If it does not exist length(u)
contains the length of a j-longest path, where j is the greatest integer

(3>1) such that the digraph admits a j-longest path from a source to a

sink vertex.
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ALGORITHM 4.10:

begin comment an algorithm for finding the k-longest path from a source

to a sink vertex, in an acyclic digraph D(V,E);

procedure LENGTHQL(integer value v,j);

begin integer q;

q:=way(v);

if 1ong(q,twg=n6t processed then LENGTHQL(q,tvq);
if long(q,tvq) > —~infinity then yvq:=long(q,tvq) + dvq
else delete edge (v,q) from A(v);
if A(v) non-empty then
begin long(v,j):=max{va, v € A(v) };
comment let z denote the maximizing w;
wvay(v):=z;
long(v,j+1):=not processed
end
else long(v,j):=—infinity;
comment long(v,j) is now processed;
end LENGTHQL;
integer i,u;
read the digraph and construct the adjacency lists Aj
read the value of k;
Si:=set of.sink vertices;
o:=set of source vertices;
find the longest path in the digraph, from a source vertex;
u:=first vertex in- the longest path of the digraph;
for vi=1 until N do
if v € S end v € s then delete vertex v
else begin long(v,1):=length of the longest path from v;

long(v,2):=not processed;.

way (v):=vertex following v in the longest path

path from v (v £ Sx)




end
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for (v,w) € E do

begin tvw:=1;

vazzlong(w,1) + de

end
for v € So do
begin length(v):=long(v,1);

index(v):=

for v € S, do long(v,2):=-infinity;
comment if v € S, then long(v,2) is processed;
i:=1;
while i<k do
begin i:=it1;
index(u):=index(u) + 1;
LENGTHQL(u,index(u));
length(u):=long(u,index(u));
if long(u,index(u))=-infinity then
delete u from So;
ii,so non-empty then
us=maximizing v of max{length(v), v € So}
else i:=k

end
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The correctness of the strategy follows from the correctness
of algorithms 4.8 and 4.9. Its space requirements are O(Nk+M) cells and
the time bound is O(N+M)k). For each pair (v,3)y, v €V, 25j%, at most
one call LENGTHQL is invoked. For each of these calls at most one addition
and maximization of weights are performed. This maximization consists of
at most outdegree(v) comparisons corresponding to the number of nodes in
the A(v) list. Therefore in relation to the procedure LENGTHQL the
following are valid:

number of additions of weights S Nk

number of comparisons of weights % Mk
Outside the recursive procedure, at most M additions of weights (for
initializing the va's) and |Solk comparisons of weights (when returning

from a non-recursive call) are performed.

The k~longest path itself can be obtained by employing techniques
similar as described in section 4.7. Also the method of decreasing the
number of comparisons performed inside the body of the recursive procedure,

as described in that same earlier section, can be applied for this case.

4.13 Conclusions

We have presented algorithms for solving some different shortest
paths problems in acyclic digraphs with weighted edges. The justitication
for developing a set of algorithms restricted to acyclic digraph: is that
these structures represent an important class of digraphs and constirute
of mathematical models for some important practical problems. Furthermore
the algorithms which were presented in this chapter have better time bounds
than corresponding algorithms which apply to digraphs in which cycles may
exist. These remarks do not apply to the longest and k-longest path

algorithms, since these problems are normallyrestricted to acyclic digrapts.
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The implementation of the methods presented in this chapter is
simple. The algorithms are based on the execution of recursive procedures
which can be considered as short and simple. Furthermore, many of th-:
algorithms presenied apply procedures defined in other algorithms to
different control structures, which simplifies the implementation of the

whole set of algorithms.
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CHAPTER 5

k—~SHORTEST PATHS

5.1 Introduction

This chapter is devoted to the discussion and proposal of a
strategy for solving problems of finding k-shortest paths in digraphs
with weighted edges. As opposed to the previous chapter, the digraphs
now considered may contain cycles. No restriction is made for the values
that the weights can assume, except that no cycles with negative length
are allowed. Note that there is no solution for the problem if the digraph

contains such a cycle.

k-shortest path problems have been the subject of research for
some time. For instance, an efficient algorithm for the k-shortest paths
between two specified vertices has been known since 1959 [HoPa59].
Dreyfus [Dr69] has discussed this algorithm and extended it for finding
the k-shortest paths from all vertices to a fixed vertex. Dreyfus has
also improved the algorithm by Bellman and Kalaba [BeKa60] which also
solves the k-shortest path problem from all vertices to a fixed one.
These two extensions were shown in [Dr69)] to be equivalen' in time require-
ments. Bellman and Kalaba have actually stated their algorithm for the
case k=2, i.e. finding second best paths. The generalization of it ag-:in
appears in [pr69]. However, Dreyfus' algorithm for an arbitrary i, is better
than the strict generalization of the method by Bellman and Xalata, since
it requires fewer comparisons of weights. A survey paper has also been

published on the subject by Pollack [Po61].

As for the problem of finding the k-shortest paths between every
pair of vertices, Minieka [Mi74] has presented two sclutions, corresponding
respectively to generalizations of the algorithms by Floyd (F162] and

Dantzig [Da66], which find all shortest paths in a digraph. The total
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number of additions and comparisons required by both of Minieka's algcritnrs
are 2N°k? and 2N° (k2+k) respectively, as stated in [Mi74]. Another
algorithm was presented by Beilner [Be72], based on the solutions given for
the all shortest paths problem by Hoffman and Winograd [BoWi71] and Flo:.d
(P162]. Beilner's algorithm requires %N5/2k5/2 + s/23/2 0(x=28. 7<)

additions/subtractions and O(N°k®) comparisons, as mentioned ir [Be72].

All these algorithms refer to the problem of finding k-shorte:zt
paths such that cycles may be part of the paths. Note that every shortest
path in a digraph contains no cycle . However, a k-shortest path k>1,
may contain one. For instance, the second shortest path from a vertex to
itself is a cycle. If only cycle-less paths are desired, other algorithms
ought to be used: Clarke, Krikorian and Rausen [ClKrRa63], Pollack (Po61a],

Yen [Ye71], Lawler [La72].

The problem of finding the k-shortest path between two given
vertices is the subject of section 5.2. Finding the k-shortest paths from
all vertices to a fixed one, from one fixed vertex to all others and
between every pair of vertices constitute sections 5.3, 5.4 and 5.5
respectively. Some further remarks form the last section. The problems

that we have considered involve finding paths which may contain cycles,

5.2 k~shortest paths between two vertices

Given a digraph D(V,E) with weights dIJ assigned tc its edges,
vertices a,b €V and an integer k>1, the problem consisis of finding the

k~shortest path from a to b in D.

Our approach consists of adapting algorithm 4.8, which finds the
k-shortest path from a to b in an acyclic digraph, to an algorithm for
handling digraphs possibly with cycles. Observe that the strategy in which
are based the other k-shortest paths algorithms of Chapter 4 (algorithms

4.5, 4.6 and 4.7) is inadequate for manipulating digraphs with cycles.
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This follows from the fact that in those algorithms the progress of the
computation is such that in each iteration corresponding to each vertex
of the digraph all p-shortest paths (25psk) from the considered vertex to
vertex b are calculated. This strategy is satisfactory when the digraph is
acyclic, but it does not produce the correct solution for digraphs with
cycles, because in the latter case if the j-shortest path from vertex v
to b contains the i-shortest path from vertex w to b, it is now possible
that the jishortest path from w to b contains the i'-shortest path from v
to b (i%j; i'%j'; and i,j,i',j'>1). Therefore, we can not compute the
j—shortest path from v before the computation of the i-shortest path trom
w. Similarly, the j'-shortest path from w can not be computed before the
i'-shortest path from v. Algorithm 4.8 however iterates p for 2%pSik,

and within each iteration of p the vertices are recursively considered,

for computing j-shortest paths, j%p.

The basic alteration required in algorithm 4.8 for handling
digraphs with cycles is that the lengths of the second, third, etc.
shortest paths from b to itself are no longer necessarily intinite, and
therefore they need to be computed. In fact, the computation of the
second shortest path from b to itself ought to be the first among all
computations for the second shortest paths to b, since the second shortest
path from any vertex to itself depends only on shortest paths. Another
alteration that is obviously required is that we should not appl- algorithm
4.2 for solving the step of finding the shortest paths from all vertices
to b since algorithm 4.2 only manipulates acyclic digraphs. Clearly an
appropriate algorithm (which unfortunately has a greater time bound) has

t0 be used for finding all shortest paths to vertex b in a digraph which
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may contain cycles. We recall that finding all such shortest paths

constitutes one of the steps of algorithm 4.8,

The following is an ALGOL-like notation of the algorithm for
finding the k-~shortest paths from vertex a to vertex b in a digraph D
where cycles may occur. The data structures that appear in it are
the same - and have similar interpretations - as those used in algorithm

4.8.
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ALGORITHM 5.1

begin comment an algorithm for finding the length of the k-shortest

end

path from vertex a to vertex b, in a digraph D(V,E):
procedure ABLENGTHQ(integer value v,j);
begin

.« o . as in algorithm 4,8

end ABLENGTHQ;
integer 1ij;
read the digraph D(V,E) and construct the adjacency lists A;
read the value of k, and vertices a,b;
short(a,1):=infinity;
find the shortest paths from all vertices to vertex b;
for v:=1 step 1 until N do
if length shortest path from v to b = infinity then delete
vertex v
else begin short(v,1):=length shortest path from v to b;
short(v,2):=not processed;
way(v):=vertex following v in the shortest path
from v to b (v#b)

va:=short(w,1) + de
end
if A(b) non-empty then

begin short(b,2):=min {ybw,WEA(b)};

comment let z denote the minimizing w;
way(b):=z;
short(b,3):=not processed
end
else short(b,2):=infinity;
comment short(b,2) is now processed;
i:=1 H
while i<k do
if short(a,i)<infinity then
begin i:=1+1;
ABLENGTHQ(a,i)
end
else i:=k
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The correctness of this method is based on the correctness ot
aiéorithm 4.8 andién the lemma below: .°
Lemma 5.1:

v Let D(V,E) be a directed graph with weighted edges, v_,b&V
 wand integer j>1. Let D be input to algorithm S.i. Then the computaticn
of ABLENGTHQ (vl,j) for finding‘the jéshoriest path from v. to b does not
cau;e the recursive call ABLENGTHQ(vl,j) to be eveptug}}?.invoked.

It follows from the examlnatlon of the algorithm that a
recursive call ABLENGTHQ(V y3'), v2 € V,wcaﬂ only be invoked from the com-
putation of ABLENGTHQ(vl,j) if j'Sj and v, € A(vl). Therefore a circu-
larity in this computation can.oniy occur if there exists a cycle
fl,vz,..,;vp,vl (p>1), such that ABLENGTHQ(vi;j) invok§§ ABLENGTHQ(V‘+1,j)
for all 1%i<p and ABLENGTHQ(vp,j).invokes ABLENGTHQ(vl,j). On the other
hand if ABLENGTHQ(vl,j) invokes ABLENGTHQ@é,j) this means that all
i-shortest paths from v, to b, 15i$j—{,‘c§ntain v, Consequently by an
inductive argument we conclude that if the circularity in the computation
of ABLENGTHQ(vl,j) occurs then all i-shortest paths from v tn b,
1%i$j-1, contain v and all such i-shortest paths from v to b contain

P P

v . This contradicts the fact that a shortest path between two vertices
1 } ,

in D contains no cycle.,

Observe that a corresponding lemma for algorithm 4.8 wouid be
trivially true since the input digraph in that case is supiosed not to
contain cycles.

As for thé performance, there can be at most O(Nk) calls of

ABLENGTHQ which correspond to O(Nk) additioms, and 0(Mk) comparisons of

weights. Therefore the total time épent in the computation of the
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procedure is O((N+M)k). The part of the algorithm outside the scope of

the recursive procedure requires O(N+M+k) time, beyond that time required

for finding the shortest paths from all vertices to vertex b. This last

step requires O(N®) time if we assume that only non-negative weights are
allowed. Otherwise, if negative weights may also occur O(N¥) time is required
for this step. Therefore the total time bound is 0(N2+(N+M)k5 or 0(§M+(N+M)k),
corresponding to each of these two cases respectively. However we emphasize
that in addition to calculating the shortest paths from all vertices to

vertex b, the pfésent méthod reqﬁires not more>than O((N+M)k) time and this

bound is not necessarily attained. The space bound is O(Nk+M).

5.3 k—-shortest paths from all vertices to a fixed vertex

Given a digraph D(V,E) with weights dIJ assigned to its edges
and a vertex b € V, the problem consists of finding the k-shortest paths

from all vertices to vertex b.

This problem can be solved by slightly modifying algorithm 5.1.
In fact, we only need to alter that part of the algorithm corresponding
to the control of the non-recursive calls of the procecavre, i.e. thcse
calls invoked outside its body. We want to ensure that calls of ABLENGTHQ
for computing the length of the j-shortest path from v to b only orcu
if this length has not been previously computed and the length of =n= (j=1)-
shortest path from v to b is known to be finite. Therefore, in algorithm

5.1, replace the (entire) statement
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while i<k do

by:

S:=V;
while i<k do
if S = empty then i:=k
else begin i:=i+1;
for u € 5 do
if short(w,i-1) = infinity then
begin delete u from S;

short(u,k):=infinity
end

else if short(u,i) = not processed then ABLENGTHQ(u,i)
end
The newly introduced set S contains initially the subset of
vertices of the digraph for which the lengths of their shortest paths to
b are finite. The deletions in S are to avoid unnecessary iterations when

computing j-shortest paths whose lengths are already known to be infinite.

Since the time required for the execution of the alterei while
statement is O(Nk) and not more than O(N) space has been added to the
algorithm, we conclude that the time and space bounds of algorithm 5.1 have

been maintained in the present case.

5.4 k-shortest paths from a fixed vertex to all vertices

Given a digraph D(V,E) with weights de assigned to its edges
and a vertex a € V, the problem consists of finding the k-shortest paths

from vertex a to all vertices of the digraph.
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As before, the problem can be solved by applying the strateg-
of section 5.3 for finding the k-shortest paths from all vertices to a
certain vertex b to the converse digraph D of D, with b=a. The time atud

space bounds are the same as those of section 5.2.

5.5 k-shortest paths between every pair of vertices

Given a digraph D(V,E) with weights d‘J assigned tc its edges,
we wish to obtain the k-shortest paths between every pair of vertices of
the digraph.

We can solve this problem by applying the strategy of section
5.3 -~ for finding the k-shortest paths from all vertices to a fixed vertex
b - iteratively, at most N times, varying vertex b. The execution of the
recursive procedure ABLENGTHQ in this case corresponds to 0(N°k) additions
and O(NMk) comparisons. The part of the algorithm outside the procedure
requires O(N®+N°k) time, corresponding to 0(N®) time for finding the
shortest paths between every pair of vertices and 0(N%k) for the while
i<k do loop (of section 5.3), which controls the non-recursive calls of
the procedure. The other steps involved in the initializaticu of tne
process require less than O(N°+N°k) time. Therefore the total tim= i .

is O(N°+N(N+M)k).

If D contains negative weights it is advantageous for tre step
of finding the shortest paths to vertex b, to apply once an all zhortest
pathsalgorithm with overall time bound 0(N®). 1In this case, 0(%%) extra
space ought to be added for storing the matrix of all shortest paths.
Therefore, since the strategy of section 5.3 requires 0(Nk+M) srace we
conclude that the space bound for the present case is O(N°*+Xk). If D
contains only non-negative weights we may choose not to apply an all
shortest paths algorithm and instead calculate all shortest paths to

vertex b in each iteration of b. In this last case the space bound
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of O(Nk+M) can be maintained.

In algorithm 5.1 and in the solution of the stbsequent problems
of this chapter the decision as to whether or not a call ABLENGTHQ(v, j)
should be invoked, for computing the j-shortest path from v to b is
taken by testing whether short(v,j) is "processed". Alternatively we
can adopt the following strategy described in [Dr69]. After finding the
shortest paths from all vertices to vertex b, we find an ordering
N

vlvz...v of the vertices of the digraph, such that if the shortest path

from v. to b contains less vertices than the shortest path from v to b,
P A q

then p<q. If we process the vertices of the digraph in the above ordering

VYV 40V
12N ?

"not processed"” information of short(v,j), since the computation of each

for each j 25jSk, then we can disregard the "processed” and

j~shortest path from v to b depends only on i-shortest paths that have
already been computed. Hence if this ordering is used no recursive call
of ABLENGTHQ would occur, since short(q,tvq) would always be found

"processed" in the corresponding test inside the procedure.

5.6 Conclusions

We have presented in this chapter solutions to k-shortest
paths problems in digraphs. These solutions were obtained by slightly
modifying strategies presented in Chapter 4 for solving such probi-ms in

acyclic digraphs.

One interesting aspect of the k-shortest path problem is that,
unlike the shortest path problem, the following property does not hold:
vIf (v,w) is an edge of the digraph with weight d__, and
short(v,k) denotes the length of the k-shortest path from v to
a certain certex b, then short(v,k) = min {short(w,k) + de ,

for w € A(v)}."
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If k=1 this assertion is true, but in general it does not hold
for k>1. There may exist an integer j, 1%j%k and vertex z € A(v) such
that

short(v,k-1) < short(z,j) + d__ < min {short(w,k) + 4, fer

w € A(v)].
In this case, clearly

short(v,k) < min {short(w,k) + de’ for w € A(v)].

The corresponding correct expression which holds for k=1 is:
short(v,k) = mink {short(w,j) + d_, for w € A(v) and 15j%]},

with mink denoting the k—th minimum.
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CONCLUSIONS

This thesis has presented algorithms for solving certain comput-
ational graph theoretic problems. We have largely employed backtracking
as the basic strategy in most of the algorithms. The use of backtracking
as a convenient tool for treating graph problems has again bcen emphasized.
Its importance can be assessed by the fact that in recent years a wide
variety of graph problems have been successfully solved by algorithms based
upon backtracking strategies. Furthermore it provides a methodical way
of approaching a possible solution for a given problem and also tends to
produce algorithms that in general resemble one another. This uniformity
and resemblance of the algorithms, we suppose, are factors that contribute
to the elegance of the solutions as a whole, and also in certain cases,
may provide a means of ranking the difficulty of some different problems
through their backtracking algorithmic solutions. This evaluation would be
undertaken by a simple examination of the algorithms, since their resem-
blance to a certain extent, facilitates the task of "comparing" these

algorithms.

Examining the solutions to the problems considered in this tuesis,
we note that the backtracking algorithms are based on recursive procedures
and most of them may be fitted essentially into the follcwing formulation.
Each of the symbols B1, B2,...,B9 denotes a (possibly empty) s-que.ce of
statements, which varies according to which particular algerithm is te be

fitted into the formulation.
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begin

procedure X (integer value Vi oee.);

begin mark vertex v;
insert vertex v in the stack;
B1;
for w € A(v) do

begin B2;

if w is not marked then

begin B3;
X(wy.on);
B4
end
else BS
end;
B6;

delete vertex v from the stack
end X;
BT7;
read the digraph and construct the adjacency lists A:
B8;
X(v,...);
B9

end
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Another point on which we would like to comment is the way we
chose to discuss the correctness of the different strategies throughout the
thesis. Essentially, we have proposed proofs by induction whick were
derived directly from the recursiveness of the Procedures. In fact the-e is
a relation between them. The assumptions that are made, concerning the
states of different variables of a recursive Procedure, at The <tart of an
arbitrary computation of it, may be associated with the assumptions corres—
ponding to the inductive hypothesis of a proof by induction for the corre-
ctness of this procedure. An equivalent statement could be made for
procedures using iteration instead of recursion. However the generally
shorter and clearer description of a strategy achieved by employing recursion

tends to make such proofs more transparent.

The technique of deriving proofs by induction from recursive
algorithms has been commonly used through the years. However, much less
common is the converse technique: the derivation of a recursive algorithm
from a suitable proof by induction of a certain theorem related to an
algorithmic problem. The application of this technique is often not
convenient nor perhaps possible, but an example where a recursive algorithm
was obtained by conveniently translating a proof by induction is present«d
in the appendix to this thesis. The example has considered the prcof oy
induction of Dilworth's decomposition theorem for partially order-d sets.
This theorem states that the minimum number of chains which cover a pcset
equals the maximum number of elements in an antichain. The derived algorithm
finds a minimal chain covering for the poset from maximal antichains.

This derivation was possible because of the fact that the chosen proof
implicitly considered the construction of a minimal chain covering.

However the fact that it may be possible to translate directly a proof by
induction into an algorithm by recursion emphasizes the relationship tetwcen

them.
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To the best of our knowledge all algorithms described in Chapters
2 to 5 of this thesis have performances,in terms of time and space bounds,
at least as good as existing algorithms for equivalent tasks. The bounds
of the algorithms we have proposed have been calculated through the thesis
and appear in the following table, which summarizes the list of the specific

problems that we have considered.

Two methods mentioned in the thesis have been left out of this
summary table. The first is a method for obtaining a topological sorting
arrangement, which can be derived from the results described in Chapter 1,
which showed a relationship existing between ternary search trees and
topological sortings in a partially ordered set. Such a method would be in
general worse for topological sorting than known methods. Therefore we do
not consider the practical proposal of a topological sorting algorithm based
on results of Chapter 1. However, the topological and quasi-topological
sorting properties of ternary search trees are interesting characteristics
of ternary trees and are therefore worth describing. The second method which
has not been listed in the table is the algorithm for rhe problem related
with Dilworth's theorem described in the appendix. A: already mention«d
our purpose in describing that method was to provide an example for
illustrating how a proof by induction may be directly trarnslated into a

recursive algorithm.
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SECTION
NUMBER

PURPOSE OF THE ALGORITHM

TIME
BOUND

SPACE
BOUND

Finding the T topological sorting
arrangements of an acyclic digraph

O((N+M)T)

O(N+M)

3.3

Finding the C elementary cycles of
a digraph

O(N+M(C+1))

0(N+M)

3.8

Finding a fundamental set of cycles of
an undirected graph (with explicit
output)

O(N.M)

O(N+M)

3.10

Finding a fundamental set of cycles of
an undirected graph (with reduced
edited output)

0(N+M)

O(N+M)

Finding the C elementary cycles of an
undirected graph

O(N+M{C+1))

0(N+M)

Finding the shortest path between two
vertices of an acyclic diagraph

O(N+M)

O(N+M)

4.3

Finding the shortest paths from all
vertices of an acyclic digraph to a
fixed vertex

O(N+M)

O(N+M)

Finding the shortest paths from a
fixed vertex to all others in an
acyclic digraph

O(N+M)

0(N+M)

4.5

Finding the shortest paths between
every pair of vertices in an acyclic
digraph

O((N+M)N)

0(N+M)

4.6

Finding the shortest path between two
given vertices of an acyclic digraph
visiting a given subset of vertices

O(N+M)

O(N+M)

‘.

4'.7

Finding the k-shortest paths from all
vertices of an acyclic digraph to a
fixed vertex

O((N+M)k)

GENk+M)

4.8

Finding the k-shortest paths from a
fixed vertex of an acyclic digraph
to all others

O((N+M)k)

0(Nk+M)

4.9

Finding the k-shortest paths between
every pair of vertices of an acyclic
digraph

O( (N+M)Nk)

0(Nk+M)
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SECTION TIME SPACE
PURPOSE OF THE ALGORI
NUMBER THM BOUND BOUND
Finding the k-shortest paths between O( (N+M)k) O(Nk+M)
4.10 two given vertices of an acyclic
digraph
4.11 Finding the longest path in an acyclic |O(N+M) O(N+M)

digraph (non-negative weights)

Finding the k-longest path in an O( (N+M)k) O(Nk+M)
4.12 - . . .
acyclic digraph (non-negative weights)

* *
Finding the k-shortest paths between  |O(NZ+(N+M)k)™ | O(Nu+M)
5.2 two given vertices of a digraph
(non-negative weights)

% CE]
Finding the k-shortest paths from all O(N°+(N+M)k)~ | O(Nk+M)
5.3 vertices of a digraph to a fixed vertex
(non-negative weights)

. * X ¥
Finding the k-shortest paths from a O(N*+(N+M)k) | OON k+M)
5.4 fixed vertex of a digraph to all others
(non-negative weights)

* 3*
Finding the k-shortest paths between O(Na+(N+M)NkS 0 (Nk+M
5.5 every pair of vertices of a digraph
(non-negative weights)

* 0(NM+(N+M)k) when negative weights are alloved
*x Remains the same when negative weights are allowed

FHR 0(N8+Nk) when negative weights are allowed
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APPENDIX

ON DILWORTH'S PROBLEM

The following theorem is due to Dilworth [Di503,

Dilworth's decomposition theorem:

Given a poset (P,.<s ), the minimal number of disjoint chains

which cover P is equal tothe maximal number of elements in an antichain.

Several proofs for this theorem have been published, since it
was first formulated: Dilworth [Di50], Fulkerson FFu56], Dantzig and
Hoffman [DaHo567, Perles [Pe63, Pe63a], Tverberg [Tv67], among others.
A dual of this theorem, obtained by interchanging the roles of chains

and antichains has been established by Mirsky [MiT71].

A problem related to Dilworth's theorem can be formulated
as: given a finite poset (P, <s ) find & covering of P by a minimal
number of disjoint chains. The poset represented by figure A.1, for
example, has {4,5,2] as a maximal antichain and a mininal chain covering
is 1,7,43}, {9,5,8,61 and {2,3}. Dantzig and Hoffman [DaHo56)] have solved

this problem by employing linear programming techniques.

In this appendix, we seek a solution for a similar proklem
except that we employ maximal antichains in order to cbtain the minimal
chains. The algorithm presently described was obtained by deriving an
algorithmic translation from Perles' proof [Pe63] of Dilwerth's theorem.
We wish to emphasize that our principal aim in this appendix is not the
proposal of an algorithm for solving the minimal chain problem, but o

illustrate with an example how proofs employing induction can motivate
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Figure A1

o
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algorithms employing recursion, Therefore we note that efficiency is

not our main concern in this illustration.

The following is essentially the formulation and proof of

Dilworth's theorem as given by Perles:

Theorem:

Let (P,<$ ) be a partially ordered set. If the maximal number
of elements in an antichain of (P,<$) is k, then P is a union of k

chains.
Proof:

The proof proceeds by induction on lP!, for all k simultaneousiy.
If lP‘ = 1, there is nothing to prove. Assume, therefore, that the
theorem holds for ‘P\< n, and let lP‘: n. Denote by S; and SO the sets

of sinks and sources of P, respectively.

case 1: P contains an antichain Q of k elements, different from both

S; and So° Define

g
-
i

{p € P such that g« p, for some q € Q},

lae)
3]
1l

{p € P such that pL g, for some q ¢ Q3.

It is easily verified that P, N P, =Q, P,  P,=P, P, # P and
P, # P (the first relation follows from the fact that Q is an
antichain, the second from the maximality of Q, the third from
Q #£ S, and the fourth from Q # S;).

Now, |B|<IP|, |Pzl<|P|. By induction hypothesis, P, and

P, decompose into k chains:

k 13
P, =y U, P, =U L
i=) =1

The elements of Q, being the sources of P, and the sinks of P,

are the sources of the chains U; and the sinks of the chains
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L,. Let 9 = {9, ..., g} and assume without loss of
generality that q; is the source of U, and the sink of L.
(1 #1i k), Define C; = L,yU;. C; is a chain and ve have

k
P = PP =y C

case 2: Every independent subset of P containing k elements roincides
with 8; or with So. Take some a € S0 and choose b €S;, such
that b a (b may equal a). Define G, = {a, b} and P,= ¥\la, b1,
C, is a chain, IP;|<|P| and P, contains k - 1, but not k
mutually incomparable elements. Therefore we have, by induction
hypothesis, P, = D:ic,, wvhere the C, are chains, and

k
P = P,y{a, b} = u_Ci-

From the proof above we derive the following algorithm employing
the recursive procedure CHAIN, We assume that P = {1, ..., N} and
the desired minimal chains are stored, at the end of the process, in
vector link defined as follows: 1if x4$ y and x immediately precedes y
in a cﬁain then link(y) = x; if x is the first element in a chain,
then link(x) = x, The boolean variable casel is used for distinguishing
between cases 1 and 2 of the proof. The meaning of the remaining data

structures employed in the algorithm follows directly from the proof.
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ALGORITHM A.1

begin comment an algorithm for finding a minimal chain covering of a
poset, using a procedure ANTICHAIN, for obtaining
maximal antichains in the poset;
procedure CHAIN (integer set P);
begin integer a, b;
logical casel;
if P not empty then
begin ANTICHAIN (P, Q, casel);
comment if P contains a maximal antichain Jjifferent from
both the subsets of sources and sinks of P, then
ANTICHAIN assigns it to Q and casel is assigned
to true - otherwise, casel is assigned to

false;
if casel then
begin P1 := {p € P such that q € p, for some q € Q};
Ep € P such that p g q, for some q € Q3;
CHAIN P1)
CHAIN (P2)
end
else

begin a := any source element in P;
b := sink element in P, such that b » a;
link(b) := a;

P3 := P\ia, b};
CHAIN (P3

end
end
end. CHAIN'
Tead the poset (P, L );
for p €.P do link (p)} := p;
CHAIN (P);
output the minimal chain covering from link vector

end
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The problem solved by the above algorithm can be enunciated as:
given a poset (P,< ) and a procedure ANTICHAIN for finding maximal
antichains in posets, obtain a minimal covering by disjcint chains.
The procedure ANTICHAIN itself is not presented, since we consider it
as being out of scope of this appendix, in which our objective is to

illustrate recursive algorithmic translations from inductiv: proofs.

The proofs of correctness of algorithm A.1 are a direct and simpie
consequence of the proof by Perles of Dilworth's theorem. Finally
we mention the fact that besides the computation of ANTICHAIN procedure,
all the remaining operations that appear in the description of the algorithm

are simple and can be easily implemented in a computer.
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