
THE UNIVERSITY OF :.JEWCASTLE UPO:.J TY:.JE

DEPARTMENT OF COMPUTI:.JG SCIE:.JCE
NEWCASTLE UNIVERSITY LIBRARY

097 50898 9

Performance Modelling of Replication Protocols

by

Manoj Misra

PhD Thesis

October, 1997

Abstract

This thesis is concerned with the performance modelling of data replication protocols.

Data replication is used to provide fault tolerance and to improve the performance

of a distributed system. Replication not only needs extra storage but also has an

extra cost associated with it when performing an update. It is not always clear which

algorithm will give best performance in a given scenario, how many copies should be

maintained or where these copies should be located to yield the best performance.

The consistency requirements also change with application. One has to choose these

parameters to maximize reliability and speed and minimize cost. A study showing the

effect of change in different parameters on the performance of these protocols would

be helpful in making these decisions. With the use of data replication techniques in

wide-area systems where hundreds or even thousands of sites may be involved, it has

become important to evaluate the performance of the schemes maintaining copies of

data.

This thesis evaluates the performance of replication protocols that provide differ

ent levels of data consistency ranging from strong to weak consistency. The protocols

that try to integrate strong and weak consistency are also examined. Queueing theory

techniques are used to evaluate the performance of these protocols. The performance

measures of interest are the response times of read and write jobs. These times

are evaluated both when replicas are reliable and when they are subject to random

breakdowns and repairs.

Acknowledgements

First of all I would like to thank my supervisor Prof. lsi Mitrani. Without his help

and guidance this thesis would never have been completed. I would also like to thank

Prof. Santosh Shrivastava for his support and guidance over the past three years.

Several other people at Newcastle University have also been of considerable help to

me, of these I would like to specially mention Dr. M. Little, Mr. Trevor Kirby, Dr.

Ram Chakka and Dr. Paul Ezhi1chelvan for their advice and help.

Personal thanks go to my family and friends and especially to Chris Angus. This

work was supported by a Commonwealth Scholarship.

Contents

1 Introduction 7

1.1 Statement of problem. -
I

1.2 Summary of Previous Work 9

1.3 Overview of Thesis 15

2 Data Replication 17

2.1 Introduction. 17

2.2 Consistency and message ordering . 18

2.3 The Environment 21

2.4 The Parameters . 24

2.5 Replication Protocols 26

2.5.1 Strong Consistency Protocols 26

2.5.2 Weak Consistency Protocols . 31

2.5.3 Multilevel Consistency Protocols 36

2.6 Models studied in this thesis 39

3 Weighted Voting Protocol 40

3.1 Introduction . . . 40

3.2 Reliable Replicas 41

1

3.2.1 Model .

3.2.2 Analysis

3.2.3 Results of Numerical experiments

3.3 Unreliable Replicas

3.3.1 Model .

3.3.2 Analysis

3.3.3 Results of Numerical experiments

3.4 Generalizations

3.5 Conclusion...

4 Effect of scheduling strategies

4.1 Introduction ...

4.2 FIFO scheduling

4.2.1 Optimistic Scheduling

4.2.2 Pessimistic Scheduling

4.3 Results of the numerical experiments

4.4 Comparison with priority scheduling

4.5 Conclusion. . .

5 An exact solution for the system with a single server and

downs

5.1 Introduction

5.2 The Model.

5.3 Analysis ..

5.4 Results of Numerical experiments

5.5 Conclusion.......... ...

2

-il

-13

.,17

.,19

49

51

55

01

61

62

G~

63

64

69

73

79

79

break-

82

82

83

85

88

91

6 Data Replication With Two Levels of Consistency

6.1 The Protocol ..

6.2 Reliable Replicas

6.2.1 Model

6.2.2 Analysis

6.2.3 Results of Numerical experiments

6.3 Unreliable Replicas

6.3.1 Model

6.3.2 Analysis

6.3.3 Results of Numerical experiments

6.4 Generalizations

6.5 Conclusion...

7 Weak Consistency Protocols

7.1 Introduction

7.2 The model .

7.3 Analysis ..

7.4 An equivalent formation

7.5 Exchange Gossip

Train Protocol. .

Numerical experiments

7.6

7.7

7.8

7.9

Sojourn time of an update request.

Conclusion.

8 Conclusions

8.1 Summary of Thesis

3

92

92

93

93

96

99

103

103

104

105

107

109

111

111

113

116

122

126

127

128

134

138

139

139

8.2 Contributions

8.3 Further Work

8.4 Concluding Remarks

A Appendix

4

141

144

1-15

146

List of Figures

2.1 Failure Types .. 23

2.2 Hierarchical Quorum Consensus: Nine copies organized in three sub-

groups 29

2.3 A tree organization of 13 copies 30

2.4 An example of anti-entropy session 35

3.1 Data replication with read and write accesses 43

3.2 Read response time as function of N ; no breakdowns 48

3.3 Changing the write quorum size, fixed N; no breakdowns 50

3.4 Read response time as function of N; breakdowns . . . 56

3.5 Changing the write quorum size, fixed N; breakdowns.

3.6 Analytical (S = 1) vs. simulation results

4.1 FIFO Scheduling

4.2 State Transition Diagram for Optimistic FIFO Scheduling

4.3 State ll'ansition Diagram for pessimistic FIFO scheduling

58

59

65

66

71

4.4 Mean Response Time as a function of Number of servers; W = N, R = 1 7-1

4.5 Mean Response Time with different quorum sizes 76

4.6 Mean Response Time with different quorum sizes I I

4.7 Priority vs pessimistic FIFO scheduling with different quorum sizes 78

5

4.8 Example illustrating the benefit of priority scheduling . 80

5.1 Single server with two type of jobs 84

5.2 Response time as a function of service rate 89

5.3 Bounded (S=l) vs Unbounded queue 90

6.1 A two-level replication hierarchy 95

6.2 Dependence of W 2 (solid lines) and W3 (dotted lines) on No. 100

6.3 Effect of quorum sizes on W 2 (solid lines) and W3 (dotted lines) . 102

6.4 W 2 (solid) and W3 (dotted) vs. No in the presence of breakdowns. 106

6.5 W 2 (solid) and W3 (dotted) vs. Q1 in the presence of breakdowns. 108

7.1 A replicated distributed system with N sites 114

7.2 Analytical vs. simulation results for write response time 129

7.3 Response time for gossip, exchange-gossip and Train schemes . 130

7.4 A mesh network with 8 sites 131

7.5 Response time for ring, mesh and fully connected networks 132

7.6 Results obtained by direct and indirect (series sum) methods 133

7.7 Bounds and simulation estimates for E(S) 137

6

Chapter 1

Introduction

1.1 Statement of problem

The motivation behind data replication is to improve both the availability and the

speed of retrieval of data objects. These objectives have become increasingly im

portant in recent years as the provision of on-line information and the drllland for

it have grown exponentially. The idea is simple: keeping several copies of an object

on different servers would facilitate (a) its survival in the event of hardware crashes

and (b) its accessibility to several users in parallel. These advantages are of course

bought not only at the price of extra storage needed for storing more than one copy

of the data (replicas) but also at the price of the overhead incurred in maintaining

consistency between the replicas. Different applications require different levels of con

sistency. In some cases it is important that all copies should be identical all the time

whereas other applications may tolerate intermediate inconsistencies among different

copies of the data provided that all copies eventually become the same. The cost

of the protocol to maintain these copies depends on the type of consistency needed.

It is therefore important to be able to evaluate the effect which a given consistency

7

protocol has on the performance of the system.

There is no shortage of proposed algorithms to manage replicated data. These

protocols usually fall into two different categories: (a) strong consistency protocoLs

guarantee that all replicas are identical at all times and ensure that a read always

gets most recent value of the data and (b) weak consistency protocoLs allow replicas

to differ in order to improve performance. Some protocols that try to integrate both

of these approaches into the same framework have also been proposed [1]. These

protocols try to organize replicas in levels with each level providing a different type

of consistency. We call these protocols multi-level protocols.

Replication is not cheap. It not only needs extra storage but also extra cost to

perform an update. It is still not clear which algorithm will give best performance in

a given scenario, how many copies should be maintained or where these copies should

be the located to yield the best performance. The consistency requirements also

change with application. One has to choose these parameters to maximize reliability

and speed and minimize cost. A study showing the effect of change in different

parameters on the performance of these protocols would be helpful in making these

decisions.

In this thesis we study and compare the performance of data replication proto

cols using analytical modelling methods. The models used for performance analysis

make certain simplified assumptions so that they can be solved mathematically. The

results obtained from such analysis depend on the assumptions made to reach a suit

able model. These assumptions generally are about the probabilistic distributions of

job arrivals, service times, failure and repair characteristics. Even in the presence of

simplifying assumptions the results obtained from such analysis are quite helpful to

understand the behaviour of actual physical phenomenon. Moreover these methods

8

have the advantage of computational efficiency over other techniques. At some places

where the exact analysis of the model was intractable, we provide approximate solu

tions. We then compare the results obtained from these approximate solutions with

simulation results.

Different replication protocols are being designed to work efficiently for different

type of applications. It is not wise to compare the performance of protocols that fall

into one category with the protocols that fall in some other category. Protocols that

maintain strong consistency are suitable for the case when the number of replicas

are not very large. Our analysis shows that for these protocols there is an optimal

degree of replication which depends on arrival and service rates of jobs. Increasing

number of copies beyond this limit degrades the performance of the protocol instead

of improving it. On the other hand weak consistency protocols are being designed

for the applications that can tolerate some inconsistency in data to get better per

formance. In this thesis we first study the performance of quorum based protocols

that provide strong consistency. Then we study the performance of a hierarchical

replication protocol with two levels of hierarchy. The protocol keeps some replicas

strongly consistent while allowing others to differ providing different levels of consist

ency at different levels of hierarchy. We finally study and compare the performance

of protocols that allow updates and queries to occur asynchronously on any replica.

1.2 Summary of Previous Work

Weighted Voting algorithm

The first voting approach was the majority consensus algorithm proposed by R.

H. Thomas [67]. The algorithm assumes the existence of two processes, a database

9

managing process (DBMP) and an application process (AP). The database copy at

each site is accessible only through DBMP residing at that site. Query and update

accesses to the database are initiated by AP. An AP while submitting an update also

supplies the base value of the data to which update should be applied. A DBMP on

receiving an update compares the base value of the data item with current value. If

there is no change and this request does not conflict with some pending request it

votes OK otherwise votes PASS. If the value has been changed it votes REJECT. An

update can only be executed after getting a majority of OK votes. This algorithm

was then generalized by D. K. Gifford in [25]. He named his algorithm the Weighted

Voting Algorithm. The algorithm proposed by D. K. Gifford allows a write (read)

request to execute only after collecting a write (read) quorum of votes. Several

variants of this algorithm also exist in the literature [60, 33, 5, 8] that try to improve

the performance of the protocol for a particular situation at the expense of running

some expensive solution for some other case. We explain Weighted Voting Algorithm

and its variants in detail in chapter 2. There are several modelling and simulation

studies of this algorithm and its variants, and of related issues concerning readers

and writers in database systems. Various aspects of performance and availability

have been addressed by means of finite-state models. Some of them are:

In [64] W. Smith and P. Decitre give two procedures, based on probabilistic ana

lysis, to determine the availability of a replicated object and the probability that a

read or write request fails.

In [6] M. Ahamad and M. H. Ammar present an analysis of the algorithm assum

ing that if an appropriate quorum is available for a transaction, its service time is

negligible and thus service is completed instantaneously. This enables them to model

the system as a birth and death process representing failure and repair of sites. They

10

use this model to find the optimal degree of replication, optimal quorum assignment

and mean transaction response time which is the first passage time for an arriving

transaction from the state when it arrives to the state when a quorum is available

for its execution. This model does not consider the effect of queueing or the service

times of read and write jobs on the performance.

In [61] D. Saha and et al. compare the performance of the Weighted Voting

protocol and its variants based on average message overhead.

These studies ignore the effect of queueing and congestion. Studies that use the

queueing theory approach for studying the performance of replication are [16, 11, 58,

35,36].

Systems where the queue of read access is saturated, or where any number of reads

can be processed in parallel, were examined in [16] by E. G. Coffman et al. In [11]

Baccelli and Coffman have analysed a data replication model with stable queues for

both read and write access (the latter having preemptive priority over the former), by

treating the write requests as interruptions. The analysis assumes that a read needs

only one copy for execution whereas a write needs all copies.

Nelson and Iyer [58] have applied the matrix-geometric solution method to a differ

ent model where read and write accesses wait in a common queue and are served in or

der of arrival. They present two models for the synchronous and the non-synchronous

cases. A read request needs only one copy whereas a write is performed on all cop

ies. In the synchronous case a write operation in progress blocks all the requests

that arrived after it until its completion of service. An unblocked read request can

start processing when it reaches the head ofthe request queue and when there are no

outstanding write requests that arrived before it. In the asynchronous case a write

operation releases each copy as soon as it is updated and released copies are available

11

for service to any waiting read request at the head of the request queue.

In [35] V. G. Kulkarni and L. C. Puryear consider a reader-writer queue with

readers having non-preemptive priority over writers. The system can process an

unlimited number of readers simultaneously. However, writers have to be processed

one at a time. The analysis uses an MIG I 00 queue busy period to model readers,

followed by a modified MIG/1 queue to model the entire system.

In [36] V. G. Kulkarni and L. C. Puryear analyse the stability and queuing time

of the reader-writer queue with alternating exhaustive priorities and no breakdowns.

Again the system can process an unlimited number of readers simultaneously and

writers have to be processed one at a time. There is infinite waiting room for both.

The alternating exhaustive priority policy operates as follows. Assume that the sys

tem is initially idle. The first arriving customer initiates service for the class (readers

or writers) to which it belongs. Once processing begins for a given class of customers,

this class is served exhaustively. At this point, if the customer of the other class are

in the queue, priority switches to this class, and it is served exhaustively. This is a

variant of polling.

Multi-level Replication Protocols

Users are sometimes willing to accept slightly out-of-date information, if they can

access it much faster. This is the basis of the universal name service proposed by

C. Ma in [46] and hierarchical asynchronous replication protocol, or HARP, proposed

by N. Adly et al. HARP organizes replicas into a multi-level hierarchy. Replicas at

level 0 are always strongly consistent but replicas at other levels may become out

of date. In [2], N. Adly et al. have evaluated the performance of their protocol.

That evaluation is based on a separable queueing network model, which precludes

simultaneous occupation of several servers by one request, priority scheduling for

12

requests of different types and server breakdowns.

In quasi-copies schemes proposed by D. Barbara and H. Gracia-Molina in [9] there

is a central location where all the updates are processed, and several copies are located

throughout the network. A predicate is associated with each copy, establishing the

degree of inconsistency that can be tolerated. The scheme was mainly proposed to use

the user's local storage capabilities to cache data at the user's site in an information

retrieval system. In [9] authors present a performance model for their scheme. As

there is only one central location, they model the central and other nodes as M/G/l

servers. This is different from the two-level replication analysed in this thesis where

there are more than one copies which are strongly consistent and we have to consider

the simultaneous occupation of several servers by one request.

Another scheme that deals with two-tier replication has been presented in [31] by

Gray et al. for mobile systems. They also compare the performance of their scheme

with eager replication (strong consistency protocols) and lazy replication schemes.

As in the case of [2] their analysis also precludes simultaneous occupation of several

servers by one request, priority scheduling for requests of different types and server

breakdowns.

Our analysis of these protocols assumes the existence of separate queues for read

and write jobs and shows the effect of simultaneous occupation of several servers by

one request on the response time of read and write jobs. For reliable replication the

analysis is based on a similar analysis done by I. Mitrani and P. J. B. King [51] for

multiprocessor systems with preemptive priority.

For the case of breakdowns and repairs we use the Spectral expansion method

described in [50]. This method can be used to solve a class of two-dimensional Markov

models whose state space is a lattice strip. As the Markov model with two queues for

13

read and write and with breakdowns become three dimensional we use approximations

to solve the system.

Gossip and Timestamped anti-entropy protocols

In [39] R. Ladin proposes a protocol that allows an operation (an update or a

query) to happen at a single replica. The effects of the call are then propagated to

other replicas by lazy exchange of gossip messages between replicas. The method

allows three kinds of operations: client ordered, server ordered and globally ordered

operations. We describe them in detail in chapter 2. Results showing the performance

of the protocol based on experiments performed have also been presented in [39].

In [26, 27] Golding presented his Timestamped anti-entropy protocol (TSAE)

which provides weak consistency. Like [39] TSAE also allows an operation (an update

or a query) to happen at a single replica. In the TSAE protocol each replica at

random intervals selects some other replica and instead of sending a gossip message

it exchanges information with the selected replica. Once this exchange is complete

both replicas have seen the same set of messages. In [28, 29] Golding presents the

results from his simulation analysis of the protocol giving probability of successfully

delivering a message to all sites, expected data age, probability of getting old values

etc. The paper also shows the effects of partner selection policy and the number of

sites on the performance. The analytical model for spreading an update to all replicas

has also been given in [28]. He used Monte Carlo simulation to get the results for the

analytical model.

In this thesis we present an analytical solution to evaluate and compare the per

formance of the schemes proposed in [39] and [26] for spreading the updates. In our

model, replicas execute updates in the order in which they arrive in the system. We

take average response time of an update as the performance parameter which we

14

define as the difference between times when an update arrives at a replica and the

time when it can be executed on that replica. To the best of our knowledge this prob

lem has not been analysed before. We show that this time is the same as the time

taken to spread an update to all replicas in the dual system (we define dual system

in chapter 7). We show that this time depends on the connectivity of the network.

We also derive upper and lower bounds on the time when an arriving update can be

executed by all replicas.

1.3 Overview of Thesis

The aim of this thesis is to study and compare the performance of various data

replication protocols. First we describe different aspects that should be considered

while evaluating the performance of these protocols and give a classification of these

protocols in chapter 2.

In chapter 3 the analysis of weighted voting protocol is presented both in case

of reliable replicas and when breakdowns may occur. We use generating function

approach to solve our model when all replicas are reliable. We then present the

analysis of our model for the case when replicas may fail but join the service again

within a finite time after being repaired. As the exact analysis of this model with

both read and write queues unbounded is, at present, intractable, we provide an

approximate solution using the spectral expansion method. We also compare the

approximate analytical results with the simulation results. The comparison shows

that results obtained from such an approximation are very close to exact results

when write arrival rate is low.

Chapter 4 shows the effect of scheduling strategies on the performance of the

Weighted Voting protocol. We compare the results for the case when write jobs have

15

higher priority with the case when FIFO scheduling is being used.

In chapter 5 we give an exact solution for the system with breakdowns when there

is a single server, two type of jobs and type 1 jobs have preemptive priority over type

2 jobs.

The analysis of a data replication protocol with two levels of consistency is given in

chapter 6. In many applications the user does not require the most recent information

and he may be satisfied with slightly out-of-date information if it can be accessed

quickly. This is the basis of this type of protocols. This chapter not only presents the

analysis of the protocol both for reliable and unreliable replication but also gives an

analytical method to find out the probability of getting out-of-date information. The

results presented in this chapter have been published in the form of a paper in the 2nd

annual IEEE International Computer Performance and Dependability Symposium at

Urbana-Champaign, fllinois, 1996 [53].

Chapter 7 first presents the analysis of gossip scheme for spreading updates when

updates are being executed in the order they arrive into the system. It then compares

its performance with exchange-gossip scheme where instead of sending gossip messages

at random intervals replicas exchange information with each other. Upper and lower

bounds on the time when all replicas have executed a given update have also been

given. We also show the effect of network topology on the performance of the protocol.

Most of the results given in this chapter have been presented in 3rd CaberNet Plenary

Workshop held in Rennes in April 1997 [54].

Chapter 8 concludes the thesis and gives directions for further research work in

this and related areas.

16

Chapter 2

Data Replication

2.1 Introduction

The replication of data objects on several sites has been advocated as an approach for

improving both the availability and performance of distributed systems. By storing

copies of shared data on processors where they are frequently accessed, the need

for expensive remote read access is decreased. By storing copies of critical data

on processors with independent failure modes, we can increase the probability that

at least one copy of the data will be accessible even if some of the processors fail.

However, these benefits are achieved at the cost of maintaining correctness of data

across several copies [21]. Earlier approaches for maintaining replicated data attempt

to keep all copies identical all the time. The correctness requirements depend on the

application. For example, the USE NET system maintains replicas of items posted

to electronic bulletin boards across the Internet, the replicas being held within or

close to the various organizations that provide access to it. The DKS naming service,

maintains copies of name-to-address mappings for computers and other resources and

is relied on for day-to-day access to services across the Internet [19J. Both of these

17

applications can cope with intermediate inconsistencies of data and by using this fact

the performance of the data replication scheme can be improved.

The performance of a data replication scheme also depends on the granularity

of data replication which may vary from in processor caches to replicating a whole

database or file system. In this chapter we first explain various terms related with

data replication and describe parameters used to evaluate the performance of different

data replication schemes. We then classify and describe replication protocols. Finally

we discuss the future of data replication.

2.2 Consistency and message ordering

An important criterion in the design of a data replication protocol is the type of

consistency needed. This choice significantly affects the efficiency of data replication

scheme. In [32] J. N. Gray et al. describe four degrees of consistency for database

systems. P. A. Bernstein et al., in [13], describe the consistency preservation as the

concept of producing database states that are meaningful. He further states that one

copy serializability can be assumed as the correctness criterion for replicated data.

This requires that interleaved execution of the transactions on a replicated database

should be equivalent to a serial execution of those transactions on a one-copy database.

All these definitions of consistency are based on how execution of transactions affects

the state of database.

There is some work that tries to define consistency of replicated data depending

on how far different copies of data may differ. A. Sheth and M. Rusinkiewicz in [62]

define consistency based on the difference of replicated copies in time and space. As

pointed out the consistency requirements for replicated data may vary depending on

the applications. Not all applications require that all copies should be identical all

18

the time. Many applications may tolerate intermediate inconsistencies which may

arise based on the way updates are being implemented on different replicas. An

update mayor may not require synchronization among a group of replicas. It may

complete after updating all replicas or it may complete after updating only a small

set of replicas, possibly one, and then it may be propagated to other replicas in the

background allowing replicas to differ at any time. Our definition of consistency is

based on the difference in the states of the replicas at any time (how far the replicas

may differ from each other).

Strong or Immediate consistency

Strong consistency or immediate consistency guarantee that all replicas are identical

at all time. Some of the possible ways of doing this are by means of quorums or with

the help of some centralized control. If using quorums an update operation com

pletes after updating all replicas in quorum and during this time no other operation

(other update or read) can be in progress. This requires synchronization among a

large number of replicas but ensures that replicas are mutually consistent and a read

access always gets the most up-to-date version of the data. Protocols that provide

strong consistency with the help of a centralized control depend on the reliability and

speed of the centralized control.

Weak consistency

Weak consistency does not guarantee that replicas are identical at all time. Weak

consistency protocols provide higher availability and better response time by allowing

updates and queries to occur asynchronously at any replica. The updates are then

propagated to other replicas using some reliable or unreliable technique. This may

create temporary inconsistencies among the replicas. Reads may read older versions

19

of data. This approach is based on the assumption that the applications can tolerate

temporary inconsistencies. The system guarantees to resolve these inconsistencies and

return the replicas to mutual consistency [23]. Reconciliation methods are available

to resolve conflicts.

Multi-level consistency

Some protocols that try to integrate both of these approaches into the same frame

work are also being proposed [1]. Protocols that fall into this category try to organize

replicas in levels or groups with each level providing a different type of consistency.

For example the protocol proposed in [1] by Noha Adley organizes replicas into a lo

gical hierarchical structure and supports three different type of write operations and

two different type of read operations (see section 2.5.3). By carefully choosing the

type of read and write operations at each level an application designer may provide

different type of consistencies for each level. We call these protocols multi-level pro

tocols.

The order in which different updates are implemented is another important issue

that affects the design of the protocol. Replicas may implement operations in a

totally ordered, causally ordered or unordered way. The cost of implementing an

update depends on the ordering imposed. Following are some of the most common

orderings:

Total

Updates are implemented in the same order at every replica. This order may be

different from the order in which the update operations arrive in the system. Total

order ensures that if update a is being implemented before update b at any replica

then all other replicas will implement a before b.

20

Causal

Update operations are implemented in an order that respects their causal rela

tionship. Event b causally depends on event a if it occurred after a on the same

process or if a is sending of a message by one process and b is receiving of the same

message by another process. If update b causally depends on update a then every

replica implements a before b. On the other hand if two updates are not causally

dependent then they can be implemented in any order.

Sync-ordering

If a system supports several different type of ordering for its update operations

then a sync-ordered operation ensures that all other operations are consistently im

plemented before it or after it [19]. For example, if any site implements an operation a

before implementing a sync-ordered operation b then all sites will implement a before

b. This is true regardless of the type of order of a.

Unordered

There is no restriction on the order in which different update operations are im

plemented. They can be implemented in any order at any replica.

2.3 The Environment

Data replication protocols are designed to work in an environment in which individual

computers, or nodes, are connected by a communication network. These protocols

make certain assumptions about the type of failures that may occur in the network

and certain services that should be available for the protocols to behave correctly. We

first present a classification of the failure types and then describe some of the services

these protocols may need to work correctly.

21

Failure Types

Failures may occur in the individual components of the network and due to these

faults the network may partition. We first describe the faults that may occur in the

individual components of the network. P. Jalote in [34] gives a classification of these

faults based on how the faulty component behaves when it fails. He classifies the

faults into four categories:

• crash fault The fault that causes the component to halt. With this type of

fault, a component never undergoes any incorrect state transition when it fails.

The processors that behave in this way in the event of any failure are termed

as fail-stop processors.

• Omission fault This type of fault causes a component not to respond to some

inputs.

• Timing fault When a component responds too early or too late, the fault is

called as timing fault.

• Byzantine fault An arbitrary fault which causes the component to behave in

a totally arbitrary manner during failure.

These faults form a hierarchy with the crash faults being the simplest to deal with

and Byzantine faults being the most difficult. This hierarchy is shown in Figure 2.1

When the failure in nodes and communication links of the network fragments

the network into isolated subnetworks in a way that nodes in one subnetwork can

not communicate with the nodes in other subnetwork, it is called a partition failure.

These subnetworks are then called partitions of the network.

Almost all replication protocols ensure the correct behaviour of the system when

the failure in the components of the network is a crash failure. Many of these either

22

Figure 2.1: Failure Types

do not work or their performance degrades significantly when the network partitions.

Stable Storage

Many replication protocols assume the existence of some stable storage for the

correct functioning in the event of failure of network components. The contents of a

stable storage are not destroyed or corrupted by a failure. P. Jalote in [34] defines an

ideal stable storage as one where a read always returns good data (which is also the

most recently written data), and a write always succeeds. He also describes methods

by which approximations to stable storage can be implemented using disk storage

system.

Network Topology

Replication protocols generally do not make any assumption about the underlying

network topology and guarantee to work correctly for all network topologies. But their

performance may vary with network topology. We show this in chapter 7.

Clocks

Each computer uses its own physical clock. These clocks are electronic devices that

23

count oscillations occurring in a crystal at a definite frequency, and which typically

divide this count and store the result in a counter register. This can be read by

software and scaled into a suitable time unit. This value can be used to timestamp

some event or message on that computer [19]. As the crystal based clocks used in

computers count time at different rates, they may diverge. Clock synchronization

protocols like Berkeley algorithm and Network Time Protocol (NTP) try to ensure

that clocks at different computers do not differ by more than a specified amount.

Some data replication protocols that use such clock values in their timestamps may

require the existence of a clock synchronization protocol to provide a certain level of

consistency.

2.4 The Parameters

The performance of a data replication protocol usually depends on many parameters.

In [55] H. Gracia-Molina categorizes these parameters into four different groups: base

parameters, control parameters, failure parameters, and performance parameters. We

discuss some of these parameters that closely affect the performance of a replication

protocol.

• Type of consistency This is the most important factor that decides the design

of the replication protocol. In section 2.2 we defined consistency based on the

way replicas implement updates. Section 2.5 categorizes protocols depending

on the type of consistency they support. The consistency requirements depends

on the application which in turn decides the choice for a protocol.

• Number of copies The choice about the number of copies depends on the type

of consistency and performance requirements of the application. Increasing the

24

number of copies should increase the availability and performance. But if the

application needs stronger consistency which needs synchronization among the

copies, increasing the number of copies more than a specified value may well de

crease the performance. This is due to the overheads needed for synchronization

among large number of copies. Even in case of weaker consistency requirements

by the application the growth in performance may not increase linearly with

number of copies.

• Location of copies In [44] M. C. Little and D. L. McCue show that the placement

of replicas plays an important role in deciding the performance of the replication

protocol. The placement of replicas should be chosen based on the reliability of

nodes and links as well as the bandwidth of the network and the geographical

distribution of requests. Little et al. in [43] describe a Replica Management

System (RMS) that dynamically computes the level and placement of replicas

to take into account the changing conditions in a distributed system. They

show that the performance of such a dynamic system is far better than static

one.

• granularity of data Size or granularity of data not only affects storage cost but

also maintenance cost. For example if the replication protocol treats each entry

in a table as a separate entity for replication the cost of replication may be too

high. On the other hand if the complete table is being treated as a single object

for replication, multiple requests trying to access different items of the table,

not related with each other, will not be successful.

• Failure model The type of failures may vary from Byzantine to fail-stop. Most

of the replication protocols assume that processors are fail-stop and there is no

25

partition in the network.

2.5 Replication Protocols

2.5.1 Strong Consistency Protocols

Strong consistency protocols always provide most current version of data to a user.

These protocols may use primary copy (a centralized control) or quorum based ap

proach to provide strong consistency. An approach to consistent replication based

on quorums that has gained acceptance in the literature is provided by the weighted

voting algorithm [25]. We describe the primary copy, weighted voting and some of

the variants of weighted voting algorithm.

Primary copy

The primary copy approach has been used at many places, not just for data

replication. M. Stonebraker describes the primary copy approach as used in INGRES

in [65]. The basic approach can be described as having a primary site and some

secondary (backup) sites. The number of secondary sites depends on the level of

fault tolerance needed. If the operation is a read then it can go to any site that

performs the operation and returns the result. A write operation first goes to the

primary site. Before performing the write operation the primary site sends the write

request to all backups. When all these backups have received the request, then the

primary performs the operation and returns the result. This ensures that a read

always gets the most recent version of the data. If a primary fails then a new primary

has to be elected. There are various ways of electing the new primary as described in

[56] by H. Garcia-Molina.

26

Weighted Voting algorithm

In this algorithm [25] every copy of replicated data is assigned some number

of votes. The algorithm uses two integers, R and W, referred to as read quorum

size and write quorum size, respectively. The execution of a read access requires

the simultaneous holding of copies having a sum of R votes, while that of a write

access requires copies with sum of votes equal to W votes. These numbers satisfy

R+ W = N + 1, where N is the total number of votes. Hence a read access and a write

access cannot execute in parallel. The protocol also prohibits the parallel execution

of two write access even if write quorums do not intersect. It does so by forcing a

write access to first collect a read quorum and then collect the write quorum.

Every copy maintains a version number that reflects the number of updates that

have been performed on this copy. Copies with highest version number are current

copies. A write operation always updates current copies so there is always a subset

of copies whose votes total to W that are current. Because read and write quorums

intersect, a read quorum always has a current copy.

The number of votes assigned to a copy depends on its importance. The perform

ance and reliability characteristics of the protocol depends on the choice of R, Wand

the voting structure. If all the copies have only one vote a read can tolerate up to

(N - R) faulty copies and a write can tolerate up to (N - W) faulty copies.

Voting with Witnesses

In [60] J. F. Paris proposes to replace some of the replicas by mere records of

the current state of the file containing the data. Although not containing any data

themselves, these records called witnesses can testify about the current state of the

replicated file/data and can vote like conventional copies. Paris claims that because

of their very small sizes, witnesses have practically negligible storage cost. Bringing a

27

witness up to date becomes also a trivial operation since it only involves the update

of the version number. Witnesses can thus be created much more freely than conven

tional copies. He also shows that under very general assumptions, the reliability of a

replicated file consisting of n copies and m witnesses is the same as the reliability of

a replicated file consisting of n + m copies.

Dynamic Voting

In a voting-based scheme if there does not exist a partition containing a majority

of sites, no updates can occur anywhere in the system. S. Jajodia and D. Mutchler in

[33] propose an extension of voting algorithm which permits a file to be updated in a

partition provided it contains a majority of up-to-date copies. Each copy along with

the version number also contains an integer called the update sites cardinality which

always reflects the number of sites participating in the most recent update. Whenever

an update is made, it must be made to all sites in the partition. Thus if in the last

update only m out of total N copies participated, the current update requires only a

majority of m/2 + 1 copies (in contrast to Voting which needs a majority of N/2 + 1

copies).

Hierarchical Quorum Consensus

tJ~? -0 major problem with the quorum consensus method is that it does not scale

, J we~ The Hierarchical Quorum Consensus algorithm proposed by Akhil Kumar in [8]

generalizes the quorum consensus scheme into a multilevel algorithm that requires a

smaller quorum size of NO. 63 copies only. The algorithm logically organizes the set of

copies of an object into a multilevel tree (of depth m) with the root at level O. The

physical copies of an object are stored only in the leaves of this tree, while the higher

level nodes of the tree correspond to logical groups. The algorithm works as follows:

28

A read (write) quorum at level i is defined as the number of subgroups of a level

i - 1 group that must be locked by a read (write) operation to obtain read (write)

access to the group. This is a recursive definition.

For example Figure 2.2 shows how nine copies can be organized into three sub

groups. If they are numbered as Cll, C12, C13 (subgroup 1), C21, C22, C23 (subgroup 2)

and C31, C32, C33 (subgroup 3) a possible quorum is Cll, C12, C211 C22 when write quorum

is 2 for level 0 and 1.

Subgroup 1 Subgroup 2 Subgroup 3

Figure 2.2: Hierarchical Quorum Consensus: Nine copies organized in three subgroups

Tree Quorum Protocol

In [4J D. Agrawal and A. EI Abbadi discuss how the synchronization cost of the

quorum based algorithms can be reduced by exploiting the structural information

of the underlying system. They describe their tree quorum protocol that organizes

29

replicas into a logical tree structure. A write quorum is constructed by selecting

the root and a majority of its children. For each selected child, the protocol adds a

majority of its children to the quorum. This process continues until the leaves are

reached. A read quorum is constructed by selecting the root of the tree. If successful,

this node constitutes the read quorum. If it fails, it tries to access a majority of the

root's children. Again if successful this set constitutes the read quorum, otherwise,

for each copy, which is inaccessible, the protocol tries to replace it with a majority of

its children. This process is repeated recursively until a set of copies is included in

the read quorum, or no such copies are accessible. For example in Figure 2.3 a write

quorum may be {1,2,3,5,6,8,9} or {1,2,4,6,7,1l,12} etc. A read quorum may be {1}

or {3,4} etc. They also give upper and lower bounds on quorum sizes which depend

on the height of the tree and logical connectivity of nodes of the tree.

Figure 2.3: A tree organization of 13 copies

30

Grid Protocol

In the grid protocol [15], presented by S. Y. Cheung et al. nodes that store replicas

are arranged in a logical grid and read and write transactions are required to lock

replicas in rows and columns of the grid so that conflicting transactions need to obtain

locks from at least one common node. For example, a read transaction may lock all

nodes of one column and a write locks all nodes of one row and one node in each of

the other rows. In this scheme, only O(yIN) of the N nodes need to participate in a

transaction.

Delay-Optimal Quorum Consensus

This scheme suggested by Ada Waichee Fu in [70J takes into account the network

topology and finds a quorum with minimum communication delay. Given an operation

at a node s it chooses a quorum such that its virtual distance y from the furthest

node in this quorum is minimized.

2.5.2 Weak Consistency Protocols

We call protocols that allow updates and queries to occur asynchronously on any

replica, weak consistency protocols. Reads are allowed to see older versions of data.

These protocols allow replicas to differ and generally provide a set of algorithms that

support different level of consistencies based on the ordering imposed on implement

ation of updates.

Epidemic Replication

Alan Demers et al. in [22J describe several randomized algorithms for distributing

updates and driving the replicas toward consistency. These are:

• Direct Mail: each update is immediately mailed from its entry site to all other

31

sites. This is not entirely reliable as a site may not know about all other sites

and mail is sometimes lost.

• Anti-entropy: every site regularly chooses another site at random and by ex

changing database contents with it resolves any differences between the two.

• Rumor mongering: sites are initially "ignorant"; when a site receives a new

update it becomes a "hot rumor"; while a site holds a hot rumor, it periodically

chooses another site at random and ensures that the other site has seen the

update. After trying to share an update with too many sites that have already

seen this update the site stops spreading it.

Grapevine and Clearinghouse

Grapevine [14] and Clearinghouse [59] are early examples of using a replication

scheme that supports weaker consistencies. An update can be submitted at one replica

and is later propagated to other replicas. During this period different copies of the

replicas may differ from each other. Each update has a unique timestamp associated

with it which is produced from the server's internet address and clock.

Global Name Service

B. W. Lampson describes a Global Name Service in [42] that uses replication to

provide high availability. The copies are kept approximately, but not exactly, the

same. The update originates at one copy and is initially recorded there. The basic

method for spreading updates to all copies is a sweep operation, which visits every

copy, collecting a complete set of updates and writes this set back to every copy. All

the copies are linked into a logical ring. The sweep starts at any copy and then goes

through the complete ring returning back to starting point.

32

OSCAR

OSCAR (Open System for Consistency and Replication) [23] provides a variety

of message orderings. It is based on two cooperating agents called replicators and

mediators which work together to provide replication and consistency for a set of

database replicas. Each replica tor is uniquely paired with a mediator and at least

one mediator must be active in each network partition.

When a replicator receives an update from its database server it uses an unreliable

multicast to send the update to all other replicators responsible for copies of the

database. On receiving an update a replicator stores the update in its log and then

delivers the update to its associated database server according to the consistency

method associated with the data item.

A mediator periodically polls the replicators to get the information about the

updates that have been received by each replicator. Once a round is complete a me

diator summarizes the information and sends the summaries back to the replicators.

The replicators may use this information to push and pull the missing updates.

Lazy Replication

Rivka Ladin in [39] proposes a set of algorithms to implement three different type

of orderings for the operations. These are:

• Client ordered The operations for which the clients define the required order

dynamically during the execution.

• Server ordered these operations are totally ordered with respect to one another

even when no dependency relationship is defined by the client.

• Globally ordered These operations are totally ordered with respect to all other

operations.

33

Each update is assigned a unique timestamp called its uid. In the first case when

a client submits an update U it also tells about its dependency on other updates

by passing a label along with the update. This label contains uids of all updates

U depends on. An update is ready for implementing when the server has already

implemented all updates it depends on. Server ordered updates also take an input

label. The label identifies the client ordered updates and server ordered updates that

must precede the server ordered update. Unlike other operations, a globally-ordered

update U does not take a label as an argument; instead, the system decides what

operations precede U.

Timestamped anti-entropy

Timestamped anti-entropy protocols can provide several different message delivery

orderings, including total, per-process, or no ordering. Causal orderings are possible

if the process clocks meet Lamport's happens-before condition [72J. The algorithm

can be described in short as follows:

Timestamped anti-entropy protocols maintain three data structures: a message

log and two timestamp vectors. The message log contains messages that have been

received by a process. Processes maintain a summary timestamp vector that records

the timestamp of last update for each replica as all updates before this have been

received by the process. The third data structure is the acknowledgement timestamp

vector that records what messages have been acknowledged by other processes. From

time to time, a process selects another process and initiates an anti-entropy session.

During this session the two processes first exchange their summary and acknowledge

ment vectors. Based on these vectors the two processes determine if one of them

has messages that the other has not yet observed. The messages are then exchanged

using a reliable stream protocol. To explain how the protocol works we reproduce

34

here an example of anti-entropy session given in [29] (see Figure 2.4).

Log of Replica A Log of Replica B

A 1 3 5 12 1 3

B 2 2 5 6 9 11

c 2 3 4 2

Summary of A Summary of B

12 3

2 11

4 2

(a) Before Exchange

Summary of Replica A and B Logs of Replica A and B

12 1 3 ;) 12

11 2 ;) 6 9 11

4 2 3 4

(b) After Exchange

Figure 2.4: An example of anti-entropy session

35

2.5.3 Multilevel Consistency Protocols

Use ofreplication techniques in distributed environments with thousands or even more

nodes connected through a wide area network motivated the need for algorithms to

manage replicated data that are scalable and also ensure properties like availability

and speed of retrieval of data. Distributed systems that scale are organized hierarch

ically to exploit locality of reference [24]. Based on this fact many researchers have

proposed algorithms where replicas are organized in a hierarchy of two or more levels.

These protocols maintain some replicas in strongly consistent state while allowing

others to become out-of-date. We describe some protocols that fall into this category.

Quasi-copy

The quasi-copies algorithm was proposed by Daniel Barbara and H. Gracia-Molina

III [12]. Quasi-copies are replicated copies that may be somewhat out of date but

are guaranteed to meet a certain consistency predicate. With quasi-copies, it is

assumed that a central location exists, where all the updates are processed, and several

copies are located throughout the network. A predicate is associated with each copy,

establishing the degree of inconsistency that can be tolerated. For instance, the copy

must not be more than ten minutes old. The system guarantees that this predicate

is not violated when updates occur. This can be done in two ways depending on who

is responsible for the consistency, central node or client.

Universal N arne Service

C. Ma in [46] proposed Universal Name Service that tries to integrate both strong

and weak consistencies. Replicas are grouped into first class servers and secondary

servers. The first class replicas use quorum based scheme to implement strong con

sistency whereas the secondary replicas use anti-entropy method described in [22].

36

Only the first class servers carry out updates. These updates are then propagated to

secondary servers using push-pull techniques described in [22]. Secondary servers are

used for read only operations that do not necessarily require most recent version of

the data.

Hierarchical Asynchronous Replication Protocol

HARP also tries to integrate strong and weak consistency into the same framework

by supporting a set of operations that need different level of consistency. The protocol

takes the advantage of the physical hierarchy present in the large networks to organize

replicas into a logical multilevel hierarchy [2]. In this hierarchy nodes are grouped

into clusters (normally all the nodes belonging to the same LAN) and clusters are

organized into a tree, such that each cluster is assigned a father node in its parent

cluster. The replicas in the root or top cluster maintain strong consistency by the use

of quorums whereas the replicas at other levels are weakly consistent. The algorithm

propagates a message in the following way: A node i, originating a message, sends it to

its neighbours, parent and children. This works recursively and a message originated

at any site is propagated everywhere. The protocol supports the following set of

operations: A fast read and a fast write that can be initiated and completed at any

replica. The value returned by a fast read may not be the most recent value of the

data. For applications that need strong consistency the protocol supports operations

slow read and slow write. A slow read (slow write) can be initiated at any replica

but it is implemented only after collecting a read (write) quorum from the replicas at

the root level. The protocol also provides Opt-Write which is similar to slow write,

but it is applied to the database of the site of origin and, optionally, to some other

selected replicas.

Fast write can create temporary inconsistencies in the database. The reconciliation

37

methods supported by the protocol are based on the delivery order mechanisms. The

logical hierarchy of replicas can also be reorganized to cope up with the actual physical

changes in the network.

Two-tier Replication

Use of replication techniques in an environment where users and services are mo

bile need an entirely new approach for maintaining replicas. Most of the nodes are

disconnected most of the time and can not communicate with each other. In [31J

J. Gray et al. show that update anywhere anytime anyway transactional replication

has unstable behaviour as the workload scales up. A ten-fold increase in nodes and

traffic gives a thousand fold increase in deadlocks and reconciliations. They suggest a

two-tier approach for replication in mobile systems. This approach allows mobile ap

plications to propose tentative update transactions that are later applied to a master

copy. There are two kind of nodes. mobile nodes are disconnected most of the time

whereas base nodes are always connected. Replicated data items have two versions

at mobile nodes. The most recent value received from the object master which is

called master version and the most recent value due to local updates called tentative

version. Similarly there are two kind of transactions. Base Transactions that work

only on master data and they produce new master data. Tentative transactions that

work on local tentative data to produce new tentative versions. The basic idea behind

the scheme can be explained as follows: Each object has a master node. Mobile nodes

accumulate tentative transactions that run against the tentative database stored at

the node. They are reprocessed as base transactions when the mobile node reconnects

to the base. Tentative transactions may fail when reprocessed.

38

2.6 Models studied in this thesis

This thesis evaluates the performance of some of the protocols described in previ

ous section. Chapter 3 evaluates the performance of Weighted Voting protocol that

maintains strong consistency. Both the cases of reliable and unreliable replication

have been analyzed. The model assumes that all replicas are identical and write jobs

have priority over read jobs. Chapter 4 studies the performance of Weighted Voting

protocol when both read and write jobs share the same queue and get the service

on first-in-first-out basis. A comparison of both scheduling strategies has also been

presented. In chapter 5 we present the analysis of the model that contains a single

unreliable server and two type of jobs with type 1 jobs having priority over type 2

jobs. Chapter 6 presents the analysis of a two level consistency protocol. As in case

of HARP replicas at level 0 maintain strong consistency with the help of quorums

but replicas at level 1 may contain out-of-date information. There are three type of

operations that arrive in the system: fast read that may read older versions of data,

slow reads that need an up to date copy of data and write. Finally in chapter 7 we

study the performance of schemes where updates are allowed to occur asynchronously

on any replica which then propagates these updates to other replicas. We study the

performance of the schemes for propagating updates described in Lazy replication

and timestamp anti-entropy protocols.

39

Chapter 3

Weighted Voting Protocol

3.1 Introduction

In the previous chapter we describe protocols for maintaining strong consistency by

means of quorums. Almost all these protocols are variants of the Weighted Voting

protocol. In this chapter we present the performance analysis of the Weighted \'oting

protocol. We first describe a model for the protocol and then present its analysis.

There are many studies evaluating the performance of quorum based protocols with

availability as the performance measure. These do not take congestion and queueing of

the jobs into account. However, poor performance can be caused both by breakdowns

and by congestion. If the response time of an operation increases over a certain value

(the maximum time for which the user can wait for the response) the data may be

considered as unavailable. This may be because the server is down or the queue is too

long. We therefore choose a modelling approach based on queueing theory and use

the response time of the operations as the performance measure. This approach takes

both breakdowns and congestion and queueing into account. Chapter 1 mentions

some work that evaluates the performance of data replication based on the queueing

40

theory approach. This either assumes that any number of reads can be executed

in parallel or treats write requests as interruptions whereas the models presented in

this chapter have two separate read and write queues. We first consider the case

of N reliable replicas with two separate unbounded queues for read and write jobs

and present an exact analysis of this model. We study the effect of increasing the

number of replicas and the effect of changing read and write quorum sizes on the

response time of operations (read and write). We then evaluate the performance

of the protocol when replicas are subject to random breakdowns and repairs. The

analysis presented in case of latter is approximate as it considers that the queue for

write jobs is bounded. We finally compare the approximate analytical results for the

second case with simulation results.

3.2 Reliable Replicas

3.2.1 Model

The model presented in this section considers that replicas are fully reliable. We

extend this model to consider the case of breakdowns and repairs in section 3.3. There

are N servers, each managing a copy of the data. We assume that these servers are

identical and each contains only one vote. Two types of jobs, write and read, arrive

into the system in independent Poisson streams with rates Al and A2 respectively.

The service of a write job requires the simultaneous possession of W servers (write

quorum), which are held for an exponentially distributed interval with mean 1/1/1 and

then released. A read service requires R servers (read quorum) and is exponentially

distributed with mean 1/1/2. As a read and a write service should never take place

in parallel the read and write quorums should intersect each other. To ensure this

41

R + W = N + 1. Moreover, at most 1 write job can be in service at any moment,

regardless of the value of W. We assume that some concurrency control mechanism

exists to ensure this.

There are two separate unbounded queues for read and write jobs and write jobs

have preemptive priority over reads. If an arriving write job finds that a write service

is in progress it joins the write queue otherwise it preempts all the read services in

progress. The read jobs preempted by the arrival of a write service join the read

queue. A read service can start only if write queue is empty and a read quorum

is available. The maximum number of read jobs that can be served in parallel is

r = IN/RJ, where lxJ is the integer part of x.

The parameters VI and V2 depend, in general, on the quorum sizes. An access

that engages a larger number of servers can be expected to take longer. Thus, the

average write service times usually increase with W, and the read ones increase with

R. The nature of that increase depends on the way read and write operations are

implemented. If all replicas in a quorum are accessed in parallel, then it is reasonable

to assume that
1 1 w 1 -=-L- ;

VI J-ll k=1 k

1 1 R 1 ---L-
V2 - J-l2 k=1 k '

{3.1}

for some fixed J-ll and J-l2. Those would be the averages of the largest of W (re

spectively R) i.i.d. random variables, each distributed exponentially with mean 1/ J-ll

(respectively 1/ J-l2,). If, on the other hand, the operations are performed sequentially

on all replicas, then average service time for read and write are given by:

1 W 1 R
(3.2)

(that, together with W = Nand R = 1, was the assumption in [11]).

The model is illustrated in Figure 3.1.

42

N replicas

o
write quorum, W

).2-
o

read quorum, R

o

Figure 3.1: Data replication with read and write accesses

3.2.2 Analysis

Let I(t) and J(t) be the numbers of write and read jobs in the system at time t.

Under the above assumptions, the pair [I(t), J(t)] is an irreducible Markov process

on the state space {a, I, ... } x {a, 1, ... }. Since the largest number of services in

progress at any time can be either 1 write or r read (but not both), the ergodicity

condi tion is

(3.3)

That condition will be assumed to hold. The object of the analysis is to determine

the steady-state joint distribution of I and J, denoted by Pi,j:

43

Pi,j = t~~ P[I(t) = i, l(t) = j] ; i, j = 0,1,

These probability satisfy the following set of balance equations:

+VIPi+l,j + min(j + 1, r)V20(i = O)Pi,j+l ; i, j = 0,1 ... , (3.4)

where P-l,j = ° and Pi,-l = ° by definition, and o(B) is the indicator function: 1 if

B is true, ° otherwise.

To solve these equations we define the generating function

00 00

g(x, y) = L LPi,jX i y1" .
i=O j=O

Multiplying (3.4) by xiyj and summing over all i and j yields

r-l

(AI + A2)g(X, y) + vdg(x, y) - g(O, y)] + V2[rg(0, y) - L(r - j)PO,jyj]
j=o

VI
= AlXg(X, y) + A2yg(X, y) + -[g(x, y) - g(O, y)]

x
r-l

+ V2 [rg(O, y) - L(r - j)PO,jyj] .
Y j=O

After some manipulations we get:

ya(x, y)g(x, y) = [VlY(X - 1) + rV2x(1 - y)]g(O, y)

r-l

+V2X(Y - 1) L(r - j)PO,jyj ,
j=O

where a(x, y) = AIX(l - x) + A2x(1 - y) + Vl(X - 1), and

00

g(O,y) = Lpo,jyi.
j=O

44

(3.5)

(3.6)

(3.7)

The bivariate function g(x, y) is thus expressed in terms of a single-variable un

known function, g(O, y), and r unknown constants, POJ(j = 0,1, ... , r-l). The latter

are the first r coefficients in the expansion of the former.

To eliminate g(O, y), note that whenever a(x, y) = 0 and g(x, y) is finite, the right

hand side of (3.6) must vanish. Fix an arbitrary real y E (0,1), and consider a(x, y)

as a polynomial in x. This is a quadratic which satisfies a(O, y) < 0, a(l, y) > 0 and

a(oo, y) < O. It therefore has exactly one zero in the interval (0,1) and one zero in

the interval (1,00). Denote the smaller of these by a(y). At the point [a(y), y], the

generating function g(., .) is finite and hence the right-hand side of (3.6) is O. This

gives

(3.8)

The only remaining unknowns are now the r probabilities PO,O,PO,l,'" ,PO,r-l' To

determine them, rewrite (3.8) in the following form:

r-l

rV2a(y)(y - l)y-l[g(O, y) - ~ PO,jyj] + vdl - a(y)]g(O, y)
j=O

r-l

= v2a(y)(1 - y) ~ jPO,jyj-l . (3.9)
j=l

The definition of g(O, y) implies that the first term in the left-hand side of (3.9)

has a factor yr-l. Therefore, that term and its first r - 2 derivatives vanish at y = o.

Setting y = 0 in (3.9) yields

(3.10)

Differentiating (3.9) once with respect to y and setting y = 0, gives

VI {-a'(O)po,o + [1 - a(O)]po,d = v2{[a'(0) - a(O)]po,l + 2a(0)po,2} (3.11)

45

Continuing in this way, differentiating (3.9) i times and setting y = 0, we get

where

i

L Gi,j[(j + 1)!Ai -j(O)PO,j+I - j!Bi-j (O)PoJ] = 0
j=O

Gi,j = { 1
Gi-I,j-I + Gi - IJ otherwise

; j = O,i

(3.12)

Aj(O) is the jth derivative of {v2a(Y)(1- yn at y = 0 and Bi(O) is the jth derivative

of {vI(1 - a(y)n at y = O. Taking derivatives up to order r - 2 inclusive and

setting y = 0, provides a set of r - 1 homogeneous linear equations for the unknown

probabilities. The derivatives of a(y) at y = 0 are obtained by differentiating the

equation a[a(y), y] = 0 and setting y = O.

To the above equations we add a non-homogeneous normalizing equation. A

simple form of the latter is obtained by noting that the marginal distribution of the

number of write jobs in the system is that of an M / M /1 queue with parameters Al

and VI. Therefore, we can set y = 1 in (3.8) and use the fact that

Al
g(O, 1) = 1 - - .

VI
(3.13)

All unknowns are now determined. From the generating functions one can com-

pute various performance measures. In fact, the write response time can be calculated

directly using the results for M/M/1 queue and is given by

The average response time for low priority read jobs W2 , is given by

8
A2W2 = 8yg(1, 1) (3.14)

46

In evaluating g(l, 1) and the corresponding derivatives, L'Hospital's rule is used

to resolve indeterminacies of type 0/0.

3.2.3 Results of Numerical experiments

We first examine the effect of increasing number of replicas when (fully reliable) read

and write quorum sizes are R = 1, W = N. As the response time of write jobs is the

response time of jobs for an M/M/1 queue, it is of little interest. The performance

measure of interest is the average response time for read jobs, W2 (presumably they

constitute the bulk of the demand). The trade-off here is between the advantage of

increased parallelism for read jobs and the disadvantage of longer service times for

write jobs. Figure 3.2 shows some results for different parameter values. The response

time of read jobs first decreases and then increases. In all cases, there is an optimal

degree of replication which is lower when the read job arrival rate is lower. This

behaviour can be explained as follows. The increase in number of replicas causes:

• more reads to execute in parallel which decreases overall read response time .

• write service time increases. This reduces the time for which the system is

available for read service and increases read response time.

In the beginning the effect of former is more than the increase in write service time

which decreases read response time. After a certain degree of replication the latter

dominates and read service time increases. However, the curves are quite shallow

in the regions of their minima. The convexity would increase if the replicas were

updated sequentially rather than in parallel (see [11]).

The effect of changing the quorum sizes, with the number of replicas fixed (again

all fully reliable), is illustrated in Figure 3.3. This time the behaviour is much less

47

1.5 r-----,------,--------.-----.----

1.4

1.3

/\~ = 6 4-
A; = 8 +

A2 = 10 tt--

1.2 L..-___ ..L-___ --'-___ ---JI.....-___ ..L-___ ...J

10 15 20 25 30 35

N

Al = 0.01, /11 = 1, /12 = 1

Figure 3.2: Read response time as function of N ; no breakdowns

48

predictable. Increasing the read quorum causes the performance measure sometimes

to increase, sometimes to decrease, and sometimes to increase and then decrease.

The only reasonably general and intuitive observation that can be made is that when

most of the offered load consists of read jobs, the allocation R = 1, ~V = lV is best,

whereas R = N, W = 1 is preferable if most of the load consists of write jobs. It

should be pointed out that if the performance measure is the overall average response

time (including write jobs), rather than W2 , the situation is similar.

3.3 Unreliable Replicas

3.3.1 Model

Let us relax the assumption that the servers are fully reliable. There are N identical

servers. Each server goes through alternating periods of being operative and inoper

ative, independently of the others. Those periods are exponentially distributed with

means 1/~ and 1/'T}, respectively. The arrival streams for write (type 1) and read (type

2) jobs are Poisson with rates Al and A2, respectively. Each write service requires W

operative servers and at most one of them can be in progress at any time. A read

service requires R operative servers with (R = N + 1 - W).

Write jobs have preemptive priority over reads whenever possible. A new arrival

of a write job begins service immediately if there is no write job in the system and

W servers are operative. Otherwise it joins the write queue. Reads preempted by a

write service join the read queue. A read job begins service if both a read quorum

of R servers is available and either there is no write job in the system, or a write

quorum is not available. Thus, if there are both write and read jobs in the system,

and the number of operative servers are m then

49

8r---r---~--.---'---~--~--~--~--~

7

6

Al = .01, /-l1 = 1, /-l2 = 1 4-
Al = .1,/-l1 = 1,l-l2 = 1 +
Al = 2, /-l1 = 10, /-l2 = 2 &

Al = 2, /-l1 = 8, /-l2 = 2 'K"

....

o ~ __ ~ __ ~ ____ ~ __ ~ ____ L-__ ~ __ ~ ____ ~ __ ~

1 2 3 4 s 6 7 8 9 10
w

N = 10, A2 = 0.1

Figure 3.3: Changing the write quorum size, fixed N; no breakdowns

50

• if m ~ W, one write job is served else

• if R :::; m < W, then L m / R J read jobs are served in parallel

The average write and read service times, 1/Vl and 1/V2, are given by (3.1) or (3.2)

depending on whether all replicas in quorum are accessed in parallel or sequentially.

Services interrupted by either breakdowns or preemptions are eventually resumed

from the point of interruption.

3.3.2 Analysis

The exact analysis of this model with both queues unbounded is, at present, intract

able. We shall provide an approximate solution by assuming that queue 1 cannot

exceed size S. Write jobs arriving when there are already S of them in the system

are lost. The accuracy of this approximation clearly increases with S, but so does its

numerical complexity. However, it is possible to obtain accurate results with small

values of S when the offered load due to the write jobs, Advl, is small compared to

the processing capacity available to them, Cl. The latter is equal to the probability

that there are at least W operative servers:

(3.15)

The system state at time t is described by three integers, K(t), I(t) and J(t),

denoting the numbers of operative servers, write jobs present and read jobs present,

respectively. The first two of these have finite ranges and it is convenient to replace

them by a single integer, U(t) = (N + 1)I(t) +K(t), which takes values 0, 1, ... , NS +

N + S. When U(t) < N + 1, there are U(t) operative servers and the write queue is

empty; if N + 1 :::; U(t) < 2(N + 1), there are U(t) - N - 1 operative servers and 1

51

write job; etc. That random integer can be thought of as a Markovian environment

which controls the behaviour of queue 2.

The parameters governing the transitions of the Markov process [U(t), J(t)] can

be classified according to whether J(t) remains the same, jumps up by 1 or jumps

down by 1. They are:

• The matrix A = [ai,klf.t=~N+S, where ai,k is the instantaneous rate at which the

environment U jumps from state i to state k. The diagonal elements of A. are

equal to O.

• The read job arrival rate, A2.

• The row vector Uj = (aO,j, alJ, ... ' aNs+N+s,j), where aij is the rate at which

read jobs are served when the environment is in state i and their number is j.

The elements of matrix A are given by

VI

ai,k = m~

k=i+N+1; kSNS+N+S

i mod (N + 1) 2:: w ; k = i - N - 1 ; k 2:: 0

i mod (N + 1) = m > 0 ; k = i - 1

(N - m)'TJ

o

i mod (N + 1) = m < N ; k = i + 1

otherwise

while those of U j are

min(li/ RJ, j)V2

min(l m/ RJ, j)V2

o

;i<N+1

; i mod (N + 1) = m < W

otherwise

Note that Uj is 0 when j = 0, and is independent of j when j 2:: r = IN/RJ.

52

Let Pi,j be the steady-state probability that the environment is in state i and the

number of read jobs in the system are j:

Pi,j = i~~ P[U(t) = i, J(t) = j] ; i = 0, 1, ... , N8 + N + 8 j = 0,1,

Define the row vectors

These vectors satisfy the following balance equations:

(3.16)

where 1 is the unit matrix of order (N + 1)(8 + 1), DA is the diagonal matrix whose

i 'th diagonal element is the i 'th row-sum of A, and Cj is the diagonal matrix whose

diagonal is 0" j. In addition, we have the normalizing equation

00

LVje = 1,
j=O

where e is the column vector with (N + 1)(8 + 1) elements equal to l.

(3.17)

The solution of (3.16) and (3.17) can be obtained by spectral expansion (for more

details, see [50]). When j ~ T, the coefficients in (3.16) do not depend on j. Those

equations can then be rewritten in the form

(3.18)

where Qo = >"21, Q1 = A - DA - >"21 - Cr and Q2 = Cr. Associated with this homo

geneous vector difference equation of order 2 is the characteristic matrix polynomial,

Q(z), defined as

53

(3.19)

Denote by Zl and tPl the eigenvalues and corresponding left eigenvectors of Q(::).

In other words, these are quantities which satisfy

tPlQ(Zl) = 0 ; f = 1,2, ... , d , (3.20)

where d = deg1'ee{ det[Q(z)]}.

When the process is ergodic, (N + 1) (5 + 1) of the eigenvalues of Q(::) are strictly

inside the unit disk (each counted according to its multiplicity), while the others are

on the circumference or outside (see [50]). Indeed, verifying this condition is the way

to establish ergodicity for this model, since we no longer have a simple inequality

like (3.3). Let the numbering be such that IZll < 1 for f = 1,2, ... , (N + 1)(5 + 1).

The corresponding independent eigenvectors are tP1, tP2, ... , tP(N+1)(S-<-1)' Then any

solution of equation (3.18) which can be normalised to a probability distribution is

of the form

(N+1)(S+1)

Vj = L XltPlZ~; j = r - 1,1', . " , (3.21)
l=l

where Xl (f = 1,2, ... , (N + 1){5 + 1)), are arbitrary (complex) constants.

It remains to determine the coefficients Xl and the vectors Vj for j < 1'-1, which is

a total of r(N + 1)(5 + 1) unknown constants. The balance equations (3.16) for j < 1',

and (3.17), provide exactly the required number of independent linear constraints.

For computational purposes, the quadratic eigenvalue-eigenvector problem (3.20)

can be reduced to the common linear one of the form tPV = ztP (see appendix).

However, the order of the matrix V is double that of Q (see [50]). Routines for

solving the latter problem are available in most numerical packages.

54

Once all probabilities are known the response time of read jobs can be computed

as following where <Pl is the sum of all elements of '¢l:

NS+N+S r-l (N+l)(S+l) ((1) _)
~ ~ r - r - l XlI.{Jl

A2W2 = ~ ~jpi,j + L -
i=O j=l l=1 (1 - zl)2

(3.22)

3.3.3 Results of Numerical experiments

A system with breakdowns and repairs is modeled in Figure 3.4. The arrival and

service rates are the same as for one of the curves in Figure 3.2. We study the effect

of different breakdown rates on response time of read jobs. The average read response

time is plotted against the number of replicas. The quorum sizes are R = 1 and

W = N. A notable feature of the results is that increasing the rate of breakdowns,

for fixed N, leads to a reduction in the read response time. This seems counter-

intuitive, but is not: breakdowns deny write jobs a quorum and allow read jobs to be

served, thus in effect relaxing the strict priority rule.

Again, the trade-off between more parallelism for reads and longer service time for

writes implies that there is an optimal degree of replication. Moreover, our intuition

tells us that the presence of breakdowns should generally make that optimal degree

larger; that is confirmed by the experiments.

The last set of results deal with the role of quorum size in a model with break

downs. The experiment illustrated in Figure 3.5 mirrors the one in Figure 3.3, as far

as arrival and service parameters are concerned. It can be seen that even a slight

unreliability of the servers (each of them is operative more than 99% of the time) can

have a considerable effect on the shape of the curves. Now the quorum sizes W = N,

R = 1 are optimal for all parameter values in the figure. However, if the performance

measure is the overall average response time (including the write jobs), then it is

55

1.22 .---.--.--,---..... ---r-----,r----r--....,...--

1.2

1.18

1.16

1.14

1.12

1.1

~
= 4 X 10-7 ...:,

= 1 X 10-6 +
= 6 X 10-6 -B-

1.08 L....._....I-_--L __ 1..-_~_--L_----'L--_..L-_--!... _ ___J

12 14 16 18 20 22 24 26 28 30
N

Al = 0.01, A2 = 6, J-Ll = 1, J-L2 = 1, T} = .0002

Figure 3.4: Read response time as function of N; breakdowns

56

again possible for the allocation W = 1, R = N to be optimal.

Figure 3.6 shows a comparison of approximate analytical results with simulation

results. It can be seen that when ratio)..d /-Ll is fairly low the simulation results are

almost same as analytical results but when ratio)..d /-Ll is comparable to the processing

capacity available to them then the difference in two is significant. This is because

in the former case the probability that at any time there will be more than one write

in the system is negligible which is not true in case of latter. The analytical results

shown in Figure 3.6 are with S = 1. They can be further improved by increasing the

size of S.

3.4 Generalizations

Several modifications and generalizations of the models presented in section 3.2.1 and

3.3.1 may be considered. In the Weighted Voting algorithm any number of votes may

be assigned to a server. A write (read) service collects a write (read) quorum of W(R)

votes. If the number of votes assigned to different servers are different, each read or

write service may engage different number of servers for its service depending on the

number of votes assigned to them. Due to this the service time of different write

(read) jobs may be different even if the service requirement at each server is same.

This is because the service time depends on the number of servers in read or write

quorums.

The servers themselves may not be identical. The service time of a read or write

job may be different for each server. For example communication delay in contacting

a server may be included in service time which will vary depending on the location

of servers. In this case even if the service of a read or write job takes the same time

on each server the total time (service time + communication delay) to get the service

57

6

5

4

3

2

1

Al = .01, IiI = 112 = 1 ~
Al = .1, 111 = 112 = 1 -t

Al = 2,111 = 10,112 = 2 H-

o ~ __ ~ __ ~ ____ L-__ ~ __ -L __ ~~ __ ~ __ -L __ ~

1 2 3 4 5 6 7 8 9 10
11'

Figure 3.5: Changing the write quorum size, fixed N; breakdowns

58

W2

5.5 I I I I I I I I I

5 - ... K·· -
...

.)(..................)(......... .. / .

4.5 -
analytical(Al = .001, T1 = .0005) ..:r

4 simulation(Al = .001, T1 = .0005) +-
analytical(Al = .01, T1 = .002) &- -

simulation(Al = .01, T1 = .002) x·

3.5 [

~I<
-

r:l ..J:h,,
~ -= ~

3 -

2.5 -

2 -

1.5< h- -
.A A

v v

1 I I .1-

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
N

Figure 3.6: Analytical (S = 1) vs. simulation results

~ = 1 X 10-5, A2 = 2, J-ll = .2. J-l2 = 1

59

will be different for each server. So the read (write) service time will be different each

time depending on which servers are in the quorum.

The above generalizations can be handled, approximately, by the methods presen

ted in sections 3.2.2 and 3.3.2 provided that the following is true:

• read and write quorums are one and all respectively and

• read service time is same for all read services. This can be safely assumed when

a user reads from its local server only.

Let Fi (x) be the distribution of the write service time on ith server. Then the average

write service time can be calculated using following equation:

1 roo N
- = in [1 - IT Fi(X)]dx ,
VI 0 i=I

(3.23)

One would then make the approximating assumption that the write service times

are distributed exponentially with parameter VI. When read and write quorums are

different from one and all, analysis becomes complicated.

Some other generalizations that may be considered:

• In practice the priority given to write jobs may be non-preemptive, rather than

preemptive. While this is unlikely to make a big difference to the performance

of the system, the analysis would become considerably more complicated.

• Some replication protocols require an update operation to be performed after

a breakdown and the subsequent repair, with priority over any read jobs that

may be in service. In other words, a write job is injected into the system at

the end of a repair period. This modification can be handled by the method

described in section 3.3.2; the state space of the environment variable U(t) is

enlarged.

60

• Recent proposals have introduced a hierarchy of replicas - primary, secondary

etc. - with different scheduling policies at each level. This is a substantial

generalization which we study in chapter 6.

3.5 Conclusion

The models presented here provide useful insights into the behaviour of replicated

data systems. The effects of different parameters can be evaluated and optimal de

cisions concerning the degree of replication and quorum sizes can be taken. The

solution of the model without breakdowns is exact; its numerical complexity is on

the order of O(N3) (solving a set of 2N simultaneous linear equations). The model

with breakdowns is solved approximately but as accurately as desired, subject to con

straints on computing resources. That solution involves finding the eigenvalues and

eigenvectors of a matrix polynomial, and solving a set of simultaneous linear equa

tions; its complexity is on the order of O[(NS + N + S)3], where S is the imposed

bound on the number of write jobs in the system. We also compare the approxim

ate analytical results obtained with breakdowns and simulation results to show that

when offered load due to the write jobs is small compared to the processing capacity

available to them, the two results are almost same. In chapter 5 we present an exact

model for one server with breakdowns and two unbounded queues and for this special

case of one server we compare exact and approximate results obtained for the two

cases of unbounded and bounded queues.

61

Chapter 4

Effect of scheduling strategies

4.1 Introduction

In quorum based protocols, described in chapter 2, every read (write) job collects a

read quorum (write quorum) before execution. The procedures that collect quorum

use facilities provided by the language / operating system such as setting read or write

locks on replicas. Gifford, in [25], describes procedures to implement the Weighted

Voting Protocol. These procedures are in language Mesa and use the monitor facility

provided by Mesa for manipulating shared data. There are several studies that exam

ine the effect of scheduling strategies on the performance of the system for classical

readers/writers problem that uses these facilities for mutual exclusion. These studies

do not consider the issue of replication and so do not study the effect of quorums on

performance. In chapter 2 we mentioned some work of E. G. Coffman et al. [16] and

F. Baccelli and E.G. Coffman [11] that studies the performance ofreplication schemes

using priority scheduling for read one write all policy (described in chapter 2). In [58]

Nelson and Iyer present an analysis of data replication for read one write all policy

when reads and writes are served in a first come first to serw discipline. Kone of thelll

62

has analyzed the performance of replication schemes when read and write jobs en

gage arbitrary number of servers for their service. Moreover no one has compared the

performance of quorum based schemes for different scheduling strategies in the same

scenario. Our analysis of the weighted voting protocol in chapter 3 assumed that write

jobs have higher priority than read jobs. This chapter presents a model for quorum

based protocols where jobs are served in FIFO order. We extend the model presented

by Nelson and Iyer in [58] to study the performance of quorum based schemes with

arbitrary read and write quorums. We then compare the results of both FIFO and

priority scheduling strategy. In each case the performance measures of interest are

the response times of read and write jobs. The comparison of results for the two

cases show that in many situations we can improve the performance of the system by

assigning priorities to different type of jobs. We explain the reason behind this with

the help of an example in section 4.4. A discussion of when to use which scheduling

strategy concludes the chapter.

4.2 FIFO scheduling

We present two models to evaluate the performance of quorum based protocols when

read and write jobs are being served using FIFO scheduling strategy. Our models are

extensions of the models given by Nelson and Iyer for evaluating the performance of

replication with read one write all policy. We first discuss the modifications required

in the models presented by Nelson and Iyer [58] to deal with read and write quorums

other than 1 and N (N is the total number of servers in the system). We then present

the analysis and use the Spectral Expansion method to solve our models.

63

4.2.1 Optimistic Scheduling

There are N identical servers. We assume that these servers do not fail. Two type

of jobs, read and write, arrive in the system as independent Poisson streams. This

can be modelled by assuming that all jobs arrive in a single Poisson stream with rate

A, and any job is a read with probability T. Both read and write jobs join the same

queue and are served in FIFO order. A read job requires R servers (read quorum) for

its service whereas a write job requires W servers (write quorum) for its service. We

assume that R+ W = N + 1. There is no preemption and the service of a read (write)

job can be started only if a quorum is available. In optimistic scheduling strategy

a read or a write operation releases each copy as soon as its service on that copy is

complete. An operation (read or write) at the head of the queue can use this copy to

collect a quorum. This is same as the non-synchronous case in [58]. The condition

R + W = N + 1 ensures that if read and write are executing in parallel at least one

copy in the read quorum is written by the current write. This is needed for the read

to always read the latest version of the data. A new write may also start before the

completion of the current write if a write quorum becomes available as current write

releases copies. Therefore we further assume that W > N /2 and therefore R < W.

This ensures that even if two writes are executing in parallel the one that started

service later always modifies a copy which is the latest version. This is required to

maintain consistency. In optimistic scheduling at least R servers are always busy if

there is a job in the queue. We assume that the time to complete a read or a write

service on each server is exponentially distributed with mean 1/ Ji. As all replicas in

quorum are accessed in parallel the time to complete a read{write) service will be

the maximum of R{W) exponentially distributed random variables. The model is

illustrated in Figure 4.1.

64

A ----.

read,write

r r w

Figure 4.1: FIFO Scheduling

Let I(t) and J(t) be the number of busy servers and number of jobs in the queue

at time t excluding the jobs that are in service. Then the pair [I(t), J(t)] is an

irreducible Markov process on the state space {O, 1, ... , N} x {O, 1, ... }. We draw the

state transition diagram for this process in Fig. 4.2, for N = 5, W = 4 and R = 2.

The object of our analysis is to determine the response time of read and write

jobs. The transitions possible in the Markov process shown in Figure 4.2 are:

(a) From state (i, j) to state (k, j) where 0 ~ i, k ~ N if j = 0; R ~ i, k ~ N

otherwise.

(b) From state (i,j) to state (i,j + 1) when R ~ i ~ N and a read or a write job

arrives.

(c) From state (i, j) to state (N, j -1) when i = W, R. The transition when i = H/

takes place if the job at the head of the queue is a read because a read quorum is now

65

Figure 4.2: State Ttansition Diagram for Optimistic FIFO Scheduling

quorum sizes: R = 2, W = 4

66

available. The transition when i = R takes place because the job at the head of the

queue is a write and a write quorum is available now.

For j = 0 transitions of type (c) are not possible. Let us denote the transition rate

matrices associated with (a) and (b) when j = 0 by Ao and Bo respectively. These

matrices are of size N x N. The elements of these matrices are given as

(1 - r)A

ao(i,k) = rA

i < R, k = i+ W

i<W, k=i+R

2f..L i > 0, k = i - 1

(1 - r)A ; R ::; i < W

bo(i,i) = A . i > W , -

o otherwise

For j ~ 1 these transitions do not depend on j. Let us denote the transitions rate

matrices associated with (a), (b) and (c) by A, Band C for j ~ 1. These matrices

are of size W x W because the state variable I can only take values R, R + 1, ... ,N.

The matrix B is given by:

B = AI for j ~ 1 (4.1)

where I is the identity matrix of order W. The elements of matrices A and C equal

to:

{

if..L(1-r)
a(i,i -1) =

2f..L

c(i, N) = 2f..L

i=W

i> R, i -I W

i=W

i=R

o otherwise

67

Let Pi,j denote the steady state probability that there are i busy servers and j

jobs are in the queue:

Pi,j=i~~P[I(t)=i,J(t)=j]; i=O,I, ... ,N; j=O,I, ...

We define the row vectors Vj of probabilities with j jobs in queue as:

Vo = (PO,O,Pl,O, ... ,PN,O)

and

Vj = (PR,j,PR+l,j, ... , PN,j) ; j = 1,2,

This is because if queue is nonempty at least R servers are always busy and the system

never enters into states (O,j) to (R - l,j) for j > O. The probabilities in vectors Vi

for j = 1,2, ... can be determined using the balance equation

where I is the identity matrix, DA and DC are the diagonal matrices of size W x W

whose i'th diagonal elements are the i'th row-sum of A and C respectively.

We use Spectral Expansion method described in section 3.3.2. to get an expression

for VI and V2 in terms of unknown x, eigenvalues z and row eigenvectors '1/;.

W-l

Vj = L Xl 'l/;l zl,. , j 2: 1 (4.3)
l=O

There are W unknown coefficients. For determining Vo we use the following balance

equation to express Vo in terms of VI:

vo[D~ + D~ - Ao] = V~C'; , (4.4)

68

D~ and Df are the diagonal matrices of size N x N whose i'th diagonal elements are

the i'th row-sum of Ao and Bo respectively. Elements of vector v~ and matrix C' are

given by:

{

c{i k)
c'{i, k) = 0'

; i? R

otherwise

; i ? R, j ? R

otherwise

The unknown coefficients of the spectral expansion, Xl can now be determined by

using following equation along with the normalizing equation

(4.5)

and vector v~ and matrix B~ are of size Wand W x W respectively. Their elements

are given by:

v~{i) = { vo(i + R) ; i = 0,1, ... W - 1

B~{i,k)={ Bo(i+R,k+R) i, k = 0,1, ... W - 1

4.2.2 Pessimistic Scheduling

In Pessimistic scheduling strategy we assume that servers engaged by a read or write

service are only available at the completion of the service. This is same as the syn

chronous case described in [58]. This decreases the utilization of servers. As earlier

we assume that there are N servers that can not fail. Read and write jobs arrive in

the system as Poisson streams. Arrival rate of jobs is A and the probability that the

arrival is a read is r. A read (write) service require a quorum of R(W) replicas for its

69

service. Both read and write share the same queue and get the service in first come

first serve basis. There is no priority associated with any type of job. A read or write

service may start when it reaches at the head of the queue and a quorum to start the

service is available. This ensures that read and write or two write services can not

execute in parallel. At any time either one write service or a maximum of IN/RJ

read services can be in progress. There is no preemption. We assume that the time

to complete a write or a read service is exponentially distributed with mean l/lIl and

1/1I2 respectively. If all replicas in quorum are accessed in parallel we assume that

this time is the maximum of R(W) exponentially distributed random variables and

is given by (3.1) for some fixed /11 and /12. If operations are performed sequentially

on all replicas this time is given by (3.2).

Let I(t) represent the system state and J(t) be the number of jobs in the system

at time t, including the jobs that are in service. The system can be in one of the

following states: idle (no job in service), a write service in progress or a maximum

of LN/ RJ) read jobs in service. At any time t, I(t) can take values between ° and

min(J(t), LN/RJ). If I(t) is ° and J(t) > ° a write service is in progress, otherwise

I(t) read services are in progress. The system is idle when I(t) = J(t) = 0. The pair

[I(t), J(t)] is an irreducible Markov process on the state space {a, 1, ... , LN/ RJ} x

{a, 1, ... }. We draw the state transition diagram for this process in Figure 4.3 for

LN/RJ = 3.

It is clear from the diagram that only possible transitions are

(a) from state (i,j) to state (k,j+1) and i, k:S; min(j, IN/RJ) when ajob arrives

(b) from state (i,j) to state (k,j -1) and i,k:S; min(j, LN/RJ) when a service

completes

The transition rate matrices associated with (a) and (b) for j > l N / R J are denoted

70

Figure 4.3: State Transition Diagram for pessimistic FIFO scheduling

71

by Band C and are j independent. We define M = L N / R J + 1. The elements of the

matrices Band C are given by

b(i, i) = A

Vlrk(1 - r) ; i = 0, 0::;k::;M-2

vlrk ; i = 0, k=M-1

c(i, k) iV2 ; i < (M -1), k = i -1, ; i # °
iV2(1 - r) i = (M -1), k=M-2

W2 r i = (M -1), k = (M - 1)

Let Pi,j denote the steady state probability when system is in state i and the number

of jobs in the system are j:

Pij = lim P[I(t) = i, J(t) = j] ; i = 0,1, ... ,min{j, M - 1} j = 0,1, , t-too

As before we can define vectors Vj for j ::2: M as:

The balance equations for j ::2: M are given as:

(4.6)

where DC is the diagonal matrix whose i'th diagonal elements are the i'th row-sum

of matrix C. Solution for VM-l and VM can be obtained using Spectral Expansion

Method.

For j < M, i takes values between ° and j only. The states (i,j) for i > j do not

exist. We first obtain the expressions for vectors VM-l, VM, ... in terms of unknowns

Xl, eigenvalues Zl and row eigenvectors '¢l given by

72

M-l

Vj = L X{lhz{ , {4.i}
l=O

M unknowns Xl and M(M -1)/2 unknown probabilities can be evaluated by solving

a set of M{M + 1)/2 balance equations along with the normalizing equation.

4.3 Results of the numerical experiments

In this section we present the results of our investigations into the effect of changing

the quorum sizes, Wand R with W + R = N + 1 fixed, on the response time of read

and write jobs. We compare these results with the results that we obtained when

write jobs have preemptive priority over read jobs. Nelson and Iyer studied in [58]

the effect of changing level of replication on the performance of read and write jobs

when read quorum is one and write quorum is all. They have shown that for a given

set of input parameters there is an optimal degree of replication for which the response

time of read and write jobs is minimum. We observed the same effect in chapter 3

when write jobs have priority over read jobs. For the set of input parameters used in

Figure 4.4 this optimal degree of replication is same for both pessimistic FIFO and

priority scheduling. For optimistic FIFO scheduling the optimal degree of replication

is larger. With write jobs having priority write service time will always be less. But

for the same input parameters the response time of low priority read jobs is also less

with priority scheduling (for N 2: 2) than pessimistic FIFO scheduling. This is due

to the better utilization of the capacity of servers.

Figure 4.5 shows the read response time for pessimistic FIFO scheduling when read

and write quorum changes. It can be seen that changing read and write quorums

has almost same effect as in the case of priority scheduling. When write arrival

rate is much less in comparison to read arrival rate, read response time continuously

73

1.1

1

0.9

0.8

0.7

0.6
W2

0.5

0.4

0.3

0.2

0.1

0
1 2 3 4 5

N

priority .c.r
FIFO (pessimistic) +
FIFO (optimistic)

6 7 8

Figure 4.4: Mean Response Time as a function of Kumber of servers; TV = N, R = 1

A = 30, r = .75, J-Ll = J-L2 = 33

decreases with decrease in read quorum size. This is because as read quorum decreases

more reads can execute in parallel. When read and write arrival rates are almost

same, on decreasing R (increasing W) response time of read jobs first increases but

as soon as more than one read jobs can execute in parallel response time decreases. If

write arrival rate is much larger in comparison to read, read response time increases

with increase in write quorum size. With increase in write quorum, read quorum

decreases and more reads can execute in parallel but at the same time write service

time increases. When write arrival rate is larger the increase in write service time

dominates and read response time increases.

Figure 4.6 shows the read response time for optimistic FIFO scheduling when read

and write quorum changes. When read arrival rate is high, read response time first

decreases due to the parallel execution of read jobs. But then the effect of increase

in write service time dominates and read response time increases. When read and

write arrival rates are same or when write arrival rate is high, read response time

continuously increases with increase in write quorum due to the increase in write

service time.

Figure 4.7 compares pessimistic FIFO scheduling and priority scheduling strategies

with different quorum sizes. In the first set of curves read response time for FIFO

scheduling is less than the read response time for priority scheduling. This is due to

the fact that arrival rates of read and write jobs are very small in comparison to their

service rates. In the second set of curves, where arrival rate of jobs are almost same

as their service rates, read response time is some times less for priority scheduling

and some times for FIFO scheduling.

75

0.22

0.2

0.18

0.16

0.14

W2

0.12

0.1

0.08

0.06

0.04
1 2

W

r = .75 ~
r = .5 +

r = .25 ~

3

Figure 4.5: Mean Response Time with different quorum sizes

pessimistic FIFO scheduling

N = 3, A = 15, /11 = /12 = 33

76

0.2

0.18

0.16

0.14

0.12

W2

0.1

0.08

0.06

0.04

0.02
3 4

TV

r = .75 ~

5

Figure 4.6: Mean Response Time with different quorum sizt's

optimistic FIFO scheduling

N = 5,>. = 15,f-l1 = f-l2 = 33

77

2

5

4

3

2

1

1 3

FIFO('x = .2, r = 0.5,1'-1 = 1'-2 = 1) ~

Priority(,X = .2, r = 0.5,1'-1 = 1'-2 = 1) ---LL

FIFO('x = 4, r = .75,1'-1 = 6,1'-2 = 8) ---*

Priority(,X = 4, = .75,j.t1 = 6,1'-2 = 8) ~

6 8 10

W

Figure 4.7: Priority vs pessimistic FIFO scheduling with different quorum sizes

N= 10

78

4.4 Comparison with priority scheduling

The results of our numerical experiments show that in some cases performance can be

improved by assigning higher priority to the jobs with low arrival rate in comparison

to other jobs. We explain this with the help of following example. Let us consider

a case with N = 5, W = 5 and R = 1 at time t. There are two write jobs (one

executing and other waiting in the queue) and four read jobs (all waiting in queue)

in the systems. The Figure 4.8 shows the relative position of read and write jobs in

the queue when both type of jobs use the same queue and get the service in FIFO

order. Let us further assume that a write service takes 2 seconds on an average and a

read service takes an average of 1 second. Based on these averages the response time

of read jobs for the situation shown in Figure 4.8 can be given as (3 + 4 * 6)/5 = 5.4

seconds. This is because after the completion of the service of current write only one

read will get the service. This will be followed by the write service after which all the

four reads will get the service in parallel. Now let us consider the case where read

and write jobs join different queues and write jobs have priority over read jobs. In

this case first both write will get the service and then all the five read jobs will get

the service in parallel. This will reduce the overall read response time which in this

case will be 5. It can be seen that the server utilization is more in second case.

4.5 Conclusion

This chapter is intended to demonstrate that assigning priorities to jobs may lead to

better server utilization and so may improve the performance of the system. We do

this by first presenting two models where jobs get service in first come first served

basis. We then compare the results obtained with the results of chapter 3. The write

79

A ------~ r r r r w r 0-
read,write

0-
0-

N=5, W=5, R=l

Figure 4.8: Example illustrating the benefit of priority scheduling

80

service time will always be less when write jobs have priority over read jobs. But the

comparison shows that in many cases by assigning priorities even the response time of

lower priority jobs can be reduced. We explained the reason behind this phenomenon

with the help of an example in section 4.4.

81

Chapter 5

An exact solution for the system

with a single server and

breakdowns

5 .1 Introduction

Chapter 3 gave a solution for the model with N servers subject to random breakdowns

and repairs, two types of jobs and a finite queue for type 1 jobs (it cannot rxceed

size S). We claimed in chapter 3 that if the ratio of arrival rate / service rate for

type 1 jobs is small enough, the response time of type 2 jobs calculated for this

model is very close to the response time for the model with both queues unbounded.

There are many studies dealing with the performance of single server and multi server

models with breakdowns. However either these studies consider only one job type or

they provide an approximate solution. H.C.\Vhite and L.S. Christie were the first

to consider server repair following breakdowns, or server vacation, in a queueing

82

system. In [71] they presented a M/M/l queue model with random breakdowns

and repairs. Later B. Avi-Itzhak and P. Kaor considered 5 similar single server

models in [10] where the service station is subject to breakdowns all with only one

job type. I.L.Mitrany and B.Avi-Itzhak in [52] presented the analysis of a many

server queue with service interruptions and one job type. In [50] I. Mitrani and R.

Chakka presented Spectral Expansion Solution for a Class of Markov Models whose

state space is a lattice strip. B. Sengupta in [63] and K. Thiruvengadam in [66] also

presented queueing systems with breakdowns and one job type. In [51] LMitrani and

P.J.B. King analyzed Multiprocessor Systems with Preemptive Priorities and N job

types. They gave an exact solution for 2 job types and suggested how their method

can be extended to get the approximate solution for N job types. In this chapter

we present an exact analysis for single server case with breakdowns and repairs and

two job types, type 1 jobs having preemptive priority over type 2 jobs. Section 5.2

describes the model. In section 5.3 we give an analysis to find out the response time

of type 2 jobs. As type 1 jobs have priority over type 2 jobs their response time can

directly be calculated from the analysis presented in [52]. Section 5.4 presents results

of our numerical experiments.

5.2 The Model

There is a single server whose operative periods are distributed exponentially with

mean 1/,. At the end of an operative period server breaks down and requires an

exponentially distributed repair time with mean 1/"7. Two type of jobs arrive into

the system. The arrival rate for type 1 and type 2 jobs are Poisson with rates Al and

A2, respectively. Their service times are also distributed exponentially with mean 11-1

and 11-2, respectively. Type 1 jobs have preemptive priority over type 2 jobs. This

83

model is illustrated in Fig. 5.1

>'1
write

>'2 -----~
read

Figure 5.1: Single server with two type of jobs

-
/11 (write) / /12 (read)

Let I(t) and J(t) be the number of type 1 and type 2 jobs in the system at time

t. Let K(t) be the state of the server at time t defined as

{
° if server is inoperative at time t

K(t) =
1 if server is operative at time t

n"iplet [I(t),J(t),K(t)] is an irreducible Markov process on the state space {O, 1, ... } x

{O, I, ... } x {O, I}. As the server is operative only for TJ/(TJ+~) fraction of total time,

the ergodicity condition is

>'1 >'2 TJ -+-<--.
IiI 112 TJ + ~

(5.1)

We assume that this condition holds.

84

5.3 Analysis

The object of the analysis is to determine the joint steady-state distribution of I and

J both in case of operative and inoperative server, denoted by Pl(i,j) and Po(i,j),

respectively:

Pl(i, j)

Po(i, j)

lim P[I(t) = i, J(t) = j, K(t) = 1] i,j = 0, 1, ...
t-+oo

lim P[I(t) = i, J(t) = j, K(t) = 0] i, j = 0,1, ...
t-+oo

These probability satisfy the following set of balance equations:

Po(i, j)[AI + A2 + 7Jl = AIPO(i - 1, j) + A2PO(i, j - 1) + epl(i, j) (5.2)

Pl(i,j)[AI + A2 + J-L18(i > 0) + J-L28(i = O,j > 0) + e] = 7JPo(i,j)

+J-L28(i = O)Pl(O,j + 1) + J-LIP1(i + l,j)

(5.3)

where Po (-1, j) = 0 and Po (i, -1) = 0 by definition, and 8 (A) is the indicator function:

1 if A is true, 0 otherwise. Let us define generating functions for the two cases of

operative and inoperative server as:

00 00

go(x, y) LLpo(i,j)xiyi ;,
i=Oj=O
00 00

L LPl(i,j)xiyi ,
i=Oj=O

Multiplying both sides of equation (5.2) by xiyi and summing over i and j we get

the following equation:

85

which can be simplified to

(5.4)

In the same way multiplying both sides of equation (5.3) by xiyi and summing

over i and j yields following equation:

which can also be written as

(5.5)

on substituting the value of 9o(X, y) from equation (5.4) we get the following equation

for 91(X, y) in terms of an unknown function 91(0, y} and an unknown probability

where

86

(5.7)

The function 91 (0, y) can now be determined by observing that for every y E (0, 1),

the quadratic equation

Q(x, y) = 0

has one real root, x = j(y), satisfying 0 < j(y) < 1, as Q(1, y) > 0 and Q(O, y) <

O. Since 91(f(y), y) is finite this gives us an expression for 91(0, y)

(0)
_ Ild(y)(1 - Y)P1(0, 0)

91 y-, 1l1y(f(y) - 1) - Ild(Y)(Y - 1)
(5.8)

This leaves us with unknown probability P1(0, 0) which can be determined by the

following normalising condition.

90(1,1) + 91(1, 1) = 1 (5.9)

The average response time for type 1 jobs, WI, can be obtained directly from the

results presented in [52] with parameters AI, Ill! ~ and 1]. The average response time

for type 2 jobs is given by

(5.10)

87

5.4 Results of Numerical experiments

We examine the effect of various parameters on the response time of type 2 jobs. In

[52] Mitrani et al has already presented an exact analysis of the system with one or

more servers subject to random breakdowns and repairs and one type of jobs. As

in our case type 1 jobs have preemptive priority over type 2 jobs they will behave

exactly in the same way as shown in [52]. This leaves us only with the performance of

type 2 jobs to examine. To calculate the values of go(O, 1), g~(O, 1), g~(l, 1), one has

to resolve indeterminancies of type 0/0. We use L'Hopital's rule once for generating

functions and twice for their derivatives. The results of the experiments are displayed

in Figure 5.2. The figure shows the effect of arrival rates, service rates, fault and

repair rates on the average response time of type 2 jobs. As expected the average

response time for type 2 jobs increases with decrease in service rate or increase in

arrival rate for type 1 and type 2 jobs. Increase in the arrival rate of faults or decrease

in the repair rate also increases the average response time for these jobs. Figure 5.3

compares exact average response time for type 2 jobs calculated from the analysis

presented in this chapter and the approximate average response time obtained from

the Spectral Expansion method with a bounded queue for type 2 (write) jobs. The

curves show that when ratio arrival rate / service rate of type 1 jobs is very small

the response time calculated from both the methods is almost same whereas if this

ratio is large the response time calculated by the exact method is larger than the time

calculated by the approximate method (of chapter 3). This confirms our claim made

in chapter 3.

88

9

8

7

6

5

W2

4

3

2

1

0
1.5 2 2.5 3

Al = 0.1, ~ = .0001 ~
Al = .1, ~ = .00001 +
Al = .2, ~ = .00001 B-

3.5 4 4.5 5

Figure 5.2: Response time as a function of service rate

A2 = 1, /-11 = 1, 77 = .01

89

W2

9

8

7

6

5

4

3

2

1
1.5 2 2.5

Unbounded queue (AI = .01) -:
Bounded queue (AI = .01) +
Bounded queue (AI = 0.1) B

Unbounded queue (AI = 0.1)'/ .

x

····x············.x············x

3 J.L2 3.5 4 4.5

Figure 5.3: Bounded (S=l) vs Cnbounded queue

A2 = 1, J.LI = 1, (= .0001, 'r/ = .01

90

5

5.5 Conclusion

This chapter considers the model of single server with breakdowns and two type of

jobs, type 1 jobs having priority over type 2 jobs. It gives a method to calculate

exact response time for type 2 jobs when arrival and service rates of jobs as well as

arrival rate of faults and repair rates are Poisson. We also compare our results with

the results obtained in chapter 3 for the same model with only difference that type 1

jobs have finite queue size. The comparison confirms our claim.

91

Chapter 6

Data Replication With Two Levels

of Consistency

6.1 The Protocol

Chapter 3 and 7 present the analysis of strong and weak consistency protocols f('

spectively. Strong consistency protocols guarantee that user will always get the most

recent information. But with large number of replicas the performance of strong

consistency protocols may not be acceptable as they require synchronization among

at least a majority of these copies to ensure consistency. W('(1k consistency proto

cols, on other hand, try to improve performance by relaxing consistency constraints

and so the data accessed by the user may not be the most recent one. Multilevel

consistency protocols analyzed in this chapter try to integrate both approaches into

the same framework by dividing replicas into groups or levels. Replicas at different

levels provide different levels of consistency. In this chapter we present analysis of a

two-level protocol where the replicas at level 0 provide strong consistency and replica')

at level 1 may be out-of-date. We first consider the case of reliable replicas and then

9~

present the analysis with breakdowns and repairs. The analysis in the case of latter

is approximate as in chapter 3. Users reading from a level 1 replica may be interested

in knowing the probability of getting most recent value of data. We give expressions

to evaluate this probability. Finally we discuss some generalizations in the models.

6.2 Reliable Replicas

6.2.1 Model

In this section we describe our model for reliable replication. Three types of jobs,

write, slow read and fast read, arrive into the system in independent Poisson streams

with rates AI. A2 and A3 respectively. There are N identical servers, each managing

a copy of the data. Of these, No are at level 0 and Nl = N - No are at level 1.

There is a write and a slow read queue at level 0, with preemptive priority to writes,

and a fast read and a write queue at each of the servers at levell, with preemptive

priority to fast reads. Replicas at level 0 maintain strong consistency with the help

of quorums. An incoming write job joins the write queue at level 0, where its service

requires the simultaneous possession of Ql(~ No) servers (write quorum), for an

exponentially distributed interval with mean 1/1/1. After completing that service, an

independent instance of the job is sent to each of the level 1 write queues, where

service times are distributed exponentially with mean 1/'1. A slow read service

requires Q2 = No + 1 - Ql servers at level 0 (read quorum) and is exponentially

distributed with mean 1/1/2. Slow reads preempted by the arrival of a write job join

the slow read queue again and get the service from the point of interruption. Fast read

jobs join one of the fast read queues at levell, with equal probability (this assumption

could easily be relaxed). Their service times are distributed exponentially with mean

93

1/'Y3' The model is illustrated in Fig. 6.l.

One could also introduce 'pure delay' (infinite-server) nodes in order to model

non-zero transfer times for jobs between remote user sites and the servers at levels

o andlor 1. Such nodes would only add constants to the average response times.

However, if write jobs in transit between level 0 and level 1 are similarly delayed, the

probability that a level 1 replica is out-of-date is also affected (see section 6.2.2).

The strong consistency of replicas at level 0 is ensured by the quorum sizes and

by the additional requirement that at most 1 write job can be in service there at any

moment, regardless of the value of QI. The maximum number of slow read jobs that

can be served in parallel is r = l No I Q2J, where l x J is the integer part of x.

The service time parameters VI and V2 depend, in general, on the quorum sizes.

An access that engages a larger number of servers can be expected to take longer.

Thus, the average write service times at level 0 usually increase with QI, and the slow

read ones increase with Q2. The nature of that increase depends on the way write

and slow read operations are implemented.

If all replicas in a quorum are accessed in parallel, then service times VI and V2 are

given by equation (3.1) for some fixed J-LI and J-L2, and are the averages of the largest

of QI (respectively Q2) i.i.d. random variables, each distributed exponentially with

mean II J-LI (respectively II J-L2)' These latter averages may include message-passing

delays.

If, on the other hand, the operations are performed sequentially on all replicas,

then these times are given by equation (3.2).

It is clear from the above description that the states of levels 0 and 1 are inde

pendent of each other. Indeed, since write jobs have preemptive priority at level 0

and are executed one at a time, they behave like the customers of an MIMII queue

94

write

slow read

No

o
o
o

fast read

).3

Figure 6.1: A two-level replication hierarchy

95

with parameters Al and VI' Therefore, the write departures from level 0 form a Pois

son stream (with rate AI), whose past history is independent of the current state of

the queue. Therefore, the current state of level 1 is independent of the number of

write jobs at level O. The different replicas at level 1 are of course dependent on each

other, since their write arrival instants are correlated. However, for the purpose of

our performance measures, the marginal state distribution of any given state 1 replica

can be analyzed in isolation from the others.

Thus, we are justified in treating each level separately.

6.2.2 Analysis

Level 0

Let I(t) and J(t) be the numbers of write and slow read jobs present at level 0 at

time t. Under the above assumptions, the pair [I(t), J(t)] is an irreducible Markov

process on the state space {O, 1, ... } x {O, 1, ... }. Since the largest number of services

in progress at any time can be either 1 write or r slow read (but not both), the

ergodicity condition for level 0 is

Al + A2 < 1 . (6.1)
VI TV2

That condition will be assumed to hold. The first aim of the analysis is to determine

the steady-state joint distribution of I and J, denoted by Pi,{

Pi}' = lim P[I(t) = i, J(t) = j] ; i,j = 0, 1, ...
, t-too

These probability satisfy the following set of balance equations:

96

+VIPi+l,j + min(j + 1, r)v2c5(i = O)PiJ+1 ; i,j = 0,1 ... , (6.2)

where P-l,j = 0 and Pi,-l = 0 by definition, and c5(B) is the indicator function: 1 if

B is true, 0 otherwise.

The set of balance equations (6.2) are same as (3.4) and the analysis given in

section 3.2.2 can be applied to get the response time of slow read jobs. It is given by

equation (3.14).

Levell

Since fast read jobs have preemptive priority at levell, their average response

time, W3 , can be obtained by treating a level 1 replica as an M/M/1 queue with

arrival rate A31 Nl and service rate T3:

W
_ Nl

3-
NIT3 -).3

(6.3)

The other performance measure of interest is the steady-state probability, U, that

an incoming fast read request gets a consistent version of the data. According to the

PASTA property, U is equal to the steady-state probability that a given replica at

level 1 is consistent. In determining that quantity, we shall treat the general case

where write jobs in transit between level 0 and level 1 are subjected to a random

delay with mean T. For the purpose of this calculation, the slow read jobs at level 0

may be ignored, since they have low preemptive priority.

Consider a particular replica, C, at levell, with its high priority fast read queue

and low priority write queue, at some point in the steady-state. Note that if at that

97

moment there are write jobs at level 0, one of them is in service and therefore C's

data is being updated. Similarly, if there are write jobs in transit between level 0

and C, or present at C, then C is inconsistent because there exist updates which

have taken place at level 0 but not here. Conversely, if there are no write jobs at

level 0, or in transit, or at C, then all preceding updates have been implemented and

C is consistent. Moreover, the numbers of write jobs at those three locations are

independent of each other, as pointed out earlier (the departures from an M/G/oo

delay node are also Poisson).

We can therefore write

(6.4)

where ql is the probability that there are no write jobs at level 0, q2 is the probability

that there are no write jobs in transit and q3 is the probability that there are no write

jobs at the level 1 replica.

Standard MIMI 1 and M/G/oo results imply

(6.5)

Now, q3 is the probability that there are no lower priority jobs in a single-server

system with two priority types. Translating the notation of subsection 3.2.2 to this

system, we have q3 = g(l, 0). Using equation (3.6) and following the steps indicated

after (3.9), with the level 1 parameters g(l, 0) can be written as

'Y3(1 - xo)
g(l,O) = A Poo

lXO

(6.6)

where Xo is the unique root in the interval (0,1) of the quadratic equation

98

and Poo is given by

The above expressions imply that the probability U increases when Nl increases

(because the fast read arrival rate to each level 1 replica decreases); U also increases

when No decreases (because the write service time at level 0 decreases). Thus, the

'most consistent' way of dividing N replicas into two levels while ensuring that at

least one is strongly consistent, is to chose No = 1, Nl = N - 1. However, that

division is not necessarily optimal if one wishes to minimize the average response

time for slow read jobs. Also, it may not be optimal if the average transfer delay, T,

increases with NI .

If the average response time of write jobs at level 1 is of interest, one can use

either the analysis in section 3.2.2, or the known results for single-server queues with

preemptive priorities.

6.2.3 Results of Numerical experiments

We first examine the effect of increasing the number of replicas at level 0, No, with

total number of replicas N fixed, and the quorum sizes are Ql = No, Q2 = l.

All servers are fully reliable. The performance measures of interest are the average

response times for slow read and fast read jobs, W2 and W3 . The trade-off at level 0

is that when No increases, the delays caused by write jobs increase, since J.Ll is fixed

and VI is given by (3.1); on the other hand, more slow read jobs can be executed in

parallel. Fig. 6.2 shows that an initial lowering of W2 can be achieved by increasing

99

No, especially when the slow read load is high. However, a point of no improvement

is invariably reached (that point may be No = 1), and eventually the write delays

become dominant.

The increase in Wa is explained by the fact that the total number of replicas ,

N, is constant; when No increases, N1 decreases and therefore the arrival rate of fast

reads at each level 1 replica increases. The choice of No and N1 will depend on the

performance required by the slow read and fast read jobs. Any values for No and Nl

can be chosen between the lowest possible value of No (for which the system at level

o is stable) and the value after which no improvement in the slow read response time

is possible. A choice of the former will give the lowest possible fast read response

time. But the slow read response time will be a little higher than the lowest possible.

Whereas a choice of latter will result in lowest possible slow read response time but

a slightly higher fast read response time.

The effect of changing the quorum sizes, Q1 and Q2, with Q1 + Q2 = No + 1 fixed

(again all servers are fully reliable), is illustrated in Fig. 6.3. This time the behaviour

is less predictable. Increasing Q1 causes the slow read response time sometimes to

increase, sometimes to decrease, and sometimes to increase and then decrease. The

only reasonably general and intuitive observation that can be made is that when

most of the offered load consists of read jobs, the allocation Q1 = No, Q2 = 1 is best,

whereas Q1 = 1, Q2 = No is best if most of the load consists of write jobs. It should

be pointed out that if the performance measure is the overall average response time

(including write jobs), rather than W2 , the situation is similar.

The fast read response time, Wa, is of course independent of the quorum sizes as

long as N1 does not change.

100

W

0.19 r----r----r----~----r------

0.18

0.17

0.16

0.15

0.14

0.13

.Ii

.' .6"

A2 = 1.5 ..;:..,.....
A2 = 8 +-
A2 = 1 -8-

A3 =.2 .,.
A3 = 8 .f::, ..

.................. x ························x····················

0.12 L-.-___ ...L-___ ...J.... ___1.. ___ ----1.. ___ ----J

4 5 6 7 8 9
No

Figure 6.2: Dependence of W 2 (solid lines) and W3 (dotted lines) on No·

N = 12, Al = 0.2, J-ll = I, J-l2 = /3 = 8

101

W

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
......................

1

).1 = .12 4-
).1 = L.2 +-
).1 = 2.4 8-

W3 /'

............... ~ ,

Figure 6.3: Effect of quorum sizes on W 2 (solid lines) and W3 (dotted lines) .

No = 3, Nl = 9,).2 = 1.2, J-Ll = 8, J-L2 = 13 = 9

102

6.3 Unreliable Replicas

6.3.1 Model

This section describes the model when servers are not fully reliable. Suppose that

each server goes through alternating periods of being operative and inoperative, in

dependently of the others. Those periods are exponentially distributed with means

l/e and 1/'T}, respectively. The other parameters and assumptions remain the same,

except that a slow read service at level 0 can be in progress if either the write queue

is empty, or a write quorum is not available. Thus, if there are both write and slow

read jobs at level 0, and the number of operative servers, m, satisfies Q2 ~ m < Ql,

then Lm/Q2J slow read jobs are served in parallel; if m ~ Q1, one write job is served.

The average write and slow read service times, 1/1/1 and 1/1/2, are given by (3.1)

or (3.2) depending on whether the replicas in quorum are accessed in parallel or se

quentially. Services interrupted by either breakdowns or preemptions are eventually

resumed from the point of interruption.

As mentioned in section 3.3.2 the exact analysis for level 0 with both queues

unbounded is, at present, intractable. We shall provide an approximate solution by

assuming that queue 1 cannot exceed size 5. Write jobs arriving when there are

already 5 of them in the system are lost. The accuracy of this approximation clearly

increases with 5, but so does its numerical complexity. However, it is possible to

obtain accurate results with small values of 5 when the offered load due to the write

jobs, >"I/1/1, is small compared to the processing capacity available to them. The

latter is equal to the probability that there are at least Q1 operative servers:

No (NO)
C1 = "E

j=Ql j

(6.7)

103

At levell if a server is down the read and write jobs in the queues associated with

this server wait for the server to become operative again and do not get service from

one of the operative servers.

6.3.2 Analysis

level 0

The analysis for level 0 is same as described in section 3.3.2 with slow reads treated

as read jobs. At any time t the state at level 0 is described by three integers, I\(t),

I(t) and J(t), denoting the numbers of operative servers, write jobs present and slow

read jobs present, respectively. The first two of these have finite ranges and we replace

them by a single integer, Y(t) = (No + I)I(t) + K(t), which takes values 0,1, ... , Al,

where M = NoS + No + S. When Y(t) < No + 1, there are Y(t) operative servers

and the write queue is empty; if No + 1 :::; Y(t) < 2(No + 1), there are Y(t) - No - 1

operative servers and 1 write job; etc. That random integer can be thought of as a

Markovian environment which controls the behaviour of the slow read queue.

level 1

The average fast read response time at level 1, W3 , is given by the known result

for an M/M/l queue with breakdowns and repairs [10]:

Nl e 1
W3 = Nl T - A3 [1 + T 1](e + 1]) ,

(6.8)

where T = T31]I(e + 1]) is the effective service rate for fast reads at the unreliable

server.

We do not know, in the presence of breakdowns, how to compute exactly the

probability that a replica at level 1 is consistent. An approximate value for U can

be obtained by replacing qI! in (6.4), with the probability that there are either no

104

write jobs, or less than Ql operative servers, at level o. That probability is provided

by the spectral expansion solution. Also, the value of Q3, given by {6.6}, should be

multiplied by the probability that the replica is operative, TJ/{(. + "I}. The reason is

that the repair time is usually orders of magnitude larger than the interarrival times;

so if the level 1 replica is inoperative, there is likely to be a write job in its queue.

6.3.3 Results of Numerical experiments

Fig 6.4 gives results for a system with breakdowns and repairs. The arrival and service

rates are fixed, as well as the total number of replicas and the repair rate; W2 and W3

are plotted against No for different breakdown rates. The quorum sizes are Ql = No,

Q2 = 1. The curves plotted for slow read response time are essentially the same as

the curves for lower priority read jobs in Fig 3.4 and the same explanation for their

behavior applies here also.

Again, the trade-off between longer service time for writes and more parallelism for

slow reads implies that there is an optimal degree of replication at level 0 . Moreover,

our intuition tells us that the presence of breakdowns should generally make that

optimal degree larger; the less reliable the servers, the more of them would be needed.

That intuition is clearly confirmed by the experiments. An important feature to note

in Fig 6.4 is the fast read response time. A slight increase in fault rate increases the

fast read response time too much. In fact the last two curves plotted for W3 show that

fast read response time is larger than the response time of slow reads for all possible

values of No. This is because when a server fails the fast read and write operations in

queues associated with this server wait till the server becomes operative again. Due

to this the whole purpose of providing two different type of read operations (slow

read and fast read) is lost.

105

0.60

W

0.59

0.325

0.32

0.2

0.19

0.18

0.17

0.165

0.145

.* .

. 6,.

4 5

. . t:,.

W2 : = .001 ~
W 2 : = .008 +
W2 : = 0.02 e
W3: = .001 ·x· .
W3: = .008 ·6 .
W3: = 0.02 .* ..

Figure 6.4: W 2 (solid) and W3 (dotted) vs. No in the presence of breakdowns.

N = 12, Al = 0.2, A2 = 15, A3 = 0.2, 111 = i, JL2 = /3 = 8, '" = 0.2

106

The last set of results deal with the role of quorum size in a model with break

downs. The experiment illustrated in Fig. 6.5 mirrors the one in Fig. 6.3, as far as

the response time of slow read jobs is concerned. It can be seen that even a slight

unreliability of the servers (each of them is operative more than 99% of the time) can

have a considerable effect on the curves. Now the quorum sizes QI = No, Q2 = 1 are

optimal for all parameter values in the figure. However, if the performance measure is

the overall average response time (including the write jobs), then it is again possible

for the allocation Q1 = 1, Q2 = No to be optimal.

Response time of fast read jobs is constant for all quorum sizes as NI remams

fixed.

6.4 Generalizations

The modifications and generalizations suggested in section 3.5 may be applied in this

case also for the level O. In addition some other modifications that may be considered

are:

• When a server at level 1 breaks down the fast reads waiting in its queue can be

routed to other replicas. This is in practice the case. A client after waiting for

the response for a predefined period (timeout period) may contact other servers

for getting the value of data.

• Less restrictive assumptions concerning fast reads, such as generally distrib

uted service times or unequal arrival rates at different level 1 replicas, could be

accommodated easily.

• Replicas at level 1 may be updated on demand by the client.

107

W 1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

x··············

).1 = .12 -,.
).1 = 1.2 +
).1=2.4B-

W3 ./:. -

0.1 ~------------------~------------------~
1 2

Figure 6.5: W 2 (solid) and W3 (dotted) vs. Q1 in the presence of breakdowns.

No = 3, N1 = 9,).2 = 1.2, J-L1 = 8, J-L2 = ,3 = 9, ~ = 10-7
, 'fl = 0.004

108

• Recent proposals have introduced bigger hierarchies of replicas - primary ,sec

ondary, tertiary, etc. - with different scheduling policies at each level. While

more complicated, such generalizations could be analyzed by similar methods.

6.5 Conclusion

The models presented here help us in understanding the behaviour of replicated data

systems when replicas are organized in levels with each level providing a different

type of consistency. The effects of different parameters can be evaluated and optimal

decisions concerning the degree of replication, quorum sizes and the division of rep

licas between level 0 and level 1 can be taken. The solution of the model without

breakdowns is exact; its numerical complexity is on the order of O(Ng) (solving a

set of 2No simultaneous linear equations). The model with breakdowns at level 0 is

solved approximately but as accurately as desired, subject to constraints on comput

ing resources. That solution involves finding the eigenvalues and eigenvectors of a

matrix polynomial, and solving a set of simultaneous linear equations; its complexity

is on the order of O[(NoS + No + S)3], where S is the imposed bound on the number

of write jobs in the system. The response time of fast reads at level 1 can be found

exactly, without or with breakdowns, while the probability of reading a consistent

replica is exact in the former case and approximate in the latter.

The following design guidelines are suggested by our results: For a given set of

environmental parameters (..\'s, /-L'S, ')"s, e, 77), and performance measures, one should

first find the optimal configuration of level 0 , i.e., No and Q1· This is likely to

consist of a small number of replicas. Then, as many replicas at level 1 should be

provided as is economically feasible, in order to improve both the performance and

the dependability of the fast reads. As shown the response time of fast read jobs

109

varies too much with the change in arrival rate of faults. One should therefore also

examine that given a fault and repair rate how much improvement in response time

can be achieved by providing fast reads.

110

Chapter 7

Weak Consistency Protocols

7 .1 Introduction

Different applications have different consistency requirements. ranging from 'weak'

(where the order and timing of updates mayor may not be important), to 'strong'

(insisting that all copies must be identical at all times). We assume a reasonably

demanding requirement which is nevertheless realistic: all updates must be performed

on all replicas in the order in which they arrive, although not necessarily at the same

time. This is known as sequence consistency. Having received an update request, a

site must wait until it knows about all preceding update requests received at other

sites, before it can execute the new one.

Information about updates is propagated among the replica sites by means of

messages. Each site maintains a log containing the outstanding update requests it

knows about, together with the time and place of their origin. At random intervalR.

one of the sites sends its current (timestamped) log to another; the second site then

incorporates the received log into its own. The frequency of these messages. and their

destinations, depend on the system parameters. In order that a site may execute

111

an update request in its log, the latter must incorporate the logs of all other sites;

moreover, those logs must have been sent after the request so as not to miss any

previous updates.

This scheme of propagating update requests is of a type known as 'lazy replication' .

The latter was proposed by R. Ladin et al. [39] for the purpose of handling a large

class of weak consistency requirements, including sequence consistency. A similar

scheme, whereby the recipient of a message replies immediately to the sender with its

own current log, was suggested by R.A. Golding [27]. He used the name 'timestamped

anti-entropy protocol'. We shall refer to the sending of a message in one direction as

'gossip', and to the sending of a message and receiving a reply as 'exchange gossip'.

Both types of protocols will be examined.

The performance measure of principal interest is the average response time of an

update request, i.e. the interval between the initial arrival of the request at one of

the sites, and the first instant thereafter when the request can be executed on that

site. To see why the problem of determining that quantity is non-trivial, consider a

simple system with 3 replicated sites employing a gossip protocol and suppose that an

update request arrives originally at site 1. Before that request can be executed, site

1 must receive gossip from sites 2 and 3, either directly or indirectly. Denoting the

event 'site i sends a gossip message to site j , by {i --t j}, we see that the response

time of the request is the shortest interval until one of the following sequences of

events occurs: ({2 --t I}, {3 --t I}), or ({3 --t I}, {2 --t I}), or ({2 --t 3}, {3 --t I}),

or ({3 --t 2}, {2 --t I}). With exchange gossip, there are 16 similar sequences, since

any exchange can be initiated by either of two protagonists, and site 1 may be one

of them. Of course, in between the 'useful' messages, there may be many others that

do not contribute new information to the log at site 1. One can readily appreciate

112

that, as the degree of replication grows, the combinatorial complexity of the problem

increases very rapidly. An approach that reduces that complexity is required.

The detailed assumptions of the model are described in section 7.2. The response

time problem is reduced to one of finding an average first passage time for a t\larkov

process. However, the size of the state space makes the standard 'brute force' method

impractical. We first give a solution in section 7.3 for the special case when all

destinations other than the source are chosen with equal probability. An efficient

solution is obtained in section 7.4, by showing that the problem is equivalent to

another first passage time, for a possibly different Markov process, which turns out to

be easier to solve. Indeed, in some special cases, the solution can be written in closed

form. The special case of section 7.3 is then considered again and it is shown that the

solution obtained from both approaches is same. Section 7.5 gives the analysis for

the exchange-gossip scheme. In [20] F. Cristian et al. suggested the Train protocol

for broadcasting updates. Section 7.6 gives a solution for the average response time

of an update while using the scheme suggested in [20]. Some numerical results,

including results for different network topologies are presented in section 7.7. Section

7.8 considers the problem of determining the average interval between the arrival

of an update request at some site, and executing it on all sites. Upper and lower

bounds on that interval, which is referred to as the 'sojourn time' of the request, are

derived. An evaluation of the accuracy of the bounds is also presented. We conclude

the chapter by mentioning the main results of the chapter.

7.2 The model

Data objects are replicated on N different sites numbered 1,2, ... ,N, communicating

with each other via some network. Each site receives a stream of update requests

113

arriving locally and stores them in its log (accesses that do not modify the objects

are not important in the present context and are ignored). The logs are propagated

among the sites by means of gossip or exchange gossip messages, so as to implement

the global sequence consistency requirement. The system is illustrated in figure i.I.

~

hrI--~ ~
I Network~
I I

Update r~ - -b _______

Figure 7.1: A replicated distributed system with N sites

Consider first the gossip protocol. Site i sends gossip messages at intervals which

are i.i.d. random variables distributed exponentially with parameter /1. The destina

tion of each message is selected at random, regardless of past history: site i chooses

site j with probability qi,j (i,j = 1,2, ... , N), such that qi,i = 0 and

N

L qi,j = 1 ; i = 1,2, ... ,N .
j=1

The product qi,j/1 represents the rate at which site i sends gossip messages to site

j. Since the intervals between messages are normally much larger than the message

transmission times, the transmissions are assumed to be instantaneous.

The information about update requests received before a given moment in time is

propagated among the sites by gossip sent after that moment. Suppose, without loss

114

of generality, that we start observing the system at an instant when a new update

request arrives at site 1; denote the content of the site i log at that instant by L
j

•

At a distance in time t after the new arrival, the state of knowledge of the different

sites is described by the Boolean matrix, A(t} = [aiJ(t}] (i, j = 1,2, ... , N), whose

elements are equal to

1 if site i has incorporated L j

o otherwise
(7.1)

Note that site i can obtain L j either directly from site j, or indirectly through another

site. Thus, the value of ai,j(t} will become 1 at the first occurrence of one of the

following events: either {j -+ i} (site j sends a gossip message to site i), or {k -+ i}

for some site k such that ak,j(t} = 1.

The above assumptions imply that X = {A(t}; t ~ O} is a Markov process. Its

initial state is A(O} = I, where I is the identity matrix of order N (i.e. each site

knows about its own log only). The sending of a gossip message mayor may not

cause a state transition, depending on whether the destination site already has the

information provided by the sender. More precisely, if {j -+ i} at time t, then

Ai,.(t} = Ai,.(t-} or Aj,.(t-} , (7.2)

where Ai. is the i th row of matrix A, or is the element-by-element boolean OR ,

operation and t- is the time 'just before' t.

The response time, R1 , of the update request is the interval until site 1 incorporates

all other logs, i.e. the smallest value of t such that Al,(t} = 1, where 1 is a vector of

size N whose elements are all equal to 1. More generally, the interval until the update

can be executed on site i, ~, is the smallest value of t such that ~,.(t} = 1. From

this discussion it is clear that Ri may depend on i, but it does not depend on the site

115

where the request arrives. The important index in the definition of the response time

is the site where the request is to be executed.

Thus, the problem of finding the average response time of an update request can be

formulated as one of determining the average first passage time (FPT) of the Markov

process X from state I to the set of states in which Ai,.(t) = 1, for some given i.

These states are called absorbing states. In principle, the answer can be obtained by

writing and solving a set of simultaneous linear equations. In practice, however, that

approach is prohibitively expensive even for moderate values of N. This is due to the

size of the state space. Since each non-diagonal element of the matrix A can have

two values, the number of possible states is 2N (N-l). The number of equations that

have to be solved is only slightly smaller-it is on the order of O(2N (N-2)).

A more efficient solution is obviously desirable. We first solve the system for the

special case when all replicas are identical. We then present an equivalent formulation

of the system and give a solution for more general case.

7.3 Analysis

In this section we consider the case when system is homogeneous i.e. all replicas are

identical and all destinations other than the source are chosen with equal probability.

For this case Ri is independent of i and without loss of generality i can be assumed

as 1. We denote the average response time of an update by E(R) as in this case the

index can be omitted.

Let K be the integer valued random variable representing the number of events

of type {i -+ j} that occur until absorption is reached. Denote

mp E(RIK =p)

qp P(K =p)

116

Then E(R) can be calculated by summing up the following series:

00

E(R) = L mpqp (7.3)
p=N-1

p takes values starting from N - 1 because absorption is not possible in less than

N - 1 events. This is due to the fact that every site except 1 should send a gossip at

least once before the system goes into some absorbing state.

Let Jp(x) be the joint density function that absorption occurs after p gossip mes

sages and takes time x:

Jp(x)dx = P(R = x, K = p) (7.4)

Consider the case when out of these p messages, the site that sends the last gossip

message sends j messages and out of the remaining sites, k i sites send i messages

each, i = 1,2, ... , l, where 1 is the maximum number of messages send by a single

site. Since, in order that absorption occurs, each site should send at least one message,

the maximum value that 1 can take is p - N - 2. Theses numbers satisfy

1 + k1 + ... + kl = N - 1,

j + k1 + 2 * k2 + ... + 1 * kz = p

(7 .. 5)

(7.6)

Note that a given site sends i messages during an interval of length x with prob

ability ~e-lJx. Therefore, the density Jp(x) has the form
t.

() 1 ()i-1

() _ '" C (() -1JX)kl ••. (~e-IJX)k/ /1X e-lJx

JP x - L..J klk2· .. k/ /1X e l' (. _ 1)! /1 s . J

117

where Cklk2 ... kl is the constant that gives the number of ways ki sites can be selected

from total N - 1 sites and S contains all combinations of j, klJ ... , k, s.t. equations

(7.5) and (7.6) are satisfied. Because of (7.5) and (7.6), the above expression can be

written as

where C is some constant.

Given this distribution qp and mp can be calculated as

and

10
00

Jp(x)dx

C 1000

pPxp-1e-(N-l)/lXdx

(p - 1)! C
(N - l)p

10
00

xJp(x)dx/qp

C 1000

pPxPe-(N-l)/lXdx/qp

pi
C (N - ~)p+ 1 J.l / qp

p

{7.7}

(7.8)

{7.9}

This last expression can be justified intutively by claiming that (N21)/l is the

average interval between two events and there are p such events. This gives the

following expression for E(R):

(7.1O)

118

Thus the problem of finding the average response time is reduced to that of de

termining the average number of message sequences leading to absorption in p events.

To calculate qp let us consider first all sequences of messages containing p messages.

As the total number of messages that can be sent in any state of the Markov process

is (N - 1)2, there is a total of (N -1)2p such sequences (we will alternatively refer to

these sequences of messages as paths). Not all of these sequences of messages lead to

an absorbing state.

Let Sp = number of message sequences leading to absorption in p events

Then qp can be written as

(N - 1)2p
(7.11)

We introduce a shorthand notation for a sequence of gossip messages, s{ i, j, k, x),

where i is the site sending the first gossip message, j is the site receiving the last

gossip message, k is the total number of gossip messages in the sequence and x is an

integer defined below. There may be more than one sequence denoted by the same

shorthand notation. Replica 1 knows about updates of replica j if there is a sequence

of message(s) of the form

. {{j--t1} s(J, 1, k,.) =
{j --t i}s(i, 1, k - 1, .)

if k = 1

if i -=1= 1, k > 1

Given a sequence of p messages, the system will be in an absorbing state if this

sequence includes at least one suffix ofthe form s(j, 1,., .) for every j -=1= 1. To count all

sequences leading to absorption, we define the variable x for some message sequence

s as follows:

Define set As to contain all replicas j (j -=1= 1) for which at least one suffix of the

form s(j, 1,.,.) exists in s. Then x is the cardinality of the set As· Since As can not

119

contain more than N - 1 sites, x ::; N - 1. We also define set A~ = A. U 1. These

definitions imply that any sequence of gossip messages of the form s(j,I,p, N - 1)

leads to absorption in p steps.

Examine all possible (N - 1)2P sequences of length p, starting from the last mes

sage. Based on the last message we can divide all (N -1)2P sequences into two groups

(1) (N - 1)2p
-l message sequences, whose last message is {j ----t I} for some j f. l.

For all these sequences the subsequence consisting of the last message only has x = 1

and is of the form s(j, 1, 1, 1). (2) remaining (N - 1)2p-l(N - 2) message sequences,

whose last message is {j ----t i}, for some j and i f. 1. Now consider the message

sequences in group (1). Anyone of these (N - 1)2p -l sequences can be placed in

one of the two groups based on the value of x for the suffix subsequence consisting

of messages p - 1 and p. For one of these groups the message subsequence of length

2 (messages p - 1 and p) will have x = 2 based on message p - 1 and for the other

group the subsequence of messages p - 1 and p will have x = 1.

In general, based on the last p - k messages, all sequences can be divided into

min{N, p - k+ I} groups where for every sequence in group 0 the suffix of length p- k

is of the form s(j, i, p - k, 0) and i f. 1; in group 1 it is s(j, 1, p - k, 1), in group 2 it is

s(j, 1, p- k, 2) and so on. Denote the group of message sequences where x sites deliver

their logs to site 1 in the last p-k messages, by Gp-k,x, x = 0,1, ... , min(N -l,p-k).

Any sequence which leads to absorption must belong to a group whose x value satisfies

x ~ max(O, N - k - 1). This can be explained as follows:

Since x sites deliver their logs in the last p - k messages, at least N - 1 - x sites

must do so in the first k messages.

For a given suffix, s, of length p - k, let Qk,s(X) be the number of sequences from

group Gp-k,x, which lead to absorption. This number will be the same for all different

120

suffixes of length p - k having the same value of x, because the number of possible

prefixes depends only on the value of x, and not on the actual sites that contribute to

that value. This enables us to omit s from the subscript of Qk,s(X) and define Qk(X)

as the number of sequences leading to absorption, such that they all have the same

(fixed) suffix of length p - k during which x sites deliver their logs to site 1. The

quantity Qp(O) is the number of all sequences of length p leading to absorption.

To write a recurrence for Qk(X) let us examine the relationship between groups.

Consider a sequence, s, from the group Gp-k,x. It may belong to one of the two

groups, Gp -k+1,x+1 or Gp - k+1,x, depending on the source and destination of message

k. Let that message be {j --+ i}.

(1) If j is not among the sites counted in x and i is among those sites, or is 1,

then s is in Gp - k+1,x+1' There are a total of (N - 1 - x)(x + 1) such possibilities for

message k.

(2) In all other cases the sequence belongs to the group Gp-k+l,x. The number of

remaining possibilities is (N - 1)2 - (N - x - l)(:r + 1).

Thus Qk(X) satisfies the following recurrence relation:

Qk(X) = (N - x - 1)(x + I)Qk-l(X + 1)+

((N _1)2 - (N - x -l)(x + l))Qk-l(X)

The boundary conditions are:

I. Qo(x) = 1 for x = N - 1

II. Qk(X) = 0 for x > N - 1

III. Qk(X) = 0 for x + k < N - 1

(7.12)

Now among the sequences leading to absorption in p steps, there are some that in

fact lead to absorption in less than p steps. If the process has reached an absorbing

state by step p - 1, then it will remain in it regardless of message p. Since there are

121

(N - 1)2 possibilities for message p, the number of sequences such that absorption is

reached for the first time at step p is equal to:

(7.13)

It can be seen that the numerical complexity of the solution of (7.12) is O(2P). A

more efficient solution for solving this system is given in next section that presents

an equivalent formulation of the problem.

7.4 An equivalent formation

Consider the interval, Ti, between the arrival of an update request at site i and the

first instant thereafter when all other sites know about it (even if they may not be

able to execute it). In terms of the Markov process X, defined in section 7.2, that is

the first passage time from state I to the set of states in which A.,i(t} = 1, where A.,i

is the i th column of matrix A.

The random variable Ti , which we shall call the 'spreading time' for site i, is of

some interest in its own right. However, its main importance lies in the fact that it

can be related to the response time, Ri , and is easier to model. First we need to

introduce another system.

The model defined in the section 7.2, with parameters N, p, and qi,j, will be

referred to as the 'primary system'. Now consider a similar model with the same

number of sites and the same value of p" where the probability that site i chooses site

j as the destination of a gossip message, qiJ, is equal to the probability that site j

chooses site i in the primary system:

122

qi,j = qj,i ; i, j = 1,2, ... ,N . (7.14)

This will be called the 'dual system'. It exist when

N

Lqj,i = 1.
j=l

This is assumed to be the case.

Clearly, duality is a symmetric relation; if the dual system is taken as primary,

then the primary would be the dual. Moreover, if the primary system is symmetric,

i.e. if qi,j = qj,i for all i and j, then it coincides with its dual.

The following result will provide the desired simplification:

Lemma 1 The random variable ~ in the primary system is equal, in distribution,

to the random variable Ti in the dual system.

Proof: Let s = ({ kl -+ k2}, {k3 -+ k4 }, ... , {km -+ i}) be a sequence of gossip-

sending events in the primary system, such that the corresponding transitions of the

process X constitute a first passage from state I to a state with Ai,.(t} = 1. The

messages in that sequence help to deliver the log contents of all other sites to site i.

Denoting by P(s) the probability that s occurs and by fs(x) the p.d.f. of its duration,

we can express the p.d.f. of R;. in the form

f(x) = LP(s)fs(x) , (7.15)
s

where the summation is over all appropriate sequences.

Now consider the reverse sequence in the dual system: s = ({i -+ km }, ... , {k4 -+

k3}, {k2 -+ k1 }). The messages in s carry information in the opposite direction: they

propagate the log of site i to all other sites. The corresponding transitions of the

Markov process form a first passage from state I to a state with A.,i(t) = 1. The

p.d.f. of Ti in the dual system can be written in a form similar to (7.15):

123

j(x) = L ?(S)ji(X) , (i.16)
8

where ? and j refer to probability and p.d.f. in the dual system. There is a one

to-one mapping between the sequences sand S. Moreover, the definition of duality

implies that P(s} = ?(s) and fs(x) = ji(X). Hence, f(x} = j(x), QED.

Thus, the computation of an average response time in the primary system is

reduced to the computation of an average spreading time in the dual system. This

is a significant improvement, because the propagation of information from site i to

the other sites can be described by a much simpler Markov process, Y, whose state

at time t, a(t), is the subset of sites that have already obtained the log of site i. The

initial state of Y is the subset consisting of site i only: a(O) = {i}. If site i sends a

gossip message to site j, there will be a transition to state {i,j}. Then, if either site

i or site j sends a message to site k, Y will jump to state {i, j, k}, etc. Since a(t} can

only increase in size, the process Y will reach state {I, 2, ... ,N} after exactly N - 1

transitions. The first passage time of Y from state {i} to state {l, 2, ... ,N} is the

spreading time Ti .

If the process Y is in state a, and if j is a site which is not in (j, then the transition

rate from a to aU j is given by

eCT,CTUj = J-L L qk,j = J-L L qj,k , (7.17)
kECT kECT

according to the definition of duality. The total rate of leaving state a is equal to

eCT = L eCT,CT.Jj ,
jEu

where a- is the complement of a with respect to {I, 2 , S}.

124

(7.18)

Let E(Tu) be the average first passage time ofY from state (j to state {I, 2, ... , N}.

These quantities satisfy the following set of linear equations:

E(T.) = ~ + "eu,uUj E(T .)
u t L....J t UUJ ,

<"u jEu <"u
(7.19)

where E(T{1,2, ... ,N}) = 0 by definition.

Note that the equations in (7.19) are in fact recurrences in terms of the cardinality

of (j. They can therefore be solved by successive substitution. When (j contains N -1

sites, (7.19) gives E(Tu) = lieu. The next application of (7.19) provides E(Tu) for (j

containing N - 2 sites, and so on down to E(Ti).

An important special case of this model is the 'homogeneous' system, solved in sec

tion 7.3, where all destinations other than the source are chosen with equal probability,

i.e. qi,j = 1/(N - 1) (i =1= j). Then the primary and secondary systems coincide and

the response and spreading times do not depend on the site: E(R;) = E(Ti) = E(R).

The first passage times Tu depend only on the cardinality of (j and not on its member

ship. Denote by tm the value of E(Tu) when (j contains m sites. Then the recurrences

(7.19) yield

N-l
tm = (N) + tm+1 , m -mJ.L

(7.20)

with tN = 0 by definition. Hence, the average response time

N -1 N-l 1
E(R) = h = L (N)

J.L m=l m - m
(7.21)

The equation (7.21) gives the same results as the equation (7.3). This last expression

can be simplified by rewriting the terms under the summation sign in the form

1 1 [1 1]
m(N-m)=N m+N-m

125

The two resulting sums are in fact identicaL Therefore,

E(R) = 2(N - 1) ~ ~ = 2(N - 1)HN - 1

N J-t m=l m N J-t '
(7.22)

where Hn is the nth harmonic number. Thus, when N is large, the average response

time is approximately equal to

E(R) ~ 2lnN .
J-t

{7.23}

There are other special cases where the solution may be obtained in closed form.

For example, suppose that the sites are connected by a one-directional ring network,

with site i sending messages to site i + 1 (i = 1,2, ... , N - 1), and site N to site l.

The dual system here is the opposite-directional ring, where site i sends messages to

site i-I (i = 2,3, ... , N), and site 1 to site N. It is not difficult to see that in this

case,

E(R) = N -1 .
J-t

(7.24)

7.5 Exchange Gossip

The analysis in this section applies almost without change to the case where the

sending of a gossip message from site i to site j (with probability qiJ) prompts an

immediate message from site j to site i. Similarly, if site j sends a gossip message

to site i (with probability qj,i), the latter will reply immediately with a message of

its own. If such an exchange occurs at time t, the resulting transition of the Markov

process X is

Ai,.(t) = Aj,.(t) = ~,.(t-) or Aj,(t-) .

126

Again there is an equality between a response time in the primary system and

a spreading time in the dual one. The transition rates for the process Y are now

different, since an exchange that increases the membership of a can be initiated

either from within a or from outside. The new equation corresponding to {7.17} has

the form

(7.25)
kElT

Equations (7.18) and the recurrences (7.19) remain valid.

In the homogeneous special case, where all exchange gossip destinations are equally

likely, the formula (7.21) becomes

E(R) = N - 1 ~ 1 .
2J-l m=l m(N - m)

(7.26)

When N is large, this is approximately equal to

E(R) ~ InN.
J-l

(7.27)

In the ring network, there is no difference between gossip and exchange gossip.

7.6 Train Protocol

In the Thain protocol described by the F. Cristian et al., [20] there is a cyclic order

among sites. A train containing a sequence of updates circulates from one site to

another in this order. A site that wants to broadcast an update waits for the train

to arrive. When the train arrives the sender first delivers all updates carried by the

train, and then appends all updates that it wants to broadcast at the end of the train.

The sender removes these updates when he sees the train again. It can be readily

127

seen that this scheme behaves exactly in the same way as gossip when the sites are

connected by a one-directional ring network, with site i sending messages to site i + 1

(i = 1,2, ... , N - 1), and site N to site 1. The average response time of an update,

therefore, can be given by equation (7.24).

7.7 Numerical experiments

We first examine the effect of increasing the number of replicas (fully reliable). The

performance measure of interest is the average execution time of an update. The

trade-off here is between the advantage of increasing the number of replicas (as it

increases the read parallelism) and the disadvantage of longer service time for write

jobs. Figure 7.2 shows increase in average response time of write jobs against number

of replicas. This increase is logarithmic. Figure 7.3 compares the performance of the

schemes used by gossip, exchange-gossip and train protocol for spreading updates.

It is clear from the graph that performance of gossip and exchange-gossip schemes

are better than train protocol in most cases. The trade-off between the performance

of gossip and exchange-gossip actually depends on the time taken to send a gossip

and time taken to exchange the information between two replicas. If both are same

exchange-gossip scheme performs much better than gossip but if later is large enough

in comparison to former then the performance of gossip protocol is better.

It is intuitively obvious that the higher the connectivity of the network by means

of which the sites communicate with each other, the better the performance of the

replication protocol will be. This observation has already been quantified in two

extreme cases. In a fully connected, homogeneous network, the average response

times grow logarithmically with N. In a minimally connected, ring network, those

averages grow linearly with N.

128

E(R)

5r-----r---~r_--_,----_.----~----~

4.5

4

3.5

2.5

2

Simulation ~
Analytical -+-

1.5 1.-__ --L ___ ..J....... __ --1 ___ ...J.... __ ---l~ __J

3 4 5 6
N

7 8 9

Figure 7.2: Analytical vs. simulation results for write response time

129

10

Gossip(p. = 1)

9
Exchange-gossip(p. = 1)

Exchange-gossip(p. = .25)
Train(p. = 1) . x--.

8

7 x

6 x
E(R)

5

4

3

2

1
3 4 5 6 7 8 9

N

Figure 7.3: Response time for gossip, exchange-gossip and Train schemes

130

For the purpose of comparison, we have also examined an intermediate case-a

mesh network where every site sends messages to each of its four immediate neigh

bours with probability 1/4. In order to simplify the calculations, it is assumed that

the mesh is similar to a torus, i.e. the left-hand neighbour of a site on the left-hand

edge is the corresponding site on the right-hand edge; the former is the right-hand

neighbour of the latter; the top neighbour of a site on the top edge is the correspond

ing site on the bottom edge; the former is the bottom neighbour of the latter. An

8-site mesh of this type is illustrated in Figure 7.4.

Figure 7.4: A mesh network with 8 sites

Since the routing matrix of the mesh network is symmetric, the primary and dual

systems coincide. The average response time and the average spreading time are

equal and do not depend on the site.

The performance of the ring, mesh and fully connected networks, measured by

the average response time as a function of the number of sites. is shown in Figure 7.5.

The mesh results were obtained by solving the recurrence equations (7.19).

As expected, the mesh performs better than the ring, but not as well as the fully

connected network. The graph appears to suggest that the mesh average response

time grows approximately linearly with N, but at a lower rate than the ring.

Figure 7.6 compares the results obtained by summing the series of (7.21) with the

131

E(R)

8r----.-----r----.-----r---~----~

7

6

5

4

3

Fully connected ~
Ring +
Mesh -B-

2~----~~----~------L------L------~----~
3 4 5 6

N
8 9

Figure 7.5: Response time for ring, mesh and fully connected networks

132

results obtained by direct formula given in (7.23).

8

7.5

7

6.5

6

E(R) 5.5

5

4.5

4

3.5

3
5 10 LS 20 25 30

N

Figure 7.6: Results obtained by direct and indirect (series sum) methods

133

7.8 Sojourn time of an update request

The interval, S, between the arrival of an update request and its execution at all sites

is called the 'sojourn time' of the request. Within that interval, every site obtains the

log of every other site. In terms of the Markov process X, whose state is the Boolean

matrix ACt), this is the first passage time from state I to the state A(t) = 1 (all

elements of A(t) are equal to 1). Unfortunately, we do not have an efficient algorithm

for calculating the average sojourn time exactly. Instead, it is possible to provide

reasonably tight upper and lower bounds.

To derive a lower bound for the gossip protocol, let D be the interval until all but

one of the sites have sent at least one message each. At the end of D, there is still

one site which has not yet sent a message. Clearly it must do so, and its log must

be propagated to all other sites, before the sojourn time can complete. Hence, S is

bounded below by the sum of D and the spreading time of that last site.

Since we do not know its index, we write

E(S) ~ E(D) + m~nE(n) .
I

(7.28)

To find E(D), note that the average interval until the first site to send a message

is 1/(NJ-L); after that, the average interval until the second site to send a message is

l/((N - 1)J-L), etc. Hence,

1 N 1 HN-1
E(D) = - I: - = ,

J-L m=2 m J-L
(7.29)

where HN is the Nth harmonic number.

In the homogeneous special case, where qij

spreading times are equal and (7.28) becomes

l/(N - 1) (i =1= j), all average

134

E(S) ~ ~ [3HN - 1 _ 2HN - 1 ; N - 1]
For large values of N this is approximately

E(S) ~ 3lnN .
J-l

(7.30)

(7.31)

An upper bound on E(S) can be obtained by remarking that if one waits for site

i to absorb all other logs (the response time of site i), and after that for site i to

propagate its log to all other sites (the spreading time of site i), then the sojourn

time will certainly complete. Since that is true for all i, we can write

E(S) ::; m~n[E(~) + E(Ti)] . , (7.32)

Note that both E(~) and E(Ti) in the above equation refer to the primary system.

If the system is symmetric, then those two quantities are equal. For such systems,

the upper and lower bounds differ by a factor less than 2.

When qi,j = l/(N - 1) (i #- j), the upper bound is

E(S) < 4(N - 1)HN - 1

- NJ-l '
(7.33)

which for large N is approximately

E(S) ~ 4lnN .
J-l

(7.34)

In this case, since both bounds are logarithmic, the true value of E(S) must also be

on the order of O(ln N), with some coefficient whose value is between 3/ J-l and 4/ J-l.

If the sites are connected by a ring network, the logarithmic contribution of E(D)

in the lower bound is dominated by the linear growth of E(Tj). Then the two bounds

are

135

N - 1 ~ E(S) ~ 2(N - 1)
J.L J.L

Similar results can be obtained for the exchange gossip protocol. The upper

bound (7.32) applies without modification. In the lower bound, the interval D no

longer helps, since a site may participate in an exchange without initiating it. A

simpler, if worse, lower bound is provided by

E(S) ~ m~n E(1i) . , (7.35)

In the homogeneous system under exchange gossip, the average sojourn time is

bounded by

(N - 1)HN - 1 < E(S) < 2(N - 1)HN - 1

NJ.L - - NJ.L ' (7.36)

which for large N is approximately equal to

InN ~E(S)~2InN.
J.L J.L

{7.37}

For the ring network, the same linear bounds as before apply.

An estimate for the average sojourn time in the fully connected homogeneous

network, as a function of N, was obtained by simulation. The width of the confidence

interval was less than 2% of the performance value. The results are presented in Figure

7.7, together with the analytical upper and lower bounds. It is evident that, at least

in this system, the lower bound is much closer to the true value of the performance

measure than the upper bound. However, it is possible, by exploiting the structure of

the model, to derive an improved upper bound which comes within 20% of the true

values.

136

E(S)

l0r-----r---~r_--_.-----.----~-----

simulation -':
analytical upperbound -+-

9 analyticallowerbound.g....

8

5

4

3

2
3 4 5 6 7 8

N

Figure 7.7: Bounds and simulation estimates for E(S)

137

9

7.9 Conclusion

The analysis given here provide useful insight into the behaviour of replicated data

systems. The effects of different parameters can be evaluated and decisions concerning

the degree of replication and choice of protocol to be used can be taken. The solution

of the model that gives delay time for an update is exact; its numerical complexity is

of the order of O(N). The numerical complexity of upper bound on the time when

the update can be executed on all replicas is also of the order of O(N).

The study can further be extended to consider the case when replicas are subjected

to breakdown and repair. The main results in this chapter can be summerizes as:

[1.] The equality in distribution between the response time in the primary system

and the spreading time in the dual system.

[2.] The recurrence equations for calculating E(Td·

[3.] The explicit formula for the average response time in the fully connected

homogeneous network and the corresponding logarithmic approximation.

[4.] The upper and lower bounds for the average sojourn time and their explicit

versions in the fully connected homogeneous network.

We still do not know how to analyze a replicated system where the dual does not

exist, i.e. where the rows of the routing matrix add up to 1 but the columns do not.

This is an interesting open topic for future research.

138

Chapter 8

Conclusions

This chapter summerizes the work which has been presented in this thesis and suggests

some possible areas for further research.

8.1 Summary of Thesis

This thesis presents the performance evaluation of different data replication proto

cols. We have analysed these protocols both when replicas are reliable and when

breakdowns and repairs may occur. We selected the queueing theory approach to

analyse these protocols as it captures the effect of delays caused by queueing and

congestion at various nodes of the network. We first classified these protocols into

three categories based on their approach to implement updates. These categories are:

Strong consistency protocols, Weak consistency protocols and multi-level consistency

protocols.

The first part of the thesis concentrates on protocols that follow the quorum

based approach to maintain strong consistency. An analysis of these protocols both

in case of reliable replication and unreliable replication has been presented. The

139

effect of scheduling strategies on the performance of the protocol has been studied.

We considered two scheduling strategies: Priority and FIFO. The model in the case

of unreliable replication with priority scheduling has N servers subject to breakdowns

and repairs and two classes of jobs. We found that the exact analysis of this model

is yet intractable. The analysis presented is approximate yet very close to exact. To

show this we gave an exact solution for one server subject to breakdowns and repairs

and two classes of jobs. A comparison ofresults for the two cases (approximate results

and exact results in case of one server) justifies our claim.

Quorum based schemes for maintaining strong consistency need synchronization

among a large number of replicas. Due to this they do not perform well for wide

area networks where the number of replicas may be hundreds or thousands. The

performance can be improved by relaxing the consistency constraints. The second

part of the thesis analyzes protocols that take advantage of this fact to allow some

replicas to be out-of-date while maintaining a group of replicas strongly consistent. A

user reading from a replica may be interested in knowing the probability of that replica

being up to date. A method to calculate this probability has also been presented.

These results have been published in IPDS'96.

Finally we presented the analysis of the protocols that allow updates to occur

on any replica asynchronously. Replicas store these updates in their log and later

propagate them to other replicas by sending messages containing information about

these updates. The two schemes of propagating updates have been analysed. One

where replicas send gossip messages to each other randomly and the other where two

replicas exchange messages with each other. The updates are being implemented in

the order of arrival. Response time of an update has been formulated as the first

passage time from the arrival of the update on some replica until the time when that

140

replica is ready to execute it. The effect of the network topology on the performance

of the protocol has also been studied. Upper bounds and lower bounds on the time

until all replicas are ready to execute a given update have also been established.

8.2 Contributions

Each chapter states the contributions made in the area covered in that chapter. A

brief summary of these contributions is, as follows:

• The analysis of quorum based protocols for reliable replication shows that there

is an optimal degree of replication that gives the best performance. The per

formance measure is the response time of the jobs. As the number of replicas

increases the response time decreases but once this optimal degree of replication

is reached any increase in number of replicas increases the response time instead

of decreasing it.

• The analysis of quorum based protocols for reliable replication and with fixed

number of replicas shows that the optimal choice for quorum depends on the

arrival rate of jobs. When most of the offered load consists of read jobs, the

allocation R = 1, W = N is best, whereas R = N, W = 1 is preferable when

most of the load consists of the write jobs.

• The analysis of quorum based protocols with breakdowns and repairs shows

the same behaviour. There is an optimal degree of replication in this case also

which is generally larger than the optimal degree of replication in the case of

reliable replication.

• It is shown that even a slight unreliability of servers have a considerable effect

on the shape of curves plotting the response time of jobs. It not only affects

141

the optimal degree of replication but also the choice of quorum sizes. For the

cases where R = N, W = 1 give the best performance when replicas are reliable,

the choice of R = 1, W = N may give better perfonnance in case of unreliable

replication.

• A comparison of priority scheduling and FIFO scheduling for quorum based

protocols shows that in many cases better performance can be achieved by

assigning higher priorities to the jobs with larger arrival rate.

• A model with one server subject to breakdowns and repairs and two job types

is considered. An exact solution of this model with priority scheduling for write

jobs is presented.

• The problem of data replication with two levels (level 0 and 1) of consistency

is considered. The performance measure of interest is the response time of slow

reads (that need most recent value of data) and fast reads (that may read older

versions of data). The replicas at level 0 are always strongly consistent and a

slow read reads from level 0 replicas. Replicas at level 1 may be out-of-date

and a fast read reads from some level 1 replica. It is shown that the states of

level 0 and level 1 are independent of each other. The analysis for both levels is

presented. As the level 0 uses quorum based protocols to maintain consistency,

the analysis of level 0 is same as the one for quorum based protocols. All results

that hold for quorum based protocols apply for level 0 also. The response time

for higher priority jobs at level 1 can be obtained by treating a level 1 replica

as an MIMl1 queue. The curves showing the response time of slow and fast

read jobs are presented. The analysis gives an insight into the behaviour of

the system and helps in making optimal decisions concerning the degree of

142

replication, quorum sizes and the division of replicas between level 0 and level

1.

• An exact method to calculate the probability that a level 1 replica is out-of

date is presented for reliable replication. A method to calculate the approximate

value of this probability is suggested in case of breakdowns and repairs.

• Two schemes, gossip and exchange gossip, for spreading updates among geo

graphically distributed sites are studied. The analysis when replicas execute

these updates in the order of their arrival is presented. The problem of finding

the average response time of an update can be formulated as one of determining

the first passage time from the state when a replica receives the update to the

state when it knows about all preceding updates arrived at other replicas. It

is shown that the complexity of this problem is of the order of O(2N (N-2)). To

solve this problem more efficiently we use a counting argument leading to re

currence relations, and also an approach based on a dual system and a different

first passage time. Closed form solutions and single logarithmic approximations

are obtained in some special cases.

• It is shown that the connectivity of the replicas affects the performance of the

scheme. The greater the connectivity, the better is the performance.

• We give closed form solutions for the upper and lower bounds on the time when

all replicas are ready to implement the update for a fully connected homogeneous

network.

143

8.3 Further Work

This research gives an insight into the behaviour of replication protocols. It also

leaves many questions unanswered for future research. These problems that need

more research have already been highlighted in the chapter covering the material

related to that area. Here we summarize these open problems for research.

• The analysis of quorum based protocols in this thesis assumes that all replicas

are identical. The system can still be solved when the replicas are not identical

(write service time is different for each write request) provided (1) the read

quorum is one and write quorum is all (2) the read service time has the same

distribution for all read services. The problem to analyze the protocols for a

more general case when both read and write service times are different and

quorum sizes are also other than 1 and N is open for research.

• The thesis compares the performance of quorum based protocols for two schedul

ing strategies: priority and FIFO. The performance of the scheme with other

scheduling strategies may be examined.

• We presented the analysis of a two-level replication. Recent proposals have

introduced bigger hierarchies of replicas. It may be worth analysing systems

with more than two levels. While more complicated, such genralizations could

be analysed by similar methods used for analysing two-level replication.

• The analysis presented for two-level replication assumes that all updates arrive

at level 0 only. They are then propagated to replicas at levell. Schemes where

updates may be submitted at any level or where replicas at level 1 are updated

on demand may be studied.

144

• The analysis presented in this thesis for two-level replication considers each

replica at level 1 in isolation. If a replica breaks down, the jobs in its queue

wait for its repair. In a more general case these jobs can be routed to other

replicas at level 1 which are not faulty. The analysis of this case may be useful.

• The analysis of gossip and exchange gossip schemes considers that updates are

executed in the order they arrive. The protocols suggested for providing weak

consistency support many other orderings: causal, ordering imposed by client

etc. The problem to study the performance of these protocols analytically for

other cases is still open for research.

• The thesis gives upper and lower bounds on the time when an update can be

executed on all replicas. An attempt to get an exact solution for this time may

be worth trying.

• The analysis of gossip and exchange gossip schemes can further be extended to

consider the case when replicas are subjected to breakdown and repair.

8.4 Concluding Remarks

With development of large scale wide area systems and use of replication in these

systems to provide (a) fault tolerance and (b) improve performance it has become

vital to study the performance of these protocols. We hope that the analysis presented

in this thesis will be helpful in making decisions about different aspects of replication

and will motivate people to continue research in this area.

145

Appendix A

The 'brute force' approach which relies on first evaluating the scalar polynomial

det[Q(z)], then finding its roots, is very inefficient for large N and is therefore not

recommended. An alternative which is preferable in most cases is to reduce the

quadratic eigenvalue-eigenvector problem

(A.I)

to a linear one of the form 'ljJQ = z'ljJ, where Q is a matrix whose dimensions are twice

as large as those of Qo, Ql and Q2. The latter problem is normally solved by applying

various transformation techniques. Efficient routines for that purpose are available

in most numerical packages.

This linearization can be achieved quite easily if the matrix Q2 = C is non

singular. Indeed, after multiplying (A.l) on the right by Q21
, it becomes

(A.2)

where Ho = QOC-1 , HI = Ql C-1 , and I is the identity matrix. By introducing the

vector W = z'ljJ, equation (A.2) can be rewritten in the equivalent linear form

-Ho 1 = z['ljJ, W] .
-HI

(A.3)

146

If C is singular but B = Qo is not, a similar linearization is achieved by multiplying

(A.1) on the right by B-1 and making a change of variable::: --t 1/:::. Then the

relevant eigenvalues are those outside the unit disk.

If both Band C are singular, then the desired result is achieved by first making

a change of variable, z ---+ (r + z)/(r - z), where the value of ""1 is chosen so that the

matrix S = ",?Q2 + ,Q1 + Qo is non-singular. In other words, 1 can have any value

which is not an eigenvalue of Q(z). Having made that change of variable, multiplying

the resulting equation by 8-1 on the right reduces it to the form (A.2).

147

References

[1] N. Adly, M. Nagi, and J. Bacon. "A Hierarchical Asynchronous Replication Pro

tocol for Large Scale Systems", Proc. of the IEEE Workshop on Parallel and

Distributed Systems, pp. 152-157, Princeton, 1993.

[2] N. Adly, M. Nagi, and J. Bacon. "Performance Evaluation of a Hierarchical Rep

lication Protocol: Synchronous versus Asynchronous", Pmc. IEEE SDNE Ser

vices in Distributed and Networked Environments, pp. 102-109, \Yhistler, 1995.

[3] N. Adly. "Management of replicated data in large scale systems", Technical Re

port, No. 383, University of Cambridge, Computer laboratory, November 1995.

[4] D. Agrawal, A. EI Abbadi, "Efficient Techniques for Replicated Data Manage

ment", Procs. Workshop on Management of Replicated Data, 48-52, 1990.

[5] D. Agrawal, A. EI Abbadi, "Quorum Consensus Algorithm for Secure and Reli

able data", TRCS-88-17, Department of Computer Science, UCS B, 1988.

[6] M. Ahamad and M.H.Ammar, "Performance Characterization of Quorum -

Consensus Algorithms for Replicated Data", IEEE Trans. on Software Engin

eering, 15, 492-496, 1989.

148

[7] M. Ahamad, M.H.Ammar and S.Y.Cheung, "Optimizing the Performance of

Quorum Consensus Replica Control Protocols", Procs. Workshop on Manage

ment of Replicated Data, 102-107, 1990.

[8] Akhil Kumar, "Hierarchical Quorum Consensus: A new algorithm for managing

replicated data", IEEE Transactions on Computers, Vol. 40, No. 9 996-100·1.

September 1991.

[9] R. Alnoso, D. Barbara and H. Gracia-Molina, "Data Caching issues in an in

formation retrieval system", ACM Transactions on database systems, Vol. 15,

359-384, 1990.

[10] B. Avi-Itzhak and P. Noar, "Some Queueing Problems with the Service Station

Subject to Breakdowns", Operations Research, 11 ,303-320, 1963.

[11] F. Baccelli and E.G. Coffman, Jr., "A Data Base Replication Analysis Using

an M/M/m Queue with Service Interruptions", Performance Evaluation Review,

11, 102-107, 1982.

[12] D.Barbara and H. Gracia-Molina. "The case for controlled inconsistency in rep

licated data", Procs. Workshop on Management of Replicated Data, 35-38, 1990.

[13] P. A. Bernstein, V. hadzilacos and N. Goodman, " Concurrency Control and

Recovery in Database Systems" , Addison-Wesley, 1987.

[14] A. D. Birrell, R. Levin, R. M. Needham and M. D. Schroeder, "Grapevine: An

exercise in distributed computing", Communications of the ACM, Vol. 25, No.

4, 260-274, April 1982.

149

[15] S. Y. Cheung, M.H.Ammar and M. Ahamad, "The Grid protocol: A high per

formance scheme for maintaining replicated data", Proc. of 6th International

Conference on Data Engineering, 438-445, IEEE, 1990.

[16] E.G. Coffman, Jr., E. Gelenbe, and B. Plateau, "Optimization of the ~umber of

Copies in a Distributed Data Base", IEEE Trans. Soft. Engin., 7, 78-84, 1981.

[17] E.G. Coffman, Jr., H.O. Pollak, E.Gelenbe, and R.C.Wood, "An analysis of

parallel-read sequential-write systems", Performance Evaluation 62-69, 1 {1981}.

[18] C.A. Courcoubetis and M.l. Reiman, "Optimal Control of a Queueing System

with Simultaneous Service Requirements", IEEE Trans. Automatic Control, 32,

1987.

[19] G. Coulouris, J. Dollimore and T. Kindberg. "Distributed Systems: Concepts

and Design" , Addison-Wesley, 1994.

[20] F. Cristian, R. de Beijer and S. Mishra, "A performance comparison of asyn

chronous atomic broadcast protocols", Distributed System Engineering, 177-201,

1(1994).

[21] S. B. Davidson, H. Garcia-Molina and D. Skeen, "Consistency in Partitioned

Networks", Computing Surveys, Vol. 17, No.3, 341-370, September 1985.

[22] A. Demers, M. Gealy, D. Greene, C. Hauser, W. Irish, J. Larson, S. Manning,

S. Shenker, H. Sturgis, D. Swinehart, D. Terry and D. Woods, "Epidemic Al

gorithms for Replicated Database Maintenance", Technical Report, Xerox, Palo

Alto Research Center, CSL-89-1, January 1989.

150

[23] A.R.Downing, I.B. Greenberg, and J.M. Peha. "OSCAR: A System for \Veak

Consistency Replication", Procs. Workshop on Management of Replicated Data,

26-30, 1990.

[24] P. B. Danzig, Dante DeLucia, and K. Obraczka. "Massively Replicating Services

in Wide-Area Internetworks" Technical Report, USC-CS-94-595, University of

Southern California, Los Angeles.

[25] D.K. Gifford, "Weighted Voting for Replicated Data", Procs. 7th Symp. on Op

erating System Principles, Pacific Grove, 150-161, 1979.

[26] Richard A. Golding. "Weak consistency group communication for wide-area sys

terns", Proceedings of the Second Workshop on the Management of Replicated

Data, 13-16, November 1992.

[27] Richard A. Golding. "The timestamped anti-entropy weak-consistency group

communication protocol", Technical Report UCSC-CRL -92-29, Computer and

Information Science Board, University of California at Santa Cruz, 1992.

[28] Richard A. Golding and D.D.E. Long. "Simulation Modelling of Weak

Consistency Protocols", Proc. of International Workshop on Modelling analysis

and simulation of computer and Telecommunication systems, San Diego, 223-38,

1993.

[29] Richard A. Golding and D.D.E. Long. "Modelling replica divergence in a weak

consistency protocol for global-scale distributed data bases", Technical report

UCSC-CRL-93-09, Computer and Information Sciences Board, University of

California, Santa Cruz, February 1993.

151

[30] Richard A. Golding, "Weak-consistency group communication and membership" ,

PhD Thesis, University of California, Santa Cruz, 1992.

[31] J. Gray, P. Helland, P. O'Neil and D. Shasha. "The dangers of replication and a

solution", SIGMOD'96, Montreal, Canada, 173-82, 1996.

[32] J. N. Gray, R. A. Lorie, G. R. Putzolu and I. L. Traiger. "Granularity of Locks

and Degrees of consistency in a shared database", Technical Report, IE!'.! Re

search, September 1975.

[33] S.Jajodia and D.Mutchler. "Dynamic Voting", Procs. of the ACM SIGMOD

International Conference on Management of Data, 227-38, June 1987.

[34] P. Jalote, "Fault Tolerance in Distributed Systems", PTR Prentice Hall, 1994.

[35] V.G.Kulkarni and L.C.Puryear, "A Reader-Writer Queue with Reader Prefer

ence", Queueing Systems, 15, 81-97, 1994.

[36] V.G.Kulkarni and L.C.Puryear, "Stability and Queueing Time Analysis of a

Reader-Writer Queue with Alternating Exhaustive Priorities", Queueing Sys-

tems, 19, 81-103, 1995.

[37] L. Kleinrock, "Queueing Systems, Volume I: Theory", John Wiley and Sons,

Inc., 1975.

[38] P. J. B. King, "Computer and Communication Systems Performance Modelling" ,

Prentice Hall International (UK) Ltd., 1990.

[39] R. Ladin, B. Liskov, and L. Shira. "Lazy Replication: Exploiting the semantics

of distributed services" , Proc. of the 9th A CM Symposium on Principles of Dis

tributed Computing, 43-57, Quebec City, CA, Aug. 1990.

152

[40] D.D.E. Long, "Analysis of Replication Control Protocols", Procs. Workshop on

Management of Replicated Data, 117-121, 1990.

[41] D.D.E. Long and J.F. Paris, "On Improving the Availability of Replicated Files" I

Procs. 6th Symp. on Reliability in Distributed Software and Database Systems,

Williamsburg, 77-83, 1987.

[42] B. W. Lampson, "Designing a Global Name Service", Proc. of the fifth an

nual ACM symposium on principles of distributed computing, Calgary, Alberta,

Canada, 1-10, August, 1986.

[43] M. Little and D. McCue, "The Replica management system: a scheme for flexible

and dynamic replication" , Proc. of the 2nd Workshop on Configurable Distributed

Systems, Pittsburg, March 1994.

[44] D. McCue and M. Little, "Computing Replicas Placement in Distributed Sys

tems" , Proceedings of the IEEE Second Workshop on Replicated Data, Monterey,

58-61, November 1992.

[45] E. D. Lazowska, J. Zahorjan, G. S. Graham and K. C. Sevic, "Quantitative

System Performance" Printice-Hall, Inc., Englewood Cliffs, New Jersey, 1984.

[46] C. Ma, "Designing a universal name service", PhD Thesis, Computer Laboratory,

Cambridge University, 1992.

[47] D. Mitra and P.J. Weinberger, "Probabilistic Models of Database Locking: Solu

tions, Computational Algorithms and Asymptotics", JACM, 31, 855-878, 1984.

[48] 1. Mitrani, "Modelling of computer and Communication Systems", Cambridge

University Press, 1987.

153

[49] I. Mitrani, "Simulation techniques for discrete event systems", Cambridge Uni

versity Press, 1987.

[50] I. Mitrani and R. Chakka, "Spectral Expansion Solution for a Class of Markov

Models: Application and Comparison with the Matrix-Geometric Method" , Per

formance Evaluation, 23, 241-260, 1995 .

[51] I.Mitrani and P.J.B. King, "Multiprocessor Systems with Preemptive Priorities",

Performance Evaluation, 1, 118-125, 1981.

[52] I.L.Mitrany and B.Avi-Itzhak, "A many-server queue with service interruptions",

Technion, Israel Institute of Technology, Haifa, Israel.

[53] M. Misra and I. Mitrani, "Analysis of data replication with two levels of consist

ency" ,2nd annual IEEE International Computer Performance and Dependability

Symposium, Urbana-Champaign, Illinois, 230-39, 1996.

[54] M. Misra and I. Mitrani, "Evaluation of update algorithms for replicated data",

3rd CaberNet Plenary workshop, Rennes, 1997.

[55] H. Garcia-Molina, "The future of data replication" , Fifth Symp. on Reliability in

Distributed Software and Database Systems, Los Angeles, California, 13-19, Jan.

1986.

[56] H. Garcia-Molina, "Elections in a distributed computing system", IEEE Trans

actions on Comput., 48-59, Jan. 1982.

[57] D.Mutchler. "Some (naive?) Questions About Replica Control", Procs. Work

shop on Management of Replicated Data, 113-116, 1990.

154

[58] R.D. Nelson and B.R. lyer, "Analysis of a Replicated Data Base", Performance

Evaluation, 5, 133-148, 1985.

[59] D. C. Oppen and Y. K. Dalal, "The Clearinghouse: A decentralized agent for

locating named objects in a distributed environment", Technical Report, Xerox,

Office Products Division, OPD-T8103, Oct. 1981.

[60] J.F. Paris, "Voting with Witnesses: A consistency Scheme for Replicated Files",

Proc. Sixth International Conference on Distributed Computing Systems, 606-12,

May 1986.

[61] D. Saha, S. Rangarajan, and S. K. Tripathi, "An Analysis of the Average Mes

sage Overhead in Replica Control Protocols" , IEEE Transactions on parallel and

distributed systems, Vol. 7, No. 10, 1026-34, Oct. 1996.

[62] A. Sheth and M. Rusinkiewicz. "Management of interdependent data: Specifying

Dependency and Consistency Requirements", Procs. Workshop on Management

of Replicated Data, 133-136, 1990.

[63] B. Sengupta, "A Queue with service interruptions in an alternating Makovian

Environment", Operations Research, 38, 308-318, 1990.

[64] W.Smith and P. Decitre, "An Evaluation Method for Analysis of the Weighted

Voting Algorithm for Maintaining Replicated Data", Procs. 4th Int. Con/. on

Distributed Computing Systems, San Francisco, 494-502, 1984.

[65] M. Stonebraker, "Concurrency Control and Consistency of Multiple Copies of

data in Distributed INGRES" , IEEE Transactions on Software Engineering, 188-

194, May 1979.

155

[66] K. Thiruvengadam, "Queueing with Breakdowns", Operations Research, 11, 62-

71, 1963.

[67] R. Thomas, "A majority consensus approach to concurrency control for multiple

copy databases", ACM TODS, 3(3), 180-209, June 1979.

[68] P. Triantafillou, "High Availability is Not Enough", Procs. 2nd Workshop on the

Management of Replicated Data, Monterey, 40-43, 1992.

[69] K. S. Trivedi, "Probability and Statistics with Reliability, Queuing, and Com

puter Science Applications", Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

[70] Ada Waichee Fu, "Delay-Optimal Quorum Consensus for Distributed Systems" ,

IEEE Transactions on parallel and distributed systems, Vol. 8., No.1, 59-69, Jan.

1997.

[71] H.C.White and L.S. Christie, "Queueing with Preemptive Priorities or with

Breakdown", Operations Research, 6, 79-95, 1958.

[72] L. Lamport. "Time, clocks and the ordering of events in a distributed system",

Comms. ACM, Vol. 21, no. 7, pp. 558-65.

156

	362411_0001
	362411_0002
	362411_0003
	362411_0004
	362411_0005
	362411_0006
	362411_0007
	362411_0008
	362411_0009
	362411_0010
	362411_0011
	362411_0012
	362411_0013
	362411_0014
	362411_0015
	362411_0016
	362411_0017
	362411_0018
	362411_0019
	362411_0020
	362411_0021
	362411_0022
	362411_0023
	362411_0024
	362411_0025
	362411_0026
	362411_0027
	362411_0028
	362411_0029
	362411_0030
	362411_0031
	362411_0032
	362411_0033
	362411_0034
	362411_0035
	362411_0036
	362411_0037
	362411_0038
	362411_0039
	362411_0040
	362411_0041
	362411_0042
	362411_0043
	362411_0044
	362411_0045
	362411_0046
	362411_0047
	362411_0048
	362411_0049
	362411_0050
	362411_0051
	362411_0052
	362411_0053
	362411_0054
	362411_0055
	362411_0056
	362411_0057
	362411_0058
	362411_0059
	362411_0060
	362411_0061
	362411_0062
	362411_0063
	362411_0064
	362411_0065
	362411_0066
	362411_0067
	362411_0068
	362411_0069
	362411_0070
	362411_0071
	362411_0072
	362411_0073
	362411_0074
	362411_0075
	362411_0076
	362411_0077
	362411_0078
	362411_0079
	362411_0080
	362411_0081
	362411_0082
	362411_0083
	362411_0084
	362411_0085
	362411_0086
	362411_0087
	362411_0088
	362411_0089
	362411_0090
	362411_0091
	362411_0092
	362411_0093
	362411_0094
	362411_0095
	362411_0096
	362411_0097
	362411_0098
	362411_0099
	362411_0100
	362411_0101
	362411_0102
	362411_0103
	362411_0104
	362411_0105
	362411_0106
	362411_0107
	362411_0108
	362411_0109
	362411_0110
	362411_0111
	362411_0112
	362411_0113
	362411_0114
	362411_0115
	362411_0116
	362411_0117
	362411_0118
	362411_0119
	362411_0120
	362411_0121
	362411_0122
	362411_0123
	362411_0124
	362411_0125
	362411_0126
	362411_0127
	362411_0128
	362411_0129
	362411_0130
	362411_0131
	362411_0132
	362411_0133
	362411_0134
	362411_0135
	362411_0136
	362411_0137
	362411_0138
	362411_0139
	362411_0140
	362411_0141
	362411_0142
	362411_0143
	362411_0144
	362411_0145
	362411_0146
	362411_0147
	362411_0148
	362411_0149
	362411_0150
	362411_0151
	362411_0152
	362411_0153
	362411_0154
	362411_0155
	362411_0156
	362411_0157
	362411_0158
	362411_0159

