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Abstract

This thesis is concerned with the performance modelling of data replication protocols.
Data replication is used to provide fault tolerance and to improve the performance
of a distributed system. Replication not only needs extra storage but also has an
extra cost associated with it when performing an update. It is not always clear which
algorithm will give best performance in a given scenario, how many copies should be
maintained or where these copies should be located to yield the best performance.
The consistency requirements also change with application. One has to choose these
parameters to maximize reliability and speed and minimize cost. A study showing the
effect of change in different parameters on the performance of these protocols would
be helpful in making these decisions. With the use of data replication techniques in
wide-area systems where hundreds or even thousands of sites may be involved, it has
become important to evaluate the performance of the schemes maintaining copies of
data.

This thesis evaluates the performance of replication protocols that provide differ-
ent levels of data consistency ranging from strong to weak consistency. The protocols
that try to integrate strong and weak consistency are also examined. Queueing theory
techniques are used to evaluate the performance of these protocols. The performance
measures of interest are the response times of read and write jobs. These times
are evaluated both when replicas are reliable and when they are subject to random

breakdowns and repairs.
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Chapter 1

Introduction

1.1 Statement of problem

The motivation behind data replication is to improve both the availability and the
speed of retrieval of data objects. These objectives have become increasingly im-
portant in recent years as the provision of on-line information and the dcmand for
it have grown exponentially. The idea is simple: keeping several copies of an object
on different servers would facilitate (a) its survival in the event of hardware crashes
and (b) its accessibility to several users in parallel. These advantages are of course
bought not only at the price of extra storage needed for storing more than one copy
of the data (replicas) but also at the price of the overhead incurred in maintaining
consistency between the replicas. Different applications require different levels of con-
sistency. In some cases it is important that all copies should be identical all the time
whereas other applications may tolerate intermediate inconsistencies among different
copies of the data provided that all copies eventually become the same. The cost
of the protocol to maintain these copies depends on the type of consistency needed.

It is therefore important to be able to evaluate the effect which a given consistency
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protocol has on the performance of the system.

There is no shortage of proposed algorithms to manage replicated data. These
protocols usually fall into two different categories : (a) strong consistency protocols
guarantee that all replicas are identical at all times and ensure that a read always
gets most recent value of the data and (b) weak consistency protocols allow replicas
to differ in order to improve performance. Some protocols that try to integrate both
of these approaches into the same framework have also been proposed [1]. These
protocols try to organize replicas in levels with each level providing a different type
of consistency. We call these protocols multi-level protocols.

Replication is not cheap. It not only needs extra storage but also extra cost to
perform an update. It is still not clear which algorithm will give best performance in
a given scenario, how many copies should be maintained or where these copies should
be the located to yield the best performance. The consistency requirements also
change with application. One has to choose these parameters to maximize reliability
and speed and minimize cost. A study showing the effect of change in different
parameters on the performance of these protocols would be helpful in making these
decisions.

In this thesis we study and compare the performance of data replication proto-
cols using analytical modelling methods. The models used for performance analysis
make certain simplified assumptions so that they can be solved mathematically. The
results obtained from such analysis depend on the assumptions made to reach a suit-
able model. These assumptions generally are about the probabilistic distributions of
job arrivals, service times, failure and repair characteristics. Even in the presence of
simplifying assumptions the results obtained from such analysis are quite helpful to

understand the behaviour of actual physical phenomenon. Moreover these methods



have the advantage of computational efficiency over other techniques. At some places
where the exact analysis of the model was intractable, we provide approximate solu-
tions. We then compare the results obtained from these approximate solutions with
simulation results.

Different replication protocols are being designed to work efficiently for different
type of applications. It is not wise to compare the performance of protocols that fall
into one category with the protocols that fall in some other category. Protocols that
maintain strong consistency are suitable for the case when the number of replicas
are not very large. Our analysis shows that for these protocols there is an optimal
degree of replication which depends on arrival and service rates of jobs. Increasing
number of copies beyond this limit degrades the performance of the protocol instead
of improving it. On the other hand weak consistency protocols are being designed
for the applications that can tolerate some inconsistency in data to get better per-
formance. In this thesis we first study the performance of quorum based protocols
that provide strong consistency. Then we study the performance of a hierarchical
replication protocol with two levels of hierarchy. The protocol keeps some replicas
strongly consistent while allowing others to differ providing different levels of consist-
ency at different levels of hierarchy. We finally study and compare the performance

of protocols that allow updates and queries to occur asynchronously on any replica.

1.2 Summary of Previous Work

Weighted Voting algorithm
The first voting approach was the majority consensus algorithm proposed by R.

H. Thomas [67]. The algorithm assumes the existence of two processes, a database



managing process (DBMP) and an application process (AP). The database copy at
each site is accessible only through DBMP residing at that site. Query and update
accesses to the database are initiated by AP. An AP while submitting an update also
supplies the base value of the data to which update should be applied. A DBMP on
receiving an update compares the base value of the data item with current value. If
there is no change and this request does not conflict with some pending request it
votes OK otherwise votes PASS. If the value has been changed it votes REJECT. An
update can only be executed after getting a majority of OK votes. This algorithm
was then generalized by D. K. Gifford in {25]. He named his algorithm the Weighted
Voting Algorithm. The algorithm proposed by D. K. Gifford allows a write (read)
request to execute only after collecting a write (read) quorum of votes. Several
variants of this algorithm also exist in the literature [60, 33, 5, 8] that try to improve
the performance of the protocol for a particular situation at the expense of running
some expensive solution for some other case. We explain Weighted Voting Algorithm
and its variants in detail in chapter 2. There are several modelling and simulation
studies of this algorithm and its variants, and of related issues concerning readers
and writers in database systems. Various aspects of performance and availability
have been addressed by means of finite-state models. Some of them are:

In [64] W. Smith and P. Decitre give two procedures, based on probabilistic ana-
lysis, to determine the availability of a replicated object and the probability that a
read or write request fails.

In [6) M. Ahamad and M. H. Ammar present an analysis of the algorithm assum-
ing that if an appropriate quorum is available for a transaction, its service time 1is
negligible and thus service is completed instantaneously. This enables them to model

the system as a birth and death process representing failure and repair of sites. They
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use this model to find the optimal degree of replication, optimal quorum assignment
and mean transaction response time which is the first passage time for an arriving
transaction from the state when it arrives to the state when a quorum is available
for its execution. This model does not consider the effect of queueing or the service
times of read and write jobs on the performance.

In [61] D. Saha and et al. compare the performance of the Weighted Voting
protocol and its variants based on average message overhead.

These studies ignore the effect of queueing and congestion. Studies that use the
queueing theory approach for studying the performance of replication are [16, 11, 58,
35, 36].

Systems where the queue of read access is saturated, or where any number of reads
can be processed in parallel, were examined in [16] by E. G. Coffman et al. In [11]
Baccelli and Coffman have analysed a data replication model with stable queues for
both read and write access (the latter having preemptive priority over the former), by
treating the write requests as interruptions. The analysis assumes that a read needs
only one copy for execution whereas a write needs all copies.

Nelson and Iyer [58] have applied the matrix-geometric solution method to a differ-
ent model where read and write accesses wait in a common queue and are served in or-
der of arrival. They present two models for the synchronous and the non-synchronous
cases. A read request needs only one copy whereas a write is performed on all cop-
ies. In the synchronous case a write operation in progress blocks all the requests
that arrived after it until its completion of service. An unblocked read request can
start processing when it reaches the head of the request queue and when there are no
outstanding write requests that arrived before it. In the asynchronous case a write

operation releases each copy as soon as it is updated and released copies are available
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for service to any waiting read request at the head of the request queue.

In [35] V. G. Kulkarni and L. C. Puryear consider a reader-writer queue with
readers having non-preemptive priority over writers. The system can process an
unlimited number of readers simultaneously. However, writers have to be processed
one at a time. The analysis uses an M/G/oo queue busy period to model readers,
followed by a modified M/G/1 queue to model the entire system.

In {36] V. G. Kulkarni and L. C. Puryear analyse the stability and queuing time
of the reader-writer queue with alternating exhaustive priorities and no breakdowns.
Again the system can process an unlimited number of readers simultaneously and
writers have to be processed one at a time. There is infinite waiting room for both.
The alternating exhaustive priority policy operates as follows. Assume that the sys-
tem is initially idle. The first arriving customer initiates service for the class (readers
or writers) to which it belongs. Once processing begins for a given class of customers,
this class is served exhaustively. At this point, if the customer of the other class are
in the queue, priority switches to this class, and it is served exhaustively. This is a

variant of polling.

Multi-level Replication Protocols

Users are sometimes willing to accept slightly out-of-date information, if they can
access it much faster. This is the basis of the universal name service proposed by
C. Ma in [46] and hierarchical asynchronous replication protocol, or HARP, proposed
by N. Adly et al. HARP organizes replicas into a multi-level hierarchy. Replicas at
level 0 are always strongly consistent but replicas at other levels may become out
of date. In [2], N. Adly et al. have evaluated the performance of their protocol.
That evaluation is based on a separable queueing network model, which precludes

simultaneous occupation of several servers by one request, priority scheduling for
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requests of different types and server breakdowns.

In quasi-copies schemes proposed by D. Barbara and H. Gracia-Molina in [9] there
is a central location where all the updates are processed, and several copies are located
throughout the network. A predicate is associated with each copy, establishing the
degree of inconsistency that can be tolerated. The scheme was mainly proposed to use
the user’s local storage capabilities to cache data at the user’s site in an information
retrieval system. In [9] authors present a performance model for their scheme. As
there is only one central location, they model the central and other nodes as M/G/1
servers. This is different from the two-level replication analysed in this thesis where
there are more than one copies which are strongly consistent and we have to consider
the simultaneous occupation of several servers by one request.

Another scheme that deals with two-tier replication has been presented in [31] by
Gray et al. for mobile systems. They also compare the performance of their scheme
with eager replication (strong consistency protocols) and lazy replication schemes.
As in the case of [2] their analysis also precludes simultaneous occupation of several
servers by one request, priority scheduling for requests of different types and server
breakdowns.

Our analysis of these protocols assumes the existence of separate queues for read
and write jobs and shows the effect of simultaneous occupation of several servers by
one request on the response time of read and write jobs. For reliable replication the
analysis is based on a similar analysis done by I. Mitrani and P. J. B. King [51] for
multiprocessor systems with preemptive priority.

For the case of breakdowns and repairs we use the Spectral expansion method
described in [50]. This method can be used to solve a class of two-dimensional Markov

models whose state space is a lattice strip. As the Markov model with two queues for
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read and write and with breakdowns become three dimensional we use approximations

to solve the system.

Gossip and Timestamped anti-entropy protocols

In [39] R. Ladin proposes a protocol that allows an operation (an update or a
query) to happen at a single replica. The effects of the call are then propagated to
other replicas by lazy exchange of gossip messages between replicas. The method
allows three kinds of operations: client ordered, server ordered and globally ordered
operations. We describe them in detail in chapter 2. Results showing the performance
of the protocol based on experiments performed have also been presented in [39)].

In {26, 27] Golding presented his Timestamped anti-entropy protocol (TSAE)
which provides weak consistency. Like [39] TSAE also allows an operation (an update
or a query) to happen at a single replica. In the TSAE protocol each replica at
random intervals selects some other replica and instead of sending a gossip message
it exchanges information with the selected replica. Once this exchange is complete
both replicas have seen the same set of messages. In (28, 29] Golding presents the
results from his simulation analysis of the protocol giving probability of successfully
delivering a message to all sites, expected data age, probability of getting old values
etc. The paper also shows the effects of partner selection policy and the number of
sites on the performance. The analytical model for spreading an update to all replicas
has also been given in [28]. He used Monte Carlo simulation to get the results for the
analytical model.

In this thesis we present an analytical solution to evaluate and compare the per-
formance of the schemes proposed in [39] and [26] for spreading the updates. In our
model, replicas execute updates in the order in which they arrive in the system. We

take average response time of an update as the performance parameter which we
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define as the difference between times when an update arrives at a replica and the
time when it can be executed on that replica. To the best of our knowledge this prob-
lem has not been analysed before. We show that this time is the same as the time
taken to spread an update to all replicas in the dual system (we define dual system
in chapter 7). We show that this time depends on the connectivity of the network.
We also derive upper and lower bounds on the time when an arriving update can be

executed by all replicas.

1.3 Overview of Thesis

The aim of this thesis is to study and compare the performance of various data
replication protocols. First we describe different aspects that should be considered
while evaluating the performance of these protocols and give a classification of these
protocols in chapter 2.

In chapter 3 the analysis of weighted voting protocol is presented both in case
of reliable replicas and when breakdowns may occur. We use generating function
approach to solve our model when all replicas are reliable. We then present the
analysis of our model for the case when replicas may fail but join the service again
within a finite time after being repaired. As the exact analysis of this model with
both read and write queues unbounded is, at present, intractable, we provide an
approximate solution using the spectral expansion method. We also compare the
approximate analytical results with the simulation results. The comparison shows
that results obtained from such an approximation are very close to exact results
when write arrival rate is low.

Chapter 4 shows the effect of scheduling strategies on the performance of the

Weighted Voting protocol. We compare the results for the case when write jobs have
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higher priority with the case when FIFO scheduling is being used.

In chapter 5 we give an exact solution for the system with breakdowns when there
is a single server, two type of jobs and type 1 jobs have preemptive priority over type
2 jobs.

The analysis of a data replication protocol with two levels of consistency is given in
chapter 6. In many applications the user does not require the most recent information
and he may be satisfied with slightly out-of-date information if it can be accessed
quickly. This is the basis of this type of protocols. This chapter not only presents the
analysis of the protocol both for reliable and unreliable replication but also gives an
analytical method to find out the probability of getting out-of-date information. The
results presented in this chapter have been published in the form of a paper in the 2nd
annual IEEE International Computer Performance and Dependability Symposium at
Urbana-Champaign, Illinois, 1996 [53].

Chapter 7 first presents the analysis of gossip scheme for spreading updates when
updates are being executed in the order they arrive into the system. It then compares
its performance with exchange-gossip scheme where instead of sending gossip messages
at random intervals replicas exchange information with each other. Upper and lower
bounds on the time when all replicas have executed a given update have also been
given. We also show the effect of network topology on the performance of the protocol.
Most of the results given in this chapter have been presented in 3rd CaberNet Plenary
Workshop held in Rennes in April 1997 [54)].

Chapter 8 concludes the thesis and gives directions for further research work in

this and related areas.
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Chapter 2

Data Replication

2.1 Introduction

The replication of data objects on several sites has been advocated as an approach for
improving both the availability and performance of distributed systems. By storing
copies of shared data on processors where they are frequently accessed, the need
for expensive remote read access is decreased. By storing copies of critical data
on processors with independent failure modes, we can increase the probability that
at least one copy of the data will be accessible even if some of the processors fail.
However, these benefits are achieved at the cost of maintaining correctness of data
across several copies [21]. Earlier approaches for maintaining replicated data attempt
to keep all copies identical all the time. The correctness requirements depend on the
application. For example, the USENET system maintains replicas of items posted
to electronic bulletin boards across the Internet, the replicas being held within or
close to the various organizations that provide access to it. The DNS naming service,
maintains copies of name-to-address mappings for computers and other resources and

is relied on for day-to-day access to services across the Internet [19]. Both of these
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applications can cope with intermediate inconsistencies of data and by using this fact
the performance of the data replication scheme can be improved.

The performance of a data replication scheme also depends on the granularity
of data replication which may vary from in processor caches to replicating a whole
database or file system. In this chapter we first explain various terms related with
data replication and describe parameters used to evaluate the performance of different
data replication schemes. We then classify and describe replication protocols. Finally

we discuss the future of data replication.

2.2 Consistency and message ordering

An important criterion in the design of a data replication protocol is the type of
consistency needed. This choice significantly affects the efficiency of data replication
scheme. In [32] J. N. Gray et al. describe four degrees of consistency for database
systems. P. A. Bernstein et al., in [13], describe the consistency preservation as the
concept of producing database states that are meaningful. He further states that one
copy serializability can be assumed as the correctness criterion for replicated data.
This requires that interleaved execution of the transactions on a replicated database
should be equivalent to a serial execution of those transactions on a one-copy database.
All these definitions of consistency are based on how execution of transactions affects
the state of database.

There is some work that tries to define consistency of replicated data depending
on how far different copies of data may differ. A. Sheth and M. Rusinkiewicz in [62]
define consistency based on the difference of replicated copies in time and space. As
pointed out the consistency requirements for replicated data may vary depending on

the applications. Not all applications require that all copies should be identical all
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the time. Many applications may tolerate intermediate inconsistencies which may
arise based on the way updates are being implemented on different replicas. An
update may or may not require synchronization among a group of replicas. It may
complete after updating all replicas or it may complete after updating only a small
set of replicas, possibly one, and then it may be propagated to other replicas in the
background allowing replicas to differ at any time. Our definition of consistency is
based on the difference in the states of the replicas at any time (how far the replicas

may differ from each other).

Strong or Immediate consistency

Strong consistency or immediate consistency guarantee that all replicas are identical
at all time. Some of the possible ways of doing this are by means of quorums or with
the help of some centralized control. If using quorums an update operation com-
pletes after updating all replicas in quorum and during this time no other operation
(other update or read) can be in progress. This requires synchronization among a
large number of replicas but ensures that replicas are mutually consistent and a read
access always gets the most up-to-date version of the data. Protocols that provide
strong consistency with the help of a centralized control depend on the reliability and

speed of the centralized control.

Weak consistency

Weak consistency does not guarantee that replicas are identical at all time. Weak
consistency protocols provide higher availability and better response time by allowing
updates and queries to occur asynchronously at any replica. The updates are then
propagated to other replicas using some reliable or unreliable technique. This may

create temporary inconsistencies among the replicas. Reads may read older versions
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of data. This approach is based on the assumption that the applications can tolerate
temporary inconsistencies. The system guarantees to resolve these inconsistencies and
return the replicas to mutual consistency [23]. Reconciliation methods are available

to resolve conflicts.

Multi-level consistency

Some protocols that try to integrate both of these approaches into the same frame-
work are also being proposed [1]. Protocols that fall into this category try to organize
replicas in levels or groups with each level providing a different type of consistency.
For example the protocol proposed in [1] by Noha Adley organizes replicas into a lo-
gical hierarchical structure and supports three different type of write operations and
two different type of read operations (see section 2.5.3). By carefully choosing the
type of read and write operations at each level an application designer may provide
different type of consistencies for each level. We call these protocols multi-level pro-
tocols.

The order in which different updates are implemented is another important issue
that affects the design of the protocol. Replicas may implement operations in a
totally ordered, causally ordered or unordered way. The cost of implementing an
update depends on the ordering imposed. Following are some of the most common

orderings:

Total

Updates are implemented in the same order at every replica. This order may be
different from the order in which the update operations arrive in the system. Total
order ensures that if update a is being implemented before update b at any replica

then all other replicas will implement a before b.
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Causal

Update operations are implemented in an order that respects their causal rela-
tionship. Event b causally depends on event a if it occurred after a on the same
process or if a is sending of a message by one process and b is receiving of the same
message by another process. If update b causally depends on update a then every
replica implements a before b. On the other hand if two updates are not causally
dependent then they can be implemented in any order.
Sync-ordering

If a system supports several different type of ordering for its update operations
then a sync-ordered operation ensures that all other operations are consistently im-
plemented before it or after it {19]. For example, if any site implements an operation a
before implementing a sync-ordered operation b then all sites will implement a before
b. This is true regardless of the type of order of a.
Unordered

There is no restriction on the order in which different update operations are im-

plemented. They can be implemented in any order at any replica.

2.3 The Environment

Data replication protocols are designed to work in an environment in which individual
computers, or nodes, are connected by a communication network. These protocols
make certain assumptions about the type of failures that may occur in the network
and certain services that should be available for the protocols to behave correctly. We
first present a classification of the failure types and then describe some of the services

these protocols may need to work correctly.
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Failure Types

Failures may occur in the individual components of the network and due to these
faults the network may partition. We first describe the faults that may occur in the
individual components of the network. P. Jalote in [34] gives a classification of these
faults based on how the faulty component behaves when it fails. He classifies the

faults into four categories:

e crash fault The fault that causes the component to halt. With this type of
fault, a component never undergoes any incorrect state transition when it fails.
The processors that behave in this way in the event of any failure are termed

as fail-stop processors.

o Omission fault This type of fault causes a component not to respond to some

inputs.

o Timing fault When a component responds too early or too late, the fault is

called as timing fault.

e Byzantine fault An arbitrary fault which causes the component to behave in

a totally arbitrary manner during failure.

These faults form a hierarchy with the crash faults being the simplest to deal with
and Byzantine faults being the most difficult. This hierarchy is shown in Figure 2.1

When the failure in nodes and communication links of the network fragments
the network into isolated subnetworks in a way that nodes in one subnetwork can
not communicate with the nodes in other subnetwork, it is called a partition failure.
These subnetworks are then called partitions of the network.

Almost all replication protocols ensure the correct behaviour of the system when

the failure in the components of the network is a crash failure. Many of these either
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o Byzantine

Figure 2.1: Failure Types

do not work or their performance degrades significantly when the network partitions.

Stable Storage

Many replication protocols assume the existence of some stable storage for the
correct functioning in the event of failure of network components. The contents of a
stable storage are not destroyed or corrupted by a failure. P. Jalote in [34] defines an
ideal stable storage as one where a read always returns good data (which is also the
most recently written data), and a write always succeeds. He also describes methods
by which approximations to stable storage can be implemented using disk storage

system.

Network Topology
Replication protocols generally do not make any assumption about the underlying
network topology and guarantee to work correctly for all network topologies. But their

performance may vary with network topology. We show this in chapter 7.

Clocks

Each computer uses its own physical clock. These clocks are electronic devices that
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count oscillations occurring in a crystal at a definite frequency, and which typically
divide this count and store the result in a counter register. This can be read by
software and scaled into a suitable time unit. This value can be used to timestamp
some event or message on that computer [19]. As the crystal based clocks used in
computers count time at different rates, they may diverge. Clock synchronization
protocols like Berkeley algorithm and Network Time Protocol (NTP) try to ensure
that clocks at different computers do not differ by more than a specified amount.
Some data replication protocols that use such clock values in their timestamps may
require the existence of a clock synchronization protocol to provide a certain level of

consistency.

2.4 The Parameters

The performance of a data replication protocol usually depends on many parameters.
In [55] H. Gracia-Molina categorizes these parameters into four different groups: base
parameters, control parameters, failure parameters, and performance parameters. We
discuss some of these parameters that closely affect the performance of a replication

protocol.

o Type of consistency This is the most important factor that decides the design
of the replication protocol. In section 2.2 we defined consistency based on the
way replicas implement updates. Section 2.5 categorizes protocols depending
on the type of consistency they support. The consistency requirements depends

on the application which in turn decides the choice for a protocol.

o Number of copies The choice about the number of copies depends on the type

of consistency and performance requirements of the application. Increasing the
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number of copies should increase the availability and performance. But if the
application needs stronger consistency which needs synchronization among the
copies, increasing the number of copies more than a specified value may well de-
crease the performance. This is due to the overheads needed for synchronization
among large number of copies. Even in case of weaker consistency requirements
by the application the growth in performance may not increase linearly with

number of copies.

Location of copiesIn [44) M. C. Little and D. L. McCue show that the placement
of replicas plays an important role in deciding the performance of the replication
protocol. The placement of replicas should be chosen based on the reliability of
nodes and links as well as the bandwidth of the network and the geographical
distribution of requests. Little et al. in [43] describe a Replica Management
System (RMS) that dynamically computes the level and placement of replicas
to take into account the changing conditions in a distributed system. They
show that the performance of such a dynamic system is far better than static

one.

granularity of data Size or granularity of data not only affects storage cost but
also maintenance cost. For example if the replication protocol treats each entry
in a table as a separate entity for replication the cost of replication may be too
high. On the other hand if the complete table is being treated as a single object
for replication, multiple requests trying to access different items of the table,

not related with each other, will not be successful.

Failure model The type of failures may vary from Byzantine to fail-stop. Most

of the replication protocols assume that processors are fail-stop and there is no
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partition in the network.

2.5 Replication Protocols

2.5.1 Strong Consistency Protocols

Strong consistency protocols always provide most current version of data to a user.
These protocols may use primary copy (a centralized control) or quorum based ap-
proach to provide strong consistency. An approach to consistent replication based
on quorums that has gained acceptance in the literature is provided by the weighted
voting algorithm [25]. We describe the primary copy, weighted voting and some of

the variants of weighted voting algorithm.

Primary copy

The primary copy approach has been used at many places, not just for data
replication. M. Stonebraker describes the primary copy approach as used in INGRES
in [65]. The basic approach can be described as having a primary site and some
secondary (backup) sites. The number of secondary sites depends on the level of
fault tolerance needed. If the operation is a read then it can go to any site that
performs the operation and returns the result. A write operation first goes to the
primary site. Before performing the write operation the primary site sends the write
request to all backups. When all these backups have received the request, then the
primary performs the operation and returns the result. This ensures that a read
always gets the most recent version of the data. If a primary fails then a new primary
has to be elected. There are various ways of electing the new primary as described in

[56] by H. Garcia-Molina.
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Weighted Voting algorithm

In this algorithm [25] every copy of replicated data is assigned some number
of votes. The algorithm uses two integers, R and W, referred to as read quorum
size and write quorum size, respectively. The execution of a read access requires
the simultaneous holding of copies having a sum of R votes, while that of a write
access requires copies with sum of votes equal to W votes. These numbers satisfy
R+W = N+1, where N is the total number of votes. Hence a read access and a write
access cannot execute in parallel. The protocol also prohibits the parallel execution
of two write access even if write quorums do not intersect. It does so by forcing a
write access to first collect a read quorum and then collect the write quorum.

Every copy maintains a version number that reflects the number of updates that
have been performed on this copy. Copies with highest version number are current
copies. A write operation always updates current copies so there is always a subset
of copies whose votes total to W that are current. Because read and write quorums
intersect, a read quorum always has a current copy.

The number of votes assigned to a copy depends on its importance. The perform-
ance and reliability characteristics of the protocol depends on the choice of R, W and
the voting structure. If all the copies have only one vote a read can tolerate up to

(N — R) faulty copies and a write can tolerate up to (N — W) faulty copies.

Voting with Witnesses

In [60] J. F. Paris proposes to replace some of the replicas by mere records of
the current state of the file containing the data. Although not containing any data
themselves, these records called witnesses can testify about the current state of the
replicated file/data and can vote like conventional copies. Paris claims that because

of their very small sizes, witnesses have practically negligible storage cost. Bringing a
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witness up to date becomes also a trivial operation since it only involves the update
of the version number. Witnesses can thus be created much more freely than conven-
tional copies. He also shows that under very general assumptions, the reliability of a
replicated file consisting of n copies and m witnesses is the same as the reliability of

a replicated file consisting of n + m copies.

Dynamic Voting

In a voting-based scheme if there does not exist a partition containing a majority
of sites, no updates can occur anywhere in the system. S. Jajodia and D. Mutchler in
[33] propose an extension of voting algorithm which permits a file to be updated in a
partition provided it contains a majority of up-to-date copies. Each copy along with
the version number also contains an integer called the update sites cardinality which
always reflects the number of sites participating in the most recent update. Whenever
an update is made, it must be made to all sites in the partition. Thus if in the last
update only m out of total N copies participated, the current update requires only a
majority of m/2 + 1 copies (in contrast to Voting which needs a majority of N/2 +1

copies).

Hierarchical Quorum Consensus

D\g? _VA major problem with the quorum consensus method is that it does not scale
we%The Hierarchical Quorum Consensus algorithm proposed by Akhil Kumar in [8]
generalizes the quorum consensus scheme into a multilevel algorithm that requires a
smaller quorum size of N%8 copies only. The algorithm logically organizes the set of
copies of an object into a multilevel tree (of depth m) with the root at level 0. The
physical copies of an object are stored only in the leaves of this tree, while the higher

level nodes of the tree correspond to logical groups. The algorithm works as follows:
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A read (write) quorum at level 7 is defined as the number of subgroups of a level
¢ — 1 group that must be locked by a read (write) operation to obtain read (write)
access to the group. This is a recursive definition.

For example Figure 2.2 shows how nine copies can be organized into three sub-
groups. If they are numbered as ¢11, ¢12, ¢13 (subgroup 1), a1, 92, co3 (subgroup 2)
and c31, €32, €33 (subgroup 3) a possible quorum is ¢;y, ¢, €21, 20 When write quorum

is 2 for level 0 and 1.

ARIDICARIDICAEID

Subgroup 1 Subgroup 2 Subgroup 3

Figure 2.2: Hierarchical Quorum Consensus: Nine copies organized in three subgroups

Tree Quorum Protocol
In [4] D. Agrawal and A. El Abbadi discuss how the synchronization cost of the
quorum based algorithms can be reduced by exploiting the structural information

of the underlying system. They describe their tree quorum protocol that organizes
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replicas into a logical tree structure. A write quorum is constructed by selecting
the root and a majority of its children. For each selected child, the protocol adds a
majority of its children to the quorum. This process continues until the leaves are
reached. A read quorum is constructed by selecting the root of the tree. If successful,
this node constitutes the read quorum. If it fails, it tries to access a majority of the
root’s children. Again if successful this set constitutes the read quorum, otherwise,
for each copy, which is inaccessible, the protocol tries to replace it with a majority of
its children. This process is repeated recursively until a set of copies is included in
the read quorum, or no such copies are accessible. For example in Figure 2.3 a write
quorum may be {1,2,3,5,6,8,9} or {1,2,4,6,7,11,12} etc. A read quorum may be {1}
or {3,4} etc. They also give upper and lower bounds on quorum sizes which depend

on the height of the tree and logical connectivity of nodes of the tree.

® O © ®w O

Figure 2.3: A tree organization of 13 copies
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Grid Protocol

In the grid protocol [15], presented by S. Y. Cheung et al. nodes that store replicas
are arranged in a logical grid and read and write transactions are required to lock
replicas in rows and columns of the grid so that conflicting transactions need to obtain
locks from at least one common node. For example, a read transaction may lock all
nodes of one column and a write locks all nodes of one row and one node in each of
the other rows. In this scheme, only O(+/N) of the N nodes need to participate in a

transaction.

Delay-Optimal Quorum Consensus

This scheme suggested by Ada Waichee Fu in [70] takes into account the network
topology and finds a quorum with minimum communication delay. Given an operation
at a node s it chooses a quorum such that its virtual distance y from the furthest

node in this quorum is minimized.

2.5.2 Weak Consistency Protocols

We call protocols that allow updates and queries to occur asynchronously on any
replica, weak consistency protocols. Reads are allowed to see older versions of data.
These protocols allow replicas to differ and generally provide a set of algorithms that
support different level of consistencies based on the ordering imposed on implement-
ation of updates.
Epidemic Replication

Alan Demers et al. in [22] describe several randomized algorithms for distributing

updates and driving the replicas toward consistency. These are:
e Direct Mail: each update is immediately mailed from its entry site to all other
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sites. This is not entirely reliable as a site may not know about all other sites

and mail is sometimes lost.

» Anti-entropy: every site regularly chooses another site at random and by ex-

changing database contents with it resolves any differences between the two.

e Rumor mongering: sites are initially “ignorant”; when a site receives a new
update it becomes a “hot rumor”; while a site holds a hot rumor, it periodically
chooses another site at random and ensures that the other site has seen the
update. After trying to share an update with too many sites that have already

seen this update the site stops spreading it.

Grapevine and Clearinghouse

Grapevine [14] and Clearinghouse [59] are early examples of using a replication
scheme that supports weaker consistencies. An update can be submitted at one replica
and is later propagated to other replicas. During this period different copies of the
replicas may differ from each other. Each update has a unique timestamp associated

with it which is produced from the server’s internet address and clock.

Global Name Service

B. W. Lampson describes a Global Name Service in [42] that uses replication to
provide high availability. The copies are kept approximately, but not exactly, the
same. The update originates at one copy and is initially recorded there. The basic
method for spreading updates to all copies is a sweep operation, which visits every
copy, collecting a complete set of updates and writes this set back to every copy. All
the copies are linked into a logical ring. The sweep starts at any copy and then goes

through the complete ring returning back to starting point.
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OSCAR

OSCAR (Open System for Consistency and Replication) [23] provides a variety
of message orderings. It is based on two cooperating agents called replicators and
mediators which work together to provide replication and consistency for a set of
database replicas. Each replicator is uniquely paired with a mediator and at least
one mediator must be active in each network partition.

When a replicator receives an update from its database server it uses an unreliable
multicast to send the update to all other replicators responsible for copies of the
database. On receiving an update a replicator stores the update in its log and then
delivers the update to its associated database server according to the consistency
method associated with the data item.

A mediator periodically polls the replicators to get the information about the
updates that have been received by each replicator. Once a round is complete a me-
diator summarizes the information and sends the summaries back to the replicators.
The replicators may use this information to push and pull the missing updates.
Lazy Replication

Rivka Ladin in [39] proposes a set of algorithms to implement three different type

of orderings for the operations. These are:

e Client ordered The operations for which the clients define the required order

dynamically during the execution.

e Server ordered these operations are totally ordered with respect to one another

even when no dependency relationship is defined by the client.

e Globally ordered These operations are totally ordered with respect to all other

operations.
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Each update is assigned a unique timestamp called its uid. In the first case when
a client submits an update U it also tells about its dependency on other updates
by passing a label along with the update. This label contains uids of all updates
U depends on. An update is ready for implementing when the server has already
implemented all updates it depends on. Server ordered updates also take an input
label. The label identifies the client ordered updates and server ordered updates that
must precede the server ordered update. Unlike other operations, a globally-ordered
update U does not take a label as an argument; instead, the system decides what
operations precede U.

Timestamped anti-entropy

Timestamped anti-entropy protocols can provide several different message delivery
orderings, including total, per-process, or no ordering. Causal orderings are possible
if the process clocks meet Lamport’s happens-before condition [72]. The algorithm
can be described in short as follows:

Timestamped anti-entropy protocols maintain three data structures: a message
log and two timestamp vectors. The message log contains messages that have been
received by a process. Processes maintain a summary timestamp vector that records
the timestamp of last update for each replica as all updates before this have been
received by the process. The third data structure is the acknowledgement timestamp
vector that records what messages have been acknowledged by other processes. From
time to time, a process selects another process and initiates an anti-entropy session.
During this session the two processes first exchange their summary and acknowledge-
ment vectors. Based on these vectors the two processes determine if one of them
has messages that the other has not yet observed. The messages are then exchanged

using a reliable stream protocol. To explain how the protocol works we reproduce
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here an example of anti-entropy session given in [29] (see Figure 2.4).

Log of Replica A Log of Replica B

A 1| 3| 5| 12 1| 3
B 2 2 5 6
C 2 3 4 2
Summary of A Summary of B
12 3
2 11
4 2

(a) Before Exchange

Summary of Replica A and B Logs of Replica A and B
12 1 3 5] 12
11 2 o} 6 9 11
4 2 3 4

(b) After Exchange

Figure 2.4: An example of anti-entropy session
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2.5.3 Multilevel Consistency Protocols

Use of replication techniques in distributed environments with thousands or even more
nodes connected through a wide area network motivated the need for algorithms to
manage replicated data that are scalable and also ensure properties like availability
and speed of retrieval of data. Distributed systems that scale are organized hierarch-
ically to exploit locality of reference [24]. Based on this fact many researchers have
proposed algorithms where replicas are organized in a hierarchy of two or more levels.
These protocols maintain some replicas in strongly consistent state while allowing

others to become out-of-date. We describe some protocols that fall into this category.

Quasi-copy

The quasi-copies algorithm was proposed by Daniel Barbara and H. Gracia-Molina
n [12]. Quasi-copies are replicated copies that may be somewhat out of date but
are guaranteed to meet a certain consistency predicate. With quasi-copies, it is
assumed that a central location exists, where all the updates are processed, and several
copies are located throughout the network. A predicate is associated with each copy,
establishing the degree of inconsistency that can be tolerated. For instance, the copy
must not be more than ten minutes old. The system guarantees that this predicate
is not violated when updates occur. This can be done in two ways depending on who

is responsible for the consistency, central node or client.

Universal Name Service

C. Ma in [46] proposed Universal Name Service that tries to integrate both strong
and weak consistencies. Replicas are grouped into first class servers and secondary
servers. The first class replicas use quorum based scheme to implement strong con-

sistency whereas the secondary replicas use anti-entropy method described in [22].
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Only the first class servers carry out updates. These updates are then propagated to
secondary servers using push-pull techniques described in [22]. Secondary servers are
used for read only operations that do not necessarily require most recent version of

the data.

Hierarchical Asynchronous Replication Protocol

HARP also tries to integrate strong and weak consistency into the same framework
by supporting a set of operations that need different level of consistency. The protocol
takes the advantage of the physical hierarchy present in the large networks to organize
replicas into a logical multilevel hierarchy [2]. In this hierarchy nodes are grouped
into clusters (normally all the nodes belonging to the same LAN) and clusters are
organized into a tree, such that each cluster is assigned a father node in its parent
cluster. The replicas in the root or top cluster maintain strong consistency by the use
of quorums whereas the replicas at other levels are weakly consistent. The algorithm
propagates a message in the following way: A node i, originating a message, sends it to
its neighbours, parent and children. This works recursively and a message originated
at any site is propagated everywhere. The protocol supports the following set of
operations: A fast read and a fast write that can be initiated and completed at any
replica. The value returned by a fast read may not be the most recent value of the
data. For applications that need strong consistency the protocol supports operations
slow read and slow write. A slow read (slow write) can be initiated at any replica
but it is implemented only after collecting a read (write) quorum from the replicas at
the root level. The protocol also provides Opt-Write which is similar to slow write,
but it is applied to the database of the site of origin and, optionally, to some other

selected replicas.

Fast write can create temporary inconsistencies in the database. The reconciliation
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methods supported by the protocol are based on the delivery order mechanisms. The
logical hierarchy of replicas can also be reorganized to cope up with the actual physical

changes in the network.

Two-tier Replication

Use of replication techniques in an environment where users and services are mo-
bile need an entirely new approach for maintaining replicas. Most of the nodes are
disconnected most of the time and can not communicate with each other. In [31]
J. Gray et al. show that update anywhere anytime anyway transactional replication
has unstable behaviour as the workload scales up. A ten-fold increase in nodes and
traffic gives a thousand fold increase in deadlocks and reconciliations. They suggest a
two-tier approach for replication in mobile systems. This approach allows mobile ap-
plications to propose tentative update transactions that are later applied to a master
copy. There are two kind of nodes. mobile nodes are disconnected most of the time
whereas base nodes are always connected. Replicated data items have two versions
at mobile nodes. The most recent value received from the object master which is
called master version and the most recent value due to local updates called tentative
version. Similarly there are two kind of transactions. Base Transactions that work
only on master data and they produce new master data. Tentative transactions that
work on local tentative data to produce new tentative versions. The basic idea behind
the scheme can be explained as follows: Each object has a master node. Mobile nodes
accumulate tentative transactions that run against the tentative database stored at
the node. They are reprocessed as base transactions when the mobile node reconnects

to the base. Tentative transactions may fail when reprocessed.
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2.6 Models studied in this thesis

This thesis evaluates the performance of some of the protocols described in previ-
ous section. Chapter 3 evaluates the performance of Weighted Voting protocol that
maintains strong consistency. Both the cases of reliable and unreliable replication
have been analyzed. The model assumes that all replicas are identical and write jobs
have priority over read jobs. Chapter 4 studies the performance of Weighted Voting
protocol when both read and write jobs share the same queue and get the service
on first-in-first-out basis. A comparison of both scheduling strategies has also been
presented. In chapter 5 we present the analysis of the model that contains a single
unreliable server and two type of jobs with type 1 jobs having priority over type 2
jobs. Chapter 6 presents the analysis of a two level consistency protocol. As in case
of HARP replicas at level 0 maintain strong consistency with the help of quorums
but replicas at level 1 may contain out-of-date information. There are three type of
operations that arrive in the system: fast read that may read older versions of data,
slow reads that need an up to date copy of data and write. Finally in chapter 7 we
study the performance of schemes where updates are allowed to occur asynchronously
on any replica which then propagates these updates to other replicas. We study the
performance of the schemes for propagating updates described in Lazy replication

and timestamp anti-entropy protocols.
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Chapter 3

Weighted Voting Protocol

3.1 Introduction

In the previous chapter we describe protocols for maintaining strong consistency by
means of quorums. Almost all these protocols are variants of the Weighted Voting
protocol. In this chapter we present the performance analysis of the Weighted Voting
protocol. We first describe a model for the protocol and then present its analysis.
There are many studies evaluating the performance of quorum based protocols with
availability as the performance measure. These do not take congestion and queueing of
the jobs into account. However, poor performance can be caused both by breakdowns
and by congestion. If the response time of an operation increases over a certain value
(the maximum time for which the user can wait for the response) the data may be
considered as unavailable. This may be because the server is down or the queue 1s too
long. We therefore choose a modelling approach based on queueing theory and use
the response time of the operations as the performance measure. This approach takes
both breakdowns and congestion and queueing into account. Chapter 1 mentions

some work that evaluates the performance of data replication based on the queueing
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theory approach. This either assumes that any number of reads can be executed
in parallel or treats write requests as interruptions whereas the models presented in
this chapter have two separate read and write queues. We first consider the case
of N reliable replicas with two separate unbounded queues for read and write jobs
and present an exact analysis of this model. We study the effect of increasing the
number of replicas and the effect of changing read and write quorum sizes on the
response time of operations (read and write). We then evaluate the performance
of the protocol when replicas are subject to random breakdowns and repairs. The
analysis presented in case of latter is approximate as it considers that the queue for
write jobs is bounded. We finally compare the approximate analytical results for the

second case with simulation results.

3.2 Reliable Replicas

3.2.1 Model

The model presented in this section considers that replicas are fully reliable. We
extend this model to consider the case of breakdowns and repairs in section 3.3. There
are N servers, each managing a copy of the data. We assume that these servers are
identical and each contains only one vote. Two types of jobs, write and read, arrive
into the system in independent Poisson streams with rates A; and ), respectively.
The service of a write job requires the simultaneous possession of W servers (write
quorum), which are held for an exponentially distributed interval with mean 1/v; and
then released. A read service requires R servers (read quorum) and is exponentially
distributed with mean 1/1,. As a read and a write service should never take place

in parallel the read and write quorums should intersect each other. To ensure this
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R+ W = N + 1. Moreover, at most 1 write job can be in service at any moment,
regardless of the value of W. We assume that some concurrency control mechanism
exists to ensure this.

There are two separate unbounded queues for read and write jobs and write jobs
have preemptive priority over reads. If an arriving write job finds that a write service
is in progress it joins the write queue otherwise it preempts all the read services in
progress. The read jobs preempted by the arrival of a write service join the read
queue. A read service can start only if write queue is empty and a read quorum
is available. The maximum number of read jobs that can be served in parallel is
r = | N/R], where |z] is the integer part of .

The parameters v; and v, depend, in general, on the quorum sizes. An access
that engages a larger number of servers can be expected to take longer. Thus, the
average write service times usually increase with W, and the read ones increase with
R. The nature of that increase depends on the way read and write operations are
implemented. If all replicas in a quorum are accessed in parallel, then it is reasonable
to assume that Y .

l:lzi : i:lzé, (3.1)

4 H1 = V2 H2

for some fixed p; and py. Those would be the averages of the largest of W (re-
spectively R)ii.d. random variables, each distributed exponentially with mean 1/
(respectively 1/u2,). If, on the other hand, the operations are performed sequentially

on all replicas, then average service time for read and write are given by:

1w 1_R 62)

) b

51 N Z Vs M2
(that, together with W = N and R = 1, was the assumption in [11]).

The model is illustrated in Figure 3.1.
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N replicas

O

write quorum, W

O

read quorum, R

O

Figure 3.1: Data replication with read and write accesses

3.2.2 Analysis

Let I(t) and J(t) be the numbers of write and read jobs in the system at time ¢.
Under the above assumptions, the pair [I(t), J(t)] is an irreducible Markov process
on the state space {0,1,...} x {0,1,...}. Since the largest number of services in
progress at any time can be either 1 write or r read (but not both), the ergodicity
condition is

A1 Ao

—+—<1. (3.3)
15t TVy

That condition will be assumed to hold. The object of the analysis is to determine

the steady-state joint distribution of I and J, denoted by p; ;:
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pij = lim P[I(t) =i,J(t) =] ; i,5=0,1,... .

These probability satisfy the following set of balance equations:
pi,j[)\l + /\2 + 1/15(i > O) + mln(], 7')1/26(1: = 0)] = Alpi—l,j + A2pi,j-1

+pipa; +min(j + 1,7)20(i =0)p; ;1 5 4,5=0,1..., (3.4)
where p_;; = 0 and p; -1 = 0 by definition, and 6(B) is the indicator function: 1 if
B is true, 0 otherwise.

To solve these equations we define the generating function

= i ipi,ja:iy" ) (3.5)

i=0j=0
Multiplying (3.4) by z'y’ and summing over all 7 and j yields
r—1
(M + A2)g(z,y) + mlg(z, v) — 9(0,9)] + 12[rg(0,y) = Y _(r — §)Pos¥’]
j=0

= \izg(z,9) + dayg(e,y) + =gz, y) — 9(0,9)]
—[rg (0,v) E(T—J )po,;¥] -

After some manipulations we get:

ya(z,y)g9(z,y) = y(z — 1) + rraz(1 - 9)]g(0,9)

+uaz(y — 1) (7 — Dpogy’ (3.6)

7=0
where a(z,y) = Mz(1 — 2) + Az(l —y) +11(z — 1), and

9(0,y) = ipoﬁ/j : (3.7)
7=0
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The bivariate function g(z,y) is thus expressed in terms of a single-variable un-
known function, g(0, y), and r unknown constants, poj(j =0,1,...,r—1). The latter
are the first r coefficients in the expansion of the former.

To eliminate g(0, y), note that whenever a(z,y) = 0 and g(z, y) is finite, the right-
hand side of (3.6) must vanish. Fix an arbitrary real y € (0, 1), and consider a(z, y)
as a polynomial in z. This is a quadratic which satisfies a(0,y) < 0, a(1,y) > 0 and
a(oo,y) < 0. It therefore has exactly one zero in the interval (0,1) and one zero in
the interval (1, 00). Denote the smaller of these by a(y). At the point [a(y),y], the

generating function g(.,.) is finite and hence the right-hand side of (3.6) is 0. This

gives
vea(y)(1 — = - 5)posy’
20.9)= 2 (A —y) Eiso(r — )P0y’ (3.8)
rvae(y)(1 = y) — vyl — a(y)]
The only remaining unknowns are now the r probabilities po o, Po,1,- - -»Por-1. TO
determine them, rewrite (3.8) in the following form:
r—1
rvsa(y)(y — Dy Hg(0,9) — Y poiy’] + 1l — a(y)]g(0,v)
=0
r—1 ]
= voa(y)(1 —y) D Jposy’ " - (3.9)
j=1

The definition of g(0,y) implies that the first term in the left-hand side of (3.9)
has a factor y" . Therefore, that term and its first 7 — 2 derivatives vanish at y = 0.

Setting y = 0 in (3.9) yields

n[1 — a(0)]po,o = v20:(0)po,1 - (3.10)

Differentiating (3.9) once with respect to y and setting y = 0, gives

vi{—a(0)poo + [1 — a(0)]pos} = 12{[c’(0) — a(0)]pos + 22(0)po.2} - (3.11)
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Continuing in this way, differentiating (3.9) i times and setting y = 0, we get

i

z%ci,j[(j + 1)IA9(0)pg 41 — 3'B*7(0)po;] = 0 (3.12)
=

where

1 D=0,
Cij =
C;_1J_1 + Ci—l,j otherwise

A7(0) is the jth derivative of {v2a(y)(1 —y)} at y = 0 and B7(0) is the jth derivative
of {11(1 — a(y))} at y = 0. Taking derivatives up to order r — 2 inclusive and
setting y = 0, provides a set of 7 — 1 homogeneous linear equations for the unknown
probabilities. The derivatives of a(y) at y = 0 are obtained by differentiating the
equation a[a(y),y] = 0 and setting y = 0.

To the above equations we add a non-homogeneous normalizing equation. A
simple form of the latter is obtained by noting that the marginal distribution of the
number of write jobs in the system is that of an M/M/1 queue with parameters A
and v;. Therefore, we can set y = 1 in (3.8) and use the fact that

M

90, 1) =1-—=. (3.13)

All unknowns are now determined. From the generating functions one can com-

pute various performance measures. In fact, the write response time can be calculated

directly using the results for M/M/1 queue and is given by

1
H1— A

le

The average response time for low priority read jobs W, is given by

0
AW, = 5@;9(1, 1) (3.14)
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In evaluating ¢(1,1) and the corresponding derivatives, L’Hospital’s rule is used

to resolve indeterminacies of type 0/0.

3.2.3 Results of Numerical experiments

We first examine the effect of increasing number of replicas when (fully reliable) read
and write quorum sizes are R =1, W = N. As the response time of write jobs is the
response time of jobs for an M/M/1 queue, it is of little interest. The performance
measure of interest is the average response time for read jobs, W, (presumably they
constitute the bulk of the demand). The trade-off here is between the advantage of
increased parallelism for read jobs and the disadvantage of longer service times for
write jobs. Figure 3.2 shows some results for different parameter values. The response
time of read jobs first decreases and then increases. In all cases, there is an optimal
degree of replication which is lower when the read job arrival rate is lower. This

behaviour can be explained as follows. The increase in number of replicas causes:
e more reads to execute in parallel which decreases overall read response time.

e write service time increases. This reduces the time for which the system is

available for read service and increases read response time.

In the beginning the effect of former is more than the increase in write service time
which decreases read response time. After a certain degree of replication the latter
dominates and read service time increases. However, the curves are quite shallow
in the regions of their minima. The convexity would increase if the replicas were
updated sequentially rather than in parallel (see [11]).

The effect of changing the quorum sizes, with the number of replicas fixed (again

all fully reliable), is illustrated in Figure 3.3. This time the behaviour is much less
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predictable. Increasing the read quorum causes the performance measure sometimes
to increase, sometimes to decrease, and sometimes to increase and then decrease.
The only reasonably general and intuitive observation that can be made is that when
most of the offered load consists of read jobs, the allocation R = 1, W = N is best,
whereas R = N, W = 1 is preferable if most of the load consists of write jobs. It
should be pointed out that if the performance measure is the overall average response

time (including write jobs), rather than W,, the situation is similar.

3.3 Unreliable Replicas

3.3.1 Model

Let us relax the assumption that the servers are fully reliable. There are N identical
servers. Each server goes through alternating periods of being operative and inoper-
ative, independently of the others. Those periods are exponentially distributed with
means 1/¢ and 1/7, respectively. The arrival streams for write (type 1) and read (type
2) jobs are Poisson with rates A; and Ag, respectively. Each write service requires W
operative servers and at most one of them can be in progress at any time. A read
service requires R operative servers with (R =N +1 - W).

Write jobs have preemptive priority over reads whenever possible. A new arrival
of a write job begins service immediately if there is no write job in the system and
W servers are operative. Otherwise it joins the write queue. Reads preempted by a
write service join the read queue. A read job begins service if both a read quorum
of R servers is available and either there is no write job in the system, or a write
quorum is not available. Thus, if there are both write and read jobs in the system,

and the number of operative servers are m then
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e if m > W, one write job is served else
e if R<m < W, then |[m/R] read jobs are served in parallel

The average write and read service times, 1/v; and 1/v,, are given by (3.1) or (3.2)
depending on whether all replicas in quorum are accessed in parallel or sequentially.
Services interrupted by either breakdowns or preemptions are eventually resumed

from the point of interruption.

3.3.2 Analysis

The exact analysis of this model with both queues unbounded is, at present, intract-
able. We shall provide an approximate solution by assuming that queue 1 cannot
exceed size S. Write jobs arriving when there are already S of them in the system
are lost. The accuracy of this approximation clearly increases with S, but so does its
numerical complexity. However, it is possible to obtain accurate results with small
values of S when the offered load due to the write jobs, A/, is small compared to
the processing capacity available to them, ¢;. The latter is equal to the probability

that there are at least W operative servers:

_ X[V ey
RPN el

=W\ j

(3.15)

The system state at time ¢ is described by three integers, K(t), I(t) and J(t),
denoting the numbers of operative servers, write jobs present and read jobs present,
respectively. The first two of these have finite ranges and it is convenient to replace
them by a single integer, U(t) = (N +1)I(t)+ K(t), which takes values 0,1,..., NS+
N + S. When U(t) < N +1, there are U(t) operative servers and the write queue is

empty; if N + 1 < U(t) < 2(N + 1), there are U(t) — N — 1 operative servers and 1
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write job; etc. That random integer can be thought of as a Markovian environment
which controls the behaviour of queue 2.

The parameters governing the transitions of the Markov process [U(t), J(t)] can
be classified according to whether J(t) remains the same, jumps up by 1 or jumps

down by 1. They are:

e The matrix A = [a:]}s g ', where a; is the instantaneous rate at which the

environment U jumps from state ¢ to state k. The diagonal elements of 4 are

equal to 0.
e The read job arrival rate, A,.

e The row vector o; = (00,01, - - -, ONS+N+S,;), Where 0y ; is the rate at which

read jobs are served when the environment is in state i and their number is j.

The elements of matrix A are given by

4

A k=i+N+1; k< NS+N+S
v cimod (N+1)>W, , k=i—-N—-1;k2>0
aikx =4 mé cimod (N+1)=m>0;k=1-1 ;

(N-m)p ;imod(N+1)=m<N;k=1+1

0 otherwise

\

while those of o ; are

min(|i/R],j)v.  ;I<N+1
0i; =4 min(|m/R),j)v. ;imod (N+1)=m<W

0 otherwise

Note that o is 0 when j = 0, and is independent of j when j > r = [N/R].
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Let p; ; be the steady-state probability that the environment is in state i and the

number of read jobs in the system are j:

pi; = Jlm PlU(t) =4, J(t)=34] ; i=0,1,...,NS+N+S; j=0,1,....

Define the row vectors

Vj = (po.j,pl,j’ ...,DNS+N+84); J=0,1,... .

These vectors satisfy the following balance equations:

Vil + DA+ Cjl = v el + V;A+vinCina; 5=0,1,... (3.16)

where I is the unit matrix of order (N + 1)(S + 1), D4 is the diagonal matrix whose
i’th diagonal element is the ¢ ’th row-sum of A, and Cj is the diagonal matrix whose

diagonal is o;. In addition, we have the normalizing equation

Y ovie=1, (3.17)
j=0

where e is the column vector with (N + 1)(S + 1) elements equal to 1.
The solution of (3.16) and (3.17) can be obtained by spectral expansion (for more
details, see [50]). When j > r, the coefficients in (3.16) do not depend on j. Those

equations can then be rewritten in the form

ViQo + Vi@ + v 2@ =0;j=r—-1,r1..., (3.18)

where Qo = Ao, Q1 = A— DA — Xl —C, and @, = C,. Associated with this homo-
geneous vector difference equation of order 2 is the characteristic matrix polynomial,

Q(z), defined as
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Q(z) = Qo+ Quz + Q22 (3.19)

Denote by 2z, and 4, the eigenvalues and corresponding left eigenvectors of Q(z).

In other words, these are quantities which satisfy

Y, Q(20)=0;£=1,2,...,d, (3.20)

where d = degree{det[Q(z)]}.

When the process is ergodic, (N +1)(S +1) of the eigenvalues of Q(z) are strictly
inside the unit disk (each counted according to its multiplicity), while the others are
on the circumference or outside (see [50]). Indeed, verifying this condition is the way
to establish ergodicity for this model, since we no longer have a simple inequality
like (3.3). Let the numbering be such that |z,| < 1 for £=1,2,...,(N +1)(S + 1).
The corresponding independent eigenvectors are 1, v,, ..., Y(N+1)(s+1)- Then any
solution of equation (3.18) which can be normalised to a probability distribution is
of the form

(N+1)(5+1)

vi= ) T,z j=r—1,r.. ., (3.21)
=1

where z, (£ =1,2,...,(N + 1)(S + 1)), are arbitrary (complex) constants.
It remains to determine the coefficients z, and the vectors v; for j < r—1, which is
a total of (N +1)(S+1) unknown constants. The balance equations (3.16) for j < r,
and (3.17), provide exactly the required number of independent linear constraints.
For computational purposes, the quadratic eigenvalue-eigenvector problem (3.20)
can be reduced to the common linear one of the form ¥V = zy (see appendix).
However, the order of the matrix V is double that of @ (see [50]). Routines for

solving the latter problem are available in most numerical packages.
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Once all probabilities are known the response time of read jobs can be computed

as following where ¢, is the sum of all elements of 1,

NS+N+S r—1 (N+1)(S+1)

MW= Y Yims+ Y (r_((rl__l)zg)m" (3.22)
im0 =1 =1 2)

3.3.3 Results of Numerical experiments

A system with breakdowns and repairs is modeled in Figure 3.4. The arrival and
service rates are the same as for one of the curves in Figure 3.2. We study the effect
of different breakdown rates on response time of read jobs. The average read response
time is plotted against the number of replicas. The quorum sizes are R = 1 and
W = N. A notable feature of the results is that increasing the rate of breakdowns,
for fixed N, leads to a reduction in the read response time. This seems counter-
intuitive, but is not: breakdowns deny write jobs a quorum and allow read jobs to be
served, thus in effect relaxing the strict priority rule.

Again, the trade-off between more parallelism for reads and longer service time for
writes implies that there is an optimal degree of replication. Moreover, our intuition
tells us that the presence of breakdowns should generally make that optimal degree
larger; that is confirmed by the experiments.

The last set of results deal with the role of quorum size in a model with break-
downs. The experiment illustrated in Figure 3.5 mirrors the one in Figure 3.3, as far
as arrival and service parameters are concerned. It can be seen that even a slight
unreliability of the servers (each of them is operative more than 99% of the time) can
have a considerable effect on the shape of the curves. Now the quorum sizes W = N,
R = 1 are optimal for all parameter values in the figure. However, if the performance

measure is the overall average response time (including the write jobs), then it is
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again possible for the allocation W =1, R = N to be optimal.

Figure 3.6 shows a comparison of approximate analytical results with simulation
results. It can be seen that when ratio A;/u; is fairly low the simulation results are
almost same as analytical results but when ratio A; /; is comparable to the processing
capacity available to them then the difference in two is significant. This is because
in the former case the probability that at any time there will be more than one write
in the system is negligible which is not true in case of latter. The analytical results
shown in Figure 3.6 are with S = 1. They can be further improved by increasing the

size of S.

3.4 Generalizations

Several modifications and generalizations of the models presented in section 3.2.1 and
3.3.1 may be considered. In the Weighted Voting algorithm any number of votes may
be assigned to a server. A write (read) service collects a write (read) quorum of W(R)
votes. If the number of votes assigned to different servers are different, each read or
write service may engage different number of servers for its service depending on the
number of votes assigned to them. Due to this the service time of different write
(read) jobs may be different even if the service requirement at each server is same.
This is because the service time depends on the number of servers in read or write
quorums.

The servers themselves may not be identical. The service time of a read or write
job may be different for each server. For example communication delay in contacting
a server may be included in service time which will vary depending on the location
of servers. In this case even if the service of a read or write job takes the same time

on each server the total time (service time 4+ communication delay) to get the service
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will be different for each server. So the read (write) service time will be different each
time depending on which servers are in the quorum.
The above generalizations can be handled, approximately, by the methods presen-

ted in sections 3.2.2 and 3.3.2 provided that the following is true:
e read and write quorums are one and all respectively and

e read service time is same for all read services. This can be safely assumed when

a user reads from its local server only.

Let Fj(z) be the distribution of the write service time on ith server. Then the average

write service time can be calculated using following equation:

© N
1_/1I = /(; - I:IlFi(x)]dx , (3.23)

One would then make the approximating assumption that the write service times
are distributed exponentially with parameter v;. When read and write quorums are
different from one and all, analysis becomes complicated.

Some other generalizations that may be considered:

e In practice the priority given to write jobs may be non-preemptive, rather than
preemptive. While this is unlikely to make a big difference to the performance

of the system, the analysis would become considerably more complicated.

e Some replication protocols require an update operation to be performed after
a breakdown and the subsequent repair, with priority over any read jobs that
may be in service. In other words, a write job is injected into the system at
the end of a repair period. This modification can be handled by the method
described in section 3.3.2; the state space of the environment variable U(t) is
enlarged.
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e Recent proposals have introduced a hierarchy of replicas — primary, secondary
etc. — with different scheduling policies at each level. This is a substantial

generalization which we study in chapter 6.

3.5 Conclusion

The models presented here provide useful insights into the behaviour of replicated
data systems. The effects of different parameters can be evaluated and optimal de-
cisions concerning the degree of replication and quorum sizes can be taken. The
solution of the model without breakdowns is exact; its numerical complexity is on
the order of O(N?) (solving a set of 2N simultaneous linear equations). The model
with breakdowns is solved approximately but as accurately as desired, subject to con-
straints on computing resources. That solution involves finding the eigenvalues and
eigenvectors of a matrix polynomial, and solving a set of simultaneous linear equa-
tions; its complexity is on the order of O[(NS + N + S)3], where S is the imposed
bound on the number of write jobs in the system. We also compare the approxim-
ate analytical results obtained with breakdowns and simulation results to show that
when offered load due to the write jobs is small compared to the processing capacity
available to them, the two results are almost same. In chapter 5 we present an exact
model for one server with breakdowns and two unbounded queues and for this special
case of one server we compare exact and approximate results obtained for the two

cases of unbounded and bounded queues.
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Chapter 4

Effect of scheduling strategies

4.1 Introduction

In quorum based protocols, described in chapter 2, every read (write) job collects a
read quorum (write quorum) before execution. The procedures that collect quorum
use facilities provided by the language / operating system such as setting read or write
locks on replicas. Gifford, in [25], describes procedures to implement the Weighted
Voting Protocol. These procedures are in language Mesa and use the monitor facility
provided by Mesa for manipulating shared data. There are several studies that exam-
ine the effect of scheduling strategies on the performance of the system for classical
readers/writers problem that uses these facilities for mutual exclusion. These studies
do not consider the issue of replication and so do not study the effect of quorums on
performance. In chapter 2 we mentioned some work of E. G. Coffman et al. [16] and
F. Baccelli and E.G. Coffman [11] that studies the performance of replication schemes
using priority scheduling for read one write all policy (described in chapter 2). In (58]
Nelson and Iyer present an analysis of data replication for read one write all policy

when reads and writes are served in a first come first to serve discipline. None of them
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has analyzed the performance of replication schemes when read and write jobs en-
gage arbitrary number of servers for their service. Moreover no one has compared the
performance of quorum based schemes for different scheduling strategies in the same
scenario. Our analysis of the weighted voting protocol in chapter 3 assumed that write
jobs have higher priority than read jobs. This chapter presents a model for quorum
based protocols where jobs are served in FIFO order. We extend the model presented
by Nelson and Iyer in [58) to study the performance of quorum based schemes with
arbitrary read and write quorums. We then compare the results of both FIFO and
priority scheduling strategy. In each case the performance measures of interest are
the response times of read and write jobs. The comparison of results for the two
cases show that in many situations we can improve the performance of the system by
assigning priorities to different type of jobs. We explain the reason behind this with
the help of an example in section 4.4. A discussion of when to use which scheduling

strategy concludes the chapter.

4.2 FIFO scheduling

We present two models to evaluate the performance of quorum based protocols when
read and write jobs are being served using FIFO scheduling strategy. Our models are
extensions of the models given by Nelson and Iyer for evaluating the performance of
replication with read one write all policy. We first discuss the modifications required
in the models presented by Nelson and Iyer [58] to deal with read and write quorums
other than 1 and N (N is the total number of servers in the system). We then present

the analysis and use the Spectral Expansion method to solve our models.
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4.2.1 Optimistic Scheduling

There are N identical servers. We assume that these servers do not fail. Two type
of jobs, read and write, arrive in the system as independent Poisson streams. This
can be modelled by assuming that all jobs arrive in a single Poisson stream with rate
A, and any job is a read with probability . Both read and write jobs join the same
queue and are served in FIFO order. A read job requires R servers (read quorum) for
its service whereas a write job requires W servers (write quorum) for its service. We
assume that R+W = N +1. There is no preemption and the service of a read (write)
job can be started only if a quorum is available. In optimistic scheduling strategy
a read or a write operation releases each copy as soon as its service on that copy is
complete. An operation (read or write) at the head of the queue can use this copy to
collect a quorum. This is same as the non-synchronous case in [58]. The condition
R+ W = N + 1 ensures that if read and write are executing in parallel at least one
copy in the read quorum is written by the current write. This is needed for the read
to always read the latest version of the data. A new write may also start before the
completion of the current write if a write quorum becomes available as current write
releases copies. Therefore we further assume that W > N/2 and therefore R < W.
This ensures that even if two writes are executing in parallel the one that started
service later always modifies a copy which is the latest version . This is required to
maintain consistency. In optimistic scheduling at least R servers are always busy if
there is a job in the queue. We assume that the time to complete a read or a write
service on each server is exponentially distributed with mean 1/p. As all replicas in
quorum are accessed in parallel the time to complete a read(write) service will be
the maximum of R(W) exponentially distributed random variables. The model is

illustrated in Figure 4.1.
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Figure 4.1: FIFO Scheduling

Let I(t) and J(t) be the number of busy servers and number of jobs in the queue
at time t excluding the jobs that are in service. Then the pair [I(t), J(t)] is an
irreducible Markov process on the state space {0,1,..., N} x{0,1,...}. We draw the
state transition diagram for this process in Fig. 4.2, for N =5, W =4 and R = 2.

The object of our analysis is to determine the response time of read and write
jobs. The transitions possible in the Markov process shown in Figure 4.2 are:

(a) From state (7,7) to state (k,7) where 0 < ¢,k < Nif j =0, R< 4,k <N
otherwise.

(b) From state (4,j) to state (i, j +1) when R <14 < N and a read or a write job
arrives.

(c) From state (¢, j) to state (N, —1) when ¢ = W, R. The transition when ¢ = IV

takes place if the job at the head of the queue is a read because a read quorum is now
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available. The transition when i = R takes place because the job at the head of the
queue is a write and a write quorum is available now.

For 7 = 0 transitions of type (c) are not possible. Let us denote the transition rate
matrices associated with (a) and (b) when j = 0 by Ay and By respectively. These

matrices are of size N x N. The elements of these matrices are given as
1—-7r)A ; i<R k=i+W
ao(i,k) = 7 i<W, k=i+R

(m ; 1>0, k=1-1

(1—-7m)A ; R<i<W
bo(%,3) =< A 1> W ;
0 otherwise
For j > 1 these transitions do not depend on j. Let us denote the transitions rate
matrices associated with (a), (b) and (c) by A, B and C for j > 1. These matrices
are of size W x W because the state variable I can only take values R, R+1,..., N.

The matrix B is given by:
B=M for j2>1 (4.1)

where I is the identity matrix of order W. The elements of matrices A and C equal
to:
in(l—r) ;i=W
aii-1=14" = ,
i 1> R, 1 £FW
iur ;1 =W

0 otherwise
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Let p;; denote the steady state probability that there are i busy servers and j

jobs are in the queue:

pij=Mm P[I(t)=14,J(t)=3] ; i=0,1,...,N ; j=0,1,... .

We define the row vectors v; of probabilities with j jobs in queue as:

Vo = (P0,0,pl,O, v ’pN,O)

and
Vj = (PRjsPR+1js--- PNj); F=1,2,... .
This is because if queue is nonempty at least R servers are always busy and the system

never enters into states (0,j) to (R — 1, ) for j > 0. The probabilities in vectors v,

for 5 =1,2,... can be determined using the balance equation

ViM + DA+ D =v; Al +v;A+v;nC; j=2,3,..., (4.2)

where I is the identity matrix, D4 and D¢ are the diagonal matrices of size W x W
whose i’th diagonal elements are the 7’th row-sum of A and C respectively.
We use Spectral Expansion method described in section 3.3.2. to get an expression

for v; and v, in terms of unknown z, eigenvalues z and row eigenvectors .

w1 ‘
vi= > Tehzy, §>1 (4.3)

=0
There are W unknown coefficients. For determining vy we use the following balance

equation to express vy in terms of vy:

vo[Dg + D — Ao =viC'; | (4.4)
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D¢ and DE are the diagonal matrices of size N x N whose i'th diagonal elements are

the ¢’th row-sum of Ay and B, respectively. Elements of vector v} and matrix C' are

given by:
vi(z) ;1> R
ORI
0 otherwise
c(i,k) ;i>R,j>R
Cl(’[, k) — ( ) l ] ’

0 otherwise
The unknown coefficients of the spectral expansion, z; can now be determined by

using following equation along with the normalizing equation

vi[AI + D* 4+ D — Al = v|,B} + v,C ; | (4.5)
and vector vy and matrix By are of size W and W x W respectively. Their elements
are given by:

vs(i):{ vo(i+R) ;i=0,1,.. W-1 ,

Bé(i,k)={ Bo(i+R,k+R) ;i k=01,.W-1 ,

4.2.2 Pessimistic Scheduling

In Pessimistic scheduling strategy we assume that servers engaged by a read or write
service are only available at the completion of the service. This is same as the syn-
chronous case described in [58]. This decreases the utilization of servers. As earlier
we assume that there are N servers that can not fail. Read and write jobs arrive in
the system as Poisson streams. Arrival rate of jobs is A and the probability that the

arrival is a read is 7. A read (write) service require a quorum of R(W) replicas for its
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service. Both read and write share the same queue and get the service in first come
first serve basis. There is no priority associated with any type of job. A read or write
service may start when it reaches at the head of the queue and a quorum to start the
service is available. This ensures that read and write or two write services can not
execute in parallel. At any time either one write service or a maximum of | N/R|
read services can be in progress. There is no preemption. We assume that the time
to complete a write or a read service is exponentially distributed with mean 1/v; and
1/v, respectively. If all replicas in quorum are accessed in parallel we assume that
this time is the maximum of R(W) exponentially distributed random variables and
is given by (3.1) for some fixed p; and pp. If operations are performed sequentially
on all replicas this time is given by (3.2).

Let I(t) represent the system state and J(t) be the number of jobs in the system
at time ¢, including the jobs that are in service. The system can be in one of the
following states: idle (no job in service), a write service in progress or a maximum
of |[N/R]) read jobs in service. At any time t, I(t) can take values between 0 and
min(J(t), [N/R]). If I(t) is 0 and J(t) > 0 a write service is in progress, otherwise
I(t) read services are in progress. The system is idle when I(t) = J(t) = 0. The pair
[I(t), J(t)] is an irreducible Markov process on the state space {0,1,..., |[N/R]} x
{0,1,...}. We draw the state transition diagram for this process in Figure 4.3 for
|IN/R] =3.

It is clear from the diagram that only possible transitions are

(a) from state (4, 7) to state (k, j+1) and ¢,k < min(j, [N/R]) when a job arrives

(b) from state (4, ) to state (k,j — 1) and 4,k < min(j, | N/R|) when a service
completes

The transition rate matrices associated with (a) and (b) for j > | N/R] are denoted
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Figure 4.3: State Transition Diagram for pessimistic FIFO scheduling
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by B and C and are j independent. We define M = |N/R] + 1. The elements of the

matrices B and C are given by

b(i,i) = A
(1/11""(1—7") ;1=0, 0<k<M-2
nrk ;1=0, k=M-1
c(i, k) = ¢ i ;i<(M-1), k=i-1,;i#0 ,

in(l-r) ;i=M-1), k=M-2
;i=(M-1), k=(M-1)

{ wWHT
Let p; ; denote the steady state probability when system is in state i and the number
of jobs in the system are j:

p,-’j:tli}r{.loP[I(t)zi,J(t)=j] ; 1=0,1,....min{j,M -1} ; =0,1,....

As before we can define vectors v; for j > M as:

V; = (POJ,Pu, N JYET)

The balance equations for j > M are given as:

vi[Al + D) = visiAl + v C (4.6)

where DC is the diagonal matrix whose #’th diagonal elements are the i’th row-sum
of matrix C. Solution for va;_; and vy, can be obtained using Spectral Expansion
Method.

For 7 < M, 1 takes values between 0 and j only. The states (7, j) for ¢ > j do not
exist. We first obtain the expressions for vectors vas_1, vy, . . . in terms of unknowns

x,, eigenvalues z, and row eigenvectors ¢, given by
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M-1 )
vi= Y s, (4.7)
=0
M unknowns z, and M(M —1)/2 unknown probabilities can be evaluated by solving

a set of M(M 4 1)/2 balance equations along with the normalizing equation.

4.3 Results of the numerical experiments

In this section we present the results of our investigations into the effect of changing
the quorum sizes, W and R with W + R = N +1 fixed, on the response time of read
and write jobs. We compare these results with the results that we obtained when
write jobs have preemptive priority over read jobs. Nelson and Iyer studied in [58]
the effect of changing level of replication on the performance of read and write jobs
when read quorum is one and write quorum is all. They have shown that for a given
set of input parameters there is an optimal degree of replication for which the response
time of read and write jobs is minimum. We observed the same effect in chapter 3
when write jobs have priority over read jobs. For the set of input parameters used in
Figure 4.4 this optimal degree of replication is same for both pessimistic FIFO and
priority scheduling. For optimistic FIFO scheduling the optimal degree of replication
is larger. With write jobs having priority write service time will always be less. But
for the same input parameters the response time of low priority read jobs is also less
with priority scheduling (for N > 2) than pessimistic FIFO scheduling. This is due
to the better utilization of the capacity of servers.

Figure 4.5 shows the read response time for pessimistic FIFO scheduling when read
and write quorum changes. It can be seen that changing read and write quorums
has almost same effect as in the case of priority scheduling. When write arrival

rate is much less in comparison to read arrival rate, read response time continuously
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decreases with decrease in read quorum size. This is because as read quorum decreases
more reads can execute in parallel. When read and write arrival rates are almost
same, on decreasing R (increasing W) response time of read jobs first increases but
as soon as more than one read jobs can execute in parallel response time decreases. If
write arrival rate is much larger in comparison to read, read response time increases
with increase in write quorum size. With increase in write quorum, read quorum
decreases and more reads can execute in parallel but at the same time write service
time increases. When write arrival rate is larger the increase in write service time
dominates and read response time increases.

Figure 4.6 shows the read response time for optimistic FIFO scheduling when read
and write quorum changes. When read arrival rate is high, read response time first
decreases due to the parallel execution of read jobs. But then the effect of increase
in write service time dominates and read response time increases. When read and
write arrival rates are same or when write arrival rate is high, read response time
continuously increases with increase in write quorum due to the increase in write
service time.

Figure 4.7 compares pessimistic FIFO scheduling and priority scheduling strategies
with different quorum sizes. In the first set of curves read response time for FIFO
scheduling is less than the read response time for priority scheduling. This is due to
the fact that arrival rates of read and write jobs are very small in comparison to their
service rates. In the second set of curves, where arrival rate of jobs are almost same
as their service rates, read response time is some times less for priority scheduling

and some times for FIFO scheduling.
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4.4 Comparison with priority scheduling

The results of our numerical experiments show that in some cases performance can be
improved by assigning higher priority to the jobs with low arrival rate in comparison
to other jobs. We explain this with the help of following example. Let us consider
a case with N =5 W =5 and R = 1 at time t. There are two write jobs (one
executing and other waiting in the queue) and four read jobs (all waiting in queue)
in the systems. The Figure 4.8 shows the relative position of read and write jobs in
the queue when both type of jobs use the same queue and get the service in FIFO
order. Let us further assume that a write service takes 2 seconds on an average and a
read service takes an average of 1 second. Based on these averages the response time
of read jobs for the situation shown in Figure 4.8 can be given as (3+4*6)/5 = 5.4
seconds. This is because after the completion of the service of current write only one
read will get the service. This will be followed by the write service after which all the
four reads will get the service in parallel. Now let us consider the case where read
and write jobs join different queues and write jobs have priority over read jobs. In
this case first both write will get the service and then all the five read jobs will get
the service in parallel. This will reduce the overall read response time which in this

case will be 5. It can be seen that the server utilization is more in second case.

4.5 Conclusion

This chapter is intended to demonstrate that assigning priorities to jobs may lead to
better server utilization and so may improve the performance of the system. We do
this by first presenting two models where jobs get service in first come first served

basis. We then compare the results obtained with the results of chapter 3. The write
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Figure 4.8: Example illustrating the benefit of priority scheduling
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service time will always be less when write jobs have priority over read jobs. But the
comparison shows that in many cases by assigning priorities even the response time of
lower priority jobs can be reduced. We explained the reason behind this phenomenon

with the help of an example in section 4.4.
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Chapter 5

An exact solution for the system
with a single server and

breakdowns

5.1 Introduction

Chapter 3 gave a solution for the model with N servers subject to random breakdowns
and repairs, two types of jobs and a finite queue for type 1 jobs (it cannot exceed
size §). We claimed in chapter 3 that if the ratio of arrival rate / service rate for
type 1 jobs is small enough, the response time of type 2 jobs calculated for this
model is very close to the response time for the model with both queues unbounded.
There are many studies dealing with the performance of single server and multi server
models with breakdowns. However either these studies consider only one job type or
they provide an approximate solution. H.C.White and L.S. Christie were the first

to consider server repair following breakdowns, or server vacation, in a queueing
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system. In {71] they presented a M/M/1 queue model with random breakdowns
and repairs. Later B. Avi-Itzhak and P. Naor considered 5 similar single server
models in [10} where the service station is subject to breakdowns all with only one
job type. LL.Mitrany and B.Avi-Itzhak in [52] presented the analysis of a many-
server queue with service interruptions and one job type. In [50] I. Mitrani and R.
Chakka presented Spectral Expansion Solution for a Class of Markov Models whose
state space is a lattice strip. B. Sengupta in [63] and K. Thiruvengadam in [66] also
presented queueing systems with breakdowns and one job type. In [51] I.Mitrani and
P.J.B. King analyzed Multiprocessor Systems with Preemptive Priorities and N job
types. They gave an exact solution for 2 job types and suggested how their method
can be extended to get the approximate solution for N job types. In this chapter
we present an exact analysis for single server case with breakdowns and repairs and
two job types, type 1 jobs having preemptive priority over type 2 jobs. Section 5.2
describes the model. In section 5.3 we give an analysis to find out the response time
of type 2 jobs. As type 1 jobs have priority over type 2 jobs their response time can
directly be calculated from the analysis presented in [52]. Section 5.4 presents results

of our numerical experiments.

5.2 The Model

There is a single server whose operative periods are distributed exponentially with
mean 1/£. At the end of an operative period server breaks down and requires an
exponentially distributed repair time with mean 1/n. Two type of jobs arrive into
the system. The arrival rate for type 1 and type 2 jobs are Poisson with rates A; and
A2, respectively. Their service times are also distributed exponentially with mean p

and o, respectively. Type 1 jobs have preemptive priority over type 2 jobs. This
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model is illustrated in Fig. 5.1

A1 -

write

Ay . pa(write)/ po(read)
read

Figure 5.1: Single server with two type of jobs

Let I(t) and J(t) be the number of type 1 and type 2 jobs in the system at time

t. Let K(t) be the state of the server at time ¢ defined as

0 if server is inoperative at time ¢
K(t) =
1 if server is operative at time ¢

Triplet [I(t),J(t),K (t)] is an irreducible Markov process on the state space {0, 1, ...}
{0,1,...} x {0,1}. As the server is operative only for n/(n+¢) fraction of total time,

the ergodicity condition is

Mode 1 (5.1)

po op2 n+é€

We assume that this condition holds.
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5.3 Analysis

The object of the analysis is to determine the joint steady-state distribution of I and
J both in case of operative and inoperative server, denoted by p,(4,7) and po(%, 5),

respectively:

pi(i,5) = lim P{I(t) =i, J(&) =4, K(t) =1] ; 4,5=0,1,...

po(i,d) = lim PUI(®)=4,J() =3, K®) =0 ; i,i=01,...

These probability satisfy the following set of balance equations:

pold, )M + Az + 1] = Aapo(i — 1, 4) + dopo(i, 5 — 1) +€m(3, ) (5.2)
p1(4,5)[M + Az + pad(i > 0) + p26(¢ = 0,5 > 0) + ] = mpo(i, )
+26(i = 0)p1 (0,5 + 1) + mpr (¢ + 1,9)
+Api(i—1,5) + depa (3,5 — 1) (5.3)

where po(—1, ) = 0 and po(i, —1) = 0 by definition, and 5(A) is the indicator function:
1 if A is true, O otherwise. Let us define generating functions for the two cases of

operative and inoperative server as:

o) = 33 poli i)'y s,
i=0 j=0

aly) = S nl)eY
=0 j=0

Multiplying both sides of equation (5.2) by £*y* and summing over ¢ and j we get

the following equation:
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9o(z, ¥)[M + A2 + 1) = Mizgo(z, y) + Maygo(z, ) + €gi(z, ¥)

which can be simplified to

go(z, y)[M(1 — z) + o1 — y) + 1) = €gu(z, v) (5.4)

In the same way multiplying both sides of equation (5.3) by z'y* and summing

over i and j yields following equation:

g1z, Y) A+ A + p1 + €] — 10191(0, ¥) + 1291 (0, y) — p1(0,0)]

= Mzgi(z,y) + Aygi(z, y) + %[gl(x, y) — 91(0,9))
+%[gl (0,9) — p1(0,0)] + ngo(z, y)

which can also be written as

(@)l =)+ dall —9) + (1~ 1)+ €] =

9:(0, y) [ (1 - %) — pa(1 - i)]

(1 - 3):01(0, 0) + ngo(z, y) (5.5)

on substituting the value of go(z, y) from equation (5.4) we get the following equation

for gi(z,y) in terms of an unknown function ¢;(0,y) and an unknown probability

pl(O, 0)

Qz,y)g:1(z,y) = 0100, y) [ (1 — %) — pip(1 — i)] + pa(1 — i)pl(O, 0) (5.6)

where
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Q1) = M(1 = 2) + Xa(l = y) + (1 - 3)

_ €
M1 —z)+X(l-y)+n

The function g;(0, y) can now be determined by observing that for every y € (0, 1),

+£

(5.7)

the quadratic equation

Q(:B» y) =0

has omne real root, z = f(y), satisfying 0 < f(y) < 1, as Q(1,y) > 0 and Q(0,y) <

0. Since g1(f(y),v) is finite this gives us an expression for g;(0,y)

p2f(y)(1 = y)p(0,0)
pmy(f(y) —1) — paf(y)(y — 1)

This leaves us with unknown probability p;(0,0) which can be determined by the

91(0,y) = (5.8)

following normalising condition.

90(1,1) +o(1,1) =1 (5.9)

The average response time for type 1 jobs, W, can be obtained directly from the
results presented in [52] with parameters Ay, p;, § and 7. The average response time

for type 2 jobs is given by

M%=%@@Uﬂﬁﬁ) (5.10)

87



5.4 Results of Numerical experiments

We examine the effect of various parameters on the response time of type 2 jobs. In
[52] Mitrani et al has already presented an exact analysis of the system with one or
more servers subject to random breakdowns and repairs and one type of jobs. As
in our case type 1 jobs have preemptive priority over type 2 jobs they will behave
exactly in the same way as shown in [52]. This leaves us only with the performance of
type 2 jobs to examine. To calculate the values of go(0,1), go(0,1), g,(1,1), one has
to resolve indeterminancies of type 0/0. We use L'Hopital’s rule once for generating
functions and twice for their derivatives. The results of the experiments are displayed
in Figure 5.2. The figure shows the effect of arrival rates, service rates, fault and
repair rates on the average response time of type 2 jobs. As expected the average
response time for type 2 jobs increases with decrease in service rate or increase in
arrival rate for type 1 and type 2 jobs. Increase in the arrival rate of faults or decrease
in the repair rate also increases the average response time for these jobs. Figure 5.3
compares exact average response time for type 2 jobs calculated from the analysis
presented in this chapter and the approximate average response time obtained from
the Spectral Expansion method with a bounded queue for type 2 (write) jobs. The
curves show that when ratio arrival rate / service rate of type 1 jobs is very small
the response time calculated from both the methods is almost same whereas if this
ratio is large the response time calculated by the exact method is larger than the time

calculated by the approximate method (of chapter 3). This confirms our claim made

in chapter 3.
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5.5 Conclusion

This chapter considers the model of single server with breakdowns and two type of
jobs, type 1 jobs having priority over type 2 jobs. It gives a method to calculate
exact response time for type 2 jobs when arrival and service rates of jobs as well as
arrival rate of faults and repair rates are Poisson. We also compare our results with
the results obtained in chapter 3 for the same model with only difference that type 1

jobs have finite queue size. The comparison confirms our claim.
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Chapter 6

Data Replication With Two Levels

of Consistency

6.1 The Protocol

Chapter 3 and 7 present the analysis of strong and weak consistency protocols re-
spectively. Strong consistency protocols guarantee that user will always get the most
recent information. But with large number of replicas the performance of strong
consistency protocols may not be acceptable as they require synchronization among
at least a majority of these copies to ensure consistency. Weak consistency proto-
cols, on other hand, try to improve performance by relaxing consistency constraints
and so the data accessed by the user may not be the most recent one. Multilevel
consistency protocols analyzed in this chapter try to integrate both approaches into
the same framework by dividing replicas into groups or levels. Replicas at different
levels provide different levels of consistency. In this chapter we present analysis of a
two-level protocol where the replicas at level 0 provide strong consistency and replicas

at level 1 may be out-of-date. We first consider the case of reliable replicas and then
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present the analysis with breakdowns and repairs. The analysis in the case of latter
is approximate as in chapter 3. Users reading from a level 1 replica may be interested
in knowing the probability of getting most recent value of data. We give expressions

to evaluate this probability. Finally we discuss some generalizations in the models.

6.2 Reliable Replicas

6.2.1 Model

In this section we describe our model for reliable replication. Three types of jobs,
write, slow read and fast read, arrive into the system in independent Poisson streams
with rates A;, A and A; respectively. There are N identical servers, each managing
a copy of the data. Of these, Ny are at level 0 and N; = N — N, are at level 1.
There is a write and a slow read queue at level 0, with preemptive priority to writes,
and a fast read and a write queue at each of the servers at level 1, with preemptive
priority to fast reads. Replicas at level 0 maintain strong consistency with the help
of quorums. An incoming write job joins the write queue at level 0, where its service
requires the simultaneous possession of @Q1(< Ny) servers (write quorum), for an
exponentially distributed interval with mean 1/vy. After completing that service, an
independent instance of the job is sent to each of the level 1 write queues, where
service times are distributed exponentially with mean 1/v;. A slow read service
requires Q2 = Ny + 1 — Q servers at level 0 (read quorum) and is exponentially
distributed with mean 1/v,. Slow reads preempted by the arrival of a write job join
the slow read queue again and get the service from the point of interruption. Fast read
jobs join one of the fast read queues at level 1, with equal probability (this assumption

could easily be relaxed). Their service times are distributed exponentially with mean
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1/7s. The model is illustrated in Fig. 6.1.

One could also introduce ‘pure delay’ (infinite-server) nodes in order to model
non-zero transfer times for jobs between remote user sites and the servers at levels
0 and/or 1. Such nodes would only add constants to the average response times.
However, if write jobs in transit between level 0 and level 1 are similarly delayed, the
probability that a level 1 replica is out-of-date is also affected (see section 6.2.2).

The strong consistency of replicas at level 0 is ensured by the quorum sizes and
by the additional requirement that at most 1 write job can be in service there at any
moment, regardless of the value of ¢;. The maximum number of slow read jobs that
can be served in parallel is r = | Ny/Q2], where |z] is the integer part of z.

The service time parameters v, and v, depend, in general, on the quorum sizes.
An access that engages a larger number of servers can be expected to take longer.
Thus, the average write service times at level 0 usually increase with @, and the slow
read ones increase with @Q,. The nature of that increase depends on the way write
and slow read operations are implemented.

If all replicas in a quorum are accessed in parallel, then service times »; and v, are
given by equation (3.1) for some fixed p; and ps, and are the averages of the largest
of Q; (respectively Q) ii.d. random variables, each distributed exponentially with
mean 1/u; (respectively 1/u3). These latter averages may include message-passing
delays.

If, on the other hand, the operations are performed sequentially on all replicas,
then these times are given by equation (3.2).

Tt is clear from the above description that the states of levels 0 and 1 are inde-
pendent of each other. Indeed, since write jobs have preemptive priority at level 0

and are executed one at a time, they behave like the customers of an M/M/1 queue

94



fast read
A3

Ny I

4

write

/\1—‘—>

dy —— ~

A\

slow read

(O-00)

\Cé
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with parameters A; and v;. Therefore, the write departures from level 0 form a Pois-
son stream (with rate A;), whose past history is independent of the current state of
the queue. Therefore, the current state of level 1 is independent of the number of
write jobs at level 0. The different replicas at level 1 are of course dependent on each
other, since their write arrival instants are correlated. However, for the purpose of
our performance measures, the marginal state distribution of any given state 1 replica
can be analyzed in isolation from the others.

Thus, we are justified in treating each level separately.

6.2.2 Analysis

Level 0
Let I(t) and J(t) be the numbers of write and slow read jobs present at level 0 at
time ¢t. Under the above assumptions, the pair [(t), J(¢)] is an irreducible Markov
process on the state space {0,1,...} x{0,1,...}. Since the largest number of services
in progress at any time can be either 1 write or r slow read (but not both), the
ergodicity condition for level 0 is
AL A2

—+—x<1. (6.1)
121 TV

That condition will be assumed to hold. The first aim of the analysis is to determine

the steady-state joint distribution of I and J, denoted by py ;:
Dij = tlign PlI(t)=1,J(t)=3] ; ,7=0,1,....

These probability satisfy the following set of balance equations:

96



pi,j[Al + Ag + Vl(S(i > 0) + mzn(_j, T)Vz&(i = 0)] = Alpi-—l,j + AZpi‘j—l

FUipig; + min(j + 1,7)196(i = 0)pijy ; 4,5=0,1..., (6.2)
where p_;; = 0 and p; _; = 0 by definition, and 0(B) is the indicator function: 1 if
B is true, 0 otherwise.

The set of balance equations (6.2) are same as (3.4) and the analysis given in

section 3.2.2 can be applied to get the response time of slow read jobs. It is given by

equation (3.14).

Level 1
Since fast read jobs have preemptive priority at level 1, their average response
time, W3, can be obtained by treating a level 1 replica as an M/M/1 queue with

arrival rate A3/N; and service rate ~s:

Nivs — As

The other performance measure of interest is the steady-state probability, U, that

W, (6.3)

an incoming fast read request gets a consistent version of the data. According to the
PASTA property, U is equal to the steady-state probability that a given replica at
level 1 is consistent. In determining that quantity, we shall treat the general case
where write jobs in transit between level 0 and level 1 are subjected to a random
delay with mean 7. For the purpose of this calculation, the slow read jobs at level 0
may be ignored, since they have low preemptive priority.

Consider a particular replica, C, at level 1, with its high priority fast read queue

and low priority write queue, at some point in the steady-state. Note that if at that
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moment there are write jobs at level 0, one of them is in service and therefore C’s
data is being updated. Similarly, if there are write jobs in transit between level 0
and C, or present at C, then C is inconsistent because there exist updates which
have taken place at level 0 but not here. Conversely, if there are no write jobs at
level 0, or in transit, or at C, then all preceding updates have been implemented and
C is consistent. Moreover, the numbers of write jobs at those three locations are
independent of each other, as pointed out earlier (the departures from an M/G /oo
delay node are also Poisson).

We can therefore write

U=q1920, (6.4)

where g; is the probability that there are no write jobs at level 0, g, is the probability
that there are no write jobs in transit and g; is the probability that there are no write
jobs at the level 1 replica.

Standard M/M/1 and M/G/oo results imply

A
an=1- V—l y g2 = e~ (6'5)
1

Now, g¢s is the probability that there are no lower priority jobs in a single-server
system with two priority types. Translating the notation of subsection 3.2.2 to this
system, we have g3 = g(1,0). Using equation (3.6) and following the steps indicated

after (3.9), with the level 1 parameters g(1,0) can be written as

v3(1 — 2o) (6.6)

where z, is the unique root in the interval (0,1) of the quadratic equation
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and pyp is given by

b M
Nivs m

Poo =1—

The above expressions imply that the probability U increases when N, increases
(because the fast read arrival rate to each level 1 replica decreases); U also increases
when N, decreases (because the write service time at level 0 decreases). Thus, the
‘most consistent’ way of dividing N replicas into two levels while ensuring that at
least one is strongly consistent, is to chose Ny = 1, N; = N — 1. However, that
division is not necessarily optimal if one wishes to minimize the average response
time for slow read jobs. Also, it may not be optimal if the average transfer delay, 7,
increases with Nj.

If the average response time of write jobs at level 1 is of interest, one can use
either the analysis in section 3.2.2, or the known results for single-server queues with

preemptive priorities.

6.2.3 Results of Numerical experiments

We first examine the effect of increasing the number of replicas at level 0, Ny, with
total number of replicas N fixed, and the quorum sizes are Q; = Ny, Q2 = 1.
All servers are fully reliable. The performance measures of interest are the average
response times for slow read and fast read jobs, W, and Wj. The trade-off at level 0
is that when N, increases, the delays caused by write jobs increase, since y; is fixed
and v, is given by (3.1); on the other hand, more slow read jobs can be executed in

parallel. Fig. 6.2 shows that an initial lowering of W, can be achieved by increasing
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N, especially when the slow read load is high. However, a point of no improvement
is invariably reached (that point may be Ny = 1), and eventually the write delays
become dominant.

The increase in Wj is explained by the fact that the total number of replicas ,
N, is constant; when N, increases, N; decreases and therefore the arrival rate of fast
reads at each level 1 replica increases. The choice of Ny and N; will depend on the
performance required by the slow read and fast read jobs. Any values for Ny and N,
can be chosen between the lowest possible value of Ny (for which the system at level
0 is stable) and the value after which no improvement in the slow read response time
is possible. A choice of the former will give the lowest possible fast read response
time. But the slow read response time will be a little higher than the lowest possible.
Whereas a choice of latter will result in lowest possible slow read response time but
a slightly higher fast read response time.

The effect of changing the quorum sizes, @; and Q2, with @ + Q2 = No+ 1 fixed
(again all servers are fully reliable), is illustrated in Fig. 6.3. This time the behaviour
is less predictable. Increasing @ causes the slow read response time sometimes to
increase, sometimes to decrease, and sometimes to increase and then decrease. The
only reasonably general and intuitive observation that can be made is that when
most of the offered load consists of read jobs, the allocation @, = Np, @2 = 1 is best,
whereas Q1 = 1, Q; = N is best if most of the load consists of write jobs. It should
be pointed out that if the performance measure is the overall average response time
(including write jobs), rather than W, the situation is similar.

The fast read response time, Wi, is of course independent of the quorum sizes as

long as N; does not change.
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Figure 6.3: Effect of quorum sizes on W, (solid lines) and W (dotted lines) .
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6.3 Unreliable Replicas

6.3.1 Model

This section describes the model when servers are not fully reliable. Suppose that
each server goes through alternating periods of being operative and inoperative, in-
dependently of the others. Those periods are exponentially distributed with means
1/€ and 1/7, respectively. The other parameters and assumptions remain the same,
except that a slow read service at level 0 can be in progress if either the write queue
is empty, or a write quorum is not available. Thus, if there are both write and slow
read jobs at level 0, and the number of operative servers, m, satisfies @, < m < @,
then |m/Q] slow read jobs are served in parallel; if m > Q;, one write job is served.
The average write and slow read service times, 1/v; and 1/v,, are given by (3.1)
or (3.2) depending on whether the replicas in quorum are accessed in parallel or se-
quentially. Services interrupted by either breakdowns or preemptions are eventually
resumed from the point of interruption.

As mentioned in section 3.3.2 the exact analysis for level 0 with both queues
unbounded is, at present, intractable. We shall provide an approximate solution by
assuming that queue 1 cannot exceed size S. Write jobs arriving when there are
already S of them in the system are lost. The accuracy of this approximation clearly
increases with S, but so does its numerical complexity. However, it is possible to
obtain accurate results with small values of S when the offered load due to the write
jobs, A1/v1, is small compared to the processing capacity available to them. The

latter is equal to the probability that there are at least @ operative servers:

B No Ny nigNo—J'
o= 2 E+mPe

i=Q1 \ J

(6.7)
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At level 1 if a server is down the read and write jobs in the queues associated with
this server wait for the server to become operative again and do not get service from

one of the operative servers.

6.3.2 Analysis

level 0

The analysis for level 0 is same as described in section 3.3.2 with slow reads treated
as read jobs. At any time ¢ the state at level 0 is described by three integers, K(t),
I(t) and J(t), denoting the numbers of operative servers, write jobs present and slow
read jobs present, respectively. The first two of these have finite ranges and we replace
them by a single integer, Y (¢) = (No + 1)I(t) + K(t), which takes values 0,1,..., M,
where M = NS + Ny + S. When Y (t) < Ny + 1, there are Y'(t) operative servers
and the write queue is empty; if Ny +1 < Y (t) < 2(Ny + 1), there are Y(t) — No — 1
operative servers and 1 write job; etc. That random integer can be thought of as a
Markovian environment which controls the behaviour of the slow read queue.
level 1

The average fast read response time at level 1, Wj, is given by the known result

for an M/M/1 queue with breakdowns and repairs [10}:

N ¢
Ny - /\3[1 +777(§ + 1)

where v = vsn/(€ + 1) is the effective service rate for fast reads at the unreliable

Ws ], (6.8)

Server.

We do not know, in the presence of breakdowns, how to compute exactly the
probability that a replica at level 1 is consistent. An approximate value for U can

be obtained by replacing ¢, in (6.4), with the probability that there are either no
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write jobs, or less than Q; operative servers, at level 0. That probability is provided
by the spectral expansion solution. Also, the value of g3, given by (6.6), should be
multiplied by the probability that the replica is operative, n/(€ + 7). The reason is
that the repair time is usually orders of magnitude larger than the interarrival times;

so if the level 1 replica is inoperative, there is likely to be a write job in its queue.

6.3.3 Results of Numerical experiments

Fig 6.4 gives results for a system with breakdowns and repairs. The arrival and service
rates are fixed, as well as the total number of replicas and the repair rate; 1V, and W,
are plotted against Ny for different breakdown rates. The quorum sizes are Q, = Ny,
Q2 = 1. The curves plotted for slow read response time are essentially the same as
the curves for lower priority read jobs in Fig 3.4 and the same explanation for their
behavior applies here also.

Again, the trade-off between longer service time for writes and more parallelism for
slow reads implies that there is an optimal degree of replication at level 0. Moreover,
our intuition tells us that the presence of breakdowns should generally make that
optimal degree larger; the less reliable the servers, the more of them would be needed.
That intuition is clearly confirmed by the experiments. An important feature to note
in Fig 6.4 is the fast read response time. A slight increase in fault rate increases the
fast read response time too much. In fact the last two curves plotted for W3 show that
fast read response time is larger than the response time of slow reads for all possible
values of Ny. This is because when a server fails the fast read and write operations in
queues associated with this server wait till the server becomes operative again. Due
to this the whole purpose of providing two different type of read operations (slow

read and fast read) is lost.
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The last set of results deal with the role of quorum size in a model with break-
downs. The experiment illustrated in Fig. 6.5 mirrors the one in Fig. 6.3, as far as
the response time of slow read jobs is concerned. It can be seen that even a slight
unreliability of the servers (each of them is operative more than 99% of the time) can
have a considerable effect on the curves. Now the quorum sizes Q; = Ny, @, = 1 are
optimal for all parameter values in the figure. However, if the performance measure is
the overall average response time (including the write jobs), then it is again possible
for the allocation @Q; = 1, @2 = Ny to be optimal.

Response time of fast read jobs is constant for all quorum sizes as N remains

fixed.

6.4 Generalizations

The modifications and generalizations suggested in section 3.5 may be applied in this
case also for the level 0. In addition some other modifications that may be considered

are:

e When a server at level 1 breaks down the fast reads waiting in its queue can be
routed to other replicas. This is in practice the case. A client after waiting for
the response for a predefined period (timeout period) may contact other servers

for getting the value of data.

o Less restrictive assumptions concerning fast reads, such as generally distrib-

uted service times or unequal arrival rates at different level 1 replicas, could be

accommodated easily.

e Replicas at level 1 may be updated on demand by the client.
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Figure 6.5: W, (solid) and W; (dotted) vs. @ in the presence of breakdowns.
No=3, N =9 X=12 =8 pp=7=9 £=10"7, n=0.004
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¢ Recent proposals have introduced bigger hierarchies of replicas - primary ,sec-
ondary, tertiary, etc. — with different scheduling policies at each level. While

more complicated, such generalizations could be analyzed by similar methods.

6.5 Conclusion

The models presented here help us in understanding the behaviour of replicated data
systems when replicas are organized in levels with each level providing a different
type of consistency. The effects of different parameters can be evaluated and optimal
decisions concerning the degree of replication, quorum sizes and the division of rep-
licas between level 0 and level 1 can be taken. The solution of the model without
breakdowns is exact; its numerical complexity is on the order of O(Ng) (solving a
set of 2Ny simultaneous linear equations). The model with breakdowns at level 0 is
solved approximately but as accurately as desired, subject to constraints on comput-
ing resources. That solution involves finding the eigenvalues and eigenvectors of a
matrix polynomial, and solving a set of simultaneous linear equations; its complexity
is on the order of O[(NyS + Ny + S)3], where S is the imposed bound on the number
of write jobs in the system. The response time of fast reads at level 1 can be found
exactly, without or with breakdowns, while the probability of reading a consistent
replica is exact in the former case and approximate in the latter.

The following design guidelines are suggested by our results: For a given set of
environmental parameters (\’s, ¢’s, 7’s, £, 7), and performance measures, one should
first find the optimal configuration of level 0 , i.e., Np and @;. This is likely to
consist of a small number of replicas. Then, as many replicas at level 1 should be
provided as is economically feasible , in order to improve both the performance and

the dependability of the fast reads . As shown the response time of fast read jobs
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varies too much with the change in arrival rate of faults. One should therefore also
examine that given a fault and repair rate how much improvement in response time

can be achieved by providing fast reads.
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Chapter 7

Weak Consistency Protocols

7.1 Introduction

Different applications have different consistency requirements. ranging from ‘weak’
(where the order and timing of updates may or may not be important), to ‘strong’
(insisting that all copies must be identical at all times). We assume a reasonably
demanding requirement which is nevertheless realistic: all updates must be performed
on all replicas in the order in which they arrive, although not necessarily at the same
time. This is known as sequence consistency. Having received an update request, a
site must wait until it knows about all preceding update requests received at other
sites, before it can execute the new one.

Information about updates is propagated among the replica sites by means of
messages. Each site maintains a log containing the outstanding update requests it
knows about, together with the time and place of their origin. At random intervals.
one of the sites sends its current (timestamped) log to another; the second site then
incorporates the received log into its own. The frequency of these messages. and their

destinations, depend on the system parameters. In order that a site may execute
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an update request in its log, the latter must incorporate the logs of all other sites;
moreover, those logs must have been sent after the request so as not to miss any
previous updates.

This scheme of propagating update requests is of a type known as ‘lazy replication’.
The latter was proposed by R. Ladin et al. [39] for the purpose of handling a large
class of weak consistency requirements, including sequence consistency. A similar
scheme, whereby the recipient of a message replies immediately to the sender with its
own current log, was suggested by R.A. Golding [27]. He used the name ‘timestamped
anti-entropy protocol’. We shall refer to the sending of a message in one direction as
‘gossip’, and to the sending of a message and receiving a reply as ‘exchange gossip’.
Both types of protocols will be examined.

The performance measure of principal interest is the average response time of an
update request, i.e. the interval between the initial arrival of the request at one of
the sites, and the first instant thereafter when the request can be executed on that
site. To see why the problem of determining that quantity is non-trivial, consider a
simple system with 3 replicated sites employing a gossip protocol and suppose that an
update request arrives originally at site 1. Before that request can be executed, site
1 must receive gossip from sites 2 and 3, either directly or indirectly. Denoting the
event ‘site i sends a gossip message to site j’ by {i = j}, we see that the response
time of the request is the shortest interval until one of the following sequences of
events occurs: ({2 = 1},{83 = 1}), or ({3 = 1},{2 = 1}), or ({2 = 3},{3 = 1}),
or ({3 — 2},{2 — 1}). With exchange gossip, there are 16 similar sequences, since
any exchange can be initiated by either of two protagonists, and site 1 may be one
of them. Of course, in between the ‘useful’ messages, there may be many others that

do not contribute new information to the log at site 1. One can readily appreciate
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that, as the degree of replication grows, the combinatorial complexity of the problem
increases very rapidly. An approach that reduces that complexity is required.

The detailed assumptions of the model are described in section 7.2. The response
time problem is reduced to one of finding an average first passage time for a Markov
process. However, the size of the state space makes the standard ‘brute force’ method
impractical. We first give a solution in section 7.3 for the special case when all
destinations other than the source are chosen with equal probability. An efficient
solution is obtained in section 7.4, by showing that the problem is equivalent to
another first passage time, for a possibly different Markov process, which turns out to
be easier to solve. Indeed, in some special cases, the solution can be written in closed
form. The special case of section 7.3 is then considered again and it is shown that the
solution obtained from both approaches is same. Section 7.5 gives the analysis for
the exchange-gossip scheme. In [20] F. Cristian et al. suggested the Train protocol
for broadcasting updates. Section 7.6 gives a solution for the average response time
of an update while using the scheme suggested in [20]. Some numerical results,
including results for different network topologies are presented in section 7.7. Section
7.8 considers the problem of determining the average interval between the arrival
of an update request at some site, and executing it on all sites. Upper and lower
bounds on that interval, which is referred to as the ‘sojourn time’ of the request, are
derived. An evaluation of the accuracy of the bounds is also presented. We conclude

the chapter by mentioning the main results of the chapter.

7.2 The model

Data objects are replicated on N different sites numbered 1,2, ..., N, communicating

with each other via some network. Each site receives a stream of update requests
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arriving locally and stores them in its log (accesses that do not modify the objects
are not important in the present context and are ignored). The logs are propagated
among the sites by means of gossip or exchange gossip messages, so as to implement

the global sequence consistency requirement. The system is illustrated in figure 7.1.

™~

R
i Network :/@/
| |

Update requests L - - ~<--

W

Figure 7.1: A replicated distributed system with N sites

Consider first the gossip protocol. Site ¢ sends gossip messages at intervals which
are i.i.d. random variables distributed exponentially with parameter u. The destina-
tion of each message is selected at random, regardless of past history: site ¢ chooses

site j with probability ¢; ; (4,7 =1,2,...,N), such that ¢;; = 0 and

N
Sgy=1; i=12,...,N.
Jj=1

The product g; ju represents the rate at which site ¢ sends gossip messages to site
j. Since the intervals between messages are normally much larger than the message
transmission times, the transmissions are assumed to be instantaneous.

The information about update requests received before a given moment in time 1is

propagated among the sites by gossip sent after that moment. Suppose, without loss
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of generality, that we start observing the system at an instant when a new update
request arrives at site 1; denote the content of the site % log at that instant by L;.
At a distance in time ¢ after the new arrival, the state of knowledge of the different
sites is described by the Boolean matrix, A(t) = [a;(t)] (1,5 = 1,2,..., N), whose

elements are equal to

1 if site ¢ has incorporated L;

a;,j(t) = (7.1)

0 otherwise
Note that site i can obtain L; either directly from site j, or indirectly through another
site. Thus, the value of a;;(t) will become 1 at the first occurrence of one of the
following events: either {j — ¢} (site j sends a gossip message to site i), or {k — i}
for some site k£ such that ax;(t) = 1.

The above assumptions imply that X = {A(¢); ¢ > 0} is a Markov process. Its
initial state is A(0) = I, where I is the identity matrix of order N (i.e. each site
knows about its own log only). The sending of a gossip message may or may not
cause a state transition, depending on whether the destination site already has the

information provided by the sender. More precisely, if {j — i} at time ¢, then

Ai’.(t) = Ai’_(t—) or Aj,.(t—) , (72)

where A;. is the ith row of matrix A, or is the element-by-element boolean OR
operation and t— is the time ‘just before’ ¢.

The response time, R;, of the update request is the interval until site 1 incorporates
all other logs, i.e. the smallest value of ¢ such that 4;.(t) = 1, where 1 is a vector of
size N whose elements are all equal to 1. More generally, the interval until the update
can be executed on site ¢, R;, is the smallest value of ¢t such that A;.(t) = 1. From
this discussion it is clear that R; may depend on i, but it does not depend on the site
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where the request arrives. The important index in the definition of the response time
is the site where the request is to be executed.

Thus, the problem of finding the average response time of an update request can be
formulated as one of determining the average first passage time (FPT) of the Markov
process X from state I to the set of states in which A;.(t) = 1, for some given i.
These states are called absorbing states. In principle, the answer can be obtained by
writing and solving a set of simultaneous linear equations. In practice, however, that
approach is prohibitively expensive even for moderate values of N. This is due to the
size of the state space. Since each non-diagonal element of the matrix A can have
two values, the number of possible states is 2V(N-1. The number of equations that
have to be solved is only slightly smaller—it is on the order of O(2N(V-2)).

A more efficient solution is obviously desirable. We first solve the system for the
special case when all replicas are identical. We then present an equivalent formulation

of the system and give a solution for more general case.

7.3 Analysis

In this section we consider the case when system is homogeneous i.e. all replicas are
identical and all destinations other than the source are chosen with equal probability.
For this case R; is independent of i and without loss of generality ¢ can be assumed
as 1. We denote the average response time of an update by E(R) as in this case the

index can be omitted.

Let K be the integer valued random variable representing the number of events

of type {i — j} that occur until absorption is reached. Denote
m, = E(R|K =p)

g = P(K=p)
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Then E(R) can be calculated by summing up the following series:

o
E(R)= ) mpg (7.3)
p=N-1
p takes values starting from N — 1 because absorption is not possible in less than
N — 1 events. This is due to the fact that every site except 1 should send a gossip at
least once before the system goes into some absorbing state.

Let fp(z) be the joint density function that absorption occurs after p gossip mes-

sages and takes time z:

fo(z)dz = P(R==2,K =p) (7.4)

Consider the case when out of these p messages, the site that sends the last gossip
message sends j messages and out of the remaining sites, k; sites send 7 messages
each, i = 1,2,...,1, where ! is the maximum number of messages send by a single
site. Since, in order that absorption occurs, each site should send at least one message,

the maximum value that [ can take is p — N — 2. Theses numbers satisfy

l+ki+ - -+h=N-1, (7.5)

j+k1+2*k2+---+l*k1=p (76)

Note that a given site sends ¢ messages during an interval of length = with prob-

ability U%te““. Therefore, the density f,(z) has the form

(/'I"T)l e—p:l:)kl (um)J_l e HT

(@) = 3 Cuu (u)e - (5 G-

7
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where Ci,g,...k, 8 the constant that gives the number of ways k; sites can be selected
from total N — 1 sites and S contains all combinations of j, ky, ..., ki s.t. equations

(7.5) and (7.6) are satisfied. Because of (7.5) and (7.6), the above expression can be

written as

fy(z) = CppoPte W -1ue (7.7)

where C is some constant.

Given this distribution g, and m, can be calculated as

[e o]
9% = /(; fp(z)dz
= C/oou”:v”_le_(N'l)"’dr
0

(p—1)! c

N iy (7.8)

and

my = /Oooxfp(x)dx/‘b)
— C/oo u”:ppe_(N_l)’”d:z:/qp
0 .
(N —1)p*p

p
ey (7.9)

= C /%

This last expression can be justified intutively by claiming that z—N—_l—l)—# is the
average interval between two events and there are p such events. This gives the

following expression for E(R):

E(R) = (ﬁél—)ﬁp:%:_lpqp (7.10)
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Thus the problem of finding the average response time is reduced to that of de-
termining the average number of message sequences leading to absorption in p events.

To calculate g, let us consider first all sequences of messages containing p messages.
As the total number of messages that can be sent in any state of the Markov process
is (N — 1)?, there is a total of (N — 1) such sequences (we will alternatively refer to
these sequences of messages as paths). Not all of these sequences of messages lead to
an absorbing state.

Let S, = number of message sequences leading to absorption in p events

Then g, can be written as

Sp
We introduce a shorthand notation for a sequence of gossip messages, s(i, j, k, T),
where i is the site sending the first gossip message, j is the site receiving the last
gossip message, k is the total number of gossip messages in the sequence and z is an
integer defined below. There may be more than one sequence denoted by the same

shorthand notation. Replica 1 knows about updates of replica j if there is a sequence

of message(s) of the form

{j =1} ifk=1
{j =i}s(3,1,k—1,.) fi#1Lk>1

s(j,1,k,.) =

Given a sequence of p messages, the system will be in an absorbing state if this
sequence includes at least one suffix of the form s(j,1,.,.) for every j # 1. To count all
sequences leading to absorption, we define the variable z for some message sequence

s as follows:
Define set A, to contain all replicas j (j # 1) for which at least one suffix of the

form s(j,1,.,.) exists in s. Then z 1s the cardinality of the set A,. Since A, can not
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contain more than N — 1 sites, z < N — 1. We also define set A; = A, U1l. These
definitions imply that any sequence of gossip messages of the form s(4,1,p, N — 1)
leads to absorption in p steps.

Examine all possible (N — 1)% sequences of length p, starting from the last mes-
sage. Based on the last message we can divide all (N —1)? sequences into two groups
(1) (N — 1)~ message sequences, whose last message is {j — 1} for some j # 1.
For all these sequences the subsequence consisting of the last message only has r =1
and is of the form s(j,1,1,1). (2) remaining (N — 1)%~(N — 2) message sequences,
whose last message is {j — ¢}, for some j and i # 1. Now consider the message
sequences in group (1). Any one of these (N — 1)?~! sequences can be placed in
one of the two groups based on the value of z for the suffix subsequence consisting
of messages p — 1 and p. For one of these groups the message subsequence of length
2 (messages p — 1 and p) will have z = 2 based on message p — 1 and for the other
group the subsequence of messages p — 1 and p will have z = 1.

In general, based on the last p — k messages, all sequences can be divided into
min{N, p—k+1} groups where for every sequence in group 0 the suffix of length p— &
is of the form s(j,7,p—k,0) and ¢ # 1; in group 1 it is s(j,1,p—k, 1), in group 2 it is
s(4,1,p—k,2) and so on. Denote the group of message sequences where z sites deliver
their logs to site 1 in the last p—k messages, by Gp_tz, £ =0,1,..., min(N—-1,p—k).
Any sequence which leads to absorption must belong to a group whose z value satisfies
z > maz(0, N — k — 1). This can be explained as follows:

Since z sites deliver their logs in the last p — k messages, at least N —1 — z sites
must do so in the first £ messages.

For a given suffix, s, of length p — k, let Qi s(z) be the number of sequences from

group Gp_,¢, Which lead to absorption. This number will be the same for all different
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suffixes of length p — k having the same value of z, because the number of possible
prefixes depends only on the value of z, and not on the actual sites that contribute to
that value. This enables us to omit s from the subscript of Qi ;(z) and define Qi (z)
as the number of sequences leading to absorption, such that they all have the same
(fixed) suffix of length p — k during which z sites deliver their logs to site 1. The
quantity Q,(0) is the number of all sequences of length p leading to absorption.

To write a recurrence for Qr(z) let us examine the relationship between groups.
Consider a sequence, s, from the group G,_i .. It may belong to one of the two
groups, Gp_k+1,2+1 O Gp_g41,0, depending on the source and destination of message
k. Let that message be {j — i}.

(1) If j is not among the sites counted in z and 7 is among those sites, or is 1,
then s is in Gp_j41,04+1- There are a total of (N — 1 — z)(z + 1) such possibilities for
message k.

(2) In all other cases the sequence belongs to the group Gp—+1,.. The number of
remaining possibilities is (N — 1)2 — (N —z — 1)(z + 1).

Thus Qr(x) satisfies the following recurrence relation:
Qi(z) = (N—z—1)(z+1)Qxa(z + 1)+

(N =1)* = (N =z = 1)z + 1))Q-1(2) (7.12)

The boundary conditions are:

L Qyz)=1lforz=N-1

II. Qu(z) =0forz >N -1

I Qr(z) =0forz+k<N-—1

Now among the sequences leading to absorption in p steps, there are some that in
fact lead to absorption in less than p steps. If the process has reached an absorbing

state by step p — 1, then it will remain in 1t regardless of message p. Since there are
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(N — 1)2 possibilities for message p, the number of sequences such that absorption is

reached for the first time at step p is equal to:

Sp = Qp(0) — (N = 1)°Q,-1(0) (7.13)

It can be seen that the numerical complexity of the solution of (7.12) is O(2°). A
more efficient solution for solving this system is given in next section that presents

an equivalent formulation of the problem.

7.4 An equivalent formation

Consider the interval, T;, between the arrival of an update request at site i and the
first instant thereafter when all other sites know about it (even if they may not be
able to execute it). In terms of the Markov process X, defined in section 7.2, that is
the first passage time from state I to the set of states in which A.;(¢) = 1, where A.;
is the ¢th column of matrix A.

The random variable T;, which we shall call the ‘spreading time’ for site 1, is of
some interest in its own right. However, its main importance lies in the fact that it
can be related to the response time, R;, and is easier to model. First we need to
introduce another system.

The model defined in the section 7.2, with parameters N, p and g;;, will be
referred to as the ‘primary system’. Now consider a similar model with the same
number of sites and the same value of i, where the probability that site 7 chooses site
j as the destination of a gossip message, G ;, is equal to the probability that site j

chooses site 7 in the primary system:
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% =gy ; L,j=12,...,N. (7.14)

This will be called the ‘dual system’. It exist when

N
Yogii=1.
j=1

This is assumed to be the case.

Clearly, duality is a symmetric relation; if the dual system is taken as primary,
then the primary would be the dual. Moreover, if the primary system is symmetric,
i.e. if g; ; = g;, for all ¢ and j, then it coincides with its dual.

The following result will provide the desired simplification:

Lemma 1 The random variable R; in the primary system is equal, in distribution,
to the random variable T; in the dual system.

Proof: Let s = ({k1 — k2},{ks = ka},...,{km — 1}) be a sequence of gossip-
sending events in the primary system, such that the corresponding transitions of the
process X constitute a first passage from state I to a state with A;.(t) = 1. The
messages in that sequence help to deliver the log contents of all other sites to site <.
Denoting by P(s) the probability that s occurs and by f,(z) the p.d.f. of its duration,

we can express the p.d.f. of R; in the form

fz) =Y P(s)fil(z), (7.15)
s
where ‘the summation is over all appropriate sequences.

Now consider the reverse sequence in the dual system: § = ({i = km},..., {ks =
ks},{ks — k1}). The messages in § carry information in the opposite direction: they
propagate the log of site i to all other sites. The corresponding transitions of the
Markov process form a first passage from state I to a state with A ;(t) = 1. The
p.d.f. of T; in the dual system can be written in a form similar to (7.15):
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fl@) =X P(®filo) (7.16)
F
where P and f refer to probability and p.d.f. in the dual system. There is a one-
to-one mapping between the sequences s and 3. Moreover, the definition of duality
implies that P(s) = P(3) and f,(z) = fi(z). Hence, f(z) = f(z), QED.

Thus, the computation of an average response time in the primary system is
reduced to the computation of an average spreading time in the dual system. This
is a significant improvement, because the propagation of information from site i to
the other sites can be described by a much simpler Markov process, Y, whose state
at time t, o(t), is the subset of sites that have already obtained the log of site i. The
initial state of Y is the subset consisting of site ¢ only: o(0) = {:}. If site ¢ sends a
gossip message to site j, there will be a transition to state {7, 7}. Then, if either site
i or site j sends a message to site k, Y will jump to state {3, j, k}, etc. Since o(t) can
only increase in size, the process Y will reach state {1,2,..., N} after exactly N — 1
transitions. The first passage time of Y from state {1} to state {1,2,..., N} is the
spreading time T;.

If the process Y is in state o, and if j is a site which is not in o, then the transition

rate from o to o U j is given by

oouj =B Dk =K Y Gk (7.17)

keco kco
according to the definition of duality. The total rate of leaving state o is equal to

6&7 = Zfd,on ) (718)
j€o
where @ is the complement of o with respect to {1,2....,N'}.
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Let E(T,) be the average first passage time of Y from state o to state {1,2,...,N}.

These quantities satisfy the following set of linear equations:

B(T,) = ++ Y 2 p(r, ), (7.19)

o jez &o
where E(T(1,..~}) = 0 by definition.

Note that the equations in (7.19) are in fact recurrences in terms of the cardinality
of o. They can therefore be solved by successive substitution. When ¢ contains N —1
sites, (7.19) gives E(T,,) = 1/€,. The next application of (7.19) provides E(T,) for o
containing N — 2 sites, and so on down to E(T;).

An important special case of this model is the ‘homogeneous’ system, solved in sec-
tion 7.3, where all destinations other than the source are chosen with equal probability,
ie ¢j=1/(N—1) (i # 7). Then the primary and secondary systems coincide and
the response and spreading times do not depend on the site: E(R;) = E(T;) = E(R).
The first passage times T, depend only on the cardinality of o and not on its member-
ship. Denote by ¢, the value of E(T,) when o contains m sites. Then the recurrences

(7.19) yield

N-1

=t tmt1 7.20
m(N——m)p+ +1 (7.20)

tm

with ¢y = 0 by definition. Hence, the average response time

E(R) =t =~ - ) P (Nl_ . (7.21)

m=1

The equation (7.21) gives the same results as the equation (7.3). This last expression

can be simplified by rewriting the terms under the summation sign in the form

L1 1)
m(N—m) Nlm N-ml
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The two resulting sums are in fact identical. Therefore,

E(R) =

2(N —1) Nfi _2(N-1)Hy_,

Ni Xm N : (7.22)

where Hy, is the nth harmonic number. Thus, when N is large, the average response

time is approximately equal to

2In N
E(R) ~ 2 . (7.23)

There are other special cases where the solution may be obtained in closed form.
For example, suppose that the sites are connected by a one-directional ring network,
with site ¢ sending messages tositei+1 (1 =1,2,...,N — 1), and site N to site 1.
The dual system here is the opposite-directional ring, where site i sends messages to
sitei—1 (¢ =2,3,...,N), and site 1 to site N. It is not difficult to see that in this
case,

N-1

B(R)=——. (7.24)

7.5 Exchange Gossip

The analysis in this section applies almost without change to the case where the
sending of a gossip message from site ¢ to site j (with probability ¢; ;) prompts an
immediate message from site j to site 7. Similarly, if site 7 sends a gossip message
to site ¢ (with probability g;;), the latter will reply immediately with a message of

its own. If such an exchange occurs at time ¢, the resulting transition of the Markov

process X 1s

A,".(t) = AJ’(t) = A.,,’(t—‘) or A]‘(t—) .
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Again there is an equality between a response time in the primary system and
a spreading time in the dual one. The transition rates for the process Y are now
different, since an exchange that increases the membership of o can be initiated
either from within o or from outside. The new equation corresponding to (7.17) has

the form

Eoouj = It Z(Qj,k + qi,;) - (7.25)
keo

Equations (7.18) and the recurrences (7.19) remain valid.

In the homogeneous special case, where all exchange gossip destinations are equally

likely, the formula (7.21) becomes

N-17%2 1

E(R) = 2 mzzjl o (7.26)

When N is large, this is approximately equal to

N ,
E(R) ~ }nT | (7.27)

In the ring network, there is no difference between gossip and exchange gossip.

7.6 Train Protocol

In the Train protocol described by the F. Cristian et al, [20] there is a cyclic order
among sites. A train containing a sequence of updates circulates from one site to
another in this order. A site that wants to broadcast an update waits for the train
to arrive. When the train arrives the sender first delivers all updates carried by the
train, and then appends all updates that it wants to broadcast at the end of the train.

The sender removes these updates when he sees the train again. It can be readily
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seen that this scheme behaves exactly in the same way as gossip when the sites are
connected by a one-directional ring network, with site sending messages to site 1 + 1
(i=1,2,...,N —1), and site N to site 1. The average response time of an update,

therefore, can be given by equation (7.24).

7.7 Numerical experiments

We first examine the effect of increasing the number of replicas (fully reliable). The
performance measure of interest is the average execution time of an update. The
trade-off here is between the advantage of increasing the number of replicas (as it
increases the read parallelism) and the disadvantage of longer service time for write
jobs. Figure 7.2 shows increase in average response time of write jobs against number
of replicas. This increase is logarithmic. Figure 7.3 compares the performance of the
schemes used by gossip, exchange-gossip and train protocol for spreading updates.
It is clear from the graph that performance of gossip and exchange-gossip schemes
are better than train protocol in most cases. The trade-off between the performance
of gossip and exchange-gossip actually depends on the time taken to send a gossip
and time taken to exchange the information between two replicas. If both are same
exchange-gossip scheme performs much better than gossip but if later is large enough
in comparison to former then the performance of gossip protocol is better.

It is intuitively obvious that the higher the connectivity of the network by means
of which the sites communicate with each other, the better the performance of the
replication protocol will be. This observation has already been quantified in two
extreme cases. In a fully connected, homogeneous network, the average response
times grow logarithmically with N. In a minimally connected, ring network, those

averages grow linearly with N.
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Figure 7.2: Analytical vs. simulation results for write response time
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Figure 7.3: Response time for gossip, exchange-gossip and Train schemes
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For the purpose of comparison, we have also examined an intermediate case—a
mesh network where every site sends messages to each of its four immediate neigh-
bours with probability 1/4. In order to simplify the calculations, it is assumed that
the mesh is similar to a torus, i.e. the left-hand neighbour of a site on the left-hand
edge is the corresponding site on the right-hand edge; the former is the right-hand
neighbour of the latter; the top neighbour of a site on the top edge is the correspond-
ing site on the bottom edge; the former is the bottom neighbour of the latter. An

8-site mesh of this type is illustrated in Figure 7.4.

ba e

Figure 7.4: A mesh network with 8 sites

Since the routing matrix of the mesh network is symmetric, the primary and dual
systems coincide. The average response time and the average spreading time are
equal and do not depend on the site.

The performance of the ring, mesh and fully connected networks, measured by
the average response time as a function of the number of sites, is shown in Figure 7.5.
The mesh results were obtained by solving the recurrence equations (7.19).

As expected, the mesh performs better than the ring, but not as well as the fully
connected network. The graph appears to suggest that the mesh average response
time grows approximately linearly with N, but at a lower rate than the ring.

Figure 7.6 compares the results obtained by summing the series of (7.21) with the
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Figure 7.5: Response time for ring, mesh and fully connected networks
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results obtained by direct formula given in (7.23).

1

sum of series “—
75 direct =

E(R)

-
~
3 - . 1 A )
5] 10 15 20 25 30
N

Figure 7.6: Results obtained by direct and indirect (series sum) methods
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7.8 Sojourn time of an update request

The interval, S, between the arrival of an update request and its execution at all sites
is called the ‘sojourn time’ of the request. Within that interval, every site obtains the
log of every other site. In terms of the Markov process X, whose state is the Boolean
matrix A(t), this is the first passage time from state I to the state A(t) = 1 (all
elements of A(t) are equal to 1). Unfortunately, we do not have an efficient algorithm
for calculating the average sojourn time exactly. Instead, it is possible to provide
reasonably tight upper and lower bounds.

To derive a lower bound for the gossip protocol, let D be the interval until all but
one of the sites have sent at least one message each. At the end of D, there is still
one site which has not yet sent a message. Clearly it must do so, and its log must
be propagated to all other sites, before the sojourn time can complete. Hence, S is
bounded below by the sum of D and the spreading time of that last site.

Since we do not know its index, we write

E(S) > E(D) +min B(T)) (7.28)

To find F(D), note that the average interval until the first site to send a message
is 1/(INp); after that, the average interval until the second site to send a message is
1/((N — 1)p), etc. Hence,
1 Hy-— 1
E(D) = Z — == (7.29)

_2m

where Hy is the N th harmonic number.

In the homogeneous special case, where ¢;; = 1 /(N —1) (i # j), all average

spreading times are equal and (7.28) becomes
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1 2Hy 1+ N -1
B(S)2 [:’,H,\,_1 _ o ] . (7.30)
For large values of IV this is approximately
3lnN
E(S) > L (7.31)

An upper bound on E(S) can be obtained by remarking that if one waits for site
i to absorb all other logs (the response time of site i), and after that for site i to
propagate its log to all other sites (the spreading time of site i), then the sojourn

time will certainly complete. Since that is true for all 7, we can write

E(S) < min[E(R:) + E(T3)] . (7.32)
Note that both E(R;) and F(T;) in the above equation refer to the primary system.
If the system is symmetric, then those two quantities are equal. For such systems,

the upper and lower bounds differ by a factor less than 2.
When ¢;; = 1/(N — 1) (i # j), the upper bound is

4(N —1)Hy
< 7.33
B(S) < S (73
which for large N is approximately
4ln N
E(S) > z . (7.34)

In this case, since both bounds are logarithmic, the true value of E(S) must also be
on the order of O(In N), with some coefficient whose value is between 3/u and 4/p.

If the sites are connected by a ring network, the logarithmic contribution of E(D)
in the lower bound is dominated by the linear growth of E(T;). Then the two bounds
are
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Similar results can be obtained for the exchange gossip protocol. The upper
bound (7.32) applies without modification. In the lower bound, the interval D no
longer helps, since a site may participate in an exchange without initiating it. A

simpler, if worse, lower bound is provided by

E(S) > miin E(T;). (7.35)

In the homogeneous system under exchange gossip, the average sojourn time is

bounded by

(N-1)Hy, 2(N-1)Hy_,
———= < F(S5) L
Ny S BlS) < Tt (7.36)
which for large N is approximately equal to
In N 2InN
—-SEE)< A (7.37)
7

For the ring network, the same linear bounds as before apply.

An estimate for the average sojourn time in the fully connected homogeneous
network, as a function of N, was obtained by simulation. The width of the confidence
interval was less than 2% of the performance value. The results are presented in Figure
7.7, together with the analytical upper and lower bounds. It is evident that, at least
in this system, the lower bound is much closer to the true value of the performance
measure than the upper bound. However, it is possible, by exploiting the structure of

the model, to derive an improved upper bound which comes within 20% of the true

values.
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Figure 7.7: Bounds and simulation estimates for £ (S)
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7.9 Conclusion

The analysis given here provide useful insight into the behaviour of replicated data
systems. The effects of different parameters can be evaluated and decisions concerning
the degree of replication and choice of protocol to be used can be taken. The solution
of the model that gives delay time for an update is exact; its numerical complexity is
of the order of O(N). The numerical complexity of upper bound on the time when
the update can be executed on all replicas is also of the order of O(N).

The study can further be extended to consider the case when replicas are subjected
to breakdown and repair. The main results in this chapter can be summerizes as:

[1.] The equality in distribution between the response time in the primary system
and the spreading time in the dual system.

[2.] The recurrence equations for calculating E(T;).

[3.] The explicit formula for the average response time in the fully connected
homogeneous network and the corresponding logarithmic approximation.

[4.] The upper and lower bounds for the average sojourn time and their explicit
versions in the fully connected homogeneous network.

We still do not know how to analyze a replicated system where the dual does not
exist, i.e. where the rows of the routing matrix add up to 1 but the columns do not.

This is an interesting open topic for future research.
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Chapter 8

Conclusions

This chapter summerizes the work which has been presented in this thesis and suggests

some possible areas for further research.

8.1 Summary of Thesis

This thesis presents the performance evaluation of different data replication proto-
cols. We have analysed these protocols both when replicas are reliable and when
breakdowns and repairs may occur. We selected the queueing theory approach to
analyse these protocols as it captures the effect of delays caused by queueing and
congestion at various nodes of the network. We first classified these protocols into
three categories based on their approach to implement updates. These categorics are:
Strong consistency protocols, Weak consistency protocols and multi-level consistency
protocols.

The first part of the thesis concentrates on protocols that follow the quorum
based approach to maintain strong consistency. An analysis of these protocols both

in case of reliable replication and unreliable replication has been presented. The
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effect of scheduling strategies on the performance of the protocol has been studied.
We considered two scheduling strategies: Priority and FIFO. The model in the case
of unreliable replication with priority scheduling has N servers subject to breakdowns
and repairs and two classes of jobs. We found that the exact analysis of this model
is yet intractable. The analysis presented is approximate yet very close to exact. To
show this we gave an exact solution for one server subject to breakdowns and repairs
and two classes of jobs. A comparison of results for the two cases (approximate results
and exact results in case of one server) justifies our claim.

Quorum based schemes for maintaining strong consistency need synchronization
among a large number of replicas. Due to this they do not perform well for wide
area networks where the number of replicas may be hundreds or thousands. The
performance can be improved by relaxing the consistency constraints. The second
part of the thesis analyzes protocols that take advantage of this fact to allow some
replicas to be out-of-date while maintaining a group of replicas strongly consistent. A
user reading from a replica may be interested in knowing the probability of that replica
being up to date. A method to calculate this probability has also been presented.
These results have been published in IPDS’96.

Finally we presented the analysis of the protocols that allow updates to occur
on any replica asynchronously. Replicas store these updates in their log and later
propagate them to other replicas by sending messages containing information about
these updates. The two schemes of propagating updates have been analysed. One
where replicas send gossip messages to each other randomly and the other where two
replicas exchange messages with each other. The updates are being implemented in
the order of arrival. Response time of an update has been formulated as the first

passage time from the arrival of the update on some replica until the time when that

140



replica is ready to execute it. The effect of the network topology on the performance
of the protocol has also been studied. Upper bounds and lower bounds on the time

until all replicas are ready to execute a given update have also been established.

8.2 Contributions

Each chapter states the contributions made in the area covered in that chapter. A

brief summary of these contributions is, as follows:

o The analysis of quorum based protocols for reliable replication shows that there
is an optimal degree of replication that gives the best performance. The per-
formance measure is the response time of the jobs. As the number of replicas
increases the response time decreases but once this optimal degree of replication
is reached any increase in number of replicas increases the response time instead

of decreasing it.

e The analysis of quorum based protocols for reliable replication and with fixed
number of replicas shows that the optimal choice for quorum depends on the
arrival rate of jobs. When most of the offered load consists of read jobs, the
allocation R = 1,W = N is best, whereas R = N,W = 1 is preferable when

most of the load consists of the write jobs.

e The analysis of quorum based protocols with breakdowns and repairs shows
the same behaviour. There is an optimal degree of replication in this case also
which is generally larger than the optimal degree of replication in the case of

reliable replication.

e It is shown that even a slight unreliability of servers have a considerable effect
on the shape of curves plotting the response time of jobs. It not only affects
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the optimal degree of replication but also the choice of quorum sizes. For the
cases where R = N, W = 1 give the best performance when replicas are reliable,

the choiceof R=1,W =N may give better performance in case of unreliable

replication.

A comparison of priority scheduling and FIFO scheduling for quorum based
protocols shows that in many cases better performance can be achieved by

assigning higher priorities to the jobs with larger arrival rate.

A model with one server subject to breakdowns and repairs and two job types
is considered. An exact solution of this model with priority scheduling for write

jobs is presented.

The problem of data replication with two levels (level 0 and 1) of consistency
is considered. The performance measure of interest is the response time of slow
reads (that need most recent value of data) and fast reads (that may read older
versions of data). The replicas at level 0 are always strongly consistent and a
slow read reads from level 0 replicas. Replicas at level 1 may be out-of-date
and a fast read reads from some level 1 replica. It is shown that the states of
level 0 and level 1 are independent of each other. The analysis for both levels is
presented. As the level 0 uses quorum based protocols to maintain consistency,
the analysis of level 0 is same as the one for quorum based protocols. All results
that hold for quorum based protocols apply for level 0 also. The response time
for higher priority jobs at level 1 can be obtained by treating a level 1 replica
as an M/M/1 queue. The curves showing the response time of slow and fast
read jobs are presented. The analysis gives an insight into the behaviour of

the system and helps in making optimal decisions concerning the degree of
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replication, quorum sizes and the division of replicas between level 0 and level

1.

An exact method to calculate the probability that a level 1 replica is out-of-
date is presented for reliable replication. A method to calculate the approximate

value of this probability is suggested in case of breakdowns and repairs.

Two schemes, gossip and exchange gossip, for spreading updates among geo-
graphically distributed sites are studied. The analysis when replicas execute
these updates in the order of their arrival is presented. The problem of finding
the average response time of an update can be formulated as one of determining
the first passage time from the state when a replica receives the update to the
state when it knows about all preceding updates arrived at other replicas. It
is shown that the complexity of this problem is of the order of O(2V (N-2)), To
solve this problem more efficiently we use a counting argument leading to re-
currence relations, and also an approach based on a dual system and a different
first passage time. Closed form solutions and single logarithmic approximations

are obtained in some special cases.

It is shown that the connectivity of the replicas affects the performance of the

scheme. The greater the connectivity, the better is the performance.

We give closed form solutions for the upper and lower bounds on the time when

all replicas are ready to implement the update for a fully connected homogeneous

network.
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8.3 Further Work

This research gives an insight into the behaviour of replication protocols. It also
leaves many questions unanswered for future research. These problems that need
more research have already been highlighted in the chapter covering the material

related to that area. Here we summarize these open problems for research.

e The analysis of quorum based protocols in this thesis assumes that all replicas
are identical. The system can still be solved when the replicas are not identical
(write service time is different for each write request) provided (1) the read
quorum is one and write quorum is all (2) the read service time has the same
distribution for all read services. The problem to analyze the protocols for a
more general case when both read and write service times are different and

quorum sizes are also other than 1 and N is open for research.

e The thesis compares the performance of quorum based protocols for two schedul-
ing strategies: priority and FIFO. The performance of the scheme with other

scheduling strategies may be examined.

e We presented the analysis of a two-level replication. Recent proposals have
introduced bigger hierarchies of replicas. It may be worth analysing systems
with more than two levels. While more complicated, such genralizations could

be analysed by similar methods used for analysing two-level replication.

o The analysis presented for two-level replication assumes that all updates arrive
at level 0 only. They are then propagated to replicas at level 1. Schemes where
updates may be submitted at any level or where replicas at level 1 are updated

on demand may be studied.
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e The analysis presented in this thesis for two-level replication considers each
replica at level 1 in isolation. If a replica breaks down, the jobs in its queue
wait for its repair. In a more general case these jobs can be routed to other

replicas at level 1 which are not faulty. The analysis of this case may be useful.

e The analysis of gossip and exchange gossip schemes considers that updates are
executed in the order they arrive. The protocols suggested for providing weak
consistency support many other orderings: causal, ordering imposed by client
etc. The problem to study the performance of these protocols analytically for

other cases is still open for research.

e The thesis gives upper and lower bounds on the time when an update can be
executed on all replicas. An attempt to get an exact solution for this time may

be worth trying.

e The analysis of gossip and exchange gossip schemes can further be extended to

consider the case when replicas are subjected to breakdown and repair.

8.4 Concluding Remarks

With development of large scale wide area systems and use of replication in these
systems to provide (a) fault tolerance and (b) improve performance it has become
vital to study the performance of these protocols. We hope that the analysis presented
in this thesis will be helpful in making decisions about different aspects of replication

and will motivate people to continue research in this area.
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Appendix A

The ‘brute force’ approach which relies on first evaluating the scalar polynomial
det[Q(z)], then finding its roots, is very inefficient for large N and is therefore not
recommended. An alternative which is preferable in most cases is to reduce the

quadratic eigenvalue-eigenvector problem

PY[Qo + @iz + Q2% =0, (A1)

to a linear one of the form ¥ Q = 2, where Q is a matrix whose dimensions are twice
as large as those of @y, (J; and Q,. The latter problem is normally solved by applying
various transformation techniques. Efficient routines for that purpose are available
in most numerical packages.

This linearization can be achieved quite easily if the matrix Q2 = C is non-

singular. Indeed, after multiplying (A.1) on the right by Q3 ! it becomes
¢[H0+H12+IZZ] =0 y (A2)

where Hy = QuC~1, H; = Q:C~', and I is the identity matrix. By introducing the

vector ¥ = z4), equation (A.2) can be rewritten in the equivalent linear form

wow | © T = (A.3)
I —-H
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If C is singular but B = @ is not, a similar linearization is achieved by multiplying
(A.1) on the right by B~' and making a change of variable - — 1/:. Then the
relevant eigenvalues are those outside the unit disk.

If both B and C are singular, then the desired result is achieved by first making
a change of variable, z — (v + z)/(y — z), where the value of y is chosen so that the
matrix S = y*Q, + yQ1 + Qo is non-singular. In other words, 7 can have any value
which is not an eigenvalue of Q(z). Having made that change of variable, multiplying

the resulting equation by S=! on the right reduces it to the form (A.2).
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