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Abstract 

Data-shipping systems are commonly used in client-server object-oriented databases. This is in­

tended to utilise clients' resources and improve scalability by allowing clients to run transactions 

locally after fetching the required database items from the database server. A consequence of this 

is that a database item can be cached at more than one client. This therefore raises issues regarding 

client cache consistency and concurrency control. A number of client cache consistency protocols 

have been studied, and some approaches to concurrency control for object-oriented datahases have 

been proposed. Existing client consistency protocols, however, do not consider method semantics 

in concurrency control. This study proposes a client cache consistency protocol where method se­

mantic can be exploited in concurrency control. It identifies issues regarding the use of method 

semantics for the protocol and investigates the performance using simulation. The performance re­

sults show that this can result in performance gains when compared to existing protocols. The study 

also shows the potential benefits of asynchronous version of the protocol. 
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Chapter 1 

Introduction 

Object-oriented databases (OODB) are powerful because of their ability to handle complex appli­

cations, such as found in computer aided design (CAD). computer aided manufacturing (CAM). 

geographic information systems (GIS) and multimedia applications. This is because they support 

a data model that is capable of handling complex relationships between various types of ob.it'ct~. 

OODB also supports queries that are capable of traversing these data relationships and calling user­

defined methods. Moreover, unlike in relational databases, updating a database schema in an OODB 

can be performed naturally, and this is particularly beneficial when a large number of objects are 

affected [CB02]. In addition, OODB is also known for its high performance. which is invaluable 

in some cases, such as those in mission-critical applications whose performance requirements can­

not be met by relational databases [Gmb03][Cor03]. Examples include auction systems that are 

required to respond to thousands of bids daily [GiIO I]. 

Because of their great potential, object-oriented databases have been studied extensively in the 

past decade. 

One of the key issues in OODB is client data caching and concurrency control in a data-shipping. 

client-server environment. In a client-server environment. data-shipping is a paradigm. in which 

the client stores database objects in its cache and runs transactions locally, accessing the database 

objects from its cache. When many clients are connected to a server, multiple clients may run 
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transactions that share database objects, and consequently a copy of a database object may be held 

by more than one client. This raises the issue of client cache consistency for these copies. and so 

concurrency control is required to guarantee the correctness of transactions. This em be a key factor 

in system performance, as shown in earlier studies [Fra96][OVU98][ALM95]. 

The aim of this study is therefore to investigate the exploitation of semantic-based concurrency 

control in client cache consistency protocols, as a solution to this issue. Before discussing this 

in more detail, we will first describe the data-shipping paradigm, and introduce semantic-based 

concurrency control. 

1.1 Data-shipping 

Data-shipping is a paradigm for the client-server architecture that is commonly found in object­

oriented database systems (ODBMS). It is different from the query-shipping used commonly in 

relational database system [SKS02]. The difference is in terms of where the database management 

system (DBMS) functions are located. 

A DBMS contains a component called a database manager. This is an intermediate component 

situated between the user (i.e. the front end) and the physical data storage, as shown in Figure 1.1. 

A database manager is responsible for: scheduling, transaction management, cache management 

and recovery management. Data-shipping and query-shipping paradigms are different in terms of 

where the database manager functionality is performed, which is illustrated in Figure 1.2 and de­

scribed as follows: 

• In query-shipping, database objects are stored only at the server. When a client transaction 

runs a database query, the query is sent by the client to the server. Upon receiving the query, 

the server processes the query and then sends the result back to the client. The server is 

therefore responsible for all the database manager functionality, whereas a client does not 

perform any of these functions . 

• In data-shipping, database objects reside both at the clients and the server. When a client's 
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Figure 1.1: Database Management System 
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transaction runs a database query, first the c lient checks if the object queri ed are in the 

c lient's cache. If the objects are not cached by the c lient, they are fir tl y fetch ed from the 

server and stored into the client 's cache. Then the c lient continue with the tran ac tion by 

reading or writing the objects from the local cache. Whenever an object is not found in the 

client's cache, the c li ent firstl y fetches the object from the server before continuing with the 

transaction. Because a client loca lly runs the transaction, a c lient is al 0 re pon ible for the 

tasks of the database manager. Therefore data-shipping transferred some task from the erver 

to clients. 

As a result, data-shipping has the advantages that client machines, which are nowadays often 

very powerful , can be uti li sed to handle database manager tasks, so reducing the load on the serve r. 

This can make a server more responsive, which in turn can enhance the system 's scalabili ty in term 

of the number of c lients. 
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(a) Query-shipping (b ) Dala- hipping 

Figure 1.2: Query-shipping vs Data-shipping system 

However, data-shipping also raises the issue of c lient cache consi tency and concurrency con-

trol. In a client-server database environment, many c li ent can concurrently run databa e tran ac-

tions that access shared database objects. Therefore, in data- hipping, becau e c lients run tran ac­

tion locally, copies of database object may reside at multiple c li ent imultaneou Iy. Con equently 

one needs to be concerned with the consistency of the copie of the database object held at the 

clients and concurrency of access to the shared objects . 

To address thi s issue, a number of client cache consistency and concurrency control protocol 

in data-shipping object-oriented database sys tems have been propo ed in the past decade. Becau e 

transactions operate on the client ' local objects, and each client communicate only wi th the erver, 

in these protocols, the clients need to validate their local tran actions at the erver to check for cache 

consistency. 

1.2 Semantic-Based Concurrency Control in OODB 

Concurrency control is a mechanism to guarantee that tran actions run correct ly. It has been an 

ex tensive topic of research in databases for decades. Some studies of concurrency control have 

considered the use of method semantics to enhance concurrency in object-oriented databa e a 

methods can be called on objects [JG98][RAA94] [MWBH93]. These concurrency control cheme 

have been classified as Semantic-based Concurrency Control. 

Essentially semantic-based concurrency control al lows a conflict on a database object, either 

read-write or write-write conflict , to be released if the method of object run by one tran action 
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commutes with the method of an object run by the other transaction. When there is a commutati\it) 

relationship between two methods, depending on what the relationship is. a transaction can read an 

object that is being written, or write an object that is being written, without having to wait for the 

other transaction to finish. 

Two types of conflicts can be released by semantic-based concurrency control: read-write con-

flict and write-write conflict. We will now describe examples of these type of conflicts. A detail 

description about semantic-based concurrency control is given in Section 2.3. 

1.2.1 Read-Write conflict examples 

The read-write conflict example is taken from the scenario of an order cancellation. Supposed the 

Order object has methods shown in Figure 1.3. 

class Order { 

attribute String status; 

//method M1 
void snapshotOrder() 

read status 

//method M2 
void cancelOrder() 

status = "CANCELLED" 

CompaUbi11ty Mab1x 

Ml M2 

Ml x Gemmute 

M2 ComlT1l.te x 

Figure 1.3: Order schema 

Supposed that all orders in an organisation are being recapitulated (read and summarised) in a 

transaction. While it is in progress, all Order objects are read and locked to prevent the objects from 

being written. Supposed a client has placed an order but then it is canceling the order while that 

order is being read. When canceling the order, the client will try to write the status of the order, but 
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because the Order object is being read, the client must wait for the transaction performing the read 

to end. 

Suppose that the organisation has a flexible system that allows the customer to cancel an or­

der while the order is being read. Semantic-based concurrency control can allow this by defin­

ing a semantic relationship, for example between cancelOrder 0 and snapshotOrders O. so 

that although the read on status in snapshotOrderO conflicts with the write on status in 

cancelOrderO, the conflict can be released (ignored). The relationship is defined as commute in 

a compatibility matrix as shown in Figure 1.3. 

An illustration of the interleaving of the transactions in the above scenarios is shown in Figure 

104. Transaction I reads the status of all the orders and Transaction 2 runs the order cancellation. 

Without semantic-based concurrency control the customer cannot cancel the order because the write 

on the status in cancelOrderO can proceed only when the read on the order has finished, which 

is at the end of the Transaction I, so the customer must wait until the entire Transaction I has 

finished. By contrast, with semantic-based concurrency control, cancelOrderO can proceed, and 

the customer does not need to wait for the entire Transaction 1 to finish. 

1.2.2 Write-write conflict examples 

Another type of conflict that can be released using semantic-based concurrency control is a write­

write conflict. Some examples of write-write conflict that can be released are as follows: 

1. Two addition operations can be commutative. For example, operation A is i = i + I, and 

operation B is i = i + 1. If operation B is independent from operation A, then operation A 

commutes with operation B by assuming that each operation is atomic and the intermediate 

result is not important so that whether operation A is performed before or after operation B 

does not matter. 

2. Another example is a scenario in car rental in that the status of an order can be "shipped" 

or "paid" or "paid and shipped", and a car can be shipped before or after the rent is paid 
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Tx-1 (Organisation) Tx-2 (Client) 

Starts (recapitulating orders) 

for each order 0 { 

o.snapshotOrder() starting 

o.snapshotOrder() done 

End of Tx-l 

Starts (cancelling order) 
o.cancelOrder() starting 
.. delayed .. 

o.cancelOrder() done 
End of Tx-2 

(a) Without Semantic-based CC 

Tx-1 (Organisation) Tx-2 (Client) 

Starts (recapitulating orders) 

for each order 0 { 

o.snapshotOrder() starting 

o.snapshotOrder() done 

End of Tx-l 

Starts (cancelling order) 
o.cancelOrder() starting 

o.cancelOrder() done 
End of Tx-2 

(b) With Semantic-based CC 

Figure 1.4: An example of interleaving 
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[MWBH93]. Thus, suppose an order is of type Order and status is its attribute, and suppose 

that the payO method updates status to "paid", and that the shipO method updates the 

status to "shipped". A transaction Tl that runs the payO method will not conflict with 

another transaction T2 that runs shipO method. When the two transactions run concurrently 

the value of the status will be "paid and shipped". Therefore, here Tl does not need to wait 

until T2 finishes and vice versa. 

3. Sometimes an updated result can be regarded as temporary. Consider an SVG-based (Scal-
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able Vector Graphic) map showing objects whose infonnation can be viewed. For instance. 

detailed infonnation about a building in a street could be recorded and the infonnation are 

represented as attributes of the street object. To update the map. a number of mobile agents 

traverse the streets. Because they can perfonn updates simultaneously. an update by one agent 

can overlap with an update by another agent, and the final value of an update will later be de­

cided by a third party. Thus, here two simultaneous additions to the map can be allowed as 

their results can be regarded as temporary. 

4. Another example comes from a study of real-time air traffic control [PLP97j. A radar reading 

is written into a record and shown on a radar display. However. because of the real-time 

requirement, the write operation can be overwritten by a new radar reading that arrives. Thus. 

here two methods that perfonn Write operations can be perfonned simultaneously. 

In all of the preceding examples, it should be noticed that a write-write conflict between two 

operations can be released if the operations are independent from each other in that the result of one 

operation is not read by the other operation. 

1.3 The goal and contribution of this thesis 

As described in the preceding section, method semantics can be used to remove conflicts. Some 

approaches to semantic-based concurrency control have been previously studied. and are described 

in Section 2.3. However, semantic-based concurrency control has not been investigated in a data­

shipping client-server environment. Moreover, in existing client cache consistency protocols for a 

data-shipping client-server environment, conflicts are handled on a page or object, and the potential 

of method semantics is not considered. Therefore our study fills this gap by investigating client 

cache consistency protocols that can exploit method semantics in concurrency control. 

The following are our contributions of this thesis: 

• We designed a new client cache consistency protocol that can exploit method semantics and 

described the issues this raised. We named the protocol Synchronous Method-time Validation 
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(SMV) as a client validates its transaction at the method level, at the end of each method 

call. The reason for this is to preserve the atomicity of a method, as required in semantic­

based concurrency control*. Therefore SMV differs from the existing client cache consistenc) 

protocols in that the client does not validate at page or object level but at a method level. The 

protocol is synchronous as the client waits for the result of a validation before continuing 

its transaction. SMV also differs from the existing client consistency protocols in that the 

lock granularity is an object's attribute, not an object or page. Thus, our protocol differs 

from the existing protocols in terms of how a client validates transactions, and in terms of 

the lock granularity. To our knowledge SMV is the first client cache consistency protocol in 

object-oriented databases in which the client validates at the method level and uses an object's 

attribute lock granUlarity. 

Moreover, in our design we investigate the use of method semantics to release read-write 

conflicts and write-write conflicts at both the client and server with Synchronous Method­

time Validation (SMV). 

In addition, we designed an asynchronous version of the protocol, named Asynchronous 

Method-time Validation (AMV). AMV is similar with SMV in that a client validates its trans­

action at the end of a method call. However, with AMV, the client does not wait for the result 

of a validation after sending a validation message, but instead continues its transaction until 

commit-time. The aim was to improve performance by reducing waiting. However, the im­

plementation of the basic form of AMV, i.e. without method semantic-based commutativity 

support, in this thesis has met much more complexity than that of SMV, and so we believed 

it will require much more extra overhead if we implement AMV that uses method semantics 

in concurrency control. Therefore, in this thesis we will investigate the behaviour of AMV 

protocol compared to the other protocols, but only with their basic form. 

The differences between SMV, AMV and the existing client cache consistency protocols are 

shown in Table I. I . 

• A description of method atomicity in semantic-based concurrency control is given in Section 2.2 
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USE SEMANTIC-BASED 

CONCURRENCY CONTROL 
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VAUDATION 

On Write Access Commit time i End of Method 
Sync.: Async.: 

1'1 Sync.: ! Async.: 

[Fra96] [This thesis] I [This theSiS] [Fra96] [OVU98] 
[LLOW91] [CFLS91] 

[RW91] [WN90] 

x x x x 

Table 1.1: The client cache consistency protocols 

• We investigated the performance characteristics of these new protocols using simulation. 

Comparisons were made with an optimistic version of the protocols named Commit-time Val-

idation (CY). Like SMV and AMV, CV uses attribute locking granularity, and is an optimistic 

avoidance-based protocol like 02PL (Optimistic Two-Phase Locking)[Fra961. We wished 

to observe the performance differences between our new synchronous and asynchronous 

method-time validation protocols (SMV and AMV) (which are pessimistic) and Commit-time 

Validation (CV) (which is optimistic), because in a previous study the optimistic protocol (Op­

timistic Two Phase Locking - 02PL) has been found to be superior to a pessimistic protocol 

(Callback Locking - CBL) [Fra96]. Our results show that the SMV (pessimistic, synchronous) 

and the AMV (pessimistic, asynchronous) protocols can outperform CV (optimistic). We also 

investigate the performance sensitivity when the number of operations in a transaction varies, 

which was not addressed in the previous studies [Fra96][OVU98][ALM95]. Our results show 

that under higher number of operations in a transaction, the abort rate (i.e. the number of 

aborts per committed transaction) in the asynchronous protocol (i.e. AMV) is better than the 

abort rate of the other protocols. 

To justify the optimistic behaviour of our CV, we compare our CV with the existing Opti­

mistic Two-Phase Locking (02PL). The result shows that despite some differences on their 

performance characteristics, their throughput are not different significantly. 

Then, we investigate what could be gained if the support for method semantics is incorporated 
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in our protocol, by comparing between our synchronous method-time validation (S~lV) that 

assumed no commutativity and the SMV that assumed a certain probability of method com­

mutativity. The result shows that method semantics can give better performance in particular 

circumstances. 

1.4 The thesis outline 

This thesis is organised as follows. The next chapter (Chapter 2) firstly describes object-oriented 

databases and the semantic-based concurrency control approaches. Then the existing client cache 

consistehcy protocols are described, focusing on a review of their performance and the aspects that 

influence the performance. 

Chapter 3 describes the design of our new protocols: Synchronous Method-time Validation 

(SMV) and Asynchronous Method-time Validation (AMV). Issues when method semantics are used 

in the protocols and aspects of the implementation of the protocols are explained. 

Chapter 4 contains the design of the simulation to measure and compare the performance of 

the protocols. It includes the description of the model of the simulation, as well as the limitation 

imposed by the model. 

Chapter 5 describes the results of the measurements. Each result is accompanied by an analysis 

to identify the characteristics of the protocols, and to compare their behaviour. 

Finally, Chapter 6 contains the conclusions drawn from the study, and identifies options for 

further work. 



Chapter 2 

Background Studies 

This chapter contains the background studies that are relevant to semantic-based concurrency con­

trol and client cache consistency protocols in object-oriented databases (0008). It begins with a 

brief introduction to object-oriented databases, which particularly describes the abstractions sup­

ported by 0008 to emphasise the difference between 0008 and relational databases that are 

relevant to this thesis. This is followed by a review of the approaches to semantic-based concur­

rency control. However, beforehand some underlying background will be described that include 

concurrency control and nested transactions. Then, existing client cache consistency protocols will 

be reviewed. In particular, the description will focus on the identification of aspects that influence 

the performance characteristics of the protocols. 

2.1 A brief introduction to object-oriented databases 

The conceptual schema of a database is in general an entity-relationship model. An Entity is an 

object that is either real or abstract, and it has a number of attributes that define its properties. A 

relationship is the inter-relation between entities. 

In a complex application, the database schema consists of a large number of entities and complex 

relationships. Object-oriented databases (0008) are suitable for applications that contain complex 

13 
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data re lati onships because the object-ori ented database model has the advantage that i to be able to 

use abstractions to reduce the complexity. The fo ll owing abstraction are upported b 0008 : 

I . Aggregati on. Aggregati on i an abstraction to define that an entity has orne other emitie . 

The re lationship is generall y known as a has-a relation hip. 

In object-oriented databases (OODB ), a has-a relation hip can be defined by ha ing a ha -a 

attribute that refers to another object. For exam ple, a hown in Fi gure 2. 1 (b). to defi ne a 

re lationship that an Order invo lve a number of Item , the ha -a attribute of bjec t Order can 

be set as a reference to a li st of Item objec t . An update on an Item that i be ing referred b 

the has-a attribute of an O rder, automaticall y update the ha -a attribute of the Order. l o in 

the case o f de leti on, if an Item, whi ch is bei ng refe rred by an Order, i de leted so that the li. t 

of Item is empty, the has-a attribute will automatica ll y refe r to an empty Ii l. Thu. , in 0008 

re lationshi ps are natura ll y con tructed . 

By compari son, in re lati onal databases an enti ty or a re lationship can be repre ented onl y a 

a re lation, which is a lso ca lled a table. Therefore, in re lational databa e , to de fi n a ha -a 

re lationship one must define a separate has-a table. 

Item 

I: 1"='1 o.~ 1 
: list< 

----

(a) I n relati onal dalabases (b) In objecl-oriented database 

Figure 2.1: An example of a has-a relationship 

The implication of requiring a separate re lation to defi ne a relationshi p in re lational database. 

is that in application with many has-a re lati ons, extra overhead is needed to en ure the in­

tegri ty of the re lations. In re lational database, a re lation has attribu te that defi ne the prop-
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ertie<, of the relation*, and a foreign-key attribute is an attribute that refers to another ke) 

attribute in another table. Therefore, one must ensure that a foreign-key attribute has the 

same type as the attribute in its referred relation. As an example, consider "Order". "Item" 

and "has-a" relations in Figure 2.1 (a). The "has-a" relation should be made to define a rela­

tionship that an Order involves one or more Items. The Order-Id and the Item-Id in the 

has-a table are foreign-keys to the Id in the Order table and the Item table respectively. 

One must ensure that the type of the Order- Id attribute is the same as the type of the Id 

attribute in the Order table, and the type of Item- Id attribute in the has-a table is the same 

as the type of the Id attribute in Item table. Moreover, one must ensure that an update of one 

value of a key attribute in one table also updates the key attribute in the other table. As in the 

example, an update in the value in the foreign keys in has-a table must also update the key 

values in the Order and Item tables. Also a deletion on an entry in the Order or Item tables 

must also delete the values in the has-a table. Although some relational database products 

nowadays support integrity checking, the support is somewhat limited, such as in the cur­

rent MySQL[AB04] where an integrity check is supported on update and deletion but not on 

attribute type definition. Therefore extra overhead in integrity checking is still needed. 

2. Method calls. Object-oriented databases (OODB) can support method calls. A method is an 

interface to execute a sequence of operations on an object, which is illustrated in Figure 2.2. 

Thus some details of operations can be performed by calling a method inside the database. 

A method can be invoked from within a method, so forming nested methods. In Section 

2.3, we will discuss how the semantic-based concurrency control approaches consider nested 

methods, and described the nested transaction model [Mos85][GR92] within concurrency 

control mechanisms. 

Calling methods on objects is not found in relational databases. In relational databases, oper­

ations need to be performed outside the database. Operations are performed on data that must 

• An attribute in a relation is a column in a table 
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Figure 2.2: A method hides the detail of operations on object 

be firstly extracted from the database through queries. 

3. Other abstractions . There are some other abstracti ons in object-ori ented databa e that are 

not found in relational databases, whi ch include generali sation and pol ymorphi m. However, 

they are not described further here as they are not particularly relevant with thi thes is. Further 

details can be found here [KM94] . 

The preceding description contains abstractions in object-oriented databa e (OODB ) that are 

relevant for this thesis. Next we will describe how concurrency control can take advantage of the 

object-oriented database model. 
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2.2 Concurrency control 

Semantic-based concurrency control is a concurrency control scheme in object-oriented databases 

that exploits method semantics. Before we describe semantic-based concurrency control. we will 

briefly describe concurrency control in general and explain tenninologies such as transaction. sched­

ule and conflict. 

Transaction in databases is a way to perfonn databaSe operations and it has the following prop­

erties: Atomicity, Consistency, Isolation and Durability [GR92]. 

• With the Atomicity property, a transaction finishes entirely (commits) or does not execute at 

all (aborts). 

• With the Consistency property, any consistent database state is transfonned to another consis­

tent database state. Database state here is the value of a database item, and "consistent" here 

means that the value of a database item satisfies its constraints in the database schema. 

• With the Isolation property, no interference to a transaction gives bad effect when the trans­

action is executing. In other words, when there are many transactions executing at the same 

time, this isolation property makes the final result to be as that if the transactions had executed 

one at a time. 

• With the Durability property, the results of a transaction are not lost but recorded in a stable 

storage for future use. 

A schedule is a sequence of transaction operations ordered by time. For example the following 

is a schedule containing Read (R) and Write (W) operations on database item X and Y, by two 

transactions TI and T2: 

A conflict occurs if a schedule containing two consecutive operations (from different transac­

tions) involve the same database item and one of the operations is a Write. For example, in the 
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preceding schedule, the following operations are in conflict because transaction TI operates Read 

on X and then T2 consecutively operates Write on X 

2.2.1 Serialisability of Transactions 

When many transactions are executing concurrently, the schedule will probably contain an interleav­

ing of the read and write operations of the transactions. A schedule that contains an interleaving of 

the read and write operations oftransactions is called serialisable if the schedule can be transformed 

into one in which the transactions execute one at a time without interleaving. 

A schedule is correct if it is serialisable. 

A way to determine whether a schedule can be transformed into a serialisable (i.e. correct) 

schedule is by performing a series of swaps between two adjacent non-conflicting operations [GMUW(X)I. 

and ifthe end result is that the transactions execute one at a time without interleaving. then the sched-

ule is serialisable. For example, the following schedule has interleaving read and write operation ... 

but the schedule is serialisable because the swaps can be performed. The steps are illustrated in 

Figure 2.3. 

In reality, transactions execute dynamically in that we do not know when a transaction will end. 

Consequently, to achieve a correct (i.e. serialisable) schedule, it is not practical to wait for an entire 

schedule to complete and then check if the schedule is serialisable. To guarantee that a schedule is 

serialisable while the transactions are executing, a mechanism is required that is called concurrency 

control. 

2.2.2 Nested Transactions (NT) 

The executions of transactions in the preceding description are in a flat sequence. By comparison, 

Nested Transactions (NT) are transactions that are not in flat sequence. A nested transaction is a 



Chapter 2. Background Studies 

1" state 
Inme ITl 
0 Read (A) 
1 !Write (A) 
2 
3 

14 Read (8) 
5 twrite (8) 
6 
7 

2111 state 
tTime Tl 
0 Read (A) 
1 Write (A) 
2 
3 Read (8) 

14 
5 IWrite (8) 
6 
7 

3" state 
Time Tl 
0 Read (A) 
1 Write (A) 
2 Read (8) 
3 
4 Write (8) 
5 
6 
7 

4'" state 
Time Tl 
0 Read (A) 
1 Write (A) 
2 Read (8) 
3 Write (8) 
4 
5 
6 
7 

In 

Read (A) 
Write (A) 

Read (8) 
!Write (8) 

tT2 

Read (A) 

!Write (A) 

Read (8) 
!Write (8) 

n 

Read (A) 

Write (A) 
Read (8) 
Write (8) 

tT2 

Read (A) 
!Write (A) 
Read (8) 
Write (8) 

) 

) 
) 

) 

Figure 2.3: Swaps between transaction operations 
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transaction that executes within another transaction. The entire transaction executions in NT fonns 

a tree, such that a transaction has some nested transactions as its branches, and a branch transaction 

can have other nested transactions as its sub-branches, as so on. 

Firstly, we define some tenninologies in a tree of transaction executions: 
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• The transaction at the top of the tree is called top root transaction. 

• Transactions that are below a transaction T are called descendnnts of T. Transactions that are 

direct descendants of T are called sub-transactions of T. 

• Conversely, transactions that are above a transaction T are called ascendants ofT. or an anct's-

tor to T. A transaction that is direct ascendant of a transaction T is called the parent transaction 

ofT. 

One of the advantages of NT is that sub-transactions can execute concurrently. However. if these 

transactions share a Read or Write on a database item X, the following algorithm can be applied for 

the concurrency control: 

ifa transaction T requires a lock on 
if no lock conflict on X occurs. 
or if an ancestor to T has the lock 

the lock on X can be granted 
else 

T waits 

if a transaction T finishes. 
if T is top root transaction 

to 

T and T's descendants can commit 
else 

give all T's locks to T's parent 

if a transaction T aborts, 
All T's locks are released 
Abort all T's descendants if any 

T 

X 

on X 

Figure 2.4: Concurrency control in Closed Nested Transactions 

The concurrency control algorithm in Figure 2.4 shows that a finished transaction T cannot 

commit by itself if it is not a top root transaction. All locks previously held by a finished non-root 

transaction are not released but given to its parent transaction. This protocol is for Closed :\ested 

Transactions. The purpose of giving all locks to its parent transaction is to prevent its states (i.e. 

the values of the accessed database items) from being visible to other transactions. This is because 



Chapter 2. Background Studies 21 

although a sub-transaction has finished, it can abort later if its parent transaction aborts. and then 

consequently its states are lost. Therefore to prevent inconsistency, all locks of a finished "ub­

transaction are not released but transferred to its parent transaction. Thus, if the top root transaction 

is the ancestor of all transactions within the tree, the preceding rule infers that when the top root 

transaction aborts, the entire transactions in the tree also abort. 

2.2.3 Open Nested Transactions 

The preceding description of nested transactions, in which a finished sub-transaction cannot commit 

by itself, is known as Closed Nested Transactions. Another scheme for nested transactions called 

Open Nested Transactions [GR92], allows a finished sub-transaction to commit by itself. so after a 

sub-transaction finishes all locks are released and it can commit. 

To illustrate, Figure 2.5 shows an example of a scenario in nested transactions that is handled 

using closed nested transactions and open nested transactions approaches. Supposed in transaction 

T, database items X and Y are initialised to 0, and T executes TI and T2. Then TI executes trans­

actions Til and T12, while T2 executes transactions T21 and T22. TIl and T21 ~hare X: Til 

performs Write on X, and T21 performs Read on X. Their executions ordered by time are ~hown 

in the table. Supposed TIl executes first at time 0 and then followed by T21 at time I. At time 2 

TIl writelocks X and at time 3 TIl updates X. Then at time 4 T21 is trying to readlock X, but a 

Read-Write conflict occurs so that T21 has to wait. 

Supposed TIl has finished at time 5. Using the Closed nested transaction scheme, at that time 

TIl does not commit and the lock on X is given to Tl. This is to prevent the value of X, which 

now equals to I, from being visible to T21. The reason is that T II may eventually aborts, because 

if TI aborts TIl will abort as well, and when TIl aborts, the value of X is lost and become 0 

again. Supposed that at time 6 TI2 has not finished, so TI cannot give the lock on X to the top root 

transaction T. At time 7 after TI2 has finished, the lock on X is given to T (by T I), so T21 can now 

obtain readlock on X. 

By comparison, using Open nested transactions, at time 5 when TIl has finished TIl commits, 
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Tn T12 T21 T22 
x=l if (x==l) 

y=l 
else 

y=o 

Closed Nested Transaction Open Nested Transaction 

Time 
Til T21 Til TIl -

~ Start Start 

1 Start Start 
i---, Writdock x Writdock x 
i--=----
~ x=1 ,=1 

4 Rt:quclll Rc1Idl ock on Rt:q~ Rc1Idlock on 
lL Wait until lock on lL Wait until lock on 

x is given to T x is gittn to T .. 
i---

5 Finish. Lock on x. is Finish. Lock on x is 

givat 10 TI giVCD 10 T 

i---
6 .. wail forT I2 to 

Readlock 1 

finish .. -
7 rr 12 has finished. 

WTilciock y 

lock on x is given to 
TJ Readlock 1 

-
8 Wrltclock )' y=1 
-

':I y-I Finish. Lock on x and 

i---
Y an; givrn 10 T 

10 Finish. Lock on Jt and 

y arc given to T2 

Figure 2.5: An example of nested transactions 

and the lock on X is released (given to the top root transaction T). Therefore, at time 6 T2l can 

obtain a read lock on X. Note that the readlock is obtained sooner here than using Closed nested 
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transactions where it is at time 7. However, if eventually T I aborts, TIl will abort too, and then 

the value of X that T21 has read as I will become O. Hence, open nested transactions gi\ t' more 

concurrency but may endanger consistency. 

2.3 Semantic-based concurrency control in OODB 

The preceding description gives a brief background on concurrency control and that in nested trans­

actions. Object-oriented databases (OODB) supports method calls, as mentioned in Section 2.1, and 

when a method calls another method, the entire execution forms nested methods. In semantic-based 

concurrency control, the way to perform concurrency control in nested methods has been adopted 

from that in nested transactions. This section describes the approaches that have been studied. 

In general, three approaches to semantic-based concurrency control have been proposed, each 

of which was proposed in a different study. 

• Method and attribute locking [MWBH93] 

• Attribute locking [RAA94] 

• Method or attribute locking using a Direct Access Vector [JG98] 

The approaches differ in terms of the granularity of locking and how locks are represented. We will 

describe the approaches. 

2.3.1 Method and attribute locking 

This approach [MWBH93] applies the concurrency control protocols of nested transactions to the 

concurrency control of nested methods. The approach began with adopting "open nested transac­

tion" to give better concurrency than "closed nested transaction". However, then the study identified 

a limitation, and thereafter the approach adopted closed nested transaction. 

In this semantic-based concurrency control approach [MWBH93], before method execution, a 
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lock needs to be acquired on all an object's attributes t accessed within the method. Throughout 

this section, we will abbreviate object's attribute to "attribute". 

As an illustration of this approach, supposed two transactions T] and T2 share an attribute X. 

When a transaction T] is about to execute a method, it tries to acquire lock on all items aCCe~st'd 

in the method, When a lock conflict on item X occurs because X is already locked by the other 

transaction T2, transaction T] must wait until the lock on X is released by transaction T2. However. 

if a commutativity relationship occurs between the methods of T] and T2 or their ancestor, that calls 

X, then T] can acquire the lock on X without waiting until the entire T2 has finished. To define a 

commutativity relationship between methods, a method is associated with a "semantic lock'", and in 

the object schema a matrix of relationships is constructed between the semantic locks (i.e. methods). 

A semantic commutativity relationship exists if the commutativity is defined between two semantic 

locks in the matrix. 

As mentioned, the open nested transaction approach was initially adopted for handling nested 

methods. In this, when a method has finished, locks on items operated within the method are re­

leased. As an illustration, consider the example in Figure 2.6. There are two transactions. T] and 

T2, which share an item 02.X. Supposed there is a semantic commutativity relationship between 

method] I 0 and method21 0 of object 01. In stage-I, transaction T] is holding a Write lock on D2.X; 

thus transaction T] is also holding semantic locks on ol.method]]O and on 02.methodl2(J. Mean­

while, transaction T2 is requesting a Readlock on 02.X. Due to read-write conflict on D2.x, T2 

needs to wait until the Writelock on 02.X is released. In stage-2, T] has finished accessing D2.X 

as well as methods 02.methodl20 and ol.methodll O. By adopting the open nested transaction ap­

proach, the lock on 02.X is released, and the semantic lock on 02.methodl20 is released, and because 

ol.methodll 0 has finished too the semantic lock on it is also released. But as T] has not entirely 

finished, TI retains the semantic lock on o].methodll O. At this time, because o].method]] 0 and 

ol.method21 0 commute and both of the methods are ancestors of D2.X, the Readlock on D2.X can 

be acquired by T 2. Notice that if the commutativity relationship does not exist, T 2 has to wait until 

tObject's attribute refers to attribute that is atomic. 
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TJ has fini shed to have the request for a Readlock on D2 granted. 

Stage 1 

Stage 2 

-
T} 

executing .. . OJ.mJJO 

finished ° 2· mJ20 

0 2'X released 

method object's attribute 

Colour 

black : lock held by transaction 

hatch: lock requested 

white : being unlocked 
Methods mJ J 0 and IDzJ 0 semantically commute. 

T2 

• 0 J.m2JO 

• ° 2·mn O 

-Readlock 0 2'X 

Figure 2.6: Scenario [MWBH93] when the open nested transaction protocol was adopted 
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However, a limitation was found when the open nested transaction approach was adopted. Con-
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sider a modified scenario from the above example in which T2 directl y execute D2.methodn ( (i.e. 

without intermediate method 01.method21 0 in T2.), and uppo ed there is a semantic commutali i 

re lationshjp between method }2() and method220 of object 02 , as hown in Figure _.7. The lock 

on 02.X has been re leased and T I retains only it emantic lock on ol. method IIO, while T_ i re­

questing a Readlock on 02.x· At this point, T2 cannot detect a lock confli ct on 02.X. but becau e 

TI has not entirely firu shed, granting the Readlock to T2 must be based on detected commUlati il 

relationship between method l2 and method22 of object 02 . Thu , u ing the open ne led £ran action 

approach, a conflict can only be identifi ed between two top-level methods operati ng on the ame 

object. 

firtisbed 

method object's attri bute 

Colour 
black : lock held by transaction 

batcb : lock requested 

white : being unlocked 
Methods ffi l20 and IDnO semantically commute. 

Figure 2.7: Modified scenario [MWBH93j when open nested transaction was adopted 
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Stage 1 

Stage 2 

finished 

-

fini shed 

- -0 2'X writelock Readlock 0 2'X 

held by 0 2. m120 

method object's attribute 

Colour 

black : lock held by transaction 

hatch : lock requested 

Methods ml20 and ~20 semanticall y commute. 

Figure 2.8: Scenario [MWBH93j re-considering closed nested transaction 
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In order to e limjnate the above limitation, this approach [MWB H93] con idered the clo ed 

nes ted transaction approach, in which the locks of a fi rushed sub-transaction are not relea ed but 
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are instead retained by its parent. This allows a transaction to identify conflicts. from wherever 

the transaction is when the transaction is requesting a lock. Figure 2.8 shows an example of a 

scenario. In stage-I. transaction T J has finished accessing D2.x. At this time. T1 has also finished 

method 02.methodJ2{). Unlike in the open nested transaction approach, the Writelock on 02.X is 

given to its parent i.e. method D2.methodn(), and TJ also retains the semantic lock on the method 

(i.e. D2.method12()). Therefore. when at this time transaction T2 is requesting a Readlock on 02.:\. 

it detects the read-write conflict on D2.x. T 2 can however acquire a Readlock on 02 .X. due to the 

semantic commutativity relationship between method120 and method220 of object 02 (at stage-2). 

Thus, T2 can detect the lock conflict and resolve the commutativity relationship. although the two 

commutating methods are at different tree levels. 

The study [MWBH93] is novel in showing that method semantics can be exploited by concur­

rency control in object-oriented databases. and identifying issues with the open and closed nested 

transaction approaches. Moreover. the proposed approach was able to handle the case where nested 

transactions run at different tree levels. 

However, the study assumed that the trees of the concurrent transactions are disjoint. and one 

issue that was left uninvestigated was handling non-disjoint complex objects in dynamic executions 

of transactions. A situation in that transactions execute methods of different objects that access a 

shared subobject is defined as a referentially shared object (RSO) [JG98][RAA94J, as described in 

the study by [RAA94]. 

2.3.2 Using Direct Access Vectors 

This semantic-based concurrency control scheme[JG98] also uses the closed nested transaction ap­

proach. The novelty, however, is that the granularity of a lock can change during runtime from 

method level to object's attribute level in order to obtain more concurrency. 

To allow changes in lock granUlarity, a variable called Direct Access Vector (DAY) is introduced 

here. DAY is a collection of access modes of all of an object's attributes accessed within a method. 

and the role of a DAY is to represent a lock. The DAY is generated automatically by the system. At 
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object Car 
( 

attributes: 
i d 
price-to - rent (p) 
quan tity-on-hand (qoh ) 

methods: 
[Ml ] a d just-price( ) 

[A] i f QOH>lO then 
[AI] price - to-rent = * 0 . 9; 

[M2] check_out_rent() 
[B] if o . test_sta tus =new then 

[Bl] o . change_ status (gran ted); 
qoh=qoh - l; 

[M3] p a YJen t 
[C] read price- to -ren t ; 

read qoh; 
o.change_ status(pa id) ; 

o b ject Order 
( 

at tributes : 
i d 
s ta tu s (s) 

meth o d s : 
[Nl ] test_status () 

[D] read status; 
[N2] change_status (value) 

[E] statu s=value ; 

OAV 

[ id, p,qoh] 

[R,W,R] 
[R,N ,R] 
[R,W,N ] 
[R,N,W] 
[R,N,N] 
[R,N,W] 

[R,R,R] 
[R, R,R] 

rid, s] 

[R,R ] 
[R,R] 
[R,W] 
[R,W] 

DAV: R=Read,W=Wri te,N=Null 

Car Lock Holder 
D(MI) D(A) D A l [)(M2) [)(B) [)(Bl) D(M3) 

I ~Ock D(Ml) N Y N N Y N N 
Requester I D M2 N N Y N Y N S 

D(M3) N Y N S S S Y 

Order Lock Holder 
D(Nl) I D(N2) 

I~OCk D(Nl) Y N 
Requeste r D(N2) N N 

Note: Y=commute; N=nOl commute : S=semantically commute 

Figure 2.9: Approach using DAV 
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the start of a method it contains the access modes of all the object's attributes that are accessed within 

the method. During the execution of the method, at a point when an attribute is to be accessed, the 

system changes the DAY to contain only that attribute. 

Figure 2.9 shows some examples of a DAY in a car rental scenario [JG98]. Supposed the appli­

cation has two classes: Car and Order. The DAYs in classes Car and Order consist of three elements 

and two elements respectively, referring to the number of attributes in each class. In class Car, 

the execution of method MI visits three breakpoints: [MI], [A] and [AI]. During runtime at each 

breakpoint the DAY changes. The DAY at [Ml] is [R,W,R] that refers to Read, Write and Read on 

the attributes: "id","price to rent" and "quantity on hand" respectively, which correspond to their 

access mode. At breakpoint [A] the DAY changes to [R,N,R] that refers to Read on "id" and Read 

on "quantity on hand" ("price to rent" is not applicable i.e. N), and then at breakpoint [A I) the DAY 

becomes [R,W,N] that refers to Read on "id" and Write on "price to rent" ("quantity on hand" is not 

applicable). 

In the preceding example, before the execution of method adjust-price, a lock is obtained 

on the method and on all attributes to be accessed within the method. Then, during the method 

execution, the lock changes to become less restrictive, containing only on the accessed attributes. 

The purpose of changing the lock into finer granularity (i.e. attribute) during the method runtime is 

to allow more concurrency. 

The commutativity relationship table, which is based on the DAY, is automatically generated by 

the system. Then a user can explicitly set "semantically commute" relationship between DAYs into 

the commutativity table. 

The protocol derived from this approach is as shown in Figure 2.10. Rule 2-1 requires locking on 

the method to be called before a method execution. Rule 2-2 and Rule 2-3 provide semantic-based 

concurrency control by adopting the closed nested transaction approach. 
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Rule 2-1: 
A lock is required only for method execution, 
and is granted before method execution. 
During method execution, the lock changes in accordance 
with the breakpoints. 

Rule 2-2: 
A method cannot terminate until all its children terminate. 
When a method m terminates, 
if m has a parent and m commits, then 

the lock on m is retained by its parent 
If m has no parent or if m has a parent but m aborts, then 

the lock is released 

Rule 2-3: 
A lock is granted if one of the following conditions is satisfied: 

1. When no other methods hold or retain a conflicting lock, 
if conflicting locks are held, 
such locks are retained by the ancestors of the requesting method 

2. For semantic commutativity, 
if conflicting locks are retained by non-ancestors, 
then when one of the ancestors of the retainer 
not including the retainer itself 
and an ancestor of the requester commute. 

Figure 2.10: Semantic-based CC protocol 

2.3.3 Attribute locking 
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In this approach [RAA94], unlike in the preceding approaches ([MWBH93], [JG98]), a lock need~ 

to be acquired only on an object's attribute, whereas it is not necessary to take a lock on a method. 

The protocol is as shown in Figure 2.11. Rule 3-1 requires that a lock is acquired on an object's 

attribute, which we will abbreviate as "attribute" in this description. The "atomic operation" in Rule 

3-1 means attribute. Before an attribute is accessed (i.e. for read or write), a lock on the attribute 

needs to be acquired. A lock request on an attribute should also include the method that is accessing 

the attribute, and the ancestors of the method, if any. When a lock is granted on an attribute, the 

system records the locked attribute and the method (and its ancestors if any). When a lock request 

arrives, the system consults the record and also consults the commutativity relationship table in the 

object schema, to check for a lock conflict, as well as whether a conflict can be released due to a 
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semantic commutativity relationship between the methods. 

Rule 3-1: 
A method execution can execute an atomic operation t 
if and only if lock(t) is requested and is granted 

Rule 3-2: 
A method execution cannot terminate (i.e. commit or abort) 
until all its children have terminated. 
When a method execution terminates: 

If it is not top-level and it commits, 
its locks are inherited (transferred) to its parent. 

If it is not top-level and it aborts, 
its locks are discarded. 

If it is top-level, 
its locks are discarded. 

Rule 3-3: 
A lock(t) can be granted to a method execution, only if: 

no other method execution holds a conflicting lock, 
and 
for all other non-ancestor methods x" that retain a conflicting lock(x), 
some element x' (between x" and x) and some ancestor t' of t commute. 

Figure 2.11: Attribute Locking protocol 
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Rule 3-2 shows that the protocol adopts the closed nested transaction approach. A method 

is regarded as a sub-transaction within a nested transaction. When a method finishes, the locks 

are not released but retained by its parent. Recall from the preceding description about nested 

transactions that lock retention prevents the results in a finished method from being visible to other 

transactions, because the method may later be aborted when its parent aborts. Also, as in the method 

locking approach [MWBH93], the retained lock in a closed nested transaction allows a conflict to 

be identified by a transaction from wherever in a tree the transaction is when the transaction is 

requesting a lock. 

Finally, rule 3-3 of the protocol shows that a lock conflict on an attribute can be released due to 

method commutativity relationships between ancestors of the attribute. 

One issue claimed to have been addressed in this approach [RAA94] is the handling of refer­

entially shared-objects (RSO), which was claimed in the previous study [MWBH93] to have been 
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left uninvestigated. In RSO, methods of different objects, in different transactions. share an ObjL'Ct, 

resulting in a situation where contention on the shared object causes a check on method commuta­

tivity to be made against methods of different objects. It is in contrast with the case where a check 

for method commutativity is made against a method of the same object. RSO might occur dynam­

ically during transaction execution, so that the idea of statically defining commutativity relations 

across objects was found to be inflexible and difficult to enforce. This study [RAA94] claimed that 

RSO was addressed during the execution of methods by determining conflicts and commutativit~ 

relationships. 

The study provided a proof of correctness (informally) of the approach. It is based on the 

"semantic serialisability" concept for the nested transaction model [CB89]: an execution of nested 

transactions is considered correct if it is serialisable as viewed by the top-level transactions. A serial 

view of top-level transactions will be obtained if it is possible to perform a series of "reductions" 

and "substitutions" against subtransactions in the trees. 

As an example, Figure 2.12 shows two transactions T \ and T 2, whose execution time is ordered 

from left to right. Supposed that a commutativity relationship occurs between os.mO and os.mO in 

that the operation on os.a is a Write. After T, finishes accessing os.a, the lock on os.a is held by 

method os.mO. Due to the commutativity relationship between os.mO and os.mO, T2 can acquire a 

writelock on os.a after method Os .mO in T, finishes. A proof is required to check that these accesses 

are correct. 

The proof should show that the top-level transactions T I and T 2 are serialisable. A series of 

reductions and substitutions are performed as follows. Stage 1 shows an interleaving between two 

transactions T\ and T2 in that 03.mO interleaves with 02.mO. These two methods have a RSO 

(referentially shared object) in object os. Firstly, reductions are made and the result is stage 2. 

Then, because 02.0 and 03.0 are methods of different objects, no conflict occurs and a substitution 

can be made, resulting in stage 3. Because a commutativity relationship exists between os.mO and 

os.mO, a substitution can be made, and the result is stage 4. The commutativity relationship releases 

the conflict between the write lock on os.a held by os.mO in T\ and the write lock on os.a requested 
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by T 2. Afterward, reductions are made in stages 4 and 5, and result is the serial execution of the 

top-level transactions T I and T 2 in stage 6. This proves that the transaction execution is correcL 

Tl Tz 1 

~ 
OLmO OJ.mO ~.mO 04.mO 

I I 
Os.mO os.mO 

I I 
Os.a °s.a 

Tl Tz 
) 

2 

~ 
ol.mO OJ.mO ~.mO 04.mO 

I I 
os.mO os.mO 

Tz 
) 

3 Tl 

A 
OLmO ~.mO 

A 
OJ.mO 04.mO 

>< os.mO os.mO 

Tz 
) 

4 Tl 

A A 
Ol.mO ~.mO OJ.mO 04.mO 

I I 
os.mO os.mO 

Tz 
) 

5 Tl 

A A 
Ol.mO ~.mO OJ.mO 04.mO 

) 
Tz 6 (final) Tl 

Figure 2.12: An example of correctness check 
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2.3.4 Notes on the approaches 

It can be observed that the difference between thi s approach [RAA94] and the pre iou approa h 

[MWBH93] is in terms of lock acqui sition . Figure 2.13 illustrate lock aequi iri on in [RAA9-l] . 

Suppose that a transaction include nested methods calls as illu trated in Figure _. 13. ethod 0 ) . mO 

accesses attribute o) .a and calls method 02 . mO . Then, method 02 . mO acce e attribu te 02.a and 

executes method 03 . mO , and then method 03 .mO acce e attribu te 03. a. Before the acee on 

each attribute, i.e. o ).a in stage I, 02.a in stage 2 and 02.3 in tage 3 a lock i reque ted on ea h 

attribute, so that finally in stage 4 a ll attributes are locked. Inform ation abou t a lock i a ociated 

with information about the method, and its ancestor if any. 

Running 0l .rnO Running 02.rnO Running 03.rnO 
Acquiring lock Acquiring lock Acquiring lock 
on 0l.a on 02.a .. on 03.a .. 

°l·rnO °l·rnO °l·rnO ol·rn O 

t °l·a t °l·a t °l·a t °l·a 

°2·rn O °2·mO °2·mO 

t °2·a t °2·a 

°3·rn O 
t °z·a 

° 3·mO 
L 03 .a L 03.a 

1 2 3 4 

Figure 2.13: Locks acquisition us ing approach in [RAA94] 

By compari son, the protocol in the previous study [MWBH93] require a lock to be acquired 

before a method invocation. Thus, before a method i cal led, a lock i reque ted for the method 

and a ll the attributes to be accessed within the method . Using the same example a in the preceding 

description , Figure 2. 14 illustrates the lock acquisition in thi s approach. At tage I , before the 

execution of method 0) .mO , a lock on the method is acquired. When the lock is obtained at tage 

2, a lock is taken on attribute o).a and method oJ.mO . The lock acq ui sition gee on until the 

attribute 03 . a is locked, at which point there we also lock on attributes 02 . a and 0 ) . a a we ll a 

their ancestors. 
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Acquiring lock Locking ol.mO 
on ol.mO .. Acquiring lock 

on 02 .mO .. 
? 

ol· mO ol·mO 

t °l·a t °l.a 
°2·m() t °2·a 

1 2 

Locking 02. mO 
Acquiring lock 
on 03 .mO .. 

ol ·mO t °l·a 
Dl·m() 

Dl·a 
03·mO 

L 03.a 

3 

Lockin g 03.mO 

ol·mO 

t °l·a 
Dl·mO t Dl·a 

03 ·mO 
L 03.a 

4 

Figure 2.14: Locks acquisition using the approach in [MWBH93] 
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Thus, essentially both approaches ([MWBH93] and [RAA94]) are imilar in term of the in-

formati on in the lock record, in that their lock record contai n informati on about attribute and 

their methods (and their ance tors if any). The lock record will be used to check whether a lock 

conflict can be released, by using the semantics of the method con ulted from the corre ponding 

commutati vity relationships in their object schema. 

One di sadvantage in thi s approach [RAA94] i that a deadlock may occur when two tran ac-

tions are holding readlocks on a shared attribute and then they are imultaneou Iy try 10 acqui re a 

writelock on the attribute. Supposed the attribute is X, and two tran action T I and T2 are already 

holding a read lock on X. Then both transacti ons are tryi ng to acquire writelock imultaneou Iy, and 

a commutativity relationship exists between the method that read X and the method that wrote X 

in both transactions. So, first TI acqujres a writelock on X , and because of the commutati vity re-

lationship Tl needs to wait until the method in T2 has finj hed. At the same time, simi larl y T2 i 

acquiring a writelock on X and needs to will t until the method cal led by Tl has fini hed. Thu , thi 

scenario ends up with T I and T2 waiti ng for each other to finj sh each other' method. The deadlock 

in this situation will not occur in the previous approaches (in [MWBH93] and [JG98]). becau e in 

the previous approaches a lock needs to be acquired before method executi on . 
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2.3.5 Summary 

This section describes the approaches to semantic-based concurrency control. There are three ap­

proaches in different studies, and we summarise how they differ in Table 2.1. 

I [MWBH93] I [JG98] I [RAA94] 
LOCK ACQUISITION method method attribute 

execution execu- access 
tion, 
attribute 
operation 

LOCK GRANULARITY method, method, attribute 
attribute change to 

attribute 
LOCK RECORD method direct ac- attribute 

and its cess vec- and its 
ances- tors (OAV) ances-
tor(s), tor(s) 
attribute 

COMMUTATIVITY RELATIONSHIP explicitly explicitly explicitly 
defined and auto- defined 

matically 
defined 

REFERENTIALLY SHARED OBJECT unexplored explored explored 
CORRECTNESS PROOF not de- not de- detailed 

tailed tailed 

Table 2.1: Aspects of semantic-based concurrency control protocols 

The studies, however, did not address the database environment on which they are implemented, 

such as either in data-shipping or query-shipping. The impression is that it assumes a centralised 

database system (i.e. query-shipping) as the environment. In the next section we will describe the 

existing studies of client cache consistency protocols, which are in data-shipping environments. We 

will include description on how concurrency control is handled in the protocols, in order to identify 

how semantic-based concurrency control can be used in the protocols. 
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2.4 Existing client cache consistency protocols 

The preceding section described semantic-based concurrency control. This section will review the 

existing client cache consistency protocols. We will describe where read-write and write-write 

conflicts are addressed in order to identify where semantic-based concurrency control can be incor­

porated in client cache consistency protocols. In addition, we will describe issues that affected the 

performance of the protocols. 

As mentioned in Section 1.1, a number of client cache consistency protocols haye been proposed 

for data-shipping object-oriented database system. Based on how the server checks the consistency 

of clients' caches, the protocols have been categorised into two families: avoidance-based and 

detection-based [Fra96]. 

• In avoidance-based protocols, the server records which copies of objects are cached at which 

clients. When a client wishes to update an object, it sends a write intention notification mes­

sage to the server. If the server identifies the set of database objects updated in the transaction 

that are cached at other clients, the server contacts the other clients to tell them to remove 

the stale copies. Before continuing with the transactions, the server waits until this ha~ been 

done. Thus, stale copies of objects are avoided, hence the name is "avoidance-based". 

• In detection-based protocols, the server records which stale copies of objects are cached at 

which clients. When a client validates a transaction at commit time, the server detects whether 

the objects being validated by the transaction are stale, and if so the server will reject the trans­

action. Thus, stale copies of objects are allowed to be cached by clients while a transaction 

runs, but this is later detected by the server at validation time, and the transaction is aborted. 

Based on how client validates a transaction to the server, each of these families is further categorised 

into pessimistic, optimistic and asynchronous: 

• In the pessimistic scheme a client validates its local transactions on every update on an object. 

After the client sends a validation message to the server, the client waits for the result from 

the server before continuing the transaction. 
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• In the optimistic scheme a client validates its local transactions only at the end of the transac­

tion. During the transaction the client optimistically reads and writes objects locally. 

• In the asynchronous scheme a client validates its local transactions at every object update. 

but unlike in pessimistic scheme, after the client sends a validation messacre to the server e 

the client does not wait, but continues with the transaction. The result of whether or not the 

validations are successful is given at the end of the transaction. 

We now discuss the protocols in more detail. 

2.4.1 Avoidance-based protocols 

Avoidance-based protocols prevent a client cache from caching stale (out-of-date) database items:!:. 

This is illustrated in Figure 2.15. 

When a client intends to update an item in its local cache, it notifies the server and waits for 

the response. When the server receives the notification, if other remote clients have also cached 

a copy of the item, the server sends cache consistency messages to those clients (point 1 a). This 

cache consistency message is to prevent a client from caching a stale (out-of-date) copy of the item. 

The server will only allow clients to proceed with the write once it is sure that no other clients are 

caching a stale copy ofthe item. Therefore, before the server approves the client's intention to write, 

the server needs to receive an acknowledgement as to whether the cache consistency actions from 

all the other clients have been satisfied. While the server waits for responses from the other clients, 

it acquires an exclusive lock, i.e. a writelock, on the item in order to prevent interference with it. If a 

cache consistency action cannot be satisfied, the server aborts the transaction (point 2b). Otherwise, 

the server allows the client to proceed with the write, and the client locally acquires a writelock on 

the item. Thus, in an avoidance-based scheme, when a client holds a local writelock on an item, no 

other clients can have a stale copy of the item. 

As mentioned above, the server locks the item while waiting for cache consistency action re­

sponses from clients. This is a short-term lock, to prevent the item from being read or written during 

*"Item" here can be in any granUlarity. Page is generally the granularity in the existing studies. 
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the waiting period. If during this period a write request for the item arrives from another transaction. 

the transaction will be aborted. Also if during this period a request to read the item arri\es from a 

client, the client must wait until the lock has been released by the server. The sef\er will give the 

clients the most recent version of the item. 

Client-1 nJ~S 1-1 . Other Remote Cljents . 

I 
I I 

I 
r-I Write X : Re uest Writelock on X D L2U 

['b]XiSRrr7~-'-i 

[1 c] X is Free: Gach nSlStency Action (CGA) 

I 

« _______________ n<---c-;,~ ;.,~:~; ~~.;:,;- --- I '-__ ........ I 

[1d] Writelock on X granted: 

Write lock OK : 

I I 

« _______________ Btl ~ ~ ;';,';';.;"-~-u~:.,;;,;,; -~ 
[2b] GGA Unsatisfied: Abort 1-' : : 

Figure 2.15: The avoidance-based scheme 

When a cache consistency message is received by a client, it must perform a cache consistency 

action. This is either an invalidation (removal) of the item from the cache, or a propagation (re-

placement) of the item with the updated value. However firstly the client checks whether or not the 

item is locked. If the item is not locked, the cache consistency action can be performed (point Ic). 

If the item is currently readlocked, the client defers the cache consistency action until the readlock 

is released (point I b). If the item is currently writelocked, the client informs the server that the 

cache consistency action cannot be satisfied (point 2a). When a cache consistency action can be 
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performed, it is acknowledged in a message from the client to the server. 

Next we review how read-write and write-write conflicts are resolved in avoidance-based proto­

cols. This will be useful to identify how method semantics can be used in resolving read-write and 

write-write conflicts . 

• Read-write conflicts 

A read-write conflict is detected and resolved at the client and at the server. A client locally 

records readlocks and writelocks on accessed items. A client checks for a read-write conflict 

on an item when it receives a cache consistency message from the server, which means that 

another client intends to update the item. Recall that when client A is updating an item it 

sends a write intention notification to the server, and if the item is also cached at client 8 

a cache consistency message is sent to client 8 by the server. A read-write conflict occurs 

when client B has a readlock on the item when it receives the cache consistency message. 

The conflict is handled by Client B by deferring the cache consistency action until the item is 

unlocked that is after client B has ended his transaction. 

A read-write conflict is also detected at the server, that is when the server handles a read 

request for an item from a client. When an item is requested by a client, but has been updated 

by another uncommitted transaction, the server will postpone sending the item until the item 

is unlocked i.e. after the updating transaction has ended. Thus, the server takes exclusive 

locks (similar to writelocks) on items that have been updated by uncommitted transactions. 

However, the server does not record readlocks on items. It is the client that holds readlocks 

on items it receives from the server . 

• Write-write conflicts 

A write-write conflict is detected and resolved at the client. A write-write conflict occurs 

when a cache consistency message on an item arrives at a client that has a writelock on the 

item. In such cases, the conflict is resolved by the client informing the server that the cache 

consistency action cannot be performed. 
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However, a write-write conflict can also be detected at the server. Consider a scenario where 

at the server there is a queue of two requests from client) and from client 2. The first request 

is a write intention notification on item X from client 1 and the next request is a write intention 

notification on the same item X from client 2. The server firstly serves the request from client 

1. Because X is also cached by client 2, the server sends a cache consistency message to 

client 2 and acquires a writelock on X on behalf of client I. While the server is waiting for 

a response from client 2, the server continues with the next request from the queue, that is 

the request from client 2, which is also a write intention notification on X. At this point the 

server detects a write-write conflicts on X, because client 2 intends to write X, while X is 

writelocked on behalf of client I. Thus, the write-write conflict will be detected at the server 

when a client has sent a write intention notification on an item before a cache consistency 

message on the item is received. 

Depending on how lock requests are made by a client, the existing avoidance-based protocols 

are further categorised into: synchronous, deferred and asynchronous [Fra96] 

• Synchronous 

In the synchronous protocol, every time a client intends to write an item, the client sends a 

write intention notification to the server and waits for a response. The client can proceed 

with its transaction once the server has registered write intention on the item on behalf of the 

client. Callback Locking Protocol (CBL) [Fra96] is a protocol that falls into this synchronous 

category. A callback message is a cache consistency message, sent by server to the client to 

perform a cache consistency action. Recall that when the server receives a write intention 

on an item from a client, if other remote clients are caching a copy of the item, the server 

will send a callback message to each of the other remote clients, and will allow the write to 

proceed once all callback messages have been satisfied . 

• Deferred 

In the deferred category, a client sends a write intention notification only at the end of a trans-
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action. During a transaction a client locally performs updates without notifying the server. 

At commit time, the client notifies the server of all updated items in a commit message, and 

then waits for a response. The server, having received the notification, sends a cache con­

sistency message to other remote clients that are caching the copies of the items, and will 

commit the transaction if all cache consistency actions have been satisfied. Sending a write 

intention notification only at the end of a transaction reduces the message overhead between 

clients and servers, and it allows fewer write intention notification messages from a clients 

per transaction, and therefore fewer cache consistency messages from the server. A protocol 

in this category is Optimistic Two-Phase Locking Protocol (02PL) and its variants: 02PL 

by invalidation (02PL-i) and 02PL by propagation (02PL-p) [Fra96]. The difference be­

tween 02PL-i and 02PL-p is in terms of a client's cache consistency action. In 02PL-i, a 

client's cache consistency action is to remove the item from the client's local cache, whereas 

in 02PL-p a client's cache consistency action is to replace the item in the client's local cache 

with the updated version sent by the server. 

• Asynchronous 

In the asynchronous protocol a write intention notification is sent by the client on each item 

update (i.e. as with the synchronous scheme). However, in the asynchronous protocol, after 

sending a write intention notification a client does not wait for a response from the server, but 

instead continues with its transaction. At commit time, the client sends a commit message and 

waits for a response from the server. The server, during a transaction, receives all the write 

intention notifications from clients, and sends cache consistency messages to other clients. 

However, upon a successful consistency action, the server does not send a response to the 

client. Only if a transaction must be aborted would the server sends an abort message to the 

client. 

The advantage of the asynchronous scheme is to reduce a client's blocking time, and frequent 

validations of a transaction between the client and server. In the synchronous scheme, a 
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client validates the transaction frequently and the client experiences some blocking time on 

every validation, whereas in the deferred scheme the client does not experience any blocking 

time, except at commit time. The asynchronous scheme is a compromise between these two 

protocols by keeping blocking time low but requiring frequent validations of the transaction. 

Asynchronous Avoidance-based Concurrency Control (AACC) [OYU98] is an avoidance­

based protocol which is asynchronous. The protocol also makes an effort to reduce the number 

of messages sent by a client, by tagging pages that reside only at one client as "private-read'", 

so that if a client knows that it is the only client holding the copy of a page, it does not send a 

write intention notification to the server. 

2.4.2 Detection-based protocols 

In detection-based protocols, consistency is maintained by having the server reject transactions that 

attempt to validate stale items. A client can cache stale items in its local cache, and when a client 

updates an item it validates the item with the server. If the server detects that the item is stale then 

the transaction is aborted. Thus, the server must maintain records that allows it to detect whether 

or not an item being validated is stale. The record of such items is kept until the corresponding 

transaction has ended. Figure 2.16 illustrates the detection-based scheme. 

To check for consistency, the server consults a record of the version number of the items. For 

example, in the Caching Two Phase Locking (C2PL) protocol [Fra96], each item is associated with a 

sequence number. The server maintains a record of the most recent sequence number for every item, 

so that an item with sequence number lower than that in the server's record is regarded as stale. In the 

Adaptive Optimistic Cache Consistency (AOCC) protocol [ALM95], the server maintains a record 

of stale items in every client named "Invalid Set". When the validation of an item is successful, all 

other copies of the item in the other clients are added into the Invalid Set, so any further validation 

on an item registered in the Invalid Set is rejected (because the item is stale). 

Therefore, the check for lock conflict in detection based protocols is made at the server rather 

than at the client. We now consider conflicts in more detail: 
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Clieot-l ry~s I-I . Other Remote Clients . 

Read X : Ruest Readlock on X 

X is free: Re i er Readlock on X 

<------------------
X is readlocked : Acknowledge 

rite X 

Write X : Re uest Writelock on X 

<------------------
Writelock on X granted: Acknowledge 

: Remove 

I ___________________ J 
X' or X removed 

[2] X is Stale or Not Free: Abort I-I 

Figure 2.16: The detection-based scheme 

• Read-Write conflict 

A read-write conflict is detected when the server is processing a fetch request for an item 

from a client. When a client intends to read an item that is not locally cached, it requests 

the item from the server. If the item is being recorded on behalf of an unfinished transaction, 

a read-write conflict is detected and the server defers sending the item until the transaction 

has ended. Otherwise the server sends the item to the requesting client. When the requesting 

client receives the item. it acquires a readlock on it . 

• Write-Write conflict 
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A write-write conflict is detected at the server when it receives a validation request from a 

client. An item that has been successfully validated on behalf of a transaction is recorded at 

the server, and the record is kept until the transaction ends. During the transaction period. 

if another transaction validates an item currently in the record, a write-write conflict occurs. 

The server resolves this conflict by aborting the other transaction to presef\e the correctness 

of transaction execution. 

The detection-based protocols are divided into synchronous, deferred and asynchronolls in ac­

cordance with how client validates accesses to items. 

• Synchronous 

In the synchronous scheme, a client validates on every update on an item. After sending a 

validation message the client waits for the result. 

The caching Two-Phase Locking (C2PL) protocol [Fra96) is a synchronous protocol. In 

C2PL, a page is tagged with a sequence number. The server maintains a record of the rno\! 

recent sequence number on every page that is cached by a client. The successful validation 

of a page updates the page's sequence number. Therefore a page, which is subsequently vali­

dated by another transaction, that has sequence number lower than that recorded at the server, 

is regarded as stale . 

• Deferred 

In the deferred scheme, in order to reduce the message overhead between the client and server, 

a client does not validate items with the server during a transaction. It is only at the end of 

the transaction at commit time that a client validates all items updated in the transaction. 

The server checks whether any item being validated is stale. If one of the items is stale, 

the transaction is aborted. Adaptive Optimistic Concurrency Control (AOCC) [ALM95) is a 

deferred protocol. In this protocol, "adaptive" refers to the lock granularity that can change 

from page level to object level whenever false sharing is detected (False sharing occurs when 

one transaction is trying to lock an object, but the page containing of the object is being 
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locked by another transaction because the other transaction is accessing another object in that 

page). In AOCC, the server maintains a record named ''Invalid Set" that contains stale pages 

currently cached by clients. When a transaction validates a page that is in the Invalid Set, the 

transaction is aborted. 

• Asynchronous 

In an asynchronous scheme, a client sends a validation message on every intention to update 

an item but the client does not wait for the result from the server, but instead it continues the 

transaction locally. At commit time, a client sends a commit message and waits for the result 

of all validations previously sent. At the server, when a validation from a client is received, if 

there is no conflict the server does not acknowledge the successful validation. But if a conflict 

is detected then the server will send a message to the client to abort the transaction. If there is 

no conflict throughout a transaction, the server sends an acknowledgement to the client at the 

end of the transaction. The asynchronous protocol results in low blocking time at the client 

but frequent communications between the client and server. 

A summary of where lock conflict is detected in avoidance-based and detection-based schemes 

is shown in Figure 2.17. It can be seen from the figure that in avoidance-based protocols the perform­

ing of conflict checks is passed by the server to clients, because concurrency control and deadlock 

detection is performed not only at the server but also at the clients. In detection-based protocols, 

concurrency control is performed only at the server. 

2.4.3 Performance Issues 

Here, we will describe issues with the performance of existing client cache consistency protocols. 

In the literature these protocols have had their performance investigated using simulation, as this 

allows the various parameters to be changed without having to modify an actual system. Firstly, we 

will describe the model generally used in measuring the performance of the existing client cache 

consistency protocols. Then we will summarise the issues that influence their performance. The 
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CLIENT 

CLIENT 

Write Inlention 

Wnle Ack . ... --

SERVER 

Consistency Msg. 
(checI< loci< conflict) 

~ 

(a) In avoidance-based scheme 

Validate Transaction 
~ 

Validation Ack . ... - --

SERVER 

(b) I n detecti on-based scheme 

CLIENT 

Figure 2.17: Concurrency control operations in Avoidance and Detection based schemes 

aim of the description is to understand the characteris ti cs of the protoco l. 

The Structure of models 

48 

The architecture mode led is c lient-server. The modeled system cons i t of the fo ll owing compo-

nents: 

• CPU (central processing unit). CPUs proce ses machine instruction at both the c lients and 

the server, w ith process ing speed measured in milli ons of instruction per second (MIPS). 

• Disk. Disk is used for stable database storage. Di sk was pre ent only at the erver. The co t 

to read fro m, or w rite to, di sk was represented as an average disk acces co t· 

• Cache. Cache here is an area of memory used to temporari ly tore databa e item fetched 

from disk. Cache is used because it has much lower access cost than does di k. A cache 

§The ac tual components of disk access cost includes: seek time. settle time and latency 
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is present at the client and at the server. It has a fixed capacity measured by the number of 

pages. The page replacement policy is Least Recently Used (LRU). The cost to read or write 

a database item from cache is assumed to be a fixed number of instructions. 

• Network. The network is a medium for conveying messages between the client and server. 

The cost of the network consist of a fixed cost and a variable cost. The fixed cost is the 

processing cost of the CPU and the network controller at the client and at the server. The 

value is assumed to be a fixed number of CPU instructions. The variable cost is the cost per 

byte of message transferred and is calculated based on the network speed in millions of bits 

per second (Mbps). 

A database is physical storage holding a set of database pages'l. It is modeled as a collection 

of page identifiers. During a transaction, a client accesses the database by reading or writing page 

identifiers representing the page in the database. 

In a transaction, each client has interest in accessing a particular set of database pages or objects. 

In addition, a particular set of pages or objects in the database might be shared by a set of clients. 

The pattern of the access to the database is dictated by the workload, which models data locality 

and sharing. The following describes in detail how the workload is modeled. 

Pages in the database were separated into regions [ALM95] [OVU98], as illustrated in Figure 

2.18. 

• Private region: a region that is private to a client. It contains pages that are accessed most of 

the time by a particular client. 

• Shared region: a region containing pages that are accessed by all the clients (i.e. they are 

shared by all the clients). 

• Other region: a region outside the Private and Shared regions. 

"Note that the granularity of a database item can be page or object. In our description we use page. 
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Figure 2.18: Data locality 
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Private 

Other 

Shared 

The above regions are used in some studie [ALM9S] [OVU98]. In conLras t, in another study 

[Fra96 ] there were simpl y hot and cold regions, withou t a Shared reg ion. The Hot reg ion wa the 

same as The Private region, and the Cold region covered the Shared and Other reg ion". 

Thus, each client was a llocated a Hot region in the daLabase, and each c li ent was a l. 0 a ll ocated 

a Cold reg ion outs ide the Hot region. In add ition, the Hot region belonging to a cl ient overl apped 

with the Cold region be longing to other c li e nts. 

How freque ntly each region is accessed during a transaction wa determined by a probabi lily 

va lue. In additi on, how li ke ly a transaction performs a Write on page in a particular region was 

determ ined by a probability val ue. These setti ngs are encapsulated in a workload. Thu . a work load 

is identi fied by an access probabi lity value for each region , and a write probability value for each 

region. 
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Some workloads were then defined based on the access probability and the write probability for 

each region. The workload that was claimed to represent general database applications is HotCold 

[Fra96], in which Hot and Cold regions were defined. The HotCold workload was later altered 

to become Sh/HotCold [ALM95] [OVU98] to include a Shared region. The values of the access 

probability and the write probability for each region is shown in Table 2.2. 

Study General P(Access P(Access Cold P(Write) 
workload Hot Region) Region) 

[Fra96] Hotcold 80% 20'7c 20O/C 
[ALM95] Sh/Hotcold 80% 10% on Shared. 5o/c 

10% on Other 
[OVU98] Sh/Hotcold 80% 10% on Shared. varied 

10'7c on Other 

Table 2.2: Probability values in HotCold and ShJHotCold workloads 

From the preceding description, it can be seen that workloads model data locality and data 

sharing by defining probability values for accessing pages and writing pages in the Private. Shared 

and Other regions in the database. 

Aspects that Influence Performance 

The performance was measured for variable levels of data contention. One study [Fra96] use the 

number of clients as the variable of data contention, with a fixed Write probability. Other studies 

[OVU98] [ALM95] use the write probability values as the variable of data contention, with a fixed 

number of clients. 

The performance of the existing client cache consistency protocols are also affected by the 

database size, measured as the number of pages in the database. If the number of pages in the 

database is reduced, with the same number of clients and the same transaction length, the data 

contention rises. For example, if there are a smaller number of pages in the Shared region, the 

probability of sharing pages is higher. In all the existing studies, the database size was fixed. 

We now describe the results of previous investigations into the performance of the following 

client cache consistency protocols: 
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• Caching Two-phase Locking (C2PL) [Fra96] 

• Callback locking protocols (CBL) [Fra96] 

• Optimistic Two-phase Locking (02PL) [Fra96] 

• Adaptive Optimistic Concurrency Control (AOCC) [ALM95] 

• Asynchronous Avoidance-based Consistency Protocol (AACC) [OVU98] 

No. Avoidance-based Detection-based Ref. 

Sync. Deff. Async. Sync. Deft. Async. 

CBL 02PL-i 02PL-p 02PL-ND AACC C2PL AOCC NWL 

1 D. D. D. D. [Fra96) 

2 x x x [Fra96) 

3 0 0 [ALM95) 

4 V V \" [OVU98) 

Table 2.3: The protocols compared in the existing studies 

The performance comparisons will not be based on the quantitative results, but on whether one 

protocol performs better or worse than the others, and the identification of parameters that affect the 

performance. This is because the protocols compared in one study were different from those in the 

other studies, as seen in Table 2.3, and each study used different parameter values in the simulations. 

First, we describe the following terminology used in the performance analysis: 

• Throughput is the number of committed transactions per unit of time. It is the main metric 

that indicates whether or not a protocol is better than the others. 

• Average Response Time is the average time measured from the start of a transaction until 

the commit of the transaction. 

• Abort rate is the average number of aborts experienced by a transaction measured from the 

start of the transaction until the commit of the transaction. 
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In general, the relative performance of the above protocols under HotCold or Sh/HotCold work­

load were as follows: 

• 02PL outperforms CBL, and CBL outperforms C2PL [Fra96]. The version of 02PL referred 

to here is 02PL-i. 

• AOCC outperforms CBL [ALM95] 

• AACC outperforms AOCC [OVU98] 

The following are the description about aspects that influenced the performance: 

• Disk utilisation 

In the previous studies, disk is only at the server (as mentioned in the preceding description). 

Disk accesses occur when the server receives a request for a page from a client and the page is 

currently not in the server's cache. When receiving a request, the server reads the page from 

disk and writes it into the cache, before sending the page to the client. The cost of accessing 

the disk is much higher than any other costs. It takes milliseconds to access the disk. but only 

nanoseconds to access the cache. 

Disk utilisation is influenced by the size of the client caches [Fra96J. In the Optimistic Two 

Phase Locking (02PL) and Callback Locking (CBL) protocols, higher disk utilisation occurs 

when clients have larger caches. The reason is described as follows. In the 02PL and CBL 

protocols, the server receives all dirty pages (i.e. pages modified during a transaction) at the 

end of the transaction. If clients have had larger caches, more dirty pages are received by the 

server. More dirty pages at the server causes a higher number of pages to be replaced in the 

server's cache (with the Least Recently Used page replacement policy) because the server',> 

cache has a limited size, and dirty pages that were rejected from the server's cache needed to 

be written to the disk. Thus with larger clients' caches, the disk utilisation becomes higher. 

By comparison, in Caching Two Phase Locking (C2PL) which is a detection-based protocol, 

a validation was not associated with dirty pages but instead with the sequence number of the 
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updated page. Consequently C2PL protocol did not take up the server's cache's space, and 

the disk utilisation in C2PL was less than that in 02PL and CBL when the number of clients 

was increased. 

With a fast network. the influence of disk utilisation could become even greater. and the 

performance of 02PL and CBL could be disk bound (i.e. almost entirely dictated by disk). 

Another study [OVU98] that compared the asynchronous avoidance-based protocol (AACC), 

the optimistic detection-based protocol (AOCC) and the pessimistic avoidance-based protocol 

(CBL), showed that the disk utilisation in the AOCC protocol (optimistic, detection-based) 

was greater than that in CBL (callback) and AACC (asynchronous; avoidance-based) pro­

tocols. This was due to the fact that in AOCC transactions ran more quickly than in CBL 

and AACC. In AOCC transactions ran optimistically without blocking, whereas in CBL and 

AACC transactions could be ended when a conflict was found. 

Thus, in summary disk utilisation will be higher when the client's cache is larger and when 

transactions run more quickly, which can be due to a fast network or the optimistic behaviour 

of the protocol. As a consequence, because a disk access is the highest cost component of the 

performance, the system can become disk bound. 

• Message overhead 

Message overhead is also a factor that influences the performance. Message overhead usually 

refers to the frequency as well as the volume, of messages transferred between the clients and 

server. 

A study [Fra96] showed that the large reduction of the number of messages traveling from the 

clients to the server made 02PL (optimistic, avoidance-based) outperform C2PL (pessimistic, 

detection-based) under the HotCold workload. 

The study also showed the reduction in message overhead due to sending only writelock 

requests, rather than both readlock and write lock requests made 02PL (optimistic, avoidance-
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based) and CBL (pessimistic, avoidance-based) outperformed C2PL (pessimistic. detection­

based) in low condition workloads. 

The study [Fra96] also showed that the message overhead was related to the size of the client's 

caches. When the clients' caches were larger, 02PL (which is avoidance-based) caused the 

server to send more consistency messages to the clients. By contrast, in C2PL (which is 

detection-based) the client cache size did not significantly affect the message overhead. 

In the same study, the message overhead also influenced the scalability measured in tenns of 

the number of clients. Under a high data contention workload (HICON), the reduction in mes­

sages from server to clients allowed C2PL (pessimistic, detection-based) to be more scalable 

than 02PL (optimistic; avoidance-based) and CBL (callback). Being avoidance-based. 02Pl 

and CBL required the server to send consistency messages to clients, whereas being detection­

based, C2PL did not need consistency messages to be sent. Consequently, when the number 

of clients increased, in the avoidance-based protocols the server perfonnance suffered from 

having to send more consistency messages to the clients, which caused their perfonnance to 

drop. In comparison, the performance of C2Pl remained stable with increasing number of 

clients. 

In 02PL-p protocol (optimistic, avoidance-based by propagation) the perfonnance drop was 

even more significant, because in 02PL-p consistency messages also carried the actual pages 

to be propagated to the clients, and so 02PL-p generated larger message volumes than 02PL­

i (avoidance-based by invalidation). As a consequence, the performance of 02Pl-p was even 

below the performance of C2PL (pessimistic, detection-based) for a high number of clients. 

Again, with regards to the scalability, a study [ALM95] showed that when the number of 

clients increased, the increase in the number of messages in AOCC (optimistic, detection­

based) was not as large as that in CBL (pessimistic, avoidance-based). This is because CBl 

is an avoidance-based protocol that requires the server to send consistency messages to the 

clients, whereas AOCC does not require the server to send consistency messages. Thus. with 
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regards to increasing the number of clients, the study showed that AOCC scaled better than 

CBL. 

The influence of message overhead on performance was also investigated for asynchronous 

protocols [OVU98]. The study showed that under the HotCold workload, AACC (asyn­

chronous, avoidance-based) outperformed CBL (pessimistic, avoidance-based) one of the 

reasons for this was that the number of messages transferred in AACC is lower than those 

in CBL. This is due to the behaviour of AACC that allows a client not to wait for the result of 

every validation, but instead to continue until commit time. 

Thus in summary, message overhead is an important factor that influences the performance. 

Studies have shown that message overhead could be incurred by the behaviour of the protocol 

(eg. avoidance-based, detection-based, asynchronous), by the size of client cache and by the 

workload. 

• Cache effectiveness 

Cache effectiveness is also another important factor that influences the performance. The 

study in [Fra96] showed that, due to a more effective use of the client cache, 02PL (opti­

mistic, avoidance-based) outperformed C2PL (pessimistic, detection-based) under the Hot­

Cold workload, despite the fact that 02PL was disk bound (as described in the disk utilisation 

section above). In C2PL, a client's cache can hold stale pages, whereao; in 02PL it contains 

only non-stale pages (recall that avoidance-based protocols do not allow stale items to reside 

in a client's cache). Consequently, in 02PL a client's cache could be filled with more pages 

that could be used in the future. 

Again, 02PL-i (optimistic, avoidance-based by invalidation) outperformed 02PL-p (opti­

mistic, avoidance-based by propagation) under the HotCold workload because a client's cache 

in 02PL-i had more non-stale pages than that in 02PL-p. In 02PL-p, client cache consistency 

is achieved by propagating (replacing) stale pages in a client's cache with updated pages, 

whereas in the 02PL-i it is achieved by invalidating (removing) stale pages from client's 
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cache. Therefore. in 02PL-p if updated pages are not used in the future by the client, the 

clienfs cache can be filled with pages that are not required so wasting the cost of propa­

gation. When the cache size is limited. the LRU page replacement policy for the cache in 

02PL-p might cause useful pages to be ejected from the cache, and in tum increased the disk 

utilisation in getting the useful pages back from the disk. In contrast, in 02PL-i, client cache 

consistency is achieved by removing stale pages from the the client's cache, and as a result 

02PL-i leaving more space for useful pages in the client's cache under the HotCold workload. 

However. under the FEED workload, which is when one client acts as data generator (writer) 

whereas the other clients are the readers of the data. 02PL-p made effective use of the client 

cache, outperforming 02PL-i [Fra96]. Because no conflict occurred among the readers, a 

reader client with a large cache could hold all its hot pages, and any propagation of the pages 

into the client cache on behalf of the writer client is not wasted. 

The preceding description shows that client cache effectiveness is an important influence on 

performance. Cache effectiveness is determined by the behaviour of the protocol (whether 

avoidance-based or detection-based, and whether the consistency action is by invalidation or 

by propagation) and by the workload. 

• CPU cost. CPU cost was also an influence because it is a component of the message overhead 

and the disk access cost. 

For example, the study [Fra96] showed that C2PL (pessimistic, detection-based) became CPU 

bound because the protocol required validation not only on a write access to a page but also 

on a read access. 

Another study [OVU98] also showed the influence of CPU speed on performance when com­

paring the CBL (pessimistic, avoidance-based) and AOCC (optimistic, detection-based) pro­

tocols). The study showed that CBL outperforms AOCC under the HotCold workload, but it 

contradicted another study [ALM95] in that AOCC outperformed CBL under the same work­

load. This was because the CPU used in [OVU98] is faster than the CPU used in [ALM95]. 
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An increase in CPU speed reduced the blocking time II of a validation in CBL (pessimistic, 

avoidance-based), because when a transaction needs to wait because of a read-write conflict 

detected at the server, a faster CPU at the server allows shorter blocking time in resolving the 

conflict. Also, faster CPUs at the clients reduces the message processing time in CBL. Thus, 

with faster CPUs, the shorter blocking time and the reduced message processing time allow 

CBL (pessimistic, avoidance-based) to outperform AOCC (optimistic, detection-based) under 

this workload. 

Aspects Relative performance Reference 

1. Disk I/O high low 

- Workload: HotCold . Small client cache, 
slow networks C2PL 02PL [Fra96] 

. Large client cache, 
fast networks 
high no of clients 

- Fast CPU 02PU C2PL 
CBL [Fra96] 

AOCC CBL AACC [OVU98] 

-Slow CPU CBL AOCC [ALM95] 

2. Message Overhead high low 

Workload: HotCold C2PL CBL 02PL [Fra96] 
CBL AACC AOCC [OVU98) 
CBL AOCC [ALM95] 

Workload: Private C2PL CBL 02PL [Fra96) 

Workload: HiCon, 
Uniform 02PL-p C2PL 02PL-i/ 

CBL [Fra96] 

3. Cache Effectiveness low high 

Workload: HotCold C2PI 02PL-p 02PL-i [Fra96) 

- Workload: Feed 02PL-i 02PL-p [Fra96] 

4. CPU Requirement high low 

- Workload: HotCold AACC/ AOCC 
CBL [OVU98j 

Table 2.4: The relative performance of the previously studied protocols 

liThe blocking time is the time needed by a client since sending a validation message until receiving the result of the 

validation. 
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A summary of the above influencing factors and theiI effect on performance can be een in 

Table 2.4. 

• Workloads factor 

When a transaction restarts after it is aborted , it can acce s page that are the same or different 

from the previous transaction . When a transaction restarts by acce sing the ame page as in 

the prev ious transaction, 02PL (optimistic, avoi dance-based) outperform C2PL (pe imi stic, 

detection-based) although 02PL incurs a hi gher abort rate than C2PL. Thi i due to the fact 

that the avoidance-based 02PL could have better cache effectivene s than C2PL whi ch i 

detection-based ** , and so in 02PL the cli ent' s cache contain more usefu l page than in 

C2PL. Thi s leads to higher cache hit rate when the restarted c li ent acce es the arne page a 

in the previous transaction . 

I Protocol and Workload 

J + 
I Clr' cache effectiVen;" 

I Message overhead ~rver's disk I/O 

l~ kqure!' j 
[ Performance __ _ 

Figure 2.19: Factors that influence the performance 

The preceding description has tried to identify the key factors that influence the overall per­

fonnance, it can be seen that one aspect influenced the others. As a summary, Figure 2. J 9 how 

dependencies among the factors and theiI influence on the performance. 

" Menti oned in the preceding descripti on about cache effectiveness 



Chapter 2. Background Studies 60 

2.5 Summary 

In this chapter we reviewed the advantages of object-oriented databases (OODB), and one of the 

advantages is that OODB supports method call. Then we reviewed the studies about semantic­

based concurrency control that exploited the semantics of methods in order to enhance concurrency. 

Some background about nested transactions that are relevant to the semantic-based concurrency 

control studies was explained. Finally we reviewed the existing client cache consistency protocols 

and identified aspects that influence the performance of the protocols. These are important for the 

design of our protocols, which will be described next. 



Chapter 3 

Protocol Design 

This chapter describes the design of a new client cache consistency protocol that exploits method se­

mantics. Firstly we detail the requirements and define the criteria, based on our review of semantics­

based concurrency control and client cache consistency protocols (Chapter 2). Afterward we will 

describe a new approach that allows semantic-based concurrency control to be exploited in a client 

cache consistency protocol. Finally we will describe the implementation of the protocols. 

3.1 The requirements 

Recall that the requirement is to allow semantic-based concurrency control, which can exploit 

method semantics for concurrency control, in client cache consistency protocols. It is important 

to note that the focus is on the concurrency control, therefore firstly we need to identify where lock 

conflicts are detected in existing client cache consistency protocols. 

In avoidance-based protocols, the following are where lock conflicts on database item are de­

tected. Here, a database item can be of any granUlarity. such as page, object or attribute. 

1. At the server, when the server receives a request for a database item from a client. 

") At the server, when the server receives a request to validate a transaction from a client. 

61 
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3. At a client, when it receives a consistency message from the server. 

First, we investigate point 1 in order to identify how a lock conflict is detected at the server when 

the server receives a request for a database item from a client. This occurs because the client wants 

to readlock an item that is not in its cache. When a request for a database item arrives at the sef\er. if 

the database item is already writelocked at the server, then aread-write conflict occurs and the sef\er 

will block the request until the item is unlocked. However if the database item is not writelocked 

at the server then it can be sent to the client. A writelock is held at the server when it is sending 

consistency messages to clients and is waiting for responses regarding the result of consistency 

actions. The writelock is kept by the server until the client ends its transaction (commits or aborts). 

For example in the Optimistic Two Phase Locking (02PL) protocol (Optimistic, Avoidance-based) 

[Fra96], the writelock will be kept by the server only during commit time until the server receives 

responses regarding the consistency messages from all the clients. By comparison in Callback 

Locking protocol (Pessimistic, Avoidance-based) [Fra96], the write lock will be kept by the server 

for the duration of the transaction. 

Next, we describe point 2, in which lock conflict is detected at the server when the server 

receives from a client a request to validate a transaction. In avoidance-based schemes, a client 

validates a transaction when it is going to writelock a database item. Because it is the case that 

when a client gets a writelock on a database item no other clients have a stale copy of the item, the 

client sends a write intention message to the server. When the server receives a write intention on 

a database item, if the database item is being writelocked at the server (for the same reason as in 

the above description), then a write-write conflict occurs and the write intention cannot be granted. 

However if the database item is not writelocked at the server then the write intention can be granted. 

Finally, in point 3, a lock conflict is at client when it receives a consistency message from 

the server. When a client receives a consistency message from the server, the client is asked by 

the server to invalidate (remove) or propagate (update) the database item from the client's cache. 

Recall that the server sends a consistency message to a client because the database item is intended 

to be write locked by another transaction, and therefore a consistency message is equivalent to a 
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writelock request that conflicts with a readlock or writelock. Consequently when a client recei\t~s a 

consistency message, if the item is being readlocked by the client then a read-lITite conflict occurs. 

which leads the client to block the consistency action until the readlock is released. If the item 

is being writelocked by the client then a write-write conflict occurs, and this leads the client to 

rejecting the consistency action. 

Given the identification of where lock conflicts are detected. we set our requirement. which is 

to enable semantic-based concurrency control in resolving a lock conflict at the location where the 

lock conflict is detected. 

The approach to the requirement is described in the next section. 

3.2 The Approach 

To enable semantic-based concurrency control to be used in resolving conflict, we consider a proto­

col in which a client validates its transaction at the end of a method. This aims to allow a method to 

finish and so method semantics can be used to check whether a lock conflict can be released. Sec­

tion 2.3.3 noted that atomicity of a method call must be preserved in semantic-based concurrency 

control. Therefore by checking at the end of a method, the requirement for the atomicity of the 

method is fulfilled, as the method has entirely finished. Therefore at this point, validation using the 

semantics of the method can be performed. 

The preceding identification on where lock conflicts are detected shows that the type of conflicts 

includes read-write and write-write conflicts. Section 1.2 describes some examples of these type 

of conflicts that are released by using method semantics. It is important to note that the essence 

of releasing read-write conflicts and write-write conflicts are different, as will be described in the 

following sub-sections. 
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3.2.1 Handling a read-write conflicts 

The essence of releasing a read-write conflict between two transactions on a database item is to 

allow one transaction to read a database item while the other transaction is \Hiting on it. or \ict' 

versa. 

This is better explained by an example of a scenario. The example in Section 1.2 shows a 

scenario where a write on an order can be performed while the order is being read. Let us discuss 

the scenario in a data-shipping system, as illustrated in Figure 3.1. 

Client -1 

Start T1 

read 0 { 
read s 

} 

[commutativity 
detected] 

Server Client -2 

Start T2 
cancelO { 

s=cancelled 
} 

<-- validate 

receive validation msg 
consistency msg on s 
<--

consistency on s is OK 

validation ok --> 

Commit T2 

s=cancelled 
Commi t T1 

Figure 3.1: Releasing read-write conflict 

First, client 1 is reading an order s, and so s is fetched from the server and stored into its cache. 

Client 2 intends to cancel the order s, and so it fetches s from the server. Therefore each client 

now currently has s in its cache. Next, transaction T2 attempts to cancel the order, by setting s to 



Chapter 3. Protocol Design 65 

"cancelled", but s is being read by Tl. Upon receiving a validation request from client-2. the server 

sends a consistency message to client-l to remove s from its cache. As client-l has a readlock on 

s, a read-write conflict occurs. However, client-l knows that there is a commutativity relationship. 

which allows T1 to continue to read s while T2 has a writelock on it. Client-l therefore informs the 

server that the consistency action is unnecessary. and so the server acknowledges client-2 that the 

write can proceed. When client-2 commits, s is updated to become "cancelJed". From this point, Tl 

is reading the old value of s (i.e. before s is "cancelled") until it commits. 

Client -1 

Start T1 

readO { 
requests s --> 

read s 

} 

Commit T1 

Server 

consistency msg.to 
other clients 

s is writelocked 

Client -2 

Start T2 
cancelO { 

s=cancelled 
} 

<-- validate 

receives request for s 
[commutativity] 
<-- sends s 

validation ok --> 

Commit T2 
s=cancelled 

Figure 3.2: Releasing read-write conflict 

The preceding example (Figure 3.1) is a read-write conflict detected at a client. Next, we will 

discuss an example where a read-write conflict is detected at the server. This occurs when a client 

wants to read a database item that is not in its cache, and so the client requests the database item 

from the server, where it is already writelocked. The example is shown in Figure 3.2. Following the 
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preceding example, firstly client-2 is in the process of canceling the order s, and so s is writelocked 

at the server. When client-l requests s from the server, a read-write conflict occurs, but due to 

method commutativity the conflict is released and the server can send the requested s to client-I. 

Thus, the essence of releasing the read-write conflict is that a read on a database item can 

proceed although a write on the database item is currently being performed. 

Any subsequent read of s in client-l (if any) can proceed only if the method that reads s com­

mutes with the previous cancelO method of transaction T2. Therefore client-l must record the 

previous commutativity by recording s and the cancelO method. Any subsequent read of s on 

c1ient-1 will firstly involve checking, from the client's records, whether the method commutes with 

the cancelO method. If the methods do not commute, client-l should remove s from its cache and 

re-requests s from the server. 

Next, we describe releasing write-write conflicts. 

3.2.2 Handling a write-write conflict 

The essence of releasing a write-write conflict on a database item between two transactions, which 

here are called "com mutating transactions", is that the result of one transaction does not influence 

the result of the other. The state of an item after a write by a transaction is not needed by the other 

transaction. Therefore, when a write-write conflict between two transactions can be released, if one 

commutating transaction aborts, the result of the aborted transaction does not influence the overall 

result, so that the other commutating transaction can still proceed. 

To illustrate, let us take and discuss the example from Section 1.2 regarding a car rental, which 

was introduced in the previous study [MWBH93]. The status attribute of an Order object can take 

the values "paid", "shipped" or "paid and shipped". The methods paidO and shipO commute over 

write on the attribute status (s). Four scenarios (five if we include non-concurrent update) need to 

be addressed as follows. 

Firstly, we show scenario 0 in Figure 3.3, in which the transactions run serially, not concurrently, 

so that no write-write conflict occurs. When transaction T2 starts, client-2 first fetches s which 
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already has the value "shipped", so that when T2 updates s the value becomes "paid and shipped". 

s=null; 

c1ient-l 

Starts T1 
(s=null ) 
s=shipped 
validates --> 

Commit T1 --> 

server 

validating T1 
s=shipped 
<-- validation OK 

commi t ting T1 
DB: s=shipped 

validating T2 
s=paid+shipped 
validation OK --> 

commi tting T2 
DB: s=paid+shipped 

client -2 

starts T2 
(s=shipped) 
s=paid+shipped 
<-- validates 

<-- Commits T2 

Figure 3.3: Scenario-O: serial, non-concurrent 

In the next scenario (Scenario 1) as shown in Figure 3.4, both TI and T2 overlap in time, and 

both commit, so that the status s ends up with value "shipped and paid". All clients start with s=nul\ 

in their cache. Client -1 runs the shipO method that updates s=shipped and then validates the method 

to the server so that the server then knows that s=shipped. Then client-2 sets s to paid and validates 

this (i.e. paidO method) to the server. The server detects the commutativity relationship between 

paidO and shippedO. However, the server does not update s to become "paid and shipped" but 

instead records s=paid for client-2 and s=shipped for client-I. The reason is that if eventually T2 or 

T I aborts, the value of s can revert back to that set only for T2 or only for T I (The scenario in which 

one of the transactions aborts is discussed later). When TI commits the server records s=shipped 
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on client-] in the database because T2 has not committed. AfteIWard when T2 commits, the server 

knows that both T1 and T2 have ended, so that s is finalised to be "shipped and paid" and is stored 

into the database. 

s=null; 

Client -1 

Starts T1 
(s=null) 

s=shipped 
validates --> 

Commits T1 --> 

Server 

validating T1 
s=shipped 
<-- validation OK 

validating T2 
[commutativity] 
c1.s=shipped 
c2.s=paid 
validation OK --> 

commi tting T1 
DB: c1.s=shipped 
[commutativity] 

Client -2 

Starts T2 
(s=null) 

s=paid 
<-- validates 

[T2 has not committed] 
s not finalised 
until T2 commits/aborts 

committing T2 
DB: c2.s=paid 
[commutativity] 
[T1+T2 has ended] 
DB: s=shipped+paid 

<-- Commits T2 

Figure 3.4: Scenario 1: concurrent T1 and T2; both commits 

The next scenario, Scenario 2 as shown in Figure 3.5, occurs when TI commits but T2 aborts. 

It has similar start as scenario 1 but when T2 aborts, the server cancels s=paid by removing s=paid 
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for c1ient-2. Then, as Tl and T2 have ended, the server finalises s to become "shipped"' and stort's 

it into the database. 

s=null ; 

Client -1 

Starts T1 
(s=null) 

s=shipped 
validates --> 

Commi ts Tl --> 

Server 

validating T1 
s=shipped 
<-- validation OK 

validating T2 
commute 
c1.s=shipped 
c2.s=paid 
validation OK --> 

commi tLing T1 
DB: cl.s=shipped 
[commutativity] 
[T2 has not committed] 
s not finalised 
until T2 commits/aborts 

[T2 aborts] 
remove c2.s 
[commutativity] 
[Tl and T2 has ended] 

Client -2 

Starts T2 
(s=null) 

s=paid 
<-- validates 

aborts T2 

DB: s=shipped+null=shipped 

Figure 3.5: Scenario 2: concurrent T1 and T2; T1 commits, T2 aborts 

In the next scenario (Scenario 3) as shown in Figure 3.5, TI aborts but T2 commits. It starts 

similarly to scenario 1, but when Tl aborts, the server cancels s=shipped by removing s=shipped 

for client-I. When T2 commits, the server knows that Tl and T2 have ended, and so s is finalised 

to become "paid" and is stored into the database. 
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s=null; 

Client -1 

starts Tl 
(s=null) 

s=shipped 
validates --> 

aborts Tl 

Server 

validating Tl 
s=shipped 
<-- validation OK 

validating T2 
[commutativity] 
cl.s=shipped 
c2.s=paid 
validation OK --> 

[Tl aborts] 
cl.s=null 
[commutativity] 

Client -2 

starts T2 
(s=null) 

s=paid 
<-- validates 

[T2 has not committed] 
s not finalised 
until T2 commits/aborts 

commi tting T2 
[commutativity] 

<-- T2 commits 

[Tl and T2 has ended] 
DB: s=paid 

Figure 3.6: Scenario 3: concurrent T1 and T2; T1 aborts, T2 commits 
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The last scenario, Scenario 4 as shown in Figure 3.7, is when both transactions Tl and T2 abort. 

Similarly, after Tl or T2 aborts, the server cancels the value of s by removing s for each client. At 

the end of the scenario, s does not have any value from the transactions. 

From the preceding example, it is important to note that a write-write conflict between two 
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s=null ; 

client-l 

starts Tl 
(s=null) 

s=shipped 
validates --> 

aborts Tl 

server 

validating Tl 
s=shipped 
<-- validation OK 

validating T2 
commutativity 
cl.s=shipped 
c2.s=paid 
validation OK --> 

[Tl aborts] 
cl.s=null 
[commutativity] 

client -2 

starts T2 
(s=null) 

s=paid 
<-- validates 

[T2 has not committed] 
s is not finalised 
until T2 commits/aborts 

[T2 aborts] 
c2. s=null 
[commutativity] 

aborts T2 

[Tl and T2 has ended] 
DB: s=null 

Figure 3.7: Scenario 4: concurrent T1 and T2; T1 aborts, T2 aborts 
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- ------ ------

transactions can be released when the write operations are independent of each other, that is the 

result of a write by one transaction does not influence the write by the other transaction. 

From the description of the preceding scenarios, we can define the following algorithm at the 

server: 

• When a write to A by TI conflicts with a write to A by T2 but can be released due to method 

semantics, the server records the value of A for each transaction: T1.A and T2.A in a data 



Chapter 3. Protocol Design 72 

structure. We name the data structure the Semantic Record (SR). Then, when aborting or 

committing a transaction, the server runs the algorithm shown in Figure 3.8. 

If a transaction TI aborts, 
for each database item A of TI in SR { 

set T1. A to null 

} 

if a commutativity with T2 is detected { 
if T2 has ended { 

if CT2.A is not null) { 
A = A + C TI.A=null + T2.A) 
store A into database 

} 

remove TI and T2 from SR 
} 

else { 
do nothing 

} 

} 

If a transaction TI commits, 
for each database item A of T1 in SR { 

if a commutativity with T2 is detected { 

} 
} 

if T2 has ended { 

} 

else { 

} 

A = A + C T1.A + T2.A) 
store A into database 
remove TI and T2 from SR 

store TI.A into database 

Figure 3.8: Server's algorithm 

The following are the additional overheads required to support releasing a write-write conflict: 

1. The server must record the value of each write by each commutating transaction in a data 

structure. 

'1 The database storage requires additional space to store the value of each write by each com-

mutating transaction. 
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3.3 The Protocol Design 

This section describes the protocol that is designed and evaluated. 

The idea in general in this protocol is that a client validates a transaction at method level. and that 

locks are acquired on attributes. An attribute is an object's attribute that is atomic. A client executes 

its transactions locally by running methods on objects that reside in the client's local cache. During 

the execution of a method, when accessing an attribute, a lock is acquired on the attribute. When 

the method ends, the client validates the transaction to the server by sending information about the 

updated attributes, the method and its ancestors if any. 
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Figure 3.9: SMV, CV and AMV - a brief illustration 

Based on when a client sends a validation message to the server, we consider three protocols. 

An overview of the protocols is shown in Figure 3.9, and described as follows. 

I. Synchronous Method-time Validation (SMV). In this protocol, the client runs the method 

locally and at the end of the method the client sends a validation message to the server and 

then waits for the result. If the validation is successful the client continues the transaction, 

otherwise the transaction aborts. At commit time the client can commit because all validations 

have been successful. 
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2. Commit-time Validation (CV). In this protocol, a client runs the entire transaction locally 

without validating until commit time. At commit time the client validates the transaclion to 

the server and then waits for a response. Ifthe validation is successful then the transaction can 

commit, otherwise it aborts. Being an optimistic protocol, CV is intended to be a comparator 

to SMY. 

3. Asynchronous Method-time Validation (AMV). In this protocol, a client runs methods lo­

cally and at the end of the method the clients validates the transaction. Unlike in SMY. after 

a client sends a validation message to the server the client does not wait for a response from 

the server, but continues the transaction until commit time. At the end of each method the 

client sends a validation message to the server, and then continues on its transaction without 

waiting. At commit time the client sends a commit message to the server and waits for a 

response from the server. If all the asynchronously-sent validations are successful the trans­

action can commit, otherwise it is aborted. The purpose of the asynchronous version of the 

protocol is to reduce blocking time by allowing client not to wait after sending validation 

message. This protocol is the asynchronous version of the SMV protocol, and will again be 

used as a comparison. However, the implementation of the basic form of AMY (i.e. without 

method semantic-based commutativity support) in this thesis has met much more complexity 

than SMV, and so we believed it will require much more extra overhead if we implement 

AMY that allows method commutativity to be associated in concurrency control. Therefore, 

the scope in this thesis is the comparison only to the basic form of AMY. 

In the following subsections, we describe the design of each protocol in detail. 

3.3.1 Synchronous Method-time Validation (SMV) 

As mentioned in the preceding description, SMV is a client cache consistency protocol that can 

exploit semantic based concurrency control. The following is the description about the protocol. 

The basic form of SMV, i.e. without method semantic-based commutativity support, is illustrated 
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in Figure 3.10. 

~ . Setup Inlormalion 

--------------------

Siali. Start of T x 

: Start Ack 

X Not Cached: R I X 

X Writelocked : Postpone unIJl X Unlocked 

X Unlocked & Page(X) Cached : X 

: Readl.r<:~="" 

End of Method : Validate X 

~--------------------
Wrile-Wrile conflicl : Abort Tx 

Write-Write Conflict : Cons.Action UnsaIisfled 

<----------------------
Write-Read Conftict : Cons.Action Postponed 

<----------------------
X Unlocked: Cons.Action Satisfied 

~--------------------
All Cons.Action Satisfied: Validation OK 

~--------------------
Cons.Action Unsatisfied: Abort Tx 

End ofTx : Commij Tx 

Commit OK : Into DB 

Figure 3.10: The basic form of Synchronous Method-time Validation (SMV) protocol 
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At the Client 

1. At the start of a transaction 

At the start of a transaction, a client sends a start message and waits for a reply from the 

server. The reason for waiting is to ensure that the transaction is initialised at the server, this 

include having its timestamp recorded, which can be used in resolving any future deadlock 

that may occur. 

2. Read or Write access to an attribute 

When the client accesses an object's attribute the client takes the appropriate lock, either 

readlock or writelock, on it. However, an extension to its basic form is that before acquiring 

a readlock on an attribute that is already cached, the client should check if a readlock has 

been given to the attribute, based on commutativity. If so then the client should remove the 

attribute and then request the attribute again from the server. 

3. Requesting an attribute 

When a client needs to read an attribute that is not currently available in the client's cache, the 

client sends a request message to the server. Then the client waits until receiving the attribute 

from the server. When the attribute is received, it is installed into the client's cache, and is 

then readlocked by the client. 

However, when a client needs to read an attribute whose page is not currently available in the 

client's cache, the client requests the page of the attribute from the server. When the page 

arrives at the client, the client takes a readlock on the attribute. The purpose of requesting 

the page rather than the attribute is to try to reduce message overhead. If the client requires 

subsequent attributes that are also in the same page, then the client will not be required to 

request the attributes from the server. 

In a case where other non-requested attributes in the same page are being write locked at the 

server by other transactions, the client cannot fetch the other attributes due to the read-write 

conflict. Therefore, in this case the client will receive the page, but the other non-requested 
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writelocked attributes will be labeled as unavailable. Our approach in this case follows that 

from an existing study [ALM95]. 

4. At validation time 

Validation is perfonned at method level. At the end of a method, a client sends a validation 

message to the server and then waits for a response. A validation message from a client is 

the client's notification to the server that the client has writelocked some attributes and then 

the client asks the server whether the writelock can continue. The essence of the validation 

here is similar to that in the existing studies in that a client checks (with the server) whether 

a database item can be writelocked at the client. The difference is the time when the check is 

made. In CBL (Callback locking; pessimistic, avoidance-based), the check is made before a 

database item (i.e. page) is writelocked, and so the validation is a write intention notification. 

By comparison in our protocol (i.e. SMV) the check is made after a database item (i.e. 

attribute) is writelocked, which is at the end of method. A validation message contains all 

the updated attributes within the method, along with infonnation about the method and its 

ancestors (if any). Infonnation about the method and its ancestors are used by the server for 

semantic-based concurrency control. If the client receives a response from the server that 

the validation is successful the client continues its transaction, but if the validation fails the 

transaction aborts and restarts. 

5. At the end of a transaction 

At the end of a transaction, all validations must have been successful. The client sends a 

commit message to the server and then the transaction can commit. 

6. Receiving a cache consistency message 

A client receives a consistency message from the server when the server asks the client to 

remove one or more attributes from the client's cache. This is because those attributes reside 

at the clients' cache but another transaction is requesting writelocks on them. It should be 

noted that the number of attributes requested for removal by a consistency message can be 
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more than one, because a consistency message can be on behalf of a validation of method 

that updates more than one attributes. Then, whether or not the removal of attributes can be 

performed depends on the current state of the attributes: 

(a) If all the attributes are currently unlocked, the client can remove them from its cache 

and acknowledge to the server about the successful consistency action. 

(b) If one of the attributes is readlocked, a read-write conflict occurs, and so the client cannot 

remove it but postpones the consistency action until the attribute is unlocked. Once the 

attribute is unlocked, the client removes it and informs the server about this successful 

consistency action. However, as the extension to SMV's basic form, if the read-write 

conflict can be released by method commutativity, then the client can continue with the 

read while acknowledging the server that the consistency action is not necessary. If a 

client detects that a read-write conflict is released due to method semantics, the client 

should record the commutativity. The record consists of the attribute and the method 

that performs the write. As was described in Section 3.2.1, the record will be used by 

the client if there are further reads on the attribute. 

(c) If one of the attributes is writelocked, a write-write conflict occurs and so the client can­

not remove it, and the client acknowledges to the server that the consistency action can­

not be performed. However, as the extension to SMV's basic form, when a write-write 

conflict can be released due to method commutativity, all transactions can continue, in 

that the client can continue with the write while acknowledging to the server that the 

consistency action is not necessary. 

Acknowledgements from client to the server regarding the consistency action are piggybacked 

on other messages from the client to the server, in order to reduce message overheads. 
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At the server 

1. At the start of a transaction 

When the server receives a start message from a client, the server initialises the client's 

transaction, Then the server sends an acknowledgement to the client. 

2. Receiving a request for an attribute/page 

The server receives a request for an attribute or page from a client when the client wants to be 

a readlock on it, but it is not available in the client's cache. Upon receiving the request. the 

server first checks whether the attribute is writelocked. The check is performed by consulting 

the Validation Record (VR) that contains a list of the attributes write locked by transactions. 

Recall that an attribute is writelocked at the server on behalf of a transaction that is holding 

a write intention on it but has not finished, or when consistency actions on the attribute are 

being processed by the server on behalf of a transaction. When a request on an attribute 

arrives, if the attribute is registered in the VR, a read-write conflict occurs, and the server 

postpones sending it until it is no longer registered in the VR. However, as the extension to 

SMV's basic form, if the read-write conflict can be released due to method commutativit:-. the 

server sends the attribute to the client and also information about the method with which the 

read method commutes. As described in Section 3.2.1, the record will be used by the client 

for further reading of the attribute. 

As mentioned in the preceding client part, a request made by a client can be for an attribute 

or for the page containing the attribute. If the request is for the page containing the attribute, 

other attributes within the page may have been writelocked (i.e. registered in the VR) by other 

transactions. Therefore if the request is for the page containing an attribute and the attribute is 

not writelocked, the server will send the page, and if other attributes in the page are registered 

in the VR then these attributes will be marked as unavailable in the page that is sent to the 

client. 

3. On receiving a validation message 
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Recall that a validation message from a client is the client's notification to the server that the 

client has writelocked some attributes and wishes to know if the writelocks can continue to 

be held. To decide this, firstly the server needs to check if the attributes are being write locked 

by another transaction. The check, on whether an attribute is writelocked. is perfonned by 

the server by consulting the Validation Record (VR): 

• If the attribute is not writelocked at the server (i.e. not registered in the VR), then a 

write-write conflict has not occurred. 

• If the attribute is writelocked, i.e. registered in the Validation Record, a write-write 

conflict has occurred (i.e. the attribute is registered in the Validation Record). However. 

as the extension to SMV's basic fonn, if a method commutativity is detected* , the write­

write conflict can be released. As mentioned in Section 3.2.2, when releasing a write­

write conflict between two transactions Tl and T2, the server should record the value of 

each Write by each commutating transaction in the Semantic Record data structure. The 

database storage should also allocate additional space to store the value of each Write 

for each commutating transaction. 

• If the attribute is writelocked, i.e. registered in the Validation Record, but the write-write 

conflict cannot be released, the server rejects the validation and sends an acknowledge­

ment to the client that the transaction must abort. 

If a write-write conflict does not occur, or can be released due to method commutativity, the 

server performs a consistency action. First, it checks whether the copy of the attribute is 

currently cached at other clients. The check is performed by consulting the Cache Record 

that records the attributes cached at clients. 

• If a copy of the attribute is cached by other clients, then the server will perfonn a con-

'Recall that a validation request from a client contains all the updated attributes and also information about the 
method and its ancestors (if any). The infonnation then is used for semantic-based concurrency contro\. When the server 
detects a write-write conflict on an attribute, the server checks the commutativity between the method of the attribute 
being validated and the method of the attribute in the Validation Record 
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sistency action by sending a consistency message to the other clients that are caching a 

copy of the attribute, and wait until receiving a response from all the other clients. 

• If the attribute is not cached by the other clients then the server will regi ster the attribute 

in the Validation Record, which means writelocking the attribute, and sending a mes~ag:e 

to the client that the validation was successful. 

When the server receives a response regarding successful consistency actions from all the 

clients, the server's consistency action is successfully performed, and so it sends a me~sage to 

the validating client that the validation was successful. However, when the server receives a 

response from a client that the consistency action cannot be performed, the server rejects the 

validation request and sends an abort message to the validating client. 

Figure 3.11 summarises the algorithm when the server receives a validation message from a 

client. 

if a write-write conflict does not occur or can be released then { 
if the attribute(s) are cached by other clients then { 

} 

send consistency message to the clients and wait 
if all the consistency actions are successful then { 

the validation is successful 
} 

else { 

} 

the validation fails 

else { 
the validation is successful 

} 

else { 

} 
the validation fails 

Figure 3.11: Algorithm for handling a validation request 

4. The server may abort a transaction, by sending: an abort message to a client. When a transac­

tion is aborted, all writelocked attributes are released. In addition, as the extension to SMV's 

basic form, if an aborted transaction is a commutating transaction (i.e. the transaction has 
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a history of using method commutativity to release a write-write conflict), as mentioned in 

Section 3.2.2, the algorithm given in Figure 3.12 is performed by the server. 

for each database item A of Tl in SR { 
set T1. A to null 

} 

if a commutativity with T2 is detected { 
if T2 has ended { 

if CT2.A is not null) { 
A = A + C Tl.A=null + T2.A) 
store A into database 

} 

remove Tl and T2 from SR 
} 

else { 
do nothing 

} 

} 

Figure 3.12: When a com mutating transaction commits 

5. Upon receiving a commit request from a client 

When the server receives a commit message of a transaction, all previous validations of the 

transaction must have been successful. The server commits the transaction by storing the 

corresponding items into stable database storage and releases all previously locked items. In 

addition, as the extension to SMV's basic form, the algorithm in Figure 3.13 should be per-

formed by the server if the committing transaction is a commutating transaction, as mentioned 

in Section 3.2.2. 

3.3.2 Commit-time Validation (CV) 

Commit-time Validation (CV) is the optimistic version of the protocol. In CV, a client validates 

a transaction to the server only at the end of the transaction. As mentioned in Section 1.3, we 

wish to compare the performance of Synchronous Method-time Validation (SMV) against that of 

the optimistic version of the protocols, which is Commit-time Validation (CV). The reason for 

comparing against an optimistic protocol is to observe the expected performance superiority, as a 
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for each database item A of TI in SR { 

} 

if a commutativity with T2 is detected { 

} 

if T2 has ended { 

} 

else { 

} 

A = A + (TI.A + T2.A 
store A into database 
remove TI and T2 from SR 

store TI.A into database 

FlQure 3.13: When a commutating transaction commits 
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previous study [Fra96] showed that Optimistic Two-Phase Locking (02PL) as an optimistic client 

cache consistency protocols, was superior to the pessimistic Callback Locking (CBL) protocol. 

Commit-time Validation protocol is illustrated in Figure 3.14. From the start to the end of a 

transaction, a client runs its transaction locally. When a client does not have an attribute in its 

cache, the client requests it from the server. After receiving the attribute, the client continues with 

the transaction. During the transaction, the client does not validate the transaction at the server. 

Instead, at commit time, the client sends a commit message and validates the entire transaction to 

the server, and then waits for a response from the server. If the validation is successful then the 

client can commit, otherwise the transaction is aborted. 

1. At the client 

The client's actions when starting a transaction and requesting an item are similar to the basic 

fonn of SMV and AMY. But here the validation time and the commit time are at the end of a 

transaction. A client validates by sending all Write operations in the entire transaction to the 

server. Then the client waits for a reply from the server. 

2. At the server 

The server handles the start request, the item request, and the validation request similarly to 

the basic fonn of SMV and the AMY protocols. The difference is that the validated attributes 

are for the entire transaction, in contrast to the SMV and AMY protocols where the attributes 
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I 

Start: Start of Tx 

Setup lnformatlOn 

<--------------------
: Start Ack 

<--------------------
x Writelocked : Postpone until X Unlocked 

<--------------------
X Unlocked & Page(X) Cached: X 

<--------------------
X Unlocked & Page(X) Not Cached: Page(X) 

: Readly-.:===' 

End of Tx : Validate and Commit Tx 

<--------------------
Write-Write conflict: Abort Tx 

No Conflict: ecord X Into VR 

No Conflict Consistenc M 

Writ&-Wrile Confhct : Cons.Ac~on Unsatisfied 

<----------------------
Wrrte-Read Conflict: Cons.Action Postponed 

<----------------------
X Unlocked Cons.Action Satisfied 

<--------------------
All Cons.Action Satisfied Commit OK 

<--------------------
Cons.Action Unsatisfied: Abort Tx 

Rae. Abort 

Figure 3.14: The Commit-time Validation (CV) protocol 
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are from one or several methods. 

3.3.3 Asynchronous Method-time Validation (AMY) 

Asynchronous Method-time Validation (AMV) is the asynchronous version of the method-time val­

idation protocol. Unlike in SMV, in AMY a client does not wait for a response from the server after 

sending a validation message to the server. Instead, after sending a validation message to the server, 

a client continues with its transaction locally until the commit time of the transaction. When the 

server receives a validation message, the server validates the transaction but does not send the result 

of the validation back to the client. The server, however, will send explicit abort message if a vali­

dation fails or if a transaction needs to abort t. The purpose of designing this asynchronous protocol 

is to reduce the client's blocking time while still maintaining the possibility of detecting conflicts 

before commit time. It also reduces the number of messages sent from the server because the server 

does not send validation results to clients. However, while it may appear that the difference between 

AMV and SMV is small, the design of AMY is much more complicated than that of SMY. 

As has been mentioned early in this section (Section 3.3), the scope of the implementation 

of AMY in this thesis is limited to the basic form of AMY, because it requires much more extra 

works to implement this asynchronous protocol that allow method commutativity to be associated 

in concurrency control. Therefore, here the description of AMV protocol covers only the basic 

AMV, i.e. without method semantic-based commutativity support. 

The AMV protocol is illustrated in Figure 3.15. The following are the descriptions of the pro­

tocol. 

1. At the client 

(a) At the start of a transaction 

At the start of a transaction, a client sends a start message to the server and waits for the 

reply. The server will need to initialise the transaction, such as obtaining the time-stamp 

of the transaction. 

t An abort of transaction can be due to a deadlock or a failed validation 
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Figure 3.15: The Asynchronous Method-time Validation (AMV) protocol 
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(b) Requesting an attribute or page from the server 

When a client does not find an attribute from its cache, the client sends a request message 

for the attribute or the page containing the attribute to the server and then waits for a 

response from the server. After the client receives the requested attribute or page the 

client installs it in its cache. 

(c) Accessing an attribute 

When a client accesses an item, an appropriate lock (either readlock or writelock) is 

acquired by the transaction. 

(d) At validation time 

At validation time, which is at the end of a method, a client sends a validation message 

to the server and then the transaction continues without waiting for a response from the 

server. Hence, a client sends validation messages asynchronously. As in the SMV pro­

tocol, the validation message contains all Write operations, its method and its ancestors 

if any. 

(e) At the end of transaction 

At the end of transaction the client sends a commit message and waits for a response 

from the server. If the previous asynchronous validations were successful then the client 

will receive a response from the server that the transaction can commit. However. the 

client can also receive an abort message from the server, ordering the transaction to 

abort, which can be due to failed validation or because the transaction is chosen to be 

aborted due to a deadlock. 

(f) When receiving a consistency message from the server 

Recall that a client receives a consistency message because the server asks the client to 

remove one or more attributes from the client's cache, as those attributes reside at the 

clients' cache and are intended to be writelocked by another transaction. If at least one 

of the attributes are not currently locked at the client, it is removed from the cache and 

the client acknowledges to the server that the consistency action is complete. If at least 
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one of the attributes are being readlocked at the client. their removal is postponed until 

those attributes are unlocked. If at least one of the attributes are being writelocked at the 

client then they cannot be removed and the client acknowledges to the server that the 

cache consistency action cannot be satisfied. As in SMV, to save message overheads, 

the acknowledgement from client whether or not a consistency action can be satisfied is 

piggybacked on another message to the server. 

2. At the server 

(a) At the start of a transaction 

When the server receives a start message from a client. the server initialises information 

for the client. Firstly, the client initialises the timestamp of the transaction to be used 

for resolving deadlock. Secondly, the server must record the fact that the transaction has 

not yet been aborted. The reason of this is that in AMV, the server receives validation 

messages asynchronously, but when a validation fails the server explicitly sends an abort 

message to the client. As a consequence, the server may receive a validation message 

from a client to which it has previously sent an abort message. In this case the validation 

message should be discarded. Consequently, the server must keep a record of whether 

or not the transaction has been aborted. 

(b) When receiving a request for attribute or page from a client 

When receiving a request for an attribute or page, the attribute or page can be sent if the 

attribute is currently not locked. If the attribute is writelocked, it can only be sent to the 

client after it is unlocked. Like in SMV, the server will send either the attribute itself or 

the page holding the attribute, depending on what the client requests. This will depend 

on whether or not the client has already cached the page holding the attribute. 

(c) When receiving a validation request from a client 

The server's action when handling a validation request from a client is, firstly, to check 

if the attributes validated are writelocked. If they are not write locked, the server sends 
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a cache consistency message to the other remote clients holding the attribute. and the 

validation is successful if all the cache consistency actions are satisfied (all the remove 

clients can remove the attributes from their local cache). However, when the validation 

is successful, the server does not acknowledge the validating client. But if a validation 

fails, the server explicitly sends an abort message to the validating client. 

(d) Receiving a commit request from client 

When receiving a commit message from client, the server must have processed all previ­

ous validations on behalf of the transaction. If all the validations have been successful, 

the server commits the transaction by sending a commit response to the client, and stores 

the committed attributes into the database. Otherwise the server sends an abort message 

to the client. 

The implementation of the changes that must be made on the SMV protocol to create this asyn­

chronous protocol are more complex than it may appear to be. 

Firstly, from the preceding description, it may be assumed that the server can merely ignore the 

messages sent by an aborted client. However, important information may be on a message (pig­

gybacked) from the client. This can be information on the result of a cache consistency action, or 

information that a client is no longer caching a page (due to the cache replacement policy). Fig­

ure 3.16 shows an example in which the server must accept the acknowledgement from an aborted 

transaction. Transaction T-l has just been aborted when the server receives a message from the 

corresponding client containing piggybacked information about failed consistency action. Since the 

information can be important for another transaction that is waiting for the consistency action result, 

the server must accept the message, although the message comes from an aborted transaction. More­

over, information that a client is no longer caching a page, is necessary to synchronise the contents 

of the client's cache and the information held by the server. If the server has recorded that a attribute 

is currently cached by a client but actually the client has no longer cached the attribute, then it can 

cause redundant cache consistency messages to be sent by the server to the client. Consequently 

information (piggybacked on to messages) from aborted transactions must still be processed by the 
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Furthennore, the AMV protocol now needs additional complexity to handle validation mes-

sages. The amount of network delay time experienced by a message can vary, and so a validation 

message that is sent before another validation message may actually arrive later than the other vali-

dation message. In other words, validation messages may be received by the server out of the order 

in which they were sent. This issue does not occur in the SMV (synchronous) protocol since a trans-

action cannot send another validation message before receiving the result of its previous validation. 

To handle this issue, in the AMV protocol each message is tagged with a sequence number, and 

the server processes validation messages in sequence number order. When the server receives an 

out of order message, the server postpones processing the message, by putting the message into a 

temporary queue, until after any predecessors have arrived. 

3.4 Possible implementation 

This section describes five key aspects of the implementation of the proposed protocols. These are 

a client accessing an attribute and a client validating a method call. 
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3.4.1 A client requesting a database item 

Here we will describe the implementation of a client fetching an object's attribute from the ser.er. 

Recall that when a client tries to readlock an attribute but the attribute is not in the client's cache. 

the client requests the attribute or the page of the attribute from the server. Here, we would show a 

possible implementation of it in C++. 

In C++ we can create a template class, which is a class that can be re-used (generic) for instance 

of any type. An attribute of object can be represented by a template class v.hose instance can be 

called by an object using operator as follows: 

object -> attribute 

All necessary operations when accessing an attribute can be encapsulated within the DBFieid 

class as shown in Figure 3. 17. 

3.4.2 The method validation processor 

At the end of a method, the client validates its transaction to the server. A method is validated at the 

server if it contains a Write operation. Before sending the validation message, information about the 

method that includes all attributes updated within the method, the method itself, and the ancestor~ of 

the method if any, as well as the object identifier, are processed by the method processor as shown 

in Figure 3.18. 

The information about a method includes the attributes accessed within the method and the 

identifier of the method and its ancestors. Hence the method processor gets information about all 

locks on attributes within a method as well as the method hierarchy. 

A possible implementation of identifying the method hierarchy in the method processor is by 

performing a top-down parsing of the method. The method processor maintains a collection of 

waiting methods recording the methods which are waiting until their descendants (sub-methods) 

have finished (Recall the close nested transaction approach described in Chapter 2, in which a 

transaction cannot finish until its sub-transactions have finished). This is used to record method 
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/** 
* DBField template class defining 
• an object ' s attribute. 
* An instance of this class 
* can be called by an object : 
* obj - > attr 
* where attr is an instance of 
• DBField<an y type> 
*/ 

template class<T> 
DBField<T>::operator T() const { 

//in pseudo code 
//supposed attr th is of type T 

if (att r is not in cache) 
if (page of attr is not in cache) { 

get page from the server 

else { 
get attr from the server 
(oid , offset , attr-id) 

install a tt r /page into the cache 

acquire readlock on the attr 

retur n (attr read from the cache) 

Note 

oid object identi fier 
(of instance 'obi' in the example) 

offset : location of the attribute within 
the object's physical space 

attr-id : attribute identifier, 
defined in object's schema 

Figure 3.17: A possible implementation of accessing an attribute in C++ ·based pseudo-code 
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~ readlocklwritelock of attributes 

Method "- ) 

l Method J ~ 
Processor Va lidation Information 

"" 
<aid, method> 
{<aid, method>} of ancestors 
set<attributes> updated 
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Figure 3.1 8: Method processor 
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hierarchy in a transaction. 

°l·ml () 
CD ~1~=:ml} 

- °2 .m2 () CD 
WM={ml, m2} 

WM={rrl, rr.2, m3} 

- 03' a3 (write) 

@ W"M={ml, ",2) 

1iM={ } 

Note: 

liM = list<waiting-method> 

Figure 3.19: An example of method processing 

This is best illustrated by an example as shown in Figure 3.19. Suppose that object 01 ha~ 

an attribute a], and the method execution hierarchy of the client's transaction is as shown in the 

figure. The parsing goes from the top of o].m] O. How the parser works is language specific. The 

wai ting-methods firstly contains o].m] 0 because the method has not finished (point 1). Then, 

02.m20 and 03.m30 are executed and now the wai ting-methods contains o].m] 0, 02.m20, 03.m30 

(point 3). The 03.m30 contains a Write on the attribute ao" therefore 03.m30 needs to be validated 

to the server. The information to be validated includes the attribute a3 and the methods recorded 

in the wai ting-methods. When the validation is successful (i.e. has received a positive response 

from the server), the client continues with the transaction. After 03.m30 has finished, it is removed 

from the wai ting-methods (point 4), and so after 02.m20 has finished the waiting-methods 

now contains only o].m]O (point 5). The method o].m]O contains only a Read on the attribute aI, 

so that the method is not validated to the server but the lock is recorded at the client, and at the end 



Chapter 3. Protocol Design 94 
----

(point 6) the method is removed from the wai ting-methods. 

3.5 Summary 

This chapter describes the design of the protocols for this study. The protocol called Synchronous 

Method-time Validation (SMV) incorporates semantic-based concurrency control in client cache 

consistency protocol by validation of transactions at the end of each method. so that method seman­

tics can be exploited during concurrency control in order to enhance concurrency. To investigate 

its characteristics, we also design the optimistic protocol called Commit-time Validation (CV) to 

which the SMV will be compared. We also design the asynchronous version of the protocol called 

Asynchronous method-time validation (AMV). However, because of additional complexity in the 

implementation of AMV, the scope of this thesis includes AMV only with its basic form. without 

allowing method commutativity in concurrency control. Furthermore, this chapter describes a possi­

ble implementation on some key aspects in the protocol. Their performance will be compared using 

simulation. The next chapter will describe the simulation model for measuring the performance. 



Chapter 4 

The Simulation Design 

In order to investigate the characteristics of the performance of the protocols described in Chapter 

3, we measure the performance using simulation. Simulation has the advantage that is to allow us 

to vary system parameters without changing the actual software or hardware. Moreover, by using 

simulation we are able to focus more on the algorithms and data structures of the protocols. than on 

intricate implementation details such as the message passing between client and server. 

This chapter describes the simulator and the model used in the simulation. The model include~ 

the system model, the database model and the workload model. The model will be the basis for the 

results described in Chapter 5. 

4.1 The simulation package 

We used Simjava-I.2, a Java-based event-driven simulator from the University of Edinburgh [MH96) 

[HM98], for our simulation. Simjava gained our interest because it allows simulations to be run with 

and without animation. The animation, in a Java applet, can show visually the simulation entities 

and the message passing between the entities. It is a more attractive way of observing behaviour 

than by analysing merely a textual trace file. We found the animation useful for debugging, such 

as for identifying the state of the simulation entities, and for checking whether the message pa<;s-

95 
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ing was implemented correctl y. A creenshot of our animation can be een in Figure -+ .1. The left 

part shows the state of each transacti on and the number of time tran. action tans and commiL\, 

which are useful to noti ce visuall y the state of tran action when debugging. The enter part \hO\\ \ 

the clients (penguins) connected to the server, message with a meaningful mbol p~ . ing ber\\ een 

client and the server, and disk indicating whether it i reading, writing or idle. The right part ho\\" 

opti ons and input fi elds for the anjmati on setting. Then, the non·animated imulation i u ed for 

measurements after the debugging. 

Apple t 

n00004.L Val 1\ Protocol SMV,em 

Clien ts ~ 
T400003.0.ReqPage 1\ 

P(Wrl te) 0 

T500002.LStanTx 1\ P(WWCommutel oS 

./ 

T600003 . 0. ReqPage 1\ P(RWCommu e) 00: 

AccessPat ern HICON 

T700003.1.ReqPage 1\ 
Seed :99999 

Runnmg Slm mne = 0 3365 

L.;\"'/C'l,.."" J ;Z I" Pau se Stop 

Speed : 64 f 
Applet started . 

Figure 4.1 : A screens hot of the animation of the simulator 

Our simulation package consists of about seventy ja a cia es consisting about ten thousand 

lines of codes. Figure 4.2 shows the class diagram howi ng the core cia 5es in the imulation 

package. Each client, and the server. is defined as an enti ty in the imulation, so we derive both 

classes from Sim _entity in Simjava. The figure shows the main data tructure a ociated 'AiLh 

client and with server. 
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• Client. The Client class maintains Lock Records of the attributes accessed by a clienL The 

Client class is associated with the Workload class that generates a workload for each client. 

A workload gets database items from the database. The Database class manages the database 

items. The Client class is also associated with the Cache class that represents a client's cache. 

as well as the Semantic Record that records the releases oflock conflicts by method semantics­

based commutativity . 

• Server. The Server class is also associated with the Cache, the Semantic Record and the 

Database classes. The other data structures associated with the Server are: 

- Validation Record, which records the successfully validated items of transactions that 

have not yet committed. 

- Consistency Record, which records consistency actions performed by the server 

- Cached Set, that contains information about attributes cached at each client 

- Modified Buffer, which stores the bytes of database items that are validated by transac­

tions that have not yet committed 

- Deadlock Detector, which checks whether a deadlock has occurred. 

4.2 The system model 

The system is a client-server model in that many clients are connected to one server through a 

network, as shown in Figure 4.3. The system parameters are listed in Table 4.1. 

The system consists of a set of components. The components include: 

1. CPU (central processing unit). CPU is the processor, which processes machine instruc­

tions at the client and server. We set the processing speed parameter to be in the millions of 

instructions per second (MIPS). 
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D 

Figure 4.2: Class diagram of the simulation package 

2. Disk. Disk is stable storage to store persistently database items. The disk is only at the server. 

The time to read a database item from disk or to write a database item to disk is calculated as 

the average time*. 

3. Cache. Cache is a memory area allocated to store database objects that are used by the 

application. On the client side, the cache allows database objects to be stored closer to the 

client, whereas at the server cache allows frequently-used database objects to be accessed 

from memory rather than from disk. The cache has capacity that is measured as a fixed 

number of pages. When the cache is full, the Least Recently Used (LRU) pages are removed 

from it. We set a fixed number of instructions as the cost of reading a database item from 

'The actual disk cost covers the seek time, settle time and the latency 
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Figure 4.3: Client-server system 

cache and writing an item into the cache. 
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4. Network. Network i a medium fo r tran ferri ng me age betwee n c lient and erver. Two 

types of cost are assoc iated to the network: fixed cost and variable co t. The fixed co. t i 

the cost at client and at the server, covering both the CPU and the network contro ll er, and i 

value is assumed to be a fi xed number of instructi on . T he variab le co tithe co t per byte 

of message transfe rred, and the value is calcul ated ba ed on the network bandwidth defi ned 

in Milli ons of Bits per Second (Mbps). 

The values of the system parameters are li sted in Table 4 .1. The di sk read acce time i et one 

milli second less than the di sk write access time [KozOO] . The val ue of network parameters , i.e . the 

bandwidth and the fi xed and variable network costs, are adopted from the previou tudy (0 9] . 
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Parameter Value 

Client's CPU 500 MIPS 
Server's CPU 1000 MIPS 
Disk Read Access Time 13.3 milliseconds 
Disk Write Access Time 14.3 milliseconds 
CPU for disk 1/0 5000 cycles 
Network bandwidth 10 Mbps 
Fixed network cost 6000 cycles 
Variable network cost 7.17 cycles/byte 
Cache lookup 300 cycles 
Clients cache capacity 25% DB size 
Server cache capacity 50% DB size 
Deadlock detection 300 cycles 
Client read think time 50 cycles/byte 
Client write think time 100 cycles/byte 

Table 4.1: The System Parameters 

4.3 The database and workload model 

The database is modeled as a collection of page identifiers. Each page contains a number of objl'ct~. 

and each object contains a number of attributes. 

When a client runs a transaction, the client runs methods on objects, and each method accesses 

a number of the object's attributes. This is shown in Figure 4.4. We defined two types of methods: 

Read-Write method and Read-Only method. In a Read-Write method, the transaction readlocks 

and writelocks attributes within the method, whereas in a Read-Only method the transaction only 

readlocks the attributes. 

for (i = ~ to Transaction size) 
{ 

} 

generate OlD 
generate M=Method(OID) 
for (each attribute A in M) 
{ 

access (readlock or writelock) A 
} 

Figure 4.4: Transaction Run 
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The identifier of the objects accessed, and the type of methods run by an object (either Read­

Write method or Read-only method) are generated by the workload. To describe the workload in 

our model, firstly let us recall the workload model in the existing studies, as has also been described 

in Chapter 2.4.3. 

In the existing studies, data locality and data sharing were modeled in the workload. The fol­

lowing is how they were modeled: 

• Pages in the database were divided into regions [ALM95] [OVU98]T. 

- Private region, containing pages that are accessed most of the time by a particular client. 

- Shared region, containing pages that are shared by all the clients. 

- Other region: a region outside the Private and Shared regions. 

In another study [Fra96] the Private region was called the hot region, and the Shared and 

Other regions were simply called the cold regions. Thus, each client was allocated a Hot 

region and a Cold region. Moreover, the Hot region belonging to a client overlapped with 

Cold regions belonging to other clients. 

How often each region is accessed during a transaction was determined by an access probability 

for each region. In addition, whether or not a transaction performs Writes on pages in a particular 

region was determined by a Write probability for pages in that region. Thus, a workload set the 

access probability value and a write probability value for each region. 

The workload that was claimed to be in representative of general database applications was 

HotCold [Fra96], which is known as Sh/HotCold in other studies [ALM95] [OVU98]. The values 

of the access probability and the write probability on each region for the workload are shown in 

Table 4.2. 

Thus, the existing studies modeled data locality and data sharing by setting probabilities for 

access to pages in the Private, Shared and Other regions in each client's database, and by setting a 

write probability value. 

t As illustrated in Figure 2.18 in Chapter 2 
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Study General P(Access P(Access Cold T P(Write) i 
workload Hot Region) Region) i 

[Fra96] Hotcold 80% 20(( 20Ck 
[ALM95] Sh/Hotcold 80% i 10cl£; on Shared, 5C;-

i I 
10% on Other i 

[OVU98] Sh/Hotcold 80% 1 0% on Shared, varied 
10% on Other 

Table 4.2: Probability values in HotCold and ShlHotCold workloads 

In our workload model, we need to extend the existing model so that we can sct a workload 

that affects the characteristics of the protocols when commutativity exploiting method semantics 

are used to release lock conflicts. We require a way to determine whether or not lock conflict can be 

released using a methods semantic commutativity. 

In the real application, the commutativity relationships between methods are defined in the 

object schema: 

• An object has m methods. Then, we have an m x m relationships between methods, which is 

represented by an m x m matrix 

• Some relationships between the methods are semantic commutativity relationships, and we 

explicitly define the semantic commutativity (SC) relationships in the matrix 

• When a lock conflict on an attribute occurs, we check from the matrix whether a commutativ-

ity relationship exists between the methods. If a semantic commutativity relation<;hip exists 

then the conflict can be released. 

If we consider a workload model based on the actual object schema, however, we need a specific 

matrix of relationships between methods to be defined for that schema. As the schema varies in 

every database application, we are not able to assume a particular schema for the workload. 

Therefore, the chosen approach is to decide whether methods have a semantic commutativity 

relationship randomly based on probability. By setting the probability for whether methods can 

commute, we can investigate the performance sensitivity when the probability varies. Moreover, we 

do not need to assume a particular object schema that must be determined in advanced. 
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The probability of whether or not semantic commutativity exists can vary from 0% to 100%. 

As an illustration, an object having two methods will have four method relationships (two to the 

power of two). If one of the relationships is semantic commutativity relationship, with a uniform 

probability of access to all the methods, then the probability of releasing the conflict due to semantic 

commutativity will be 25%. An object having three methods and two semantic commutativity rela­

tionships has a 22% probability. Again, an object having one method that semantically commutes 

to itself will have a 100% such probability. 

For each workload, we need the following parameters to describe the database and the workload: 

• The number of pages in the database and the number of objects within a page. These two 

parameters will determine the number of objects in the database. As in the preceding descrip­

tion, a transaction accesses a number of objects from the database (shown in the preceding 

Figure 4.4), and the objects in the database, classified into regions, are shared by the clients to 

some extent. As a consequence, the smaller the number of objects in the database, the smaller 

the number of objects that will be shared by the clients, which means higher data contention 

if the number of clients accessing the database remains constant. 

• The number of attributes of an object and the number of attributes accessed within a method. 

These parameters are needed in our protocol because in our simulation a method accesses 

a number of attributes during a transaction (as described in the preceding Figure 4.4). The 

attributes accessed by a method are selected from the available attributes in the object. There­

fore, fewer of attributes of an object gives a higher chance of an attribute being accessed, and 

this means higher data contention if at least the same number of attributes are accessed within 

the method. 

Another parameter in our simulation is a probability value that dictates whether a restarted 

transaction accesses the same objects and attributes as those before the transaction aborted. When 

a transaction aborts and restarts, the workload can be that the transaction re-accesses the previously 

accessed attributes, or that the transaction accesses completely different attributes. The former 
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corresponds to setting 100% to the probability, while the latter corresponds to setting 0% to the 

probability. However, setting the probability to 100% could lead to livelock, in which a transaction 

is always aborted without having a chance to commit. In this simulation. we therefore set the 

probability to 50%, in that a transaction has a 50% probability of accessing the same attributes as 

those accessed before the transaction was aborted. 

The parameter values of the database and workload model used in our simulation are listed in 

Table 4.3. 

I Parameter Value 

Page size 4 Kbytes 
Number of pages in database 200 pages 
Number of objects in a page 10 
Methods per Tx (Tx Length or Size) 20-50 
P(run RW methods) 80% 
P(commutativity) 0-100% 
P(run new transaction) 50% 
Total attributes in an object 5 
Total attributes run in a method 2 per method 

Table 4.3: Database and workload parameters 

4.4 Correctness 

This section describes how we check the correctness of the simulation. 

In the simulation, a number of clients are concurrently running transactions and acces~ing shared 

objects at the server. By using the models described, it was not possible to check the correctness 

by checking the actual value of an attribute because, unlike in a real application, the result in the 

simulation does not contain value. Instead, we addressed the correctness of the results by assertions 

put at points where we could predict that a particular state should apply. 

Assertions state that a particular condition must apply. If the condition does not apply, an 

exception will occur. The following is an example of assertions used in the simulations. The 

notation < PRE > denotes a pre-condition, and < POS T > denotes a post-condition. Modified 

Buffer at the server stores successfully-validated attributes belonging to transactions that have not 
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yet committed. Whether or not the modified buffer is empty is important because the server will 

store the content of the modified buffer onto disk when the transaction commits, and the disk cost 

will significantly affect the performance. Therefore, in the assertion in Figure 4.5 we want to ensure 

that upon receiving a validation request, a read-only transaction does not validate any attributes. 

while a non read-only transaction validates an attribute :j:. Before calculating the total bytes B of 

attributes to be put into the modified buffer, we assert a pre-condition that when the server does not 

detect a write-write conflict when handling a validation request, the transaction must be a read-only 

transaction, or a non read-only transaction without lock conflict. Then we assert a post-condition 

that B is not zero in a non read-only transaction but zero in a read-only transaction. Thus, by using 

this assertion we ensure that recording the disk cost is correctly implemented. 

if (write-write conflict does not occur) 
{ 

} 

<PRE> Either Read-Only Transaction 
or Non Read-Only Transaction 

without lock conflict 

calculate the total bytes (B) validated 

<POST> B > & in non Read-Only Transaction 
B = & in Read-Only Transaction 

THE ASSERTION: 
if ( (Read-Only Transaction) AND (B > &) ) { 

throw Exception 
} 
if ( (Non Read-Only Transaction) AND (B -- &) { 

throw Exception 
} 

put B into Modified Buffer 

Figure 4.5: An example of an assertion 

Then, during the simulation run, it was often the case that an assertion failed. The failed asser-

* A read-only transaction validates at the end of a transaction in the Commit-time Validation (CV) protocol. whereas 
a non Read-Only transaction validates at the end of a method in Method-time Validation protocols (SMV and AMV). 

This is explained in Chapter 3. 
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tion might lead us to identify a fault in the implementation, or identify new issues in the protocol de­

sign. A revised design or implementation might lead to more assertions being added. We found that 

unexpected states were even more common in the asynchronous protocol (Asynchronous ~lethod 

Validation). After going through many fail-and-revise cycles, when there were no failed assertion. 

we got more confidence on the correctness of the simulation implementation. 

In addition, we had to ensure that the simulation results (graphs) were correct. It was often 

the case that a set of results were obtained but turned out to be flawed. This was because one 

performance metric measured did not tally with the other performance metrics measured. It was 

often the case that this led us to correct the implementation or revise the implementation design. To 

ensure that we obtained sensible results, we measured more performance metrics that were needed 

to support the analysis, such as measuring a performance metric that was a component of another 

performance metric. Assertions were again used. 

4.5 The limitations of the model 

In our model, a transaction contains accesses on a number of methods. At each method a validation 

message is sent to the server. The drawback is that it is unable to detect the waiting time under a 

certain situation. This is better explained by the following example. Supposed that TJ and T2 have 

a sequence of interleaving operations as shown in Figure 4.6. The overall sequence of operations is 

as follows: 

Notice from the figure (Figure 4.6) that the sequence TI (02.ml), TI (03.m2), TI (ol.m4) is invoked 

within method TI(01.m3). Supposed that in 01 (object 1) a semantic commutativity relationship 

occurs between methods 01.m3 and 0l.ml, and so when T2 is validating 01.m1 the server detects a 

Write-Write conflict with 01.m4 but does not detect the conflict with 01.m3 because 01·m1 and 01·m4 

does not commute while 0l.m I and 01.m3 commutes. In this situation, T2 can proceed but it needs 

to wait until 01.m3 by T) has ended. The execution of o).m3 involves other subsequent methods 
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Figure 4.6: Example to illustrate the model limitation 
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after the call of method OJ.m4 within the method OJ.m3. Thus, the amount of time T2 has to wait 

includes the time to execute subsequent methods after method 0t.m4 within the method 0t.m3. A\ 

our workload model does not assume a particular object schema, the waiting time by tran<;action Tc 

is not identified. 

4.6 Summary 

Our Java simulation package used models that include the system model, the database model and the 

workload model. The correctness of the simulation was checked using assertions. We also described 

the limitation of our models under a certain situation. The next chapter contains the performance 

measurement of the protocols based on the models. 



Chapter 5 

Results and Analysis 

In this chapter we investigate the performance characteristics of our protocols using simulation. The 

following are the main points: 

• We implement two protocols that were described in the previous work[Fra961: Optimistic 

Two-Phase Locking (02PL) and Callback Locking (CBL), and compare their performance. 

The measurement in our implementation results in similar characteristics to those in the pre­

vious work[Fra96]. By implementing the two protocols described in the previous work and 

comparing the relative performance with that given in the earlier work, we demonstrate that 

our simulator is reasonable. 

• Secondly, we compare the performance of our CV protocol with that of 02PL, which tend~ 

to be the best performing of the earlier protocols[Fra96], and find that they are of comparable 

performance. 

• We investigate the performance of SMV and AMV with respect to that of CV in two steps: 

- First, we measure the performance of the protocols in their basic form and show that 

SMV and AMV can outperform CV under common workload. 

- Finally, we investigate what performance improvement might be expected if we were 

to implement a scheme for exploiting semantic relationships between methods. We do 

109 
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this by assuming some probability that a lock conflict may be released through some 

semantic relationship between the methods. These experiments show that with a high 

probability of commutativity to release write-write conflicts the improvement on the 

performance can be significant. 

The results obtained will be based on the models described in the preceding chapter (Chapter 

4). It should be noted that the values of the simulation results are not to be regarded as absolute, but 

as relative to the values of the other protocols. 

In all ofthe protocols, the measurements are made under HotCold workload, which gives moder-

ate data contention and has been claimed to be the most common database workload [Fra9611 OVU98 J 

[ALM95]. 

The variable as the x-axis in the measurements is the one that varies the level of data contention. 

Generally, we employ the number of clients as the x-axis, since this indicates the scalability of a 

protocol under simultaneous access by an increasing number of clients. 

In addition, our measurement will investigate the characteristics when the number of operations 

per transaction varies. The method-time validation protocol is intended to detect conflicts earlier 

than an optimistic protocol such as CV, and thereby abort transactions that cannot complete early 

rather than at commit time. Therefore, we investigate their performance under varying number 

of operations per transaction in order to show that this earlier detection of conflicts can lead to a 

performance benefit through avoiding wastage of resources. 

Furthermore, with respect to investigating what performance improvement might be expected 

using method semantics, we measure the performance under high data contention i.e. Hicon work­

load. This is because to get noticeable improvement of performance, the number of attribute-level 

lock conflicts should be high, which is when the data contention is high. 
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5.1 The metrics 

The main perfonnance metric that will be measured is Throughput. which is the number of trans­

actions that can commit per second. In addition, to understand the result, we will measure other 

performance metrics and checks whether one metric explains another. The following is the descrip­

tion of the metrics that may be included in our measurements: 

• Throughput. This is the number of transactions that commit per unit of time. Here, one 

unit of time is equivalent to one second. It is measured as the number of transactions that 

commit throughout the entire simulation, divided by the total simulation time. Throughput is 

generally regarded as the main indicator of the superiority among concurrency protocols. 

• Average response time. Response time is the overall time measured from the start of the 

transaction until the commit of the transaction. This also includes the time that the transaction 

aborts and restarts. It is measured by accumulating the time from the start until the commit 

time, of every transaction, and dividing it by the number of committed transactions. This 

metric is important to users (i.e. a user-centered metric), as it tells the time a user's transaction 

needs to be able to commit. The response time consists of all the overheads of clients, servers, 

disks and networks. In our study, we measure the major components of a response time, which 

are average validation time and average fetching time. 

Average validation time. This is the average time needed by a client to perform all 

validations in each transaction. This metric is measured to understand the component 

of the average response time. A single validation time is measured as the time since 

sending a validation until getting the result of the validation. 

- Average fetching time. This metric is the time needed by a client to fetch attribute or 

page from the server. A fetching time is measured since sending a request for a page or 

attribute until receiving it. 

• Abort rate. This is the number of aborts that a transaction experiences before committing. It 
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is measured by counting the number of aborts experienced by all the transactions and divide 

it by the number of committed transactions. Furthennore, we investigate the components of 

the abort rate by measuring the aborts due to deadlocks and the aborts due to fail validations. 

These metrics are also user-centered metrics as some applications considers abort rate as im­

portant, for example highly interactive applications cannot tolerate high abort rate [OVU98]. 

In addition, abort rate is a key metric that can explain the response time became high abort 

rate usually causes high response time . 

• Releases of lock conflicts per commit. This metric tells the number of lock conflicts that 

are released due to method commutativity. This metric shows the frequency of the re\ea\t.'s of 

conflicts due to method commutativity. It is measured by counting the number of reIeast.'~ of 

lock conflicts using method commutativity and divide it by the number of committed transac­

tions. For further details, we measure the releases of read-write conflicts and the releases of 

write-write conflicts. 

• Disk read. This is the number of disk reads perfonned in a transaction. As previously 

mentioned, a disk read is perfonned at the server when the server is sending a database item 

to a client because the item is not cached by the client. It is measured by totaling the number 

of disk reads and then divides it by the total number of committed transactions. This metric 

is important as disk is a dominant overhead. 

5.2 Our 02PL implementation 

In this section we ensure that our simulator is reasonable, implementation of Optimistic Two-phase 

Locking, which is the optimistic avoidance-based page-locking protocol, can represent the one in 

the previous work [Fra96]. The purpose of this is to allow the 02PL to be compared with our 

Commit-time Validation (CV), described in the next section. 

To ensure whether our implementation of 02PL represents the one in the previous study, we 

compare 02PL with Callback Locking (CBL) that is the pessimistic avoidance-based page-locking 
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protocol in the previous study [Fra96]. By comparing them and achieve the same perfonnance 

characteristics in the previous study, we ensure that our simulator is reasonable. 

In the previous study [Fra96] the 02PL and CBL have some variants. The 02PL that we imple­

ment here is 02PL-i, which stands for Optimistic Two-Phase Locking by invalidation, in which the 

consistency action is invalidating/removing stale pages from client's cache. The CBL that we imple­

ment is CBL-R, which stands for Callback Locking - Read, which has the same way of consistency 

action as that in 02PL-i. 

The following describe our measurement of the existing 02PL and CBL. 

The measurement uses the parameters shown in Table 5.1. The parameters are similar with those 

in the previous study [Fra96]. 

Some of the settings, however, differ from the ones used in the previous work[Fra96] as listed 

in Table 5.2. First, the HotCold adopted is the one with a Shared region used in another work 

[OVU98], as described in Section 2.4.3. We believe it is a more reasonable HotCold setting and so 

it is used for all the measurements in our simulation. Secondly, for the purpose of simplicity in the 

implementation, in our deadlock detection algorithm, the building of a wait-for-graph is perfonned 

at the server whenever a deadlock can potentially occur. It differs from the previous work[Fra96], 

in which a wait-for-graph is built locally at each client and collected by the server periodically. We 

believe that this does not give significant effect on the result. 

I Parameter I Value 

No. of Clients 3-25 
Client's Cache Size 25% DB 
Server's Cache Size 50% DB 
Pages in Database 1300 
P(Write) 20% 
Transaction size 20 pages 
Disk read and write 20 milisecond 
Fixed message cost 20000instr 
Variable message cost 2.44 cycIesjbyte 
Network speed 8 Mbps 

Table 5.1: Parameter Values for 02Pl vs CBl 

The result is shown in Figure 5.1. The result shows that the perfonnance characteristics are 
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![Fra96] ! Our simulation 

HCYfCOLD: 80 percent on Private, 20 HCYfCOLD: 80 percent on Private, 10 
percent on Other percent on Other, 10 percent on Shared 
Deadlock detection is perfonned by the Deadlock detection is perfonned by the 
server using wait-for-graphs collected server using a wait-for-graph built by 
from all clients periodically the server whenever a deadlock may 

potentially occur. 

Table 5.2: The differences in the simulation settings 

similar with those in the previous work[Fra96]. First, their throughput increases, reaching a peak 

at 10 clients, and then declines. This characteristic is due to insufficient server's cache capacity 

to accommodate all the pages accessed by more than 10 clients. After 10 clients, least-recently-

used pages starts to be removed from the cache and so further accesses on these pages require disk 

accesses, and this degrades the performance. Secondly, the result is similar with that of the previous 

work in that 02PL performs better than CBL but the performance of CBL tends to be similar to 

02PL at 25 clients. 

By achieving the similarity of the characteristics between the protocols in the previous work, 

we demonstrates that our simulator is reasonable. 
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Figure 5.1: 02PL vs CBL 
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Next we compare the performance of our Commit-time Validation (CV) and the 02PL. 

5.3 CV vs 02PL 

In this section we compare our Commit-time Validation (CV) with the Optimistic Two-phase Lock-

ing (02PL). 

Commit-time Validation (CV) and Optimistic Two Phase Locking (02PL) [Fra96] protocols are 

both optimistic, in that a client's transaction runs locally at the client from the start until the commit 

time. At commit time, the client validates the entire transaction to the server, and the server checks 

whether the transaction can commit. 

Firstly, recall that the difference between CV and 02PL is that CV and 02PL have different 

granularities of lock. The granularity of a lock in CV is an object's attribute, whereas the granularity 

of a lock in 02PL is a page. 

How a client runs transactions in our simulation is affected by the difference in the granularity 

of lock. In 02PL, a transaction is a loop over a number of pages accessed, as in Figure 5.2. For 

example, if the transaction size is 20 operations per transaction, then less than 20 pages are accessed 

in the transaction. A Write probability dictates whether the transaction takes readlock or writelock 

on each page. 

for (i = & to Transaction Size) 
{ 

} 

generate a Page P 
readlock/writelock P 

Figure 5.2: Transaction in 02PL 

In CV, a client's transaction in this simulation is a loop over a number of object's methods 

and each method accesses a number of object's attributes. The loop of a transaction is shown in 

Figure 5.3. For example, if the transaction size is 20 operations per transaction, then 20 methods are 

accessed; each method is of different object identifier (OID). A write probability dictates whether 
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a method accessed is Read-Write method or Read-only method. In a Read-Write method. both 

readlock and writelock are acquired on the attributes accessed by the method (half of the attributes 

are readlocked and the other half are writelocked). 

for (i = & to Transaction size) 
{ 

} 

generate an OrD 0 

generate o.Method M 
for (each o.attribute A in M) 
{ 

readlock/writelock A 
} 

Figure 5.3: Transaction in CV 

5.3.1 The measurement 

The parameters for the measurement are listed in Table 5.3. 

The results are shown in Figure 5.4. 

The throughput in Figure 5.4(a) shows that 02PL outperforms CV with small numbers of clients 

but CV outperforms 02PL at large numbers of clients. As the number of clients dictates the level of 

data contention, the result means that CV loses against 02PL under low data contention workload 

but wins against 02PL under high data contention workload. This is reasonable because under low 

data contention workload, the lock conflicts are rare, so that 02PL, which uses page granularity of 

locking, gets benefit by saving locking overhead. With higher data contention workload, the high 

number of lock conflicts is better resolved by CV that uses attribute granularity of locking. 

Moreover, CV uses attribute-level locking, so that it does not experience false-sharing of a page, 

a condition in which an object cannot be accessed by a transaction because the page of the object 

is being locked for another transaction's access on another object in that page. Under high data 

contention, there can be contention on attributes in the same page, so unlike 02PL (that uses page­

level locking), CV that uses attribute-level locking cannot experience false-sharing. By being able 
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I Parameter Value 

No. of clients 1-25 
Transaction size 20 
Write probability 40% 
Database size 1300 pages 
Method size 2 attributes 
n objects in Page lO 
Client Cache size 25% DB 
Server Cache size 50% DB 
Client's CPU 500 MIPS 
Server's CPU 1000 MIPS 
Disk Read Access Time 13.3 milliseconds 
Disk Write Access Time 14.3 milliseconds 
CPU for disk I/O 5000 cycles 
Network bandwidth 10Mbps 
Fixed network cost 6000 cycles 
Variable network cost 7.17 cycles/byte 
Cache lookup 300 cycles 
Deadlock detection 300 cycles 
Client read think time 50 cycles/byte 
Client write think time 100 cycles/byte 

Table 5.3: Parameters in CV vs 02PL 

to prevent false-sharing, CV has less waiting time than 02PL, reducing the potentials for deadlocks 

under high contention workload. 

False-sharing can impact on performance in 02PL when the server receives a request for a 

database item (page or attribute) from a client, or at commit time when the server receives a valida­

tion message from a client: 

• When a client requests for a database item (a page or attribute) from the server but it is being 

writelocked at the server, a read-write conflict occurs. Unlike in CV, in 02PL false-sharing 

can occur and the client needs to wait until the writelock on the page is released. 

• At commit time, a client validates the entire transaction and waits for the result. Following a 

validation process at the server, if consistency actions are needed, the server sends consistency 

messages to other remote clients and waits for the result of the consistency actions, so that the 

faster the remote clients can respond the lower the waiting time. In CV, under high contention 

workload, with attribute-level granularity of locking, false-sharing can be avoided and so 
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a consistency action can be better handled by a client. reducing the waiting time and the 

potential of deadlocks. 

The lower potential of deadlock in CV than in 02PL is supported by the abort rate result in 

Figure 5.4(b). The abort rate in CV is relatively steady compared to 02PL with increasing number 

of clients. The abort rate components in Figure 5.4(c) shows that. unlike in CV, the aborts in 02PL 
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are dominated almost entirely by deadlocks. 

5.3.2 Summary 

In this section we measured the performance between Commit-time Validation (CV) and Optimistic 

Two Phase Locking (02PL). The result shows that CV is better than 02PL under large number of 

clients i.e. high data contention workload, but is worse than 02PL under small number of clients i.e. 

low data contention workload. The difference between the performance, however. is not significant 

under a range of data contention even though other characteristics differ. In this sense, CV and 

02PL can be optimistic protocols of comparable performance. Next we compare our method-time 

validation protocols (i.e. SMV and AMV) with CY. 

5.4 SMV, AMV and CV 

5.4.1 With short-length transactions 

Figures 5.5 and 5.6 show the performance of the method-level validation protocols under the Hot­

Cold workload. Under short transactions, in general the differences between the three protocob 

are not significant, while the response time of CV (Commit-time Validation) is slightly better (i.e. 

lower) than SMV and AMV, as shown in figure 5.5. 

The validation time of SMV is the highest among the others as shown in figure 5.5(b). Thi~ i~ 

reasonable since SMV experiences more blocking time for validations than in the other protocols. 

Moreover, the fetching times are about the same for all the protocols. Considering the similar 

number of disk reads in all protocols and the fact that there is little difference in the abort rate 

among the protocols, it is reasonable to expect that they all have a quite similar fetching time. For 

short transactions, the number of disk reads is considerably smaller because short transactions do 

not require a significant number of items to be fetched from disk. 

Referring to Figure 5.6(b), it is interesting to observe that under short transactions, the abort 

rate in SMV is lower than the abort rate in AMV, while under longer transactions it is the other way 
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around (compare fi gure S.6(b) and S.8(b)). Therefore, we were interested in further inve ti gation 

on the variations in the performance characteri sti cs under different tran ac tion length ,>. ac; wi II be 

described in the next subsecti on. 
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The results under HotCold and medium transactions can be seen in Figures 5.7 and 5.8. 10 general, 

the average response time of the SMV (Synchronous Method-time Validation) and AMV (Asyn­

chronous Method-time Validation) protocols are lower, i.e. better, than in the CV (Commit-time 

Validation) protocol as shown in the figure 5.7(a). Correspondingly, Figure 5.8(a) shows that the 
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throughput of SMY and AMY is hi gher than in the CY protocol. 
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The average response time 

To help explain this result, the major contributors to response time, namely average validation time 

and average fetching time, are shown in the particular case where the number of clients is 25, in 

Figure S.7(b). It can be seen from the figure that the average validation time in CV is lOwer than 

that in SMV. This is reasonable because CV only validates once at the end of a transaction, whereas 

SMV validates at each method accessed. However, it can be seen from the figure that the average 

fetching time of CV is significantly higher than that in SMV. Referring to the disk reads per commit 

shown in Figure S.8(c), it is clear that the high fetching time in CV is caused by the high number of 

disk reads. This is due to the fact that CV experiences a higher abort rate' than the other protocols as 

can be seen in Figure S.8(b). With a higher number of aborts. more database items will be accessed 

in total, so that more disk accesses will be required, increasing the total fetching time. 

With regards to AMV (Asynchronous Method-time Validation), it can be seen from Figure 

S.7(b) that its validation time is the lowest compared to the other protocols. Compared to SMV. 

this is obviously reasonable as AMV is asynchronous (without blocking) when ~ending validation 

messages. However, it is surprising that the validation time of AMV is still lower than CV which 

validates only at commit time. This is caused by the significantly lower abort rate in AMV than in 

CY. It can be seen from Figure S.8(b) that the abort rate of CV is significantly higher than in AMY. 

With the higher abort rate in CV, the number of restarted transactions is higher, resulting in its total 

validation time exceeding that in AMY. 

In terms of the fetching time, however, AMV is higher than SMV, and is almost as high as Cv. 

The cause of the high fetching time is not that AMV requires more disk reads, as the disk read 

count in AMV is almost similar to that in SMV, as shown in Figure S.8(c). The fact that AMV 

causes a significant job queue at the server, as can be seen from Figure S.8(d) suggests that the high 

fetching time in AMV is caused by the longer queue for attribute or page requests to be processed 

by the server. Compared to the other protocols, in AMY the number of messages sent by the server 

is larger, due to it sending explicit cache consistency messages and explicit abort messages to the 

• Abort rate is the number of aborts per committed transaction 
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clients. The other protocols (SMV and CV), on the other hand, allow the server to pi~oyback their 

messages to the clients onto the other messages. As a result., in AMV more queuing time is needed 

at the server than in SMV and CV, so increasing the fetching time. 

The overall result is that the response time of AMV is lower than CV, and slightly higher than 

SMV. This is also reflected in AMV's throughput (figure 5.8(a)) that is higher than CV, and slightly 

lower than SMV. 

The preceding results suggest that under HotCold workloads, protocols with lower abort rates 

have better performance. This, however, applies only if the ways messages are sent in the protocols 

being compared are similar. For example, the lower abort rate of AMV does not help in increasing 

its performance because the greater number of messages sent by the server has a crucial effect 

on the performance by creating a longer job queue at the server. A possible workaround for this 

messaging problem is to separate the process for sending messages and for handling requests, while 

also enabling them to deal with shared data. 

The abort rate 

The results have suggested that abort rate is the key contributor to performance. Therefore, it is 

important to further understand the aspects that influence the abort rate. Abort rate is a metric that 

indicates the average number of aborts incurred from the start until the commit of a transaction. A 

transaction is aborted because of one of the following reasons: 

1. Failed validations. The validation of a transaction is performed at the server in which lock 

conflicts are detected. During a validation process, when the validated attribute is being 

writelocked at the server on behalf of another transaction, a write-write conflict occurs. If 

the write-write conflicts cannot be resolved by method commutativity, then the transaction is 

aborted. 

2. Deadlocks. A deadlock occurs when a set of transactions are in the waiting state but cannot 

proceed because they actually wait for each other to complete. 
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To identify the components that constitute the abol1 rate, the average abort rate due to rai led 

va lidations and that due to deadlocks were separately measured. The re ults are 'hown in Figure 

5.4.2 for 2S clients. Compaling SMV and CV, it can be seen that the large t percentage of the abol1. 

in SMY is due to deadlocks, whereas that in CV (the optimistic scheme) i due to failed alidations. 

Therefore, deadlocks occur more frequently in SMV than in CV, and failed va l idati on occur more 

frequently in CV than in SMY. 

Regarding the deadlocks, the reason that more deadlocks are detected In MV than in CY i 

because transactions in SMV validate more frequentl y than transac ti ons in CY. SMY require. a 

response for every validation at the end of each method, whereas CY on ly va lidate once at the end 

of a transaction. 

In terms of failed va lidations, the reason that they occur more frequentl y in CV (an optimi sti c 

scheme) is that the number of attributes validated at a time in CY is more than that in the SMY 

protocol. The attributes being validated in CV include all attribute acce sed from the start until 

the end of a transaction , whereas the attributes being validated in SMV are those accessed within a 

method . Consequently the probability that a conflict occurs in a validati on (i.e. fai led validations) 

is higher in CV than that in SMY. Moreover, even if there is no conflict, the con istency action. in 

CY may involve a larger number of remote clients. Whi le the consistency acti ons are requested, the 
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database items are writelocked at the server. Therefore, the number of database item, writelocked 

while waiting for consistency actions in CV is larger than that in SMV, and this results in a higher 

probability of having conflicts in a validation in CV than in SMV 

With respect to AMV (the asynchronous protocol), it can be seen that the deadlock rate in AMV 

is lower than that in SMV and CV, and that the failed validation rate in A!\IV is significantly lower 

than that in CV The reasons that the abort rate in AMV (asynchronous) protocol is smaller than in 

SMV and CV are as follows. Firstly, the number of database items validated on each validation in 

AMV is the same as that in SMV, so that the probability that a validation fails in AMV is as smaIl as 

that in SMV Secondly, AMV does not experience as many blockings as in S\lV because on each 

validation a transaction in AMV does not wait for a response, so there are fewer deadlocks in A~l\' 

than in SMV Having lower deadlock rate and lower fail validation rate allows AMV to have lower 

abort rate than SMV and CV 
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5.4.3 The effect of variable transaction lengths 

The results for the short and medium length transactions described above have highlighted some 

differences in the characteristics of the proposed protocols for different transaction lengths. There­

fore, we conducted further investigations with varying transaction lengths. The results can be seen 

in Figures 5.10 and 5.11, for 15 clients. 

From Figure 5. lO(a) , it can be observed that the response time in CV (Commit-time Validation) 

protocol increases significantly when transactions are longer, whereas the increase for SMV and 

AMV is relatively linear. It can be seen from Figure 5.1O( c) that the sharp increase in the response 

time in CV is caused by the sharp increase in the average fetching time when transactions are 

longer. This is caused by the high number of disk reads in CV as shown in Figure 5.11 (c). The high 

number of disk reads in CV is due to the abort rate of CV that is relatively much higher than the 

other protocols, as shown in Figure 5.11 (b). With the high abort rate in CV, more transactions are 

restarted and may require more disk accesses. 

The response time results are reflected in the throughput, shown in Figure 5.11 (a). in that the 

throughput of SMV and AMV are markedly better than that of CV for longer transactions. 

With respect to the comparison between SMV (Synchronous Method-time Validation) and AMY 

(Asynchronous Method-time Validation), Figure 5.1O(a), 5.1O(b) and 5.IO(c) show that in SMV the 

largest percentage of the increase is in the validation time rather than the fetching time. In contrast, 

in AMV the large percentage of the increase is in the fetching time rather than the validation time. 

The high increase in the validation time in SMV is more due to the blocking time for sending 

validations in longer transactions, whereas the high increase in the fetching time in AMV is a result 

of higher numbers of jobs queuing at the server when transactions are longer, as shown in Figure 

5.11 (d). The longer job queue could arise from the server processor performing validation actions 

asynchronously for clients. 

Finally, with regards to the abort rate in AMY (Asynchronous Method-time Validation), it can 

be observed from Figure 5.11(b) that when transactions are longer the increase in the abort rate 

in AMV is smaller than that of the other protocols. Firstly, apart from at commit time, validation 
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requests in AMV are asynchronous and so cannot lead to deadlocks. Secondly. as in S~l\" the more 

frequent validation requests lead to fewer failed validations than cv. Therefore. it can be concluded 

that under longer transactions AMV is better able to maintain a stable abort rate. 

5.4.4 Summary 

In this section. we compared the performance of SMV. AMV and Cv. The result shows that S~l\" 

and AMV can outperform CV under moderate data contention workload. In addition, the result 

shows that the asynchronous protocol i.e. AMV has a better stable abort rate than SMV and CV 

with increasing number of operations in transaction. 
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5.5 SMV with a probability of commutativity 

This section investigates what perfonnance improvement might be obtained in SMV when method 

semantics are used in the concurrency control. The measurements compare the perfonnance of 

SMV when method commutativity is ignored, with its perfonnance when a chosen probability of 

method commutativity is assumed. 

As described in Chapter 3.3.1, the release of lock conflicts by method semantics can be on 

read-write conflicts and write-write conflicts. The measurements here will vary the commutativity 

probabilities of each of the conflict (i.e. read-write conflict and write-write conflict). 

The workload will firstly be that representing the common database workload which is under 

the moderate data contention: HotCold, explained in the preceding chapter. Then. we investigate 

the perfonnance when conflicts are frequent, which is under HiCon workload that generates high 

data contention. In each workload the observation is on SMV with probability of commutativity to 

release either read-write conflict or write-write conflict. 

5.5.1 Under HotCold 

This measurement sets the system parameter values as described in Chapter -t, and sets the workload 

and database parameters as shown in Table 5.4. The workload is HotCold, with high value of 

probability to release write-write conflict (80%), and with 100% write probability. In practice. such 

values may not be commonly found. The purpose here is to get a noticeable observation, on how 

the characteristics of the perfonnance improvement might be. The other parameter values are taken 

from the previous measurement. 

The result, in Figure 5.12, shows that the probability of commutativity, either to release read­

write conflict (Figure S.12(b ))or to release write-write conflict (Figure S.12(a)), does not improve 

the perfonnance. This result is reasonable because HotCold is a moderate data contention work­

load. Figure S.12(c) shows that the actual number of releases of write-write conflicts per commit of 

transaction is very low, scaling to 0.1 that means less than 1 releases per 10 committed transactions. 
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I Parameter Value 

Workload HCYfCOLD 
P(read-write commute) o and 80% 
P(write-write commute) 80 and 0% 
P(Write) 100% 
Method per Tx (Tx Size) 20 
Total Pages in DB 260 
Attribute run per method 2 
Attribute in an object 5 

Table 5.4: Workload and System Parameters 

With respect to releasing read-write conflicts, however, the result shows that the number of re-

leases of read-write conflicts per commit of transaction is fairly high, scaling to 1.0 i.e. I releases per 

commit of transaction. However, although it is quite high, the throughput of SMV with semantics 

is slightly below SMV without semantics. The abort rate explains this. 

By investigating the abort rate, it can be seen that the abort rate of SMV with semantics (Figure 

5.12(f)) is noticeably higher than SMV without semantics. This is because the aborts are caused 

entirely by fail validations. A fail validation occurs when a write-write conflict is detected at the 

server when the server is processing a validation request but the conflict cannot be released by 

method commutativity. This is illustrated in the scenario explained in Figure 5.13. When a client 

requests an attribute from the server while the attribute is being writelocked at the server (i.e. a 

read-write conflict occurs), the read-write conflict can be released due to method commutativity, 

and so the attribute can be fetched and read by the client although it is being writelocked at the 

server. If further access on the attribute at the client locally is a write on the attribute, the attribute 

is then validated by the client to the server. However, when the server receives the validation of the 

attribute, the attribute is still writelocked by the server, which means a write-write conflict occurs, 

and consequently the validation fails and the transaction is aborted. From this, we conclude that the 

use of method commutativity to release read-write conflicts at the server can cause high abort rate 

due to fail validations, causing a loss rather than a gain of performance. 

In the next measurement we investigate how the performance might improve under HiCon, the 

high data contention workload. 
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In this measurement we set the workload to be HiCon, which is a high data contention workload. It 

uses the same parameters as the previous measurement (i.e. under HotCold), except that the number 

of operations in each transaction is 5, which is sufficient for HiCon to produce observable results. 

The parameters are shown in Table 5.5. 

Parameter Value 

Object access pattern 
No of operations in transaction 

Table 5.5: Workload and System Parameters 

The result, in Figure 5.14(a), shows that releasing write-write conflicts significantly improves 

the performance where the number of clients is greater than 15. The gain on the performance is due 

to the increasing number of releases of write-write conflicts per commit of transaction as shown in 
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Figure 5.14(c). 

By contrast, the result shows that releasing read-write conflicts under high data contention work­

load causes the performance to drop as shown in Figure 5.14(b). This may be due to the scenario of 

Figure 5.13 occurring very frequently. 

5.5.3 Summary 

From the result, we conclude that the use of method commutativity to release lock conflicts under 

moderate data contention workload does not affect the performance. When its use is to release read­

write conflict at the server, the performance may be worse. However, we may expect a performance 

improvement in SMV by using method commutativity when releasing write-write conflicts under 

high data contention workload. 

5.5.4 Chapter Summary 

In this chapter we measure the performance of our method-time validation protocols SMY, AMY 

and Cv. CV is our optimistic protocol that has been verified to be comparable to the existing opti­

mistic protocol 02PL that tends to perform better among other avoidance-based client cache con­

sistency protocols. The measurements suggest that the performance of SMV and AMY outperform 

CV under moderate data contention workload. The measurements also suggest that the overall per­

formance of SMV and AMV is similar, but the detailed characteristics of the protocols do differ, for 

instance the result shows that the asynchronous protocol i.e. AMV has a better stable abort rate than 

SMV and CV with increasing number of operations in transaction. 

Moreover, we measure how the improvement of performance might be obtained by SMV that 

allows method semantics relationship to release lock conflicts. We discover that under moderate data 

contention workload it does not improve the performance. However, we may expect a performance 

improvement when releasing write-write conflicts under high data contention workload. 
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Conclusions and Further Work 

6.1 Conclusions 

This study has investigated client cache consistency protocols in which method semantics can be 

exploited in concurrency control in a client-server, data shipping, object-oriented database system. 

The motivation of this study comes from the fact that previous studies regarding client cache con­

sistency protocols did not use method semantics for the concurrency control. 

Although studies of semantic-based concurrency control have been conducted over the last 

decade, there has until now been no investigation of their implementation in a client-server en­

vironment. Method semantics can exploit the object-oriented database model that allows method 

calls to enhance performance. 

The approach taken in this thesis to utilising method semantics in client cache consistency pro­

tocols has been to design, implement and investigate a new protocol where validation is performed 

by clients to the server at the end of a method call. The protocol studied is named Synchronous 

Method-time Validation (SMV). The term "synchronous" comes from the behaviour of the proto­

col, in that a validation message is sent synchronously from clients to the server; the client waits 

for the response of the validation from the server before continuing (or aborting). This study also 

investigated a new asynchronous version of the protocol named Asynchronous Method-time VaJi-

139 
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dation (AMV), which aims to improve performance through less blockings at each validation from 

client to server. 

The study was conducted using simulation, as this allows system parameters to be altered with­

out physical modification of a real system. 

In order to investigate their characteristics, the new protocols, i.e. SMV and AMV, were com­

pared with the optimistic version of the Commit-time Validation (CV) protocol that also is attribute­

level locking. 

In an existing study[Fra96], an optimistic protocol - 02PL - tends to perform better than a 

pessimistic protocol with the same page-level granularity of locking: Callback Locking (CBL). By 

comparison, in our study we compared our method-time validation protocols (SMV and AMV) 

against the optimistic CV, all of which use the attribute-level granularity of locking. 

In order to check the characteristics of CV, we compared it with 02PL, and find out that they 

have comparable performance characteristics. However, as expected, CV can outperform 02PL and 

vice versa, depending on the level of data contention. CV with attribute-level granularity of locking 

outperforms 02PL when the data contention is high, whereas 02PL with page-level granularity of 

locking outperforms CV when the data contention is low. 

The investigation also shows that our 02PL implementation behaves as that in the previous 

work [Fra96]. This was determined by also implementing the pessimistic CBL, and comparing 

its performance relative to the optimistic 02PL. The results show the same relative performance 

characteristics as we found in the previous work that compared these two protocols that both use 

page-level granularity locking. 

Having demonstrated that our simulation is reasonable, including checking the characteristics of 

CV, we compared our new method-time validation protocols (SMV and AMV) with Cv. We carried 

out two major comparisons. First, the SMV, AMV and CV are compared in their basic form, without 

any probability of commutativity. Secondly, we investigate what performance improvement might 

be achieved if we implement a scheme for exploiting semantic relationships between methods. We 

do this by assuming that there is some finite probability that a lock conflict may be released in SMV 
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through exploiting a semantic relationship between the methods. 

With regards to the comparison between SMV, AMV without exploiting method semantics and 

CV, this performance study has produced the following findings: 

1. The results show that the SMV (synchronous) protocol can outperform the CV (optimistic) 

protocol under common database workloads. The main cause of this is that SMV experiences 

a lower abort rate than Cv. The lower abort rate results in better server responsiveness. and 

consequently a better response time for clients. The low abort rate in SMV is caused by the 

fact that failed validations in SMV are significantly fewer than that in CV although there are 

more deadlocks in SMV than in CV due to more blockings. Overall in SMV, the reduction 

in the abort rate due to failed validations far exceeds the increase in the abort rate due to 

deadlocks. Having fewer database items validated in SMV than in CV allows SMV to have a 

lower chance of failed validations. Moreover, having fewer database items validated in SMV 

also means fewer consistency actions have to be performed by the server, and this results in a 

shorter writelocking time at the server, reducing the probability of failed validations. 

2. We also investigated the asynchronous version of the protocol named Asynchronous Method­

time Validation (AMV). The results show that the AMV has an even lower abort rate than 

the SMV (synchronous) and the CV (optimistic) protocols. Fewer deadlocks in AMV than in 

SMV, and fewer failed validations in AMV than in CV allowed AMV to have a lower abort 

rate than SMV and Cv. The fewer deadlocks in AMV are caused by the fact that AMV does 

not have as many blockings as in SMV, whereas the fewer failed validations in AMV are due 

to the same number of attributes in a validation message as in SMY. 

3. The measurements for varying transaction lengths show that SMV performs better for longer 

transactions than does the CV (optimistic) protocol. The longer the transactions, the greater 

the difference in the abort rate between SMV and cv. This is because as the transaction length 

increases, the chances of having failed validations in SMV becomes even smaller than that 

in Cv. Because the reduction in the abort rate due to failed validations exceeds the increase 
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due to deadlocks, the abort rate in SMV is smaller than that in CY, for longer transactions. 

Because the abort rate influences the number of disk reads in a transaction, and these are 

significant for performance, SMV performs better for longer transactions. Furthermore. the 

results show that for longer transactions the abort rate of AMV is more stable than for S~1V. 

This is because the longer the transactions the lower are the chances of deadlocks in AMV 

than in SMY. 

Finally we investigated the performance improvement that may be expected if we exploit the 

semantic relationships between methods in our SMV protocol. The results show that under mod­

erate data contention workloads the use of method commutativity to release lock conflicts does 

not improve performance. In fact, when it is used to release read-write conflicts at the server, the 

performance may be worse. However, there was a performance improvement when using method 

commutativity to release write-write conflicts under high data contention workload. 

Therefore, overall we believe that this work has shown that the new protocols can have ad­

vantages over existing protocols for particular, realistic workloads. The basic synchronous and 

asynchronous method-level protocols can outperform existing optimistic protocols, while there are 

circumstances in which exploiting method semantics delivers better performance. However, inter­

estingly, exploiting method semantics can reduce performance in some cases. 



Chapter 6. Conclusions and Further Work 143 

6.2 Further work 

In this section, we identify further work that builds on this study. 

Firstly, the results in this study are based on simulation, with the parameter and modeling lim­

itation described in Chapter 4. A more accurate analysis of the protocols could be obtained by 

implementing the protocols in a real database system and then running and measuring real work­

loads. 

The implementation of our asynchronous protocol AMV with its basic form, i.e. without method 

semantics support, is more complex than that in SMV, and it will need extra overhead if we imple­

ment AMV that can exploit method semantics. However, our results shows that AMV is potential in 

reducing abort rate. Our results also show that there are circumstances in which exploiting method 

semantics can deliver better performance. Therefore, despite having to meet additional complexity, 

further exploration of AMV will be a useful and interesting work. 

This study used sequence diagrams to design the protocols and simulation to test their behaviour. 

This approach is appropriate in the sense that simulation allows parameters to be altered without 

requiring changes to a physical system. However, when tackling some concurrency issues, it would 

be desirable to have a more formal way to verify the correctness of the protocols. In this study, to 

test the correctness of the protocols many assertions are added into the simulation implementation 

code. An assertion allows incorrect states to be detected during the simulation runs. However, 

it turns out to be difficult to anticipate all transaction states. Often some unidentified states were 

revealed by finding a failed assertion and investigating the causes. After that, additional assertions 

were added, and the simulation re-executed, which may then reveal further unidentified states, and 

so on. This cycle is much more exhaustive when investigating the asynchronous protocol as it has 

many more unanticipated transaction states. An investigation into the use of a formalism such as 

petri-nets to perform protocol verification may therefore lead to useful future advances. 

Finally, we note that the exploitation of semantic-based concurrency control in a data-shipping 

scheme is part of a larger area of investigation known as "cooperative transactions" [Kai93 ][AKT+96j. 
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In cooperative transactions each client has a private local database and runs transactions locally. 

Cooperation between transactions can lead to high concurrency. This is achieved by defining se­

mantics at some level of granularity, such as for a group of objects or at the application level. It 

would be worthwhile investigating the relationship between the protocols and performance results 

in this study and those for cooperative transactions. 
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