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ABSTRACT 

Currently available microcomputer development 

rather inefficient when systems/tools become 

employed to debug real-time malfunctions; that is, 

intermittent or even unrepeatable hardware/software 

malfunctions encountered in time-critical applica­

tions. A new debugging technique, namely the 

Action-replay Debugging Technique, is proposed which 

can efficiently deal wi th a large class of these 

malfunctions. 

The aim of the Action-replay Debugging Technique is 

to provide an environment which is suitable for 

real-time debugging. In particular, an identical 

processor to the target, or a simulator of it, is 

forced to re-execute, or Action-replay, repeated] y 

and at any desirable speed the exact program path 

which the target processor traversed during the ori­

ginal interaction wi th its real-time environment. 

During successive "Action-replays" the user can 

investigate the system's behaviour (including timing 

characteristics) without real-time constraints which 

normally exist in time-critical applications. 



ABBDVIATIORS 

CPU central processor unit. 

DMA direct memory access. 

DSL digital systems laboratory. 

ECL emitter coupled logic. 

LED light emitting diode. 

LSI large scale integration. 

MMU memory management unit. 

MPU micro-processor unit. 

MSB most significant bit. 

MSI medium scale integration. 

MTS Michigan terminal system. 

PTR paper tape reader. 

RAM random access memory. 

ROM read only memory. 

SST small scale integration. 

TTL transistor-transistor logic. 

VDU video display unit. 

[n] reference number. 

(# n): section number. 

(A n): appendix number. 



SUMMARY 

The development of microcomputer based real-time systems, 

being a complex process involving simultaneous design of 

both hardware and software, demands sophisticated debug­

ging tools. However, a study undertaken at the start of 

this research work has revealed that currently available 

microcomputer development systems/tools cannot effi­

ciently debug real-time malfunctions. 

An analysis of the debugging process follows in order to 

reveal the differences between conventional and real-time 

debugging and with emphasis on the debugging tool capa­

bilities, the availability of which should make efficient 

real-time debugging possible. In particular, real-time 

debugging presents two basic problems, namely Execution 

Unrepeatability and Transparent Accessing of Prograa 

Status Information. If efficient real-time debugging is 

to be achieved, the debugging system must be able to deal 

with these two problems. 

Thereafter, a debugging system is proposed based on a new 

debugging technique, namely the Action-replay Debugging 

Technique. This technique allows real-time debugging to 

take place within a non-real-time environment, thus pro­

viding a "transparent" solution to the above mentioned 

problems. In particular, a snapshot of the target system 

state is saved together with a complete record of all 

external stimuli as seen by the target CPU during the 

real-time execution which follows. At the end of the 

program execution "Action-replay" may commence. That is, 

having reset the target system state to that given in the 

above mentioned snapshot, an exact reconstruction of the 

captured external stimuli is initiated which forces the 

target processor, or a simulator of it, to re-execute an 

identical program path with that which the target proces­

sor traversed during the original interaction with its 

real-time environment. During successive "Action-



replays" of the suspect program path the user can inves­

tigate the program's behaviour without real-time con­

straints which normally exist in time-critical applica­

tions. 

Having defined the most important aspects of the Action­

replay Debugging Technique, an Action-replay Prototype 

System is then developed, based on the "semi-resident 

approach"; that is, a host computer is connected to the 

target computer via an intelligent interface, namely the 

Host-MPU Interface. The target and host computers are 

the M6800 microcomputer and the LSI11/23 minicomputer 

respectively. The Host-MPU Interface complexity is kept 

at minimum levels, but even so it is necessary to employ 

more than 150 SSI/MSI TTL integrated circuits in the 

design. 

Thereafter, three case studies are undertaken in an 

attempt to evaluate the Action-replay Debugging Tech­

nique. These studies show that the Action-replay Debug­

ging Technique can indeed aid real-time debugging of 

software (as well as hardware) malfunctions by providing 

a debugging environment which encourages the user to 

embark into a systematic and efficient debugging process; 

debugging the same malfunctions via conventional debug­

ging methods would require a vast amount of trace memory 

for providing less efficient diagnostic facilities. In 

particular, the erroneous program behaviour can be kept 

in a stable condition so that particular symptoms relat­

ing to particular faults can be focussed upon and 

analysed; that is, the user is not confused by rapidly 

changing symptoms. 

Finally, the Ac tion-replay Debugging Technique limita­

tions are discussed and recommendations are given for 

overcoming these limitations and for upgrading the 

Action-replay Debugging Process in future implementa­

tions. 
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CHAPTER 1 

1 INTRODUCTION 

As we move into the LSI age of computer technology, hardware 

cost is decreasing rapidly as a result of employing mass­

production processes and automating techniques within these 

processes. The selling cost of a ncroprocessor unit (MPU), 

which is the major product of the LSI technology, becomes 

almost negligible when compared to the development cost of the 

user system (hardware interfaces and driving software). If 

some kind of cost balance is to be achieved user system 

development time, being proportional to development cost, 

should be kept to a minimum level. 

According to past statistical studies on hardware/software 

development rI9], debugging represents more than 1/3 of the 

overall system development effort; the other 2/3 being the 

design and construction of the overall system. One way of 

reducing development cost, therefore, is to improve debugging 

efficiency; that is, to detect and correct in a short time the 

maximum number of design and construction errors. 

It goes without saying that it is desirable to produce pro­

grams containing minimum errors in the first place. A lot of 

emphasis has been given in the past into the development of 

design methodologies and tools aiming towards the realisation 

of the above notion (section #1.1). In practice, however, not 

only the design process is extended further, due to the extra 

effort required for the necessary formali sation, but unfor­

tunately not all errors are eliminated. Hence, the need for 

efficient debugging tools (II 1.2), the absence of which has 
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forced debugging to become a rather specialised and, there­

fore, an expensive process requiring experienced system 

designers. 

As will be shown in section #2.1 of this thesis, the need for 

efficient debugging tools becomes even more apparent within 

Real-time Systems; that is, either feedback or open-loop con­

trol systems of asynchronous characteristics where the con­

trolling system component (the computer) is directly influ­

enced by the response of the system component which is either 

under control (e.g., an autopilot computer and the airplane), 

or simply monitored (e.g., an alarm system). 

Currently, real-time debuggi ng is increasi ngly required in 

microcomputers which, due to their low cost, are heavily 

involved in real-time applications. Hence, microcomputer 

real-time debugging is focussed upon in this research work 

although a major part of the ideas presented apply to any com­

puter system which is employed in a real-time application (*). 

Before presenting the basic organisation of a selection of 

currently available microcomputer debugging systems (# 1.2) a 

number of definitions will be stated concerning the program 

development process in general. 

1.1 Program Developaent 

Program Development is the process of "Designing" a program 

(# 1.1.1), "Validating" the logical correctness of its imple­

mentation (It 1.1.2), "Debugging" it (It 1.1.3) and evaluating 

its "Performance" (It 1.1.4). 

Either a Top-down or a Bottoa-up strategy may govern the 

overall program development process [47,51]. During the 

former strategy the program main procedure (i.e., the top-most 

* Throughout this thesis a computer controlled 
real-time application is also referred to as ei­
ther "user application" or "target application". 
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level) is developed first in the chosen programming language. 

Then, the program sub-procedures are developed which are also 

split up, and so on, until the entire program is developed. 

At each development level, "dummy" procedures substitute those 

program procedures which have not yet been developed. During 

the latter strategy the exact opposite happens. 

The Stepwise Refinem.ent program development strategy [49] is 

similar to the Top-down strategy; the basi c di fference being 

not having to work in the programming language. For example, 

one might use plain English statements describing the function 

to be performed at each level. When bottom level is reached, 

the algorithm is translated into programming language code. 

If the program is deliberately split into well defined sec­

tions (.odules), which are developed qui te separately, only 

being brought together when they have all been found to work 

individually, then that is Modular Progr~ng. 

Finally, Structured Progra..ing [8,22,32,48] is another method 

of program development; at each step of the development the 

program can be logically decomposed into distinct sub­

structures whose correctness is manifest by the structure of 

the program itself. The Principle of Data Abstraction is 

often used in conjunction with structured programming, thus 

forming a powerful tool for designing programs (Explicit Data 

Abstraction). That is, data is defined by specifying the way 

it is represented on store and stating all possible operations 

on it. Then, implementation details are ignored by thinking 

solely in terms of meaningful operations performed upon the 

data than in terms of actual data. Data Abstraction may also 

be implemented wi thin programming languages in the form of 

arrays, records, etc (Implicit Data Abstraction). 

1.1.1 Prograa Design 

Program Design is the process of constructing a program 

according to application requirements. 

The program design process is divided into two stages, namely 
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the Analysis and Synthesis stages. During the former design 

stage a study of the available program requirements is under­

taken yielding in the generation of static specifications 

(implementation independe specifications) for all program 

modules/sub-modules. During the latter design stage conver­

sion of program static specifications into procedural specifi­

cations (implementation dependent specifications) and thereon 

into programming language code takes place. 

1.1.2 Program Validation 

Program Validation is the process of ensuring that the program 

performs the intended logical functions. The program valida­

tion process is divided into two stages, namely the Verifica­

tion (or Proving) and Testing stages. 

The former stage is a theoretical approach to program valida­

tion usually employed when the program domain is rather large 

and therefore testing cannot cover all possible cases. Hence, 

the program correctness is verified either by developing 

mathematical proofs (static approach) or by giving emphasis to 

the correct design of the program (constructive approach). 

The latter stage is an empirical approach to program valida­

tion useful for checking programs with small finite number of 

program paths (in practice it is used to show the presence of 

errors rather than their absence). Hence, the program is 

tested for logical correctness by evaluating its response to a 

selected set of input data. According to whether a Top-down 

or a Bottom-up development strategy is employed, this input 

data stream consists of "real" and "symbolic" data correspond­

ingly (except during the "system testing" stage of the 

Bottom-up strategy when the data has the form of "real" 

input). 

A variety of program testing techniques are available [26] 

which are divided into two major categories, namely Internal 

Testing, during which the internal program structure is exam­

ined (e.g., path, branch and module testing), and External 

Testing, during which the set of input data is formed by 
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extreme values (acceptance and confidence testing). Informa­

tion of the following nature should be generated during test­

ing [38] : 

* scope, purpose and objectives of testing. 

* hardware/software resources required during testing. 

* execution order of tests. 

* set of input data forming each test. 

* data to be collected during each test. 

* success criteria of a test. 

* procedure followed if a test fails. 

* test verification method. 

Programming Errors may be divided into four main categories 

according to where along the development process they are 

introduced. 

1) Requirement 

Errors 

2) Specification 

Errors 

3) Design Errors 

4) Implementation 

Errors 

failure to satisfy the application 

requirements when generating the program 

requirements (including performance 

requirements). 

failure to satisfy the program require­

ments when generating the static specif­

ications. 

failure to satisfy the static specifica­

tions when generating the procedural 

sped fi cations. 

failure to satisfy the procedural 

specifications in the implementation of 

the program algorithm resul ting in 

incorrect data/control flow. Implemen­

tation errors are subdivided further into categories such 

as missing/extra/wrong program paths and actions wi thi n a 

path, which may be caused by various reasons (e.g., 

flowchart misinterpretation, undefined/multi­

defined/misspelled identifiers, improper/omitted variable 

initialisation, incorrect branch-tests, etc.). 
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1.1.3 Prograa Debugging 

Program Debugging [15,16] is the process of locating and 

correcting programming errors sensed either during the initial 

program execution, or during program testing, or later on dur­

ing program maintenance. 

In Top-down Debugging the main routine is debugged first and, 

as soon as a subroutine is coded, is debugged as part of the 

existing "debugged" program. Any data used has the same form 

as input for the final program. However, when the program is 

developed by a team of programmers, debugging of a particular 

program module may be delayed because subroutines, which com­

municate with this module, must be developed first. 

In Bottom-up Debugging each program module/subroutine is 

debugged separately (Module Debugging) in artificial environ­

ment which generates input for the module in question. Only 

later on when all the modules are put together and debugged as 

a whole (System Debugging) data has the form of "real" input. 

Debugging via Inspections [11,40] is a well organised, effi­

cient and economical method based on team discussions taking 

place throughout program development. The team is formed by 

the Moderator (manages the team), Designer (produces the pro­

gram desi gn), Implementor (translates design into code) and 

Tester (tests the product). The process is described in terms 

of operations, namely the Overview (general discussion about 

program), Preparation (individual education), Inspection (find 

errors), Rework (fix errors), Follow-up (ensure all fixes are 

applied correctly). 

Code Walk-tbrougbs [40] are similar to Inspections but less 

formal (the structure of the team and the objectives for each 

operation differ in different places). 

In debugging via Desk Executions [31] the program statements 

are simulated manually one by one while the current value of 

each variable is recorded on paper (one column for each vari­

able). 
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When On-line/In~erac~ive Debugging is employed program status 

information is monitored either in between, or during program 

execution sessions. 

Breakpoin~s stop program execution for subsequent Prograa 

S~a~us Informa~ion monitoring. In there simplest form are 

that of Address Breakpoin~s; the address of the current 

instruction is compared either by software or hardware with a 

set of preselected addresses (located in the "breakpoint 

table") and in the event of a "match" program execution is 

stopped and control is transferred to the monitoring system. 

Stop-condi~ions activate the Breakpoint facility at the 

occurrence of one/many pre-selected conditions (e.g. a number 

of clock counts after a particular event has occurred, during 

a particular memory cycle, etc.). 

Duaps record information about a "failing" state of computa­

tion (all or a selected part of store). Some examples of 

Dumps are the Pos~ __ ortem Duap, which is initiated after the 

termination of the user program, the Snapshot Dump, which is 

ini tiated at an intermediate execution point, and the Com­

parison Dump, which provides only the difference between the 

current computational state and a preselected one captured by 

a previous dump. 

Traces provide a sequential record of program activity 

obtained during execution. Program-variable Trace, Instruc­

tion Trace, Subroutine Trace, are examples of Traces. Hence, 

Dumps are used to find wrong quantities, while Traces provide 

checks on specific code modules involving those quantities. 

Intermedia~e ou~pu~ s~a~~en~s record intermediate data values 

of selected program variables during execution by being 

inserted at carefully selected places amongst the code in 

question. These statements can be condi tional and therefore 

left within the final version of the program for maintenance 

purposes (e.g., to collect output used in confidence checks). 

The main advantage of this technique is that it is independent 

of program language and produces meaningful output which is in 
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a format easily readable by the programmer (unlike traces). 

Debug-messages provide useful information about the program 

under suspicion in the form of State-diagrams, Tree-diagracs, 

functional descriptions, and records of relevant reference 

information (decisions taken, results obtained during the 

debugging of a particular program module, etc.). 

1.1.4 Program Performance Evaluation 

Program Performance Evaluation is the process of checking 

non-logical correctness of programs. 

Expected utilisation of resources, such as overall execution 

time response to external stimuli, data throughput rates, 

required memory size, etc., is checked via a number of dif­

ferent software techniques. For example, execution statistics 

are collected by inserting software counters at key locations 

within the user code r21,43]. 

1.2 Microcomputer Develo~ent TOols 

Microcomputer systems are increasingly more involved in the 

control of real-time applications and are interfaced to unac­

countable real-time environments; hence, the appearance of 

time-dependent bugs which are usually accompanied with the 

problem of repeatability. Unlike conventional digi tal sys-

tems, microprocessor systems often involve simultaneous 

hardware and software implementation (and therefore debug­

ging); software bugs may be taken as hardware malfunctions or 

vice-versa. In addition, problems such as accessing Program 

Status Information, controlling program execution and user 

interfacing (command language, Program Status Information 

display format, etc.), which were tackled in conventional sys­

tems via sophisticated operating systems, now emerge in the 

microcomputer world. 

If only for the above reasons debugging such systems require a 
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high degree of hardware and software expertise. Therefore, it 

was realised early in the evolution of the microcomputer that 

there is a need for different debugging tools than those used 

in conventional systems. 

Initially, application software was written in a cross 

developatent mode; that is, a host computer (maxi/mini) was 

used to assemble/compile the source program and even simulate 

its execution for debugging purposes. The obvious advantage 

of this method was that some of the software needed was 

already available within the chosen host system (e.g., file 

management and editing facilities). Any problems arising 

later on while the target MPU was executing the object code 

were tackled using either storage oscilloscopes or logic ana­

lysers [42]. These devices, because they operate down at the 

binary system level, some-times octal/hexadecimal representa­

tion is provided (e.g., the HP l6l0B logic analyser), and can 

only capture a very small "trace" of the original execution 

(usually 64 execution steps), are very inefficient as far as 

software debugging is concerned. Even during hardware debug­

ging, and especially when a large number of control signals is 

to be monitored, the interpretation of the captured data is 

very difficult because the information shown on the screen is 

limited to a large number of binary/hexadecimal digits with no 

reference whatsoever to corresponding signal-names or other 

target system information. 

Therefore, it was realised that some means of controlling and 

monitoring the target MPU was required for debugging purposes. 

Initially, microcomputer analysers , which are logic analysers 

specially tuned to microcomputer needs, were developed. These 

devices, apart from monitoring facilities can also provide 

minimal control over the program execution. Later on a more 

substantial breakthrough was the development of Microca.puter 

Debugging Consoles. These consoles, according to their organ­

isation, are divided into two main categories, namely the 

Hardware Consoles and the Software Consoles. Some examples of 

both kinds of consoles are given below in an attempt to show 

the variety of debugging techniques used and discuss their 

organisation. 
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1.2.1 Hardware Consoles 

A hardware console [16] is based on a front-end panel 

(LEDs+switches) and attached to the target MPU buses via a 

dedicated hardware interface which not only takes care of the 

data traffic across itself but also controls the MPU in ques­

tion. Both actions are initiated via certain signals gen­

erated by the panel control keys. 

A hardware console, being part of the target microcomputer, 

has the advantage of debugging the suspect software within the 

real environment (Resident Approach). Its simplicity allows a 

cheap construction and, therefore, is quite popular especially 

amongst amateurs. Furthermore, its hardware interface is usu-

ally fast enough to be 

critical-time debugging. 

employed in a primitive type of 

On the other hand its functionality 

is limited due to the inflexible input/output device used and 

the lack of computing power; only basic debugging functions 

are available, such as MPU initialisation, single-

step/continuous user program execution and direct memory 

access (useful for both hardware and software debugging since 

it is hardware driven). Any further debugging capability, 

such as accessing of MPU registers, would involve either addi­

tional hardware or a specially written program executed by the 

target MPU itself (e.g., NIKBUG [28]). In addition, the 

"hardness" of the console-MPU interface makes it impossible to 

attach a hardware console to different kinds of MPUs without 

major re-design of the interface. This inflexibility may be 

tackled successfully by employing a microprogrammab1e version 

of the console-MPU interface (Firmrare Console [28]) whose 

properties could be changed to suit different MPU-types. 

1.2.2 Software Consoles 

A software console is based on a flexible input/output device, 

such as a TTY, utilising the computing power of a processor to 

perform various tasks, including debugging. In particular, 

ei ther a host computer is employed (Cross Approach), or the 

target MPU itself (Resident Approach). or both (Seai-resident 

Approach). 
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Cross Approach In the cross approach the debugging pro­

cess is controlled by the "debug" sec­

tion of the host software. The host development system itself 

is a microcomputer based on an MPU functionally identical to 

the target one. This implies that, in addition to executing 

its operating system, the host MPU directly executes the tar­

get application software. 

For example, Intel's UITELLEC MDS r 27] and Motorola's 

EXORciser [37] microcomputer development systems employ the 

computing power of the 8080/8085 and M6800 MPUs respectively. 

These MPUs, not only provide the required software development 

environment (file handling, cross-assembly, etc.) but also 

execute the produced 8080/6800 code under the control of the 

"system monitor" and "EXbug" monitors respectively. 

Resident Approach In the resident approach the debugging 

process is controlled by a Monitor pro­

gram which is loaded onto the target system together with the 

application software. Following the availability of increas­

ingly more microcomputer support software (even high level 

language compilers are provided within microcomputer systems) 

the development of resident debugging consoles is not surpris­

ing. 

Motorola's monitor, called MIOUG [37], takes control either 

on "reset" or by executing a Software Interrupt Instruction 

(SWI) placed by the user at a key point within the program 

(primitive "breakpoint" facili ty). The software interrupt 

forces the MPU status into the system stack before passing 

control to MIKBUG which, responding to user commands entered 

via a serial asynchronous line, supplies some basic debugging 

functions such as accessing both memory and MPU-register con­

tents (found in the stack). Control is passed back to user 

program by executing an "Return from Interrupt" instruction 

(RTI) which restores the MPU status. 

The BEDBUG monitor [13] (implemented on the M6800 microcom­

puter) controls user-program execution by inserting automati­

cally dummy SWI instructions in between user instruc tions. 
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Control is passed to BEDBUG, as explained in the previous 

paragraph, which updates the display memory and then receives 

user debug commands. The output device used is not a TTY but 

a memory-mapped character display. At the end of a debugging 

cycle, an RTI instruction is executed passing control to the 

next user instruction. Apart from the usual capabilities 

found amongst monitor programs, the Bedbug monitor provides 

continuous display of user-program status information 

(snapshots), object code disassembly and software breakpoint 

table using user-defined symbols for address identification. 

The ALADDIN debugging system [12] is also based on a monitor 

program whose main difference from other monitors is that a 

location independent breakpoint facility is employed. In par­

ticu1ar, debugging assertions, which describe logical rela­

tions among various components of the program state, are 

inserted in between assembly language statements. The user 

program is executed via interpretation because the ALADDIN 

execution handler must have control of the CPU between execu­

tion of successive object code instructions in order to evalu­

ate the assertions and suspend execution of the target program 

if the outcome is false. 

The SOLDA monitor [7] employs the source language debugging 

technique [41]. That is, all debug information is referred to 

the source listing and not to the machine language version of 

the program. In particular, the program is written in high­

level-language (ESPRINT in this case) and during its compila­

tion debugging code is inserted in between statements. The 

generated object code is linked with parts of the SOLDA system 

before being loaded into the memory. During debugging the 

user enters commands which, after being interpreted by SOLDA, 

are executed under its close supervision. 

Semi-resident 

Approach 

In the semi-resident approach the debug­

ging process is controlled by the 

"debug" section of the host operating 

system as with the cross approach. How­

ever, the application software is executed by the target com-

puter, which is connected to the host system, and not by the 
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host processor. Various ways of connecting the two systems 

exist some of which are given below. 

Many microcomputer development systems are attached to the 

target system via ei ther a ROM socket (ROM EIIulator), or an 

MPU socket (In-circuit EIIulator). The advantage of the ROM 

emulator is that it replaces the target system ROM wi th RAM 

which can be separately loaded and accessed. An in-ci rcui t 

emulator [30] emulates under real-time condi tions the func­

tions of the missing MPU chip by employing either the same MPU 

model as the one used in the target 

architectures which mimic the target 

system, or bi t-slice 

MPU functions. The 

software debug functions of the host development system may 

then be extended into the target system. However, debugging 

of real-time applications remained difficult. Hence, a real­

time trace interface is usually employed which, in conjunction 

wi th the in-ci rcui t emulator, captures the state of the MPU 

buses for a fixed number of clock cycles prior to an execution 

break. 

For example, Intel's INTELLEC MDS [27] microprocessor develop­

ment system is equipped with a dedicated in-circuit emulator, 

namely the ICE-80 which amongst other capabilities can capture 

44 machine cycles in real time thus permitting limited real­

time debugging. 

The BP-6400 [25] and TECTROWIX-8002/8001 [45] development sys­

tems use a generalised version of the in-circuit emulator 

technique. In particular, they can cope wi th different MPU 

types by employing the corresponding in-circuit emulator 

(based on an identical MPU chip) and changing some of the sys­

tem software (e.g., cross-assembler). 

A similar debuggi ng approach is employed within the AMPL TI-

9900 Microprocessor Prototyping Laboratory [46]; the differ­

ence being that interactive emulation and trace control is 

achieved via an in-circuit emulator which is supported by a 

high level interpretative debug language, the AMPL. The AMPL 

is an expression-oriented structured language and not a 
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command oriented monitor as in most microcomputer development 

systems. The user may enter an AMPL debug statement (or a 

block of debug statements) which is interpreted by the system 

software. A debugging activity may then be performed without 

close user supervision. 

An interesting version of the semi-resident approach is that 

employed by HicroAde [6]; the host system (DEC PDP-ll con­

trolled by RT-ll operating system) is connected to the target 

microcomputer via a standard serial asynchronous line. 

Although this type of interface ensures microcomputer indepen­

dence at hardware level (a serial link is available within 

most MPU systems) both the host software and the target-MPU 

software must be adjusted appropriately. The former, apart 

from its general purpose run time system, interactive debug­

ging system, user communication system, and other utility pro­

grams such as loader, editor, PROM programmer and floppy disk 

driver, requires a cross-assembler for the generation of the 

target MPU object code (program modules are written in target 

MPU assembly language). The latter, apart from its native 

moni tor, requires a "debug interface" program which controls 

any interaction between the host debugging system and, via the 

native monitor, the user application programs. MicroAde also 

provides memory reference via user-set symbols, automatic exe­

cution of test sequence and result comparison against a pre­

established record, test log, input/output simulator and 

finally MicroCOBOL, which enables the user to write microcom­

puter independent programs in COBOL syntax (these programs are 

compiled into MPU independent intermediate code, which is 

loaded into target memory together with the MPU dependent 

MicroCOBOL interpreter). 

The Hillennium Micro Systea Emulator [34] is also a general­

ised version of the in-circuit emulation technique but with 

the flexibility built-in in the in-circuit emulator end and 

not in the host development system end; that is, it is a 

stand-alone in-circuit emulator which is connected to any 

dedicated host computer via an asynchronous serial line (RS-

232), thus transforming it into a universal development sys­

tem. The above programmability is achieved via bit-slice 
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processor techniques. Finally, as with other in-circuit emu­

lators, the Millennium Emulator has an optional real-time 

trace facility, which is one of the most advanced that 

currently exist. In particular, this trace facility employs a 

128-location trace memory, event detection consisting of two 

comparators capable of performing either (=) or «/=) or ()/=) 

operations between address/data/control lines and user preset 

values, detection of fetch/memory/IO cycles, and a further 

detection of a pass count of n events and/or a delay count of 

n clocks. A combination of the above events may be chosen for 

trace qualification while a count of either real-time, or one 

of the above events may be made between two points in a pro­

gram or between events. 

A serial asynchronous line is also used by the CONTEXT micro­

computer development system [44] for connecting the host com­

puter (DEC PDP-ll) to any target MPU. Program modules are 

written in CORAL-66, compiled into PDP-II code, and run under 

the RSX Il-M operating system and a package of software aids 

(MASCOT). When all modules are completed and satisfactorily 

tested within the host, the corresponding CORAL-66 compiler is 

employed to translate them into target MPU code, whi ch is 

transferred via the link to the target MPU. At this point the 

source language debugging technique is employed; that is, as 

far as the user is concerned the CORAL-66 version of the pro­

gram is executed and not the target MPU code. Test are then 

run under CONTEXT control and via the TTY link. A monitor 

program, previously loaded into the micro, collects and passes 

information back to the host via the link for displaying and 

monitoring purposes. 

Approacbes-

Comparison 

The main advantage of the cross approacb 

is that the application software is 

designed, written and debugged into a 

host environment which, provides many 

development software packages and sophisticated input/output 

devices. Mainly for reasons of economics these tools could 

not have been made available in a user system. However, if 

the produced software does not work first-time in the applica­

tion environment (and this is very often the case) debugging 
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becomes rather difficul t especially for real-time applica­

tions. 

With the resident approach on the other hand, the application 

software is executed within the real environment; a desirable 

property since simulation cannot cover all real-world si tua­

tions. However, a lot of system processing time is allocated 

for the upkeep of the resident monitor which controls the 

debugging process and, therefore, this approach is not 

appropriate for time-critical applications. 

The semi-resident debugging approach combines the "best of 

both worlds"; that is, the powerful software development tools 

of a host computer and the capability of debugging the latest 

version of the program within the real environment (host and 

target computer are coupled together). However, as can be 

seen from the examples given above, a small monitor program is 

usually required within the target system for collecting 

program-status information and driving the Host-MPU link 

(MicroAde and CONTEXT systems). Therefore, debugging a pro­

gram without slowing down its execution (Real-ti.e Debugging) 

is not possible; only in the case of the in-circuit emulation 

technique, where a trace memory is incorporated into the sys­

tem and assuming that it is possible to employ sophisticated 

monitoring conditions in order to counterbalance the limiting 

amount of this trace memory, real-time debugging is possible. 

However, even systems that satisfy the above assumption (e.g., 

the Millennium Emulator) cannot cope with certain aspects of 

real-time debugging such as MPU-registers monitoring (see 

Chapter 2). 

1.3 Research Direction 

An analysis of the debugging process follows in Chapter 2 of 

this thesis with emphasis on the debugging tool capabilities, 

the availabili ty of which should make efficient real-time 

debugging possible. In Chapter 4, a debugging system is pro­

posed based on a new debugging technique (Chapter 3) which is 

suitable for interactive debugging of real-time microcomputer 
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systems at the source language level. Finally, in Chapter 5 a 

prototype real-time debugging system is developed, which is 

then evaluated in Chapter 6. 



CHAPTER 2 

2 REAL-TIME DEBUGGING PROCESS 

The degree of efficiency of the real-time debugging process 

depends not only on factors such as the qual i ty of the pro­

gram, the programmer's open-mindness and knowledge in relation 

to both the application problem and the operaU onal envi ron­

ment, the kind of the real-time application, the type of the 

error in question, etc., but also on the capabilities of the 

debugging tools. 

2.1 Debugging Process Analysis 

An analysis of the debugging process follows in order to 

reveal the differences between conventional and real-time 

debugging and, consequently, decide on the basic capabilities 

which a real-time debugging tool should have. 

2.1.1 Conventional Computer System Debugging 

Figure 1 shows a computer system suitable for running programs 

of non-real-time nature and interfaced to some external 

hardware, parti tioned into well defined independent modules 

(e.g., card reader, printer), which is controlled by the 

system's utility software. The target program is defined by 

what the user wants to do, the processor employs known seman­

tics for program interpretation, the initial state of the sys­

tem is known, the input to the program j swell defined and, 

therefore, this is a Deterministic System. Hence, a complete 
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description of what the system should do can be derived at any 

stage of the software development process. 

Abnormal termination of program execution, generation of 

"strange" output, wrong sequencing of operations, etc., indi­

cate the existence of at least one program error. Past 

psychological studies [ 19] have shown that programmers debug 

their programs by initially trying to understand the actual 

behaviour of the "wrong" program version. During this program 

behaviour analysis one subconsciously attaches a value to each 

program module indicating the probabili ty of having (or not 

having) an error. After comparing all available Program 

Status Information with the expected program state, derived 

from the description of what the program is supposed to do, 

these values are ei ther increased or decreased; an action 

which influences the progress of the debugging process. Then, 

after deciding on the type of Program Status Information to be 

monitored and on the execution interval during which this mon­

itoring is to take place, a program re-execution is initiated 

which, because the system is deterministic, follows the origj­

nal program path; that is, a mal function occurring wi thin a 

deterministic system is repeatable. 

Therefore, a number of re-executions may be initiated, during 

each of which different Program Status Information in moni­

tored, until a "mismatch" between the current program state 

and the expected program state is detected, which hopefully 

will lead to the error in question. 

A vari ety of systems are available allowing Program Status 

Information monitoring of programs written in low level 

languages (# 1.2.2), or modern high level languages for that 

matter [15,43], running in conventional processor systems 

under the control of either a Monitor program or an operating 

system. 

Microcomputer engineers usually employ the Single-stepping 

execution technique for Program Status Information monitoring. 

That is, the user decides that the probability of an error 

occurring at a particular point within a program module is 
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rather high, allows execution to continue until just before 

this point (up to which program behaviour is understood) plan­

ning to execute one instruction at the time thereon and col­

lect Program Status Information for debugging purposes. 

Address Breakpoints control this activity. 

Single-stepping, being a rather mechanical and slow process, 

is an inefficient technique as far as Program Status Informa­

tion monitoring is concerned and in the world of large conven­

tional systems has been replaced long ago by other more effi­

cient techniques (# 1.1.3) such as tracing, dumping, monitor­

ing of inter-module message flow, etc; al though some times 

single-stepping is currently used when debugging CPU hardware. 

However, as will be shown in the next section, these tech­

niques are not suitable for real-time debugging. 

2.1.2 Real-time Computer System Debugging 

Sophisticated operating systems have been tradi tionally pro­

vided, among other reasons, for handling real-time appl ica­

tions. However, real-time debugging remained a complex pro-

cess. 

Figure 2 shows a similar computer system to that of Figure 1 

interfaced to a real-time application which normally consists 

of interacting hardware modules which the user program con­

trols and which interact further with the real-time envi ron­

ment (it is assumed that the utility input/output devices are 

controlled by the operating system). 

The input to the computer system is a function of the target 

hardware's timing/ functional characteristics and al so, if a 

feedback control is employed, a function of the control output 

of the computer system itself. Therefore, this input cannot 

be defined unless a complete description of the target 

hardware is available. In practice, however, the target 

hardware behaviour is unpredictable either because most of the 

real-time applications involve simultaneous software and 

hardware development (i.e., complete hardware description can­

not yet be derived), or because hardware descrj ption 
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correctness cannot be guaranteed due to its high complexity 

and to uncertainty as to its response to a certain combination 

of real-time external events (highly asynchronous characteris­

tics) • Therefore, real-time systems are usually non­

deterministic; a complete description of what the system 

should do at a specific instant in time cannot be guaranteed 

that it can be derived. 

The non-deterministic nature of real-time computer systems 

impl ies that it is difficu1 t to predict "expected" program 

states, against which any captured Program Status Information 

should be compared in order to decide that the program is (or 

is not) behaving properly. In other words, it is particularly 

difficult to decide on the type of the required Program Status 

Information; very often the wrong Program Status Information 

is monitored which does not help in the detection of the 

existing error. However, it is more than likely that the pro­

gram path execution is unrepeatable and, therefore, additional 

program status information cannot be obtained. 

Execution unrepeatability forces the programmer to increase 

the Program Status Information amount which is monitored and 

this presents various problems associated with t race memory 

overflowing (U 2.1.1); not to mention that most of the 

obtained information is bound to be irrelevant to the malfunc­

tion in question and, therefore, misleading (even incases 

where Trace Formaters are available). 

Even if the execution of the program path in question is 

repeatable, the currently available Program Status Information 

monitoring techniques introduce a considerable time-overhead 

to the target program execution time in cases where extensive 

monitoring is required (U 1.1.3). Consequently, the relation­

ship between the program and its external environment is 

a1 tered, making diagnosis of intermi ttent and other time­

dependent faul ts under these conditions impossible. Hence, 

the unrepeatability problem discussed above persists. 

The .. stack" arrangement found inmost modern MPU designs, 

forms a good environment for subroutine usage (including 
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interrupt routines). The resul t is that modular programming 

and, therefore, modular debuggjng is encouraged. However, 

microcomputer real-time debuggi ng becomes cri tical onl y when 

program modules have been linked together (Systea Debugging) 

and the entier program is executed within the target environ­

ment. That is, only when both the target application timing 

and the program timing are coupled together forcing the 

occurrence of unprecedented timing errors. This implies that 

a cross-simulator can be used initially, for checking the log­

ical correctness of each program module, until the complete 

program is available. Only then, it is necessary to transfer 

the program to the target environment for subsequent real-time 

debugging. 

This thesis, is concerned with real-time debugging and, there­

fore, it is assumed that the program development has reached 

the System-Debugging level and that it has been transferred to 

the target environment for subsequent real-time debugging, 

which by its very nature is performed "on-] ine" (Interactive 

Debugging) • 

2.2 Real-time Debugging TOol Capabilities 

Due to human memory and processing capacity limitations pro­

grammers are trying to detect only one error at a time and are 

focusing their attention on a local region of code. This also 

implies that specific information is usually requested from 

the debugging tool employed. 

Obviously, selective monitoring is desirable during real-time 

debugging. This implies that monitoring must be controlled by 

evaluating logical conditions which relate program-status 

information elements to user-predetermined addresses/constants 

or other Program Status Information elements. The conditions 

involved should also specify the information type to be moni­

tored (e.g., all the values which a particular variable 

acqui res), the origin of the monitor activi ty (e.g., at the 

entrance of a subroutine, after an interrupt, etc.) and its 

duration in terms of either time or event occurrences (e.g., 
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for a period of "n" clock-cycles, as soon as another condition 

is met, etc.). 

Selective real-time monitoring of Program Status Information 

(excluding MPU registers) is currently implemented via 

hardware techniques (e.g., Mil]ennium Emulator (# 1.2.2)). 

However, there is a limi t to the number of operands which a 

logical condition can have, depending on the amount of 

hardware that is available for its evaluation. A software 

implementation would be more flexible but would slow down pro­

gram execution whjch is not acceptable for real-time system 

debugging (It 2.1.2). Furthermore, because in practice real­

time program behaviour is unpredictab]e, the majori ty of the 

real-time malfunctions, including intermittent faults, present 

serious problems; guessing what sort of information to monitor 

is difficult (112.1.2). Cases like these are very difficult 

to be debugged employing currently available debugging systems 

even though such systems may include selective monitoring of 

Program Status Information. 

Monitoring in real-time Program Status Information (preferably 

selectively) is clearly desirable, but is it possib]e? Could 

ei ther the MPU-register contents, or the program variables 

residing in memory, be monitored without halting or slowing 

down the target program execution? Could input/output device 

regi sters be moni tored wi thout affecting thei r contents (an 

inevitable fact in the case of "active" registers which are 

usually employed in input/ output interface devices)? Could 

the vast amount of trace memory required for storing the cap­

tured Program Status Information be kept to a practical size? 

And, finally, could all these happen in a general kind of way 

in order to be applicable to a variety of real-tjme systems 

based on either identical or completely different microcomput­

ers? 

These are some of the "real" questions that emerge as soon as 

the design requi rement of moni tori ng Program Status Informa­

tion in real-time is considered. 
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2.3 S~ry 

Real-time debugging presents two basic problems, namely Execu­

tion Unrepeatability and Transparent Accessing of Program 

Status Information. If efficient real-time debugging is to be 

achieved, it is essential that the debugging system can deal 

with these two problems. Only then "Program Status Informa­

tion Selective Monitoring" and other techniques may be 

employed to achieve proper user interfacing to the Debugging 

tool and, consequently, to increase the debugging efficiency 

even further. 



CHAPTER 3 

3 ACTION-REPLAY DEBUGGING TECHNIQUE 

Having presented the basic problems encountered in real-time 

debugging (Chapter 2), an investigation is now undertaken into 

the possibility of providing a "transparent" solution; that 

is, a solution that does not involve the user in extra, time 

consuming activities. In particular, the possibility is 

investigated of transforming an "unrepeatable" real-time exe­

cution into a "repeatable" one and at the same time of 

transforming the real-time Program Status Information monitor­

ing into a non-real-time process and still being able to study 

all the real-time activities of the program. 

Obviously, the nature of the system activities which influence 

a real-time program execution is a key factor in the above 

mentioned transformations and, therefore, needs some clarifi­

cation. Starting at a particular instant in time, the execu­

tion flow is influenced by : 

1) the internal MPU state at that instance (i.e., the current 

value of its registers), 

2) any data entering the MPU during subsequent execution 

either via the system memory (including the DMA buffer), or 

via any of the input ports attached to the MPU buses 

(including any status information generated by these 

ports), or via input ports located wi thin the MPU chip 

itself, 

3) any hardware interrupts serviced by the MPU thereafter 

(e.g., the NMI and IRQ of the M6800). 
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Any other changes occurring at the user-application side of 

the input ports are redundant as far as software debugging is 

concerned since they do not influence the program execution 

flow. 

As soon as program execution has been abnormally terminated 

and assuming that the internal state of a non-deterministic 

microcomputer system is known at an arbitrary moment in time, 

it is possible to reconstruct any subsequent system state if 

all the external stimuli that entered the microcomputer system 

from that moment onwards are known together with their 

correspondence to the program path in question. 

Having kept both the initial microcomputer internal state and 

the external stimuli sequence, there is no reason what so ever 

for not being able to repeat the simulated re-execution 

several times and each time to traverse the same program path; 

that is, execution repeatability is achieved. 

The above program path reconstruction need not take place in 

real time. Slowing-down the execution does not alter the pro­

gram behaviour as long as all external stimuli, which have 

been recorded via some sort of real-time monitoring mechanism 

(113.1), are synchronised with this 

execution-speed control is achieved. 

execution. Hence, 

Program status information, which is an exact image of the 

required real-time program status information, may be obtained 

selectively during these non-real-time re-executions; that is, 

the accessing of Program Status Information ~ no longer a 

critical design requirement. 

Finally, the user himself does not need to know anything about 

the low-level information captured during the real-time execu­

tion of the target program, or indeed anything about the re­

execution mechanism itself; instead, the user's attention can 

be focussed upon the type and amount of Program Status Infor­

mation which is required in order to understand the behaviour 

of the program path in question. Hence, a "transparent" solu­

tion is achieved. 
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In general, therefore, the above technique allows real-time 

debugging to take place within a non-real-time environment. 

For obvious reasons it is named Action-replay Debugging Tech­

nique (*). 

Problems associated with "external-stimuli monitoring", 

"program-path Action-replaying", "Program Status Information 

monitoring" and other processes relevant to the Action-replay 

Debugging Technique, are discussed in the following sections 

of this chapter. 

3.1 External Stimuli Real-tiae Monitoring 

The external stimuli, which are monitored during the real-time 

execution of the target program (# 3.0), consist of any data 

entering the target system via the input ports, any hardware 

interrupts triggered by an action initiated within the appli­

cation hardware (software interrupts need not be monitored 

since their initiation is triggered from within the program 

itself) and any data entering the system memory via DMA tech­

niques. 

There are two basic problems associated with the real-time 

monitoring of the external stimuli. The first problem is 

their synchronisation with the Action-replay execution and the 

second problem is the risk of the trace memory overflowing. 

These problems are discussed in the following sections. 

* A similar technique has been previously employed 
in the EXDAMS Debugging System [2] which, howev­
er, requires the insertion of a large amount of 
diagnostic/monitoring code into the target pro­
gram and, therefore, is not suitable for real­
time debugging. 
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3.1.1 Input Port Data Hani toring 

Input Port Data 

Synchronisation 

The required synchronisation is not dif­

ficult in the case of data entering the 

system via the input ports and under the 

control of the MPU itself. During the real-time execution, 

and in particular during input port accesses, the data bus 

contents are recorded and stored sequentially in the Data 

Trace Memory. During the Action-replay execution, this trace 

information is played back in a FIFO fashion; that is, the 

next data word to be provided during an input port cycle is 

the word which is located next in the trace memory. 

The above procedure is independent of the number of input 

ports in the system. 

Data Trace Memory 

Overflow 

The basic problem when monitoring the 

input data sequence is that of data 

arriving at the input ports at a large 

rate and overflowing the trace memory in a very short period 

of time. This is especially true for the type of malfunctions 

for which the Action-replay debugging technique is most 

needed; that is, intermittent errors which by nature require 

long monitoring sessions. Obviously, if the trace memory 

overflows, an Action-replay of the program path in question 

can take place only until that point. 

Assuming that the trace memory remains fixed to a practical 

size, the above problem can be dealt with in a variety of 

ways. 

One way is to omit redundant data. For example, because only 

the data which actually enters the system influences program 

execution (II 3.0), monitoring at the MPU side of the input 

ports and not at the target application side ensures that only 

essential information is recorded. A similar technique may be 

applied when monitoring system interrupts (II 3.1.2), or data 

entering the system memory via DMA techniques CD 3.1.3). 

Another way of delaying the overflowing of the trace memory is 

to compress repetitive data. For example, a repetitive data 
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word (say, n-bit wide) may be stored in a (n+1)-bit wide trace 

memory only once using the extra bit to indicate that in addi­

tion to this word a (n+1)-bit wide number, generated by a 

counter and specifying the number of times this particular 

word successively entered the system, is stored in the next 

trace memory location. This facility can take care of a 

situation where the MPU is executing a "test-for-device-not­

busy" loop, reading the same status word. However, if more 

than one input port is employed the benefit of this facility 

is lost unless either only one such loop exists while the rest 

of the ports employ interrupts, or the input port identifiers 

are taken into account during the data compression process and 

a record of multiple counts is kept (one per port identifier). 

Finally, conditional breakpoints can be employed making the 

above trace memory suppression technique application depen­

dent. That is, the user may introduce non-critical time slots 

within the program real-time execution (e.g., after the appli­

cation program enters a computational process during which any 

communication with the real-time world is suspended). Then, 

the debugging system may halt the target MPU not only when an 

error condition has been detected, but also as soon as one of 

these time slots is reached (and this is sensed by the condi­

tional breakpoint mechanism). Then, a full system state 

snapshot (intermediate snapshot) is taken and program execu­

tion together with a new external-stimuli trace is restarted, 

in which case, the Action-replay execution of the program path 

will take place from that moment onwards. 

Clearly, no matter how sophisticated data reduction techniques 

and monitoring controls are employed, the trace memory over­

flow problem still exists if the real-time monitoring process 

of the input ports is performed for long periods of time. 

Then, the only solution is to increase the trace memory size. 

3.1.2 Interrupt Monitoring 

Interrupt 

Synchronisation 

The case of interrupt synchronisation is 

rather different from that of the input 

port data (113.1.1). During the real-
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time execution, a hardware interrupt is not triggered directly 

by an MPU activity (as with the accessing of an input port 

register) but by an asynchronous external event. Therefore, 

monitoring information about the type of the interrupt in 

question is not sufficient for synchronising the interrupt 

with the Action-replay execution. 

The obvious way of accomplishing the required interrupt syn­

chronisation is via the Tiae-synchronisation method. That is, 

to employ a counter for measuring the time elapsed between two 

successive interrupts and, as soon as an interrupt is sensed, 

to store this information in the Interrupt Trace ~ry 

together with some data indicating the interrupt type. This 

time interval must not be measured in terms of real-time but 

either in terms of clock-cycles (for clock-synchronised bus 

architectures), or in terms of bus activities (for asynchro­

nous bus architectures); only then strict synchronisation is 

kept between a particular interrupt and the program path exe­

cution. For example, assuming an lMHz clock, a 32-bit counter 

can measure a time interval of up to 71 minutes and a (32+n)­

bit wide trace memory is required, where "n" is a binary 

number specifying the interrupt type (hence, an I-bit number 

is sufficient for the two M6800 interrupt inputs while each of 

the eight "restart" addresses of the INTEL8080/5 may be 

encoded into a 3-bit number). 

However, sensing the occurrence of an interrupt, while moni­

toring the MPU interrupt inputs, is not easy. That is, assum­

ing that a race condition exists between two interrupts during 

the real-time execution, these interrupts mayor may not be 

handled in the same order during the Action-replay. For exam­

pIe, in the case of the M6800 many special conditions of 

interrupt responses must be taken into account [37, A9], such 

as : 

"If IRQ occurs during an SWI instruction, the pulse 

will be lost because SWI clears the interrupt 

latches", 

"If IRQ and NMI are active concurrently, the MPU 

will recognise NMI. 

latches are reset", 

In so doing, the interrupt 
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interrupt vector will be retrieved from the IRQ 
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In addition to the above problem, an interrupt may occur very 

close to its recognition point (usually, it is latched in the 

MPU during the last cycle of an instruction). Then, the 

interrupt setup time (Ts) must be taken into account, making 

sure that this particular interrupt has or has not been 

latched-in (e.g., Ts = 200ns minimum for the M6800 and Ts = 

120ns minimum for the INTEL 8080/5). This implies that the 

interrupt lines must be sampled at exactly "Ts" nanoseconds 

prior to the interrupt recognition point. However, sensing 

this point in time is not easy since the last instruction 

cycle must be detected first. 

The above problems can be solved by monitoring the "interrupt 

acknowledge" MPU line instead of the corresponding interrupt 

line. This way, changes on interrupt lines which do not 

influence program execution (e.g., because the interrupt mask 

is disabled) are not monitored. However, some MPU makes do 

not provide an "interrupt acknowledge" signal. 

In software terms, an interrupt is acknowledged the moment the 

first instruction of the corresponding routine is executed. 

Therefore, a more general way of sensing that an interrupt has 

occurred is to decode the "origin" address of the correspond­

ing interrupt routine (assuming that interrupt routines are 

entered only via the MPU interrupt mechanism and never via a 

"jump" instruction from elsewhere in the program). 

Another way of sensing that the MPU is responding to an inter­

rupt is to decode the interrupt vector addresses as they 

appear onto the address bus during the MPU interrupt servicing 

sequence (# 5.4.1); however, in this case the user program may 

only write and not read from the interrupt vector location. 

An alternative interrupt synchronisation may be achieved via 

the Address-synchronisation aethod. That is, instead of trac­

ing the interrupt type and its arrival time, as with the 

time-synchronisation method, a history of the entire program 
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path is recorded in terms of addresses; the idea being, to 

synchronise the interrupt in question to the address bus 

activity. 

An interesting side effect of the Address Synchronisation 

Method is that the above trace information may be used for 

verifying the Action-replay process itself (# 3.3). 

Interrupt Trace 

Memory Overflow 

: If the time-synchronisation method is 

employed, ei ther the timing counter or 

the interrupt trace memory may overflow 

resu1 ting in the loss of the required synchronisation. In 

order to delay the timing counter from overflowing instruction 

cycles, instead of MPU clock cycles, can be used as time 

units. However, these cycles are not easily detected in some 

MPU types. Alternatively, code "fetch" cycles can be used as 

time units which are easily detected by finding out whether 

the current contents of the address bus correspond to the 

memory section which holds the program code and not data. 

Then, a 32-bit counter can measure a time interval of up to 

2**32/(600*1024) = 1 hour 56 minutes (where 600kbytes/s is a 

typical amount of executable code for an lMHz driven M6800 MPU 

(Appendix A)). 

Obviously, the address synchronisation method involves the 

tracing of a vast amount of addresses (more than 1Mbyte/s in 

average for an M6800 driven at lMHz). As it is shown in 

Appendix A, this amount of traced information may be reduced 

considerably (less than 30kbytes/s), but only at the expense 

of complex hardware. 

Intermediate snapshots of the target system state, taken dur­

ing the non-critical time slots within the real-time execution 

(# 3.1.1), may also be used for solving the Interrupt Trace 

Memory overflow problem. However, as with the Data Trace 

Memory, it may be necessary to increase the memory size in 

order to cope with certain applications. 
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3.1.3 DKA Input Data Monitoring 

DKA Input Data 

Synchronisation 

Special consideration must be applied to 

the synchronisation of data entering the 

target system memory via DMA techniques. 

That is, the incoming DMA data must be monitored and stored in 

the trace memory. However, the input port data synchronisa­

tion method (/I 3.1.1) cannot be applied here, since the DMA 

activity is transparent to the target program after the ini­

tialisation of the DMA controller has taken place and since 

the operation of the DMA controller cannot be easily synchron­

ised with the program operation. 

Data entering the system memory via DMA influences indirectly 

the program execution; that is, only after it has been 

accessed by the MPU. Hence, by assuming that the address 

range corresponding to the block of memory which accepts the 

DMA data (namely the DMA buffer) is part of the "memory-mapped 

input/output" address space, the memory read-cycles which 

address this memory block long after the data entered the sys­

tem can be treated as "port input cycles". Thus, data enter­

ing the MPU via the DMA section of the target system memory 

comply with the same rules applying to data entering through 

an input port as far as data-compression and Action-replay 

synchronisation are concerned. 

In implementation terms, a programmable decoder can be 

employed which, having been loaded with the address limits of 

the DMA buffer, generates a signal indicating that the DMA 

buffer is currently accessed. Only then the data in question 

is monitored and stored in the Port Trace Memory (II 5.3.3). 

It should be noted, however, that any status returned to the 

MPU by the DMA controller during the original program execu­

tion should also be monitored so that synchronisation with the 

program execution can be achieved during the Action-replay. 

DMA Trace Memory 

Overflow 

Assuming that the above mentioned DMA 

data monitoring technique is employed, 

the port input data compression tech­

nique (/I 3.1.1) may be applied in the DMA data monitoring pro­

cess. However, due to the fact that DMA is usually associated 
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with high data rates, the DMA trace memory is bound to over­

flow quickly in which case trace memory expansion should be 

considered. 

3.2 Prograa Path ActIon-replay 

Having recorded in real-time the external-stimuli sequence 

which influences the target program behaviour, Action-replay 

debugging may now commence. As will be shown in the sections 

which follow program path Action-replay may be implemented in 

a variety of ways. 

3.2.1 Hardware SImulator Approach 

The ideal Action-replay "simulator" from a speed and reliabil­

ity point of view is the MPU itself; the required re-execution 

may be performed at any speed up to the "real-time" one while 

there is no need to worry about the correctness of a software 

simulator. 

In particular, during the Action-replay of the program path in 

question, the microcomputer system is isolated from the out­

side real-time world by disabling all input ports and inter­

rupt lines; this is why the initial state of these ports need 

not be monitored prior to the real-time execution. Then, both 

the MPU and memory states are reset either to their initial 

state or to any other prerecorded intermediate state. 

Finally, the MPU is forced to re-execute the program path by 

placing onto the MPU data bus the data/status, which 

corresponds to the current input port cycle, and by activating 

the interrupt line, which corresponds to the interrupt-type 

(found in the interrupt trace memory), in synchronisation with 

the execution (II 3.1). During subsequent Action-replays any 

requested Program Status Information is monitored (#3.4). 

During Action-replay the target computer output ports are also 

disabled unless it is required to debug the user application 

hardware; that is, in certain cases of open-loop control 
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sys tems it is possible during Action-replay to initiate the 

original sequences of operations in the target application 

hardware, by allowing the control signals to influence the 

external hardware as normal, and to study these sequences by 

employing storage oscilloscopes, logic analysers, etc. 

3.2.2 Software Simulator Approach 

A software simulator of the target MPU can be employed alter­

natively. Then, having initialised the simulated MPU in 

accordance to the prerecorded initial/intermediate target MPU 

state, Action-replay may commence. In particular, the simula­

tor accepts as input the target MPU source code and the exter­

nal stimuli sequence (II 3.1) and provides an "Action-replay" 

of the program path in question, during which Program Status 

Information is monitored (# 3.4). 

However, unless the simulator correctness has been proven 

without any doubt, there is no guarantee whatsoever that the 

same program path as that followed during the original execu­

tion can be reconstructed during Action-replay. 

An additional problem is that of the target MPU to simulator 

speed ratio. This is a critical consideration especially 

since it may be necessary to initiate multiple Action-replays 

for additional Program Status Information monitoring (# 3.4). 

Finally, the MPU Action-replaying simulator may function 

either wi thin the target MPU itself (resident approach), or 

within a host computer (cross-approach). The latter case is 

considered more advantageous (# 4.2), because a host computer 

may provide a more comprehensive range of facilities than the 

target microcomputer. 
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3.3 Action-replay Verification 

The correctness of the Action-replay process must be checked 

since there is nothing worse than a debugging tool which can­

not be trusted. Therefore, a mechanism is required which 

detects that the program path followed during the Action­

replay execution is diverging from the original program path. 

The address-synchronisation aethod (# 3.1.2), provides a sim­

ple and foolproof consistency check between the original exe­

cution and the Action-replay execution. That is, each program 

node generated during the Action-replay execution is compared 

with the corresponding program node found in the pre-recorded 

real-time program node record. Therefore, no other informa­

tion is required for the consistency checking process than 

that which already has been recorded. 

If however the tiJae-synchronisation aethod has been chosen, 

then it is impossible to check for consistency unless some 

additional information is recorded. The most economical solu­

tion is to provide an address label (in terms of the Program 

Counter register contents) for each interrupt record and dur­

ing Action-replay to check for consistency between this label 

and the current address shown on the address bus just before 

the interrupt service routine is entered. Correspondingly, a 

time-label (in terms of interrupt timer contents) must be pro­

vided for each input data record. 

3.4 Program Status Inforaation Bon-real-tt.e Monitoring 

The program status information monitoring may be split into 

two distinct tasks, both of which are user programmable (but 

should also have a default state), namely the Monitoring C0n­

ditions Evaluation and the Program Status Inforaation Foraat­

ing and Displaying tasks. 
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3.4.1 Monitoring Conditions Eva1uation 

The Program Status Information monitoring process is con­

trolled via a number of user defined logical conditions (that 

is, conditional breakpoints relating program addresses, vari­

ables, constants, as well as events), the basic purpose of 

which is to minimise the amount of Program Status Information 

down to the user current requirements. 

In particular, prior to the Action-replay activation, the 

debugging system's Monitoring Conditions Eva1uator finds the 

type of operands which are involved in the conditions them­

selves and activates the appropriate software hooks which are 

controlled by the Condition Operands Monitor. Then, the 

Action-replay process is activated and the required operands 

are obtained and passed to the Evaluator which, in the event 

of finding a condition "true", interrupts the Action-replay 

execution and enables the Prograa Status Information Monitor. 

The above organisation may provide tracing of a particular 

memory location (program variable), the flow of instruc tions 

but not their results (or vice-versa), successful Branch/Jump 

instruc tions, program statistics, etc. In addi tion, tracing 

may be enabled only for an execution period specified by code 

address limits, real-time limits, etc. 

A possible implementation of the above ideas is given in 

reference 9. 

3.4.2 Prograa Status Information Foraating and Displaying 

The Program Status Information Monitor accesses the required 

information fairly easy when the software simulator approach 

(# 3.2.2) is employed. However, in the case of the hardware 

simulator approach (II 3.2.1) the MPU registers are usually 

located within the MPU chip itself and this presents an in for-

mation access problem. By generating a dummy interrupt as 

soon as an address breakpoint is "hit", the MPU registers may 

be forced out of the MPU chip and into the microcomputer stack 

residing in the microcomputer memory either by the interrupt 
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acknowledge sequence or by the interrupt routine itself (spe­

cial care must be taken so that such a mechanism is invisible 

to the target system [28]). This information is then for­

warded, together with any other information that might have 

been requested, to the Prograa Status Infor.ation Displaying 

Foraater which is also operating in accordance to user specif­

ications. 

Any output generated by the Display Formater must be related 

to the source program ("source language debugging technique" 

[41]) via program variable names and labels, instruction 

numbers, source-file line numbers, etc. Such a user interface 

implementation requires modification of the 

assemb1er/compli1er. These are discussed in section #7.3. 

3.5 Correction Verification 

The user studies the program behaviour via a sequence of 

Action-replays during which different monitoring conditions 

~re employed; their selection depends entirely on the debug­

ging information required at the time. Having located an 

error, the source file is updated, re-assemb1ed and the new 

program version is executed in real time. The correction may 

then be verified by initiating an Action-replay cycle during 

which the behaviour of the corrected section of the program is 

studied via further Program Status Information monitoring. 

The proposed correction verification might be impossible in 

some cases because of the difficulty of forcing the target 

system to follow the required program path (unrepeatability 

problem (# 2.1». 

3.6 s~ry 

The Action-replay Debugging Technique provides a "transparent" 

solution to both the "execution unrepeatabi1ity" and the "pro­

gram status information accessing" problems encountered in 
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non-deterministic, real-time systems by allowing real-time 

debugging to take place within a non-real-time environment. 



CHAPTER 4 

4 ACTION-REPLAY DEBUGGING SYS'l'EK 

Before discussing the basic organisation of the Action-replay 

Debugging System, a summary of the various system functions, 

derived from the ideas presented in Chapter 3, will be given. 

4.1 Systea Functions 

a) control target system (start/stop execution). 

b) evaluate conditional breakpoints. 

c) capture target system initial/intermediate state. 

d) monitor external stimuli during real-time execution. 

e) recover to system state captured during function "c". 

{) activate Action-replay and reconstruct external stimuli. 

g) verify Action-replay. 

h) evaluate Program Status Information monitoring conditions. 

i) monitor Program Status Information. 

j) format and display Program Status Information. 

k) either return to function "e" for further Action-replay 

iterations or correct discovered error. 

1) verify error correction. 

4.2 System Organisation 

Because the Action-replay debugging system must provide ample 

computing power for the realisation of complex functions 

(# 4.1), it is better if its structure is based on the semi­

resident approach (# 1.2.2) as shown in Figure 3. 
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The user completes the initial development of the target pro­

gram, employing the resources of the Host eo.puter (e.g., file 

manager, file editor, code linker/loader, cross-assembler, 

high level language compiler). Before the prototype program 

is executed in the Target MicrocORpUter some basic debugging 

may be performed employing a cross-simulator (If 2.1). 

Thereafter, the program is transferred to the target computer 

(down-line loading) where debugging under real-time conditions 

may commence employing the Action-replay debugging technique. 

However, during the required external stimuli monitoring, the 

host computer cannot respond quickly enough to the real-time 

activities of the target MPU (# 3.1). By employing an intel­

ligent interface between the host computer and the microcom­

puter, namely the Host-HPU Interface (Figure 3), it is possi­

ble to compensate for the slow host response; that is, all 

real-time tasks are controlled by the interface. 

The interface-to-microcomputer connection is at the MPU-bus 

level (113.1). However, the type of the interface-to-host 

computer connection depends on whether the host-MPU interface 

does or does not include the required external-stimuli trace 

memory. That is, if the trace memory is located wi thin the 

host-MPU interface, the interface-to-host data traffic is low 

and a serial link may be employed while, if the trace memory 

is located within the host computer system, the data traffic 

increases considerably (a rate of more than 20kbytes/ s is 

expected after the data-compression has taken place) and it is 

necessary to employ a parallel connection between the host 

computer and the interface. 

The external-stimuli trace memory does not require to be 

entirely in RAM. For example, assuming that enough RAM trace 

memory exists in the host computer for speed buffering pur­

poses, the trace memory may be located thereon and, in addi­

tion, some sort of back-up memory may also be employed (e.g., 

floppy discs). Then DMA techniques, employed within the host 

computer system, may continuously dump the contents of the RAM 

trace memory into the back-up store. 

An advantage of the above method is that some of the data-
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compression functions may be implemented in host software 

(It 5.1). On the other hand, however, the host computer may 

run a multiuser operating system and may not have enough time 

to respond even to the trace-memory service requests. In such 

cases, DMA techniques must be used wi thin the host computer 

system if it is chosen to reserve part of its store for the 

external-stimuli trace memory. 

Similarly, disc back-up storage may also be employed if the 

trace memory is located within the host-MPU interface. How­

ever, in this later case the hardware complexity of the inter­

face increases since all the data compression and trace memory 

control actions are to be implemented thereon. In addition, 

the propagation delay of the host-MPU interface logic becomes 

an important design consideration, especially since all these 

actions must be undertaken in less than lOOOns which is a typ­

ical MPU cycle period. By employing ECL technology and asso­

ciative memory techniques in the implementation of the inter­

face its overall propagation delay can be improved. 

In either of the above cases, the host-MPU interface flexibil­

ity is also an important design consideration. Microprogram 

techniques can be employed within the interface control sec­

tion in order to provide interface adjustability to a variety 

of MPU systems [28]. 

From a functionality point of view (# 4.1), the host-MPU 

interface may be divided into six distinct sections as shown 

in Figure 4 : 

1) Interface + MPU Control (microprogrammable). 

2) DMA Interface. 

3) MPU-Registers Access Interface. 

4) Monitoring Interface. 

5) Action-replaying Interface. 

6) Verification Interface. 

Past implementations of hardware/software consoles have dealt 

with interfaces 1, 2 and 3 successfully (It 1.2) and, there­

fore, these interfaces are omit ted from this discussion in 
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contrast to interfaces 4, 5 and 6 which are closely related to 

the Action-replay debugging technique. It should be noted 

that interfaces 5 and 6 are only required if the hardware 

simulator approach (# 3.2.1) is employed during Action-replay, 

otherwise their function is implemented in software. 

4.3 Monitoring Interface 

The Monitoring Interface, the basic characteristics of which 

are given in section #3.1, is divided into the Input Port Sec­

tion and the Interrupt Section. A description of these two 

sections now follows with reference to Figure 5. 

Input Port Section 

The Port Input-cycle Sensor forwards the "port type" of the 

currently activated port to the Port-input Coapressor which 

consists of an "Input Counter" and a "Last-input Buffer" for 

each input port of the target system. The Input Counter 

specifies the number of times an identical input entered in 

succession through a port, while the Last-input Buffer con­

tains the last data/status read-in through that port. In par­

ticular, the Port-input Compressor operates as it is described 

below. 

During a "port input cycle" the "current input" of the port is 

captured and compared with the "last input" corresponding to 

this port. Then, 

a) if they are found to be identical, the "input count" which 

corresponds to the input port is incremented. If this 

count overflows, the "port type" is transmitted to the 

trace memory indicating that the "input counter" of this 

particular port has overflowed. 

b) if they are found to be different, the "current input" is 

stored in the "last-input buffer" while the "last input", 

together with the corresponding "input count" (if one 

exists), is transmitted to the Data Trace Meaoryj thus 

forming an "input-port entry". 
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Interrupt Section 

The Interrupt Tiaer measures the interval between two succes­

sive interrupts in terms of the timing unit which is provided 

by the Tiae Unit Sensor. The Overflow Counter is incremented 

each time the Interrupt Timer overflows. The Interrupt Ack­

nowledge Sensor detects the occurrence of an interrupt and 

clears the Interrupt Timer and its Overflow Counter after the 

"interrupt type" (generated by the Interrupt Encoder ), the 

"overflow count" (if one exists) and the "interrupt time" 

(generated by the Interrupt Timer) have been transmitted to 

the Interrupt Trace Heaory; thus forming an "interrupt entry". 

It should be noted that apart from encoding the interrupt 

identity into the "interrupt type", no other technique may be 

used for minimising the external-stimuli information 

corresponding to the system interrupts. 

4.4 Action-replaying Interface 

Assuming that the "software simulator approach" (II 3.2.2) is 

employed, no extra hardware facilities are required; Action­

replay may commence within the host computer system by simu­

lating the MPU operation and the external-stimuli activity. 

If however the "Hardware Simulator Approach" (II 3.2.1) is 

employed during the Action-replay phase, the Action-replaying 

Interface is required. 

In order to minimise the hardware complexi ty of the Action­

replay Interface, and since time is not a critical considera­

tion during the Action-replay process, the expansion of the 

compressed external-stimuli may be performed via software; 

that is, within the host computer. Hence, the Action­

replaying Interface is divided into three sections, namely the 

Input Port Section, the Interrupt Section and the MPU Control 

Section. A description of these three sections now follows 

with reference to Figure 6. 
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Input Port Section 

The Port Input Cycle Sensor enables the Output Latch forcing 

its contents onto the microcomputer data bus (all ports are 

disabled and, therefore, no other data is currently present on 

the bus). Then, the "next port input", is requested from the 

host computer and the MPU is forced to enter a "wait" state by 

the MPU Controller, thus inhibiting the next port-input cycle. 

As soon as the requested information arrives, the "start" sig­

nal is generated and the Action-replay program execution con­

tinues. 

Interrupt Section 

The time interval between interrupts is measured in a similar 

way as it was measured during the monitoring session; the 

difference being that the Timer is disabled each time the MPU 

enters the "wait" state. The "interrupt time", stored in the 

Interrupt Latch, is compared with the Timer's current contents 

only after the "timer overflow count", decremented within the 

host via the "overflow" signal, has expired. As soon as 

equivalence is detected by the Coaparator, the Interrupt 

Decoder is enabled so that the interrupt line corresponding to 

the "interrupt type" is activated. Then, the MPU is forced by 

the MPU Control to enter a "wait" state, the Timer is cleared 

and the "interrupt time/type" for the next interrupt is 

requested from the host computer. The MPU continues with the 

execution of the interrupt routine only after the interrupt 

section of the Action-replaying Interface has been provided 

with this information (start signal). 

4.5 Verification Interface 

If Action-replay verification is required, extra information 

must be captured during the monitoring phase, as described in 

section #3.3; that is, each "interrupt entry" and each 

"input-port entry" must also include an "address label" (i.e., 

the current address) and a "time label" (Le., the current 

interrupt timer contents) respectively. In the first case an 

"address latch" is requi red between the MPU address bus and 
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the trace memory, while in the second case no extra circuitry 

is required since the connection between the Interrupt Timer 

and the trace memory already exists in the monitoring inter­

face (Figure 5). Additional control circuitry is needed how­

ever in both cases. 

As the above information is progressively obtained during the 

Action-replay phase it is compared with the corresponding 

information acquired during the monitoring phase. Action-

replay is aborted if any inconsistency is sensed which implies 

that the Action-replay program path has deviated from the 

real-time execution program path; a situation that may arise 

either if an intermittent error exists in the target microcom­

puter, or if the Action-replay System itself malfunctions. 

4.6 SUDIIIUlry 

The structure of the Action-replay system is based on the 

semi-resident approach in order to make use of the facilities 

of existing development systems. 

The External-stimuli Monitoring is performed under the control 

of an intelligent Host-MPU Interface while Action-replay is 

performed under the control of the host computer and either 

via an MPU software simulator or via the target MPU itself. 



CHAPTER 5 

5 ACTION-REPLAY SYSTEM IMPLEMENTATION 

An "Action-replay Debugging System" prototype, based on the 

"semi-resident" approach discussed in Chapter 4, is designed 

and constructed in order to establish that the realisation of 

the "Action-replay Debugging Technique" is possible and that 

such a system is in practical terms useful. 

Due to time constraints, only ideas bearing originality are 

implemented, the design complexity is kept at minimum levels 

and existing resources within the Digital Systems Laboratory 

(DSL) are employed whenever possible in the construction of 

this prototype system. Furthermore, some knowledge is assumed 

on the various components employed in the design (reference to 

literature is given whenever possible). 

5.1 AssUDlptions 

The Action-replay prototype system has been developed accord­

ing to the assumptions given below 

a) an K6800 microprocessor [36] is assumed to be the target 

computer. 

b) an LSIll/23 Dlinicoaputer [52] is assumed to be the host 

computer. 

c) DMA is not used in the target microcomputer. 
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d) the target program is either kept in ROM or is loaded in 

RAM via existing methods; hence, no down-line loading is 

required between the host and the target computers. 

e) target program and data are kept separately so that the 

"fetch cycles" can be recognised during execution 

(It 3.1.2). 

f) no intermediate system state is captured; 

"Reset" system state is always used as the 

both the "External-stimuli Monitoring" and 

replaying" phases. 

instead, the 

"origin" for 

the "Action-

g) data reduction during the Monitoring phase is independent 

of the "port type"; I.e., it is assumed that data streams 

entering via different ports consti tute a single "input­

port data" stream. 

h) Action-replaying of the program path is performed in the 

target microcomputer. 

i) only the "Monitoring" and "Action-replaying" interfaces 

will be implemented. 

j) the HP-I6IOB Logic Analyser is employed for "Action-replay 

Verification" and "Program Status Information Monitoring". 

k) the DSL's prefabricated integrated circuit boards are 

employed in the construction which are plugged into sockets 

at the back of a special purpose frame and interconnected 

at the front of this frame with pin-ended wires (flat­

cables, twisted-pairs, etc.). 

5.2 Target Co.puter Systea 

The M6800 microcomputer system designed and constructed within 

the DSL [17] is employed as the target computer. 
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5.2.1 Target eo.puter Syste. Hardware 

The DSL M6800 microcomputer system is driven at 1Mhz clock 

rate and includes a Peripheral Interface Adaptor (PIA) with 

"memory mapped" registers, 256 bytes of ROM which accommodates 

a "Paper Tape Driver" program, 1kbyte of RAM and a "Paper Tape 

Reader" (PTR) which is interfaced via the CAl signal (device 

busy) and CA2 signal (data request) to the A-side of the PIA 

and which can reach a speed of 150 characters/so MPU control 

is provided via the "Control Console" (a hardware console), 

which also allows DMA via 16 "address/data" switches and 16 

"address/data" LEDs. 

The PTR mentioned above and the following two components simu­

late a non-deterministic, real-time application (# 5.2.2) 

which is assumed to be the application under development : 

1) An 8-bit "Counter" which is connected to the B-side of the 

PIA (the CB2 PIA signal is connected to the clock input of 

the counter) and whose current value is read by the NMI/IRQ 

interrupt routine (# 5.2.2). 

2) A "Pulse Generator" which provides the M6800 system wi th 

two asynchronous sequences of NMI and IRQ random inter­

rupts; the NMI pulse is directly applied to the NMI input 

of the M6800 MPU while the IRQ is generated by the PIA 

responding to a negative-going edge on its CB1 input. 

In addition, some circuitry which allows the M6800 microcom­

puter system to accept two additional control signals is 

employed, namely the "disable input ports" and the "disable 

memory" signals. 

5.2.2 Target Coaputer Syste. Software 

It is assumed that the PTR driver program, which is in fact a 

fully tested program, is the software under development. 

The PTR driver program loads object tapes into the M6800 

memory employing "handshake" control. The "test for device 



not busy" loop consists of the following instructions 

LOOP: TST PIAST 

BPL LOOP 

LOAA PIADT 

test status 

device busy? yes: repeat. 

no : read next data. 
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Thus, a "status" byte enters the system every 10 microseconds 

(TST = 6 clock cycles, BPL = 4 clock cycles) which implies a 

maximum input rate to the Action-replay Monitor Interface of 

about 100kbytes/s. 

Since a target application employing interrupts is in fact 

required, the PTR driver program has been modified so that can 

handle interrupts. In particular, a small program is included 

which initialises the NMI/IRQ vectors, programs the B-side of 

the PIA for interrupt operation, enables the IRQ interrupt and 

transfers control to the PTR driver. In addition, two inter­

rupt routines are included, namely the IRQ Routine and the RKI 

Routine. 

The IRQ routine reads the current contents of the Counter 

(Figure 7) via the B-side of the PIA (an action which also 

increments the Counter via the CB2 signal), displays this 

value on the M6800 Control Console LEOs (8-)15), loads the 

Index Register with a 16-bit "delay" value preset on the Con­

trol Console switches and decrements it to zero before execut­

ing an RTI instruction returning control to the PTR driver 

program. 

The NMI routine performs nearly the same actions as the IRQ 

routine, the difference being that the counter value is 

displayed on the low LEO byte (0-)7) of the MPU Control Con­

sole; thus giving a visual indication of which of the two 

interrupts was just serviced. 

The minimum "delay" value permitted is "I", which implies that 

on the occurrence of an interrupt each interrupt routine 

instruction is executed only once. In this case the propaga­

tion time through either the IRQ routine or the NMI routine is 

50 microseconds. Hence, assuming that nested interrupts are 
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not allowed, the above application may handle interrupts at a 

maximum rate of 20 kHz. 

As will be shown later on (# 5.5) the 100kbytes/s input rate 

is reduced by the Port Input Compressor of the Monitoring 

Interface by a factor of 130, while, unfortunately, the infor­

mation generated while monitoring the system interrupts cannot 

be compressed (# 4.3). 

It should be noted that the 5WI of the M6800 is not included 

in the above arrangement since it is invoked from within the 

system and, therefore, does not require any special treatment 

as far as the Action-replay Technique is concerned. 

5.3 Host Computer Systea 

An L5111/23 minicomputer is assumed to be the host computer 

but in fact the filing system, the editor and the M6800 

cross-assebler residing at the University's mainframe computer 

were actually used by connecting the L5111/23 to the local 

node of the University network. 

5.3.1 Host Computer Systea Hardware 

The L5I11/23 minicomputer consists of six boards 

1) A KDFll-AA board, including the L5111/23 processor, the 

Memory Management Unit (MMU) and the ODT microprogram (a 

resident debugging monitor which accepts commands for DMA 

and execution-control and displays information onto a VDU 

screen). 

2) An MXV11-AC board containing 32kbyte RAM, 2kbyte ROM 

(accommodating a program which enables the VDU to be used 

as a terminal to the University's mainframe) and two serial 

ports, one of which is used for the VDU while the other for 

connecting to the Newcastle University computer network. 
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3) A DRVII board, consisting of a parallel input port and a 

parallel output port (16-lines each). A pair of signals is 

provided per port for "handshake" control, namely the 

"Request A"-"New Data Ready" pair and the "Request B"-"Data 

Transmitted" pair. 

4) Three MSVll-DD boards (64kbyte RAM each) which increase the 

system RAM to 224kbyte. 

5.3.2 Host Coaputer Syste. Software 

The basic purpose of the LSIlI/23 program is to drive the 

Host-MPU Interface during the Monitoring and the Action-replay 

stages of a debugging cycle. In particular, it performs the 

following tasks : 

a) initialises the MMU registers so that the virtual 64-kbytes 

system memory is mapped to the 224-kbytes physical memory 

in such a way so that the latter is split into the "program 

section", the "input/output section" (memory-mapped 

input/output) and the "trace memory section". 

b) initialises the Monitoring Interface. 

c) drives the input DRVll port, which receives data sent by 

the Monitoring Interface (i.e., data which has been 

"compressed" within this interface) and stores this data 

into the LSIll trace memory. The time response of this 

section of the program is critical since if a data word 

arrives at the DRVII input before the previous data word 

has been read in, this later data is lost and, conse­

quently, no Action-replay can progress beyond this point of 

program execution (# 3.1). Therefore, this program section 

uses direct addressing ("register mode") as much as possi­

ble thus producing efficient code; a delay of 17 

microseconds per DRVll input is achieved, with IS 

microseconds additional delay every 8kbyte of input per 

trace memory, when virtual to physical page relocation is 

performed. 
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d) initialises the Action-replay Interface. 

e) drives the output DRV11 port, and consequently the Action­

replay Interface, with information generated by "expanding" 

the trace memory contents. 

Two interrupt routines are also included; they employ software 

counters for keeping track of overflows in hardware counters 

during the Monitoring and the Action-replay phases respective 

(If 5.4.1). 

5.3.3 Trace Memory Organisation 

The LSI11 Trace Memory consists of 216 kbytes RAM organised in 

two 16-bit wide trace-memories/stacks of variable length 

(minimum 8kbyte, maximum 208kbyte), namely the Port Trace 

Meaory and the Interrupt Trace Meaory. "Paging" is performed 

in such a way so that these two trace memories start at oppo­

si te ends in the physical memory and, as they fill up, they 

extend towards each other. As soon as their stack pointers 

acquire the same physical address value, the system trace 

memory overflows and monitoring is aborted (# 3.1). 

Port Trace Meaory 

Up to three different entries may be accepted by the Port 

Trace Memory 

1) an 8-bit port-input entry which may be either a port data 

or a port status byte. If this entry is entered twice in 

succession, entry number 2 below follows. 

2) a 16-bi t input-count entry specifying how many times the 

last data/status entered through the port. If the MSB of 

this entry is "set", entry number 3 below follows. 

3) a 16-bit overflow-count entry specifying how many times the 

"input count" has overflowed. 

Ent ries 1 and 2 above enter the system via the DRVll LS111 
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port (reqb), while entry 3 is formed by the LS111 computer 

software (# 5.4.1). 

The following five/six entries are required for the PTR appli­

cation : 

n: - - - - -

n+l: "PTR BUSY STATUS" 

n+2: <as n+1 entry> 

n+3: "1/0, INPUT-COUNT" 

n+4: "OV-COUNT" 

n+5: "PTR NOT-BUSY STATUS" 

n+6: "PTR DATA" 

n+7: - - - - - -

("input count" follows) 

(if n+3 entry's MSB=l) 

An example of the Port Trace Memory state at the end of a test 

monitoring-session can be seen on Table 1, section #5.5.1. 

Interrupt Trace Memory 

Up to two different entries may be received by the Interrupt 

Trace Memory for each interrupt, namely the l6-bit interrupt 

entry and the 14-bit overflow-count entry. 

The "interrupt entry" enters the system via the DRV11 LS111/23 

port (requa) and consists of the following two fields 

1) The 2-bit interrupt-type field (entry bits 15 and 14) which 

indicates that the interrupt in question is of the IRQ type 

(bit-IS is set) or the NM1 type (bit-14 is set). 

2) The l4-bit code-fetch count field which specifies the time 

elapsed between two successive interrupts in terms of 

"code-fetch cycles" (# 3.1.2). 

The "overflow-count entry" is formed within the LS111/23 

(1/5.4.1) and specifies the number of times that the "code­

fetch count field" has overflowed (bi ts 15 and 14 are cleared 

identifying this as an "overflow count entry" and not as an 

"interrupt entry"). 
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The following two entries are required per interrupt for the 

PTR application (n+2 is required only if CF-COUNT has over­

flowed at least once) 

n: - - - - - - - -

n+1: "10/01, CF-COUNT" 

n+2: "00, OV-COUNT" 

n+3: - - - - - - - -

An example of the Interrupt Trace Memory state at the end of a 

test monitoring-session can be seen on Table 2, section 

115.5.2. 

5.4 LSI11/23-M6800 Interface Iapleaentation 

As can be seen in Figure 7, the LSIll/23-M6800 Interface is 

divided into three basic sections, namely the Monitor Inter­

face section, the Action-replay Interface section and the 

Interface Control section. 

5.4.1 Monitoring Interface Iapleaentation 

About 150 integrated circuits have been employed in the imple­

mentation of the Port Input Section and the Interrupt Section 

of the Monitoring Interface (II 4.3). The structure of both 

these sections is now described with reference to Figure 8. A 

description of the Host-MPU Interface Control Section which is 

relevant to the Monitoring Interface is also given. 

Port Input Section 

Latches A and B hold the "last" and "current" port data/status 

inputs thus forming a 2-level, 8-bit wide pipeline. An 8-bit 

Comparator decides if these two inputs are equal or not. In 

the former case the IS-bit Input Counter is incremented. In 

the latter case the "port-input entry" (Le., the "last" 

input) is directed via a 3-to-1 Selector to a FIFO buffer 



-56-

(path 2) and, if an "input count" exists, an "input count 

entry" follows immediately afterwards (path 3). 

Interrupt Section 

In addition to the "port-input entry" and "input-count entry", 

the FIFO Buffer (18-bi ts * 40-words) accepts the "interrupt 

entry" (path 1), which consists of the 2-bit "interrupt-type" 

field (generated by the Interrupt Decoder when either the 

"FFF8" or the "FFFC" interrupt vector addresses appear on the 

MPU address bus) and the l4-bit "code-fetch count" field (gen­

erated by the Code-fetch Counter). 

The Code-fetch Decoder provides the timing-uni t which drives 

the Code-fetch Counter. Ideally, this timing unit is a pro­

cessor signal which identifies all opcode-fetch cycles during 

execution. For example, the INTEL 8080 MPU provides an 8-bit 

status on the Data bus during a SYNC pulse, which identifies 

the type of the current machine cycle; hence, the opcode-fetch 

cycle can be identified and the timing-unit is that of an 

"instruction cycle". However, the M6800 MPU architecture does 

not provide such a signal. Instead, the timing-unit is that 

of a "code-fetch cycle" which is the next best alternative 

after the "instruction cycle"; there are about 2.3 code-fetch 

cycles in average per instruction (Appendix A). 

The Code-fetch Decoder is in fact formed by two registers, 

holding the upper and lower address limits (Au,Al) of the 

memory section which accommodates the program code, and two 

comparators which during a memory-access-cycle check for Au<A 

and A<Al respectively ("A" is the current value of the Address 

bus). The timing pulse is then generated and the Code-fetch 

Counter triggered only if both the above conditions are found 

to be "true". 

Interface Control Section 

Each time either a "port-input entry" (ldinput) or an "inter­

rupt entry" (ldint) arrives at the FIFO inputs, the FIFO 

"input register empty" signal is tested and if it is found to 

be "false" the Monitoring Interface is disabled (fail) and 



-57-

Monitoring is aborted because a FIFO entry is lost (I 5.3.2). 

The signals "ldinput" and "ldint" are also latched into the 

FIFO in order to evoke the proper LSI11 response via the REQA 

and REQB signals (# 5.3.3) each time an entry reaches the FIFO 

outputs and, therefore, the 16 DRV11 inputs. 

Finally, as soon as either of the two counters overflows the 

BEVENT signal is generated and an LSIl1 interrupt routine 

(# 5.3.2) increments the corresponding software counter. 

It is not necessary to synchronise a counter overflow with the 

corresponding "port-input entry"'''interrupt entry" because 

long before one of the counters overflows for the first time, 

the LSI program has read all the entries pending within the 

FIFO and, consequently, the previous "input count"'''code-fetch 

count" together with the corresponding "overflow count" (if 

one exists within the LSI11). Therefore, there is no possi­

bility of incrementing one of the software "overflow counters" 

before its last contents, corresponding to an entry previously 

transmitted to the FIFO, are read and stored in the trace 

memory. If such a possibility existed, overflows should be 

entered into the system via the FIFO immediately after the 

corresponding count and not via the LSI11 interrupt mechanism. 

5.4.2 Action-replay Interface Iapl~ntation 

About 60 integrated circuits are employed in the implementa­

tion of the Port Input Section and the Interrupt Section of 

the Action-replay Interface (# 4.4); parts of the Monitoring 

Interface, such as the Code-fetch Counter and the Interrupt 

Decoder, are also used. Due to the lack of space at the DSL 

board which accommodates the Monitoring interface an addi­

tional board is employed for the Action-replay Interface; a 

number of flat cables connect the two boards together. 

A description of the Port Input and Interrupt sections and 

their part of the Host-MPU Interface Control Section is now 

given with reference to Figure 9. 
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Port Input Section 

While a "port input-cycle" is taking place, the "current" port 

input, located within the Output Latch (Figure 9), is forced 

onto the MPU data bus via the Output Buffer. Immediately 

afterwards, 

suspended so 

target program Action-replay execution 

that the Output Buffer is reloaded with 

is 

the 

"next" port input; an action initiated by activating the DRVll 

Request-B flip-flop which controls the "reqb" signal. In par­

ticular, the "next" port input is sent to the Host-MPU Inter­

face by the LSI11 minicomputer, which controls the "expansion" 

of the "compressed" information residing within the Port Trace 

Memory (II 5.3.3) via two routines, namely the "Transmit Same 

Data 'input-count' Times" (TRDT) routine and the "Call TRDT 

Routine 'overflow-count' Times" (TROV). Both these routines 

are described in detail in section #6.1. 

Interrupt Section 

As soon as the Code-fetch Co.parator detects that the "code­

fetch count", located wi thin the Interrupt Latch, equals the 

current contents of the Code-fetch Counter (Figure 8), the 

Interrupt Decoder, which decodes the 2-bit "interrupt type", 

is enabled and the NMI/IRQ interrupt is generated. Immedi­

ately afterwards, program execution is suspended so that the 

next "code-fetch" + "interrupt-type" information is 

transferred from the Interrupt Trace-memory to the Interrupt 

Latch; an action initiated by activating the DRVll Request-A 

flip-flop which controls the "reqa" signal (see "Load Inter-

rupt" command). 

Interface Control Section 

A somewhat autonomous part of the Host-MPU Interface Control 

Section is that of the !tPU Control which provides the means 

for suspending target program Action-replay execution under 

the following four cases : 

1) Immediately after the last cycle of 4-cycle instructions, 

such as the "LDA", "CMP", and "BIT" instructions, when this 

last cycle is a "port input cycle" and "extended" 
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addressing mode is used (memory-mapped input/output is 

employed in the DSL M6800 system). 

2) Two cycles after the fourth cycle of the "TST" instruction 

in the "extended" addressing mode only if this fourth cycle 

is a "port input cycle". 

3) Two cycles after the "interrupt acknowledge" signal which 

is generated by the Interrupt Decoder (Figure 8) as soon as 

the FFF8 and FFFC addresses, corresponding to the IRQ and 

NMI interrupt vectors respectively, appear on the MPU 

address bus. 

4) Finally, Action-replay execution is stopped for program 

status information monitoring purposes (# 3.4). 

The M6800 architecture responds rather strangely to an inter­

rupt when the MPU is in the HALT state; that is. a single 

instruction is executed as soon as execution is resumed and 

only then the MPU enters the interrupt sequence. Hence, in 

order to cover the case where an interrupt is generated during 

an instruction which activates a "port input cycle" (see exam­

ple in section #5.4.3), the HALT MPU Sequence may not be used 

for suspending Action-replay execution. Instead, a "BRA" 

instruction is executed in the place of the target program 

instruction which follows the "port input cycle". This "BRA" 

instruction transfers control to itself (thus forming a small 

loop, namely the "Branch LOop"). That is, a 4-bit shift 

register is employed in the generation of the appropriate sig­

nals which are required in order to force onto the MPU data 

bus the opcode (20) and operand (FE which is the 2's comple-

ment of -2) of this 2-byte, 4-cycle instruction. Con-

currently, the microcomputer memory is disabled so that no 

other data is present on the data bus (care must be taken not 

to activate the DISMEM signal while the MPU is in the inter­

rupt sequence since the memory stack is used for saving the 

MPU status). 

The opcode of the BRA instruction is forced onto the MPU data 

bus during the "fetch" cycle of the next program instruction. 

However, as mentioned above, in the case of the "TST" 
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instruction, the "port input cycle" is not the last machine 

cycle as with all the other instructions and, therefore, this 

instruction requires special attention. The TST Decoder has 

been designed which decodes the TST instruction opcode (7D) 

and provides the required 2 cycles delay if the 4th machine 

cycle of the TST instruction is a "port input cycle". 

The Interface Control Section is initialised by the LSIl1 

software via the DRVll CSRO/1 signals. These signals are 

decoded into the following four Interface C~nd8 when the 

NDR signal is activated (i.e., when the appropriate bi ts in 

the DRV11 control register are accessed) : 

COMMAND 

1) Load Input 

2) Start/Halt 

load "next" port-input byte into the 

Output Latch, de-activate the Request-B 

flip-flop and abort the "Branch Loop" if 

MPU is running (BA=false) and if the 

Request-A flip-flop is not active (i.e., 

no interrupt information has been 

requested). 

start/stop target program execution. 

3) Enable Comparator: enable the Comparator on the next Code­

fetch Counter overflow. 

4) Load Interrupt load "code-fetch count" + "interrupt­

type" into the Interrupt Latch (ldint), 

de-activate Request-A flip-flop, enable 

Comparator if command "Enable Compara­

tor" has not been received and abort 

"Branch Loop" if Request-B flip-flop is 

not active (i.e., no port-input informa­

tion has been requested). 

During the Monitoring phase any Code-fetch Counter overflow is 

recorded and stored in the Interrupt Trace Memory via an LSI11 

interrupt routine (1/5.4.1). An interrupt routine is 

provided during the Action-replay phase so that the host 

puter can keep track of the Code-fetch Counter overflows. 

also 

com-

The 
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"Load Interrupt" command is issued when no other overflow is 

expected; that is, only then a comparison between the "code­

fetch count" and the current value of the Code-fetch Counter 

is performed in order to enable the Interrupt Decoder in the 

event of a "match". However, it is possible that the remain­

ing time after the last overflow and before the required 

interrupt generation is less than 4 code-fetch cycles. This 

implies that the interrupt may need to be generated during the 

execution of the "current" instruction; an M6800 instruction 

may have a length between I and 3 bytes. 

The above action is not possible under the arrangement 

described in the MPU control section above because the M6800 

organisation does not permit stopping execution in the middle 

of an instruction; an action required since enough time must 

be provided for the LSI11 software to issue the "Load Inter­

rupt" command responding to the overflow interrupt. The 

"Enable Comparator" command deals with this situation; that 

is, it allows to issue the "Load Interrupt" command before the 

last Code-Fetch Counter overflow enabling the Comparator on 

the occurrence of this overflow (and not with the "Load Inter­

rupt" command as it is done normally). 

5.4.3 Action-replay Interface Operation 

To provide a better understanding of the Action-replay Inter­

face operation, an example is given of how this interface 

responds to the following situation : 

"an interrupt is to be generated during the execution of an 

instruction which activates an input-port-cycle". 

The following actions take place 

a) the interrupt is generated as soon as the predefined 

"code-fetch count" is reached; that is, after the current 

instruction code has been fetched from the memory (it 

should be noted that in fact the interrupt in question is 

generated ["code-fetch count" minus 2] accesses after the 

last "interrupt acknowledge", because the M6800 interrupt 
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sequence performs two dummy code-fetches at the beginning 

of the interrupt sequence). 

b) the current instruction is executed initiating a "port 

input cycle" during which the Output Buffer forces the 

required port data/status onto the Data bus and 

c) the DRV11 Request-B flip-flop is activated, requesting the 

next "port input". 

d) the M6800 interrupt sequence is then entered. 

e) thirteen cycles later the "interrupt acknowledge" signal 

activates both the BRA Shift Register (thus forcing the MPU 

to stop program execution by entering the Branch Loop) and 

the Request-A flip-flop (thus requesting the next "inter­

rupt time/type"). 

f) the LS111 software, responding to the DRV11 Request-A/B 

signals, transmits the requested information to the Inter­

rupt Latch (ldint) and the Output Buffer (ldinput) 

correspondingly. 

g) finally, the Branch Loop is aborted and program Action­

replay execution continues with the first instruction of 

the corresponding interrupt routine. 

5.5 Performance Evaluation 

The performance of the Action-replay Prototype System was 

investigated via two experiments during which it is assumed 

that the PTR driver program is the real-time software under 

development and that there are no malfunctions in either this 

software or in the target system hardware; a malfunction is 

going to be introduced later on when the Action-replay Debug­

ging Technique itself is evaluated (case study III). 

The "count" facility of the HP-1610B Logic Analyser was used 

for taking "time" measurements and "event occurrence" measure­

ments during both experiments. In addition, the Logic 

Analyser's "compare" facility was employed for Action-replay 
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verification (# 3.3) purposes; that is, a sequence of certain 

types of events (e.g., interrupts) was recorded during real­

time execution and then was successfully compared for 

equivalence with the sequence of the same events during the 

corresponding Action-replay execution. 

Action-replay verification was also performed by loading a 

program into the M6800 system RAM (while moni toring the PTR 

program activity), then clearing this RAM area and, finally, 

activating Action-replay of the original PTR program execu­

tion; at the end of the Action-replay the program had been 

reloaded into the RAM correctly. 

5.5.1 Experiment A 

In the first experiment the PTR program execution is monitored 

in real-time until the LSI-l1/23 Port Trace Memory overflows. 

TIle performance of the Port Input Section of the Host-MPU 

Interface is under test and, therefore, the M6800 interrupts 

are disabled. 

Table 1 shows the state of the first 24 locations of the Port 

Trace Memory at the end of a test monitoring-session; the Port 

Trace Memory begins at location 20000 (low end of the overall 

trace memory) and extends upwards and towards the Interrupt 

Trace Memory. All numbers are represented in octal. 

TIle PTR "busy status" (054) has been read [13*"overflow 

count"+23, 104+1] times, where each "overflow count" equals to 

2**15. TIle next PTR input is the "not-busy status" (254) fol­

lowed by the PTR ASCII data (200). 

Five/six entries are required per PTR data input. However, 

better memory utilisation can be achieved since only entries 

n+3 and n+4 need to be 16-bit wide for the M6800 implementa­

tion (an 8-bit machine). TIle above organisation is chosen not 

only because it is independent of the word size of the target 

MPU but also to assist in the debugging of the Host-MPU Inter­

face. 
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ADDRESS CONTElfTS 

------------------

20000 000054 

20002 000054 

20004 123104 

20006 000013 

20010 000254 

20012 000200 

20014 000054 

20016 000054 

20020 001162 

20022 000254 

20024 000200 

20026 000054 

20030 000054 

20032 001226 

20034 000254 

20036 000012 

20040 000054 

20042 000054 

20044 001221 

20046 000254 

20050 000076 

20052 000054 

20054 000054 

20056 001224 

Table 1 Data Trace Memory Example. 

Measurements 

a) M6800 Clock 1.1 microsecond. 

b) PTR speed 143 characters/so 

c) Monitoring tiae 140 seconds. 

d) Action-replay time: 318 seconds. 

Action-replay execution is running 2.27 times slower than 

real-time execution (d/c). 



e) Code-fetch cycles 70,069,312 accesses of code. 

f) PIA input : 13,871,709 data/status entries 

(99,083 bytes/s). 

20020 bytes of PTR data entered through the PIA (b*c). 

5.03 code-fetch cycles per input in average (e/f). 

g) DRVll input 106,496 16-bit entries. 
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760 entries/s (g/c) or 5.3 entries per PTR data character 

in average (760/b). 

The Monitoring Interface reduced the PIA entries by a fac­

tor of 130 (f/g). 

5.5.2 Experiment B 

In this experiment interrupts are taken into account. Tha t 

is, the PTR program is expanded to include two interrupt rou­

tines (It 5.2.2) and the Pulse Generator (It 5.2.1) generates 

asynchronously a random sequence of IRQ interrupts and a ran­

dom sequence of NMI interrupts. The PTR is kept switched off 

throughout this process. The PTR program execution is moni­

tored in real-time until the LSI11/23 trace memory overflows. 

Table 2 shows the state of the first 22 locations of the 

Interrupt Trace Memory at the end of a test Monitoring ses­

sion; this trace memory begins at the highest location 

(677776) and extends downwards and towards the Port Trace 

Memory. 

The first interrupt of Type "10" was serviced [475*"overflow 

count"+3 ,434] code-fetches after the initiation of the M6800 

program execution (each "overflow count" is equal to 2**14 

code-fetches) • The next interrupt of Type "01" was serviced 

after [203*"overflow count"+74,704] code-fetches. 
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ADDRESS COInENTS 

-------------------

677776 103434 

677774 000457 

677772 074704 

677770 000203 

677766 103246 

677764 000255 

677762 137471 

677760 000010 

6777 56 061505 

677754 000001 

677752 116372 

677750 000007 

677746 137130 

677744 000010 

677742 054243 

677740 000007 

677736 123453 

677734 000001 

677732 137453 

677730 000010 

677726 137417 

677724 000032 

Table 2 Interrupt Trace Memory Example. 

Measurements 

a) Interrupt rate 

b) MoDi toring time 

c) DRVll input 

200Hz maximum (5ms/interrupt). 

92 seconds. 

(200 interrupt entries + 200 overflow 

count entries)/s in addition to the 

usual input-port entries. 

d) Action-replay t~e: 209 seconds. 

a) Interrupt rate 

b) MoDi toring the 

c) DRVIl input 

5kHz (0.2ms/interrupt). 

4 seconds. 

(5K interrupt entries + 5K overflow 
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count entries)/s in addition to the 

input-port entries. 

d) Action-replay tt.e: 9 seconds. 

2 entries are required per interrupt in addition to the 

input port entries. 

Action-replay execution is still running 2.27 times slower 

than real-time execution (c/b). 

5.6 M6800 Action-replay Systea Lt.dtations 

One of the Action-replay Debugging System design assumptions 

is that Action-replay verification and Program Status Informa­

tion monitoring are performed via a Logic Analyser. 

Monitoring Process 

Limitations 

Experiments A and B described in the 

previous sections show that the M6800 

implementation can cope wi th applica­

tions employing input data rates as high as 100 Kbyte/ sand 

interrupt rates approaching 6KHz. These limits are basically 

imposed by the speed capabilities of the host computer and the 

size/speed of the FIFO buffer employed at the input of the 

host computer's input port. Therefore, these limitations are 

implementation dependent and can be cured by employing DMA 

techniques within the LSI1l/23 computer so that the data 

entering the system is directly stored into the trace memory. 

This implies however that all monitoring functions must be 

performed within the LSIl1/23-M6800 Interface (currently, some 

of these functions are implemented in LSIl1/23 software). 

Action-replay Process: Time measurements during both experi­

Lititations ments A and B revealed that the 

Action-replay execution is 2.27 times 

slower than the original real-time exe­

cution. This delay is in fact introduced by the LS111/23 

responding to the interface data/interrupt requests. However, 

there is no reason whatsoever for not being able to achieve an 

Action-replay execution speed very close to that of the 
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original execution; any Action-replay functions implemented in 

LSIll/23 software (e.g., data decompression of the trace 

memory data) should be implemented in hardware. 

5.7 S...a.ry 

An Action-replay Prototype System has been successfully 

developed, based on the "semi-resident approach" (If 4.2) where 

the target and host computers are the M6800 microcomputer and 

the LS111/23 minicomputer respectively. The Host-MPU Inter­

face complexity has been kept at minimum levels, but even so 

it was necessary to employ more than 150 SSI/MSI TTL 

integrated circuits in the design. Finally, the performance 

of the overall system was evaluated via two experiments, the 

first of which was focusing upon the performance of the "port 

input section" of the Interface while the second upon the per­

formance of the "interrupt section" of the Interface. 



CHAPTEll 6 

6 ACTION-REPLAY TECHNIQUE EVALUATION 

Many evaluations of program debugging methodologies have been 

undertaken in the past under controlled experiments [19]. 

However, due to the large number of factors involved, such as, 

the type of the errors introduced in the program, the experi­

ence of the programmers involved in the evaluation and the 

small sample of experiments carried out, these studies pro­

duced rather uncertain results. 

Unfortunately, an equally large number of factors apply also 

in the evaluation of the Action-replay prototype system; espe­

cially since only parts of this system are actually available 

(/I 5.0) and proper experimental evaluation is not possible. 

Even so, in an attempt to show that the debugging process can 

greatly benefit from the use of the Action-replay Debugging 

Technique, two hypothetical case-studies and one actual case 

study are employed here, all of which concern real-time mal­

functions, that appeared during the hardware/software develop­

ment which took place in this research work. 

In particular, the malfunctions described in case studies I 

and II were chosen from real situations encountered early in 

the development of the prototype M6800 Action-replay System (a 

highly asynchronous system) and debugged with the help of a 

Logic Analyser; a lot of time and effort was required for each 

of them. During both these case studies it is assumed that an 

LSI11/23 Action-replay System is available and that this sys­

tem has in fact all the properties listed in section #4.1. 
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The malfunction described in case study III was encountered 

later on within the M6800 system while performing Experiment B 

(# 5.5.2) and was debugged employing the prototype M6800 

Action-replay Debugging System itself. 

6.1 Case Study I 

'l'be Malfunction 

During the Action-replay phase the "expansion" of the 

"compressed" input port data/status information, residing in 

the Port Trace Memory, is performed via software techniques 

(II 5.4.2). In particular, the main routine is normally exe-

cuting a "test reqa/b" loop and as soon as the Host-MPU Inter­

face requests the next "port input" from the LSIll by activat­

ing the DRVll "reqb" signal, the "test reqa/b" loop is aban­

doned and the next "port-input entry" is fetched from the Port 

Trace Memory. 

Let us assume that an "input-count entry" is found next, fol­

lowed by an "overflow-count entry" (115.3.3). Then, the TR OV 

subroutine is called and, as shown in Figure 10, the TR DT 

subroutine is entered "overflow count" times with an "input 

count" equal to 2**15. After control has been returned to the 

main routine, the TR DT subroutine is re-entered with an 

"input count" equal to that found in the "input-count entry"; 

this later action takes place normally when no "overflow-count 

entry" exists. 

While in the TR _DT subroutine, and after a "port input" has 

been transmitted to the Host-MPU Interface (an action which 

also de-activates the "reqb" flip-flop), a secondary "test­

reqb" loop is entered before the next transmission takes place 

as can be seen in Figure 10. However, after transmitting the 

"port input" for 2**15 times, and assuming that "overflow 

count" > 1, control is returned to the TR OV subroutine 

without testing for "reqb" (point "2" at Figure 10); during 

the TR DT subroutine development (and before the TR OV 

development) it had been decided that it was not necessary to 



employ a secondary "test reqb" loop at this point because con­

trol was always returned to the primary "test-reqb" loop in 

the main program routine. The result is that, every time the 

TR DT subroutine is re-entered, two "port inputs" are sent to 

the Host-MPU Interface in the place of one and synchronisation 

between "port inputs" and Action-replay execution is eventu­

ally lost. 

Debugging Process ~loyed 

"Obviously what is needed is a secondary 'test-reqb' loop 

either at point '1' shown on the TR_OV flowchart, or at point 

'2' shown on the TR DT flowchart". However, when the above 

malfunction was encountered, the only available indication was 

that synchronisation is lost at the end of the Action-replay 

execution. Therefore, it is easy to realise that there were a 

number of alternative explanations. That is, not being able 

to establish a connection between the number of lost "port 

inputs" and the value of the "overflow count" it was not pos­

sible to even decide if this is a malfunction due to a 

software error or a malfunction due to a hardware error; after 

all, hardware and software development was undertaken con­

currently. For example, because real-time is involved during 

the monitoring phase of the process, no method had been found 

for evaluating the performance of either the monitoring inter­

face or the corresponding parts of the LS1ll/23 software and, 

therefore, the information stored in the Port Trace Memory 

could not be trusted. 

After a number of Monitoring and corresponding Action-replay 

trials it was decided that because a different number of "port 

inputs" was lost at the end of each trial the malfunction was 

intermi ttent. Therefore, having checked many times both the 

software and the hardware design of the system and not being 

able to pinpoint anything wrong, the so convenient explanation 

of "random noise at the hardware level" was given. Suspect 

wires were changed, "twisted pair" cables installed and the 

performance of integrated circuits was checked with the Logic 

Analyser. 
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The result of the above actions was negative and a time­

consuming hardware/software debugging process was initiated by 

arranging so that "extreme values" were placed in the Port 

Trace Memory; not an easy process since real-time execution is 

involved while in the monitoring phase. 

During one of the many tests it was arranged that only a sin­

gle "overflow count" was monitored throughout the whole moni­

toring phase. At this point it was realised that, despi te 

previous indications, the error was in fact repeatable if 

Action-replay is performed starting with the same information 

at the Port Trace Memory; the same final program state was 

always established. A few tests later on, the connection 

between the lost "port inputs" and the number of overflows was 

finally made; that is, the number of lost "port inputs" was 

always equal to [2*"overflow count"]. 

The malfunction could be wi thin the TR OV subroutine (the 

alternative being that the wrong information was placed in the 

Port Trace Memory). Therefore, the next step was to introduce 

a software breakpoint just before the "overflow count" test 

(point 4 at the flowchart) planning to single-step from there 

on for Program Status Information monitoring purposes. The 

result was that, after halting execution at the breakpoint, 

any indication of the malfunction in question disappeared for 

any "overflow count" value (even in test runs where single­

stepping was not employed but uninterrupted execution was 

immediately commenced). Obviously, this was a real-time 

dependent error related to the Action-replay and not to the 

r.10nitoring part of the LSIll/23 program execution. 

Not being able to collect any Program Status Information, it 

was necessary to employ "desk executions" (II 1.1.3) via which 

the design error was eventually discovered and finally 

corrected by introducing a "test reqb" loop at point "I" shown 

in the TR OV subroutine flowchart (Figure 10). 

Discussion 

Let us consider why it was taken so long to discover the above 

malfunction (more than a week). One of the basic difficulties 
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encountered was the uncertainty over the validity of the Port 

Trace Memory contents; in fact, the correctness of the Moni­

toring Interface was proven later on after the development of 

the Action-replay Interface and during the evaluation experi­

ments (# 5.3.3). 

While taking the error as intermittent a very inefficient 

"trial and error" debugging process was employed, resulting in 

wrong assumptions (e.g., that of "random noise at the hardware 

level"). 

Having employed "extreme values" debugging, it was realised 

that the error was in fact repeatable and hence it was possi­

ble to organise a more systematic debugging process. However, 

because Program Status Information monitoring was prevented by 

the real-time nature of the error in question, time-consuming 

"desk executions" were employed in order to obtain the 

required Program Status Information. 

Let us now assume that an "Action-replay Debugging System" is 

available for the LSI11/23 minicomputer. 

As soon as it is realised that the synchronisation between the 

M6800 program Action-replay execution and the Port Trace 

Memory contents is lost the program is re-executed employing 

the Action-replay Debugging Technique the use of which implies 

the following basic advantages over the debugging process 

described above : 

a) the Action-replay Debugging System can capture the failing 

program path and, consequently, repeat the error in ques­

tion at will (this action is independent of the error 

type). Therefore, instead of wasting time over the "random 

noise" assumption and the "extreme values" debugging tech­

nique, it is now possible to organise a systematic debug­

ging process immediately. 

b) debugging is in fact undertaken within the non-real-time 

environment provided by the LSI11/23 Action-replay System. 

Therefore, not only the real-time execution of the 
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Monitoring part of the LSI11/23 program can be studied in 

non-real-time (thus establishing the validity of the Port 

Trace Memory information), but also it is not 

employ "desk executions" for Program Status 

monitoring purposes. 

6.2 Case Study II 

'lbe Malfunction 

necessary to 

Information 

The 14-bit Code-fetch Counter output (path 1 at Figure 8) is 

directed via a IS-line flat cable to the Action-replay Inter­

face (path 1 at Figure 9). This cable also holds the 

counter's overflow signal, which is activated as soon as the 

2**14 count is reached, and an interrupt is immediately gen­

erated transferring control to the LSI11/23 interrupt routine 

that decrements the 14-bit "overflow-count entry" (115.3.3). 

Unfortunately line 14 on the cable and the "overflow" line 

(line 15) were accidentally short-circuited. The resul twas 

that the "overflow" interrupt was generated 2**13 code-fetch 

counts too soon and synchronisation was lost. 

Debugging Process ~loyed 

The above hardware malfunction proved to be very difficult to 

detect because the indication that the synchronisation was 

lost was given long after the actual occurrence of the mal­

function. In addition, the malfunction seemed to be "random" 

(different number of overflows in the trace-memory produced 

different erroneous results). Finally, the system has been 

designed in such a way that during the Action-replay the 

counter is automatically cleared after the generation of an 

M6800 interrupt making it impossible to check the exact number 

of code-fetch counts, which exist between two successive 

interrupts, against the corresponding code-fetch count located 

within the trace-memory. 

During one of the many debugging strategies employed the 

counter was modified to be 13-bit wide (Le., cable line 14 
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was not used) and it was then found that the malfunction did 

not occur any more. This discovery led eventually to the 

detection of the short-circuit. 

Discussion 

As with the previous case study one of the basic difficulties 

encountered during the debugging process was the uncertainty 

over the validity of the trace memory contents. An Action­

replay Debugging System for the LSIll/23 minicomputer can 

greatly help with this problem as mentioned in section #6.l-b. 

Having acquired a suspicion that the malfunction takes place 

along the code-fetch counter overflow process, it was decided 

to monitor this process employing Address-breakpoints; a very 

inefficient debugging process was then taken place since large 

variables and, correspondingly, many passes through the same 

code were involved. The need for the Action-replay Debugging 

system was strongly felt then; the "selective monitoring of 

Program Status Information" facHi ty of the Action-replay 

Debugging System greatly improves debugging efficiency in such 

cases (/I 3.4.1). 

Finally, it was felt that the system under development had 

reached a high level of complexity and this created the addi­

tional problem of relating the large amount of monitored Pro­

gram Status Information to the overall hardware/software sys­

tem; the fact that the overall system status information was 

represented in three different number systems (binary for the 

hardware, octal for the LSIll/23 minicomputer and hexadecimal 

for the M6800 microcomputer) did not help either. This con­

clusion verifies the need for proper user interaction in 

debugging systems. 
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6.3 Case Study III 

The Ha.lfunction 

As mentioned in section #5.2.2, the PTR program was modified 

to accommodate two interrupt routines. These routines were 

placed in RAM just after the PTR program which was located in 

PROM. Having completed experiments A and B (II 5.5) it was 

decided to introduce an error into the target system and then 

to use the prototype M6800 Action-replay System to analyse the 

program response. 

Hence, experiment B was performed as before but with the PTR 

speed increased beyond its permitted maximum value; that is, 

more than 150 characters per second. It was expected that the 

PTR program would cope with this situation. However, the 

result of the above action was disastrous; execution control 

was lost while at the same time the program section located in 

RAM was overwritten. 

Debugging Process Eaployed 

The PTR program execution was monitored and then Action­

replayed a number of times while the Logic Analyser was 

employed for Program Status Information monitoring during the 

Action-replay phase in conjunction with the M6800 Control Con­

sole which enables the user to access the target system memory 

(MPU register access is not provided). Thus, it was easily 

realised that the PTR system may respond to the above malfunc­

tion in one of the following four different ways. 

1) because the paper tape is moving while the read operation 

takes place it is possible that a non-ASCII character is 

read in and, as expected, the program responds by sending 

an error message to the console's LEDs and by executing a 

Wait-For-Interrupt instruction (there is no HALT instruc­

tion available in the M6800 Assembly language). 

2) a record of valid ASCII characters is read in but, because 

some of the characters are read by the PTR wrongly, the 

checksum test fails. As expected, an error message is 
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displayed at the console's LEDs and the M6800 MPU enters 

the WAIT state. 

3) the hardware interface of the PTR fails to function prop­

erly. That is, the PIA status register shows that the PTR 

is busy while in fact the paper tape has been advanced to 

the next character; hence, a deadlock. 

4) having entered the wait state (lor 2 above) the MPU is 

forced by the next interrupt to execute the corresponding 

interrupt routine. This meant that as soon as the RTI 

instruction is executed at the end of the interrupt rou­

tine, the MPU continues execution with the code stored in 

the memory location following the WAIT instruction; that 

is, execution is not halted at the WAIT instruction as 

expected and control is lost. 

Finally, one of the most experienced engineers in computer 

troubleshooting within the DSL, after having been told that 

the irrational program behaviour appeared as soon as the PTR 

speed had been increased, was invited to analyse the target 

system behaviour by employing conventional debugging tools 

(his written report may be found in Appendix B). 

Discussion 

The introduced malfunction (i. e., speeding up the PTR) had 

some surprising consequences which transformed this last 

experiment into a genuine debugging session. The prototype 

M6800 Action-replay System was found to be very efficient not 

only in easily confirming the two expected situations (1 and 2 

above) (even the invalid ASCII characters responsible for the 

error message were monitored during Action-replaying) but also 

in detecting two more bugs, a hardware bug (3 above) and a 

software bug (4 above). Neither of these later bugs were 

expected since it was thought that the program would respond 

to the invalid PTR speed with 1 and 2 above; after all, the 

PTR loader, the NMI interrupt routine and the IRQ interrupt 

routine had been tested during the Experiment B (D 5.5.2) and 

were found to function properly. Obviously, the PTR program 

had to be modified further in order to cope with interrupts 
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properly. 

All four situations described above were studied in less than 

one hour. However, the real potential of the Action-replay 

Debugging Technique was shown while studying the fourth situa­

tion; not only invalid ASCII characters were entering the sys­

tem randomly (hence, the WAIT instruction was executed at dif­

ferent points along the program execution), but also the con­

tents of the RAM locations following the WAIT instruction were 

not fixed to certain values. Hence, the user was presented 

with different symptoms during and at the end of the test exe­

cutions since different program paths were traversed each time 

the program was executed. Therefore, it was very difficult to 

focus on a particular assumption of what might be wrong and to 

decide on a particular debugging strategy. 

As can be seen in the written report at Appendix B, one of the 

first actions that the engineer wanted to take was to single­

step through the PTR loader execution. To save time, it was 

then revealed to him that even if he had single-stepped 

through the complete program execution (and that would be many 

instructions indeed) the program would have been loaded prop­

erly; the M6800 does not respond to interrupts when in 

single-stepping mode. He then decided that a timing problem 

existed and, as he claims, if he did not know that the PTR 

speed had been increased to a non permi t ted range, he would 

have found about it via oscilloscope observations of the 

reader interface logic. 

Again in order to save time an additional clue was given; that 

is, it was revealed that if an incorrect tape was used and the 

PTR speed was re-adjusted to its normal value (lOa 

characters/ s), the loader program would still fail and RAM 

would be overwritten; in effect, the purpose of this clue was 

to direct his attention to the error handling routines of the 

program. As can be seen from his report, he did continue with 

a static debugging session of the PTR loader program, but he 

failed to realise the connection between the WAIT instruction 

located at the end of a error handling routine and the random 

interrupts existing at the background. 
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Finally, he decided to continue with a dynamic debugging ses­

sion employing the logic analyser for Program Status Informa­

tion monitoring and execution tracing purposes. At this point 

in time it was mutually decided to stop the experiment, since 

this process could take a long time before obtaining proper 

results, and the interaction between the WAIT instruction and 

the interrupts was revealed to him. 

It should be noted that, although there is no doubt that the 

malfunction would be discovered eventually, triggering the 

logic analyser at the proper instance in time could prove to 

be a problem especially since an error routine was randomly 

entered. 

When the Action-replay System was used to analyse the malfunc­

tion in question, no data was entering the External-stimuli 

Trace Memory while the MPU is "WAITing" (even the Code-fetch 

Counter is idle). 

This case study clearly shows the type of problems that a 

real-time malfunction can trigger and the difficulty involved 

in debugging such a malfunction by employing conventional 

tools; symptoms keep changing and .!.!.!.! difficul t to focus ~ 

a particular fault. 

Furthermore, this case study shows that the Action-replay 

Debugging Technique can indeed combat such real-time malfunc­

tions successfully by allowing the user to concentrate not on 

how to reconstruct the malfunction (if it is at all possible), 

not on how to collect information about the program execution 

flow and its computational state, but on what type of informa­

tion to collect during successive Action-replays. 

6.4 Action-replay Debugging Technique Liaitations 

All three case studies given in the previous sections show the 

usefulness of the Action-replay Debugging Technique when 

real-time accessing of system-status information is required 
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during the debugging of intermittent/unrepeatable malfunc-
tions. However, as shown below, there are some real-time 

situations which the Action-replay Debugging Technique cannot 

easily handle. 

High input data rates (e.g., use of DMA within the target sys­

tem), high interrupt rates and long monitoring periods (say, 

due to intermittent malfunctions of low frequency of 

occurrence) lead to a limitation related to the trace-memory 

size; that is, although it is now evident (# 5.5.1) that port 

input data can be compressed considerably in cases where the 

same data word is repeatedly entering the system, the trace 

memory may still overflow in a very short period of time 

(Experiment B, #5.5.2) in which case the monitoring process is 

aborted. 

The trace memory overflow problem can be overcome by organis­

ing the host trace memory in such a way that its contents are 

continuously damped into floppy/hard disc storage via DMA 

techniques. However, it should be noted that in some cases 

the problem may persist because the required trace memory may 

exceed the amount of back up storage which can be available in 

practice. In cases like these the real-time execution and the 

corresponding external-stimuli monitoring must be re-initiated 

repeatedly until the malfunction occurs before the trace 

memory overflows; this technique was actually used during the 

experimental study III. 

An alternative solution to the above problem, is to suspend 

real-time execution as soon as the trace memory overflows and 

to re-initiate the external-stimuli monitoring process only 

after an intermediate system snapshot is taken; this technique 

does assume that the target application specifications permit 

such interruptions of the program execution. 

Another type of malfunction that can upset Action-replaying is 

that of an intermittent hardware malfunction within the target 

computer itself. Then, assuming that the Hardware Simulation 

approach is employed, such a malfunction either may occur dur­

ing the original execution and not occur during the Action-
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replay execution (or vice-versa), or may occur at different 

points along the Action-replay execution each time Action­

replaying is re-initiated. In either of the above cases 

Action-replaying will fail. However, the Action-replay Verif­

ication mechanism will show the exact point on the program 

path where diversion occurs; according to the type of the mal­

function such a hint mayor may not help (conventional debug­

ging tools must be employed in the latter case). 

Finally, Action-replaying fails if the malfunction occurs 

within either the Host-MPU Interface, or within the host com­

puter itself; conventional debugging techniques must be 

employed in discovering such a malfunction. However, since 

there is nothing worst in debugging than a tool which cannot 

be trusted, a test program should be available which must be 

used at the beginning of an Action-replay session to exercise 

the Action-replay Debugging System hardware (confidence test­

ing). 

6.5 Summary 

Three case studies were undertaken in an attempt to evaluate 

the Action-replay Debugging Technique. These' studies show 

that the Action-replay Debugging Technique can indeed aid 

real-time debugging of software (as well as hardware) malfunc­

tions by providing a debugging environment which encourages 

the user to embark into a systematic and efficient debugging 

d b i the same mal functions via conventional process; e ugg ng 

debugging methods would require a vast amount of trace memory 

for providing less efficient diagnostic facilities. 

Finally, the basic limitations of the Action-replay Debugging 

Technique were outlined. 



CHAPTER 7 

7 CORCLUSIORS 

It is now evident that the Action-replay Debugging System can 

be successfully implemented in practice (Chapter 5) and that 

the Action-replay Debugging Technique eliminates the basic 

problem encountered in real-time debugging (Chapter 6); tha t 

is, it allows accessing of program status information without 

influencing in any way the timing of the target 

program/system. However, as was mentioned in Chapter 6, the 

Action-replay Debugging Technique does have certain limi ta­

tions; recommendations for overcoming these limitations in 

future Action-replay Debugging System designs were also given. 

Conclusions may now be drawn as to the generality of the 

Action-replay Debugging Technique and recommendations can be 

given related to possible Action-replay Debugging System 

implementation strategies. 

7.1 Iapleaentation Dependent Features 

It is now possible to outline the Action-replay Debugging Sys­

tem features which are target MPU dependent; that is, the sec­

tions of the Host-MPU Interface which are dedicated to the 

target microcomputer system architecture (it is assumed that 

interfacing at the bus level of a target MPU is possible). 
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7.1.1 Monitoring Phase 

During the monitoring phase (and the Action-replaying phase in 

the case where the hardware simulator approach has been 

chosen) the following three units of the Host-MPU Interface 

are target-MPU dependent : 

1) Timing-unit Sensor; that is, decoding either a code-fetch 

or an instruction-fetch cycle. 

2) Port Input-cycle Sensor; that is, decoding that the current 

machine cycle addresses an input port. 

3) Interrupt Acknowledge Sensor; that is, decoding that an 

interrupt has been generated and that the MPU has already 

responded to it. 

Having considered a number of microcomputers it is clear that 

differences exist in all three of the above areas. However, 

as can be seen below, these differences can easily be taken 

into account in a Action-replay System which incorporates 

microprogrammable control logic : 

1) most microcomputers provide either status information which 

indicates the type of the current machine cycle (e.g., 

M6809, M68000, INTEL8080/85, Z8000), or a dedicated signal 

which indicates an opcode-fetch cycle (e.g., TMS9900, 

FIOO-L). Hence, it is almost always possible to sense an 

instruction-fetch cycle; in cases where this is not possi­

ble (e.g., M6800) the code-fetch technique can be used 

instead (# 5.4.1). 

2) port input-cycles can be easily decoded either via the 

state information mentioned above or, in the case where 

"memory-mapped input/ output" is employed, by decoding the 

memory address space dedicated to input/output activity 

while a "read" operation takes place (as with the M6800 

implementation). This later case can also be employed for 

overcoming the DMA problem as was mentioned in section 

113.1.3; that is, it can be safely assumed that the DMA 

buffer is part of the "memory-mapped input/output" address 
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space and that the memory read-cycles, which address this 

space, can be taken as port input-cycles. 

It should be noted that special consideration must be given 

to MPUs which have input ports on-chip; that is, ports con­

nected to the environment bypassing the MPl" buses (e.g., 

the SIn input of the INTEL8085). 

3) some microcomputers provide "interrupt acknowledge" signals 

(e.g., F100-L). If however such a signal is not provided, 

it can be generated easily ei ther by decoding the status 

information provided during "interrupt acknowledge" 

machine-cycles, or by decoding the appearance of an 

interrupt-vector address on the MPU address bus during a 

memory-read cycle (as with the M6800 implementation) and 

assuming that the user program may only write-into and not 

read-from such memory location. 

7.1.2 Action-replay Phase 

Hardware Siaulator Approach 

In the case of the hardware simulator approach to Ac tion­

replaying (# 3.2.1) it must be possible to : 

1) disable all input ports of the system and all interrupt 

lines entering the system; these in general are easi ly 

implemented target-system modifications. 

2) to interrupt program execution for Program Status Informa-

tion monitoring purposes. Most microcomputers can be 

hal ted via an external signal (e.g., WAIT for INTEL MPUs 

and HALT for Motorola MPUs). However, care must be taken 

to avoid strange interactions between the "halt sequence" 

and the "interrupt sequence" of the MPU, in which case 

external hardware techniques must be employed to achieve 

the required suspension of the Action-replay execution 

(e.g., the "branch-to-i tself loop" technique incorporated 

in the M6800 design (# 5.4.2)). 

3) to generate a dummy interrupt in order to permi t MPU 
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register accessing; the MPU registers are forced out of the 

MPU chip and into the microcomputer memory either by the 

interrupt-acknowledge sequence itself, or by the interrupt 

routine which follows. A1 though this process seems to be 

easily implemented it requires some complex hardware since 

a transparent implementation is needed. For example, in 

the case where a small interrupt routine is incorporated 

within the microcomputer during the Action-replaying phase 

for Program Status Information monitoring purposes, the 

execution of this routine must be transparent to the 

Action-replay execution of the target program (and in gen­

eral to the Action-replay part of the Host-MPU Interface) 

otherwise synchronisation between the trace memory contents 

and the target program execution is lost and Action­

replaying will fail. 

Software Siaulator Approach 

* The software simulator approach to Action-replaying is much 

more flexible than the hardware simulator approach as far as 

execution control and Program Status Information monitoring 

are concerned (e.g., the generation of the dummy interrupt is 

not required in order to access the MPU registers). However, 

the software simulator's speed becomes a serious limi tation 

(over 1000 times slower than the real-time execution). 

* The software simulator approach is actually chosen 
in an INTEL8085 based Action-replay System imple­
mentation [18,29] which currently takes place at 
the "Microelectronics Applications Research In­
sti tute" following an investigation of existing 
real-time debugging techniques/tools [10]. 



-86-

7.2 Alternative r.ple.entation 

Flexibility and speed can be achieved during the A ction-replay 
phase by combining together the Software and the Hardware 

Simulator approaches. Such an alternative system functions as 
follows : 

the Action-replay process takes place initially 

within the target MPU (when Program Status Informa­

tion monitoring is not required) and up to an execu­

tion point where a simple breakpoint mechanism 

interrupts this process and transfers execution con­

trol to the software simulator where Action-replay 

progresses for Program Status Information monitoring 

purposes. 

As soon as Action-replay within the software simula­

tor progresses beyond the specified bounds (i.e., 

wi thin code areas where Program Status Informat ion 

moni toring is not required) control is transferred 

back to the hardware simulator (i.e., the MPU) until 

further "zooming-in" is required for Program Status 

Information monitoring purposes. 

Address breakpoints seem to be appropriate for the above men-

tioned breakpoint mechanism. In particular, they must be 

implemented via hardware techniques since the target program 

timing must not be altered during Action-replaying (e.g., the 

breakpoint table can be implemented via associative memory 

techniques). Then, the debugging system enters into the 

breakpoint table a number of address pai rs, each specifying 

the lower and upper limits of the section of code during the 

execution of which Program Status Information monitoring is to 

take place. These limits may either be explicitly specified 

by the user in terms of source file line numbers, which can 

then be translated by the debugging system into addresses and 

loaded into the "breakpoint table", or can be automatically 

generated by the debugging system taking into account the 

operands employed in the user specified monitoring conditions 

(/I 3.4.1). 

Each time the Action-replay control is transferred from the 
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target MPU to its simulator, or vice-versa, the current state 

of the execution (cOIlpUtation BD.apshot) must be transferred 

also so that one may continue executing where the other has 

left off. Depending on the application, the size of the com­

putation snapshot can be rather large making the simulation 

technique in question inefficient. Obviously, the ideal solu­

tion is to keep all this information at one place which is 

then accessed by either the MPU or the host computer where the 

software simulator resides. The microcomputer memory itself 

seems to be such a place since it is there that most of this 

information initially resides; the exception being the MPU 

registers which may end up in the system stack by generating a 

dummy interrupt; this interrupt may be generated as soon as an 

address breakpoint is "hit". 

The above mentioned ideas imply that the host computer must be 

supplied with a mechanism of accessing the target system 

memory (DMA Interface at Figure 4). This can only be done via 

some additional but minimal hardware for generating the 

required control signals and, subsequently, disabling the MPU 

chip and acquiring full control of its buses [28]. Then, only 

two actions have to be undertaken each time an interrupt is 

generated by the breakpoint mechanism and Action-replay con­

trol is passed between the target MPU and its simulator : 

1) the MPU is disabled and the simulator in the host computer 

is enabled (or vice-versa) and 

2) the MPU registers are forced into either the MPU chip or 

its simulator (depending on which of the two was just 

enabled). 

In MPU architectures where 

sequence (and consequently 

the 

the 

"interrupt-acknowledge" 

"return-from-interrupt" 

sequence) do not force the MPU registers into the memory stack 

(or back into the MPU chip) explicit means must be employed in 

d . t those registers as was mentioned or er to acqulre access 0 

earlier on. 
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7.3 Aetion-rep1ay Debugging Process Upgrading 

Instead of developing a new debugging system which is based on 

the Action-replay Debugging Technique the Action-replay facil­

ity may be provided as an autonomous part of an already exist­

ing development system. Then, according to user requirements, 

the Action-replay facility may either be invoked or bypassed. 

Whatever implementation strategy is chosen in future Action­

replay Debugging System designs, software techniques must be 

employed in order to upgrade the debugging process. For exam­

pIe, since interactive software debugging is underway, and 

since debugging in general is usually associated with a large 

number of small changes, rapid turnaround time on program 

changes would increase debugging efficiency. 

"Program-struc ture" informat ion (functional and performance 

requirements of individual modules, definitions of interfaces 

between them, etc.), produced during early development phases, 

becomes "obvious" to the programmer as the development process 

progresses and therefore is all-to-often preserved only by 

memory. Later on, when the debugging stage is reached, such 

information has either been forgotten or remembered only 

vaguely and therefore program-status information is wrongly 

evaluated as the result of which the wrong actions are taken 

leading to inefficient debugging. Forming a .. software 

description" file during the program design stage of the 

development could be rather advantageous later on in the 

debugging stage. 

should be employed. 

Similarly a "hardware description" file 

Future developments of an Action-replay Debugging system 

should employ software techniques in order to upgrade the 

Action-replay Debugging process to the source language level 

[41]; that is, during debugging the programmer may refer to 

variables in the program symbolically. 

However, symbolic referencing can be used only with those 

language processors which generate a symbol table wi th the 

object programs they produce. Hence, compilers which do not 

make available their symbol tables will have to be modified to 

do so. Special consideration should be given however to stack 
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orientated languages, such as ALGOL, since the absolute 

addresses of variables are known only after the corresponding 

declaration statement has been executed; the same declaration 

statement may even result in different absolute memory address 

for the same variable name according to where along the pro­

gram it is executed (e.g., when the statement in question is 

within a subroutine and recursion is employed). 

For Program Status Information monitoring purposes the 

Action-replay system must be able to set address breakpoints. 

Since source language debugging is assumed, the locations 

within the executable code (e.g., the entry point to a subrou­

tine) must be specified symbolically (i.e., in terms of source 

file line numbers, statement numbers/labels, etc.). However 

most compilers generate relocatable code the absolute 

addresses of which is generated by a linker/loader according 

to certain relocation factors and Only at this stage the abso­

lute addresses of breakpoints are known and can be found in 

"load maps" in order to be entered into the breakpoint table. 

Special consideration should also be drawn to compilers which 

perform code optimisation (e.g., the order of execution could 

be altered, invariant code could be moved from loops, etc). 

It should be noted that most operating systems and high-level 

languages have their own debugging systems (e.g., "Symbolic 

Debugging System" in MTS [53]). Such systems can probably be 

used in conjunction with the Action-replay Debugging Technique 

assuming that there is a way of distinguishing between target 

program execution and execution of statements inserted between 

the source code by the compiler/ debugger for target program 

execution control purposes. The above distinction is required 

so that the Action-replay" Time" is stopped when these state­

ments are executed otherwise target program timing is altered 

and Action-replay synchronisation is lost. 

Having established the Action-replay debugging technique at 

the source language level, there is no reason whatsoever for 

not being able to raise the debugging level even more and, 

consequently, improve the debugging efficiency even further. 
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For example, more sophisticated formating routines can relate 

the Program Status Information directly to the source file 

itself without any extra confusing information such as state­

ment numbers. For example, as an instruction trace record is 

displayed on the left of the VDU screen, a trace of one of the 

program variables is displayed on the right of the screen, 

while the corresponding source-file assignment statement, 

responsible for each of the variable changes, is automatically 

underlined on the left of the screen. In addi tion, program 

execution statistical data can be generated and displayed at 

the VDU screen. 

This research study has shown that the Action-replay Debugging 

System can indeed be implemented in practice and that the 

Action-replay Debugging Technique aids the detection of a 

large class of previously difficult intermittent/unrepeatable 

malfunctions by providing a debugging environment which keeps 

the erroneous program behaviour in a stable condition so that 

particular symptoms relating to particular faults can be 

focussed upon and analysed. This latter property of the 

Action-replay Debugging Technique minimises the chances of 

taking the wrong action along the debugging process (since the 

user is not confused by rapidly changing symptoms) and, thus, 

a systematic and efficient debugging process is achieved. 



FIGURES 



CARD READER -------input--> COMPUTER --output----->! PRINTER I 

FIGURE 1 Conventional Computer System. 

r 

e 

~---feedbaCk-input---> 
10 ~ 
a w ---->8 

r <---) 11 COHPUTER 
V 

D<--control-outPut----~ _______ <---- CARD READER 

t 1 

i d 

m 

e 

FIGURE 2 : Real-time Computer System. 



HOST-MPU MICRO-HOST 

COMPUTER <--host-ports--> INTERFACE <--mpu-buses--> COMPUTER 

-1 v 
" ~ 

[ CONSOLE I 1"/0 PORTS I 
~ 

user h/w 

FIGURE 3 : "Action-replay System" Block Diagram. 



h m 

o <-----------) INTERFACE + MPU CONTROL (microprogram) <-------) i 

s 

t 

c 

o 

I 

V 

<-----------) DMA INTERFACE 

m <-----------) MPU REG ACCESS 

p INTERFACE 

u 

t 

c 

r 

o 

c 

<-1---1--- ---1------------------) 0 
I 
V 1 I m 

I 1 p 

<-1--- ---1------------------) u 

lit 
I 
V 1 e 

r 

e <-----------) MONITORING INTERFACE <- ---1------------------> 

l 
V 

r 

V 

p <-----------) VERIFICATION INTERFACE 

o 

r T 
t 

s <-----------) ACTION-REPLAYING INTERFACE 

1 

1 

, 
V 

FIGURE 4 "Host-MPU Interface" Block Diagram. 

b 

u 

s 

e 

s 

<----------------) 



PORT lip-CYCLE 

(===port-type======== PORT-INPUT (======= SENSOR <=========::z m 
t (===port-input======= 

i 

r (===input-count====== COMPRESSOR (================port-input======== c 
a 

c 

e 

(input-port section 

(interrupt section) 

m 

e 

m (===interrupt-time==== INTERRUPT TIME UNIT 

(------- SENSOR o r-OV- TIMER 

r 

y V It. 

I 
(===overflow= OVERFLOW I 

count COUNTER 
I 

(---* reset 
I 
I 

INTERRUPT 

r 

o 

c 

o 

m 

p 

u 

t 

e 

r 

<=============== 

b 

u 

s 

e 

INTERRUPT ACKNOWLEDGE s 

(===interrupt-type==== ENCODER (------- SENSOR (-------------

FIGURE 5 "Monitoring Interface" Organisation. 



h ---start----------->!MPU CONTROL]---*---_ I ------------------wait----) 
o I 
s 

t 

c 

o 

(control section) 

(input port section) 

1'~ 
I I 
I-I 

I 

I 

m 

i 

c 

r 

o 
m <--request-next-port-input--*-I-----

PORT lip-CYCLE 

SENSOR <======== c 
p 

u 

t I 
V 

o 

m 

p 
e 

r ===next=port=input============I===== 
~ current u 

========>~==:::::===> : 

o 

u (interrupt section) 

- 1-
/ I 

t 

p 

u INTER-

t ==int==) RUPT 

time LATCH 

p 

I 
V 

COHPA TIME UNIT 

===) RATOR <==1== TIMER (----- SENSOR 

I 
I 
*-) reset 
I 

I 
o <--overflow------------I------I-- ov 

r 

t 
I I 

s <--request-next-int----*------*~----(enable)-> INTERRUPT 

===interrupt=type============================) DECODER 

FIGURE 6 "Action-replaying Interface" Organisation. 

r 

b 

(========== u 

B 

e 

B 

----int---) 



LSIl123 <---reqb---­

----dtx----) 

+ i/p <=========== 

MXVII DRV 

11 

.+ 

3*MSVll 

<---reqa---­

----ndr----) 

alp ===========) 

VDU+ 

KEYBOARD 

MONITOR 

INTERFACE 

MPU 

CONTROL 

AC TI ON-
/ 

REPLAY 

INTERFACE 

PULSE 

GENERATOR 

1 1 

1 1 

M 

P 

<=========1=1========== U 

1 1 

----------I-I--haltO--) B 

----------I-I--dismem-> U 

1 1 S 

M6800 

MPU 

+ 
ROH 

+ 

RAM 

+ 
I 

----------I-*--NMI----> E CONTROL 

----------1-7--IRQ~---> S CONSOLE 

1 1 

========~=I=I=========> 

1 1 

Y 1 
I 

cbl PIA 

1\ 
1 

" 
I --disable-i/p--) cb2 B cal A ca2 

ports 

1 1 1'( 1 , 
V 1 1 1 V 

I COUNTERl B 
FIGURE 7 Action-replay System Implementation. 



<-fail- I C <-----~~-----ldint---------- INTERRUPT <=============== 

N 0 1 1 ~=int=type======= DECODER :-iPC ADDRESS 

BUS T N 1 

E T 

R R 

F 0 

bevent A L 

<----- C 

<-reqa-­

<-reqb--

E S 

E 

C 

T 

I 

o 

N 

F 

I 

CF-

1 <== COUNTER 

1 

<--ov---I--I--I- - ov 

1 1 I~'---~ 
1 1 1 1 

1 1 1 1 

- -I -I -I 1-

CODE-FETCH <==============~ 

<---- DECODER 

(Interrupt Section) 

(Port Input Section) 

<--------I--J .-----
I I 

<--------*-----I-I-Idinput---I----- =/= 

1 1 1 COMPA-

S 

E <=pathl=1 

R <=path3===I= INPUT 1\ " I I 

1 COUNTER 1 1 

1 1 

l-
, 

ov <-: 
PORT I/P-CYCLE DECODER 

FIGURE 8 Monitoring Interface (located at DSL board A). 



I C MPU 
-------------------------------haltO----) 
<------------------------------ba--------

N 0 <====> CONTROL -------------------------------dismem---) 
---ndr----) T N ===BRA-2==(20 FE)==============MPU=DATA~) 
---csrO---) E T BUS 
---csrl---) R R 

<-~reqa---­

<--reqb----
<--bevent--

F 0 < _________ * ___________________________________ ~[PC-clock-
A 
C 

E 

S 

<-delay--------------------ITST DECODERI<=====~~RESS=== 
BUS 

E <-overflow------------------------------(CF-COUNTER, f8) 
C <-interrupt-acknowledge----------(INTERRUPT DECODER, f8) 

T 
I --ldinput-----------, 
o --ldint-,. ~ I 
N < _______ I ___________ I _______________ ~---------port------

--enable 1---, 1 I· i/p-cycle 
1 1 V V 

~=next-p~rt-i/p========i===i=>lo/p LATCHI====>lo/p BUFFER]===~~A=====> 
1 1 

(input port section) 1 1 
1- 1-

(interrupt section) 1 1 
1 1 

===code-fetch==) 
count 

===interrupt===) 
type 

1 1 
V ~--) CODE-FETCH 

COMPARATOR 
====> = 

INTERRUPT 
I 
, 
V 

<==pathl====(CF-COUNTER, f8) 

LATCH ====) INTERRUPT ___________________ ~~I------) 
DECODER ___________________ IRQ ______ ) 

FIGURE 9 Action-replaying Interface (located at DSL board B). 



I TR_DT I 
, 
1 

1<---------------, 
v 1 

1 

transmit port_input 1 

in count:=in count-l 1 

0----> 

v 

yes 
1 

V 

RETURN I 

1 
yes 

1 

L--no- J 

<p I ~_OV I 
, I 

V I 
r--------------->1 
1 

1 

1 

1 

I 
I 
I 
1 

V 

in count:=2**15 
JSR TR DT 

ov count:=ov count-l 

v <-----0 
t-----no--~Io-v-_-c-o-u-n-t-=o--?~·I 

I 

I 
yes 
V 

<-----0) 

RETURN 

Figure 10 Flowcharts for the TR DT and TR OV subroutines. 



BIBLIOGIAPHY 

[1] Aspinall, D. The Microprocessor and its Application. Cam­

bridge Univ. Press 1978. 

[2] Balzer, R.M. EXDAMS: EXtendable Debugging And Monitoring 

System. Proc. AFIPS 1969, vol. 34. 

[3] Bass C. Software Development Strategy for Microcomputers. 

ZILOG System Software Dept., Tech. R. no 2, July 1977. 

[4] Boyd, D.L. and Pizzarello, A. Introduction to the WELLMADE 

Design Methodology. IEEE Trans. Software Eng., July 1978. 

[5] Brown, A.R. and Sampson, W.R. 

donald, 1973. 

[6] CAP MicroSoft LTD, MicroAde, 1977. 

"Program Debugging", Mac-

[7] Dasai, T. et al. High Level Process Control Language 

"ESPRINT" and its Source Level Debugging System "SOLDA". 

Real Time Programming 1977, IFAC 1977. 

[8] Dijkstra, E.W. Notes on Structured Programming. "Structured 

Programming", Academic Press 1972. 

[9] Dobson, J .E. The Action Replay Software Mechanism. MARl 

working paper, ref. A029/2.6, October 1980. 

[10] Dobson, J.E. and Ghani, N. Real-time Microprocessor Develop­

ment Techniques. MARl ref. A029/3.2, 1981. 

[11] Fagan, M.E. Design and Code Inspections to Reduce Errors in 

Program Development. IBM Syst. J., vol. 14-15, 1976. 

[12] Fairley, R.E. ALADDIN: Assembly Language Assertion Driven 

Debugging Interpreter. IEEE Trans. Software Eng., vol SE-5, 

July 1979. 

[13] Farrell, E. and Kanellopoulos, N.G.K. Debugging Aids for 



Microprocessor Systems. Microprocessors, April 1978. 

(14] Francis, R. and Teitzel, R. Real Time Prototype Analysis as 

a Microprocessor Design Aid. Computer Design, vol. 17/12, 

December 1978. 

(15] Gains, R.S. The Debugging of Computer Programs. Ph.D. 

thesis, Princeton Univ. 1969. 

(16] Ghani, N. and Farrell, E. Microprocessor System Debugging. 

Research Studies Press, 1980. 

(17] Ghani, N. and Givens, J.G. A Teaching Laboratory for Digi­

tal Systems. University of Newcastle Upon Tyne, Tech.Rep. no 

109, 1977. 

(18] Ghani, N. Action Replay 8085 : Initial Hardware Design Con­

siderations. MARl working paper, ref. A029/2.13, April 1981. 

[19] Gould, J.D. and Drongowski, P. An Exploratory Study of Com­

puter Debugging. Human Factors 16,3, 1974. 

(20] Grishman, R. The Debugging System AIDS. SJCC, pp 59-64, 

1970. 

(21] Groves, L.J. The Provision of Debugging Facilities for High 

Level Languages. Massey University Computer Unit, report no. 

18, May 1975. 

[22] Henderson, P. An Experiment in Structured Programming. BIT 

12, 1972 . 

[23] Henderson, P. The TOPD System. Computing Lab. Tech. Rep. no 

77, University of Newcastle Upon Tyne, September 1977. 

[24] Hennessy, J. Symbolic Debugging of Optimised Code. Ph.D. 

Thesis, Computer Systems Laboratory, Stanford University. 

[25] Hewlett Packard. The 64000 Logic Development system, 1979. 



[26] Howden, W.E. Theoretical and Empirical Studies of Program 

Testing. IEEE Trans. Software Eng., vol. SE-5, July 1978. 

[27] INTEL Corp., MLS-80 User's Manual, October 1977. 

[28J Kane110pou10s, N.G.K. An Investigation into Hardware, 

Firmware and Software Techniques for Providing a Generalised 

Console for a Microcomputer System. M.Sc. Thesis, University 

of Newcastle Upon Tyne, 1978. 

[29J Kane1lopou10s, N.G.K., et al. Apparatus for Assisting 

Fault-finding in Data Processing Systems. Pending patent 

specification, application number: 8110676-6/April/1981. 

[30J Kline, B. et al. The In-circuit Approach to the Development 

of Microcomputer-based Products. 

vol. 64, June 1976. 

Proceedings of the IEEE, 

[31J Lauesen, S. Debugging Techniques. Software Practice and 

Experience. vol. 9, 1979. 

{32] Ledgard, H.F. The Case for Structured Programming. BIT 14, 

1974. 

[33] McCracken, D. Hybrid Tool for Universal Microprocessor 

Development. Computer Design, April 1980. 

[34] Millennium Systems. Microsystems Emulator Manual, 1980. 

[35] Model, M.L. Monitoring System Behaviour in a Complex Compu­

tational Environment. XEROX, CSL-79-1, Jan. 1979. 

[36J Motorola Inc. M6800 Microcomputer System Design Data, 1976. 

[37] Motorola Inc. M6800 Microcomputer Programming Manual, 1975. 

[38J Mullin, F.J. Considerations for a successful Software Test 

Program. TRW Software Series, Jan. 1977. 

[39J Myers, B.A. Displaying Data Structures for Interactive 



Debugging. XEROX, CSL-80-7, June 1980. 

[40] Myers, G.J. A Controlled Experiment in Program Testing and 

Code Walkthroughs/Inspections. CACM, vol. 21, September 
1978. 

[41] Pierce, R.H. Source Language Debugging on a Small Computer. 

Comp.J. vol 17, n04, 1974. 

[42] Santoni, A. Microprocessor Testers Survey. Electronics, 
December 1976. 

[43] Satterthwaite, E. Debugging Tools For High Level Languages, 

University of Newcastle Upon Tyne, Tech.Rep. no 29, December 
1971. 

[44] Systems Designers LTD. The CONTEXT microprocessor develop­

ment system, 1979. 

[45] Tektronix. The 8002/8001 Microprocessor Labs, 1977. 

[46] Texas Instruments. AMPL Microprocessor Prototyping Lab. TI 

Computer News. 

[47] Van Leer P. Top-down Development Using a Program Design 

Language. IBM Syst. J. vol. 14-15, 1976. 

[48] Wilkes, M. V. Software Engineering and Structured Program­

ming. IEEE Trans. Software Eng., vol. SE-2, December 1976. 

[49] Wirth, N. Program Development by Stepwise Refinement. 

CACM,vol. 14, April 1971. 

[50] Yannacopoulos, N.A. et al. Performance Measurements of the 

MUS Primary Instruction Pipeline. IFIP, 1977. 

[51] Yeh, R.T. et al. Current Trends in Programming Methodology, 

vol. 2, Prentice Hall 1977. 

[52] DEC, Microcomputer Processor Handbook, 1979. 



(53] University of Michigan. The Michigan Terminal System, vol.I, 

December 1979. 



A P P E B DIe E S 



APPENDIX A 

·HOnitoring Prograa Paths· 

The obvious way of recording a program path is to record only 

the addresses corresponding to instruction opcodes. This, 

however, not only is a processor dependent process, since the 

"opcode fetch" machine-cycle must be identified first, but 

generates a large amount of trace data (150kbytes/s on average 

for an M6800 MPU driven at IMHz clock rate). 

An alternative method is to record only program-nodes; these 

are addresses shown on the address bus just before a 

conditional/unconditional execution-control transfer. 

Program-node identification is not difficult and, furthermore, 

it is processor independent. Assembler generated data can be 

analysed and the address boundaries of those memory blocks 

which hold program code and those which hold program data can 

be derived. A comparison at the hardware level indicates 

whether the current contents of the address bus are Program­

Addresses (PA) or Data-Addresses (DA). Then, 

if PAn =/= PA(n-l)+l then PA(n-l) program node. 

A statistical study of one of the DSL M6800 programs (9kbytes 

of code) concluded that on average there are 2.43 bytes per 

instruction (422 instructions/kbyte), 4 machine cycles per 

instruction, 600kbytes of executable code per second and 137 

potential control transfers per kbytes (1 every 3 instruc-

tions). The number of successful control transfers is obvi-

ously less when measured dynamically. A performance evalua­

tion study [50] concluded that a typical control transfer rate 



in most Von Neumann structured processors is 1 in every 7 to 

10 instructions. Assuming a similar case for the M6800 
machine (say 1 control transfer every 8 instructions), the 
average number of nodes per kbyte of executable code is 52 
(that is, 422 instructions/kbyte divided by 8 

instructions/control_transfer). Therefore, the average amount 

of traced information is 60kbytes/ s (that is, 600kbytes/ s * 
52nodes/kbyte * 2bytes) which can be minimised even further 

via the following two techniques : 

1) if the maximum number of different nodes permitted within a 

program module is 256 (i.e., the maximum module size to be 

debugged is 256*8=2048 instructions which corresponds to 

4.86kbytes of program code), each node address can be 

encoded into an 8-bi t number. This information is then 

stored in the trace memory instead of the corresponding 

16-bit address. The average trace information per second 

is therefore brought down to 30kbytes, which corresponds to 

an execution of 600kbytes program code. 

2) further minimisation may be achieved by compressing 

repeated information which arises, for example, when exe­

cuting a program loop (or even nested loops). An identical 

technique to that employed to input port data reduction 

(# 3.1.1) seems to be appropriate here. 



APPENDIX B 

"Notes on discussions with Nikos concerning the debugging 

of the M6800 paper-tape-reader (pm) "fault-

Presented problem : While reading paper tape and with an 

interrupt source whose period between 

interrupts was controlled by a pseudo-random-number, the tape 

was not read properly. Sometimes the tape would be partially 

read before the processor displayed a "checksum" error or a 

"non-ASCII" error. Sometimes the tape operation would stop, 

sometimes would not stop and usually RAM memory would be cor­

rupted. It was also revealed that in fact the "busy" period 

of the PTR had been shortened with the result that the proces­

sor read data before it was valid. I was supposed to analyse 

the above program behaviour. 

Debugging Process 

Employed 

There was one fairly obvious clue in the 

way the paper tape jerked through the 

reader instead of running through 

smoothly; but this might have been a 

function of the random period interrupt routine. It was con-

ceded (rather than observed) that single stepping through the 

reader routine would have resulted in tape being correctly 

read. Assuming that I did not Know that the reader speed had 

been increased beyond the maximum permitted limit, this second 

clue would have pointed to a timing problem, and an oscillo­

scope observation of the reader interface logic, when matched 

against the reader speci fications, would have revealed the 

"busy" period problem. Time might have been spent in fi rst 

verifying the mechanical adjustment of the reader. In prac­

tice, most time would probably have been spent in locating the 



reader specifications and then reading and understanding them. 

Then, it was revealed that, even if the timing correction had 

been made, a second-order effect would still remain; it was 

stated that good tapes (read successfully before) could be 

loaded correctly, but if the odd hole was obscured, again RAM 

could be overwritten. 

My approach was to go to the reader program to try to under­

stand what the program did in the event of misreading. This 

revealed nothing that seemed very probable; for instance, in 

the special case of the byte count being obscured, and hence 

misread, it was conceivable that up to SO inches of tape could 

be read, but since some of these rows should have contained 

non-ASCII characters, the loader program should have stopped 

early. 

The problem was then revealed to me to be the result of the 

background interrupt routine releasing the reader program from 

the "WAIT" state. 

The next approach (not carried out) would have been to use a 

logic analyser to step through chunks of program. This could 

be expected to reveal (from the MAP display) that the program 

did not s top when an error was found, as it was expec ted to 

do. This in turn would have pointed back at the program and 

would have led to deeper investigations of the operations of 

particular instruc tions (setting of condi tion codes, etc.). 

The secondary problem would thus almost certainly have been 

solved with a combination of tracing and an understanding of 

the program. 

It is extremely difficult to supply times for phases of debug­

ging since these must depend on such factors as familiari ty 

with equipment (e.g., logic analyser), programs and instruc­

tion sets, and on interruptions at critical times. My esti­

mate would range from 2 hours to a full day. 

Keith Heron 
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