University of Newcastle upon Tvne

School of Computing Science

Formal Modelling and
Analysis of an

Asynchronous Communication
Mechanism

by

Neil Henderson

PhD Thesis

February 1, 2005

NEWCASTLLD UNIVERSITY LICRARY

204 CG180 9

“hess WIS ST



Abstract

This thesis makes a contribution rowards cutting the cost of development of
real-time systems. The development of real-time svstems is difficult: often
errors in the specification are not identified until late in the development pro-
cess, and there is a requirement to reduce the amount of rework to correct
flaws introduced in the early stages of development. A Real-time Network-
Specification Language (RTN-SL) is being developed to allow the rigorous
specification of functionality and timing properties of computations. The
correct specification of end to end timing constraints. however, requires an
understanding of the timing properties of the communications between com-
ponents. A theory of communication is therefore required. to be used with
the RTN-SL, to analyvse timing properties of svstems early in the develop-
ment process.

The work demonstrates how a tool set can be used to gain an under-
standing of the behaviour of the svstem, to help to identify and correct
ambiguities that arisc in the early stages of development. An incremental
development approach is recommended. Starting with an abstract model
and exploring properties of increasingly realistic models of the implementa-
tion, to gain confidence about the correctness of the implementation, and an
understanding its behaviour. The strengths and weaknesses of a number of
tools are discussed and it is shown that it is possible to use a compositional
rely-guarantee method to verify properties of systems where the individual
components give few or no guarantees about their behaviour. This rely guar-
antce method makes it possible to record assumptions in the specification,
to help ensure they are not overlooked and thereby introduce errors in the
design and implementation. This approach can form the basis of a theory of
communication. which can be used with the RTN-SL to reason about end
to end timing properties of systems in the early srages of development.



1

Acknowledgements

This thesis would never have been completed without the generous and
invaluable help received from many people and organisations during the
course of study.

I would like to express my gratitude to my Supervisors at the University
of Newcastle: Professor Cliff Jones for his invaluable insight. which helped
to guide the work. and Dr John Fitzgerald for encouragement and assis-
tance during the early work and his patience and moral support while I was
completing this thesis.

I am deeply indebted to Dr Stephen Pavnter of MBDA UK Limited
and Dr Jim Armstrong of the University of Newcastle, for their guidance
and assistance in helping me to understand the technicalities of automated
theory proving, and in particular PVS. In addition Stephen provided help,
encouragement and moral support while the work was progressing.

Thanks are also due to Professor Hugo Simpson of NIBDA UK Limited,
and many colleagues at the University of Newcastle. including Professors
Alex Yakovlev and Majiec Koutny and Drs Ian Clark and Fei Xia who have
commented on various aspects of the work as it has progressed.

Thanks must go to the BAE SY'STEMS Dependable Computing Svstems
Centre for funding. and providing time. to complete the work.

I am deeply grateful to my family, in particular my wife Alison. for their
support and encouragement during vet another period of study.



Contents

1 Introduction 1
1.1 Verifying the Correctness of Real-time Svstems . . . . . . . 2
1.1.1 The Role of Hierarchical Development Methods 3

1.1.2 The Role of Communication Mechanisms . . . . . . . 4

1.1.3 The Role of Formal Methods. . . . . . . . . . .. .. 9

1.2 Contribution. . . . . . .. ... 11
1.3 Thesis Structure . . . . . . .. ... 12

2 A Taxonomy of Asynchronous Communication Mechanisms 13

2.1 Real-timeLogic . . . ... ... .. ... ... .. ... . 14
2.2 Lamport’'s Taxonomy of Asvnchronous Registers . . . . . . . 15
2.2.1 Base Type and Valid Type . . . . .. . .. ... ... 16
2.2.2 Lamport’s Taxonomy . . . . . . . . ... ... .. .. 16

2.3 A Critique of Lamport's Taxonomy of Asynchronous Registers 19
2.4 An Extended Taxonomy of ACNs . . . . . . . .. ... ... 20
2.5 Desirable Properties of ACM implementations . . . . . . ., 30
2.6 Using the taxonomy to Verify Properties of an Implementation 31
2.7 Summary . ... e 33
3 L-atomic ACMs 34
3.1 Communication Mechanism Implementations . . . . . . ... 35
311 1slot ACNs . .o o Lo o 36
3.1.2 2slot ACNs . . .o oo o 36
313 3slot ACNs . . .. .. ... 39

3.2  An Implementation Classification Scheme . . . . . . . . . . | 12
3.2.1 Impossibility Results for ACM Implementations . . . 43

3.3 Simpson's 4-slot ACN . . . . . . ..., 43
3.3.1 Description of Simpson's 4-slot . . . ... ... ... 13
3.3.2 The 4-slot Algorithm . . . . .. ... ... .. .... 46
3.3.3 A Formal Model of Simpson's 4-slot . . . . . . .. .. 16

3.4 Summary ... .. L 33

il



CONTENTS iv

4

A Model of L-atomicity 54
4.1 The (Abstract) Model . . . .. ... ... ... ... 33
4.2 Verification of the Model of L-atomicity . . . . . . ... ... 60

4.2.1 A Rigorous Proof for the end_ read Operation . ... 62
4.3 Summary . . ..., N
Using Refinement to Verify Properties of Simpson’s 4-slot 70

5.1 Refinement . . .. ... .. ... ... ... ... .. 71
5.2 A Retrieve Function? . . . . .. . .. ... ... .. ... T2
5.3 Formal Definitions of the Proof Obligations. . . . .. .. .. T4
3.4 A Retrieve Relation Between the Formal Models . . . . . . . )
5.5 Discharging the Proof Obligations . . . . ... ... ... .. S0
5.6 Summary ... ... 86
Applying a Compositional Proof Method 89
6.1 Rely-Guarantee . . . . . . .. ... ... ... 90
6.2 A Proof Method for Shared Variable Concurrency . . . . .. 91
6.3 Verifving L-Atomicity of the 4-slot Implementation . . . . . 94
6.3.1 Assertion Networks for the Component Processes . . 94
6.3.2 Formal Descriptions of the Proof Obligations . . . . . 95
6.3.3 The Coherence Proof . . . . . ... ... ... . .. o7
6.3.4 The Freshness Proof . . . . ... ... .. ... .. 104
6.4 Identifying and Correcting Defects in a 3-slot ACM Imple-
mentation . . ... ..o 111
6.5 Summary . ... .. e e e e e 113
Model Checking Simpson’s 4-slot ACM 116
7.1 Metastability . . ... ... oo 117
7.2 CSP and the FDR MModel Checker . . . . ... .. ... ... 118
7.3 Modelling Bit Control Variables . . . . ... .. ... ..., 119
7.3.1 Models of the BIT variables . . . . .. ... ... .. 121
7.3.2 LBl and LB2 - Local Copies of the Control Variables 123
74 A CSP Model of the 4-slot . . . . . .. ... ... ... ... 123
7.3 Model Checking the 4-slot ACM using CSP and FDR . . . . 127
7.5.1 Relationship Between the Specifications. . . . . . .. 128
7.5.2 Resultsand Analysis . . . . .. ... ... ...... 128
7.6 Further Work . . . . .. .. ... ... L. 130
T.7 Summary ... 132
Conclusions 133
81 A Taxonomy of ACNs . . . ... ... ... ... . 133
8.2 \Verifving Properties of an ACN Implementation . . . . . . . 134

8.2.1 Applving Refinement to Verify Properties of Systems 135



CONTENTS

T Q " m g Q W o»

-

8.2.2 Applving a Rely-Guarantee Proof Method . . . . . .
8.2.3 Model Checking Using CSP . . . . ... ... .. ..

8.3 Machine Assisted Formal Proofs . . . . . . .. ... . ... .
8.4 Related Work . . . . . .. ...
85 Future Work . . . . . ... ...
8.5.1 An Incremental Development Method . . . . . . . . .
8.5.2 Developing a Theory of Communication Mechanisms
853 Toolsupport . ... .. .. ... ... . ......
8.5.4 Atomicity Refinement . . . ... .. ... .. . ...
8.5.5 Identifying and Verifving New Impossibility Results

for ACM Implementations . . . . . ... ... .. . .

8.5.6 Verifving Properties of Fully Asynchronous Systenis
Using Rely-Guarantee . . . ... ... ... .. .

8.6 Concluding Remarks . . . . .. ... ... . ... ...

Translating from VDM-SL to the PVS Logic
An embedding of RTL in the PVS Logic

A Taxomony of ACMs

Simpson’s 4-slot

An Abstract Model of L-Atomicity

The Retrieve Relation

Proof of Coherence

The Freshness Proof

3-slot ACM Implementations

1.1 The Implementation from [Sim90a] . . . .. ... ... ...
1.2 Introducing a Timing Constraint . . . ... . ... ... ..
1.3 A Revised 3-slot ACM Implementation . . . . . .. ... ..

Modelling Metastability Using CSP

141

141
141

153
159
165
178
184
189
193
209

234
234
243
252

260



List of Figures

A Generic ACM . . . ... 8
Reading From and Writing To an ACN . . . . . . . . .. .. 17
Example Read and Write Behaviour of a L-atomic ACN[ . . 28
Proof of a Property of L-atomicity . . .. . . . ... .. 30
Accidental Synchronisation of a Reader and Writer . . . . . 36
Incorrect Operation of a 2-slot ACN -1 . . . . . . . . ... 38
Incorrect Operation of a 2-slot ACN[ -2 . . . . . .. .. 39
Incorrect Operation of the 3-slot ACN . . . . . ... . .. 41
Simpson's 4-slot ACN[ . . . . .. . ... ... 14
Sequence of items . . . . .. .. ... 35
The State Space of the Model of L-atomicity . . . . . . . .. 61
A one to many retrieve relation . . . .. ... ..., 73
A many to many retrieve relation . . . . .. ... ... 3
Modelling with a Retrieve Relation . . . .. ... ... ... 74
The retrieve relation between the concrete and abstract models 77
An Example Assertion Network . . ... ... L. 91
Assertion Network for the Reader . . . . . . . .. ... ... 94
Assertion Network for the Writer . . . . . .. .. ... ... 94
Relationship Between the Control Variables . . . .. . ... 106
Assertion Network for the Reader to the 3-slot . . . . . . .. 111
Assertion Network for the Writer to the 3-slot . . . . . . .. 112

vi



List of Tables

1.1

3.1
3.2
3.3
3.4

6.1

7.1
7.2

The Blocking or Non-Blocking Behaviour of the Basic Protocols 7

A 2-slot ACM Implementation . . . . . ... ... ... ... 37
An Implementation of a 3-slot ACN . . .. .. .. .. .. 40
Assignments to the Control Variables . . . . . . ... . .. 41
The 4-slot mechanism . . . . . .. .. . ... .. ....... 17
Incorrect Operation of the 3-slot ACN . . ... ... .... 113
The Descriptions of the Different Bit Models . . . . . . . .. 129
4-Slot Coherence, Sequencing and Freshness Results . . . . . 130

vii



Chapter 1

Introduction

This thesis makes a contribution towards cutting the cost of development of
asynchronous real real-time systems, by demonstrating how it is possible to
gain an understanding, and verifv properties, of such syvstems in an incremen-
tal manner. It recommends starting with an abstract. easy to understand,
model of the required behaviour of the system, and building and verifying
more realistic models as understanding increases. It also shows how it is
possible to verify properties of systems using a compositional rely-guarantee
method, when the individual components of the system give few or no guar-
antees about their individual behaviour. The work has been sponsored by
the BAE SYSTEMS Dependable Computing Systems Centre (DCSC) and
in particular NNBDA UK Limited.

The specification and development of asynchronous real-time systems
is difficult, and often errors that arise from a lack of understanding of the
specifications of these systems are not identified until late in the development
process. The development of relatively small fully asynchronous svstems.
which have apparently simple specifications. may also be difficult because
their components can interact in unexpected ways. Correcting errors may
require a large amount of rework. because, depending on the stage in the
development process at which the error was introduced, this may require
the specification, design and implementation to be modified and verification
and testing work may need to be repeated for the modified system. There is
therefore a requirement to identify and correct flaws and ambiguities earlier
in the development process to reduce the amount of rework that is required,
in order to cut the cost of, and time for. developing those systems. A classical
method of dealing with complexity is to specify the system as a number of
simpler components [Kop98]. There is then an obligation to verify that
the complete system meets its specification, when it is composed of those
components. Formal models of systems can aid the analysis of requirements
and the use of formal methods makes it possible to verify the behaviour of



1.1. Verifying the Correctness of Real-time Svstems 2

the system in a rigorous manner. This analysis can help to expose errors
and ambiguities in the requirements and specification of the svstem. and
identify ways of correcting those errors.

A (formal) Real-time Network-Specification Language (RTN-SL) [PAHO00.
Pay02] is being developed jointly by the DCSC and MBDA UK Limited.
based on VDM-SL [ISO96] and Real-time Logic (RTL) [JM86.JMSSS . to
allow the rigorous specification of functionality and timing properties of com-
putations in systems. The correct specification of end to end timing con-
straints, however, also requires an understanding of the timing properties of
the communications between components in a svstem. Communication is
often assumed to occur instantaneously, however the time taken for an item
to be transmitted from one component to another can influence the overall
timing of, or affect the precise item of data that is used in, a computation. de-
pending on the type of the communication mechanism that is used between
the reader and writer. A theory of communication is therefore required, to be
used with the RTN-SL, to analvse the timing properties of systems early in
the development process. This has motivated two requirements: first the use
of a model based approach where functions can be expressed implicitly for
compatibility with the RTN-SL. and; second, a method that facilitates the
verification of properties of systems, where the communication mechanisms
are used as components, would be advantageous.

The remainder of this chapter is structured as follows. Section 1.1 dis-
cusses the difficulty in specifyving and designing complex real-time svstems,
how hierarchical development methods can help to manage the complexity
of specifications and designs. the role of communications in complex svstems
and how the use of formal models can help to identify errors and ambigui-
ties in specifications. Section 1.2 then discusses the contribution of the work
described in this thesis in more detail.

1.1 Verifying the Correctness of Real-time
Systems

[RLKL95] defines a real-time system as:

“A real-time system is a system that is required to react to stim-
uli from the environment (including the passage of physical time)
within time intervals dictated by the environment.”

The critical aspects of this definition are that a real-time system should
be: reactive, that is react to its environment; and timely, that is react and
respond to stimuli within defined time limits. This may not simply mean
that the svstem needs to acknowledge receipt of the stimulus. but it may



1.1. Verifying the Correctness of Real-time Svstems 3

be required to carry out an action, for example to complete a computation.
within a specified time of receiving the stimulus.

These critical requirements make the specification and design of real-time
systems complex, because the environmental stimuli can occur at any time
and the system must therefore be ready to react to them at any time. There
are two categories of deadline that a real-time system may be required to
meet: soft deadlines and hard deadlines[Kop90]. In the case of soft deadlines.
while it may be that a system is required to perform an action within the
deadline, it may be acceptable for this deadline to be missed: the svstem may
continue to operate with reduced functionality for a short period of time. for
example. In the case of hard deadlines, however, it may be more critical if
a deadline is missed. For example a critical svstem such as a flight control
system on an aircraft, where missing a deadline could cause catastrophic
failure (e.g. loss of life). Even then it mav be acceptable to miss a hard
deadline occasionally, provided it is possible to extrapolate from previous
data to enable the svstem to continue to operate in a stable state. It is
unlikely that all of the components in any system will have hard deadlines.
but it is necessary to ensure that components that do not have hard deadlines
are unable to interfere with components that do in such a way that those
hard deadlines cannot be met. Systems which contain components with hard
deadlines are referred to as hard real-time systems. The specification. design
and implementation of hard real-time systems is more difficult than for soft
real-time systems, because of the need to meet these critical deadlines.

The techniques described in this thesis can be used for the development
of all tvpes of complex syvstem. however the development of hard real time
svstems is of particular interest. Their development is especially complex.,
because such svstems have all of the properties of soft real-time systems
and additional ones, such as the above requirement to meet safety critical
deadlines.

1.1.1 The Role of Hierarchical Development Methods

A classical method of dealing with complexity in systems is to partition
the system into a number of simpler components. These components can
then, themselves, be split into sub-components in a hierarchical manner
until the individual sub-components are simple enough to be understood and
implemented. A hierarchical development process will assist in recording the
relationship between the components and sub-components in the system.
The use of a hierarchical method introduces an obligation to show that
the specifications of the components combine to meet the specification of the
complete system. Care must be taken with the specification of the compo-
nents, because they may interfere with each other, or interact in unexpected



1.1. Verifying the Correctness of Real-time Systems 1

ways[Per99]. For example, in the case of fully asynchronous svstems. if two
components communicate with each other using a shared area of memory,
one component may overwrite the area of memory while another component
is attempting to read an item of data from it. In the case of svnchronous
systems it is possible that the failure of one of the components may lead to
deadlock. In reactive systems, where the system is required to react to stim-
uli from its environment, it is possible that the environment can interfere
with the operation of the system at any time. For example the user of the
system may cancel a partially completed operation.

MASCOT [JIM87, Sim86], which was the UK MOD preferred method
[MoD91, MoD85] for the development of software svstems and is still used
in parts of the defence industry, is such a hierarchical development process.
When using MASCOT a system is structured in terms of a number of in-
teracting components (sub-systems, servers etc.), which, at the lowest level
are decomposed into a number of activities in a Real-time Network (RTN),
[Sim90c, Sim90b)]. These activities are used to specify single sequential com-
putations: parallelism can then arise because multiple activities may execute
concurrently, depending on available resources. The sub-systems and activi-
ties in a RTN only communicate with each other via explicitly defined routes
using a range of different tvpes of communication mechanisms.

1.1.2 The Role of Communication Mechanisms

There is a need for the individual components in a system to communi-
cate with each other, and the tyvpe of communication mechanism used can
influence the timing properties of a system and also the outcome of a com-
putation. A range of mechanisms is required to facilitate communication
between the components of a system: from those that enable synchronous
communication to those that allow fully asynchronous communication.

Syvnchronous communication, as the name implies, requires the compo-
nents to synchronise in order to communicate with each other. This may
be achieved by using a global clock to enable the processes to synchronise
and communicate at particular times, or by forcing one process to wait until
the other is also ready to communicate. Synchronous communication may
be used, for example, where it is necessary for a component to respond to
all of the outputs from another component. Its use may, however, lead to
a reader of a communication mechanism being held up, while it waits for
another component to write the result of a computation to the communica-
tion mechanism. The close coupling of components required by synchronous
communication may also lead to deadlock. if one of the communicating com-
ponents fails.

At the other extreme are fully asynchronous communication mechanisms



1.1. Verifying the Correctness of Real-time Svstems 3

(or pure ACMs) which do not require any synchronisation between commu-
nicating components. This type of mechanism must have some means of
ensuring that the reader does not attempt to read an item of data at the
same time as it is being written. Pure AC\Is are of particular interest be-
cause:

1. They allow components that do not share a clock to communicate
with each other. This is true even when there is apparent support for
synchronous communication, as such synchronous mechanisms need to
be built from ACM\Is. although this may be at the hardware level and
hidden from the software (or user).

2. They support the integration of components that run at different
speeds, or which are sporadic.

3. They provide a means for decoupling the temporal interactions of com-
ponents that use them: this may make it easier to analyse the timing
behaviour of individual components, because one component cannot
interfere with timing behaviour of another component. For example
an end to end deadline for a computation can be partitioned among
the components that contribute to the computation. It may then be
possible to verify that the computation will be completed within an
end to end deadline provided the individual components meet their
deadlines.

4. They make syvstems more robust to deadlock of one of their compo-
nents. For example if the writer is held up the reader can re-read the
previous item of data.

Pure ACMs are essentially shared variables that allow communication be-
tween processes without placing any constraints on the behaviour of their
reader(s) and writer(s). The reader of an ACM may end one read and start
the next one while a write is in progress and so multiple reads can over-
lap a write. Similarly multiple writes can overlap a read. It is possible for
an item to be read by the reader a number of times and it is also possi-
ble that items will be overwritten before the reader attempts to read them.
The asvnchronous communication that ACMs support is therefore to be dis-
tinguished from the model of “asyvnchronous communication™ supported by
(conceptually infinite) buffers, where all items written are read by the reader
(normally in the order that they written), for example [JHJS9].

In between the two extremes there are implementations of communica-
tion mechanisms that allow different levels of asvnchrony between the com-
municating processes. For example, if it is known that the reader and writer
of a mechanism execute on average at the same rate, it may be acceptable



1.1. Verifying the Correctness of Real-time Svstems 6

to implement the communication mechanism using a first in first out buffer.
This may ensure that the reader is not held up, because there will always
be data available to be read. and the writer may never be held up. because
there is always space in the buffer to write a new item to. This type of
mechanism may be used where it is important that the reader uses every
item of data that is communicated. In such circumstances it may even be
acceptable for the reader or writer to be held up for a short time. waiting
for data or space to become available.

In large distributed systems it is possible for communication between two
remote processes to be facilitated via a route which is composed of a number
of components. In this case hierarchical methods may be used to develop
the specifications of the communication mechanisms themselves.

Communication in MASCOT

MASCOT uses a range of communication protocols. which describe the man-
ner in which the reader(s) and writer(s) communicate with each other on a
particular communication route between the components. These protocols
facilitate a range of different types of communication between a reader and
writer, including fully asynchronous mechanisms and buffer types, where
the reader may be held up waiting for data to become available and the
writer may be held up waiting for space. In general MASCOT communica-
tion mechanisms support multiple readers and/or writers, however, in order
to define a theory of communication, it is first necessary to gain an under-
standing of the behaviour of basic communication mechanisms which have
single readers and writers. A range of single reader, single writer protocols
is introduced in the next section.

A Range of Communication Protocols

There is a need to provide a means for developers to reason about the be-
haviour of different communication mechanisms, and this section describes
a way of classifying this different behaviour. A set of basic communication
protocols([PAH00, Sim94, Sim96, Sim03]), that can be used in the design of
systems is introduced. These protocols. which are illustrated in Table 1.1,
describe a range of levels of synchronisation that may be required between
the reader and writer of a communication mechanism as follows:

Channel: similar to a single space buffer. The writer is held up if there is
no space available for the item to be written, and the reader can only
read each item of data once. The data is conceptually destroyed by a
read and the reader is held up when the channel is empty.



1.1. Verifying the Correctness of Real-time Systems i

Destructive read
(Held up when no
data)

Non destructive read
(Never held up)

Destructive write + _t_.j
(Never held up)

Pool Signal

Non destructive write

(Held up when no }_‘
space)

Constant Channel

Table 1.1: The Blocking or Non-Blocking Behaviour of the Basic Protocols

Signal: similar to a single space overwriting buffer. The writer can over-
write older data and is never held up waiting for space to become
available. The reader, however, removes data from the protocol and is
held up when it is empty.

Constant: as its name implies the data, once written, cannot be overwrit-
ten. The reader can always re-read the item that the protocol was
initialised with, and the protocol is typically used to store configura-
tion data.

Pool: similar to a shared variable. The reader and writer are never held
up. The reader can re-read items of data many times, and the writer
can overwrite older items of data.

They are called basic protocols, because, conceptually, they have a single
place to store data that is available for communication between the reader
and writer, although they may be implemented using a multiple place area
of shared memory. Each place is called slot, or buffer, and the provision
of multiple slots facilitates concurrent accesses by the reader and writer by
directing them to different slots. For example the channel may be imple-
mented with three slots, one to hold the latest item of data, another to hold
the item of data that is being read, and a third slot where the writer can
write an additional item, before it is held up. This implementation allows a
greater level of asynchrony between the communicating processes than would



1.1. Verifying the Correctness of Real-time Systems 8

otherwise be possible. The use of multiple slots ensures that the reader can
obtain complete items that have been previously written as the result of a
read, even if the writer is concurrently accessing the communication mecha-
nism i.e. the protocol ensures mutual exclusion of the reader and writer on
the slots rather than on the communication mechanism itself as would be
the case with a Hoare monitor [Hoa74].

ACM

| ‘ Control Variables
Select/indicate slot E ‘ Sclect/indicate slot
| P —

Reader

Writer

|

Figure 1.1: A Generic ACM

Of the mechanisms described above the only pure ACM is the pool. The
remaining mechanisms require a certain amount of synchronisation between
the reader and writer. Pure (true) ACMs typically use a number of areas
of shared memory, with separate control variables to direct the reader and
writer to different slots if they both access the mechanism at the same time.
These control variables are implemented in shared memory themselves, and
in fully asynchronous implementations the writer of a control variable can
interfere with the reader by writing to the variable while it is being read.
This may result in the reader obtaining an incorrect value as the result
of reading a control variable. The implementation must still ensure that
the reader: accesses a different slot to the writer when this occurs, so that
it returns valid data as the result of a read and; second, that it reads a
recently written item of data. A generic ACM is illustrated in Figure 1.1.
The implementation of a pool that is described in this thesis, Simpson’s 4-
slot [Sim90a], uses four slots and four control variables to allow the reader
and writer to access the mechanism in a fully asynchronous manner.

The techniques described in this thesis have been used to analyse basic
ACMS, such as those described in this section, although it may be possible
to extend them to enable analysis of the more complex ones: for example
multiple reader and writer mechanisms, and mechanisms which are imple-
mented on routes which are comprised of a number of components. This is to
be the subject of further work and this point will be revisited in Chapter 8.



1.1. Verifying the Correctness of Real-time Systems 9

1.1.3 The Role of Formal Methods

Section 1.1.1 describes how the use of hierarchical methods can assist in
the development of complex systems and Section 1.1.2 describes the role of
communication in those systems. This section discusses the role of formal
methods in the development of such complex systems.

Errors can arise in the specifications of asynchronous systems for a num-
ber of reasons, for example as a result of unexpected interactions between
the components (it is also possible for errors to arise in the design and im-
plementation of asynchronous systems with apparently simple specifications
for the same reason). There is also an obligation to verifv that the specifica-
tions of the components combine to meet the specification of the complete
system. The use of formal specifications can assist in both of these areas
[Hal90, BH95a, BHI5b, LFB96, Bic98, HB99, Jon90]. Formal models of the
system can be used to explore its possible behaviours and this can help
to expose, and correct, errors and ambiguities in the specifications of the
system and its components. In addition by starting with an abstract specifi-
cation and progressively building, and exploring properties of, more realistic
models it is possible to gain a better understanding of the behaviour of the
system and the interactions of its components. Established techniques can
then be used to verifv that the composition of a set of components meets
the specification of the complete system. For small systems it may be pos-
sible to verify the correctness of the complete svstem by showing that the
required properties hold of the complete system in an ezhaustive manner i.e.
that those properties hold for all possible states of the system. For larger
systems, however, the state space of the complete system may be too big, or
too complex, for this type of method to be practical. Even if it is possible
to construct a finite state model of the svstem, it is extremely difficult to
ensure that the the model is constructed correctly. In addition it may not be
tractable to discharge the required proof obligations for all possible states
of the system. Model checking methods may be used to verify properties
of some systems, but this may require abstraction to be used, or a model
checking technique to reduce the state space. There is a danger that any ab-
straction hides a crucial property that may invalidate the results obtained.
In any case, even with modern fast machines, model checking large systems
with very large state spaces may not be tractable. It may be possible to use
a compositional proof method to overcome these disadvantages: if it is pos-
sible to establish invariants (or assertions) that hold in the different states
of the individual components that are sufficient in themselves to ensure the
required properties of the system hold. There is then a requirement to prove
that the individual components do not interfere with each other. In other
words it is necessary to show that, if an assertion holds for a component, any



1.1. Verifving the Correctness of Real-time Systems 10

actions executed by the other components do not invalidate that assertion.

A formal specification language, called RTN-SL. is being developed to
allow the rigorous specification of functionality and timing properties of ac-
tivities in RTNs, so that it is possible to analyse and verify properties of
the specification of those activities in a rigorous manner. A state machine
is used to specify the ordering and timing of operations within the compu-
tation with a VDM-SL like language to specify the functionalitv of those
operations. However, there is currently no means of analysing the timing
behaviour of the communication between activities and there is a need to
develop a theory of communication, which is compatible with the RTN-SL.
for this purpose. This theory may then be used with the RTN-SL to verify
properties of complete systems in a compositional manner. Discharging the
proof obligations to verify properties of the complete svstem may be difficult
and some form of machine assistance will be invaluable in making the proofs
more tractable.

Machine Assisted Proofs

There is a need to discharge proof obligations in order to verify properties
of formal models: the proofs are often long and tedious, and the probability
of errors completing such proofs by hand is high. While it is acknowledged
that proofs may also be long and involved even with machine assistance, the
use of a proof tool will help to make the proofs less error prone. Using such
a tool to assist with completion of the proofs is therefore felt to be essential.
PVS[OSRSC99a, OSRSC99b] has been used to assist with the completion of
the proofs described in this thesis.

PV'S is an interactive environment for writing formal specifications that
facilitates machine assistance for discharging formal proofs. It provides
an expressive specification language, which augments classical higher order
logic, with a sophisticated tvpe svstem containing. for example. predicate
sub-types. combined with a mechanism for defining abstract data types. such
as lists and trees.

PVS has a powerful interactive theorem prover with built in proof tac-
tics that can make the individual proof steps much larger than is possible
with comparable systems. It has been used to verify properties of com-
plex fault-tolerant algorithms [LR93a, LR93b, LR94|. The use of P\'S to
verify properties of the models has helped in making some of the complex
proof obligations, that need to be discharged to show that the 4-slot is
Lamport-atomic, more tractable, and also helped in ensuring correctness of
the models’.

! The prover automatically checked the models for type correctness, for example.



1.2. Contribution 11

1.2 Contribution

This thesis shows how it is possible to use a range of tools to explore the
properties of asynchronous real-time systems. to gain a better understanding
of those systems and increase confidence that they meet their requirements.
A number of methods are available to help cope with the complexity. These
include the use of a hierarchical development method to partition the svstem
into a number of simpler components. There is then a proof obligation to
show that the system meets its specification when it is composed of those
components. In addition formal models can be used to explore properties of
the system, to gain a better understanding of its behaviour.

The contribution of this work is that it identifies a means for analvsing
the behaviour of asynchronous real-time systems. which can form the basis
of a method to develop a theory of communication, and assist to reduce the
amount of rework that is required as a result of flaws in the earlier stages of
development. Specifically it:

1. demonstrates how a tool set can be used to gain an understanding of
the behaviour of the system. to help to identify and correct ambiguities
that arise in the earlier stages of development;

2. shows how an incremental development approach can be used: first to
verify properties of increasingly realistic models of the system, building
confidence about the correctness of @ model of the implementation at
each stage; and second to gain an increased understanding of the be-
haviour of the system as properties of those increasingly sophisticated
models are explored. The better understanding gained in the earlier
stages can to help to identify properties that need to be observed by
the models in the later stages;

3. identifies a means of recording assumptions in the specification, to
help ensure they are not overlooked, thereby introducing errors in the
design and implementation; and

4. shows that it is possible to use a compositional rely-guarantee method
to verify properties of svstems where the individual components give
few or no guarantees about their individual behaviour. It may then be
possible to use the rely-guarantee conditions that have been verified
to hold, to explore and verify properties of larger syvstems, where the
svstem is itself used as a component.



1.3. Thesis Structure 12

1.3 Thesis Structure

The remainder of this thesis is structured as follows: First Chapter 2 intro-
duces a taxonomy of asynchronous communication mechanisms. Lam86b)
gives a taxonomy of ACM\s that give increasing guarantees about their be-
haviour: the ACM that gives the strongest guarantees is called atomic. The
taxonomy described in this thesis builds on that from [Lam86b] and includes
additional types of ACM that can be used to build more complex ACMIs.
The taxonomy uses Real-time Logic (RTL), [JM94. )\ (S88], to reason about
the timing of actions of the reader and writer to the ACMs. Chapter 3 intro-
duces a number of communication mechanisms: first a series of mechanisms
are described that require varying degrees of synchronisation between their
readers and writers; then Simpson’s fully asvnchronous atomic ACM imple-
mentation is introduced. While the taxonomy in the previous chapter is not
used directly to verify the correctness of any implementations. Chapter 3
also shows how Simpson’s 4-slot can be constructed from components, some
of which are described by the taxonomy.

Chapter 4 describes an abstract model of atomicity and verifies the cor-
rectness of the model. This model forms the basis for the proofs in the
remainder of the thesis, when Simpson’s 4-slot (an implementation of a fully
asynchronous ACM) is used as a case study to demonstrate the use of a tool
set in developing a system in an incremental manner. Chapter 5 shows how
the 4-slot implementation can be shown to be a refinement of the model in
Chapter 4 (subject to an assumption about the atomicity of the actions of
the component processes). Chapter 6 then describes a compositional rely-
guarantee method that can be used to verifv properties of implementations
where the individual actions of the components are (Hoare) atomic (for ex-
ample implementations on single processors). This method is used to verify
that the 4-slot implementation is (Lamport) atomic when the actions of the
reader and writer can interleave in an unconstrained manner. The models
described in Chapters 2 to 6 are given using a \'DM-like syntax, and have
all been encoded in the PV'S logic using the encoding of VDM-5SL operations
from {[ABM98]. Chapter 7 describes how it is possible to verify properties of
fully asynchronous implementations of the 1-slot, using CSP. [Hoa83,R0s98].
and the FDR tool [Ros98]. The conclusions from the work are given in Chap-
ter 8. Complete details of the formal models that have been used to verify
properties of the implementation are contained in Appendices D to . in the
PVS logic (a brief explanation of the translation from VDJ-SL to the PVS
logic is given in Appendix A). and the complete CSP model from Chapter 7
is given in a further appendix.



Chapter 2

A Taxonomy of Asynchronous
Communication Mechanisms

A range of asynchronous communication mechanisms that is available to
developers was briefly introduced in Section 1.1.2, and a range of single
reader, single writer AC\s will be further described in Chapter 3. This
chapter presents Lamport's taxonomy of registers! [Lam86b] and extends it
to encompass the ACM\s that are of interest in the design methods under con-
sideration in this thesis. Lamport’s taxonomy describes three different types
of register, called safe, regular and atomic, which give increasingly strong
guarantees about their behaviour when readers and writers access them, in
terms of the items that are communicated between those readers and writ-
ers. Safe registers give the weakest guarantees about their behaviour and
atomic registers give the strongest guarantees: an atomic register guarantees
that the behaviour of the register will be equivalent to some Hoare-atomic
interleaving of the read and write accesses. A second paper published at
the same time, [Lam86al. introduces a formal definition of the meaning of
implementing a system with (instances of) a lower level one, and for rea-
soning about concurrent systems. [Lam86b] gives examples of registers with
stronger guarantees being implemented with registers that give weaker guar-
antees, including an atomic register that uses regular ones. and the formalism
is used to prove the correctness of these implementations. The taxonomy
is not used directly to explore properties of communication mechanisms in
this thesis, however it includes formal definitions of the desirable properties
of ACMNIs. as will be described later in this chapter. In addition Section 3.3
describes how instances of one the types of ACM from the extended tax-
onomy can be used as components to construct Simpson's 4-slot ACM and

IThese registers are used for asynchronous communication between processes or com-
ponents in a system and they will be referred to as ACMs in the sequel. except where
direct reference is made to Lamport’s work.

13



2.1. Real-time Logic 14

a model of (Lamport) atomicity is used to verify properties of the 4-slot in
Chapters 5 and 6.

The rest of this Chapter is organised as follows. The formal definitions
of the ACMs in the taxonomy use RTL to reason about the ordering of
actions of the readers and writer of ACMs. and RTL is introduced in Sec-
tion 2.1. Lamport’s taxonomy of asynchronous registers is described in
Section 2.2, and Section 2.3 critiques Lamport’s taxonomy. An extended
taxonomy, which includes additional types of ACM that are used in prac-
tice, both for communication between processes in distributed svstems and
for constructing other ACMs, is given in Section 2.4 and a formal model of
the extended taxonomy is given. Section 2.5 describes some desirable prop-
erties of ACMs and relates these properties to the taxonomy, and finally
Section 2.6 discusses why the taxonomy has not been used directly to verify
properties of ACM implementations.

2.1 Real-time Logic

The taxonomy in this chapter requires a means of reasoning about the tim-
ing properties of the ACMs it defines. One of the first methods proposed
for specifying timing properties of real-time systems was Real-Time Logic
(RTL), [JM86,JMS88]. RTL is based around the concept of timed events.
which can be the start and end events of a particular action. for example.
In RTL events occur at specific times, have no duration and can recur many
times during the operation of a system. Each occurrence of a particular
RTL event must occur at a different time, and later occurrences must oc-
cur at a later time to earlier occurrences?. RTL can, therefore, be used
to reason about the ordering of events during the execution of a computa-
tion, for example. RTL has been used in the definition of the semantics of
several graphical notations for specifying and designing real-time systems,
for example Modecharts, [JLM88, JM94, MSJ96): in defining the semantics
of a hierarchy of communication protocols [Sim03] and for for defining the
semantics of Real-Time Kernels, [FW96,FW97]. [Pay01] proposes an exten-
sion to RTL to allow the use of continuous time, rather than discrete time.
Time can then be specified using Ry, the positive real numbers including
zero. That extension is not considered in this thesis.

RTL associates events with the number of occurrences of those events
up to a particular time. The original RTL syntax used an uninterpreted
function, @, which returned the time of a particular occurrence of an event:

@ : Event x Occ — Time (2.1)

2RTL does not support the super dense micro model described in [MP93].



2.2. Lamport’s Taxonomy of Asynchronous Registers 15

where Event, Occ and Time represent types of events. occurrence numbers
and times, respectively. A type of event can be. for example. the start or
end of a computation, Occ is often represented using N, the set of all natural
numbers, where 0 is used as the occurrence number for the first. or initial
occurrence of an event. Time is taken to be discrete. or more precisely as N~
the set of positive natural numbers. There is no concept in RTL of different
tvpes of events that occur at the same instant of time being ordered. nor
of any causal relationship between events®. This original syntax has the
drawback that the function, @, is partial: for example. the time returned is
undefined if the event does not have an ith occurrence.

@ has been used in later papers (for example [JN94]), however [J\S38]
advocated the used of an occurrence relation. @ to replace @. The relation.
O, has the following signature:

O : Event x Occ * Time — B (2.2)

and asserts that a particular occurrence of an event occurs at a particular
time. This relation is used in the definitions of the different types of ACM\I
in the taxonomy given in this chapter, because it has the advantage of being
total, which considerably simplifies the logic, and allows classical theorem
provers, such as PVS [OSRSC99b). to be used to reason in RTL.

It should be noted that it is not essential to include occurrence numbers
in the definition of the occurrence relation, since occurrence numbers can be
derived from the event tvpes and times. Indeed the embedding of RTL in the
PV'S logic given in Appendix B uses such a relation, called ¢». The inclusion
of occurrence numbers in the # relation does, however, help to simplify the
some of the definitions of the extended taxonomy given in Section 2.4. and
also simplifies the proofs of some of the theorems that verifv properties
of RTL and the taxonomy, for example where the proof of a theorem is
discharged by induction.

2.2 Lamport’s Taxonomy of Asynchronous Reg-
isters

This section describes Lamport’s taxonomy of asynchronous registers, but
first the distinction between the base type that an ACM can communicate
and the valid type that it is specified to communicate is introduced. This
distinction is important in the definitions and discussion that follow.

31t is not possible to specify that one event caused another, simply that they are
ordered in time.



2.2. Lamport’s Taxonomy of Asynchronous Registers 16

2.2.1 Base Type and Valid Type

[Lam86b)] distinguishes between the different values that a register is capa-
ble of communicating, its base type, and the values that it is specified to
communicate, its valid type. A register implementation consists an area of
memory that is used to communicate data. The register is capable of con-
taining any value that can be represented by the different combinations of
values of the individual bits from which that area of memory is composed.
its base type. For example, a register that uses an 8 bit area of memory for
communication between its reader and writer can communicate 256 differ-
ent values. If the ACM is designed to communicate natural numbers these
256 values may correspond to the numbers 0 to 255. It may be, however,
that the specification of the ACMI states that it should communicate the
numbers 0 - 199 between its reader(s) and writer(s). This smaller set of
values constitutes the wvalid type for that particular ACM implementation.
In some implementations the base type and the valid type are the same. as
would be the case in the above implementation if the ACM was specified to
communicate the values 0 to 255.

2.2.2 Lamport’s Taxonomy

[Lam86b)] describes three types of asynchronous register, for which following
descriptions are given:

...The weakest possibility is a safe register, in which it is assumed
only that a read not concurrent with any write actions obtains
the correct value - that is the most recently written one. No
assumption is made about the value obtained by a read that
overlaps a write, except that it must obtain one of the possible
values of the register...

...The next stronger possibility is a regular register, which is safe,
(a read not concurrent with a write gets the correct value) and
in which a read that overlaps with a write obtains either the old
or new value. ... More generally a read that overlaps any series
of writes obtains either the value before the first of the writes or
one of the values being written...

...The final possibility is an atomic register, which is safe and
in which reads and writes behave as if they occur in a definite
order. In other words, for any execution of the system. there is
some way of totally ordering the reads and writes so that the
values returned by the reads are the same as if the operations
had been performed in that order, with no overlapping...



2.2. Lamport’s Taxonomy of Asynchronous Registers 17

These concepts are now described in more detail in order to clarify the
definitions. A distinction is made in this thesis between items and values
communicated: this distinction is important when it is necessary to reason
about the ordering of reads and writes to the mechanisms. It is possible
for the writer of an ACM to coincidently write the same value on a number
of (possibly consecutive) occasions. In order to distinguish between several
attempts to communicate the same value. in the descriptions and models.
each value written to the AC\Is is encapsulated in an item. and each item is
given a unique serial number?, which increases by one for each item written.
Implementations of the ACMs may only be required to communicate values.
if no distinction is necessary between different instances of the same value
being communicated.

Safe Registers

write write ,

time

Figure 2.1: Reading From and Writing To an AC)\I

The behaviour of a safe register is described using the example behaviour
illustrated in Figure 2.1, which shows a possible set of interactions of a writer
and reader to the register. There are four write accesses and three read
accesses, where the durations of the reads and writes are indicated by the
length of the line segments. In this example, because read, does not overlap
any of the writes to the register, it will read the latest item that is available;
the item written by write;. In the cases of read, and reads, however, which
do overlap with writes to the register, no guarantee is given about the items
returned, other than that their values will be of its valid type. These reads
can return any of the possible values that are specified to be communicated
by the register, including ones that have never been written. This is because
the reader and writer are both accessing the same area of memory at the
same time, and there is no guarantee about how their actions will interleave.

iChapter 3 introduces a model which uses a sequence to represent the items of data
that are available to a reader. The model conforms to the VDM convention that the
index numbers of sequences start at 1, and the indices of the data items the model, and
all of the models in subsequent chapters, also start at 1. The models in the Appendices,
that were used to verifyv properties of ACNIs. are given using the PVS logic and the index
numbers there commence at zero, since the indices of PV'S finite sequences commence at
Zero.



2.2. Lamport's Taxonomy of Asvnchronous Registers 18

In the case of read, the reader may return part(s) of the items written by
writey. writey, writes and writey. and read, may return part(s of the items
written by write; and writey, although it is possible that one or both of the
reads may return complete items written by the respective writes. It should
be noted that this behaviour is even possible where some guarantees are given
about atomic accesses to data by the underlying hardware. For example. the
hardware may guarantee that accesses to individual words are atomic. where
the length of the word will be implementation specific. However. if a large
data structure is being communicated, for example a database with many
different fields. this guarantee is unlikely to be sufficient to ensure valid data
is communicated if the reader attempts to read an item of data at the same
time as it is being updated by the writer. The simplest implementation
of a safe ACM is where the number of values in the data-set that is to be
communicated is the same as the number of possible values that the register
can represent. For example. if the ACM was implemented using S bits and
there were 256 different values in the data-set. it would only be possible for
the reader to return one of these (valid) values.

Regular Registers

A regular register is safe, in that a read that does not overlap with a write will
get the latest item previously written, so in the example shown in Figure 2.1
read; will again get the item written by write;. A read that overlaps with
a write. or more generally a number of writes. will return either the item
previously written (by the latest write to finish before the read starts) or
the item written by (one of) the overlapping write(s). So in Figure 2.1 reads
could return the item written by write or writey, and read, could return any
one of the items written by write,. writey, write; or writey. Each of the reads
must return a valid item. but it is possible for read, to return the item written
by write; and subsequently for reads to return the item written by writez.
This behaviour seems strange and may be undesirable in an implementation:
it is likely that one of the assumptions of an implementation would be that
the items would be read in the order thev are written.

Atomic Registers

An atomic register has all of the properties of a regular one. but in addition
the reads and writes behave as if they had occurred in a particular total
order. In other words the implementation is equivalent to a Hoare-atomic
sequence of reads and writes: although it is possible for the reader to read
the same item a number of times. and for the writer to overwrite items
before they have been read. A read that does not overlap with a write will
return the item previously written. so read; in Figure 2.1 will return the



2.3. A Critique of Lamport's Taxonomy of Asvnchronous Registers 19

item written by write;. A read that does overlap with a write. or more
generally a number of writes. will return either the item written by the
latest write that finished before the start of the read. or (one of) the itemis:
overlapping write(s). as with a regular register. A read to an atomic register.
however, cannot return an item that was written before the item returned
by the previous read; i.e. the items must be read in the order that they were
written. So in the example in Figure 2.1 an atomic register would behave in
the same manner as a regular register. except that if read, returned the item
written by writey, read; would also return the same item (the item written
by the earlier write is not then available to the later read).

2.3 A Critique of Lamport’s Taxonomy of
Asynchronous Registers

Safe is a slightly strange name for Lamport’s first class of register, where it
is possible for a reader, that accesses the register at the same time as the
writer, to read any valid value of the type being communicated. A more
appropriate term is type-safe or type-compatible, and the term type-safe is
used in the rest of this thesis to describe such a mechanism. Atomic is also a
slightly unexpected description of any ACM\I. because this term usually refers
to devices that achieve total ordering of reads and writes (not merely the
appearance of it) via synchronisation of the reader and writer. for example
Hoare’s monitors[Hoa74]. This type of ACN will be referred to as L-atomic
in the remainder of this thesis to distinguish this tvpe of atomicity from
Hoare-atomicity

[Lam86b] states that any single bit register is type safe. This is because.
since the register can only hold two values, the reader must return one of
the possible valid values that the register is specified to communicate as the
result of a read. It is claimed that this is true even when the value is being
overwritten by a new value, since the reader must return either the old or the
new value. However a single bit control variable may not even be type safe
in some implementations, if read and write accesses to the variable are fully
asynchronous. For example, in a hardware implementation it is possible that
the reader of the variable will access it when the value is changing, and the
result returned by the read may not be a zero or a one. This possibility is
fully described and addressed in Chapter 7.

An important point to note is that Lamport's definitions are all couched
in terms of complete reads and writes to the registers. However there is a sub-
class of ACM where there is a critical point during a read when the reader
chooses to read a particular item, and also a critical point where an item
written becomes available to the reader. Simpson's 4-slot is an example of



2.4. An Extended Taxonomy of AC\Ms 20

this type of ACM, as are the L-atomic AC\s in [Tro89.HS94. AG92]. Thewe
algorithms use buffers to communicate data between the reader and writer,
and control variables; that the writer uses to indicate the buffer that the
latest item of data has been written to, and that the reader uses to choose
the buffer to read from. These control variables are used to ensure that the
reader and writer access different buffers. if a read and write occur at the
same time. Effectively the end of the write is when the writer has indicated
the buffer that the new item has been written to, which is the time when
the new item is available to the reader.

[Lam86b] gives an implementation of a regular register using single bit
registers, and of a L-atomic register implemented using regular registers,
and states that the weakest (presumably useful) possibility for an ACN is
a type-safe one, because situations where anything weaker is used in imple-
mentations cannot be envisaged. Many later implementations of L-atomic
ACMs (including Simpson's 4-slot) use a type of ACM. to implement buffers
which are used to communicate the data items between the reader and writer.
that has weaker guarantees than type-safeness. A definition of this weaker
type, called persistent, is given in the next section. which describes some
useful extensions to Lamport’s taxonomy.

2.4 An Extended Taxonomy of ACMs

This section describes an extended taxonomy that includes some useful tyvpes
of ACM., in addition to those in Lamport’s taxonomy, and describes a formal
model of the extended taxonomy (The model given here is presented using
an adaptation of \'DM-SL, which uses the RTL © relation to reason about
the relative timing of actions. The model uses a shallow embedding of RTL
in the PVS logic (due to Paynter), which is described in Appendix B, and
the full formal model of the taxonomy, also in the PVS logic, is given in
Appendix C). The taxonomy starts with a definition of a noisy ACM and
builds successive ACMs that give progressively stronger guarantees about
their behaviour, with the final definition being that of L-atomicity.

First the model defines a basic ACM. which has a base type of values
it can communicate (all of the possible values its registers can represent);
a valid type, which consists of all of the user-defined values that are to be
communicated by it and is a (possibly complete) subset of the base tvpe
(the definition of a valid type is not given here, because it is implementation
dependent, although all members of the valid type must also be members
of the base type); and a mapping from time to the particular value of the
base type that the ACM contains at that time. The valid type is not used
in the definition of the basic ACM. but is used in the remaining definitions



2.4. An Extended Taxonomy of ACMs 21

to reason about values that can be written or read.
Value = token;

Time = N;

ACM :: baseType : Value-set
valid Type : Value-set
content : Time = Value

inv mk-ACM (bT,vT,c) & (vT CbT)A(mgc C bT);

The above definition is given in a \'DM-SL like style, and the fina] line,
starting with the VDM-SL keyword inv, is the invariant of the type. The
VDM-SL keyword mk indicates the start of the type constructor, and mk-
ACM(bT, T, c) constructs an ACM with a base Type called bT. a valid Type
called vT and a content called ¢. These names can then be used in the
definition of the invariant that follows to refer to the relevant fields of the
type.

The formal definitions below make use of the following auxiliary boolean
functions (all of the auxiliary functions in the taxonomy are boolean func-
tions, because they are used in the definitions of invariants, axioms and
theorems):

val: This auxiliary function takes a reader or writer, an occurrence num-
ber and an ACM as parameters, and relates the values written to the
particular occurrence of the read or write. The signature of the func-
tion is either val(r, ¢, v) or val(w, ¢, v) to reason about values read and
written respectively. This function does not need to refer to the time
of the occurrence, since the time can be derived from the occurrence
number.

access: This auxiliary function relates a reader, or writer, to an access
of an ACM, and the signature of the function is access(r,acm) or
access(w, acm) respectively. This function does not refer to the time
or occurrence number of the event, since it is only used in the defini-
tions of a basic ACM and communicates (which relates the accesses to
occurrence numbers and times as described below), to relate the read
and write events to a particular ACM.

communicates: This auxiliary function takes a reader (when it has the
signature communicates(r, i.t, tp, v. acm)) or writer (when its signa-
ture is communicates(w, 1, t1, t, v, acm)), an occurrence number, two



2.4. An Extended Taxonomy of AC\[s 22

times, a value and an ACM as parameters. and defines what it means
for the reader, or writer, to communicate with an ACM. in terms of
the start and stop times, occurrence number and the value written or
read.

The basic type of ACM. from which the others are constructed. in the
extended taxonomy, could be called noisy. It has at least one reader and a
single writer, and gives no guarantees about the value a reader will return
as the result of a read, other than it will be a member of the base type of
the ACM. The writer writes valid values to it. but they may be corrupted
as they are written or while they are contained in the AC)I. so it is possible
that the reader will never read values that have been written. A valid value
is, however, communicated to the ACM by the writer when the svstem is
initialised. This type of ACM would not ideally be used in any implementa-
tion, but there might be occasions when noisy would be the best description
of the particular communication mechanism that is being used. and it is
necessary to reason about the behaviour of a particular protocol built on
such mechanisms. For example an implementation that uses the TCP/IP
protocol for communication over a network would need to allow for the pos-
sibility of part(s) of the message being lost, or corrupted. in transmission.
In order to ensure correct communication of complete data items the writer
would be required to check that all parts of the items had been received
and retransmit missing part(s) as necessary. The formal definition of a basic
ACM is:

Basic_ACM :: writer : Writer
readers : Reader-set

acm : ACM

inv mk-Basic_ ACM (w, r. acm) &
card 7 > 0 A write_val_propl(w, acm) A init _prop_1(w, acm);

write_val_prop_1: Writer x ACM — B

write_val_prop_1 (w, acm) &
Vi:oce,v: Value - val(w, i, v) A
access(w, acm) = v € acm.validType;

init_prop1: Writer x ACM — B

init_prop-l (w, acm) &
3t, start : Time: v: Value - t < start A
communicates(w, 0. t. start, v. acm);



2.4. An Extended Taxonomy of AC\s 23

The first useful type of ACM in the taxonomy also has properties weaker
than those of a type-safe ACM. Many implementations of L-atomic ACMIs.
such as those given in [Sim90a. Sim97. HS94], use this tvpe of ACM, which
will be referred to as persistent, for communicating the data items between
the writer and reader. It is called persistent because. at the end of a write
the ACM contains the item written to it, and the item will remain constant
(persist) until it is overwritten by the next write. A persistent ACM has the
following properties:

1. When a read access to the ACA does not coincide with a write the
reader will return the item that was last written to the AC\L.

2. A read access that coincides with a write to the AC\! may not return
a complete item that has been written: the value of the item returned
can be any value of the base type.

The set of values that can be returned by a read that clashes with a write is
determined to an extent by the type of the data that is being communicated.
and also by the implementation of the ACA. Two examples of implementa-
tions of a persistent ACM are:

e An important implementation is dual port memory, which is memory
that the reader and writer can access concurrently (effectively it resides
on two different data buses). If the data consists of a single word
(whatever size that happens to be), the reader can return any value
that the ACN can contain. For example if the word size is 8 bits, the
reader can return any of the 256 combinations that the word can take.
Some, or all, of these values may be valid values of the type that is
being communicated, depending on the size of the data tvpe. If the
valid tvpe contains 256 different values the ACM will behave in the
same way as a type safe register - whatever value is returned it will be
one of the valid values of the type. If there are less than 256 values in
the type it is possible that invalid values may be returned by a read
in these circumstances. Even then the ACM can be made to behave
in the same way as a type safe one, by mapping more than one value
that the register can take to some. or all, of the valid values of the type
being communicated. A read to dual port memory can return part(s)
of the old value and part(s) of the new one.

e Another implementation is where a large data structure is being com-
municated. In this case the writer may be given control of a large part
of memory so that it can assemble the new data value to be communi-
cated, which may consist of a number of values of smaller sub-types.
The underlying hardware may make it impossible for the reader to



2.4. An Extended Taxonomy of AC\s 24

access anything smaller than a word, but clearly if the reader accesses
this area of memory while the new value is being assembled. it may
return part of the old value and part of the new one.

This type of ACN requires some mechanism to ensure that it is not
accessed by the reader and writer at the same time. Implementations of the
class of ACMs described in this thesis all use buffers of this persistent type
to communicate the items of data between the reader and writer. Separate
control variables are used to indicate which of the slots the reader and writer
are accessing. The reader and writer each check which data slot the other is
accessing, before starting their own access. and then chose a different data
slot to read or write respectively. The definition of a persistent ACM makes
use of the auxiliary boolean function conflicting_read, which returns true if
an occurrence of a read occurs concurrently with one or more writes to the
ACM. This function takes a reader and an occurrence number as parameters
and has the following signature: conflicting_read(r.i). The definition also
needs to distinguish between the start and end of writes to the ACA/. and
a the start of a write is referred to by the start(w) event in the auxiliary
functions. Similarly the end of a write could be referred to as end(w) and
the start and end of a read as start(r) and end(r). respectively. The formal
definition of a persistent AC\I is:

Persistent _ACM ::b_acm : Basic_ACM

inv mk-Persistent_ACM (acm) &
write_val_prop2(acm) A persistent_acml(acm) A
persistent_acm?2(acm) A persistent_acm3(acm):

write_val_prop2 : Basic . ACM — B

write_val_prop2 (a) &
let w = a.writer,
acm = @.acm in
Vi: Occ;v: Value; ty, tp : Time -
communicates(w, i.t;. t. v. acm) =
acm.content(t,) = v:



2.4. An Extended Taxonomy of AC\s

()
(]

persistent_acml : Basicc ACM — B

persistent_acml (a) &
let w = a.writer,
acm = d.acm in
Vi:0ce ty, ty: Time; v: Value -
communicates(w. 1, t1. . v, acm) =
(3t3: Time - O(start(w), i + 1. ;) A
(Vt:Time-th <t<t; =
acm.content(t) = v) v
7 (3ts: Time - O(start(w),i + 1. 45) A
(Vt:Time - t, <t = acm.content(t) = v):

persistent_acm?2 : Basic. ACM — B

persistent_acm?2 (a) &
let acn = a.acm in
Vr € a.readers.i: Occ;ty, b : Time; v: Value -
communicates(r, i. 1. t, v, acrn) A
—conflicting_read(r.1) = acm.content(t,) = v:

persistent_acm3 : Basic . ACM — B

persistent_acm3 (a) &
let w = a.writer,
acm = a.acm in
Vu: Value, t: Time - acm.content(t) = v A
- acm_being_written(acm, t) =
(Tt to: Time;i: Occ -t < t A
communicates(w, 1, t1. t, v. acm) A
~(3t3: Time - t, < t3 < t A O(start(w),i + 1. 13)));

(The auxiliary function acm_being_written is not given here, but defines
what it means for a writer to be accessing the AC\I in terms of the start
and end times of the write access).

Lamport's type-safe ACM is the next in the taxonomy, where the reader
is guaranteed to return a valid value as a result of a read as described in
Section 2.2.2. It was originally thought that type-safeness was a sufficiently
strong property so that a L-atomic ACM could be implemented using 4 tvpe-
safe single bit control variables. However. [HV01] gives an informal proof
that 5 control variables are required in order to implement a L-atomic AC\]
from type-safe bits. This is an unpublished paper, but some preliminary
results are published in [HS94] and [HV96). Indeed [Rus02] shows that
Simpson's 4-slot ACM is not L-atomic. but only regular. if its 1 control



2.4. An Extended Taxonomy of AC\s 26

variables are implemented using type-safe bits. The formal definition of a
type-safe ACM is:

TypeSafe ACM :: p_acm : Persistent_ ACM

inv mk-TypeSafe ACM (acm) & typesafe_acm(acm):

typesafe_acm : Persistent_ ACM — B

typesafe_acm (a) &
let acm = a.b_acm.acm in
V7 € acm.readers; i: Occ;v: Value: ty, t, : Time -
communicates(r,i,t. t. v, acm) = v € acm.valid Type:

The remaining additional type of AC) in the extended taxonomy is
called semi-regular, which guarantees that a reader can onlv return values
that have previously been written to it. This tvpe of ACM is unlikely to
be desirable in an implementation, because it is possible for the reader to
always return the initial value as the result of any read. It is included in the
hierarchy because its guarantees can be related to our requirement that an
ACM should transmit valid data, as described later. in Section 2.5.

SemiRegular _ACM :: s_acm : TypeSafe_ACM

inv mk-SemiRegular _ACM (acm) & semiregular _acm(acm);

semiregular_acm : TypeSafe ACM — B

semiregular _acm (a) &
let acm = a.p_acm.b_acm.acm,
w = a.p_acm.b_acm.writer in
Y r € acm.readers; i : Occ; v: Value; t, ty : Time -
communicates(r, i, t;. t, v, acm) =
dj: Occ: ts, ty: Time -
ts < to A communicates(w, §, t3, ty, v, acm);

The final types of ACM in the taxonomy are the regular and L-atomic
tvpes, which were described in Section 2.2.2 above, respectively. The defini-
tion of Regular _ACM uses an auxiliary function. conflicting_actions, which
takes a reader, a writer and two occurrence numbers (occurrence numbers
of a read and writer respectively), and has the signature
conflicting_actions(r. w,4,j). It returns true if a particular occurrence of
a read to the ACM occurs concurrently with a particular occurrence of a
write.



2.4. An Extended Taxonomy of AC\s 27

Regular ACM :: sr_acm : SemiRegular_4CM

inv mk-Regular_ACM (acm) & regular_acm(acm);

regular_acm : SemiRegular _ACM — B

regular _acm (a) &
let acm = a.s_acm.p_acm.b_acm.acm.
w = a.s_acm.p_acm.b_acm.writer in

V' r € acm.readers; i : Occ;v: Value: t;, t, : Time -
communicates(r, i, t;. tp, v, acm) A
conflicting read(r.i) =

(35 : Occity, ty - Time -
communicates(w, j, t5. ty. v, aem) A ((t; < £ A
= (3ts. tg: Time; v, : Value -

communicates(w, j + 1. t5. tg, v, acm) A tg < t1)) V

conflicting_actions(r, w, i,7)));

The definition of a L-atomic ACM uses the following:

1. An auxiliary function r_communicates defines the set of values that are
available to the reader during a read of a L-atomic AC\! - the values
from the set of items that were written by any conflicting writes, and
the item written by the last write to end before the read started.

2. A new Dataltem (item) type, which has an unique Id and a value. in
addition to the name of the ACM to which it is written. The Ids start
at zero and increase monotonically, so the occurrence number of the
write that placed the item in the ACM is used for this purpose.

3. A new version of the communicates function that takes a Dataltem in-
stead of a value as a parameter (otherwise it is identical to the previous
version), as well as the original version of the function.

The formal definitions of a L-atomic ACN and r_communicates are:
L-Atomic_ACM ::r_acm : Regular _ ACM

inv mk-L- Atomic_ACM (acm) & L-atomic_acm(acm):



2.4. An Extended Taxonomy of AC\Is 28

r_communicates : Reader x Occ x Time x Time x
Dataltem x ACM x Writer — B

r_communicates (r.i. . t. T, a. w) &
communicates(r, i, t, t, z.value. a)Az.acm=aA
z.id € {j:Occ | 33, ty : Time - communicates(w.j. t3. t;. T, a) A
(tsa <ti A= (3ts5.t5: Time: y : Dataltem -
communicates(w.j + 1. t5. tg, y. a) A
ts < t1) V conflicting_actions(r,w,1.j))}:

L-atomic_acm : Regular ACM — B

L-atomic_aem (a) &
let acm = a.sr_acm.s.acm.p_acm.b_acm.acm,
w = a.sr_acm.s_acm.p_acm.b_acm.writer in
V1 € acm.readers; i: Occ, t3,ty : Time. 3, : Dataltem -
r_communicates(r, i + 1. t3, ty. 1o, acm, w) =
dt, t: Time, 7y : Dataltem -
r_communicates(r. i, t1, tp, T1. acm, w) A
.1d > 1,.1d;

write write | write write write
e P Py : |

) 1

| read | } read . .

| read , | read,

time
Figure 2.2: Example Read and Write Behaviour of a L-atomic ACN

The above possible behaviours are illustrated in Figure 2.2, which is
explained as follows:

o write; will have overwritten the previous contents of the ACM. read,
does not overlap with any writes. so the only item available to it is the
one that was written by write;.

e read, overlaps with writey, writes, and writes, so it can return the item
written by any of these writes. or the one written by the last write to
completely finish before it started. write;.

e reads can return the value written by writes or writes, which it overlaps.

e similarly read; may return either of the items written by write; or
writes, unless reads returned the item written by write; in which case



2.4. An Extended Taxonomy of AC\[s 29

this is the only item available to read,.

Various properties have been verified to hold for the types of ACM de-
fined in the taxonomy, in particular the following property has been verified
of an L-atomic ACMS®:

L-atomic_test_th : THEOREM

Vr: Reader, w : Writer, t,j : Oce,

bty by B3, ta, 65, G, B, B, to. g, By tro ¢ Time.

T, T2, T3, T4 : Dataltem. v : Value. aem : - Atomic_ ACN
b2t Nt 23 At >t A
communicates(w. . t5, tg. 71, acm) A
communicates(w, i + 1, t. t3. 7, acm) A
communicates(w, i + 2. ty. tjo., 73. acm) A
communicates(w, i + 3, t1. tia. T4 acm) A
z3.value # 1p.value A 3.value # z;.value A
communicates(r, j. ty, tp, z3.value, acm) A
communicates(r,j + 1, t3, 84, v, acm) Aty > t- =
z3.v0lue = v;

This theorem verifies that, where two reads overlap with a write. and
the second of those two reads has returned the latest item available to it.
the later read cannot return an item that was written before this item. This
behaviour is illustrated in Figure 2.3, which is described below:

1. It would be possible for the jth read to return any of the items written
by writes i,i+ 1 ori + 2.

2. If however, it returns the item written by write i + 2 then read j + 1
must return the same item. It cannot return the item written by write
i + 3, because that write does not start until after the read ends.

3. It should be noted that this theorem distinguishes between values and
items written. It specifically states that the value written by write i
-+ 2 is not equal to the values written by writes i and i + 1. This is
because it is possible the for the same value to be written by three
consecutive writes. for example, so read j + 1 could return the value
written by write i (the value of item z;) if that value was the same as
the one written by write i + 2 (the value of item z3).

5The item written by write; must have already been overwritten before reads acquired
the item it was going to read, since it returned the item written by write;. Therefore.
since ready occurs after reads the item written by writey is not available to it.

8The interested reader can download the PVS theory, and proof scripts. from
http://homepages.cs.ncl.ac.uk/neil. henderson /fme2002/taxonomsy-tgz.



2.5. Desirable Properties of AC\[ implementations 30

[F S il wis?  weis?

t, te t, t, t, [ ty (I

time

Figure 2.3: Proof of a Property of L-atomicity

2.5 Desirable Properties of ACM implemen-
tations

It is desirable that an ACM implementation of a shared variable will com-
municate coherent and fresh values between its writer(s) and reader(s). Def-
initions of coherence and two different versions of freshness, freshness with
respect to an individual read (local freshness) and freshness respect to a
sequence of reads (global freshness), are given below.

It is important that ACMs ensure coherent data is transmitted, even
though the reader and writer are totally unconstrained as to when they
access the mechanism. Coherence means that the reader of the ACN will
read complete valid items, that have previously been written by the writer,
when it accesses the mechanism. Semi-regular ACMs guarantee coherence.

The requirement for local freshness means that a reader will:

e Read the last item written prior to the start of a read., when the read
does not overlap in time with a write.

e Read the last item written prior to the start of the read or one of the
items written by an overlapping write, if the read does overlap in time
with one or more writes.

This is the definition of freshness from [Sim04], and local freshness is guar-
anteed by regular ACMs (in addition to coherence).

The definition of freshness that is used in this thesis is that a read will
return a globally fresh item of data, and this requires that items are locally
fresh and additionally that they are read in the order that they have been
written. Global freshness is guaranteed by L-atomic ACMs (in addition to
coherence).



2.6. Using the taxonomy to \erifv Properties of an Implementation 31

2.6 Using the taxonomy to Verify Properties
of an Implementation

It was originally intended to model Simpson’s 4-slot AC\I using the extended
taxonomy of ACMs described above: the model was to have been written in
the PVS logic, using instances of particular types of ACM from the taxonomy
to implement the control variables and slots. with a state machine to describe
the algorithm. The model would consist of:

o 4 persistent slots;

e 4 single bit ACMs for its control variables. This would require an
extension to the existing taxonomy. because the type of ACN required
to implement the control variables is not currently included(it was
originally assumed that the control variables were tvpe-safe. but this
is not the case. as discussed in Section 2.1); and

e an algorithm to describe how reads and writes are executed.

A proof theory would need to be devised to verify that the 4-slot im-
plementation is L-atomic using this model, however there were a number of
difficulties with this approach:

1. It was not clear how the model of the implementation could be verified
to be equivalent to (a refinement of) the definition of L-atomicity from
the taxonomy. The definition describes the behaviour of a L-atomic
ACM in terms of complete reads and writes interleaving and overlap-
ping. The implementation would. however, be described in terms of
individual actions of the reader and writer, and these actions could
interleave or overlap with each other.

2. It was not clear how to model the state machine to describe the algo-
rithm in the PV'S logic. The item of data that is available to the reader
can depend on the order in which the reader and writer actions occur.
In addition it is possible for an unbounded number of reader actions
to occur between any two writer actions. and vice versa. In order to
reason about the equivalence of the model and the implementation of
an ACM, a means of encoding the (timed) ordering of the reads and
writes in the model and the (untimed) ordering of the actions in the
implementation, perhaps in the form of traces would be required. In
addition a proof theory would also be devised in order to reason about
the equivalence of traces of the model and implementation.



2.6. Using the taxonomy to Verify Properties of an Implementation 32

3. The model of the taxonomy is complex and difficult to follow: the
taxonomy is hierarchical; each of the ACMs in the taxonomy inher-
its the behaviour of its parent and refines it by providing additional
guarantees about its own behaviour. It is not possible to understand
the behaviour of a L-atomic ACM from the taxonomy without under-
standing the behaviour of all of the other tvpes. The model of the
implementation would also be complex and difficult to understand: it
would include 8 components AC\Is. to model the control variables and
buffers, plus a model of the algorithm. This complexity would make
it difficult to understand and verify properties of the model.

Further work on the taxonomy was therefore deferred in favour of an ap-
proach with an abstract model of L-atomicity as its basis. This definition
would then be available as an abstract introduction to the requirements for
an ACM implementation, coherence and freshness. and could form the ba-
sis of any correctness proofs for particular implementations. Models of the
implementation could be developed in a progressive manner, removing ab-
stractions in the model, for example relaxing any assumptions about Hoare-
atomicity of the actions of the reader and writer. with each iteration. This
iterative approach can be continued until sufficient confidence is gained in
the correctness of an implementation against its requirements. This would
address the above shortcomings as follows:

e A known method could be used to show that the implementation is
a refinement of the model: Nipkow's retrieve relation, [Nip86, Nip87].
This would, however, only partly address points 1 and 2, since it would
be necessary to assume that groups of actions of the reader and writer
are executed atomically, and this point is further discussed in Chap-
ter 5.

e A means of relaxing the assumption about the atomicity of the reader
and writer actions, using a compositional rely-guarantee method is
introduced in Chapter 6. This further addresses points 1 and 2, by
allowing the individual actions of the reader and writer to interleave
in an unconstrained manner.

e The use of an iterative approach enables an understanding of the be-
haviour of the implementation to be built up as increasingly realistic
models of the implementation are built in each iteration of the devel-
opment process. This helps to address point 3.

e Points 1. 2 are finally addressed fully using CSP. with the FDR model
checker, as described in Chapter 7, where the actions of the reader and
writer are allowed to occur in a fully asynchronous manner.



2.7. Summary 33

2.7 Summary

This chapter describes a taxonomy of AC\Is, which give increasing guaran-
tees about their behaviour, together with a formal model of the taxonomy.
ACMs in the hierarchy that give stronger guarantees can be implemented
with instances of ACMs that give weaker guarantees. It then discusses the
reasons why this approach was deferred in favour of an iterative approach.
which starts with an abstract model of the requirements and verifies the
correctness of an implementation against those requirements by verifviug
properties of increasingly realistic models of the algorithm. This revised
approach allows an understanding of the behaviour of the implementation
to be gained over time: lessons learned from verifving earlier models can
prove valuable in creating and verifving later models. Chapter 3 first in-
troduces a number of implementations of communication mechanisms that
allow varying levels of asynchrony between their readers and writers. and
then describes Simpson's fully asynchronous 4-slot ACM implementation
and gives a formal model of this implementation. Chapter 4 then gives an
abstract model of L-atomicity. and describes how the model has been veri-
fied to be equivalent to the definition in this chapter. Increasingly detailed
models of the 4-slot are then given in the succeeding chapters. to explore
properties of the implementation in an iterative manner and gain sufficient
confidence in its correctness against its requirements.



Chapter 3
L-atomic ACMs

Chapter 2 described an extended taxonomy of ACMs. which give increas-
ingly strong guarantees about their behaviour when their readers and writ-
ers access them. The strongest guarantee, L-atomicity, is a desirable prop-
erty of any fully asynchronous (pure) ACM ie. that the reader will al-
ways read globally fresh coherent data. Section 1.1.2 introduced an alter-
native means of classifving the behaviour of communication mechanisms
in terms of a number of protocols that dictate the level of svnchronisa-
tion that is required between their reader(s) and writer(s). One of the
protocols, the pool, can be implemented using a pure ACM. for example
see [Sim90a, Tro89, AG92. Sim97), in order to ensure that its reader(s) and
writer(s) are never held up. However in a particular implementation abso-
lute asynchrony may not be required and a classical method of implementing
asynchronous communication is to use an n-place buffer between the reader
and writer. The writer adds a new item to an empty place. and is only
held up when the buffer is full (no places are available), and the reader re-
moves items from the buffer and is only held up when the buffer is empty.
Such buffers are often modelled as if they had an infinite number of places
[JHJ89]. The developer of a system may require a means to reason about the
behaviour of the different types of mechanism that are available, for example
to trade performance against the resources that are used in an implementa-
tion. While it may be appropriate to use fully asynchronous communication
between components where freshness of data is the overriding requirement,
it may be less appropriate in other situations. For example where it is impor-
tant that the reader processes every item of data it may be more appropriate
to use a buffer between the communicating processes. The use of a buffer
does, however, require the use of additional hardware resources, because of
the potential need to store multiple items. Implementations of fully asyn-
chronous mechanisms also require the use of a number of slots. so that the
reader and writer can access different slots if they are reading and writing

34



3.1. Communication Mechanism Implementations 35

concurrently. to ensure that the writer does not overwrite an item of data
as the reader is reading it. It may be possible to trade absolute asvnchrony,
in some situations, in return for using less resources. for example where it
is acceptable for the reader to be held up for a short time while the writer
completes a write to the AC\. This chapter introduces a range of commu-
nication protocols and implementations of communication mechanisms that
allow varying degrees of asynchrony between their readers and writers. The
last of these is a fully asynchronous L-atomic ACMI. Simpson’s 4-slot. and it
is shown how this can be implemented with instances of AC\Is that are not
themselves L-atomic. The 4-slot is the main vehicle for the investigations in
this thesis.

The remainder of this chapter is organised as follows. A number of com-
munication mechanisms that are implemented with fewer than 4 slots. but
which either fail to be L-atomic or fully asvnchronous are introduced in
Section 3.1. The failure modes of these AC\s will be described and illus-
trated with examples. Section 3.2 describes an implementation classification
scheme for ACMs that is used in academic literature: and introduces some
impossibility results that give the minimum requirements for AC\s in terms
of this classification scheme. Finally Section 3.3 describes Simpson's fully
asynchronous ACM implementation. gives the algorithm for the ACM and
introduces a formal model of the algorithm.

3.1 Communication Mechanism Implementa-
tions

[Sim90a] gives implementations of communication mechanisms that are im-
plemented using 1, 2, 3, and 4-slots. The 1, 2 and 3-slot implementations.
which are described below, can all fail to communicate coherent data if they
are implemented in a fully asynchronous manner. An alternative 2-slot im-
plementation is also given which may fail to communicate fresh data to its
reader. These mechanisms may, however. allow a degree of asynchrony be-
tween their reader and writer and will be referred to as AC\s. For example
in an implementation where the reader and writer both execute at approx-
imately the same speed and the read and write actions are relatively short
in relation to their overall algorithms, it may be perfectly acceptable to use
a single slot shared variable for communication between them. This shared
variable may then need a mechanism to ensure that the reader obtains cor-
rect data as the result of a read. For example it could be implemented
using a mutual exclusion mechanism, such as a monitor. or the reader may
check that correct data has been read (for example using a cyclic redundancy
check), and re-read if it detects that the data is incorrect: this checking and



3.1. Communication Mechanism Implementations 36

re-reading may have little cost for small data structures.

3.1.1 1-slot ACMs

write write . wTite
1 - g
read read read .

e N s

time

Figure 3.1: Accidental Synchronisation of a Reader and Writer

The 1-slot mechanism has a single area of shared memory that can be
used for communicating data between the reader and writer. The reader
and writer may accidentally avoid interfering with each other (Figure 3.1).
or they may avoid interfering because they are implemented on a single pro-
cessor, and the data structure that is being communicated is small enough
to be written and read in a single atomic action. In general. however, non-
interference can only be guaranteed if some type of synchronisation mecha-
nism is used, for example a Hoare monitor [Hoa74].

3.1.2 2-slot ACMs

A 2-slot ACM implementation has two areas of shared memory that are used
to communicate data between the reader and writer. If the reader and writer
both access the ACM at the same time they should be directed to different
slots of shared memory to ensure that the reader can read a coherent data
item, and the writer can concurrently write a new value to the mechanism.
The reader and writer use control variables to indicate the slot they are
currently accessing, and they each check the control variable written by the
other process at the start of an access. In this way the writer may choose
to access the opposite slot to the reader and vice versa.

The 2-slot implementation from [Sim90a] is given in Table 3.1, and is
described below (in the description one of the slots is initialised - the one
that is initially available to the reader - and the value nil is used to indicate
that the other slot is not initialised).

It should be noted that the local variable indez in the write procedure
of this algorithm could be omitted. Only the writer to the mechanism has
write access to the latest control variable. so the writerChoosesSlot action
could be omitted and the writer could simply access latest during the write



3.1. Communication Mechanism Implementations 37

Table 3.1: A 2-slot ACM Implementation
mechanism two slot;
type
var data: array(bit] of Data := (init_item,nil):
latest: bit := 0;

procedure write (item: data);
var indez: bit:

begin
index := not latest; (writerChoosesSlot)
data [indez] := item; (write)
latest := index; (writerIndicatesSlot)
end;

function read: Data;
var tnder: bit:

begin
indez := latest; (readerChoosesSlot)
read := data[indez]; (read)
end;
end;

action. The local variable and writerChoosesSlot action are included here
to faithfully reproduce Simpson’s implementation.

The reader and writer local variables inder are used to obtain pointers
to the slots that are to be read and written. The global variable latest is
used by the writer to indicate the slot it has written to. There is a write
procedure consisting of three actions. and a read function consisting of two
actions. The writer alternates between the two slots - this is the meaning
of the writerChoosesSlot action, indez: = not latest (the variable is a single
bit and the writer negates the value each time it is used). Having chosen
the new slot, the writer then writes the value and indicates the slot it has
written to. The reader first chooses the slot to read from (the last slot that
writer indicated it has written to) and reads the item from that slot. This
implementation of a 2-slot ACAI attempts to transmit the latest item of data
to the reader at the possible expense of maintaining coherence.

For example, data coherence may be lost if the reads and writes to the
ACNMI occur as illustrated in Figure 3.2. This diagram is explained as follows:

1. The reads and writes are indicated using 2 vertical lines denoting the
start and end times of the actions, connected by a horizontal line



3.1. Communication Mechanism Implementations 38

write, write write .
- SRR
read, read,
time

Figure 3.2: Incorrect Operation of a 2-slot ACM - 1

indicating the total time taken for the action. The tvpe of action and
instance number is indicated above the horizontal line. The instance
numbers increase monotonically by one for each write or read. starting
at zero.

2. While the individual actions of the reader and writer are ordered as
shown in Table 3.1, the actual value may be read or written at any
time during the respective actions. For example, the writer mav start a
write action by executing writerChoosesSlot, but the actual writing of
data may take place at any time before the writerIndicatesSlot action
is executed. Indeed the writer may be descheduled during the write to
allow a higher priority process to run and the actual write action itself
may be interrupted.

If the read and write operations occur as illustrated. the writer, when it
starts writey, will choose to overwrite the item in the slot that was used
during writey. The reader, at read;, may have chosen to read either the
item written by writey, or that written by write;. In the former case the
writer may interfere with the reader, which may get part(s) of the items
from writey and write,.

In an alternative implementation of a 2-slot ACM. designed to maintain
coherence at the expense of freshness, the writer could check which slot
the reader is accessing before it starts a write access. and then write the
new value to the slot that is not currently being accessed by the reader.
Provided that the accesses to the control variables are atomic this should
always ensure that the writer accesses a different slot from the reader'. In
this implementation it is possible for the reader to always read an old value.
For example consider the situation where the read and write accesses occur
in the manner shown in Figure 3.3.

In this case the writer may choose to access the opposite slot to the reader
each time a new write is started. The reader will also avoid the writer, and

11f the accesses to the control variables are not atomic the reader and writer may choose
to access the same slot at the same time, because thev clash on reading and writing one
of the control variables.



3.1. Communication Mechanism Implementations 39

write | write | write .
read, read | read ,

— —

time

Figure 3.3: Incorrect Operation of a 2-slot AC\ - 2

in doing so it may always access the same slot, and read old data. This
pattern of read and write accesses could always occur from svstem start up.

in which case the reader will alwavs return the initial value written to the
ACM.

3.1.3 3-slot ACMs

A 3-slot ACM, goes one step further in an attempt to keep the reader and
writer apart by adding a third slot. The implementation from [Sim90a]
is shown in Table 3.2 (similarly to the 2-slot description the slot initially
available to the reader is initialised). This algorithm works in the following
way:

1. There are two control variables: latest, which is used by the writer to
indicate the last slot it has accessed, and reading, used by the reader
to indicate the slot it is currently reading.

2. The reader follows the writer by choosing to read the slot last written
(readerChoosesSlot), at readerIndicatesSlot it indicates the slot it is
reading from and reads the item from the chosen slot (read).

3. The writer uses the array differ to avoid the slot it last wrote to, and
also to attempt to avoid acquiring the slot that has been already been
chosen by the reader. For example, if the writer last wrote to slot one,
and the reader last indicated that it had chosen to read slot two. the
writer would choose to access slot three at writerChoosesSlot (indez : =
differ(1.2]). The writer then writes the new item to the chosen slot
and indicates the slot it has written the item to at writerIndicatesSlot.

[Sim90a] states that there are two problems with this implementation.
The first is that the reader and writer can access the same control variable at
the same time, in which case the integrity of the value read from the control
variable cannot be guaranteed. The solution recommended to overcome this
flaw is to use 2-slot implementations for the control variables. The second
flaw is that it is possible for coherence of the data being communicated to



3.1. Communication Mechanism Implementations 10

Table 3.2: An Implementation of a 3-slot ACM
mechanism three slot;

var data: array[1..3] of Data := (init_item, nil, nil);
latest, reading: 1..3 :=1, 1;

procedure write (item: data);
const differ = ((2, 3, 2), (38, 3, 1), (2, 1, 1)):
var tnder: 1..3:

begin

indez := differ[latest, readingl; (writerChoosesSlot)
data [indez] := item; (write)

latest := indez; (writerIndicatesSlot)
end;

function read: Data;
var indezr: 1..3:

begin
indez := latest; (readerChoosesSlot)
reading := indez; (readerIndicatesSlot)
read := data[indez]; (read)

end;

end;

be lost, if the read and write actions interleave in a particular manner. For
example consider the interleaving of read and write actions and assignments
to control variables shown in Table 3.3. This shows that if the writer executes
the writerIndicatesSlot and writerChoosesSlot actions between the reader
choosing and indicating the slot it is going to read. it is possible for the
reader and writer to access the same slot at the same time. Chapter 6 shows
how a formal model can be used to identify the precise ordering of actions
and values of the control variables shown in this counter example.

[Sim90a] also gives an additional timing constraint which, if it can be
guaranteed, makes the 3-slot behave in the same way as an ACM. The
constraint is that

. the interval between control operations in the read function
is always shorter than the interval between writes ...

In practice it may be difficult to guarantee that this timing constraint
will always hold, and on its own it may be insufficient to guarantee that
the reader and writer will not access the same slot at the same time. Fig-
ure 3.1 shows possible timings of the read and write actions that can lead to



3.1. Communication Mechanism Implementations 11

Table 3.3: Assignments to the Control Variables

latest | reading | write.index | read.index [
initial vals 2 1 3 1 !
readerChoosesSlot 2 1 3 2 j
writerIndicatesSlot 3 1 3 2
writerChoosesSlot 3 1 2 2
readerIndicatesSlot 3 2 2 2 wr and rd
to slot 2

incorrect operation of the 3-slot ACM. even when this timing constraint i
met, if the accesses to the control variables are not atomic. In this case the
time between writes (the end of writerIndicat-<Slot - wis - and the start of
writerChoosesSlot - wces) is greater than the time between the read control
operations rcs (readerChoosesSlot) and ris (readerlndicatesSlot). However.
because the ris and wes actions overlap it is possible for the writer to read
the reading control variable incorrectly during wes and to choose to write
to the same slot as the reader chooses to read?.

wis wCs

[res | [nos |

time

Figure 3.4: Incorrect Operation of the 3-slot ACM

In fact, if the read and write actions overlap as shown in Figure 3.4, the
very solution that Simpson suggests for ensuring that the reader and writer
return coherent values when accessing the control variables. which is to use
2-slot mechanisms for implementation of the control variables, may ensure
that the reader and writer clash on reading and writing the same slot in the
mechanism. For example, using the 2-slot implementation from Table 3.1,
the writer may return the old value of the control variable reading at wes,
not the new value that is currently being written by the reader (by the ris
action). This will ensure that. if the initial values of the control variables

1t should be noted, that since the control variables can take three values, the imple-
mentation would also need to ensure in some way that only valid values are returned when
the variables are read. If a two bit variable is used to record the values this may mean
mapping two different bit patterns to the same value e.g. [0,0] — 0,[0.1] — 1.[1.0] —
2,[1.1] =2



3.2. An Implementation Classification Scheme 12

are as shown in Table 3.3, the incorrect behaviour shown will be guaranteed
to occur. A stronger timing constraint that additionally ensures that the ac-
cesses to the control variables are atomic may be required to ensure the 3-slot
implementation always behaves correctly. A revised 3-slot implementation
is given in [XYIS02], where the control actions of the reader are effectively
combined into a single operation®, which maintains coherence provided that
the accesses to the control variables are atomic. Correctness proofs for the
two implementations: from [Sim90c], if the above timing constraint can be
implemented, and from [XYIS02] are given in Appendix 1.

The ACMs described above can allow a certain amount of asvnchrony
between their readers and writers, but cannot be implemented in a fully
asynchronous manner. The next section introduces an alternative classifica-
tion scheme for ACMs and describes some impossibility for AC\Is results in
terms of this scheme.

3.2 An Implementation Classification Scheme

This section introduces an alternative (implementation) classification scheme
of ACMs that is widely used in academic literature, for example [HV01]. This
scheme is used to classify Simpson’s {-slot implementation in Section 3.3.

ACMs that are designed to communicate data tvpes with more than two
values are referred to as multivalued, whereas ACMIs that only communicate
binary types are called bits, and ACMs with single writers (readers) are
called 1-writer (1-reader) ACMs.

Implementations that use different variables, or memory locations, to
communicate data and to co-ordinate read and write accesses to the data
are called buffer-based. The variables used to communicate data are called
buffers, although they are referred to as slots or tracks in particular al-
gorithms. In a buffer-based ACM no co-ordination information is passed
through the buffers, and data is not passed via the control variables.

A buffer-based shared variable where the reader and writer never access
the same buffer at the same time (although they may access the same control
variable concurrently) is called conflict-free [HS94], or pure [BP89a]. An
ACM that is conflict-free can be implemented using persistent AC\s for its
buffers.

A buffer-based shared variable where the read or write algorithm is only
required to read or write once each time the reader or writer, respectively.
access the ACM is referred to as read-once or write-once, respectively. A

3Rather than creating a local copy of the slot it has acquired and then indicating
the chosen slot, the reader copies the chosen slot directly to the control variable in the

mechanism.



3.3. Simpson's 4-slot ACM 13

non-conflict free ACM is unlikely to be read-once, since some re-reading
will be necessary should a conflict occur during a read. in order for the
reader to return coherent data. The write-once read-once properties are
highly desirable in multivalued ACMs where large complex data structures
are being communicated.

3.2.1 Impossibility Results for ACM Implementations

[Pet83] shows that buffer-based 1-Writer ACNs need n+2 buffers. where n is
the number of readers, in order to be L-atomic. [BP89b] then shows that in
order to be conflict-free an AC\I needs at least 2n + 2 buffers. This result is
consistent with the counter example in the last section and means that four
buffers are the minimum requirement for an implementation of a 1-reader
1-writer conflict free ACNL. [HV'01] shows that it is impossible to realise
a conflict-free write-once L-atomic variable from { buffers and 1 tvpe-safe
control variables. Simpson’s 4-slot, which is described in the next section,
is a conflict-free write-once ACM. which only uses i-control variables. This
thesis will show that the 4-slot is L-atomic provided it is implemented with
control variables that have properties that are stronger than those given by
type-safe ACMs.

3.3 Simpson’s 4-slot ACM

[Sim90a] defines a fully asynchronous communication mechanism that main-
tains data-coherence and which uses only four slots to communicate the data
between the reading and writing processes. The d-slot, which is described in
Section 3.3.1, can be seen as an implementation of a MASCOT pool. The
implementation from [Sim90a] is given in Section 3.3.2. and a formal model
of the implementation is introduced in Section 3.3.3.

3.3.1 Description of Simpson’s 4-slot

Simpson's 1990 -slot is an implementation of a AMASCOT pool. and it is
the intention that the 4-slot is L-atomic. although the precise item returned
as a result of a read depends on how the actions of the reader and writer
interleave.

Figure 3.5 shows an illustration of Simpson's 1-slot ACM. which is de-
scribed as follows:

1. There are four slots for communication of the data between the writer

and reader. The slots are organised into two pairs of two slots. (this
organisation into two pairs is used to help ensure that the reader and



3.3. Simpson’s 4-slot ACM 44

Control Variables

pairWritten pairReading

slotWritten

pair0 pairl

Slots

pairOslot0 | pairOslot1

pairlslotO | pairlslot]

Figure 3.5: Simpson’s 4-slot ACM

writer do not access the same slot at the same time). The precise
nature of the 4-slot algorithm is described in Section 3.3.2. The ACM
is designed to be conflict free, therefore the slots can be implemented
using persistent ACMs

2. There are four single bit control variables:

pairWritten: which is used by the writer to indicate the name of the
pair, which contained the slot, that it last wrote to.

pairReading: which is used by the reader to indicate the name of
the pair, which contains the slot, that it is accessing.

slotWritten: a two element array of binary slot indices, which is ac-
cessed by the reader to choose the slot to read from in the pair
of slots it is currently accessing, and by the writer to choose the
slot to write to in the current pair of slots it is accessing. The
writer also uses this array to indicate the latest slot, in each pair
of slots, that it has last accessed.

In some previous literature on the 4-slot (e.g. [CXYD98,Cla00,HP02a))
it was asserted or argued that its bit control variables can be imple-
mented using type-safe ACMs. [Rus02] shows that this is not the case,
and that the ACM is only regular if the control variables are imple-
mented in this way. This point will be discussed further in Chapter 7,
where the ACM is shown to be L-atomic provided the control vari-



3.3. Simpson’s 4-slot ACM 435

ables are implemented with stronger properties than tyvpe-safeness?.
This result is consistent with the proof in [HV01]. The formal models
in Chapters 5 and 6 assume atomic access to the control variables.
therefore the proofs associated with these models are not affected by
this distinction. ‘

The write action can be split into three distinct phases®:
® An acquire phase, when the writer acquires a slot to write to.

e A write phase, when the writer can assemble the new item of data in
the chosen slot.

e A release phase, when the writer indicates the slot it has written to.
by writing the slot and pair names to the relevant control variables in
the mechanism.

and the read action can be split into two phases:

e An acquire phase, during which the reader chooses the slot it will read
from, and also indicates the name of the pair it will read from. by
writing the name to the relevant control variable in the mechanism.

e A read phase, during which time it can read the item from the chosen
slot.

The default behaviour of the mechanism occurs when the complete reads
and writes interleave with each other, as if those reads and writes are Hoare-
atomic. In this case the reader will acquire the latest item that the writer
has just released. The acquire and release actions are composed of a number
of operations and if the individual acquire and release operations interleave
with each other the precise slot chosen by the writer, or reader. may depend
on the precise ordering of those operations. For example, when the writer
changes pairs at the start of a write the reader cannot follow the writer
to the new pair until after the end of the write release action. The reader
will continue to read the item in the slot last accessed by the writer. in the
opposite pair to the writer, until the writer indicates that it has changed
pairs.

4The type of ACM required to implement the control variables is not currently included
in the taxonomy in Chapter 2.

5Simpson prefers to consider the write as consisting of two phases. A write phase,
followed by a release phase, when the writer also acquires the slot that it will next write
to.



3.3. Simpson’s 4-slot AC\ 16

3.3.2 The 4-slot Algorithm

The four slot algorithm is deceptively simple, consisting of only five actions
in the write operation and four actions in the read function, and is shown
in Table 3.4.

The algorithm is described as follows:
1. the writer:

e chooses the pair and the slot within that pair to which it will
write the new value - writerChoosesPair and writerChoosesSlot
in Table 3.4 (the write pre-sequence). It always chooses to write
to the opposite pair to the one the reader last indicated it was
reading from (this will be the pair the initial item was written
to until the reader indicates the pair it is reading from for the
first time), and the opposite slot in its chosen pair to the one it
accessed during the last write:

e writes the new item to the chosen slot - write in Table 3.4: and

e indicates the slot and pair it has written the data to - writerIndi-
catesSlot and writerIndicatesPair in Table 3.4 (the write post-
sequence).

2. the reader:

e chooses to read from the pair of slots last written to (or the pair
the initial value was written to if the first read occurs before the
first write), indicates that it is reading from that pair, and then
chooses to read from the latest slot in that pair that has had a
value written to it - readerChoosesPuair, readerIndicutesPair and
reader ChoosesSlot in Table 3.4 (the read pre-sequence): and

e reads the item from the chosen slot - read in Table 3.4.

In terms of the classification scheme in Section 3.2 the 4-slot is a multival-
ued l-writer 1-reader buffer-based conflict-free read-once write-once ACM.

3.3.3 A Formal Model of Simpson’s 4-slot

This section describes a formal model of Simpson’s 4-slot ACM.. which is
used in the formal proofs in succeeding chapters® (The full PV'S encoding of
the model is given in Appendix D). The formal description of the model is

6The only difference is that the proofs use different sets of auxiliary variables to record
extra history state of the mechanism in order to verify that the ACM! exhibits the desired

properties.



3.3. Simpson’s 4-slot ACM i7

Table 3.4: The 4-slot mechanism

mechanism four slot;

type Pairindez = (p0, pl);
SlotIndez = (80, sl);

var slots: array(PairIndex, SlotIndex] of Data :=

((init_item,nil), (nil,nil));
slotWritten: array[PairIndex] of SlotIndex :=
(s0,s0):

pairWritten, pairReading: Pairlndex := p0,pl:

procedure write (item: data);

var writerPair: Pairlndex:
writerSlot : Slotlndex:

begin
writerPair := not pairReading; (writerChoosesPair)
writerSlot

not slothWritten [writerPair]; (writerChoosesSlot)

slots [writerPair, writerSlot] :=

item; (write)
slotWritten [writerPair] :=
writerSlot (writerIndicatesSlot)
pairhritten := writerPair; (writerIndicatesPair)
end;
function read: Data;
var readerPair: Pairlndex:
readerSlot: SlotIndex:
begin
readerPair := pairWritten; (readerChoosesPair)
pairReading := readerPair; (readerIndicatesPair)
readerSlot :=
slotWritten [readerPair]; (readerChoosesSlot)
read =

slots [readerPair, readerSlot]; (read)
end;
end;



3.3. Simpson's 4-slot ACM 18

written in a VVDM-like syntax, [ISO96]. because this syntax is more readable.
It deviates from VDM-SL in that it uses classical logic (to be compatible
with the PVS logic [OSRSC99a]). The variable names are hooked where
appropriate to indicate the values before an operation is executed.

First the basic types are introduced: the ACN communicates data items.
which consist of an index number and a value (the index number is used 1o
reason about the ordering writes to the ACN in the proofs of L-atomicity).
Enumeration types are used to define the names of the pairs and slots. and
the program counters which indicate the next instruction (action) to be ex-
ecuted by the reader and writer. Finally the writer and reader local states.
which record the local state of the writer and reader of the ACM respectively
(the pair, and slot in that pair, that they last accessed, or are currently ac-
cessing) are given.

Val = token;

Data : : indez : nat
val : Val;

PairIndez = p0 | p1;

SlotInder = s0 | s1;

NextReadInstruction = RCP | RIP | RCS | RD;

Nezt WriteInstruction = WCP | WCS | WR | WIS | WIP:

WriterState : writerPair : PairIndez
writerSlot : SlotIndezr;

ReaderState : :readerPair : PairInder
readerSlot : SlotIndez;

The ACM consists of:

1. two control variables, called pair|ritten and pairReading. which record
the pair the writer and reader have last accessed (or are accessing). re-
spectively;

9. a two element array, called slot1¥ritten, which the writer uses to indi-

cate the slot it has last accessed, or is accessing, in each pair of slots.
and which is used by the reader and writer to choose the slot they



3.3. Simpson’s 4-slot AC)\ 19

are going to access in whichever pair they have chosen to read from or
write to:

3. slots, which is a two dimensional array to represent the four data slots
that are used for communicating data items between the reader and
writer. One of the slots is initialised with an initial item of data (called
"initVal” in the model), and the other slots are not initialised 1 ini-
tialised with the value ni in the model);

4. two variables called nri and nwi, which are used to model the program
counter of the reader and writer of the AC\[ respectively. For example
nri is of type NeztReadInstruction. and it records the next operation
that is to be executed by the reader;

5. a writer of tvpe WriterState and a reader of tvpe ReadrrState.

state Conc_State of
pairWritten : Puirlndex
slotWritten : Pairlnder = SlotInder
patrReading : PairIndez
slots : PairIndezr x SlotInder = Data
nri : NextReadlInstruction
nwi @ Next WriteInstruction
writer : WriterState
reader : ReaderState

init s & s = mk-Conc_State (p0, {p0 = s0.pl — s0}. pl.
{(p0. s0) — mk-Data (1, mk-token ("init\al")),
(p0. s1) — nal. (pl. s0) — nil,
(pl.s1) — nil}, rep, wep,
mk- WriterState (p0, s0),
mk-ReaderState (pl, s1))
end

This model has five write operations and four read operations. each of
which is equivalent to one write or read action, respectively. from the 4-slot
implementation given in Section 3.3. The write operations are uwriterChoos-
esPair, writerChoosesSlot, write, writerIndicatesSlot and writerIndicates-
Pair, which are described as follows:

writerChoosesPair: which has the pre-condition that nwi (the next write
instruction) is wcP. This operation chooses the pair the writer will
access during the write operation, which is written to the local variable
(writerPair) of the writer. It also changes the value of nwi to wcs.



3.3. Simpson’s 4-slot AC\M 0

writerChoosesPair ()

ext wr nwi : next WriteInstruction
wr writer . writerPair : PairInder
rd pairReading : PairIndez

pre nwi = WCP

post nwi = WCS A (pairReading = p0 =

writer.writerPair = pl) A
1.%‘
(pairReading = pl =
writer.writerPair = p0):

writerChoosesSlot: this operation has the pre-condition that nwi is wcs.
The writer chooses to acquire the opposite slot to the one it last ac-
cessed in its chosen pair”, and writes the chosen slot to the local vari-
able writerSlot. The operation also sets the value of nwi to WR.

writerChoosesSlot ()
ext wr nwi : next WriteInstruction
wr writer.writerSlot : SlotIndez
rd slotWritten : PairInder - SlotIndez
pre nwi = WCS
post nwt = WR A

(slot Written(writer.writerPair) = s0) =
writer. writerSlot = s1) A

(slot Written(writer . writerPair) = s1 =
writer.writerSlot = s0):

write: during this operation the writer writes the new item to the slot it
has chosen to acquire. The pre-condition is that the value of nwi is
WR and the operation sets it equal to Wis.

write (v : Data)
ext wr nwi : next W riteInstruction
wr slots : PairInder x SlotIndex - Data

pre nwi = WR

post nwi = WIS A
slots = )
slots 1 {(writer.writerPair. writer.writerSlot) — v};

"Once again the writer is attempting to avoid the reader, because the reader may be
reading from the slot that the writer last accessed in this pair.



3.3. Simpson’s 4-slot ACM 31

writerIndicatesSlot: the pre-condition for this operation is that the value
of nwi is wis. The operation writes the name of the slot that the
writer has accessed during this write to the appropriate element of the
slotWritten array (it indicates the slot the writer has accessed). and
sets the value of nwi to wip.

writerIndicatesSlot ()

ext wr nwi : next WriteInstruction
wr slot Written : PairIndez - SlotInder
rd writer.writerSlot : SlotInder

pre nwi = WIS
post nwt = WIP A slot Written =

slotWritten t {(writer.writerPair — writer.writerSlot};

writerIndicatesPair: the pre-condition of this operation is that the value
of nwi is wiP. The operation indicates the pair that the writer has
accessed, by writing the name of the pair to the pairWritten control
variable in the mechanism. and changes the value of nwi to wcp.

writerIndicatesPair ()

ext wr nwi : next WriteInstruction
wr PairWritten : PairIndez
rd writer.writerPair : Pairlndez

pre nwi = WIP

post nwi = WCP A pairWritten = writer writerPaur:

The four read operations are readerChoosesPair, readerIndicatesPair, read-
erChoosesSlot and read, which are described below:

readerChoosesPair: the pre-condition of this operation is that the value
of nri is RcP. The operation chooses the pair for the reader to access.
by copying the value of pairWritten to the reader local control variable
readerPair, and sets the value of nri to RIP.

readerChoosesPair ()

ext wr nri : nextReadInstruction
wr reader.readerPair : PairIndez
rd pair Written : PairIndez

pre nri = RCP

e

post nri = RIP A reader.readerPair = pair\i'ritten;



3.3. Simpson’s 4-slot ACM 52

readerIndicatesPair: the pre-condition of this operation is that nri is
equal to RIP. It indicates the pair that the reader has chosen to access.
by copying the value of readerPair to the control variable pairReading.,
and sets the value of nri to rcs.

readerIndicatesPair ()
ext wr nri : nertReadInstruction
wr pairReading : PairIndez
rd reader.readerPair : PairIndez

pre mri = RIP

post nri = RCS A pairReading = reader.readerPair:

readerChoosesSlot: the pre-condition of this operation is that the value
of nri is RCS. The operation sets the value of readerSlot to the name
of the slot the reader is going to access, by copying the value from the
element of the slotWritten array relating to the reader’s chosen pair.
It also sets the value of nri to RD.

readerChoosesSlot ()
ext wr nrt : nextReadInstruction
wr reader.readerSlot : SlotInder
rd slotWritten : PairInder - SlotIndex
pre nri = RCS
post nrt = RD A reader.readerSlot =

slotWritten(reader.readerPair);

read: the pre-condition of this operation is that the value of nri is RD. It
reads the item from the slot that the reader has chosen to acquire and
sets the value of nri to RCP.

read () v : Data
ext wr nri : nextReadInstruction
rd slots : Pairlndez x SlotIndez — Data
pre nri = RD
post nri = RCP A

v = slots(reader.readerPair. reader.readerSlot);



3.4. Summary 33

3.4 Summary

This chapter describes a number of ACM implementations with less than
4 slots for communication of data between their reader(s) and writer. and
shows that none of these implementations can be implemented in a fully
asynchronous manner. It then introduces an alternative (implementation)
classification scheme for ACMs and some results from related work. which
prove that it is impossible to implement a single-reader, single-writer conflict
free ACM with less than 4-slots, and that it is also impossible to implement
such an ACM with fewer than 5 tvpe-safe control variables. Simpson's fully
asynchronous 4-slot ACM implementation, which uses 4 control variables.
and a formal model of the 4-slot are described and the remainder of this
thesis demonstrates how it is possible to verify that the 4-slot AC\I is L-
atomic, provided it can be implemented with control variables which give
stronger guarantees than type-safeness. First Chapter 1 introduces an ab-
stract model of L-atomicity. then Chapter 5 shows how Simpson's ACM
can be shown to be a refinement of this model subject to certain assump-
tions about the atomicity of the actions of its reader and writer. Chapter 6
then uses a rely-guarantee proof method to verify that the implementation
is L-atomic when these atomicity assumptions are relaxed. and the reader
and writer actions can interleave in an unconstrained manner, and finally
Chapter 7 describes some related work which verifies that realistic imple-
mentations of the 4-slot are L-atomic when the reader and writer actions
are fully asynchronous, using models in CSP with the FDR model checker.
This demonstrates how an understanding, and confidence in the correctness
(with respect to its requirements), of asynchronous systems can be gained
in an incremental manner, using a range of tools, to help reduce the amount
of rework that is required when developing such systems.



Chapter 4

A Model of L-atomicity

This thesis demonstrates how it is possible to gain an understanding of the
behaviour, and verify properties, of asynchronous svstems in an incremen-
tal manner. The specification and development of asynchronous svstems is
difficult, because the specification is often complex, and components in fully
asynchronous systems, with apparently simple specifications, may interact
in unexpected ways. For these reasons it may be difficult to move directly
to a model of the implementation, and to understand the model sufficiently
well to be able to verify that it exhibits the desired properties. However.
by starting with an abstract model of those properties, it is possible to gain
valuable insights into the behaviour of the system by building and verifying
more complex and realistic models as understanding increases. until suffi-
cient confidence is gained in the correctness of the implementation. This
process can also help to eliminate errors and ambiguities in the specification
of the system that can be costly to correct in the later stages of develop-
ment. For example errors often arise because the unexpected interactions
of its components. Also the use of formal modelling techniques allows the
developer to explore properties of the system to help to identify flaws in
the specification. Identifving and fixing these errors may require extra effort
in the earlier stages of development, but this extra effort can be recovered
because of the reduction in the number of errors found in the later stages.
This chapter describes the first part of the process, which is to build an ab-
stract model of the svstem and verify that the model exhibits the properties
that are required of the implementation. This model is then used in sub-
sequent chapters to verify properties an ACM implementation, Simpson’s
4-slot, which is used as a case study.

A desirable property of any ACM is that it will provide its reader with
coherent fresh data as the result of a read: these are the properties of an L-
atomic ACM (as described in Section 2.5). A formal definition of L-atomicity
is given in Section 2.4, however Section 2.6 describes the difficulties in using

o4



4.1. The (Abstract) Model

ot
(1]

this formal definition directly in verifving properties of ACM implementa-
tions. for example the formal definition is difficult to understand. Chapter 3
described a number of ACM implementations, which allow different levels of
asynchrony between their readers and writers. and a fully asynchronous im-
plementation, Simpson’s 4-slot, was described in Section 3.3. The remainder
of this thesis describes how an incremental development method was used
to verify that the 4-slot is L-atomic. The incremental approach uses a num-
ber of different tools to explore and verify properties of increasingly realistic
models of the implementation. This chapter introduces a formal model of
L-atomicity which forms the basis of these investigations. and provides an
easier to understand model against which to verify properties of the imple-
mentation, thus overcoming the difficulty mentioned above. with the formal
definition of L-atomicity.

This chapter is organised as follows. First Section 1.1 describes an ab-
stract model of L-atomicity, and gives an informal proof that the model is
equivalent to the formal definition of L-atomicity in Scction 2.4, Section 4.2
then describes how the model has been verified to be L-atomic using an
exhaustive proof method similar to that described in [Ash73].

4.1 The (Abstract) Model

The properties of L-atomic AC)\Is were described in Section 2.2.2 and can
be summarised as follows: the reader will always read globally fresh data:
and reads and writes appear to have occurred in a particular order (as if the
entire read and write operations were Hoare atomic [Hoa7 I’ and interleaved
with each other).

Items may be removed from the
sequence at end write, start
read or end read

Items added to
the sequence
at start write

Figure 1.1: Sequence of items

This section describes an abstract model of L-atomicity. where the ap-
proach is taken of modelling the items that are written to the ACM as a
sequence, which gives the order in which they were written. Items may be
removed from the sequence because they are overwritten by a later write,
or because a later item has been read. The presence of an item in the se-
quence models its availability to the reader, and there are four operations in



4.1. The (Abstract) Model 56

the model, start_write, end_write, start_read and end_read. which add items
to and remove items from the sequence (as illustrated in Figure 4.1). The
model is described below and an informal proof that it is equivalent to the
L-atomic ACM as defined in Chapter 2 is given. As in the case of the formal
model of the 4-slot in Section 3.3.3 the formal description of the model is
written in a VDM-like syntax, and deviates from VD)M-SL in that it uses
classical logic (to be compatible with the P\'S logic). The full model in the
PVS logic is given in Appendix E and Appendix A describes the translation
to the PVS logic.

Data items: the items transmitted between the reader and writer have
unique serial numbers, starting at one and incrementing by one for
each successive item written, which are recorded in the indez ficld of
the record. The data transmitted is represented by the val field; the
type of the data is not important and is represented as a token.

Val = token;

Data : :indez : N
val : Val;

ACM State: the ACM itself is represented by a sequence of data items:
the writer adds new items to the head end of the sequence and irems
are removed from the tail end when they are no longer available to be
read. The sequence is initialised with a data item, sequence number
one, so that an item is available if the first read occurs before the first
write. There are a number of auxiliary variables in the model. Two
booleans, called readerAccess and writerAccess. record whether the
reader and/or writer are accessing the mechanism. readerAdccess is set
to true at start_read and false at end_read, and similarly writerdccess
is set to true at start_write and false at end_write. These variables
are also used in the pre-conditions of the operations, for example: pre-
start_read £ —readerAccess; and pre-end_write & writerdccess. Fur-
ther auxiliary variables neztInder, indezRead and firstIndexz record the
indices of the next item to be written, the last item read and the first
item available to be read during a read operation. These variables are
used in the abstract model to ensure that the AC\ modelled does be-
have in an L-atomic manner as described in Section 1.2 and to verify
that Simpson's 4-slot implementation is a refinement of this model as
described in Chapter 3:

e firstIndez. which is set equal to the index of the first item that is
available to the reader, by start_read (the item at the tail end of
the sequence after the operation is executed).



4.1. The (Abstract) Model 37

o neztindez is the index number given to the next item to be writ-
ten, which is incremented by one at start_write. The latest item
available to the reader alwayvs has index number of one less that
nertinder.

e indezRead, which is set equal to the index of the item read at
end_read.

Provided that indezRead is greater than or equal to firstInder and less
than nertInder whenever end_read is executed the model guarantees
L-atomicity.

state Abs_State of
vals : Data™
writerAccess : B
readerAccess : B
neztInder : N
indexRead : N
firstInder : N

init s & s = mk-Abs_State ([mk-Data (1, mk-token (*initltem"))], false.
false, 2,0, 0)

end
Descriptions of the 4 operations in the model follow:

start_write: adds the new item, that is being written, to the head of the
sequence. If the operation is executed a number of times during a
single read a new item is added to the sequence on each occasion.
This makes the new item(s) available to the reader.

start_write ()

ext wr vals : Data™
wr writerAccess : B
wr nertinder : N

pre — writerAccess

post let newl = mk-Data (neztIndez, mk-token ("newl")) in

P A

writerAccess A vals = [newl] "~ vals A

neztInder = nextInder + 1

end_write: if there is a read in progress at end write the sequence is left
unchanged. If there is not a read in progress all of the items are
removed from the sequence apart from the one just written.



4.1. The (Abstract) Model

]
[V o]

end_write ()

ext wr vals : Data™
wr writerAccess : B
rd readerAccess : B

pre writerAccess

. e
post — writerAccess A (= readerAccess = vals = [hd wvals!) A

AR

(readerAccess => wals = vals)

start_read: if the sequence has more than one item removes all of the
items that are not available to be read as follows: if there is a write in
progress the sequence is shortened to contain only the last item written
and the item being written by the current write (the first and second
items in the sequence); and if there is no write in progress the sequence
is shortened to contain only the last item written (the item at the head
of the sequence). The operation also sets firstIndez equal to the index
of the oldest item available to be read. which is the item that will be
at the tail of the sequence after the operation has been executed. If
the sequence only contains a single item it is left unchanged.

start_read ()
ext wr vals : Data*
wr readerAdccess : B
wr firstIndez : N
pre — readerAccess

post readerAccess A

P AN— A—

(len vals =1 = firstinder = (hd vals).indez) A
(len vals >1 = (ﬂm = wals = [hd ms]/\
firstInder = (hd m).indez) A
(lum = wvals = lva_ls(l. 2N
firstIndezx = Izﬂs(?).indew))

end_read: chooses an item to read. sets inderRead equal to the index of
the item chosen, and removes all of the items from the sequence that
are older than the one chosen.

end_read () v: Val

ext wr vals : Data™
wr readerAccess : B
wr indezRead : N



4.1. The (Abstract) Model 39

pre readerAccess
X ‘— [ A—
post — readerAccess A (3 i € inds vals - v = vals(i).val A

indezRead = vals(i).indez A vals = m(l. 1))

It is noted that in actual ACA] implementations. subsequent writes al-
ways overwrite previous items in the ACM. but it is not practical to encode
this property into the model. This is because. if a read is in progress when
the end_write operation is executed there is no way of knowing which of the
items in the sequence the reader has chosen to return as a result of the read.
All of the items in the sequence at end_write must still be available when
the read subsequently ends, therefore the sequence is not shortened at the
end of the write in these circumstances.

An informal argument that the model is equivalent to the definition of
L-atomicity in Section 2.4 is given below.

e The definition of L-atomicity uses the auxiliary function.
r_communicates, which defines the items that are available to be read:
those written by any writes that overlap with the read. and the item
written by the last write that finished before the read started. There-
fore if there are no overlapping writes only the item written imme-
diately prior to the start of the read is available to be read. The
definition of L-atomicity then states that the reader will read one of
the available items. and the index of the item read will be greater than
or equal to the index of the last item read.

e The formal model constructs a sequence equivalent to the set of items
available to the reader as follows:

1. At start write the writer adds the new item, which is going to be
written. to the sequence. This ensures that any item written by
a write that overlaps with a read is available to be read.

2. At end write, if there is no read in progress the writer shortens
the sequence to contain only the head item, the one that has just
been written. This ensures that, if the next action is the start
of a read, the only item available to be read is the one that has
just been written. If there is a read in progress the writer leaves
the sequence unchanged so that the item that has been written
during the read is available to the reader, as well as any previous
items (which include the item written immediately before the read
starts). Each subsequent write that occurs while the read is in
progress similarly adds an additional item to the sequence (the
set of Dataltem ids constructed by the r_communicates operation
will contain all of the indices of the items in this sequence).



4.2. Verification of the Model of L-atomicity 60

3. At start read, if there is only a single item in the sequence of
items this is the only item available to be read at that time. The
reader sets firstInder equal to the index of this item.

4. If the length of the sequence is greater than 1 at start read there
are two options. If there is no write in progress firstInder is sct
equal to the index of the item at the head of the sequence, which
is shortened to include only this item: this is the index of the last
item written. If there is a write in progress the item at the head
of the sequence is the one being written: firstIndez is set equal
to the index of the second item on the sequence (the index of the
item last written), and the sequence is shortened to include only
the first two items. This ensures that, when a read starts. any
items that are not available to the reader are discarded from the
sequence.

e At end read the reader returns one of the items from the sequence
constructed as above, and shortens the sequence to remove all items
older than the one read. This ensures that the reader returns a fresh
item, and that it cannot return an older item at the next read, so the
items must be read in the order that they are written.O

A full formal proof of equivalence is not given for the following reasons:

e The definition of L-atomicity in the taxonomy is not self contained; it
builds on the definitions of the the other AC\Is in the taxonomy and
adds the extra guarantee that items will be read in order. The proof
would therefore need to relate to a number of different definitions in
the taxonomy.

e The two models use different paradigms: the definition of L-atomicity
in RTL is a trace model. It would be necessarv to derive a trace
semantics for the procedural model of L-atomicity in this chapter and
define proof method in order to verify equivalence.

4.2 Verification of the Model of L-atomicity

The model given in the previous section has been verified to be L-atomic us-
ing an exhaustive proof method similar to that described in[Ash73]. Ashcroft’s
method used the same global invariant in each state to verify the correct-
ness of parallel programs. Here different invariants are used. and correctness
proofs are completed, for all locations in the state machine of the model. with
PVS. The state space of the model is shown in Figure 1.2, which is described
below.



4.2. Verification of the Model of L-atomicity 61

Figure 4.2: The State Space of the Model of L-atomicity

1. The start location of the model is the noReader /noWriter location,
indicated by the double circle.

2. Each of the locations has two outgoing transitions from it: each transi-
tion is associated with an operation of one of the component processes
(one of the outgoing transitions has a write operation associated with
it, and the other has a read operation associated with it), and may
have a guard. In this case the guard for each transition is true and is
omitted.

3. Each of the locations has an assertion associated with it, composed
of invariant properties that hold when the model is in that location.
These assertions are used to verify properties of the model.

For example the assertions for the noReader/writer and reader/writer loca-
tions are:

noReader_writer_Assertion 2 inderRead < nextInder — len vals A
firstindex < nextInder — len wvals A
vals(1).index = nextInder — 1
reader _writer _Assertion 2 inderRead < nextInder — len vals A
firstIndex = neztInder — len vals A
vals(1).index = nertInder — 1;

It is interesting to note that there is a certain symmetry about the as-
sertions in the locations of the model: the two assertions where the reader



4.2. Verification of the Model of L-atomicity 62

is not accessing the ACM are the same: as are the assertions for the two
locations where the reader is accessing the AC\.

Conjectures based on the following general scheme have been proved
for each of the operations using PVS. to show that the operations do not
invalidate the assertions in the respective target states of the transitions
associated with those operations (where Assl and Ass2 are the assertions
in the source and target states of the assertions respectively):

Assl(?);pre-op(?); post_opi ‘g, ~)
Ass2(0)

The next section shows an interesting example proof: the remainder of
the conjectures are discharged in a similar manner. and so the rest of the
proofs are not described!.

4.2.1 A Rigorous Proof for the end_read Operation

This section gives a rigorous example proof. for the end_read operation.
The rigorous proof uses the natural deduction proof style [BFL*94] [Jon90].
While the structure of the rigorous proof is different from that of the formal
proofs in PV'S, they are included to illustrate the principles hehind the formal
proofs, and to help to increase confidence in the correctness of those proofs.
The end_read operation can be executed from the states reader/noWriter,
where writerAccess is false, and reader/writer, where writerAccss is true.
but the assertions in the resultant states are identical. Therefore there is
no need for a case distinction to discharge the proof. The conjecture is
shown below, where Assl is the reader_writer _Assertion and Ass2 is the
noReader_writer _Assertion from above, and the definition of the invariant
of the model follows (the first conjunct of the invariant is given in the P\'S
model in Appendix E using a sub-type definition).

Ass1(‘0); pre_end_read('c ); post_end_read('a , 0); inv(F)
Ass2(0); inv(o)

inv & len vals > 1 A (Vi € inds vals -1 < len vals =
vals(1).indez = vals(1 + 1).indez + 1);

For brevity only the names of the components of the state of the model
are given in the proof, for example o.nertInder is called nertIndez. and
the values are hooked, where appropriate (to indicate the values before an

1The interested reader can download the PVS theory, and proof scripts, from
http://homepages.cs.ncl.ac.uk/neil. henderson /fme2002/4slot.tgz.



4.2. Verification of the Model of L-atomicity 63

operation is executed). For convenience the definition of end_read is repeated
below:

end_read () v: Val

ext wr vals : Data™
wr readerAccess : B
wr indezRead : N

pre readerAccess

[P AN—

post - readerAccess A (3 1 € inds vals - v = vals(i).val A
indezRead = vals(i).indez A vals = vals(1..... 1))
The proof relies on the lemmas given below (the names of the lemmas are

shown in the boxes to their left), and rigorous proofs of the lemmas. that the
invariant holds after the operation is executed, and of the conjecture follow:

@qIndsUnchamgedJ post_end_read (' . )
Vi € inds vals - vals(i) = vals(i)

postRd post_end_read('@ . o)

e

vals = vals(1, ..., 1) A indezRead = vals(1).indez

from post_end_read('c . o)

1 from ¢ € inds Iz;ls; v = ms(z) A indezRead = ms(i).indez/\
vals = vals(1,..., 4
11 vals = vals(L. ..., ©) A-E-left(1.h2)
1.2 vals(i) = m(z) sequences(1.1)
infer Vi € inds vals - vals(i) = vals(i) 1h1.1.2

e

infer Vi € inds vals - vals(i) = vals(7) 3-E(h1.1)



4.2. Verification of the Model of L-atomicity 64

from post_end_read(‘'c o)

P A—

1 from i € inds vals; v = vals(i) A indezRead = ll'a_l.s(i).inder/\

vals = vals(1....,1)

pAR—

1.1 vals = wals(1, ..., 7) A-E-left(1.h2)
1.2 v = vals(i) A indezRead = vals(i).indez A-E-right(1.h2

infer vals = vals(1.....9) A inderRead = vals(i).indern-1{1.1.1.3

)
1.3 indezRead = vals(7).index A-E-left(1.2)
)
infer vals = vals(1. ..., 1) A indezRead = vals(1).indez 3-Eihl.1)



4.2. Verification of the Model of L-atomicity 63

)

JrAN—

from inwv(

1 vals = vals(1, ..., 1) A indezRead = ms(i).index lemma postRd

2 vals = vals(1, ..., 17) ~-E-righti1)
3len vals > 1 2.len
4  from ¢ € inds vals
4.1 Vi € inds wvals - i < len vals = lz?ls(i).indez =
vals(i + 1).indez + 1 *-Eih1)
4.2 from 7 < len wvals
4.2.1 1 < len vals 1.2.h1.2. len
4.2.2 i € inds vals 1.2.1, len
4.2.3 i < len vals = wvals(i).index =
vals(t + 1).inder + 1 V-E(4.1.1.2.2)
424 vals(i).index = vals(1 + 1).indez + 1
= -E(4.2.1.1.2.3)
4.2.5 Vi € inds vals - vals(i) = vals(1)
lemma seqlndsUnchanged
4.2.6 vals(1) = vals(1) 1.h1, 1.2.5
4.2.7 vals(i + 1) = vals(¢ + 1) 4h1. 125 N

infer vals(1).index = vals(i + 1).indez + 1
=-subs(4.2.6. 4.2.7. 1.2.4)
infer i < len vals = wvals(i).indez =

vals(i + 1).indezx + 1 = -1{1.2)
5Vi € inds vals - i < len vals = wvals(i).index =
vals(¢ + 1).inder + 1 v-1(4)

infer inv (o) A-1(3.3)



4.2. Verification of the Model of L-atomicity 66

from Assl(?); pre-end_read(?); post_end_read (s . o)
—_

1 neztInder = nextIndez ext-post _end_read-defn
2 vals = vals(1, ..., 1) A indezRead = vals(i).indez lemma postRd
3 vals = wvals(1, ..., 1) A-E-right(2)
4 len vals = 1 3.len
- [ A— . B

5 vals(1).indexr = nextInder — 1 A-E(h1)
6 vals(1).indez = vals(1).indez inds (3)
7 vals(1).index = nextInder — 1 =-subs16.1.3)
8 inderRead < neztInder — len vals “-E(h1)
9 indezRead = vals(1).indez 7-E-left(2)
10 indezRead = (vals(1).index — len vals) + 1 39.N
11 indezRead = (nertInder — 1 — len vals) + 1 =-subs{3.10)
12 indexRead < nextInder — len vals =-subs (1,11).N
13 firstIndez = nextIndez — len vals #-Eihl)
14 firstIndex = firstIndez ext-post.end_read-defn
15 len vals < len vals 34.N
16 firstIndezx < nectInder — len vals =-subs(14.15.1.13).N
infer Ass2(0) A-1(7.12.16)

Verification of L-atomicity

Finally the model is verified to be L-atomic by showing that the following
assertion alwavs holds after the end_read operation is executed:

L-atomic('o o) 2 indezRead < indezRead A

firstIndezx < indezRead A
nextIndex — 1 > indezRead;

which ensures that the items are read from the sequence as required. The
assertion is described as follows:

1. Each data item that is written to the mechanism is given an index
number, starting at 1, and increasing each time a new item is written.
New items are written to the head (index 1) of the sequence.

2. firstIndex gives the index number of the item at the tail of the sequence



4.2. Verification of the Model of L-atomicity 67

after a read starts (the first item that is available to the reader for that
read).

3. indezRead is the index number of the item that has been read.

The above assertion guarantees first that the item read has an index number
greater than or equal to the number of the first item available at the start
of the read, and less than the index to be used for the next item written.
This ensures that the item read is fresh. Second it ensures that the index
of the item read is greater than or equal to the index of the item read the
previous time. This ensures that the items are read in order.

The following conjecture has been discharged to show that the model
complies with the above assertion:

Assl(?); pre_end_read('a ): post_end _read('c . o)
L-atomic('c . o)

Where Assl is the assertion that holds in the states where end_read can
be executed (reader_writer_Assertion from above). The proof relies on the
indezAfterEndRd lemma which is given below. Rigorous proofs of the lemma
and the proof obligation follow.

| indexAfterEndRd ] Assl (IF ) pre_end_read(? ): post_end _read( T.0)

A ——
indexRead = nezxtIndex — len vals

from Ass1('@); pre_end_read(7); post_end_read('7 , o)

1 vals = '1713(1, ..., 1) A indezRead = m(i).indez lemma postRd
2 vals(1).indes = neztIndez — 1 A-E(h1)
3 indexRead = m(i).index A-E-left(1)
1 inderRead = (Ms(l).indez— len vals) +1 3N
5 indezRead = (m — 1— len vals) +1 =-subs 2.4

infer indezRead = nextIndezr — len wvals 3N



4.3. Summary 68

from Assl(?); pre_end_read(/?); post-end_read(?. a)
B A
1 neztInder = nextinder ext-post-end-read-defn
. e

2 indezRead = indexRead ext-post-end-read-defn
3 firstIndex = firstIndez ext-post-end-read-defn
4 vals = vals(1, ... i) A indezRead = vals(i).indez  lemma postRd
5 vals = wals(1, ..., i) A-E-right(4)
6 len vals < len vals 2.N
7 indezRead < neztInder — len 11;13 A-E(h1)
8 indezRead = nextIndex— len vals lemma indexAfterEndRd
9 indezRead < indezRead =-subs(8,7.6).N
10 vals(1).index = nertInder — 1 A-E(h1)
11 indezRead = vals(1).index A-E-leftid)
12 indezRead = (vals(1).indez— len vals) + 1 3,11.N
13 indezRead = (nertInder — 1— len vals) + 1 =-5ubs(10.12)
14 len vals > 1 3. len
15 neztinder — 1 > indezRead =subs(1,13,11).N
16 firstIndex < nextinder — len vals A-E(h1)
17 firstIndezx < indexRead =-subs(16,3,13).N
infer L-atomic(‘c , o) A-1(9.15.17)

Some of the properties that are required to guarantee L-atomicity are
encoded directly into the model, for example: when a read takes place all
items earlier than that read are removed from the sequence to ensure that
an older item cannot be read the next time. The atomicity of the operations
ensure that it is not possible for the reader and writer to clash on accessing
a particular item, so that coherence is guaranteed.

4.3 Summary

This chapter introduces an abstract model of L-atomicity, which specifies the
properties that are required of AC\s in an abstract, but rigorous. manner.
and gives details of the proofs that have been discharged to verify that the
model] exhibits the desired properties. Example rigorous proofs are given.
Verifying properties of asynchronous real-time systems is difficult and



4.3. Summary 69

this thesis shows how it is possible to build an understanding of the svstem
in an incremental manner. Starting with an easv to understand abstract
model that exhibits the properties that are required of the svstem. and
building and verifying more realistic models to gain an understanding of the
behaviour of the implementation. In this way it is possible to gain sufficient
confidence that the implementation exhibits the required behaviour. The
model given in this chapter is the formal basis of the investigations in the
rest of the thesis, which explore the behaviour of Simpson's d-slot ACN
implementation and build confidence in its correctness with respect to the
requirements (L-atomicity), in an incremental manner. The formal approach
used helps to identify errors and ambiguities in the specification and models,
gain a better understanding of the behaviour of the implementation and can
help to make assumptions about svstem and its environment more explicit.
This should help to ensure that those assumptions are not overlooked later
in the development process. Taken together, the better understanding of the
implementation, reduced number of errors and ambiguities and the more ex-
plicit assumptions should help to reduce the amount of rework due to flaws
that are discovered in the later stages of the development process. The in-
cremental method uses a number of tools to verify properties of increasingly
realistic models of the implementation. until sufficient confidence is gained
that the implementation has the required properties and exhibits the de-
sired behaviour. Chapter 5 introduces the first of these tools, shows how the
ACM implementation can be shown to be a refinement of the model. using
Nipkow’s retrieve rule, [Nip86, Nip87]. and describes how this method can
be used to improve understanding of the behaviour of the implementation.
to assist in building later models.



Chapter 5

Using Refinement to Verify
Properties of Simpson’s 4-slot

This thesis shows how it is possible to use a range of tools to verify prop-
erties of asynchronous real-time systems and gain an understanding of the
behaviour of those systems in an incremental manner. This increased un-
derstanding can help to identify and correct errors and ambiguities earlier
in the development process and save on the amount of more costly rework
due to those flaws. Section 3.3 gave a formal model of Simpson's 4-slot
ACM implementation, and Chapter 1 described the first stage of the in-
cremental development process by defining and verifying an abstract model
of L-atomicity. This chapter introduces the next stage of the process by
showing how it is possible to verify that the formal model of the implemen-
tation is a refinement of the model of L-atomicity, subject to an assumption
about the atomicity of the operations in the implementation. In order to
verify there is a refinement relation between the models it is necessary to
assume that some of the operations in the implementation are combined
into single atomic actions. While it is recognised that this is not a full cor-
rectness proof, since the operations are not combined in this way in actual
implementations, discovering the retrieve relation between the models and
discharging the proof obligations make it possible to explore properties of
those implementations. This exploration gave an increased understanding
of behaviour of the implementation which assisted in creating the later more
realistic models and verifving properties of those models. An earlier version
of the work in this chapter has previously been published in [HP02b).

This chapter is organised as follows: Section 5.1 introduces the notion
of refinement. Section 5.2 explains why it is not possible to construct a
retrieve function to describe the relation between the model of atomicity and
the formal model of the implementation; Section 3.1 describes an outline,
and gives details of part, of the retrieve relation between the models. The

70



5.1. Refinement 71

proof obligations that are required to verify there is a refinement relation
between the models, according to Nipkow's retrieve relation rule [Nip86.
Nip87, Jon90], are given in Section 5.5. with a rigorous description of an
interesting example proof.

5.1 Refinement

The notion of refinement dates from the stepwise refinement method for con-
structing programs [Dij71] [Wir71] and work on program correctness [Hoa69)
[Hoa72]. For example [Dij71] introduced the notion of developing a sequen-
tial program in a stepwise manner, starting with a more abstract notion
of what the program is trying to achieve and introducing more detail until
the final executable program is completed. This stepwise approach can help
with the development of complex programs. where the required algorithm
is not known at the outset. The implementation can be completed in an
incremental manner as understanding improves. Refinement is the process
by which it is possible to verifv that the behaviours of the later version of the
program are a (possibly complete) sub-set of the behaviours of the earlier
version. The refinement calculus provides a logical basis for these methods
based on the weakest pre-condition approach to program correctness [Dij7h .
It has been extended to the stepwise development of parallel programs and
to the refinement of atomicity in parallel programs. e.g. [Bv\V03]. [Bac89].
[Jon90] describes how the notion of refinement can be extended to \'D)\I-
SL models of systems. In order to verify that a more detailed model of an
implementation is a refinement of a more abstract model it is necessary to
verify: first that there is a relation between the the states in an abstract
model and the states in a more concrete model; and second demonstrate
that if it is possible to execute an operation in the concrete model to move
from one state to another, it should be possible to execute an equivalent
operation in the abstract model and move between equivalent states in that
model. It may be possible to find a retrieve function between the models. or
in the more general case, where there is a many to many relation between
the states in the models it may be possible to verify the concrete model is a
refinement of the abstract one by using a retrieve relation [Nip86, Nip87].
This chapter shows how a concrete model, the formal model of the 1-slot
implementation, can be verified to be a refinement of an abstract model. the
formal model of L-atomicity, using Nipkow's retrieve relation rule [Nip86.
Nip87]. In order to discharge the proof obligations some of the actions
of the reader and writer in the implementation need to be combined into
single actions, that are equivalent to the operations of the abstract model.
which are assumed to be executed in a Hoare-atomic manner. It is therefore



5.2. A Retrieve Function? 72

recognised that this is not a full correctness proof for the ACM. because
these groups of actions are not atomic in actual implementations of the
4-slot. The individual actions can interleave without restriction. and in
some (multi-processor or hardware) implementations it is possible for the
individual actions of the reader and writer to be executed concurrently. The
proofs are, therefore, insufficient to show that the 4-slot is Lamport-;itomic
when the reader and writer can access the mechanism in an asvnchronous
manner. A range of tools can be used to relax the assumption about the
atomicity of actions of the component processes as is described in Chapters 6
and 7. Moving directly from the abstract model to realistic models of the
implementation is a big step, and the exercise of constructing the retrieve
relation and completing the refinement proofs is a useful stepping stone in
the process. It allows the behaviour of the implementation to be explored
in a more abstract manner than would otherwise be possible and helps to
identify some of the potential behaviours of the ACM implementation. These
lessons are useful when constructing the later, more detailed. models. The
next section discusses the different tvpes of relation that can exist between
the models in more detail.

5.2 A Retrieve Function?

When a specification is interpreted to produce a design, a representation
is chosen which reflects some of the requirements of the implementation.
There is a relation between the two representations and it may be possible
to use a retrieve function to map states in the concrete model to states in
the abstract model (the material in this section is from [Jon90]).

However in some cases. for example where it is necessary to iuclude
history information in the abstract model that is not present in the im-
plementation, it may not be possible to construct an abstract model of the
implementation (or concrete model) so that a retrieve function can be found.
Simpson’s 4-slot ACM is an example of such an implementation. In the im-
plementation, items are effectively overwritten by the writer recording the
pair and slot, to which the latest item has been written, in the control vari-
ables. It is only possible for the mechanism to record a maximum of four
items, and only one of those four items is available to the reader at any time.
although it is possible for the available item to change while the read is in
progress. In the abstract model of L-atomicity there may be more than four
items in the sequence, all of which are available to the reader. For example
if at the start of a read there was a single item available. and the read over-
lapped with five writes each successive write would add a new item to the
sequence. At end read the specification of L-atomicity states that the reader



5.2. A Retrieve Function? 3

can read any one of these items, and the abstract model returns a random
item from the sequence. These additional items are effectively history in-
formation that is not present in the implementation. The iminlementétion
is more deterministic because the reader chooses to access a particular slot
and returns the item read from that slot.

L abstract modet
\ / \ 7

concrete model
Figure 5.1: A one to many retrieve relation
This requirement for history information to be recorded can result in

a one to many relation as illustrated in Figure 5.1 between the states in
concrete model (or implementation) and the abstract model.

Figure 5.2: A many to many retrieve relation

In the more general case there may be a many to many relation between
the specification and the implementation, as illustrated in Figure 5.2. In the
case of the relation between the abstract model of L-atomicity and the 4-slot
implementation this implementation bias occurs because the items that are
in the slots in the implementation may be mapped to different items in the
sequence in the abstract state, and in fact some of them may not be present
in the sequence at all, depending on how the reader and writer interact with
the ACM. For example, there may only be a single item available to the
reader at the start of a read, because all of the previous items have been
overwritten. There will, therefore, be a single item in the sequence in the
abstract model, but this item can be in any one of the slots in the concrete



3.3. Formal Definitions of the Proof Obligations 74

Figure 5.3: Modelling with a Retrieve Relation

model. In addition the implementation will still retain 3 items that were
written previously, but these items have been removed from the sequence in
the abstract model. There are therefore a number of different states in the
implementation that are equivalent, and can be mapped, to the state in the
abstract model that contains only a single item. There is, therefore, a many
to many relation between the models: it is necessary to construct a retrieve
relation between them as illustrated in Figure 5.3, and use Nipkow's rule to
discharge the proofs. This requires the following refinement proof obligations
to be discharged:

e where the retrieve relation holds between two states. and it is possi-
ble to execute an operation in the specification, it is also possible to
execute the equivalent operation in the model of the implementation,
and furthermore

e the retrieve relation holds between the states in the specification and
model that are reached as a result of executing those operations.

These proof obligations are described formally in the next section.

5.3 Formal Definitions of the Proof Obliga-
tions

This section gives the formal definitions of the proof obligations that must be
discharged to verify that there is a refinement relation between the concrete
and abstract models using Nipkow's retrieve rule.

First it is necessary to discharge a domain proof obligation for each of
the operations, which is the first of the proof obligations described above. as



5.4. A Retrieve Relation Between the Formal Models 73

follows (where R is the retrieve relation, and as and cs are arbitrarv states
in the abstract model and concrete model respectively):

R(as, /c_s), pre_AbstractOp(as)

pre_concreteOp(¢s)

Second it is necessary to verify that the following result proof obliga-
tion holds for each operation, which is the second of the proof oblications
described above:

©s. cs)

3 as : Abs_State - R(as, cs) A post_abstractOp(as. as)

R(la_s, lc_.s), pre_abstractOp(l(E); post _concreteOp(

5.4 A Retrieve Relation Between the Formal
Models

This section gives an overview of how the retrieve relation between the mod-
els of L-atomicity and the implementation has been constructed. The com-
plete retrieve relation, in the PVS logic. is given in Appendix F. The abstract
model of L-atomicity given in Section 1 has four operations, start_write.
end_write, start_read and end_read. The refinement notion requires that the
operations in the concrete formal model given in Chapter 3.3.3 are combined
into equivalent operations to those in the specification. The combination is
described as follows:

startWr: the start_write operation in the abstract specification adds the
a new item to the sequence of values that are available to be read.
startWr combines writerChoosesPuair, writerChoosesSlot. write and
writerIndicatesSlot operations in the implementation to similarly make
the item that has been written available to the reader, in some circum-
stances. before the write has been completed!.

startWr (conc : Conc_State) ¢ : Conc_State
pre nwi = WCP

post ¢ = writerIndicatesSlot(
write(writer ChoosesSlot (
writerChoosesPair(conc))))

H[f the reader and writer access the same pair at the same time. and the writer indicates
the slot that it has written the latest item to before the reader chooses the slot it is going
to read, the reader will acquire. and read the item from. the siot that the writer has

accessed.



5.4. A Retrieve Relation Between the Formal Models 76

endWr: this operation completes the write. by executing writerIndicates Pair
operation in the implementation.

endWr (conc : Conc_State) ¢ : Conc_State
pre nwi = WIP

post ¢ = writerIndicatesPair(conc)

startRd: this operation combines the readerChoosesPair, reader] ndicate-
sPair and readerChoosesSlot operations in the implementation. and
acquires the slot that the reader will access?.

startRd (conc : Conc_State) ¢ : Conc_State
pre nri = RCP
post ¢ = readerChoosesSlot(
readerIndicatesPair(
readerChoosesPair(conc)))

endRd: executes the read operation from the implementation to return
the item that has been read.

endRd (conc : Conc_State) ¢ : Conc_State
pre nri = RD
post ¢ = read(conc)

It is necessary to find a retrieve relation between the abstract and con-
crete models. The relation between the abstract specification of atomicity
and the model of the {-slot is illustrated in Figure 5.4. The values of the
program counters for the reader and writer (nri and nwi respectively) are
mapped to the values of the booleans readerAccess and writerAccess as fol-
lows:

1. If nwi = WCP there is not a write in progress so the writer is not ac-
cessing the ACM (writerAccess = false), whereas if nwi = WIP there is
a write in progress, so the writer is accessing the ACNI (writerAccess =
true).

2. Similarly for the reader, if nri = RCP there is not a read in progress so
the reader is not accessing the ACM (readerAccess = false), whereas

2Strictly speaking this is not equivalent to stert.read in the abstract specification.
which does not acquire the item to be read. The abstract specification could be changed
so that the reader records the index of the item that it is going to read. This, however,
would change the specification so that reader could not read any items that were written
by writes that occurred during the read, which does not conform to the notion of atomicity.



5.4. A Retrieve Relation Between the Formal Models

Implementation Abstract
nwi = wep — ™ writerAccess = false
nwi = wip —— ™ writerAccess = true
nri = rcp — > readerAccess = false
nri =rd —™  readerAccess = true
pairWritten — slotWritten(pairWritten) (Head of
) ) ——= [ Vall
or writerPair —> writerSlot 4 sequence)
Val2

pairWritten —> slotWritten(pairWritten) | — , -—
or opposite slot to writerSlot in writerPair ,'/,” I '

R Val3

-

readerPair —> readerSlot * ' ]

Figure 5.4: The retrieve relation between the concrete and abstract models

if nri = RD there is a read in progress, so the reader is accessing the
ACM (readerAccess = true).

Constructing the retrieve relation requires the addition of an auxiliary
boolean variable to the model of the implementation, writerChangedPairNI .
This is used to record when the writer changes the pair of slots it is accessing,
because, until it has completed the first write to the newly chosen pair. and
indicated the pair it is accessing, the reader cannot access the same pair as
the writer. This means it is not possible for the reader to read the item
that has been written during the current write (this item was added to the
head of the sequence in the abstract model by the start write model). The
boolean is set to true by the writerChoosesPair operation, when the writer
changes pairs, and is set to false by the writerIndicatesPair operation.

With respect to the sequence of values, it is possible to retrieve up to two
values from the information recorded by the writer, and it may be possible to
retrieve one value from the information recorded by the reader, as described
below:

1. If the writer is accessing the ACM, and has written the new item
to it, this item will be the head of the sequence in the specification
and will be pointed to by the writer local variables writerPair and
writerSlot in the implementation. Otherwise the item at the head of
the sequence will be the one written by the last write, and will be
pointed to by the control variables in the mechanism, pair Written and

slotWritten(pair Written).



5.4. A Retrieve Relation Between the Formal Models 78

2. If the writer is still accessing the mechanism and it has wTitten the
new item, then the item that is second on the sequence of values in the
specification will be the one that was written by the last write. This
will be pointed to either by the control variables in the mechanism,
pairWritten and slot Written(pair Written), if the writer changed pairs
for the current write, otherwise it will be in the same pair, as the writer
is currently accessing, but in the the opposite slot.

3. If the reader is accessing the mechanism and has acquired the slot
it is going to access, that slot will be pointed to by its local control
variables, readerPair and readerSiot, and it will contain one of the
items in the sequence of values in the specification. This may be one
of the items that can be accessed from the information recorded by the
writer, or a third item, depending on how the read and write actions
have interleaved with each other.

The retrieve relation is split into four cases, depending on whether the reader
and writer are accessing the ACM, as follows:

(—readerAccess A ~writerAccess = ....) A
(—readerAccess A writerAccess = ....) A
(readerAccess N\ ~writerAccess = ....) A
(readerAccess A writerAccess = ....)

The most interesting part of the retrieve relation is where the reader
and writer are both accessing the ACM (the last conjunct above, where
readerAccess and writerAccess are both true). The assertions in the relation
need to be strong enough that it is possible to verify the reader can return
the item in the abstract model that is equivalent to the item returned in
the concrete model. The difficulty is that the item returned depends on the
recent history of the ACM: i.e. on the precise interleaving of the actions
of the reader and writer in the implementation. This part of the retrieve
relation is described below.

The fact that the reader and writer are both accessing the ACM. is
recorded in the concrete model as:

nri = RD A nwi = WIP

The reader indicated the pair it is accessing during the startRd operation,
and the writer indicated the slot it is accessing during startWr. Therefore
the reader local variable readerPair and the writer variable writerSlot are
equal to the relevant control variables, and the writer has added the item



5.4. A Retrieve Relation Between the Formal Models 79

just written to the slot pointed to by its local variables in the implementa-
tion and to the head of the sequence in the abstract model:

writer.writerSlot = slotWritten(writer writerPair) A
reader.readerPair = pairReading A
slots(writer . writerPair, writer.writerSlot) = vals(1).val

The remainder of this part of the retrieve relation depends on the recent
history of the ACM, in particular if the writer has changed pairs before
starting the current write. The auxiliary variable, writerChangedPairNI ,
records whether the writer has changed pairs or not. The reader chooses
the slot it is going to access at startRd, so the reader local variables will be
pointing to the slot chosen, and the item it has chosen will be one of the
items in the sequence of values in the abstract model. This enables the two
cases to be defined in the retrieve relation as follows:

1. If the writer has changed pairs the boolean writerChangedPairsNI will
be true, and the writer local variable writerPair will not be equal to
the control variable pairWritten. In this case the reader and writer
cannot be accessing the same pair of slots (as explained above), and
the item at the head of the sequence is not available to the reader.
The length of the sequence must therefore be strictly greater than 1,
and the item written during the last write will be the second in the
sequence. The reader will be accessing the pair of slots last accessed
by the writer, so the control variables pairReading and pairWritten
will be equal. This gives

writerChangedPairNI =
len vals > 1 A
pairReading = pairWritten A
pairWritten # writer.writerPair A
slots(pair Written, slot Written(pair Written)) = vals(2).val A
(Fi€indswals-i > 1A
slots(reader.readerPair, reader.readerSlot) = vals(i).val)

2. If the writer has not changed pairs for the current write the boolean
writerChangedPairsNI will be false, and the writer local variable
writerPair will be equal to the control variable pairWritten. In this
case there is a possibility that the last read ended and the new read
started during the current write, in which case the previous read may
have returned the item written by the current write. The sequence of
values in the abstract state will then have been shortened to length
one and the item written during the previous write (the one pointed
to by the control variables in the mechanism) will have been removed



5.5. Discharging the Proof Obligations 80

from the sequence in the abstract model, and this item is not included
in the retrieve relation. The single item remaining will be the one
written during the current write and pointed to by the writer local
variables. If a number of writes have occurred during the read, the
items written will be in the sequence in the abstract model. and the
reader may choose to read any one of these items. The sequence will
then be shortened to include the item read and all later items. This
gives:
(—writerChangedPairNI =
pair Written = writer.writerPair A
(34 € inds vals -
slots(reader.readerPair, reader.readerSlot) =
vals(i).val)) A
len vals > 1

Combining the above completes this part of the retrieve relation:

readerAccess A writerAccess =
nri = RD A nwi = WIP A
writer.writerSlot = slotWritten(writer . writerPair) A
reader.readerPair = pairReading A
slots(writer writerPair, writer.writerSlot) = vals(1).val A
(writerChangedPairNI = len vals > 1
pairReading = pairWritten A
pair Written # writer.writerPair A
slots(pairWritten, slot Written(pairWritten)) = vals(2.val) A
(i €inds vals- i > 1A
slots(reader.readerPair, reader.readerSlot) = vals(7).val))A
(—writerChangedPairNI =
pairWritten = writer.writerPair A
(314 € inds vals -
slots(reader.readerPair, reader.readerSlot) = vals(i).val))A
len vals > 1

5.5 Discharging the Proof Obligations

This section describes the refinement proof obligations that have been dis-
charged to show that the concrete formal model given here is a refinement
of the abstract model.

First the domain proof obligation has been discharged for each of the
operations as follows (where R is the retrieve relation, and as and cs are



3.5. Discharging the Proof Obligations 81

arbitrary states in the abstract model and concrete model respectively). For
example: )

R(as, ¢s); pre_start_write(as)
pre_start Wr(cs)

Similar proof obligations must be discharged for the other operations.

These proof obligations are relatively trivial to discharge, because, for
example in the case of dom_start_write, it is simply necessary to show that
writerAccess = false when nwi = wcp (writerChoosesPair). This is the case,
because the writer is not accessing the mechanism in both models. The only
complication is that each of the proof obligations must be discharged by
using a case distinction, because the reader may or may not be accessing
the mechanism when the write operations are executed and vice versa.

The result proof obligations are more interesting, and the most interest-
ing case, that for endRd is shown below®. The proof obligation is

R(as,cs); pre_end_read(as); post_endRd(¢s, cs)
3 as : Abs_State - R(as, cs) A post_end_read(as, as)

pre.end_read expands to readerAccess = true and the post conditions of
the operations are:
post_endRd & nri = RCP A

v = slots(reader.readerPair, reader.readerSlot)

AR L
post_end_read & —readerAccess AJi- € inds vals - v = vals(i).val A

P A— —
indezRead = vals(1).indezAvals = vals(1, ..., 1)

A witness value (as:Abs_State) can now be found to satisfy the conclusion
of the proof obligation, which must satisfy post_end_read and the retrieve
relation. The end_read operation shortens the sequence of values to remove
items that are older than the one read, sets indezRead equal to the index of
the item read and also sets readerAccess to false, the other component parts
of the record are unchanged. This following can therefore be used as the
witness value:

as = mk-Abs_State(vals(1,...,1),writerAccess ,false,nertIndez,

A
vals(i).index, firstInder)

However writerAccess can take two possible values, false and true, and the
proof needs to proceed by case distinction as follows (in the outline below
the notation “by ???” in the justification of proof lines one and two is used
to indicate that the sub-proofs are still to be completed):

3The interested reader can download the PVS theory, and the proof scripts from
http:/ /homepages.cs.ncl.ac.uk/neil. henderson /fme2002/4slot.tgz.



5.5. Discharging the Proof Obligations 82

from R(as,¢3); pre_end_read(as); post_endRd(¢s. cs)

1  from mk-Abs_State (ms (1,....1),false, false, ...) : Abs_State
infer 3 a : Abs_State - R(as, cs); post_end_read(ds. as) by 777
2 from mk-Abs_State (/Ms (1,....14),true, false, ...) : Abs_State
infer 3a : Abs_State - R(as, cs) A post_end_read(as.as) by ?7?
infer 3 a : Abs_State - R(as, cs) A post_end_read(as. as)
case-distinction 1.2

The two sub-proofs are completed in similar ways, and a rigorous proof
of sub-proof 2 follows. Three of the conjuncts of the retrieve relation follow
immediately by =-I-right-vac, since the antecedent of the implication is false
in each case as a result of the witness value used. This leaves the fourth
conjunct of the retrieve relation to be shown to hold, and it is necessary to
show that the witness value satisfies post_end_read.

from R(as, ¢s); pre_end_read(as); post_endRd (s, cs)
1 from mk-Abs_State (vals (1,...,1),false, false, ...) : Abs_State

infer 3a : Abs_State - R(as, cs); post_end_read(as, as)  3-1(...)
2 from mk-Abs_State (vals (1,...,1%), true, false, ...) : Abs_State

2.1 ~ readerAccess A\ — writerAccess = ... =>-I-right-vac(2.h1)
2.2 readerAccess A - writerAccess = ... =-I-right-vac(2.h1)
2.3 readerAccess A writerAccess = ... =-I-right-vac(2.h1)
2.4 from — readerAccess N writerAccess
infer = readerAccess A writerAccess =... by 777
2.5 R(as, cs) A-1(2.1,2.2.2.3.2.4)
2.6 from i € inds vals
infer post_end_read(as, as) by ?7?
2.7 R(as, cs) A post_end_read(la_s, as) A-1(2.5,2.6)
infer 3 a : Abs_State - R(as, cs) A post_end_read(as. as)
3-1(2.h1,2.7)

infer 3a : Abs_State - R(as, cs) A post_end_read(as, as)
case-distinction 1.2



5.5. Discharging the Proof Obligations 33

P
cS

Considering the completion of sub-proof 2.6 first. Rias. ¢
following:

} gives the

(writerChangedPairNI = len vals > 1
(3i€inds vals-i > 1A
slots(reader.readerPair. reader.readerSlot) = vals(i).val)) A

(—writerChangedPairNI =

(34 € inds wvals -
slots(reader.readerPair, reader.readerSlot) = vals(i).val))...

post_ ende btdteS that the redder in the implementation. returns the

item from slots(reader readerPair. reader readerSlot) which allows the sub-
proof to be completed. Strictly the sub-proof should be discharged by case
distinction on the value of writerChangedPairNI, but the two cases are al-
most identical and will be combined for the purposes of this rigorous proof:



5.5. Discharging the Proof Obligations 84

from R(as, lc_s), pre_end_read(la—s); post_endRd | ¢s, cs)

1 from mk-Abs_State (vals (1.. . .. i). false. false. ...) : 4hs_Srure

infer 3a : Abs_State - R(as, cs): post_end_read(as. as)  3-I(...)
2 from mk-Abs_State (vals (1.. ... i). true. false, ...) : Abs_Stats

2.6 from % € inds Jz;ls
2.6.1 v = slots(reader.readerPuair. lrcfaderreaderb'lur)
post_endRd-defn
2.6.2 v = vals(7).val =-subsih1.2.6.1)
2.6.3 inderRead = vals(i).index 2.h1
2.6.4 - readerAccess 2.hl
2.6.5 vals = vals(1. ..., 1) 2.h1
2.6.6 - readerAccess A v = vals(i).val...
A-1(2.6.2,2.6.3.2.6.1.2.6.3)
infer post_end_read(as, as) 3-1(2.6.h1.2.6.5)
2.7 R(as, cs) A post_end_read(as. as) A-112.3.2.0)
infer 3a : Abs_State - R(as, cs) A post_end_read(as. as)
31(2.h1.2.7)

infer Ja : Abs_State - R(as. ¢s) A post_end_read(as, as)
case-distinction 1.2

The remaining conjunct of the retrieve relation that must be shown to
hold (sub-proof 2.14) is:

—readerAccess A writerdccess =
nri = RCP A nwi = WIP A
writer.writerSlot = slotWritten (writer.writerPair) A
reader.readerPuair = pairReading A
slots(writer. writerPair, writer.writerSlot) = vals(1).val A
(writerChangedPairNI = len vals > 1 A
pairReading = pairWritten A
pairWritten # writer.writerPair A
slots(pairWritten. slot Written(pairlWritten)) =
vals(2).val) A
(—writerChangedPairNI =
pair Written = writer.writerPair) A



5.5. Discharging the Proof Obligations 33
len vals > 1

Most of the above follows directly from hl (R(as. lc_s)) since:

1. The values of the control variables and writer and reader local variables
are not changed by post_endRd. therefore the equality. or otherwise.
of the control variables and the local variables is unchanged in the
conclusion of the proof. Similarly the writer program counter remains
unchanged, since the writer has not executed an operation (nwi =
WCP).

2. No new items are written to the AC\I. and the sequence in the abstract
model always contains at least one item. therefore
slots(writer writerPair, writer.writerSlot) = wals(1).val will hold in
the conclusion.

It only remains to prove that the sequence will be of the correct length,
depending on the value of the auxiliary variable writerChangedPairNI. i1f
the sequence in the abstract model is of length greater than one after end
read the relation slots(pairWritten, slot i ritten(pair W ritten)) = vals(2).val
will automatically follow and complete the proof). R(@s.cs) states that the
sequence in the abstract model has at least one item in it before end read
is executed, therefore the case where writerChangedPair N is false follows
trivially, since a subsequence of a non empty sequence must contain at least
one item. The case where the auxiliary variable is true is proved by case-
distinction on the value of i. If ¢ = 1 the proof follows by contradiction,
since R(as, ¢s) states:
33 € inds vals -1 > 1 A slots(reader.readerPair, reader.readcrSlot) =
vals(z).val
and post_endRd states that the reader in the implementation returns the
value from slots(reader.readerPair, reader.readerSlot). The value of i can-
not, therefore, be equal to 1. If 7 > 1 the proof follows from the definitions
of the retrieve relation and post_endRd*.

4Strictly speaking sub-proof 2.4 verifies that the consequent of this conjunct of the
retrieve relation holds (using A-1). and this sub-proof can then be used with the =-I rule
to establish — readerAccess A writerdccess = .... This would, however, add an additional
line to the proof and the remaining lines would need to be renumbered. Therefore. in
order to keep the line numbers consistent with the outlines on the preceding pages. this
extra step has been omitted.



5.6. Summary 86

from R(as,cs); pre_end_read(as); post_endRd(Cs. cs)

P AN—
1 from mk-Abs_State (vals (1,. .. ,1).false. false. ..} : Abs Srate

infer Ja : Abs_State - R(as. cs): post_end_read({as. as)  3-I(...)
2 from mk-Abs_State (vals (1. ..., 1), true. false. ...) s Abs_State

24 from = readerAccess A writerAccess

24.1 nri = RCP post_endRd-defn
2.4.2 from writerChangedPair NI
2.4.2.1 fromi=1

infer len vals > 1
contradiction(h1,2.h1.post _endRd-defn)

2.4.2.2 from ¢ > 1
infer len vals > 1 (h1,2.h1 post_endRd-defn)
infer len vals > 1 case-distinction(2.14.2.1, 2.4.2.2)
2.4.3 from — writerChangedPairN]
infer len vals > 1 2.h1, len
244 len vals > 1 case-distinction(2.4.2.2.1.3)

infer = readerAccess A\ writerAccess = ...
=-1(24h1.2.4.1....)

2.5 R(as, cs) A-1(2.1.2.2.2.3.2.1)
2.7 R(as, cs) A post_end_read(as, as) A-1(2.5,2.6)

infer 3a : 4bs_State - R(as. cs) A post_end_read(ds. as)
3-1(2.h1.2.7)

infer 3 a : Abs_State - R(as, ¢s) A post_end_read(ds. as)
case-distinction 1,2

5.6 Summary

This chapter introduces the first of the tools. that has been used in the in-
cremental development process described in this thesis to verify properties
of the {-slot, which can be used to gain an improved understanding of the
behaviour of the implementation to help to reduce errors and ambiguities in
the specification earlier in the development process. It describes method of
demonstrating that the 4-slot implementation is a refinement of the abstract
model of L-atomicity from Chapter 3. Discovering the retrieve relation and



5.6. Summary 87

discharging the proof obligations gave increased confidence in its correct-
ness, and helped in improving our understanding of the behaviour of the
implementation by identifying the following behaviour:

L. If the writer has changed pairs and has not indicated that it has
changed when a read starts, the slot the reader will access is effectively
chosen at start read, when the reader executes the readerChoosesPair
operation. The reader will access the pair of slots the writer previously
accessed, and any new values will be written to the pair the writer is
now accessing. The reader will continue to access the pair the writer
was previously accessing, until after the end of the current write, and
the values of the control variables pairReading and pairWritten will
remain equal until then.

2. There are two points within the writer algorithm when the item that
is being written can be released and made available to the reader. If
the reader chooses to access a different pair to the writer, the item was
effectively released by the writerIndicatesPair operation at the end of
the last write to the pair the reader has chosen. If the reader accesses
the same pair as the writer, the point that the item is released is depen-
dent on the ordering of the readerChoosesSlot and writerIndicatesSlot
operations.

3. There are effectively a maximum of three different items that the reader
can return as a result of a read. The exact interleaving of the actions
of the reader and writer, and the recent history of the interleaving
of those actions, determine which of the slots the reader will access
during a read and which of these three items it will return.

Unfortunately the proofs rely on an unrealistic assumption about the
atomicity of the actions of the reader and writer of the ACM. In order to
discharge the proof obligations some of the actions of the reader and writer
in the implementation need to be combined into single actions, that are
equivalent to the operations of the abstract model, which are assumed to be
executed in a Hoare-atomic manner. It is therefore recognised that this is not
a full correctness proof for the ACM, because these groups of actions are not
atomic in actual implementations of the 4-slot: the proofs are insufficient to
show that the 4-slot implementation is L-atomic when the reader and writer
can access the mechanism in a totally asynchronous manner. Unfortunately
it is not possible to relax the atomicity assumptions and use refinement to
verify properties of the implementation for two reasons. First, each of the
individual reader and writer actions either accesses a control variable in the
mechanism, or one of the slots. It is possible for an unbounded number of



5.6. Summary 88

reader actions to occur between any two writer actions. Similarly it is pos-
sible for an unbounded number of writer actions to occur between any two
reader actions. It is therefore possible for any of the writer actions ;o in-
terfere with the operation of the reader, for example. Discovering a relation
between the models would, therefore, be very difficult. Second, it became
apparent, when discovering the retrieve relation and discharging the proof
obligations that the writer may effectively release the item it has written
at different points in its algorithm. If the reader accesses the same pair
as the writer the item is available to it as soon as writerIndicatesSlot has
been executed, however, if the reader accesses the opposite pair to the writer
the item it is going to acquire was released by the last writerIndicatesPair
operation. Despite this shortcoming, the effort was considered worthwhile,
because of the increased understanding of the behaviour of the system, and
the increased confidence in the correctness of the system, that was gained.
Recent work, [BvWO03], has extended action systems by adding a guarantee
condition to each process, but it may not be possible to find suitable guar-
antee conditions for the processes, to use action refinement, to verify the
implementation is a refinement of the abstract model.

The exhaustive proof method used to verify the abstract model of atom-
icity could be used to verify the implementation is Lamport atomic, when
the individual actions of the reader and writer are themselves atomic. This,
however, would require an exploration of the entire state space of the 4-slot.
This state space is not simply the cross product of the number of read and
write operations, because, for example, the behaviour of the mechanism can
change if a read occurs when the writer has changed pairs but has not in-
dicated it has changed. It would be a non trivial task to ensure that the
entire state space is explored correctly, and verification proofs would need to
be discharged for each of the states in the entire state space. Therefore this
is not considered to be a practical solution, and it was necessary to explore
other proof methods to relax the assumption about the atomicity of the
actions of the reader and writer and verify that the 4-slot implementation
is L-atomic. Chapter 6 describes such a method, using an assertional rely-
guarantee proof method for interleaved shared variable concurrency and the
lessons about the behaviour of the implementation described above assisted
in devising assertions that are required for this method. This method has
the advantage that it may be possible to use the rely-guarantee conditions
of the ACM, with a model of its behaviour, to verify properties of larger
systems, where the 4-slot is itself used as a component.



Chapter 6

Applying a Compositional
Proof Method

This thesis describes an incremental approach to system development. Start-
ing with an abstract model of the required properties of the svstem it shows
how an understanding of its behaviour can be gained over time, by verifving
properties of increasingly realistic models of the implementation. Chapter 4
described an abstract model of L-atomicity that has been used as the basis
of the incremental approach. Chapter 5 then described a refinement method
that has been used to verify that the 4-slot implementation is a refinement
of an abstract specification of atomicity. The proof that a refinement re-
lation exists between the models relies on an unrealistic assumption about
the (Hoare) atomicity of actions of the reader and writer to the ACN: some
actions of the reader (and writer) in the implementation are grouped into
single atomic actions in order to discharge the proof obligations. In imple-
mentations the individual actions of the reader and writer can interleave in
an unconstrained manner, and in fully asynchronous implementations it is
possible for the actions to be executed concurrently. Verifving the refinement
relation helped to build an understanding of the behaviour of the implemen-
tation, however a means to relax the atomicity assumptions is required.
This chapter describes the next stage in the process: how a rely-guarantee
method for interleaved shared variable concurrency c¢an be used to verify
properties of systems when the individual actions of the individual processes
can interleave in an unconstrained manner. The method also overcomes the
a second deficiency of the refinement approach. because it allows the verifi-
cation of svstems where one of the components can execute an unbounded
number of actions in between any two actions of another component. This
makes it possible to verify properties of some actual implementations, for
example where the system is implemented on a single processor. First a
proof of L-atomicity is given for Simpson's 4-slot (this work has previously

89



6.1. Rely-Guarantee 90

been published in [Hen03]). Then an incorrectness proof is brieflv described
to demonstrate how the method can be used to identify errors in proposed
implementations. This shows that a 3-slot ACM implementation may al-
low the reader and writer to access the same slot at the same time. so the
reader may return invalid data as the result of a read. The chapter is or-
ganised as follows. First Section 6.1 introduces the rely-guarantee method.
Section 6.2 introduces the compositional method used to verify properties
of the 4-slot and describes the proof obligations that need to be discharged.
Section 6.3 describes how the method has been used to verify that the 4-
slot implementation is L-atomic; and Section 6.1 briefly describes how the
method has been used to verify the incorrect operation of a 3-slot ACM im-
plementation. All of the proofs in this chapter have been discharged using
the PVS theorem prover. The model of the 4-slot implementation is that
described in Section 3.3.3, with additional auxiliary variables that record
history information about the behaviour of the implementation.

6.1 Rely-Guarantee

The rely-guarantee proof method [Jon81, Jon83] was developed to give a
precise means of specifying interference between parallel programs. Formal
languages, such as VDMI-SL[ISO96] can be used to give specifications of
programs a precise meaning, so that properties of those programs can be
verified in a rigorous manner. Such languages, however, assume that op-
erations are executed atomically: in VDAI-SL pre- and post-conditions are
given for operations, that specify the state of the program before and after
the operation is executed. It is assumed that nothing will occur while the
operation is being executed to interfere with the result and make the post-
condition invalid. In implementations where components are implemented
in parallel it is possible for the components to interfere with each other. for
example the writer of a shared variable may be able to overwrite the value
stored while the variable is being read.

The rely-guarantee method allows the specification of additional proper-
ties of interfering programs:

A Rely Condition: that specifies the maximum amount of interference
that a process or program can tolerate from its environment.

A Guarantee Condition: that specifies what guarantees a process or pro-
gram provides about its behaviour, for example the maximum amount
of interference that it will generate.

For example in the 4-slot implementation the reader of the mechanism
relies on the fact that the writer, once it has chosen a slot, will access that



6.2. A Proof Method for Shared Variable Concurrency 91

chosen slot. In this way the reader can choose to read a different slor.
safe in the knowledge that the writer will not interfere with it. and it can
read a coherent value from its chosen slot. The complete implementation
guarantees that the reader will read fresh. coherent. data i.e. that it is
L-atomic.

An exhaustive proof method could be used to verify that the 4-slot im-
plementation is L-atomic, when the actions of the reader and writer can
interleave in an unconstrained manner. This would. however, require an
exhaustive exploration of the entire state space of the implementation. Ver-
ification proofs for each of the states in this entire state space would then
need to be discharged. It would be a non trivial task to ensure that the
state space was explored correctly. particularly since the behaviour of the
mechanism changes in certain circumstances. for example when the writer
changes pairs at the start of a write!. For this reason an exhaustive method
is not considered to be a practical solution. and it was necessarv to explore
other methods to verify that the 1-slot is L-atomic. This chapter describes
such a method, which can be used to verify properties of systems where the
components communicate via shared variables.

6.2 A Proof Method for Shared Variable Con-
currency

This section describes a rely-guarantee method. from [dR*01]. that can be
used to verify properties of systems where the components communicate us-
ing shared variables, and the actions of those components can interleave in an
unconstrained manner. The method assumes that the individual actions of
those components are atomic. and therefore they cannot occur concurrently.

@ gl/opl /“\ edop2 - *’/l’\
Ny o/

26/opb \gﬁr’opi .
P D N e

Lt AR = ISR
\_/ N gHop+

Figure 6.1: An Example Assertion Network

The method is based on the inductive assertion method from [Flo67 .
generalised to include the additional rules required for rely-guarantee for-
mulae. Assertion networks are produced for the individual processes in the
svstem, and the additional rules are used to verify: first that those processes

11t is not then possible for the reader to access the same pair of slots as the wr}ter
until after the writer has completed an entire write, and indicated it has changed pairs.



6.2. A Proof Method for Shared Variable Concurrency 92

meet their individual guarantee conditions on their actions provided their
rely conditions are met; and second that the complete system, which is a
composed from those individual processes, meets its guarantee conditions
on its actions, provided their rely conditions are met. An example assertion
network is shown in Figure 6.1 which is constructed as follows:

1. Each network is based on a state transition diagram that describes the
operation of the component. The diagram is a quadruple (L, T.s, t).
where L is a finite set of locations, T is a finite set of labelled transitions
between those locations, there is a unique start location s. and a unique
final location ¢ (s # ¢ and {s, t} € L).

2. The labels on the transitions consist of a guard and an operation. The
guard is a predicate over the state of the system and the transition
is enabled whenever the guard evaluates to true. The transition can
be taken when the component is in the start location of the transition
and the guard evaluates to true, and the associated operation is then
executed.

3. Each of the locations has an assertion associated with it that must hold
at all times when the component process is in that location. These as-
sertions must satisfy the guarantee conditions for the actions of each
of the components as described below, and in general encode informa-
tion about the values of the shared variables and history information
about the system. For example, in order to prove mutually exclusive
access to a shared resource, the assertions would encode details about
the values of the shared variables that control access to the resource.

The following proof obligations must be discharged for each transition
(action) in the assertion networks of the components:

e That if the rely condition holds and the assertion in the start state
holds, that the assertion in the target location also holds if the opera-
tion associated with the transition is executed.

o In addition, because the system uses shared variables for communica-
tion between its components it is necessary to verify that the opera-
tions associated with the transitions in a network do not interfere with
the assertions in any of the locations of the assertion networks for other
components of the system (the Aczel semantics [Acz83] described in
[dR*01]). This is because, in general, the assertions of the components
will include statements about the values of the shared variables. Since
the operations of the components can interleave in an unconstrained
manner, it must be shown that, if one of the components relies on a



6.2. A Proof Method for Shared Variable Concurrency 93

shared variable taking a particular value. that value cannot be changed
by a transition taken by one of the other components.

o When the assertion in the start location of the transition holds and the
transition is enabled (its guard is true): that the state of the svstem
meets the guarantee condition for the action is satisfied (¢ &= guar
and op(o) = guar, where o is the current state of the component.
including any relevant history information. in the model).

A parallel composition rule is then used to show that the svstem meets
the guarantee conditions on its actions. The system is composed of n com-
ponents, Cy...Cy,. It is necessary to discharge the following proof obligations
for every transition in the assertion networks the components:

1. Since every transition of component C;, and every transition of the
environment of the system is seen as an environment transition by
every other component C;, 1 # j, it is necessary to show that the
rely condition on the actions of the component C; is satisfied by the
rely condition on the actions of the composed system on the environ-
ment and the guarantee conditions on the actions of all of the other
components.

2. Every transition of the components, C;...C,, is a transition of the com-
posed system so it is necessary to show that the guarantee conditions
on the actions of the components satisfy the guarantee condition of
the actions of the composed system i.e. guarg, V .....V guare, = guar.

The advantages of this method are:

1. It is not necessary to identify the complete state space of the composed
syvstem. This is difficult for relatively small systems and may not be
tractable for larger systems.

2. It is only necessary to discharge proof obligations for each of the tran-
sitions in the assertion networks of the components. rather than proofs
for each of the transitions in the full state space of the composed svs-
tem.

The disadvantage is that the proofs for the transitions in the assertion
networks may be more complex than the proofs for the transitions in the
composed system, because of the need to prove non-interference between the
components, but this disadvantage is outweighed by the above advantages.
The identification of the state space of the composed svstem would be error
prone, and it is anticipated that the number of proofs required for the 1-
slot, for example, would be more than double the number required by this
method.



6.3. Verifving L-Atomicity of the 4-slot Implementation 94

6.3 Verifying L-Atomicity of the 4-slot Im-
plementation

This section shows how the rely-guarantee method can be used to verify that
Simpson's 4-slot ACM is L-atomic. The assertion networks for the reader and
writer are described in Section 6.3.1. The verification proof has been split in
to two parts: first a proof that the implementation guarantees to transmit
coherent data between the reader and writer is described in Section 6.3.3:
then a proof that it communicates globally fresh data is brieflv introduced
in Section 6.3.4. These properties together are sufficient for L-atomicity. All
of the proofs are based on the formal model of the 1-slot which is given in
Section 3.3.3.

6.3.1 Assertion Networks for the Component Processes

The assertion networks for the reader and writer processes of the I-slot are
shown Figure 6.2 and Figure 6.3 respectively.

- [irstReader .
s 1 Chouseslar ;]\ readerindicuiesl’ar l"\
\ ! - T
>

S ’
false; \‘(ﬂ':‘d“" R ‘reader
. \(th»\cxl ar ﬁh“““‘“‘"
‘o ——————

Figure 6.2: Assertion Network for the Reader

Figure 6.3: Assertion Network for the Writer

The assertion networks are briefly described as follows:

1. The networks both contain a transition labelled false, which leads to
their respective termination locations. This transition is included only
to explicitly indicate that the reader and writer algorithms do not
terminate once they have started (inclusion of this transition follows
the style used in [dR*01]).



6.3. Verifying L-Atomicity of the 4-slot Implementation 95

2. There are no guards on the transitions in the networks. because the
guards are all true, which means that the outgoing transition from a
location can be taken at any time when the process is in that location?.

3. Each of the transitions is labelled with the operation that is executed
when it is taken.

The assertions that are associated with the locations in the assertion
networks of the reader and writer and the verification proofs that show that
the 4-slot is L-atomic are described in Sections 6.3.3 (the coherence proof)
and 6.3.4 (the freshness proof). First Section 6.3.2 gives formal descriptions
of the proof obligations from Section 6.2.

6.3.2 Formal Descriptions of the Proof Obligations

The proof obligations from Section 6.2 are described below, using a V'D)I-SL
like notation as with the models in the previous chapters. and the variables
(or state) are hooked to indicate the value before an operation is executed,
where appropriate, as before.

¢ In order to discharge the first proof obligation it is necessary to show
for each operation in the reader and writer assertion networks:
pre_Op('c ); startState A ssertion('a ); post_Op( ‘o . o)
targetState _Assertion(o)

e The second proof obligation is to show non interference between the
reader operations and assertions in the writer network and vice versa.
This involves showing, for each write operation:

Similarly for each read operation:
In the model these two proof obligations are combined into a single
consistency proof for each operation.

e In addition a well-formedness proof (called a TCC by PVS) needs to
be discharged for each of the operations. A witness value must be
provided for each operation to show that there exists a state of the
ACM! such that the operation can be executed.

2There is a pre-condition in each of the operations in the model. however this relates
to the value of a program counter, which is not present in the implementation. This
program counter is simply used to record the next operation that can be executed by
the component process, and is analogous to the process being in the location where that
operation can be executed in the assertion network.



6.3. Verifying L-Atomicity of the 4-slot Implementation

0

firstReaderChoosesPair_Assertion (o)
readerChoosesPair _Assertion('a ) : readerIndicatesPair _4sse rtion('7)
readerChoosesSlot_Assertion(?); read_Assertion(lE');

post_writer_Op('s . o)
firstReaderChoosesPair _Assertion (o)A
readerChoosesPair_Assertion (o) A readerIndicatesPair_Asse rtion(~IA
readerChoosesSlot _Assertion(o) A read _A ssertion(a)

firstWriterChoosesPair _4ssertion (‘o );
writerChoosesPair_Assertion('a ); writerChoose s Slot _dsse rtion (o):

L

write_Assertion(a ); writerIndicatesSlot_Assertion(7 );
writer[ndz’catesPair_Assertz'on(‘?); post_reader_Op('o, o)
firstWriterChoosesPair_Assertion(o)A
writerChoosesPair _4ssertion(a)A
writerChoosesSlot_Assertion(a) A urite _Assertion(o)
writerIndicatesSlot _Assertion(a) A writerndicatesPair _4ssertion(o)

e In order to show that the guarantee condition of the components holds
there are two proof obligations for each operation:

1. To show that the guarantee condition holds before the operation
is executed. For example (for the writer):
pre_writer_Op('c): startState_Assertion ('@ );
firstReaderChoosesPair _Assertion('a ):
readerChoosesPair Assertion('o );
readerIndicatesPair _Assertion(7);
readerChoosesSlot_Assertz'on(?); read_Assertion(‘a )

guar(?)

2. To show that the guarantee condition will still hold in the target
location of the transition after the associated operation is exe-
cuted, which (again for the writer) is given as:

e The rely condition of the composed system, the ACM. on its environ-
ment is that the underlying hardware will be fault free. For example
that items written to the buffers, and values in the control variables
will remain until they are overwritten. and that reads to the buffers
and control variables will return the values stored.



6.3. Verifying L-Atomicity of the 4-slot Implementation 97

pre-wrz'ter-Op(?); startState_Assertioni o )
firstReaderChoosesPair _Assertion (?)
readerChoosesPair _Assertion (o )i
readerIndicatesPair _Assertion (7);
readerChoosesSlot _Assertion (IE); read_4ssertion()
post_writer_Op('a . o)
guar (o)

+

¢ The property that has been shown to hold for each of the locations in
the individual networks is the same as the property thar is required
of the composed system. and. provided the rely condition on the envi-
ronment is met, the composition proof follows immediately. Therefore
1t is not proved separately.

6.3.3 The Coherence Proof

The coherence proof shows that the reader and writer to the ACM cannot
access the same slot in the mechanism at the same time. and that the imple-
mentation therefore only communicates coherent data. Assertious give the
relationship between the local copies of the control variables in the reader
and writer and the values of those control variables in the mechanism itself.
The most interesting assertion is that for location Ir3 in the reader asser-
tion network, when the reader is about to execute the read operation. A
description of this assertion follows.

The assertion makes use two auxiliary variables. First, wisOccurred
which is set to true by the writerIndicatesSlot operation and to false by
the writerIndicatesPair operation. It is therefore true whenever the writer
has already indicated the slot it is accessing during the current write. Sec-
ond, rcsSince Wis. which is set to true by the readerChooscsSlot operation
and false by the writerIndicatesSlot operation. It is therefore true whenever
readerChoosesSlot has been executed since writerindicatesSlot.

When the reader is about to read the data from a buffer in the ACM it has
previously indicated the pair it is accessing. during the readerIndicatesPair
operation, and the local variable readerPair is therefore equal to the control
variable pairReading. The reader has also chosen the slot it is going to read
from. when it executed the readerChoosesSlot operation. However it is not
always possible to relate the value of the slot chosen directly to the control
variables in the mechanism itself. because the writer has write access to the
slotWritten arrav. If the reader and writer are accessing different pairs theyv
are by definition accessing different slots. However if the reader and writer
are accessing the same pair two different cases for this value need to be



6.3. Verifying L-Atomicity of the 1-slot Implementation 98

considered in the assertion:

1. The writer has not got as far as indicating the slot it is writing to in
the current write (the auxiliary boolean variable wisOccurred is false).
In this case the reader’s copy of the control variable will record the
same value as the control variable itself.

2. The writer has indicated the slot it is writing to (wisOccurred is true)
when rcsSinceWis, is used to reason about whether:

e The reader chose the slot to read from after the writer had indi-
cated the new slot it had written to: the readers local copy of the
value will be the same as the appropriate element of the control
variable slotWritten relating to the pair the reader is accessing,
and the auxiliary variable resSince Wis will be true.

e The reader chose its slot before the writer indicated the new slot
it had written to, in which case the reader will access the opposite
slot in the pair to the writer, and resSince Wis will be false.

Once the reader is reading from a slot, it has previously indicated
the pair it is reading from (at readerIndicatesPair), so the writer will
change pairs at the next start write, and cannot access the same pair
in the next write.

The assertion is given as:
read _Assertion & nri = RDA =
pairReading = reader.readerPair A
(reader.readerPair = writer.writerPair =
(mwisOccurred =
reader.readerSlot = slot Written(reader.readerPair)) A

(wisOcurred = (rcsSince Wis = reader.readerSlot =

slot Written(reader.readerPair)) A
(—resSince Wis = reader.readerSlot #

slotWritten(reader.readerPair))))

It is not necessary to make any assertions in the coherence proof for the
reader network locations sr.irl and Ir4 (when the reader is about to ex-
ecute firstReaderChoosesPair, readerIndicatesPair, and readerChoosesPair
respectively) and the writer network location lw5 (when the writer is about
to execute writerChoosesPair).

The Coherence Proof Obligations

This section describes how the proof obligations described in Section 6.3.2
are discharged in order to verify that the 4-slot implementation preserves



6.3. Verifying L-Atomicity of the 4-slot Implementation a9

coherence of data. This requires assertions to be discovered that are sufficient
to meet the required property. Rather than describe the complete model and
all of the proofs and overview is given of the proofs for one of the transitions.
The remaining proof obligations are discharged in a similar manner and the
complete model is given in Appendix G*. The most interesting consistency
proof obligation relates to the readerChoosesSlot operation. which verifies
that the above read_Assertion holds after the operation i~ executed. The
proof obligation is:

pre-readerChoosesSlot( o ):; readerChoosesSlot _Assertion('o );
firstWriterChoosesPair _Assertion( o ):

writerChoosesPuir _Assertion('a ); writerChoosesSlot _Assertion(@);

write-Assertz'on(?); writerIndicatesSlot _Assertion('o );

writer[nd'icatesPair_Assertz'on(?); post _readt rChonsesSlot(‘m . )
read _Assertion(o) A first WriterChoosesPair _Assertion(o)A
writerChoosesPair _Assertion(o)A

writer ChoosesSlot_Assertion(a) A write _Assertion{a)A

writerIndicatesSlot _Assertion(o) A writerIndicatesPair_Assertion(m),

The readerChoosesSlot assertion is given below, for convenience the
readerChoosesSlot operation is also repeated. and an outline proof follows:
readerChoosesSlot_Assertion &
nri = RCS A pairReading = reader.readerPair

readerChoosesSlot ()
ext wr nri : nestReadInstruction
wr reader.readerSlot : SlotIndez
rd slotWritten : PairIndez — SlotInder

pre nri = RCS

post nri = RDAreader.readerSlot = slotWritten (reader.readerPair);

3The interested reader can download the P\'S theory. and proof scripts. from
http://homepages.cs.ncl.ac.uk/neil henderson/fme2003 /coherent.tgz.



6.3. Verifying L-Atomicity of the 4-slot Implementation 100

from pre-readerChoasesSlot(IE); readerChoosesSlot _Assertion(o)
writerChoosesPaz’r_Assertion(IF);
writerChoosesSlot_Assertion(IF)
write_Assertion( g ): writerIndicatesSlot _Assertion('a ):
writerIndicatesPair _Assertion('s ); readerChoose~Slot(‘m . o)

1 nri = RD post_readerChoosesSlot-defn
2 pairReading = reader.readerPair h2, post_readerChoosesSlor-defn

3 from reader.readerPair = writer. writerPair

infer reader.readerPair = writer.writerPair =
(mwisOccurred = ...)A
(wisOccurred = ...) F

4 from reader.readerPair # writer.writerPair
infer reader.readerPair = writer writerPair =
(mwisOccurred = ...)A
(wisOccurred = ...)
readerChoosesSlot-defn,=-I-right-vac(4.hl)
infer read _Assertion(o) 1.2.case-distinction(3.4)

Sub proof 3 above is discharged by case distinction on the value of the
auxiliary variable nwi, which establishes which of the assertions for the
writer network holds for each particular case, and therefore the value of
the auxiliary variable wisOccurred. Rather than give a full rigorous descrip-
tion of sub-proof the following outline uses a case distinction based on the
value of wisOccurred:



6.3. Verifving L-Atomicity of the 4-slot Implementation 101

from pre-readerChoosesSlot (‘7 ); reader ChoosesSlot _4ssertion( 7 ):
..;0 = readerChoosesSlot (o)

3 from reader.readerPair = writer writerPair
3.1 from —wisOccurred
3.1.1 reader.readerSlot =

slot Written(reader.readerPuir))
post_readerChoosesSlot-defn
infer —wisOccurred = h3.1. 3.1.1
reader.readerSlot =
slotWritten (reader.readerPair)

3.2 from wisOccurred
3.2.1 resSince Wis post_readerChoose-Slit-defn
3.2.2 reader.readerSlot =

slotWritten (reader.readerPair))
post_readerChoosesSlot-defn

3.2.3 resSince Wis = reader.readerSlot =
slotWritten(reader.readerPair))  =-1(3.2.1.3.2.2)
3.2.4 —resSinece Wis = reader.readerSlot =

slot Written(reader.readerPair))
=-I-right-vac(3.2.1)
infer wisOccurred =
(rcsSincellis =
reader.readerSlot = slotWritten(reader.readerPair))A
(—resSinceli s =
reader.readerSlot # slot Written(reader.readerPair))
A-1(3.2.3,3.2.4)
infer reader.readerPair = writer. writerPair =
(mwisOccurred = ...)A
(wisOccurred = ...) case-distinction 3.1,3.2

infer read_Assertion(o) 1.2.case-distinction(3.4)

The proof of non-interference with the assertions in the writer network
follows directly from the definitions of the assertions themselves. For exam-
ple, the writerChoosesPair _Assertion is:

writerChoosesPair _Assertion & —wisOccurred A
writer.writerPair = pair Written



6.3. Verifving L-Atomicity of the 4-slot Implementation 102

The auxiliary variable wisOccurred is only assigned to by the writer op-
erations and the writer assertions refer to control variables that the onlv
writer has write access to. Discharging the consistency proof obligari<,»1£>
establishes that the reader and writer networks are inductive assertion net-
works. It remains to verify that the locations in the networks establish the
required guarantee condition (that the reader and writer do not access the
same slot in the mechanism at the same time):

nri = RD A nwi = WR = ((reader.readerPair # writer writerPair) V

(reader.readerSlot # writer.writerSlot))

The interesting proofs are those to show that the guarantee condition
holds after executing readerChoosesSlot and writerChoosesSlot and before
executing read and write. The first of these proof obligations is:

pre_readerChoosesSlot(IF): readerChoosesSlot _4 sserf/on(?
ﬁrstWrz'terChoosesPairA.sseﬁz'on(‘?);

writerChoosesPair _Assertion(‘'d ); writerChoosesSlot _Assertion(‘7):

);

write_Assertion('d ): writerIndicatesSlot _Assertion:
writerIndicatesPuir _Assertion('o ); post_readerChoosesSlot(IF. o)
nri = RD A nwi = WR =
((reader.readerPair # writer writerPuir)V
(reader.readerSlot # writer . writerSlot))

A rigorous proof is shown below. The complete proof is discharged by
case-distinction on the value of nwi, although the only interesting part of
the proof is where nwi = WR, where write_4ssertion (which is h in the
proof) expands to:

nwi = WR = —wisOccurred A writer.writerSlot #

slot Written (writer. writerPair)

The composition proof obligations have not been separately discharged.

because:

o The property that is required to hold of the composed system is the
same as the property that has been shown to hold for the individual
locations of the components..

e The rely condition of the system is that rely = id, in other words
that no transition of the environment of the ACM affects the state of
the composed ACM. The reader only relies on the writer accessing its
chosen slot. and vice versa. which follows from the above rely condition.



6.3. Verifying L-Atomicity of the 4-slot Implementation 103

from pre_readerChoosesSlot('a ); reader ChoosesSlot _Assertion (')
o write_Assen‘ion(/F)(hS): ..;readerChoosesSlot{a . o)
1  from reader.readerPair # writer.vriterPair
1.1 (reader.readerPair # writer.writerPair)V
(reader.readerSlot # writer.writerSlot) v-I-righti 1.h1)
infer (nri = RD A nwi = WR = ;
(reader.readerPair # writer. writerPair)V
(reader.readerSlot # writer writerSlot)  =-I-left(1.1)
2 from reader.readerPair = writer.writerPair

2.1 from nwi = WCP

infer nri = RD A nwi = WR =... =-I-right-vac(2.1.h1)
2.2 from nwi = WCS

infer n7i = RD A nwi = WR =... =-I-right-vac(2.2.h1)
2.3 from nwi = WR
2.3.1 reader.readerSlot =

slotWritten (reader.readerPair)
post_readerChoosesSlot-defn
2.3.2 = wisOccurred A
— writer.writerSlot =
slot Written (writer.writerPair)  =--E-left(2.3.h1.h3)

2.3.3 writer . writerSlot #

slotWritten (writer.writerPair) A-E-left(2.3.2)
2.3.4 reader.readerSlot #

writer. writerSlot 2h1.2.31.2.3.3
235 (reader.readerPair # writer.writerPair)V

(reader.readerSlot # writer.writerSlot)
v-I-left(2.3.4)
infer nri = RD A nwi = WR =
((reader.readerPair # writer . writerPair)V
(reader.readerSlot # writer . writerSlot))
=-I-left(2.3.5)

2.4 from nwi = WIS

infer nTi = RD A nwt = WR = ... =-I-right-vac(2.4.h1)
2.5 from nwit = WIP

infer nri = RD A nwit = WR = ... =-I-right-vac(2.5.h1)

infer nri = RD A nwi = WR =
((reader.readerPair # writer .writerPair)V
(reader.readerSlot # writer.writerSlot))
case-distinction(2.1.2.2.2.3,2.4.2.5)
infer nri = RD A nwi = wR =
((reader.reader Pair # writer .writerPair)V

(reader.readerSlot # writer.writerSlot))
case-distinction(1.2)



6.3. Verifying L-Atomicity of the 4-slot Implementation 104

It should be noted that the property that has been verified to hold of the
composed ACM in this section is not a guarantee-condition. since it does 1ot
relate the input state of the ACM to its output state (the property is that
the reader and writer will not access the same slot at the same time). In
each case assertions about the state of the AC\[. and the required property.
have been shown to hold both before and after each transition is taken
in the assertion networks of the components. Therefore. while the proof
method used is based on the rely-guarantee method described in Section .2,
the proofs have been effectively been discharged using the proof method of
Owicki-Gries [OG76c,OG76a], with an additional explicit test to verifv non-
interference between the individual components.

The verification proof to show that the 4-slot maintains (global) freshness
of data is described in the next section (this property is a guarantee condition
of a read action to the ACMI).

6.3.4 The Freshness Proof

The freshness proof verifies that the 4-slot transmits globally fresh data
between the reader and writer processes. The proof uses auxiliary variables
to record extra history information about the data iteins that are available
to the reader in a similar manner to the exhaustive proof for the abstract
specification given in Section 4.2. The extra variables are:

newMaxFresh: Incremented by the writer at start write. to record the
index of the new data item to be written to the AC\I.

maxFresh: Used by the writer to indicate the index of the latest data
item written to the ACN. This variable is set equal to newhlurFresh
by the writerIndicatesPair operation.

minFresh: Used by the reader to record the index of the latest item avail-
able to be read, at the start of a read (by the readerIndicatesPuir

operation).

indexRead: Used by the reader to record the index of the data item it
has chosen to read (by the readerChoosesSlot operation).

lastIndexRead: Used by the reader to record the value of inderRead.
before it is updated to record the index of the item read during the
current read.

These auxiliary variables are used in the guarantee condition to ensure
that items read by the reader are (globally) fresh. This guarantee condition.
when combined with the guarantee of data coherence, gives the required



6.3. Verifying L-Atomicity of the 4-slot Implementation 105

property that the ACM is L-atomic. In the refinement proof the items read
by the reader are related directly to items in the abstract sequence and
equivalent behaviour is encoded into the model used in this proof using the
above variables. An informal proof of this assertion is as follows:

1. When a write starts in the abstract model the item being written
is added to the sequence as it is potentially available to the reader.
This item potentially becomes available in the implementation once
the writer has executed writerIndicatesSiot to indicate the slot it has
accessed. The start_write operation in the abstract model includes
the writerIndicatesSlot operation, so the new item becomes available
at the same time.

2. If the reader and writer access the AC)\I at the same time. and the
reader manages to read the item that was written by the write that
is in progress, the sequence in the abstract model is shortened to only
contain that item. and its index will be equal to newMazFresh. In the
implementation the reader can read the item that has been written,
but not fully released and minFresh is set equal to newfarFre sh at the
start of the next read if the writer has not executed writerIndicatesPair
and updated mazFresh. In all other cases the oldest item in the se-
quence in the abstract model will be the one written by the last com-
plete write to finish before the read starts. The equivalent item is
pointed to by the control variables in the mechanism and minFresh is
set equal to the index of this item at start read.

3. The retrieve relation maps the item read in the implementation to an
item in the sequence in the abstract model. This model ensures that
indezRead is greater than or equal to minFresh and less than or equal
to newMazFresh during the read operation. Therefore the item read is
one that would be in the sequence in the abstract model at end read.

4. The index of the previous item read is recorded as lastIndezRead by
the reader, and indexRead is verified to be greater than or equal to
this value to verify the items are read in the order they are written.
This property is guaranteed by the removal of all items older than the
one read from the sequence in the abstract model.

The relationship between the above auxiliary variables depends on the
recent history of the ACM. which can be in one of four states as shown in
Figure 6.4. Each state is shown as a double rectangle: the left hand rectan-
gle shows the relationship between the variables pairReading. pairiiritten,
writerPair and readerPair; and the right hand rectangle briefly describes



6.3. Verifying L-Atomicity of the 4-slot Implementation

readerIndicatesPair

1

pairReading = pairWritien
readerPair = writerPair
readerPair = pairReading

Reader and writer accessing the
same pair of slots and have both
indicated the pair they are accessing

writerChoosesPair

2
pairReading = pairWritten
readerPair < writerPair

The writer has changed pairs and so is
accessing the opposite pair to the
reader. but has not yet indicated that
it has changed

writerindicatesPair

3
pairReading <> pairWritten
readerPair < writerPair
readerPair = pairReading

The writer has now indicated that it
has changed pairs

readerChoosesPair

4
pairReading <> pairWritten
readerPair = writerPair
readerPair < pairReading

The reader has now changed pairs
and is accessing the same pair as the
writer, but has not yet indicated that
it has changed

106

Figure 6.4: Relationship Between the Control Variables

the recent history of the behaviour of the ACM. The transitions between
the states are labelled with the operations of the writer and reader that af-
fect the relationship between the variables (and therefore affect the history
of the ACM). The state where all of the variables are equal has arbitrarily
been chosen as the start state*. This relationship evolves as follows:

1. When the writer next executes the writerChoosesPair operation it
changes pair, and the value of the writerPair variable changes so that
it is no longer equal to the value recorded by readerPair.

2. At the next writerIndicatesPair operation, the writer changes the value
of pairWritten so that it is no longer equal to pairReading.

3. Once the writer has indicated it has changed pairs, the reader will
follow it to the new pair when it next executes readerChoosesPair. and
the value of readerPair will then no longer be equal to pairReading.

4. This situation will remain until the reader executes readerIndicatesPair,
when all of the variables will again be equal, and the cycle starts again.

The only location in the reader network where it is possible that readerPair #
pairReading, is after the reader has executed reader ChoosesPair (location
Ir1) and it has changed pairs, and has not yet executed readerIndicatesPair

41t would be equally valid to record the relationship between the pairWritten and
writerPair variables, rather than readerPair and writerPair.



6.3. Verifving L-Atomicity of the 4-slot Implementation 107

to indicate the change (only states 1. 2. and 3 from Figure 6.4 are accessible
in the other locations).

The most interesting assertion for the reader network is for location Ir3.
because the reader has acquired the slot to read, and the read operation (of
the actual data) can start at any time (nri = RD). It is in this location that it
is necessary to check that the reader is going to read acceptably fresh data®,
and that the writer does not interfere with it (the coherence proof above).
Together these properties guarantee atomicity. The assertion is described as
follows:

e The reader has already indicated the pair it is going to access so it is
possible to assert pairReading = reader.readerPair.

¢ The next part of the assertion is required to establish that the guar-
antee condition holds when a read takes place and relates the values
of the auxiliary variables. In most cases this states:
minFresh < mazFresh A indezRead < mazFresh A
indezRead > minFresh A lastInderRead < indezRead

If, however the reader and writer are accessing the same pair (readerPair
= writerPair), a write is in progress and the writer has indicated the

slot it is accessing (wisOccurred = true), and the reader subsequently

chose the slot it is going to access (resSince His = true). it is possible

for the reader to read the item that the writer has written during the

current write:

minFresh < newMazFresh A indezRead < neuwMazFresh A
indezRead > minFresh A lastIndezRead < indezRead

e It is also necessary to relate the value of minFresh to the index of an
item in one of the slots in the ACMN. There are two cases to consider:

1. It the reader and writer are accessing the same pair of slots. or
if the reader is accessing the opposite pair to the writer and the
writer has not yet completed the first write to the new pair {state
2 above), the first item that is available to be read is at least as
old as the last item fully released by the writer:

minFresh < slots(pairWritten, slot Written(pairViritten)).indez

2. The other case is where the reader and writer are accessing dif-
ferent pairs and the writer has completed the first write to its

SThere is an underlying assumption that the reader will receive a fair share of its
processor's resources: i.e. that it will not be held up for a long period of time when it
reaches this stage of its execution cvcle. so that it can complete the read.



6.3. Verifying L-Atomicity of the 4-slot Implementation 108

current pair. In this case the first item available to the reader is
at least as old as the last one written to the pair it is accessing:
(pairWritten = p0 = minFresh < slotWritten(p1).indez) A
(pair Written = pl = minFresh < slot Written(p0).indez)

The complete assertion is:
nri = RD = reader.readerPair = pairReading A
(pairReading = pairWritten A reader.readerPair = writer.writerPair A
reader.readerPair = pairReading =
(mwisOccurred =
minFresh < mazFresh A indezRead < mazFresh A
indezRead > minFresh A lastIndezRead < indecRead) A
(wisOccurred =
(—resSince Wis =
minFresh < mazFresh A indezRead < mazFresh A
indezRead > minFresh A lastIndezRead < indezRead) A
(resSince Wis =
minFresh < newMarFresh A indezRead < newMarFresh A
indezRead > minFresh A lastIndezRead < indezRead)) A
minFresh < slots(pair Written, slot Written(pair W ritten)).indez) A
(pairReading = pair Written A reader.readerPair # writer.writerPair A
reader.readerPair = pairReading =
minFresh < mazFresh A indezRead < mazFresh A
imndezRead > minFresh A lastIindezRead < indezRead A
minFresh < slots(pairWritten, slot Written(pair Written)).indez) A
(pairReading # pairWritten A reader.readerPair # writer. writerPair A
reader.readerPair = pairReading =
minkFresh < mazFresh A indezRead < mazFresh A
indexRead > minFresh A lastindezRead < indezRead A
(pairWritten = py = minFresh < slots(py, slotWritten(p,)).indez) A
(pairWritten = py = minFresh < slots(po. slot Written(py)).indez))

The assertions for the locations in the writer network are all very similar.
They relate the values of the writer local variables to the values of the control
variables, and keep track of the value of the mazFresh auxiliary variable. In
addition they encode the relationship between the indices of the items that
are currently in the 4 slots in the mechanism. For example that for location
lw3, when the writer is about to execute the writer/ndicatesSlot operation
is explained below:

1. The first three conjuncts relate to values of auxiliary variables: the pro-
gram counter nwi is equal to Wis; the auxiliary variable uisOccurred
is equal to false (since the writer has not yet indicated which slot it



6.3. Verifying L-Atomicity of the 4-slot Implementation 109

is accessing) ; and newMazFresh was incremented at the start of the
write so it is equal to mazFresh + 1:

nwi = WIS = -wisOccurred A mazFresh = nevAarFresh — 1

2. When the mechanism is in states 3 and 4 in Figure 6.4 the writer has
changed pairs and completed a write. by executing writerIndicate~Puar.
but the reader has not yet changed pairs and indicated that it has
changed. The pairWritten and pairReading control variables are there-
fore not equal and the writer local variable writerPair is equal to the
pair Written control variable:

pair Written # pairReading = pair Written = writer . writerPair

3. The item the writer has just written during the write operation is in
the slot pointed to by the writer local variables, and its index is equal
to newMazFresh. The item written during the last write is pointed to
by the control variables in the ACN and its index is equal to mazFresh:

mazFresh = slots(pairWritten, slot Vi ritten(pair Written)).indezx A
newMazFresh = slots(writer.writerPair. writer. writerSlot).indez

4. The remainder of the assertion relates the indices of the remaining
slots to the value of mazFresh. This encodes the order that the items
were written (this encoding is equivalent to the ordering of the itcmns
in the sequence in the abstract model). If the writer did not change
pairs at start write this is stated as:
writer.writerPair = pair Written =

(pairWritten = py = slots(py, so).index < mazFresh — 1 A
slots(py, s1).index < mazFresh — 1) A
(pair Written = p; = slots(po. s).index < marFresh — 1A
slots(pg. 1).index < mazFresh — 1)
If the writer did change pairs following holds:
(writer.writerPair # pairiiritten =
(slot Written(pair Written) = sy =
slots(pairWritten. s,).indez < mazFresh — 1) A
(slot Written(pair Written) = s; =
slots(pairWritten, sy).indez < mazFresh — 1) A
(writer.writerSlot = sy =
slots(writer.writerPair, s1).index < marFresh — 1A

(writer.writerSlot = s, =
slots(writer.writerPair. s).indez < mazFresh — 1))

Putting this together gives the complete assertion:



6.3. Verifying L-Atomicity of the 4-slot Implementation 110

nwt = wis = ~wisOccurred A mazFresh = newMazFresh — 1 A
(pairWritten # pairReading = pairWritten = writer.writerPair) A
writer.writerSlot # slotWritten(writer.writerPaz'r) A
mazFresh = slots(pair Written, slot Written(pairWritten)). indez ~
newMazFresh = slots(writer writerPair. writer.writerSlot).index A
(writer.writerPair = pairWritten =
(pairWritten = py = slots(py, s).indez < marFresh — 1 A
slots(py, s1).inder < mazFresh — 1) A
(pair Written = py = slots(py. sy).inder < marFresh — 1 A
slots(py, s1).inder < mazFresh — 1)) A
(writer.writerPair # pair Written =
(slotWritten(pair Written) = sy =
slots(pairWritten, s;).inder < mazFresh — DA
(slotWritten(pair Written) = s, =
slots(pair Written, so).index < mazFresh — 1) A
(writer. writerSlot = sy =
slots(writer writerPair, s,).index < marFresh — 1) A
(writer . writerSlot = s; =
slots(writer.writerPair, s).index < marFresh — 1))

<
<

The Freshness Proof Obligations

It is necessary to discharge identical proof obligations for each transition,
in order to verify that the AC\ maintains freshness of data, as were neces-
sary to verify it communicated coherent data between its reader and writer.
First to discharge the consistency proofs to show that the reader and writer
networks are inductive assertion networks. and that the reader and writer
do not interfere with each other; and then to show that the individual com-
ponents meet their guarantee conditions. Once again it is not necessary to
explicitly discharge the proof obligations required by the composition rule,
since the guarantee conditions of the components are identical to the guar-
antee condition of the ACMI, and the rely condition of the composed system
on its environment is Rely = id.

The proofs for the reader and writer networks are discharged in the same
manner as for the freshness proofs, although they are more complicated to
discharge. This is because it is necessary to use case distinctions to discharge
the proofs for the possible different states of the ACN. and the different pos-
sible values of the control variables. The required guarantee condition. which
is established directly by read_Assertion, and guarantees that the reader will
return a fresh item as the result of a read as described earlier, is:

nri = RD = minFresh < neuMazFresh A indezRead < newlMazFresh A



6.4. Identifying and Correcting Defects in a 3-slot ACM Implementation111

indezRead > minFresh A lastIndezRead < indexrRead.

Having shown how this proof method can be used to verifv the correct
operation of an ACM the next section shows how the method can be used to
identify and correct defects in an ACMI. using a 3-slot ACM implementation
as an example. The complete model described in this section is given in
Appendix H in the PV'S logic®. The proof of L-atomicity described in this
section was completed in the stvle described in [0OG76b.0OG76¢]. in the same
way as the proof of coherence given in Section 6.3, however in this case the
property verified is a guarantee condition of a complete read to the ACM.

6.4 Identifying and Correcting Defects in a
3-slot ACM Implementation

This section first briefly describes a proof that the 3-slot implementation
given in Chapter 3 does not guarantee coherence of the data items commu-
nicated, because it is possible for the reader and writer to access the same
slot in the mechanism at the same time. It then shows how the method
can be used to identify the sequence of actions that lead to this incorrect
behaviour.

The assertion networks for the reader and writer for the 3-slot implemen-
tation are given in Figure 6.5 and Figure 6.6, respectively.

firstReader m /—\
sR - HChoosesSl Irl derl Sl 2

.. L
—

Figure 6.5: Assertion Network for the Reader to the 3-slot

The complete model of this implementation. assertions for the locations
in the reader and writer assertion networks, and proof obligations are given
in Appendix I. The guarantee condition required for coherence is:

nwi = WR A nri = RD = readerSlot # writerSlot
where writerSlot is the slot the writer has acquired and readerSlot is the

5The interested reader can download the PVS theory. and proof scripts, from
http://homepages.cs.ncl.ac.uk/neil.henderson/fme2003/atomic.tgz.



6.4. Identifying and Correcting Defects in a 3-slot ACM Implementation112

firstWriter
Crocacss SR S
{ 5

sW

Figure 6.6: Assertion Network for the Writer to the 3-slot

slot the reader has acquired (slot Written is the control variable used by the
writer to indicate the last slot it accessed, and slotReading is the control
variable used by the reader to indicate the last slot it chose to access in this
model).

Using PVS, it is possible to identify a number of sets of witness values of
these variables for which it can be shown that the guarantee condition will
not hold when the readerIndicatesSlot operation is executed. For example:
nri = ris, nwi = WR, slot Written = s2, writerSlot = s1. readerSlot = s17.
It is possible to confirm that this satisfies the property that the reader and
writer access the same slot at the same time by proving the following con-
Jecture, instantiating ACM state in the existential quantifier with the ap-
propriate values as above:

3°G : Conc_State - pre_readerIndicatesSlot('a ) A
writerChoosesSlot_Asser“tz'on(JF) A write_Assertion('o )A

writerIndicatesSlot_Assertion(o) A readerIndicatesSlot ('@, o);
nwi = WR A nri = RD A reader.readerSlot = writer.writerSlot

The chain of events leading to this situation can be identified as follows:

1. It is already known that the last operation that was executed was
readerIndicatesSlot.

2. the writer is currently writing the data item, so the last write operation
must have been writerChoosesSlot.

3. The readerChoosesSlot operation, which occurred at the start of the
read, set readerSlot equal to slotWritten. Therefore at this stage
slot Written must also have been equal to s1, which means
readerChoosesSlot occurred before writerIndicatesSlot, which then set
slot Written to s2.

"This example is taken from [Sim90a].




6.5. Summary 113

4. The order of the operations must therefore have been
reader ChoosesSlot, writerIndicatesSlot. writerChoosesSlot,
readerIndicatesSlot.

Table 6.1 shows values of the variables at the different stages of the above
interleaving of actions of the reader and writer (the value of slotReuding i
not important until after readerIndicatesSlot has been executed)

slotWritten | slotReading [ writerSlot | readerslot
initial values sl s0 s2 -
readerChoosesSlot sl s0 s2 <1 |
writerIndicatesSlot s2 s0 s2 sl ‘}
writerChoosesSlot s2 s0 sl ‘ sl !
readerIndicatesSlot $2 sl s1 ! s1

Table 6.1: Incorrect Operation of the 3-slot ACM

The full model of the 3-slot, with details of the proof obligations is given
in Appendix I. A proofis also given that shows the implementation is correct
provided that a timing constraint, from [Sim90a], which ensures that the
above interleaving of actions of the reader and writer cannot occur. and a
proof of correctness for a revised 3-slot implementation from [XYIS02].

6.5 Summary

This work described in this chapter has shown that it is possible to verify
the correctness of asynchronous networks of processes using rely-guarantee,
even where the component processes give few or no guarantees about their
own behaviour. Rather the correctness of the composed system is a result
of the behaviour that emerges from the asynchronous operation of the com-
ponents, and in the particular example the individual components provide
guarantees that are equivalent to the guarantee condition required of the
complete system. The verification of correctness of the svstem described
requires proofs to be completed with respect to an infinite state space (an
unbounded number of reads can occur concurrently with a single write, and
vice versa). It may be possible to represent the 4-slot implementation as
a finite state model, since the number of buffers that can contain data is
finite, and the implementation can only contain four data items at any one
time. This may, however, require some form of data abstraction. or a means
to prove that particular states are equivalent (bi-similar), even though they
contain different values, from the data tvpe that is being communicated. in
the individual slots.
The advantages of the method are that:



6.5. Summary 114

1. It is not necessary to identify the entire state space of the svstem.

2. A reduced number of proofs need to be discharged than would be
required for an exhaustive proof of the entire state space.

3. It may be possible to use the rely-guarantee conditions that have been
shown to hold for the 4-slot in verifying properties of svstems where
the ACM is itself used as a component.

It may be easier to verifv the required properties hold of a system by
model checking, but the method described here provides much greater in-
sight into the behaviour of the system. The requirement to give assertions
about the behaviour of the reader and writer requires a greater understand-
ing of the behaviour of the system than may be gained from model check-
ing, and gaining this extra understanding mayv be considered to be worth
the extra effort associated with the method. For example discovering the
assertions for the locations in the reader and writer networks and discharg-
ing the proof obligations identified that the are different points at which
the reader can effectively acquire the item it is going to read. If the reader
accesses the opposite pair of slots to the writer the item is acquired when
readerChoosesPair is executed, because the writer cannot do anything to
interfere with the choice of slot in the chosen pair. If, however the reader
is accessing the same pair as the writer the slot acquired will depend on
the ordering of the readerChoosesSlot and writerIndicatesSlot operations.
Discharging the consistency proof obligations to show that the reader and
writer networks are inductive assertion networks can also help to identify
inconsistencies in the model, and increase confidence in the correctness of
the proofs. For example an inconsistency may make it impossible to verify
non-interference between the reader and writer.

The disadvantage of this method is that the individual proofs may be
more complex than the individual proofs for an exhaustive proof, but the
advantages above outweigh this disadvantage. It should be borne in mind
that this method is only applicable where state machines can be constructed
to represent the behaviour of the components, and sufficiently strong asser-
tions can be found to ensure that the guarantee condition of the system can
be met. In the case study described in this thesis the guarantee condition
was met by the individual components. although in general it may be met
by a composition of the guarantee conditions of those components.

It has also been demonstrated that the method can be used identify er-
roneous behaviour of incorrect specifications, in Section 6.4. using a 3-slot
implementation as a case study. Once the erroneous behaviour has been
identified it is may then be possible to identifv corrections to the specifi-
cation. Verifying the correctness of the revised specification may be made



6.5. Summary 115

easier by the understanding that has already been gained about the inter-
actions of the components.

The verification proofs described in this chapter hold for interleaved con-
current implementations, where the individual operations of the component
processes are atomic. The proofs may not hold for fully asvnchronous svs-
tems and in the case of the 4-slot it must be recognised that. in any imple-
mentation where the above atomicity assumption cannot be guaranteed to
hold, asynchronous accesses to control variables in the mechanism could re-
sult in an attempt to read one of those variables when it is being overwritten.
This could result in the reader of the variable not returning the value that
was written. In fact the value returned may not even be a valid one. It may
be possible to extend the models described in this chapter to verifv prop-
erties of the 4-slot implementation (and other fully asvnchronous systems)
when the above assumption is relaxed. but the assertions may be sicuifi-
cantly more complex, and the proofs mayv be daunting, if not intractable.
Chapter 7 shows how model checking can be used to prove properties of
fully asynchronous implementations of the 4-slot and a full comparison of
the relative advantages and disadvantages of the two methods is given in
Chapter 8.



Chapter 7

Model Checking Simpson’s
4-slot ACM

Chapters 5 and 6 have shown how a range of formal tools can be used to
explore the behaviour of asynchronous real-time svstems. Starting with an
abstract model of the required properties of the syvstem it is possible to gain
an understanding of its behaviour in an incremental manner and verify prop-
erties of the system as understanding improves. The rely-guarantee method.
described in Chapter 6. can be used to verify properties of implementations
where the actions of the individual components can interleave in an uncon-
strained manner i.e. those actions are Hoare atomic. Simpson's 4-slot uses
control variables to direct the reader and writer to different buffers. if they
access the ACM concurrently, so that the reader can read coherent fresh
data. However, it is possible for the reader and writer to access the same
control variable at the same time in fully asyvnchronous implementations.
and the reader may attempt to read the variable when it is changing value.
The control variables are single bits, but there is no guarantee that the
reader will return the value that is being written in these circumstances. It
is also possible that reading a control variable while its value is changing
will cause the reader to become metastable, in which case it may take an
arbitrarily long period of time to decide whether it has read a zero or a one.
Theoretically there is a very small probability that the reader of the control
variable will never decide on the precise value it has read.

This chapter describes joint work by the author, Paynter and Armstrong
to model the 1-slot. that recognises that the reader and writer can clash on
accesses to control variables]PHAO4]. The models. which are due to Payn-
ter, are in CSP, [Ros98], and this work has shown. using the FDR model
checker, [FSE96], that the ACM is L-atomic even when such clashes occur,
provided measures are taken to contain the effects of metastabilitv. The
chapter is organised as follows. Section 7.1 describes the fundamental prob-

116



7.1. Metastability 117

lem of metastability. Section 7.2 briefly introduces CSP! and the FDR model
checker and Section 7.3 describes an series of increasingly sophisticated mod-
els to describe the behaviour of the (single bit) control variables that are used
by the 4-slot implementation. Section 7.4 gives a CSP model of the {-slot
ACM implementation and Section 7.5 describes how the models have been
checked with FDR to show that the 4-slot is L-atomic. Section 7.6 briefly
introduces some recent work which has modelled the effects of metastabilitiv
on a number of other ACN implementations. and Section 7.7 describes the
conclusions from this work.

7.1 Metastability

Metastability is a fundamental problem of systems that have two or more
stable states, which respond to inputs that are connected inputs: that is
inputs that are either continuous in time (for example hardware latches).
continuous in value, or both. The state space of the svstem is divided into
stable states, regions of unstable states which must lead to stable states
and metastable states between the unstable states. The unstable region
(and hence stable state) which will be entered from a metastable state. and
the length of time that it takes to enter such a region is undetermined. It
has been shown, however, that the probability that a svstem remains in a
metastable state decreases exponentially with time, [\4n88, KBY02].

An important class of systems that can exhibit metastability are digital
electronic circuits that synchronise asynchronous inputs. [CM73. HECS9,.
The two binary states of the circuit are the stable states. but it is possi-
ble for the asynchronous input to a latch to occur arbitrarily close to the
synchronising (latching) clock pulse. causing the device to read a changing
input, which will not have a clear binary value. The synchroniser. or latch.
then enters a metastable state. where its value lingers indefinitely (poten-
tially infinitely) between the two valid. stable. states. It is possible for this
metastable value, while it is an invalid digital value, to induce metastability
on a circuit that reads it. and thus propagate metastability further through
the system. Note that metastability is not induced in the input (writing)
circuit.

A number of approaches can be adopted to minimise the effects of metasta-
bility in practice[Man88]. One solution, from [Cha87]. is to use a detector to
detect when a value read is metastable, and to pause the reader’s clock until
the value settles to a valid value. This requires the ability to stop a system’s
clock for an arbitrary length of time, so the system has to be able to cope

IThe interested reader may refer to [Ros98] for a more complete description of the
CSP language.



7.2. CSP and the FDR \odel Checker 11

with arbitrary pauses in its operation. This is not the same as causing the
system to skip clock cycles, because the end of metastability signal is itself
asynchronous, and could itself be the cause of further metastabilitv in the
system. In this solution the clock cycle. on resumption. may not be in phase
with its cycle prior to the clock being stopped.

A more common solution. and one that is adopted in many implementa-
tions is to accept that an asynchronous read of a value may cause the reader
to become metastable, and to ensure that the system waits for a period of
time after latching values before they are used. to allow the value to settle
to a binary one. A suitably long wait duration can ensure that the proba-
bility of using a metastable value is reduced as far as is needed. This is a
particularly practical solution where the reading processor is implemented
in software, because processor clock speeds are typically slow compared to
the time it takes for metastable values to settle to a stable state. In such
systems it is feasible to engineer circuits so that the expected mean time
between failure due to using a metastable value is vanishingly small?. and
insignificant compared to other sources of failure.

In fully asynchronous ACM implementations it is possible for the reader
and writer to access any of the control variables at the same time. Such
concurrent (clashing) accesses can lead to the reader returning a metastable
value, and one of the engineering solutions described above must be used to
reduce the possibility of this happening to an acceptably low probability.

This chapter describes models of the 1-slot: where the assumption about
the atomicity of actions has been removed: and which explore the different
behaviour of the ACM when metastability occurs, and different methods are
employed to contain the effects of metastability. Models that recognise the
reader and writer can clash on accesses to control variables, and take account
the methods that can be emploved to contain the effects of metastability,
have been produced using CSP. It has then been shown. using FDR. that the
d-slot is still L-atomic, and preserves coherence of data. even when metasta-
bility occurs. This work has also shown that. if the effects of metastability
and the different methods for its containment are not modelled correctly.
any results obtained from model checking may be suspect.

7.2 CSP and the FDR Model Checker

CSP is a process algebra, which can be used to specify the behaviour of
concurrent systems that are composed of a number of communicating pro-

2For example, it is claimed to be possible to design circuits which have a mean time
between failures due to metastability of 10204 or 10*20 years. [Gin03]. (The age of the
universe is thought to be in the order of 10'° years.)



7.3. Modelling Bit Control Variables 119

cesses. Each process is specified separately. for example a simple process
that carries out two actions, a followed by b, could be described as:

procl:a — b — STOP (7.1)

A second process that carries out an action ¢ and then synchronises with
procl on action b could be specified as

proc2:c — b — STOP (v2)

Specifying processes in this way only allows synchronous communication
between components, although the processes are otherwise asynchronous.
This limitation can be overcome by defining actions using start and end
events, thus it is possible to model concurrent accesses to communication
mechanisms by the component processes. The specification of a svstem
defines a set of traces of the actions of these component processes,

The FDR tool verifies properties of svstems. that are specified using
CSP, (the machine readable version of CSP), by analysing all of the possible
traces that are allowed by the CSP model. For example the tool is able to
verify that a model of an implementation is a refinement of a model of a
specification by verifying that their traces are equivalent (it may be necessary
to hide the internal actions of the implementation. so that both models only
execute equivalent visible actions).

7.3 Modelling Bit Control Variables

[PHA04] describes a series of increasingly sophisticated models of bit vari-
ables, in CSP, that model the effects of metastability and take account of
constraints that need to be observed in implementations to cope with it.
This section describes a selection of these models in detail and briefly intro-
duces the remainder of the models®. Full details of the CSP models from
[PHAO4] are given in Appendix J.

First the basic definitions are introduced and described below:

max_no_of_values = ...

data_values = {1..max_no_of_values}
datatype bit_values = b0 | bl | d
datatype slot_index = si | s2 | s12
datatype pair_index = p1l | p2 | pi2

3The models are given in CSP ;. the machine readable version of CSP,which is used
by the FDR tool.



7.3. Modelling Bit Control Variables

bs(b0) = 81 -- convert bit values to slot indices
bs(bl) = 82

bs(d) = s12

bp(b0) = p1 -- convert bit values to pair indices
bp(bl) = p2

bp(d) = p12

sb(s1l) = b0 -- convert slot indexes to bit values
sb(s2) = bl

sb(s12) = d

pb(pl) = b0 ~-- convert pair indexes to bit values
pb(p2) = b1

pb(p12) = d

toggle(b0) = bl -- toggle (invert) bit values
toggle(bl) = b0

toggle(d) = d

1.

maz_no_of _values defines the maximum number of different values
that can be communicated between the writer and reader in the model,
and this value needs to be kept reasonably small (2 or 3) in most cases
for model checking purposes. When model checking that data items
are read in the order they are written (a crucial property for atomic
ACMs), however, where the number of values may be more crucial,
this figure has been increased to 10 by Paynter.

A three valued data type called bit_values is used to model the possible
values that can be returned by a reader of the variable: the values 50
and bl represent the valid values, 0 and 1, and the third value d
represents the metastable (dithering) value that a reader may return
in some of the models if a read occurs concurrently with a write to the
variable.

The above bit_values are converted into pair indices and slot indices,
as appropriate, to index into the four slot mechanism, and there are
data values to represent the slot indices and pair indices. Once again
these have three values: s0 (p0) and s1 (pl) to represent the valid
values and s12 (p12) to represent the metastable value.

There are functions to convert between pair and slot indices and bit
values, and also a function to toggle the bit values* (the dithering value
is left unchanged by this function).

4This toggle function is used, for example, when the writer chooses the pair it is going
to write to at writerChoosesPair. It chooses to write to the opposite (toggle of the) pair
that the reader last indicated it is accessing.



7.3. Modelling Bit Control Variables 121

The following section introduces the various models of the bit variables.
and describes one of the models in detail.

7.3.1 Models of the BIT variables

The different models of the BIT variables are summarised as follows:

BITO: The basic model, which is of a Hoare atomic bit variable, to reflect
the assumption made in Chapter 6, that accesses to the control vari-
ables in the 4-slot are atomic. This model is included for completeness.

BIT1: is a type-safe Bit Variable.

BIT2: This model is a revised type-safe model, where the value recorded
by the bit variable does not flicker when it is being overwritten with
the same value. This means that a read that clashes with a write in
these circumstances returns the value being written.

BIT3: The previous models, BITO to BIT?2, fail to capture the behaviour
when metastability occurs in the reader of the bit variable, or to model
the measures that can be taken to contain the effects of metastabil-
ity. Chapiro’s solution, [Cha87], which was described in Section 7.1,
is captured by this model where a metastability detector is used to
delay the system clock until metastability is resolved. The model can
diverge, since there is a possibility that metastability will never be
resolved. The behaviour of this model is not, therefore, that of an
type-safe ACM, even though the value returned where metastability
does resolve itself is decided by internal non-determinism as in the
type-safe model (BIT1).

BIT4: The first to model the possible consequences of metastability. The
control variables an return an extra dithering value, d. This dithering
value can be used to model the situation where the reader and writer
of a control variable clash and the reader returns a metastable value,
which is then copied into a local variable. In this model, which is given
in full below, the reader can access the control variable any number of
times while it is being written.

BIT5: Digital circuits have maximum speeds at which they can be oper-
ated, because the components (latches) from which they are built have
minimum set up and hold times that must be observed, if they are to
operate within their specifications. In addition to the above restric-
tion, digital electronic circuit implementations of bit variables have
maximum switching (or propagation) times, which are much (orders



7.3. Modelling Bit Control Variables 122

of magnitude) shorter than the clock speeds of processor clocks. Taken
together the above timing constraints limit the number of times that a
reader can access a bit variable while it is switching value. The BIT5
model modifies the BIT4 process to reflect these timing constraints.

BIT6: This is a modification of BIT3, where the value recorded by the bit
variable can be disturbed when it is overwritten with the same value.
It is therefore possible for any read that clashes with a write to return
a valid value, or a dithering one.

BIT4 - A Bit Variable That Can Return Metastable Values

A realistic way of modelling the effects of metastability on the -slot imple-
mentation in CSP is to extend the alphabet of the sw and er channels of
the bit variables that are used to model the control variables with an extra
dithering value, d. This dithering value can be used to model the situation
where the reader and writer of a control variable clash and the reader re-
turns a metastable value, which is then copied into a local variable. The first
parameter of the BIT4 process. var_name, is used to instantiate instances
of the process with the names of the local variables that are being modelled.
and sw and ew, and sr and er, model the start and end of a write and start
and end of the read. respectively. to the variable.
The CSP model of the bit (control) variables is:

BIT4(var_name, val) =
var_name.SW?7x —>
(if x == val then BIT4_w_stable(var_name, val)
else BIT4_w(var_name, val, x))
[ var_name.sr -> BIT4_r(var_name, val)

BIT4 w(var_name, val, x) =
var_name.ew —-> BIT4(var_name, x) []
var_name.sr -> BIT4_wr(var_name, val, x)

BIT4_r(var_name, val) =
var_name.sw?’x ->
(if x == val then BIT4_wr_stable(var_name, val)
else BIT4_wr(var_name, val, x))
[] var_name.er!val -> BIT4(var_name, val)

BIT4 wr(var_name, val, X) =
var_name.ew —>
BIT4_r_clashed(var_name, x) []



7.3. Modelling Bit Control Variables 123

(var_name.er!b0 -> BIT4_w(var_name, val, x) |~|
var_name.er!bl -> BIT4_w(var_name, val, x) |~|
var_name.er!d -> BIT4_w(var_name, val, x))

BIT4_r_clashed(var_name, val) =
var_name.sw?x ->
BIT4_wr(var_name, val, x) []
(var_name.er!b0 -> BIT4(var_name, val) |~|
var_name.er!bl -> BIT4(var_name, val) |~|
var_name.er!d -> BIT4(var_name, val))

BIT4_w_stable(var_name, val) =
var_name.ew -> BIT4(var_name, val) []
var_name.sr -> BIT4_wr_stable(var_name, val)

BIT4_wr_stable(var_name, val) =
var_name.ew -> BIT4_r(var_name, val) []
var_name.er'!val -> BIT4_w_stable(var_name, val)

The introduction of metastability into the models of the bit variables
requires a change to the processes that use them. so that. if the reader of a
variable accesses it at the same time as the writer, and returns a metastable
value, this metastable value has the chance to settle to a stable one before
it is used. The approach that has been taken is to introduce an additional
process to model the local copy of the variable, and to model the measures
that can be taken to contain the effects of metastability. There are two
variants of this additional process, which are described in Section 7.3.2.

7.3.2 LB1 and LB2 - Local Copies of the Control Vari-
ables

The BITO to BIT3 models of bit variables above assume that the reader of
the bit variable will return a valid value as the result of a read. or. in the
case of the BIT3 model, the reader may never decide on the value returned
and so may diverge. A simple example reader process that reads a control
variable modelled by one of these processes. and uses the value returned
twice, could be modelled as:

READER1 = sr -> er?x -> usel(x) -> use2(x) -> READER1

where usel(x) and use2(x) are two arbitrary uses of the value.
The remaining models. BIT4 to BIT6, allow the reader of the variable
to return a metastable value, which may, but is not guaranteed to. decay to



7.3. Modelling Bit Control Variables 124

a stable value at some future time. The value returned must therefore be
given the opportunity to settle to such a stable value before it is used. The
approach that has been taken is to add a process to model the local copy of
the variable, and an example process makes use of the local variable could
be (in this and the remaining definitions the s¢t and get processes are used
to write values to and read values from the local variables. respectively):

READER? = sr -> er7x -> set!x -> get?x -> usel(x) -> get?x ->
use2(x) -> READER2

This process first reads the control variable and copies the value read
to the local variable (potentially this value can be the metastable value.
d). The value is then read back from the local variable on each occasion.
immediately before it is used, to allow the value to settle to a binary one,
should the original read return a metastable value. In general the reader
must re-read the local variable on each occasion. before its value is uscd. to
allow for any metastability to be resolved.

A CSP process to model the behaviour of the local variable could be:

LBi(val) = if val == d then
(LB1(b0) |~| LB1(b1) |~| (set?x -> LB1(x) []
get!val -> LB1(val)))
else (set?x -> LB1(x) [] get!val -> LB1(val))

This process allows the value of a local bit to be sef, and resolves metastable
values non-deterministically into binary ones each time they are read. This
model allows multiple reads of a variable while it is metastable, which is
theoretically possible (bearing in mind it is possible for metastable values
to take an infinite amount of time to resolve to binary ones), however. as
was stated in Section 7.1, it is possible to engineer digital circuits so that
the reader waits for a short period of time, before making use of any value
returned as the result of a read. This reduces the chance that a value will
still be metastable when it is used to a very small probabilityv. A model of a
local bit variable that is engineered in this way is:

LB2(val) = set?x -> (if x == d then LB2(b0) |~ | LB2(b1)
else LB2(x)) [] get!val -> LB2(val))

This process resolves metastable values to stable ones as they are set.
so that onlv stable values can be used by the reading process (subsequent
reads of the value from the local variable get the same non-deterministically
chosen value after it has been set to the metastable one (d))°.

SWhile this ignores the theoretical possibility that the metastable value will not have
settled to a stable one before it is used, the probability of this occurring is very small as

described in Section 7.1.



7.4. A CSP Model of the 4-slot 125

7.4 A CSP Model of the 4-slot

The CSP model of the 4-slot, is built on the unpublished model. due to
White [Whi01] and this section gives the definitions of the reader and writer
processes that use the local copies of the control variables. The processes
used in the remaining definitions model relate to the variables in the ACM
implementation given in Section 3.3 as follows:

1. reading is equivalent to pairReading.

2. latest is equivalent to pairWritten and not_pair_written is used to in-
dicate that the value needs to be toggled (negated) when it is saved to
the local variable.

3. LB _write_pair and LB _write_slot are equivalent to the local variables
writerPair and writerSlot respectively.

4. writers_slots represents the slotWritten array, and not_slot_written is
again used to indicate that the value needs to be negated before it is
saved to the local variable.

5. LB_read_pair and LB_read_slot represent the reader local variables
readerPair and readerSlot respectively.

Fourslot_Writer_LB =
start_write?val -> reading.sr ->
reading.er?not_pair_written —>
LB_write_pair.set!toggle(not_pair_written) ->
LB_write_pair.get?pair_written ->
writers_slots.bp(pair_written).sr ->
writers_slots.bp(pair_written).er?not_slot_written ->
LB_write_slot.set!toggle(not_slot_written) ->
LB_write_slot.get?slot_written ->
LB_write_pair.get?pair_written ->
start_write_slots -> slot_written_pair!bp(pair_written) ->
slot_written_slot!bs(slot_written) ->
slot_written_val!val ->
end_write_slots -> LB_write_pair.get?pair_written ->
LB_write_slot.get?slot_written ->
writers_slots.bp(pair_written).sw!slot_written ->
writers_slots.bp(pair_written).ew —->
LB_write_pair.get?pair_written ->
latest.sw!pair_written -> latest.ew -> end_write ->
Fourslot_Writer_LB



7.4. A CSP Model of the 4-slot 126

Writer_LB1 =
Fourslot_Writer LB [| {| LB_write_pair, LB_write_slot |} |]
the_writers_local_bitsl
\ {| LB_write_pair, LB_write_slot |}

Writer_LB2 =
Fourslot_Writer_LB [| {| LB_write_pair, LB_write_slot [} |]
the_writers_local_bits?2
\ {| LB_write_pair, LB_write_slot |}

Fourslot_Reader_LB =
start_read -> latest.sr -> latest.er?read_pair ->
LB_read_pair.set!read_pair -> LB_read_pair.get?read_pair ->
reading.sw!read_pair -> reading.ew ->
LB_read_pair.get?read_pair ->
writers_slots.bp(read_pair).sr ->
writers_slots.bp(read_pair).er?read_slot ->
LB_read_slot.set!read_slot -> LB_read_slot.get?read_slot ->
LB_read_pair.get?read_pair -> start_read_slots ->
read_slot_pair!bp(read_pair) ->
read_slot_slot!bs(read_slot) ->
read_slot_val?val —> end_read_slots -> end_read!val ->
Fourslot_Reader_LB

Reader_LB1 =
Fourslot_Reader_LB [| {| LB_read_pair, LB_read_slot |} 1]
the_readers_local_bitsli
\ {| LB_read_pair, LB_read_slot |}

Reader_LB2 =
Fourslot_Reader_LB [| {| LB_read_pair, LB_read_slot [} |]
the_readers_local_bits2
\ {| LB_read_pair, LB_read_slot |}

The definitions of the bp, bs and toggle functions were given in Sec-
tion 7.3. These definitions include the extra get events, that allow metastable
values to settle to stable ones, before each use of the value stored by the local
bit variables.

It should be noted that these models assume that the value being used to
access a slot will not change while the slot is being accessed. This assumption
may not hold in some implementations when a metastable value is being used



7.5. Model Checking the 4-slot ACM using CSP and FDR 127

to index into the slots. In some hardware implementations it is possible that
the reader (or writer) may interpret a metastable value as a one, and the
value may then settle to a zero while the reader (writer) is accessing the
slot. In such cases the reader (writer) may start to access one slot and then
change to another slot in the ACM during the read (write). This assumption
does not, however, effect the results of the analysis given in Section 7.5, since
the 4-slot fails all of the model checking tests when metastable values fail to
resolve before they are used.

7.5 Model Checking the 4-slot ACM using
CSP and FDR

The models of the 4-slot have been model checked for the following proper-
ties:

Data-coherence: by checking if the model refines an Incoherence-Spec,
which engages in a clash-bang event and stops if the reader and writer
access the same slot a the same time. These results were confirmed
by model checking against a semi-regular process (SemiRegularACM),
which records the complete set of values that have been written and
ensures that the reader only returns one of those values as the result
of a read.

Local Freshness: by checking the model against a specification of a reg-
ular ACM (RegACM). This specification creates a set which contains
the value written before a read starts and the values written while the
read is in progress: the reader then returns one of those values as the
result of a read.

L-atomicity: by checking that the model refines a monotonic-Spec which
writes a monotonically increasing sequence of values to the ACM and
produces a visible order-bang event if the reader reads the items out
of order. This combined with a check for local freshness is sufficient
to verify the model is L-atomic. Alternatively it is possible to check if
the ACM behaves like a Hoare-atomic variable with an asynchronous
writer and this specification is shown below. In the definitions that
follow wr_op and rd_op represent complete reads and writes of items
of data to the ACM.

H_Atomic_Var(var_name, val) =
var_name.wr_op?x -> H_Atomic_Var(var_name, x) []
var_name.rd_op!val -> H_Atomic_Var(var_name, val)



7.5. Model Checking the 4-slot ACM using CSP and FDR 128

Read = start_read -> pool.rd_op?val -> end_read!val -> Read
Write = start_write?val -> pool.wr_op!val -> end_write -> Write
H_Atomic_state = H_Atomic_Var(pool, 1)

LAtomicACM = (((Read ||| Write) [{ {I pool |} I]
H_Atomic_State) \ {| pool [})

The results of model checking the 4-slot against the above specifications
are given in Section 7.5.2.

7.5.1 Relationship Between the Specifications

Some validation of the specifications in this section has been achieved by
showing that SemiRegularACM is trace refined by RegACM, which in turn
is trace refined by LAtomicACM. In addition, by composing LAtomicACM
with a writer that writes a monotonically increasing sequence of values, and
a reader which fails if it does not read a weakly increasing monotonic set of
values: it has been shown that a specification is L-atomic, when its reader
does not fail.

7.5.2 Results and Analysis

This section presents the results of model-checking the various models of
Simpson’s 4-slot: a summary of the different models is given in Table 7.1,
and Table 7.2 summarises the results®.

The models have been checked for data-coherence by ensuring that they
did not refine the Incoherence_Spec and that they did refine the specification
of a semi-regular ACM. It can also be observed that the result of the check
for global freshness (against the H-atomic specification above - BIT0) agrees
with the conjunction of the checks for local freshness and sequencing, as
expected.

These results confirm the following for the 4-slot:

1. The results presented in Chapter 6, that the 4-slot is L-atomic in
implementations that guarantee that access to the control variables is
Hoare-atomic.

5The interested reader can download the PVS theory, and proof scripts, from
http://homepages.cs.ncl.ac.uk/neil.henderson/CSP/CSP.tgz.



7.5. Model Checking the 4-slot ACM using CSP and FDR 129
Table 7.1: The Descriptions of the Different Bit Models
Model Model Description

BITO H-atomic, mutually exclusive atomic access to each bit

BIT1 Type-safe. Allows arbitrary clashes. No model of
metastability.

BIT2 As BIT1, except remains stable when over-written with same
value

BIT3 As BIT?2, except metastability causes arbitrary clock
stretching

BIT4 LB1 | As BIT2, except has metastable values, which may be

re-read

BIT4 LB2 | As BIT4 LBI, except metastable values cannot be re-read
BIT5 LB1 | As BIT4 LBI, except timing constraints prevent multiple

clashes

BIT5 LB2 | As BIT4 LB2, except timing constraints prevent multiple

clashes

BIT6 LB1 | As BIT5 LB1, except flickers when over-written with same

value

BIT6 LB2 | As BIT5 LB2, except flickers when over-written with same

value

2. The ACM is not L-atomic if it is implemented with control variables

that behave in a type-safe manner (which was shown by Rushby in
[Rus02]).

. The ACM is L-atomic provided the value recorded by a bit variable
does not flicker if it is overwritten with the same value; that the reader
of a control variable executes sufficiently slowly to allow a metastable
value to resolve to a valid one before it is used, and it is only possible
for a read to clash with a single write. The BIT6 models show that
the 4-slot is not L-atomic if the values recorded by the control variable
flicker if overwritten with the same value. If this flickering behaviour
can occur the implementation needs to be changed so that the reader
and writer keep copies of the last values written to the control variables.
They can then compare the new value with the old one, and only write
the value to the control variable if it is different from the previous one.

It can be seen, from Table 7.2, that there are quite different results from

modelling the 4-slot in different ways: from those models that do not directly
model the effects of metastability to those that model realistic implementa-
tions and the engineering solutions that are used to mitigate its effects. The
4-slot will not preserve data-coherence if it is implemented in such a way




7.6. Further Work 130

Table 7.2: 4-Slot Coherence, Sequencing and Freshness Results

1987 4-Slot with | Data-Coherence | L-Regular | Sequencing | L-Atomic

all the control (Semi-Regular) (Local (Global
bits modelled as: Freshness) Freshness)
BITO (H-Atomic) Vv Vv Vv Vv
BIT1 (L-Safe) Vv X X X
BIT2 Vv Vv X X
BIT3 Vv Vv X x
BIT4 LB1 X X X X
BIT4 LB2 Vv Vv X X
BIT5 LB1 X X X X
BIT5 LB2 Vv Vv Vv Vv
BIT6 LB1 X X X X
BIT6 LB2 V4 X X X

that control variables can be re-read before a metastable value has resolved
to a stable one, but it does preserve data-coherence if it is implemented with
type-safe bit control variables. This seems to indicate that formal models of
ACMs that assume the bit control variables act in a type-safe manner may
incorrectly verify that those ACMs have certain properties, such as data
coherence. Some ACMSs that are assumed to be implemented with type-
safe control variables are described briefly in Section 7.6, and the results
described in this chapter may challenge some of the proofs of correctness of
these ACMs.

7.6 Further Work

Much academic literature (for example [HS94, HV96, Tro89] has assumed
that single bit ACMs are type-safe[Lam86b|, when they are implemented in
a fully asynchronous manner, even when metastability can occur. The work
described in this chapter indicates that this may be a dangerous assumption.
[HV01] describes a proof that shows it is impossible to realise a conflict-free
write-once L-atomic ACM from only 4 buffers and 4 type-safe control vari-
ables’. This result applies to the 4-slot, and [Rus02] establishes that it fails
to be L-atomic when implemented with 4 type-safe control bits. However,
with models of control bits that are arguably more realistic than the type-
safe model (because they take into account the effects of metastability and
measures to contain those effects), the 4-slot is L-atomic.

Further joint work by the author, Paynter and Armstrong [PHA035] mod-

"It is a pity that such an important result is unpublished.



7.6. Further Work 131

els the effects of metastability on a number of proposed ACM implementa-
tions. These implementations are more complex (and may be less efficient)
than the 4-slot and are:

1. Tromp’s Four Track ACM [Tro89)], which uses 12 safe bits to implement
its four control variables.

2. Tromp’s Efficient Four Track ACM [Tro89], which uses 8 single bit
control variables.

3. A l-reader 1-writer ACM from [HS94], which uses 4 control variables
like the 4-slot, but which writes the same item twice, to 2 different
buffers, in some circumstances. This implementation may be particu-
larly inefficient if a large data structure is being communicated.

4. An atomic ACM from [KKV87]. This particularly complex implemen-
tation uses three 13 valued and three 2 valued control variables, but
(if we have modelled it correctly) fails to be L-atomic unless access to
the control variables themselves are Hoare atomic.

It is not possible to conclude, from the results of this work, that one (cor-
rect) implementation is better than another in all circumstances. For exam-
ple the implementation from [HS94| uses fewer control variables than those
from [Tro89], but it is not a write-once implementation. The requirement to
sometimes write a large data structure twice may have unacceptable perfor-
mance implications. Simpson’s 4-slot also uses 4 control variables, but the
cost is that it is only L-atomic if the control variables can be implemented
in a particular manner. In the large class of implementations where this is
possible Simpson’s implementation will be correct and may be the most ef-
ficient. All of the implementations have difficulties where they are executed
so quickly that it is possible to re-read metastable values before they resolve
into binary ones. However, all of the implementations, apart from Simp-
son’s, exhibit a failure mode by which the use of a metastable value may
affect the control flow of the algorithm. In some implementations, where
Simpson’s algorithm may fail, the Efficient 4-track from [Tro89] is the most
efficient and most able to contain the effects metastability (of those consid-
ered). However, if the effects of metastability and the engineering solutions
to mitigate them, are not modelled correctly, it is possible that more ef-
ficient ACM implementations may be abandoned in favour of less efficient
ones, with more complex algorithms that are more difficult to verify to be
correct against their specification.



7.7. Summary 132

7.7 Summary

The results demonstrate that it is important to model the possible effects
of metastability carefully. In a single processor implementation of an ACM.
where the individual actions of the reader and writer will be executed Hoare-
atomically, the H-atomic variable (BIT0) may be an adequate model of all of
its possible behaviours (as may the model in Chapter 6). In hardware imple-
mentations, however, where the reader and writer are truly asynchronous,
and can clash on accessing control variables, metastability can occur when
such a variable is read when a new value is being written to it. In such
cases the effects of metastability, and any measures taken to contain them,
should be taken into account in the models. If an abstract model is used
that ignores metastability the results should be used with caution.

This chapter concludes the descriptions of the methods used to investi-
gate and verify properties of ACMs. This thesis has shown how it is possible
to verify properties of a complex asynchronous system, by starting with an
abstract model of the required properties and verifving that increasingly re-
alistic models of the implementation exhibit those required properties. In
this way it is possible to gain an understanding of the behaviour of the sys-
tem in an incremental manner, until sufficient confidence is gained in the
correctness of a particular implementation. The results in this chapter show
that it is very difficult to verify properties of fully asynchronous implemen-
tations. It is particularly important to ensure that the models of the system
correctly take account of possible interference between the processes in order
to be confident that the implementation will behave in the desired manner.
The next chapter discusses the results, and conclusions, of the work in more
detail.



Chapter 8

Conclusions

This thesis has described how it is possible to use formal models to explore
properties of asynchronous systems. The main objectives for this work were:
first, to reduce the amount of rework that is required in the later stages of
the development process; and second, to develop a theory of communication
mechanisms to be used with the RTN-SL to facilitate the analysis of end-
to-end timing properties of systems.

A range of tools has been used to verify that an ACM implementation
(Simpson’s 4-slot) is L-atomic. Starting with an abstract model of the re-
quired specification, increasingly realistic models of the implementation have
been built to its explore properties and better understand its behaviour. This
increased understanding may help to eliminate errors and ambiguities in the
specification and reduce the amount of rework that is required later in the
development process. This chapter discusses the merits and disadvantages
of the various tools. The work reported in this thesis may form the basis of
an incremental development process, which may be used to develop a theory
of (a wide range of) communication mechanisms.

The remainder of this chapter is organised as follows. First, Section 8.1
briefly reviews the results of attempts to use the taxonomy of ACMs from
Chapter 2 as the basis of a theory of communication mechanisms. Section 8.2
discusses the merits of the tools that have been used to verify the 4-slot is
L-atomic. Section 8.3 discusses the benefits of using a proof tool (PVS)
to assist with the verification process. Section 8.4 introduces related work.
Section 8.5 looks at possible future work, and Section 8.6 gives the final
conclusions.

8.1 A Taxonomy of ACMs

Initial attempts to define a theory of ACMs were based on a taxonomy of
ACMs. Lamport [Lam86b] introduces a taxonomy of ACMs and an ex-

133



8.2. Verifying Properties of an ACM Implementation 134

tended taxonomy was given in Chapter 2 that includes formal definitions
of additional useful types of ACM. The extended taxonomy includes for-
mal definitions of the required properties of ACMs, including coherence and
freshness.

The difficulty with using the taxonomy as the basis for a theory of com-
munication mechanisms is that it defines the behaviour of the mechanisms
in terms of complete reads and writes, and their behaviour when the reads
and writes overlap with each other. In ACM implementations, such as the
4-slot, there is a crucial point within a write when the item written is re-
leased, which can vary from write to write depending on the recent history
of interactions of the reader and writer of the ACM. Similarly there is a
crucial point within a read when the reader acquires the item to be read,
which is also dependent on the recent behaviour of the reader and writer.
In addition the read and write actions are themselves implemented by a
number of operations, and it is possible for an unbounded number of read
operations to occur between any two write operations, and vice versa. It
would be necessary to devise a set of proof rules to verify that the effect of
a sequence of operations that comprise a read (write) in the implementation
is equivalent to a read (write) in the definition despite interference from the
writer (reader). This would be a very difficult task bearing in mind the in-
dividual reader operations in the implementation may interfere with writer,
and vice versa. In order to define proof rules for the theory of communica-
tion mechanisms it was necessary to obtain a better understanding of the
behaviour of implementations of those mechanisms, where the components
can interfere with each other. As a first step a number of tools have been
used to gain an understanding of the behaviour of an ACM implementation,
Simpson’s 4-slot, as described in the next section.

8.2 Verifying Properties of an ACM Imple-
mentation

This section describes the tools that have been used in this thesis to verify
the correctness of an ACM implementation with respect to its specification.
First an abstract model of L-atomicity was given. This model was easy to
understand, and formally specified the required properties of the implemen-
tation. It was then possible to verify that the 4-slot implementation is a
refinement of this specification, using Nipkow’s retrieve rule, however this
required an unrealistic assumption about the atomicity of the actions of the
reader and writer of the ACM. In order to discharge the proof obligations
some of the actions of the reader and writer in the implementation need
to be combined into single actions, that are equivalent to the operations of



8.2. Verifying Properties of an ACM Implementation 135

the abstract model, which are assumed to be executed in a Hoare-atomic
manner. It is therefore recognised that this is not a full correctness proof
for the ACM, because these groups of actions are not atomic in actual im-
plementations of the 4-slot. A means of relaxing this atomicity assumption
was therefore required, and a rely-guarantee proof method for shared vari-
able concurrency was used for this purpose. This made it possible to verify
that the implementation is L-atomic where the individual actions of the
reader and writer are atomic, but can interleave in an unrestricted man-
ner. Finally Chapter 7 described some related work that verifies properties
of fully asynchronous implementations of the 4-slot, for example hardware
implementations, where these individual actions may not be atomic.

8.2.1 Applying Refinement to Verify Properties of Sys-
tems

Verifying a refinement relation between the 4-slot implementation and the
model of L-atomicity made it possible to explore some of the behaviours of
the implementation, and helped in gaining an increased understanding of
those behaviours. For example it identified that there are two points within
the writer algorithm when the item that is being written can be released
and made available to the reader. However, the notion of refinement requires
that it is possible to reason about the equivalence of an action in an abstract
model to an action (or sequence of actions) in a more concrete model of the
implementation. In the case of the 4-slot it would be necessary to verify that
a refinement relation exists when the action in the concrete model consists of
a number of sequential sub-actions. This would be very difficult, because the
individual sub-actions of the reader and writer either access control variables,
or read or write to one of the slots. A number of writer actions interfere with
the operation of the reader, and the readerIndicatesPair operation interferes
with the operation of the writer. In addition it is possible for an unbounded
number of writer actions to occur between any two reader actions, and vice
versa. It is, therefore difficult to reason about the effect of a sequence of
reader, or writer, sub-actions, and the equivalence of that effect to the result
of a single action in the abstract model.

An incremental method, that uses refinement in the early stages of de-
velopment, may make it possible to evaluate the risk of continuing with a
particular approach to the implementation earlier in the process using an ab-
stract model of the requirements, before incurring the cost of fully verifying
the correctness of the proposed implementation to its specification. How-
ever, in order to verify the correctness of actual implementations of fully
asynchronous systems, such as the 4-slot, where the individual operations
of the component processes can occur concurrently or interleave with each



8.2. Verifying Properties of an ACM Implementation 136

other in an unrestricted manner, it is necessary to reason about the potential
interference of the components with each other. This is not possible using
the current refinement rules, and requires the those rules to be extended to
make it possible to reason about the effects of such interference.

8.2.2 Applying a Rely-Guarantee Proof Method

Chapter 6 described how a rely-guarantee method for interleaved shared
variable concurrency, from [dR*01], can be used to verify that Simpson’s
4-slot ACM implementation is L-atomic when the atomicity assumptions
used in earlier models are relaxed. This method made it possible to verify
that the 4-slot implementation is L-atomic when the individual actions of
the reader and writer are themselves atomic, for example single processor
implementations.

The use of this method makes it necessary to identify assertions that can
be made in the different locations of the assertion networks of the compo-
nent processes. The effort that was required to discover the assertions was
outweighed by the advantages of the method. First, discharging the proof
obligations helped to identify errors and ambiguities in the model. Second,
it was possible to verify properties of infinite state space models using this
method. Third, the guarantee conditions that have been verified to hold for
the implementation can be used in compositional proofs of the correctness
of systems where the ACM is used as a component and its rely-conditions
hold.

In addition, discovering the assertions that hold in the locations of the
assertion networks for the components and discharging the proof obligations
helped in gaining a better understanding of the behaviour of the implemen-
tation. For example, it helped identify the different points in the interaction
of the reader and writer when the reader can effectively acquire the slot (and
therefore the item) it is going to return as the result of a read.

It may be possible to extend the models to verify properties of fully
asynchronous implementations, but this way may make the assertions sig-
nificantly more complex and the proofs may then be daunting, if not in-
tractable.

8.2.3 Model Checking Using CSP

Chapter 7 described some joint work, by the author, Paynter and Armstrong
[PHAO04], where an increasingly sophisticated set of models (due to Payn-
ter), in CSP, were used to model fully asynchronous implementations of the
4-slot. The advantage of using CSP is that it was possible to encode the
4-slot algorithm into the model and then adjust the behaviour of the control



8.3. Machine Assisted Formal Proofs 137

variables to take account of the effects of metastability and the engineering
solutions to contain its effects. However, while it is possible to make subtle
changes to the models to explore their properties, and a model checker will
provide a counter example if a property fails to exhibit a particular property,
less insight is gained when model checking a particular property succeeds.
While it may be possible to use a model checker more directly to verify
properties of systems, the increased understanding of the possible behaviour
of the system, gained from exploring properties of the earlier models, helped
to give increased confidence in the results of model checking those models.
Building an increased understanding of the behaviour of a system under de-
velopment may help to avoid the use of an inappropriate abstraction, and
give increased confidence in the correctness of any results obtained from ver-
ifying properties of the system using model checking techniques. In addition
it is only possible to model check finite state models: there is always a dan-
ger that an abstraction that is used to reduce an infinite state space model
to a finite state one will incorrectly hide the very behaviour that would make
the system violate the property that is being checked.

8.3 Machine Assisted Formal Proofs

The formal proofs described in this thesis were completed using PVS. The
use of a proof tool to verify properties of models was valuable for a number
of reasons. First, it helped to facilitate the use of an evolutionary process:
it was possible to verify properties of partial models, which included some of
the desired properties. These partial models could then be extended more
easily, and the existing partial proofs extended to verify properties of the
system as the models evolved, until finally the complete models were verified
to be correct. Second, the tool helped to identify any errors in the models,
for example when it was not possible to discharge a particular branch of the
proof. Section 6.4 briefly described how it was also possible to identify a
defect in a 3-slot ACM implementation in this way.

However, care needs to be exercised when using the decision procedures
of PVS. It is important to work out the expected tactics for discharging a
proof in advance. If a theory is discharged unexpectedly this may be due
to a typographic error which introduces a contradiction in the assumptions.
While it may be possible to discharge proof obligations more quickly by
using the more powerful decision procedures, it may then be more difficult
to identify such errors.



8.4. Related Work 138

8.4 Related Work

Communication often seems to be assumed to occur instantaneously when
modelling systems, for example in timing diagrams in UML [Dou98]. Little
evidence has been found of an attempt to define a theory of communica-
tion mechanisms that can be used to reason about the timing of different
communication mechanisms when specifying systems. While there are tools
available to model the timing of systems, for example Uppaal [LPY97] and
Kronos [Yov97], they have been used to verify properties of individual im-
plementations, for example [DY95], rather than to develop a theory of com-
munication mechanisms.

[Sim03] gives axiomatic formal definitions of the timing behaviour of a
- family of asynchronous and synchronous communication mechanisms using
a VDM-SL [ISO96] like notation combined with RTL [JM86,JMS88]. This
work makes a valuable contribution towards defining a theory of communi-
cation mechanisms. However it is based around crucial release and acquire
events rather than the compositional behaviour of the components of the
ACMs. It may be difficult to use the definitions directly to reason, in a
compositional manner, about the behaviour of larger systems that use the
mechanisms defined for communication between their components.

It is not common to take account of metastability when constructing
formal models of ACMs [KKV87] and in much of the related academic work
which explores implementations of L-atomic ACMs, for example [HVO01,
HS94, Tro89] it is assumed that single bit variables are type-safe. However,
Chapter 7 showed that a type-safeness may not be an adequate representa-
tion of the behaviour of control variables in ACMs.

[Sim92] describes a Role Modelling Method that can be used to explore
the behaviour, and verify properties, of ACM implementations. This method
applies roles to the slots in the ACM, for example to indicate which of the
slots is being read by the reader. The method then automatically explores
the state space of the implementation, but combines the states into equiva-
lent ones, based on the roles allocated to the slots and critical actions of the
reader and writer. This novel approach reduces the state space of the model,
and has been used to explore and verify properties of implementations. The
results need to be carefully analysed, but the method can be used to gain
a better understanding of the behaviour of implementations. [Sim92] uses
role modelling to analyse the possible faulty behaviour of the 3-slot imple-
mentation described in this thesis, and to identify the timing constraint that
is necessary to ensure fault free operation. [XC99] and [XC00] demonstrate
that Simpson’s roles can be encoded into Petri-net models as a means of
increasing confidence in the results obtained. The method does, however,
rely on an assumption about the behaviour of the reader of a control variable



8.5. Future Work 139

when a read clashes with a write: that the read will either return the value
in the control variable before or after the write.

Clark and Xia, [ClaOO,XiaOO], have also modelled the behaviour of the
4-slot in the presence of metastability using Petri-nets, and have shown the
ACM to be L-atomic. Their approach is to model the set up and hold times
and propagation delays (as in the BIT5_LB?2 model in Chapter 7), and the
results they report seem to agree with those shown in Table 7.2. In [Cla00]
it is stated that the 4-slot fails to maintain coherence and freshness when
the writer’s local copy of the pair it is going to access goes metastable. This
difference in the results may be because Clark was modelling a hardware
variant of the 4-slot, where this variable is used twice in the same instruction
to access a slot, immediately after a new value has been written to it. The
use of Petri-nets may be more suited to verifying properties of hardware
implementations, because there is tool support to derive a hardware design
directly from the model of the system.

[Bro99] uses Timed CSP to model the behaviour of the 4-slot, and de-
scribes 4 attempts to define freshness in terms of the beginning and end of
complete reads and writes to the mechanism. The 4-slot can fail to return
fresh data according to all of these definitions, but this failure is due to the
reader returning data that is too fresh i.e. the reader returns an item that
has been written but not fully released by the writer. It seems reasonable to
follow the conclusion of this work, that freshness was not adequately defined,
rather than conclude that the ACM does not exhibit the desired property.

8.5 Future Work

8.5.1 An Incremental Development Method

It may be possible to use the approach described in this thesis as the basis for
an incremental development method for a wider range of systems. The use
of a tool set rather than a single tool to exploit the relative strengths of par-
ticular tools may be advantageous, using a range of modelling techniques to
explore properties of the implementation. For example an iterative approach
that initially uses refinement to verify properties of an implementation to
an abstract model, and later uses model checking to verify correctness of a
fully asynchronous implementation. This may require the development of
proof rules to verify the equivalence of different models of the implemen-
tation. An incremental development method may assist in making a more
informed choice between competing implementations, or analysing the risk
in proceeding with a particular approach to the implementation, at an ear-
lier stage of the development process. Combining this iterative approach
with a hierarchical development process may make it possible to analyse the



8.5. Future Work 140

behaviour of an implementation and its component processes in increasing
detail until sufficient confidence is gained in the correctness of a particular
implementation to its specification.

8.5.2 Developing a Theory of Communication Mech-
anisms

The RTN-SL is currently being developed to allow the rigorous specification
of the functionality and timing constraints of computations in systems. A
theory of communication mechanisms is required, which can be used with
the RTN-SL to specify the complete behaviour of systems in a rigorous
manner. This theory will need to encompass a wide range of synchronous
and asynchronous mechanisms, for example the basic mechanisms described
in Section 1.1.2) and mechanisms that are implemented using networks of
components.

This thesis has described how a number of tools have been used to ver-
ify that a particular (small) ACM implementation, Simpson's 4-slot, is L-
atomic, however the development of a theory of communication leads to
a number of requirements. First, the notations will be required to reason
about the timing behaviour of the mechanisms. Second, a proof theory will
need to be developed to verify properties of those mechanisms. It is desir-
able that this proof theory should facilitate a compositional approach (for
example rely-guarantee [Jon83] or “Design by Contract” [Mey88]) to assist
with the verification, and upgrading of, systems where the mechanisms are
used as components.

8.5.3 Tool support

Any incremental process that is used for system development must be cost
effective: the extra cost of analysing properties of the system earlier in the
development cycle must be recovered by a reduction in the cost in the later
stages. Tool support for the process will help to achieve this goal. The tool(s)
should be capable of automatically translating the specification and design
of the system from a graphical design notation into the formal language(s)
that is (are) used to analyse properties of the system. It may be possible to
develop a set of tactics that can be used with a proof tool to automatically
discharge a proportion of the proof obligations. The ability to reason about
trade-offs in the design would also be beneficial. This may allow a choice
to be made earlier in the development process and avoid abandoning an
inappropriate design later in the development process. The utility and cost
effectiveness of any tool set would need to be measured, using an appropriate
case study.



8.6. Concluding Remarks 141

8.5.4 Atomicity Refinement

It was necessary to use an unrealistic assumption about the atomicity of the
actions of reader and writer in the 4-slot implementation. in order to verify
that the implementation is a refinement of the model of L-atomicity. It may
be possible to develop an “atomicity refinement” method verify a refinement
relation exists between two models when a single action is replaced with a
series of actions in implementations such as the 4-slot. where it is necessary
to reason about possible interference of actions of another process in the
system with the effect of the refined action.

8.5.5 Identifying and Verifying New Impossibility Re-
sults for ACM Implementations

Recent work [PHAO3] casts doubt on the validity of some current impos-
sibility results for atomic ACMs, since these results seem to be based on
an assumption that the control variables of the mechanisms behave in a
type-safe manner. It seems that new impossibility results need to be pro-
duced and verified based on more realistic definitions of the behaviour of
the components of the mechanisms. In order to derive these new results
it will be necessary to reason about the possible effects of metastability on
components, and the solutions that can be adopted to contain those effects.

8.5.6 Verifying Properties of Fully Asynchronous Sys-
tems Using Rely-Guarantee

The rely-guarantee approach in this thesis can be used to verify properties
of systems that communicate using shared variables, where the individual
actions of the components are atomic and can interleave in an unconstrained
manner. It may be possible to extend this approach to verify properties
of fully asynchronous systems. For example, by extending the assertion
networks to include start and end actions for the individual operations of
the components. It may then be possible to define assertions that hold in
the locations of the revised networks, and use the existing proof rules to
verify that the required rely-guarantee conditions still hold. This may make
it possible to verify properties of larger svstems than can currently be model
checked because of the large (potentially infinite) state space of the models.

8.6 Concluding Remarks

The contribution of the work in this thesis is that it demonstrates how it is
possible to verify the correctness of an asynchronous real-time svstem to its



8.6. Concluding Remarks 142

specification. Specifically the work:

1. demonstrates how a tool set can be used to gain an understanding of
the behaviour of the system in an incremental manner. Starting with
an abstract model of the required properties of the system and explor-

ing properties of increasingly detailed models of the implementation;
and

2. shows that it is possible to use a compositional rely-guarantee method
to verify properties of systems where the individual components give
few or no guarantees about their individual behaviour. It may then be
possible to use the rely-guarantee conditions that have been verified
to hold, to explore and verify properties of larger systems, where the
system is itself used as a component. Rely-conditions can also be used
to record assumptions about the system and its environment to ensure
that they are not overlooked in the later stages of development.

Developing a realistic model of an asynchronous system may be difficult
because its specification is complex, or because its components interact in
unexpected ways. This thesis has shown how the strengths of a range of tools
can be exploited to explore properties of an ACM implementation in an in-
cremental manner. This incremental approach may allow the developer of
a system to gain a better understanding of its behaviour by exploring prop-
erties of increasingly realistic models of its implementation, until sufficient
confidence is gained in the correctness of that implementation against the
specification. The extra effort that may be required in the earlier stages of
development may be recovered by helping to reduce costs in later stages of
the process due to errors and ambiguities in the specification.



Bibliography

[ABM9S]

[Acz83]

[AG92]

[Ash75]

[Bac89)

[BFL*94]

[BH952]

[BHO5b]

[Bic98]

[BP89a]

S. Angerholm, J. Bicarregui, and S. Maharaj. On the Verifi-
cation of VDM Specifications and Refinement with PVS. In
J.C. Bicarregui, editor, Proof in VDM: Case Studies, FACIT.
Springer, 1998.

- P. Aczel. On an inference rule for parallel composition. Un-

published letter to Cliff Jones, March 1983.

J.H. Anderson and M.G. Gouda. A criterion for atomicity.
Formal Aspects of Computing, 4(3):273-298, 1992.

E. A. Ashcroft. Proving assertions about parallel programs.
JCSS, 10:110-135, February 1975.

R.J. Back. Refining atomicity in parallel algorithms. In
PARLE Conference on Parallel Architectures and Languages
Europe. Springer-Verlag, June 1989.

J.C. Bicarregui, J.S. Fitzgerald, P.A. Lindsay, R. Moore, and
B. Ritchie. Proof in VDM: A Practitioner’s Guide. FACIT.
Springer-Verlag, 1994.

J.P. Bowen and M.G. Hinchey. Seven more myths of formal
methods. IEEE Software, 12(4):34-41, July 1995.

J.P. Bowen and M.G. Hinchey. Ten commandments of formal
methods. IEEE Computer, 28(4):56—63, April 1995.

J.C. Bicarregui, editor. Proof in VDM: Case Studies. FACIT.
Springer, 1998.

James E. Burns and Gary L. Peterson. The Ambiguity of
Choosing. In Proceedings of 8% Annual Symposium on Prin-
ciples of Distributed Computing (PODC’89), pages 145-157.
ACM Press, 1989.

143



BIBLIOGRAPHY 14

[BP89b)

[Bro99]

[ByW03]

[Cha87]

[Cla00]

[CM73)]

[CXYD98]

[Dij71]

[Dij76]

[Dou98]

[dR*01]

J.E. Burns and G.L. Peterson. The ambiguity of choosing.
In Proceedings of the 8th Annual Symposium on Principles of
Distributed Computing, pages 145-157. Association for Com-
puting Machinery, 1989.

P.J. Brooke. A Timed Semantics for a Hierarchical Design
Notation. PhD thesis, Department of Computer Science, Uni-
versity of York, April 1999.

R.J.R. Back and J. von Wright. Compositional action system
refinement. Formal Aspects of Computing, 15(2 and 3):103-
117, November 2003.

Daniel M. Chapiro. Reliable High-Speed Arbitration and Syn-
chronization. IEEE Transactions on Computers, 36(10):1231-
1255, October 1987.

1.G. Clark. A Unified Approach to the Study of Asynchronous
Communication Mechansims in Real- Time Systems. PhD the-
sis, London University, King’s College, May 2000.

Thomas J. Chaney and Charles E. Molnar. Anomalous Behav-
ior of Synchronizer and Arbitor Circuits. IFEE Transactions
on Computers, 22(4):421-422, April 1973.

1.G. Clark, F. Xia, A.V. Yakovlev, and A.C. Davis. Petri Net
Models of Latch Metastability. Electronic Letters, 34(7):635-
636, 1998.

E.W Dijkstra. Structured Programming, chapter 1. Academic
Press, 1971.

E.W. Dijkstra. A Discipline of programming. Prentice-Hall
International, 1976.

Bruce Powel Douglas. Real-Time UML: Developing Efficient
Objects for Embedded Systems. The Object Technology Series.
Addison-Wesley, 1998.

Willem-Paul de Roever et al. Concurrency Verification: In-
troduction to Compositional and Noncompositional Methods.
Number 54 in Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, 2001.



BIBLIOGRAPHY 145

[DY95]

[F1067]

[FSE96]

[FW96]

[FW97]

[Gin03]

[Hal90]

[HBY9)

[HECS89)

[Hen03]

C. Daws and S. Yovine. Two examples of verification of
multirate timed automata with kronos. In Proc. 16th IEEE

Real-Time Systems Symposium (RTSS’95), pages 66-75. IEEE
Comp.Soc. Press, December 1995.

R W Floyd. Assigning meanings to programs. In Proceedings
AMS Symposium Applied Mathematics, volume 19, pages 19—
31. American Mathematical Society, 1967.

Formal Systems (Europe) Ltd. Failures-Divergence Refine-
ment: The FDR 2.0 User Manual, August 1996.

S. Fowler and A.J. Wellings. Formal Analysis of a Real-Time
Kernel Specification. In Bengt Jonsson and Joachim Parrow,
editors, Proceedings of the 4** International Symposium on
Formal Techniques in Real-Time and Fault Tolerant Systems,

number 1135 in Lecture Notes in Computer Science. Springer,
1996.

S. Fowler and A.J. Wellings. Formal Development of a Real-
Time Kernel. In Proceedings of the 18" IEEE Real-Time Sys-
tems Symposium — San Francisco. IEEE, 1997.

Ran Ginosar. Fourteen Ways to Fool Your Synchronizer. In
Proceedings of ASYNC’03, pages 89-95, 2003.

Anthony Hall. Seven Myths of Formal Methods. IEEE Soft-
ware, 7(9):11-19, September 1990.

M.G. Hinchey and J.P. Bowen, editors. Industrial-Strength
Formal Methods in Practice. FACIT. Springer-Verlag, 1999.

Jens U. Horstmann, Hans W. Eichek, and Robert L. Coates.
Metastability Behaviour of CMOS ASIC Flip-Flops in Theory
and Test. IEEE Journal of Solid-State Circuits, 24(1):146-157.
February 1989.

N Henderson. Proving the correctness of Simpson's 4-
slot ACM using an assertional rely-guarantee method. In
K. Araki, S. Gnesi, and D. Mandrioli, editors, Proceedings
of the International Symposium of Formal Methods Europe,
FME2008: Formal Methods, number 2805 in LNCS. pages 244~
263. Springer-Verlag, September 2003.



BIBLIOGRAPHY 146

[Hoa69]

[Hoa72]

[Hoa74]

[Hoa85]

[HP02a]

[HPO2b]

[HS94]

[HV96)

[HV01]

[1SO96]

C.A.R. Hoare. An Axiomatic Basis for Computer Program-
ming. Communications of the ACM, 12(10):576-580 + p. 583,
1969.

C.AR. Hoare. Proof of correctness of data representation.
Acta Informatica, 1(4):271-281, 1972.

C.A.R. Hoare. Monitors: An Operating System Structuring
Concept. Communications of the ACM, 17(10):549-557, 1974.

C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

N. Henderson and S.E. Paynter. The Formal Classification
and Verification of Simpson’s 4-Slot Asynchronous Communi-
cation Mechanism. Technical Report CS/TR/756, Centre for
Software Reliability, Department of Computing, University of
Newecastle, January 2002.

N. Henderson and S.E. Paynter. The Formal Classification
and Verification of Simpson’s 4-Slot Asynchronous Communi-
cation Mechanism. In L.-H. Eriksson and P.A. Lindsay, edi-
tors, Proceedings of FME’02, number 2391 in Lecture Notes in
Computer Science, pages 350-369. Springer, 2002.

S. Haldar and P.S. Subramanian. Space-optimum conflict-free
construction of 1-writer 1-reader multivalued atomic variable.
In Proceedings of the Eighth International Workshop on Dis-
tributed Algorithms, volume 857 of Lecture Notes in Computing
Science, pages 116-129. Springer-Verlag, 1994.

S. Haldar and K. Vidyasankar. Space-optimal buffer-based
conflict-free constructions of 1-writer 1l-reader multivalued
atomic variables from safe bits. In Proceedings of 15th ACM
Symposium on the Principles of Distributed Computing. ACM,
1996.

S. Haldar and K. Vidyasankar. Space-Optimal Buffer-Based
Conflict-Free Construction of 1-Writer 1-Reader Multivalued
Atomic Variables from Safe Bits. Unpublished Paper, 2001.

ISO/IEC 13817-1. VDM Specification Language, International
Standard - Part 1: Base Language, December 1996.



BIBLIOGRAPHY 147

[JHJ89]

[JIM87]

[JLMSS]

[TM86]

[IM94]

[IMS88]

[Jon81]

[Jon83]

[Jon90]

[KBY02]

[KKV87]

Mark B. Josephs, C.A.R. Hoare, and He Jifeng. A Theory
of Asynchronous Processes. Technical Report PRG-TR-6-89,
Programming Research Group, Oxford University Computing
Laboratory, February 1989.

Joint IECCA and MUF Committee on MASCOT (JIMCOM).
The Official Handbook of MASCOT: Version 3.1 - Issue 1,
June 1987. Crown Copyright.

F. Jahanian, R. Lee, and A.K. Mok. Semantics of Modechart
in Real-Time Logic. In IEEE Proceedings of the 21 Annual
Hawaiian International Conference on System Science, 1988.

F. Jahanian and A.K. Mok. Safety Analysis of Timing Prop-
erties in Real-Time Systems. IEEE Transactions on Software
Engineering, 12(9):890-904, December 1986.

F. Jahanian and A.K. Mok. Modechart: A Specification Lan-
guage for Real-Time Systems. IEEE Transactions on Software
Engineering, 20(12):933-947, 1994.

F. Jahanian, A.K. Mok, and D.A. Stuart. Formal Specification
of Real-time Systems. Technical Report TR-88-23, Depart-
ment of Computer Science - University of Texas at Austin,
June 1988.

C.B. Jones. Development Methods for Computing Programs
Including a Notion of Interference. PhD thesis, Oxford Uni-
versity Computing Laboratory, 1981.

C B Jones. Specification and design of (parallel) algorithms.
Information Processing Letters, 9(83):321-331, 1983.

C.B. Jones. Systematic Software Development Using VDM:
Second Edition. Prentice-Hall International Series in Com-
puter Science, 1990.

David J. Kinniment, Alexandre Bystrov, and Alex V.
Yakovlev. Synchronization Circuit Performance. IEEE Jour-
nal of Solid-State Circuits, 37(2):202-209, 2002.

L.M. Kirousis, E. Kranakis, and P.M.B. Vitanyi. Atomic Mul-
tireader Register. In Proceedings of the Workshop on Dis-
tributed Algorithms, number 312 in Lecture Notes on Com-
puter Science, pages 278-296. Springer, 1987.



BIBLIOGRAPHY 148

[Kop90]

[Kop98]

[Lam86a]

[Lam86b]

[LFB96]

[LPY97]

[LR93a]

[LR93b]

[LR94]

[Mn88]

[Mey88]

H. Kopetz.  Software Engineer’s Reference Book, chap-
ter 56. Number 0-750-61040-9. Butterworth-Heinemann Lim-
ited, 1990.

H Kopetz. Real-time systems. Design principles for distributed
embedded applications. Kluwer Academic Publishers, 1998.

L. Lamport. On Interprocess Communication - Part 1: Basic
Formalism. Distributed Computing, 1:77-85, 1986.

L. Lamport. On Interprocess Communication - Part 2: Algo-
rithms. Distributed Computing, 1:86-101, 1986.

P.G. Larsen, J. Fitzgerald, and T. Brookes. Applying formal
specification in industry. IEEE Software, 13(7):48-56, May
1996.

K.G. Larsen, P. Pettersson, and Wang Yi. Uppaal in a nutshell.
Journal of Software Tools for Technology Transfer, 1(1-2):134-
152, 1997.

Patrick Lincoln and John Rushby. Formal verification of an al-
gorithm for interactive consistency under a hybrid fault model.
In Costas Courcoubetis, editor, Computer-Aided Verification,
CAYV 93, volume 697 of Lecture Notes in Computer Science,
pages 292-304, Elounda, Greece, June/July 1993. Springer-
Verlag.

Patrick Lincoln and John Rushby. A formally verifed algorithm
for interactive consistency under a hybrid fault model. In Fault
Tolerant Computing Symposium 23, pages 402-411, Toulouse,
France, June 1993. IEEE Computer Society.

Patrick Lincoln and John Rushby. Formal verification of an
interactive consistency algorithm for the Draper FTP archi-
tecture under a hybrid fault model. In COMPASS 94 (Pro-
ceedings of the Ninth Annual Conference on Computer Assur-
ance), pages 107-120, Gaithersburg, MD, June 1994. IEEE
Washington Section.

Reinhard Minner. Metastable States in Asynchronous Digital
Systems: Avoidable or Unavoidable? Microelectronic Reliabil-
ity, 28(2):295-307, 1988.

Bertand Meyer. Object-Oriented Software Construction.
Prentice-Hall International Series in Computer Science, 1988.



BIBLIOGRAPHY 149

[MoD83]

[MoD91]

[MP93]

[MSJ96]

[Nip86]

[Nip87]

[OGT76a]

[0G76b]

[OGT6¢]

[OSRSC99a]

[OSRSC99b)

[PAHOO]

Ministry of Defence. Modular Approach to Software Construc-
tion, Operation, and Test - MASCOT, 1985. Defence Standard
00-17.

Ministry of Defence —~ Sea Systems Controllerate. Requirements
for Software for use with Digital Processors, 1991. Naval En-
gineering Standard NES 620 - Issue 4.

Z. Manna and A. Pnueli. Models of Reactivity. Acta Infor-
matica, 30(7):609-678, 1993.

AK. Mok, D.A. Stuart, and F. Jahanian. Specification and
Analysis of Real-Time Systems: Modechart Language and
Toolset. In C. Heitmeyer and D. Mandrioli, editors, Formal
Methods for Real- Time Computing, volume 5 of Trends in Soft-
ware, chapter 2, pages 33-53. Wiley, 1996.

T. Nipkow. Non-Deterministic Data Types: Models and Im-
plementations. Acta Informatica, 22:629-661, 1986.

T. Nipkow. Behavioural Implementation Concepts for Nonde-
terministic Data Types. PhD thesis, University of Manchester,
May 1987.

S. Owicki and D. Gries. An axiomatic proof technique for
parallel programs. Acte Informatica, 6:319-340, 1976.

S. Owicki and D. Gries. Verifying properites of parallel pro-
grams: An axiomatic approach. Communications of the ACM,
19(5):279-285, May 1976.

Susan Owicki and David Gries. An Axiomatic Proof Technique
for Parallel Programs. Acta Informatica, 6:319-340, 1976.

S. Owre, N. Shanker, J.M. Rushby, and D.W.J. Stringer-
Calvert. PVS Language: Version 2.3. Technical report, Com-
puter Science Laboratory - SRI International, September 1999.

S. Owre, N. Shanker, J.M. Rushby, and D.W.J. Stringer-
Calvert. PVS System Guide: Version 2.3. Technical report,
Computer Science Laboratory - SRI International, September
1999.

S.E. Paynter, J.M. Armstrong, and J. Haveman. ADL: An Ac-
tivity Description Language for Real-Time Networks. Formal
Aspects of Computing, 12(2):120-144, 2000.



BIBLIOGRAPHY 150

[Pay01]

[Pay02]

[Per99]

[Pet83)]

[PHAO4]

[PHAO05]

[RLKL93]

[Ros98]

[Rus02]

[Sim86]

[Sim90a)]

S.E. Paynter. Real-Time Logic Revisited. In José Nuno
Oliveira and Pamela Zave, editors, Proceedings of the Inter-
national Symposium of Formal Methods Europe 2001: Formal
Methods for Increasing Software Productivity, number 2021 in

Lecture Notes in Computer Science, pages 300-317. Springer,
2001.

S.E. Paynter. RTN-SL: The Real-Time Network Specification
Language. Technical Report DR 20656, MBDA UK, March
2002. Issue 2.

C Perrow. Normal Accidents. Princeton University Press,
1999.

G.L. Peterson. Concurrent reading while writing. ACM Trans-
actions on Programming Languages and Systems, 5(1):46-53,
January 1983.

S.E. Paynter, N. Henderson, and J.M. Armstrong. Ramifica-
tions of metastability in bit variables explored via simpson’s
4-slot mechanism. Formal Aspects of Computing, 16(4):332-
351, November 2004.

S.E. Paynter, N. Henderson, and J.M. Armstrong. Metastabil-
ity in Asynchronous Wait-Free Protocols. Accepted subject to
revision by IEEE Transactions on Computers, 7(7):7-7, 2003.

B. Randell, J-C. Laprie, H. Kopetz, and B. Littlewood, editors.
Predictably Dependable Computer Systems. Springer-Verlag,
1995.

A W. Roscoe. The Theory and Practice of Concurrency. Pren-
tice Hall Series in Computer Science, 1998.

John Rushby. Model-Checking Simpson’s Four-Slot Fully Asy-
chronous Communication Mechanism. Technical Report Is-
sued, Computer Science Laboratory — SRI International, July
2002.

H.R. Simpson. The MASCOT Method. Software Engineering
Journal, 1(3):103-120, 1986. '

H.R. Simpson. Four-Slot Fully Asynchronous Communication
Mechanism. IEE Proceedings, 137 Part E(1):17-30, January
1990.



BIBLIOGRAPHY 151

[Sim90b]

[Sim90c]

[Sim92]

[Sim94]

[Sim96]

[Sim97]

[Sim03]

[Sim04]

[Tro89)

[Whi01]

[Wir71]

H.R. Simpson. Integrity Aspects of Real-Time Networks. In
Proceedings of the IEE Colloguium on MASCOT and Related
Issues, 1990.

H.R. Simpson. MASCOT Real-Time Networks in Distributed
System Design. In Proceedings of the IEE Colloguium on MAS-
COT and Related Issues, 1990.

H R Simpson. Correctness analysis for class of asynchronous
communication mechanisms. JEE Proceedings-E. 139(1):35-49,
January 1992.

H.R. Simpson. Architecture for Computer Based Systems. In
IEEE Workshop on the Engineering of Computer Based Sys-
tems, Stockholm, May 1994.

H.R. Simpson. Layered Architecture(s): Principles and Prac-
tice in Concurrent and Distributed Systems. In Proceedings of
the 8% IEEE Symposium on Parallel and Distributed Process-
ing, 1996.

H.R. Simpson. New Algorithms for Asynchronous Communi-
cation. IEE Proceedings of Computers and Digital Techniques,
144(4):227-231, July 1997.

H.R. Simpson. Protocols for Process Interaction. IEE Proceed-
ings on Computers and Digital Techniques, 150(3):157-182,
May 2003.

H.R. Simpson. Freshness Specification for a Class of Asyn-
chronous Communication Mechanisms. IEE Proceedings of
Computers and Digital Techniques, 151(2):110-118, March
2004.

J. Tromp. How to construct an atomic variable. In Proceed-
ings of the Third International Workshop on Distributed Al-
gorithms, number 392 in Lecture Notes in Computer Science,
pages 292-302. Springer-Verlag, 1989.

R.G. White. ASRAAM: Software Requirements and Design,
Specification and Test Strategy for the EPU Infrastructure
Software (New EPU). Technical Report DL 21025, Matra BAe

Dynamics, 2001.

Nicklaus Wirth. Program Development by Stepwise Refine-
ment. Communications of the ACM, 14(4):221-227, 1971.



BIBLIOGRAPHY 152

[XC99]

[XC00]

[Xia00]
[XYIS02]

[Yov97]

F. Xia and I. Clark. Complementing the Role Model Method
With Petri-Net Techniques in Studying Issues of Data Fresh-
ness of the Four-Slot Mechanism. Technical Report CS-TR-
654, Department of Computer Science — University of Newcas-
tle, January 1999.

F. Xia and 1. Clark. Complementing the Role Model Method
With Petri Net Techniques in Studying Issues of Data Fresh-
ness of the Four-Slot Mechanism. In Hardware Design and
Petri-Nets, pages 33-50. Kluwer Academic Publishers, 2000.

Fei Xia. Supporting the MASCOT Method with Petri Net Tech-
niques for Real-Time Systems Development. PhD thesis, Lon-
don University, King’s College, January 2000.

F. Xia, A.V. Yakovlev, 1.G.Clark, and D. Shang. Data commu-
nication in systems with heterogeneous timing. IEEE Micro,
22(6), Nov-Dec 2002.

S. Yovine. KRONOS: A verification tool for real time sys-
tems. International Journal of Software Tools for Technology
Transfer, 1(1 + 2):123-133, December 1997.



Appendix A

Translating from VDM-SL to
the PVS Logic

The models in Chapters 2 to 6 of this thesis are given using a \'DM-SL-like
syntax. This appendix describes how the models have been translated into
the PVS logic, using the encoding of \'D)-SL operations from [ABM98].
Many of the translations are straightforward: for example a predicate using
the universal quantifier:

Va:Ty;b: Ty P(a,b) (A1)

becomes

V(a: Ty, b:Tp): P(a,b) (A.2)

Predicates defined using the existential quantifier are translated into P\'S
in a similar manner.

The remainder of this appendix illustrates how to translate from the
VDM-SL like notation used in the body of this thesis to the PVS logic used
to define the models in the rest of the appendices, using examples from the
models.

The translation of enumeration tvpes from VDM-SL to the PV'S logic is
straightforward. For example an enumeration type to represent the names
of the two pairs in the model of Simpson’s i-slot in VVDAI-SL is:

PairInder = p0 | p1;

which is given in the PV'S logic as:

Pairlndex: TYPE = {po, p1}

The following basic \'DM record:

133



154

ACM :: baseType : Value-set
valid Type : Value-set

content : Time — Value
inv mk-ACM (bT,vT,c) & (vT € bT) A (mg c € bT):

is translated to a record type in the PVS logic as follows:

ACM: NONEMPTY_TYPE =

[# base_type: A_Type,
valid.type: {t: A.Type | V (v: Value): (v €t) = (v € base_type)},
content: {f: [Time — Value] | V (£: Time): (f(t) € base_type)} #]

where the beginning and end of the PVS record types are denoted by [# and
#] respectively in the definition(a state model in VDM can be translated
into a PVS TYPE in a similar manner). Instances of records are enclosed
in (#and#) when they are introduced. The individual fields of the record
in the PVS logic can be accessed in a similar manner to the field selector in
VDM, for example given acm: ACM it is possible to access its base type using
acm‘base Type instead of acm.baseType. In the above example the invariant
in the VDM model is encoded directly in the definitions of the types of the
components of the record in the PVS equivalent. For example the first part
of the invariant in the record is vT € bT, which states that all of the items
in the valid type must also be in the base type. This is translated into the
PVS logic using a sub-type definition:

valid_type: {t: A_Type | V (v: Value): (v €t) = (v € base.type)}.

Here the valid type is a set, composed of elements of type A_Type, which is
defined separately, where all of the elements of the set are also in the base
type set.

A further example of an invariant in VDM being encoded using a sub-
type in the PVS logic, is from the abstract model of L-atomicity, where the
sequence of values must always have a length of at least 1, which is given in
the PVS logic as:

Val_Sequence: TYPE = {fin.seq: finite_sequence[Data] | fin_seq‘length > 1}

In some cases the invariant in the VDM model is encoded in functions
which are called in the sub-type definition in PVS:

Persistent _ACM :: b_acm : Basic_ ACM

inv mk-Persistent_ACM (acm) &
write_val_prop2(acm) A persistent_acml{acm) A
persistent_acm2(acm) A persistent_acm3(acm);

which is given in the PVS logic (again using a sub-type definition) as:



155

Persistent_ ACM: TYPE = {acm: Basicc ACM | write.val prop2(acm) A persistent_acml(acm) A
persistent_acm2(acm) A persistent_acm3(acm)}

The functions are defined separately, for example the following VV'DM-SL-like
definition:

write_val_prop2 : Basicc ACM — B

write.val_prop2 (a) &
let w = a.writer,
acm = a.acm in
Vi: Occ;v: Value; t;, tp : Time -
communicates(w, i, t, t, v, acm) =
acm.content(ty) = v;

translates directly into the PVS logic, except that the writer and the
ACM need to be introduced into the VDM function using a let statement,
whereas in the PVS logic this is not necessary. This is because the PVS
basic_ACM is defined as a sub-type of type ACM, whereas in the VDM it is
defined as a record type which has a field of type ACM and a field of type
Writer:

write_val_prop2(acm: Basic ACM): bool =
V (w: W_Action, i: Occ, v: Value, #;, t2:

Time): communicates(w, i, 4, &, v, acm) =
acm‘content(f) = v

Explicit VDM functions are translated directly into the PVS logic in a
similar manner to the above.

Implicit functions cannot be translated directly into the PVS logic, for
example given the following type:

state Conc_State of
pairWritten : PairIndez
slotWritten : PairIndez - SlotIndez
pairReading : PairIndez
slots : PairIndez x SlotIndez — Data
nri : NextReadInstruction
nwi : Next WriteInstruction
writer : WriterState
reader : ReaderState



156

init s & s = mk-Conc_State (p0, p0 = s0,p1 -5 50, p1,
{(»0, 50) > mk-Data (1, mk-token ("tnitVal")).
(0, 81) > nil, (p1, s0) > nil,
(p1,81) > nil}, nri = rep, nwi = wep,
mk- WriterState (p0, s0),
mk- ReaderState (p1, s1))
end

the following function

readerIndicatesPair ()
ext wr nri : nertReadInstruction
wr pairReading : PairIndez
rd reader.readerPair : PairIndez

pre nri = rip

L
post n7i = rcs A pairReading = reader.readerPair;

is translated into the PVS logic as:
pre_readerindicatesPair(p: Conc_State): bool = p‘nri = rip

post_readerlndicatesPair(p: (pre_readerlndicatesPair)) (prot: Conc.State): bool =
prot = p WITH [nri := rcs, pairReading := p°‘reader‘readerPair]

readerIndicatesPair: [p: (pre.readerlndicatesPair) — (post_readerindicatesPair(p))]

The VDM-SL pre-condition is translated into a predicate on the ar-
guments of the implicit function, and the postcondition is a binary re-
lation on an item which satisfies the pre-condition and the result of the
implicit function. The function itself is defined as an uninterpreted con-
stant using a FUNCTION type, which given an argument p that satis-
fies the pre-condition, returns a result that is related to p by the post-
condition. In the above post-condition the statement prot = p WITH
[nri: = rcs, pairReading: = p‘reader‘readerPair] returns a new state, prot,
which is the concrete state passed in as a parameter, p, with the nri field
modified to ris and the pairReading field modified to be equal to the value
of the readerPair local variable of the reader in p (the hooked value of
reader.readerPair in the VDM-SL-like definition).

The abstract model of L-atomicity uses the following function to append
a new item, when it is written, to the head of the sequence of values:

(seq: ValSequenceU {d: Data}): Val_Sequence =
(# length := 1, seq := (A -(z: below[l]): d) #)oseq

This function first creates a new sequence, with the new item, of length 1:



(¢ length := 1, seq := (A -(x: below[1]): 4) &)

and then uses the function o from the finite sequences type in the PV'S
library to concatenate the new sequence to the head of the existing one.

The Conc_State type given above can be initialised in P\'S using the
following function (which assigns initial values to each of the components,
where the reader and writer components have similar initialisation functions
defined to create the values 7 and w respectively):

init_prot(p: Conc_State, init_val: Val, w: WriterState, r: ReaderState): bool =
LET w = w WITH [writerPair := pg, writerSlot := s0],
r = r WITH [readerPair := p;, readerSlot := 3,1

IN p = p WITH [pairWritten := po,
slotWritten := (A . (pp: Pairlndex): sp),
pairReading := p;,
slots := (A -(po: Pairlndex, sg: Slotlndex): init_val),
ori := rcp, owi := wcp, writer := w, reader := r]

Here the lambda functions are used to assign values to some of the vari-

ables, for example:
slotWritten := (A - (po: Pairlndex): 3g9)

assigns the value sy to slotWritten(po).

The assertions in the various models are also translated into the PVS
logic using lambda functions. For example the assertion from the location
in the abstract model of L-atomicity, where the reader and writer are not
accessing the mechanism is given in VDM-SL as:

noReader writer _Assertion &

indezRead < nextInder -len vals A
firstIinder < neztIndez-len vals A
vals(1).indez = neztindez-1);

which translates in the PVS logic to (the last conjunct in the following
assertion is actually part of the invariant in the VDM-like definitions in
Chapter 4):
noReader_.noWriter_Assertion: [Abs_State — bool] =
(A - (abs: Abs_State):
abs‘indexRead < abs‘nextlndex-abs‘vals‘length A
abs‘firstIndexAvailable < abs‘nextlndex-abs‘vals‘length A
abs‘vals(0) ‘index = abs‘nextindex-1 A
(V¥ (n: nat): n < abs‘vals‘length A n > 0 =
abs‘vals(n) ‘index = abs‘nextlndex-(n + 1))
Here the values are all fields of the Abs_State passed into the lambda func-
tion as a parameter, called abs, and so are accessed using the field selector
(e.g.abs‘indezRead). The length of the sequence is also a field of the finite
sequence vals in the PVS record and so the field selector is used to access it
(i.e.abs‘vals‘length), whereas the len operator is used to access the length of
a sequence in VDM. The use of the lambda functions makes it possible to use

the name of the assertion when defining the proof obligation, for example:



158

vc_noReader_noWriter_start_read: THEOREM
V (asl, as2: Abs._State):
prestart_read(asl) A
— asl‘writerAccess A noReader_noWriter_Assertion(asl) A as2 = start_read(asl) =
as2‘readerAccess A
— as2‘writerAccess A reader.noWriter_Assertion (as2)

The assertion can then be expanded in line when discharging the proof.

Mappings in PVS are simply defined as functions so the VDM type
Time = Value translates to [Time- > Value] and given a mapping, m,
and a time, t: Time, it is possible to obtain the relevant item from the range
using m(t). This is advantageous when the domain of the mapping is a
composite value, for example the slots in the model of the 4-slot are accessed
using a pairindez and a slotInder the mapping is defined in PVS as:

slots: [Pairlndex, Slotlndex — Val]

and it is possible to call the mapping using slots(p;, ).

A finite sets type is provided in the PVS library, and is defined as a sub
type of the set type, where sets are represented as predicates. The usual
operators are available, but are defined as prefiz operations. For example to
test whether z is a member of set a it is necessary to writer member(z, a).

The PVS models also use a pre-defined finite sequences type, and use a
number of the pre-defined functions, for example: to the following shortens
a sequence to contain only the head item, or the first two items respectively

vals := p‘vals ~ (0, 0)

vals :

I

pivals © (0, 1)

A function is defined that adds an item (newltem) to the head of the se-
quence (called vals) - see Appendix E for the full definition of this function.

vals := (vals U {newltem})



Appendix B

An embedding of RTL in the
PVS Logic

This appendix gives the shallow embedding of Real-time Logic (RTL) [JMSG.
JMS88], due to Paynter, in the P\'S logic that has been used in the model
of the extended taxonomy of ACMs in Chapter 2.

The definition is declared as a theory (and can then be used in other
definitions using an IMPORT command (e.g. INPORTING RTL).

RTL: THEORY
BEGIN

Type definitions. A non-empty tvpe of events, time (which is represented
by real number, occurrences which are of type natural number. actions and
states, which are non-empty types. The use of non-empty types is necessary
to prevent a Type Correctness Condition (TCC) proof obligation being gen-
erated by PVS to verify that an element of the type exists (effectively the
non-empty type definition is makes it an axiom of the model that elements
of the type exist).

Event: NONEMPTY_TYPE
Time: TYPE = real
Occ: TYPE = nat

Action: NONEMPTY_TYPE

State: NONEMPTY_TYPE
The RTL Theta (total) relation (from [JMS88]), which takes an event, an
occurrence number and a time and returns a boolean. the value of which
depends on whether the particular occurrence of the event occurred at the
particular time.

th: [Event, Occ, Time — booll

159



RTL 160

Definition of psi: a relation which returns a boolean depending on whether
a particular event occurred at a particular time.

9: [Event, Time — bool]
Functions for returning the events relating to entering and leaving states
and start and stop actions of events.

enter, leave: [State — Event]

start, stop: [Action — Event]
A function for composing two sequential actions into a single (composite)
action.

compose: [Action, Action — Action]

A function to check if an event occurs (at any time).

occurs(e: Event): bool = 3 (¢: Time): wie, t)

A function to find the last occurrence time of an event.

last_occurrence.time(e: Event, f{: Time): bool =
Ple, 1) A - (3 (t1: Time): t; > t A Yle, t))

There are only finite occurrences of an event if there is a time of the last
occurrence of the event.

only finite_occurrences(e: Event): bool = 3 (¢: Time): last_occurrence_time(e, t)
There are infinite occurrences of an event, if it occurs and there is not only
a finite number of occurrences of the event.

infinite_occurrences(e: Event): bool = occurs(e) A - only finite_occurrences(e)
All of the occurrences of an event are bounded by a time if all of the occur-
rences occur before that time (potentially this is zeno behaviour. It is only
necessary to reason about zeno behaviour where the version of RTL from

[Pay01] that uses real numbers for time steps is used. The models in this
thesis use finite time steps, but the definitions are included for information).

bounded_by(e: Event, t: Time): bool = V (¢;: Time): ¥(e, &) = 4 < ¢

is_.bounded(e: Event): bool = 3 (¢: Time): bounded.by(e, t)

An occurrence of an event occurs at a unique time. .
RTLax1: axiom

V (e: Event, ¢: Occ, t;, t2: Time):
B(e,i. 1) A O(e,i. ) = 8 = &2

If an event has occurred for the ¢ + Ith time, the ith occurrence must have
occurred at an earlier time.



RTL 161

RTLax2: axioM
V (e: Event, i: Occ, t3: Time):
O(e,i+1,t) = (3 (t2: Time): B(e,i,ta) A tp < 1)

Each event that occurs must have an occurrence number.

RTLax3.4: AXIOM
V (e: Event, t: Time): 9(e, t) & (3 (i: Occ): 6(e,i,t))

If there are infinite occurrences of an event, there must not be an upper
bound for the times of those events (disallows zeno behaviour).

RTLax5: AxioM V (e: Event): infinite_occurrences(e) = = is_bounded(e)

Start and stop actions relate to unique events.

Actionl: AxioMm
V¥ (a1, ag: Action):
(stop(a1) = stop(az) = a1 = az) A
(start(a;) = start(az) = a1 = a2)

Start and stop events of actions are different events.

Action2: AXIOM :
V (a1, ag: Action): stop(a;) # start(az) A start(e;) # stop(az)

If the stop event of an action has occurred the action must have started at
an earlier time.
Action3: AXIOM
V (a: Action, i: Occ, t1: Time):

O (stop(a), s, t1) =
(3 (tp: Time): B(start(a),i,i2) A t2 < 1)

The start event of the (i + 1)th occurrence of an action is after the stop

event of the ith occurrence.
Actiond: AXIOM
V (a: Action, %: Occ, t1: Time):

@ (start(a), i+ 1,4) =
(3 (tz: Time): B(stop(a),i,t2) A t2 < t1)

Enter and leave events relate to unique states in the model.
Statel: AXIOM
V (s1, s2: State):

(leave(s1) = leave(sz) = s1 = s2) A
(enter(s;) = enter(sz) = s1 = s2)

Leave and enter events for states are distinct.

State2: AXIOM
V (s1, sz: State): leave(s;) # enter(sz) A enter(s;) # leave(sy)

If a leave event of a state occurs there must be an earlier enter event.



RTL 162

State3: AXIOM
V¥ (s: State, i: Occ, t;: Time):
O (leave(s), i, t1) =
(3 (t2: Time): B(enter(s),i,2) A tz < ;)

In order to enter a state for the (i + 1)th time the state must have been
exited for the ith time.
State4: AXiOM
Vv (s: State, i: Occ, t1: Time):

O (enter(s),i +1,4) =
(3 (f2: Time): O(leave(s),i,t2) A t2 < t;)

In order to compose two actions they must have both occurred.

compose: AXIOM
V (e, b, c: Action):
a = compose(b, ¢) =
(¥ (i: Occ, t: Time): O(start(a),i,t) < O(start(h),i.t)) A
(Vv (i: Occ, t: Time): O(stop(a),i.t) < O(stop(c),i,t)) A
(¥ (i: Occ, t: Time):
O (stop(b),i,t) & O(start(c),t,t))

The last occurrence of an event occurred at time of the last occurrence of
that event.

last_occurrence_.number(e: Event, i: Occ): bool =
3 (¢: Time): O(e,i,t) A last.occurrence.time(e, t)

The latest occurrence of an event is at the latest time that the event occurred.
latest.occurrence.at_time(e: Event, ¢: Occ, t: Time): bool =
3 (#1: Time):

1 <tA
B(e, i, 1) A~ (3 (t2: Time): & < t2 A ta <t A (e, t2))

Either there have been no occurrences of an event or the number of occur-
rences is one greater than the last occurrence number (the first occurrence
is numbered zero and occurs when the model is initialised, which is before
the start time of the system being modelled).

no_of_occurrences_to.time(e: Event, t: Time, n: nat): bool =

(occurs{e) A n > 0 A latest_occurrence_at_time(e, n-1, ¢£)) V
(- occurs(e) A n = 0)

Function for checking which is the latest of two times.

latest (¢, t2, t3: Time): bool =
(2 > ta >t =)A{z3 >t =>4 =1t3)

Functions for checking the latest of three times.
after_both(#i, {2, t3: Time): bool = ) > &2 A Yy > {3

strictly_after_both(t;, t2, t3: Time): bool = & > t2 A 8L > I3

Definition of a periodic event.



RTL 163

periodic(e: Event, period: Time): bool =
3 (¢: Time):
B(e,0,t) A
(¥ (i: Occ, t1: Time):
O(e,i,t1) = OG(e,i+ 1,4 + period))

Definition of a sporadic event.

sporadic(e: Event, miat: Time): bool =
V (i: Occ, t;, tp: Time):
O(e,i,t1) A O(e,i+1,8) = t; > t; + miat

Definition of a deadline.

deadline(e;, e2: Event, !, u: Time): bool =
Vv (¢: Occ, t1: Time):
6(e1,i,t1) =
(3 (tz: Time):
Ole,t,02) AN i+u > ta At >2u+b

Definition of a window of time (all of the clock ticks between two times).

window(e, clk: Event, !, u: Time): bool =
V (i: Occ, t;: Time):
G(e,i, 1) =
(3 (§: Occ, tp: Time):
Oclk,j, ) Atat+u >t Aty > ta+ D

Definition of jitter.

jitter(e, clk: Event, z;, 73, offset: Time): bool =
¥V (i: Occ, t: Time):
B(clk, i,t3) =
(3 (4 : Time):
Be.1,t1) A
ta+offset+22 > ) A
ti > t2 + offset-z;)

Definition of consecutive occurrence bounds (lower and upper bounds on the
time between two occurrences of an event).

COB(e: Event, max, min: Time): bool =
3 (t: Time):
6(e,0,t) A
(V (i: Occ, t1: Time):
B(e, i, t1) >
(3 (2: Time):
6(e,i+1,t1) A
t1+max > tp A tp > t1 +min))

Alternative definition of Axiom 2 - all occurrences of an event after the first

must be preceded by the previous occurrence.
RTLax2_Alt: THEOREM
V (e: Event, i: Occ, #;: Time):

Ble,i,h1) A i > 0 >
(3 (t2: Time): O(e,i-1,12) A 2 < 1)

Alternative definitions of Axiom 3 - non-zeno behaviour.



RTL 164

RTLax5_Alt: THEOREM
V (e: Event):
= occurs(e) V only_ finite_occurrences(e) V - is_bounded(e)

RTLax5_Alt2: THEOREM
V (e: Event):
(= (3 (ti: Time): (e, 4))) V
(3 (t2: Time): (e, &) A = (3 (i3: Time): vle, t3) Atz > t2)) V
(- (3 (t4: Time): V (t5: Time): ¢(e, ) = t5 < 4))

The stop event of an action cannot be the same as the start event of an
action, neither can the start event of an action be the same as the stop
event of an action.

Action2_Alt: THEOREM
V (ay: Action):
- (3 (e2: Action): stop(e;) = start(az) V start(a;) = stop(az))

Earlier occurrences of events occur at earlier times.

mt: THEOREM
V (e: Event, i, j: Occ, t1: Time, t2: Time):
(O(e,i, 1) A Ble,j,l2) ANi < j)=>th <t

Two distinct occurrences of the same event cannot happen at the same time.

mo: THEOREM
V (e: Event, ¢, j: Occ, t: Time):
O(e,i,t) A O(e,j,t) = i=j

Previous occurrences of events occur at earlier times.

prev: THEOREM
¥ (e: BEvent, i: Occ, t: Time):
(B(e,i, 1) A i >0 =
(V (G: Oce): 5 < i = (3 (t2: Time): O(e,j,t2) A t2 < t1))

prev2: THEOREM
Vv (e: Event, ¢: Occ, j: Occ, t1: Time, t2: Time):
(Oe,i,t1) A O(e,5,t2) A <) = i<

prev3: THEOREM
V (e: Event, i: Occ, j: Occ, fy: Time, t2: Time):
(B(e,i, 1) A Oe,j,t2) Ath L) =il

prev4: THEOREM
V (e: Event, i, j: Occ, t1: Time):
6e,j,t1) A j >4 => (3 (ta: Time): Oe,f,t2) A t2 < 1)

If a later action has started earlier occurrences of the action must have
stopped.

Action_Prev: THEOREM
V (a: Action, i, j: Occ, t: Time):
O(start(a),i, 1) At > j =
(3 (t2: Time): O(stop(a),j.t2) A t2 < &)

END RTL



Appendix C
A Taxomony of ACMs

This appendix formally describes an extended taxonomy of ACMs, based
on the taxonomy from [Lam86al], which gave (formal) definitions of (type-
)safe, regular and atomic ACMs. The extended taxonomy described here
includes other useful types of ACM, such as the persistent type that is used
to implement the buffers in many atomic ACM implementations e.g those
from [Tro89], [Sim90a] and [HS94].

First a number of basic definitions are given, including a definition of
a basic ACM, which can best be described as faulty. The writer to a ba-
sic ACM writes valid values to it, but there is no guarantee that the ACM
will either contain the valid written at the end of a write, or communicate a
valid value to any reader. ACMs that give successively increasing guarantees
about their behaviour are built out of this basic type in a hierarchical man-
ner, with the final definition being that of an atomic ACM, which guarantees
to communicate coherent and fresh data items (as defined in Section 2.3)
from the writer to the reader.

General ACMs: THEORY
BEGIN

IMPORTING RTL

The start time of the system and the number of occurrences of events are
both positive natural numbers.

Start_Time: posnat

NOcc: TYPE = posnat

A type to define any time after system start up.

NTime: TYPE = {¢: Time | t > Start_Time}
A non-empty type to represent values that can be transmitted by an ACM.

Value: NONEMPTY_TYPE

165



General ACMs 166

The base type of values that can be transmitted by an ACM - essentially
the set of values that can be represented by different bit representations of
the ACM registers that store the values to be transmitted. For example an
8 bit register can potentially store 256 different values.

A _Type: NONEMPTY_TYPE = {t: setof[Value]l | nonempty?(t)}
A general ACM has a base type (all of the possible values it can store
(represent) for transmission to its reader); a valid type, which consists of
all of the user defined values that are to be communicated by it that is a

(potentially proper) subset of the base type; and a mapping from time to
the particular value of the base type that the ACM contains at that time.

ACM: NONEMPTY.TYPE =
[# base.type: A_Type,
valid_type: {t: A_Type | V (v: Value): (v € t) = (v € base_type)},

content:
{f: [Time — Value] | ¥ (t: Time): (f(t) € base_type)} ¢]

An ACM can be written to or read from.
Kind: TYPE = {read, write}
R.W_Actionl: TYPE = [# kind: Kind #1
W_Actionl: TYPE = {w: R_W_Actionl | w‘kind = write}

R_Actionl: TYPE = {r: R_W_Actionl | r‘kind = read}

A mapping of reads and writes to RTL actions.

act: [R_-W_Actionl — Action]
Uninterpreted functions that relate values read and written, and ACM ac-
cesses to read and write events.

val: [R_.W_Actionl, Occ, Value — bool]

access: [R_-W_Actionl, ACM — bool]
Functions that relate start and stop actions of reads and writes to RTL start
and stop events.

stop(a: R_W_Actionl): Event = stop(act(a))

start(a: R-W_Actionl): Event = start(act(a))
A function that defines what it means for a reader or writer to communicate

with an ACM - the reader or writer must start and end the read (write),
access the ACM and read (write) a value from (to) the ACM.
communicates(a: R_W_Actionl, #: Occ, t, t2: Time, v: Value, acm: ACM): bool =

O (start{a),i,t1) A
O (stop(a), i, t2) A val(a, i, v) A access(a, acm)



General ACMs 167

A read or write must be related to a unique RTL action.

act_propl(a;: R_W_Actionl): bool =
V (az: R.W_Actionl): act(e1) = act(az) © a1 = ap

R_W_Action2: TYPE = {a: R.W_Actionl | act_propl(a)}
W_Action2: TYPE = {w: W_Actionl | act.propl(w)}

R_Action2: TYPE = {r: R_Actionl | act_propl(r)}

Read and write actions have unique start and stop events.

R_W_Action_thl: THEOREM
V (a1, az: R_-W_Action2):
(stop(a1) = stop(az) = a1 = a2) A
(start(a;) = start(az) = a = ap)

Start events of an action cannot be the same as stop events of another action.

R_W_Action_th2: THEOREM
V (a1, a2: R-W_Action2): stop(e;) # start(az) A start(a;) # stop(az)

The start event for a read or write must occur before its stop event.

R.W_Action_th3: THEOREM
V (a: R_.W_Action2, i: Occ, ty: Time):
©&(stop(a), i, t1) =
(3 (tp: Time): O(start(a).i.t2) A t2 < t1)

R_W_Action_th3a: THEOREM
V (a: R_W_Action2, ¢: Occ, #, to: Time):
O (start(a),i,t1) A O(stop(a),i,f2) = t1 < t2

Previous, and earlier, occurrences of a read or write must stop before later
occurrences can start.

R_W_Action_th4: THEOREM
V (a: R_W.Action2, i: Occ, t;: Time):
O (start(a),t + 1, 41) =
(3 (tz: Time): O(stop(a),i,t2) A 2 < 1)

R.W_Action_th4a: THEOREM
V (a: R_W_Action2, i: Occ, t1, t2: Time):
BO(stop(a), i, t1) A O(start(a),i+1,82) = &1 < &

R.W_Action_th5: THEOREM
V (a: R_.W.Action2, i, j: Occ, t: Time):
O(start(a),i.t1) At > j =>
(3 (t: Time): O(stop(a),j,t2) A t2 < 1)

A read must return a value (although that value may not be valid).

val.propl(r: R_Action2): bool =
V (i: Occ):
(3 (¢: Time): O(stop(r),i,t)) & (3 (v: Value): val(r, i, v))

If a write to an ACM starts, there must be a value (that is to be written to
the ACM) associated with the action.

val_prop2(w: W_Action2): bool =
V (i: Oce):
(3 (t: Time): O(start{w),,t)) & (3 (v: Value): val(w, i, v))



General ACMs

A (valid) read or write must relate to a unique value.

val.prop3(a: R_W_Action2): bool =
V (i: Occ, m, v2: Value): val(a, i, v1) A val(a, i, ) = v = n

valid_R_Action3(r: R-Action2): bool = val propl(r) A val_prop3(r)
valid-W_Action3(w: W_Action2): bool = val prop2(w) A val_prop3(w)
valid_.R_W_Action3(a: R-W_Action2): bool =

(a‘kind = read = valid_R_Action3(a)) A

(a‘kind = write = valid_-W_Action3(a))
R.W_Action3: TYPE = {a: R W_Action2 | valid_R_-W_Action3(a)}
W_Action3: TYPE = {w: W_Action2 | valid_W_Action3(w)}

R-Action3: TYPE = {r: R_Action2 | valid_R-Action3(r)}

A read or a write must relate to an access to an ACM.

access_propl(a: R_W_Actionl): bool = 3 (s: ACM): access(a, s)

A read or write must relate to an access to a unique ACM.

access_prop2(a: R-W_Actionl): bool =
V (81, 92: ACM): access(a, 81) A access(a, s3) = 3 = 89

An ACM has a single writer.

access_prop3(s: ACM): bool =
V (w1, wy: W.Actionl): access(wy, 8) A access(wg, 8) = w1 = wy

Each ACM must have a reader and writer associated with it.

access_prop4(s: ACM): bool =
3 (r: R_Actionl, w: W_Actionl): access(r, 3) A access(w, 8)

Writers write valid values to ACMs.
write_val_propl{acm: ACM): bool =

V (w: W_Actionl, ¢: Occ, v: Value):
val(w, i, v) A access(w, acm) = (v € acm‘valid_type)

An initial value is written to an ACM at start up.
init_propl(acm: ACM): bool =

3 (w: W_Actionl, v: Value, ¢: Time):
t < Start_.Time A communicates(w, 0, t, Start_Time, v, acm)

(Valid) Read and Write actions relate to a unique ACM.

valid R_W_Action(a: R_-W_Action3): bool =
access_propl(a) A access_prop2(a)

R_W_Action: TYPE = {a: R_.W_Action3 | valid_R_W_Action(a)}
W_Action: TYPE = {w: W_Action3 | valid.R-W_Action(w)}

R_Action: TYPE = {r: R_Action3 | valid_ R-W_Action(r)}

168



General ACMs 169

A read or write must relate to a unique access to an ACM.

comms_th: THEOREM
V (a: R.-W_Action, i: Occ, t1, t2, t3, t4: Time, v, v: Value, acml, acm2: ACM):
communicates(e, %, f1, f2, vi, acml) A communicates(a, i, f3, L4, 83, acm2) =
h=8BAl=1Auvn =1v Aaml=am?

A time is within an action if there is an earlier time when the action started
and the action has not yet stopped.

time.in.action(a: R-W_Action, i: Occ, t: Time): bool =
3 (t;: Time):
Hh <tA
6'(start(a), i, t1) A
- (3 (t2: Time): to < t A O(stop(a),i,t2))

Two actions overlap if they are both within instances of their actions at the
same time.

overlapping.action(ay, az: R.W_Action, 1, j: Occ): bool =
3 (¢: Time): time.in.action(a;, i, £) A time.in_action(az, i, )

Two actions conflict if they overlap and access the same ACM.

conflicting_actions(a;, a2: R-W_Action, i, j: Occ): bool =
3 (acm: ACM):
overlapping action{a;, a2, {, j) A
access(ay, acm) A access(ay, acm)

A conflicting read is one that conflicts with a write.

conflicting_read(r: R.Action, #: Occ): bool =
3 (w: W_Action, j: Occ): conflicting.actions(r, w, i, j)

An ACM is being written if there is a writer accessing it.

acm_being_written(acm: ACM, ¢: Time): bool =
A (w: W_Action, i: Occ): time.n.action(w, i, t) A access(w, acm)

A read that accesses an ACM is either a conflicting read, or there was no
write access to the ACM during the read.

conflicting_th: THEOREM
V (r: R Action, ¢: Occ, #1, t2: Time, acm: ACM):
O (start(r),i,t1) A O(stop(r),s,t2) A access(r, acm) =
conflicting_read(r, ) V
- (3 (¢: Time): acm_being written(acm, &) A ) <t At < tp)

If a read started after a write stopped, or a write started after the read
stopped, they were not conflicting actions.

conflicting_thl: THEOREM
V (r: R-Action, w: W_Action, i, j: Occ, t1, t2: Time):
(O (start(r),i,41) A O(stop(w),j,t2) A t2 < {) V
(O (start(w),j,22) A O(stop(r),i,t1) A b < t2)
= - conflicting.actions(r, w, i, j) '



Persistent_ ACM 170

A basic ACM is one that has a single writer that writes valid values (values
of the valid type as per the specification) to it, at least one reader, and is
initialised with an initial value at system start up.

basic.acm(acm: ACM): bool =

access_prop3(acm) A
access-prop4(acm) A write_val propl(acm) A init_propl(acm)

Basic ACM: TYPE = {acm: ACM | basic.acm(acm)}

Only a single writer accesses a single basic ACM.

comms_th2: THEOREM
v (w1, we! W_Action, ¢, j: Occ, t1, t2, t3, t4: Time, w, vo: Value, acm: Basicc ACM):
communicates(w1, {, &, t2, v, acm) A communicates(wy, j, ta, t4, v, acm) =
w = w2

If a writer communicates with an ACM for the (i + 1)th time, it must have
previously communicated with it for the ith time.
comms.th3: THEOREM
Vv (w: W_Action, i: Occ, t), fo: Time, v: Value, acm: Basic, ACM):
communicates(w, i+1, £, &, v, acm) =
(3 (t3, t4: Time, v : Value):

communicates(w, %, {3, t4, v1, acm) A 14 < £)
END General_ ACMs

A persistent ACM retains the value that is written to it, until the value
is overwritten. Any read that does not conflict with a write to the ACM
will return the last value written. A read that conflicts with (occurs at the
same time as, or overlaps in time with) a write can return any value from
the base type of the ACM.

Persistent_ACM: THEORY
BEGIN

IMPORTING General ACMs

When a write to a persistent ACM finishes the content of the ACM is equal
to the value written.

write_val_prop2(acm: Basicc ACM): bool =
V (w: W_Action, ¢: Occ, v: Value, t, t2: Time):
communicates(w, ¢, &, f2, v, acm) = acm‘content(f) = v

A value remains in a persistent ACM until the start of the next write.

persistent_acm1(acm: BasiccACM): bool =
V (w: W_Action, i: Occ, t1, t2: Time, v: Value):
communicates(w, ¢, t, f2, v, acm) =
(3 (t3: Time):
O (start(w),i+1,13) A (v (¢: Time): tp < t At < t3 = acm‘content(t) = v) VvV
(= (3 (t3: Time): O(start(w),i+1,13)) A
(Vv (¢: Time): & < t => acm‘content(f) = v))

A read that does not conflict with a write to a persistent ACM returns the
value stored in (contents of) the ACM.



Persistent_ ACM 171

persistent_acm2(acm: Basicc ACM): bool =
V (r: R.Action, i: Occ, v: Value, t;, to: Time):
communicates(r, %, &1, f2, v, acm) A - conflicting read(r, i) =
v = acm‘content(fy)

A value contained in a persistent ACM must previously have been written
to it, and a subsequent write must not have started.

persistent.acm3(acm: Basic. ACM): bool =
V (v: Value, t: Time):
acm‘content(¢) = v A - acm_being_written(acm, ¢) =
(3 (1, tp: Time, w: W_Action, i: Occ):
e <t A
communicates(w, ¢, ¢, &, v, acm) A
- (3 (t3: Time):
b < t3 Atz <t A O(start(w),i+1,3)))

Persistent_ ACM: TYPE =
{acm: Basic.ACM |
write_val_prop2(acm) A
persistent_acml(acm) A
persistent_acm2(acm) A persistent_acm3(acm)}

A writer writes valid values to a persistent ACM.

write.values: THEOREM .
V (w: W_Action, ¢: Occ, v: Value, #1, t2: Time, acm: Persistent . ACM):
communicates(w, {, #, t2, v, acm) =
acm ‘content(t2) = v A (v € acm‘valid_type)

Values written to a persistent ACM are valid between writes.

valid_between_writes: THEOREM
V¥ (acm: Persistent_ ACM, t: Time):
(- (3 (w: W_Action, t: Occ): timedin.action(w, ¢, ) A access(w, acm))) =
(acm‘content(t) € acm‘valid-type)

Values written to a persistent ACM do not change between writes.

unchanged_between_writes: THEOREM
V (acm: Persistent_ ACM, ¢, to: Time):
thh <82 A
(-~ (3 (w: W_Action, ¢: Occ, t: Time):
th <t At < t2 A timeinaction(w, #, t) A access(w, acm)))
=> acm‘content(#1) = acm‘content({2)

A non-conflicting read that communicates with a persistent ACM will return

a valid value.
persistent_reads_thl: THEOREM
V¥ (r: R_Action, i: Occ, v: Value, #;, t2: Time, acm: Persistent ACM):

communicates(r, i, £, t2, v, acm) A - conflicting_read(r, i) =
v = acm‘content (%))

The contents of a persistent ACM are written to it by the writer of the
ACM.



Safe ACM 172

contents_are_written: THEOREM
V (v: Value, t: Time, acm: Persistent_ ACM):
v = acm‘content(t) A - (3 (w: W.Action, i: Occ): time_in_action(w, 1, ¢)) =
(3 (w: W_Action, i: Occ, t1, tp: Time):
communicates(w, ¢, t1, f2, v, acm))

END Persistent_ ACM

A (type) safe ACM is persistent, but gives the additional guarantee that
a read that conflicts with a write will return a value of the tyvpe that the
ACM is designed to communicate (a value of the valid type of the ACM).

Safe_. ACM: THEORY
BEGIN

IMPORTING Persistent_ ACM

safe.acm(acm: Persistent_ ACM): bool =
V (r: R_Action, i: Occ, #;, t3: Time, v: Value):
communicates(r, i, t1, t2, ¥, acm) = (v € acm‘valid_type)
Safe.ACM: TYPE = {acm: Persistent ACM | safe_acm(acm)}
END Safe_ ACM

A semi-regular ACM is (type) safe, and additionally guarantees that a
read that conflicts with a write will return a value that has previously been
written to it (this is the formal definition of a coherent ACM).

Semiregular ACM: THEORY
BEGIN

IMPORTING Safe_ ACM

semiregular_acm(acm: Safe ACM): bool =
V (r: R Action, i: Occ, #, t2: Time, v: Value):
communicates(r, £, &, t2, v, acm) =
(3 (w: W_Action, j: Occ, t3, t4: Time):
t3 < t2 A communicates(w, j, t3, t4, v, acm))
Semiregular_ ACM: TYPE = {acm: Safe_ ACM | semiregular.acm(acm)}

END Semiregular ACM

A regular ACM is semi-regular, but additionally guarantees that a non-
conflicting read will return the value that was written by the last write. A
conflicting read will either return the value written by the last write to end
before the read started, or one of the values written by one of the conflicting
writes (it will return a valid value), but, if a number of reads conflict with a
write, it is possible that one of the later conflicting reads will return an item
that was written before the value returned by one of the earlier conflicting
reads i.e the values may not be returned in the order that they were written.
This is the formal definition of local freshness.

Regular ACM: THEORY
BEGIN



Atomic ACM 173

IMPORTING Semiregular ACM

regular_.acm(acm: Semiregular ACM): bool =
V (r: R_Action, i: Occ, t1, t2: Time, v: Value):
communicates(r, i, £, t2, v, acm) A conflicting.read(r, §) =
(3 (w: W_Action, j: Occ, f3, t4: Time):
communicates(w, j, t3, f4, v, acm) A
((ts < 81 A
- (3 (45, te: Time, v : Value):
communicates{w, j+1, &5, fg, v1, acm) A tg < #))
V conflicting-actions(r, w, i, 7)))
Regular ACM: TYPE = {acm: Semiregular ACM | regular_acm(acm)}

END Regular_ ACM

An atomic ACM is regular, but additionally guarantees that items will
be read from the ACM in the order that they are written to it. That is
that the reads and writes to the ACM will appear to have happened in some
Hoare atomic order, although it is possible for an item to be overwritten
before it is read, or an single item to be read multiple times. This is the
formal definition of global freshness. An atomic ACM communicates data
items, which have an index number as well as a value. The index numbers
start at zero and increment by one each time an item is written so that it is
possible to reason about the order that the items are written and read.

Atomic_, ACM: THEORY
BEGIN

IMPORTING Regular ACM

A Dataltem consists of an occurrence (sequence) number, a value and an
ACM that contains it.

Dataltem: TYPE = [# id: Occ, value: Value, acm: ACM #]

Dataltems have unique Ids.

Dataltem_Ax: AXIOM
¥V (z, y: Dataltem): y‘id = z‘id = y‘value = z‘value A y‘acm = z'acm
A writer that communicates a Dataltem to an ACM, must write the value of
the Dataltem, communicate with the ACM that contains the Dataltem and
the write must have the same occurrence number as the sequence number
of the Dataltem (because there is only a single writer to an ACM).

communicates(w: W._Action, i: Occ, %1, tz: Time, z: Dataltem, acm: ACM): bool =
communicates(w, i, £, t2, z‘value, acm) A z‘acm = acm A z‘id = ¢
A reader that communicates with an L-atomic ACM must read the item that
was written by the last write to end before the read started, or by a write
that overlaps in time with the read (the item must have the same sequence
number as the occurrence number of a previous, or conflicting, write that
communicated it to the ACM).



Atomic_ ACM 174

rcommunicates(r: R_Action, ¢: Occ, t;, tp: Time, z: Dataltem, acm: ACM): bool =
communicates(r, {, ¢, t2, z‘value, acm) A z‘acm = acm A
z4id € {j: Occ | 3 (w: W_Action, 3, t5: Time):
communicates(w, j, 3, 4, z, acm) A (4 < & A
- (3 (s, te: Time, y: Dataltem):
communicates(w, j+1, t5, l6, y, acm) A
6 < t1) VvV conflicting_actions(r, w, i, 7))}

A writer communicates with a single ACM.

comms._dataitem_th: THEOREM
V (w: W_Action, ¢: Occ, t, t2, t3, t4: Time, z1, 22: Dataltem, acml, acm2: ACM):
communicates(w, ¢, ¢, {2, 71, acml) A communicates(w, s, t3, &4, T2, acm2) =
1 =t3 Alg =4 ANz1 =292 A acml = acm2

A unique write communicates a Dataltem to an ACM.

comms_dataitem_thl: THEOREM
V (w: W_Action, ¢, j: Occ, t1, t2, ts, ty: Time, z: Dataltem, acml, acm2: ACM):
communicates(w, ¢, ¢, t2, £, acml) A communicates(w, j, t3, t4, z, acm2) =
i =73

A unique writer communicates with an ACM.

comms._dataitem-th2: THEOREM
Vv (w1, ws: W Action, i, j: Occ, 4, t2, t3, 44: Time, m, z2: Dataltem, acm: Basic.ACM):
communicates(w;, §, &1, &2, 71, acm) A communicates(wo, j, t3, &4, T2, acm) =
w = w2

Items are written to ACMs by the writers of the ACMs.

item(w: W_Action, ¢: Occ, z: Dataltem): bool =
3 (4, t2: Time): communicates(w, $, &, t2, £, z‘acm)

Any item written to an ACM has a sequence number that is the same as the
write that communicated it.

item_propl: THEOREM
V (w: W_Action, ¢: Occ, z: Dataltem):
item(w, t, z) =
(3 (t1, tz2: Time):
communicates(w, £, 1, f2, z‘value, z¢acm) A z‘id = i)

If a writer communicates a value to an ACM, then a Dataltem exists with
the value, and relevant sequence number, in the ACM at the end of the
write.

item_prop2: THEOREM
V (w: W_Action, i: Occ, t, tz: Time, v: Value, acm: ACM):
communicates(w, {, 4, t2, v, acm) =
(3 (z: Dataltem):
item(w, i, ) A z'value = v A zfacm = acm A z‘id = i)

Dataltems are unique.

item_thl: THEOREM
V (i: Occ, w: W_Action, z, y: Dataltem):
item(w, ¥, ) A item(w, i, y) =z =y



Atomic ACM 175

A Dataltem is written to an ACM once only.

item_th2: THEOREM
V (w: W_Action, ¢, j: Occ, z: Dataltem):
item(w, ¢, z) A item(w, j, z) = i = j

There is a stop action of a write if and only if there is a Dataltem that has
been written by that write.

item_th3: THEOREM
V (w: W_Action, i: Occ):
(3 (¢: Time): O(stop(w),i,t)) <
(3 (z: Dataltem): item(w, i, z))

If a writer communicates with an ACM there is an associated Dataltem that
1s written.

item_th4: THEOREM
V (w: W_Action, i: Occ, f), t2: Time, z: Dataltem, acm: ACM):
communicates(w, £, &, t2, £, acm) = item(w, i, z)

All Dataltems have been written by an associated writer that communicates
with the ACM.

item_th5: THEOREM
V (w: W_Action, i: Occ, z: Dataltem):
item(w, {, z) =
(3 (41, tz: Time): communicates(w, %, &1, 2, £, z‘acm))

An atomic ACM is a regular ACM that reads the items written in the order
that they were written (once an item has been read it is not possible in any
circumstances for a reader to read items that were written previously to the
item read).

atomic_acm(acm: Regular_ ACM): bool =
V (r: R-Action, ¢: Occ, t3, t4: Time, zz: Dataltem):
r.communicates(r, §+1, #3, t4, T2, acm) =
(3 (1, t2: Time, 7 : Dataltem):
r.communicates(r, {, &, t2, 21, acm) A z‘id > z; ‘id)

Atomic ACM: TYPE = {acm: Regular. ACM | atomic_acm(acm)}

A reader can only read items that have previously been written to the ACM.

reads_read_items: THEOREM
V (r: R_Action, ¢: Occ, ), t2: Time, v: Value, acm: Atomic ACM):
communicates(r, ¢, &1, t2, v, acm) =
(3 (w: W_Action, j: Occ, t3, t4: Time, z: Dataltem):
communicates(w, j, t3, ta, =, acm) A 3 < t2 A z'value = v)

An atomic ACM has all of the properties of a regular ACM.

atomic_acm_is_regular_th: THEOREM
V (r: R.Action, i: Occ, t1, to: Time, v: Value, acm: Atomic ACM):
communicates(r, ¢, ¢, f2, v, acm) A conflicting read(r, i) =
(3 (w: W_Action, j: Occ, i3, t4: Time, z: Dataltem):
communicates(w, j, 3, t4, T, acm) A
(g < 81 A



Atomic_ ACM 176

z'value = v A

zdd = j A

z'acm = acm A

- (3 (&, ts: Time, v;: Value, z;: Dataltem):
communicates(w, j+1, &5, 5, 71, acm) A & < u)

V conflicting_actions(r, w, i, j)))

A reader can only communicate items that have previously been written.

r.communicates_thl: THEOREM
V (r: R-Action, i: Occ, 1, tp: Time, v: Value, acm: Atomic_,ACM):
communicates(r, i, %, t», v, acm) =
(3 (z: Dataltem): r_communicates(r, ¢, &, t2, £, acm))

r.communicates_th2: THEOREM
V (r: R-Action, w: W_Action, ¢, j: Occ, #;, ta, ta, t4: Time, z: Dataltem,
acm: Atomic_ ACM):
rcommunicates(r, ¢, #1, t2, £, acm) A communicates(w, j, t3, &4, T, acm) =

3 <tz

Items that have been overwritten by subsequent writes are not available to
the reader (they have been overwritten).

overwritten_items_lost_th: THEOREM
V (w: W_Action, ¢: Occ, t, &2, t3, t3: Time, 21, z2:
Dataltem, acm: Atomic_,ACM):
communicates(w, ¢, £, 2, 1, acm) A communicates(w, i+ 1, {3, t4, T2, acm) =>
- (3 (r: R-Action, j: Occ, t5, te: Time):
r.communicates(r, j, t5, &, Z1, acm) A t5 > l)

overwritten.itemsJost_thl: THEOREM
V (w: W_Action, ¢: Occ, j: Occ, &1, t2, ts, t4: Time, 71, z2: Dataltem, acm: Atomic.ACM):
communicates(w, ¢, t1, 2, 71, acm) A communicates(w, j, t3, t4, 22, acm) A 5 < j =
- (3 (r: R_Action, k: Occ, t5, tg: Time):
rcommunicates(r, k, &5, s, 21, acm) A t5 > t4)

If the previous occurrence of a read has read the value written by an over-
lapping write, the next read cannot get the value from a data item written
by an earlier write (unless the value from the earlier data item is the same
as the value from the later one). The theorem is illustrated as follows:

[-w,i-l l-w,iti=]  |--w,i*2--] |=-w,i+3--]
t5 t6 t7 t8 t9 t10 t11 t12
[==-z,j===1 |--r,j+1--|
tl t2 t3 t4

atomic_test_th: THEOREM
V (r: R-Action, w: W._Action, £, j: Occ,
ti, t2, t3, ta, &5, ts, 7, l3, to, tio, t11, tiz: Time, 7, 72, 73, z4: Dataltem,
v: Value, acm: Atomic,ACM):
2 > 8 A
tio > t3 A
1 > 4 A
communicates(w, {, t5, l6, 1, acm) A
communicates(w, ¢+1, 7, tg, T2, acm) A
communicates(w, +2, 9, t10, 23, acm) A
communicates(w, §+ 3, t11, ti2, Z4, acm) A
T3‘value # 29 ‘value A
T3‘value # x ‘value A
communicates(r, j, &1, t2, z3‘value, acm) A



Atomic ACM 177

communicates(r, j+1, ta, t4, v, acm) A & > t7
= zz3‘value = v

END Atomic ACM



Appendix D

Simpson’s 4-slot

This appendix contains the full model of Simpson's 4-slot fully asynchronous
ACM, introduced in Chapter 3, in the PVS logic. First some basic types are
defined, which are used in the model.

Supporting_Types: THEORY
BEGIN

A value type to represent the values that are communicated.

Val: NONEMPTY_TYPE
The data items that are communicated consist of a serial number and a
value.

Data: TYPE = [# index: nat, val: Val #]
END Supporting_Types

FOUR_SLOT: THEORY
BEGIN

IMPORTING Supporting_Types
Types to represent the pairs and slots in the ACM: there are two pairs of
two slots in the 4-slot.

Pairlndex: TYPE = {po, p1}

Slotlndex: TYPE = {sp, $1}

The program counters for the reader and writer, which record the next
instruction to be executed in their respective algorithms.

NextReadlnstruction: TYPE = {rcp, rip, rcs, rd}

NextWritelnstruction: TYPE = {wcp, wcs, wr, wis, wip}

The local state of the writer: it keeps local copies of the names of the pair
and slot it is accessing.

178



179

WriterState: TYPE = [# writerPair: Pairlndex, writerSlot: SlotIndex 2]

The local state of the reader: again it keeps local copies of the names of the
pair and slot is is accessing.

ReaderState: TYPE = [# readerPair: Pairlndex, readerSlot: Slotlndex t]

The ACM has three control variables: pairWritten, which records the name
of the last pair of slots the writer has indicated it has accessed; pairReading,
which records the name of the pair of slots the reader last indicated it has
accessed, or is accessing; and slotWritten, an array of two values which
contains the names of the slot that the writer last accessed in each pair of
slots. The ACM also contains the four slots that are used to transmit the
data, and the auxiliary variables: the reader and writer program counters:
and writerChangedPairNI, which records if the writer has changed pairs and
not yet executed

writerIndicatesPair to indicate it has changed. Finally it contains the reader
and writer local state.

Conc._State: TYPE = [# pairWritten: Pairlndex,
slotWritten: [Pairlndex — Slotindex],
pairReading: Pairlndex,
slots: [Pairlndex, Slotlndex — Vall,
nri: NextReadlnstruction,
nwi: NextWritelnstruction,
writer: WriterState,
reader: ReaderState,
writerChangedPairNI: bool #]

The first action in the reader algorithm is when it chooses the pair it is going
to access during the read: it attempts to read the latest item by reading from
the pair of slots the writer last indicated it has accessed.
pre.readerChoosesPair(p: Conc_State): bool = p‘nri = rcp
post_readerChoosesPair(p: (pre_readerChoosesPair))(prot: Conc_State): bool =
prot =
p WITH [nri := rip,
_ reader := p‘reader WITH [readerPair := p°‘pairWritten]]
readerChoosesPair: [p: (pre_readerChoosesPair) — (post_readerChoosesPair(p))]
prereaderlndicatesPair(p: Conc_State): bool = p‘nri = rip
The second read action is to indicate the pair of slots that it is going to
access, in the pairReading control variable.

post_readerIndicatesPair(p: (pre_readerIndicatesPair))(prot: Conc_State): bool =
prot = p witH [nri := rcs, pairReading := p‘reader‘readerPair]

readerindicatesPair: [p: (pre_readerIndicatesPair) — (post.readerlndicatesPair(p))]

The reader chooses to read from the last slot the writer accessed, in the pair
of slots it has chosen to read from.



pre_readerChoosesSlot(p: Conc_State): bool = p‘nri = res

post_readerChoosesSlot(p: (pre_readerChoosesSlot)) (prot: Conc_State): bool =
prot =
p witd [nri := rd,
reader := p‘reader
WITH [readerSlot
:= p‘slotWritten(p ‘reader ‘readerPair)1]

readerChoosesSlot: [p: (prereaderChoosesSlot) — (post_readerChoosesSlot(p))]

Finally the reader reads the data from its chosen slot.
preread(p: Conc_State): bool = p‘nri = 1d
post.read(p: (pre_read))(prot: Conc_State, v: Val): bool =
v = p°‘slots(p‘reader‘readerPair, p‘reader‘readerSlot) A

prot = p WITH [nri := rcp]

read: [p: (preread) — (post_read(p))]

180

The first action of the writer is to choose the pair of slots it is going to
access. it attempts to avoid the reader by choosing to access the opposite
pair of slots to the one that the reader last indicated it was going to access.
It also sets the writerIndicatesPairNI boolean to true if the writer changes
pairs for the write (the reader has indicated it is accessing the pair of slots
the writer last indicated is was accessing), and to false if the writer does
not change pairs (in fact this leaves the value unchanged, since it will have
already been set to false by the previous writerIndicatesPair operation).

pre_writerChoosesPair(p: Conc_State): bool = p‘nwi = wcp

post_writerChoosesPair(p: (pre_writerChoosesPair))(prot: Conc_State): bool =
(p‘pairReading = p‘pairWritten =>
(p‘pairReading = po =
prot =
p WITH [nwi := wcs,
writer := p‘writer WiTH [writerPair := p1],
writerChangedPairNI := TRUE]) A
(p ‘pairReading = p1 =
prot =
p WITH [nwi := wcs,
writer := p‘writer WITH [writerPair := pol,
writerChangedPairNl := TRUE])) A
(- p‘pairReading = p‘pairWritten =
(p‘pairReading = po =
prot =
p WITH [nwi := wcs,
writer := p‘writer wiTH [writerPair := p1],
writerChangedPairNI := FALSE]) A
(p‘pairReading = p1 =
prot =
p WITH [nwi := wecs,
writer := p‘writer WITH [writerPair := pol,
writerChangedPairNI := FALSE]))

writerChoosesPair: [p: (pre_writerChoosesPair) — (post_writerChoosesPair(p))]



181

‘The writer then chooses the slot it is going to access in the pair of slots it
has chosen. It again attempts to avoid the reader by accessing the opposite
slot to the one it accessed the last time in its chosen pair.

pre_writerChoosesSlot(p: Conc_State): bool = p‘nwi = wes
wesresult: TYPE = [# prot: Conc.State, v: Val %]

post_writerChoosesSlot (p: (pre_writerChoosesSlot)) (prot: Conc_State): bool =
(p‘slotWtitten(p‘writer‘writerPa.ir) = 89 =

prot = p WITH [nwi := wr, writer := p‘writer wirs [writerSlot := 511) A
(p‘slotWritten(p ‘writer writerPair) = 5 =>
prot =

p WITH [nwi := wr, writer := p‘writer wiTH [writerSlot := 5011)

writerChoosesSlot: [p: (pre_writerChoosesSlot) — (post_writerChoosesSlot (p))]

Once the writer has chosen the slot it is going to access it writes the new
data item to its chosen slot.

pre.write(p: Conc_State): bool = p‘nwi = wr

post_write(p: (pre_write)){prot: Conc_State): bool =
prot =
p WITH [nwi := wis,
(slots) (p* writer ‘ writerPair, p‘writer‘writerSlot) := v]

write: [p: (pre_write) — (post.write(p))]

After the writer has written the new item of data to its chosen slot it indicates
the slot it has written in the relevant element of the slot Written array.

pre.writerIndicatesSlot (p: Conc_State): bool = p‘nwi = wis

post_writerIndicatesSlot(p: (pre_writerlndicatesSlot))(prot: Conc_State): bool =
prot =
p WITH [nwi := wip,
(slot Written) (p‘ writer ' writerPair) := (p‘writer‘writerSlot)]

writerIndicatesSlot: [p: (pre-writerlndicatesSlot) — (post.writerIndicatesSlot (p))]

The final writer action in each write is to indicate the pair of slots it has
accessed in the pair Written control variable.

pre_writerIndicatesPair(p: Conc_State): bool = p‘nwi = wip

post_writerIndicatesPair(p: (pre_writerlndicatesPair))(prot: Conc_State): bool =
prot =
p WiTH [nwi := wcp,
pairWritten := p‘writer‘writerPair,
writerChangedPairNl := FALSE]

writerlndicatesPair: [p: (pre-writerIndicatesPair) — (post_writerIndicatesPair(p))]

The following functions combine the reader and writer actions in the imple-
mentation into combined actions that are equivalent to the actions in the
abstract model in Appendix E, so that it is possible to show that the imple-
mentation is a refinement of the model (provided the combined actions are

executed atomically).



182

startRd is a combination of readerChoosesPair, readerIndicatesPair and
readerChoosesSlot.

prestartRd(p: Conc.State): bool = p‘nri = rcp

post_startRd(p: (pre.readerChoosesPair))(prot: Conc_State): bool =
prot = readerChoosesSlot (readerIndicatesPair (readerChoosesPair(p)))

startRd: [p: (pre_readerChoosesPair) — (post_startRd(p))]

endRd is only required to return the value read from the chosen slot and
therefore only uses the read operation.

pre.endRd(p: Conc.State): bool = p‘nri = rd

post_endRd(p: (preread))(p:: Conc_State, v: Val): bool =
p1 = read(p)‘l A v = read(p)‘2

endRd: [p: (preread) — (post_endRd(p))]

startWr combines the writerChoosesPair, writerChoosesSlot, write and
writerIndicatesSlot operations and is equivalent to start write in the abstract
model: it adds the new item to the ACM, and makes it available to be read
in some circumstances, by indicating the slot it has written to (the reader
may then read this item if it is accessing the same pair as the writer, and
executes startRd after the startWr operation, even if the writer has not
executed endWr to inicated the pair it has accessed).

prestartWr(p: Conc_State): bool = p‘nwi = wcp

post_startWr(p: (pre_writerChoosesPair))(prot: Conc_State): bool =

prot =

writerIndicatesSlot (write (writerChoosesSlot (writerChoosesPair(p))))

startWr: [p: (pre-writerChoosesPair) — (post_startWr(p))]

endWr completes the write by executing writerIndicatesPair.
pre.endWr(p: Conc_State): bool = p‘nwi = wip

post_endWr(p: (pre.writerIndicatesPair))(p1: Conc.State): bool =
p1 = writerIndicatesPair(p)

endWr: [p: (pre_writerlndicatesPair) — (post_endWr(p))]

The reader and writer local states are initialised to point to different pairs
and different slots. The initialisation is not important, because the reader
will always attempt to follow the writer to the latest slot written (or to
access the slot with the initial data item if the first read occurs before the
first write), and the writer will always attempt to avoid the reader.

init_writer(w: WriterState): bool =
w = w WITH [writerPair := pg, writerSlot := sp]

init_reader(r: ReaderState): bool =
r = r WITH [readerPair := p;, readerSlot := 5]



183

One of the slots is initialised and the control variables are set to point to
this slot. pairReading is set equal to the reader local variable readerPair
and the program counters are set to their initial values: so that the initial
read and write actions will be executed first.

init_prot(p: Conc_State, imit_val: Val, w: WriterState, r: ReaderState): bool =
LET w = w WITH [writerPair := pg, writerSlot := sp],
r = r wWitTH [readerPair := p;, readerSlot := 1]
IN
p=p
wiITH [pairWritten := po,
slotWritten := ((A - (po: Pairlndex): sp),
pairReading := p1,
slots := ((A - (pp: Pairlndex, so: Slotlndex): init_val),

ENp FOURSLOT



Appendix E

An Abstract Model of
L-Atomicity

This appendix contains the full model of L-atomicity. which was introduced
in Chapter 4, in the P\'S logic. This model uses the basic tvpes in the
Supporting Types theory given in Appendix D.

Abstract_Protocol: THEORY
BEGIN

IMPORTING Supporting_-Types, finite_sequences{Data]

The model uses a (PVS) finite sequence to contain the items that are avail-
able to the reader. The sequence has a minimum length of 1.

Val_Sequence: TYPE =
{fin_seq: finite_sequencef{Data] | fin_seq‘length > 1}

(seq: Val_Sequence U {d: Data}): Val Sequence =
(# length := 1, seq := (A -(z: below[l]): d) #)oseq

The abstract model of the ACM, which has a sequence of data items, two
booleans to record whether the reader and writer are accessing the ACM
or not, and three auxiliary variables that are used to check for L-atomicity:
nextIndex, indexRead and firstIndezAvailable.
Abs_State: TYPE =
[# vals: Val_Sequence,
writerAccess: bool,
readerAccess: bool,
nextlndex: nat,

indexRead: nat,
firstindexAvailable: nat #]

prestart_read(prot: Abs_State): bool = prot‘readerAccess = FALSE

At start read the reader shortens the sequence. if necessary. to contain only
those items that are available to be read. If the sequence is of length greater

184



185

than 1 it is shortened to length one if there is no write in progress and to
length 2 otherwise (the item written by the last complete write and the item
written by the write that is in progress). It also sets firstIndezAvailable
equal to the index of the first item that is available to be read: which will
be the index of the item written by the last complete write.
post.start_read(p: (prestart_read))(prot: Abs State): bool =
IF p‘vals‘length = 1
THEN prot =

p WITH [readerAccess := TRUE, firstindexAvailable := p‘vals(0) ‘index]
ELSE IF - p‘writerAccess

THEN prot =
pr
wiTH [vals := p‘vals = (0, 0),
readerAccess := TRUE,
firstindexAvailable := pvals{0) ‘index}
ELSE prot =

p
wITH [vals := p‘vals = (0, 1),
readerAccess := TRUE,
firstindexAvailable := p*vals(1) ‘index]
ENDIF
ENDIF

start_read: [p: (prestart.read) — (post_start_read(p))]

End read chooses an item to be read from the sequence of items, returns
that item and removes all of the older items from the sequence. It also sets
indezRead equal to the index of the item returned.

pre_end._read (prot: Abs_State): bool = prot‘readerAccess = TRUE

post_end.read(p: (pre_end_read))(prot: Abs State, read.item: Val): bool =
3 (i: nat):
t < p‘vals‘length A
read_item = p‘vals‘seq(f) ‘val A
IF p‘vals‘length > 1
THEN prot =

p
wiITH [vals := p‘vals ~ (0, %),
readerAccess := FALSE,
indexRead := p°‘vals‘seq(1) ‘index]
ELSE prot = p WITH [readerAccess := FALSE, indexRead := p‘vals‘seq(i) ‘index]
ENDIF

end_read: [p: (pre_end_read) — (post_end.read(p))]
Start write shortens the sequence of items to length 1 if there is no read
in progress, because the only item available to the reader at this stage is
the one last written. It also adds the item being written to the head of the

sequence. Each item has a sequence number, equal to nertInder, which is
incremented in time for the next write.

pre_start_write(prot: Abs State): bool = prot‘writerAccess = FALSE
write_parameter: TYPE = [# p;: (prestart.write), val: Val #]

post_start_write(p: write_parameter) (prot: Abs_State): bool =



186

LET newltem: Data = (# index := p‘p; ‘nextlndex, val := pval 8) ¥
prot =
p'm
WITH [vals := (p‘p1‘valsU {newltem}),
writerAccess := TRUE,
nextindex := p‘p;‘nextlndex + 1]

start_write: [p: write_parameter — (post_start_write(p))]

End write shortens the sequence to contain only the item just written, if
there is no read in progress, since this is the only item that is now available
to be read. If there is a read in progress the writer cannot tell which item the
reader will choose to read (at end read) and it therefore leaves the sequence
unchanged.

pre_end.write(prot: Abs_State): bool = prot‘writerAccess = TRUE
post-end.write(p: (pre_end_write)) (prot: Abs_State): bool =
(p‘readerAccess = TRUE => prot = p WITH [writerAccess := FALSE]) A
(p‘readerAccess = FALSE =
prot = p WITH [vals := p‘vals = (0, 0), writerAccess := FALSE])
end_write: [p: (pre.end_write) — (post_end_write(p))]
The sequence is initialised with a data item, in case a read starts before the
first write.

init(prot: Abs_State, init.item: Val): bool

prot = prot
WITH [vals := (# length := 1, seq := (# index := 0, val := init.item &) 8),
writerAccess := FALSE,
readerAccess := FALSE,
nextindex := 1,
indexRead := 0,

firstIndexAvailable := 0]

The assertions that are made in the locations of the state machine of the
model. There are four locations, when there is no read or write in progress,
when there is only a read in progress, when there is only a write in progress
and when there is both a read and a write in progress. The assertions are
defined using lambda functions, so that they can be used by name in the
proof obligations and expanded in line in the proofs. The assertions relate
the values of the auxiliary variables and are sufficiently strong that to verify
that the ACM in the model is L-atomic as described in Chapter 4. The final
conjunct in the assertions is part of the invariant in the V'DM-SL-like model
in Chapter 4.
noReader_noWriter_Assertion: [Abs_State — bool] =
(A - (abs: Abs_State):
abs‘indexRead < abs‘nextIndex-abs‘vals‘length A
abs‘firstindexAvailable < abs‘nextindex-abs‘vals‘length A
abs‘vals(0) ‘index = abs‘nextindex-1 A
(Vv (n: nat):

n < abs‘vals‘length A n > 0 =
abs‘vals(n) ‘index =



abs‘nextlndex-(n + 1))

reader .noWriter_Assertion: [Abs_State — bool] =
(A - (abs: Abs _State):
abs‘indexRead < abs‘nextlndex-abs‘vals‘length A
abs‘firstindexAvailable = abs‘nextindex-abs‘vals'length A
abs‘vals(0) ‘index = abs‘nextindex-1 A
(Y (n: nat):
n < abs‘vals‘length A n > 0 =
abs‘vals(n) ‘index =
abs‘nextIndex-(n + 1))

noReader.writer_Assertion: [Abs_State — bool] =
(A - (abs: Abs._State):
abs‘indexRead < abs‘mextindex-abs‘vals‘length A
abs‘firstIndexAvailable < abs‘nextindex-abs‘vals‘length A
abs‘vals(0) ‘index = abs‘nextindex-1 A
(V (n: nat):
n < abs‘vals‘length A n > 0 =
abs‘vals(n) ‘index =
abs‘nextIndex-(n + 1))

reader_writer_Assertion: [Abs_State — bool] =
(A - (abs: Abs_State):
abs‘indexRead < abs‘nextIndex-abs‘valslength A
abs‘firstindexAvailable = abs‘nextlndex-abs‘vals‘length A
abs‘vals(0) ‘index = abs‘nextIndex-1 A
(V (n: nat):
n < abs‘vals‘length A n > 0 =
abs‘vals{(n) ‘index =
abs‘nextIndex-(n + 1))

The model must satisfy the following conjecture in order to be model of L-
atomicity: any item read must have an index number greater than or equal
to the index of the first item available to the reader, less than the index of
the next item to be written, and greater than or equal to the index of the
item last read.
lamport: [Abs_State, Abs_State — bool] =
(A - (asl, as2: Abs_State):
asl‘indexRead < as2‘indexRead A

as2‘firstIndexAvailable < as2‘indexRead A
as2‘nextlndex-1 > as2‘indexRead

The proof obligations, that need to be discharged: when a transition is
enabled and the associated operation is executed, that if the assertion in the
start location of the transition holds before the operation is executed, the
assertion in the target location will hold after the operation is executed. In
addition when a read is executed the index of the item read must satisfy the
“lamport” conjecture above, in order to satisfy L-atomicity.
vc_noReader.noWriter_start.read: THEOREM
V (asl, as2: Abs_State):
prestart_read(asl) A
— asl‘writerAccess A noReader.noWriter_Assertion(asl) A as2 = start_read(asl) =

as2‘readerAccess A
- as2‘writerAccess A reader_noWriter_Assertion{as2)



188

vc_reader_noWriter_end_read: THEOREM
V (asl, as2: Abs State):
pre_end_read(asl) A
— asl‘writerAccess A reader-noWriter_Assertion(asl) A as2 = end_read(asl)‘l =
- ag2‘readerAccess A
- as2‘writerAccess A
noReader_noWriter_Assertion(as2) A lamport(asl, as2)

vc.reader.noWriter.start_write: THEOREM
¥ (w: write.parameter, as2: Abs_State):
pre_start_write(w‘p;) A
w*p; ‘readerAccess A reader.noWriter_Assertion(w*p;) A as2 = start_write{w)
= as2‘readerAccess A as2‘writerAccess A reader_writer_Assertion(as2)

vc_reader_writer_end_write: THEOREM
V (asl, as2: Abs State):
pre.end_write(asl) A asl‘readerAccess A reader_writer_Assertion(asl) A as2 = end.write(asl) =
as2 ‘readerAccess A
- ag2‘writerAccess A reader_noWriter_Assertion (as2)

vc_noReader_noWriter_start.write: THEOREM
V (w: write_parameter, as2: Abs_State):
prestart_write(w‘p;) A
- w'p) ‘readerAccess A noReader_noWriter_Assertion(w‘p;) A as2 = start_write(w) =
as2‘writerAccess A
— as2‘readerAccess A noReader_writer_Assertion (as2)

vc_noReader_writer_end_write: THEOREM
V (asl, as2: Abs_State):
pre.end.write(asl) A
— asl‘readerAccess A noReader_writer_Assertion(asl) A as2 = end_write(asl) =
- as2‘writerAccess A
- as2‘readerAccess A noReader_noWriter_Assertion(as2)

vc_noReader_writer_start_read: THEOREM
V (asl, as2: Abs_State):
pre_start_read(asl) A
asl‘writerAccess A noReader_writer_Assertion(asl) A as2 = start.read(asl)
= as2‘writerAccess A as2‘readerAccess A reader_writer.Assertion(as2)

vcreader_writer_end_read: THEOREM
V (asl, as2: Abs_State):
pre_end_read(asl) A asl‘writerAccess A reader.writer_Assertion(asl) A as2 = end_read(asl) ‘1
=
as2‘writerAccess A
— as2‘readerAccess A
noReader_writer.Assertion(as2) A lamport(asl, as2)

END Abstract_Protocol



Appendix F

The Retrieve Relation

This appendix contains the retrieve relation, in the P\'S logic, that has
been used to demonstrate that Simpson's 4-slot ACM is a refinement of the
abstract model of atomicity, using Nipkow’s retrieve rule, as described in
Chapter 5.

Retrieve: THEORY
BEGIN

IMPORTING Abstract_Protocol, FOURSLOT

The retrieve relation is in four parts: the first part describes the relation
between the two models when the neither the reader and writer are access-
ing the ACM. In this case the reader and writer program counters point
to the first operations in the read and write algorithms ( they are equal to
rcp and wep respectively. which mean that the next action will be either
readerChoosesPair in the model of the 4-slot and startRd in the abstract
model, or writerChoosesPair in the model of the 4-slot and startW7r in the
abstract model). Since the writer and reader are not accessing the ACM
the local copies of the control variables will be equal in value to the rele-
vant control variables in the ACM, the item at the head of the sequence of
values will be the last one written (pointed to by the writer local variables
writerPair and writerSlot)and the length of the sequence will be at Jeast 1.

R(as: Abs_State, cs: Conc_State): bool =
(— as‘readerAccess A — as‘writerAccess =>
cs‘nri = rcp A
cs‘nwi = wep A
cs‘writer ‘writerPair = cs‘pairWritten A
cs‘writer ‘writerSlot = cs‘slotWritten(cs‘writer writerPair) A
cs‘reader ‘readerPair = cs‘pairReading A
cs‘slots(cs *writer ‘writerPair, cs‘writer‘writerSlot) = as‘vals‘seq(0) ~
as‘vals‘length > 1) A

The second part of the retrieve relation describes the relation between the
two models when only the writer is accessing the ACM. The next reader

189



190

and writer actions in the implementation will be rcp and wip respectively.
the value of the writer control variable writerSlot will be equal to the value
of the element of the slotWritten appropriate to the pair of slots the writer
is accessing and the reader local variable readerPair will be equal to the
pairReading control variable. The item at the head of the sequence will be
the item the writer has added during the current write and will be pointed
to by the writer local variables. If the writer has changed pairs for this write
the reader cannot in any circumstances read the item at the head of the
sequence until after the writer has executed endWr and indicated the pair
of slots it has accessed: the sequence must therefore be of length greater
than 1 (the last item written and the item added by the current write must
both be present in the sequence). Since, in this case, the writer has changed
pairs: the reader must have indicated that it had changed pairs to read from
the same pair as the writer before the start of the current write, pairReading
is therefore equal to pairWritten; and the writer local variable writerPair
will not be equal to pairWritten. In addition the item written by the last
write will be the second item in the sequence. If the writer has not changed
pairs the writer local variable writerPair will be equal to the control variable
pairWritten and the sequence must be at least of length 1 (it is possible for
a complete read to occur during the write; for the reader to access the item
that has been written by the write during the current write; and therefore
the sequence to be shortened to contain only that single item - the item at
the head of the sequence).
(- as‘readerAccess A as‘writerAccess =
cs‘nri = rcp A
cs‘nwi = wip A
cs‘writer ‘writerSlot = cs‘slotWritten(cs‘writer‘ writerPair) A
cs‘reader ‘readerPair = cs‘pairReading A
cs‘slots(cs ‘writer ‘ writerPair, cs‘writer‘writerSlot) = as‘vals‘seq(0) A
(cs‘writerChangedPairNI =
as‘vals‘length > 1 A
cs‘pairReading = cs‘pairWritten A
- cs‘pairWritten = cs‘writer‘writerPair A
cs*slots(cs‘pairWritten, cs‘slotWritten(cs*pairWritten)) = as'vals‘seq(1)) A

(- cs‘writerChangedPairNl = cs‘pairWritten = cs‘writer‘writerPair) A
as‘vals‘length > 1) A

The third part of the retrieve relation relates the states of the two models
when only the reader is accessing the ACM. The program counters will be
equal to rip and wcp, and all of the local variables will be equal to the
relevant control variables (in the reader’s case, because it has indicated the
pair it is reading from during startRd). The sequence must be of length at
least 1, the last item written will be at the head of the sequence and there
will be an item on the sequence equivalent to the one that the reader has
chosen to read in the model of the implementation.

(as‘readerAccess A — as‘writerAccess =



191

cs‘nri = rd A
cs‘nwi = wep A
cs‘pairWritten = cs‘writer‘writerPair A
cs‘writer ‘writerSlot = cs‘slotWritten(cs‘writer writerPair) A
cs‘reader ‘readerPair = cs‘pairReading A
cs‘slots(cs ‘ writer ‘writerPair, cs‘writer‘writerSlot) = as‘vals‘seq(0) A
(3 (i: nat):
i < ag‘vals‘length A
cs‘slots(cs ‘reader ‘readerPair, cs‘reader ‘readerSlot) = as‘vals‘seq(i) A
as‘vals‘length > 1)) A

The final part of the retrieve relation relates the states in the two models
when the reader and writer are both accessing the mechanism. This is
effectively a combination of the two parts where only one of the reader and
writer processes is accessing the mechanism. The program counters will
be equal to rd and wip, the local variable writerSlot will be equal to the
relevant element of slotWritten, the local variable readerPair will be equal
to pairReading, and item written by the current write will be on the head of
the sequence. If the writer has changed pairs the local variable writerPair
will not be equal to the control variable pairWritten, the control variables
pairReading and pair Written will be equal, the item written by the last write
will be the second on the sequence, the sequence will be of length greater
than 1, and there will be an item on the sequence which is equal to the item
chosen by the reader in the implementation. If the writer has not changed
pairs the writer local variable writerPair will be equal to the control variable
pair Written, there will be an item on the sequence equal to the one chosen
by the reader in the model of the implementation and the sequence length
will be at least 1.

(as‘readerAccess A as‘writerAccess =
cs‘ori = rd A
cs‘nwi = wip A
cs‘writer ‘writerSlot = cs‘slotWritten(cs* writer ‘writerPair) A
cs‘reader ‘readerPair = cs‘pairReading A
cs‘slots(cs‘ writer ‘ writerPair, cs‘writer‘writerSiot) = as‘vals‘seq(0) A
(cs‘writerChangedPairNl =
as‘vals‘length > 1 A
cs‘pairReading = cs‘pairWritten A
— cs‘pairWritten = cs‘writer‘writerPair A
cs*slots(cs pairWritten, cs*slotWritten(cspairWritten)) = as‘vals‘seq(1) A
(2 (i: natd): ¢ > 0 A
¢ < as‘vals‘length A
cs‘slots(cs‘reader ‘readerPair, cs‘reader‘readerSlot) = as‘vals‘seq(i))) A
(- cs‘writerChangedPairNI =
cs‘pairWritten = cs‘writer ‘writerPair A
(3 (4: nat):
i < as‘vals‘length A
cs ‘slots(cs ‘reader ‘readerPair, cs‘reader‘readerSiot) = as‘vals‘seq(i)))
A as‘vals‘length > 1)

The PVS encoding of the proof obligations: first the domain proofs; that if
the pre-condition for an operation holds in the abstract model the equivalent
pre-condition will also hold in the model of the implementation.



192

dom_start_write: THEOREM
V (cs: Conc.State, as: Abs.State):
R(as, cs) A prestart_write(as) = pre_startWr(cs)

dom_end_write: THEOREM
V (c8: Conc_State, as: Abs State):
R(as, cs) A pre.end_write(as) = pre_endWr(cs)

dom_start_read: THEOREM
V (c8: Conc_State, as: Abs State):
R(as, cs) A prestart_read(as) => pre.startRd(cs)

dom._end_read: THEOREM
V (cs: Conc-State, as: Abs State):
R(as, cs) A pre.end read(as) = pre_endRd(cs)

The result proof obligations. If it is possible to relate states in the two mod-
els using the retrieve relation, and the pre-condition holds for the operation
in the abstract model, then if the operation in the implementation (that is
equivalent to abstract operation for which the pre-condition is enables) is
executed; it is possible to find a state in the abstract model, such that it is
possible to execute the equivalent operation in the abstract model and the
retrieve relation holds between this state and the target state of the transi-
tion associated with operation executed in the model of the implementation.
res_start_read: THEOREM
V (cs, csl: Conc_State, as: Abs_State):

R(as, cs) A prestart_read(as) A poststartRd(cs)(csl) =
(3 (asl: Abs_State): R(asl, csl) A post_start._read(as)(asl))

res_end_read: THEOREM
¥V (cs, csl: Conc.State, as: Abs_State, v: Val):
R(as, cs) A preendread(as) A post_endRd{(cs)(csl, v) =
(3 (asi: Abs_State): R(asl, csl) A post_end.read(as)(asl, v))

res_start_write: THEOREM
V (cs, csl: Conc_State, as: Abs_State):
R(as, cs) A prestart_write(as) A poststartWr(cs)(csl) =
(3 (asl: Abs_State): R(asl, csl) A post.start_write(as)(asl))

res_end_write: THEOREM
V (cs, csl: Conc_State, as: Abs.State):
R(as, cs) A pre.end_write(as) A post_endWr(cs)(csl) =
(3 (asl: Abs_State): R(asl, csl) A postend-write(as)(asl))

END Retrieve



Appendix G

Proof of Coherence

The model of the 4-slot implementation given in this appendix is the same as
the one given in Appendix D, except that there are a number of additional
auxiliary variables. These additional variables are required to verify that
the ACM transmits coherent data between its reader and writer, when the
reader and writer operations are executed atomically, but can interleave
in an unrestricted manner, using a compositional proof method for shared
variable concurrency, based on the rely-guarantee method given in [dR*01].

FOURSLOT: THEORY
BEGIN

The ACM transmits data items, consisting of a value and an index number,
between its reader and writer.

Val: NONEMPTY_TYPE

Data: TYPE = [# index: nat, val: Val #]

Types to represent the names of the pairs and slots in the ACM.

PairIndex: TYPE = {po, p1}

Slotlndex: TYPE = {sp, $1}
The program counters, which record the next operation (instruction) to be
executed by the reader and writer.

NextReadlnstruction: TYPE = {firstRcp, rcp, rip, res, rd}

NextWritelnstruction: TYPE = {firstWcp, wcp, wes, wr, wis, wip}
Types to record the current locations of the reader and writer in their re-
spective assertion networks.

ReaderNetworkState: TYPE = {sr, Irl, Ir2, Ir3, Ir4, tr}

WriterNetworkState: TYPE = {sw, lwl, lw2, w3, lw4, Iw5, tw}

193



194

The local state of the writer, which has an auxiliary variable. currentState.
to record its current location in its assertion network.

WriterState: TYPE =

[# writerPair: Pairlndex,

writerSlot: Slotlndex,
currentState: WriterNetworkState #]

The local state of the reader, which also has an auxiliary variable to record
its location in its assertion network.

ReaderState: TYPE =

[# readerPair: Pairlndex,

readerSlot: Slotlndex,
currentState: ReaderNetworkState #]

The state of the ACM, which has auxiliary variables called wisOccurred
and rcsSince Wis, which are used to reason about the ordering of the writer
operation writerIndicatesSlot and the reader operation readerChoosesSlot.
This ordering can affect the slot that the reader accesses during a particular
read. It also introduces the auxiliary variable mazFresh, which is used in
the proof of atomicity (which will be described in Appendix H).
Conc_State: TYPE =
[# pairWritten: Pairlndex,
slotWritten: [Pairlndex — Slotindex],
lastSlotWritten: [Pairlndex — Slotindex],
pairReading: Pairindex,
slots: [Pairindex, Slotlndex — Data),
nri: NextReadlnstruction,
nwi: NextWritelnstruction,
writer: WriterState,
reader: ReaderState,
wisOccurred: bool,

rcsSinceWis: bool,
maxFresh: nat #]

Each of the operations implements one of the actions of the 4-slot algo-
rithm, from Table 3.4, for either the reader or the writer, and sets the
program counter equal to the next operation to be executed (for example
readerChoosesPair sets nri equal to rip - readerIndicatesPair which is the
next operation the reader will execute). The operations also set the current
state of the reader, or writer, to the next state in their respective assertion
networks.

The initial readerChoosespair operation is executed once at start up.
The readerChoosesPair operation is identical, but is executed during each
read after the first one. These operations choose the pair of slots in the
mechanism that the reader is going to access during the current read.

prefirstReaderChoosesPair(p: Conc_State): bool = p‘nri = firstRcp

post_firstReaderChoosesPair(p: (pre-firstReaderChoosesPair)) (prot: Conc.State): bool =
prot = p wiTH [nri := rip,



195

reader := p‘reader WITH [readerPair := p‘pairWritten,
currentState := Ir1]]

firstReaderChoosesPair:
[p: (prefirstReaderChoosesPair) — (post_ﬁrstReaderChoos&Pair(p))]

pre_readerChoosesPair(p: Conc State): bool = p‘nri = rep
post._readerChoosesPair(p: (pre_readerChoosesPair)) (prot: Conc_State): bool =
prot = p WITH [nri := rip,
reader := p‘reader WiTH ([readerPair := p'pairWritten,

currentState := Irl]]

readerChoosesPair:
[p: (prereaderChoosesPair) — (post_readerChoosesPair(p))]

pre_readerindicatesPair(p: Conc_State): bool = p‘nri = rip

post_readerindicatesPair(p: (pre_readerindicatesPair))(prot: Conc_State): bool =

prot = p wiTH [ori := rcs,
pairReading := p‘reader‘readerPair,
reader := p‘reader WITH [currentState := 1r2]]

readerIndicatesPair sets the control variable pairReading equal to the pair
the reader is accessing.

readerIndicatesPair:
[p: (prereaderlndicatesPair) — (post_readerindicatesPair(p))]

pre_readerChoosesSlot (p: Conc_State): bool = p‘nri = rcs

post.readerChoosesSlot(p: (pre_readerChoosesSlot)) (prot: Conc._State): bool =
prot = p WITH [nori := rd,
reader := p‘reader wiITH [readerSlot :=
p ‘slotWritten(p ‘reader ‘readerPair), currentState := Ir3],
rcsSinceWis := TRUE]

The readerChoosesSlot operation chooses the slot the reader is going to
access - by setting readerSlot equal to the value of the element of the
slotWritten array for the pair the reader is accessing. It also sets the auxil-
iary variable resSinceWis to true. This variable is used, with the auxiliary
variable wisOccurred, to help decide whether the reader accesses the slot he
writer has just accessed during the current write (when a read and write
occur concurrently and the reader and writer access the same pair of slots)
as described in Section 6.3.3.

readerChoosesSlot :
[p: (prereaderChoosesSlot) — (post_readerChoosesSlot(p))]

prexead(p: Conc_State): bool = p‘nri = rd
post_read(p: (preread))(prot: Conc_State, v: Val): bool =

v = p°‘slots(p‘reader ‘readerPair, p‘reader‘readerSlot)‘val A
prot = p WITH [nri := rcp, reader := p‘reader wiTH [currentState := lr4]]

During the read operation the reader accesses the chosen slot and returns
the value read.



196

read: [p: (preread) — (post_read(p))]

The firstWriterChoosesPair and writerChoosesPair operations are identical.
but first WriterChoosesPair is executed once at start up and writerChoosesPair
is executed thereafter. The operations set the pair the writer is going to ac-

cess (writerPair) equal to the opposite to the one the reader last indicated
it was accessing (pairReading).

pre_first WriterChoosesPair(p: Conc_State): bool = p‘nwi = firstWep

post_first WriterChoosesPair (p: (pre_first WriterChoosesPair)) (prot: Conc_State): bool =
(p‘pairReading = pg =
prot = p WITH [nwi := wcs,
writer := p‘writer wiTH [writerPair := p1, currentState := lwi],
maxFresh := p‘maxFresh + 1]) A
(p‘pairReading = p; =>
prot = p WITH [nwi := wcs,
writer := p‘writer wiTH [writerPair := py, currentState := Iwl],
maxFresh := p‘maxFresh + 1])

first WriterChoosesPair:
[p: (prefirstWriterChoosesPair) — (post_firstWriterChoosesPair(p))]

pre_writerChoosesPair(p: Conc_State): bool = p‘nwi = wcp

post_writerChoosesPair(p: (pre_writerChoosesPair)) (prot: Conc_State): bool =
(p‘pairReading = po =

prot = p WITH [nwi := wcs,
writer := p‘writer WITH [writerPair := p;, currentState := lwl],
maxFresh := p‘maxFresh +1,
wisOccurred := FALSE]) A

(p‘pairReading = p, =

prot = p WITH [nwi := wcs,
writer := p‘writer wiTR [writerPair := pg, currentState := lwl],
maxFresh := p‘maxFresh + 1,
wisOccurred := FALSE])
writerChoosesPair:

[p: (pre_writerChoosesPair) — (post_writerChoosesPair(p))]

The writerChoosesSlot operation chooses the slot the writer is going to access
during the write operation. The writer chooses the opposite slot, in the pair
it is accessing, to the one it accessed during the last write.

pre-writerChoosesSlot (p: Conc_State): bool = p‘nwi = wcs

post-writerChoosesSlot(p: (pre-writerChoosesSlot)) (prot: Conc_State): bool =
(p ‘slotWritten(p * writer ‘writerPair) = sp =

prot = p WITH [nwi := wr, writer := p‘writer
wITH [writerSlot := s, currentState := 1w2]]) A
(p‘slotWritten(p ‘writer ‘writerPair) = s1 =
prot = p WITH [nwi := wr, writer := p‘writer
wITH [writerSlot := sg, currentState := 1w2]])

writerChoosesSlot :
[p: (pre_writerChoosesSlot) — (post_writerChoosesSlot(p))]

The write operation adds the new item to the slot that the writer has chosen
to access.



pre_write(p: Conc_State): bool = p‘nwi = wr
write_parameter: TYPE = [# p;: (pre_write), v: Val #]
post_write(p: write.parameter) (prot: Conc_State): bool =
prot = p‘p1 WITH [nwi := wis,
(slots) (p‘ p; ‘ writer ‘writerPair, p‘p1 ‘writer‘writerSiot)
:= (# index := p‘p; ‘maxFresh, val := p‘v 8),
writer := p‘p; ‘writer WITE [currentState := lw3]]

write: [p: write_parameter — (post_write(p))]
writerIndicatesSlot sets the appropriate element of the slotWritten array

equal to the slot that the writer has just accessed during the write operation
for the pair it is accessing.

pre_writerIndicatesSlot (p: Conc_State): bool = p‘nwi = wis

post_writerIndicatesSlot(p: (pre_writerlndicatesSlot))(prot: Conc_State): bool =

prot = p wiTH [nwi := wip,
(slotWritten) (p‘ writer ‘writerPair) := (p‘writer‘writerSlot),
writer := p‘writer WITH [currentState := lw4],
wisOccurred := TRUE,
rcsSinceWis := FALSE]

writerIndicatesSlot :
[p: (pre_writerIndicatesSlot) — (post_writerIndicatesSlot(p))]

The writerIndicatesPair operation sets the pair Written control variable equal
to the pair that the writer has accessed during the current write (equal to
the writer local variable writerPair).

pre.writerindicatesPair(p: Conc_State): bool = p‘nwi = wip

post_writerindicatesPair(p: (pre_writerlndicatesPair))(prot: Conc_State): bool =
prot = p WITH [nwi := wcp,
pairWritten := p‘writer‘ writerPair,
writer := p‘writer WITH [currentState := Iw5]]

writerIndicatesPair:
[p: (pre_writerIndicatesPair) — (post_writerlndicatesPair(p))]

The initialisation operations for the model. The reader and writer both
start in the initial locations of their respective assertion networks but their
remaining initialisation values are unimportant, because the components
both choose a pair and slot to access before they access the ACM on each
occasion. In the case of the ACM itself one slot is initialised with an initial
value, and the pairWritten and slot Written control variable are set to point
to this slot.

init_writer(w: WriterState): bool =
w = w WITE [writerPair := pg, writerSlot := sy, currentState := sw]

init_reader(r: ReaderState): bool =
r = r wWITH [readerPair := p;, readerSlot := s, currentState := sr]

init_data(init_data: Data, init_val: Val): bool =



198

init.data = init.data wiTe [index := 0, val := init_val]

init_prot(p: Conc_State, init_data: Data, w: WriterState, r: ReaderState): bool =
p = p WITH [pairWritten := po,
slotWritten := ((A - (pg: Pairlndex): sp),
pairReading := py,
slots := ((A - (po: Pairindex, sg: Slotindex): init_data),
nri := firstRcp,
nwi := firstWcep,
writer := w,
reader := r,
wisOccurred := FALSE,
rcsSinceWis := FALSE,
maxFresh := 0]

The assertions for the reader and writer assertion networks are given and
described below. It is not necessary to make any assertions in the locations
in the reader network where the reader is about to execute
firstReaderChoosesPair, readerChoosesPair or readerIndicatesPair, since the
relationship between the control variables in the mechanism and the reader
local state that is required to verify coherence is established by the
readerIndicatesPair and readerChoosesSlot operations.

First when the reader is about to execute the readerChoosesSlot opera-
tion the control variable pairReading will be equal to the reader local variable
pairReading.

readerChoosesSlot.Assertion: [Conc_State — booll =

(A - (cs: Conc_State):
cs‘nri = rcs = cs‘pairReading = cs‘reader‘readerPair

When the reader is about to execute the read operation it has already indi-
cated the pair it is going to access, so the reader local variable readerPair
is equal to the control variable pairReading. The remainder of the assertion
is required to establish that the reader accesses a different slot to the writer
when they are both accessing the same pair of slots at the same time: if
they are accessing different pairs they are, by definition, accessing different
slots. If the writer starts a new write when the reader is about to read
the data from the ACM, the writer will change pairs, since the reader has
already indicated the pair of slots it is going to read. It is, therefore, only
necessary to reason about the relationship between the control variables and
the reader local variables when the reader and writer are accessing the same
pair of slots in the mechanism. There are three different cases to consider:

1. If the writer has not yet indicated the slot is is going to access
(wisOccurred = false), the the reader local variable readerSlot will be
equal to the element of the slot Written array for the pair the reader is
accessing (since the reader’s last action was to choose the slot it was
going to access in its current pair).



199

2. If the writer has indicated the slot it is using during the current write
and the reader chose its slot before the writer executed
writerIndicatedSlot (wisOccurred = true A rcsSinceWis = false) the
reader will access the opposite slot to the writer (since the writer
chooses the opposite slot to the one it accessed the last time in the
current pair, and the reader chooses to read from the slot the writer
indicated it accessed the during the last write).

3. If the reader chooses the slot it is going to access after the writer
executes writerIndicatesSlot (wisOccurred = trueArcsSince Wis = true)
it will access the slot the writer has written data to during the current
write. This is fine, because the writer has finished accessing the slot
to write the data before it executes writerIndicatesSlot. In a sense
the reader manages to read the item of data before it has been fully
released by the writer.

read_Assertion: [Conc_State — bool]l =
(A - (cs: ConcState):
cs‘nri = rd =
cs‘pairReading = cs‘reader‘readerPair A
(cs‘reader‘readerPair = cs‘writer ‘writerPair =>
(- cs‘wisOccurred = cs‘reader‘readerSlot = cs‘slotWritten(cs‘reader‘readerPair)) A
(cs*wisOccurred =
(cs‘resSinceWis = cs‘reader‘readerSlot = cs‘slotWritten(cs‘reader ‘readerPair)) A
(— c¢s‘rcsSinceWis =
- cs'‘reader‘readerSlot =
cs‘slotWritten(cs‘reader ‘readerPair))))

When the writer is about to execute firstWriterChoosesPair and
writerChoosesSlot it is only necessary to assert that it has not yet indicated
the pair it is accessing during the write (= wisOccurred).

first WriterChoosesPair_Assertion: [Conc._State — bool]l =
(A - (cs: ConcState): cs‘nwi = firstWcp = - cs‘wisOccurred

writerChoosesSlot_Assertion: [Conc.State — bool] =
(A - (cs: ConcState): cs‘nwi = wes = — cs‘wisOccurred

When the writer is accessing the data slot in the ACM , and before it executes
writerIndicatesSlot it has chosen to access the opposite slot to the one it
accessed during the last write in the pair it is currently accessing. It has not
yet executed writerIndicatesSlot, so wisOccurred is still false.

write_Assertion: [Conc_State — booll =
(A - {(cs: Conc_State):
cs‘nwi = wr =
— cs‘wisOccurred A
— cs‘writer ‘writerSlot = cs‘slotWritten (cswriter ¢ writerPair)

writerIndicatesSlot_Assertion: [Conc-State — booll =
(A - (cs: Conc State):
cs‘nwi = wis =
- cs‘wisOccurred A
~ cs*writer‘writerSlot = cs‘slotWritten (cs ‘ writer ‘ writerPair)



200

When the writer is about to execute writerIndicatesPair it has executed
writerIndicatesSlot and the local variable slot Written is equal to the element
of the slotWritten array relating to the pair of slots the writer is accessing.
writerIndicatesPair_Assertion: [Conc_State — bool] =
(A - (cs: Conc_State):
cs‘nwi = wip =
cs‘wisOccurred A
cs‘writer ‘writerSlot = cs‘slotWritten (cs*writer ‘ writerPair)

The proof obligations follow. The first is to show that the initialisation of the

ACM establishes the firstWriterChoosesPair assertion There is no assertion

for firstReaderChoosesPair so there is no equivalent proof for the reader.
vc_initWriter: THEOREM

V (cs: Conc_State, init: Data, w: WriterState, r: ReaderState):
init_prot(cs, init, w, r) = firstWriterChoosesPair_Assertion (cs)

The first proof obligation for each of the remaining locations in the reader
and writer networks (vcl_op_name) is to establish for each transition in the
respective networks that:

1. If the assertion in the start location of the transition associated with
each operation holds, and the transition is enabled, that the assertion
in the target location of the transition will hold after executing the
operation that is associated with the transition. In the case of the four
slot the guards for each of the transitions is effectively true i.e. the
transition is enabled whenever the component is in the start location
of the transition (since the pre-condition for the operation is simply
that the program counter for the component is such that the operation
is to be executed next).

2. That each of the components does not interfere with the assertions in
the network of the other component e.g. if the assertions in the loca-
tions of the network of the other component hold before the operation
is executed, they will still hold after the operation is executed.

This requires the following proof obligation to be completed for every loca-

tion in the network of the writer: vcl_op_name
Vesl, cs2: Conc_State -
pre_start_writer _op_name(csl) A
start_writer_op_name_Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
read_Assertion(cs1) A post_writer _op_name(csl, cs2) =
cs2.nwi = targetLocationInstruction A
target_writer _op_name_Assertion(cs2) A

readerChoosesSlot _Assertion(cs2) A



201

read_Assertion(cs2)
Similarly the following proof obligation must be completed for every location
in the network of the reader:
vcl_op_name
Vesl, es2: Conc_State -
pre_start_reader_op_name(csl) A
start_reader_op_name_Assertion(csl) A
firstWriterChoosesPair _Assertion(cs1) A
writerChoosesSlot_Assertion(cs1) A
write_Assertion(csl) A
writerIndicatesSlot _Assertion(csl) A
writerIndicatesPair _Assertion{csl) A
post_reader_op_name(csl, cs2) =
cs2'nri = targetLocationInstruction A
target_reader_op_name_Assertion(cs2) A
firstWriterChoosesPair _Assertion(cs2) A
writerChoosesSlot _Assertion(cs2) A
write_Assertion(cs2) A
writerIndicatesSlot _Assertion(cs2) A
writerIndicatesPair _Assertion(cs2)

vcl first WriterChoosesPair: THEOREM
V (csl, cs2: Conc_State):
pre_firstWriterChoosesPair(cs1) A
first WriterChoosesPair.Assertion(csl) A
(readerChoosesSlot_Assertion(csl)) A
(read_Assertion(csi)) A ¢s2 = firstWriterChoosesPair(csl) =
cs2‘nwi = wes A
(writerChoosesSlot_Assertion(cs2)) A
(readerChoosesSlot_Assertion(cs2)) A (read-Assertion(cs2))

vcl._writerChoosesPair: THEOREM
V¥ (csl, cs2: Conc_State):
pre_writerChoosesPair(csl) A
(readerChoosesSlot_Assertion(csl)) A (read.Assertion(csl)) A cs2 = writerChoosesPair(csl) =
cs2‘nwi = wes A
(writerChoosesSlot_Assertion(cs2)) A
(readerChoosesSlot.Assertion(cs2)) A (read_Assertion(cs2))

vcl.writerChoosesSlot_lwl: THEOREM
V (csl, cs2: Conc.State):
pre_writerChoosesSlot (cs1) A
(writerChoosesSlot_Assertion(cs1)) A
(readerChoosesSlot_Assertion(csl)) A (read_Assertion(csl)) A cs2 = writerChoosesSlot(csl) =
cs2'nwi = wr A
(write_Assertion(cs2)) A
(readerChoosesSlot_Assertion(cs2)) A (read_Assertion(cs2))

vcl_write_lw2: THEOREM
V (w: write_parameter, cs2: Conc_State):
pre.write(w‘py) A
(write_Assertion(w*p;)) A
(readerChoosesSlot_Assertion(w*‘p;)) A (read_Assertion(w‘p1)) A cs2 = write(w) =
cs2‘nwi = wis A



cs2‘slots(cs2‘writer ‘ writerPair, cs2‘writer* writerSlot) ‘val
(writerIndicatesSlot_Assertion(cs2)) A
(readerChoosesSlot_Assertion(cs2)) A (read_Assertion (cs2))

= w'y A

vcl.writerIndicatesSlot.lw3: THEOREM
V (csl, cs2: Conc_State):
pre_writerIndicatesSlot (cs1) A
(writerIndicatesSlot_Assertion(csl)) A
(readerChoosesSlot_Assertion(csl)) A
(read_Assertion(cs1)) A cs2 = writerlndicatesSlot(csl) =
cs2‘nwi = wip A
(writerIndicatesPair_Assertion{cs2)) A
(readerChoosesSlot_Assertion(cs2)) A (read_Assertion(cs2))

vcl_writerIndicatesPair.lw4: THEOREM
V (cs1l, cs2: Conc-State):
pre_writerIndicatesPair(csl) A
(writerIndicatesPair._Assertion(csl)) A
(readerChoosesSlot_Assertion(csl)) A
(read-Assertion(csl)) A cs2 = writerIndicatesPair(csl) =
cs2‘nwi = wep A
(readerChoosesSlot_Assertion(cs2)) A (read-Assertion(cs2))

vcl firstReaderChoosesPair: THEOREM
V (csl, c¢s2: Conc.State):
prefirstReaderChoosesPair (cs1) A
first WriterChoosesPair_Assertion(csl) A
(writerChoosesSlot_Assertion{csl)) A
(write_Assertion(csl)) A
(writerIndicatesSlot_Assertion(csl)) A
(writerIndicatesPair_Assertion(csl)) A ¢s2 = firstReaderChoosesPair(csl) =
cs2‘nri = rip A
first WriterChoosesPair_Assertion(cs2) A
(writerChoosesSlot_Assertion{(cs2)) A
(write_Assertion(cs2)) A
(writerIndicatesSlot.Assertion(¢s2)) A
(writerIndicatesPair_Assertion(cs2))

vcl_readerChoosesPair: THEOREM
V (csl, cs2: Conc_State):
pre.readerChoosesPair(csl) A
firstWriterChoosesPair_Assertion(csl) A
(writerChoosesSlot_Assertion(csl)) A
(write-Assertion(csl)) A
(writerIndicatesSlot.Assertion(csl)) A
(writerIndicatesPair_Assertion(cs1)) A cs2 = readerChoosesPair(csl) =
cs2‘nri = rip A
first WriterChoosesPair_Assertion(csl) A
(writerChoosesSlot_Assertion{cs2)) A
(write_Assertion(cs2)) A
(writerIndicatesSlot.Assertion(cs2)) A
(writerIndicatesPair_Assertion(cs2))

vcl.readerlndicatesPair: THEOREM
Vv (csl, cs2: Conc_State):
pre.readerlndicatesPair(csl) A
firstWriterChoosesPair_Assertion(csl) A
(writerChoosesSlot_Assertion{csl)) A
(write_Assertion(csl)) A
(writerIndicatesSlot_Assertion(csl)) A
(writerIndicatesPair.Assertion(cs1)) A ¢s2 = readerIndicatesPair{(csl) =
cs2'nri = rcs A
readerChoosesSlot _Assertion(cs2) A
first WriterChoosesPair_Assertion(cs2) A



203

(writerChoosesSlot_Assertion{cs2)) A
(write_Assertion(cs2)) A
(writerIndicatesSlot_Assertion(cs2)) A
(writerIndicatesPair_Assertion(cs2))

vcl.readerChoosesSlot: THEOREM
V (csl, c¢s2: Conc_State):
pre_readerChoosesSlot{csl) A
(readerChoosesSlot_Assertion{cs1)) A
first WriterChoosesPair_Assertion(csl) A
(writerChoosesSlot_Assertion(csl)) A
(write_Assertion{csl)) A
(writerIndicatesSlot_Assertion(csl)) A
(writerlndicatesPair_Assertion(cs1)) A cs2 = readerChoosesSlot(csl) =
cs2‘nri = rd A
cs2‘rcsSinceWis A
read_Assertion(cs2) A
first WriterChoosesPair_Assertion (cs1) A
(writerChoosesSlot_Assertion (cs2)) A
(write_Assertion(cs2)) A
(writerlndicatesSlot_Assertion(cs2)) A
(writerindicatesPair_Assertion (cs2))

vcl_read: THEOREM
V (csl, cs2: Conc_State, v: Val):
pre_read(csl) A
(read_Assertion(csl)) A
first WriterChoosesPair_Assertion{csl) A
(writerChoosesSlot_Assertion(cs1)) A
(write_Assertion{csl)) A
(writerIndicatesSlot_Assertion(csl1)) A
(writerIndicatesPair.Assertion(cs1)) A v = read(csl)‘2 A cs2 = read(csl)‘l =
cs2‘nri = rep A
first WriterChoosesPair_Assertion(cs2) A
(writerChoosesSlot_Assertion(cs2)) A
(write_Assertion(cs2)) A
(writerIndicatesSlot_Assertion(cs2)) A
(writerIndicatesPair_Assertion(cs2))

The remaining proof obligations are first to show that the required guaran-
tee condition holds in the start location for each transition. In this case it
follows immediately that the guarantee condition for the ACM holds since
it is identical to the guarantee condition for each of the transitions. In the
case of the write the following proof obligations must be discharged:
ve2.op_name
Yesl : Conc_State -
pre_start_writer_op_name(csl) A
start_writer _op_name_Assertion(csl) A
readerChoosesSlot_Assertion(cs1) A
read _Assertion(csl) =
(esl.nri = rd A csl.nwi = wr =
(— csl.reader.readerPair = csl.writer. writerPair V
= csl.writer.writerSlot = csl.reader.readerSlot))

It is also necessary to show that the guarantee condition holds in the target
location of the transition, as follows:



204

vc3_op_name
Vesl, cs2: Conc_State -
pre_start_writer _op_name(csl) A
start_writer _op_name_Assertion(csl) A
readerChoosesSlot_Assertion(esl) A
read -Assertion(csl) A
post_writer _op_name(csl, cs2) =
(c82.nri = rd A cs2.nwi = wr =
(— cs2.reader .readerPair = c¢s2.writer.writerPair V
— cs2.writer.writerSlot = cs2.reader.readerSlot))
Similarly, for the reader, the following two proof obligations must be dis-
charged:
vc2_op_name
Vsl : Conc_State -
pre_start_reader _op_name(csl) A
start_reader_op_name_Assertion(csl) A
first WriterChoosesSlot _Assertion(cs1) A
writerChoosesSlot_Assertion(csl) A
writerChoosesSlot _Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot _Assertion(csl) A
writerIndicatesPair _Assertion(csl) =
(csl.nri = rd A csl.nwi = targetLocationInstruction =
(- csl.reader.readerPair = csl.writer. writerPair V
- csl.writer.writerSlot = csl.reader.readerSlot))
vc3_op_name
Vesl, es2: Conc_State -
pre_start_reader_op_name(csl) A
start_reader_op_name_Assertion(csl) A
first WriterChoosesPair _Assertion(csl) A
writerChoosesSlot _Assertion(csl) A
write_Assertion(cs1) A
writerIndicatesSlot_Assertion(csl) A
writerIndicatesPair _Assertion(cs1) A
post_reader_op_name(csl, cs2) =
(cs2.nri = rd A cs2.nwi = wr =
(— cs2.reader.readerPair = cs2.writer.writerPair V
— ¢s2.writer.writerSlot = cs2.reader.readerSlot))

vc2_firstWriterChoosesPair: THEOREM
V (csl: Conc_State):
(pre_first WriterChoosesPair(cs1)) A
first WriterChoosesPair_Assertion(csl) A



205

(readerChoosesSlot_Assertion(cs1)) A
(read_Asgertion(csl)) =

(csl‘nri = rd A c8l‘nwi = wr =
(- csl‘reader ‘readerPair = csl‘writer ‘writerPair) v
(- csl‘reader‘readerSlot = csl‘writer‘writerSlot))

ve3_first WriterChoosesPair: THEOREM
V (csl, cs2: Conc_State):
pre_firstWriterChoosesPair(csl) A
first WriterChoosesPair_Assertion(cs1) A
cs2 = firstWriterChoosesPair(csl) A
(readerChoosesSlot_Assertion(cs2)) A
(read_Assertion(cs2)) =
(cs2‘nri = rd A ¢s2'owi = wr =
({(— cs2‘reader‘readerPair = cs2‘writer‘writerPair) v
(= cs2‘reader‘readerSlot = cs2*writer‘writerSlot)))

vc2.writerChoosesPair: THEOREM
V (csl: Conc_State):
(pre_writerChoosesPair(cs1)) A (readerChoosesSlot_Assertion(csl)) A
(read_Assertion(csl)) =
(csl‘nri = rd A csl‘nwi = wr =
(- csl‘reader‘readerPair = csl‘writer’writerPair) Vv
(- csl‘reader‘readerSlot = csl‘writer‘writerSiot))

vc3_writerChoosesPair: THEOREM
V (csl, cs2: Conc_State):
pre_writerChoosesPair(csl) A
¢s2 = writerChoosesPair(csl) A (readerChoosesSlot_Assertion(cs2)) A
(read_Assertion(cs2)) =
(cs2‘nri = rd A cs2‘nwi = wr =
((— cs2reader‘readerPair = cs2‘writer‘writerPair) v
(- c¢s2‘reader‘readerSlot = cs2‘writer‘writerSlot)))

vc2_writerChoosesSlot: THEOREM
V (csl: Conc_State):
pre_writerChoosesSlot (cs1) A
(writerChoosesSlot_Assertion(csl)) A
(readerChoosesSlot _Assertion(cs1)) A (read_Assertion(csl)) =
(csl‘nri = rd A cslnwi = wr =
(- csl‘reader‘readerPair = csl‘writer ‘writerPair) Vv
(- csl ‘reader‘readerSiot = csl‘writer‘writerSlot))

vc3_writerChoosesSlot: THEOREM
V (csl, cs2: Conc_State):
pre_writerChoosesSlot (csl) A
(writerChoosesSlot_Assertion(csl)) A
cs2 = writerChoosesSlot(csl) A (readerChoosesSlot_Assertion(cs2)) A
(read_Assertion(cs2)) =
cs2‘nri = rd A ¢cs2‘nwi = wr =
((— cs2‘reader‘readerPair = cs2‘writer‘writerPair) Vv
(- cs2¢reader‘readerSlot = cs2‘writer ‘writerSlot))

vc2_write_lw2: THEOREM
V (w: write_parameter):
pre_write(w‘p1) A
(write_Assertion{w‘p1)) A (readerChoosesSlot_Assertion(w‘p1)) A
(read_Assertion(w‘p;)) =
(wepy‘ori = rd A w'p ‘nwi = wr =

((—~ w'p) ‘reader‘readerPair = w*‘p, ‘writer‘ writerPair) Vv

(-~ w*p; ‘reader ‘readerSlot = w*p; ‘writer‘writerSlot)))

vc3_writelw2: THEOREM
V (w: write_parameter, cs2: Conc_State):



206

pre_write(w*p;) A
(write_Assertion(w‘p;)) A
cs82 = write(w) A (readerChoosesSlot_Assertion{cs2)) A (read_Assertion(cs2)) =
cs2‘nri = rd A c82‘nwi = wr =
((— cs2‘reader‘readerPair = cs2‘writer‘writerPair) Vv
(- cs2‘reader ‘readerSlot = cs2“writer‘writerSlot))

ve2_writerIndicatesSlot lw3: THEOREM
Vv (csl: Conc_State):
pre-writerlndicatesSlot(csl) A
(writerIndicatesSlot_Assertion(csl)) A
(readerChoosesSlot_Assertion{csl)) A (read.Assertion(csl)) =
(csl‘nri = rd A cslfnwi = wr =
((— csl ‘reader ‘readerPair = csl*‘writer*writerPair) v
(- csl‘reader ‘readerSlot = csl‘writer‘writerSlot)))

vc3.writerIndicatesSlot_lw3: THEOREM
V (csl, cs82: Conc_State):
pre_writerlndicatesSlot(csl) A
(writerIndicatesSlot_Assertion{csl)) A
cs2 = writerlndicatesSlot (csl) A
(readerChoosesSlot_Assertion(cs2)) A (read.Assertion{cs2)) =
(cs2‘nri = rd A cs2‘nwi = wr =
((— cs2‘reader ‘readerPair = cs2‘writer‘writerPair) v
(- cs2‘reader‘readerSlot = cs2‘writer ‘writerSlot)))

vc2_writerIndicatesPair_cp: THEOREM
V (csl: Conc.State):
pre_writerlndicatesPair(csl) A
(writerlndicatesPair_Assertion(csl)) A
(readerChoosesSlot_Assertion(csl)) A (read-Assertion(csl)) =
(cslori = rd A csl‘nwi = wr =
((— csl'‘reader‘readerPair = csl‘writer‘writerPair) Vv
(- csl‘reader‘readerSlot = csl‘writer‘writerSlot)))

vc3_writerlndicatesPair.cp: THEOREM
V (csl, cs2: Conc_State):

pre_writerIndicatesPair(cs1) A
(writerIndicatesPair_Assertion(csl)) A

cs2 = writerIlndicatesPair(csl) A

(readerChoosesSlot_Assertion(cs2)) A (read_Assertion(cs2)) =
(cs2'nri = rd A cs2‘nwi = wr =

((— cs2‘reader ‘readerPair = cs2‘writer‘writerPair) Vv

(- cs2‘reader ‘readerSlot = cs2*‘writer‘writerSlot)))

vc2_firstReaderChoosesPair: TEREOREM
Vv (csl: Conc.State):
prefirstReaderChoosesPair{(cs1) A
first WriterChoosesPair_Assertion(cs1) A
(writerChoosesSlot_Assertion(csl)) A
(write_Assertion(csl)) A
(writerIndicatesSlot_Assertion(csl)) A (writerlndicatesPair_Assertion(csl)) =
(csl‘nri = rd A cslfowi = wr =
(— csl‘reader‘readerPair = csl‘writer‘writerPair) Vv
(— csl‘reader‘readerSlot = csl‘writer‘ writerSlot))

vc3_firstReaderChoosesPair: THEOREM
V (csl, cs2: Conc_State):
prefirstReaderChoosesPair(csl) A
cs2 = firstReaderChoosesPair(csl) A
firstWriterChoosesPair_Assertion(csl) A
(writerChoosesSlot_Assertion(cs2)) A
(write_Assertion(cs2)) A
(writerIndicatesSlot_Assertion(cs2)) A (writerindicatesPair_Assertion(cs2)) =



207

(cs2'nri = rd A ¢cs2‘nwi = wr =
((~ cs2‘reader‘readerPair = ¢s2*writer‘writerPair) Vv
(- cs2‘reader‘readerSlot = cs2°writer‘writerSlot)))

vc2_readerChoosesPair: THEOREM
V (csl: Conc_State):
pre_readerChoosesPair(csl) A
first WriterChoosesPair_Assertion (csl) A
(writerChoosesSlot_Assertion{cs1)) A
(write_Assertion(csl)) A
(writerIndicatesSlot_Assertion(csl)) A (writerIndicatesPair_Assertion(csl)) =
(csl‘nri = rd A csl‘owi = wr =
(- csl‘reader‘readerPair = csl‘writer*writerPair) Vv
(— csl‘reader‘readerSlot = csl‘writer‘writerSlot))

vc3_readerChoosesPair: THEOREM
V (csl, cs2: ConcState):
pre.readerChoosesPair(csl) A
cs2 = readerChoosesPair(csl) A
first WriterChoosesPair_Assertion(csl) A
(writerChoosesSlot _Assertion(cs2)) A
(write_Assertion(cs2)) A
(writerIndicatesSlot_Assertion(cs2)) A (writerIndicatesPair_Assertion(cs2)) =
(cs2‘nri = rd A cs2‘nwi = wr =
((— cs2‘reader ‘readerPair = cs2‘writer‘writerPair) Vv
(~ cs2'reader'readerSlot = cs2‘writer‘writerSlot)))

vc2_readerindicatesPair: THEOREM
V (csl: Conc_State):
prereaderlndicatesPair(csl) A
firstWriterChoosesPair_Assertion(csl) A
(writerChoosesSlot_Assertion(csl)) A
(write_Assertion(csl)) A
(writerIndicatesSlot_Assertion(csl)) A (writerIndicatesPair_Assertion(csl)) =>
(cslfnri = rd A csl‘owi = wr =
((— csl‘reader‘readerPair = csl‘writer‘writerPair) Vv
(- csl‘reader‘readerSlot = csl‘writer‘writerSlot)))

vc3_readerlndicatesPair: THEOREM
V (csl, cs2: Conc_State):
pre_readerIndicatesPair(csl) A
cs2 = readerlndicatesPair(csl) A
first WriterChoosesPair_Assertion(csl) A
(writerChoosesSlot_Assertion(cs2)) A
(write.Assertion(cs2)) A
(writerIndicatesSlot.Assertion(cs2)) A (writerindicatesPair_Assertion(cs2)) =
(cs2‘nri = rd A ¢s2'nwi = wr =
((— cs2‘reader‘readerPair = cs2‘writer‘writerPair) Vv
(- cs2‘reader ‘readerSlot = c¢s2‘writer‘ writerSlot)))

vc2_readerChoosesSlot: THEOREM
V (csl: Conc_State):
pre_readerChoosesSlot (cs1) A
(readerChoosesSlot_Assertion(cs1)) A
first WriterChoosesPair_Assertion(csl) A
(writerChoosesSlot_Assertion(csl)) A
(write_Assertion(csl)) A
(writerIndicatesSlot_Assertion(cs1)) A (writerindicatesPair_Assertion(csl)) =
(csl‘nri = rd A cslfnwi = wr =
(— csl‘reader‘readerPair = csl*‘writer ‘writerPair) Vv
(— csl‘reader‘readerSlot = csl‘writer‘writerSlot))

vc3_readerChoosesSlot: THEOREM
V (csl, cs2: Conc_State):



208

pre_readerChoosesSlot(cs1) A
(readerChoosesSiot_Assertion(csl)) A
cs2 = readerChoosesSlot(csl) A
first WriterChoosesPair_Assertion(csl) A
(writerChoosesSlot_Assertion(cs2)) A
(write_Assertion{(cs2)) A
(writerIndicatesSlot_Assertion(cs2)) A (writerIndicatesPair_Assertion(cs2)) =
(cs2‘nri = rd A cs2‘nwi = wr =
(— cs2‘reader‘readerPair = cs2‘writer ‘writerPair) Vv
(— cs2‘reader‘readerSlot = cs2‘writer‘writerSlot))

vc2_read: THEOREM
V (csl: Conc_State):
preread(csl) A
(read_Assertion(csl)) A
first WriterChoosesPair.Assertion(csl) A
(writerChoosesSlot _Assertion(csl)) A
(write.Assertion(csl)) A
(writerIndicatesSlot _Assertion(csl)) A (writerIndicatesPair_Assertion(csl)) =
(cslfnri = rd A csl'owi = wr =
(— csl‘reader‘readerPair = csl‘writer‘writerPair) V
(- csl‘reader‘readerSlot = csl‘writer‘writerSlot))

vc3.read: THEOREM
V (csl, cs2: Conc_State):
preread(csl) A
(read_Assertion(csl)) A
cs2 = read(csl) ‘1l A
first WriterChoosesPair_Assertion(csl) A
(writerChoosesSlot_Assertion{cs2)) A
(write_Assertion(cs2)) A
(writerIndicatesSlot_Assertion(cs2)) A (writerIndicatesPair_Assertion(cs2)) =
(cs2‘nri = rd A cs2'nwi = wr =
(- cs2‘reader‘readerPair = cs2‘writer‘writerPair) V
(— cs2‘readerreaderSlot = cs2‘writer‘writerSlot))

END FOURSLOT



Appendix H
The Freshness Proof

The model of the 4-slot implementation given in this appendix is the same as
the one given in Appendix D, except that there are a number of additional
variables which are required for the verify the ACM transmits fresh data
between its reader and writer. The model has been used to prove that
Simpson’s 4-slot ACM transmits globally fresh data between its reader and
writer, when the reader and writer actions are atomic, but can interleave in
an unrestricted manner. This proof, together with the proof of coherence
from Appendix G is sufficient to prove that the ACM is L-atomic.

FOURSLOT: THEORY
BEGIN

The ACM transmits data items, consisting of a value and an index number,
between its reader and writer.
Val: NONEMPTY_TYPE

Data: TYPE = [# index: nat, val: Val 8]

Types to represent the names of the pairs and slots in the ACM.

Pairindex: TYPE = {po, p1}

Slotindex: TYPE = {sg, s1}
The program counters, which record the next operation (instruction) to be
executed by the reader and writer.

NextReadInstruction: TYpe = {firstRcp, rcp, rip, res, rd}

NextWritelnstruction: TYPE = {firstWcp, wcp, wcs, wr, wis, wip}

Types to record the current locations of the reader and writer in their re-
spective assertion networks.

ReaderNetworkState: TYPE = {sr, Irl, Ir2, Ir3, Ir4, tr}

WriterNetworkState: TYPE = {sw, lwl, lw2, lw3, lw4, lw5, tw}

209



210

The local state of the writer, which has an auxiliary variable, currentState.
to record its current location in its assertion network.

WriterState: TYPE =
{# writerPair: Pairlndex,
writerSlot: Slotlndex,
currentState: WriterNetworkState #]

The local state of the reader, which also has an auxiliary variable to record
its location in its assertion network.

ReaderState: TYPE =
[# readerPair: Pairlndex,
readerSlot: Slotlndex,
currentState: ReaderNetworkState #]

The state of the ACM, which has auxiliary variables called wisOccurred
and rcsSince Wis, which are used to reason about the ordering of the writer
operation writerIndicatesSlot and the reader operation readerChoosesSlot.
This ordering can affect the slot that the reader accesses during a particular
read. It also has auxiliary variables which are used to verify the ACM is
L-atomic (their use is explained before the relevant operations and proofs)
called minFresh, mazFresh, newMazFresh, indezRead and newlndezRead.

Conc_State: TYPE =
[# pairWritten: Pairlndex,
slotWritten: [Pairlndex — SlotIndex],
lastSlotWritten: [Pairlndex — Slotindex],
pairReading: Pairlndex,
slots: [Pairlndex, Slotlndex — Data],
nri: NextReadlnstruction,
nwi: NextWritelnstruction,
writer: WriterState,
reader: ReaderState,
maxFresh: nat,
newMaxFresh: nat,
minFresh: nat,
indexRead: nat,
lastIndexRead: nat,
wisOccurred: bool,
rcsSinceWis: bool #]

The reader and writer operations follow: in each case the pre-condition
is simply that the program counter has the correct value to execute the
operation.

The firstReaderChoosesPair operation sets the local variable readerPair
equal to pairWritten, since the reader attempts to follow the writer in order
to read the latest data written. The auxiliary variable mazFresh records the
index of the last item written prior to the start of the read, and the reader
records this index in minFresh (the index of the oldest item that is available
to be read).



211

pre_firstReaderChoosesPair(p: Conc.State): bool = p‘nri = firstRcp

post_firstReaderChoosesPair (p: (pre.firstReaderChoosesPair)) (prot: Conc_State): bool =
prot = p witH [nri := rip,
reader := p‘reader WITH
[readerPair := p‘pairWritten, currentState := Irl],
minFresh := p‘maxFresh]

firstReaderChoosesPair:
[p: (prefirstReaderChoosesPair) — (post_firstReaderChoosesPair(p))]

The readerChoosesPair operation is similar to the firstReaderChoosesPair
except that the first item available to the reader may be different depending
on the recent history of the ACM. If the reader and writer are accessing the
same pair of slots and the writer has already executed writerIndicatesSlot
the reader cannot access the item written during the last write: in this case
minFresh is set equal to the index of the item written during the current
write, newMazFresh. Otherwise minFresh is set equal to mazFresh.

pre_readerChoosesPair(p: Conc._State): bool = p‘ori = rcp

post_readerChoosesPair(p: (pre_readerChoosesPair))(prot: Conc.State): bool =
(p‘reader ‘readerPair = p‘writer‘writerPair =
(p*‘wisOccurred =
prot = p wWITH [nri := rip,
reader := p‘reader WITH
[readerPair := p‘pairWritten, currentState := Irl],
minFresh := p‘newMaxFresh]) A
(- p*wisOccurred =
prot = p wITH [ori := rip,
reader := p‘reader WITH
[readerPair := p‘pairWritten, currentState := Irl],
minFresh := p‘maxfresh])) A
(— p‘reader‘readerPair = p‘writer‘writerPair =
prot = p WITH [ori := rip,
reader := p‘reader WITH
[readerPair := p‘pairWritten, currentState :
minFresh := p‘maxFresh])

Ir1],

readerChoosesPair:
[p: (pre_readerChoosesPair) — (post_readerChoosesPair(p))]

The readerIndicatesPair operation sets the control variable pairReading
equal to the reader local variable readerPair.

pre_readerIndicatesPair(p: Conc_State): bool = p‘nri = rip

post_readerindicatesPair(p: (pre_readerIndicatesPair))(prot: Conc State): bool =
prot = p wiTH [nri := rcs,
pairReading := p‘reader‘readerPair,
reader := p‘reader wiTH [currentState := 1r2]]

readerIndicatesPair:
[p: (prereaderlndicatesPair) — (post_readerIndicatesPair(p))]

At readerChoosesSlot the reader chooses the slot it is going to read from in
its current pair, by setting the local variable readerSlot equal to the value of
the element of the slot Written array for its current pair. The reader has now



212

chosen the item it is going to read so the auxiliarv variable indezRead is set
equal to the index of the item chosen, and lastIndezrRead is set equal to the
value of indezRead before the operation is executed (the index of the item
read during the last read). It also sets the auxiliary variable rcsSince Wis to
true to record that readerChoosesSlot has occurred since writerIndicatesSlot.

pre_readerChoosesSlot(p: Conc_State): bool = p'nri = rcs

post_readerChoosesSlot(p: (pre.readerChoosesSlot)) (prot: Conc_State): bool =
(p‘pairWritten = p‘pairReading A p‘reader‘readerPair = p ‘writer ‘ writerPair =
prot = p WITH [nri := rd,
reader := p‘reader WITH [readerSlot := p‘slotWritten(p ‘reader readerPair) ,
currentState := ir3],
indexRead := p‘slots(p‘reader‘readerPair,
p ‘slotWritten (p ‘reader ‘readerPair) ) ‘index,
lastIndexRead := p‘indexRead,
rcsSinceWis := TRUE]) A
(- (p‘pairWritten = p‘pairReading A p‘reader‘readerPair = p‘writer ‘ writerPair) =
prot = p wiTH [ori := rd,
reader := p‘reader WITH [readerSlot := p‘siotWritten(p‘reader’readerPair),
currentState := Ir3],
indexRead := p‘slots(p ‘reader ‘readerPair,
p'slotWritten(p ‘reader ‘readerPair) ) ‘index,
lastindexRead := p‘indexRead,
rcsSinceWis := TRUE])

readerChoosesSlot :
[p: (prereaderChoosesSlot) — (post_readerChoosesSlot{(p))]

The read operation returns the item read.
preread(p: Conc_State): bool = p‘nri = rd

post.read(p: (pre_read))(prot: Conc State, v: Val): bool =
v = p°‘slots(p‘reader‘readerPair, p‘reader‘readerSlot) ‘val A
prot = p WITH [ori := rcp, reader := p‘reader WITH [currentState := Ir4]]

read: [p: (preread) — (post_read(p))]

The firstWriterChoosesPair operation chooses the pair that the writer is
going to access during the write: it chooses the opposite slot to the one
the reader last indicated it was reading. The operation also increments
newMazFresh by 1 (the index of the item that is going to be written).

pre_first WriterChoosesPair(p: Conc_State): bool = p‘nwi = firstWcp

post_first WriterChoosesPair(p: (pre_firstWriterChoosesPair))(prot: Conc_State): bool =
(p‘pairReading = pp =
prot = p wITH [nwi := wcs,
writer := p‘writer WITH [writerPair := p;, currentState := lwll,
newMaxFresh := p‘newMaxFresh +11) A
(p‘pairReading = p1 =
prot = p WITH [nwi := ws,
writer := p‘writer wiTH [writerPair := pg, currentState := Iwl],
newMaxFresh := p‘newMaxFresh + 11)

first WriterChoosesPair:
[p: (prefirstWriterChoosesPair) — (post_firstWriterChoosesPair(p))]



213

writerChoosesPair is the same as firstWriterChoosesPair, except that it
sets the auxiliary variables wisOccurred and rcsSince Wis to false to record
the writerIndicatesSlot has not occurred during the current write and it
is no longer necessary to record that readerChoosesSlot has occurred after
writerIndicatesSlot (this is only important if the reader and writer are ac-
cessing the same pair: if this was the case the writer would change pairs at
the start of this write to access the opposite pair to the reader).

pre_writerChoosesPair(p: Conc_State): bool = p‘nwi = wcp

post_writerChoosesPair(p: (pre_writerChoosesPair))(prot: Conc_State): bool =
(p‘pairReading = pp =

prot = p WITH [nwi := wcs,
writer := p‘writer WiTH [writerPair := p;, currentState := Iwl],
newMaxFresh := p‘newMaxFresh +1,
wisOccurred := FALSE,

rcsSinceWis := FALSE]) A
(p‘pairReading = p1 =
prot = p WITH [nwi := wcs,

writer := p‘writer wiTH [writerPair := pg, currentState := Iwl],
newMaxFresh := p‘newMaxFresh + 1,
wisOccurred := FALSE,

rcsSinceWis := FALSE])

writerChoosesPair:
[p: (pre_writerChoosesPair) — (post_writerChoosesPair(p))]

The writerChoosesSlot operation chooses the slot the writer is going to ac-
cess: the opposite slot to the one that it used the last item it accessed its
current pair of slots.

pre_writerChoosesSlot (p: Conc_State): bool = p‘nwi = wcs

post_writerChoosesSlot(p: (pre_writerChoosesSlot)) (prot: Conc_State): bool =
(p‘slotWritten(p‘ writer‘ writerPair) = so =

prot = p WITH [nwi := wr, writer := p‘writer WITH [writerSlot := s;, currentState := Iw2]]) A
(p*slotWritten(p * writer ‘writerPair) = s =
prot = p WITH [nwi := wr, writer := p‘writer wiTH [writerSlot := s, currentState := iw2311)
writerChoosesSlot :

[p: (pre.writerChoosesSlot) — (post_writerChoosesSlot (p))]
The write operation writes the new item to the ACM (with index newMazFresh).

pre_write(p: Conc_State): bool = p‘nwi = wr
write_parameter: TYPE = [# py: (pre_write), v: Val #)
post_write(p: write_parameter) (prot: Conc_State): bool =
prot = p‘p1 WITH [nwi := wis,
(slots) (p* py ‘writer ‘writerPair, p‘p1 ‘writer ‘ writerSlot)
.= (# index := p‘p1 ‘new)MaxFresh, val := p‘v %),
writer ;= p‘p) ‘writer WITH [currentState := lw3]]

write: [p: write_parameter — (post_write(p))]

writerIndicatesSlot indicates the slot the writer has accessed, by setting the
appropriate element of the slotWritten for the pair the writer is accessing



214

equal to the writer local variable writerSlot. It also sets wisOccurred to true
to indicate that the operation has been executed and the auxiliary variable
resSinc Wis to false to indicate that readerChoosesSlot has not occurred since

writerIndicatesSlot.
pre.writerindicatesSlot (p: Conc_State): bool = p‘nwi = wis

post_writerIndicatesSlot (p: (pre.writerIndicatesSlot))(prot: Conc_State): bool =
prot = p WITH [nwi := wip,
(slotWritten) (p ‘writer ‘ writerPair) := (p‘writer writerSiot ),
writer := p‘writer wWiTH [currentState := lwd4],
wisOccurred := TRUE,
rcsSinceWis := FALSE]

writerIndicatesSlot:
[p: (pre_writerIndicatesSlot) — (post_writerlndicatesSlot(p))]

The writerIndicatesPair operation indicates the pair the writer has accessed
by setting the control variable pair Written equal to the writer local variable
writerPair. It also sets mazFresh equal to newMazFresh.

pre_writerindicatesPair(p: Conc_State): bool = p‘nwi = wip

post_writerIndicatesPair(p: (pre_writerlndicatesPair))(prot: Conc.State): bool =

prot = p WiTH [nwi := wcp,
pairWritten := p‘writer‘writerPair,
writer := p‘writer wiTH [currentState := lw5],

maxFresh := p‘newMaxFresh]

writerindicatesPair:

[p: (pre_writerIndicatesPair) — (post_writerlndicatesPair(p))]
Initialisation functions for the reader and writer. Except for correctly setting
the respective locations in the assertion networks to their appropriate values
the initial values of the variables are irrelevant, since the reader and writer
both choose the slot and pair they are going to access by reference to the
control variables in the ACM before accessing their chosen slots.

init_writer(w: WriterState): bool =

w = w WITH [writerPair := pg, writerSlot := sp, currentState := sw]
init_reader(r: ReaderState): bool =
r = r WITH [readerPair := p;, readerSlot := s, currentState := sr)

The initialisation function for the ACM initialises slot 0 in pair 0 (the other
slots are initialised with an invalid value), sets the control variables to point
to this slot and sets the auxiliary variables to their initial values.

init_data(init_data: Data, init_val: Val): bool =
init.data = init.data wiTH [index := 0, val := init_val]

init_prot(p: Conc_State, init_Val, inv.Val: Val, w: WriterState, r: ReaderState): bool =
p = p WITH [pairWritten := pg,
(slotWritten) (po) := so,
(slotWritten) (p1) = sp,
pairReading := r‘readerPair,
(slots) (po, so) := (# index := 1, val := init_.Val #),



8]
—
Ut

(# index :
(# index :
(# index :

(slots) (pp, s1) :
(slots) (p1, 8) :
(slots) (p1, 81) :
nri := rcp,

nwi := wep,
writer := w,
reader := r,
maxFresh := 1,
newMaxFresh := 1,
minFresh := 0,
indexRead := 0,
lastIndexRead := 0,
wisOccurred := TRUE]

inv_Val #),
inv_Val ),
inv_Val #),

W
™
|l

The firstReader ChoosesPair _Assertion simply asserts that the auxiliary vari-
ables indezRead and lastIndezRead are both equal to their initial values (0)
and rcsSince Wis is false.
firstReaderChoosesPair_Assertion: [Conc.State — bool] =
(A - (cs: Conc_State):

cs‘nri = firstRep =
- cs‘resSinceWis A cs‘indexRead = 0 A cs‘lastindexRead = 0

The remaining reader assertions assert the relative values of the auxiliary
variables indezRead, lastIndezRead, minFresh and mazFresh which are used
to ensure that the reader always reads fresh data. In each case the rela-
tionship is given for each of the possible cases in the assertion: this is not
strictly necessary, but it makes it easier to discharge the proof obligations
using PVS.

The readerChoosesPair _Assertion states that readerPair is equal to
pairReading since the reader has not chosen the pair it is going to read
from. There are then two possible cases for the values of the auxiliary
variables depending on the recent history of the mechanism. If the reader
accessed the same pair as the writer during the last write, it chose its slot
after the write indicated the slot it had accesses (rcsSinceWis = true), and
the writer has not completed the write by executing writerIndicatesPair
the reader may have read the latest item that has not been released so
indezRead < newMazFresh, in all other cases indezRead < mazFresh. The
reader must read the items in order, therefore indezRead > lastIndezRead.
minFresh records the index of the first item available to the reader, therefore
indezRead > minFresh, and also minFresh < mazFresh, since the reader can
only read items that have been written.

readerChoosesPair_Assertion: [Conc_State — bool]l =
(A -+ (cs: ConcState):
cs‘nri = rep =
cs‘reader ‘readerPair = cs‘pairReading A
(cs‘pairReading = cs‘pairWritten A
cs‘reader ‘readerPair = cs‘writer‘writerPair A cs‘reader‘readerPair = cs‘pairReading =
(=~ cs‘wisOccurred =

cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A



216

cs‘indexRead > cs‘minFresh A cs‘lastindexRead < cs‘indexRead) A
(cs‘wisOccurred = -
(= cs‘resSinceWis =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A
cs‘indexRead > cs‘minFresh A cs‘lastIndexRead < cs‘indexRead) A
(cs‘resSinceWis =
cs‘minFresh < cs‘newMaxFresh A
cs‘indexRead < cs‘newMaxFresh A
cs‘indexRead > cs‘minFresh A cs‘lastindexRead < cs‘indexRead))) A
(cs‘pairReading = cs‘pairWritten A
- cs‘reader ‘readerPair = cs‘writer‘ writerPair A
cs‘reader ‘readerPair = cs‘pairReading =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A
cs‘indexRead > cs‘minFresh A cs‘lastlndexRead < cs‘indexRead) A
(- cs‘pairReading = cs‘pairWritten A
— cs‘reader ‘readerPair = cs‘writer‘ writerPair A
s ‘reader ‘readerPair = cs‘pairReading =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A
cs‘indexRead > cs‘minFresh A
cs‘lastIndexRead < cs‘indexRead)

When the reader is about to execute readerIndicatesPair it may have changed
pairs, it is therefore not possible to assert anything about the values of the
control variables since it has not yet indicated that it has changed. The
relationship between the auxiliary variables is almost identical to that for
readerChoosesPair assertion except: the reader incremented minFresh to be
equal to mazFresh during the last operation so now indezRead < minFresh;
and also if the writer has executed writerIndicatesPair (wisOccurred = true)
and the reader and writer are accessing the same pair the reader may be
able to read the item written during the current write and minFresh and
indezRead are related to the value of newMazFresh (minFresh < newMazFresh
A indezRead < newMazFresh). There is also an extra possible case to con-
sider, where the reader has changed pairs to follow the writer and has not
yet indicated it has changed (— readerPair = pairReading A - pair Written =
pairReading) - this is the only time this relationship can possibly hold.
In addition it is necessary to record the relationship between the value
of minFresh and the index of an item in one of the slots. This relation-
ship depends on which slot contained the first item available to the reader
when readerChoosesSlot was executed. At readerChoosesPair minFresh is
set equal to the value of the index of the first item available to the reader
(slots(pair Written, slot Written(pair Written).indez) so minFresh is normally
less than or equal to this value. The only exception is if the reader writer
has changed pairs since the reader chose the slot to access, when minFresh
is related to the index of the item in the last slot written in the oppo-
site pair to the writer, and indezRead must be less than or equal to this
value (the writer may have written subsequent items to the ACM) e.g.
pairWritten = p; = minFresh < slots(p, slot Written(po)).indez.



217

readerlndicatesPair_Assertion: [Conc_State — bool] =
(A - (cs: Conc _State):
cg‘nri = rip =
(cs‘pairReading = cs‘pairWritten = cs‘pairReading = cs‘reader‘readerPair) A
(cs‘pairReading = cs‘pairWritten A
cs‘readel‘"readerPa.ir = cs‘writer‘writerPair A cs‘reader‘readerPair = cs‘pairReading =
(~ cs‘wisOccurred =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A
cs‘indexRead < cs‘minFresh A cs‘lastindexRead < cs‘indexRead) A
(cs‘wisOccurred = -
cs‘minFresh < cs‘newMaxFresh A
cs‘indexRead < cs‘newMaxFresh A
cs‘indexRead < cs‘minFresh A cs‘lastindexRead < cs‘indexRead)
A cs‘minFresh < cs‘slots(cs‘pairWritten, cs‘slot Written(cs‘pairWritten)) ‘index) A
(cs‘pairReading = cs‘pairWritten A
- cs‘reader‘readerPair = cs*writer‘writerPair A
cs‘reader ‘readerPair = cs‘pairReading =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A
cs‘indexRead < cs‘minFresh A
cs‘lastindexRead < cs‘indexRead A
cs‘minFresh < cs‘slots(cs‘pairWritten, cs‘slotWritten(cs‘pairWritten)) ‘index) A
(- cs‘pairReading = cs‘pairWritten A
cs‘reader ‘readerPair = cs‘writerwriterPair A
- cs‘reader ‘readerPair = cs‘pairReading =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A
cs‘indexRead < cs‘minFresh A
cs‘lastindexRead < cs‘indexRead A
cs‘minFresh < cs‘slots(cs‘pairWritten, cs‘slotWritten(cs‘pairWritten)) ‘index) A
(— cs‘pairReading = cs‘pairWritten A
- cs‘reader ‘readerPair = cs‘writer‘writerPair A
cs‘reader ‘readerPair = cs‘pairReading =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A
cs‘indexRead < cs‘minFresh A
cs'lastindexRead < cs‘indexRead A
(cs‘pairWritten = pg => cs‘minFresh < cs’slots(py, cs‘slotWritten{p;)) ‘index) A
(cs‘pairWritten = p) =
cs‘minFresh <
cs'slots(pg, cs‘slotWritten(pg)) ‘index))

When the reader is about to execute readerChoosesSlot it has indicated the
pair it is accessing, therefore the control variable pairReading is equal to the
reader local variable readerPair. The reader can no longer be accessing the
same pair as the writer unless pairReading is equal to pairWritten so the
extra relationship between the control variables that was necessary in the
readerIndicatesPair _Assertion is no longer required, otherwise the assertion
is identical to the previous one.

readerChoosesSlot_Assertion: [Conc_State — bool] =
(A - (cs: Conc State):
cs‘ori = res =
cs‘reader ‘readerPair = cs‘pairReading A
(cs‘pairReading = cs‘pairWritten A
cs‘reader‘readerPair = cs‘writer‘writerPair A cs‘reader‘readerPair = cs‘pairReading =
(- cs*wisOccurred =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A



218

cs‘indexRead < cs‘minFresh A cs‘lastindexRead < cs‘'indexRead) A
(cs‘wisOccurred = -
cs‘minFresh < cs‘newMaxFresh A
cs‘indexRead < cs‘mewMaxFresh A
cs‘indexRead < cs‘minFresh A cs‘lastindexRead < cs‘indexRead)
A cs‘minFresh < cs‘slots(cs‘pairWritten, cs‘slotWritten(cs‘pair\ritten))‘index) A
(cs‘pairReading = cs‘pairWritten A
- cs‘reader ‘readerPair = cs‘writer‘writerPair A
cs‘reader ‘readerPair = cspairReading =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A
cs‘indexRead < cs‘minFresh A
cs‘lastindexRead < cs‘indexRead A
cs‘minFresh < cs‘slots(cs‘pairWritten, cs‘slotWritten(cs‘pairWritten))‘index) A
(— cs‘pairReading = cs‘pairWritten A
- cs‘reader ‘readerPair = cs‘writer‘writerPair A
cs‘reader‘readerPair = cs‘pairReading =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A
cs‘indexRead < cs‘minFresh A
cs‘lastindexRead < cs‘indexRead A
(cs‘pairWritten = pp => cs‘minFresh < cs‘slots(p;, cs‘slot\Written(p;)) ‘index) A
(cs‘pairWritten = py =
cs‘minFresh <
cs‘slots(pg, cs‘slotWritten(pp)) ‘index))

When the reader has chosen the slot it is going to access it can start to read
the item at any time. readerChoosesSlot is therefore taken to mark the start
of the read access, and sets indezRead equal to the index of the item in the
slot the reader has chosen. This assertion is identical to the previous one
except that it therefore asserts inderRead > minFresh.

read_Assertion: [Conc_State — bool]l =
(A - (cs: Conc State):
cs‘nri = rd =
cs‘reader ‘readerPair = cs‘pairReading A
(cs‘pairReading = cs‘pairWritten A
cs‘reader ‘readerPair = cs‘writer‘writerPair A cs‘reader‘readerPair = cs‘pairReading =
(= cs‘wisOccurred =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A
cs‘indexRead > cs‘minFresh A cs‘lastindexRead < cs‘indexRead) A
(cs‘wisOccurred =
(- cs‘resSinceWis =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A
cs‘indexRead > cs‘minFresh A cs‘lastindexRead < cs‘indexRead) A
(cs‘resSinceWis =
cs‘minFresh < cs‘newMaxFresh A
cs‘indexRead < cs‘newMaxFresh A
cs‘indexRead > cs‘minFresh A cs‘lastindexRead < cs‘indexRead))
A cs‘minFresh < cs‘slots(cs‘pairWritten, cs‘slotWritten (cs‘pairWritten)) ‘index) A
(cs‘pairReading = cs‘pairWritten A
— cs‘reader‘readerPair = cs‘writer‘writerPair A
cs ‘reader ‘readerPair = cs‘pairReading =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A
cs‘indexRead > cs‘minFresh A
cs‘lastlndexRead < cs‘indexRead A
cs‘minFresh < cs*slots(cs‘pairWritten, cs‘slotWritten (cs‘ pairWritten)) ‘index) A
(- cs‘pairReading = cs‘pairWritten A



219

- cs‘reader‘readerPair = cs‘writer* writerPair A
cs‘reader ‘readerPair = cs‘pairReading =
cs‘minFresh < cs‘maxFresh A
cs‘indexRead < cs‘maxFresh A
cs‘indexRead > cs‘minFresh A
cs‘lastIndexRead < cs‘indexRead A
(cs‘pairWritten = pp => cs‘minFresh < cs‘slots(p;, cs‘slotWritten(p;)) ‘index) A
(cs‘pairWritten = p; =
cs‘minFresh <
cs‘slots(pg, cs‘slotWritten(pg)) ‘index))

The firstWriterChoosesPair and writerChoosesPair assertions are identical,
except for the value of the program counter, and wisOccurred is false when
firstWriterChoosesPair is about to be executed (the variable is set to false
by writerChoosesPair during future writes). The writer local variables are
equal to the relevant control variables, mazFresh is equal to newMazFresh,
the index of the latest item (in the slot pointed to by the control variables)
is equal to mazFresh and the indices of the items in the other slots must be
at least one less that mazFresh.

firstWriterChoosesPair_Assertion: [Conc.State — booll =
(A - (cs: ConcState):
cs‘owi = firstWep =
- cs‘wisOccurred A
cs‘writer ‘writerPair = cs‘pairWritten A
cs‘writer ‘writerSlot = cs‘slotWritten(cs‘pairWritten) A
cs‘maxFresh = cs‘newMaxFresh A
cs‘maxFresh = cs‘slots(cs‘pairWritten, cs‘slotWritten(cs‘pairWritten)) ‘index A
(cs‘slotWritten (cs‘pairWritten) = so =
cs‘slots(cs‘ pairWritten, 8)‘index < cs‘maxFresh-1) A
(cs‘slotWritten(cs‘pairWritten) = 8 =
cs*slots(cs‘pairWritten, sp) ‘index < cs‘maxFresh-1) A
(cs'pairWritten = po =
cs‘slots(py, sp)‘index < cs‘maxFresh-1 A
cs'slots(py, s1)‘index < cs‘maxFresh-1) A
(cs‘pairWritten = p; =
cs*slots(po, sp)‘index < cs‘maxFresh-1 A

cs‘slots(pp, s1)‘index < cs‘maxFresh-1)

writerChoosesPair_Assertion: [Conc_State — bool]l =
(A - (cs: Conc_State):
cs‘nwi = wep =
cs‘wisOccurred A
cs‘writer ‘writerPair = cs‘pairWritten A
cs‘writer ‘writerSlot = cs‘slotWritten(cs’pairWritten) A
cs‘maxFresh = cs‘newMaxFresh A
cs‘maxFresh = cs‘slots{cs‘pairWritten, cs‘slotWritten(cs*pairWritten)) ‘index A
(cs‘slotWritten (cs‘ pairWritten) = sp =
cs ‘slots(cs pairWritten, 5 ) ‘index < cs‘'maxFresh-1) A
(cs‘slotWritten(cs pairWritten) = s =
cs‘slots(cs‘pairWritten, sp) ‘index < cs‘maxFresh-1) A
(cs‘pairWritten = py =
cs'slots(p1, $p)‘index < cs‘maxFresh-1 A
cs'slots(p, s1)‘index < cs‘maxFresh-1) A
(cs'pairWritten = py =
cs'slots(pg, sp)‘index < cs‘maxFresh-1 A
cs‘slots(po, s1)‘index < cs‘maxFresh-1)

When the writer is about to execute writerChoosesSlot it may have changed
pairs during the previous operation, so it only possible to state that the



220

writer local variable writerSlot will still be equal to the element of the
slot Written array for the pair the writer accessed during the last write; and if
the writer has changed pairs and indicated and the reader has not indicated
that it has subsequently followed the writer to the new pair (— pairWritten =
pairReading) then the writer local variable writerPair will be equal to the
control variable pairWritten (the writer will not have changed pairs at
writerChoosesPair). The last operation set wisOccurred to false. and incre-
mented newMazFresh so it is now 1 greater than mazFresh. Otherwise the
assertion is identical to the previous one.

writerChoosesSlot_Assertion: [Conc_State — bool] =
(A -(cs: Conc.State):
cs‘nwi = wes =
- cs*wisOccurred A
cs‘maxFresh = cs‘newMaxFresh-1 A
(-~ cs‘pairWritten = cs‘pairReading => cs‘pairWritten = cs'writer‘ writerPair) A
cs‘writer‘writerSlot = cs‘slotWritten (cs‘pairWritten) A
cs‘maxFresh = cs‘slots(cs’pairWritten, cs‘slotWritten(cs‘pairWritten)) ‘index A
(cs‘slotWritten(cs‘ pairWritten) = go =
cs‘slots(cs‘pairWritten, s;)‘index < cs‘maxFresh-1) A
(cs‘slotWritten(cs ' pairWritten) = s; =
cs‘slots(cs‘pairWritten, s0) ‘index < cs‘maxFresh-1) A
(cs‘pairWritten = pp =
cs‘slots(py, so)‘index < cs‘maxFresh-1 A
cs'slots(py, 91)‘index < cs‘maxFresh-1) A
(cs‘pairWritten = p; =>
cs‘slots(pp, sp)‘index < cs‘maxFresh-1 A

cs'slots(pg, %) ‘index < cs‘maxFresh-1)

The assertion when the writer is about to execute the write operation is
identical to the previous one, except that the writer has now chosen the slot
it is going to access, so the local variable writerSlot is equal to the opposite
value to the one recorded in the element of the slot Written array for the pair
the writer is accessing.

write_Assertion: [Conc_State — bool] =
(A - (cs: Conc.State):
cs‘nwi = wr =
- cs‘wisOccurred A
cs‘maxFresh = cs‘newMaxFresh-1 A
(= cs‘pairWritten = cs‘pairReading => cs‘pairWritten = cs'writer‘writerPair) A
- cs‘writer ‘writerSlot = cs‘slotWritten(cs*writer‘ writerPair) A
cs‘maxFresh = cs‘slots(cs‘pairWritten, cs‘slotWritten(cs‘pairWritten)) ‘index A
(cs‘slotWritten(cs‘pairWritten) = sg =
cs‘slots(cs‘pairWritten, s )‘index < cs‘maxFresh-1) A
(cs‘slotWritten (cs‘ pairWritten) = s =
cs‘slots(cs‘pairWritten, s¢) ‘index < cs‘maxFresh-1) A
(cs‘pairWritten = pp =
cs'slots{p1, so)‘index < cs‘maxFresh-1 A
csslots(py, s1)‘index < cs‘maxFresh-1) A
(cs‘pairWritten = p; =
cs‘slots(po, so)‘index < cs‘maxFresh-1 A
cs‘slots(pg, s1)‘index < cs‘maxFresh-1)

The assertion when the writer is about to execute the writerIndicatesSlot
operation is again identical to the previous one, except that the slot pointed



221

to by the writer control variables has had the new item written to it. so the
item it contains has an index equal to newMazFresh.

writerIndicatesSlot_Assertion: [Conc_State — bool] =
(A - (cs: Conc.State):
cs‘owi = wis =
- cs*wisOccurred A
cs‘maxFresh = cs‘newMaxFresh-1 A
(= cs‘pairWritten = cs‘pairReading => cs‘pairWritten = cs‘writer‘writerPair) A
— cs‘writer‘writerSlot = cs‘slotWritten(cs‘writer ‘ writerPair) A
cs‘maxFresh = cs‘slots(cs‘pairWritten, cs‘slotWritten (cs*pairWritten)) ‘index A
cs‘newMaxFresh = cs‘slots(cs‘writer‘writerPair, cs‘writer‘writerSlot) ‘index A
(cs*“writer ‘writerPair = cs‘pairWritten =
(cs‘pairWritten = po =
cs‘slots(py, so)‘index < cs‘maxFresh-1 A
cs‘slots(pr, 81)‘index < cs‘maxFresh-1) A
(cs‘pairWritten = p; =
cs‘slots(pg, ) ‘index < cs‘maxFresh-1 A
cs‘slots(pp, &) ‘index < cs‘maxFresh-1)) A
(- cs‘writer‘writerPair = cs‘pairWritten =
(cs‘slotWritten(cs‘ pairWritten) = sg =
cs‘slots(cs‘pairWritten, s;)‘index < cs‘maxFresh-1) A
(cs‘slotWritten(cs‘ pairWritten) = s =
cs‘slots(cs‘ pairWritten, so)‘index < cs‘maxFresh-1) A
(cs‘writer ‘writerSlot = s =
cs‘slots(cs ‘writer ‘writerPair, s;) ‘index < cs‘maxFresh-1) A
(cs‘writer ‘writerSlot = s =
cs‘slots(cs ‘writer ‘writerPair, sg) ‘index <
cs‘maxFresh-1))

The assertion when the writer is about to execute writerIndicatesPair is
once again identical to the previous one except that since it has executed
writerIndicatesSlot, wisOccurred is now true and the local variable writerSlot
is now equal to the element of the slot Written array for the pair the writer
is accessing.

writerIndicatesPair_Assertion: [Conc_State — booll =
(A . (cs: ConcState):
cs‘nwi = wip =
cs‘wisOccurred A
(— cs‘pairWritten = cs‘pairReading = cs‘pairWritten = cs‘writer‘writerPair) A
cs‘writer ‘writerSlot = cs‘slotWritten(cs*writer ‘writerPair) A
cs‘maxFresh = cs‘newMaxFresh-1 A
cs‘newMaxFresh = cs‘slots(cs‘writer‘writerPair, cs‘writer‘writerSlot) ‘index A
(cs‘writer‘ writerPair = cs‘pairWritten =
(cs‘slotWritten(cs‘ pairWritten) = so =
cs‘slots(cs‘ pairWritten, s1) ‘index < cs‘maxFresh) A
(cs ‘slot Written (cs ‘ pairWritten) = s; =
cs‘slots (cs pairWritten, sp) ‘index < cs‘maxFresh) A
(cs‘pairWritten = po =
cs‘slots(p1, so) ‘index < cs‘maxFresh-1 A
cs‘slots(py, s1)‘index < cs‘maxFresh-1) A
(cs‘pairWritten = p; =
cs‘slots(pg, so)‘index < cs‘maxFresh-1 A
cs‘slots(pg, s1)‘index < cs‘maxFresh-1)) A
(—~ cs‘writer ‘writerPair = cs‘pairWritten =
cs‘maxFresh = cs‘slots(cs‘pairWritten, cs‘slotWritten (cs ‘ pairWritten)) ‘index A
(cs‘slotWritten(cs ‘ pairWritten) = sp =
cs‘slots(cs‘pairWritten, si)‘index < cs‘maxFresh-1) A
(cs ‘slotWritten (cs ‘ pairWritten) = 8 =
cs‘slots(cs‘ pairWritten, so) ‘index < cs‘maxFresh-1) A



222

(ca‘ writer‘writerSlot = s =
cs‘slots(cs‘ writer ‘ writerPair, ;) ‘index < cs‘maxFresh) A
(cs‘writer ‘writerSlot = s, =
cs‘slots(cs writer ‘ writerPair, ) ‘index <
cs*maxFresh)) B

The proof obligations for the initialisation functions for the reader and writer
(which prove the relevant assertions are established) are as follows:
vc_initReader: THEOREM

V (cs: Conc_State, init: Val, inv: Val, w: WriterState, r: ReaderState):
init_prot(cs, init, inv, w, r) = firstReaderChoosesPair.Assertion(cs)

vc-initWriter: THEOREM
V (cs: Conc_State, init: Val, inv: Val, w: WriterState, r: ReaderState):
init.prot(cs, init, inv, w, r) = firstWriterChoosesPair.Assertion(cs)

The first proof obligation for each of the locations in the reader and writer
networks (vcl_op_name) is to establish for each transition in the respective
networks that:

1. If the assertion in the start location of the transition associated with
each operation holds, and the transition is enabled, that the assertion
in the target location of the transition will hold after executing the
operation that is associated with the transition. In the case of the four
slot the guards for each of the transitions is effectively true i.e. the
transition is enabled whenever the component is in the start location
of the transition (since the pre-condition for the operation is simply
that the program counter for the component is such that the operation
is to be executed next).

2. That each of the components does not interfere with the assertions in
the network of the other component e.g. if the assertions in the loca-
tions of the network of the other component hold before the operation
is executed, they will still hold after the operation is executed.

This requires the following proof obligation to be completed for every loca-
tion in the network of the writer: vcl_op_name
Vesl, ¢s2 : Conc_State -
pre_start_writer_op_name(csl) A
start_writer_op_name_Assertion(csl) A
firstReaderChoosesPair _Assertion(cs1) A
readerChoosesPair _Assertion(csl) A
readerIndicatesPair _Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
read_Assertion(cs1) A post_writer _op_name(csl, cs2) =
cs2.nwi = targetLocationInstruction A
target_writer_op_name_Assertion(cs2) A



223

firstReaderChoosesPair _Assertion(cs2) A
readerChoosesPair _Assertion(cs2) A
readerIndicatesPair _Assertion(cs2) A
readerChoosesSlot_Assertion(cs2) A
read_Assertion(cs2)
Similarly the following proof obligation must be completed for every location
in the network of the reader:

vcl_op_niame
Vesl, cs2: Conc_State -
pre_start_reader _op_name(csl) A
start_reader _op_name_Assertion{csl) A
firstWriterChoosesPair _Assertion(csl) A
writerChoosesPair _Assertion(csl) A
writerChoosesSlot _Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) A
writerIndicatesPair _Assertion(csl) A
post_reader_op_name(csl, cs2) =
cs2.nri = targetLocationInstruction A
target_reader _op_name_Assertion(cs2) A
first WriterChoosesPair _Assertion(cs2) A
writerChoosesPair _Assertion(cs2) A
writerChoosesSlot_Assertion(cs2) A
write_Assertion(cs2) A
writerIndicatesSlot _Assertion(cs2) A
writerIndicatesPair _Assertion(cs2)

vcl firstReaderChoosesPair: THEOREM
VY (csl, cs2: Conc-State):
pre_firstReaderChoosesPair(csl) A
firstReaderChoosesPair_Assertion(cs1) A
first WriterChoosesPair_Assertion(csl) A
writerChoosesPair_Assertion(csl) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A
writerlndicatesSlot_Assertion(csl) A
writerlndicatesPair_Assertion{csl) A
cs2 = firstReaderChoosesPair(csl) =
readerIndicatesPair.Assertion(cs2) A
first WriterChoosesPair_Assertion{(cs2) A
writerChoosesPair_Assertion(cs2) A
writerChoosesSlot_Assertion(cs2) A
write_Assertion(cs2) A
writerIndicatesSlot_Assertion(cs2) A
writerIndicatesPair.Assertion (cs2)

vcl_readerChoosesPair: THEOREM
V (csl, cs2: Conc_State):
pre_readerChoosesPair(cs1) A



readerChoosesPair_Assertion(csl) A
first WriterChoosesPair_Assertion(csl) A
writerChoosesPair_Assertion(csl) A
writerChoosesSlot_Assertion{(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) A
writerIndicatesPair_Assertion(csl) A
cs2 = readerChoosesPair(csl) =
readerIlndicatesPair_Assertion{cs2) A
first WriterChoosesPair_Assertion(cs2) A
writerChoosesPair_Assertion{(cs2) A
writerChoosesSlot_Assertion (cs2) A
write_Assertion{(cs2) A
writerIndicatesSlot_Assertion(cs2) A
writerlndicatesPair_Assertion (cs2)

vcl_readerIndicatesPair: THEOREM
V (csl, cs2: Conc_State):
pre_readerlndicatesPair(csl) A
readerIndicatesPair_Assertion(csl) A
first WriterChoosesPair_Assertion(csl) A
writerChoosesPair_Assertion(csl) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A
writerlndicatesSlot_Assertion(csl) A
writerIndicatesPair_Assertion(csl) A
cs2 = readerIndicatesPair(csl) =
readerChoosesSlot_Assertion(cs2) A
first WriterChoosesPair_Assertion(cs2) A
writerChoosesPair_Assertion(cs2) A
writerChoosesSlot_Assertion(cs2) A
write_Assertion(cs2) A
writerIndicatesSlot_Assertion(cs2) A
writerIndicatesPair_Assertion (cs2)

vcl_readerChoosesSlot: THEOREM
V (csl, cs2: Conc_State, v: Val):
pre.readerChoosesSlot (cs1) A
readerChoosesSlot_Assertion(csl) A
first WriterChoosesPair_Assertion(csl) A
writerChoosesPair_Assertion(csl) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) A
writerlndicatesPair_Assertion(csl) A
cs2 = readerChoosesSlot(csl) =
read_Assertion(cs2) A
writerChoosesPair_Assertion(cs2) A
writerChoosesPair_Assertion{(cs2) A
writerChoosesSlot_Assertion(cs2) A
write.Assertion(cs2) A
writerIndicatesSlot_Assertion(cs2) A
writerIndicatesPair_Assertion (cs2)

vcl_read: THEOREM
V (csl, cs2: Conc_State, v: Val):
preread(csl) A
read_Assertion(csl) A
first WriterChoosesPair_Assertion(csl) A
writerChoosesPair_Assertion(csl) A
writerChoosesSlot _Assertion(csl) A
write_Assertion(csl) A
writerlndicatesSlot _Assertion(csl) A
writerIndicatesPair_Assertion(csl) A

224



cg2 = read(csl)‘l =
readerChoosesPair_Assertion(cs2) A
first WriterChoosesPair_Assertion(cs2) A
writerChoosesPair.Assertion(cs2) A
writerChoosesSlot_Assertion(cs2) A
write_Assertion(cs2) A
writerndicatesSlot_Assertion(cs2) A
writerlndicatesPair_Assertion (cs2)

vcl first WriterChoosesPair: THEOREM
Vv (csl, cs2: Conc.State, v: Val):
prefirstWriterChoosesPair(csl) A
first WriterChoosesPair_Assertion(csl) A
firstReaderChoosesPair.Assertion(csl) A
readerChoosesPair.Assertion(csl) A
readerIndicatesPair_Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
read_Assertion(csl) A cs2 =
first WriterChoosesPair(csl1) =
writerChoosesSlot_Assertion(cs2) A
firstReaderChoosesPair_Assertion(cs2) A
readerChoosesPair_Assertion(cs2) A
readerIndicatesPair_Assertion(cs2) A
readerChoosesSlot_Assertion(cs2) A
read-Assertion(cs2)

vcl_writerChoosesPair: THEOREM
V (csl, cs2: Conc.State, v: Val):
pre_writerChoosesPair(csl) A
writerChoosesPair_Assertion(csl) A
firstReaderChoosesPair_Assertion(csl) A
readerChoosesPair_Assertion(csl) A
readerIndicatesPair_Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
read_Assertion(csl) A
cs2 = writerChoosesPair(csl) =
writerChoosesSlot_Assertion{cs2) A
first ReaderChoosesPair_Assertion(cs2) A
readerChoosesPair_Assertion(cs2) A
readerIndicatesPair_Assertion(cs2) A
readerChoosesSlot_Assertion(cs2) A
read_Assertion (cs2)

vcl.writerChoosesSlot: THEOREM
V (csl, cs2: Conc_State, v: Val):
pre_writerChoosesSlot(cs1) A
writerChoosesSlot_Assertion(csl) A
firstReaderChoosesPair_Assertion{csl) A
readerChoosesPair_Assertion(csl) A
readerIndicatesPair_Assertion(csl) A
readerChoosesSlot_Assertion{csl) A
read_Assertion(csl) A
¢s2 = writerChoosesSlot(csl) =
write_Assertion(cs2) A
firstReaderChoosesPair_Assertion(cs2) A
readerChoosesPair_Assertion(cs2) A
readerIndicatesPair_Assertion(cs2) A
readerChoosesSlot_Assertion{cs2) A
read_Assertion(cs2)

vcl_write: THEOREM
V (w: write_parameter, cs2: Conc_State, v: Val):
pre_write(w‘p;) A
write_Assertion{(w‘p1) A



226

firstReaderChoosesPair_Assertion(w‘p;) A
readerChoosesPair_Assertion(w‘p;) A
readerlndicatesPair_Assertion(w‘p,) A
readerChoosesSlot_Assertion(w‘p1) A
read_Assertion(w‘p;) A
cs2 = write(w) =
writerIndicatesSlot_Assertion(cs2) A
firstReaderChoosesPair.Assertion(cs2) A
readerChoosesPair_Assertion(cs2) A
readerlndicatesPair_Assertion{cs2) A
readerChoosesSlot_Assertion(cs2) A
read_Assertion (cs2)

vcl_writerIndicatesSiot: THEOREM
V (csl, cs2: Conc_State, v: Val):
pre.writerIndicatesSlot (cs1) A
writerIndicatesSlot _Assertion(csl) A
firstReaderChoosesPair_Assertion(cs1) A
readerChoosesPair_Assertion(csl) A
readerIndicatesPair_Assertion(csl) A
readerChoosesSlot.Assertion{csl) A
read_Assertion(csl) A
cs2 = writerlndicatesSlot (cs1) =
writerIndicatesPair_Assertion(cs2) A
firstReaderChoosesPair.Assertion{(cs2) A
readerChoosesPair_Assertion (cs2) A
readerIndicatesPair_Assertion(cs2) A
readerChoosesSlot_Assertion(cs2) A
read-Assertion(cs2)

vcl_writerlndicatesPair: THEOREM
V (csl, cs2: Conc-State, v: Val):
pre_writerIndicatesPair(cs1) A
writerlndicatesPair_Assertion{csl) A
firstReaderChoosesPair_Assertion(csl) A
readerChoosesPair_Assertion(csl) A
readerIndicatesPair_Assertion(csl) A
readerChoosesSlot_Assertion (cs1) A
read_Assertion(csl) A
cs2 = writerlndicatesPair(csl) =
writerChoosesPair_Assertion(cs2) A
firstReaderChoosesPair_Assertion(cs2) A
readerChoosesPair_Assertion (cs2) A
readerlndicatesPair_Assertion(cs2) A
readerChoosesSlot_Assertion(cs2) A
read_Assertion (cs2)

The remaining proof obligations are first to show that the required guaran-
tee condition holds in the start location for each transition. In this case it
follows immediately that the guarantee condition for the ACM holds since
it is identical to the guarantee condition for each of the transitions. In the
case of the writer the following proof obligations must be discharged:
vc2_op_name
Vesl : Conc_State -
pre_start_writer _op_name(csl) A
start_writer _op_name_Assertion(csl) A
firstReaderChoosesPair_Assertion(csl) A
readerChoosesPair _Assertion(csl) A



readerIndicatesPair _Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
read_Assertion(csl) =
(esl.nri = rd =
csl.minFresh < csl.newMazFresh A
csl.indexRead > csl.minFresh A
csl.indezRead < csl.newMazFresh A\
csl.lastIndezRead < csl.indezRead)
It is also necessary to show that the guarantee condition holds in the target
location of the transition, as follows:
ve3_op_name
Vesl, cs2: Conc_State -
pre_start_writer _op_name(csl) A
start_writer_op_name_Assertion(csl) A
firstReaderChoosesPair _Assertion(cs1) A
readerChoosesPair _Assertion(csl) A
readerIndicatesPair _Assertion(csl) A
readerChoosesSlot _Assertion(csl) A
read_Assertion(csl) A
post_writer_op_name(csl, cs2) =
(cs2.nri = rd =
cs2.minFresh < cs2.newMazFresh A
cs2.indezRead > cs2.minFresh A
cs2.indexRead < cs2.newMazFresh A
cs2.lastIndezRead < cs2.indezRead)
Similarly, for the reader, the following two proof obligations must be dis-
charged:
vc2.op_name
Vesl : Conc_State -
pre_start_reader .op_name(csl) A
start_reader_op_name_Assertion(csl) A
first WriterChoosesPair _Assertion(csl) A
writerChoosesPair_Assertion(csl) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) A
writerIndicatesPair _Assertion(csl) =
(csl.nri=rd =
csl.minFresh < csl.newMazFresh A
csl.indezRead > csl.minFresh A
csl.indezRead < csl.newMazFresh A
csl.lastIndezRead < csl.indezRead)



ve3_op_name
Vesl, ¢s2 : Conc_State -
pre_start_reader_op_name(csl) A
start_reader_op_name_Assertion(csl) A
firstWriterChoosesPair _Assertion(cs1) A
writer ChoosesPair_Assertion(csl) A
writerChoosesSlot _Assertion(cs1) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) A
writerIndicatesPair_Assertion(csl) A
post_reader_op_name(csl, cs2) =
(eslnri =rd =
cs2.minFresh < cs2.newMazFresh A
cs2.indezRead > cs2.minFresh A
cs2.indeczRead < cs2.newMazFresh A
cs2.lastindezRead < cs2.indezRead)

vc2_firstReaderChoosesPair: THEOREM
V (cs: Conc_State):
prefirstReaderChoosesPair(cs) A
firstReaderChoosesPair_Assertion(cs) A
firstWriterChoosesPair_Assertion(cs) A
writerChoosesPair.Assertion(cs) A
writerChoosesSlot_Assertion(cs) A
write_Assertion(cs) A
writerlndicatesSlot _Assertion(cs) A
writerIndicatesPair_Assertion(cs) =
(cs‘ori = rd =
cs‘minFresh < cs‘newMaxFresh A
cs‘indexRead > cs‘minFresh A
cs‘indexRead < cs‘newMaxFresh A
cs'lastIindexRead < cs‘indexRead)

vc3_firstReaderChoosesPair: THEOREM
¥ (csl, cs2: Conc_State):
prefirstReaderChoosesPair(cs1) A
firstReaderChoosesPair _Assertion(csl) A
cs2 = firstReaderChoosesPair(csl) A
first WriterChoosesPair_Assertion(csl) A
writerChoosesPair_Assertion(csl) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) A
writerIndicatesPair_Assertion(csl) =
(cs2¢nri = rd =
cs2‘minFresh < cs2‘newMaxFresh A
cs2‘indexRead > cs2‘minFresh A
cs2‘indexRead < cs2‘newMaxFresh A
cs2‘lastindexRead < cs2‘indexRead)

vc2_readerChoosesPair: THEOREM
V (cs: Conc_State):
pre_readerChoosesPair(cs) A
readerChoosesPair_Assertion(cs) A
firstWriterChoosesPair_Assertion(cs) A

228



writerChoosesPair_Assertion(cs) A
writerChoosesSlot_Assertion(cs) A
write._Assertion(cs) A
" writerIndicatesSlot_Assertion(cs) A

writerIndicatesPair_Assertion(cs) =
(cs‘nri = rd =

cs‘minFresh < cs‘newMaxFresh A
cs‘indexRead > cs‘minFresh A
cs‘indexRead < cs‘newMaxFresh A

cs‘lastindexRead < cs‘indexRead)

vc3.readerChoosesPair: THEOREM
Vv (csl, cs2: Conc.State):
pre_readerChoosesPair(csl) A
readerChoosesPair_Assertion(csl) A
¢s2 = readerChoosesPair(csl) A
first WriterChoosesPair.Assertion(csl) A
writerChoosesPair.Assertion(csl) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(cs1) A
writerIndicatesPair_Assertion(csl) =
(cs2‘nri = rd =
cs2‘minFresh < cs2‘newMaxFresh A
cs2‘indexRead > cs2‘minFresh A
cs2‘indexRead < cs2‘newMaxFresh A

cs2'lastIndexRead < cs2‘indexRead)

vc2.readerindicatesPair: THEOREM
V (cs: Conc_State):
pre_readerIndicatesPair(cs) A
readerindicatesPair_Assertion(cs) A
first WriterChoosesPair_Assertion(cs) A
writerChoosesPair_Assertion(cs) A
writerChoosesSlot_Assertion{cs) A
write_Assertion(cs) A
writerlndicatesSlot_Assertion(cs) A
writerlndicatesPair_Assertion(cs) =
(cs‘nri = rd =
cs‘minFresh < cs‘newMaxFresh A
cs‘indexRead > cs‘minFresh A
cs'indexRead < cs‘newMaxFresh A
cs‘lastIndexRead < cs‘indexRead)

vc3_readerIndicatesPair: THEOREM
V (csl, cs2: Conc_State):
pre_readerlndicatesPair(csl) A
readerIndicatesPair_Assertion(csl) A
cs2 = readerindicatesPair(csl) A
first WriterChoosesPair_Assertion(csl) A
writerChoosesPair_Assertion(csl) A
writerChoosesSlot-Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) A
writerIndicatesPair_Assertion(csl) =
(cs2‘nri = rd =
cs2‘minFresh < cs2‘newMaxFresh A
cs2‘indexRead > cs2‘minFresh A
cs2‘indexRead < cs2‘newMaxFresh A
cs2lastindexRead < cs2‘indexRead)

vc2_readerChoosesSlot: THEOREM
V (cs: Conc_State):
pre_readerChoosesSlot(cs) A



230

readerChoosesPair_Assertion(cs) A
first WriterChoosesPair_Assertion(cs) A
writerChoosesPair_Assertion{cs) A

writerChoosesSlot_Assertion(cs) A

write_Assertion(cs) A
writerIndicatesSlot_Assertion(cs) A
writerlndicatesPair_Assertion(cs) =

(cs‘nri = rd =
cs‘minFresh < cs‘newMaxFresh A

cs‘indexRead > cs‘minFresh A
cs‘indexRead < cs‘newMaxFresh A
cs‘lastindexRead < cs‘indexRead)

vc3_readerChoosesSlot: THEOREM
V (csl, cs2: Conc_State):
pre.readerChoosesSlot (cs1) A
readerChoosesSlot_Assertion{csl) A
cs2 = readerChoosesSlot(csl) A
first WriterChoosesPair_Assertion(csl) A
writerChoosesPair_Assertion(csl) A
writerChoosesSlot_Assertion(cs1) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion (csl) A
writerIndicatesPair_Assertion(csl) =
(cs2‘nri = rd =
cs2‘minFresh < cs2‘newMaxFresh A
cs2‘indexRead > cs2‘minFresh A
cs2‘indexRead < cs2‘newMaxFresh A
cs2‘lastlndexRead < cs2‘indexRead)

vc2_read: THEOREM
V (cs: Conc_State, v: Val):
pre.read(cs) A
read_Assertion(cs) A
first WriterChoosesPair_Assertion(cs) A
writerChoosesPair_Assertion(cs) A
writerChoosesSlot_Assertion(cs) A
write_Assertion(cs) A
writerlndicatesSlot _Assertion{(cs) A
writerIndicatesPair_Assertion(cs) =
(cs‘nri = rd =
cs‘minFresh < cs‘newMaxFresh A
cs‘indexRead > cs‘minFresh A
cs‘indexRead < cs‘newMaxFresh A
cs‘lastindexRead < cs‘indexRead)

vc3_read: THEOREM
V (csl, cs2: Conc_State, v: Val):
pre_read(csl) A
read_Assertion(csl) A
cs2 = read(csl) ‘1 A
first WriterChoosesPair_Assertion(csl) A
writerChoosesPair-Assertion{(csl) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) A
writerIndicatesPair_Assertion(csl) =
(cs2‘nri = rd =
cs2‘minFresh < cs2‘newMaxFresh A
cs2‘indexRead > cs2‘minFresh A
cs2‘indexRead < cs2‘newMaxFresh A
cs2‘lastindexRead < cs2‘indexRead)

vc2 first WriterChoosesPair: THEOREM



V¥ (cs: Conc_State):
prefirstWriterChoosesPair(cs) A
firstWriterChoosesPair_Assertion(cs) A
first ReaderChoosesPair_Assertion(cs) A
readerChoosesPair_Assertion(cs) A
readerIndicatesPair_Assertion(cs) A
readerChoosesSlot_Assertion(cs) A
read_Assertion{(cs) =>
(cs‘nri = 1d =
cs‘minFresh < cs‘newMaxFresh A
cs‘indexRead > cs‘minFresh A
cs‘indexRead < cs‘newMaxFresh A
cs‘lastindexRead < cs‘indexRead)

ve3_firstWriterChoosesPair: THEOREM
V (csl, cs2: Conc-State):
prefirst WriterChoosesPair(csl) A
first WriterChoosesPair_Assertion(csl) A
cs2 = firstWriterChoosesPair(csl) A
firstReaderChoosesPair_Assertion(csl) A
readerChoosesPair.Assertion(csl) A
readerIndicatesPair_Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
read_Assertion(csl) =
(cs2‘nri = rd =
cs2‘minFresh < cs2‘newMaxFresh A
cs2‘indexRead > cs2‘minFresh A
cs2‘indexRead < cs2‘newMaxFresh A
cg2‘lastindexRead < cs2‘indexRead)

vc2_writerChoosesPair: THEOREM
V (cs: Conc_State):
pre.writerChoosesPair(cs) A
writerChoosesPair_Assertion(cs) A
first ReaderChoosesPair_Assertion(cs) A
readerChoosesPair_Assertion(cs) A
readerlndicatesPair_Assertion(cs) A
readerChoosesSlot_Assertion(cs) A
read_Assertion(cs) =
(cs‘nri = rd =
cs‘minFresh < cs‘newMaxFresh A
cs‘indexRead > cs‘minFresh A
cs‘indexRead < cs‘newMaxFresh A
cs‘lastindexRead < cs‘indexRead)

vc3_writerChoosesPair: THEOREM
V (csl, cs2: Conc_State):
pre_writerChoosesPair(csl) A
writerChoosesPair. Assertion(csl) A
cs2 = writerChoosesPair(csl) A
firstReaderChoosesPair_Assertion(csl) A
readerChoosesPair-Assertion{csl) A
readerIndicatesPair_Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
read_Assertion(csl) =
(cs2‘nri = rd =
cs2‘minFresh < cs2‘newMaxFresh A
cs2‘indexRead > cs2‘minFresh A
cs2‘indexRead < cs2‘newMaxFresh A
cs2‘lastindexRead < cs2‘indexRead)

vc2_writerChoosesSlot: THEOREM
V (cs: Conc_State):
pre_writerChoosesSlot (cs) A

231



writerChoosesSlot_Assertion(cs) A
first ReaderChoosesPair_Assertion(cs) A
readerChoosesPair._Assertion{(cs) A
readerIndicatesPair_Assertion(cs) A
readerChoosesSlot_Assertion(cs) A
read-Assertion(cs) =
(cs‘nri = rd =
cs‘minFresh < cs‘newMaxFresh A
cs‘indexRead > cs‘minFresh A
cs‘indexRead < cs‘newMaxFresh A
cs‘lastlndexRead < cs‘indexRead)

vc3_writerChoosesSlot: THEOREM
Vv (csl, cs2: Conc_State):
pre_writerChoosesSlot (cs1) A
writerChoosesSlot _Assertion(csl) A
cs2 = writerChoosesSlot(csl) A
firstReaderChoosesPair._Assertion(csl) A
readerChoosesPair_Assertion(csl) A
readerlndicatesPair_Assertion(csl) A
readerChoosesSlot_Assertion{csl) A
read_Assertion(csl) =>
(cs2‘nri = rd =
cs2‘minFresh < cs2‘newMaxFresh A
cs2‘indexRead > cs2‘minFresh A
cs2‘indexRead < cs2‘newMaxFresh A
cs2‘lastindexRead < cs2‘indexRead)

vc2_write: THEOREM
Vv (cs: Conc_State):
pre_write(cs) A
write_Assertion(cs) A
firstReaderChoosesPair_Assertion(cs) A
readerChoosesPair_Assertion(cs) A
readerindicatesPair_Assertion(cs) A
readerChoosesSlot_Assertion(cs) A
read_Assertion(cs) =
(cs‘nri = rd =
cs‘minFresh < cs‘newMaxFresh A
cs‘indexRead > cs‘minFresh A
cs‘indexRead < cs‘newMaxFresh A
cs‘lastindexRead < cs‘indexRead)

vc3_write: THEOREM
V (w: write_parameter, cs2: Conc_State):
pre_write(w‘p;) A
write_Assertion(w‘p1) A
cs2 = write(w) A
firstReaderChoosesPair_Assertion(w‘p1) A
readerChoosesPair_Assertion(w*p1) A
readerIndicatesPair_Assertion(w‘p1) A
readerChoosesSlot._Assertion{w‘p1) A
read_Assertion(w‘p1) =
(cs2'nri = rd =
cs2‘minFresh < cs2‘newMaxFresh A
cs2‘indexRead > cs2‘minFresh A
cs2‘indexRead < cs2‘newMaxFresh A
cs2*lastindexRead < cs2‘indexRead)

vc2.writerlndicatesSlot: THEOREM
V (cs: Conc_State):
pre_writerIndicatesSlot (cs) A
writerIndicatesSlot _Assertion(cs) A
firstReaderChoosesPair_Assertion(cs) A

232



readerChoosesPair_Assertion(cs) A

readerindicatesPair_Assertion(cs) A
readerChoosesSlot_Assertion{cs) A
read_Assertion(cs) =

(cs‘nri = rd =

cs‘minFresh < cs‘newMaxFresh A

cs‘indexRead > cs‘minFresh A
cs‘indexRead < cs‘newMaxFresh A

cs‘lastindexRead < cs‘indexRead)

vc3_writerIndicatesSlot: THEOREM
V (csl, cs2: Conc_State):
pre.writerIndicatesSlot (cs1) A
writerIndicatesSlot_Assertion(csl) A
cs2 = writerIndicatesSlot(csl) A
firstReaderChoosesPair_Assertion(csl) A
readerChoosesPair_Assertion(csl) A
readerIndicatesPair-Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
read_Assertion(csl) =
(cs2‘nri = rd =
cs2‘minFresh < cs2‘newMaxFresh A
cs2‘indexRead > cs2‘minFresh A
cs2‘indexRead < cs2‘newMaxFresh A
cs2‘lastIndexRead < cs2‘indexRead)

vc2.writerIndicatesPair: THEOREM
V (cs: Conc-State):
pre_writerlndicatesPair(cs) A
writerlndicatesPair_Assertion(cs) A
firstReaderChoosesPair_Assertion(cs) A
readerChoosesPair_Assertion(cs) A
readerlndicatesPair_Assertion{cs) A
readerChoosesSlot_Assertion(cs) A
read_ Assertion(cs) =>
(cs‘nri = rd =
cs‘minFresh < cs‘newMaxFresh A
cs‘indexRead > cs‘minFresh A
cs‘indexRead < cs‘newMaxFresh A
cs‘lastIndexRead < cs‘indexRead)

vc3_writerlndicatesPair: THEOREM
V (csl, cs2: Conc_State):
pre_writerIndicatesPair(cs1) A
writerIndicatesPair.Assertion(csl) A
cs2 = writerlndicatesPair(csl) A
firstReaderChoosesPair_Assertion(csl) A
readerChoosesPair_Assertion{(csl) A
readerIndicatesPair_Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
read.Assertion(csl) =>
(cs2'nri = rd =
cs2‘minFresh < c¢s2‘newMaxFresh A
cs2‘indexRead > cs2‘minFresh A
cs2‘indexRead < cs2‘newMaxFresh A
cs2‘lastIndexRead < cs2‘indexRead)

eND FOURSLOT

233



Appendix 1

3-slot ACM Implementations

This appendix gives three formal models of 3-slot ACN implementations:
first the implementation from [Sim90a], which is proved to be faulty: second
a model which shows that the above implementation is L-atomic. provided
that the timing constraint in [Sim90a) can be implemented. Finally an
implementation from [NYIS02]. where the reader does not keep a local copy
of the slot it has chosen to access: it copies the name of the slot directly
between the control variables in the mechanism, and uses the value of the
slotReading control variable to access its chosen slot. This ACM is L-atomic,
provided that the access to the control variables is Hoare atomic.

I.1 The Implementation from [Sim90a]

THREE_SLOT: THEORY
BEGIN

A non-empty type of values that is communicated by the ACN.
Val: NONEMPTY_TYPE

A SlotIndez type to represent the names of the slots in the ACM.

SlotIndex: TYPE = {s¢, $1, s2}

The program counters for the reader and writer.
NextReadlInstruction: TYPE = {firstRcs, rcs, ris, rd}
NextWritelnstruction: TYPE = {first\Wcs, wes, wr, wis}

The locations in the reader and writer assertion networks.

ReaderNetworkState: TYPE = {sr, Irl, Ir2, Ir3, tr}

WriterNetworkState: TYPE = {sw, lwl, lw2, Iw3, tw}

234



L1. The Implementation from [Sim90a] 235

The local state of the writer and reader.

WriterState: TYPE =
[# writerSlot: Slotlndex, currentState: WriterNetworkState 2]

ReaderState: TYPE =
[# readerSlot: SlotIndex, currentState: ReaderNetworkState #]

The state of the mechanism - the control variables for the writer and reader
to record the slot they are accessing, the slots, the program counters for the
reader and writer and the reader and writer local states.
Conc_State: TYPE =
[# slotWritten: Slotlndex,
slotReading: Slotlndex,
glots: [SlotIndex — Val],
nri: NextReadInstruction,
nwi: NextWritelnstruction,

writer: WriterState,
reader: ReaderState #]

The operations of the reader and writer. The first reader operation at
start up is firstReaderChoosesSlot. The pre-condition of this operation
is that the reader is in the initial location in its assertion network (nori
= firstRcs): the operation chooses the slot the reader is going to access,
and changes the program counter to indicate that the reader can now exe-
cute readerIndicatesSlot. The readerChoosesSlot operation has an identical
post-condition, but its pre-condition is that the reader can next execute
readerChoosesSlot, rather than firstReaderChoosesSlot. The pre-conditions
for the remaining operations are simply that the reader (or writer) program
counter is equal to the correct value for the operation to be executed. These
program counters are auxiliary variables that are not part of the imple-
mentation. The operations each set the respective program counter to the
correct value for the next operation to be executed.

pre_firstReaderChoosesSlot (p: Conc_State): bool = p‘nri = firstRes

post_firstReaderChoosesSlot (p: (pre_firstReaderChoosesSlot)) (prot: Conc.State): bool =
prot = p wiTH [uri := ris,
reader := p‘reader wWITH [readerSlot := p‘slotWritten,
currentState := Ir1]]

firstReaderChoosesSlot :
[p: (prefirstReaderChoosesSlot) — (postfirstReaderChoosesSlot(p))]

pre_readerChoosesSlot(p: Conc_State): bool = p‘nri = rcs

post_readerChoosesSlot (p: (pre_readerChoosesSlot)) (prot: Conc State): bool =
prot = p wiTH [nri := ris,
reader := p‘reader wITH [readerSlot := p‘slotWritten,
currentState := Irl]]

readerChoosesSlot :
[p: (prereaderChoosesSlot) — (post_readerChoosesSlot(p))]



L1. The Implementation from [Sim90a] 236

The post-condition for the readerIndicatesSlot operation is that the reader
has indicated the slot it is accessing in the control variable slotReading.

pre_readerIndicatesSlot(p: Conc.State): bool = p‘nri = ris

post_readerIndicatesSlot (p: (pre.readerIndicatesSlot))(prot: Conc_State): bool =
prot = p WITH [nri := rd,
slotReading := p‘reader‘readerSiot,
reader := p‘reader wiTH [currentState := Ir2]]

readerIndicatesSlot :
[p: (prereaderindicatesSlot) — (post_readerindicatesSlot{p))]

The post-condition of the read operation returns that value read from the
ACM.

preread(p: Conc.State): bool = p‘nri = rd

post_read(p: (pre.read))(prot: Conc_State, v: Val): bool =
v = p‘slots(p‘reader‘readerSlot) A
prot = p WITH [nri := rcs, reader := p‘reader WITH [currentState := Ir3}]

read: [p: (preread) — (post_read(p))]

The post-conditions for the first WriterChosesSlot and writerChoosesSlot op-
erations are that the writer has chosen the slot it is going to write the new
value to. The writer attempts to avoid the slot that the reader is accessing
(by choosing to write to a different slot to the one the reader last indicated
it was accessing), and also avoids the slot that it last accessed.
pre_firstWriterChoosesSlot(p: Conc_State): bool = p‘nwi = firstWcs
post_first WriterChoosesSlot (p: (pre_firstWriterChoosesSlot)) (prot: Conc.State): bool =

(p‘slotWritten = sp =>
(p‘slotReading = so =

prot = p WITH [nwi = wr,
writer := p‘writer WITH
[writerSlot := s, currentState := lwlll) A
(p‘slotReading = 1 =
prot = p WITH [nwi = wr,
writer := p‘writer WITH
[writerSlot := s2, currentState := lwll]l) A
(p‘slotReading = s2 =
prot = p WITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := s;, currentState := lwll])) A

(p‘slotWritten = 51 =
(p‘slotReading = sp =

prot = p WITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := sz, currentState := lwl]]) A
(p‘slotReading = s; =
prot = p WITH [nwi := wr,
writer := p‘writer WITH

[writerSlot := s», currentState := lw1]]) A
(p‘slotReading = s2 =
prot = p WITR [nDwi = wr,
writer := p‘writer WITH
[writerSlot := sg, currentState := 1w1l1)) A
(p‘slotWritten = s2 =



L1. The Implementation from [Sim90a] 237

(p‘slotReading = sp =
prot = p WITE [nwi := wr,
writer := p‘writer WITH
[writerSlot := 8, currentState := lwl]]) A

(p‘slotReading = 8 =
prot = p WITH [owi := wr,
writer := p‘writer WITH
[writerSlot := sg, currentState := lw1]]) A

(p‘slotReading = s =
prot = p WITH [nwi := wr,
writer := p‘writer wiTH
[writerSlot := sg, currentState := lw1]1))

first WriterChoosesSlot :
[p: (prefirstWriterChoosesSlot) — (post_firstWriterChoosesSlot(p))]

pre_writerChoosesSlot(p: Conc_State): bool = p‘nwi = wcs

post.writerChoosesSlot(p: (pre_writerChoosesSlot)) (prot: Conc_State): bool =

(p‘slotWritten = g9 =
(p‘siotReading = sp =
prot = p wITH [owi := wr,
writer := p‘writer WITH
[writerSlot := s1, currentState := Iwl]]) A

(p‘slotReading = a1 =
prot = p WITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := sz, currentState := lwll]) A

(p‘slotReading = 92 =
prot = p WITH [owi := wr,
writer := p‘writer WITH

[writerSlot := s, currentState := lw1]])) A
(p‘slotWritten = 81 =
(p‘slotReading = sp =>
prot = p WITH [nwi := wr,
writer := p‘writer wWITH
[writerSlot := sz, currentState := Iwlll) A
(p'slotReading = s, =
prot = p WITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := sz, currentState := lwll]) A

(p‘slotReading = s2 =
prot = p WITH [nwi := wr,
writer := p‘writer WITH

[writerSlot := sg, currentState := lwl]l]l)) A

(p‘slotWritten = s =
(p‘slotReading = sp =
prot = p WITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := s, currentState := Iwl]]) A
(p‘slotReading = s =
prot = p WITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := so, currentState := lwlll) A
(p‘slotReading = s2 =
prot = p WITH [nwi := wr,
writer := p‘writer WITH

[writerSlot := sp, currentState := lwll]))

writerChoosesSlot :
[p: (pre_writerChoosesSlot) — (post_writerChoosesSlot(p))]



L1. The Implementation from [Sim90a] 238

The post-condition for the write operation is that the writer has wTitten the
new item to its chosen slot.

pre_write(p: Conc.State): bool = p‘nwi = wr

write_parameter: TYPE = [# p;: (pre_write), v: Val %]

post_write(p: write_parameter) (prot: Conc_State): bool =

prot = p‘py WITH [nwi := wis,

(slots) (p* p1 ‘ writer ‘writerSlot) := p'y,
writer := p‘p; ‘writer wiTH [currentState := lw2]]

write: [p: write_parameter — (post_write(p))]

The post-condition of the writerIndicatesSlot operation is that the writer

has indicated the slot it has accessed in the relevant control variable in the
mechanism.

pre.writerIndicatesSlot (p: Conc_State): bool = p‘nwi = wis

post_writerindicatesSlot (p: (pre_writerIndicatesSlot)) (prot: Conc.State): bool =

prot = p WITH [nwi := wis,
slotWritten := (p*writer‘writerSlot),
writer := p‘writer wiTH [currentState := 1w3]]
writerlndicatesSlot :

[p: (pre_writerIndicatesSlot) — (post_writerindicatesSlot(p))]

Initialisation operations for the reader and writer local states, and for the
ACM itself.

init_writer(w: WriterState): bool w w WITH [currentState := sw])

Il
it

init.reader(r: ReaderState): bool = r = r wira [currentState := sr]

init_prot(p: Conc_State, init.val: Val, w: WriterState, r: ReaderState): bool =
p = p WITH [slotWritten := s,
slotReading := sg,
slots := (A - (sp: SlotIndex): init_val),

The following are the assertions from the locations in the reader and writer
assertion networks.
When the writer is about to execute the writerChoosesSlot operation the
slot Written control variable is equal to the writer local variable, writerSlot.
writerChoosesSlot_Assertion: [Conc_State — bool] =

(XA - (cs: Conc.State):
cs‘nwi = wes = cs‘slotWritten = cs‘writer‘ writerSlot

When the writer is writing (or about to write) to the mechanism, it has
chosen to access a different slot to the one it accessed for the previous
write. This same assertion holds when the write is about to execute the
writerIndicatesSlot operation.



I1. The Implementation from [Sim90a] 239

write_Assertion: [Conc_State — bool] =
(A - (cs: Conc_State):
cs‘nwi = wr => - cs‘slotWritten = cs‘writer‘writerSlot

writerIndicatesSlot_Assertion: [Conc_State — bool]l =
(A -(cs: Conc_State):
cs‘nwi = wis = - cs‘slotWritten = cs*writer*writerSlot

When the reader is about to execute the readerChoosesSlot operation the
slotReading control variable is equal to the reader local variable, readerSlot.
It is not possible to make any assertions when the reader is about to execute
the readerIndicatesSlot operation.

readerChoosesSlot_Assertion: [Conc_State — bool] =

(XA - (cs: Conc_State):
cs‘nri = rcs = cs‘slotReading = cs‘readerreaderSlot

When the reader is reading (or to about to read) from the mechanism the
control variable slotReading is equal to the reader local variable, readerSlot.

read-Assertion: [Conc_State — bool]l =
(A - (cs: Conc_State):
cs‘nri = rd = cs‘slotReading = cs‘reader‘readerSlot

The following are the proof obligations that need to be executed to verify
that the 3-slot ACM communicates coherent data between the reader and
writer (that the reader and writer never access the same slot at the same
time). The first proof obligation for each transition (vcl) in the respective
assertion networks shows, when the pre-condition for the operation associ-
ated with the transition holds and the assertion in the start location of the
transition holds, that the assertion in the target location of the operation
will hold after the operation is executed. Additionally it shows that the
reader operations do not interfere with the assertions in the writer network,
and that the writer operations do not interfere with the operations in the
writer network. In each case the relevant transition is indicated by the name
of its associated operation.

vcl_first WriterChoosesSlot: THEOREM
V (cs1l, cs2: Conc_State):
prefirst WriterChoosesSlot (cs1) A
readerChoosesSlot-Assertion{csl) A
read_Assertion(csl) A
cs2 = firstWriterChoosesSlot (cs1) =
write.Assertion(cs2) A
readerChoosesSlot_Assertion(cs2) A read_Assertion(cs2)

vcl.writerChoosesSlot: THEOREM
V (csl, cs2: Conc-State):
pre.writerChoosesSlot(cs1) A
writerChoosesSlot_Assertion(csl) A
readerChoosesSlot_Assertion{csl) A
read_Assertion(csl) A
cs2 = writerChoosesSlot(csl) =
write_Assertion(cs2) A



L1. The Implementation from [Sim90a] 240

readerChoosesSlot_Assertion(cs2) A read._Assertion (cs2)

vcl_write: THEOREM
V (w: write_parameter, cs2: Conc_State):
pre.write(w'py) A

write_Assertion(w‘p;) A

readerChoosesSlot_Assertion(w*p;) A
read.-Assertion(w‘p;) A
cs2 = write(w) =

writerlndicatesSlot_Assertion(cs2) A

readerChoosesSlot_Assertion(cs2) A read_Assertion(cs2)

vcl writerlndicatesSlot: THEOREM
V (csl, c¢s2: Conc_State):
pre_writerlndicatesSlot(csl) A
writerIndicatesSlot_Assertion(csl) A
readerChoosesSlot _Assertion(csl) A
read_Assertion(csl) A
cs2 = writerIndicatesSlot(cs1) =
writerChoosesSlot_Assertion{cs2) A
readerChoosesSlot_Assertion(cs2) A read_Assertion(cs2)

vcl.readerChoosesSlot: THEOREM
V (csl, cs2: Conc.State):
pre.readerChoosesSlot(cs1) A
readerChoosesSlot_Assertion(csl) A
writerChoosesSlot.Assertion(csl) A
write_Assertion{csl) A
writerIndicatesSlot_Assertion(csl) A
cs2 = readerChoosesSlot(csl) =
writerChoosesSlot _Assertion(cs2) A
write_Assertion(cs2) A writerIndicatesSlot_Assertion(cs2)

vcl_readerIndicatesSlot: THEOREM
V (csl, cs2: Conc State):
prereaderIndicatesSlot (cs1) A
writerChoosesSiot_Assertion{csl) A
write_Assertion(csl) A
writerlndicatesSlot._Assertion(csl) A
cs2 = readerlndicatesSlot(csl) =
read_Assertion(cs2) A
writerChoosesSlot_Assertion{cs2) A
write_Assertion{(cs2) A writerIndicatesSlot_Assertion(cs2)

vclread: THEOREM
V (csl, c¢s2: Conc.State):
pre_read(csl) A
read_Assertion(csl) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) A
cs2 = read(csl)‘l =
readerChoosesSlot_Assertion(cs2) A
writerChoosesSlot._Assertion (cs2) A
write_Assertion(cs2) A writerIndicatesSlot_Assertion(cs2)

The remaining proof obligations are to show that the guarantee condition
holds in the start location of each operation, and that it also holds after each
of the operations is executed. The guarantee condition is that the reader
and writer will access different slots when they are reading from and writing
to the ACM. Stated formally:



L1. The Implementation from [Sim90a]

241
nwi = wr A nrt = rd = readerSlot # writerSlot

It is not possible to complete this proof obligation to show that the guar-
antee condition holds when the readerIndicatesSlot operation is executed.
vc2_ firstReaderChoosesSlot: THEOREM
V (csl: Conc_State):
pre_firstReaderChoosesSlot{(csl) A

writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A

writerIndicatesSlot _Assertion(csl) =
(csl‘nwi wr A cslénri = rd =
- csl‘reader‘readerSlot = csl‘writer‘writerSlot)
vc3_firstReaderChoosesSlot : THEOREM
Vv (csl: Conc_State):
prefirstReaderChoosesSlot (cs1) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A

writerIndicatesSlot_Assertion(csl) =
(firstReaderChoosesSlot (cs1) ‘nwi = wr A firstReaderChoosesSlot(csl) ‘nri = rd =
- (firstReaderChoosesSlot (cs1) ‘reader ‘readerSlot =
first ReaderChoosesSlot (csl) ‘ writer ‘ writerSlot) )
vc2_readerChoosesSlot: THEOREM
V (c8l: Conc_State):
pre_readerChoosesSlot(csl) A
readerChoosesSlot_Assertion(csl) A
writerChoosesSlot_Assertion(csl) A

write_Assertion{csl) A writerIndicatesSlot._Assertion(csl) =
(csl‘nwi = wr A csl‘ori = rd =
- csl‘reader‘readerSlot = csl‘writer‘writerSlot)
vc3_readerChoosesSlot: THEOREM
V (csl: Conc_State):
prereaderChoosesSlot(csl) A
readerChoosesSlot_Assertion(csl) A
writerChoosesSlot_Assertion(csl) A

write_Assertion(csl) A writerlndicatesSlot_Assertion(csl) =
(readerChoosesSlot{csl) ‘nowi = wr A readerChoosesSlot(csl) ‘nri = rd =
- (readerChoosesSlot{csl) ‘reader ‘readerSlot =
readerChoosesSlot (¢cs1) ‘ writer‘ writerSlot))
vc2_readerIndicatesSlot: THEOREM
¥V (csl: Conc_State):
pre.readerlndicatesSlot (cs1) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot _Assertion(csl) =
(csl‘nwi = wr A cslfnri = rd =>
— csl‘reader ‘readerSlot = csl‘writer‘writerSlot)
vc3_readerIndicatesSlot: THEOREM
V (csl: Conc-State):
pre.readerIndicatesSlot(cs1) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A

writerIndicatesSlot_Assertion(cs1) =
(readerlndicatesSlot(csl) ‘nwi = wr A readerIndicatesSlot{csl) ‘nri = rd =
— (readerIndicatesSlot (cs1) ‘reader ‘readerSlot =
readerlndicatesSiot (csl) ‘ writer ‘ writerSlot))
vc2.read: THEOREM
V (csl: Conc_State):



L1. The Implementation from [Sim90a]

preread(csl) A
read.Assertion(csl) A

writerChoosesSlot.Assertion (cs1) A
write_Assertion(csl) A writerIndicatesSlot-Assertion(csl) =
(csl‘nwi = wr A cslénri = rd =
- c¢sl ‘reader ‘readerSlot =

csl ‘writer ‘ writerSlot)
vc3.read: THEOREM

V (csl: Conc-_State):
pre_read(csl) A
read_Assertion(csl) A

writerChoosesSlot_Assertion(csl) A

write_Assertion(csl) A writerIndicatesSlot_Assertion(csl) =
(read(csl) ‘1‘nwi

wr A read(csl)‘lfori = rd =
- (read(csl) ‘1‘reader‘readerSlot =

read (csl) ‘1¢writer ‘ writerSlot))

vc2_first WriterChoosesSlot: THEOREM
V (csl: Conc_State):
prefirstWriterChoosesSlot (cs1) A

readerChoosesSlot_Assertion(csl) A
read_Assertion(csl) =

(csl‘nwi = wr A cslénri

rd =
— csl‘reader ‘readerSlot

csl‘writer ‘writerSlot)
ve3_first WriterChoosesSlot: THEOREM
V¥ (csl: Conc_State):
prefirstWriterChoosesSlot (cs1) A
readerChoosesSlot_Assertion{(csl) A
read.Assertion(csl) =
(first WriterChoosesSlot(csl) ‘nwi = wr A
first WriterChoosesSlot (cs1) ‘nri =

rd =
- (first WriterChoosesSlot (cs1) ‘reader ‘readerSlot =

first WriterChoosesSlot (cs1) ‘ writer ‘ writerSlot))

vc2_writerChoosesSlot: THEOREM
V (csl: Conc_State):
pre_writerChoosesSlot (cs1) A
writerChoosesSlot_Assertion{(csl) A

readerChoosesSlot_Assertion(csl) A
read_Assertion(csl) =
(csl‘nwi = wr A
cslénri = rd =

— csl‘reader ‘readerSlot = csl‘writer ‘ writerSlot)

vc3_writerChoosesSlot: THEOREM
V (csl: Conc_State):
pre.writerChoosesSlot(cs1) A
writerChoosesSlot _Assertion(csl) A

readerChoosesSlot_Assertion{csl) A
read_Assertion(csl) =
(writerChoosesSlot(csl) ‘nwi = wr A
writerChoosesSlot(csl) ‘ari = rd =
— (writerChoosesSlot (cs1) ‘reader ‘readerSlot =
writerChoosesSlot (cs1) ‘ writer ‘ writerSlot))

vc2_write: THEOREM

V (w: write_parameter):
pre_write(w‘p1) A
write_Assertion(w‘p1) A

readerChoosesSlot_Assertion(w‘p1) A
read_Assertion(w‘py) =

(wp‘nwi = wr A w'py‘nri = rd =

[\]
[N



L1.2. Introducing a Timing Constraint 243

- w'p; ‘reader ‘readerSlot = w"‘p; ‘writer‘writerSlot)

vc3_write: THEOREM
V (w: write_parameter):

pre_write(w‘p;) A

writerIndicatesSlot_Assertion(w‘p;) A
readerChoosesSlot_Assertion(w‘p;) A
read_Assertion(w‘p1) =

(write(w) ‘owi = wr A write{w)‘nri = rd =
— (write(w) ‘reader‘readerSlot = write(w) ‘ writer ‘ writerSlot))

vc2.writerIndicatesSlot: THEOREM
Vv (csl: Conc_State):
pre_writerIndicatesSlot (cs1) A
writerlndicatesSlot_Assertion(csl) A readerChoosesSlot_Assertion{csl) A read_Assertion(csl) =
(csl‘nwi = wr A ¢slénri = rd =
— csl‘reader‘readerSlot = csl‘writer ‘writerSlot)

vc3_writerIndicatesSlot: THEOREM
V (csl: Conc_State):
pre.writerIndicatesSlot (cs1) A
writerIndicatesSlot_Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
read_Assertion(csl) =
(writerIndicatesSlot(cs1) ‘nwi = wr A writerlndicatesSlot(csl)‘nri = rd =
- (writerIndicatesSlot (cs1) ‘reader ‘readerSlot =
writerIndicatesSlot (cs1) ‘ writer ‘ writerSlot))

In order to demonstrate that the 3-slot implementation may allow the reader
and writer to access the same slot at the same time it is possible to find a
number of witness values (when attempting to complete the proof obligation
to show that the guarantee condition holds after executing readerIndicatesSlot
above) so that the following proof can be completed.

vc3_readerlndicatesSlot_Incorrect: THEOREM
3 (csl: Conc_State):
pre_readerIndicatesSlot(cs1) A
writerChoosesSlot-Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) =
readerIndicatesSlot(csl) ‘nwi = wr A
readerIndicatesSlot(csl) ‘nri = rd A
readerIndicatesSlot (cs1) ‘reader ‘readerSlot =
readerindicatesSlot (csl) ‘ writer ‘ writerSlot

END THREE SLOT

I.2 Introducing a Timing Constraint

The model in this section is almost identical to the one in the previous
section. The only difference is that it models the introduction of the timing
constraint from [Sim90a], and verifies that if the timing constraint can be
implemented, the ACM communicates coherent data between its reader and
writer. The timing constraint is that

the interval between control operations in the read function
is always shorter than the interval between writes ...



L2. Introducing a Timing Constraint 244

The constraint attempts to ensure that, if the reader chooses a new slot
before the writer executes the writerIndicatesSlot operation, it is not possible
for the writer to execute the start of the next write before the reader indicates
the slot it has chosen. This will avoid the faulty operation of the ACM
described in the last section, which allows the reader and writer to access
the same slot at the same time.

The timing constraint is modelled by adding two auxiliary variables to
the model, and amending the pre-conditions of some of the operations as
follows:

1. The additional auxiliary variables are wisSinceRcs, which is true if the
last occurrence of writerIndicatesSlot is after the last occurrence of
readerChoosesSlot and false otherwise (set to true by writerIndicatesSlot
and false by readerChoosesSlot), and risSince Wis, which is true if the
last occurrence of readerIndicatesSlot is after the last occurrence of
writerIndicatesSlot (set to true by readerIndicatesSlot and false by
writerIndicatesSlot).

2. The pre-condition of amended to include wisSinceRcs = risSince Wis,
so that, when writerIndicatesSlot occurs after readerChoosesSlot,
writerChoosesSlot cannot be executed unless there has been a subse-
quent readerIndicatesSlot. This avoids the incorrect operation of the
ACM, and all of the proof obligations can be discharged.

The following model of this revised implementation is identical to the
previous one, except for the inclusion of the additional auxiliary variables de-
scribed above, and the amended pre-condition for the amended pre-condition
for the writerChoosesSlot operation.

THREE_SLOT: THEORY
BEGIN

Val: NONEMPTY-TYPE

v : Val

SlotIndex: TYPE = {so, s1, S2}

NextReadInstruction: TYPE = {firstRcs, rcs, ris, rd}
NextWritelnstruction: TYPE = {firstWes, wcs, wr, wis}
ReaderNetworkState: TYPE = {sr, Irl, Ir2, Ir3, ir}
WriterNetworkState: TYPE = {sw, lwl, lw2, w3, tw}

WriterState: TYPE =
[# writerSlot: Slotindex, currentState: WriterNetworkState #]

ReaderState: TYPE =
[# readerSlot: Slotindex, curremtState: ReaderNetworkState %]



L2. Introducing a Timing Constraint

Conc_State: TYPE =

[# slotWritten: Slotlndex,
slotReading: SlotIndex,
slots: [SlotIndex — Val],
nri: NextReadlnstruction,
nwi: NextWritelnstruction,
writer: WriterState,
reader: ReaderState,
wisSinceRcs: bool,
risSinceWis: bool #]

pre-firstReaderChoosesSlot(p: Conc_State): bool = p‘nri = firstRes

post_firstReaderChoosesSlot (p: (pre_firstReaderChoosesSlot)) (prot: Conc_State): bool =
prot = p wiTH [nri := ris,
reader := p‘reader WITH [readerSlot := p‘slotWritten, currentState
wisSinceRes := FALSE]

firstReaderChoosesSlot :
[p: (prefirstReaderChoosesSlot) — (post_firstReaderChoosesSlot(p))]

pre_readerChoosesSlot(p: Conc_State): bool = p‘nri = rcs

post_readerChoosesSlot(p: (pre_readerChoosesSlot)) (prot: Conc.State): bool =
prot = p wITH [nri := ris,
reader := p‘reader wiTH ([readerSlot := p‘slotWritten, currentState
wisSinceRcs := FALSE]

readerChoosesSlot:
[p: (pre.readerChoosesSlot) — (post_readerChoosesSlot(p))]

prereaderindicatesSlot(p: Conc_State): bool = p‘nri = ris

post_readerIndicatesSlot (p: (pre_readerlndicatesSlot)) (prot: Conc_State): bool =
prot = p witH [or := rd,
slotReading := p‘reader‘readerSlot,
reader := p‘reader WITH [currentState := Ir2],
risSinceWis := TRUE]

readerIndicatesSlot :
[p: (pre_readerlndicatesSlot) — (post_readerIndicatesSiot(p))]

preread(p: Conc_State): bool = p‘ori = rd

post_read(p: (preread))(prot: Conc_State, v: Val): bool =
v = p‘slots(p ‘reader‘readerSlot) A
prot = p wiTH [nri := rcs, reader := p‘reader WITH [currentState := Ir3]]

read: [p: (preread) — (post_read(p))]
pre_firstWriterChoosesSlot (p: Conc_State): bool = p‘nwi = firstWcs

post_first WriterChoosesSlot (p: (pre_firstWriterChoosesSlot)) (prot: Conc_State): bool =
(p‘slotWritten = sg =
(p*slotReading = sp =
prot = p WITH [owi := wr,
writer := p‘writer WITH
[writerSlot := s, currentState := lwl]]) A
(p'slotReading = s, =
prot = p wWiTH [nwi := wr,
writer := p‘writer WITH
[writerSlot := sz, currentState := lwl]]) A
(p*slotReading = so =

245

= Ir1],

= Irl],



L2. Introducing a Timing Constraint 246

prot = p wWiTH [nwi := wr,

writer := p‘writer wWiTH
[writerSiot := s;, currentState := 1w1]])) »
(p*slotWritten = s =
(p‘slotReading = 8 =
prot = p WITH [owi := wr,
writer := p°‘writer wITH
[writerSlot := 35, currentState := lwl]]) ~
(p‘slotReading = s =
prot = p WITH [npwi := wr,
writer := p‘writer WITH
[writerSlot := 85, currentState := lwl]]) ~
(p‘slotReading = s, =
prot = p WITH [owi := wr,
writer := p‘writer WITH
[writerSlot := g9, currentState := lwl]])) A
(p‘slotWritten = 82 =
(p‘slotReading = 3o =
prot = p wWITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := s, currentState := lwl]]) A
(p‘slotReading = s =
prot = p WITH [Dwi := wr,
writer := p‘writer WITH
[writerSlot := sg, currentState := Iwl]]) A
(p*slotReading = s, =
prot = p WITH [nwi := wr,
writer := p‘writer WITH
= Iwill))

[writerSlot := sg, currentState

first WriterChoosesSlot :
[p: (prefirstWriterChoosesSlot) — (post_firstWriterChoosesSlot(p))]

pre_-writerChoosesSlot (p: Conc_State): bool =
wes A (pfwisSinceRes = p‘risSinceWis)

p‘nwi =
post_writerChoosesSlot(p: (pre_writerChoosesSlot)) (prot: Conc_State): bool =

(p‘slotWritten = sog =
(p‘slotReading = sg =

prot = p WITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := s;, currentState := Ilwl]]) A
(p‘slotReading = s1 =
prot = p WITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := sy, currentState := Iwl]]) A
(p‘slotReading = s; =
prot = p WITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := s;, currentState := lw1]])) A
(p‘slotWritten = s, =
(p‘slotReading = so =
prot = p WITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := sy, currentState := lwl]]l) A
(p‘slotReading = s1 =
prot = p wWITH [nDwi := wr,
writer := p°‘writer WITH
[writerSlot := sy, currentState := lwlll) A
(p‘slotReading = s2 =
prot = p WITH [owi := wr,
writer := p‘writer WITH
[writerSlot := sg, currentState := lwl]1)) A

(p‘slotWritten = s =



L2. Introducing a Timing Constraint 217

(p‘slotReading = s =>
prot = p witH [nwi := wr,
writer := p‘writer WITH
[writerSlot := g;, currentState := lwl]]) A

(p‘slotReading = s, =

prot = p witd [owi := wr,
writer := p‘writer WITH
[writerSlot := g5, currentState := lw1]]) A
(p‘slotReading = s2 =
prot = p WIiTH [nwi := wr,
writer := p‘writer wiTH
[writerSlot := sp, currentState := lw1]]))
writerChoosesSlot :
[p: (pre-writerChoosesSlot) — (post_writerChoosesSlot(p))]
pre_write(p: Conc_State): bool = p‘nwi = wr
write_parameter: TYPE = [# p;: (pre_write), v: Val #]
post_write(p: write_parameter)(prot: Conc.State): bool =
prot = p‘p; WITH [nwi := wis,
(slots) (p*p; ‘ writer ‘writerSlot) := p'v,
writer := p‘p; ‘writer WITH [currentState := lw2]}]

write: [p: write_parameter — (post_write(p))]
pre_writerlndicatesSlot (p: Conc_State): bool = p‘nwi = wis

post.writerindicatesSlot(p: (pre_writerlndicatesSlot))(prot: Conc_State): bool =

prot = p wWITH [nwi := wis,
slotWritten := (p‘writer‘writerSlot),
writer := p‘writer WITH [currentState := lw3],

wisSinceRcs := TRUE,
risSinceWis := FALSE]

writerlndicatesSlot :
[p: (pre_writerIndicatesSlot) — (post_writerIndicatesSiot(p))]

init_writer(w: WriterState): bool = w = w wITH [currentState := sw]
init_reader(r: ReaderState): bool = r = r WITH [currentState := sr]

init_prot(p: Conc.State, init_val: Val, inv_val: Val, w: WriterState, r: ReaderState): bool =
p = p WITH [slotWritten := s,

slotReading := so,
(slots) (s¢) := init.val,
(slots) (s1) := inv_val,
(slots) (s2) := inv_val,
nri := firstRcs,
nwi := firstWcs,

writer := w,
reader := r,
wisSinceR¢s := FALSE,

risSinceWis := FALSE]

firstWriterChoosesSlot _Assertion: [Conc_State — bool]l =
(A - (cs: Conc_State): cs'nwi = firstWes => - cs‘wisSinceRes

writerChoosesSlot_Assertion: [Conc_State — booll =

(A - (cs: Conc-State):
cs‘nwi = wes = cs‘slotWritten = cs‘writer writerSlot

write_Assertion: [Conc-State — bool]



L2. Introducing a Timing Constraint 248

(A - (cs: ConcState):
cs‘nwi = wr =
(cs‘wisSinceRes = cs‘risSinceWis) A
- cg‘slotWritten = cs‘writer‘writerSlot

writerIndicatesSlot_Assertion: [Conc.State — bool]l =
(A - (cs: Conc_State):
cs‘nwi = wis =
(cs*wisSinceRcs => cs‘risSinceWis) A
- cs‘slotWritten = cs‘writer‘writerSlot

readerChoosesSlot_Assertion: [Conc_State — bool] =
(A . (c8: Conc.State):
cs‘nrl = rcs =
(cs‘wisSinceRes = — cs‘writerwriterSlot = cs‘reader‘readerSlot) A
(- cs‘wisSinceRcs => cs‘slotWritten = cs‘reader‘readerSlot) A
cs‘slotReading = cs‘reader‘readerSlot

readerIndicatesSlot_Assertion: [Conc_State — bool] =
(A - (cs: ConcState):
cs‘nri = ris =
(cs‘wisSinceRes = — cs'risSinceWis A
- cs‘writer‘writerSlot = cs‘reader‘readerSlot) A
(- cs‘wisSinceRcs => cs‘slotWritten = cs‘reader‘readerSlot)

read_Assertion: [Conc_State — bool] =
(A - (cs: Conc_State):
cs‘nri = rd =
cs‘slotReading = cs‘reader‘readerSlot A
(cs‘wisSinceRcs => — cs'writer ‘writerSlot = cs‘reader‘readerSlot) A
(- cs‘wisSinceRcs = cs‘slotWritten = cs‘reader ‘readerSlot)

vc_initWriter: THEOREM
V (cs: Conc_State, init: Val, inv: Val, w: WriterState, r: ReaderState):
init_prot(cs, init, inv, w, r) => firstWriterChoosesSlot_Assertion(cs)

vcl firstWriterChoosesSlot: THEOREM
V¥ (csl, cs2: Conc.State):
prefirst WriterChoosesSlot (cs1) A
first WriterChoosesSlot _Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
readerindicatesSlot_Assertion(csl) A
read_Assertion(csl) A cs2 = firstWriterChoosesSlot(csl) =
write_Assertion(cs2) A
readerChoosesSlot_Assertion(cs2) A
readerlndicatesSlot_Assertion(cs2) A read_Assertion(cs2)

vcl_writerChoosesSlot: THEOREM
V (csl, cs2: Conc_State):
pre_writerChoosesSlot(csl) A
writerChoosesSlot_Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
readerlndicatesSlot_Assertion{(csl) A
read_Assertion(csl) A
cs2 = writerChoosesSlot(csl) =
write_Assertion(cs2) A
readerChoosesSlot-Assertion(cs2) A
readerIndicatesSlot_Assertion(cs2) A read_Assertion(cs2)

vcl_write: THEOREM
V (w: write.parameter, cs2: Conc_State):
pre_write(w‘p1) A
write_Assertion(w‘p1) A
readerChoosesSlot_Assertion(w‘p1) A



L1.2. Introducing a Timing Constraint

readerIndicatesSlot_Assertion(w‘p;) A
read_Assertion(w‘p1) A
cs2 = write(w) =
writerIndicatesSlot_Assertion (cs2) A
readerChoosesSlot_Assertion{(cs2) A
readerIndicatesSlot_Assertion(cs2) A read_Assertion(cs2)

vcl_writerIndicatesSlot: THEOREM
V (csl, cs2: Conc_State):
pre_writerindicatesSlot (cs1) A
writerlndicatesSlot_Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
readerlndicatesSlot_Assertion(csl) A
read_Assertion(csl) A
cs2 = writerlndicatesSlot (csl) =
writerChoosesSlot _Assertion(cs2) A
readerChoosesSlot_Assertion(cs2) A
readerlndicatesSlot_Assertion(cs2) A read-Assertion(cs2)

vcl. firstReaderChoosesSlot: THEOREM
V (cs1, c¢s2: Conc.State):
pre_firstReaderChoosesSlot(csl) A
first WriterChoosesSlot_Assertion (csl) A
writerChoosesSlot_Assertion(cs1) A
write_Assertion{(csl) A
writerlndicatesSlot_Assertion(csl) A
cs2 = firstReaderChoosesSlot(csl) =
readerIndicatesSlot_Assertion (cs2) A
first WriterChoosesSlot _Assertion (cs2) A
writerChoosesSlot_Assertion(cs2) A
write_Assertion(cs2) A writerIndicatesSlot_Assertion(cs2)

vcl_readerChoosesSlot: THEOREM
V (csl, cs2: Conc_State):
pre_readerChoosesSlot(cs1) A
first WriterChoosesSlot _Assertion(csl) A
writerChoosesSlot_Assertion (csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) A
cs2 = readerChoosesSlot(csl) =
readerIndicatesSlot-Assertion{(cs2) A
first WriterChoosesSlot_Assertion(cs2) A
writerChoosesSlot_Assertion(cs2) A
write_Assertion(cs2) A writerindicatesSlot_Assertion(cs2)

vcl_readerindicatesSlot: THEOREM
V (csl, cs2: Conc._State):
pre.readerindicatesSlot(cs1) A
readerlndicatesSlot_Assertion{(csl) A
first WriterChoosesSlot _Assertion(csl) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) A
cs2 = readerlndicatesSlot(csl) =
read_Assertion(cs2) A
first WriterChoosesSlot_Assertion{cs2) A
writerChoosesSlot_Assertion(cs2) A
write_Assertion(cs2) A writerlndicatesSlot_Assertion(cs2)

vcl_read: THEOREM
V (csl, cs2: Conc_State):
preread(csl) A
read_Assertion(csl) A
first WriterChoosesSlot_Assertion(csl) A



I.2. Introducing a Timing Constraint

writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A

writerIndicatesSlot_Assertion(csl) A
cs2 = read(csl)‘l =
readerChoosesSlot.Assertion(cs2) A
firstWriterChoosesSlot_Assertion (cs2) A
writerChoosesSlot_Assertion(cs2) A

write_Assertion(cs2) A writerIndicatesSlot_Assertion (cs2)
vc2_ firstReaderChoosesSlot: THEOREM
Vv (csl: Conc_State):
prefirstReaderChoosesSlot (cs1) A
firstWriterChoosesSlot_Assertion(csl) A
writerChoosesSlot_Assertion(csl) A

write_Assertion(csl) A writerIndicatesSlot_Assertion(csl) =
(csl'nwi = wr A ¢slfnri = rd =
- csl‘reader ‘readerSlot = csl‘writer‘writerSlot)
vc3firstReaderChoosesesSlot: THEOREM
V (csl: Conc_State):
pre_firstReaderChoosesSlot (cs1) A

first WriterChoosesSlot_Assertion (cs1) A
writerChoosesSlot_Assertion (cs1) A

write_Assertion(csl) A writerlndicatesSlot_Assertion(csl) =

(firstReaderChoosesSlot (¢cs1) ‘nwi = wr A firstReaderChoosesSlot(csl) ‘nri = rd =
- (firstReaderChoosesSlot (cs1) ‘reader ‘readerSlot

firstReaderChoosesSlot (csl) ‘ writer ‘ writerSlot))

vc2_readerChoosesSlot: THEOREM
V (csl: Conc.State):
prereaderChoosesSlot (cs1) A
readerChoosesSlot_Assertion(csl) A
first WriterChoosesSlot_Assertion(cs1) A
writerChoosesSlot_Assertion{csl) A

write_Assertion(csl) A writerIndicatesSlot_Assertion(csl) =
(csl‘owi = wr A cslfnri = rd =
- csl‘reader‘readerSlot = csl‘writer‘writerSlot)
vc3_readerChoosesesSiot: THEOREM
V (csl: Conc.State):
pre_readerChoosesSlot (cs1) A
readerChoosesSlot_Assertion(csl) A
first WriterChoosesSlot_Assertion(csl) A
writerChoosesSlot_Assertion(csl) A

write_Assertion(cs1) A writerIndicatesSlot_Assertion(csl) =

(readerChoosesSlot(cs1) ‘owi = wr A readerChoosesSlot(csl) ‘nri = rd =
— (readerChoosesSlot (cs1) ‘reader ‘readerSlot =

readerChoosesSlot (cs1) ‘ writer  writerSlot))
vc2_readerIndicatesSlot: THEOREM
V (csl: Conc_State):
pre.readerChoosesSlot (cs1) A
readerChoosesSlot_Assertion{(csl) A
first WriterChoosesSlot_Assertion(cs1) A
writerChoosesSlot_Assertion(csl) A

write_Assertion(cs1) A writerlndicatesSlot_Assertion(csl) =
(cslénwi = wr A csléori = rd =

— csl‘reader ‘readerSlot = csl‘writer‘writerSlot)
vc3._readerIndicatesSiot: THEOREM

V (csl: Conc_State):
pre_readerIndicatesSlot(cs1) A
readerlndicatesSlot_Assertion(csl) A

first WriterChoosesSlot_Assertion (cs1) A

250



1.2. Introducing a Timing Constraint

writerChoosesSlot_Assertion(csl) A

write_Assertion(csl) A writerIndicatesSlot_Assertion(csl) =

(readerIndicatesSlot(csl) ‘nwi = wr A readerlndicatesSlot(csl)‘nri = rd =
- (readerindicatesSlot (csl) ‘reader‘readerSlot =

readerIndicatesSlot (cs1) ‘writer ‘ writerSlot))
vc2_read: THEOREM
V (csl: Conc_State):
pre_read(csl) A
read_Assertion(csl) A
first WriterChoosesSlot_Assertion(csl) A
writerChoosesSlot_Assertion(csl) A

write_Assertion(csl) A writerIndicatesSlot_Assertion(csl) =
(cslnwi = wr A cslfnri = rd =

- csl‘reader ‘readerSlot = csl‘writer ‘writerSlot)
vc3.read: THEOREM
V (csl: Conc.State):
preread(csl) A
read_Assertion(csl) A

first WriterChoosesSlot_Assertion(csl) A
writerChoosesSlot-Assertion(csl) A

write_Assertion(csl) A writerIndicatesSlot_Assertion(csl) =
(read (csl) ‘1‘nwi

= wr A read{(csl)‘l‘nri = rd =
— (read{csl) ‘1‘reader ‘readerSlot =

read (csl) ¢ 1¢writer ‘writerSlot) )

vc2 first WriterChoosesSiot: THEOREM
¥V (csl: Conc_State):
pre.firstWriterChoosesSlot (cs1) A
firstWriterChoosesSlot_-Assertion(csl) A
readerChoosesSlot_Assertion(csl) A

readerlndicatesSlot_Assertion(csl) A
read.-Assertion(csl) =
(cslénwi = wr A cslfnri = rd =
~ csl‘reader‘readerSlot = csl‘writer ‘writerSlot)
ve3first WriterChoosesSlot: THEOREM
V (csl: Conc_State):
prefirstWriterChoosesSlot (cs1) A
first WriterChoosesSlot _Assertion(csl) A
readerChoosesSlot_Assertion(csl) A

readerIndicatesSlot _Assertion(csl) A
read-Assertion(csl) =

(firstWriterChoosesSlot (cs1) ‘nwi = wr A firstWriterChoosesSlot(cs1) ‘nri = rd =
— (first WriterChoosesSlot (cs1) ‘reader ‘ readerSlot =

first WriterChoosesSlot (cs1) ‘ writer ¢ writerSlot))

vc2_writerChoosesSlot: THEOREM
V (csl: Conc_State):
pre_writerChoosesSlot (cs1) A
writerChoosesSlot_Assertion{csl) A
readerChoosesSlot.Assertion(csl) A

readerindicatesSlot_Assertion(csl) A
read_Assertion(csl) =

(csl‘owi = wr A csl‘nri = rd =
— cs] ‘reader‘readerSlot = csl ‘writer ‘ writerSlot)

ve3_writerChoosesSlot: THEOREM
V (csl: Conc-State):
pre_writerChoosesSlot (cs1) A
writerChoosesSlot _Assertion{csl) A
readerChoosesSlot._Assertion(csl) A
readerIndicatesSlot_Assertion(csl) A

251



I.3. A Revised 3-slot ACM Implementation 252

read_Assertion(csl) =
(writerChoosesSlot(cs1) ‘nwi = wr A writerChoosesSlot (csl)‘nri = rd =
- (writerChoosesSlot (cs1) ‘reader‘readerSlot =
writerChoosesSlot (cs1) * writer ‘writerSlot))

vc2.write: THEOREM
V (w: write_parameter):

pre_write(w‘p1) A

write_Assertion(w‘p;) A
readerChoosesSlot_Assertion(w‘p;) A
readerindicatesSiot_Assertion(w‘p;) A read_Assertion(w‘p;) =
(w'p1‘owi = wr A w'py‘nri = 1d =
- w'pi ‘reader ‘readerSlot = w°p; ‘writer‘writerSlot)

vc3_write: THEOREM
V (w: write_parameter):
pre_write(w‘p1) A
write_Assertion(w‘p;) A
readerChoosesSlot_Assertion(w*p;) A

readerindicatesSlot_Assertion{(w*‘p;) A read_Assertion(w " n) =

(write(w) ‘nwi = wr A write(w)‘nri = rd =
- write(w) ‘reader‘readerSlot = write(w) ‘ writer ‘ writerSlot)

vc2_writerIndicatesSlot: THEOREM
V (csl: Conc_State):
pre_writerlndicatesSlot (cs1) A
writerIndicatesSlot _Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
readerIndicatesSlot_Assertion(csl) A
read_Assertion{(csl) =
(csl‘nwi = wr A cslfori = rd =
— csl‘reader‘readerSlot = csl‘writer‘writerSlot)

vc3_writerlndicatesSlot: THEOREM
V (csl: Conc_State):
pre-writerIndicatesSlot (cs1) A
writerIndicatesSlot_Assertion(csl) A
readerChoosesSlot_Assertion(csl) A
readerIndicatesSlot_Assertion(csl) A
read_Assertion(csl) =

(writerIndicatesSlot (cs1)‘nwi = wr A writerIndicatesSlot(csl) ‘nri = rd =

- (writerIndicatesSlot (csl) ‘reader ‘readerSlot =
writerIndicatesSlot (cs1) ¢ writer ‘ writerSlot))

END THREE_SLOT

1.3 A Revised 3-slot ACM Implementation

This section gives a model of the revised 3-slot implementation from [XYIS02],
which is similar to the implementation from [Sim90a]. This implementation
requires Hoare atomic access to the control variables, and the reader, rather
than copying the name of the slot it is going to access to a local variable
and then indicating the slot it has chosen to the relevant control variable,
copies the new value direct to the control variable. It then uses the value of
the slotReading control variable when it accesses the ACM during the read
operation. The reader therefore only has two operations, readerIndicatesSlot
and read. It is again possible to discharge all of the proof obligations for this



I.3. A Revised 3-slot ACM Implementation 233

ACM. The ACM is not fully asynchronous. but the time taken to access the
control variables is very short compared to the time to read and write data,
and the penalty of Hoare atomic access to the control variables is considered
by the authors of the paper to be a worthwhile trade off in order to obtain
an otherwise very efficient implementation.

THREESLOT: THEORY
BEGIN

Val: NONEMPTY_TYPE

vy Val

Slotindex: TYPE = {30, 1, 82}

NextReadlnstruction: TYPE = {firstRis, ris, rd}
NextWritelnstruction: TYPE = {firstWes, wcs, wr, wis)
ReaderNetworkState: TYPE = {sr, Irl, L2, tr}
WriterNetworkState: TYPE = {sw, lwl, lw2, w3, tw}

WriterState: TYPE =
[# writerSlot: Slotindex, currentState: WriterNetworkState #)

ReaderState: TYPE = [# currentState: ReaderNetworkState &}

Conc_State: TYPE =

[# slotWritten: Slotlndex,
slotReading: Slotlndex,
slots: [Slotindex — Val],
ori: NextReadInstruction,
nwi: NextWritelnstruction,
writer: WriterState,
reader: ReaderState #]

The firstReaderIndicatesSlot and readerIndicatesSlot operations indicate the
slot the reader is going to access, by copying the value of the control variable
slotWritten to the control variable pairReading.

pre_ firstReaderlndicatesSlot(p: Conc.State): bool = p‘nri = firstRis

post_firstReaderIndicatesSlot(p: (prefirstReaderIndicatesSlot))(prot: Conc_State): bool =
prot = p wiTH [nri := rd,
slotReading := p‘slotWritten,
reader := p‘reader WITH [currentState := Irl]]

firstReaderindicatesSlot :
[p: (prefirstReaderIndicatesSlot) — (post_firstReaderIndicatesSlot(p))]

pre_readerlndicatesSlot (p: Conc_State): bool = p‘nri = ris

post_readerindicatesSlot(p: (pre_readerIndicatesSlot))(prot: Conc_State): bool =
prot = p wITH [nri := rd,
slotReading := p‘slotWritten,
reader := p‘reader wiTH [currentState := Irl]]

readerIndicatesSlot :
[p: (prereaderlndicatesSlot) — (post.readerIndicatesSlot(p))]



254

I1.3. A Revised 3-slot ACM Implementation

The read operation uses the value of the control variable pairReading to
decide which slot the reader is going to access.

preread(p: Conc.State): bool = p‘nri = rd

post_read(p: (preread))(prot: Conc_State, v: Val): bool =
v = p‘slots(p‘slotReading) A
ris, reader := p‘reader WITH [currentState := 1r2]]

prot = p WITH [ori :=
read: [p: (preread) — (post_read(p))]
The writer operations are identical to the ones for the implementation from

[Sim90a], given in Appendix I.1.
pre_first WriterChoosesSlot (p: Conc_State): bool = p‘nwi = first\Wcs

post_first WriterChoosesSlot(p: (pre_firstWriterChoosesSlot))(prot: Conc.State): bool =

(p‘slotWritten = so =
(p‘slotReading = sp =

prot = p WITH [owi = wr,
writer := p‘writer WITH
[writerSlot := s, currentState := lwil]) A
(p‘slotReading = s =
prot = p wiTH [owi := wr,
writer := p‘writer WITH
[writerSlot := sz, currentState := lwl}]) A
(p‘slotReading = 32 =
prot = p wiTH [nwi := wr,
writer := p‘writer WITH
[writerSlot := s;, currentState := lwll])) A
(p‘slotWritten = 8 =
(p‘slotReading = sp =
prot = p WITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := sz, currentState := Iwl]]) A
(p‘slotReading = 8 =
prot = p WITH [nwi := wr,
writer := p‘writer WITH
:= sy, currentState := lwll]) A

[writerSlot :=

(p‘slotReading = s2 =
prot = p WITH [nwi := wr,

writer := p‘writer WITH
so, currentState := lwl11l1)) ~

[writerSlot :=
(p‘slotWritten = sy =
(p‘slotReading = so =
prot = p WITH [owi := wr,
writer := p‘writer WITH
[writerSlot := s;, currentState := lwl]l) A
(p‘slotReading = 1 =
prot = p wiTH [nwi := wr,
writer := p°‘writer WITH
[writerSlot := sg, currentState := lwl]]) A
(p‘slotReading = s2 =
prot = p WITH [nwi := wr,
= lwlll))

writer := p‘writer WITH
[writerSiot :=

s, currentState :

first WriterChoosesSlot :
[p: (prefirstWriterChoosesSlot) — ( post_first WriterChoosesSlot (p))]

pre.writerChoosesSlot (p: Conc._State): bool = p‘awi = wcs



1.3. A Revised 3-slot ACM Implementation

post_writerChoosesSlot (p: (pre_writerChoosesSlot)) (prot: Conc_State): bool =
(p‘slotWritten = s =
(p‘slotReading = 35 =
prot = p WITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := s, currentState := Iw1]]) A
(p‘slotReading = 5, =
prot = p WITE [nwi := wr,
writer := p‘writer WITH
[writerSlot := s;, currentState := Iw11]) A
(p‘slotReading = s, =
prot = p WiTH [nowi := wr,
writer := p‘writer WITH
[writerSlot := s;, currentState := Iwl]1)) A
(p‘slotWritten = 8 =
(p‘slotReading = sp =

prot = p WITH [nwi := wr,
writer := p‘writer WiTH
[writerSlot := s;, currentState := lwl}]) A
(p‘slotReading = s, =
prot = p wiTH [nwi = wr,
writer := p‘writer WITH
[writerSlot := s, currentState := lwll]) A

(p‘slotReading = s, =
prot = p WITH [owi := wr,
writer := p‘writer WITH
[writerSlot := sp, currentState := lw1]])) A
(p‘slotWritten = sy =
(p‘slotReading = sp =
prot = p wWITH [nwi := wr,
writer := p‘writer WITH
[writerSlot := s;, currentState := lwi]]l) A
(p‘slotReading = 9 =
prot = p WITH [owi := wr,

writer := p‘writer WITH
[writerSlot := sg, currentState := lwl]]) A
(p‘slotReading = s =
prot = p WITH [nowi := wr,
writer := p‘writer WITH
[writerSlot := sg, currentState := lwl]]))
writerChoosesSlot :

[p: (pre.writerChoosesSlot) — (post_writerChoosesSlot(p))]
pre_write(p: Conc_State): bool = p‘nwi = wr
write_parameter: TYPE = [# p;: (pre_write), v: Val #]

post_write(p: write_parameter) (prot: Conc_State): bool =

prot = p‘py WITH [nwi := wis,
(slots) (p*‘p; ‘ writer ‘writerSlot) := p‘v,
writer := p‘p) ‘writer WITH [currentState := lw2]]

write: [p: write_parameter — (post_write(p))]
pre_writerIndicatesSlot (p: Conc_State): bool = p‘nwi = wis

post_writerindicatesSlot (p: (pre_writerIndicatesSlot))(prot: Conc_State): bool =

prot = p WITH [nwi := wis,
slotWritten := (p‘writer‘writerSlot),
writer := p‘writer witH [currentState := Iw3]]

writerIndicatesSlot :

[N]
ot



I1.3. A Revised 3-slot ACM Implementation

(O]
[}
D

[p: (pre_writerIndicatesSlot) — (post_writerIndicatesSlot(p))]
init_writer(w: WriterState): bool = w = w WITH [currentState := sw)
init.reader(r: ReaderState): bool = r = r wITH [currentState := sr]

init_prot(p: Conc_State, init_val: Val, w: WriterState, r: ReaderState): bool =
p = p WITH [slotWritten := 3¢,
slotReading := so,
slots := ((A - (sp: Slotlndex): imit.val),
ori := firstRis,

In this model it is not possible to make any assertions about the reader,

since it has no local variables, and the assertions for the locations in the

writer assertion network are the same as for the two previous versions of the

3-slot implementation. It is possible to discharge the proof obligations to

show that this version of the ACM communicates coherent data.
writerChoosesSlot_Assertion: [Conc_State — bool] =

(A - (cs: Conc_State):
cs‘nwi = wes = cs‘slotWritten = cs‘ writer‘ writerSlot

write_Assgertion: [Conc_State — booll
(A - (cs: ConcState):
cs‘nwl = wr =
- cs‘slotWritten = cs‘writer‘writerSlot A
- cs‘writer ‘writerSlot = cs‘slotReading

writerlndicatesSlot_Assertion: [Conc_State — bool] =
(A - (cs: Conc_State):
cs‘nwi = wis =
- cs‘slotWritten = cs‘writer‘writerSlot A
- cs‘writer‘writerSlot = cs‘slotReading

vel_firstWriterChoosesSlot: THEOREM
V (csl, cs2: Conc_State):
pre_firstWriterChoosesSlot (cs1) A
cs2 = firstWriterChoosesSlot(csl) =
write_Assertion (¢cs2)

vcl.writerChoosesSlot: THEOREM
V (csl, cs2: Conc.State):
pre_writerChoosesSlot (cs1) A
writerChoosesSlot_Assertion{(csl) A
cs2 = writerChoosesSlot(csl)
=> write-Assertion (cs2)

vcl_write: THEOREM
V (w: write_parameter, cs2: Conc_State):
pre_write(w‘p1) A
write_Assertion(w‘p1) A
cs2 = write(w) =
writerIndicatesSlot-Assertion (cs2)

vcl_writerlndicatesSlot: THEOREM
V (csl, cs2: Conc_State):
pre_writerIndicatesSlot (cs1) A
writerlndicatesSlot.Assertion(csl) A



1.3. A Revised 3-slot ACM Implementation

cs2 = writerlndicatesSlot (cs1)
= writerChoosesSlot_Assertion{(cs2)

vcl firstReaderlndicatesSlot: THEOREM
V (csl, cs2: Conc_State):
pre_firstReaderIndicatesSlot(csl) A
writerChoosesSlot_Assertion(csl) A
write.Assertion(csl) A
writerIndicatesSlot-Assertion(csl) 2
cs2 = firstReaderIndicatesSlot(csl) =
writerChoosesSlot _Assertion{(cs2) A
write_Assertion(cs2) A writerIndicatesSlot_Assertion(cs2)

vcl_readerlndicatesSlot: THEOREM
V (csl, cs2: Conc_State):
pre_readerlndicatesSlot (cs1) A
writerChoosesSlot.Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion{(csl) A
cs2 = readerindicatesSlot(csl) =
writerChoosesSlot _Assertion(cs2) A
write_Assertion(cs2) A writerlndicatesSlot_Assertion(cs2)

vclread: THEOREM
V (csl, cs2: Conc_State):
preread(csl) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A
writerlndicatesSlot_Assertion(csl) A
cs2 = read(csl)‘l =
writerChoosesSlot_Assertion{cs2) A
write_Assertion(cs2) A writerIndicatesSlot_Assertion(cs2)

vc2 firstReaderlndicatesSlot: THEOREM
V (csl: Conc_State):
pre_firstReaderindicatesSlot (cs1) A
writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) =
(cslénwi = wr A csl‘nri = rd =
— csl‘slotReading = csl‘writer‘writerSlot)

vc3_firstReaderlndicatesSlot: THEOREM
Vv (csl: Conc_State):
pre_firstReaderIndicatesSlot (cs1) A
writerChoosesSlot_Assertion{(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) =
(firstReaderIndicatesSlot(cs1) ‘nwi = wr A firstReaderIndicatesSiot{csl) ‘ari = rd =
- (firstReaderIndicatesSlot{cs1) ‘slotReading =
firstReaderIndicatesSlot (cs1) ‘ writer ‘ writerSlot))

vc2_readerindicatesSlot: THEOREM
V (csl: Conc_State):

pre_readerIndicatesSlot (cs1) A

writerChoosesSlot _Assertion(csl) A
write_Assertion(csl) A
writerIndicatesSlot_Assertion(csl) =
(csl‘nwi = wr A cslfori = rd =
— csl‘slotReading = csl‘writer‘writerSlot)

vc3._readerindicatesSlot: THEOREM
¥V (csl: Conc_State):
pre_readerlndicatesSlot (cs1) A



L3. A Revised 3-slot ACM Implementation

writerChoosesSlot_Assertion(csl) A
write_Assertion(csl) A

writerlndicatesSlot_Assertion(csl) =
(readerlndicatesSlot(cs1) ‘nwi = wr A readerIndicatesSlot(cs1)‘nri = rd =
= (readerindicatesSlot(cs1) ‘slotReading =
readerIndicatesSlot (csl) ‘ writer writerSlot))

vc2_read: THEOREM
V (csl: Conc.State):
preread(csl) A

writerChoosesSlot_Assertion{(csl) A
write_Assertion(csl) A

writerIndicatesSlot.Assertion(csl) =
(csl‘onwi =

wr A csl‘nri = rd =
- csl‘slotReading = csl‘writerwriterSiot)
vc3_read: THEOREM
V (csl: Conc.State):
preread(csl) A

writerChoosesSlot-Assertion{(csl) A
write_Assertion(csl) A

writerindicatesSlot_Assertion(csl) =>
(read(csl) ‘1‘nwi

wr A read(csl)‘1¢nri = rd =
- (read(csl) ‘1‘slotReading = read(csl) ‘1‘writer ‘writerSlot))
ve2_firstWriterChoosesSlot: THEOREM

V (csl: Conc-State):

prefirst WriterChoosesSlot {(cs1) =
(csl‘nwi =

wr A csl‘ori = rd =
— csl‘slotReading = csl‘writer‘writerSlot)

vc3_first WriterChoosesSlot: TEREOREM
V (csl: Conc.State):
pre_first WriterChoosesSlot (cs1) =
(first WriterChoosesSlot (cs1) ‘nwi

wr A firstWriterChoosesSlot (cs1) ‘nri = rd =
- (first WriterChoosesSlot (cs1) ‘slotReading =
first WriterChoosesSlot (cs1) *writer ‘ writerSlot))
vc2_writerChoosesSlot: THEOREM
V (csl: Conc-State):
pre.writerChoosesSlot (cs1) A writerChoosesSlot_Assertion(csl) =
(csl‘nwi = wr A cslfnri = rd =
- csl‘slotReading = csl‘writer‘writerSlot)

vc3_writerChoosesSlot: THEOREM
V¥ (csl: Conc_State):

pre_writerChoosesSlot(cs1) A writerChoosesSlot_Assertion(csl) =>

(writerChoosesSlot(csl) ‘nwi = wr A writerChoosesSlot(cs1) ‘nri = rd =
— (writerChoosesSlot(csl) ‘slotReading =

writerChoosesSlot (¢s1) ‘ writer ‘ writerSlot) )
vc2.write: THEOREM
V (w: write_parameter):
pre_write(w‘py) A write_Assertion(w*p;) =
(w'pr1‘nwi = wr A w'p;‘ori = rd =
- w'p) ‘slotReading

w ‘ p1 “writer ‘ writerSlot)
vc3_write: THEOREM
V (w: write_parameter):
pre_write(w*p1) A writerIndicatesSlot_Assertion(w‘p1) =
(write(w) ‘nwi = wr A write(w) ‘nri = rd =
- (write(w) ‘slotReading = write(w) ‘writer ‘writerSlot))

vc2_writerIndicatesSlot: THEOREM

258



1.3. A Revised 3-slot ACN Implementation

V (csl: Conc_State):

pre_writerIndicatesSiot(csl) A writerlndicatesSlot_Assertion(csl) =
(csl‘nwi = wr A ¢sl‘nri = rd =

- csl‘slotReading = csl‘writer ‘writerSlot)

ve3_writerlndicatesSlot: THEOREM
V¥ (csl: Conc_State):

pre_writerlndicatesSlot (csl) A writerlndicatesSlot_Assertion(csl) =
(writerIndicatesSlot (csl) ‘nwi =

wr A writerlndicatesSlot(cs1) ‘nri = rd =
— (writerlndicatesSlot (cs1) ‘slotReading =

writerlndicatesSlot (csl) ‘ writer ‘ writerSlot))
ENxD THREESLOT

259



Appendix J

Modelling Metastability Using
CSP

This appendix gives the complete model of the 4-slot in machine readable
CSP (CSPp), that has been used with the FDR model checker to explore
the behaviour of the ACM in the presence of metastability (using a number
of different models of bit control variables that model the effects of metasta-
bility in different ways, and also model the different methods for containing
the effects of metastability as described in Chapter 7). The results of model
checking these models are described in Section 7.5.2. and it has been shown
that the 4-slot implementation is L-atomic provided the effects of metasta-
bility can be contained. The model is as follows:
Data types to:

1. Define the maximum number of values that can be communicated by
the ACM in the model (so that the model can be represented by a
finite state machine).

2. Represent the values that the bits. and pair and slot indices, can take.

max_no_of _values = 10

data_values = {1..max_no_of_values}
datatype bit_values = b0 | bl | d
datatype slot_index = sl | s2 | s12
datatype pair_index = pl | p2 | pi2

Processes to convert between slot/pair indices and the values of the bit
control variables.

bs(b0) = s1 =-- convert bit values to slot indexes
bs(bl) = s2
bs(d) = si12
bp(b0) = pl ~-- comvert bit values to pair indexes
bp(bl) = p2
bp(d) = p12
sb(sl) = b0 =-- convert slot indexes to bit values

260



sb(s2) =
sb(s12) =
-~ convert pair indexes to bit values

o

o

~

‘0

-

~

[} Il
n—Hoﬂ-N

pb(p12) =

toggle(b0) = bl -~ toggle (imvert) bit values
toggle(bl) =

toggle(d) =

Declarations for the CSP channels that are required in the models.

datatype atomic_operations = atomic_rd | atomic_wr
channel pool : atomic_operations.data_values

datatype slot_operations =
sr_slot | er_slot.data_values | sw_slot.data_values | ev_slot

channel slots : pair_index.slot_index.slot_operations

channel slot.written_pair, read_slot_pair : pair_index

channel slot_written_slot, read_slot_slot : slot_index

channel slot_written_val, read_slot_val : data_values

datatype shared_bit_operations = sr | er.bit_values | sv.bit_values | ew
datatype local_bit_operations = set.bit_values | get.bit_values

channel reading, latest : shared_bit_operations

channel writers_slots : pair_index.shared_bit_operations

channel start_write, end_read : data_values

channel clash_bang, mono_bang, dither, start_read, end_write

channel start_write_slots, end_write_slots, start_read_slots, end_read_slots

channel LB_write_pair, LB_write_slot,
LB_read_pair, LB_read_slot : local_bit_operations

— Incoherence Specification

An ACM that refines this specification does not transmit coherent data

between its reader and writer. When the reader and writer access the same
slot at the same time a single clash_bang is output and the process stops.

Incoherence_Spec = clash_bang ~> STOP

— Monotonic Activities —

A process that transmits a monotonically increasing integer value between
its reader and writer. An ACM that refines this specification maintains (a
possibly partial) ordering of data between its reader and writer - the reader
reads the items in the order they were written, but may not read all of the
items.

VWrite_Act(n) = start_write!m -> if n == max_no_of_values then STOP
else end_write -> Write_Act(n+l)

Read_Act (old_x) = start_read -> end_read?x ->
if x < old_x then mono_bang -> STOP else Read _Act(x)



262

— Hoare Atomic variable Definition —

An ACM that only allows Hoare atomic (complete) writes and reads.

H_Atomic_Var(var_name, val) =
var_name.atomic_wr?x -> H_Atomic_Var(var_name, x) []
var_name.atomic_rd!val -> H_Atomic_Var(var_pame, val)

- Atomic Shared Variable ”Pool” Spéciﬁcation -

A definition of a L-atomic ACM. An AC) that refines this specification is
L-atomic.

Read = start_read -> pool.atomic_rd?val -> end_read!val -> Read
Write = start_write?val -> pool.atomic_wr!val -> end_write -> Write
Pool_State = H_Atomic_Var(pool, 1)

Pool_Spec = (((Read ||| Write) [i {| pool 1} I] Pool_State) \{l pool |})

— Semi-Regular-ACM Specification -

The definition of a semi-regular ACM - one where the reader can only read
values that have been previously written. The process creates a set of all of
the values that have already been written (and the initial value) and ensures
that the reader only reads values from that set.

SemiRegACM(vals) =
start_write?x -> SemiRegACM_w(union({x}, vals)) [
start_read -> SemiRegACM_r(vals)

SemiRegACM_w(vals) =
end_write -> SemiRegACM(vals) []
start_read -> SemiRegACM_wr(vals)

SemiRegACM_r(vals) =
start_write?x -> SemiRegACM_vr(union({x}, vals)) []
([J z : vals € end_read!z -> SemiRegACM(vals))

SemiRegACM_wr(vals) =

end_write -> SemiRegACM_r(vals) []
([] z : vals © end_read!z ~-> SemiRegACM_w(vals))

SemiRegACM_Spec = SemiRegACM({1})

- Regular-ACM Specification —

Specification of a regular ACM - one where the reader can only read the
item written immediately before the read started or one of the values that
is written by a write that occurs concurrently with the read. It creates a
set of values that are written while the read is in progress plus the value
written immediately before the read starts, and ensures that the reader can
only read one of these values.




263

RegACM(val) =
start_write?x -> RegACM_v(union({x}, {vall}), z) [J
start_read -> RegACM_r(val)

RegACM_w(vals, z) =
end_write -> RegACM(x) []
start_read -> RegACM_wr(vals, x)

RegACM_r(val) =
start_write?x -> RegACM_wr(union({x}, {val}), x) [J
end_read!val -> RegACM(val)

RegACM_wr(vals, x) =
end_write -> RegACM_r_clashed(vals, x) [J
([0 z : vals @ end_read!z -> RegACM_w(vals, x))

RegACM_r_clashed(vals, x) =

start_write?z -> RegACM_vr(union({z}, vals), z) [
({] z : vals @ end_read!z -> RegACM(x))

RegACM_Spec = RegACM(1)

— Non-Atomic Slots with deadlock/bang behaviour if multiply accessed -

The following is a non-atomic variable that deadlocks (after performing a
detectable clash_bang operation) should it not be accessed atomically: it
is used for modelling the slots in the four slot ACM. If presented with a
dithering value “d”, it non-deterministically resolves it.

Slot(pair_name, slot_name, val) =
slots.pair_name.slot_name.sw_slot?x ->
(slots.pair_name.slot_name.ew_slot -> Slot(pair_name, slot_name, x)
[
slots.pair_name.slot_name.sr_slot -> clash _bang -> STOP)
0
slots.pair_name.slot_name.sr_slot =>
(slots.pair_name.slot_name.sw_slot?x -> clash_bang -> STOP
[]
slots.pair_name.slot_name.er_slot!val ->
Slot(pair_name, slot_name, val))

the_actual_slots = (Slot(pl, si, 1) |1l Slot(pi, s2, 1) 1|
Slot(p2, si, 1) |l Slot(p2, s2, 1))

vrite_slots =
start_write_slots ->
slot_written_pair?pair ->
slot_written_slot?slot ->
slot_written_val?val ->
(if pair == p12 then
(if slot == sl12 then
(slot_vritten_proc(pl, si, val) [|~I
slot_written_proc(pl, s2, val) |~|
slot_written_proc(p2, si, val) ||
slot_written_proc(p2, s2, val))
else
(slot_written_proc(pl, slot, val) ||
slot_written_proc(p2, slot, val)))



else
(if slot == 512 then
(slot_written_proc(pair, sl, val) |-}
slot_written_proc(pair, s2, val))
else
slot_written_proc(pair, slot, val)))

slot_written_proc(pair, slot, val) =
slots.pair.slot!sw_slot!val ->
slots.pair.slot.ew_slot ->
end_write_slots ->
write_slots

read_slots =
start_read_slots ->
read_slot_pair?pair ->
read_slot_slot?slot ->
(if pair == pl12 then
(if slot == s12 then
(read_slot_proc(pl, si1) |~}
read_slot_proc(pl, s2) |~|
read_slot_proc(p2, s1) |-
read_slot_proc(p2, s2))
else
(read_slot_proc(p1, slot) |-
read_slot_proc(p2, slot)))
else
(if slot == s12 then
(read_slot_proc(pair, s1) ||
read_slot_proc(pair, s2))
else
read_slot_proc(pair, slot)))

read_slot_proc(pair, slot) =
slots.pair.slot.sr_slot ->
slots.pair.slot.er_slot?val ->
read_slot_valival ->
end_read_slots -> read_slots

the_slots = (read_slots ||| write_slots) [| {| slots |} |] the_actual_slots
\ {] slots |}

— A (highly metastable) local bit variable 1 -

This model of a local bit allows multiple accesses by a reader while its value
is metastable (potentially infinite metastability). If the reader accesses it
while the value is metastable (d) it non-deterministically returns one of the
two possible valid values (0 or 1) or the metastable value, d.

LBi(var_name, val) = if val == d then
(LBi(var_name, b0) |-{ LBi(var_name, b1) |7
(var_name.set?x -> LBl1(var_name, x) [J
var_name.get!val -> LB1(var_name, val)))
else
(var_name.set?x -> LB1(var_name, x) []
var_name.get!val -> LB1(var_name, val))



265

the_writers_local_bitsl =
LB1(LB_write_pair, b0) ||| LB1(LB_write_slot, b0)

the_readers_local_bitsl =
LB1(LB_read_pair, b0} ||| LB1(LB_read_slot, b0)

- A (limited metastable) local bit variable 2 -

This model of a local bit non-deterministically returns one of the valid val-
ues(0 or 1), if the reader accesses it while it is metastable. This models the
engineering solution that can be emploved to contain metastability - that it
is possible to make the reader wait for a short time before using the value
read. This allows a metastable value to resolve to a valid one with very high
probability.

LB2(var_name, val) = var_name.set?x ->
(if x == d then
(LB2(var_name, b0) |~| LB2(var_name, bl))
else
LB2(var_name, x))
[] var_name.get!val -> LB2(var_name, val)

the_writers_local_bits2 =
LB2(LB_write_pair, b0) ||| LB2(LB_vrite_slot, bO)
the_readers_local_bits2 =

LB2(LB_read_pair, b0) ||| LB2(LB_read_slot, b0)

The various different models of bits that have been used to investigate prop-
erties of the 4-slot implementation.

— BIT VARIABLES: BITO —

This model is included for completeness and models Hoare atomic access to
the variable.

BITO(var_name, val) =
var_name.sw?x -> var_name.ew -> BITO(var_name, x) 0
var_name.sr -> var_name.er!val -> BITO(var_name, val)

BITsO =
(11} x : {reading, latest, writers_slots.pl,
vriters_siots.p2} € BITO(x, b0))

— BIT VARIABLES: BIT1 —

A model of a type-safe bit. It allows arbitrary clashes between the reader
and writer. and non-deterministically returns a 0 or a 1 to the reader when
a clash occurs. Metastability is ignored.




266

BITi(var_name, val) = var_name.sw?x -> BIT1_w(var_name, val, x) [
var_name.sr -> BITi_r(var_naze, val)

BIT1_w(var_name, val, x) = var_pame.ew -> BITi(var_name, x) []
var_name.sr -> BIT1_wr(var_name, val, x)

BITi_r(var_name, val) = var_name.sw?x =-> BIT1_wr(var_name, val, 1) []
var_name.er!val -> BITi(var_nare, val)

BITi_wr(var_name, val, x) = var_name.ew => BIT1_r_clashed(var_nare, 1) [J
(var_name.er!b0 -> BITi_w(var_name, val, z) ||
var_name.er'!bl -> BIT1_w(var_name, val, x))

BITi_r_clashed(var_name, val) = var_name.sw?x -> BIT1_wr(var_name, val, x) [
(var_name.er!b0 -> BITi(var_name, val) |~|
var_name.er'bl -> BITi(var_name, val))

BITsl =
(Il = : {reading, latest, writers_slots.pi,
writers_slots.p2} € BITi(x, b0))

— BIT VARIABLES: BIT2 —

This model is the same as BIT1 except that the bit remains stable when
it is overwritten with the same value. This means that it deterministically
returns the value that it contains, provided it is being overwritten with the
same value, when the reader and writer access the variable concurrently.

BIT2(var_name, val) =
var_name.sw?x -> (if x == val then
BIT2_w_stable(var_name, val)
else
BIT2_w(var_name, val, x))
[J var_name.sr -> BIT2_r(var_name, val)

BIT2_w(var_name, val, x) = var_name.ew -> BIT2(var_name, x) []
var_name.sr -> BIT2_wr(var_name, val, x)

BIT2_r(var_name, val) =
var_name.sw?x -> (if x == val then
BIT2_wr_stable(var_name, val)
else
BIT2_wr(var_name, val, x))
{] var_name.er!val -> BIT2(var_name, val)

BIT2_wr(var_name, val, x) = var_name.ew -> BIT2_r_clashed(var_name, x) 0
(var_name.er!b0 -> BIT2_w(var_name, val, x) ||
var_name.er'bl -> BIT2 w(var_name, val, X))

BIT2_r_clashed(var_name, val) = var_name.sw?x -> BIT2_wr(var_name, val, x) [
(var_name.er!b0 -> BIT2(var_name, val) |~|
var_name.er!bi -> BIT2(var_name, val))

BIT2_w_stable(var_name, val) = var_name.ew -> BIT2(var_name, val) 0
var_name.sr -> BIT2_wr_stable(var_name, val)

BIT2_wr_stable(var_name, val) = var_name.ew —-> BIT2_r(var_naze, val) [0
var_name.erival -> BIT2_w_stable(var_name, val)

BITs2 =
(111 x : {reading, latest, writers_slots.pl,



267

vriters_slots.p2} ¢ BIT2(x, b0))

— BIT VARIABLES: BIT3 —

As BIT2 except metastability causes arbitrary clock stretching. This is the
method for containing metastability proposed in [Cha87] where the clock
of the reader can be arbitrarily stopped when it detects it is reading a
metastable value, to allow the value to resolve to a stable one. The clock is
then restarted and may be out of phase when compared to the period before
it was stopped.

BIT3(var_name, val) =
var_name.sw?x -> (if x == val then
BIT3_w_stable(var_name, val)
else
BIT3_w(var_name, val, x))
[1 var_name.sr -> BIT3_r(var_name, val)

BIT3_w(var_name, val, x) = var_name.ew -> BIT3(var_name, x) [J
var_name.sr -> BIT3 _wr(var_name, val, x)

BIT3_r(var_name, val) =
var_name.sw?x -> (if x == val then
BIT3_wr_stable(var_name, val)
else
BIT3_wr(var_name, val, x))
[1 var_name.er!val -> BIT3(var_name, val)

BIT3_wr(var_name, val, x) = var_name.ew -> BIT3_r_clashed(var_name, x) [J
(var_name.er!b0 -> BIT3_w(var_name, val, x) {~|
var_name.er!bl -> BIT3_w(var_name, val, x) |~|
dither -> BIT3_wr(var_name, val, x))

BIT3_r_clashed(var_name, val) = var_name.sw?x -> BIT3_wr(var_name, val, x) [J
(var_name.er!b0 -> BIT3(var_name, val) ||
var_name.er!bil ~-> BIT3(var_name, val) |~|
dither -> BIT3_r_clashed(var_name, val))

BIT3_w_stable(var_name, val) = var_name.ew -> BIT3(var_name, val) [J
var_name.sr -> BIT3_wr_stable(var_name, val)

BIT3_wr_stable(var_name, val) = var_name.ew -> BIT3_r(var_name, val) [J
var_name.er!val -> BIT3_w_stable(var_name, val)

BITs3 =
(Il x : {reading, latest, writers_slots.pl,
writers_slots.p2} @ (BIT3(x, b0) \ {| dither [} ))

The remaining bit models use the local bits (LB1 and LB2) to store the val-
ues that are read and then re-read the values from the local bits before using

them to access the ACM. This is a more realistic model of the behaviour of
the ACM implementation

— BIT VARIABLES: BIT4 —

The BIT4 model is the first to explicitly include the possibili'gy that the
reader of the bit may return a metastable value (d). It may use either of the




268

local bit models (LB1, which allows the reader to return the metastable value
multiple times, and LB2 which non-deterministically resolves metastable
values as they are read). It allows the reader to clash multiple times with
a single write. The value contained in the variable remains stable when
overwritten with the same value.

BIT4(var_name, val) =
var_name.sw?x -> (if x == val then
BIT4_w_stable(var_name, val)
else
BIT4_w(var_name, val, x))
[J var_name.sr -> BIT4_r(var_name, val)

BIT4_w(var_name, val, x) = var_name.ew -> BIT4(var_nace, x) []
var_name.sr -> BIT4_wr(var_name, val, x)

BIT4_r(var_name, val) =
var_name.sw?x -> (if x == val then
BIT4_wr_stable(var_name, val)
else
BIT4_wr(var_name, val, x))
[J var_name.er!val -> BIT4(var_name, val)

BIT4_wr(var_name, val, x) = var_name.ew -> BIT4_r_clashed(var_nams, x) []
(var_name.er!b0 -> BIT4_w(var_name, val, x) |-|
var_name.er!'bl -> BIT4_w(var_name, val, x) |7|
var_name.er'd -> BIT4_w(var_name, val, x))

BIT4_r_clashed(var_name, val) = var_name.sw?x -> BIT4_wr(var_name, val, x) []
(var_name.er!b0 -> BIT4(var_name, val) |-}
var_name.er'bl -> BIT4(var_name, val) |~|
var_name.er'd -> BIT4(var_name, val))

BIT4_w_stable(var_name, val) = var_name.ew -> BIT4(var_name, val) [J
var_name.sr -> BIT4_wr_stable(var_name, val)

BIT4_vr_stable(var_name, val) = var_name.ev -> BIT4_r(var_name, val) []
var_name.er!val -> BIT4_w_stable(var_name, val)

BITs4 =
(1) x : {reading, latest, writers_slots.pl,
writers_slots.p2} © BIT4(x, b0))

— BIT VARIABLES: BITS —

As BIT4, except that it disallows multiple clashes with a single write.

BITS(var_name, val) =

var_name.sw?x ~> (if x == val then
BIT5_w_stable(var_name, val)
else

BITS_w(var_name, val, x))
[] var_name.sr -> BIT5_r(var_naze, val)

BITS_w(var_name, val, x) = var_name.ew -> BIT5(var_name, x) 0
var_name.sr -> BIT5_wr(var_name, val, X)

BIT5_r(var_name, val) =
var_name.sw?x -> (if x == val then
BITS_wr_stable(var_name, val)
else



269

BIT5_wr(var_name, val, x))
[J var_name.er!val -> BITS(var_name, val)

BITS_wr(var_name, val, x) = var_name.ew -> BIT5_r_clashed(var_name, x) a
(var_name.er!b0 -> BIT5_w_r_occured(var_name, val, x) |-|
var_name.er!bl -> BITS_w_r_occured(var_name, val, x) |~}
var_name.er!d -> BIT5_w_r_occured(var_name, val, x))

BITb_r_clashed(var_name, val) =
var_name.er!b0 -> BITS(var_name, val) |-|
var_name.er!bl -> BIT5(var_name, val) |-|
var_name.er!d -> BITS(var_name, val)

BITS_w_stable(var_name, val) = var_name.ew -> BITS(var_pame, val) []
var_name.sr ~-> BIT5_wr_stable(var_name, val)

BITS_wr_stable(var_name, val) = var_name.ew -> BIT5_r(var_name, val) {]
var_name.er'val -> BITS_w_stable(var_naze, val)

BITS_w_r_occured(var_name, val, x) = var_name.ew -> BITS(var_name, x)
BITs5S =

(11l x : {reading, latest, writers_slots.pi,
vriters_slots.p2} € BITS(x, b0))

— BIT VARIABLES: BIT6 —

As BITS5 except that the value contained in the bit flickers when overwritten
with the same value.

BIT6(var_name, val) =
var_name.sw?x -> BIT6_w(var_name, val, x)
[] var_name.sr -> BIT6_r(var_name, val)

BIT6_w(var_name, val, x) = var_name.ew -> BIT6(var_name, x) (]
var_name.sr -> BIT6_wr(var_name, val, x)

BIT6_r(var_name, val) =
var_name.sw?x -> BIT6_wr(var_name, val, x)
[] var_name.er!val -> BIT6(var_name, val)

BIT6_wr(var_name, val, x) = var_name.ew -> BIT6_r_clashed(var_name, x) []
(var_name.er'b0 -> BIT6_w_r_occured(var_name, val, x) |~|
var_name.er!bl -> BIT6_w_r_occured(var_name, val, x) ||
var_name.er!d -> BIT6_w_r_occured(var_name, val, 1))

BIT6_r_clashed(var_name, val) =
var_name.er!b0 -> BIT6(var_name, val) |~|
var_name.er!bl -> BIT6(var_name, val) |~|
var_name.er!d -> BIT6(var_name, val)

BIT6_w_r_occured(var_name, val, x) = var_name.evw -> BIT6(var_name, x)

BITs6 =
(lIl x : {reading, latest, writers_slots.pl,
writers_slots.p2} €@ BIT6(x, b0))



- Four-Slot Writer and Reader Algorithms —-

In each case the_re are two versions of the algorithms. one that does not use
the local bit variables and the other that does. The second (local bit) version

of the algorithm has two variants. one to use the LB1 model :
for the LB2 model. model and the other

Fourslot_Writer =
start_write?val ->
reading.sr ->
reading.er?not_pair_written ->
writers_slots.bp(toggle(not_pair_written)).sr ->
writers_slots.bp{toggle(not_pair_written)).er?not_slot_written ->
start_vrite_slots ->
slot_written_pair!bp(toggle(not_pair_written)) ->
slot_written_slot!bs(toggle(not_slot_wvritten)) ->
slot_written_vallval ->
end_write_slots ->
writers_slots.bp(toggle(not_pair_written)).sw!toggle(not_slot_written) ->
writers_slots.bp(toggle(not_pair_written)).ew ->
latest.sw!toggle(not_pair_written) ->
latest.ew ->
end_write ->
Fourslot_Writer

Fourslot_Writer_ LB =
start_write?val ->
reading.sr ->
reading.er?not_pair_written ->
LB_write_pair.set!toggle(not_pair_written) ->
LB_write_pair.get?pair_written ->
writers_slots.bp(pair_written).sr ->
writers_slots.bp(pair_vritten).er?not_slot_vritten ->
LB_write_slot.set!toggle(not_slot_written) ->
LB_write_slot.get?slot_vritten ->
LB_write_pair.get?pair_written ->
start_write_slots ->
slot_written_pair!bp(pair_written) ->
slot_written_slot!bs(slot_written) ->
slot_written_val!val ->
end_write_slots ->
LB _write_pair.get?pair_written ->
LB_write_slot.get?slot_written ->
writers_slots.bp(pair_written).sw!slot_written ->
writers_slots.bp(pair_written).ew ->
LB_write_pair.get?pair_written ->
latest.sw!pair_written ->
latest.ew ->
end_write ->
Fourslot_Writer_LB

Writer_LB1 =
Fourslot_Writer_LB [| {| LB_write_pair, LB_write_slot 13 1]
the_writers_local_bitsl \ {| LB_vrite_pair, LB_write_slot i}

Writer_LB2 =
Fourslot_Writer_LB [| {| LB_write_pair, LB_write_slot I} |]
the_writers_local bits2 \ {| LB_write_pair, LB_write_slot |}



Fourslot_Reader =
start_read ->
latest.sr ->
latest.er?read_pair ->
reading.sv!read_pair ->
reading.ew ->
vriters_slots.bp(read_pair).sr ->
vriters_slots.bp(read_pair).er?read_slot ->
start_read_slots ->
read_slot_pair!bp(read_pair) ->
read_slot_slot!bs(read_slot) ->
read_slot_val?val ->
end_read_slots ->
end_read!val ->
Fourslot_Reader

Fourslot_Reader LB =
start_read ->
latest.sr ->
latest.er?read_pair ->
LB_read_pair.set!read_pair ->
LB_read_pair.get?read_pair ->
reading.sw!read_pair ->
reading.ew ->
LB_read_pair.get?read_pair ->
vriters_slots.bp(read_pair).sr ->
writers_slots.bp(read_pair).er?read_slot ->
LB_read_slot.set!read_slot ->
LB_read_slot.get?read_slot ->
LB_read_pair.get?read_pair ->
start_read_slots ->
read_slot_pair!bp(read_pair) ->
read_slot_slot!bs(read_slot) =->
read_slot_val?val ->
end_read_slots ->
end_read!val ->
Fourslot_Reader LB

Reader_LB1 = Fourslot_Reader_LB [| {| LB_read_pair, LB_read_slot [} |]
the_readers_local_bitsl \ {| LB_read_pair, LB_read_slot |}

Reader_LB2 = Fourslot_Reader_LB [| {| LB_read_pair, LB_read_slot |} 1]
the_readers_local_bits2 \ {| LB_read_pair, LB_read_slot |}

Four_Slot Definitions —

The definitions of the models of the i-slot algorithms with the different
versions of the models of bits and local variables.

Four_Slot_BITO =(((Fourslot_Writer ||| Fourslot_Reader)

[l {I read_slot_pair, read_slot_slot, read_slot_val,
slot_written_pair, slot_written_slot, slot_sritten_val,
writers_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots [} I]

(the_slots ||| BITs0))



\ {| read_slot_pair, read_slot_slot,
read_slot_val, slot_vritten_pair,
slot_written_slot, slot_written_val,
writers_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots |})

Four_Slot_BIT1 =(((Fourslot_Writer ||| Fourslot_Reader)

[l {1 read_slot_pair, read_slot_slot, read_slot_val,
slot_vritten_pair, slot_written_slot, slot_writtex_val,
writers_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots |} |[]

(the_slots ||| BITs1))

\ {| read_slot_pair, read_slot_slot,
read_slot_val, slot_written_pair,
slot_written_slot, slot_written_val,
vriters_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots [})

Four_Slot_BIT2 = (((Fourslot_Writer ||| Fourslot_Reader)

[l {l read_slot_pair, read_slot_slot, read_slot_val,
slot_written_pair, slot_written_slot, slot_written_val,
vriters_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots |} |]

(the_slots ||} BITs2))

\ {| read_slot_pair, read_slot_slot,
read_slot_val, slot_written_pair,
slot_written_slot, slot_written_val,
vriters_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots |})

Four_Slot_BIT3 = (((Fourslot_Writer ||| Fourslot_Reader)

[l {l read_slot_pair, read_slot_slot, read_slot_val,
slot_written_pair, slot_vritten_slot, slot_written_val,
writers_slots, reading, latest,
start_write_slots, end_wvrite_slots,
start_read_slots, end_read_slots |} []

(the_slots ||| BITs3))

\ {i read_slot_pair, read_slot_slot,
read_slot_val, slot_written_pair,
slot_written_slot, slot_written_val,
writers_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots [})

Four_Slot_BIT4_LB1 = (((Writer_LBi1 ||| Reader_LB1)

[l {| read_slot_pair, read_slot_slot, read_slot_val,
slot_written_pair, slot_written_slot, slot_written_val,
writers_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots |} |]

(the_slots ||| BITs4))

\ {| read_slot_pair, read_slot_slot,
read_slot_val, slot_uritten_pair,
slot_written_slot, slot_vritten_val,
writers_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots |})

[ )



Four_Slot_BIT4_LB2 = (((Writer_LB2 ||| Reader_LB2)

[l {] read_slot_pair, read_slot_slot, read_slot_val,
slot_vritten_pair, slot_written_slot, slot_written_val,
vriters_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots [} []

(the_slots ||| BITs4))

\ {l| read_slot_pair, read_slot_slot,
read_slot_val, slot_written_pair,
slot_written_slot, slot_written_val,
writers_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots [})

Four_Slot_BIT5_LB1 = (((Writer_LB1 ||| Reader_LB1)

[l {] read_slot_pair, read_slot_slot, read_slot_val,
slot_written_pair, slot_written_slot, slot_written_val,
writers_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots |} |]

(the_slots ||| BITs5))

\ {| read_slot_pair, read_slot_slot,
read_slot_val, slot_written_pair,
slot_written_slot, slot_written_val,
writers_slots, reading, latest,
start_vwrite_slots, end_write_slots,
start_read_slots, end_read_slots [})

Four_Slot_BIT5_LB2 = (((Writer_LB2 ||| Reader_LB2)

[l {I read_slot_pair, read_slot_slot, read_slot_val,
slot_written_pair, slot_written_slot, slot_vritten_val,
writers_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots |} I]

(the_slots ||| BITs5))

\ {| read_slot_pair, read_slot_slot,
read_slot_val, slot_written_pair,
slot_written_slot, slot_vritten_val,
writers_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots |})

Four_Slot_BIT6_LBL = (((Writer_LB1 ||| Reader_LB1)

[l {l read_slot_pair, read_slot_slot, read_slot_val,
slot_written_pair, slot_writtem_slot, slot_written_val,
writers_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots I} I]

(the_slots ||| BITs6))

\ {| read_slot_pair, read_slot_slot,
read_slot_val, slot_written_pair,
slot_written_slot, slot_writtem_val,
writers_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots (D)

Four_Slot_BIT6_LB2 = (((Writer_LB2 || Reader_LB2)

[l {I read_slot_pair, read_slot_slot, read_slot_val,
slot_written_pair, slot_written_slot, slot_written_val,
writers_slots, reading, latest,
start_write_slots, end_vwrite_slots,
start_read_slots, end_read_slots |} []

(the_slots |1| BITs6))
\ {| read_slot_pair, read_slot_slot,



274

read_slot_val, slot_written_pair,
slot_vritten_slot, slot_written_val,
writers_slots, reading, latest,
start_write_slots, end_write_slots,
start_read_slots, end_read_slots [})

— Monotonic Implementations —

Deﬁnitions of the monotonic ACM (that transmits a monotonically increas-
ing set of values) with the different versions of the bit models and local
variables.

Mono_BITO = ((Write_Act(1) ||| Read_Act(0))
[{ {] start_write, end_read, start_read, end_write [} |]
Four_Slot_BITO)
\ {l start_write, end_read, start_read, end_write |}

Mono_BIT1 = ((Write_Act(1) ||| Read_Act(0))
[l {l start_write, end_read, start_read, end_vrite {} I]
Four_Slot_BIT1)
\ {| start_write, end_read, start_read, end_write |}

Mono_BIT2 = ((Write_Act(1) ||| Read_Act(0))
[l {l start_write, end_read, start_read, end_write [} []
Four_Slot_BIT2)
\ {| start_write, end_read, start_read, end_write |}

Mono_BIT3 = ((Write_Act(1) ||| Read_Act(0))
[} {| start_vrite, end_read, start_read, end_write |} |]
Four_Slot_BIT3)
\ {| start_vrite, end_read, start_read, end_vrite |}

((Write_Act(1) || Read_Act(0))
[l {l start_write, end_read, start_read, end_vrite |} |]
Four_Slot_BIT4_LB1)
\ {| start_write, end_read, start_read, end_vrite |}

Mono_BIT4_LB1

((Write_Act{(1) ||| Read_Act(0))
[ {| start_vrite, end_read, start_read, end_write |} 1]
Four_Slot_BIT4_LB2)
\ {| start_vrite, end_read, start_read, end_write 1}

Mono_BIT4_LB2

((Write_Act(1) |I| Read_Act(0))
[I {| start_vrite, end_read, start_read, end vrite |} 1]
Four_Slot_BIT5_LB1)
\ {| start_vrite, end_read, start_read, end_write (33

Mono_BIT5_LB1

Mono_BIT5_LB2 = ((Write_Act(1) I} Read_Act(0)) -
[I {| start_vrite, end_read, start_read, end_write |} (]

Four_Slot_BIT5_LB2)
\ {| start_vrite, end_read, start_read, end_write 1}

((Write_Act(1) !l| Read_Act(0)) )
[l {| start_vrite, end_read, start_read, end_write |} |1

Four_Slot_BIT6_LB1) )
\ {| start_write, end read, start_read, end_vrite |}

Mono_BIT6_LB1



275

Mono_BIT8_LB2 = ((Write_Act(1) |l| Read_Act(0))
[l {l start_vrite, end _read, start_read, end_vrite |} |]
Four_Slot_BIT6_LB2)
\ {| start_vrite, end_read, start_read, end_write [}

— Assertions —

The assertions that have been used with FDR to investigate properties of
the 4-slot implementation.

—- assert (Four_Slot_BITO \ {| start_vrite, end_read, start_read, end_write |})
- [T= Incoherence_Spec

assert SemiRegACM_Spec [T= Four_Slot_BITO

-- assert SemiRegACM_Spec [F= Four_Slot_BITO

assert RegACM_Spec [T= Four_Slot_BITO

-- assert RegACM_Spec [F= Four_Slot_BITO

assert STOP [T= Mono_BITO

assert Pool_Spec [T= Four_Slot_BITO

-- agssert Pool_Spec [F= Four_Slot_BITO

-- agssert (Four_Slot_BIT1 \ {| start_write, end_read, start_read, end_vwrite [})
-- [T= Incoherence_Spec

assert SemiRegACM_Spec [T= Four_Slot_BIT1

-- assert SemiRegACM_Spec [F= Four_Slot_BIT!

assert RegACM_Spec [T= Four_Slot_BITi

-- assert RegACM_Spec [F= Four_Slot_BIT1

assert STOP [T= Mono_BIT1

assert Pool_Spec [T= Four_Slot_BITi

-~ assert Pool_Spec [F= Four_Slot_BIT1

--assert (Four_Slot_BIT2 \ {| start_vrite, end_read, start_read, end_vrite |})
- [T= Incoherence_Spec

assert SemiRegACM_Spec [T= Four_Slot_BIT2

-~ assert SemiRegACM_Spec [F= Four_Slot_BIT2

assert RegACM_Spec [T= Four_Slot_BIT2

-- assert RegACM_Spec [F= Four_Slot_BIT2

assert STOP [T= Mono_BIT2

assert Pool_Spec [T= Four_Slot_BIT2

-- assert Pool_Spec [F= Four_Slot_BIT2

——assert (Four_Slot_BIT3 \ {| start_write, end read, start_read, end write [})
~-- [T= Incoherence_Spec

assert SemiRegACM_Spec [T= Four_Slot_BIT3

-- assert SemiRegACM_Spec [F= Four_Slot_BIT3

assert RegACM_Spec [T= Four_Slot_BIT3

-- assert RegACM_Spec [F= Four_Slot_BIT3

assert STOP [T= Mono_BIT3

assert Pool_Spec [T= Four_Slot_BIT3

-- assert Pool_Spec [F= Four_Slot_BIT3

—-assert (Four_Slot_BIT4_LB1 \ {| start_write, end_read, start_read, end_vrite [|})
-- [T= Incoherence_Spec

assert SemiRegACM_Spec [T= Four_Slot_BIT4_LB1

-- assert SemiRegACM_Spec [F= Four_Slot_BIT4_LB1



276

assert RegACM_Spec [T= Four_Slot_BIT4_LB1

-- assert RegACM_Spec [F= Four_Slot_BIT4_LBi
assert STOP [T= Mono_BIT4_LB1

assert Pool Spec [T= Four_Slot_BIT4_LB1

-- assert Pool_Spec [F= Four_Slot_BIT4_LB1

--assert (Four_Slot_BIT4_LB2 \ {| start_write, end_read, start_read, end_vrite [})
- [T= 1Incoherence_Spec

assert SemiRegACM_Spec [T= Four_Slot_BIT4_LB2

-- assert SemiRegACM_Spec [F= Four_Slot_BIT4_LB2

assert RegACM_Spec [T= Four_Slot_BIT4_LB2

-- assert RegACM_Spec [F= Four_Slot_BIT4_LB2

assert STOP [T= Mono_BIT4_LB2

assert Pool_Spec [T= Four_Slot_BIT4_LB2

-- assert Pool_Spec [F= Four_Slot_BIT4_LB2

--assert (Four_Slot_BIT5_LB1 \ {| start_write, end_read, start_read, end_vrite |})
- [T= Incoherence_Spec

assert SemiRegACM_Spec [T= Four_Slot_BIT5_LB1

-- assert SemiRegACM_Spec [F= Four_Slot_BITS_LB1

assert RegACM_Spec [T= Four_Slot_BIT5_LBi

-- assert RegACM_Spec [F= Four_Slot_BIT5_LB1

assert STOP [T= Mono_BIT5_LB1

assert Pool_Spec [T= Four_Slot_BITS5_LB1

-- assert Pool_Spec [F= Four_Slot_BITS5_LB1

--assert (Four_Slot_BITS_LB2 \ {| start_write, end_read, start_read, end_write I})
- [T= Incoherence_Spec

assert SemiRegACM_Spec [T= Four_Slot_BIT5_LB2

-- assert SemiRegACM_Spec [F= Four_Slot_BITS_LB2

assert RegACM_Spec [T= Four_Slot_BITS_LB2

-- assert RegACM_Spec [F= Four_Slot_BITS_LB2

assert STOP [T= Mono_BIT5_LB2

assert Pool_Spec [T= Four_Slot_BITS_LB2

-- assert Pool_Spec [F= Four_Slot _BIT5_LB2

—-assert (Four_Slot_BIT6_LB1 \ {| start_write, end_read, start_read, end write |})
-- [T= Incoherence_Spec

assert SemiRegACM_Spec [T= Four_Slot BIT6_LB1

-- assert SemiRegACM_Spec [F= Four_Slot_BIT6_LB1

assert RegACM_Spec [T= Four_Slot_BIT6_LB1

-- assert ReghACM_Spec [F= Four_Slot_BIT6_LB1

assert STOP [T= Mono BIT6_LB1

assert Pool_Spec [T= Four_Slot_BIT6_LB1

-- assert Pool_Spec [F= Four_Slot_BIT6_LB1

--assert (Four_Slot_BIT6_LB2 \ {| start_vrite, end_read, start_read, end_vTite B3]
-- [T= Incoherence_Spec

assert SemiRegACM_Spec [T= Four_Slot_BIT6_LB2

-- assert SemiRegACM_Spec [F= Four_Slot_BIT6_LB2

assert RegACM_Spec [T= Four_Slot_BIT6_LB2

-- assert RegACM_Spec [F= Four_Slot_BIT6_LB2

assert STOP [T= Mono_BIT6_LB2

assert Pool_Spec [T= Four_Slot_BIT6_LB2

-- assert Pool_Spec [F= Four_Slot_BIT6_LB2



	412996_0001
	412996_0002
	412996_0003
	412996_0004
	412996_0005
	412996_0006
	412996_0007
	412996_0008
	412996_0009
	412996_0010
	412996_0011
	412996_0012
	412996_0013
	412996_0014
	412996_0015
	412996_0016
	412996_0017
	412996_0018
	412996_0019
	412996_0020
	412996_0021
	412996_0022
	412996_0023
	412996_0024
	412996_0025
	412996_0026
	412996_0027
	412996_0028
	412996_0029
	412996_0030
	412996_0031
	412996_0032
	412996_0033
	412996_0034
	412996_0035
	412996_0036
	412996_0037
	412996_0038
	412996_0039
	412996_0040
	412996_0041
	412996_0042
	412996_0043
	412996_0044
	412996_0045
	412996_0046
	412996_0047
	412996_0048
	412996_0049
	412996_0050
	412996_0051
	412996_0052
	412996_0053
	412996_0054
	412996_0055
	412996_0056
	412996_0057
	412996_0058
	412996_0059
	412996_0060
	412996_0061
	412996_0062
	412996_0063
	412996_0064
	412996_0065
	412996_0066
	412996_0067
	412996_0068
	412996_0069
	412996_0070
	412996_0071
	412996_0072
	412996_0073
	412996_0074
	412996_0075
	412996_0076
	412996_0077
	412996_0078
	412996_0079
	412996_0080
	412996_0081
	412996_0082
	412996_0083
	412996_0084
	412996_0085
	412996_0086
	412996_0087
	412996_0088
	412996_0089
	412996_0090
	412996_0091
	412996_0092
	412996_0093
	412996_0094
	412996_0095
	412996_0096
	412996_0097
	412996_0098
	412996_0099
	412996_0100
	412996_0101
	412996_0102
	412996_0103
	412996_0104
	412996_0105
	412996_0106
	412996_0107
	412996_0108
	412996_0109
	412996_0110
	412996_0111
	412996_0112
	412996_0113
	412996_0114
	412996_0115
	412996_0116
	412996_0117
	412996_0118
	412996_0119
	412996_0120
	412996_0121
	412996_0122
	412996_0123
	412996_0124
	412996_0125
	412996_0126
	412996_0127
	412996_0128
	412996_0129
	412996_0130
	412996_0131
	412996_0132
	412996_0133
	412996_0134
	412996_0135
	412996_0136
	412996_0137
	412996_0138
	412996_0139
	412996_0140
	412996_0141
	412996_0142
	412996_0143
	412996_0144
	412996_0145
	412996_0146
	412996_0147
	412996_0148
	412996_0149
	412996_0150
	412996_0151
	412996_0152
	412996_0153
	412996_0154
	412996_0155
	412996_0156
	412996_0157
	412996_0158
	412996_0159
	412996_0160
	412996_0161
	412996_0162
	412996_0163
	412996_0164
	412996_0165
	412996_0166
	412996_0167
	412996_0168
	412996_0169
	412996_0170
	412996_0171
	412996_0172
	412996_0173
	412996_0174
	412996_0175
	412996_0176
	412996_0177
	412996_0178
	412996_0179
	412996_0180
	412996_0181
	412996_0182
	412996_0183
	412996_0184
	412996_0185
	412996_0186
	412996_0187
	412996_0188
	412996_0189
	412996_0190
	412996_0191
	412996_0192
	412996_0193
	412996_0194
	412996_0195
	412996_0196
	412996_0197
	412996_0198
	412996_0199
	412996_0200
	412996_0201
	412996_0202
	412996_0203
	412996_0204
	412996_0205
	412996_0206
	412996_0207
	412996_0208
	412996_0209
	412996_0210
	412996_0211
	412996_0212
	412996_0213
	412996_0214
	412996_0215
	412996_0216
	412996_0217
	412996_0218
	412996_0219
	412996_0220
	412996_0221
	412996_0222
	412996_0223
	412996_0224
	412996_0225
	412996_0226
	412996_0227
	412996_0228
	412996_0229
	412996_0230
	412996_0231
	412996_0232
	412996_0233
	412996_0234
	412996_0235
	412996_0236
	412996_0237
	412996_0238
	412996_0239
	412996_0240
	412996_0241
	412996_0242
	412996_0243
	412996_0244
	412996_0245
	412996_0246
	412996_0247
	412996_0248
	412996_0249
	412996_0250
	412996_0251
	412996_0252
	412996_0253
	412996_0254
	412996_0255
	412996_0256
	412996_0257
	412996_0258
	412996_0259
	412996_0260
	412996_0261
	412996_0262
	412996_0263
	412996_0264
	412996_0265
	412996_0266
	412996_0267
	412996_0268
	412996_0269
	412996_0270
	412996_0271
	412996_0272
	412996_0273
	412996_0274
	412996_0275
	412996_0276
	412996_0277
	412996_0278
	412996_0279
	412996_0280
	412996_0281
	412996_0282
	412996_0283
	412996_0284

