
Attack-Class-Based Analysis of

Intrusion Detection Systems

Dominique Alessandri

May 2004

NEWCASTLE UNIVERSITY LIBRARY

201 29995 X

Ph.D. Thesis

University of Newcastle upon Tyne

School of Computing Science

Abstract

Designers of intrusion detection systems are often faced with the problem that their design fails

to meet the specification because the actual implementation is not able to detect anac/cs as

required. This work aims at addressing such shoncomings at an ear(v stage of the design

process. The proposed method provides guidance to intrusion detection systems designers by

predicting whether or not a given design will be able to detect cenain classes of anacks. Our

method achieves this by introdUCing a classification of anacks and a description framework for

intrusion detection systems. The anack classification and the description framework are defined

at a common level of abstraction. and thereby form the basis for our ana(vsis method. which

determines the anack classes that a given intrusion detection system design can detect. Intrusion

detection system designers can use these results to determine where the design meets the

specification and where it does not. These insights facilitate a more systematic and effective

design process because they can be gained at an early stage of the design process without the

need of actually implementing the design. Final/y. we show how our approach to intrusion

detection system design analysis can be validated and how the analysis results can be used for

further applications such as guiding the design of intrusion detection architectures that combine

diverse intrusion detection systems.

Acknowledgements

First of all, I thank my wife, Sandra, for her tireless and invaluable help and encouragement

and her patience. Without her continuous support, I would not have been able to write this

thesis. Similarly I thank my family and all my friends for providing me with their tremendous

support. Moreover I gratefully acknowledge the excellent scientific advice, assistance and

motivation provided by my manager and mentor, Andreas Wespi, and my supervisor Richard

(Dick) Snow. In the same context I also thank my initial supervisor, Brian Randell, my initial

mentor, Marc Dacier, and my examiners, Roy Maxion and Robert Stroud. Last but not least, I

thank my IBM friends and colleagues Magnus Almgren, Birgit Baum-Waidner, Charlotte

Bolliger, Herve Debar, Douglas Dykeman, Klaus Julisch, Raffael Marty, James Riordan,

Christian Rohner, Morton Swimmer, Axel Tanner, Andreas Tscharner, Candid Wuest, Diego

Zamboni, and all the people in the IBM Zurich Research Laboratory (ZRL) for their highly

valuable and generous scientific and non-scientific support. I greatly enjoyed working at the

ZRL and in particular in the GSAL team (Global Security Analysis Lab).

This research was conducted at the IBM Zurich Research Laboratory in collaboration with the

Newcastle University upon Tyne. It contributed to and was partially funded by the MAFTIA

(Malicious- and Accidental-Fault Tolerant Internet Applications) research project. MAFTIA

was funded by the European Commission (EC) under contract 1ST J 999-J J 583.

11

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Table of contents

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Goal. .. 3

1.3 Approach ... 3

1.4 Novelty of our approach ... 5

1.5 Contributions .. 6

1.6 Outline .. 7

CHAPTER2 RELATED WORK•...•.........•. 10

2.1 MAFTIA tenninology and concepts ... 1 0

2.1.1 Intrusion Detection .. 11

2.1.2 CIDF intrusion detection model as viewed by MAFTIA .. 12

2.2 Classifications ... 13

2.2.1 Classification requirements ... 13

2.2.2 Equivalence class testing .. 14

2.2.3 IDS classifications .. 14

2.2.4 Attack classifications .. 17

2.2.5 Vulnerability classifications .. 18

2.3 Evaluation of intrusion detection systems .. .20

2.3.1 Description-based comparison of intrusion detection systems ... 21

2.3.2 Quantitative evaluation of intrusion detection systems ... 21

2.3.3 Benchmarking of intrusion detection systems .. 21

2.4 Discussion ... 24

2.4.1 Issues in IDS benchmarking ... 24

2.4.2 Limitations of our approach .. 27

2.4.3 Summary ... , ... 28

2.5 Conclusion .. 29

CHAPTER 3 OVERVIEW .. 30

3.1 IDS description framework .. .30

3.1.1 IDS scope .. 31

3.1.2 IDS characteristics .. 32

3.1.3 Creation of IDS descriptions ... 35

3.2 Description and classification of attacks ... 36

3.2.1 Attack class description building blocks ... 37

3.2.2 Systematic creation of attack class variants .. 38

III

AITACK-CLASS-BASED ANALYSIS OF C'-.iRCSION DETECTIO~ SYSTBlS

3.3 Putting it together: analyzing IDSs ... 39

3.3.1 Attack class analysis .. 39

3.3.2 Alarm analysis ... 40

3.4 RIDAX prototype 4 I

3.5 Validation of the approach41

3.6 Discussion ... 43

3.6.1 Facilitating a systematic IDS design process .. 44

3.6.2 Generalizing from attack classes to activity classes...45

3.6.3 Assessment of IDS combinations ... 45

3.7 Conclusion .. 46

CHAPTER 4 INTRUSION DETECTION SYSTEM SCOPES .~ ,\"D THE

CATEGORIZATION OF ATTACKS .. 47

4.1 IDS scopes 48

4.1.1 IDS scope tree 048

4.1.2 IDS scope attributes .. 50

4.2 Activity categorization scheme for attack-like activities and attacks ... 51

4.2.1 System model for activity categorization scheme ... 51

4.2.2 Static activity characteristics ... 53

4.2.3 Dynamic activity characteristics ... 57

4.2.4 Categorization examples ... 60

4.2.5 Discovery of yet unknown attack categories ... 61

4.3 Selection of representative activity classes based on a categorization of attacks 62

4.4 Discussion ... 69

4.5 Conclusion .. 71

CHAPTER 5 INTRUSION DETECTION SYSTEM DESCRIPTION FRAMEWORK 72

5.1 A system model for IDSs .. 73

5.2 Classification and description scheme for sensors .. 74

5.2.1 IDS scope-independent sensor characteristics ... 7 5

5.2.2 IDS scope-dependent sensor characteristics .. 78

5.3 Classification and description scheme for detectors ... 82

5.3.1 IDS scope-independent detector characteristics .. 83

5.3.2 Data pre-processing detector characteristics ... 84

5.3.3 Instance analysis detector characteristics .. 87

5.4 Description of intrusion detection systems ... 97

5.4.1 Database structure used to describe intrusion detection systems 98

5.5 Discussion ... 99

5.6 Conclusion .. 1 00

IV

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfION SYSTEMS

CHAPTER 6 DESCRIPTION AND CLASSIFICATION OF ATIACKS•. 102

6.1 Attack class description building blocks ... 103

6.1.1 Instantiation of attack class description building blocks ... 1 04

6.1.2 Analyzing multiple IDS types ... 1 05

6.1.3 Dependencies among attack description building blocks .. l05

6.1.4 Example of an attack class description building block ... 106

6.2 Attack class descriptions ... 107

6.2.1 Example of an attack class description ... 108

6.3 Using attack class variations to create classes of attack variants .. 110

6.3.1 IDS scope of attack class variations .. 112

6.3.2 Impact of attack variations .. 113

6.3.3 Combining attack variations ... 114

6.3.4 Example of an attack variation .. 115

6.4 Expectable alarms ... 116

6.5 Discussion ... 118

6.6 Conclusion .. 119

CHAPTER 7 ANALYSIS OF INTRUSION DETECTION SYSTEMS .. 120

7.1 IDS analysis process ... 120

7.1.1 Attack class analysis ... 121

7.1.2 Alarm analysis .. 123

7.1.3 Rating of generalized alarms and attack classes ... 127

7.2 Implementation: RIDAX, a tool for analyzing IDSs ... 128

7.2.1 Database structure ... 129

7.2.2 Analysis steps .. 130

7.3 Validation ... 131

7.3.1 Validation challenges .. 131

7.3.2 Validation procedure ... 133

7.3.3 RIDAX example ... 134

7.4 Discussion ... 136

7.5 Conclusion .. 137

CHAPTER 8 A FURTHER APPLICATION: THE ASSESSMENT OF IDSs AND

COMBINATIONS THEREOF•... 138

8.1 Related work ... 139

8.1.1 Dealing with false positives and negatives in the dependability context 139

8.1.2 Assessment metrics ... 139

8.1.3 Discussion ... 142

8.2 Detection rate ofIDSs ... 142

v

ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

8.3 Fault diagnosis based on alarms generated by multiple IDSs ...) 44

8.3.1 Information provided by alarms " " .. 144

8.3.2 Fault diagnosis based on alarm sets .. 145

8.4 Metrics for assessing individual IDSs and their combinations ... 147

8.4.1 Attack recall ..) 48

8.4.2 Attack identification recall .. 149

8.4.3 Attack identification precision .. 149

8.4.4 Rating ambiguity ... 149

8.4.5 Rating precision .. 150

8.5 Extending RIDAX to include fault diagnosis and the calculation ofmetrics 150

8.6 RIDAX experiments ... 151

8.6.1 IDSsassessed .. 151

8.6.2 Detection rates of individual IDSs ..) 53

8.6.3 Examples of alarm-set-based fault diagnosis .. 155

8.6.4 Measuring the results of alarm-set-based fault diagnosis .. 156

8.6.5 Use and impact of alarms reporting variations applied to activities 161

8.7 Discussion ... 162

8.7.1 ID architecture design process example .. 163

8.7.2 Discussion of experiments .. 164

8.8 Conclusion .. 166

CHAPTER 9 CONCLUSIONS AND FUTURE WORK ..•............... 168

9.1 Contributions .. 168

9.2 Discussion ... 169

9.3 Future directions ... 170

APPENDIX A VULDA, A DATABASE OF COLLECTED ATTACKS AND

VULNERABILITIES ... 172

A.l Motivation and history .. 172

A.2 VulDa structure ... 173

A.3 Vulnerability descriptions ... 174

A.4 User interfaces provided ... 176

A.4.1 Attack categorization .. 177

A.4.2 Vulnerability browser ... 178

A.4.3 Integration with security software ... 180

A.5 Conclusion .. 180

vi

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

APPENDIX B STATISTICAL RESULTS DERIVED FROM THE ATTACK

CATEGORIZATION•.•...•....... 181

B.I Dynamic fault characteristics .. 181

B.2 Interface objects .. 183

B.3 Affected objects .. 185

B.4 Dynamic attack characteristics with affected objects ... 186

B.5 Interface objects with dynamic attack characteristics ... 187

B.6 Interface objects with affected objects .. 188

APPENDIX C EXAMPLE IDS SCOPES AND THEIR USE .. 189

C.l IDS scopes .. 189

c.l.l IDS scopes related to networking ... 189

C.l.2 Host-related IDS scopes .. 192

C.2 IDS scope attributes .. 195

C.2.1 Networking-related IDS scope attributes .. 195

C.2.2 Host-related IDS scope attributes .. 197

C.3 DefInition and use of IDS characteristics with respect to IDS scopes .. 198

C.3.1 IDS sensor characteristics ... 199

C.3.2 Detector data pre-processing characteristics ... 202

C.3.3 Detector instance analysis characteristics ... 203

C.4 IDS description example ... 206

APPENDIX D FORMAL SPECIFICATIONS AND DESCRIPTION EXAMPLES 209

D.I BNF specifIcation of Prolog ... 209

D.2 Attack class description building blocks ... 210

D.3 Attack descriptions ... 212

D.4 Attack class variations .. 213

D.5 Alann condition specifIcation ... 213

D.6 Example descriptions .. 214

D.6.1 Alann class description building blocks examples ... 215

D.6.2 Attack description example ... 217

D.6.3 Attack variation examples ... 217

D.6.4 Alann condition examples .. 218

APPENDIX E GLOSSARY .. 219

LIST OF TABLES .. 221

LIST OF FIGURES .. 224

REFERENCES .. 227

VII

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Chapter 1 Introduction

In recent years, an increasing number of intrusion detection systems (IDSs) have become available

[Sobire98]. This has been driven by numerous developments, including the growing e-business paradigm.

the increasing interconnection of critical infrastructure elements, and the growing number of computer

security incidents [CIN0799, Gross97, Howard97, Kumar95, LSMTTF98, Neuman98b, NeuPar89].

These incidents highlight the increasing need for organizations to protect their networks against

adversaries [Sundar96]. The subject of protecting networks and making them secure and reliable has been

addressed in many publications that have analyzed the problems and made pertinent recommendations

[BeGIRa98, Neuman98]. Intrusion detection (ID) is widely regarded as being part of the solution for

protecting today's networks.

IDSs are used to improve system security by detecting attacks and intrusions. However, although they

have been under development for many years, installing and configuring them to provide the intended

service still is a major undertaking and may involve an unacceptable effort. There are numerous reasons

for these difficulties. The facts that

1. IDSs tend to generate excessive numbers (99% and more) of false alarms [JuliscOO, JuliscOl]

and that

2. they often fail to meet their specification by not detecting attacks they should detect

[LFGHKMOO, LHFKDOO]

are two of the most frequent and important weaknesses of IDSs. These weaknesses are in part caused by a

problem inherent to intrusion detection: the difficulty of determining whether the intent of activities that

IDSs observe is malicious or benign, i.e., whether or not an alarm should be generated. There exists no

generally applicable technique to make such distinctions, not least because many attacks make legitimate

use of features provided by the target system. Instead highly specific and, at times, ad-hoc techniques are

required for rating activities as being either malicious or benign. As a consequence special care has to be

exercised during the design process of IDSs, in particular when ad-hoc techniques are used. Such IDSs

often suffer from the weaknesses described above.

1.1 Motivation

The design of an IDS is a challenging task because besides requirements such as the coverage of certain

types of attacks, other limiting factors have also to be taken into account, such as the following:

• Feature extraction: The output of an IDS can only be as accurate as its input [MWSKHH90]. For

detecting a given type of attack the IDS needs to be capable of making the appropriate

observations, i.e., it needs access to data that is relevant for detecting the attack. Thus, the IDS

designer needs to identify the data required and, most importantly, a data source that provides

this data in an appropriate fonnat. This is a non-trivial task because often the IDS designer is not

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECflON SYSTEMS

able to influence the properties of the data source and because different detection approaches

may rely on different data sets for their operation. Moreover commonly available data sources

may require significant pre-processing of the data they provide or do not provide all the data

needed.

• Trade-off between costs and functionality: The use of a gIven data source and detection

approach comes with a certain cost. Their use may, for instance, cause an unacceptable

performance degradation, or require impractical modifications of the surveyed system. In order

to limit such side-effects, IDSs often use entirely different or simplified solutions that may result

in reduced performance of the IDS. In fact in many cases such alternative solutions yield IDSs

that are not able to detect certain types of obfuscated, i.e., slightly modified. attacks [PtaNew98]

or that generate numerous false alarms.

• Test data: Whenever an IDS is tested realistic input data is required [Maxion98, McHughOO.

McHughOOb]. This is an issue because no two environments for which an IDS is to be designed

are identical and because IDSs may make use of environment-dependent optimizations and ad­

hoc solutions. Thus, there is no single general-purpose data set that can be used for testing.

The following example illustrates most of the issues described from the view of an IDS that monitors

network traffic, i.e., a network-based IDS.

Example: IP PDU/ may be fragmented by a router if they exceed the size that the link connecting the

router to the destination network is able to transmit. Thus, the fragmentation of IP PDUs is a legitimate

and necessary functionality provided by the IP protocol. However, this functionality can be used by

adversaries to obfuscate attacks such as http-related attacks that operate at a higher level of the protocol

stack. An IDS observing an IP PDU that has been fragmented has to reassemble its fragments before the

content can be analyzed properly (feature extraction issue). Particularly in heavily loaded networks this

may impose a significant load on the IDS, not least because fragments may be sent out of order. Because

of this difficulty some IDS designers choose to not provide the functionality of reassembling IP fragments

or at least give the user the option of disabling this functionality (cost-functionality trade-ofJ). Moreover

some IDSs generate alarms whenever a fragmented IP PDU is observed. However, because fragmented

IP PDUs may occur in entirely legitimate traffic, such attack signatures generally result in excessive

numbers of false alarms. As documented by Marty [Marty02, p. 66] some IDS designers address this

issue by having their IDSs only generate alarms whenever the size of alP PDU fragment is smaller than

a chosen value. Such ad-hoc solutions may reduce the number false alarms, but do not eliminate them.

Thus any such alarm has to be interpreted with care and, assuming it is not a false alarm, conveys only

very little information about the actual attack (test data issue).

1 PDU: Protocol data unit; a packet

2

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

1.2 Goal

Recent evaluations [LFGHKMOO, LHF'KDOO, Maxion98, WalderOla] of actual IDS implementations

have clearly revealed that currently available IDSs suffer from various weaknesses such as the ones

described thus far. This insight motivated this work. which aims to support the designers of IDSs in their

task. The requirement is to provide a method and tool that predicts the potential of a given IDS design

proposal to detect given types, i.e., classes, of attacks without the need to actually implement the

proposed IDS design. Such an approach limits the effort required to a practical level because it saves us

from having to conduct an impractical number of experiments. We therefore set the following goal for

this work:

Goal:

1.3 Approach

Provide guidance to IDS designers by predicting the detection

capabilities of intrusion detection systems.

In order to achieve the above goal we propose an approach in which we claim it can be predicted whether

or not an IDS design is able to detect a given class of attacks. As these predictions have to be made at the

level of attack classes, we propose an approach that performs a combined analysis of descriptions of

attack classes and IDS designs, i.e., without the need to evaluate IDS implementations. In the beginning

the two tracks of analysis, i.e., the description of attack classes the description of IDS designs, are split to

ensure their originality.

For the first track we introduce an attack classification that classifies attacks according to their externally

observable characteristics, i.e., according to the attack characteristics that are observable by IDSs, humans

etc. We determine attack characteristics using a generic system model that enables the identification of

system components and the interaction among these components when the system is under attack. So, any

two attacks belong to the same attack class if they share the same set of externally observable

characteristics. Attack classes are therefore defined by a set of externally observable characteristics that is

shared by all attacks belonging to a given class.

The identified attack classes are then described in terms of IDS characteristics an IDS must have in order

to be capable of analyzing a given class of attacks, i.e., analyzing attacks belonging to any such class.

Note also that these descriptions must reflect all conceivable approaches an IDS could take to analyze

such attacks. The fact that attack classes are described using IDS characteristics as they are defmed by the

IDS description framework significantly simplifies the actual IDS analysis and ensures consistency across

the entire work.

The second track describes IDSs using the IDS characteristics just mentioned. These characteristics are

derived from IDS classifications and are used to describe the manner in which IDSs gather and analyze

infonnation for signs of attacks.

3

A IT ACK-CLASS-BASED ANALYSIS OF INTR S10 DEITCTIO IT f

At the core of our approach we use a method that determines the manner in which an ID analyze a

given class of attacks. As input to this analysis we use descriptions of IDSs and descriptions of attack

classes. In a second step further analysis is perfonned and the actual output generated. The analy i

results for each attack class may be different and consist of a set of generalized alamlS that the analyzed

IDS has the potential of generating. Generalized alanns are defined by the analysis techniques and the

data an IDS uses to detect attacks that belong to the considered attack class, i.e., they reflect the semantics

of the alarms that the actual implementation of the analyzed IDS design potentially generates. In order to

broaden the scope of these results, the analysis step also includes the automated identification of clas e

of attack variants, i.e., attacks that have been obfuscated in some way, and the analysis of IDSs for the e

additional attack classes. Figure 1 provides an overview of the IDS analysis process. As part of thi work,

we have created a prototype implementation of this process that we narned RIDAX (Rule-ba ed Intrusion

Detection system Analyzer and eXaminer).

Description of

lOSs

Classification &
Description of

Attacks

Analysis of lOSs 1---"

Figure l--Overview of the IDS analysis process

The IDS analysis results are meant to feed into an iterative design process that aims at identifying an IDS

design proposal that meets the IDS specification with regard to the classes of attacks the IDS has to be

able to detect. However, it has to be emphasized that our approach uses descriptions of IDSs and classes

of attacks, i.e. , that it operates at a conceptual level. The use of such class-level resul ts is advantageous

for designers of IDSs, because they are not required to keep track of the numerous individual attacks that

are newly discovered on a daily basis. Instead, the designers can focus on developing and optimizing the

generic detection capabilities of IDSs, i.e., on their detection capabilities with regard to entire classes of

attacks. However, the actual implementation of an IDS will only generate the results predicted by our

approach if the IDS is configured accordingly, if all the attack signatures required are available. Also the

IDS must not suffer from implementation flaws or use ad-hoc techniques that are not reflected by its

description. In practice these limitations are merely of limited significance because it is in the interest of

IDS implementers and users to make best use of the capabilities offered by IDSs. This means, for

instance, that IDS users usually update attack signatures regularly-similar to the manner signatures of

anti-virus systems are kept up-to-date.

The fact that under certain circumstances an IDS may behave differently than predicted also has

implications on the validation of this work. We will discuss these difficulties and show that for practical

reasons only limited validation can be provided. A limited validation can be achieved by providing

evidence that for a representative number of attacks the analysis results produced by our approach reflect

4

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO Y TEd

the results that actual IDS implementations produce. We will outline such a validation approach by

comparing a small number of results produced by our approach with the results ID implementations

produce.

1.4 Novelty of our approach

Numerous surveys and classifications of IDSs and attacks have been proposed. IDS surveys uch a the

one by Jackson [Jacks099) and those by many others [Amor099 Axelss99b. EsSaPi95. Lunt

MWSKHH90) generally focus on the detection capabilities of IDSs and less so on the ID characteri ti

that are necessary to achieve these capabilities. IDS classi fications such as the ones by one Debar er a l .

[DeDaWeOO, DeDaWe99) or the one by Axelsson [AxelssOO) focus on the internal characteri tic of

IDSs. However, because they do not aim at the automated analysis of IDS detection capabilitie . they

operate at a level of abstraction that for our purposes is too coarse.

Approaches to IDS benchmarking evaluate IDS implementations fo r their behavior with regard to

predefmed sets of attacks. Most of the experiments are generally conducted in artificially created

environments that simulate background acti vity. The best known work in this area is the o-called Lincoln

Lab experiment conducted by Lippmann et at. [LFGHKMOO, LHFKDOO). However, Maxion and Tan

[Maxion98, MaxTanOO) as well as many others [DCWMS99, GafUlvO I, WalderO l a, WalderO lb) have

also made important contributions to the evaluation of IDSs. It has to be mentioned that in particular the

Lincoln Lab experiment has been criticized [McHughOO, McHughOOb) as having numerous shortcomings

that in part also apply to the other approaches. From our perspective, the results provided by ID

evaluations are too low-level because the benchmarks are carri ed out using a selection of specific attacks

rather than at the level of attack classes.

Note that IDS evaluations could be used to determine class-level results if one conducted a substantia l

number of tests to determine the IDS behavior for each equivalence class of attacks. However, such an

approach requires a large number of tests that would exceed the number of tests involved in the Lincoln

Lab experiments by far. Moreover benchmarks obviously require the IDSs to be implemented, which is a

second requirement that we attempt to circumvent with our approach. Figure 2 provides a comparison of

our approach (above the dashed line) to IDS benchmarking (below the dashed line).

Analysis of lOSs

Abstract Level

Implementation Level

,..------.~=======----1 Benchl~~ng of r-- -.-(IDS Alarms I
Figure 2--Comparison of our approach with IDS benchmarking

In the area of attack classifications there exists a substantial amount of prior work. Important

contributions have been made by Neuman and Parker [Neuman95, euPar89], Kumar [Kumar95) and

5

AIT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfION SYSTEMS

many others [Cohen95, Howard97, LinJon97]. In many cases classifications of attacks are tightly coupled

with the classification of vulnerabilities [Howard97, Krsul98]. When studying these classifications. one

fmds many of them to be quite different from each other because each of them pursues a different goal.

Regarding the goal pursued by our approach, the attack characteristics that might potentially be

observable by an IDS are the most important aspects to be taken into account.

Seeking a suitable classification, we found that most existing attack classifications were aimed at different

goals or did not capture the attacks in appropriate detail and were therefore not well-suited for our

purposes. Hence, we found it necessary to develop our own classification and description schemes for

IDSs and attacks. However, in the following we also use, for instance, concepts developed by Debar et al.

[DeDaWeOO, DeDaWe99] as a basis for a part of our IDS description framework.

Finally note that it has been argued [McHughOO, McHughOOb] that one of the major weaknesses of IDS

benchmarking approaches is the manner in which the attacks used for testing purposes are selected. For

our approach this issue is only of limited importance as the analysis of IDSs is conducted at the level of

attack classes rather than at the level of specific attacks. However, when it comes to providing relevant

examples and a set of predefmed attack class descriptions, we are in the advantageous situation of being

able to make use of existing work to select attack classes that are known to be relevant. While conducting

the work presented here, we have built and maintained IBM's security database (VulDa) [DacAle99],

which we were able to use for categorizing attacks with regard to the observable aspects of attacks. We

used the statistical results obtained from this categorization to select a number of relevant classes of

attacks that we then used in the larger context of this work. The availability of such statistical data that

reveals the most popular attack categories may also help IDS designers when specifying the list of attack

classes that their IDSs should be able to detect.

1.5 Contributions

The method and tool presented in this work supports designers of IDSs by providing them with the

capability of verifying whether their design meets the requirements before the actual system is

implemented. Moreover the results provided by our approach may serve as the foundation for other ID­

related research such as the assessment of IDSs and combinations thereof. In detail we make the

following contributions:

1. A novel and systematic scheme to describe IDSs concisely: So far IDSs have been characterized

and described based only on benchmarks [LFGHKMOO, LHFKDOO] and product descriptions

[Jacks099]. Our scheme also goes further than existing taxonomies of IDSs [AxelssOO,

DeDaWeOO, DeDaWe99] by describing IDSs in a much fmer granularity.

2. A generic classification and description scheme for attacks: We created an attack classification

and description scheme that is based on criteria that are directly relevant to the ways IDSs

analyze their observations for signs of security threats. The attack and IDS description schemes

make use of a common basis that ensures consistency and simplifies the analysis of IDS designs.

6

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

3. A novel approach to IDS analysis: Making use of the fIrst two items. our approach [AlessaOO]

systematically predicts the attack classes that a given IDS design is able to detect and how these

classes would be reported. The results obtained provide guidance to IDS designers by identifying

strengths and weaknesses of IDS designs and, most importantly, by identifying where the design

meets the specifIcation and where it does not. Moreover we have outlined and successfully

illustrated the manner in which our approach to IDS analysis can be validated-thereby

implicitly also validating the above two points.

In addition we categorized attacks based on criteria that are relevant for their detection using IBM's

security database VulDa [DacAle99]. The statistical results obtained served to identify representative

attacks and attack classes for which we created descriptions in the course of this work. The statistics

obtained support IDS designers in the specillcation of the attack classes that the IDS to be created needs

to be able to detect. The categorization has become an integral part of VulDa, which is used on a daily

basis by IBM's security professionals.

Finally note that the IDS analysis results obtained in the last item form the foundation for further ID

research, such as for developing novel approaches to the assessment of IDSs and combinations thereof.

1.6 Outline

In the following chapters we fIrst develop the necessary foundations for this work, and then explain and

develop the approach introduced in Section 1.3 in detail. The foundations include a discussion of related

work, and also introduce fundamental concepts and terminology, which is done in Chapter 2.

Then, in Chapter 3, we provide a more detailed overview of the entire approach that has been developed

in this thesis.

In Chapter 4, we describe the attack categorization scheme that we apply to attacks taken from VulDa.

VulDa is IBM's security database, which was developed by the author in parallel with the work described

here (see Appendix A). The scheme provides a categorization of attacks that enables us to identify the

most relevant attacks, which we then use to identify the attack classes used during the IDS analysis

process. Furthermore we develop the generic concept of IDS scopes. These simplify the combination of

our work items and support us in ensuring consistency.

In Chapter 5 we develop the IDS description framework. It makes use of the IDS scope concept

developed in Chapter 4, which is why it is placed after the attack categorization chapter.

Chapter 6 defines the manner in which attack classes are to be described by means of IDS characteristics,

and thereby combines the results obtained in Chapters 4 and 5.

The results of these chapters are then brought together in Chapter 7, where we develop the IDS analysis

process, which resulted in the implementation of RIDAX. The latter is also described in this context.

Finally, we outline and discuss an approach for validating IDS analysis results as, for instance, generated

by RIDAX and provide a set of illustrative examples.

7

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

In Chapter 8 we provide an extensive example for a further application of the IDS analysis results as they

are produced by RIDAX. The example explores a possibility of assessing individual IDSs and

combinations thereof. In order to achieve this we first define suitable assessment metrics. Then we

discuss results obtained by using an extended version of RIDAX to calculate these metrics. These results

are based on the analysis of five configurations of three fundamentally different IDSs, and assess every

possible combination of them. The results clearly show that not every combination of IDSs is beneficial

and results in improved completeness and utility of the ID architecture design considered.

Chapter 9 concludes this work and provides a critical discussion as well as an outlook to future work that

we envisage to pursue.

Figure 3 provides an overview of the chapters herein and indicates their main dependencies. The square

boxes represent processes or tasks performed, while the rounded boxes represent concepts and results

produced.

8

ATTACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO

r------------------------------- -
, Chapter 1:
, Introduction

-------------------------------- ----
~- - ------ -- -------------------------
' Chapter2: () () (
, Aelated Wor1< _ T_e_rm_ in_oI_ogy__ Classifications IDS analysis)

r----------------------------------- ,
I Chapter 3: ,
I Overview

Chapter 4:
IDS Scopes
and the Categorization
of Attacks

Attack categorization
~me r--~~

r ----------------------
Chapter 5:

YTE 1

Chapter 6:
IDS Description Framewor1< DeSCription and Classification

01 Attacks

IDS description

I Chapter 7:
I Analysis of lOSes
, (incl. AIDAX prototype)

,-----------------
, Chapter 6:

A further Application:
Assessment of lOSs and
Combinations thereof

Description of attack
classes and variations

(manual process)
(Examples: App. 0)

Estim ates of
false alarm potential

- - - - - - - - - - - - - - - - -r------------------
I Chapter 9:
, Conclusion and Future Wor1<

Figure 3-Overview of thesis chapters

9

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Chapter 2 Related Work

The main focus of this work is the investigation of how IDSs analyze attacks. Accordingly it is closely

related to approaches to IDS evaluation, but also to ID in general. This specifically includes

classifications of attacks and IDSs. Last but not least, parts of this work relate in a significant way to the

MAFTIA project, which makes use of concepts and terminology originating from the dependability field.

In fact we have made important contributions to the MAFTIA project in the context of this work

[D2Maffil, D3MafOl]. One aspect to which we contributed is the MAFTIA terminology, of which we use

a subset in this work. In the following we provide an overview of these items and also explain how they

relate to the work to be presented here.

MAFTIA aims at unifying concepts developed in the ID community and concepts originating from the

dependability community. The two research fields, although overlapping in significant areas, have

different roots. ID has its roots in the early seventies [Anders72] and gained impetus with the occurrence

of the Internet worm [Spaff088] and the seminal work by Denning [Dennin87]. The basic concepts,

however, were discussed in the early eighties by Anderson [Anders80]. The concept of dependable

computing dates back even further. As explained by Avizienis et al. [AvLaRaOO], the concept of

dependable computing first appeared in the 1830's. Because of their rather unreliable components, the

first generation of electronic computers led to the development of new dependability techniques, starting

in the late 1940's.

In this work we make use of the dependability concept known as fault assumptions [LaA vK092]. The

goal of fault assumptions is to identify all possible faults that might be activated within a system.

Knowing all possible potential faults is a prerequisite for a systematic analysis to determine, for instance,

the expected mean time to failure (MTTF) of a given system. This concept inspired us to identify the

input to the IDS analysis based on a categorization of attacks, the goal being a systematic identification of

input data.

2.1 MAFTIA terminology and concepts

As mentioned, this work uses the terminology as defined in the framework of the MAFTIA project. A

first version of this terminology was introduced in the MAFTIA deliverable Dl [DIMaffiO], and then

significantly improved in the intermediate deliverable D2 [D2MafOl]. The deliverable D21 [D21Maffi3]

provides the fmal version of the MAFTIA terminology and concepts. Besides defming the terminology,

MAFTIA applies concepts from the dependability field to ID. We have chosen to adopt these concepts

and the terminology because they represent a suitable framework. Other approaches, such as the glossary

initiated by NSA (National Security Agency) [NSA98], are not based on concepts as rigorous as those

developed by MAFTIA, but merely try to consolidate the common use of terms. A glossary of terms

defined in the context ofMAFTIA that are relevant to this work can be found in Appendix E.

10

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO ' m

In the dependability field [LaAvK092] the concepts of fault, error and failure pia a central role . A fault

constitutes the adjudged or hypothesized cause of an error. Applied to ill. attacks can be \; ewed as

malicious interaction faults (see also Appendix E and D21 [D2l MaID 3 D. An error repre ents the

manifestation of a fault and is viewed as the part of the system-state liable to lead to failure . FinalJy.

failure describes the event when the service delivered by a system deviates from fulfilling the tern

function . Accordingly a security faiJure represents the violation of the intended security polic . i.e ., the

system function in terms of confidentiality, integrity, availability or any other security-related

requirement is not guaranteed anymore . Figure 4 illustrates the basic fault model. For a detailed

discussion how this model can be applied to security and to ill in particular we refer to Section 3.3.2 of

the MAFTIA deliverable D21 [D2IMaf03].

Fault Fault

Error Failure

Figure 4-Basic fault model

In the remainder of this section we describe those concepts developed within MAFTlA that are relevant

to this work, including the definition of intrusion detection that was made in tenns of we ll -defined

concepts originating from the dependability field . In the following severa l concepts taken from the

MAFTIA deliverables D2 [D2MafO 1], D3 [D3MafO 1] and D21 [D21 Maf03] are therefo re repeated or

summarized. Note, however, that this is onJy done for items to which the author made ignificant

contributions.

2.1.1 Intrusion Detection

Considering the term intrusion detection from a linguistic viewpoint, it seems obvious that the goal is to

detect intrusions. Unfortunately this turns out not to be quite correct once one takes a closer look at its

current (rather unfocused) usage-the term intrusion detection is used as a name for a set of security­

relevant practices and mechanisms.

In this work we use the terms intrusion detection and intrusion detection system as they are defined in the

MAFTIA deliverable D2 [D2MafOl] . These definitions use the well-established dependability

terminology:

• intrusion detection: the set of practices and mechanisms used towards detecting errors that may

lead to security failure , and/or diagnosing attacks.

• intrusion detection system: an implementation of the practices and mechanisms of intrusion

detection .

The error-detection portion of ill is the observation and analysis of the system aimed at detecting states

that are error states as defined by the security policy. In practice this is often implemented by detecting

symptoms or evidence of such error states and includes the detection of suspicious activities, vulnerabdi

11

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

scanning, and configuration checking. Additionally IDSs may perform a certain degree of fault diagnosis

in which intrusions, vulnerabilities and/or attacks are analyzed and assessed further. However. most

currently available IDSs do not include any fault-diagnosis mechanisms that go beyond what is required

for detecting errors. When monitoring a system for suspicious activities the IDS has to analyze any

activity observed to some degree. If the analyzed activity is found to be suspicious, additional analysis

may be conducted. In this case we view the total of the two analysis steps as "fault diagnosis," because

the diagnostic results provided along with the error report, i.e., the alarm. may contain information

already determined in the first analysis phase.

2.1.2 CIDF intrusion detection model as viewed by MAFTIA

In Chapter 5 we shall develop our own IDS model. In fact this model is to be viewed as a simplified

version of the CIDF ID model as it has been adopted and refined by the MAFTIA project [D2Maro I].

The following discussion summarizes the CIDF model, including the refmements done by MAFTIA.

MAFTIA presents a model of IDSs according to function, derived as a refinement of the Common

Intrusion Detection Framework (CIDF) [CIDF98]. Wherever possible, the language of the CIDF is used,

although some refmement has been necessary. MAFTIA also addresses issues of channels between

components, which, however, are not a concern in the context of this work.

The CIDF classifies components of an IDS into four categories.

• An e-box, or event generator, is a component that gathers event information.

• An a-box, or analysis box, analyses event information toward detecting errors and diagnosing

faults. The output of an analysis box may provide information to other analysis boxes.

• A d-box, or database, provides persistence for the IDSs. This facility will take on different forms

depending upon use. It may be a complex relational database or a simple text file.

• An r-box, or response box, is the portion of the system that acts upon the results of analysis.

According to [CIDF98], automated responses may include killing processes, resetting

connections, or activating degraded service modes. In line with the discussion in Section 2.1.1,

we do not consider the r-box to be part of ID per se. MAFTIA instead considers the r-boxes as

part of the set of facilities providing error recovery, fault isolation, and system reconfiguration in

a general intrusion-tolerance framework.

Figure 5 presents a refinement of the CIDF model that explicitly identifies sub-components of the e-box,

and the fact that there may be multiple e-, a- and d-boxes.

Note that the decomposition may not correspond to particular physical boundaries. Vulnerabilities, and

hence targets, exist at several different abstraction and implementation layers so that the model is to be

applicable at several layers. The boundaries between components are determined by the level of

abstraction with which we view the system: people, LANs, machines, processes, memory pages. etc.

12

A IT ACK-CLASS-BASED ANALYSIS OF lNTR S10 DETECTIO

, e-box

~ I I
,
i Target , ,
I ~

,

I
Activity I

III I ,
1

Sensor !

- I
i

i a-box It I ,
d-box I ,

I I I

ill ,
I i

111
i
I EwnI~ i

I
I &.II 0.lil-. ! ,

! ,
I L-..J , ,
L_. ______ . ___ I

! r-box L. ________

Figure 5--IDS components of the eIDF model

2.2 Classifications

Classifications and description schemes are an essential part of this work, as we sha ll develop a eries of

them in the context of trus work. The following subsections ajm at providing an overview of exj ring

work, of wruch we shall adopt significant portions.

2.2.1 Classification requirements

An important characteristic of our approach to IDS analysis is the fact that it operates based on classes of

attacks rather than on specific implementations of attacks. In order to ensure consi tency and va lidity of

the IDS analysis results, it is therefore vital that the classification scheme used for classifying attacks is

sound and well-swted for its purpose. Hence, the requirements the attack classification scheme needs to

fulfil have to be defined clearly.

Computer Science and most particularly ID has adopted the concept and mechanisms of classifications

from other sciences such as Biology or Sociology. Based on a review of generically valid classification

requirements [Bailey94, Marrad90] and requirements more specific to Computer Science [VeRaGlO I,

Ze1Wal97] and ID [Howard97, Krsul98 , LinJon97], we have identified the following set of requirements

that a classification scheme needs meet in order to be considered sound:

• Orthogonality: Any item can be put into only one class.

• Procedure: The classification procedure must be available, I.e. , the classification must be

reproducible.

• Observability: The classification procedure has to be based on observable, measurable features

of the event.

• llierarchy: Classes are ruerarcrucal , subilivided into more specific classes.

• Consistency: Members of a given class must share common properties.

13

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

The attack classification scheme that we develop in this work will have to meet above requirements.

Accordingly we shall review whether our attack classification meets these requirements (see Section

7.3.2).

2.2.2 Equivalence class testing

Equivalence class testing is an approach to system analysis that aims at systematically testing every

conceivable mode of operation of a given system.

The term eqUivalence class stems from the field of discrete mathematics (see Sections 7.2 and 7.3 in

[Biggs02]). Equivalence classes are non-empty and pair-wise disjoint. Their union covers the complete

set of elements considered. Moreover all members of a given equivalence class are related. This means

that if a is member of the equivalence class A and b is related to a, b is a member of A as well. It also

means that neither a or b are members of the equivalence class B.

Equivalence class testing addresses the difficulty that in many cases it is not practical to test a system for

every possible set of input parameters. Using this approach, one classifies all possible input parameters

into equivalence classes-the goal being the identification of all conceivable modes of operation. The

parameters assigned to a given class affect a given, previously identified mode of operation of the tested

system. During the actual test runs one selects representative input parameters from each equivalence

class. The number of parameters selected per class may vary. It is important that borders of equivalence

classes are included in the tests if such borders can be identified. For instance, if a class is defined by the

fact that a given numerical input parameter lies in a given range, the test should include values within the

range but also at the limits of the range.

2.2.3 IDS classifications

The first proposals for IDS classifications date back to the late 1980s and were realized in the form of

surveys such as the work by Lunt [Lunt88], Jackson [Jacks099], and others [Amor099, Axelss99b,

EsSaPi95, MWSKHH90].

Sound classifications and taxonomies of IDSs and ID-related technologies are a rather recent

development, dating back only to 1999. The taxonomy proposed by Debar et al. [DeDaWe99] is probably

one of the first real IDS taxonomies. Other taxonomies have since been published, such as the one

proposed by Axelsson [AxelssOO] and, more recently, the one proposed by Halme and Bauer [HalBauOO].

Figure 6 shows the taxonomy proposed by Debar et al. [DeDaWe99]. This taxonomy was later extended

and refined by Axelsson [AxelssOO] and by Debar et al. themselves [DeDaWeOO].

In the context of this work the most important elements of the taxonomy by Debar et al. are the audit

source location and, especially, the detection method. The detection method is used to divide IDSs into

so-called behavior-based and knowledge-based systems.

14

ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Figure 6-1999 IDS taxonomy by Debar et aL

()

:1:" >c
::Oz
>()
~:::! ma
:!!z
m>
n
m

Behavior-based systems, also called anomaly-detection systems [Mounji97], have no knowledge of

specific attacks. However, they have been provided with knowledge of the behavior of the system being

monitored during normal operation. Such knowledge has been acquired either by extensive training of the

system [DeBeSi92, JLADGJ93] or by other more systematic approaches such as those implemented in the

DaemonWatcher by Wespi et al. [WeDaDeOO, WesDeb99]. Behavior-based systems have the important

advantage that they require no database of attack signatures that needs to be kept up-to-date. The main

drawback of behavior-based systems is that the alarms they generate are meaningless because generally

they cannot provide any diagnostic information (fault diagnosis) such as the type of attack that was

encountered. In other words, they can only signal that something unusual happened. A second drawback

is the requirement that a database that describes the normal behavior of a system has to be built.

Depending on the implementation of the IDS this may mean that for every single version of a product a

separate signature set needs to be generated [WeDaDeOO, WesDeb99] or that the IDS needs to be trained

using data from the real operational environment [DeBeSi92, JLADGJ93]. When real operational data is

used, one always runs the risk of including real attacks in the training data. As a consequence of this the

IDS would not report attacks contained in the training data as being suspicious.

Knowledge-based systems, also called misuse detection systems [Mounji97], operate based on a database

of known attack signatures. Whenever they encounter an activity matching a signature stored in the

database, the corresponding alarm is generated. The advantage of such systems is that their alarms are

meaningful, i.e., they contain diagnostic information about the cause of the alarm On the other hand,

their main drawback lies in the system component that enables the generation of meaningful alarms. i.e.,

the database. The database of attack signatures needs to be kept up-to-date, which is a tedious task

because new vulnerabilities and attacks are discovered on a daily basis. However, most commercial

systems available today, for instance NetRanger from Cisco [CiscoNR99] and RealSecure from ISS

[ISSNet99], are knowledge-based systems.

15

ATIACK-CLASS-BASED ANAL YSIS OF INTRUSION DETECTIO~ SYSTEMS

Note that the revised IDS taxonomy by Debar et al. [DeDaWeOO] as shown in Figure 7 takes into account

the detection paradigm implemented by the IDS. If the detection paradigm of an IDS is state-based. the

IDS tries to identify a given system state as being an error state or as being a failure state. Transition­

based IDSs monitor a system for any state transition that represents an attack or an intrusion.

Moreover, Debar et al. redefme the audit source location by adding the categories application log files

and IDS sensor alerts. This modification takes into account the differences in granularity of log data

generated on a hos~. Furthermore, the addition of IDS sensor alerts reflects the trend to hierarchical ID

architectures, in which several IDSs send their alerts to a higher-level instance where the alerts are

analyzed and possibly aggregated. The resulting alerts may then be sent to the next-higher instance or

presented to the security officer.

10<-----,.1 NONPERTURBING
EVALUATION

PROACTIVE
i'<-----"i EVALUATION 1..=:..==--_---'

Figure 7-Revised IDS taxonomy by Debar et aI.

Based on the work by Debar et al., Axelsson [AxelssOO] refined, using different terms, the detection

method. Moreover he regrouped and extended the remaining categories into what he calls "a taxonomy of

system characteristics."

2 In Section 5.2.1.1 we classify information sources as well, but do so using a more generic approach.

16

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIO~ SYSTEMS

As in Debar et al., Axelsson classified a number ofIDSs according to his taxonomy. Some of the systems

appear in more than one category-raising the question whether his taxonomy is ambiguous. Axelsson

gives a plausible explanation for this by stating [AxelssOO, p. 7]:

... this is not because the classification is ambiguous but because the systems employ several

different principles of detection.

However, the presented schemes for classifying and describing IDSs represent merely informal schemes

that are not suitable for the automated analysis of IDSs as envisaged in this work. They pursue different

goals and, most importantly, do not enable IDS descriptions at the level of detail required for our

approach. In Chapter 5 we develop a description scheme for IDSs that is partially based on above

concepts and that enables the description of IDSs at sufficient level of detail.

2.2.4 Attack classifications

Attack taxonomies and the resulting classifications are of interest to us because we envisage using a

classification of attacks to identify the input to the evaluation of IDSs. Computer security attacks and

vulnerabilities have been classified in many ways; however, so far no commonly accepted reference

classification exists.

As described in detail by Howard [Howard97] many attack classifications are based on empirical lists or

simple lists of terms. The weakness of these classifications is that often the terms used to classify are not

mutually exclusive and/or properties of vulnerabilities, and that properties of attacks are not clearly

separated. An example of such a classification is the one proposed by Cohen [Cohen95].

One of the earliest works is the one by Neumann and Parker [NeuPar89]. There the authors classified data

from about 3000 incidents, which they had collected over 20 years, according to nine different computer

misuse techniques they had defined. These categories are, as the authors state themselves, not mutually

exclusive. Based on [NeuPar89], Neumann proposed an extended scheme [Neurnan95] where he also

incorporates the vulnerability exploited and the impact of an attack.

Other approaches, such as the one proposed by Howard [Howard97], classify attacks according to several

sets of categories concurrently. Lindqvist and Jonsson [LinJon97] proposed a similar approach by

classifying attacks according to the two sets of categories "intrusion technique" and "intrusion result." In

his Ph.D. thesis [Kumar95] Kumar introduces a classification based on attack signatures used within the

IDS IDIOT [CDEKS96]. This classification is based on the type of observation required to be able to

detect a given attack. As we shall discuss in Chapter 4, this work is related to our activity classification,

which is based on activity properties observable by an IDS.

While considering these different approaches to the classification of attacks, we were able to identify the

following classification categories:

• List of terms: a wide range of highly diverse terms. Examples: [Cohen95, IcSeV095]

17

•

•

•

•

•

ArrACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Tools: type of tool used to execute an attack e.g., script, distributed tool etc. Example:

[Howard97]

Prerequisites: the prerequisites to be met before an attack can be staged successfully, e.g., access

required, resources required, skills required etc. Examples: [CheBeI94, JiSilrOO, Longst97.

NeuPar89]

Technique: the technique used to run a given attack, e.g., spoofing. Examples: [LinJon97,

NeuPar89, Stalli95]

Detection technique: the technique or type of signature required to detect a given attack.

Examples: [Kurnar95, KumSpa95]

Impact: the immediate damage caused by a successful attack, i.e., an intrusion. Examples:

[CheBeI94, Howard97, JiSiIrOO, LinJon97, NeuPar89, SinSigOl]

Bear in mind that many attack classifications also include information on the vulnerabilities exploited.

characteristics of the attacker, and hislher objectives etc. These inclusions let them become general

classifications of security issues rather than attack classifications.

As mentioned in our approach to IDS evaluation, we use the statistical results of an attack classification to

identify the classes of attacks that are actually of relevance. Clearly, for us to be able to derive a

representative set of activities from such a classification, the classification needs to be centered on the

attack aspects observable by IDSs. Also, we require the classification to be sound, i.e., to meet the

requirements defined in Section 2.2.1.

Unfortunately most attack classifications do not meet these criteria (the same is true for many

vulnerability classifications). This has been observed and extensively criticized earlier by several authors

[Howard97, Krsul98, LinJon97]:

• Namely the categories used in attack classification are often not mutually exclusive. This is often

due to a bad choice in the set of categories that form a category set.

• An attack may qualify for several-mutually exclusive--categories concurrently. In many cases

this is not caused by a bad choice of the categories, but rather by the fact that attacks involving a

sequence of steps are not atomic operations.

• An IDS can observe a given attack in many different ways, depending on the information source

and detection techniques used.

The fact that we were not able to identify an attack classification that meets above requirements led us to

develop a categorization scheme for attacks, described in Chapter 4.

2.2.5 Vulnerability classifications

Vulnerabilities are tightly linked to attacks. In fact, to successfully launch an attack, the corresponding

exploitable vulnerability must be present in the system. This close relationship may cause confusion when

18

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIO!" SYSTEMS

defining a classification. One example is the classification proposed by Howard in [Howard97]. where he

proposes a "computer and network attack taxonomy" that contains categories describing the vulnerability

exploited. This is not to say that combining attack and vulnerability characteristics is not viable, but they

should be clearly distinguished to avoid confusion.

Similar to attack classifications, the classes used for a vulnerability classification are determined by the

goal pursued. For example, if the genesis of a vulnerability is of interest, classes describing the genesis of

the fault will be introduced, as done in the classification proposed by Landwehr et aJ. [LBMW94]. Their

work is based on hierarchical categories, i.e., a decision tree. However, as explained by Howard

[Howard97], this classification is ambiguous because vulnerabilities may qualify for several categories

concurrently, i.e., violate the orthogonality requirement.

In his Ph.D. thesis [KrsuI98] Krsul discusses 17 different vulnerability classifications. We are not

reproducing the entire discussion here, but instead provide an overview of the various classes chosen for

these classifications:

• Genesis: The way the fault was introduced. Examples: [AsKrSp96, Aslam95, LBMW94,

Longst97].

• Time: The point in time at which a fault was introduced, e.g., design phase, coding phase,

maintenance etc. Examples: [Howard97, LBMW94].

• Cause: The cause for the introduction of a fault, e.g., wrong algorithm or parameter used etc.

Examples: [Knuth89, Longst97].

• Removal: The steps to be taken to remove a given fault. Example: [DeMMat95].

• Type: The type of operation that is faulty, e.g., decision making, data handling etc. Examples:

[BasPer84, KrSpTr98, OstWey84].

• Location: The location of the fault, e.g., the faulty object, protocol, device etc. Examples:

[DLAR9I, KrSpTr98, LBMW94, Tanenb87].

• Threat: The potential threat represented by a vulnerability. Examples: [KrSpTr98, Power96].

The threat category is closely related to the impact category introduced in Section 2.2.4, as are attacks and

vulnerabilities in general. A given attack does not necessarily exploit a given vulnerability in the worst

possible way, i.e., the threat represented by a given vulnerability is not necessarily fully exploited by an

attack attempting to exploit that vulnerability.

Example: A fully exploitable buffer overflow [Aleph96} vulnerability may be used to take over control of

the system or merely to crash the system.

2.2.5.1 Enumeration of vulnerabilities

A non-classificatory approach to deal with vulnerabilities is to enumerate them. Recent efforts to

enumerate vulnerabilities are driven by the common need for unique identifiers for vulnerabilities when

handling security incidents, reporting the finding of vulnerability on a given system, and also when

19

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECflON SYSTEMS

reporting the observation of an attack, i.e., when an IDS generates an alarm [DeHuDoOO. W ooErlO I]. The

latter, however, is less obvious as attacks may not always be mapped onto specific vulnerabilities and

vice-versa.

Common Vulnerabilities and Exposures (CVE) [ManChr99] is a security-industry-.... ide effort

coordinated by the MITRE Corporation [CVE99]. CVE is a dictionary that aims at facilitating the sharing

of data across separate vulnerability databases and security tools. While CVE may make it easier to

search for information in other databases, it should not be considered as a vulnerability database on its

own merit.

Another well-known effort is the Bugtraq ID. Bugtraq IDs are assigned based on vulnerabilities as

published on the security mailing list bugtraq, operated by the SecurityFocus [SecFoc] web site. CVE

entries and Bugtraq ID database records both refer to their corresponding counterparts in the other

database. However, neither CVE entries nor Bugtraq IDs--or any other identifiers-are assigned based

on the same principles.

Example: A design flaw recently discovered in the Microsoft IIS Webserver software enables a remote

user to execute arbitrary commands on the machine running the webserver software. In this particular

example CERT [CERT] released the advisory CA-2001.12 [CAl201]. The same vulnerability has been

assigned the Bugtraq ID 2708 [SF2708j by SecurityFocus and the CVE candidate name CAN-2001-0333

[CVE033301j by the CVE editorial board. Once the review process of the CVE candidate entry is

finalized. the name of the entry will be changed to CVE-2001-0333 provided that the entry is not rejected.

which seems very unlikely given the severity of this case.

2.3 Evaluation of intrusion detection systems

IDSs can be evaluated or simply compared in many ways-all pursuing different goals. So far we have

been able to identify three different approaches:

1. Description-based comparison

2. Enumerative evaluation

3. Benchmarking

In the following, we discuss the three approaches listed above. Because the so-called Lincoln Lab

experiment by Lippmann et al. [LFGHKMOO, LHFKDOO] had the most significant impact in the field

with respect to IDS evaluation we shall dedicate Section 2.3.3.1 to their work and explain it in greater

detail. Lastly we would like to mention the recent survey on ID by McHugh [McHughOI] in which he

dedicates an entire chapter (Chapter 5) to the various approaches to IDS evaluation, including the initial

version of the approach presented here [AlessaOO].

20

ATTACK-CLASS-BASED ANALYSIS OF INTRUSIO~ DETECTIO'\ SYSTE.\lS

2.3.1 Description-based comparison of intrusion detection systems

Summaries such as the one maintained by Sobirey [Sobire98] provide an over,iew of existing IDSs.

However, they do not allow the comparison of IDSs based on a pre-defIned set of criteria. In an extensive

work Jackson [Jacks099] did exactly this. She described numerous IDSs by means of a predefIned set of

criteria that then allows their comparison. It is clear that this work does not take into account the quality

of IDSs in any form as it is based on the description of IDSs only. Also, it provides limited information

about the classes of attacks detected by the IDS only. Nevertheless this work provides a useful over-iew

of the IDSs available and the technology used to perform ID.

As we use an IDS description framework, it is probably fair to consider our approach as a description­

based analysis of IDSs.

2.3.2 Quantitative evaluation of intrusion detection systems

Another, more practical approach is to test IDSs for a predefmed list of attacks: Here one systematically

launches every attack on the list and records the alarms the IDSs being tested generate. Such enumerative

testing can be based on pragmatically composed lists of attacks or on enumerations such as CVE or

Bugtraq IDs. The test environment is generally kept simple and does not include additional elements to

generate background activity artifIcially.

One example is the diploma thesis of Gigandet, the results of which were published in a research report

[GigandOO]. In this report he describes the results he obtained by examining Symantec's host-based IDS

product Intruder Alert3 [InAlertO 1] for a large list of attacks.

2.3.3 Benchmarking of intrusion detection systems

Benchmarking of rDSs has become the most popular approach to IDS evaluation. In part this is certainly

the effect of CERT's recommendation [ACFMPS99] to develop adequate ways to test IDSs.

Benchmarking generally imposes a relatively complex testbed that permits the testing of IDSs under

conditions closely matching those found in real environments. This means that, in contrast to the previous

approach, a significant effort has to be made to generate background activity that is as realistic as

possible. The background activity influences IDSs in two ways. Firstly, attack-similar background

activity may cause IDSs to generate false alarms. Secondly, a high volume of background activity may

reduce the detection rate ofIDSs because they are overwhelmed by the amount of information to analyze.

In mentioning these aspects, we have already identifIed one of the big issues with this type of approach:

Because no two environments are identical, the evaluation results are of limited value only as soon as one

starts considering IDSs in differing environments.

3 Originally this product was developed by Axent. Axent was acquired by Syrnantec in 2000.

21

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

As mentioned, the most highly regarded work in this field is certainly the "1998 and 1999 DARPA off­

line intrusion detection evaluation" [LFGHKMOO, LHFKDOO] performed at the Lincoln Lab by

Lippmann et af. They used a complex testbed where IDSs were systematically exposed to malicious and

benign activities. This work represents an important contribution to the field. It thereby builds the

foundation for further work such as the work by Maxion and Tan [Maxion98, MaxTanOO], the work by

Durst et al. [DCWMS99], the work by Gaffney and Ulvila [GafUlvOl] and last but not least the LARIAT

(Lincoln Adaptable Real-time Information Assurance Testbed) project [HRLC01, RCFRLH01], which is

the continuation of the Lincoln Lab evaluation.

It is worth mentioning that McHugh has criticized the Lincoln Lab evaluation repeatedly [McHughOO,

McHughOOb]. His critique represents an important contribution as it not only identifies many issues that

apply specifically to the Lincoln Lab work, but also-and even more importantly-issues that generally

apply to IDS benchmarking approaches. It is therefore no surprise that many of the issues identified by

McHugh also apply to most recent work such as that pursued by the NSS Group [WalderOla,

WalderOlb].

2.3.3.1 The Lincoln Lab evaluation

In their evaluations Lippmann et al. [LFGHKMOO, LHFKDOO] made a considerable effort to create a

testbed that closely resembles a real environment-the fictional Eyreie Air Force base. Besides systems

used for attacking other systems and systems serving as attack targets, the testbed also included a router

to simulate an internal and an external network. In addition, hundreds of PCs and workstations were

simulated on the internal network, and thousands of them on the external network.

This setting was then used to simulate five weeks of real operation of the site. During this period, all

network traffic and host audit data (Solaris BS~ and Windows NT audit event logs) on the internal as

well as on the external network was recorded. In addition, nightly filesystem dumps of the security­

relevant files were made from the attack target machines. This setup resulted in a huge amount of

information-mainly consisting of background activity. For instance, on average, every day 411 Mb of

networking data was recorded.

During the five-week period, real attacks were run on the testbed-overlapping with the simulated

background activity. The attacks were marked in the recorded data in order to enable the comparison of

the alarms generated by the IDS tested and the attacks actually run.

Unfortunately Lippmann et al. provide no information about the criteria that were used to compose the set

of attacks employed. In their 1999 evaluation, they used 56 different attacks that they classified according

to the classification by Weber [Weber98]. This classification distinguishes five classes of attacks:

1. Probing attacks,

4 BSM stands for Sun's Basic Security Module, which is used to generate level C2 audit logs on Solaris
systems.

22

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfJON SYSTEMS

2. Denial-of-Service (DoS) attacks,

3. Remote to Local (R2L) attacks,

4. User to Root (U2R) attacks, and

5. Data attacks.

Once all this information was recorded, they split the data into two subsets. The first portion, covering

three weeks, was made available to test and tune IDSs and included the markers to find attacks in the test

data. The second portion, covering the final two weeks, did not include any markers where to find attacks

in the test data. This second portion was then used to evaluate various IDSs.

The results then obtained illustrate the general weaknesses of current IDSs. As mainly knowledge-based

IDSs were evaluated, it is clear that many attacks were missed because either the corresponding attack

signature was not available or the attack was executed in a stealthy, i.e., obfuscated. fashion that

prevented its detection.

Finally, they acknowledge the deficiency of their testbed with respect to false positives. They clearly state

that the false-alarm rates need to be interpreted in the context of the testbed, and that the false-alarm rates

may vary significantly depending on the environment in which the IDS is used.

As mentioned, McHugh published a critique [McHughOO, McHughOOb] of the Lincoln Lab evaluation.

There he identifies a series of issues the evaluation suffers from. He points out that simulated background

traffic seems to be too low. This has a negative impact on the false-alarm rates measured, which therefore

also seem to be too low. Moreover, he criticizes the manner in which the attacks were selected and how

the selected attacks were distributed over the test data-the different classes of attacks were not

distributed in a realistic manner. In addition, he identifies a long list of further issues the approach suffers

from. Last but not least, he criticizes the attack classification [Weber98] used because it is not useful in

describing what an IDS might see.

McHugh identified the major deficiencies in a precise and well-founded manner. It is his critique that has

significantly influenced the more recent work pursued at the Lincoln Lab. With LARIAT [HRLCOl,

RCFRLHOl], the Lincoln Lab is developing a new benchmarking system that emphasizes the interactive

generation of realistic attack sequences more strongly. Furthermore, they address many of the issues

identified by McHugh.

However, one has to acknowledge the Lincoln Lab evaluation as an impressive and important work,

especially because it has influenced a series of further undertakings.

One of them is the work of Maxion and Tan [Maxion98, MaxTanOO] on the benchmarking of anornaly­

based detection systems, i.e., behavior-based IDSs. In contrast to the Lincoln Lab evaluation, they also

performed tests in a real-world environment, which yielded far more representative results with respect to

false alarms generated by the system being evaluated.

Another recent undertaking is the work of Wan and Yang [WanYanOl], who developed a software

platform for the testing of network-based IDSs in real-world environments. Their approach uses the

23

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

traffic of real-world environments as background traffic, which is overlaid with the attacks used for

evaluating IDSs.

Last but not least the work by Marty [Marty02] needs to be mentioned The goal of this effort is not the

benchmarking of IDSs but the in-depth analysis of how diverse IDSs react to attack obfuscation

techniques and, most importantly, how the various IDSs report these obfuscated attacks. This work.

which in part is motivated by the concepts developed in this thesis, is being conducted at the liM Zurich

Research Laboratory.

2.3.3.2 Benchmarking work pre-dating the Lincoln Lab evaluation

Prior to the work by Lippmann et aI., relatively little work was done in this field. The first notable work is

that by Puketza et al. [PZCM096]. In their work they made a considerable effort to evaluate the network­

based IDS NSM [HDLMWW90] under stress conditions. By doing so, they were able to demonstrate the

relation between the number of omitted PDUs (protocol data units) and the increasing load on the system

hosting the IDS. In the continuation [PCOM97] of their work, they were able to demonstrate how attack

obfuscation techniques can be used to prevent IDSs from detecting attacks or at least to reduce the risk of

detection for adversaries.

Also prior to the Lincoln Lab effort, the liM Zurich Research Laboratory developed an IDS testbed

[DDWL98] that was used to evaluate IDSs for liM internal purposes.

2.4 Discussion

When describing IDS benchmarking, especially as done at the Lincoln Lab, numerous issues have already

been identified. Many of these issues are not specific to the Lincoln Lab work, but are valid for any form

of IDS benchmarking, especially if performed in a testbed. However, this does not mean that these

evaluation results are not useful. Clearly, any IDS benchmarking approach needs to be considered in the

context of the goals pursued. The goal of the IDS benchmarking initiatives is, in most cases, to compare

IDSs and to provide a foundation for deciding which IDS to choose to protect a given environment.

2.4.1 Issues in IDS benchmarking

Although a remarkable effort has been made to meet these goals, the results achieved so far are still

imperfect. This is for several reasons-most of which have been described by McHugh [McHughOO,

McHughOOb, McHughOl]. The most important issues are the following:

• The potential threats defme the protection required. In order to judge the utility of an IDS the

threats one wishes to address need to be defined such that one can clearly define the

requirements one expects the IDS to meet.

In current benchmarking efforts the set of attacks used for benchmarking is selected in a

relatively ad-hoc fashion. However, the choice of the test data is crucial to every form of

24

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

system testing. Many approaches to IDS evaluation lack a clear strategy in the selection of

their test set or use a strategy that is flawed, e.g., [LFGHKMOO, LHFKDOO). Our approach

suffers far less from such insufficiencies because it is based on classes of attacks. The

strategy used in this work to determine attack classes meets the equivalence class testing

requirements presented in Section 2.2.2. It uses a categorization scheme that pennits attacks

and benign activities to be classified according to aspects that are observable by IDSs (see

Chapter 4).

Another aspect that requires increased attention are attack-obfuscation techniques or, in

other words, activity variations. Although, for instance, Lippmann et al. acknowledge the

importance of addressing this issue in their 1999 evaluation [LHFKDOO) and have made a

considerable effort to implement such variants [DasOO, KendalI99), the issue generally is not

addressed in a generic fashion. As we shall see in detail in Chapter 6, our approach

addresses activity variants in a highly generic fashion that pennits the concurrent application

of multiple variations to one activity.

Furthermore it seems advisable to weight the severity of threats, i.e., to weight the

importance of the benchmarking results for any given attack. For instance, in an almost

purely Windows-based environment, it seems obvious that one would give priority to the

detection of Windows-related attacks. This does not mean that one would not also check for

Unix-related attacks as they may provide additional indications about malicious activities in

progress. However, one would certainly assign a lower weight to the benchmarking results

for Unix-related threats than to those for Windows-related threats.

• The testbed environment biases the benchmarks. Whenever an IDS is connected to a real

operational network or installed on a host, the IDS is exposed to a distribution of activities and

activity variants that is specific to the environment considered. As a consequence benchmarks

are mostly performed in an environment that is not representative of the target environment for

which an IDS has to be selected.

False positives: The rate of false positives determined during a benchmark may not be

representative of the rate of false positives one observes in the target environment. For

instance, if a class of benign activities for which the evaluated IDS has the potential of

generating false alarms is very frequent, the IDS is likely to generate many false positives.

If, however, such activities are very infrequent or do not even occur in the evaluation

environment the benchmarking results produced will not reflect this weakness of the IDS.

True positives: The frequency and type of attacks used in the evaluation environment

directly influence the rate at which true positives are generated. The type of attacks used

may non-uniformly emphasize strengths and weaknesses of IDSs.

Background activity: The amount and type of (benign) background activity may impose a

significant load on IDSs, which may cause them to omit data, e.g., drop PDUs. The type of

background activity used in the evaluation environment may impact IDSs in a non-uniform

25

ATT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

fashion because they differ in the amount of resources spent on analyzing different types of

activities. As a consequence evaluation results may emphasize non-relevant or suppress

relevant strengths and weaknesses of IDSs because the artificial creation of background

activity as observable in real-world environments is difficult. Moreover in real-world

environments, background activity can change significantly over time-a fact nicely

illustrated by the data-mining experiments described by Julisch [JuliscOO, JuliscOI).

Topology: The modeling of environments is more complex than merely determining the

frequency of activities and their variants, although already this may be a challenge.

Especially when considering a highly distributed ID architecture, one has to take into

account the topology of the system (i.e., the network) when modeling the environment.

simply because not every IDS is exposed to same distribution of activities. This issue

significantly increases the complexity of processing the alarms generated by multiple lOSs

installed at different topological locations.

• The utility of the information provided by IDS alarms is not assessed. Current benchmarks do

not really evaluate the expressiveness of IDS alarms. They only distinguish between true and

false positives. The contribution that a given alarm may make to the interpretation of what the

IDS has observed is not evaluated. Also, the method employed to decide whether a given alann

actually describes the detected attack correctly is not clearly defmed. For instance, an http attack

that is obfuscated by fragmented PDUs may be reported by an alarm that indicates the presence

of fragmented PDUs. Such an alann qualifies as a true positive because the fragmentation was

reported correctly. However, the actual attack was not correctly identified, i.e .. diagnosed5
.

Accordingly the results provided by IDS benchmarks that do not judge whether the semantics of

alarms is sufficient to allow reasonable conclusions about the cause of the alarms have to be

considered with care. An example for such an approach is the NSS work [WalderOla). Also,

current approaches do not clearly distinguish whether alarms contain diagnostic information

about the impact of the attack, e.g., whether the attack was successful or not. This becomes

especially relevant whenever one compares IDSs of different types, for instance, behavior- and

knowledge-based systems.

• The potential for detecting unknown and non-tested attacks cannot be determined. The results of

current benchmarks are not suitable to forecast an IDS's potential to detect attacks other than the

ones it has been tested for. This obviously also includes attacks that are not yet known. This

situation could certainly be improved by classifying attacks according to a classification that is

centered around the observable aspects of attacks instead, for instance, around the impact of

attacks. Nevertheless, the test result, i.e., a judgement as to whether an IDS has the potential for

detecting a certain class of attacks, is always going to be biased by numerous external factors.

For instance, it will depend on how the IDS has been configured or, even more importantly, on

whether the signature for the attack considered has been defined for the IDS tested. It may well

26

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

be that the tested IDS has the potential for detecting a certain class of attacks. However, if the

IDS does not provide a signature for the attack that is used to verify whether it is capable of

detecting said class, the test result will be misleading.

2.4.2 Limitations of our approach

As explained in Chapter 1, the goals of current benchmarking approaches are different from those of our

far more conceptual approach. The fact that our approach operates based on entire classes of attacks

enables predictions of high generality about the behavior of IDSs. These predictions cover a significant

number of actual attacks requiring a only comparatively limited analysis effort. Most importantly, these

predictions can be made based on the design of an IDS, i.e., even before the IDS is actually implemented.

However, this does not mean that our approach does not have its own drawbacks. One might, for instance,

argue that it should take into account the environment for which the analyzed IDS is envisaged. However,

in view of the goal that we pursue with our approach, taking into account the environment is merely a

desirable extension rather than a requirement. It should, however, be noted that an IDS design that our

approach has determined to have the potential for detecting attacks of a certain class may turn out not to

be able to do so in practice. This can happen if the IDS implementation

• uses highly IDS-implementation-specific heuristics,

• suffers from implementation flaws,

• is configured badly, or

• does not provide a sufficient set of signatures (assuming a knowledge-based IDS).

In other terms, our approach determines whether an IDS offers the potential to detect a given attack class.

It does so also for different configurations of a given IDS. However, here one has to distinguish between

configuration changes that impact the manner an IDS performs its analysis and changes that merely affect

a given set of attacks. For instance, if one enables the reassembly of TCP streams for one installation of

Snort [Roesch99] but not for a second installation that operates in parallel, significant differences can be

expected. On the other hand, the fundamental properties of the IDS remain unchanged if one enables,

disables or modifies the signature for detecting a given attack.

Moreover IDSs often use heuristics in order to rate observed activities or suffer from subtle

implementation flaws that may increase the effort required for their evaluation significantly. Marty

[Marty02] describes an IDS that was found to raise alarms whenever it observes IP fragments that are

between 28 and 42 bytes in size (see also the example provided in the introduction of Chapter 1). Our

approach operates at too high a level in order to reflect such highly implementation-specific aspects.

However, benchmarking-based approaches do not analyze such subtleties either because the number of

individual tests required would be impractically high.

5 In fact, this is an example for the concurrent occurrence of a true positive and a false negative.

27

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTI01\ SYSTEMS

2.4.3 Summary

In this work we introduce a new description scheme for IDSs and a new classification scheme for attacks.

These schemes are defmed such that they enable predictions as to whether an IDS is capable of detecting

a given class of attacks and to determine the manner in which any such finding will be reported. The

existing schemes for IDS classification and attack classification either pursue an entirely different goal.

are not of sufficient detail or both. Moreover our attack classification scheme is descriptive, whereas

existing attack classifications merely associate attacks to predefmed categories.

Our approach to IDS analysis is quite different from existing IDS benchmarking approaches. In Table 1

we have sununarized the main differences between the Lincoln Lab evaluation, which is probably the

most important work in this field so far, and our own approach.

Table l---Comparison of the Lincoln Lab evaluation to our approach

Comparison of Lincoln Lab evaluation Our enumerative and description-based
paradigms approach

(rule-based evaluation)
Goal Provide measurements to judge quality of, to Provide guidance to IDS designers by predicting

compare and to support the selection of lOSs the detection capabilities of lOSs
Realization Evaluation testbed; replay of recorded traffic Rule-based Description of the characteristics of I lOSs and attack classes using Prolog rules

What is analyzed? IDS implementation and configuration Potential of IDS designs

Environment A chosen testbed Independent of environment

Input Real attacks and background activity (e.g .. Description of classes of attack classes; the
traffic) attack classes considered are determined by

means of an extensive attack categorization

Input variation Known variants of given attacks selected Variants of attack classes are generated
systematically

Results List of specific attacks the IDS can detect; The set of attack classes an IDS design has the
Number and percentage of detected attacks potential of detecting and the generalized alarms
and false positives (ROC curves). by which the attack classes are reported.

Limitations Significant bias by test environment; Prediction made for IDS design may differ from
enormous effort involved; only limited behavior of the actual IDS implementation.
coverage of conceivable attacks.

It seems inappropriate and impossible to establish a ranking of the existing approaches, including ours, in

terms of one being superior to the others, because all approaches aim at different goals-in particular

ours. Also, it is clear that our approach, being very conceptual, will only be able to provide results at a

relatively high and conceptual level. However, this is perfectly in line with our goal of providing

guidance to designers ofIDSs by predicting the detection capabilities of their designs. For such guidance

class-level results are required because the typical IDS design goal is to cover entire classes of attacks

rather than specific attacks only.

In the preceding discussion on IDS evaluation, it has been observed that ID alarms are not of binary

nature, i.e., they are not simply correct or incorrect, and that, as a consequence, it may not always be

sensible to simply rate them as true or false positives. Naturally, this also applies to our approach, which

is the reason why we introduced the concept of generalized alarms.

28

,
I

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

2.5 Conclusion

In this chapter we have introduced important concepts originating from the ID and dependability fields. In

part this was done by summarizing concepts developed in the context of MAFfIA to which the author

has made significant contributions. As a result we were able to defme the ID-related concepts used in this

work in as consistent a manner as rarely done elsewhere.

Furthermore we have discussed various existing approaches to IDS, attack, and vulnerability

classification, and found that none of them is directly usable for our approach to IDS analysis. However.

to some extent, important contributions, such as the IDS classification by Debar et al. [DeDaweOO.

DeDaWe99], will be adapted as we develop our IDS description scheme in Chapter 5. Finally we have

discussed existing approaches to IDS evaluation and therein provided a comparison of our approach with

the important Lincoln Lab evaluation by Lippmann et al. [LFGHKMOO. LHFKDOO]. However. as the two

approaches rely on fundamentally different concepts and aim at different goals. they are not meaningfully

comparable.

29

ATIACK-CLASS-BASED ANALYSIS OF INTR S10 DETECnO,' Y TE 1

Chapter 3 Overview

In this chapter we provide a more detailed overview of our approach-thereby introducing the key

concepts. We begin with an outline of the scheme that we employ for describing ID (ection 3. 1). in

Section 3.2 we introduce our classification of attacks that yields descriptions of attack clas e . ecrion 3.'

describes the actual analysis method for IDSs as it was implemented in the RIDAX prototype (e tion

3.4). Section 3.5 outlines a possible approach to validate the resuJts produced b RID X and identiEe

the challenges involved. In Section 3.6 we discuss the resuJts obtaioed and outline further applications of

the approach presented, such as the one described in Chapter 8.

3.1 IDS description framework

In the following we introduce a description scheme for IDSs that enables a detailed but conCI e

description of those IDS characteristics that are relevant to the detection of attacks. The cherne ha been

developed in a pragmatic manner based on the experiences gaioed by the development and deployment of

IDSs and the in-depth analysis of attacks and vuJnerabilities in the context of maintaining IE . ecurity

database YulDa [DacAle99]. Further details on YulDa will be provided in Appendix A. Example of ID

characteristics that our scheme captures are the data that is available for analys is, the extent to which

protocols are interpreted and verified, and the analysis techniques that IDSs may use to determine

whether or not an observed activity might represent an attack. IDSs may be rather complex ystems, and.

even more importantly, the characteristics of two IDSs may be fundamentaJl y different. In order to be

able to describe such a variety of complex systems we chose a scheme that clearly separates the variou

aspects of an IDS.

In a first step we chose a system model that divides an IDS into sensors and detectors. The ensor

corresponds to the e-box known from the CIDF model [CIDF98] and retrieves raw data from an

information source that it then passes on to the detector. In CIDF terminology, the detector can be viewed

as the combination of an a- and a d-box. Figure 8 illustrates this simple model (see also Section 2.1.2).

Alanns

Detec!ot' (a/<!-box)

Raw Data

Information Source

Figure 8--IDS model used for our description scheme

In a second step we introduce a scheme for representing IDS characteristics in a t\ n-dimensional and

hierarchical manner. Using such a scheme it becomes possible to specify very detailed and specific lD

characteristics using two comparatively simple parameters. One parameter denote a generalized

30

A ITACK-CLASS-BASED ANALYSIS OF INTRU 10 DETECTlO

characteristic such as the ability to apply regular expression matching on data. This first parameter.

however, does not specify the scope within which this IDS characteristic is available, i.e .. it doe not

determine the kind of data regular expression matching can be applied to. Instead, thi is spe ified b the

second parameter that determines the so-called IDS scope. The IDS scope specifies the scope of validity

of generalized IDS characteristics in a hierarchical manner.

3.1.1 IDS scope

The IDS scope hierarchy is the result of an iterative process that includes not only thi ork n ID

analysis but also our work on attack categorization in the context of the VulDa maintenan e [Dac e 9] .

The scheme is divided into the three top-level scopes "networking " "user" and "ho t. " The ID pe

"networking" and "host" are then divided into a number of lower-level scope uch a the ID pe

"application layer" or "process." Beneath these lower-level scopes further e en more pecific cope an

be defmed. The "user" IDS scope refers to a human user and is not di vided into lower-Ie el cope .

Figure 9 provides an overview of the IDS scopes identified. 10 the outer right column it pro ide

numerous examples of low-level IDS scopes that we have identified in the context of this work. Ole that

this scheme is not fmalized but is meant to be extended as new technologies emerge.

IDS Scopes User

IPv4
1Pv6
X25
ARP
TCP
UDP
ICMP

CORBA
DC OM

DNS
SMTP
FTP

'1TTP
[HTIP 1.0

HTTP 1.1

CPU
Siorage
VO
Memory

Network Stack

System

:====~_ Function
File
Directory
Unk
Special

Signal
Socket
FlFO
Shared Memory
Message
Semaphore

CORBA
DCOM

Vanable
RegislJy

Figure 9--IDS scope tree with examples of low-level ID scope

31

IEEE 802.2

IEEE 802.3

A IT ACK-CLASS-BASED ANALYSIS OF INTR SIO DETECTlO Y TE 1

We extended the IDS scope hierarchy shown in Figure 9 further by adding attribute to the ID pe If

needed. These attributes express, for instance, whether a transport layer ID cope i connection onented

or whether multiple transactions are supported within one session. Applied to hrtp. the latter pernuts us lO

distinguish semantically between hrtp versions 1.0 and 1.1 (unlike hrtp version 1.0, hrtp versIOn 1.1

supports multiple subsequent http requests within one session).

IDS scopes play an important role in this work because we also use them for clas ifying attac - . Their use

thereby supports us by ensuring consistency across all the models de eloped and propo ed in thi w rk.

The concept of IDS scopes will be developed in Section 4.1. To a large degree it i based n insight

gained during the operation of the VulDa database (Appendix A).

3.1.2 IDS characteristics

The IDS model we use in this work is il lustrated in Figure 8. in our de cription cherne \ e therefore

distinguish between sensor characteristics and detector characteristic . The majority f the e

characteristics are represented by a 2-tuple consisting of an ID scope and a generalized lD

characteristic. In addition to the IDS-scope-dependent characteristic, we al 0 u e a mall number of lD -

scope-independent characteristics for describing some generall y va lid propertie of the component

described. Figure 10 shows the hierarchy of IDS characteristics that are u ed in the ID de ription

scheme. The detai ls ofthis scheme, which is outlined in the following, are de eloped in hapter .

IDS Characteristics

Oblect

ObJ8ct AttTlbutes

Request

Arguments

Result

Dala

Protocol Control Dala

IDS Scope Indep
Sensor Characteris1lCS

IDS Scope 1ndIp.
Det.a.

Figure 10--Top-levels of IDS characteristics hierarch

3.1.2.1 Sensor characteristics

O3Ia Normalaatlon

Instance Part AnalysIS

Instance AnalysIS

The sensor component of an IDS is responsible for retrieving data from a data ource and malang it

available to the detector. We use very few IDS-scope-independent characteristics, the mo t important of

which is the information source type. The information source type describes hether the data i captured

in the form of raw data or in the form of log data as a process or the operating y tern create II Thl I

32

AITACK-CLASS-BASED ANALYSIS OF INTR 10 DETECTIO T Y TE. I

illustrated in Figure 11 . Raw data sources are further separated into external and internal data ource .

External sensors capture data before it actually reaches its destination., hereas internal sensors are

implemented by a component that is embedded into the element surveyed.

The information source type is an important characteristics because it determines the extent to which the

data provided needs to be pre-processed before the detector can analyze it. For instance, using a network

packet sniffer provides data that requires substantial pre-processing before application la er data an be

analyzed because the data has to traverse a number of network layers. Figure II provide an overvie\ of

the information source type hierarchy used along with some examples of actual ensor type .

External Networ1< Pacl<et Sniffer
Raw Data

Integrated Networ1< Sensor
Internal Integrated AppllcalJOn Sensor

Information Integrated OS Sensor
Source Type

System Level OSAud~~
Accounong

Log Application Level ApphcalJOn log

Meta 10 Alarms

Figure II-Information source types hierarchy including example

The IDS-scope-dependent sensor characteristics are used to describe the data items that a en or i

providing to the detector. Each category of sensor characteristics shown in Figure 10 repre ents a number

of actual sensor characteristics. The category "protocol control data," for instance, contains ensor

characteristics such as "destination ID" and "destination name." The semantics of these characteristic i

oruy clearly defined once they are combined with an IDS scope. Considering the above example, the

sensor characteristics "destination ID" combined with the IDS scope " lPv4" denote the fact that the

sensor described is able to provide the IP address to the detector. Another example is the category

"object" that contains the two characteristics "name" and "ID." Combined with the ID cope "proces ,"

these characteristics denote the fact the sensor is able to capture the name and the lD of processes.

When describing a sensor, the proposed scheme enables us to systematically and conci ely identify the

data items a sensor is able to provide to a detector.

3.1.2.2 Detector characteristics

The description scheme for detectors is more complex than the one for sensors because their task is more

complex and may vary far more than that of a sensor. For their description we also use a small number of

IDS-scope-independent characteristics. The most important of these are the ones that reflect whether the

detector operates in a knowledge- or behavior-based manner. These properties have been adopted directly

from the IDS classification by Debar et al. [DeDaWeOO, DeDaWe99] .

One part of the IDS-scope-dependent characteristics describes the data pre-processing capabilities of the

detector. Here it is described whether an IDS is able to filter observations based on data items such as the

IP address and whether the detector is able to normalize data items. An example for data nonnalization i

the decoding of an http URL that uses hexadecimal encoding of characters appearing in the URL as tt t

often used to obfuscate attacks [PtaNew98 RFPOO].

33

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

The other portion of IDS-scope-dependent detector characteristics descnbes the actual analysis

capabilities of a detector. We distinguish the two high-level categories "instance part analysis" and

"instance analysis" (see Figure 5). The semantics of a so-called "instance" is defined when it is combined

with an IDS scope. For example, considering the IDS scope "1Pv4," an instance denotes a complete IP

PDU and an instance part denotes a fragment of a fragmented IP PDU. Applying the IDS scope

"process," an instance denotes a process and an instance part stands for a thread. Making this distinction

between instances and instance parts is necessary because certain detectors are only able to analyze an

observation when it is available in its complete form whereas others may also be able to analyze

individual parts of it. Yet other detectors may be able to analyze instance parts only. However. apart from

this difference the hierarchies beneath the two categories are identical and are composed of what is called

the "analysis level" and "analysis techniques." The entire hierarchy is illustrated in Figure 12.

We use three different analysis levels to express the degree to which a detector attempts to analyze an

instance or an instance part:

• Basic analysis: This level expresses the fact that a detector has a basic awareness of the instance

or instance part, i.e., it is able to associate an observation to a specific IDS scope.

• Logic verification: The detector is able to verify whether the observation confonns to the

specification. An example is the syntax verification of an http request.

• Semantic verification: The detector is able to determine the potential impact of its observation.

An example is the detection of a syntactically correct http request that attempts to retrieve

confidential information.

In order to achieve any of above analysis levels, detectors use analysis techniques such as regular

expression matching, etc. Note, however, that for a given attack a detector is only able to achieve any of

above analysis levels if all pre-conditions are met. This means that all the required data must be available

and that the detector must be able to perform all the required pre-processing steps such as the

normalization ofURLs.

For our scheme we have identified two kinds of analysis techniques. The "general analysis techniques"

denote techniques that can be applied to individual instances as well as across multiple instances and

instance parts:

•

•

Timing analysis: These characteristics reflect the detector's ability to draw conclusions from

instance properties such as their duration or the time period of observation, e.g., specific hOUTS.

Data analysis: These characteristics describe a detector's ability to analyze data by applying

techniques such as string matching or regular expression matching.

The "cross-instance analysis techniques" describe techniques that can only be applied across multiple

instances or instance parts:

• Sequence analysis: This category covers the various techniques a detector can employ to

discover sequences in its observations. It is, for instance, used to describe whether a detector is

34

•

A IT ACK-CLASS-BASED ANALYSIS OF INTR SIO DETECTIO Y TE I

able to recognize sequences at all , and if so, whether it is able to do so tolerating errors in the

sequence.

Statistical analysis: This category is used to describe the characteristics of tatistical anal is

methods that detectors may use . It is, for instance, used to describe \ hether a detector use

sliding windows, a decay function or both.

Figure 12 provides a simplified view of the hierarchy of characteristics that are used in the ID

description scheme for describing instance- and instance-part-related detector characteri tic . The round­

edged boxes represent the analysis techniques .

duraOon
time period

stnng matChing
adv. string matChing
regular el(pression
size venfication

fIXed seq. matching
advanced seq. m
stateful
timing

I <combinations of
C 4 characteristics>

Figure 12-Simplified hierarchy of instance- and instance-part-related detector characteri tics

3.1.3 Creation of IDS descriptions

The IDS description scheme introduced enables a detailed description of IDSs. In order to ensure tbat the

resulting descriptions are not only concise but also repeatable, the creators of IDS descriptions bave to

obey the following rule :

Rule: Every IDS characteristic must be expressed using the highest-level

IDS scope applicable.

This rule is necessary because it is possible to create valid, but possibly incomplete IDS descriptions that

do not use the highest-level IDS scope applicable for each IDS characteristic. It thereby prevents

ambiguities such as the version-specific description of http protocol version-independent IDS

characteristics. Such characteristics should be described at the IDS scope "http " but could as well be

described twice: once for the IDS scope "http version 1.0" and once for "http version 1. I ." Although sucb

descriptions may be correct and complete at the time they are created they may be rendered incomplete

as the scheme evolves and new IDS scopes are added.

In the context of this work we have created descriptions for a number of IDSs. In the following we

discuss an abbreviated example description of WebIDS [Alrngre99] (for a complete de cription ee

35

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Appendix C.4). All the IDS characteristics mentioned are highlighted "ith double quotes. WebIDS is a

comparatively simple IDS that is aimed at the detection of attacks targeted at webservers.

Example: The sensor component of WebIDS, i.e., the parser that is used to parse the webserver access

logfile, retrieves all the information that is written to a CLF logfile [Weinma98]. The information source

type is therefore "application log." This means that the detector portion is provided with almost the

entire information associated with a web request, including the URI (universal resource identifier). IP

source address etc. The URI is represented as an "argument" sensor characteristic of the IDS scope

"http. " Jfbasic http authentication is used, the logfile even includes the user name. which is represented

by the sensor characteristic "object name" for the IDS scope "user" (see Figure) 0). Note, howewr. that

it does not include any of the http headers or the data that is sent by an http POST request. This is data

sent by the client, i.e., browser, on the lines after the actual request and includes information about the

virtual host, cookies, data from submitted forms etc.

The detector component of WebIDS uses several modules to analyze the http request. The most important

one is the module that analyzes each "http" "instance" at the "semantic" level using "regular

expression matching" for signs of known attacks. Moreover the detector contains a module that performs

certain statistical analysis across multiple http requests, i.e., across multiple "http" instances. The

description of these characteristics will be discussed at a later stage as further details need to be

introducedfirst (see first example in Section 5.3.3.3.2).

3.2 Description and classification of attacks

Attacks can be classified according to numerous criteria~epending on purpose of the attack

classification (see Section 2.2.4). The attack classification that we use in this work is based on

descriptions of attacks and differentiates among classes of attacks based on attack properties that are

relevant with regard to their detection by an IDS. The attack description scheme that we propose uses IDS

characteristics to express the requirements an IDS has to meet in order to be able to detect a given attack.

The resulting descriptions capture the nature of the attack but not all of its details. As a result,

descriptions of different attacks may be identical-thereby identifying and defining an entire class of

attacks. Hence, an attack class is defined by the set of all attacks having the same attack description, i.e.,

attack class description.

Example: There exist many different URL-based buffer-overflow attacks [CAJ30}, CVE002JOO,

CVE087499j against webservers. The description of any such attack will be identical even though the

attacks may target different vulnerabilities that exist in different webserver products and therefore use

entirely different overflow strings. However, from an IDS perspective the requirements for detecting any

member of this class of attacks are the same.

6 A webserver may serve many different sites using the same physical host and server pro.cesses. l?e so­
called http header field "Host," which is sent after the actual http request, determines the site to which the
request is targeted.

36

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DEfEcnO~ SYSTEMS

Based on these considerations a two-step process for classifying attacks can be defined:

1. Description of attack: The attack to be classified is described using the scheme presented below.

2. Classification: If there exists a description of an attack class that is identical to the newly created

attack description, the attack is a member of this previously descnbed class. If no such attack

class description exists, the newly created attack description identifies a new attack class.

The actual description of an attack, i.e., an attack class, is composed of attack class desCription building

blocks that each describe a specific aspect of the attack. The re-use of already existing building blocks

• limits the effort required for describing an attack, and thereby also

• ensures consistency and maintainability among the descriptions of different attacks that belong

to the same class.

New attack class description building blocks are created and added to the library of already existing

building blocks whenever a new attack cannot be described using the already existing building blocks. As

the number of readily available attack class building blocks increases, the number of additionally required

building blocks that are required for each newly created attack class description decreases.

In the following sections we outline the components involved in this attack classification and description

scheme. The details, however, are developed and described in Chapter 6.

3.2.1 Attack class description building blocks

Each attack class description building block only describes a very specific aspect of an attack class. It

does so by specifying the characteristics that are required of an IDS in order to analyze the aspect

described. It is, however, important that the description should cover all conceivable approaches an IDS

could take for analyzing the attack. Practically, these descriptions have to be extended as new approaches

for analyzing the described attack aspect are discovered. Therefore all existing attack class descriptions

that make use of a given attack class description building block are extended implicitly whenever the

building block is extended.

In general one can distinguish two categories of building blocks that formulate the requirements an IDS

has to meet in order to

• take notice of the attack, i.e., to verify whether all required data is available, and requirements

that need to be met in order to

• analyze the actual attack.

As a further measure to ensure consistency across attack class descriptions and to limit the effort of

creating further attack class descriptions, the building blocks are formulated at the highest possible IDS

scope (see above rule). When used for describing an attack class, the building blocks can also be used for

describing the attack class at any IDS scope that is beneath the IDS scope of their specification.

Moreover, the description of a building block may itself make use of other building blocks.

37

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Example: We have created a building block that specifies the requirements for analyzing the data of an

application layer transaction. When creating an attack class description we can then specify whether the

bUilding block is to be used for http or smtp (mail) etc.

This bUilding block itself may make use of other building blocks. For instance. in the case where the

information source is a network packet sniffer (see Figure 11). the building block may require the IDS to

be able to provide the appropriate transport layer data. The bUilding block that specifies the

requirements for the transport layer data may then set a similar requirement for the data of the next

lower-level protocol etc. However, the building block specifying the application layer requirements has to

cover also other sensor types. For instance, in the case of an IDS that operates based on data retrieved

from log files, the application-layer-specific requirements are different and do not include requirements

for transport layer data.

As a further example we consider the description of an attack class that makes use of attack class

description building blocks.

Example: Consider the class of URL-based meta-character attacks. These attacks typically exploit

shortcomings in the escaping of input parameters that are submitted to CGI scripts as part of the URI

[CA0696, CA0797]. The attacks permit for instance the reading of private data. Using the available

building blocks, this attack class can be described by only two building blocks:

1. Application layer control data for http: This building block is equivalent to the one described in

above example. It verifies whether the required input data. i.e .. the URI of the http request. is

available.

2. Suspicious string in the http URI: This building block verifies whether the detector is capable of

analyzing http request at the semantic level and whether it can do so using some form of string

detecting, e.g., regular expression matching.

3.2.2 Systematic creation of attack class variants

Earlier we mentioned that adversaries often attempt to obfuscate their attacks in order to evade detection.

We take into account such obfuscation techniques by including hooks in the descriptions of attack class

building blocks that allow us to analyze them under the assumption that the attack class has been

obfuscated in a particular manner. Our scheme formulates so-called variations in a similar manner as the

attack class building blocks by specifying the IDS characteristics that are required to deal with the

obfuscation applied to the attack. In the context of this work we have created descriptions of seven

variations that can be applied to attack class descriptions. It is even possible to apply several of them

concurrently as long as they do not interfere by making use of the same system or protocol features in a

different manner.

Note that a new attack class is created whenever a given variation or combination of variations is applied

to an attack class. Each variation extends the description of the initial attack class, which causes the set of

38

A IT ACK-CLASS-BASED ANALYSIS OF !NTRUSIO DETECTIO

IDS characteristics required for analyzing the initial and the new attack class to be different. Finall , note

that multiple variations may be applied to an attack class concurrently.

Example: A variation that we described is the IP fragmentation obfuscation technique introduced in the

example of Section I . I . This variation formulates the requirements an IDS has to meet ill ord r to

reassemble fragmented IP PDUs. The variation can be applied to all allack class building blocks that

involve the p rocessing of IP PDUs. For instance, if we analyze a network-based IDS that i 1I0t obI to

reassemble IP PDUs the analysis will reveal that this IDS is not capable of detecting anack cla that

involve this obfuscation technique. Note that based on the information source type the cheme 01 0

recognizes that an IDS such as WebIDS is not affected by this variation because it does not have to

process raw IP PDUs but instead retrieves its information/rom a log fi le.

3.3 Putting it together: analyzing IDSs

In the previous two sections we have developed a scheme for describing ID and a cherne for

classifYing and describing attacks. In this section we show how IDS and attack cia de cription feed

into an analysis method that determines the attack classes that a given IDSs has the potential of detecti ng.

The IDS analysis method determines the type of alanns, i.e., generalized alarms, that an IDS potentially

generates. Figure 13 illustrates this two-step process and shows a more detailed view of the ID analys is

part of Figure I . Having described our approach in some detail , we will then provide an overview of the

RIDAX prototype, which implements the approach. Finally we outline the issues invo lved in va lidating

the results as produced by our RIDAX prototype . The details of the entire analysis process will be

presented and developed in Chapter 7.

Attack Class
Descriptions

(incl. Variation)

Example:
Attack: HTTP req. argo

buffer-overflow
Variation: IP fragmentation

IDS Analysis

Attack Class

Analysis

IDS characteristics
r uired for

analyzing selected
attack classes

IDS characteristics

IDS
Description

Examples:
Description of Snort

IDS

Alann Analysis

(using alann cond.)
Generalized

Alarms

Examples:
Susp. app. layer req. argo (HTTP),
Network layer fragmentatIon (lP)

Figure 13-The two-step IDS analysis process (including exam ples)

3.3.1 Attack class analysis

Attack class descriptions may describe many different approaches how an IDS could analyze a gi en

class of attacks (see Section 3.2.1). The attack class analysis step systematically explore aU the e

possibilities while taking into account the characteristics of the IDS under evaluation. ote that at till

stage the approach determines the manner in which the evaluated IDS processes, i.e., analyze . attacks

39

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

from a given class. It is therefore not yet determined whether the IDS recognizes the fact that the analyzed

class of activities actually represents a class of attacks. Neither does this step determine the alarms that

the IDS is likely to generate. These are identified in the subsequent "alarm analysis" step. For a given

attack class it is therefore determined whether or not the IDS is capable of analyzing the attack class

considered. In some cases it may be found that the IDS offers multiple approaches for analyzing a given

attack class. In such cases the analysis continues for each result independently with the alarm analysis

step. In addition to the result whether the IDS considered is able to analyze a given attack class, the

analysis also determines the approach the IDS uses to analyze the attack class by providing the set of IDS

characteristics that were required of the IDS during the analysis. This set of IDS characteristics then

serves as input to the alarm analysis.

3.3.2 Alarm analysis

The alarm analysis step operates based on the set of IDS characteristics that the IDS analyzed had to

possess to analyze the attack class considered. As additional input this step makes use of the IDS

description and of alarm conditions. Alarm conditions are an integral part of this analysis step and

formulate the condition under which IDSs potentially generate alarms of a given type. These conditions

are expressed in a manner that is equivalent to the manner in which the attack class building blocks are

expressed, but are independent of attack class descriptions. The difference, however, is that they operate

on the IDS characteristics that were required from the IDS for analyzing a given attack class rather than

on the IDS description. In other words the second step verifies whether in the set of IDS characteristics

obtained in the first step there exists a subset of IDS characteristics that matches any of the alarm

conditions. If such a subset can be found, attacks belonging to the considered attack class are detectable

by the IDS.

As our approach operates based on attack classes, it is impossible to determine the specific alarms that an

IDS potentially generates. Instead the approach determines the generalized alarms, i.e., the type of alarms

that might be generated by IDSs. The semantics of these generalized alarms is determined by the set of

IDS characteristics that are required for their generation.

Example: WebIDS is capable of detecting URI-based buffer-oveiflow attacks against webservers. For the

actual detection it uses regular expressions for verifying whether a URI matches a signature of a known

attack. The first analysis step reveals the IDS characteristics that were required from WebIDS to analyze

attacks of this class. In the second analysis step it is verified whether in the set obtained from the first step

there exists a subset of IDS characteristics that matches any of the alarm conditions. For this example

this step reveals that WebIDS has the potential of generating a generalized alarm. This generalized alarm

is generated mainly because of the use of the regular expression matching capability. It therefore reveals

that WebIDS reports this class of buffer-oveiflow attacks by means of a generalized alarm indicating that

a suspicious string in an URI has been observed. In fact both the alarms WebIDS generates for buffer­

oveiflow attacks and the alarms it generates for meta-character-based attacks are represented by this

very same generalized alarm, i.e., they are semantically identical.

40

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Under certain circumstances alarm conditions may require IDS characteristics that were not required for

analyzing the attack class, but that are required for the IDS to be capable of generating the generalized

alarm described by the alarm condition. For instance, if the semantics of a generalized alarm is such that

it includes the source IP address in the alarm message, the alarm condition must formulate this

requirement in terms of IDS characteristics.

Finally it should be emphasized that the alarm conditions are independent of specific IDS descriptions

and attack class descriptions. They function solely based on IDS characteristics. The 14 alarm conditions

we used in our experiments were created in the same context within which we created the attack class

descriptions. For each attack class that we described, all conceivable generalized alarms that known IDSs

might generate were identified and expressed in terms of alarm conditions. As a result of this approach,

the alarm conditions have the inherent advantage that they also identify false alarms an IDS might

generate.

3.4 RIDAX prototype

We have conducted a significant number of experiments using the RIDAX prototype, which has been

implemented in Prolog [DiazOO] and makes use of a database [MySql] and some additional tools

[Apache, phpAdm]. The IDS descriptions are stored in database tables that are accessed during the

analysis process. The attack class descriptions and the attack class description building blocks are

expressed in the form of prolog rules. The analysis process can thereby greatly benefit from the

backtracking capabilities of Prolog in order to determine the manner in which an IDS analyzes a given

attack class. The analysis results, i.e., the IDS characteristics used for analyzing a given attack class and

the generalized alarms generated, are also stored in database tables.

In the context of the RIDAX development we have created descriptions for 27 attack classes and 23

attack class building blocks. After having applied up to two out of seven available variations concurrently

to these attack classes, we obtained a total number of 498 distinct attack classes. The attack classes

described were selected based on statistical data derived from VulDa [DacAle99] and were used to

analyze different IDSs and different configurations thereof. These experiments are described in detail in

Chapters 7 and 8.

3.5 Validation of the approach

RIDAX has been used to analyze five different configurations of four different IDSs. The results obtained

enable us to outline the manner in which evidence can be provided that the predictions made by our IDS

analysis approach are correct. However, a complete verification of the results produced by RIDAX or our

approach in general is a major issue that exceeds the scope of what can be covered by this work:

• Environment: An environment comparable with that of the Lincoln Lab experiments would have

to be created in order to test different types of IDSs in a heterogeneous environment.

41

•

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Attacks: Equivalence-class-testing requirements would need to be met (see Section 2.2.2). This

means that for each attack class, including the ones determined when variations are applied to

attack classes, a representative number of attacks is required for validation purposes. Assuming

this number to be as small as five and considering the 498 attack classes to which the 27 attack

classes descriptions expand when variations are applied, several thousand individual attacks

would have to be implemented and exercised to validate the results RIDAX produced. Moreover

these tests would need to be repeated for each IDS considered

In other words, the same reasons that let us pursue the approach presented here render its validation a

challenge. However, evidence can be provided that it is possible to predict the detection capabilities of

IDSs and that these predictions can be made by means of a combined analysis of IDS descriptions and

descriptions of attack classes. The validation of this claim can be outlined as follows:

1. First we have used an existing IDS model to develop an IDS description framework. This was

accomplished in a systematic fashion by focusing on the identification of IDS characteristics that

are relevant to the detection of attacks. The basis for this work was the analysis of attacks

pursued in the context of the VulDa work [DacAle99] with respect to attack properties that are

observable.

2. In the second step we used the resulting set of IDS characteristics for creating descriptions of

attack classes. The descriptions are organized in a hierarchical fashion using attack class

description building blocks and focus on observable aspects of attacks. Based on this description

scheme we have defined a procedure that enables the unambiguous classification of attacks and

that thereby ensures that there exists only one valid description per attack class.

3. Finally it should be verified whether the actual IDS analysis provides correct results. Such

verification can be achieved by comparing the output produced by RIDAX and the output

produced by IDS implementations for specific attack classes and attacks that are members of

these classes. In the following we outline such a validation by means of some examples.

Example: We consider two http-related attacks. One belongs to the class of meta-character attacks that

we already introduced in Section 3.2.1. An example for a vulnerable CGI script is test.cgi [CA0696j. The

other example belongs to the attack class that represents http-header-related buffer-overflow attacks as

mentioned in Section 3.1.3. An example for such an attack exploits a vulnerability [CVE084800} in the

IBM Websphere application server plugin for the apache webserver [Apache}. Although both attacks

concern webservers, they are disparate as they target different server components and involve different

types of vulnerabilities (that require disparate exploitation).

In the following we consider the IDSs WebIDS [Almgre99} and Snort [Roesch99j. In the case of Snort we

consider a simple configuration in which IP fragments are not processed. If in addition we consider the

possibility that attacks may be obfuscated by means of IP fragmentation we obtain the fol/owing table:

42

ATI ACK-CLASS-BASED ANALYSIS OF INfRUSION DETECTION SYSTEMS

Table 2-Alarms generated by WebIDS and Snort including generalized alarms (in brackets)

1051 http Meta-character Obfuscated http http header buffer- Obfuscated http
Attack attack meta-character overflow header buffer-

attack overflow

WeblOS test.cgi attack test.cgi attack Not detected Not detected
(susp. string in URI) (susp. string in URI) (no generalized alarm) (no generalized alarm)

Snort test.cgi attack Not detected Websphere http Not detected
(suspicious string in (no generalized alarm) header buffer-overflow (no generalized alarm)
URI) (suspicious string in

http upstream data)

In brackets we provided the description of the generalized alarms that RIDAX generates for the

respective attack classes. The alarms are of course not identical, but the generalized alarms represent

higher-level descriptions of the alarms generated by the IDS implementations. Similar tables could be

created for other IDSs and other attacks.

As mentioned in the introduction, there exist circumstances where the predictions made by RIDAX are

not met by the actual IDS implementations. Such cases must be investigated carefully in order to

determine whether it is the IDS implementation that does not behave as specified. whether a signature is

missing etc., or whether it is our approach that produces wrong results. In the course of the experiments

that we conducted with RIDAX, we did not observe any differences that indicated a failure of our

approach. Differences were, for instance, observed in the treatment and reporting of fragmented IP PDUs

(see the investigations by Marty [Marty02, p. 66] that were presented briefly in the example of Section

1.1). In this example the differences are caused by the ad-hoc manner in which different IDSs decide

whether or not to report observed IP fragments as suspicious.

3.6 Discussion

The approach presented analyzes IDS designs at a conceptual level and determines their potential of

detecting given classes of attacks. Its major advantages are the following:

1. Support of IDS designers: IDSs do not need to be implemented before the analysis can be made.

The predictions made by our approach enable IDS designers to address weaknesses of IDSs at an

early stage in the design process.

2. Class-level results: The results produced by our approach predict the behavior of IDSs with

regard to entire, clearly defined, classes of attacks. This is not only important for the design of

IDSs but also for the specification of the requirements that they have to meet. Class-based

requirements are preferable to requirements that are based on the enumeration of individual

attacks, because the latter would be outdated within days. New vulnerabilities and attacks are

discovered on a daily basis [SecFoc].

3. Test environment: Our approach operates based on descriptions of IDSs and attack classes and

does therefore not require the set-up of a test environment. As, for instance. observed by

Lippmann et al. [LFGHKMOO, LHFKDOO] and others, such test environments may be of

considerable complexity (see also Sections 2.3.3 and 2.4.l).

43

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION S)'STEMS

However, our approach also has some disadvantages:

1. Discrepancies between IDS design and its implementation: If the actual implementation does not

obey the design and specification of the IDS, the behavior predicted by our approach may not

correspond to the behavior of the IDS implementation.

2. Limitations of the IDS description framework: Our IDS description framework is highly flexible

and extensible, and enables detailed and concise descriptions of IDSs. However, IDSs often

make use of highly ad-hoc methods to decide whether an alarm should be raised. Even though

our model might be expanded to represent such highly IDS-implementation-specific

characteristics, their description remains difficult, not least because they are rarely documented.

Moreover note that an exhaustive validation of the approach is impractical. It is. however. possible to

provide reasonable evidence that the results produced by our approach are correct by conducting a

comparatively small number of experiments using existing IDS implementations and comparing the

results obtained with the results predicted by our approach. The manner in which this can be achieved has

been outlined in Section 3.5 and will be discussed in more detail in Chapter 7.

Finally, it should be noted that although the IDS description framework and attack classification are the

result of a systematic analysis of IDSs and attacks, the schemes presented may not be able to represent

future ID technologies. In such cases extensions of the schemes will be necessary, but simple to

implement because the schemes themselves facilitate such extensions.

3.6.1 Facilitating a systematic IDS design process

Our IDS analysis approach supports the IDS design process by making predictions about the results that a

given IDS design is able to provide. For an IDS designer this is helpful in determining whether the

considered design meets the specification at an early stage of design process. Here our approach provides

the advantage that the specification can be expressed in terms of clearly defined attack classes that the

IDS has to be able to detect and, if required, how these attacks are to be reported. The approach even goes

a step further by systematically analyzing the IDS design for large numbers of classes of obfuscated

attacks-an analysis that would involve an enormous effort and costs when done with IDS

implementations.

However, it has to be made clear that the task of making IDS design proposals remains the responsibility

of the IDS designer, i.e., our approach is not capable of making IDS design proposals based on the

specification of an IDS. It merely helps an IDS designer to verify whether the proposed design fulfills the

specification. In practice this is likely to result in an iterative process in which an IDS design is extended

by additional components until the entire design meets the requirements set by the specification. The

repeated analysis of complete IDS designs would be necessary because individual IDS components might

influence each other (see for instance the propagation of effects caused by variations as discussed in

Section 3.2.2).

44

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECllO TE 1

3.6.2 Generalizing from attack classes to activity classes

The attack classification and description scheme presented in this work can equall well be applied to

classes of benign activities, i.e., activities in general . This is possible because the scheme de crib

observable aspects of attacks (and activities) and therefore does not take into account the intent of

activities because IDSs are not able to observe or determine it. Figure 14 illustrates the proximi of

attacks, i.e., malicious activities, and benign activi ties.

Benign activities

Figure 14-Venn diagram illustrating the proximity of attacks and attJIck-simiJar benign activitie

The fact that it is possible to generalize from attacks to activities does not have an immediate impact on

this work because our approach focuses on the analysis of IDSs with regard to classes of attacks. It is,

however, worth mentioning the possibility of generalizing from attacks to activities because it might be

relevant to further applications such as the assessment of IDS combinations as discussed in an example in

Chapter 8. There we shall pay particuJar attention to classes of benign activities that may potentiaJiy cau e

the generation of false alarms, i.e., classes of benign activities that are "simi lar" to attacks when

considered from the IDS perspective .

3.6.3 Assessment of IDS combinations

The resuJts produced by a tool such as RIDAX may serve as the basis for a series of applications other

than the design of IDSs. One example is the assessment of the combination of IDSs or, more precisely,

the measurement of gains that are potentially achievable by combining IDSs. This can for instance, be

used to support the design process of an ID architecture. An ID architecture may consist of several

diverse IDSs that distributed over the network surveyed. The alarms generated by these IDSs are

collected and combined, i.e., correlated, in order to extract the maximum of information provided, while

minimizing the total number of individual alarms (most importantly false alarms) that are presented to an

human security officer.

For such an application metrics need to be defined that measure the quali ty of the information the ID s

provide . A property that one might measure in such a context is, for instance, the difficulty of

discriminating between true and false alarms or the set of attack classes covered from a larger et of

45

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

attack classes. However, such an undertaking requires a number of extensions to the work as it has been

presented here. For instance it is necessary to

• include classes of benign activity in addition to the attack classes in order to be able to

investigate the problem of false positives in more detail, and

• investigate the mapping between attack classes and generalized alarms for combinations of IDSs.

In Chapter 8 we illustrate this possible application further by developing example metrics and methods

that are suitable for the assessment of IDS combination.

3.7 Conclusion

In this chapter we have provided an overview of our approach to IDS analysis. In contrast to existing

approaches, where IDSs are evaluated based on benchmarks using actual attack implementations. our

approach operates at the conceptual level of attack classes and uses descriptions of IDSs rather the actual

IDS implementations for its analysis. It thus produces IDS analysis results of high generality. This makes

it a useful tool for the designers of IDSs because it enables them to verify that their design meets the

specification before the system has actually been implemented, i.e., early in the design process.

Moreover, the fact that our approach operates based on clearly defined classes of attacks enables a more

rigorous design process. Firstly, it allows the clear specification of requirements that the envisaged IDS

regarding detected attack classes. Secondly, our approach uses these very same classes for its analysis.

thereby enabling a rigorous verification of whether a given IDS design meets its requirements and

allowing the identification of weaknesses in the design. Finally, our approach provides a high-level

description of the alarms that the analyzed IDSs are capable of generating. These may serve as the basis

for further work, such as the assessment of ID architecture designs that require the combined processing

of the alarms that are generated by diverse IDSs.

46

Chapter 4

ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECflON SYSTEMS

Intrusion detection system scopes and the

categorization of attacks

An important part of the analysis of IDSs is the identification of a representative input set. Ideally the

input set ensures that all factors relevant for ID are taken into account and exercised during the IDS

analysis process. For our approach to IDS analysis, the input set may be composed of activities and their

variants. Each of them represents an entire class of malicious or benign activities. In this chapter we

compose a selection of activity classes that ideally represent the most relevant activities. Note, however.

that in the remainder of this work we focus on classes of malicious activities, i.e., on attack classes. It is

only in Chapter 8 where we will make use of both the malicious as well as benign activity classes

identified in the following. The activity classes are identified in a systematic fashion by first introducing

the IDS scope concept. This concept is used not only as part of the multi-dimensional activity

categorization scheme, which is developed next, but also as a common underlying concept to assure

consistency across the entire work. The activity categorization scheme developed is the one that we used

to categorize a large number (358) of attacks taken from VulDa. Based on the statistical results derived

from this attack categorization, we subsequently compose a representative set of 48 malicious and benign

activity classes that we use throughout this work. The identified attack categories are of higher generality

than the derived attack classes, i.e., each attack category covers multiple attack classes.

Note that the concepts described in the following all resulted from an iterative process, which was

pursued in the context of the VulDa development and maintenance described in Appendix A. By

categorizing attacks, weaknesses of the scheme were identified and eliminated. This categorization effort

therefore represents a pragmatic attempt to identify categories of activities suitable to analyze lOSs. It is,

however, by no means to be seen as a general-purpose categorization or classification scheme for attacks.

Moreover note that it was motivated and inspired by the concept of fault assumptions as introduced by

Laprie et al. [LaAvK092] and briefly discussed in Chapter 2. A key element of their approach is that the

factors that are believed to be relevant to potential causes of faults are identified systematically. In a next

step one then considers the impact these factors and combinations thereof have in terms of faults, which

corresponds well to our approach that develops a scheme geared at categorizing attacks based on

properties that are potentially observable by IDSs.

At first glance this categorization only provides us with the set of malicious activities to be used for the

analysis ofIDSs. To address this issue we make the assumption that attack-similar activities can be found

in the "proximity" of attacks (see Figure 14). This assumption seems to be valid, as the observable

properties of a benign activity need to be similar to those of an attack if the benign activity causes a false

alarm. We accordingly use our activity categorization scheme to identify classes of attack-similar

(benign) activities by systematically selecting attack categories for which we then seek classes of benign

activities that would be categorized identically or at least similarly. This is possible because benign and

malicious activities may be assigned to the same or at least to very similar activity categories. However,

47

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

benign activities are not necessarily attack-similar simply because they were assigned to the same

category as a malicious one. This is where we have to rely on our experience gained from developing and

maintaining VulDa as well as developing IDSs. Based on this experience it becomes possible to identify

classes of benign activities that are similar to attacks and that have the potential of causing false alarms.

We therefore use results obtained from the categorization of attacks as an underlying grid that imposes

structure on our approach and on the selection of input data for the experiments described in Chapter 8.

As the classes of attacks considered are identified in a systematic fashion, we consider the identification

of classes of attack-similar activities to be reasonably systematic as well.

Example 1: It was observed that an IDS capable of detecting TCP SYN flooding auacks [Cn 196] on the

network may generate a false alarm if a user, using http vI. 0, visits a web-page that contains many

images. Such a WWW access triggers the initialization of many TCP connection handshakes in a very'

short period of time, which may be confused with a rcp SYN flooding auack by an IDS.

Example 2: Another example involves SMTP (simple mail transfer protocol). If an IDS is not capable of

tracking the state of an SMTP session, mail-message data might be confused with SMTP commands. For

instance we have observed that IDSs confuse the words "DEBUG" and "W/Z" ifcontained in the body of

mail message with (old) attacks against sendmail [CAl190] that misuse the SMTP DEBUG and WlZ

commands.

4.1 IDS scopes

The IDS scope concept is central to this work. Its development was initialized by our attack

categorization effort. The motivation, however, was to identify a common underlying concept to assure

consistency across the entire work. This primarily includes the goal of enabling the description and

classification of various items at different levels of detail. Given this requirement, a hierarchical tree

structure was chosen as the underlying component. This is also the reason that the IDS scopes should

cover characteristics of greater generality that per se are not required for the categorization and

classification of activities. The concurrent effort of describing IDSs, for instance, has also influenced the

concept of IDS scopes. Hence, IDS scopes are a pragmatic and empiric concept that can be used for

describing IDSs and activity classes.

4.1.1 IDS scope tree

The use of a hierarchical tree structure enables us to describe, for instance, IDS capabilities at a high

degree of detail as well as at a high level of generality. This is required as IDSs may offer diagnosis

capabilities applicable to any application layer protocol. Concurrently, they may also offer capabilities

that are only applicable to a few specific protocols such as http.

Example: Using IDS scopes one express the ability of an IDS to scan application layer data for

suspicious strings (e.g., Snort [Roesch99)}, as well as the fact that another IDS is only capable of

performing this type of analysis on http requests (e.g., WebIDS [Almgre99]).

48

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

The IDS scope tree described in the following has been derived from common system-partitioning and

layering concepts such as the OSI model. The purpose of its sub-trees is to group more specific IDS

scopes together. However, the tree was kept as simple as possible by focusing only on ID-relevant issues.

As illustrated in Figure 9, we have identified the following three top-level IDS scopes:

• Network: The network sub-tree corresponds to a simplified version of the OSI model. We

decided not to take the presentation and session layers into account because IDSs generally treat

them in the context of the application layer.

• Host: It is less straightforward to identify the IDS scopes on the host level because here no

layering concept as it exists for the network stack exists. We therefore focus on objects that are

of interest to ID and that are observable.

• User: Finally we have defined the top-level IDS scope user, which is not so much of relevance

for the classification of activities but for the description of IDS capabilities. It will. for instance.

enable us to express the ability of an IDS to relate its observations to a specific user, including

the possibility that the user is using multiple sessions or even multiple user IDs concurrently.

Note that we split middleware into two IDS scopes, because it cannot be assigned to either only the host

or network sub-tree. One middleware IDS scope is used to describe an IDS' capabilities with respect to

activities observable on the network. The second covers middleware functionality used only on the host.

Figure 9 shows the IDS scope tree as it is used throughout this work. IDS scopes surrounded by boxes

represent the higher-level IDS scopes, whereas those shown at the far right are lower-level IDS scopes

that mostly represent implementations. In order to limit the complexity of the respective results we

generally use the most high-level, but still applicable, IDS scopes. We do so for instance in the next

chapter where we use the IDS scope tree to refme the semantics of IDS characteristics. However. the

semantics of IDS characteristics that have been defmed at a given IDS scope need to remain the same for

any of the lower-level IDS scopes. For instance, if an IDS is said to offer a given capability at the

application layer protocol scope, this must also be true for all lower-level IDS scopes such as http. SMTP

and DNS7.

In Appendix C.l we provide more detailed definitions of all higher-level as well as of numerous lower­

level IDS scopes used in this work and shown in Figure 9. Note, however. that the lower-level IDS scopes

discussed in this work merely represent examples that illustrate the generic nature and extensibility of the

proposed IDS scopes concept. For instance, protocols such as SNMP (Simple network management

protocol) or wireless LAN protocols (e.g., IEEE 802.llb) are not explicitly included in the following

discussions, but are covered implicitly by higher-level IDS scopes.

7 DNS: Domain Name Service; the directory service used on the internet to translate host names into IP
addresses.

49

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTBfS

4.1.2 IDS scope attributes

Considering an IDS scope such as the application layer one can easily identify lower-level IDS scopes

such as http, DNS and FTP that differ significantly in the type of service they provide and. even more

importantly in the way they function. For the analysis performed by IDSs the senice offered is of

relatively low importance. The way these application layer protocols function is by far more important.

These functional differences need to be respected when describing IDSs as they may significantly

influence the semantics of IDS characteristics used to describe the capabilities of an IDS. Therefore these

functional differences also have to be taken into account in classifying activities. Because the IDS scope

tree is not suitable to capture such differences we introduced so-called IDS scope attributes that enable us

to characterize IDS scopes in more detail.

It is the goal of IDS scope attributes to allow the classification and description of items at a high level

without having to descend to the level of specific protocols. It thereby becomes possible to express

properties such as whether a specific application layer protocol can be run on top of a connectionless

service, or whether it supports single or multiple transactions within one session. Note that for the

purpose of this work we relax the formal definition of transactions as, for instance, known from database

systems. We relax the definition to the extent that we consider an application layer protocol to support

multiple transactions within a session if a protocol sequence can be repeated. This is the case if. for

example, multiple mail messages can be sent within the same session. multiple documents can be

transferred within one session etc. Examples: SMfP, http version 1.1, FTP. In describing IDSs. the IDS

scopes enable us to create generic descriptions. We may, for instance, express that an IDS is capable of

applying a simple pattern matching technique to application layer protocols operated on top of a

connection-oriented service. In this way it is possible to describe IDSs in a highly generic fashion without

having to describe the IDS at the level of specific protocols.

Examples: When classifying an activity it is important to distinguish between protocols that use a single

instance of a lower-layer service (e.g., http) and protocols that rely on multiple instances of lower layer

services (e.g., FTP). This distinction is necessary because such differences may have a significant impact

on the complexity of the analysis to be peiformed by an IDS. The service offered is of limited importance

for the analysis peiformed by the IDS. Another, even simpler example is shown in Figure 15, which shows

ICMP and UDP as being connectionless protocols, TCP as being connection-oriented, and UDP and

TCP to be supporting an addressing scheme (i.e., ports).

After having identified the IDS scope tree, we examined the higher-level IDS scopes in terms of

functional properties that matter to ID. On the networking side, it is clear that we wish to distinguish

whether a protocol is connection-oriented or based on datagrams, etc. On the host side, the attributes

identified are of higher diversity and are, for instance, used in the context of inter-process

communication. However, the precise definition of these attributes is important when implementing a tool

such as RIDAX, but only of limited importance when explaining and developing concepts. Therefore we

do not discuss all these attributes here but provide their definitions in Appendix C.2.

50

ATTACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO TE 1

IDS Scopes

Figure 15---An example how IDS scope attributes can be used to r efine transport layer ID scope

4.2 Activity categorization scheme for attack-like activities and

attacks

Having introduced the IDS scopes concept, we may now develop our categorization scheme fo r acti itje .

As underlying concept we first define a simple system model to describe the acti vity to be categorized.

We do so by using existing concepts such as the IDS scopes just introduced and a simple object model.

Note, however, that in order to simpli fy the attack categorization-task described in the fo llowing we do

not consider the IDS scopes as a tree structure. Instead we use a selection of IDS scopes that can be found

at a fi xed level of the IDS scopes tree- generally at the level just above leaf entries such a specific

protocols (see Figure 9).

4.2.1 System model for activity categorization scheme

In developing our categorization scheme for activities the goals of the categorization need to be kept in

mind, i.e., the scheme should refl ect activity characteristics re levant to the ana lysis performed by ruSs.

Furthermore the choice of the categorization criteria has to be consistent with the goals of thi s

categorization, and should not be too broad so that the effort remains of limited complexity, but still well

focused. To achieve this we have to consider both IDSs and activities. This categorization scheme enables

us to categorize activities based on cri teria that determine an IDS 's ability to detect a given activity, i.e.,

properties of the activity that are observable. This also means that we do not consider properties, such as

the intent of the adversary, which are not observable, and would merely cause confusion.

Considering an activity one can distinguish two main types of characteristics. First there are the static

activity characteristics that can be viewed as representing objects required to exist prior to occurrence of

the activity. Second there are the dynamic activity characteristics that denote the transient appearance of

the activity. Based on these two main types of activity characteristics we have identified a total of fi ve

sub-types- two sub-types of static activity characteristics and three sub-categories of dynamic activity

characteristics. These static and dynamic activity characteri stics were identified using a simple system

model geared towards describing the observable aspects of activi ti es as shown in Figure 16.

51

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECnO

Activity Initiator
(e.g. adversary,

non-malicious user)

r Static activity charactenstics '

(Dynamic activity characteristi~ I

, Affected Oblect ,

' Methods '

Stale

Figure 16-System model used to categorize activities

Looking at Figure 16 from the left to the right, we fust find the activity initiator. The acti initiator i

in most cases a hmnan user who causes an activity to occur by hislber actions . The e actions rna be of

malicious or non-malicious intent.

Once the activity initiator has initiated an activity, it is potential ly observable at numerou inlerfac

objects until it finally reaches its destination, the affected objecl. It is not alway po ible to ob erve

attacks at interface objects. For instance, it is not possible to detect attacks on the network if the data

transferred is encrypted. However, it is often possible for an IDS to observe the igns of an activity on the

affected object itself. These considerations lead to the introduction of the so-called SIalic aClivity

characteristics comprised of one or more interface objects and the affected object . Formally the activity

initiator object should be considered as being part of the static activity characteristic . However, the

activity initiator object is generally not directly observable by an IDS, which is why it i not included in

the scheme developed in the following .

Another static element shown in Figure 16 that is not included in the static activity characteristic is the

internal state of the affected object. It is not taken into account for the activity categorization cherne

because this work focuses on real-time IDSs, i.e., on IDSs perfonning continuou monitoring, which

generally are transition-based IDSs (see also Figure 7 and [DeDaWeOO]). State-ba ed lD s in general

perform only a periodic analysis of the system to monitor. This means that the state of a system i.e., an

object, is inspected periodically for erroneous system states that indicate a fault.

Examples: Typical examples are security scanners such as Nessus [NessusOOj, ISS [ISSSca99], Satan

etc., and system integrity checkers such as Tripwire [Tripw99]. The only state-based systems operating in

real-time that we are aware of at the time of this writing are anti-virus systems. A well-known example of

such a system is the Norton anti-virus product by Symantec [Symantec].

In addition to the static activity characteristics, i.e., objects involved in an activity, we also consider

dynamic activity characteristics, i.e., the transient appearance of activities. Here we have identified two

main sets of characteristics that describe the dynamic portion of an activity. These describe the invocation

of methods on the affected object, and the type of communication used. Furthermore, we have identified a

set of additional attributes that refine the dynamic activity characteristics and are observable by an ID

These attributes describe characteristics such as whether the input data provided is rele ant to the attack.

52

AIT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Note that the term vulnerability was deliberately not mentioned here. The fault representing the

vulnerability can typically be found either in one of the interface objects, in the affected object itself. or in

the combination of several objects. However, when analyzing an activity for its aspects visible to IDSs,

the location of the vulnerability is only of limited importance, which is why it does not appear in the

system model (Figure 16). Moreover, the initiation of an activity threatening the security policy does not

require any specific vulnerability to be present, e.g., the activity may represent an unsuccessful attack.

However, the presence of the corresponding vulnerability determines whether an activity may lead to

security policy violation, e.g., a successful attack or an intrusion.

Before further developing the notions of static and dynamic activity characteristics. note that our

categorization scheme is not aimed at describing the path from the activity initiator to the affected object

. or the sequence of events involved. Such descriptions would exceed the goal of this categorization

scheme by adding non-required information, thereby introducing unnecessary complexity. Instead we list

the dynamic and static characteristics relevant to an activity, and defme activity categories by the set of

activity characteristics required to describe the activity. Other approaches to attack description mostly use

languages that describe the intermediate stages of attacks. For our purposes these approaches are by far

too expressive, and would therefore impose unnecessary complexity. Examples for such work are the

STATL attack language by Eckmann et al. [EcViKeOO] and the attack modeling work by Tidwell et al.

[TLFH01]. STATL is part of the STAT tool suite [ViEcKeOO], and describes the system states and state

transitions that attacks drive a system into, respectively cause. Specific ST A TL constructs are required to

develop the attack scenarios for the respective ST ATL IDS implementations8
. These constructs depend on

the attack, the operating system considered and the information source monitored (called "domain" by

Eckmann et al.) Whereas ST A TL is designed for describing specific attacks such that the resulting

descriptions can be used to actually detect them, the modeling work by Tidwell et al. operates at a higher

level and is geared towards describing attack scenarios that may consist of several consecutive individual

attacks.

4.2.2 Static activity characteristics

Although the location of the vulnerability is of limited importance to the detection process, it has a

significant influence on the set of interface objects and the affected object needed to describe the

corresponding attack. In fact, the vulnerability implicitly defines the avenues of possible attacks. Roughly

speaking, such an avenue can be considered as the set of interface objects and the affected object

describing the static characteristics of the corresponding attack, i.e., the activity. Furthermore the

vulnerability implicitly defines the data sources i.e., once again, the interface objects and affected objects

an IDS may monitor to detect a given attack.

8 USTAT is the host-based implementation for Unix (Sun Solaris) systems ~eP095, PorKem92];
WinSTAT the respective implementation for Windows NT; and NetSTAT the lmplementatwn of a
network-based IDS.

53

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO TE

Figure 17 provides an overview of the activity categorization scheme to be developed in thi and the

following sections. The figure not only includes the static activity characteristics, but also the dynarni

ones. The latter are discussed in the next section. The figure shows how we distinguish between tan and

dynamic activity characteristics, and how these are refined further into interface objects. affected obje ts

etc.

Activity ClassHication
Scheme

r-~~-l--------r- pI1ysocaIlayer

~===~

swrage deVICe
VO devlce
CPU
memory
fi rmware
operating sysrem core
operabng sys.em rnoc1JIe
nerwor1< stack
filesysll!m 00ject
process

unl-directionaJ
bi-<lirectionaJ

obrect ere arion

i ?::-
modf1C8lion

ect execution
,-----1.......- Inpul relevance

Insider origin
repealed activtty
multiple origins

medum access control
I<9caJ 0lntr0I
nelW<ltl< layer
ron~ 'nlnSPOrt layer
c:onr>ec!JOn....e<j .ranspon iaye<
app lay<!r - ccmec:IIOnless
app layer - single com - SIngle rrans
app. layer - single com - rntJ1Jpre rrans
app. lay<!r - rntJ1Jpre com - SIngle rrans
app. layer - rntJ1Jpre com - m.irJpIe
_ware
110 de""",
SYSll!m cal
'-cal
enviroM'leflt
lilesys.em oo,ea
process
signal
socke.
FIFO
shared memory

~

Figure 17-0verview of activity categorization scheme

Remember, this scheme is the result of an iterative process taking place in the context of the ulDa

operation.

Next we describe the static portion of the activity categorization scheme as shown in Figure 17, starting

with the affected object. The characteristics used to describe the affected object and the interface objects

both represent a subset of the IDS scope concept introduced in Section 4.1.

4.2.2.1 Affected objects

It is the goal of a given attack to intrude a target object. More formally speaking, the goa l of an attack is

to change the state of the target object to an error state with respect to the securi ty policy. However, as

discussed in Section 2.1, a security policy violation does not necessarily involve malice. For this reason

we introduce the term affected object instead of using a term such as attacked object or target object,

which implies malicious intent. It is also worth recalling that the fault i.e. the vulnerability, that enables a

successful attack need not necessarily be located in the affected object .

In the following we list the affected objects chosen from the IDS scopes described in Section 4.). They

have been identified by isolating the physical and logical ID-relevant components in a networked

computing system. Naturally, we focus on components and finer grained sub-components known to be

critical to security and ID in particular. We have done so by selecting IDS scopes at different levels in the

IDS scope tree (see also Figure 9). Note that many of the scopes listed in the following are listed for the

sake of completeness: They are listed because it is conceivable that they might play the role of an affected

object for future attacks.

• Storage device

54

•
•

•

•

•

•

•

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

110 device

CPU

Memory

Firmware

Operating system core

Operating system module-Excluding the networks stack OS module.

Network stack-the network stack is commonly implemented as an OS module. We list it

separately because it is a prominent attack target.

• Filesystem object

• Process

When we used this categorization scheme to categorize attacks taken from VulDa, the categorization

revealed that processes represent a significant majority (76%) of the affected objects. This is not

particularly surprising because the most noticed and reported attacks affect network services such as http.

FTP, DNS etc., which are commonly implemented by (daemon) processes. For similar reasons it is also

no surprise that filesystem objects are the second most-popular attack target (13%) (see Appendix B.3 for

more detailed statistics). In a nutshell, it is certainly fair to state that the categorization did not reveal any

surprises with respect to affected objects, but instead confrrmed the impression one obtains when

browsing, for instance, the CERT [CERT] advisories or the Bugtraq IDs [SecFoc]. It highlights. however.

the most relevant attack categories in a well-founded manner.

4.2.2.2 Interface objects

Whenever an attack is launched, it targets what we just introduced as the affected object. As shown in

Figure 16, in order to interact with this object, the activity initiator has to involve one or more interface

objects, or in other words attack interfaces. This can naturally be extended to the more general case where

no malice is involved. In this case we simply describe the interface objects that an activity involves.

However, we are only interested in those interface objects that could, when monitored, enable an IDS to

recognize evidence of the attack being categorized and that are technically observable. This allows us to

limit the choice of interface objects to the proximity of the attacked object. It would, for instance,

probably not be appropriate to consider the adversary's keyboard as a potential information source for the

detection of a webserver attack because that keyboard is practically not relevant to the detection of

evidence of this specific attack. The keyboard may, however, serve as meaningful information source for

detecting other attacks.

As it is the case for the affected objects identified above, the list of interface objects was developed based

on the notion of IDS scopes introduced in Section 4.1. In fact, most of the affected objects listed above

may also serve as an interface object. However, there is an important number of (networking) objects that

may be used as interfaces and that were not listed among the affected objects. A slight difference in the

affected objects identified earlier is that we use IDS scopes attributes (see Section 4.1.2) to refine the

55

ATIACK-CLASS-BASED ANALYSIS OF I1'.'TRUSION DETECflON SYSTEMS

model. Moreover, note that we consider instances of networking IDS scopes rather than the

corresponding communication layer abstractions, because IDSs operate on instances of communication

layer protocols, e.g., PDUs. lbis enables us to consider these networking IDS scopes as objects. which

ensures consistency among the (interface) objects identified. All this results in the following list of

interface objects:

• Physical layer

• Medium access control

• Logical link control

• Network layer

In the case of the transport layer we distinguish, using IDS scope attributes, between the connection­

oriented transport layer and the connectionless datagram service, as it may be a differentiator for the

capability of an IDS to detect an ongoing attack.

• Connectionless transport layer

• Connection-oriented transport layer

In the case of application layer protocols, we differentiate even further. We distinguish among protocols

based on connectionless and connection-oriented services, and consider the number of transactions (see

Section 4.1.2) that can be executed in the context of a single session. We further distinguish protocols that

use more than one lower level service concurrently. We distinguish these different ways of operation

because they may be a differentiator for IDSs.

• Application layer based on a connectionless service

• Application layer based on a single connection, single transactions. Typical examples are http

version 1.0 or the remote shell.

• Application layer based on a single connection, multiple transactions.

Example: A typical example is http version 1.1 that supports persistent connections. We have

observed that IDS are incapable of recognizing http attacks when the first request of a persistent

connection was non-malicious. Another example is the mail transfer protocol SMTP; here the

situation is similar, i.e., we have found IDSs that were unable to recognize attacks when the first

mail message transferred was non-malicious.

• Application layer based on multiple connections, single transaction. We ignore this category in

the following because we are not aware of any protocol that qualifies for this category.

• Application layer based on multiple connections, multiple transactions. A typical example is the

file transfer protocol FTP. The analysis of such protocols is a nontrivial task for IDSs.

Before continuing with the identification of interface objects that are primarily host oriented, we consider

the special case of middle ware. When considering an activity that involves middleware. it is generally not

possible to distinguish between host- and network-based use of middleware. Therefore we do not make

56

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfION SYSTEMS

this distinction for our categorization scheme either. However, as we will see in the next chapter, it makes

sense to distinguish the middleware-related characteristics of an IDS-separating the network and the

host portion because this may have an influence on the degree to which an IDS is able to analyze such an

activity.

•

•

•

Middleware

110 device

Operating system module: Some operating systems such as Linux or Solaris provide an interface

that allows additional modules to be loaded dynamically. Such modules may represent an attack

interface to the running kernel.

• System call

• Function call

• Environment

• Filesystem object: Filesystem objects typically serve as an indirect interface to processes and to

the OS.

• Process: A process may be used as an interface to variety of other objects such as the filesystem.

Inter-process communication allows processes to communicate among each other. A number of different

mechanisms have been developed over time:

• Signal

• Socket

• FIFO

• Shared memory

• Messages

• Semaphore

Considering the results of the attack categorization with respect to interface objects as they are presented

in Appendix B.2, one might be surprised to find again that most frequently processes are the interface

objects used to stage attacks. In fact, in 36% of all attacks categorized processes are used as an interface.

However, taking a closer look at the categorization results, one can easily identify the total of the diverse

application layers to be most prominent attack interface used. This corresponds to the observation made

above that processes implementing network services are the most prominent attack targets.

4.2.3 Dynamic activity characteristics

The dynamic activity characteristics of this categorization scheme focus on observable and transient

attack-relevant characteristics. These characteristics will, to a large extent, enable us to analyze the attack

recognition and identification capabilities of IDSs. We do not model the impact of attacks. as we focus on

57

ATI ACK-CLASS-BASED ANALYSIS OF INrRUSION DETECTION SYSTEMS

real-time and transition-based IDSs. In other words, we focus on observable e\idence of attacks and not

on the (possibly) resulting internal state change of the affected object.

In Section 4.2.1 we have already identified the three sets of dynamic activity characteristics that descnbe

the interaction among objects: Namely inter-object communication, method invocation, and some

additional activity attributes.

By separating the inter-object communication and the method-invocation characteristics it becomes

possible to capture the differences between attacks staged over the network and attacks staged locally.

However, this does not mean that network-related activities are only described by communication

characteristics. In fact, in most cases activities have to be described by a mixture of network-related and

host-related characteristics.

4.2.3.1 Communication

The communication characteristics we have identified are rather simple. This simple solution was

possible because of the interface objects introduced earlier. These interface objects already capture a

significant portion of communication-protocol-specific characteristics. In accordance with the separation

of static and dynamic activity characteristics, this leaves us with the following two (network)

communication-related, observable activity characteristics:

• Uni-directional: The communication flows in one direction only.

• Bi-directional: The communication flows between two peers, e.g., TCP connection but also UDP

services such as DNS.

Note that an attack involving a bi-directional protocol such as rcp does not necessarily need to be bi­

directional. In fact typical denial-of-service (DoS) attacks against a host's network stack. such as teardrop

or land [CA2897], are often uni-directional only and consists of some malformed PDUs sent to the

targeted host. In most cases the target host does not reply because the protocol used does not require it to

do so or because the target has already become unresponsive, e.g., crashed.

As explained in detail in Appendix B.l the bi-directional communication characteristic is the most

frequent dynamic activity characteristics. This is no surprise in the light of the observations made with

respect to the static activity characteristics, where we observed that attacks against network services are

the most frequent ones.

4.2.3.2 Method invocation

The second set of dynamic activity characteristics is the set of methods invoked in the context of the

affected object (see also Figure 16). The identification of these methods is relatively straight forward:

• Object creation: A new object is created. This generally occurs in the context of an existing

object such as the filesystem within which a new file can be created.

• Object deletion: An object is deleted, e.g., deletion of a file.

58

•

•

•

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Object read: The internal state or part of an object's internal state is read, e.g., the memory of a

process or the content of a file.

Object modification: The internal state of an object is modified, e.g., the content of the password

file is modified.

Execution within object context: The observable behavior of an object is changed such that it

threatens the security policy, e.g., the execution path of process is modified The most typical

examples are probably buffer overflow attacks [Aleph96, CA1395] and attacks involving special

characters [CA0696, CA0797].

It is clear that the affected object, within whose context a given method is invoked, defines the semantics

of these methods. Finally, note also that attacks usually involve the invocation of several methods

concurrently.

Also for these activity characteristics the categorization of attacks did not reveal any surprise. Appendix

B.l shows that the "execution" method is the one most frequently invoked by attacks. This is clearly due

to the highly popular buffer overflow attacks, but also to attacks that directly cause the execution of

arbitrary commands on the target system.

4.2.3.3 Activity attributes

After having defined the dynamic activity characteristics describing the communication and the method

invocation aspects, we have to admit that there are still ID relevant aspects of activities that have not yet

been described. For instance it is not possible to distinguish between attacks where a given method is

executed only once and attacks where the same method is executed repeatedly.

Example: Categorizing attacks using the characteristics identified so far, it is not possible to distinguish

between the (simple) creation of a jile or a link, and the repeated creation of a jile or link. The repeated

creation of such jilesystem objects is typical for attacks exploiting race conditions.

In order to address these issues we have identified additional activity attributes that allow us to refine the

description of attacks, i.e., activities:

• Input data relevance: The input provided to an object is relevant to the attack. This characteristic

can be used to refine the description of buffer overflow attacks etc. It thereby addresses the fact

that an IDS needs to be able to perform additional analysis on the data in order to recognize

attacks in which input data is relevant.

• Repeated activity: Certain types of activities can only be clearly categorized as being malicious

when they are observed repeatedly. Typical examples are scanning activities or the exploitation

of race conditions.

• Internal origin: Some malicious activity may originate from inside the system to be protected.

Typical examples are the hidden communication channels e.g., communication hidden in DNS

traffic sent to the outside. Other examples include Trojan horses or the presence of an adversary

among the employees of an organization.

59

ATIACK-CLAS8-BASED ANALYSIS OF INTRUSION DETECIlON SYSTEMS

• Multiple origins: In some cases attacks appear to have multiple sources. The recognition of this

fact may be crucial to identify a given attack clearly. Examples are attacks such as Smurf

[CAOI98] or distributed DoS attacks such as Trinoo [CIN0799]. Such attacks send a large

amount ofPDUs with arbitrarily forged sender addresses to a target.

Note that we do not describe the dynamic activity characteristics of an activity merely by acti\ity

attributes. The activity attributes are only observable when combined with either communication or

method invocation characteristics. In other words, they are merely a property of the activity in question.

Again considering the statistics resulting from the attack categorized (see also Appendix B.l), we can

once more verify the common observation of attacks on the Internet. In more than 50010 of all attacks

categorized, the input data provided was directly relevant to the attack. Considering the resulting

histogram shown in Figure 51 confirms the popularity of attacks against network services because a large

portion of the attacks in which input data is relevant also involve some form of network communication.

Considering the attribute "repeated activity," it is possible to verify the importance of race conditions and

certain categories of DoS attacks.

4.2.4 Categorization examples

After having developed a categorization scheme for activities, there is clearly a need for illustration. In

the following we provide four examples as they can be found in VulDa. At the end of this section we

briefly discuss the question whether this activity categorization can be used to identify yet unknown

attacks, and provide an additional example.

Example 1: Weaknesses in the validation of the input provided over the CGI (common gateway inteiface)

interface offered by webservers often lead to vulnerabilities. Classical examples are buffer overflow

vulnerabilities such as the one present in Microsofts IIS webserver software [CAJ30l]. which was

exploited by the worm called "CodeRed" [CA190l. CA230l]. The corresponding attack can be

categorized as follows:

• Affected object: process

• Inteiface objects: application layer (single connection. single and multiple transactions)

• Communication: bi-directional

• Method invoked: execution within object context

• Attributes: input data relevant

Example 2: Another similar vulnerability is the test-cgi vulnerability [CA0797] reported in 1997. This

test script enables an adversary to read protected Jiles from the webserver. So. the affected object is a

Jilesystem object that is accessed by a process which itself is influenced by an application protocol

request to the webserver. Last but not least. some special characters were used in the URL requested

from the webserver. All in all this leads us to the following categorization:

• Affected object: Jilesystem object

60

•

•

•

•

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Interface objects: process, application layer (connection-based, single and multi transaction)

Communication: bi-directional

Method invoked: object read

Attributes: input data relevant

Example 3: The following example affects a product called Pitbull LX, which hardens the LimlX kernel to

a degree that the classical root authority disappears. Pitbull LX is a product developed by Argus

Systems
9
• In his Bugtraq posting [postle01 j, Postle provides the following desCription:

The vulnerability stems from Pitbull LX's failure to apply its enhanced security features to

all kernel variables made available in Iproc/sysl. Although the file-system will restrict

access to the /proc/sys/ directory, these variables can be accessed through calls to sysctlO

which only checks a process's standard unix credentials. Almost all variables are mode 644

or 444. So any user can read the kernel variables and a root user can modify many of them.

A process with uid 0
1°, can thus bypass Pitbull and modify some vel}' sensitive kernel data.

(If that last statement makes you wonder what the problem is remember that "roof means

nothing on a Pitbull system".)

Based on this description we categorize an attack exploiting this vulnerability as follows:

• Affected object: as core

• Interface objects: system call, filesystem object, process

• Communication: none

• Methods invoked: object modification

• Attributes: none

4.2.5 Discovery of yet unknown attack categories

So far we provided examples on how to categorize known attacks. In the course of this categorization also

the question was raised whether it is possible to discover attacks that are not yet know using the activity

categorization scheme. We believe this to be possible, although nontrivial. We have not been able to

identify such an attack, but we made the observation that one can predict categories of attacks that are yet

to be discovered, at least to a limited degree.

Example 4: In the course of maintaining VuiDa, we began to wonder whether it is not possible that one

can make use of the signal generated whenever TCP out-ol-band traffic is received to attack a process. In

fact, just recently, a theoretical attack against some FTP daemons has been discovered [ZalewsOlj in

which a remote attacker is able to inject executable data over the network that can then be activated by

9 http://www.argus-systems.com

61

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECflON SYSTEMS

sending TCP out-ol-band traffic. The TCP out-ol-band traffic causes a signal to be sent to the process

which then starts processing a signal handler. Unfortunately this signal handler contains calls to non­

reentrant system calls. which may lead to the execution of an arbitrary command. While we do not know

whether this attack has already been successfully run against a FTP daemon, it has been prO\'en that the

attack is theoretically possible-even though it is considered to be very difficult. This hypothetical attack

would then be classified as follows:

•

•

•

•

•

4.3

Affected object: process

Interface objects: transport layer (connection-oriented), signal. system call

Communication: bi-directional

Method invoked: execution within object context

Attributes: input data relevant. repeated activity

Selection of representative activity classes based on a

categorization of attacks

After having developed the categorization scheme for activities, we can use this scheme to identify attack

classes that are of interest to the analysis of IDSs. Concurrently the results of such a categorization allow

us to assess the utility of the categorization scheme. The results of the latter compare well with the

experience we gained while working in the security field and while populating VulDa.

At the time this categorization was made, approximately 800 attacks were described in the context of one

of VulDa's vulnerability descriptions (see also Section A.3). In the time available, we succeeded in

categorizing 358 of these attacks along the lines of the examples described above. The selection was done

based on a randomly ordered list of vulnerability descriptions. We simply started at the top of this random

list. Moreover note that the categorization scheme has become part of the maintenance process of VulDa.

The categorization of attacks has thereby become an ongoing effort yielding increasingly representative

results.

Because the categorization scheme permits the use of almost arbitrary combinations of activity

characteristics to categorize one attack, the number of possible attack categories is enormous. The only

restriction is that only one affected object may be identified per attack. Given the possibility to create

quite fme-grained characterizations of attacks, it is no surprise that 203 categories were identified (for

detailed results see Appendix B).

Figure 18 further suggests that our scheme has the correct granularity as no overly large number of

attacks falls into the same category, and is not too fine-grained as there is no majority of attacks that form

their own (single-member) categories. Figure 18 reveals that 41 % of all attacks categorized defme their

10 In Unix systems the numerical user ID 0 (zero) corresponds to the "root" user, i.e., to the administrator
account.

62

ATTACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO.· Y TE 1

own category, i.e., belong to a category that has only one member. However. the figure also show' thaI an

important percentage of attacks belongs to categories of attacks with several members . We have even

been able to identify one category with 15 members, which thereby covers 4.2% of aU attacks. Given thi

distribution, it is certainly not advisable to increase the granularity of the scheme as one might obtain

results that are too detailed and therefore would no longer re eal the important attack categories.

However, the granularity of the results suits our purposes well, and also corresponds to the ob ervations

made during the daily operation of YulDa.

10 [2.8%] (15 [4.2%]

9 [5.0%]

7 [5.8%]

6 [5.0%]
1 [41 .5%]

4 [8.9%]

2 [13.9%]

Figure IS-Distribution of attack category sizes

In a next step we have isolated the largest categories of attacks in order to use these attack categories to

identifY the activity classes that shall be used to analyze IDSs. It is clear that normally one would choose

at least the ten most frequent categories of attacks for the analysis of IDSs. In fact one should go quite a

bit further than this. However, our choice focuses merely on attack categories relevant to the three IDSs

(see Section 8.6.1) that we have chosen for our example application that assesses IDSs and combinations

thereof. This means that we will not choose attack categories for analysis of which we know that none of

the IDSs is designed for detecting them. The reason for this is not the fear of false results but merely to

focus our efforts. Moreover, remember that the results provided in Error! Not a valid bookmark self­

reference. reflect the importance of attack categories in terms of the number of attacks found in YuJDa.

The results thereby provide only an indirect and SUbjective view on the usage frequency of attacks. In

other words, they only provide an indication of the popularity of an attack category re ealed by the

number of distinct attacks assigned to it, but no indication on the popularity of an attack category based

on observations made on real networks.

63

ATIACK-CLASS-BASED ANALYSIS OF INTRUSIO~ DETECTIO~ SYSTE\IS

Table 3 lists the ten largest categories of attacks, and provides a brief description of the type of attacks

assigned to each of these categories.

It is clear that normally one would choose at least the ten most frequent categories of attacks for the

analysis of IDSs. In fact, one should go quite a bit further than this. Howeyer. our choice focuses merely

on attack categories relevant to the three IDSs (see Section 8.6.1) that we have chosen for our example

application that assesses IDSs and combinations thereof. This means that we will not choose attack

categories for analysis of which we know that none of the IDSs is designed for detecting them. The

reason for this is not the fear of false results but merely to focus our efforts. Moreoyer. remember that the

results provided in Error! Not a valid bookmark self-reference. reflect the importance of attack

categories in terms of the number of attacks found in VulDa. The results thereby provide only an indirect

and subjective view on the usage frequency of attacks. In other words. they only provide an indication of

the popularity of an attack category revealed by the number of distinct attacks assigned to it. but no

indication on the popularity of an attack category based on observations made on real networks.

Table 3-The ten largest attack categories

Nbr. Cat. Affected Interlace objects Dynamic Description
size object characteristics

1 15 Process - Process - Execution within This category covers local buffer overflow attacks
-System call object context and special-character attacks that result in

-Input data relevant observable change in the execution path. In most
cases suid-root processes are targeted. The
category almost exclusively covers attacks that
involve command line arguments that are
potentially observable at the system call used to
launch the vulnerable program.

2 10 Process - Process - Execution within This category is almost identical to category 1.
object context The only difference is that the attack is in most

-Input data relevant cases staged over the standard input instead of
the command line arguments.

3 9 Process - App. layer protocol - Bi-directional This category almost exclusively covers buffer
(single connection, communication overflow attacks against webservers. A smaller
single and multiple - Execution within number of attacks involve special characters
transactions) object context instead of buffer overflows. but also lead to

noticeable changes in the execution path of the
-Input data relevant

affected process. http v1.0 only supports a single
request within one session, whereas http v1.1
supports multiple requests within one session. As
such a difference between versions is not known
for any other popular protocol, this category
contains http related attacks only.

4 9 Process - App. layer protocol - Bi-directional This category is almost identical to category 3.
(single connection, communication The only difference is that it affects other popular
multiple transactions) - Execution within services such as FTP or SMTP .

object context

-Input data relevant

5 7 Process -App. layer protocol - Bi-directional This category is almost identical to the third
(single connection, communication category. The only difference is that it affects
single transaction) - Execution within covers other, even simpler services such as http

object context v1.0.

-Input data relevant

6 7 Process - App. layer protocol - Bi-directional This category mostly concems authentication
(single connection, communication issues in services such as SMTP or IMAP.
multiple transactions) -Input data relevant

64

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Nbr. Cat. Affected Interface objects Dynamic Description
size object characteristics

7 7 Process - App. layer protocol - Uni-directional This category oovers dassical DoS attacks
(no oonnection) communication against UDP-based services. In general simple

-Input data relevant 'crash-packets' are used to stop Services such as
Syslog or DNS.

8 6 Filesys. -Process - Object read This category generally oovers local attacks in
object which the oontent of protected files is read without

the permission to do so.
g 6 Process - Environment - Execution within Similar to attack category 1. The difference is that

object oontext the data carrying the attack is passed to the
- Input data relevant process over the environment e.g .• environment

variables.

10 6 Process - App. layer protocol - Bi-directional This category again oovers remote buffer overflow
(no connection) communication attacks. They affect services such as DNS.

- Execution within
object context

-Input data relevant

Example: Compared to buffer overflow attacks, only relatively few netv.'orking-related DoS attack scripts

are published. However, while observing internet traffic, one finds DoS attacks to be quite prominent.

although they do not appear in the categorization statistics shown here. Another, even more extreme

example is port scanning, which can be observed very frequently, but where the attack itself is essentially

always the same and is therefore covered by a single of VulDa 's vulnerability descriptions.

This said and considering It is clear that normally one would choose at least the ten most frequent

categories of attacks for the analysis of IDSs. In fact, one should go quite a bit further than this. However,

our choice focuses merely on attack categories relevant to the three IDSs (see Section 8.6.1) that we have

chosen for our example application that assesses IDSs and combinations thereof. This means that we will

not choose attack categories for analysis of which we know that none of the IDSs is designed for

detecting them. The reason for this is not the fear of false results but merely to focus our efforts.

Moreover, remember that the results provided in Error! Not a valid bookmark self-reference. reflect

the importance of attack categories in tenus of the number of attacks found in VulDa. The results thereby

provide only an indirect and subjective view on the usage frequency of attacks. In other words, they only

provide an indication of the popularity of an attack category revealed by the number of distinct attacks

assigned to it, but no indication on the popularity of an attack category based on observations made on

real networks.

Table 3, we choose attack categories 3-7 and 10, excluding categories I, 2, 8 and 9, which are not

relevant to the IDSs we selected for assessment. However, the activity classes mentioned and selected so

far only concern application layer services. To demonstrate the flexibility of our approach we choose to

include transport and network layer activities as well. These activities were selected among attacks known

to be popular (see also the example above and the list of the ten most popular attacks maintained by

SANS [SANS]). Snort [Roesch99], one of the IDSs chosen for assessment (see Section 8.6.1), has the

potential of detecting such lower-layer attacks. Thus, it can be expected that RIDAX reveals that Snort

II The 10 largest attack classes include all classes with more than 5 members.

65

ATTACK-CLASS-BASED ANALYSIS OF INfRUSION DETECTION SYSTEMS

has the potential of detecting at least some of these lower-layer activities. This is discussed in greater

detail in Section 8.6.

Based on the results obtained by categorizing attacks and based on the additional reasoning mentioned

we have identified a list of 48 activity classes, 21 benign and 27 malicious (see Table 4). that were used

for our RIDAX experiments. In the first column of Table 4, we provide reference to the attack categories

as identified in It is clear that normally one would choose at least the ten most frequent categories of

attacks for the analysis of IDSs. In fact, one should go quite a bit further than this. However. our choice

focuses merely on attack categories relevant to the three IDSs (see Section 8.6.1) that we have chosen for

our example application that assesses IDSs and combinations thereof. This means that we will not choose

attack categories for analysis of which we know that none of the IDSs is designed for detecting them. The

reason for this is not the fear of false results but merely to focus our efforts. Moreover. remember that the

results provided in Error! Not a valid bookmark self-reference. reflect the importance of attack

categories in tenns of the number of attacks found in VulDa. The results thereby provide only an indirect

and subjective view on the usage frequency of attacks. In other words, they only provide an indication of

the popularity of an attack category revealed by the number of distinct attacks assigned to it, but no

indication on the popularity of an attack category based on observations made on real networks.

Table 3. In the second column we provide a rating of the activity category indicating whether the category

is to be considered benign or malicious. Then, in the third column, we provide the IDS scope at which

this activity category was specified. In column four it is then shown for which IDS scopes the IDSs are

actually to be analyzed for. This parameter significantly influences the manner in which the activity

category is refmed to an activity class. After having provided the activity class numbering as used in

RIDAX, we finally provide a short description of the activity classes in the last column.

Owing the flexibility of our activity categorization scheme, any of the activities identified in Table 4 also,

at least partially, cover additional attack categories. For instance, consider an attack and one of the attack

categories shown in It is clear that normally one would choose at least the ten most frequent categories of

attacks for the analysis of IDSs. In fact, one should go quite a bit further than this. However, our choice

focuses merely on attack categories relevant to the three IDSs (see Section 8.6.1) that we have chosen for

our example application that assesses IDSs and combinations thereof. This means that we will not choose

attack categories for analysis of which we know that none of the IDSs is designed for detecting them. The

reason for this is not the fear of false results but merely to focus our efforts. Moreover, remember that the

results provided in Error! Not a valid bookmark self-reference. reflect the importance of attack

categories in tenns of the number of attacks found in VulDa. The results thereby provide only an indirect

and subjective view on the usage frequency of attacks. In other words, they only provide an indication of

the popularity of an attack category revealed by the number of distinct attacks assigned to it, but no

indication on the popularity of an attack category based on observations made on real networks.

Table 3. If the characterization of the attack requires a super-set of the activity characteristics used to

describe the attack category, the attack would not belong to this category but to another, more specific.

66

ATIACK-CLASS-BASED ANALYSIS OF D\TRUSION DETECTIO~ SYSTntS

category. This is the reason why the categorization resulted in the relative large number of 203 attack

categories.

Table 4-Activities selected for analyzing IDSs

Attack Rating IDS scope IDS Activity Description
categories of activity scope of Nbr.
addressed category activity

class

3 Benign Application http 21 Class of http activities that use options strings that are so
layer (single similar to attacks that even a sophisticated signature-based IDS
connection, can be confused.
single and 22 Class of http activities that use options strings that are so

multiple similar to attacks that IDS only using simplistic pattern-matching
transactions) techniques may be confused.

Malicious 1 Class of http-request line-based buffer overflow attacks that
cause the execution path of the process offering the http service
to divert.

2 Class of http-request line-based special-character attacks that
cause the execution path of the process offering the http service
to divert.

3 Class of http-request-options-based buffer overflow attacks that
cause the execution path of the process offering the http service
to divert.

4 Class of http-request options-based special-character attacks
that cause the execution path of the process offering the http
service to divert.

6 5 Class of http-request options-based attacks that enable the
adversary to read file or directory content that is protected
otherwise.

SMTP, 6-8 Class of protocol statement-based (e.g., http-request line)
http,FTP attacks that enable the adversary to read a file or directory

content that is protected otherwise. Usually an access control
and/or authentication issue.

67

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Attack Rating IDS scope IDS Activity Description
categories of activity scope of Nbr.
addressed category activity

class
3-7,10 Benign Application SMTP, 27,28, Class of activities where strings that would be considered

layer http, 35 suspicious if used in the context of a protocol statement (e.g.,
Syslog http-req~est line) appear in the data portion of a protocol

transaction. Although harmless, this may be confused with a
real ~ck by lOSs using simplistic techniques to track protocol
sessions.

http, 12-14, Ordinary http, FTP, SMTP, DNS and Syslog requests.
FTP, 29,30

SMTP, 15-17, Classes of activities that use request strings that are so similar
Domain, 36,37 to attacks that even a sophisticated signature-based IDS can be
Syslog confused.

18-20, Classes of activities that use request strings that are so similar
38,39 to attacks that IDS only using simplistic pattern matching

techniaues may be confused.
N/a Malicious 9-11, Flooding of the server with requests.

31,32
4,5,10 FTP, 23,24, Classes of protocol statement-based buffer overflow attacks

SMTP, 40,41 that cause the execution path of the process offering the
Domain, targeted service to divert.
Syslog

4,5 FTP, 25,26 Classes of protocol statement-based special-character attacks
SMTP that cause the execution path of the process offering the

taroeted service to divert.
7 App.layer Domain, 33,34 Classes of attacks that typically crash the process implementing

(connection- Syslog the DNS service remotely. Example: SIG records BIND
less) vulnerabilitv rCA 14991.

N/a Benign Transport TCP 43 A single source is observed sending many requests to a server.
layer There are settings in which the frequency of such requests may

(connection- reach a level at which lOSs might suspect a DoS attack being in
based) lorogress. Example: A firewall that masauerades many dients.

Malicious 42 Typical SYN-flooding attacks. These attacks attempt to either
temporarily or permanently overwhelm a server such that the
services offered are no longer available.

Transport TCP, 45-48 These attack dasses cover normal and ·slow" scanning of TCP
layer UDP and UDP POrts.

Network IP 44 There are many DoS attacks against a variety of TCP/IP stacks
layer that exoloit vulnerabilities in the IP fraament reassemblv code.

Example: Consider attack category 7 as listed in It is clear that normally one would choose at least the

ten most frequent categories of attacks for the analysis of IDSs. In fact, one should go quite a bit further

than this. However, our choice focuses merely on attack categories relevant to the three IDSs (see Section

8.6.1) that we have chosen for our example application that assesses IDSs and combinations thereof This

means that we will not choose attack categories for analysis of which we know that none of the IDSs is

designed for detecting them. The reason for this is not the fear of false results but merely to focus our

efforts. Moreover, remember that the results provided in Error! Not a valid bookmark self-reference.

reflect the importance of attack categories in terms of the number of attacks found in VulDa. The results

thereby provide only an indirect and subjective view on the usage frequency of attacks. In other words,

they only provide an indication of the popularity of an attack category revealed by the number of distinct

attacks assigned to it, but no indication on the popularity of an attack category based on observations

made on real networks.

Table 3. This category describes un i-directional, connectionless application layer attacks in which the

input data is relevant to the attack If we query VulDa for attacks that show at least these characteristics

we find not 7 but 10 attacks. This means that for this case there exist three additional attacks that are

68

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfION SYSTEMS

closely related and that are at least partially addressed by activities 27-39 listed in Table 4. In fact. we

find that the three additional attacks involve the additional activity characteristic "execution ,",'ithin

object context." Again considering activities 27-39 we find that they cover many ID-relevant. i.e ..

observable, aspects of these attacks.

4.4 Discussion

The categorization of attacks according to our activity categorization scheme had the goal of identifying

the attack categories most relevant to ID such that we could then detennine the attack classes required for

a systematic analysis of IDSs. As a consequence the categorization has to ensure that all aspects relevant

to the analysis performed by IDSs are covered, thereby avoiding the irrelevant ones in order to limit

complexity. As our categorization relies on a rigorous concept that combines the system model introduced

in Section 4.2.1 with the richness of the data available in VulDa (see Appendix A), we are confident that

we have indeed produced a highly viable categorization of attacks. However, statistics derived from the

categorization of attacks taken from VulDa are not representative of the instances of attacks as they can

be observed on a daily basis on the internet, for instance. The main reasons for this are the following:

1. One can observe remote attacks far more frequently than local ones because it is much simpler

for adversaries to identify and attack potential targets on the network than it is to attack a

vulnerable and attractive machine the adversary already has legitimate access to. It would be

considered unwise of adversaries if they were to compromise systems they already have

legitimate access to, as the likelihood of them being tracked down is simply to high.

2. There exists a large number of application layer protocols and therefore an even larger number

of implementations of the corresponding services. This creates a large potential for

vulnerabilities to be introduced and for the corresponding attacks to be published. On the lower­

level network layers, one cannot find a comparable diversity of protocols and implementations.

As a consequence fewer attacks affecting these lower layers are found and published. Therefore

such lower-layer attacks do not show up in the top-ten of the attack categories, although they are

very popular. In order to compensate for this, we have identified and described additional classes

of attacks and activities targeting these lower layers.

3. The attacks found in VulDa are slightly biased towards attacks with significant impact, such as

remote root-shell exploits etc. Accordingly some of the affected objects defined for the activity

categorization were not used. The reason for this lies in the way VulDa was populated and in the

overwhelming number of new vulnerabilities and attacks being discovered and published on a

daily basis. This large number of new vulnerabilities forced us to focus on the most important,

i.e., dangerous, vulnerabilities and attacks only. Therefore the fact that some of the affected

objects were never used to categorize one of the 358 attacks clearly shows that they are unlikely

to be used in high-profile attacks.

69

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECf10N SYSTEMS

Finally, note that the activity categorization allows a more detailed characterization of attacks involving

network communication. This is due to the fact that the network stack is fairly well structured by its layer

scheme, which is not true for the host-level characteristics. This results in fewer, but larger attack

categories that represent local exploits as shown in It is clear that normally one would choose at least the

ten most frequent categories of attacks for the analysis of IDSs. In fact, one should go quite a bit further

than this. However, our choice focuses merely on attack categories relevant to the three IDSs (see Section

8.6.1) that we have chosen for our example application that assesses IDSs and combinations thereof. This

means that we will not choose attack categories for analysis of which we know that none of the IDSs is

designed for detecting them. The reason for this is not the fear of false results but merely to focus our

efforts. Moreover, remember that the results provided in Error! Not a valid bookmark self-reference.

reflect the importance of attack categories in terms of the number of attacks found in VulDa. The results

thereby provide only an indirect and subjective view on the usage frequency of attacks. In other words,

they only provide an indication of the popularity of an attack category revealed by the number of distinct

attacks assigned to it, but no indication on the popularity of an attack category based on observations

made on real networks.

Table 3. Note also that based on the attack characteristics describing the network communication as either

uni- or bi-directional, we were able to determine that 192, i.e., 54%. of the 358 attacks categorized

represent remote attacks. Although the data has been identified as being slightly biased towards high­

profile attacks, the categorization results represent well the common observation one makes when

monitoring forums such as Bugtraq [SecFoc] that report or discuss new vulnerabilities and attacks.

Remember, the selection of activities, be they benign or malicious, that are to be used to analyze IDSs is

one of the most important elements of any approach to IDS analysis. However. it is also one of the most

difficult and controversial elements. The choice of activities not only significantly influences the analysis

results, but also has to reflect the environment for which a suitable IDS is to be found. Because of these

dependencies and because our approach operates at a rather conceptual level. we chose to develop a

categorization of attacks and to use the categorization results to identify the activity classes to be used for

our analysis approach. However, for the reasons given, it made no sense to rely solely on the

categorization results. Additional facts such as the popularity of lower-layer network attacks. e.g .• the so­

called Teardrop and Land attacks [CA2897]. also had to be taken into account. The reason these

frequently observed attacks do not appear more prominently in our categorization is that only a

comparatively small number of distinct implementations of such attacks exists. Moreover, our choice was

influenced by the set of IDSs chosen for the experiment with RlDAX. These IDSs all differ significantly

in the way they operate, but all of them address remote, i.e., networking-related, attacks only. Because of

this we decided to limit our effort of creating activity descriptions for the RlDAX experiments to

networking-related activities.

Finally one might ask whether 48 activity classes are sufficient to analyze IDSs. There are three aspects

one should consider with respect this question:

70

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIO~ SYSTEMS

1. Each of the 48 activity classes identified in Table 4 describes more than just single acti\ity­

they stand for entire classes of activities.

2. In the context of working with IDSs and creating the attack categorization, we have realized the

importance of the fact that activities might be altered for obfuscation purposes [PtaNew98.

RFPOO]. A typical example is the fragmentation of PDUs at a lower networking layer. e.g ..

fragmentation of IP PDUs. In Chapter 6 we describe the variations that we considered in this

work and how we applied them to activities to create activity class variants. However. although

we do not explain the concept of varying activities here, note that using this concept. we derived

almost 1000 activity class variants from the 48 activity classes identified here.

3. The RIDAX implementation represents a prototype that we use to demonstrate and validate our

approach, which was achieved using the activities identified here.

4.5 Conclusion

In this chapter we have introduced the concept of IDS scopes, which forms a cornerstone of this work.

Using this concept, we developed a categorization scheme for activities that was then used to categorize a

large number of attacks-the goal being the identification of a representative input set to our IDS analysis

approach. By doing so we illustrated the difficulties one generally faces when attempting to compose a set

of activities to be used for the analysis of IDSs. Using the categorization results we finally identified 48

activity classes, each of them representing a complete class of activities, which we subsequently use in

the RIDAX experiments described in Chapter 8: 21 of them represent benign and 27 represent malicious

activity classes. Given the systematic fashion the activity categorization scheme was developed and based

on further considerations made in this chapter, we are confident that the 48 activity classes identified are

well suited to verifying and illustrating our approach by means of the RIDAX experiments.

71

Chapter 5

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTI01' SYSTEMS

Intrusion detection system description

framework

IDSs are complex systems as is their description. This was already apparent in Section 2.2.3. where we

provided an overview of existing approaches to describe and classify IDSs. There is no generic

classification or description scheme for IDSs as there is none for attacks. The goals of any such scheme

will determine the criteria to be used. For the scheme introduced in this chapter. the goals are to describe

the IDS capabilities that are relevant to the detection of attacks and to the generation of alarms. This

includes the requirement that the description scheme developed in the following has to enable the creation

of IDS descriptions that can be used as input to the RIDAX tool to analyze the IDS described. We achieve

this by first introducing a system model that identifies the components an IDS consists of. The model

represents a simplified version of the CIDF model [CIDF98], and consists of a sensor component. which

is used to collect information, and a detector component, which perfonns the actual analysis.

Subsequently we develop our description scheme for these components, and conclude the chapter by

describing the database structure used by the RIDAX prototype (see Chapter 7). For a complete example

of an IDS description, see Appendix C.4.

Owing to the generic and extensible concepts used, our scheme is suitable for the description of a large

variety of IDSs: It does not describe the implementation details of the analysis steps employed by a given

IDS, but rather describes the fact that the IDS uses analysis techniques of a given type to perform its

analysis at a given level of abstraction. The underlying concepts of our scheme have been developed by

combining our own experience with insights gained by IDS classifications and taxonomies such as those

of Debar et al. [DeDaWeOO, DeDaWe99] or that of Axe Iss on [AxelssOO] (see also Section 2.2.3).

In view of the attack categorization scheme developed in the preceding chapter, it is clear that our IDS

description and classification scheme has to be of greater detail than the existing ones. For instance.

simply describing an IDS as either behavior-based or knowledge-based (see Figure 7, p. 16) does not

enable us to draw precise conclusions about either the attack classes the IDS is able to detect or, for

instance, the number of false positives it may potentially generate. Moreover, this issue cannot be

resolved by considering further elements of existing classification schemes. As a consequence we propose

a more specific scheme that uses IDS characteristics to describe IDSs. These IDS characteristics are

defined by a two-tuple consisting of an IDS description item and an IDS scope. IDS description items

denote generic, i.e., IDS scope-independent, properties of IDSs such as the capability of performing

string-matching operations. In Appendix C.3 we provide an extensive list of examples of IDS

characteristics and their definitions. Technically, i.e., in RIDAX, we use so-called IDS description

attributes to represent IDS characteristics. Most of these attributes are booleans and simply represent

whether a specific characteristic is present. However, some of them describe characteristics at pre-defined

levels. For instance, for string-pattern recognition we distinguish between simple string matching and the

more advanced regular expression matching. In practice this means that if an attribute represents the

72

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO TE 1

characteristics "regular expression matching available," the lower-level characteristics such as imple

string matching are considered to be present as well.

Example: Consider the capability of Snort [Roesch99} to detect http buffer overflow attacks. We can

easily describe the fact that the sensor portion of the IDS is capable of gathering application la)'er

request arguments. This can be achieved using a single IDS desCription a nrib ure. Using a second

attribute. we can describe the fact that the detector is capable of searching for specific string within

application layer request arguments. Using these two attributes we are able to describe the core

technique used by Snort to detect attacks such as buffer-overflow attacks. special-character attacks etc.

However. it is clear that additional attributes are needed to describe the way Sn0l1 extracts the data from

link layer PDUs etc.

In order to enrich the expressiveness of our scheme further, we ha ve introduced the concept of instance

analysis. This concept encompasses the description of analysis techniques and extends them with the

description of the level of abstraction at which the analysis is being performed. Moreo er it pecifie the

analysis domain, i.e., the instance concerned, within which IDSs are capable of performing the anal

described.

5.1 A system model for IDSs

In our IDS model we split IDSs into a sensor. which gathers information from an information source, and

a detector. which perfonns the analysis. IDSs may consist of several sensors and several detector . For

instance, an IDS may collect information from several daemon-specific log fIles that is then analyzed by a

single detector. The model proposed represents a simplification of the CIDF model [CIDF98] that

combines the so-called a- and d-boxes into a single element called detector (see also Section 2.1.2) .

sion Detection System

Sensor (e-box)

- Network probe

- Logfile adapter I parser

- Special monitoring

module

Raw data

Infonmation Source

- Network

- Audit records

- Syslog I Event Log

- Application Log

Events I
Data

j .~I.ar~~

Detector (aId-box)

- Data Pr&-pIocaI8Ing
- lnabnle AnaIyaIs

(enor detecIIon.
fd dIagnonaIs)

Figure 19-Intrusion detection system model

73

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIO~ SYSTEMS

In the following we develop an IDS description scheme that is based on this simple model (see Figure

19). The model leads to the defInition of two categories of characteristics--one for the description of

sensors, the other for the description of detectors. In the following we address each of them in a separate

section.

It is worth noting that in practice it is not always possible to draw a clear line between sensors and

detectors, as shown in Figure 19. An example of such a system is the work: described by Kerschbaum t!f

al. in [KeSpZaOO], where the IDS is embedded in the operating system. However, in general such systems

still pennit sensor and detector properties to be described separately.

5.2 Classification and description scheme for sensors

In our model, sensors are systems that transform the information provided by an information source into a

form suitable for further analysis by the detector. To understand and describe the information the sensor

passes to the detector, one has to take a closer look at sensor internals. In most cases (e.g., commercial

products) this is not possible. Fortunately, most sensors are very simple and just provide some basic

parsing of the data supplied by the information source only. In most cases such simple sensors can be

accurately described by taking a close look at the documentation of and the information sources used by

the IDS, and by investigating the diagnostic output the detector generates along with the alarms.

Figure 10, p. 32, provides an overview of the item categories that we use for describing IDSs. The figure

includes the item sub-categories that we use to describe sensors and detectors. In the following

subsections we develop all the IDS description items that we use to describe sensors. These items can be

further distinguished as being either IDS scope-independent and IDS scope-dependent. In Figure 10, p.

32, all categories that are not explicitly marked as being IDS scope-independent are IDS scope­

dependent.

One of the fIrst observations made in this document was that the quality of today's IDSs is generally

rather poor. In part this is caused by the sensor used, i.e., the information source, because in most cases

the data transformation performed leads to loss of information. In other words, a sensor generally

provides just a subset of the information available at the information source to the detector. Information

may be suppressed on purpose because it is either believed not to be relevant for ID or because it is too

costly to pass on the information and to analyze it. In addition information may be lost or damaged

because of a failure in the information source, e.g., a misperception of a link layer PDU or because some

system component is saturated and starts skipping data.

Example: Consider a switched network that is monitored by a network-based IDS. This is generally done

by configuring network switches such that they forward a copy of every PDU transferred to a spec!fic

monitoring port of the switch. If the overall traffic monitored surpasses the capacity of the monitoring

port the switch will start dropping packets. Even if the monitoring port and the system hosting the IDS are

well equipped (e.g., gigabit Ethernet), information might be dropped at the detector for similar reasons.

74

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECnO TE11

Note that in this work we do not investigate the probabilistic aspects of whether a given acti\iry ,'.ill get

processed. However, using the variations concept (see Section 3.2.2), we consider case u h as. for

example, network PDUs that are not being received correctly by a network-based IDS.

5.2.1 IDS scope-independent sensor characteristics

The sensor characteristics deftned in the following are independent of IDS scopes. This means the do not

have to be combined with an IDS scope in order to defme their semantics. ote that mo t of the e

characteristics do not influence the detection capabilities of IDSs, but instead influence the emantic of

the diagnostic information generated by IDSs, i.e., they are merely relevant to the de ign of alarm­

correlation systems. The only exception is the information source type, which may influence the anal

result signiftcantly, i.e. , influence the alarms that are generated.

Sensor
(Information Source)

IDS Scope Indep.
Characteristics

reporting time
reporting timestamp
reporting delay
information source type

Figure 20--0verview of IDS scope-independent sensor characteristic

As Figure 20 shows, we have identifted the following four IDS scope-independent sensor characteri tic

(the table headings describe the characteristic and the subsequent rows describe the permitted va lues):

Reporting time

Post-execution

During-execution

Pre-execution

Table 5--IDS scope-independent sensor characteristics

The reporting time denotes the point in time at which evidence of an activity is

observed and reported to the detector.

This property is not highly relevant to the detection process it elf, but it may

influence the timeliness of the IDS, i.e., in the context of this work thi s

characteristic is not of high relevance. However, when developing alarm

correlation systems for ID architectures the timeliness of the ro architecture

components, namely IDSs, is relevant and might be taken into account.

In the most common case a sensor will pass the data to the detector after the

activity has been terminated i.e., post execution.

In some rare cases, a sensor will report an activity after it has started but

before it terminates, i.e., during execution.

This last case does not describe IDSs as it analyzes activities before they

actually happen. Such systems may deny an activity from being executed and

therefore are merely policy-enforcement systems. For an example of such a

system, see the work of Hutchison and Welz {HucWe/OOj.

75

AITACK-CLASS-BASED ANALYSIS OF INfRUSION DETECIlON SYSTEMS

Reporting timestamp The reporting timestamp denotes the timestamp a sensor assigns to an

observation when it is reported to the detector. Many ID sensors do not pro\ide

such a timestamp and leave it up to the detector to set a timestamp whenever it

finds something worth reporting, i.e., whenever the IDS is issuing an alarm.

None

Start of activity

End of activity

Reporting delay

Less than 3 sec.

Less than 1 min.

Less than 15 min.

More than 15 min.

Batch

Again, concerning the relevance of this characteristic to this work, the same as

for the "Reporting time" characteristic applies.

The sensor does not provide any timestamp information along with the

reporting of an activity observed.

The timestamp provided by the sensor corresponds to the time at which an

activity has started.

The timestamp provided by the sensor corresponds to the end of an activity.

The delay between the point in time an activity is observed i.e .• identified, and

the point in time at which the activity is reported to the detector. Based on our

experience with various sensors, we arbitrarily express that property in terms

of the ranges given below.

Concerning the relevance of this characteristic to this work, the same as for the

"Reporting time" characteristic applies.

It takes the sensor less than 3 sec to forward the data describing the activity

observed to the detector.

The sensor data is processed in batch mode. There is no fIXed delay between

the observation of an activity and the actual analysis of the activity data by the

detector.

5.2.1.1 Infonnation source types

The information source type determines the view the IDS has of the system it monitors to a large extent.

This fact is also taken into account in the IDS taxonomy by Debar et al. [DeDaWeOO], where IDSs are

classified based on what they call audit source location (see also Figure 7). However, knowing the

location at which information is gathered is important and useful for the description of IDSs although it

only implicitly describes the inherent properties of the information gathered from the respective sources.

Example: Considering a network-based IDS gathering an URL from the network, it is impossible for the

IDS to clearly determine how the webserver software will interpret the URL-4!Specially if one

additionally assumes the use of attack-obfuscation techniques. The situation is different if one considers a

host-based IDS that analyzes the access logs as they are created by the webserver software. There the

information is available in a form less prone to obfuscation and, more importantly, in the way the

webserver has actually interpreted the respective request. In other words, in this example, the network-

76

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTE~tS

based IDS does not share the same view on the data as the monitored webserver. whereas a host-based

IDS that analyzes the webserver logs shares the same view on the data. HOM;ever. with respect to

variations one has to note that the host-based IDS has only a limited view on that data.

Making such considerations, we have identified two main classes of information sources and a series of

sub-classes. The two main classes are raw data sources and log data sources. The difference between the

two is that raw data sources provide a nontransformed view of the data as it is part of an activity, whereas

the log data sources represent a view on the manner in which data was interpreted by the monitored

system, i.e., generally not on the data itself.

We further divide the two classes into a total of five sub-classes that mainly denote the location of the

information source within the system monitored. The raw data class is sub-divided into an external and an

internal class of information sources. External information sources provide a view of the raw data before

it reaches its destination, i.e., the monitored system. This is where classical network-based IDSs on

network sniffers fit in (examples: [CiscoNR99, ISSNet99, Paxson98, Paxson99, Roesch99]). Internal raw

data information sources access the raw data at the system monitored and in the same IDS scope as the

system monitored does. In this class mainly network-based IDSs (e.g., [ISSSerOO]) that inspect the data

on a host as it traverses the network stack have so far been implemented. However, it is conceivable that

such sensors may also be implemented directly into applications or operating systems. Examples for such

approaches are the work by Kerschbaum, Spafford and Zamboni [KeSpZaOO, SpaZamOO, ZambonOl],

who propose an IDS that is embedded into the operating system, and Almgren et aI., who investigate a

webserver sensor [AlmLinOl] module that inspects transport layer data as it is received by a webserver

daemon.

The second main class of information sources, the log data sources, can be divided into three sub-classes.

Here we distinguish information sources provided by operating systems such as audit logs [LCRM98], or

system accounting logs, sources provided by applications. and so-called meta information sources.

Access logs are a typical example of application logs [Weinma98], as they are maintained by webservers.

For the meta information source, the most typical examples are probably alarms as they are generated by

other IDSs. These alarms generally include interpretations of observed activities. Such sources typically

feed into alarm-correlation systems, and therefore are beyond the scope of this work.

Figure 11, p. 33, provides an overview of the information source type classification introduced and also

includes the information source type examples mentioned above. In the table below we describe the

information sources in more detail.

77

Pages
Missing

not
Available

't~-(Z

A IT ACK-CLASS-8ASED ANALYSIS OF INTRUSIO DETECTIO

Sensor
(Information Source)

Object

Object
Attributes

Arguments

Request

Data

ProtOCOl
ContrOl Data

name
10

access penTlISSIOIlS
owner
SIZe
type
timestamp
duratIOn

basIC
optIOns

name
10

status
optIOns

,"put-stream
OUlput-s1Team
up-stream
down-stream
POU-data
status

source 10
source name
desbnatlOn 10
destina tIOn name
10
size
fragment contrOl
stream controf
flags
opbOns

Figure 21--Overview of scope-dependent sensor items

Example: In the following we provide brief definitions of sensor characteristics to itlu trale holl' Ihe

sensor items shown in Figure 21 are combined with IDS scopes to define them.

(ij

~
u

(I)

E (I)

scopes 0.. Ol Q)

0.. 0..
~ iii ~ ~

9: u 0 >-
Sensor items I- :::J I (fl 0.. u::

Object name 1 2

Basic arguments 3 4 5

Optional arguments 6

Up-stream data 7 8

PDU-data 9

status data 10 11

I I I I

Figure 22-Examples of sensor attributes

The shaded fields in Figure 22 denote characteristics thaI are not defined because the combination of

sensor item and IDS scope would not result in a meaningful characteristic. The numbered characteri tic

can be interpreted asfollows:

1. Name of the executable that was used to create the process.

2. Name of a file.

3. Arguments provided along with an http request

4. Arguments provided to a system call.

79

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfION SYSTEMS

5. Arguments provided to a program, i.e., command.

6. http header options provided along with an http request.

7. Reassembled stream ofTCP data as it can be found at the socket inteiface.

8. Data sent to the http server, e.g., http POST request data.

9. Payload ofIP, TCP, and UDP PDUs.

10. Current state of a process, including the register and memory content.

11. Content of a file.

This example aims at illustrating the pragmatic approach taken. Extensive examples of definitions of

sensor characteristics defInitions can be found in Appendix C.3.1. In the following tables we now provide

definitions of all sensor items supported by our scheme.

Object

Name

ID

Object attribute

Type

Access permissions

Owner

Size

Timestamp

Duration

Table 7-IDS scope-dependent sensor item5-i)bject

The object category consists of two items (for examples, see Table 58):

The name of an object is generally human readable and. in most cases.

uniquely identifies an object.

An object identifier uniquely identifies an object by a numerical or possibly

alphanumerical identifier.

Table 8--IDS scope-dependent sensor item5-i)bject items

The object attribute category provides additional items required to describe an

object. Note that the state of an object is captured in the data category. See also

Table 59.

If an IDS is able to obtain the information on the type of an object. it can

differentiate between similar objects in the same IDS scope. e.g.. to

differentiate amongfiles. directories. links. etc.

Access permissions of a given object specify the objects. e.g .. users etc.. that

are permitted to access the object.

The owner denotes the ownership of an object. This may include the notion of

group ownership. Examples are Unix filesystem objects.

The size of an object usually represents the storage or memory required to

represent the object.

The timestamp item denotes timestamps such as creation time or login time.

The duration item denotes durations such as lifetime or the time consumed.

80

Argument

Basic

Options

Request

Name

ID

ATTACK-CLASS-BASED ANAL YSIS OF f:..TRUSIOJ>.: DETECTIO'\ SYSTHIS

Table 9-IDS scope-dependent sensor items-arguments

The argument category is used to represent arguments supplied to calls.

process, requests, etc. We distinguish only two different properties I see also

Table 60):

The basic arguments represent the arguments directl\" associated with a

request. call. etc.

Optional arguments represent arguments that require the sensor to perform an

additional effort to provide them.

Table 10--IDS scope-dependent sensor items-request

The request category is also very small. It is used to name calls, request etc.

See also Table 6l.

The name of the request.

The ID of the request made.

Table ll-IDS scope-dependent sensor items-protocol control data

Protocol control data The protocol control data category is more complex than most of the other

categories. It needs to capture the variety of protocols that have been defined.

See also Table 62.

Source ID

Source name

Destination ID

Destination name

ID

Size

Fragment control

Flags

Options

The source ID typically denotes the source address of the PDU considered.

Like the source ID. but a name is used instead of a numerical ID.

The definitions of the destination ID and the destination name is identical to

the definition of the source ID and source name. The only difference is that

they denote the receiver instead of the sender of a PDU.

Like the destination ID. but a name is used instead of a numericallD.

The ID of a PDU helps a protocol to distinguish requests.

The size field denotes the size of a PDU.

Fragment control information is lIsed to reconstruct fragmented PDUs. The

most typical example is probably the IP protocol.

Flags are usedfor a large range offunctionalities.

Protocols often offer a number of other fields and options that are not covered

by the items listed above. We summarize these fields and options here.

81

Data

Input stream

Output stream

Up-stream

Down-stream

PDU-data

Status data

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Table U-IDS scope-dependent sensor items-data

The data category is also quite complex. In this category we coUect aU

properties that can be considered as data of any kind As to be explored further

in future work, one can conceive attack-obfuscation techniques that may render

any kind of data related to an activity invisible to the detector. A typical

example is the fragmentation of IP PDUs, which may make it impossible to

analyze the payload of IP PDUs for IDSs that are not able to recompose IP

PDUs. This effect can then be described by rendering the data portion related

to the activity invisible to the detector. See also Table 63.

This item represents the stream of data fed into an object. e.g .. a process.

This item represents the stream of data generated by an object. e.g .. a process.

This item represents the data that is sent to a server by a client. The most

prominent examples are sockets. pipes. and application layer protocols such as

http.

This item represents the data returned by a server to a client.

The item PDU-data represents the data portion of a PDU This item applies for

a wide variety of protocols such as UDP. TCP. ICMP. IP. MAC etc.

Status data represents the internal state of an object.

Having provided the definitions of all sensor items, we are now able to describe sensors using sensor

characteristics that are created by combining a sensor item and an IDS scope.

Example: Consider the IDS WeblDS [Almgre99}. This IDS parses webserver logs in the common log

format (CLF) [Weinma98}. Therefore its sensor is able to provide the following information to the

detector (first listing the sensor item. then the IDS scope):

• Request name / http

• Basic arguments / http

• Source ID or source name /IP (depending on the server configuration)

• Object name / User (only if the server peiforms http authentication)

5.3 Classification and description scheme for detectors

The detector is the IDS component that performs error detection andfault diagnosis. It does so based on

the information provided by the ID sensor. The detector is generaUy the most complex component of the

IDS. It is also the component that varies the most among the various approaches proposed and

implemented by the ID community.

We have identified three categories of characteristics that distinguish the description of detectors. These

sets, which have already been illustrated in Figure 10, p. 32, are caUed as follows:

82

•

•

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTlO YTE

IDS scope independent characteristics: This category of IDS scope independent charactensti

very similar to that of the IDS sensors.

Data pre-processing: The data pre-processing characteristics are IDS scope-dependent and define

the operations a detector is able to perform on the data provided by the sensor befo re the data i

analyzed for signs of errors.

• Instance analysis : The characteristics of the instance analysis category are also ID cope­

dependent, and describe the detector 's capabilities to perform error detection and fault diagno i .

In the following sections we develop these characteristics at the required level of detail. ith re pecl 10

complexity, the first two sets of characteristics are similar to the sensor characteristics de eloped abo e.

The third set is more complex and requires extensive descriptions. umerous examples can be found in

Appendices C.3 .2 and C.3.3 .

5.3.1 IDS scope-independent detector characteristics

The set of IDS scope-independent detector characteristics is similar to the set used to de cribe ensors.

Namely, the alarm timestamp and the alarm delay characteristics shown in Figure 23 have very imilar

definitions to the corresponding sensor characteristics discussed in Table 5.

IDS Scope Indep. ~ alann timestamp
alann delay

L __ C_ha_ra_ct_e_ri_sl_ics__ behaVIor-based
knowledge-based

Figure 23--Overview of IDS scope-independent detector characteristics

However, the set of IDS scope-independent detector characteristics as defined in Table 13 also contains

two characteristics that do not appear among the respective sensor characteristics. These characteristics

are used to distinguish knowledge- and behavior-based detection methods as described by Debar el at.

[DeDaWe99] (see also Section 2.2.3).

Alarm timestamp

Alarm delay

Table 13-IDS scope-independent detector characteristics

The alarm timestamp denotes the point in time at which alarms are generated,

with respect to the information reported by a sensor. In other words it tell us

whether the alarm timestamp refers to the beginning or the end of a sequence

of sensor reports that led to the generation of an alarm. The allowed values are

identical to those of the reporting timestamp attribute discussed in Table 5.

The alarm delay denotes the delay a detector adds between the reception of the

last sensor report that leads to the generation of a given alarm and the actual

creation of the alarm. The allowed values are identical to the ones of the

reporting delay attribute discussed in Table 5.

83

Behavior-based

Knowledge-based

A TIACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECllO TE. 1

This boolean characteristic is used to denote the fact that the described dele tor

applies a behavior-based detection method or at least uses a beha\; or-based

component. See also Section 2.2.3.

This boolean characteristic is used to denote the fact that the de cribed detector

applies a knowledge-based detection method or at least uses a knowledge­

based component. See also Section 2.2.3 .

Note that it is conceivable that detectors combine knowledge- and behavior-based technique . Because of

this we have introduced two distinct characteristics to describe the detection method.

Example: The IDS WebIDS [Almgre99} uses a database of signatures describing known anacks against

webservers. It would therefore be described as being knowledge-based. Daemon Watcher [WeDaD 00].

on the other hand, would have to be described as being behavior-based because it compares the ab n ' d

system behavior with known models afnormal behavior, i.e., it does not use auack signature .

5.3.2 Data pre-processing detector characteristics

In general the detector has to pre-process the data provided by the sensor because it may not yet be in a

fonn suitable for further analysis, i.e., the data needs to be normal ized. Also in some case the detector

suppresses data for various reasons such as preventing the system from being overwhelmed.

Data
Pre-Processing

Data
Normalization

Slngie-t>yte character decodlflg
multJ-by1e character decodlflg
5 tnng resolubOf"l
data decodlflg
symmetric cryptographoc operauons
asymmetroc cryptographic operatIOns

~-----.,.. address

FI ~er protocol control daIS
object
object annbute
request
argument
data
weekday
daytJme

Figure 24--0verview of data pre-processing detector items

Figure 24 provides an overview of the data pre-processing items that can be described as follows:

84

ArrACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Table 14-Data pre-processing detector items--data normalization

Data nonnalization

Single-byte

character decoding

In particular application layer protocols often offer several different ways to

express the same fact, i.e., it is often possible to formulate a sensor item using

varying syntactical expressions that have the same semantic meaning. For

examples see Table 64.

Such a high degree of freedom in the representation of data enables adversaries

to modify their attacks slightly such that it becomes significantly more difficult

for IDSs to detect them. Sometimes this high degree of freedom actually

enables the staging of an attack. For instance, this may be the case if the

attacked object performs sanity checks on the data which would nonnally reject

such suspicious data. However, if these sanity checks do not take into account

the various data encoding techniques, the adversary might be able to stage an

attack by encoding the malicious data-thereby bypassing these sanity checks.

Generally speaking, data normalization is especially important for knowledge­

based systems, because a detector's inability to normalize data may cause

attack signatures to fail in matching suspicious data.

Single-byte character decoding represents the ability to decode single bytes

that have been encoded by some placeholder-typically their numerical ASCII

value.

Multi-byte character Standards such as the UNI character encoding standard support the

decoding representation of large alphabets (more than 255 characters). Often those

encoding schemes offer several possible representations for the same

character. which increases the complexity of the decoding work to be

performed by the detector.

String resolution

Data decoding

Escape sequences are frequently used to change the appearance of data.

Examples are the quoting of strings. the use of a backs lash character in front of

a character that does not need to be escaped. or the use of shortcuts. If such

techniques are used. an IDS needs to recognize them before performing any

forther analysis.

Data may be encoded in various ways and has to be decoded for meaningful

analysis. Typical encoding techniques are the compression of data or the

base64 encoding.

85

Symmetric

cryptographic

operations

/

Asymmetric

cryptographic

operations

Filtering

Object

Object attributes

Arguments

Request

Data

Protocol control

data

Address

Weekday

/

Daytime

ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

We are not aware of IDSs that perform cryptographic transformations on (he

data they observed. However, it is conceivable that IDSs perform such

transformations on the data they observe. In our case this applies (0 sensor

items, as they were identified in Section 5.2.2. For instance, it is conceivable

that a network-based IDS monitoring a webserver, that uses SSL (secure socket

layer) to encrypt customer data and transactions, holds a copy of the

webserver 's private key. Knowing the webserver 's private key enables the IDS

to monitor encrypted https traffic. Note that we do not promote such solutions

as they carry inherent weaknesses such as the cost in terms of processing. the

problem of recovering from missing or corrupted PDUs, privacy issues. risks

created by the fact that private keys are stored at multiple places etc.

Table IS-Data pre-processing detector items-filtering

Filtering may be an important measure to eliminate false positives or

undesired alarms in general. A typical example is the filtering based on

network addresses if a given host is known to cause many false alarms. even

though the host itself is known to be harmless. For instance. this may be

caused by a broken implementation of the host's TCPIIP stack, which

generates many fragmented packets. Another cause might be a host that is

used to scan the network for vulnerabilities and would therefore cause a

flood of alarms to be generated each time a network scan is performed.

Our model allows fllters to be defined on every information category as

defmed in Section 5.2.2. In addition to those data categories. address data.

weekday, and daytime have been added.

See Table 7.

See Table 8.

See Table 9.

See Table 10.

See Table 12.

Excluding address data. See Table 11.

Address protocol control data is listed separately as it is one of the most

important sensor items used in filtering rules.

We have extended the list by two notions of time period-weekday and

daytime. These two time-period notions may be necessary for an IDS to

eliminate alarms known to be caused by harmless, regularly occurring

activities. An example are DNS zone-transfers that are scheduled on a

regular basis.

Example: WebIDS [Almgre99] is an IDS capable of reversing the hexadecimal encoding allowed in

URLs to represent non-printable characters. This co"esponds to the data normalization capability of

86

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO YTE

decoding single byte encoding for the http IDS scope. In addition the IDS supports jiltering based on th

URL, the request name and the source IP address. This results in the following list of data pre-proces ing

attributes for WebIDS:

• Single byte character decoding / http

• Argument-based filtering / http

• Request-based filtering / http

• Address-based filtering / IP

5.3.3 Instance analysis detector characteristics

In this section we develop the part of the IDS description scheme used to describe the error detection and

fault diagnosis capabilities of detectors . As expected, while developing the description scheme for

sensors, it became apparent that different IDSs analyze the same activity from various different

viewpoints . Accordingly this is also true for detectors. To address these differences, which in fact may

influence the analysis performed by the detector significantly, we introduced the so-called notion of

instances, which is then used to express the various detector characteristics. An instance represent the

instantiation of an IDS scope, e.g., a process, an http request, etc. These instance-related characteri tic

are further divided into analysis techniques and analysis levels. Analysis techniques are used to describe

the techniques, such as pattern matching, that detectors offer. Analysis levels describe the Ie el of

abstraction at which the analysis is performed.

However, before being able to describe the analysis techniques and levels, we have to fully develop the

instances concept. If combined with an IDS scope, the instances concept can be used to identify the

aspect of the IDS scope that is to be considered. An instance of http fo r example, represents an http

request. The result is as simple as it is pragmatic, but does not yet meet our requirements fully . IDSs often

operate on parts of instances only or on multiple instances concurrently. We therefore generalized the

instances concept by introducing the notions of instance parts and instance groups (see Figure 25). Using

these additional notions the concept permits detector capabilities to be described, fo r example, with

respect to single elements of an http request and http (v 1. 1) sessions that consists of several http requests.

I Single Instance (no parts) I

Iln~~~ce In~~~celln~~~cel Multiple
:===t===~==~ Instance IInstance Instancellnstancel Parts·
I Part Part I Part I

.) used for cross-instance part analysis

(a)

Multiple Instances
(used for cross-instanace analysis)

Instance) Instance
Instancellnstancellnstance Group

Part I Part I Part

(b)

Figure 25--Concept of instances, instance parts and instance groups

87

AIT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIOI\ SYSTEMS

Depending on the IDS scope of an instance, a detector may be analyzing instances. instance pans. or both

(see Figure 25a). This can be illustrated further by considering an instance of the IDS scope IP. There it is

intuitively clear that the instance is equivalent to an IF PDU. However, as mentioned earlier. an IP PDU

can be split into so-called fragments. Using the more generic notion of instances. these fragments are

equivalent to instance parts.

In addition these IF fragments are strongly interrelated because the receiver needs to be provided ith the

information required for recomposing the original IF PDU. The fact that a more or less strong dependency

among instance parts and also among instances might exist leads to the introduction of instance groups

and instance part groups. More generally, such groups consist of instances and instance parts that are­

by defInition-related at a higher abstraction level.

Even though instances and instance parts may be completely unrelated by design and therefore do not

compose a group, they may nevertheless influence each other. In fact, many practical security problems

arise because instances interact in a way they were not designed for or interact even though no interaction

at all was foreseen. This also has to be addressed in this scheme. We do so by introducing so-called cross­

instance analysis, and cross-instance part analysis reflecting the fact that multiple unrelated instances or

instance parts are analyzed concurrently (see also Figure 25).

Example: See Table 16, which shows the interpretation o/the various instance-related terms.

Table 16--Examples how to combine IDS scopes with instances etc.

IDS scopes I Processes Application protocols Link, network and Link, network and
Instance notion transport layer transport layer

(connectionless) (connection-oriented)
Instance part Thread Protocol statement or PDU fragment Connection segment

command

Instance part group Multiple threads of a Multiple statements of Multiple fragments of Multiple segments of a
process a transaction aPOU connection

Multiple instance Unrelated threads Seemingly unrelated Unrelated fragments Unrelated segments
parts statements

Instance Process Transaction .• POU Connection

Instance group Application I service Session N1A N/A

Multiple instances Unrelated processes Unrelated transactions Multiple PO Us Multiple connections

Having developed the concept of instances, we now continue with developing the actual description

scheme for detector analysis capabilities. The description scheme consists of two symmetric parts: one

addresses the analysis of instance parts, the other the analysis of instances. This has already been

introduced in Section 3.1.2.2. Figure 26 shows the entire scheme in more detail. Focusing on the part

describing the instance part analysis, we consider instance part group analysis to be a sub-branch of cross­

instance part analysis. We do so because the former can be considered to be a subset of the latter (see

again Figure 26). More precisely, the analysis of an instance part group can be viewed as the cross­

instance part analysis of instance parts that share common criteria. The same naturally also applies to

12 We use the term transaction in the same generalized fashion as it was introduced in Section 4.1.2.

88

ATTACK-CLASS-BASED ANALYSIS OF lNTRUSIO DETECTIO IT 1

instances, and is illustrated in Figure 26, i.e., the two main branches are identical except for the fact that

the upper one describes instance part analysis and the lower one describes instance analysis .

stnng matctllng
ac!v. stnng matching
regutar exp<esslon
size venficahon

r---- ________ string matching

ac!v. string matChIng
regular exp<ession
sae venfication

Figure 26--Description scheme for instance analysis

However, the scheme shown in Figure 26 consists of even more items that we develop in the following.

We distinguish the following items:

• Instance analysis levels

• Generic analysis techniques

• Cross-instance analysis techniques

89

ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

With the first item we aim at capturing the level of abstraction at which a detector is capable of analyzing

instances and instance parts of a given IDS scope. With the remaining two items we describe the

techniques that a detector may employ to achieve the analysis level identified by the first item. In

Appendix C.3.3 we provide numerous example definitions for the characteristics developed in the

following.

5.3.3.1 Instance analysis levels

As shown in Figure 26, we distinguish between analysis levels and bi-directional analysis levels for every

type of instance and instance part analysis. The introduction of the notion bi-directional analysis levels is

motivated by the fact that a detector may have to analyze protocols and other instances that are of bi­

directional nature. The corresponding characteristics reflect whether an IDS is capable of associating bi­

directional parts such as a system call or a http request and its return code.

When considering the different analysis levels, we distinguish three different levels, namely basic

analysis, logic verification, and semantic verification. These analysis levels were inspired by Dobson's

[Dobson89] abstraction levels and need to be interpreted separately for each instance analysis type.

Dobson's approach to system modeling [Dobson89] represents a systematic and hierarchical concept to

model and to analyze systems. Its core is the modeling of systems at several hierarchically dependent

levels of abstraction and a model of the communication among the various system components. Systems

are described at five different levels of abstraction. The two highest levels are the linguistic and the

conceptual; they describe a system in a non-fonnal but increasingly structured fashion. At the next lower

level, the semantic level, Dobson starts to describe the system formally. This formal description is then

refined in the logical level to explore the various viewpoints one might have on the system. The lowest

level is the descriptive level, and deals with the technology used to implement the system.

The scheme proposed in the following represents an adapted and simplified version of Dobson's

abstraction levels. We defme the three analysis levels at a conceptual level and provide interpretation

guidelines with respect to the various instance analysis types. Numerous examples can be found in

Appendix C.3.3. Note that every higher-level analysis level comprises any possible lower-level analysis

level. Moreover, for practical reasons, we consider every single instance that cannot be split into instance

parts to consist of one single instance part. For example, we consider every single threaded process to

consist of one thread.

90

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECllO~ SYSTE~tS

Table 17-Instance and instance part analysis levels--basic analysis

Basic analysis

Single instance and

instance part

analysis

Instance and

Instance part group

analysis

Cross-instance and

cross-instance part

analysis

Basic analysis denotes the fact that a detector performs very low-level analysis

such as simply recognizing the thing of interest, which can be an object. a

request etc. The thing of interest is defined by the respective instance or

instance part-analysis item sub-branch and the effective IDS scope.

The detector identifies instances and instance parts. e.g., the IDS is able to

distinguish protocol sequences or protocol statements. Based on this

knowledge the IDS might apply fUrther analysis. such as string matching. on

the observed data. See also Table 65 and Table 66.

The detector associates instances and instance parts as belonging to the same

group. In the case of instance parts one can view it as the parts of an instance

being associated by the detector. See also Table 67 and Table 69.

The detector associates instances and instance parts that are forma/~v

unrelated. See also Table 68.

Table 17 provides the defInitions of the instance and instance part analysis level basic analysis with

respect to the three different main types of instance and instance part analysis. We omit the repetition of

the respective defInitions for the bi-directional instance and instance part analysis levels because they

strongly resemble to what is already defmed in Table 17. They merely extend the corresponding

defInitions to the analysis of bi-directional instances and instance parts. We also do so in the defInitions

of the analysis levels logic verification and semantic verification. which will be discussed in the

following.

Table IS-Instance and instance part analysis levels--\ogic verification

Logic verifIcation

Instance and

Instance part

analysis

Instance and

instance part group

ana(vsis

Cross-instance and

cross-instance part

analysis

The analysis level logic verifIcation denotes the fact that a given detector

verifIes the thing of interest at the logical level. Again, the thing of interest is

defmed by the respective instance or instance part analysis item sub-branch and

the effective IDS scope. In most cases this is equivalent to syntax verifIcation.

The detector verifies the logical correctness of instances and instance parts. In

most cases this is equivalent to syntax verification. In this context it is worth

noting that in the domain of ID, instances need not to be complete or logically

correct to be considered an instance. In fact many attacks are manifested by

incomplete instances. See also Table 65 and Table 66.

The detector verifies the logical relation among instances and instance parts

belonging to the same group. See also Table 67 and Table 69.

As we are not aware that cases in which a logical dependency among instances

and instance parts that by definition are unrelated exist, we do not further

define this particular level.

91

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Again we omit the definition of the bi-directional counter parts. However, a simple illustrative example is

TCP: there a detector is considered to be performing bi-directionallogic verifIcation if it verifIes that the

TCP-PDUs exchanged in both directions fulfill the protocol specification.

Table 19-Instance and instance part analysis levels---semantic verification

Semantic

verification

Instance and

Instance part

analysis

Instance and

instance part group

analysis

Cross-instance and

cross-instance part

analysis

If a detector perfonns its analysis at the semantic level it means that it verifies

the semantic correctness and acceptability of the thing of interest. The thing of

interest is defmed by the respective instance or instance part analysis item sub­

branch and the effective IDS scope. In most cases this is equivalent to the

verification of security policy compliance. For example, the detection of the

fact that a confidential document is being sent to some non-trusted party. using

a perfectly valid mail transaction, i.e., mail message, falls into this category.

The detector verifies the semantic correctness of the instances and instance

parts. See also Table 65 and Table 66.

The detector verifies the semantic correctness of the relation among instance

and instance part group members. See also Table 67 and Table 69.

The detector verifies the semantic consistency and acceptability among

instance parts and instances. See also Table 68.

Bi-directional semantic verification can be illustrated by the example of a detector detecting the fact that a

protected, non-pUblic web page was revealed to the public. In order to do so, the detector has to recognize

that an http request asking for a protected page is being fulfilled by the webserver.

Example: To illustrate the description scheme for analysis levels just introduced, we consider an excerpt

of the WebIDS {Almgre99] description. WebIDS mainly operates within the http IDS scope. Within this

IDS scope it is able to verify the semantics of http request i.e., instances--even at the bi-directional

analysis level. This means that it can not only detect suspicious requests (semantic instance verification),

but also determine whether they were successful (hi-directional semantic instance verification). It does

not peiform semantic verification across requests, but is able to identify groups of requests i.e., instance

groups, based on a common source IP address or user ID (hasic analysis of instance groups).

5.3.3.2 General analysis techniques

In addition to the instance analysis levels, Figure 26 also shows the instance analysis techniques. The

corresponding characteristics describe detectors at a relatively high level by describing the resulting

detector capabilities rather than their implementation. For instance, the stateful analysis of a sequence can

be achieved using various techniques such as state machines or petri nets. (Although state machines and

petri nets are not the same, they both represent a stateful technique to analyze sequences.)

92

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

The general analysis techniques apply to each of the six instance and instance part analysis types. We

consider all these techniques separately, i.e., per analysis type. We do so because we need to reflect

differences such as the fact that a detector is capable of performing string matching on IP fragments. i.e ..

instance parts, but not on groups oflP fragments or on completely recomposed IP PDUs.

As shown in Figure 26, we have identified three subsets of characteristics that describe techniques

applicable to single instances and single instance parts:

• Control item analysis techniques

• Data item analysis techniques

• Timing analysis techniques

They describe the observable aspects of instances such as PDUs. We have. however. separated the pure

data items from the control items to increase the level of detail of IDS descriptions. Consequently control

item analysis techniques cover all the sensor items described in Section 5.2.2. but not the data items

described in Table 12. These are covered by the data item analysis techniques instead. Note that not every

technique represented by one of the items defmed in the following is applicable for every type of instance

analysis.

5.3.3.2.1 Timing analysis techniques

The set of characteristics denoting the timing analysis techniques is the smallest and can be represented

by just two items:

Timing analysis

techniques

Time period

Duration

Table 20--Instance and instance part timing analysis

The time period item denotes that the detector is able to verify whether the time

period e.g., daytime, instance, instance part, instance group etc., observed is

acceptable.

The duration item denotes that the detector is able to verify whether the time it

took the monitored system to perform a task is acceptable.

5.3.3.2.2 Control item analysis

Especially, but not solely, when verifying the logical and semantic correctness of instances, instance parts

etc., control items need to be analyzed for their content. As illustrated in Figure 26, we have identified

four additional items for expressing the corresponding detector characteristics. Three of them address the

content and one the size of the control item.

93

Control item

analysis

String matching

Advanced string

matching

Regular expression

matching

Size verification

ArrACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Table 21-Instance and instance part control item analysis

String matching allows a given sub-string to be identified within a string.

Advanced string matching additionally offers the possibility to go further than

the identification of known strings by allowing case-insensitive matching and

the use of "don't care" character placeholders.

Regular expressions generally allow a far more sophisticated specification of

the matching conditions. Examples: Perl {Per187] regular expressions.

Size verification is a very simplistic check on the elements of a given instance.

If the detector has a basic analysis of the instance in question on~\'. si::e

verification can be seen as a very limited syntax check. If the detector is able to

verify the logical correctness of an instance, the size check may be applied in

addition to identify suspiciously sized instance elements.

Note that a detector may perform control item analysis without verifying the syntactical correctness of the

instance. This actually is an important cause of false positives and false negatives. For example. IDSs that

"blindly" apply string matching on protocol statements may generate erroneous reports of suspicious

strings that are hannless or even normal in the context they appeared (this problem is similar to the one

described in the example on p. 48). However, by applying string matching on protocol statements it is

possible to perform some limited semantic verification. which is often used to identify undesired

keywords in a flow of data.

Example: Again considering WebIDS {Almgre99J. WebIDS is capable of applying regular expression

matching on control items of the http protocol. This includes the URL, but excludes data such as data

transfer in the context of an http POST request. Characteristics addressing the laner type of data are

discussed next.

5.3.3.2.3 Data item analysis

The set of items defmed above in the context of control item analysis explicitly excludes the sensor (data)

items introduced in Table 12. This is done because in real IDS implementations the data portion of an

instance is often not as easily accessible as other sensor items related to an instance. An example is http,

where the http request is often treated differently from the data associated with the request, i.e., the

document served to the client or the data posted by the client (see also above example). As a consequence

the capabilities of a detector with respect to data items may vary because of this.

We do not repeat the item defmitions here because they are identical to those provided in Table 21.

94

ATIACK-CLASS-BASED ANALYSIS OF INlRUSION DETECIlON SYSTEMS

5.3.3.3 Cross-instance analysis techniques

When considering multiple instances or instance parts concurrently, a detector can apply additional

analysis techniques to those just identified. The two additional categories of analysis techniques that we

were able to identify describe the detector's capabilities to verify the sequence of instances and instance

parts and to analyze the statistical properties of instance and instance part sequences.

5.3.3.3.1 Sequence analysis techniques

The different types of sequence analysis that we identified are quite similar to those identified for the

analysis of control items in Section 5.3.3.2.2. However their semantics differ to some extent as they

address state transitions rather than string or information processing in general.

Sequence analysis

techniques

Table 22-Instance and instance part sequence analysis

Fixed sequence Fixed sequence matching allows a given sub-sequence to be identified within a
matching sequence.

Advanced sequence Advanced sequence matching also offers the possibility to go beyond a mere

matching identification of known sequences by allowing the use of "don·t care"

placeholders and wildcards.

StateJuI sequence In the case of stateJuI sequence analysis the detector analyzes a given sequence

analysis of instances or instance parts using a technique that keeps the state of past

observations. Examples are state machines. petri nets etc.

5.3.3.3.2 Statistical analysis

Statistical analysis of sequences, as implemented by IDSs such as Bro [paxson98] or Snort's [Roesch99]

port-scan preprocessor, is required to detect port scans, flooding attacks etc. The definition of these

characteristics varies from those developed thus far. Instead of individual items we use four-tuples, each

of which can be used to express a combination of detector characteristics. Each of the four item types

represents a given characteristic that the statistical analysis performed by a detector may have.

~
Comparison

~
History

Accumulation

....
"'<16 (combined)
.,~ characteristics>

Figure 27-0verview of characteristics describing statistical analysis capabilities

95

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

As illustrated in Figure 27, the combination of these four characteristics results in a total of 16 combined

characteristics that are used to describe statistical instance and instance part analysis techniques. Note that

IDSs typically qualify for several of these 16 combined characteristics concurrently.

The following tables defme the four characteristics, which have been identified by extending the work of

others such as the Ph.D. thesis ofKurnar [Kurnar95], who has identified four different types of statistical

measures. He, however, listed only four types of techniques found in the context of audit log analysis. i.e .•

these techniques were less general than those defined below.

Comparison

Relative

Absolute

Timeframe

Limited

Unlimited

Table 23--Statistical instance and instance part analysis--comparison

Relative vs. absolute measure

A detector is considered to be performing relative measurements of class

instances and instance parts if it compares the measurements made for one

class to measurements made for another class.

A detector performing absolute measurements of instances and instance pans

merely considers a class of instances without taking other classes into account.

Table 24-Statistical instance and instance part analysis--timeframe

Limited vs. unlimited timeframe measurement

The detector measures, i.e., counts, instances and instance pans with respect to

a given limited timeframe. The resulting measurement is a frequency. This is

commonly implemented using a sliding window.

The detector simply counts or accumulates instances, instance parts, or

measurable properties of these. This means that the timeframe is unlimited.

Table 2S--Statistical instance and instance part analysis-history accumulation

History

accumulation

Complete

Decay

Unit

Cost

Complete vs. decay

The detector accumulates measurements made within the measurement

time frame without fading out older measurements.

The detector gradually decreases the weight of past measurements that were

made within the measurement time frame.

Table 26-Statistical instance and instance part analysis-unit

Occurrence vs. cost

The detector simply measures the fact that instances and instance pans occur.

The detector applies a cost function to the instances and instance parts

observed. Typical examples are measurements of memory or CPU time

consumed.

96

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECIlON SYSTEMS

Example 1: We again use the now well-known WebIDS [Almgre99} to illustrate the description of

statistical analysis capabilities. WebIDS may not calculate statistics on the requests made within a group

of http requests, i.e., within an http v1.1 session, because the information source does not reveal this

information, but may do so across all the http requests observed. It operates in limited and unlimited

timeframes, i.e., with or without sliding windows, and it can do either complete or decaying history

accumulation. Finally it only operates on the fact that an http request was made and not on the cost (e.g ..

number of served bytes) associated with a request. These characteristics can be expressed by the

following attributes:

• Absolute, limited, complete, occurrence-based statistical analysis

• Absolute, limited, decaying, occurrence-based statistical analysis

• Absolute, unlimited, complete, occurrence-based statistical analysis

• Absolute, unlimited, decaying, occurrence-based statistical analysis

Example 2: Snort's [Roesch99} capabilities to statistical analysis can be described in an even simpler

manner. The only such capability Snort v 1.7 offers is implemented by its portscan detection module. This

module operates at the transport layer and counts the number of TCP connection attempts to different

ports made by a source within a given time frame. This also applies for UDP PDUs. As a result Snort 's

capabilities to statistical analysis at the transport layer can be expressed with a single attribute:

• Absolute, limited, complete, occurrence-based statistical analysis

More recent versions of Snort provide increased capabilities for statistical analysis by including modules

provided by external sources. An example is the SP ADEISPICE preprocessor provided by Silicon Defense

[StHoMcOO}, which extends Snort with statistical anomaly detection capabilities.

5.4 Description of intrusion detection systems

In the sections above we have described an extensive and flexible description scheme for IDSs. In the

context of this work we have created descriptions of the five IDS configurations. These IDSs and their

selection are discussed in more detail in 8.6, where we use their descriptions as input to RIDAX. A

complete IDS description example is provided in Appendix CA. The IDS descriptions were stored in a

database that was created using the database scheme described in following subsection. For the

implementation of this IDS description storage facility we use a combination of open-source software:

• MySQL database [MySql].

• Apache webserver [Apache].

• PHP [PHP] scripting interpreter module.

• phpMyAdmin [PhpAdm], a package of PHP scripts that allows a simple and efficient

administration and population of the database.

97

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETEcnO~ SYSTEMS

MySQL is an open-source database that receives significant support in the Linux community and is easy

to use and maintain. In addition interfaces to many applications and tools such as perl. Prolog. PHP.

Apache etc. already exist. Lastly we needed a simple interface to maintain and populate the database

which we implemented by using the phpMyAdmin package, which we operate on an Apache webserver.

We have extended phpMyAdmin slightly to simplify the population of the database.

The RIDAX prototype directly accesses this database system to load IDS descriptions as well as to store

the analysis results.

5.4.1 Database structure used to describe intrusion detection systems

In the context of the MAFTIA project [D3MafOl] and as a foundation for the RIDAX prototype we have

developed and implemented a database structure that is capable of representing IDS descriptions created

according to the scheme developed in this chapter. This also includes the specification of the sensors and

detectors a given IDS consists of.

The database scheme consists of two groups of tables:

1. The first group of tables documents and reflects the description scheme developed in this chapter

and the notion of IDS scopes including the IDS scope graph as introduced in Section 4.1.

2. The second group of tables is used to represent the IDS descriptions. Database consistency is

ensured by referring to the first group of tables, i.e., using foreign keys.

The entity relation (ER) diagram shown in Figure 28 captures the first two groups of tables mentioned.

The diagram itself is based on the notation by Elmasri and Navathe [ElmNav94], but was simplified to

improve readability by suppressing the numerous ER-diagram attributes.

The high degree of symmetry in the entity relationship diagram is apparent. This is due to the fact that an

IDS entity consists of either one or several sensor entities and one or several detector entities. The

representation of the sensor and detector attributes is very similar. Both use the combination of the IDS

scope entity and the sensor, or, respectively, the detector-specific item description entities to express their

characteristics. In the case of the sensor entity the attribute description entity describes the various

information items a sensor has the potential to provide (see also Section 5.2.2). The attribute description

entity affiliated with the detector entity describes the capabilities an IDS has the potential to offer for the

analysis of activities (see also Sections 5.3.2 and 5.3.3). As indicated in Figure 28 by double-lined

borders, both attribute entities, i.e., sensor attributes and detector attributes, are so-called weak entities. A

weak entity type is defined by the fact that its entries become unique only when also considering an

externally supplied element. In this particular case all the relevant primary key information is supplied

externally. In addition to the attribute entities, both the sensor and the detector entity are used to represent

the generic characteristics as described in Sections 5.2.1 and 5.3.1.

The IDS scope entity reflects the concepts introduced in Section 4.1. It is not only used in the context of

the representation of IDS component characteristics but also for the representation of the IDS scope

98

ArrACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

hierarchy, i.e., the IDS scope dependency graph. This is achieved by introducing a relation that defines

one IDS scope to be an IDS sub-scope of another IDS (super-) scope.

Last but not least, the entity relationship diagram also requires documentary information to be included in

the description of IDSs. Numerous description fields (suppressed in Figure 28 for ease of readability) and

the introduction of the IDS vendor entity achieve this. The IDS vendor entity simply represents the fact

that a vendor may offer more than only one IDS.

IDS
(1.1)

(IoN) (1.N)

IDS scopes

(D.N)

Figure 28--Entity relationship diagram of the database used to store IDS descriptions

5.5 Discussion

The IDS description scheme developed in this chapter represents an empirical, but highly systematic,

approach to the description of IDSs. It is certainly true that the resulting scheme is too complex for

somebody seeking informal classifications such as the ones proposed by Debar et al. [DeDaWeOO],

Axelsson [AxelssOO], and others. However, as the goal was not the creation of an informal classification,

but of a description scheme suitable for our pragmatic automated approach to IDS analysis, this issue is

not relevant.

Given the hierarchical nature of the IDS scopes introduced in Section 4.1, one might argue that the

description scheme as it has been developed thus far carries the danger of being ambiguous, i.e .. that

descriptions are not repeatable in exactly the same manner. The hierarchical nature of the IDS scopes

allows an IDS to be described either at a more specific or at a more generic level at which both

descriptions would be equally valid. This issue can be resolved by imposing a policy that defines the level

99

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETEcnO~ SYSTEMS

of detail at which IDSs shall be described (see also Section 3.1.3). One could. for example. require that

IDSs are to be described as generically as possible or as detailed as possible. However. this issue becomes

even more complicated because often detailed information about the capabilities of an (commercial) IDS

is not publicly available. In such cases one has to estimate the capabilities of an IDS by observing its

behavior when confronted with particular attacks and by investigating the type of alarms a given IDS is

able to generate. This issue motivated the development of the Thor IDS analysis framework [Marty02).

However, in most cases, one can also obtain significant information by examining the information

sources used by the IDS more closely. In doing so it is often possible to deduce facts such as the way IP

fragments or TCP streams are being processed by an IDS. Finally note that because of how activities are

described, the impact of differing IDS descriptions on our analysis approach, including RIDA)(, is limited

as long as the semantics of the descriptions does not differ significantly. As we shall see in the next

chapter, one of the key design factors for attack class descriptions is that the descriptions have to operate

based on the semantics of IDS characteristics and not based on specific IDS attributes that were used to

express them.

Another point worth mentioning is the fact that the distinction between behavior-based and knowledge­

based IDSs becomes less obvious. This is due to the fact that most attributes used to describe IDSs can be

used to describe both of these IDS types. We have compensated for this drawback by i.ntroducing separate

attributes (see Section 5.3.1) that allow us to describe the detection method employed by the IDS. It is

interesting to note that these attributes primarily influence the types of the generalized alarms that are

generated for a given attack class and far less the attack classes that are identified as being worth

reporting.

Our scheme does not explicitly distinguish between IDS characteristics relevant to fault diagnosis and

those relevant to error detection because in ID it is often not possible to distinguish them clearly (see also

Section 2.1.1). This particularly applies to the more popular knowledge-based IDSs because they attempt

to identify signs of known attacks and thereby often already perform some limited form of fault diagnosis.

Once these systems recognize a known attack, they thereby detect the error and at the same time can

already provide an indication about the cause of this error (i.e., fault diagnosis). The latter may happen in

the form of an alarm identifier. In the case of behavior-based systems the ability to perform fault

diagnosis is more limited because these systems generate more or less meaningless alanns once they

detect that the system is no longer in an acceptable state. In other words, behavior-based systems detect

errors that may lead to security failure and security failures implicitly.

5.6 Conclusion

The goal of our IDS description scheme is to enable the creation of IDS descriptions that are suitable for

the analysis of IDSs as performed by RIDAX (see Chapter 7). As a result we have developed a scheme

that achieves this and that thereby forms one of the foundations of this work. One might argue that the

scheme is quite complex. It is certainly more complex than existing IDS classifications, but these are not

meant to be used for the automated analysis of IDSs. Considering the goal pursued, our IDS description

100

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTlO~ SYSTEMS

scheme yields highly concise descriptions of IDSs that are modestly small (for an example see Appendi:>;

C.4). This is partially due to the fact that most IDSs offer only fairly limited capabilities. However. the

use of (hierarchical) IDS scopes has an even more important impact on the size of IDS descriptions (see

Section 4.1).

Moreover this scheme provides us with the building blocks for the description and classification of

attacks. As explained in the subsequent chapter, attack classes are described by the set of IDS

characteristics required for their analysis.

101

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfION SYSTEMS

Chapter 6 Description and classification of attacks

For the analysis of a given activity, an IDS first of all has to collect a sufficient amount of data associated

with the activity, and then analyze it. For this, the IDS needs certain capabilities. As outlined in Section

3.2, our approach describes attack classes, i.e., classes of malicious activities, by fonnulating these

capability-requirements in terms of IDS characteristics that describe the capabilities of IDSs (see Chapter

5). More precisely we describe attack classes by means of the characteristics required of an IDS for

analyzing a given class of attacks.

For the classification of attacks we use the same method. As explained in Section 3.2 we classify attacks

by fIrst describing them using IDS characteristics that are required for their analysis. The resulting

description of the attack will be of reasonable detail, but not of sufficient detail such that it would be

possible to implement the attack merely based on its description. Thus it is conceivable that several

attacks can be described by the same description. In other words, such a description describes an entire

class of attacks. Hence in the second step of the attack classifIcation process. it is verifIed whether an

attack class with an identical description has already been identifIed. If such an attack class exists. the

attack to be classifIed can be associated to this class. In the other case, if no such class exists. the attack

belongs to an attack class that has not yet been identifIed and the attack's description can be established

as the description of the newly identifIed attack class.

Although the creation of attack class descriptions may seem relatively simple for a particular IDS and a

given class of attacks, it becomes signifIcantly more complex for a larger number of IDSs. attack classes

and attack class variants. Each IDS may analyze attacks in a completely different manner. Moreover,

depending on its capabilities, an IDS may choose from several different means to analyze a given attack.

We address this issue by using the rule-based language Prolog [DiazOO] for describing attack classes. Its

backtracking capability [CloMeI94] enables us to explore the various ways in which IDSs may analyze

classes of attacks efficiently and independently of specifIc IDSs.

However, although the problem can be addressed using a rule-based approach. special care has to be

exercised to defme a scheme that permits efficient, concise and repeatable descriptions of attack classes.

In order to avoid the creation of large and repetitive descriptions of individual attack classes or even

attack class variants, and to ensure consistency across descriptions of attacks that belong to the same

class, we use a modular approach using several components:

1. Attack class description building blocks: Many attack classes share important characteristics, for

example, they represent an application layer request or a network layer PDU. The building

blocks express such shared characteristics by describing a particular aspect of entire classes of

attacksl3 as identifIed in Chapter 4. These descriptions rely on the hierarchical nature of IDS

13 In fact attack class description building blocks typically describe properties of entire super-classes. i.e ..
of multiple classes, of attacks such as "buffer overflow attack against a process."

102

AIT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECflON SYSTEMS

scopes by describing attack class components at the highest-level IDS scope possible. Hence, the

descriptions are made such that they can be instantiated at any lower-level IDS scopes. such as

"JP" during the analysis process.

2. Attack class descriptions: An attack class description is a rule that describes classes of attacks as

identified in Section 4.3. However, in practice these descriptions primarily specify the IDS

scopes and the combination of attack class description building blocks relevant to the attack. The

IDS analysis process will then analyze these attack class description building blocks for the IDS

scopes specified by the attack class description.

3. Attack class variations: Attack class variations14 are rules that express the additional IDS

characteristics required to analyze classes of attacks, assuming that the latter have been altered

slightly. Attack class variants can be defmed by the name of the attack class and the list of

variations included during the evaluation of the corresponding attack class description. The set

of variations applicable to an attack class is identified based on the list of IDS scopes relevant to

the attack class. In practice, variations are hooked into the applicable attack class description

building blocks. For instance, the variation describing the fact that a network layer PDU has

been fragmented is included during the evaluation of the attack class description building block

describing the fact that a network layer PDU is involved.

4. Expectable alarms: Expectable alarms are generalized alarms that IDSs can be "expected" to,

i.e., might, generate when observing a given attack. In this approach every attack class variant is

associated to a list of expectable alarms, i.e., expectable generalized alarms, for two reasons.

First, for a given attack, IDSs may generate more than just one correct alarm. Second, every IDS

analyzes attacks differently, which means that multiple, semantically different alarms have to be

accepted as true positives. For benign activities, the list of expectable alarms would of course be

empty. Moreover, we prefer to associate expectable alarms with attack class description building

blocks and variations rather than with individual attack class descriptions as this significantly

simplifies the creation of attack class descriptions.

The following sections describe these components in greater detail, explaining their role in the IDS

analysis process. In Appendix D, we provide BNF defmitions for attack class descriptions and examples

of attack class descriptions, attack class description building blocks, and attack class variations.

6.1 Attack class description building blocks

We introduce the concept of attack class description building blocks in order to simplify the task of

creating attack class descriptions. In the context of this work, 23 attack class description building blocks

14 For ease of readability, we hereafter refer to "variations" instead of "attack class variations."

103

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

were created. These were identified and described in the context of descnbing the 27 attack c1assesl~

identified in Section 4.3 (Table 4, p. 67).

Attack class description building blocks describe super-classes of attacks. i.e., they describe attack

characteristics that are shared by multiple attacks classes. The attack class description building block

describing argument-based buffer overflows is a good illustration of this. It was defined such that it can

be used not only in the context of a specific IDS scope such as http but in an entire range of additional

scopes such as the more generic application layer scope, the process, or the call IDS scope. Thus attack

class description building blocks are highly reusable components for the description of attacks and attack

classes. The relevant building blocks can be identified based on our attack categorization (see Chapter 4)

by considering super-classes of attacks. Such super-classes unity multiple classes by permitting multiple

values for classification attributes or by suppressing an attribute completely.

6.1.1 Instantiation of attack class description building blocks

Attack class description building blocks are highly generic building blocks that are specified at a high­

level IDS scope. As such they are too generic when it comes to describing a specific class of attacks such

as an http argument buffer overflow. This led to the concept of "instantiating" attack class description

building blocks to a lower-level IDS scope when used for the description of an attack class. This becomes

possible by using two IDS scopes to specity the validity of a building block. The first is the high-level

IDS scope at which the attack class description building block was specified. This scope is fixed by the

description of the building block. The second is what we call the effective IDS scope and represents a

parameter that can be set whenever the building block is used to describe an attack class. Note, the

instantiation of attack class description building blocks is not to be confused with the instantiation of

classes as known from object-oriented technologies. The instantiation of an attack class description

building block merely transforms a generic description into a more specific description.

Example: Consider an attack class description building block that describes argument-based buffer

overflow attacks at the application layer and the process IDS scope. By combining this attack class

description building block and another attack class description building block that describes basic

application layer requests, it becomes possible to describe an http request argument-based buffer

overflow attack. To achieve this, we simply have to instantiate the two attack class description building

blocks at the effective scope http.

A practical example of how attack class description building blocks are instantiated is given in Section

6.2.1.

15 At a later stage of this work, we used this method to describe also classes of benign activities. In total
we created 48 descriptions of malicious and benign activity classes.

104

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

6.1.2 Analyzing multiple IDS types

Because attack class description building blocks have to address all the IDS types that have the potential

of analyzing them, we formulate them in such a way that they permit the analysis of IDSs that apply

different analysis techniques and monitor different types of data sources. For instance. there is a

significant difference in the way the analysis is done by IDSs such as Snort, WebIDS or Daemon Watcher.

Firstly, the information source (see Section 5.2.1.1) that is monitored differs in each case. Secondly. also

the way the attack class is analyzed for suspicious elements differs significantly. WebIDS and Snort are

similar in that they look for the presence of strings known to be suspicious. DaemonWatcher uses a

completely different approach that analyzes the sequence of system calls of the monitored process for

deviations from normal behavior. All these different paths of analysis need to be taken into account in the

description of attack classes and attack class description building blocks.

Example: Consider the attack class description building block describing a basic application layer

request such that one can determine whether the IDS analyzed is capable of recognizing the fact that such

a request was made. In the case where the information source used is raw network data. i.e., a sniffer as

used by Snort. the IDS has to be capable of extracting the data first from link layer PDUs. and then from

network layer PDUs etc. Once it is clear that the data required is available the analysis can be continued.

It has to be verified whether the detector is capable of employing the required analysis techniques, and

whether the analysis is conducted at an appropriate analysis level. For another class of IDSs such as

WebIDS. the analysis part remains the same, but the verification of whether the data required for the

analysis is actually available is different-again determined by the information source type. Finally. for

the class of IDSs that monitors system audit logs. the requirements for the sensor and the detector are

different again.

In summary, the information provided by the sensor determines to a large degree the manner in which the

detector analyzes a given class of attacks. However, the availability or absence of any IDS characteristic

may enable or disable a given approach to analyzing a given class of attacks. It is also conceivable that an

IDS may analyze an attack class using two or more different approaches, hence causing the analysis

procedure to produce multiple results for the very same attack class. In the following, we assume that the

IDS will always choose the most effective approach.

6.1.3 Dependencies among attack description building blocks

One could argue that in the ideal case attack class description building blocks should be independent of

each other, because they describe independent analysis steps required from IDSs. For example, when

designing a system communicating over an application layer protocol, one considers this application layer

protocol to be independent of PDU fragmentation taking place at the networking layer. Normally this is

certainly the case, but in the case of ID the layer and system boundaries are often not respected as

precisely as one would wish. In fact many attacks involve such non specification-conformant elements

105

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECflON SYSTEMS

that violate the concepts oflayer and system boundaries (e.g., data suddenly being executed in the case of

buffer overflow attacks).

Example: In the application layer buffer overflow example introduced in Section 6.1.1, it is conceivable

that a network-based IDS is able to process normal network layer PDUs and to extract transport and

application layer data as long as they are not fragmented. If they are fragmented, such an IDS might no

longer be able to reconstruct them. In this particular case this would mean that although the IDS is

capable of analyzing application layer request arguments, these arguments cannot be analyzed because

the fragmentation either hides the data from analysis or causes the entire ana(vsis process to fail.

Although our attack class description building blocks can take such issues into account, they may lead to

repetition and rather complex attack class description building block descriptions. To avoid unnecessary

complexity of single attack class description building blocks and to guarantee consistency, we allow the

inclusion of other attack class description building blocks within the description of any given attack class

description building block.

Example: The attack class description building block describing the basic analysis requirements for

application layer requests when monitored by a network sensor requires that transport layer data be

available. This is achieved by simply having the attack class description building block describing the

application layer request require the attack class description building block that describes basic

transport layer analysis. The latter attack class description building block then in turn requires basic

network layer analysis etc.

Thus attack class description building block descriptions may include any other attack class description

building block, which is an ideal mechanism to describe dependencies such as they occur among the

various network stack layers.

6.1.4 Example of an attack class description building block

Numerous examples of attack class description building blocks, attack class descriptions and attack class

variations are given in Appendix D. The used prolog rules, variables and atoms are also described in this

appendix. However, in order to illustrate the manner in which attack class description building blocks are

constructed the following example is provided ("adbb" and "ADBB" are standing for "attack description

building block"):

/* ---
* adbb/argBOF - buffer overflOW attacks using arguments
* i.e., the request line of protocol session or the ar~ents
* of a function call etc. pattern matching based detect~on.
*/

adbb(basic, ADBB, ADBBScope, IDS, Detector, EffectiveScope, ScopeList,
DIAGIN, DIAGOUT, Variations, Variations, notBlk) :-

/* The detailed meaning of the argument list of this rule is
explained in Appendix D.2. This attack class description building
block does not itself apply variations. */

106

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfION SYSTEMS

/* PART 1: Naming and IDS scope selection */
/* The name of the attack class description building block: argument

buffer-overflow */
ADBB=argBOF,

/* The top-level scopes at which this attack class description
building block can be evaluated: application layer and calls
(see Figure 9). */

(ADBBScope=app_l; ADBBScope=call),

/* Verify whether the scope list ScopeList contains a scope
that is covered by the top-level scope. Moreover determine
and/or verify the effective IDS scope for which the
attack class description building block is to be evaluated
(see Figure 9). */

selectSubScp(ADBBScope, EffectiveScope, ScopeList),

/* PART 2: Information source requirements */
/* Require the sensor to be able to provide the information needed

for analysis: The request arguments (see Figure 21 and
Table 9). */

reqSensorAttrib(IDS, _, EffectiveScope, args, basic, DIAGIN, DIAG1),

/* PART 3: Detector requirements */
/* Require the detector to be able to verify the logical correctness

of the arguments (see Figure 26 and Table 18). */
reqDetAttrib(Detector, EffectiveScope, si_ip, logic, DIAGl, DIAG2),

/* Require the detector to be able to either verify the string size
or to apply string matching to the arguments (see Figure 26
and Table 21). */

(reqDetAttrib(Detector, EffectiveScope, si_ip_info, size,
DIAG2, DIAGOUT);

reqDetAttrib(Detector, EffectiveScope, si_ip_info, string,
DIAG2, DIAGOUT», !.

The descriptions of attack class description building blocks, attack classes and variations generally

consists of three parts as shown in above example. In the fIrst part the name is defmed and the effective

IDS scope at which the attack class description building block is to be evaluated is selected or, if already

given, verifIed. Then, in the second part, the information items that are required for analyzing the

described attack class description building block are specifIed. In the last part the actual analysis

requirements are specifIed. In Sections 6.2.1 and 6.3.4 similar examples will be given for attack classes

and variations.

6.2 Attack class descriptions

So far we stated that attack class descriptions are primarily composed of attack class description building

blocks. However, a complete description requires additional description elements, which leads to the

following list of elements that activity descriptions may be composed of:

1. Attack class description building blocks as described above.

2. IDS characteristics required in addition to the ones formulated by attack class description

building blocks.

3. The list of IDS scopes that are to be used for the instantiation of attack class description building

blocks.

The second element addresses aspects of attack classes that are highly specifIc to the class described, i.e.,

that are too specifIc to be described by a dedicated attack class description building block. However. we

107

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIOl\ SYSTBfS

generally avoid their inclusions into attack class descriptions because they may make it more difficult to

consistently repeat the attack description process.

The third element has multiple functions. First it specifies the IDS scope to which the attack class

description building blocks have to be instantiated. Its second function, which will be explained 10

Section 6.3, concerns the selection of variations to be applied to the attack class.

Example: The description of a buffer overflow attack may specify that it has to be considered at the IDS

scope http and that TCP and IP have to be considered as the underlying protocols.

6.2.1 Example of an attack class description

Most activity descriptions are fairly simple-provided appropriate attack class description building blocks

have been identified and described in the first place. The following code excerpt is a slightly simplified

example showing the rule used to describe an http buffer overflow attack using Prolog.

/* ---
* attack/11/argBOF - httpd argument buffer overflow attack
* ActNbr: 1
*/

attack (basic, Attack, EffectiveScp, IDS, Detector, ScpList, MaxVars,
Diagln, DiagOut, VarsToApply, BlockFlag) :-

/* PART 1: Naming and IDS scope selection */
Attack=argBOF1

, EffectiveScp=http2,

/* define the IDS scopes involved in this attack class */
ScpList=[EffectiveScp, tcp, ipv4, ieee_802_3, sys_call1 3

,

/* PART 2: Variations */
/* select the variations to consider */

selectVars4 (MaxVars, VarsToApply, ScpList, Diagln, DIAG2),

/* PART 3: Description of the actual attack class */
/* This attack is in fact a layer 7 request */

adbbs(eval, reqCtlUp6, app 1', IDS, Detector, EffectiveScp, ScpList,
DIAG2, DIAG4, VarsToApply, VarsNotYetApplied, BLK1 8

),

/* Verify whether the IDS was able to analyze the attack class
description building block

* reqCtlup/app 1 without being blocked due the lack of
* Characteristics. */

relBlkFlag(BLK1, BlockFlag)9,
/* now check for the attack class specific things, i.e., the BOF */

adbb(eval, argBOF10 , app_l, IDS, Detector, Effect iveScp , ScpList,
DIAG4, DiagOut11 , VarsNotYetApplied, _, BlockFlag).

The rules and predicates used to describe this attack class are difficult to understand unless one is familiar

with Prolog and the context. Being a rule-based language, Prolog will start at the top by trying to satisfy

this rule by evaluating each predicate. These predicates may fail or succeed. In the case of failure Prolog

performs backtracking [CloMeI94] until an alternative solution is found. If no such solution is found, the

entire rule fails. In this particular case backtracking is equivalent to the search of an alternative way of

analyzing the attack class described.

The above example shows that attack class descriptions are composed of three parts. In the first part the

attack class is identified and the list of relevant IDS scopes is defmed. In the second part the set of

108

A IT ACK-CLASS-BASEO ANALYSIS OF INTRUSION DETECTION SYSTEMS

variations to apply is selected. Then, in the third part, the actual attack class is described. This description

has to follow the path that infonnation takes when being analyzed by an IDS, i.e., it starts \\ith the

prerequisites for any form of more advanced analysis (see also Section 6.1.3). In this example we first

verify whether the IDS is actually aware of application layer, i.e., http, requests. Then, in a final step. the

IDS's approach of detecting http buffer-overflows is analyzed.

In order to complete the description of this example, we have added superscript numbers in the example

that denote Prolog clauses that represent important attack class properties such as the name of the attack

class (for further details see Appendix 0):

1. The atom argBOF denotes the generic name of the attack class. However, for a complete

identification of the attack class also the following atom must be taken into account.

2. The atom http denotes the so-called effective scope, i.e., the primary IDS scope of the attack

class. It is the second element that is used to name the attack class.

3. The list assigned to the variable ScpList represents the list of IDS scopes for which attack class

description building blocks are to be evaluated (see also Section 4.2.1). For instance this list

includes the IDS scope ipv4 that triggers the evaluation of network layer attack class description

building blocks for the IDS scope IP version 4.

4. The rule se1ectVars selects the set of variations to be applied to the attack class. This is done

primarily based on the IDS scope list ScpList. This rule relies on backtracking and will provide

a list of variations to be applied in the variable VarsToApp1y. This list will always have no more

entries than specified in MaxVars.

5. The adbb rules are used describe attack class description building blocks (see Section 6.1).

6. This and the following atom specify the attack class description building block to be considered.

In this case the atom reqCt1Up stands for the control information of a request sent to a server

(i.e., no data included).

7. The atom app _1 represent the second part of the attack class description building block name,

and initiates the selection of the attack class description building block specified for the

application layer.

8. After the evaluation of the adbb rule the BLKl variable is either set to notB1k, adbbB1k or

varB1k. If the variable is not equal to notB1k, this means that the IDS was found to be able to

analyze the attack class description building block in the selected analysis path. As shown in this

example, in many cases the analysis of the attack class is not aborted because of an attack class

description building block that could not be analyzed. A "blocked" attack class description

building block simply means that there was an IDS capability missing that prevents the IDS from

performing further analysis of the attack class on the path considered. The analysis performed so

far may already be sufficient to raise certain alarms, e.g., that alarm that fragmented POUs have

been observed. The analysis that has been performed so far is recorded in the variables DIAG2 .

DIAG4 etc. The fmal recordings are returned in DiagOut.

109

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECT10~ SYSTEMS

9. The relBlkFlag rule is a simple helper rule that is required to enable Prolog to continue the

evaluation of the attack class if several attack class description building blocks or variations are

to be evaluated in sequence. If BLKl has the value notBlk, BlockFlag will be an uninstantiated

variable. Otherwise BlockFlag will be made equal to BLKl. At the end of the attack class

description the variable BlockFlag carries the information whether any of the attack class

elements, i.e., attack class description building blocks or variations, caused the IDS to stop

further analysis of the attack class.

10. The atom argBOF and the following atom app_l specify that the attack class description

building block describing argument-based buffer overflows at the application layer is to be

included. The attack class description building block will be evaluated at the scope http that is

specified by the variable EffectiveScp.

11. The variable DiagOut contains the diagnostic information needed for further analysis. This

includes information such as the sensor and detector attributes required during the analysis.

which then enable the identification of alarms that the IDS has the potential to generate.

Note that we only provide an example of an attack class description here. We do not include examples of

attack class description building blocks, simply because in general their descriptions are large and

complex, and would require far more detailed explanations than seem appropriate in this context. Instead.

some examples have been included in Appendix D.

Moreover note that for the description of benign activities we may require certain IDS characteristics not

to be available. This is necessary if we describe an attack-similar benign activity, which might be

confused as a malicious one if the IDS is using simple analysis techniques, but that would not be confused

if more advanced techniques were used (see also Appendix D). As a consequence the attack class will

only appear as having been analyzed as an attack if the IDS was not sufficiently sophisticated.

Example: Considering the SMTP (simple mail transfer protocol) example provided in Chapter 4, p. 48.

There it is shown that IDSs, which are not capable of tracking the state of SMTP sessions, but just use a

pattern matching technique instead, may confuse mail message data with SMTP commands. In this case

we express this fact by letting the analysis of the attack class only succeed in its incomplete manner if the

IDS does not implement the more advanced technique.

6.3 Using attack class variations to create classes of attack variants

Attacks may be obfuscated in an attempt to elude IDSs [Horiz098, JiSiIrOO, PtaNew98, RFPOO,

SasBeeOO, Stewar99]. There exist tools such as Whisker [RFPOO], Fragroute [Song02] and its predecessor

Fragrouter [Song99] that implement such obfuscation techniques. Here we show how such obfuscating

transformations of attack classes can be described by means of attack class variations. These are

independent of, i.e., not associated to, particular attack classes. We also provide some background

information and explain the difficulties of analyzing altered attack classes. i.e., attack class variants. In a

next step we explain how these attack class variants can be created by applying variations to attack

110

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

classes. Finally we discuss the impact variations have on the analysis of an IDS when applied to attack

classes.

Primarily knowledge-based IDSs that use some form of attack signature to identify known attacks are

susceptible to obfuscation techniques. Generally the goal of varying attacks is to change the appearance

of the attack such that existing attack signatures will no longer match. In real-world environments these

techniques unfortunately proved to be fairly effective [Marty02]. To make matters worse. most variations

can be combined with each other---especially if two variations affect different layers or sub-systems. To

render IDS analysis even more complicated, variations may impact the analysis performed by IDSs in

numerous ways.

However, one might argue that the problem of recognizing obfuscated attacks should not be difficult

because the attack target is after all capable of reversing the transformation applied to the attack. Also.

one might argue that unnecessary attack transformations are suspicious by definition. Unfortunately

neither argument is true (see also Section 3.2.2) because

1. most techniques used to transform an attack also occur in the context of benign activities.

2. normalization is costly (see also Section 5.3.2), and

3. in some cases normalization is not possible-at least not in a non-ambiguous manner.

Most attack transformations used to obfuscate attacks are completely valid with respect to protocol

specifications etc., and are frequently used in the context of benign activities such as the hexadecimal

encoding of special characters in URLs.

Example: Consider the fragmentation of IP PDUs. PDUs may be fragmented in an attempt to partition

the data carrying the attack. but also because some entity in the network supports only a small MTU

(Maximum Transfer Unit) size.

The normalization of data as done by the attack target generally is a rather costly task. If done by the IDS

it often significantly impacts the performance of the IDS and possibly the performance of the system

being monitored. Good examples are the reassembly of fragmented IP PDUs or TCP streams.

For illustration purposes we cite the Snort documentation [Roesch99]. In the rue snort-lisapaper. txt

the following is stated:

... A Snort rule that has been tuned too tightly to key on a specific area of a packet's

payload may overlook the real exploit that has been shifted to a different area within the

packet. On the other hand. web CGI probes and attacks generally all take place at the

beginning of the packet within the first thirty to fifty bytes. This can be a great place to

optimize Snort content searching.

This describes a way to optimize the performance of Snort. This optimization represents a restriction that

might be used to elude Snort by obfuscating an http attack by artifically enlarging the http request line.

111

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Another issue is that the nonnalization is not always non-ambiguous because multiple valid

interpretations of the transformed attack class are possible, i.e., in some cases one can no longer call re­

transfonnation "nonnalization". This increases the complexity of the analysis to be done by the IDS as it

might have to investigate multiple re-transfonnations of an attack.

Example: Consider overlapping IP fragments in which the overlapping data differs. Here it is not clear

how the target will reassemble such fragments, i.e., it is not clear whether the target will give preference

to the data contained in the first fragment or to the data of the last fragment. In fact. such differences

exist between Linux and Windows operating systems. It is certainly true that this might be unusual (or

benign activities, but on the other hand, it is not necessarily an indication of malicious activity because a

faulty network stack also may generate such PDUs.

To make matters worse, most variations can be combined with each other-especially if two variations

affect different layers or sub-systems. For instance it becomes possible to combine network layer

[Horiz098] and application layer variations [RFPOO].

Before continuing with a more detailed description of the principles used to describe variations. it is

worth mentioning that we have selected and described seven attack class variations in RlDAX. These

range from simply corrupted link layer PDUs and fragmented network layer PDUs to encoding variations

at the application layer.

Generally, descriptions of variations are formulated in a fashion highly similar to that used for attack

classes and attack class description building blocks. However, besides describing the IDS characteristics

required for their analysis, they also have to support the following additional functions:

1. Defme the IDS scope they are applicable to.

2. Represent the differing impact that variations may have on the analysis.

3. Defme the variations and attack class description building blocks they may be combined with.

Last but not least, the variations have to be easily applicable to attack class descriptions and attack class

description building blocks.

6.3.1 IDS scope of attack class variations

Similar to attack class description building blocks, variations are defmed at a high-level IDS scope,

possibly including IDS scope attributes, and then instantiated to the more specific IDS scope that is

defined by the attack class description.

Example: The variation used to investigate the behavior of an IDS with respect to the presence of

fragmented IP PDUs is described for the network layer IDS scope, additionally requiring the

'fragmentation" attribute. The latter is required in order to prevent the variation from being applied to

an attack class involving a network layer protocol that does not support fragmentation. During the

analysis of an attack class variant that includes this variation, the latter is, for example, instantiated for

the IDS scope IP.

112

ArrACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

As shown in Section 6.2.1, the list of IDS scopes relevant to an attack class is defined ithin the attack

class description. It serves to select the variations that are applicable to an attack class (see Section 6.2.1.

items 3 and 4). The attack class example in Section 6.2.1 illustrates the stage at which the variations to be

considered are selected However, the example does not show how the variations are applied. It is clear

that variations need to be applied at that exact stage in the evaluation of the attack class description. For

instance, the variation describing IP fragmentation should be considered before the IDS is analyzed for

any of its higher-level capabilities such as the analysis of TCP streams. The solution to this issue is

relatively straightforward because we can take advantage of the fact that we use attack class description

building blocks to describe basic attack class elements: We simply include the evaluation of the

corresponding variations in these attack class description building blocks. As a result the selected

variations are automatically included at the appropriate stage of the analysis process, because attack class

description building blocks such as application layer requests include further lower-level attack class

elements such as TCP connections.

6.3.2 Impact of attack variations

Referring to the preceding section, taking variations into account at the appropriate analysis stage has also

the welcome advantage that their impact can be modeled in a consistent manner. They may impact the

evaluation of an attack class variant as follows:

1. Fatal impact: Any further evaluation of the attack class is blocked. In our description scheme this

is reflected by setting a flag (see Section 6.2.1, item II). This may result in a false negative.

2. Limited impact: Control items are suppressed or analysis techniques are rendered useless. but the

evaluation itself is not blocked immediately. In our description scheme this is reflected by

marking the affected IDS characteristics as "unavailable." As a consequence the evaluation may

fail at a later stage and possibly result in a false negative, if one of the affected IDS

characteristics is required for further evaluation of the attack class. However, it may turn out that

the IDS has the potential of generating an alarm reporting the presence of a varied attack class,

i.e., the possibility that an obfuscated attack has been staged. Note that in this case the stage of

the evaluation at which the variation is considered is vital, simply because it does not make sense

to suppress IDS characteristics after they have been used already.

3. No impact: The analysis is not affected because the attack class variant is normalized by some

intermediate system before the IDS analyzes it. This is typically the case for IDSs that do not

operate on raw data but use some form oflog data (see Section 5.2.1.1). Generally this case does

not need to be taken into account explicitly in the description of variations, as it is implicitly

covered by the fact that variations are included in the appropriate attack class description

building blocks.

Example 1: Consider a network-based IDS. Thefragmentation of network layer PDUs may inhibit am'

further analysis of the activity by a network-based IDS if the latter is not capable of recomposing

113

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

fragmented PDUs. However. the IDS may be able to generate an alarm reporting the presence of

fragmented PDUs. which is of limited use only. Fragmented PDUs do not represent a threat. Moreover.

they are found quite frequently in networking environments where different types of networking

technology are being used concurrently. In other words the alarm reporting the presence of fragmented

PDUs is only useful when combined with an alarm reporting some actual threat. In this case the

combination of the two alarms indicates that an adversary tries to stage an attack in an obfuscated

manner. which itself may be an indication for the high severity of the attack observed.

Example 2: Consider an http attack involving some insecure CGI script. If an adversary stages an URI­

based attack against such a CGI sCript. the attack may be recognized fairly easily by some means of

string matching performed on the URL of the http request. However. the adversary may attempt 10 hide

hislher attack by obfuscating the URL by using the http protocol feature that allows everv character in the

URL to be replaced by its hexadecimal representation. This is a technique that has been implemented in

the Whisker tool [RFPOO}.Ifthe IDS is not capable of reversing the hexadecimal encoding. simple string­

matching algorithms will fail to discover the attack signature in the request submitted by the adversary.

In this case. however. the impact of the variation is limited because it does not prevent the IDS from

spending resources in analyzing the request. However. the variation renders its string matching­

technique useless.

Example 3: Consider WebIDS [Almgre99} and assume that it is not capable of normalizing

hexadecimally encoded URLs. The IDS would still be able to detect any known attack as long as the URIs

carrying the attacks are not encoded. If we would apply the variation describing the fact that URIs are

encoded to an attack. the IDS would be identified as not being able to reverse the encoding. In the case of

encoded URLs. the URL-related pattern-recognition capabilities of the IDS become useless. We model

this situation by having the variation marking the pattern-recognition characteristics as "unavailable . ..

6.3.3 Combining attack variations

lOSs need to be analyzed for attack class variants including more than just one variation. This is

necessary because nothing but technical limits prevents an adversary from obfuscating attacks in two or

even more different ways concurrently to render their detection even more difficult (it is for instance

possible to combine network layer variations [Horiz098] and application layer variations [RFPOO]). In our

scheme, variations are described independently of attack classes, so it is quite straightforward to apply

multiple variations concurrently to an attack class. However, doing so will increase the number of attack

class variants to be analyzed significantly. Moreover, some obfuscation techniques cannot be applied

concurrently, for instance, because they abuse the same protocol features but in different ways.

Example: As a generic example of contradictory variations one can consider two variations of which one

represents the fact that PDU fragments are extremely large. whereas the other represents the fact that

PDU fragments are extremely small.

114

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

As a consequence, the description of a variation needs to provide information about the variations it may

be combined with. This can be achieved using a relatively simple concept. We include a so-called anack

class variation index with the description of every variation. Then., when selecting variations (see Section

6.2.1, item 4), we simply obey the rule that every variation selected must have a variation index not lower

than and not equal to the index of all the variations already selected. If we now assign the same variation

index to contradicting variations, we thereby ensure that they will never be applied to an attack class

concurrently. Although this simple method has limited flexibility, it is sufficient for our PUIpOse and also

ensures that each possible combination of variations is considered only once.

Finally, note that any variation having a negative impact on the analysis of an attack class might also have

a negative impact on the IDS's ability to deal with additional variations applied to the analyzed attack

class. This is by no means different from the impact a variation may have on the analysis of any other

attack class element. It, however, represents an additional reason why the order in which attack class

description building blocks and variations are analyzed has to follow the natural path in which they are

analyzed in the real world as well.

6.3.4 Example of an attack variation

The following example of a variation illustrates the analysis that an IDS has to perform when

recomposing network layer fragments (typically IP fragments). Further details can be found in Appendix

D.

/* ---
* variation/l1/l3frgNotFirst - fragmentation on layer 3
* This variation makes the assumption that the suspicious data is
* distributed over multiple fragments, and that the IDS needs to be
* able to recompose these fragments in order to recognize the attack.
*/

variation (blkChk, Variation, , IDS, Detector, EffectiveScope,
DIAGIN, DIAGOUT, _, _, notBlk) :-

/* PART 1: Naming */
/* the name of this variation */

Variation=l3frgNotFirst,

/* PART 2: Analysis capabilities required */
/* We require the IDS to be able to recompose fragments */
/* To do so the IDS needs to be able to deal with network

* layer instances. In most cases this means IPv4 PDUs */
reqldeAttrib(Detector, EffectiveScope, si_i, basic, DIAGIN, DIAG1),

/* In addition the IDS needs to be aware of instance parts,
* i.e., IP fragments */

reqldeAttrib(Detector, EffectiveScope, si_ip, basic, DIAG1, DIAG2),
/* Moreover the IDS needs to be able to associate instance
* parts that belong to the same group, i.e., that belong to
* the same IP PDU */

reqldeAttrib(Detector, EffectiveScope, ip_grp, logic, DIAG2, DIAG4),

/* Part 3: Information items required */
/* In addition certain layer 3 header information and data
* is required */

reqSensorAttrib(IDS, Detector, EffectiveScope, data, pdu, DIAG4, DIAG6) ,
reqSensorAttrib(IDS, Detector, EffectiveScope, prot_ctl, frag_ctl,

DIAG6, DIAGOUT), !.

115

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETEcnO~ SYSTB1S

The description of a variation as well as of attack class description building blocks and attack classes may

consist of several rules. If the first one fails, i.e., the IDS is not able to analyze it properly. several

alternatives may be considered by the Prolog engine. Each altemative rule describes another way (always

expressed in terms of the IDS capabilities required) how IDSs may perform their analysis. If. however. no

alternative is found, a last rule may handle this case by marking specific IDS capabilities as "unavailable"

(for possible consequences see Section 6.3.2). Such a rule lets the evaluation continue and does not

activate Prolog backtracking. Then, at a later stage, when the IDS would be required to perform a given

analysis, this analysis may fail because the IDS is not anymore able to perform it owing to the suppressed

capabilities. This can be used to model the loss of information that occurs if, for instance. an IDS is not

able to deal with fragmented IP PDUs (see example I in Section 6.3.2). In this example case the data

portion of the PDU will not be available to any consecutive attack class description building block. The

purpose of letting the evaluation continue in such a case is to determine what the IDS is able to achieve

without the missing information or capabilities. In many cases the IDS may still be able to generate

alarms that indicate, for instance, the presence of fragmented IP PDUs. See Appendix D.4 for

implementation details.

6.4 Expectable alarms

So far we have developed the description scheme for attack classes and variations, but have not yet

explained how the results of their analysis can be used to verify whether the IDS analyzed meets the

expectations, i.e., specification. To do this, it is necessary to know the generalized alarms one expects the

IDS to generate for any attack class. These expectations are tightly coupled to attack classes, attack class

description building blocks and variations, and will be described in the following.

However, note that the IDS analysis process itself will only be explained in the next chapter. This

includes the specification of the so-called alarm conditions. which are an integral part of the IDS analysis

procedure. They are used to judge whether an IDS design is capable of analyzing an attack class such that

it can be considered capable of generating any given generalized alarm.

Let us therefore assume that an IDS design has been analyzed for an attack class and was found to have

the potential of generating a set of generalized alarms. To judge whether these alarms are to be considered

correct, i.e., true positives, we need to extend the description of attack classes by this additional

information. However, this is not trivial, because

1. the application of variations to attack classes may change the set of expectable alarms, and

2. IDSs may report the same attack class using differing generalized alarms.

Moreover, for reasons of practicality in terms of development and maintenance, it seems desirable to

couple the specification of the expectable alarms to attack class description components rather than to the

top-level attack class descriptions. This is achieved by a simple solution that also resolves the issue that

variations dynamically change the set of expectable alarms. In our solution we specify the expectable

alarms per attack class description building block and variation. Only if inevitable. we also specify

116

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIO}l; SYSTEMS

expectable alanns for descriptions of attack classes. This may be required if activity descriptions

themselves contain description components other than attack class description building blocks that may

also cause the generation of legitimate alarms. Consecutively the specification of an expectable alarm is

composed of the following four attributes:

1. Component type: Attack class description building block, attack class or variation.

2. Component name: Name of the attack class component. (For examples see Section 6.2.1. items

1,6, and 8.)

3. Generic alarm name: Name of the alarm (this will be discussed in Section 7.1.2.1).

4. Alarm IDS scope: IDS scope at which the alarm condition is formulated.

When analyzing the set of generalized alarms that an IDS was found to have the potential to generate for

a given attack class, we fIrst compose the list of expectable alarms. We do so by unifying the lists of

expectable alarms for every attack class component involved-including the alarms expectable owing to

the presence of variations. It is clear that if analyzing a benign activity we on1y expect alarms indicating

the presence of variations. In a next step we verify whether every attack class component for which at

least one alarm is to be expected was reported. If, excluding variations, this is not the case. we consider an

attack class as not detected (see also Table 27). Obviously we may also determine lOSs to generate

alarms that are not among the ones on the list of expectable alarms. These alarms representfalse positives

(see Section 7.1.3).

Table 27-Rating of IDS analysis results based on lists of expectable alarms

Activity consists of None of the expectable At least one alarm, but For every attack class
(excluding activity alarms generated not one per malicious component at least one

variations) activity component. is expectable alarm is
generated generated

Benign activity Benign N/A NlA
components only (correct silence)

Attack class Not detected Partially detected Detected
components

The reason for considering an attack class component "detected" if at least one of the expectable alarms

has been generated is that different types of IDSs report the same attack class or attack class component

differently.

Example: The following example is based on the argument-based buffer overflow example in Section

6.1.1. In this case an IDS may generate an alarm indicating the fact that a suspicious string was found.

However it may also generate an alarm indicating that the execution path of the monitored process

deviated from its normal path of execution. For this example the list of expectable alarms would contain

both alarms in their generalized form. As explained. the attack would be considered "detected" as soon

at least one of the expectable alarms is generated.

Finally it is clear that we also use the list of expectable alarms to identify false positives and false

negatives. If an alarm that is considered "expectable" is not generated, we consider this a false negati\·e.

However, as shown in Table 27 this does not necessarily mean that we consider an attack as "not

117

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

detected." If we fmd that an IDS has the potential to generate non-expected alarms, we rate these as false

positives.

In the following chapter we describe the process of identifying and rating alarms. In Chapter 8 we \\ilJ

then show how these analysis results can be used to assess IDSs.

6.5 Discussion

Working with the attack classification and description scheme developed in this chapter has revealed that

the scheme is well suited for constructing descriptions of attack classes in an efficient manner. While

describing attack classes, we generally try to use attack class description building blocks rather than

creating highly complex attack class descriptions. Whenever possible we try to create such building

blocks that describe aspects of attack classes in a highly generic manner, which helps reduce the effort of

creating new attack classes descriptions significantly over time because we can reuse an increasing

number of attack class description building blocks.

In Section 2.2.1 we have identified a set of requirements that our attack classification would have to meet.

Given the attack class description scheme that we have developed we are confident that all these

requirements are met. The in-depth discussion of the manner in which this was verified will be provided

in the next chapter, where also further validation issues will be discussed.

One concern one might have with respect to the way we describe attack classes is the fact that we

describe a number of different alternatives of how we envision an IDS could analyze attacks. It seems that

IDSs that were not taken into account during the creation of the attack class descriptions cannot be

evaluated accurately. However, we believe this to be an issue of limited importance only. On the one

hand the descriptions created, especially those of attack class description building blocks, are highly

generic. Thanks to their generic nature and modularity, it is possible to cover a large number of ID

approaches by describing only relatively few analysis approaches. On the other hand it is still true that

certain IDSs may not be evaluated accurately using the existing descriptions. Here we have to emphasize

that the existing attack class descriptions can be extended or modified to support the analysis of new types

of IDSs with only little extra effort. This can be achieved by enriching existing attack class description

building blocks with additional alternatives to analyze the attack class element they describe, thereby

extending the range of IDS types covered fairly efficiently, without having to revisit every single attack

class description.

The concept used to create attack class variants by means of attack class variations proved to be very

effective in broadening the scope of our evaluation efforts. As we shall see in more detail in the remaining

two chapters, the use of attack class variants increases the level of detail at which IDSs can be analyzed.

Moreover, it permits the analysis of IDSs in closer to real-world situations than would otherwise be

possible. However, the attack class variation concept has to be used with care to avoid causing misleading

results by applying variations to attack classes where this would .be inappropriate.

118

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Example: It does not make sense to apply the attack class variation describing the use of very' small rep

segments when considering a TCP SYN-jIooding attack [CA2196. SKKSSZj because one would not be

able to identify a meaningful data flow in the context of such an attack.

Finally note that the scheme presented can equally well be used for describing of classes of benign

activities. As explained in Section 3.6.2, this is possible because the intent (benign or malicious) of an

activity cannot be observed by an IDS.

6.6 Conclusion

In this chapter we have developed a highly flexible, modular, and extensible description scheme for attack

classes and attack class components that can even be extended towards the description of benign activity

classes. The scheme, which is based on concepts developed in Chapters 4 and 5, supports the

consideration of attack class variants, which proved to enrich the IDS analysis process significantly, It is

clear that any such scheme will never cover all existing and upcoming IDS types upfront. In practice our

scheme proved to be of high generality, because it is, for instance, capable of catering for IDSs as diverse

as a host-based or a network-based systems using a single rule describing a buffer overflow attack against

network services.

119

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIO~ SYSTEMS

Chapter 7 Analysis of intrusion detection systems

In this chapter we develop what has been outlined in Section 3.3: A method that performs a combined

analysis of IDS descriptions and attack class descriptions. Note that the analysis described in the

following could be generalized from the analysis of attack classes to the analysis of activity classes that

may be benign or malicious (see Section 3.6.2).

After having presented the method and the prototype implementation RIDA)(, we finally explore

possibilities of validating the results produced by this method and discuss the challenges associated y.ith

validation.

7.1 IDS analysis process

The actual IDS analysis process (see Figure 13) consists of two steps, which are repeated systematically

for every individual IDS description and attack class variant. Each iteration analyzes a given IDS for a

given attack class variant. In our RIDAX tool, this process is fully automated and takes advantage of

Prolog's backtracking mechanism to systematically select IDSs and attack class variants for analysis.

RIDAX even goes a step further and performs a rating of the generalized alarms in order to detennine

whether they can be considered a true or a false positive. The latter is of particular interest if our method

is used for analyzing attack classes as well as classes of benign activity.

Figure 29 provides a more detailed overview of the data flow required for each iteration of the IDS

analysis process as implemented by RIDAX. The process starts with the analysis of an attack class, i.e.,

attack class variant. This first analysis step provides a description of the capabilities that the IDS being

evaluated has employed to analyze the attack class variant considered. These capabilities are described in

terms of IDS characteristics. The process then continues with the alarm analysis step, which uses the IDS

characteristics that were required to analyze the attack class variant considered as input. This alarm

analysis step generates the list of generalized alarms that the IDS being evaluated has the potential of

generating for the attack class variant considered. In the fmal step, these generalized alarms are rated

whether they represent a true or a false positive. Moreover it is determined whether the IDS has the

potential of suffering from false negatives, i.e., of not reporting attack classes as expected. This analysis

also includes the rating of attack class variants, i.e., whether they have been detected, partially detected or

not detected (see also Section 6.4).

120

AITACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO

Alarm

Activity

Analysis

IDS characteristics
requi red for analysis

of selected
activity class variant

conditions

Alarm
Analysis

Examples.
ActMty class. HTTP req. arrJ- buffer~
Activity dass VBJJaDOn: Network layoer fragmenta110n
ExpeCrabie aJanns: $uspH;ious app layoer req Brg
networlc layer fragmentation

IDS characteristics required for
analysIS 01 selected activity class vaf\8f1\ &

further diagnostic information

Additional IDS
Characteristics
required during

Alarm Evaluation

Examples:
Alarm condition: Susp. app. layer req. arg ..
networlc layer fragmentation

Generalized alarms potentially
generated by the analyzed IDS
for the selected activity class
vanant

Examples:
Analysis path followed.
blocking actMtyclass descn
buiding block and p/JOn

Ex able alarms
Activity class & activity class components

consid'ered

Rating of
Gen. Alarms &

Act. Class Vars.

aCl1vfty class variatJoos.
IDS charactens!>CS reqUlfed
for selected actMty class vanant

Examples:
True positive: Susp. app. layer req. arg.
False negative: Networlc layer lragmenlBtion
Deleeled: HTTP req. arg. buffer-<Jverffow
Not detected: Networlc {ayer fragmenlB tIon

TE I

Figure 29-0verview of the data required in and generated by eacb iteration of tbe IDS analysis
process, including examples

7.1.1 Attack class analysis

Tbe fust step of the IDS analysis process (sbown in Figure 29) is tbe examination of the way that IDSs

analyze attack classes and their variants. This requires the IDS descriptions and tbe attack class

descriptions as input.

Tbe analysis starts with the selection of the attack class variant for whicb the IDS is to be analyzed. This

selection is made in a hierarchical manner, i.e. , first the attack class to be analyzed is selected from the list

of available attack classes. In the second phase, the set of variations to be applied to the attack class is

selected. A new attack class is only selected for analysis if all applicable combinations of variations have

been considered. Similarly, a new combination of variations is only selected if all possibilities of bow the

IDS considered may analyze the selected attack class variant have been examined. This means that tbe

IDS analysis process might iterate multiple times for the same attack class variant-eacb time exploring a

different analysis approach offered by the IDS (see also Section 6.1.2).

The selection of the set of variations that is to be applied concurrently to an attack class is made by means

of a recursive algorithm that relies on the attack class variation index introduced in Section 6.3.3. The

example attack class description provided in Section 6.2.1 illustrates bow this selection is initiated by

means of the selectVars statement (described by item 4, p. 109). Based on tbe list of ID cope

121

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO Y TE\ \

relevant to the attack class considered, this simple algorithm systematically searches for vananons iliat

may be applied to the attack class, and that may be combined with the set of variations already elected.

The algorithm adds a variation to the set of previously selected variations if its ariation index i higher

than that of any of those already selected. The search for applicable variations stop once the number of

selected variations has reached its maximum or all applicable variations ha e been considered. In the

implementation of the analysis process, we have limited the number of concurrent! considered ariations

to two, simply to constrain the number of possible combinations that ha e to be considered for eve

attack class to a practical number. However, this restri ction does not influence the viability of the anal i

results. Although it is true that variations may influence each other, our experiments did not reveal a

single case in which two variations influenced a third any differently than a single ariarion djd.

The systematic and complete selection of attack classes as well as the se lection of ariation rei on the

backtracking provided by Prolog [CloMel94]. It thereby ensures, in a trrughtforward manner, tbat each

attack class variant is considered, and that all possible analysis approaches are examined.

Once the attack class variant has been selected, the attack class analysis proceeds by determining how it i

analyzed by the IDS under consideration. The various input items used are shown in Figure 30 in more

detail. For the description of IDSs we refer the reader to Chapter 5' for the de cription of attack cia e

and their components, see Chapter 6. Owing to the rule-based manner in which attack cia e are

described, most of the analysis process is defined implicitly. At this stage we ystematica ll y earch for

ways to analyze the attack class variant considered using only the capabilities provided by the ID under

analysis. While doing so, we record aU IDS characteristics employed for anal yzi ng the att ack class .

Example: Consider an http argument buffer overflow attack being analyzed by a /olOwledge-based rDS

such as WebIDS [Almgre99}. In this case one typically obtains an analysis result that shows {h at the IDS

was analyzing the http instance at the semantic analysis level using a string-matching technique or

possibly simply verifying the request length. In addition the result would reflect all sensor items required

for the analysis.

Activity

Analysis

Figure 30--lnput required for and output generated by the attack c1a.ss anal is step

122

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO TE 1

If the IDS considered is incapable of analyzing the attack class variant considered, the resulting t of ID

characteristics required for analyzing the attack class variant will lack the una ailable ID characteri ti .

However, in general more than just the unavailable IDS characteristics will be missing in the re ull.

Typically the IDS characteristics required for analyzing the attack class description building block or

variation whose analysis failed, as well as the characteristics required for analyzing the omitted building

blocks and variations will be missing. The analysis of further building blocks and ariations i omitted if

no alternative way of analyzing the attack class variant considered exists (see also Section 6.3.2) . In the

extreme case, in which the IDS considered is not even capable of observing the attack clas ariant, the

result will be an empty set of IDS characteristics.

To facilitate debugging and further analysis, all attack class components involved and the fact whether the

IDS was capable of analyzing them are recorded in addition to the IDS characteristics employed.

7.1.2 Alarm analysis

Once the examination of how an IDS analyzes a given attack class variant is completed, we continue with

the second step of the IDS analysis process, which is also automated. Based on the ID characteri tic

that were required to analyze the attack class variant selected, we determine the generalized alarms lhe

IDS considered has the potential to generate. This is achieved by evaluating the attack class-independent

alarm conditions with the set of IDS characteristics identified. The definition of the attack cla ariant

and the identification of the generalized alarms that IDSs have the potential to generate are lherefore

independent. Note that for this to be true, the attack class descriptions should not include any indication

on the generalized alarms the attack class described might be causing. This is achieved by not formulating

any a priori expectations that might influence how attack class variants are being eva luated. This

approach thus supports the identification of multiple genera lized alarms that an IDS potentially generates

for a single attack class variant.

IDS Alarm

Analysis

Figure 31-Input required for and output generated by the alarm analysis step

123

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Figure 31 shows the input required for and the output produced by this step. As in the preceding step, the

IDS descriptions are required. In addition, the alarm conditions and IDS characteristics that were required

to analyze the attack class variant considered are required as input. On the output side, we find the set of

generalized alanns that the IDS under considered was found to have the potential to generate. We also

obtain the list of additional IDS characteristics that were required for the generation of the generalized

alanns, in addition to some debugging information.

In the following we provide insights into the alarm conditions, explain how they were identified. and

discuss the semantics of the alanns that they specify the conditions for.

7.1.2.1 A1ann conditions

It was mentioned that alarm conditions determine whether an IDS has the potential to generate a given

generalized alarm based on the set of IDS characteristics that were required for the analysis of the attack

class variant considered. However, when looking at the details, the situation is more complex. Beyond the

IDS characteristics needed for analyzing the attack class variant, additional IDS characteristics may be

required by the alarm condition. This may be necessary if one wishes to differentiate between knowledge­

and behavior-based detection. In such cases it is important to differentiate clearly because the semantics

ofalanns may differ significantly.

Example: Once more consider our http argument buffer overflow example. An IDS is found to have the

potential of generating an alarm indicating a malformed http URL if the IDS characteristics that were

required to analyze the attack class variant meet the requirements specified by the alarm condition. The

latter requires, among other things, that the following IDS characteristics were required for the analysis

of the attack class variant:

• Basic http arguments (see also Section 5.2.2)

• String matchingfor http information items (see also Section 5.3.3.2.2)

In addition, possibly among other characteristics, the IDS has to be knowledge-based. This is verified by

requiring the corresponding IDS characteristic to be present in the IDS description (see also Section

5.3.1), as opposed to the IDS characteristics listed above. These characteristics do not have to be present

in the set of IDS characteristics required for the analysis of the attack class variant.

As illustrated by the example above, it is possible to specify the requirements an IDS needs to fulfill to be

capable of generating the alarm at highly specific IDS scope, e.g., http. Such a practice would, however,

lead to the repeated description of conditions that only differ in the IDS scope they apply to. This would

not only result in an unnecessary large number of alarm conditions, but would also cause an important

loss of generality. As a consequence we require alarm conditions to be more generic. We achieve this by

associating them with two different IDS scopes-similar to the method we used for the description of

attack class description building blocks. This means that alarm conditions are defmed at the highest IDS

scope level possible. Then, during the alarm analysis, we determine the effective IDS scope of the

generalized alarm based on the IDS scopes of the IDS characteristics required for the analysis of the

124

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETEcrION SYSTEMS

attack class variant considered. The effective IDS scope of the generalized alarm may not be less specific

than the IDS scope at which the alarm condition was specified. Technically, the identification of the

effective IDS scope is achieved by taking advantage of Prolog's inference engine [DiazOO] (see also

Appendix D.6.3).

Example: Consider an alarm condition that could be triggered for our http argument buffer overflow

example. Such an alarm condition might describe the fact that a suspicious argument was observed. and

can be defined at the IDS scope "application layer. " Then. during the evaluation of all alarm conditions.

the alarm-analysis process would recognize the fact that the analyzed attack class variant has required

http attributes and that http is an application layer protocol. If then the set of IDS characteristics used for

the analysis of the attack class variant meets the conditions formulated by the alarm-condition example.

we consider the alarm to have been generated. This can then be interpreted as the fact that the IDS

analyzed has the potential of generating an alarm indicating the observation of a suspicious http

argument (Le .• URL) for the attack class variant considered.

Remember, the important property is that alarm conditions are independent of both attack class and IDS

descriptions. However, how does one know which alarm conditions to create if they are independent of

attack class and IDS descriptions? The 19 alarm conditions that we created in the context of the RIDAX

prototype implementation were identified by searching for attack super-classes in the attack

categorization described in Section 4.2. We focused our effort on attack classes and variations for which

we actually created descriptions (see Section 4.3). These alarm conditions are of high generality as they

are defmed at a high-level IDS scope. In Appendix D we provide examples and a semi-formal

specification.

7.1.2.2 Semantics of generalized alarms

When discussing alarm semantics one has to distinguish clearly between the generalized alarms generated

in the course of our IDS analysis effort and alarms generated by IDS implementations. The alarms

generated by IDS implementations denote the observation of a particular suspicious activity, whereas the

generalized alarms generated in the context of our approach denote the potential of the IDSs analyzed to

generate alarms indicating complete classes of suspicious activity. This means that the generalized alarms

do not provide an indication of whether the signature database of a knowledge-based IDS actually

contains signatures for specific attacks, but may provide us with information that is of great value for

subsequent alarm-processing algorithms. These conditions may then be used to determine whether the

potentially generated alarms carry any additional diagnostic information. In RIDAX we took advantage of

this possibility by including a flag that indicates whether the IDS analyzed is capable of reporting the

success state of the supposedly observed attack.

Example: Referring to above example. and considering an IDS that "simply" checks for the presence of

a string. Such an IDS is not capable of providing the information whether the supposed(l: identified attack

was successfol as long as the reaction of the attacked process is not taken into account. This typically is

125

ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETEcnOI\ SYSTEMS

difficult for network-based IDSs but less so for host-based systems because for the laller it is aeneral/l'
:;, .

easier to get hold of the necessary information.

This also means that in general the semantics of (seemingly) identical alanns that any two IDSs rnav

generate differ. This is true for alarms generated by IDS implementations as well as for those generated in

the context of our approach to IDS analysis. As a consequence we consider alanns generated by any two

differing IDSs to be semantically different.

We fully take advantage of all the information that alarm conditions rnay provide us with by using the

following 5-tuple of alarm properties to defme and distinguish generalized alanns:

1. IDS identifier (e.g., "Snort, v 1. 7, light-weight configuration")

2. Generic alarm name (e.g., "suspicious argument string")

3. IDS scope of alarm defmition (e.g., "application layer")

4. Effective IDS scope of alarm generated (e.g., "http")

5. Availability of attack success-state ("true" or "false")

The use of this 5-tuple also supports us in differentiating alarm classes based. for instance. on the

detection method used by the IDSs. Differentiating generalized alarms that behavior- and knowledge­

based IDSs generate is necessary because they differ significantly in their expressiveness and semantics.

This difference is also reflected by the corresponding alarm conditions. Knowledge-based IDSs include a

limited description of the attack identified in the alarm. They rnay also include additional diagnostic

information such as IP addresses. Such alarms generally refer to identifiers such as eVE (see Section

2.2.5.1). In the case of behavior-based IDS the situation is different. These IDSs commonly only express

the fact that suspicious activity was observed by signaling the fact that the system monitored deviates

from its normal behavior. Their alarm identifier rnay for instance express the fact that a strange, abnormal

sequence of instances was identified. However, such an identifier reveals no concrete information about

the cause of the non-acceptable sequence.

Example: Considering our http buffer overflow example. Assuming that IDSs such as Snort, WebIDS or

Daemon Watcher are found to have the potential of detecting this attack, the Co"espomiing alarms could

look as follows:

Table 28-Example of how various IDSs report a buffer overflow attack

Alarm property 1105 Snort WeblDS DaemonWatcher

IDS identifier Snort, v1.7, light-weight WeblDS DaemonWatcher for

configuration httpd

Generic alarm name Suspicious argument Suspicious argument Unknown execution path
string string

IDS scope of alarm Application layer Application layer Call
definition

Effective IDS scope of http http System call
generated alarm

Availability of attack False True True
success state

126

A IT ACK-CLASS-BASED ANALYSIS OF !NlRUSION DETECTION SYSTEMS

As a possible application we will show in Chapter 8 how one can benefit by taking into account such

semantic differences of alarms when combining alarms generated by diverse IDSs. However. note that

there is no one-to-one mapping between generalized alarms and naming schemes for attacks or

vulnerabilities, such as CVE. What we have instead is a many-to-many mapping between classes of

attacks and real attacks. After all, one can view the generalized alarms defmed by the above 5-tuple as an

alarm classification scheme that could be applied to alarms generated by IDS implementations to simplify

their further processing.

7.1.3 Rating of generalized alarms and attack classes

As an additional step, the RIDAX implementation performs a rating of the generalized alarms that the

IDSs considered were found to have the potential of generating. This is done based on the expectable

alarms for the attack class components involved (see also Section 6.4). These are used to verify whether

every attack class component for which at least one expectable alarm was specified generated at least one

of the expectable alarms. If this is not the case, the attack class component concerned is rated as "not

detected."

The result of this step is three-fold. First, generalized alarms are rated to be true positives, false positives.

or false negatives:

• True positives: The (generated) generalized alarm is listed in the list of expectable alarms of any

of the attack class components involved in the attack class variant analyzed.

• False positives: The (generated) generalized alarm is not listed in the list of expectable alarms of

any of the attack class components involved in the attack class variant analyzed.

• False negatives: An attack class component with a nonempty list of expectable alarms exists that

was not reported by any of the expectable alarms.

Concurrently also the attack class components are rated:

• Benign: There are no expectable alarms specified for the attack class component (the component

might in fact be benign).

• Detected: At least one of the expectable alarms was generated.

• Not detected: None of the expectable alarms was generated.

Based on these ratings for attack class components we then rate the complete attack class variant as

explained in Section 6.4 (see Table 27, p. 117). Note that independently of how an attack class variant is

rated, false positives may be present. In fact, false positives may obfuscate the result such that it becomes

even more challenging to draw precise conclusions based only on the set of alarms generated for attack

class variants.

Example: Consider again the http argument buffer overflow attack (see also the example provided in

Section 6.4). Moreover assume that the alarm analysis reveals that the IDS has the potential of reporting

the attack class description building block describing the actual argument buffer overflow by means of an

127

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO r Y TEM

alarm. We would rate this building block as "detected " if the alarm indicales Ihe observation 0 a

suspicious string in the request. The same is true for any other alarm, such as an alarm reponing Ihe

observation of a suspicious execution path, that is "expectable " for this attack class description building

block. Accordingly any alarm that appears on the list of expectable alarms is raled as a rroe po i/il·e.

Assuming that the buffer oveiflow building block is the only malicious one referenced in Ihe alfack clas

description of the attack, we would consequently also rate the entire attack as "delecled. " If. holl' ' ·er.

the same attack was reported only by a non-expectable alarm, we would rate the attack as "" 01

detected, " and the alarm would be rated as a false positive, i.e. , the allack was delecled bur i"corr II)'

diagnosed.

Note that variations have a different impact on the rating of an attack class variant than other attack cia

components. We rate the alarms generated or expected because of variations in the arne \ aya an other

attack class component. Also, we rate attack class components describing variations as "detected," "not

detected," or "benign." However, when rating attack class variants, we do not take the rating of ariations

into account because variations do not impact the core of an attack class but merely alter its appearance.

Example: It would not seem reasonable to rate an otherwise correctly reponed attack varianl as only

"partially detected" merely because the IDS analyzed did not report the fac t that IP PDU carrying the

attack werefragmented.

Rating 01
Gen. Alarms &

Act Class Vars.

Figure 32-lnput required for and output generated by the aJarm and attack class rating step

7.2 Implementation: RIDAX, a tool for analyzing IDSs

We have now developed all the concepts that we require for analyzing IDSs at a conceptual level. In this

. . . hi h ts ototype that implements all of these sectIOn we prOVIde an overvIew of RIDAX, w c represen a pr

concepts.

128

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECnO Y TE 1

As explained, we chose to describe attack classes, attack class components, and alarm conditions in a

rule-based fashion because it seemed especially well suited for identifying generalized alarms that an ID

potentially generates (see Section 7.1). This solution is appropriate for creating and combining the generic

and high-level descriptions of attack class components introduced in Chapter 6. For the implementation of

RlDAX we chose the GNU implementation of Prolog by Diaz [DiazOO], as it is a rule-based language

that meets our requirements, and in particular includes database connecti ity. The database connectivity

is implemented by integrating Prolog with the MySQL database [MySql] using their re pective C

interfaces. MySQL is already used to store IDS descriptions (see Section 5.4.1).

In the following subsection we describe the database structure used to store the anal

Subsequently we describe the most important phases of the analysis performed by RIDAX.

7.2.1 Database structure

re ults.

During the analysis process RlDAX stores all the results generated into a database for later ana ly i . Thi

database has close relations to the database used to store IDS descriptions (see Section 5.4.1 . Figure 33

shows a simplified entity relationship diagram of thi s database, in which all the entitie taken from the

IDS description database are shaded. These entities are not specific to the analysis re ull databa e but

solely illustrate the relations to the database developed in Section 5.4.1.

> ________ ~(1~.NL) ________ c===~=:~----~J(~1N)
Consisls 01 IDS

~ V (O.N)

Sl4>"rscope
(O.N)

IO N)

e
IO.N) IO.N)

10S scopes

subscope
(O.N)

Figure 33--Entity relationship diagram of the database used to store analysis result

129

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

The most important entity is the attack class variants entity. This entity links all the results that ha"e been

collected during the analysis of an attack class for a given combination of variations. The attack class

variants entity has relations to numerous entities representing the data collected during the analysis

process. Most importantly it links generalized alarms, including false negatives, and attack class variants.

In addition, four further entities are linked that are mainly used for development purposes. However. they

may also be used to determine the additional diagnostic information an IDS might be providing along

with the alarms it generates. These entities represent the IDS characteristics that were required for the

analysis of attack class variants. Based on this data, it becomes possible to determine the additional

information that an IDS provides along with an alarm. Furthermore, the variations and the attack class

description building blocks entities are used to obtain some insight into the analysis process. Last but not

least, the attack class entity links the analysis results of the attack classes (including attack class variants)

with the IDS that has been analyzed. It thus enables us to obtain an overview of the analysis results on a

per-attack-class basis across the various attack class variants analyzed.

7.2.2 Analysis steps

In the following we provide an overview of the IDS analysis steps as they are implemented in Prolog­

without going into details of the Prolog code. However, note that much of RIDAX relies on the

integration of GNU Prolog with the MySQL database.

7.2.2.1 Initialization

In the initialization phase RIDAX connects to the database and transfers the information that is stored in

the database to the Prolog engine. This data primarily consists of IDS descriptions and is used to assert

numerous Prolog facts dynamically. These facts reflect the content of the database in such a way that the

Prolog inference engine can use it (i.e., the IDS descriptions, the IDS scope tree, etc.).

In a next step all the rules are loaded into the Prolog environment. Some of these rules control the flow of

the analysis process, whereas others represent the descriptions of attack classes, attack class description

building blocks, attack class variations, alarm conditions etc.

Finally, the actual analysis phases are prepared by initializing the database tables required for storing the

results.

7.2.2.2 Implementation of attack class analysis

After the initialization phase has completed, Prolog backtracking is used to evaluate all IDSs described

for all the attack classes. This also includes the analysis of all possible attack class variants that may be

derived from any given attack class. While doing so, all IDS characteristics required during the attack

class analysis are stored as dynamically asserted Prolog facts and are written to the database. As

explained in Section 6.3, variations may suppress sensor items or may render the analysis capabilities of

detectors useless for further analysis; this is also taken into account by asserting dynamic facts.

130

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfION SYSTEMS

7.2.2.3 Implementation of alarm analysis and rating

After the Prolog rule representing an attack class description has reached its goal, all the alarm

descriptions represented by Prolog rules need to be evaluated as well. This is where the advantages of the

Prolog inference engine become very helpful. The alarm conditions are evaluated based on all the facts

that were asserted dynamically during the attack class analysis phase. Any alarm rule that succeeds

represents the creation of a generalized alarm, which is rated whether it is a false or a true positive before

it is stored in the database. Concurrently all the missing generalized alarms are identified, which are then

stored as false negatives into the database.

After all the alarm rules have been evaluated, all dynamically asserted facts are retracted, i.e., discarded,

and the process continues by evaluating the next attack class variant. This process is repeated for every

attack class variant. In other words, every attack class is analyzed several times, once for every allowable

combination of variations.

7.3 Validation

In this and the preceding chapters we have gradually worked towards a solution of what was claimed in

Section 1.3. There it was claimed that an approach exists that is able to predict the classes of attacks that a

given IDS design is able to detect. Moreover it was claimed that such an approach can be implemented

based on the combined analysis of IDS descriptions and descriptions of attack classes-thereby avoiding

the need of conducting experiments with specific attacks and actual IDS implementations.

In Section 3.5 we highlighted the difficulties involved in validating our approach to IDS analysis and

outlined the process that allows us to provide evidence that the results produced are correct. However.

before we present the necessary steps to provide this evidence, we discuss the challenges involved in

validating the IDS analysis results.

7.3.1 Validation challenges

One of the requirements for our approach was that the necessity to conduct experiments with actual IDS

implementations has to be avoided. The reasons for this requirement were two-fold On the one hand our

approach should assist IDS designers early in the design phase of IDSs in order to improve the efficiency

of the design process, i.e., before the IDS design is implemented. On the other hand the approach aims at

providing results of high generality involving only a limited effort. In other words, the results have to be

provided at the level of attack classes. We chose a description-based approach because this enables us to

meet the above requirements and to limit the effort involved.

We face a number of issues when it comes to validating whether the predictions made by our approach to

IDS analysis are correct and correspond to the actual behavior of IDS implementations. A systematic and

complete validation would require that the class-level predictions made by our approach are compared

with the behavior of actual IDS implementations. Such an undertaking would represent an enormous

131

ArrACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfION SYSTEMS

challenge and in fact precisely exemplifies the problem this work attempts to address. It would be

required that one or several rather complex environments are built such that IDSs can be analyzed under

different conditions. The complexity of such environments would be comparable to the one used in the

Lincoln Lab experiment or might even exceed its complexity (see also Section 2.3.3.1). Howeyer. the

most challenging aspect of any such validation undertaking would be the number and diversity of

individual tests to be executed. Complete validation would require the pursuing of an equivalence class

testing strategy as discussed in Section 2.2.2. Applied to our approach for each attack class. including

those derived automatically by applying variations to already known classes (see Section 6.3). several

individual tests would have to be executed for each IDS analyzed. As outlined in Section 3.2.2. a

comparatively simple setup using 27 attack class descriptions to which variations are applied may yield

498 or even more distinct attack classes. The validation of the analysis results that our approach produces

for these attack classes would therefore involve the execution of several thousands of tests for each IDS

considered because the analysis results of each attack class need to be validated by multiple tests. Such an

undertaking would significantly exceed the scope of this work and would also exceed the Lincoln Lab

effort. In the following we will therefore outline an alternative solution that is able to provide evidence

that the results produced by our approach are correct.

Another issue that needs to be taken into account is the fact that under certain circumstances the results

predicted by our approach to IDS analysis may not correspond to the actual behavior of IDS

implementations. There exist numerous conceivable reasons for such inconsistencies:

• Incorrect or insufficient IDS description: The description of an IDS does not reflect the

characteristics of the IDS correctly. This may, for instance, mean that the IDS description does

not describe the particular configuration of the IDS considered correctly. Moreover it might be

the case that the IDS uses new techniques that are not yet covered by the IDS description

scheme. In this case the IDS description scheme would have to be extended accordingly.

• Incomplete attack signature set: If the set of attack signatures of a knowledge-based IDS does

not include the signature for a given attack, the IDS will not be able to detect the attack even

though it might in theory be capable of detecting it, i.e., even though it offers all the analysis

techniques required. In this case the inconsistency is caused by the fact that our approach

operates at the level of attack classes and therefore does not take into account signatures for

specific attacks.

• Incorrect attack class description: If the description of an attack class IS incorrect, e.g.,

incomplete, the IDS analysis results are likely to be incorrect.

• Ad-hoc techniques and heuristics: If IDS implementations use ad-hoc techniques or heuristics

that are tailored to the detection of a specific attack or to the avoidance of specific false

positives, their actual behavior may differ from the prediction made by our approach. Consider.

for instance, the example in the introduction of Chapter 1 (see also Section 2.4.2). There an IDS

is described that will generate alarms for observed IP fragments whenever the fragments are

smaller than a given, pre-configured size. The accuracy of such techniques is generally very

132

•

•

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

limited [Marty02, p. 66]. The difficulty with regard to IDS analysis is that such techniques may

surpass the granularity at which our IDS description scheme operates.

IDS implementation flaws: IDS implementations may suffer from implementation flaws. i.e ..

bugs, that let their characteristics divert from the design.

Failure of our approach to IDS analysis: Ifnone of above reasons could be identified as the cause

for an inconsistency between the results that our approach produces and the manner an IDS

behaves, then this would indicate a weakness in our approach. However, so far we were not able

to prove that our approach always produces correct results by means of a complete validation for

the reasons indicated above, but neither were we able to prove the contrary by encountering

counter-examples among the numerous experiments that were conducted in the context of this

work.

However, despite these difficulties, we found our approach to produce correct and, most importantly.

useful results. This fact is emphasized in the next section where meaningful evidence that our approach to

IDS analysis provides correct results is provided.

7.3.2 Validation procedure

Above we explained the difficulties of complete validation using equivalence class testing. As an

alternative we present a process in the following that is suitable for providing evidence that the IDS

analysis results produced by our approach are correct.

As a first step we discuss the validity of the IDS description framework and the attack classification and

description scheme. They represent the input to our IDS analysis approach (see Figure 1).

The IDS description framework represents an empirically developed scheme that describes roSs by

systematically identifying system characteristics that are relevant to the detection of attacks. The scheme

has been developed based on a simplified CIDF IDS model (see Figure 8) and combines concepts from

IDS taxonomies such as the one by Debar et al. [DeDaWeOO], insights gained in the context of the VuIDa

work [DacAle99], and experiences made while using and developing IDSs. The scheme rigorously

separates analytic functions, i.e., techniques, provided by IDSs from the domain to which these functions

can be applied. The resulting scheme is extensible and enables the unambiguous and concise description

of IDSs and IDS designs with respect to their attack detection capabilities.

The attack classification and description scheme uses the notion. of IDS characteristics as defmed by the

IDS description framework for expressing the requirements IDSs have to meet in order to be able to

detect a given class of attacks. The proposed attack classification scheme meets all the requirements (see

Section 2.2.1) that a sound classification has to meet:

• Orthogonality: For any attack there exists one description only. Thus any described attack can

either be associated with an already identified class or identifies a new attack class.

133

•

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DEfECTION SYSTEMS

Procedure: The classification procedure for attacks was defined in Section 3.2. It consists of a

first step, in which a description of the considered attack is created, and a second step. in which

the resulting description is compared with other already identified descriptions.

• Observability: The description of attacks is based on clearly defined IDS characteristics that are

used to describe the observable aspects of attacks. The resulting attack descriptions can be

compared with each other.

• Hierarchy: It is possible to create higher-level descriptions of attack classes by making use of the

hierarchical nature of IDS scopes. However, this possibility was never used in this work..

• Consistency: Each attack that belongs to a given class is described by an attack description that

is identical to the description of all attacks that belong the same class, i.e., attacks that belong to

the same attack class share the same description as a common property.

Assuming that the IDS description framework and the attack classification are viable. we can now

investigate the validity of the results provided by actual IDS analysis procedure. Here it needs to be

shown that the predictions made for IDS designs correctly reflect the actual behavior of the corresponding

IDS implementations. A complete validation of the correctness of the predictions made could be achieved

by means of equivalence class testing (see Section 2.2.2). As explained in Section 7.3.1, in this particular

case such an approach involves significant challenges that are difficult to address. It is. however. possible

to provide evidence that the results provided are correct. First, a diverse set of attack classes, attacks that

belong to these classes, and a set of existing IDS implementations have to be selected. Then it has to be

shown that the IDS implementations report the selected attacks by means of alarms that correspond to the

generalized alarms that were predicted by the combined analysis of the designs of the IDSs selected and

the description of the attack classes considered (see also Figure 2). This last step requires the manual

comparison of alarms generated by IDS implementations and generalized alarms predicted by our IDS

analysis approach, because the alarms generated by IDS implementations do not explicitly convey the

information conveyed by generalized alarms.

7.3.3 RIDAX example

The following discussion is based on the example that we introduced in Section 3.5. There we identified

the alarms that the IDS implementations WebIDS and Snort generate for two specific http attacks. These

results were then compared with the analysis results produced by RillAX. In the following we provide

some further background information related to this example and in particular to the information provided

in Table 2.

In their second column Table 29 and Table 30 provide the raw alarm messages as they are generated by

WebIDS and Snort for the attacks indicated in the first column. In the third column we provide the

predictions as they were made by RIDAX for the attack classes to which the attacks considered belong.

The obfuscated variants of the attacks considered are identical to the ones discussed in Section 3.5 and

represent the use of IP fragmentation.

134

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIO~ SYSTEMS

We can verify whether the alarm messages and the predicted generalized alarms correspond to each other

by taking a closer look at the manner these two IDSs detect these attacks. WebIDS (see Table 29) detects

the test-cgi attack by applying a pattern-matching algorithm to the CLF [Weinma98] log file entries

written by the webserver software. Among other information CLF log files provide the URI of the

requests that the server receives. Given the fact that the test-cgi attack involves a specific URI and that

our IDS description scheme represents URIs as a "request argument" of the IDS scope "http." the

prediction made by RIDAX is correct. For the second, http-header-based attack, RIDAX has correctly

predicted that WebIDS is not capable of the detecting the attack because http header data is not written to

CLF log files, i.e., the attack is never visible to WebIDS. Concerning the attack obfuscation technique

considered, WebIDS proved to be immune against IP fragmentation tactics. This is not surprising because

WebIDS is not analyzing network data.

Table 29-Alarms generated by and generalized alarms predicted for Web IDS

WeblDS Syslog alarm message Generalized alarm
http meta-character May 1 16:54:45 loghost webids(14080): • A1ann type: suspicious
attack16 10239028_7 Ox3e3d43d3 pattern (cgi) argument string
[CA0696, CVEOO7099] 10.4.2.116 /test-cgi 200 10.4.2.116 - - • IDS scope of generalized [01/May/2002:16:54:45 +0200) "GET

/cgi-bin/test-cgi?/* HTTP/1.0" 200 -
alann: http

CVE-1999-0070 CVE • IDS scope of alann
definition: Application layer

Obfuscated http meta- Detected; same as above Detected; same as above
character attack

http header buffer- Not detected Not detected
overflow 17 [CVE084800]

Obfuscated http header Not detected Not detected
buffer-overflow

In the case of Snort the results are slightly different (see Table 30). First of all we consider a simple

configuration of Snort that does not support the re-assembly of fragmented IP traffic. It is therefore no

surprise that the Snort implementation does not detect the obfuscated attacks. The RIDAX analysis results

predict this behavior correctly by generating no generalized alarms. During the RIDAX analysis this

attack class variation imposes the requirement that the IDS be able to deal with IP fragments, i.e., instance

part groups of the IDS scope IP, which the considered IDS configuration is not capable of doing. When it

comes to the detection of the two non-obfuscated attacks Snort performs better than WebIDS does. It

correctly detects both attacks as predicted by RIDAX. The detection techniques used by Snort are similar

to the ones used by WebIDS. It is therefore no surprise that a test-cgi attack is reported by an alarm that

corresponds to the same generalized alarm as was predicted for WebIDS. Considering the second attack,

the data source used represents an important differentiator. As seen above, the fact that Snort operates

based on network data makes it susceptible to certain obfuscation techniques, but provides the eminent

advantage that it can observe the complete communication between the client and the (web-)server. It can

16 A directory listing can for instance be retrieved by launching the following on a unix command line:
echo "GET /cgi-bin/test-cgi?/*n I nc vulnerable.server.com 80

135

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIO~ SYSTEMS

therefore detect suspicious strings in http header data that do appear in CLF log files. Thus the RIDA._\:

prediction for the http-header-based attack is correct because our approach describes http header data as

"request options" of the IDS scope "http."

Table 30-- Alarms generated by and generalized alarms predicted for Snort

Snort Syslog alarm message Generalized alarm
http meta-character May 1 11:06:54 snorthost snort: • Alarm type: suspicious
attack [1:835:5] WEB-CGI test-cgi access argument string
[CA0696, CVEOO7099] [Classification: Attempted Information

Leak] [Priority: 2] : <ethO> {TCP} • IDS scope of generalized

10.4.2.116:2631 -> 10.4.2.111:80 alarm: http

• IDS scope of alarm
definition: Application layer

Obfuscated http meta- Not detected Not detected
character attack

http header buffer- May 1 11:10:56 snorthost snort: • Alarm type: suspicious
overflow [CVE084800] [1: 9999'8 : 1] WEB-MISC Host-header options string

overflow [Classification: Attempted
• IDS scope of generalized Denial of Service] [Priority: 2] :

<ethO> {TCP} 10.4.2.116:2646 ->
alarm: http

10.4.2.111:80 • IDS scope of alarm
definition: Application layer

Obfuscated http header Not detected Not detected
buffer-overflow

These examples, although comparatively simple, provide us with some evidence that the predictions made

by RIDAX are correct. Moreover they illustrate the process that would need to be replicated for a large

number of individual attacks in order to provide better evidence or even complete validation.

7.4 Discussion

In this chapter we have shown how IDS and attack class descriptions can be combined to predict

detection capabilities of IDS designs. Our considerations also included the RIDAX prototype that actually

implements the proposed approach to IDS analysis and an outline of how the results produced by RIDAX

could be validated. By presenting this outline we provided some evidence that the predictions made by

RIDAX are correct. This evidence could be improved by providing further examples. However, complete

validation of whether the RlDAX predictions are correct represents a major challenge and would require

thousands of further experiments. An undertaking of this kind would need to be addressed by using tools

such as LARIAT [HRLCOl, RCFRLHOl] or Thor [Marty02] (see also Section 2.3.3). Such tools facilitate

the automated analysis of IDS implementations for larger numbers of attacks, and in the case of Thor

even provide the possibility to do this for systematically varied, i.e., obfuscated, attacks. However, it

should be noted that the effort required would exceed the possibilities such tools currently provide.

17 This attack can be demonstrated using the following unix command line:
perl -e 'print "GET /servlet http/l.O\nHost: " . "x" x 1092 . "\n"' I \
nc target.server.com 80

18 We had to create our own signature for this attack because an appropriate signature is not pro\ided by

snort's default signature set.

136

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

In Chapter 8 we will provide further RIDAX prediction examples and will moreover show how our

approach to IDS analysis can be extended towards the prediction of false alarms.

7.5 Conclusion

In this work we present an approach that performs a combined analysis of IDS descriptions and

descriptions of attack classes in order to predict detection capabilities of IDS designs. In this chapter we

have developed the method required to perform this combined analysis and presented the RlDAX

prototype that we have implemented. Validation of the predictions made is a challenging task, but the

considerations made in this work so far and, in particular, while outlining such a validation undertaking in

this chapter make us confident that the results provided by RlDAX are correct. Our IDS analysis method

can therefore be viewed as a suitable utility for IDS designers because it operates at a conceptual level.

i.e., it does not involve actual attacks or IDS implementations. A tool such as RlDAX can therefore assist

designers early in the design phase of IDSs by predicting where the design meets the specification and

where it fails to do so.

137

Chapter 8

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETEC110~ SYSTEMS

A further application: The assessment of IDSs

and combinations thereof

In the preceding chapters we have developed schemes for describing IDSs and attack classes. and have

presented an approach to IDS analysis that operates based on these descriptions. Our main goal is to

provide guidance to IDS designers by predicting the classes of attacks a given lOS design has the

potential of detecting. However, the insights that our approach to IDS analysis provides can also be used

for other applications. In this chapter we will show how the RIDAX prototype can be extended to support

the assessment of IDSs and arbitrary combinations thereof. The combination of lOSs is an important

aspect of ID architectures. These may consist of diverse lOSs, i.e., lOSs that use different information

sources and analysis techniques, that are being operated at different locations in the network. As a first

step we will defme assessment criteria and metrics according to which lOSs shall be assessed. Before

developing a method for assessing IDS combinations, we show how existing assessment metrics. as

developed in the information retrieval field and already used by lOS benchmarking approaches, can be

used to assess individual IDSs. In the second step we propose an alarm-processing method that combines

the analysis results of multiple IDSs in a manner that takes into account the semantics of the generalized

alarms. From the results obtained with this method, we develop metrics that enable the assessment of

arbitrary IDS combinations in terms of the completeness and utility of the information they have the

potential of providing.

The goal of these metrics is to measure how an individual IDS or a combination of IDSs covers a given

set of attacks, i.e., attack classes. Moreover they measure the quality (utility) of the coverage provided.

This is achieved by making use of an information-theoretic approach to analyze the alarms sets that lOSs

generate for given activity classes. This approach determines the suitability of the information provided

by IDSs for fault diagnosis purposes, such as discriminating between true and false positives, or

identifying the cause of a set of alarms. Once these metrics have been defined, we discuss the manner in

which RIDAX had to be extended to calculate measurements according to these metrics.

Note that in order to achieve this, we will make use of the possibility of generalizing the analysis

performed by our approach from classes of attacks to classes of activities (see Section 3.6.2). The

following discussion will therefore be based on classes of activities and their description components

rather than on attack classes as was the case in the preceding chapters. Hence, when applicable. we will

use terms such as activity class and activity class variant instead of terms such as attack class or attack

class variant. This is necessary because the metrics envisaged also assess the potential of IDSs to generate

false positives. This requires the analysis of IDSs with regard to the manner in which they analyze benign

activities that are similar to attacks (see Sections 3.6.2 and 4.3). Finally we will provide results that were

obtained by assessing five IDS example configurations and their combinations. Note that the results

provided merely serve illustrative purposes. The assessment method presented here operates based on

descriptions of IDS designs and classes of attacks, and does not take into account characteristics specific

138

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECflON SYSTEMS

to the environment such as the type and amount of network traffic or the network topology. We assume a

normalized environment in which every activity class variant occurs exactly once.

8.1 Related work

In the following we will propose a method for combining the information provided by diverse IDSs and

defme metrics that assess the information provided by the resulting combined system However. before

doing so, we shall discuss some related aspects. First we will consider the manner in which system

reliability can be improved using concepts known from the dependability domain, and discuss the

limitations of such an approach. Then we will present and discuss assessment metrics as they are used in

the ID and information retrieval domains.

8.1.1 Dealing with false positives and negatives in the dependability

context

In MAFfIA D2 [D2MafOl) it is shown how error detection and fault-diagnosis mechanisms are to be

viewed in the context of intrusion detection. Unfortunately, IDSs may fail in various ways. Ideally, one

should try to apply dependability concepts such as fault masking to handle such IDS failures. However, as

also indicated in MAFTIA D3 [D3MafOl), it is not straightforward to apply these concepts to ID.

Whenever one deals with system components that are not sufficiently reliable to meet a given system's

specification, a standard approach is to introduce redundant components into the system. Applied to ID,

IDSs represent the components, and the system is the ID architecture. By letting the redundant

components vote on the result, it is possible to increase the system's reliability. This has been explored

extensively in the dependability field. However, it seems impossible to apply this concept to ID-one, but

not the only, problem being that the failure rate of IDSs, e.g., the rate of false alarm, is too high

[AxelssOO, JuliscOO, MCZH99, SchneiOO). This problem is illustrated in the work of Mathur et al.

[MatAvi70). They prove that one cannot increase a system's reliability simply by adding redundant

components, e.g., in an N-modular redundancy (NMR) scheme, if the failure rate of the individual

components exceeds 50%. Unfortunately, many IDSs generate much more than 50% false alarms.

In addition, the semantics of the alarms generated depends significantly on the capabilities of the IDS

generating them This influences the information and the trustworthiness of the information carried by

these alarms, which in itself significantly increases the complexity of error detection and fault diagnosis

when the alarms generated by multiple IDSs are being combined.

8.1.2 Assessment metrics

Whenever one seeks metrics for assessing systems, it is crucial that one first defines goals of the

assessment. In some cases the choice of the assessment criteria seems to suggest itself. However, in most

cases, several criteria are conceivable. Moreover their importance may vary significantly depending on

139

AITACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO

the usage envisaged of the systems-a fact that naturally also applies to the asse mem of ID

[Wilkis02].

8.1.2.1 Assessment metrics used in ID

The evaluation of IDSs with regard to the attacks they detect is a first, vital step in the conte>.'1 of ID

assessment. However, so far the interpretation of these evaluation results is an issue that has been

addressed only to a limited degree.

Currently the alarms generated during the evaluation of IDSs are rated either as true or fal e po itive .

Moreover, false negatives, i.e ., when an IDS fails to generate an alarm for an attack, are also recorded.

Based on this information, one commonly defines metrics that measure the percentage of attacks detected

or the rate at which false alarms are generated. In the Lincoln Lab evaluation, for instance, the fal e

positive rate was measured in false alarms per day.

Often the results obtained are represented using receiver operating characteristics (RO) curve . RO

curves have been already in use for many decades in the domain of signal proces ing. There they are used

to judge the quality of a given receiver and to choose an operating point for it [peBiF054]. For a gi en

receiver a ROC curve superimposes the probabilities for true and fal se positives for the value range of a

selected receiver parameter. For a good receiver the curve will come very close to the point (0,1), i.e., the

point where each signal is detected correctly and no false positives are generated (see curve a) in Figure

34. A poor receiver will produce a curve that is close to the diagonal (see curve b) in Figure 34.

0.8

:! 0.6

<n
8.
<D

~ 0.4

0.2

/

a) /
/

I

0.2

'" /

0.4 0.6

p(false positive)

- - -

0.8

Figure 34--Example of ROC curves

ROC curves have been used to illustrate the IDS assessment results by Lippmann [LFGHKMOO], Maxion

and Tan [MaxTanOO] and others. However, their application to ID is not without difficulties

[McHughOOb] as illustrated by the following examples :

140

•

•

ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

The probability for a false alarm may be biased significantly by the environment in which the

IDS has been tested-a fact that may influence the curve significantly.

The number of available samples may be as low as one if there is no IDS parameter available

that can be set to multiple values (this is a property inherent to our IDS description approach: see

curve c) in Figure 34). As a consequence the resulting curves have to be interpreted with care.

Moreover, note that measuring and plotting the percentage of true and false positives does not take into

account the non-binary nature of IDS alarms. Besides being a true or a false positive alarms convey

information (implicitly and explicitly) that is rarely measured by IDS evaluation efforts. Also. the metrics

used do not measure how well true and false positives can be discriminated or how well causes of alarms

can be identified (see also Section 8.1.1).

8.1.2.2 Information retrieval

In our search for more generic metrics to assess IDSs, we have also looked at the field of information

retrieval (IR), where such concepts have been investigated over the past years. Here people have defined

the concepts of precision and recall [BaCoBe94, Lager96, Weiss97]. In his glossary [Weiss97] Weiss

defmes them as follows:

• Recall: Recall is the percentage of total relevant documents retrieved from all documents. Recall

refers to how much information is retrieved by the search. Total recall would locate every

document that matched the search criteria in a database.

• Precision: Precision is the percentage of documents retrieved that the searcher is actually

interested in. Precision focuses on the relevant, most useful items retrieved in the search.

Weiss [Weiss97] further states:

Recall with high precision is the ultimate goal. The goal of information retrieval scientists

is to provide the most precise or relevant documents in the midst of the recalled search

results.

Ifwe now assume the distribution of activities to be known, recall, when applied to ID, can be considered

as being the percentage of the total number of attacks considered that are reported by means of true

positives. In a similar way, precision can be defmed as the percentage of the total number of alarms

generated that are true positives.

However, also in the case of IR metrics, one ought to exercise care. As recognized in Sections 8.1.1 and

8.1.2.1, a given attack may be reported by semantically diverse alarms depending on the IDS. Using the

IR concepts one can only classify alarms into true and false positives and identify missed attacks as false

negatives. Also one thereby does not take into account the utility of alarms for correctly distinguishing

between true and false positives and identifying attacks.

141

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIOl\ SYSTEMS

8.1.3 Discussion

Current IDS assessment approaches only distinguish between true positives, false positives. and false

negatives. As indicated, these metrics can be defmed well using the notion of precision and recall. as

described in Section 8.1.2.2. We will apply this concept in Section 8.2, where we define evaluation

metrics for individual IDSs that do not assess the utility of the information provided by the alarms the

IDSs generate. However, as with any metric that is based on the accounting of true and false positives.

these metrics also have weaknesses. ID alarms are not of a binary nature, i.e .. one can distinguish far

more than just between correct and incorrect alarms. ID alarms implicitly and explicitly contain additional

diagnostic information that is not assessed by any such metric. The diagnostic information may be key to

further analysis as performed by alarm correlators within an ID architecture that combines multiple IDSs

or the analysis performed by a human. Especially when one aims at identifying or diagnosing the activity

that caused several IDSs to generate a set of alarms, the fact whether every single alarm is a false or a true

positives becomes less important. When one analyzes alarms at this level, it is far more important to take

into account the meaning of alarms as it is defmed by alarm identifiers, etc., and as it is implicitly defmed

by the type of the generating IDS.

ROC curves are a popular means to represent IDS assessment results. However, we chose not to use them

in this work because we would obtain curves defmed by only a single point (see curve c) in Figure 34).

Such curves are too imprecise for meaningful interpretation. Instead we chose to use two-dimensional

plots and histograms to represent the results of our experiments.

8.2 Detection rate of IDSs

In this section we develop simple metrics that allow us to judge IDSs in a manner similar to existing

approaches. We have extended RIDAX to automatically calculate these measurements on a per-IDS basis

as part of the IDS analysis process. We measure the total number of true positives, false positives, and

false negatives in a matmer that we derived from the concepts of precision and recall, as used in the

information retrieval field (see also Section 8.1.2.2). However, in doing so, there are some issues that we

need to be aware of:

1. The semantics of generalized alarms generated differs significantly from that generated by IDS

implementations. First, generalized alarms denote the potential of an IDS to generate a given

class of alarms. Second, our approach may report, i.e., describe, activities using multiple

generalized alarms. This can be caused by the combination of multiple activity, i.e., attack, class

description components, but also by single components. It is clear that IDS implementations may

also generate multiple alarms when reporting a single attack. Therefore comparing absolute

alarm numbers may result in misleading measurements.

2. The number of false negatives determined by our approach cannot be compared with the number

of false negatives determined while evaluating IDS implementations. This is due to the fact that

we rate every generalized alarm that was expectable (see Section 6.4) but was not generated as a

142

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETEcnON SYSTBfS

false negative. However, as explained in Section 7.1.3, these false negatives only matter if no

true positive reports the activity component in question. When judging coverage provided by an

IDS, we focus on whether a malicious activity variant was rated "detected" or not (see Section

7.1.3), i.e., we defme coverage as the percentage of all considered malicious acti,ity variants

that are detected.

3. The utility of the information carried by alarms generated is not measured

4. The measurements are not made in a real environment, and encompass only one instance of

every activity variant. However, as explained in the preceding section, other approaches suffer

from this environment-related issue to an equal or greater extent. In spite of this. the results 'Aill

provide a normalized assessment of the IDSs evaluated

Most of these issues have already been mentioned in Section 2.4 (see Table I) and in part provide the

motivation for the considerations made in the next section. There we propose an assessment method that

enables us to include the utility of the information provided by IDS alarms.

Being aware of above issues, we defme the following metrics derived from the concepts of precision and

recall:

• Recall r: the percentage of the total number of considered malicious activity class variants that

was detected m
d

• The total number of malicious activity class variants is determined by

summarizing the number of detected malicious activity class variants md , the number of

partially detected malicious activity class variants mpd and the number of nondetected malicious

activity class variants mnd :

md
r=---~---

md +mpd +mnd

This measurement is normalized, and thus recall is equivalent to coverage. Applied to ID,

coverage reflects the percentage of all considered attack classes that an IDS is capable of

detecting, without taking into account the frequency of the occurrence of individual attacks.

• Precision p : the percentage of the total number of alarms generated that are true positives alp'

The total number of alarms is composed of alp and the number of false positives a fp :

alp
p=---'--

alp +a.(p

This metric enables us to assess the credibility of the alarms generated by an IDS.

Note that in above definitions we used both rated alarms (alp and a fp) as well as rated activity class

variants (m
d

etc.). We chose to do so because the resulting defmitions of precision and recall reflect the

relevant information well. Moreover, the resulting defmitions are to some extent comparable with the

measurements determined in other approaches such as the Lincoln Lab experiment (see Section 2.3.3.1).

143

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

It would have been misleading to use the number of false negatives for the definition of recall fi • or

instance, because the semantics of the false negatives as used in the context of our approach differs

considerably from that used in other works.

In Section 8.6.2 we will provide concrete examples of precision and recall that were measured for a series

ofIDSs using the extended RIDAX prototype.

8.3 Fault diagnosis based on alarms generated by multiple IDSs

In the preceding section we defmed metrics similar to the ones determined by other approaches. As

explained, the resulting metrics neither take into account nor measure the utility of the infonnation

provided by alarms; they are not suitable for assessing combinations of individual IDSs. The latter.

however, is an important foundations for the design of ID architectures. Bottom-up approaches that apply

voting mechanisms such as the N-modular redundancy (NMR) scheme [MatAvi70] are not suitable for

developing and building such supposedly highly complex architectures (see also Section 8.1.1). The

realization of such an approach would be difficult because the semantics of all these alarms differs

significantly depending on the type, configuration, and location of the IDS used. In addition given the fact

that IDSs tend to generate far more than 50% false positives, an NMR scheme is likely to make matters

even worse instead of improving them.

As a consequence we propose a method that attempts to take into account the semantics of alarms and,

even more importantly, that of alarm sets. Later in this section this will enable us to develop metrics that

reflect the usefulness of the information contained in alarms and alarm sets. For instance we consider

alarms useful if they enable us to clearly rate an activity class variant as being malicious or to identify the

activity class from which the activity class variant was derived.

8.3.1 Information provided by alarms

In Section 7.1.2.2 we introduced a 5-tuple of alarm properties to represent alarms. This representation

enables us to distinguish between different generalized alarms semantically without having to describe

their semantics explicitly. The latter would be difficult to do because the generating IDS determines much

of the alarm's semantics, which in turn means that each of the influential IDS characteristics identified in

Chapter 5 would have to taken into account accordingly. Finally the location of the IDS, also the

environment, and possibly other factors influence the alarm semantics.

Our 5-tuples of alarm properties is sufficient to address all the implicit infonnation conveyed by

generalized alarms as they are used in the context of this work. They not only include sufficient

infonnation to distinguish alarms caused by different activity classes, but also provide infonnation on the

generating IDS. However, if we were to consider the IDS location and environment as well, the set of

alarm properties might have to be extended.

144

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

In the following we wish to assess and exploit the complete information provided by generalized alarms.

Hence, we searched for an analogy that would permit us to do so. We found that signals known from

information and coding theory [CovTh091] provide a suitable analogy. Accordingly alarms can be

viewed as being output signals that result from symbol transmissions over a channel. In this model an IDS

corresponds to the channel which transforms symbols, i.e., activity variants, as they are transferred.

Owing to the fact that in general information may be lost in transmission, it is not always possible to

determine the initial symbol based on the output signal, i.e., the set of alarms an IDS generates. In the

following we assess the completeness and utility of the alarms by measuring how well conclusions can be

drawn on the respective activity class variants based on the set of alarms. This approach also enables the

assessment of the potential gains one can achieve in terms of completeness and utility by combining

individual IDSs, because such combinations can be viewed as the parallel use of multiple diverse

channels.

Example: Consider a network-based IDS such as Snort to represent a broad-band channel and a host­

based IDS such as WebIDS a comparably narrow-band channel. This would mean that many signals.

which use carrier frequencies that can be transmitted over the Snort-channel. could not be transmitted

over the WebIDS channel, because the latter is not capable of transmitting signals at all the frequencies

the former can. On the other hand, one can expect the signals that were successfully transmitted over the

WebIDS channel to be of better quality than if they had been transmitted over the Snort channel.

Reverting to ID, Snort is capable of analyzing SMTP (mail) messages, whereas WebIDS cannot. On the

other hand, WebIDS is capable of taking into account the http server's request retum code in order to

determine the success state of a potential attack, whereas Snort cannot. Similar considerations can be

made with respect to variations such as IP fragmentation. (See also Table 28).

Note, in this model whether an alarm is rated a true or false positive is not relevant. An alarm, if the IDS

actually generates one, is 'just" to be seen as a transformed symbol that needs to be interpreted.

8.3.2 Fault diagnosis based on alarm sets

In this subsection we develop a method that applies the considerations made in the preceding section to

the results obtained by analyzing IDSs as described in Section 7.1. The assessment method described is as

well implemented by means of an extension to RIDAX, and is automatically executed as a continuation of

the IDS analysis process. It is not related to the method described in Section 8.2.

Every alarm that an IDS generates indicates the observation of a possibly suspicious activity. With a

probability specific to them, alarms thereby indicate an error that may lead to a security failure. However.

the probabilistic aspects of the relation between activity variants and alarms are not explored in the

following, because this would require an in-depth knowledge of the environment, which lies outside the

scope of this thesis.

Here we view alarms and alarm sets as signals indicating a set of possible generating activities.

Remember, whether an alarm is a true or a false positive is irrelevant for these considerations. In some

145

AITACK-CLASS-BASED ANALYSIS OF 1NTR SIO DETECTIO TEM

cases false positives may even support the identification of activities or theLI· trn· be· mal · ra g as rng ICIOUS or
benign. In the following we therefore consider IDSs to be performing a sunp· Ie .-dir"; naJ . uru ecuo proJe non

/,;s that depends on the IDS being evaluated. Figure 35 illustrates this projection. ote that one of the

alarm sets can denote the empty set.

J,~s
Activity variants ~ Alarm sets

Figure 35--Projection of activity variants to alarm sets

In this projection several activity variants may cause the same alarm set R, to be generated. B

performing the IDS analysis described earlier, we obtain all these mapping between acti ity cla

variants and generalized alarms. If we do so for each activity class variant, it become po ible to

determine the sets of generalized alarms that uniquely identify a given activity class variant. Howe er, in

many cases this mapping is not unique.

In order to simplify the analysis we shall only identify the activity class but not the activity class variant

derived from it. This simplification, which is illustrated in Figure 36, can be made wi thout 10 ing

important information, because variations generally represent benign alterations of activity cla e , I. e.,

activities.

Example: Considering an attack that is staged over the network and targets an application layer service

such as the webserver. When it comes to identifying the activity or to judging whether the observed

activity is malicious or benign. the fact that the activity involved fragmented IP PDUs or minimum- ized

rcp segments is of limited importance. This is not to say that this info rmation might not be useful­

especially when it comes to assessing the intentions of the adversary. However. when identifying and

rating the activity. this additional information merely adds conf usion.

Figure 36c shows that it may not be possible to unambiguously identify the activity that caused a gj ven

alarm set. In the figure this is illustrated by alarm set R
J

. However, knowing this relation may prove quite

useful if, for instance, a
l

and a
2

are both benign, we can identify the alarm sets R1 , RJ and R4 as

reports of benign activities that require no further attention. If both activities are considered malicious,

R3 at least informs us of a malicious activity in progress. Knowing the above mappings, we can e en

abridge the list of possible causes to a set of two activities. If, however one of the activities is benign and

the other malicious any observation of R3 is unfortunate because it is impossible to judge whether the

146

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTlO Y TEM

detected activity is benign or malicious. This means that rating the cause. i.e .. rating the acti"lry. based 00

R3 has become ambiguous.

When performing this analysis one might find that too many malicious activlry ariants

• are oot detected at all,

• cannot be rated unambiguously, or

• cannot be identified.

Last but not least one might also frnd that too many benign activity variants cannot be rated

unambiguously . These shortcomings can be addressed by increasing the information provided b the

alarms sets used for analysis, which is exactly what was discussed in Section 8.3.1. 10 other words, using

alarms generated by multiple diverse IDSs to compose the alarm sets will increase the information they

provide. If we use the alarm representation as introduced in Section 7. 1.2.2, the combination of alarms

geoerated by diverse IDSs becomes straightforward and does not require any changes to our analy i

method. Note, however, that combining IDSs may improve some of the issues mentioned, but may make

others worse.

1;;s 1;DS r l
IDl

Activities --- Alarm sets Activities --- Alarm sets AcI!Vities Alarm sets

a,
D R, al

R,

R, R,

R3
~ ~

R,

R, a, a, R,

RJ
R, R,

R6 ".! ".! R.

a) b) c)

Figure 36--Projection of activities to alarm sets aod vice-versa

10 summary, this method of alarm-set analysis enables us to combine the alarms generated by multiple

IDSs by identifying the set of activities that may cause the generation of a given alarm set. Hence an

activity may be identified if the alarm set considered cannot be associated with any other activity. 10 a

similar, but even simpler fashion, we can also attempt to rate the possible cause of an alarm set as being

benign or malicious. If no clear rating can be made, the alarm set is considered ambiguous . 10 the

examples provided in Section 8.6 we will apply these considerations to activity classes and generalized

alarms.

8.4 Metrics for assessing individual IDSs and their combinations

In Section 8.2 we have defined the metrics precision and recall that enable a relatively simple but limited

IDS assessment. These metrics cannot be easily applied to IDS combinations and do not assess the utility

of the information provlded . In this section we address this issue by proposing a set of metric that

147

ATTACK-CLASS-BASED ANALYSIS OF INfRUSION DETECI10~ SYSTEMS

assesses the completeness and utility of arbitrary IDS combinations based on results obtained by

analyzing alarm sets as described in the preceding section.

Before starting to define metrics, we need to clarify their goals. It is clear that in the most general case

one seeks to measure and optimize coverage of the ID architecture envisaged (see Section 8.21. In this

and the following context, it is important to ensure that each IDS is assessed for the same set of activity

classes. When referring to the optimization of coverage, we should be aware that it often does not make

sense to aim for total coverage. Often it suffices to optimize coverage in a given domain. i.e., just for a

given set of IDS scopes, according to the security policy and the environment to be protected.

Example: Consider a DMZJ9 of an e-business. There the majority of the activities encountered is most

likely somehow related to web services. As a consequence one would concentrate on these services and

pay less attention to others. The emphasis is naturally going to be different when envisaging the

protection of an Intranet infrastructure.

However, merely optimizing coverage will not result in a usable ID architecture. If the solution identified

provides high coverage, but the alarms generated are too often false alarms and difficult to interpret, a

solution may prove to be almost useless. To assess the utility ofIDSs and their combinations, we propose

metrics that measure the quality of the information provided by the sum of all generated alarm sets

according to selected criteria. The criteria we choose are the ones identified in the preceding section. The

resulting metrics summarize the utility of alarm sets with regard to the identification of activities and the

rating of their causes as benign or malicious.

8.4.1 Attack recall

The so-called attack recall metric is highly similar to recall as defined in Section 7.1.3. Instead of

considering only individual IDSs, we expand our considerations to a set of IDSs. One notable difference,

however, is the fact that we do not distinguish between alarms generated because of variations and alarms

with other causes. This is due to the manner in which alarms are analyzed (see above). In this analysis we

do not distinguish between false positives and false negatives, which means that a malicious activity

variant is considered detected if the IDS evaluated reacts with the generation of an alann-independent of

what the alarm is reporting. Note that it may not be possible to identify the activity based on the alarm set

observed.

Furthermore, it is clear that one cannot simply add the numbers of detected and not detected malicious

activity variants of all the IDSs considered because the domains they cover may overlap. In other words.

md denotes the number of malicious activity variants that at least one of the IDSs involved was able to

detect. In order not to complicate things further, let us consider activity variants that were detected only

partially as "not detected." This results in the definition of mnd as the number of malicious activity

19 Demilitarized Zone: usually that part of the network that connects an organization's Intranet to the

Internet.

148

ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

variants that were either not detected or only partially detected by all of the IDSs. Finally we can deflDe

attack recall ra as follows:

Again, in our case where only a single instance of every activity variant is considered. r. pro\ides a

measurement for the coverage achieved by the combination of IDSs considered.

8.4.2 Attack identification recall

Attack identification recall is similar to the definition of attack recall. The only difference is that we count

the number of malicious activity variants mj for which it was possible to determine the activity that the

activity variant was derived from. This results in the following definition of r, :

mj
Ii =--'---

md +mnd

It is clear that because mj :::;; md , Ii will never be larger than ra' i.e., r
i

:::;; ro .

Attack identification recall provides us with an absolute measure of the attacks that can be identified

based on the information available. It thereby provides us with indication on the utility of the considered

IDS or IDS combination with regard to diagnosis.

8.4.3 Attack identification precision

Attack identification recall provides a measurement in absolute terms. However, in most cases knowing

the percentage of detected attacks that can be clearly identified is of higher interest. This is because it

provides some measurement for the quality of the detection process. This relative metric Pi can be

defined quite easily as follows:

8.4.4 Rating ambiguity

In measuring recall it is important to verify whether the IDS or set of IDSs considered provide the

required coverage. However, when it comes to assessing the usability of the system an important

parameter is what we call the rating ambiguity a r' This absolute metric measures the percentage of

activity variants that cannot be rated unambiguously as benign or malicious. The number of ambiguously

rated activity variants is composed of malicious (m a) and benign (b a) activity variants. m denotes the

total number of malicious and b the total number of benign activity variants considered.

149

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

ma+ b a = a
r m+b

The resulting measurement provides an indication of the operational effort that one has to spend because

of false positives that cannot be clearly identified as being false positives. As explained earlier. we

consider false positives as troublesome only if they cannot be recognized. If we observe a set of alarms

that may only have benign causes we can simply discard them, i.e., they do not require any further

treatment. Ambiguous alarm sets are troublesome because their generation may be caused by benign

activity variants. This is especially annoying because in real-world environments benign activity variants

may occur very frequently-far more frequently than the corresponding attacks. Thus one should focus

on composing IDSs such that the overall rating ambiguity is as low as possible.

8.4.5 Rating precision

The metric rating precision P r is closely related to the rating ambiguity metric. The two differences are

that it is measured in relative terms instead of absolute ones, and that it assesses the activity variants that

can be rated unambiguously. md denotes the malicious and bd the benign activity variants that were

detected or reported. mna represents the malicious and bna the benign activity variants that were

unambiguously rated as benign or malicious.

mna +bna p =
r md +bd

When measuring the rating precision we obtain an idea of the usability of the IDS combination

considered with respect to the coverage it provides.

8.5 Extending RIDAX to include fault diagnosis and the calculation of

metrics

Once every IDS has been analyzed for every activity class variant, the analysis process comes to its end.

What we have obtained by now is a set of rather large database tables reflecting how the IDSs have

analyzed the activity variants and the alarms that the IDSs were found to have the potential of generating.

Based on this data, we can calculate the statistical data required for calculating per-IDS precision and

recall as defined in Section 8.2.

In addition we further analyze the results obtained by identifying and analyzing alarm sets as described in

Section 8.3. From this analysis we obtain, for every individual IDS but also for every possible

combination ofIDSs, measurements compiled using the metrics defined in Section 8.4.

150

AITACK-CLASS-BASED ANALYSIS OF l1\'TRUSION DETECflON SYSTEMS

8.6 RIDAX experiments

In above chapters and sections we developed methods for the analysis and assessment of IDSs. For

illustration purposes we have extended RIDAX such that it is now able to calculate the IDS assessment

metrics proposed. In the following we discuss experiments made using RIDAX. We do so by first

providing brief descriptions of the IDSs analyzed in the course of these experiments. Then we discuss the

attack detection rates, which are based on rated alarms, using the metrics described in Section 8.2. Next.

we consider examples obtained while performing the far more advanced alarm-set-based fault diagnosis

as developed in Section 8.3. We continue by considering measurements obtained by applying the metrics

developed in Section 8.4 to the results of the alarm-set-based diagnosis. Whereas earlier attack detection

rates are discussed primarily for the sake of comparison with other approaches. the measurements

obtained using the alarm-set-based analysis enable us to assess the viability of IDS combinations in a

manner not possible before.

Our experiments incorporate most of the concepts developed in the course of this work. including the

descriptions of the 48 activity classes identified in Section 4.3 and seven variations (see also Section 6.3).

Up to two of these seven variations were applied concurrently to each of the 48 activity classes. This

resulted in a total of 928 activity class variants considered in our experiments. Of these 498 are

considered malicious, and 430 benign. As explained in Section 6.3, any given variation can only be

applied to activity classes that involve the IDS scope addressed by the variation. Therefore not every

activity class leads to the same number of activity class variants.

Technically RIDAX is capable of applying any number of variations to any activity class concurrently.

However, we limited this number to two because we felt it necessary to set an upper limit for practical

reasons. This limit enables us to investigate the effects of multiple, concurrently applied variations, while

providing us with a workable solution. The resulting number of 928 activity class variants is believed to

represent a meaningful test set because they were generated in a systematic fashion. which assures

consistent coverage of a significant portion of the most relevant attack classes.

8.6.1 IDSs assessed

For our experiments we have to select a small number of IDSs from a large list of candidates (see

Sobirey's list [Sobire98]). This means that we need selection criteria that are well suited to our primary

goal, which is the investigation of potentially achievable gains by combining diverse IDSs. As a result we

selected three IDSs, of which we consider five different configurations, by following the following

criteria:

1. Diversity: We require at least one knowledge-based and one behavior-based IDS, as well as at

least one host-based and one network-based system.

2. Practicality: As these experiments are conducted for demonstration and validation purposes. it

must be possible to describe the IDSs with only limited effort. This means that the internals of

the IDSs need to be available, and, ideally, that they are already well known.

151

AIT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

In our experiments we chose to focus on IDSs monitoring network services because various approaches to

ID have been developed in this area (see also Section 4.3). Ibis enables us to control the effort spent for

the RIDAX prototype implementation as well as to address both network-based and host-based IDSs.

which may either use knowledge- or behavior-based methods. We are aware that we thereby exclude

classes of attacks such as those that describe attacks staged by local users (see also Section 4.3).

Nevertheless we believe this choice to be viable because the goal of our experiments is merely to prove

and illustrate the validity and flexibility of the concept and not so much the assessment of IDSs at large.

Based on these requirements and considerations, we selected the three IDSs listed in the table below (see

also Section 1.6). The last column defmes the identifiers for the respective IDSs as used in the following

discussion.

Table 31-IDSs analyzed and assessed using the RIDAX prototype

IDS Detection method Information source used Configuration 10
(see Section 5.3.1) (see Section 5.2.1.1)

DaemonWatcher Behavior-based System level log (audit log) http DWH
[WeDaDeOO, WesDeb99] ftp DWF

Snort [Roesch99] Knowledge-based External raw data (network PDUs) Simple SNS

Full SNF

WeblDS [Almgre99] Knowledge-based Application level log (httpd logs) Normal WI

We used a total of five different configurations of these three IDSs for our experiments: Two

configurations of DaemonWatcher--<>ne configured for the ftp and one for the http daemon; two

configurations of Snort--<>ne configuration using basic capabilities only and one with all additional

modules enabled, and one of Web IDS.

8.6.1.1 DaemonWatcher for ftpd and httpd

DaemonWatcher [WeDaDeOO, WesDeb99] by Wespi et al. is a behavior-based system that analyzes the

audit records of processes as they are written by the OS. The system was developed at the IBM Zurich

Research Laboratory, as was this work. For our experiments we consider two configurations of

DaemonWatcher. A first configuration covers buffer overflow attacks against the ftp daemon, and the

second covers the corresponding attacks against the http daemon.

DaemonWatcher matches the per-process sequences of system calls to system-call sub-sequences stored

in a database. The latter represent known benign sequences that were isolated in a training phase. During

this training phase, ideally, all possible execution paths of the executable to be protected are exercised

and recorded. From these system-call traces, sub-sequences are isolated using a pattern-extraction

algorithm. The resulting sub-sequences describe the complete system-call trace and thereby provide a

sufficient description of the normal behavior of the executable to be monitored. As a result

DaemonWatcher does not require signature updates for new attacks. However, its disadvantage is that its

alarms do not identify the attack staged against the monitored process.

152

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfION SYSTEMS

8.6.1.2 Snort

Snort [Roesch99] by Roesch is a network-based IDS that is freely available. Snort has become very

popular, and is broadly supported by the open-source community. This support consists primarily of new

signatures that are being made available on a daily basis and additional modules that extend Snort' s

detection capabilities. For our experiments we used two configurations of Snort v1.7. One configmation

uses none of the resource-intensive extension such as the TCP stream re-assembly module. For the second

configuration we consider all these additional features enabled.

Because Snort is a knowledge-based IDS, its signature database needs to be updated as new attacks

become known. The signatures are primarily PDU or stream-oriented and support the verification of

various protocol flags as well as string matching applied to the payload of the PDU.

8.6.1.3 Web IDS

WebIDS [Almgre99] by Almgren is a host-based, lightweight IDS tailored to the protectIOn of web server

services (httpd) that was developed at mM Zurich Research Laboratory. The IDS was implemented in the

scripting language Perl [Perl87] and relies on its powerful regular expressions to recognize attacks. ln

addition the system builds up a list of suspicious hosts and is capable of statistical analysis towards the

recognition of flooding attacks. It is clear that the signature database of WebIDS needs to be updated as

new attacks become known.

8.6.2 Detection rates of individual IDSs

In Section 8.2 we defmed the metrics precision and recall by deriving them from the corresponding

defmition in the information-retrieval field. The resulting measurements can only be compared in a

limited fashion with the results produced by known benchmarking approaches such as the Lincoln Lab

evaluation (see Section 2.3.3.1). A first important difference is the fact that we considered a "normalized"

environment in which every activity variant occurs exactly once (see Chapter 7). A second difference is

that the alarms and activity variants represent classes and therefore cannot be directly compared with their

real-world counterparts.

The measurements produced with using RIDAX are shown in Table 32 and illustrated in Figure 37.

Table 32-Recall and precision of the IDSs assessed

IDS Detected Not detected Recall True False Precision
attack attack (coverage) positives positives

variants variants
DWF 42 456 8.4% 42 0 100.0%
DWH 112 386 22.5% 112 0 100.0%
SNF 72 426 14.5% 277 94 74.7%
SNS 44 454 8.8% 242 92 72.5%
WI 79 419 15.9% 164 15 91.6%

The first fact one notes is that DaemonWatcher for http (DWH) not only provides the highest recall but

also 100% precision. This raises two questions: How does this come about? And, why are the results of

153

ATI ACK-CLASS-BASED ANALYSIS OF !NlRUSION DETECTION SYSTEMS

Daemon Watcher for ftp different? The main answer to this lies in the environm nt . th .. . d e l.e., e actJ\lUes an

activity variants used for this evaluation:

•

•

•

We have defmed nine malicious activities for http, but only four for ftp (see Section 4.3).

We have defmed one variation (hexadecimal encoding of the URL) that can only be applied to

http-related activities. Such an additional variation can significantly increase the number of

activity variants that can be derived from an activity.

Because of the detection method used, DaemonWatcher IS not susceptible to any of the

variations considered, i.e., in the context of this work we were not able to identify a meaningful

variation that could be used to elude DaemonWatcher.

The items identified illustrate that even our approach suffers some bias caused by the selection of the

input data used for the evaluation. However, this impact is limited and well understood. On the other hand

it seems fair to give more weight to http activities owing to the popularity of http (see also Section 4.3)

and its nature, which permits variations that are not possible in other protocols. For future work it seems

advisable to investigate approaches that would permit the results to be weighted on a per-activity and

variation basis.

Moreover, DaemonWatcher has the inherent advantages that it does not have to repeat the error-prone

network-stack processing and that it does not have to predict how the monitored application might

interpret the observed activity.

Example: A simple network layer variation thatfragments IP PDUs will not prevent Daemon Watcher or

WebIDS from detecting the actual attack because the host's network stack will reassemble the fragments

before the data is passed on to the daemon process. For the same reason it is impossible for these IDSs to

detect the variation itself.

Note that the obtained measurements do not reflect whether the IDSs were able to provide any further

information besides the fact that a number of attack variants was detected. Moreover, they do not reflect

whether the success state of the attack variants considered is reported by the IDSs. DaemonWatcher, for

instance, will only report attacks that were successful, whereas Snort generally cannot provide this

information.

Considering Figure 37, we see that Snort has the lowest precision, followed by WebIDS and

DaemonWatcher. These differences illustrate the increase in inherent difficulties the lower the level at

which the IDS sensor operates is. IDSs that operate based on network PDUs have to make assumptions

about how the PDUs will be treated by the target system. Based on these assumptions, they have to move

up further levels of abstraction, trying to predict how the observed data PDUs or data sequences will be

interpreted. This excessive crossing of abstraction levels typically results in relatively generic signatures

that may not only be evaded, but may also cause false positives. Similar conclusions were drawn by Sekar

et af. [SGVS99]. As a consequence their implementation of a network-based IDS only focuses on attacks

up to the transport layer, and rarely considers application layer attacks.

154

ATTACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO

100.0%

80.0%

60.0%

40.0%

20.0%

0.0% ...
Q) ~
.c u.
u~ coO
~ ~
c o..
o f­
E U.
Q) ...
co 0
0 -

WI
£~ 0
co~

~o..
Cf­
Of­
EI
g; 0
0 -

LL z
~
"S -t
0
C
(j)

Q)

a.
E
en
t
0
C
(j)

if)
Z
(j)
~

c Recall (cmerage)

I · Prec isi~

Figure 37--Chart representing precision and recalJ

8.6.3 Examples of alarm-set-based fault diagnosis

Y TEf

Especially for large-scale ID architectures, the meaningfuJ processing of aJarms i vi taJ . One important

factor is certainly the handling of the vast number of faJse positives one can expect. Howe er, faJ e

positives are only part of the problem. With increasing size of the ID architecture, at 0 the difficulty of

interpreting the symptoms of a cause that may be malicious increases significantly. Worse, the e two

issues are closely related and therefore shouJd not be separated. This resulted in the alann- et-ba ed

approach to fauJt diagnosis developed in Section 8.3.

Depending on the number of IDSs combined, we were able to identify up to 72 unique alarm ets.

However, when considering individual IDSs such as DaemonWatcher this number may be as mall as

one. Each of the identified aJarm sets may be caused by one or several activities. In the following, we

discuss some examples of aJarm sets as they were generated in the context of the RIDAX experiments.

We consider the http-argument buffer overflow attack we have already used several times as an example .

This class of attacks was identified as activity I in Section 4.3 , Table 4. In our experiments RIDAX was

capable of considering 28 attack class variants of this attack class.

In DaemonWatcher (DWH) each of these 28 activity variants is being reported by an alann indicating that

the execution path of the process implementing the http services is diverting. However, as one might

imagine, other activities can have the same effect and are reported by the same alarms. Based on

DaemonWatcher alarms only, it is therefore not possible to clearly identify the activity, i.e. the cause of

the aJarm. Other IDSs, such as Snort or WebIDS, generate aJarms indicating the observation of a

suspicious or overly long argument string. However, these alarms do not permit the clear identification of

the attack class either because they may aJso report other, possibly benign, activity classes. Moreo er, in

many cases, variations render the attack class invisible to these IDSs. In our experiments we found ID

combinations that wouJd report activity variants of this activity with up to ele en diffe rent aJarm seLS.

155

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTE\.1S

However, it is not our goal to maximize this number. It should be the goal to find solutions that maximize

the number of activity variants that, based on alarm sets can be associated urn' I t th . , que y 0 e generanng

activity. In Table 33 we provide an overview of the relevant figures for a selection of IDSs and IDS

combinations.

Table 33-Fault diagnosis results for the class of http argument buffer overflow attacks

IDS Number of alarm Number of alarm Number of alarm Number of Number of
combination sets identified for sets that sets that identify activity variants undetected

the http- uniquely identify only malicious that can be attack class
argument buffer attack class 1 activity classes associated variants
overflow attack uniquely to
class variants attack class 1

DWH 1 0 1 0 0
SNF 6 0 0 0 18
WI 3 2 2 21 6
DWH, SNF 7 0 7 0 0
DWH,WI 4 2 4 21 0
SNF,WI 10 8 8 21 4

DWH,SNF, WI 11 8 11 21 0

In the above table we also included the number of undetected attack class variants and the number of

alarm sets, i.e., sets of generalized alarms, caused only by attack classes. These numbers become

important in the next section as we assess the utility and the coverage of IDS combinations. As explained

in Section 8.3.2, an important factor is the number of alarm sets that may denote malicious as well as

benign activity classes. Remember, we do not consider false positives to be problematic as long as they

can be recognized as such. On the other hand, false positives are particularly annoying if the attack­

similar but benign activity causing them occurs. It is difficult to eliminate them in a generic manner,

because they may not be distinguishable from alarm sets reporting classes of malicious activity.

8.6.4 Measuring the results of alarm-set-based fault diagnosis

In this section we discuss the measurements made while performing fault diagnosis based on IDS analysis

results. The fault diagnosis and measurements are made as introduced in Section 8.3. As opposed to the

measurements determined in Section 8.6.3, those determined here provide us with indications of the

utility of the information provided by alarms. The following discussion is primarily concerned with the

metrics defined in Section 8.4. It not only considers the results provided by the five individual IDS

configurations, but also those provided by all possible combinations thereof.

We start with a table that shows the measurements determined for all possible IDS combinations while

performing fault diagnosis as described in Section 8.3. In contrast to the measurements discussed in

Section 8.6.2, this analysis includes alarms reporting variations. In a next step we discuss bar charts and a

Venn diagram illustrating the results. Then, in a third step, we discuss plots illustrating how different

metrics may influence each other. Finally we discuss the impact and use of alarms reporting variations.

and illustrate their impact by comparing fault-diagnosis results that include them with results where they

are excluded.

156

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

The measurements shown in Table 34 are ordered by attack recall and by rating ambiguity. Intuitively one

wishes to maximize attack recall, i.e., coverage, while minimizing ambiguity. As shown in Table 34 and

illustrated in Figure 38, most IDS combinations result in a higher coverage than individual IDSs or

smaller sets of combined IDSs do. However, in most cases the rating ambiguity seems to increase or at

least to be relatively high. Considering Figure 38, we can identify Snort as having a negative impact on

the rating ambiguity. On the other hand Snort generally increases attack recall quite significantly.

Table 34-Measurements resulting from alarm-set-based fault diagnosis
(including variation alarms)

IDS combination Attack recall Rating Rating Attack Attack
(coverage) ambiguity precision identification identification

recall precision
DWF, DWH, SNF, SNS, WI 55.6% 19.2% 57.6% 18.5% 33.2%
DWF, DWH, SNF, WI 55.6% 19.4% 57.1% 18.5% 33.2%
DWF, DWH, SNS, WI 50.0% 19.2% 54.4% 12.9% 25.7%
DWH, SNF, SNS, WI 49.2% 20.3% 51.5% 18.5% 37.6%
DWH, SNF, WI 49.2% 20.5% 51.0% 18.5% 37.6%
DWF, DWH, SNF, SNS 47.8% 16.6% 57.7% 5.6% 11.8%
DWF, DWH, SNF 47.8% 16.8% 57.1% 5.6% 11.8%
DWF, SNF, SNS, WI 46.4% 24.0% 40.4% 15.5% 33.3%
DWF, SNF, WI 46.4% 24.2% 39.8% 15.5% 33.3%
DWH,SNS, WI 43.6% 20.3% 47.5% 12.9% 29.5%
DWF, DWH, SNS 42.2% 16.6% 53.9% 0.0% 0.0%
DWF,DWH, WI 41.4% 7.4% 72.5% 12.9% 31.1%
DWH, SNF, SNS 41.4% 17.7% 50.6% 5.6% 13.6%

DWH, SNF 41.4% 17.9% 50.0% 5.6% 13.6%

DWF, SNS, WI 40.8% 24.0% 35.2% 9.8% 24.1%

SNF, SNS, WI 40.0% 25.1% 31.9% 15.5% 38.7%

SNF,WI 40.0% 25.3% 31.3% 15.5% 38.7%

DWH,SNS 35.7% 17.7% 45.7% 0.0% 0.0%

SNS,WI 34.3% 25.1% 25.3% 9.8% 28.7%

DWF, SNF, SNS 33.3% 20.9% 33.6% 5.6% 16.9%

DWF, SNF 33.3% 21.1% 32.9% 5.6% 16.9%

DWH,WI 32.9% 7.4% 67.0% 12.9% 39.0%

DWF, DWH 30.9% 0.0% 100.0% 0.0% 0.0%

DWF,WI 29.5% 10.9% 47.4% 9.8% 33.3%

DWF, SNS 27.7% 20.9% 26.0% 0.0% 0.0%

SNF, SNS 26.9% 22.0% 21.5% 5.6% 20.9%

SNF 26.9% 22.2% 20.8% 5.6% 20.9%

DWH 22.5% 0.0% 100.0% 0.0% 0.0%

SNS 21.3% 22.0% 11.3% 0.0% 0.0%

WI 21.1% 10.9% 32.7% 9.8% 46.7%

DWF 8.4% 0.0% 100.0% 0.0% 0.0%

Therefore the question arises whether one could combine Snort with other IDSs in such a way that the

rating ambiguity decreases. Figure 38 clearly shows that this is possible. However, the improvement does

not seem as significant as one might hope. Indeed, in many cases the situation becomes worse. This

phenomenon is inherent in the combination of IDSs as illustrated by the following example.

Example: Combining Snort (SNF) with WebIDS (WI) results in relatively high attack recall, but causes

the rating ambiguity to increase above 25%. On the other hand combining Snort rS}'"F) with

DaemonWatcher (DWF, DWH) improves the situation from 22.2% down to 16.8% rating ambiguity.

157

A IT ACK-CLASS-BASED ANALYSIS OF lJ-ffRUSIO DETECTIO. ' Y TE, 1

Wh ere do these differences come from ? Snort and WebIDS partially cover the same anac' and D.l

combining them one can improve coverage. However, because both systems use similar techniqu for

detecting an attack. both are susceptible to generating f alse alarms for similar activities. As a Junher

consequence of using similar techniques. the semantics of their alarms are also simila; r'. Because ~ thi

it becomes difficult fo r any f ault-diagnosis algorithm to compensate the increased amhiguity caused b.l

the increased number of benign activity variants that may cause ala nils. The situation chang

significantly when considering the combination of Snort and Daemon Watcher. These JDSs u e complet 1.1'

different techniques and information sources for their analysis. and are therefore not su ceptible to tire

same variations. Here it becomes not only possible to increase coverage. but also 10 compensat

weaknesses of the respective IDSs by exploiting the semantic diversity of the alarolS they generat .

Similar observations can be made when considering attack identifi cation recal l. However. here the

strengths and weaknesses are distributed di fferently among the IDSs. An ID tha t di tingui he well

between malicious and benign activity class variants is not necessarily as good hen it corne to

identifying the activity class causing a given alarm set. An extreme example of this i Daemon at her.

This IDS distinguishes well between malicious and benign activities. Howe er, as it alarms do not carry

semantics beyond the fact that an unusual sequence of system caJIs was observed, it become impo ible

to determine the cause of such an observation. On the other hand, we are able to demonstrate that uch

systems may significantly increase the expressiveness, i.e., attack identification recal l, of 1D

combinations.

60.00% --
--

Attack recall (co-.erage)

50.00% • Rating ambigUity

o Attack Identficatlon reca ll

40.00% - - - - - - - - - I- I- - - -- -

30.00% - - - - - - - - -

- -- -20.00%

10.00%

I 18
(j) ... (j) (j) ... (j) 0.00%

~ ~ ~
vi vi u: z z z
(j) (j) (j)

:r' u: :i
~ z ~
0 (j)

0
u: :i
~ ~
0 0

vi vi u: z z z
(j) (j) (j)

u: u:
~ z
0 (j)

~ ~ z
o ~ :
~ 0 s t5
o 0

Figure 38--Attack recall, rating ambiguity and attack iden tification recaJI

10 Using dependability terms, thi s indicates a high probability for the existence of common failure-mode .

158

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO

Example: Considering Figure 38, it is apparent that the combination of WebIDS (IT7) and

Daemon Watcher for http (DWH) results in an significant increase of the anack identification recall

compared with any of the respective stand-alone configurations.

Considering attack recall, i.e., coverage, as shown in Figure 38, we already noted that combining ID in

most cases results in increased coverage. In some cases coverage ' . 'n tl . illcreases SlgnJ can y. and ill others lhe
increase is less important. The reason for this is quite simple' some IDS I " fi . s over ap SlgnJ lcantl in terms of

coverage, and some do not overlap at all . Figure 39 illustrates how the fi e IDS configurations evaluated

overlap.

Attack class variants (498)

Figure 39-Venn-diagram sbowing coverage overlaps of evaluated IDSs

When seeking meaningful IDS combinations, it is important to know how the individual IDSs ove rlap in

terms of coverage, in order to determine the coverage provided by a set of IDSs. However, it is even more

important to be aware of coverage overlaps when seeking ways to reduce ambiguity andlor to increase

attack identification recall . This was illustrated in the above example, where we considered the

combination of WebIDS and DaemonWatcher for http . For this combination the gains in terms of

coverage are not very important. However, the example clearly illustrates how the diverse semantics of

the IDSs ' alarms lead to improved ambiguity and attack identification recall. This can be further

illustrated in plots such as those shown in Figure 40 and Figure 4 1. These plots reemphasize the fact that

not every combination of IDSs leads to improved usability in terms of rating ambiguity or attack

identification recall . In Figure 40, for instance, we can identify three bands of IDS combinations. first

band on the x-axis, a second around 10% rating ambiguity, and third around 20% rating arnbigui .

Taking a closer look at the data provided in Table 34, we recognize the fiISt band to consi t of just lhe

159

A IT ACK-CLASS-BASED ANALYSIS OF !NTRUSIO DETECTIO f Y TE I

two Daemon Watcher configurations and their combination. The band at the 10% level i defined b

WebIDS, and represents the various combinations of WebIDS with Daemon atcher configurations. The

band at 20% is dominated by Snort. Every IDS combination at this level contains at least one of the two

Snort configurations.

100 r-------.-----__ -. ______ -. ______ ~------~
Single oSes

Three lOSes (\
Four oSes

80
FIVe lOses 0

l
~

60
·5
Ol
:0
E
'" Ol
.!: 40 0;
a:

20 ~ .~ 0 ~ ~ ~ 0
t::,

<>
0 /\ /\

0 20 40 60 80 100
Attack recall (%)

Figure 40-Attack recaU vs. rating ambiguity of IDS combinations

l00r------.-------,------.-------~--~~

80

20 ····i- ···~~·~ D ·

6. W '-"
& 0 P ~

Attack recall (%)

Three lOSes 0
Four lOSes

Five IOSCes 0

Figure 41--Attack recaU vs. attack identification recall of IDS combinations

160

ATTACK-CLASS-BASED ANALYSIS OF !NTRUSIO DETECTIO YTE1

In combination with Table 34 these plots may also be used to investigate the impact of ID crash failures .

Assuming that one out of three combined IDSs fails, these results enable us to asses the degradation in

terms of coverage to be expected etc.

So far we considered the absolute "recall" measurements only To compl t this d' . . e e lSCUS IOn we compare

attack recall with the relative "precision" measurements rating precision and attack identification

precision. These measurements are illustrated in the bar chart shown' F' 4 AI th ill 19ure . so e e

measurements reflect the inherent strengths and weaknesses of IDSs, such as the fact that

DaemonWatcher is excellent at distinguishing between malicious and benign activity variants. but

completely fails to identify the activities that cause a given alarm set.

100.0%

90.0%

80.0%

70.0%

60.0%

50.0%

40.0%

30.0%

20.0%

10.0%

0.0%

• Attack recall (col.erage) I
I

• Rating precision

o Attack identification precision

kt
V) u..

vi u: vi vi z z z z
V) V) V) V)

vi u: vi z z z
V) V) V)

u: ~ ~ u: z z
V)

0 0 V)

~ u: ~ ~ ~ 0 0 0 0

~

u: u: ~ z ~ V) 0 0

~
0

0

-
- -

• - I-

Figure 42- Attack recaU, r ating precision and attack identification precision

8.6.5 Use and impact of alarms reporting variations applied to

activities

While performing these experiments it became apparent that alarms reporting the observation of

variations are of limited use. In fact we felt that they would create misleading measurements for attack

recall. To further investigate their influence, we repeated our experiments--disregarding alarms reporting

variations.

Our analysis (see Figure 43) revealed that doing so caused both the attack recall and the rating ambiguity

to decrease (measurements for rating and attack identification precision are affected even more

significantly because they rely on relative metrics). The attack identification recall is not affected b tID

measure . At first glance the fact that the attack recall decreases appears as a disadvantage. However. if an

161

A IT ACK-CLASS-BASED ANALYSIS OF Il\'fRUSIO DETECTIO Y TEM

attack is reported only by means of an alann indicating the presence of a " . n' . bl . ana on. a SUlta e reactIon to It

is difficult. These alarms are highly ambiguous as in practice the maJ'oo'ty f th . , . 0 em report non-malicIous

activities . Second, assuming the presence of malicious activity these aJarms h dl 'd , ar y pro\1 e any useful

information about the attack observed. In Figure 43 the generally observable drop of the rating ambiguity

nicely illustrates these facts . In most cases the drop in rating ambiguity is far more important than the 10

of coverage in teons of attack recall .

As a result we concluded that alarms reporting the presence of variations should be used for adjusting the

severity one associates with the potential cause of a given alarm set. The fact that an adversary obfuscate

its attacks might provide an indication of the tools used and/or the adversary 's skills.

60.0%

C Attack recall 0ncl. I.Elri ation alarms)
• Att ack recall (excl. I.Elriat lon alarms)

50.0% o Rating ambiguity 0ncl. I.EInalion alarms) -
o Rating ambiguity (excl. I.EInation alarms)

40.0%

- - -30.0%

- - - - ~ - -20.0%

10.0%

-I- i ~
' (f) u. U) ' u.. ' (f) - (f) u. (f) (f) 0.0%

ui u: ui ui z z z z
(f) (f) (f) (f)

ui ui u: z z z
(f) (f) (f)

u: ~ ~ u: z z
(f)

0 0 (f)

~ u: u: :i
~ ~ ~

0 0 0 0
u:

~ u:
z

0 (f)

~
0

Figure 43-Attack recall and rating ambiguity including vs. excluding alarms reporting ariations

8.7 Discussion

In this chapter we have used the results produced by our approach to IDS analysis for assessing IDS

combinations at a conceptuaJ level. The approach to IDS assessment presented cannot be compared wi th

existing approaches directly simply because it operates at a different level of abstraction and al so pursues

different goaJs. Nevertheless we defmed metrics that enable us to assess IDSs in a manner similar to what

is done by other approaches (see Section 8.2). It is clear that measurements resulting from the use of these

metrics wil l therefore suffer from the same deficiencies as the ones determined using other approaches

such as the Lincoln Lab experiment (see Section 2.3.3.\) or the more commercially oriented work

pursued by the NSS Group [WaJderO\a, WaJderO\b] . These deficiencies are primarily due to the fact that

the environment significantly biases the measurements and that the environment by nature i neither

identical at any two places nor stable over time (see aJso Section 2.4).

162

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfION SYSTEMS

Therefore we focused on assessing the potential of fault diagnosis to develop metrics that prmide

indications on the utility of the information provided by individual IDSs and their combinations (see

Section 8.3). One of the key differences to the metrics described in Section 8.2 is the fact that we consider

false positives only as problematic if they cannot be eliminated based on known relations between activity

classes and sets of generalized alarm they may cause IDSs to generate. As a result we developed metrics

that enable us to assess factors such as the expectable coverage or utility of the information. The utility is

assessed by measuring the extent to which malicious and benign activity class variants can be

distinguished, and by measuring the share of attack classes that can be identified unambiguously.

The ability to assess the completeness and utility of the information provided by IDS combinations

supports the development of ID architectures as it permits the comparison of architecture proposals.

However, if one extends the proposed methods to the real world, the analysis will become more involved.

mainly because the identification of alarm sets becomes more complex. Also the fact that depending on

its internal state and the environment, the IDS may not always generate the same alarm set for a given

activity increases the complexity of this reasoning. In addition one needs to be aware of the semantic

differences between the generalized alarms generated in the context of our IDS analysis approach and

alanns generated by IDS implementations. The generalized alarms, similar to activity classes, represent

classes of real alarms rather than alarms that report specific attacks as IDS implementations generate

them.

Having taken note of these differences, it is hoped that these results will support the further enhancement

of existing systems such as the Tivoli Risk Manager [TRMOO] towards advanced fault diagnosis and root­

cause analysis [JuliscOl, KYYOS95, ParBus88]. A root-cause denotes the most basic cause that can

reasonably be identified and that management has the control to fix [parBus88]. One of the key

contributions is the relations between activity classes and sets of generalized alarms that we have been

able to identify. This promises to be applicable in a generic manner because these relations are not made

at the level of specific real-world attacks or alarms, but rather at the level of attack classes and alarm

classes.

8.7.1 ID architecture design process example

The information our approach provides may be used in the context of the design process of an ID

architecture. For a given portion of the infrastructure considered a conceivable procedure could look as

follows:

1. Attack classes: Based on the security policy one determines the attack classes that have to be

covered (see Sections 2.2.2 and 3.6.1).

2. Identification of IDS combinations: From a given set of IDSs one determines the IDS

combinations that provide the coverage required (see Section 8.4.1)

3. Selection of the IDS combination: Depending on the importance of the individual factors. one

selects the most suitable combination ofIDSs. Relevant factors are, for example. the following:

163

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTI01\ SYSTEMS

The difficulty of discriminating true and false positives. A measure for this difficulty is the

rating ambiguity defmed in Section 8.4.4.

The ability to identify the attack based on the alarms generated by the IDSs. This ability is

measured by the attack identification recall defmed in Section 8.4.2.

System performance degradation due to failing IDSs. Whenever one component of a given

combination of IDSs fails, the performance (see Section 8.4) of the IDS combination is

degraded. The performance of the remaining IDSs corresponds to the performance of their

combination. As the performance of both combinations is known (see Table 34). it is

possible to investigate the impact of failing IDSs on the overall system.

In addition to this analysis one might take into account additional factors such as costs, quality of the IDS

implementation, services provided by the IDS vendor, e.g., updating of signature databases. etc. As the

requirements of organizations may differ significantly, many diverse ID architecture designs become

conceivable.

8.7.2 Discussion of experiments

Roughly speaking we were able to identify three classes of results. First, we were able to produce

precision and recall measurements for individual IDSs. Second, we were able to identify inter-class

relationships between activity classes and sets of generalized alarm, which may serve as the foundation

for future work on alarm processing towards root-cause analysis. Finally, we were able to exercise the

metrics of attack recall, rating ambiguity etc., which we defmed for our alarm set-based approach to fault

diagnosis. These measurements enable an assessment of the potential viability of individual IDSs and,

more importantly, of IDS combinations. All these results were obtained using RIDAX to analyze the 928

activity variants derived in an automated fashion from the 48 activities identified in Section 4.3. We

created these variants by selecting up to two variations out of a set of seven variations described. Of the

928 resulting activity variants, 498 are to be considered malicious.

An important result is the inter-class relationships between activity classes and sets of generalized alarms

that we were able to identify. Depending on the number of IDSs combined, we were able to identify up to

72 unique alarm sets. For individual IDSs, such as DaemonWatcher, this number is as small as one. Any

given set of generalized alarms identifies one or several activity classes that may cause the generation of

the alarm set considered. Recalling that generalized alarms represent classes of real-world alarms, our

results describe relationships between the two classes. The knowledge of these inter-class relationships

will support the development of future alarm-processing algorithms, such as will be required in large­

scale ID architectures consisting of many highly diverse IDSs. The importance of this knowledge is likely

to increase because existing solutions such as ffiM's Tivoli Risk Manager [TRMOO] gradually improve

their alarm processing towards root-cause analysis. What has been developed in this chapter represents a

proposal for an approach to develop this knowledge. The manner in which this knowledge can be used

has been demonstrated in the context of the MAFfIA project [AJessa03a], where the alarms generated by

diverse IDSs are combined based on knowledge obtain in this way.

164

ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfION SYSTEMS

In addition. in Section 8.6.2, we briefly considered detection rates of individual IDSs that were

detennined in ways similar to what is done in other approaches. We chose not to develop these

measurements much further as they seem not well suited to our approach for three reasons:

1. The underlying metrics cannot be extended to incorporate results from multiple IDSs in a

meaningful manner.

2. The measurements obtained do not permit judging the utility of the IDSs with respect to the

semantics of the alarms they generate. This specifically includes the ability to distinguish false

positives from true positives and the identification of the alarm cause, i.e., the activity.

3. As a consequence the metrics used only seem to provide meaningful infonnation when applied

to a real IDS implementation that is being evaluated in the environment for which it is

envisaged. Because our approach operates at the more conceptual level of classes and does not

include the modeling of an environment, the measurements obtained must be interpreted with

care.

Therefore we focused on alarm-set-based fault diagnosis instead. Again. one needs to keep in mind that

we do not consider a real-world environment, but rather a nonnalized environment, in which every

activity variant is considered exactly once. Identifying the inter-class relationships does not require a

model of a real environment because the relevant attack characteristics are not influenced by the

environment. Also, for assessing the viability of IDS combinations, a normalized environment proved

sufficient. While perfonning the alarm-set-based fault diagnosis and measuring its results, we were able

to validate and quantify a number of common assumptions and to learn numerous lessons:

• Substantial gains in coverage, i.e., attack recall, result from the combination of IDSs with as

distinct a coverage as possible (see also Figure 39).

• Improving the rating ambiguity by combining IDSs requires a significant overlap in coverage.

• The techniques used by the combined IDSs should be as diverse as possible.

• It is possible to slightly improve the rating ambiguity while combining IDSs to improve

coverage, but this proved to be a difficult task requiring special care.

• Similar observations as made for rating ambiguity measurements apply to attack identification

recall measurements.

• Alarms indicating the use of variation techniques increase both coverage and rating ambiguity.

One should not consider attacks as detected if they are only reported by an alarm indicating the

use of variation techniques. In other words, such alarms should not be included in attack recall

calculations because in practice this leads to misleading measurements of coverage.

• It might be meaningful to use alarms that report the use of variation techniques to adjust the

severity level associated with a finding presented to the human security officer on duty. Also

such alarms may be used to facilitate the identification of the attack-tool used by the adversary.

165

•

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIO~ SYSTEMS

We were able to validate the common perception [SGVS99] that IDSs should not operate across

too many levels of abstraction, e.g., protocol layers, while performing their analysis.

Specifically, although generally considered very convenient to implement. systems applying any

of kind string-pattem-matching algorithm to (extemal) raw data sources (see Section 5.2.1.1) are

prone to false positives and obfuscation. Furthermore the severity of this issue clearly increases

the more abstraction levels an IDS attempts to monitor. An example is the class of network­

based systems, which in general are particularly susceptible to false positives due to string

mismatches and obfuscation techniques.

In our experiments we always considered the total number of attack class variants identified-assuming a

normalized environment. In future work one might wish to expand this by weighting the acti\;ty classes

and variations according to the coverage required by the security policy and according to their importance

in the respective environments. For instance one might wish to maximize coverage for http-related

activities.

When taking into account the environment one should ideally use a model of the environment an

individual IDS or the complete ID architecture is envisaged for. If this is not possible. one might consider

the creation of multiple environment profiles, each describing a particular class of em;ronments. Such

profiles might include descriptions of typical commercial DMZs, Microsoft Windows-dominated

intranets, Unix-based environments, etc. At the stage where one weights the assessment results. one might

even choose to combine multiple environment descriptions if appropriate and necessary. Although this is

more complex to implement, we believe that IDS benchmarking approaches as described in Section 2.3.3

should use multiple environment profiles rather than just a single one for their assessment. One might also

want to assess the expressiveness of the alarms generated. In other words, one should not focus on the

pure numbers of false and true positives but instead assess how well attacks can be identified and how

well false and true positives can be distinguished.

Lastly, we note that our experiments consider worst-case scenarios only. This means that when

considering an attack, we always assumed the attack to be successful. In future work, one might extend

RIDAX towards considering successful and unsuccessful instances of each attack. This extension should

result in more finely grained results for IDSs such as DaemonWatcher that are only able to detect

successful attacks.

8.8 Conclusion

The IDS assessment method described here represents an application and extension of the approach to

IDS analysis developed in this work. It provides a systematic way to assess individual IDSs and the

benefits attainable thanks to the combination of diverse IDSs. However, one should bear in mind that the

results obtained from such an analysis are based on descriptions of IDSs, and not on experiments with

real systems, i.e., IDS implementations. The assessment results are based on the analysis for classes of

activities rather than for specific activities, e.g., particular attacks. Thus the results are of rather limited

use when assessing IDSs for particular attacks. Instead, the results can be used for the design and

166

ATIACK.-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

development of ID architectures that combine multiple IDSs to improve completeness and utility.

Moreover they may be used to derive high-level alarm-correlation rules for fault diagnosis and root-cause

analysis purposes. Last but not least, we have illustrated a way in which the results prO\ided by our

approach to IDS analysis can be used for further investigations and analysis.

167

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECflON SYSTEMS

Chapter 9 Conclusions and future work

In this work we have presented a novel approach to IDS analysis that supports and simplifies the difficult

task of designing and analyzing IDSs. The approach operates at a conceptual level and thereby facilitates

the identification and analysis of strengths and weaknesses of IDS designs--even before they are actually

implemented. Thus, the approach can be used to provide guidance to IDS designers at an early stage of

the design process by predicting the set of attack classes that an IDS design will be able to detect when

implemented. In addition our approach enables IDS designers to create a detailed specification for the

IDS envisaged by precisely specifying the classes of attacks that the IDS has to be able to detect. The

specification may even detail the manner in which the IDS has to report its findings.

In order to achieve the goal of improving the design process for IDSs, a number of well-structured

concepts have been developed. These namely include highly generic and concise schemes for describing

IDSs and classifying attacks. As illustrated by an example that assesses the information pro\;ded the

combination of diverse IDSs, these schemes may serve as the basis for future conceptual work in the

domain ofID. Similarly, this also applies to the analysis results produced by our IDS analysis approach.

9.1 Contributions

The main contribution of this work is a novel method of IDS analysis that provides guidance to IDS

designers at early stage of the design process. It does so by predicting the attack classes that an

implementation of the envisaged design will be able to detect and may even be used to express and verify

an essential part of the IDS specification.

While working towards this goal, we designed, built, and continuously enhanced a highly structured

security database (VulDa) [DacAJe99]. We used the system to develop a scheme that categorizes attacks

according to aspects of attack that are visible to IDSs. The categorization of over 350 attacks enabled us

to identify categories of attacks that are relevant in practice. The VulDa system moreover evolved to a

heavily used information system that provides access to security related information to hundreds of

security professionals within IBM.

This attack categorization served as the basis for some the following concepts, methods and tools that we

have developed in the context of this work:

• Description of IDSs: Based on the insights gained from creating the above attack categorization.,

we developed a highly flexible and generic but concise description framework for IDSs that uses

multiple dimensions to describe IDS characteristics. The high generality and consistency are

achieved thanks to the introduction of the so-called IDS scopes as one of the scheme's

dimensions. It thereby enables a clear separation of ID techniques and the domain (IDS scope) to

which these techniques can be applied.

168

•

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

Classification and description of attacks: We have developed an attack classification that yields

concise descriptions of attack classes. The resulting descriptions are expressed in terms of

characteristics that are required of an IDS to analyze attack classes, i.e., attack classes are

described at the same level of abstraction as IDSs are described. The scheme moreover suppons

the systematic identification and description of attack class variants. These variants reflect

commonly used practices for obfuscating attacks in order to evade detection by IDSs. In addition

to the analysis of IDSs, the set of identified attack classes and attack class variants can also be

used for creating a part of the IDS specification. More specifically they can be used to set the

requirements with regard to the attack classes an IDS has to be able to detect. Finally, it should

be mentioned that the description scheme is of sufficient generality such that it can be used to

describe not only attacks but also benign activities.

• Novel IDS analysis method: In order to predict the attack classes that IDSs. i.e., implementations

of IDS designs, are able to detect we have developed a method that performs a combined

analysis of IDS descriptions and attack class descriptions. It thereby determines the set of attack

classes that IDSs have the potential of detecting. The results obtained provide guidance to the

designers of IDSs. This guidance may be highly valuable because it can be provided at an early

stage of the design process, i.e., before the IDS design has been implemented. Similarly, the

method may also be used to determine the suitability of existing IDSs to detect newly discovered

classes of attacks.

• RIDAX tool: We have created a prototype implementation of the entire approach to IDS

analysis. The results of experimenting with RIDAX were used to outline a possible validation

approach and thereby provide some evidence that the predictions made are actually accurate.

Additionally, we have used the results to illustrate further potential applications for our approach

by means of an example that shows how combinations of diverse IDSs can be assessed with

respect to the usefulness of the information conveyed by the alarms that they may generate.

9.2 Discussion

In this thesis we have presented a novel approach for analyzing IDSs. It was the declared goal to support

IDS designers early on in the design process by providing them with guidance in terms of the attack

classes a given IDS design has the potential of detecting. The eminent advantage of this approach is that

IDS designs can be analyzed before they have actually been implemented. This requires that the

predictions made must be reliable. Although highly desirable, a rigorous validation of the results

produced by our approach represents an undertaking that goes beyond what can be practically achieved.

In order to provide some evidence of the accuracy of the predictions made by our approach, we have

instead successfully illustrated and outlined a less involved validation approach that verifies the

predictions made more selectively.

It may, however, still happen that the predictions made for an IDS design are not met by the IDS

. .. . t b investigated Our investigations ImplementatIon. In this case the reasons for the discrepancy mus e .

169

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS

revealed that the predictions with regard to requirements for our description-based analysis approach were

always consistent. The investigations, however, also revealed that in some cases the IDS implementation

fails in meeting the requirements set by its specification and design owing to implementation flaws. i.e ..

bugs. Moreover there exist techniques used by IDS implementers the description of which would require

an IDS description framework that supports even more detail than the one we have presented. As we have

illustrated by means of the IP fragmentation example in Section 7.3.1, such techniques are typically ad­

hoc and highly specific to a particular ID problem. Although the proposed IDS description framework

could be extended to capture such IDS-specific peculiarities, we remained at the level of detail chosen.

The attainable benefits from a systematic, i.e., uniform, extension of the description framework at such a

level of detail would have been minor compared with the significant increase in complexity of the entire

analysis process. Such an increase of complexity would have been undesirable as it was one of the goals

to avoid unnecessary complexity, i.e., to find a balance between expressiveness and simplicity.

Many of the concepts developed in this work may be used as the foundation for future work in the domain

of ID. In Chapter 8, for instance, we have described an approach that uses RIDAX results for analyzing

the utility of arbitrary combinations of diverse IDSs. Note that further refinements would be necessary

before such an approach can be used in practice, but it represents an illustrative example that highlights

the possibilities of analyzing IDSs at a conceptual level.

9.3 Future directions

As we illustrated in Chapter 8, this work may be extended in a number of different directions. In addition

to the IDS assessment described in Chapter 8, additional avenues of further research could be the

following:

• Environment: Our description-based approach could be extended towards investigating the

effects of environmental factors such as the traffic volume or the system load under which IDSs

have to operate. If combinations of IDSs are to be analyzed it will most likely be necessary to

take into account the network topology as well.

•

•

False alarms: In the work as presented here we did not focus on the problem of IDSs generating

excessive numbers of false alarms (except in the example presented in Chapter 8). We have.

however, shown that the schemes presented can be used for analyzing the potential of IDSs to

generate false alarms. This analysis could be extended further to provide even more information

to IDS designers-supporting them in identifying potential causes for IDSs generating false

alarms. To some limited degree, such analysis methods have been developed and explored in

Chapter 8, but additional work will be necessary to develop these concepts further and to

validate them.

Analysis costs: Security always comes at a certain cost and so does ID. One aspect to be taken

into account is the impact that IDSs may have on the systems they survey. This impact should

remain below an "acceptable" limit. Another aspect is the possibility of the IDS being saturated

170

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTB1S

by the number of activities to analyze. As a consequence we suggest the introduction of per-IDS

characteristic costs. These costs could be composed of cost items such as uCPU utilization.··

"memory utilization," and "storage utilization." Once RIDAX has completed the analysis of an

activity class, one could then simply calculate the total costs caused by the IDS characteristics

required for the analysis of activities that belong to that class.

• Worst-case considerations: RIDAX could be extended so that it performs its analysis for more

than just worst-case scenarios. Currently the system assumes each attack to be successful. This is

not always the case, and should be reflected in future extensions to RIDAX (see also Section

8.7.2).

• Alarm correlation: The results obtained from our approach to IDS analysis may be used to

investigate and develop novel approaches to ID alarm correlation, i.e., techniques that aggregate

and interpret the alarms that are generated by multiple, possibly diverse. IDSs. An approach of

how this could be realized and used has already been demonstrated in the context of the

MAFTIA project [Alessa03a, DlOMaf02].

Last but not least, it is hoped that this work will help to promote efforts that go beyond the items just

identified and thereby improve the utility ofID in general.

171

Appendix A

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECrION SYSTEMS

VulDa, a database of collected attacks and

vulnerabilities

VulDa is an actively maintained, searchable database of information relevant to computer security. Its

particular focus is vulnerability information and contextual material. Being the only such senice

available within ffiM, it represents one of the major contributions of this work. It has evolved to a highly

regarded and used repository for security-related information within mM. Moreover VulDa, which

started its operation in 1996, was among the fIrst to offer security-relevant information structured in a

manner [DacAle99] as can be now found on public sites such as SecurityFocus [SecFoc) since 1999, or at

NIST's ICAT metabase [ICAT] since 1998.

In addition of being important to mM, VulDa signifIcantly supported numerous concepts developed in

this work by providing the necessary profound knowledge of practical security issues. Moreover we were

able to use it for categorizing a large number of attacks, which yielded results that were highly valuable to

the IDS analysis approach developed in this work.

Our VulDa effort, which lasted over a period offour years (1998-2001), included its design, population.

and operation. In addition it included being the contact point for security- and operation-related issues of

the entire VulDa user community of more than 500 registered IBM-internal users. It was this direct access

to the internals of VulDa that enabled the iterative process that resulted in the categorization of more than

350 attacks, and the concept of IDS scopes, all of which we describe in detail in the next chapter. It is

worth mentioning that VulDa now offers continuously updated attack categorization statistics to its users.

In the following we provide background information on the motivation for and the history of VulDa,

followed by descriptions of its structure, operational processes, the concept of vulnerability descriptions,

and user interfaces. Over time this database has evolved to a rather complex system whose detailed

description lies beyond the scope of this document. We therefore focus on the core functionality of the

database and on the data and functionality used in the context of the work described here.

Note that the following sections are not a prerequisite for understanding the remainder of this work, but

they add valuable background information and describe a signifIcant effort made in the context of this

work.

A.I Motivation and history

Back in 1996, members of the ffiM Zurich Research Laboratory started, for internal purposes, to build up

a structured repository of attacks. At that point it was sometimes still difficult to get hold of information

about attacks because some of them were not disclosed to the public. Collecting information about newly

discovered vulnerabilities and attacks was, however, a must for the ongoing research efforts in the ID

research fIeld. The team felt that a systematic and uniform description of the vulnerabilities and attacks

172

AITACK-CLASS-BASED ANALYSIS OF INTRUSION OETECTlO!\ SYSTEMS

found was required to structure the collected data. This led to the introduction of a first version of the so­

called vulnerability description files.

From 1998 onwards, an increasing number of security professionals were interested in accessing the

database. This trend resulted in more that 500 registered accounts by the end of 2000. This increased

interest led to various improvements of the system, which finally enabled the transfer ofVulDa from ffiM

Research to ffiM's Managed Security Services (MSS) organization.

A.2 VulDa structure

The structure of VulDa has evolved and has been improved significantly over time. However. the core of

VulDa has remained the same [OacAle99]. The information available on VulDa is two-fold. First. VulDa

contains a large repository of documents collected from sources known to provide security-relevant

material, e.g., mailing lists such as Bugtraq [SecFoc], newsgroups, various web and ftp sites such as

CERT/CC [CERT], SecurityFocus [SecFoc], SANS21 [SANS] and ~2 [NIAP97J. Second, so-called

vulnerability descriptions provide highly structured information about vulnerabilities and their

corresponding attacks. These vulnerability descriptions are tightly linked to the documents that are

collected automatically by means of generic references.

The population of the database is automated to a high degree and is mostly achieved by unattended batch

processes that actively gather (e.g., newsgroups, world wide web, ftp sites etc.), archive, convert and

index data. In addition data is also gathered passively. For instance, VulDa maintains archives of more

than 100 mailing lists.

Figure 44 shows the data flow within VulDa. For maintenance, control, state tracking, indexing, and

searching numerous processes have been implemented that make use of freely available tools such as Perl

[Perl87], GDBM (GNU database manager), or MySQL [MySql]. The database can be accessed from

within ffiM by means of a secured webserver that offers various ways for searching the various document

categories.

As shown in Figure 44, much of the data is being collected from the Internet in an automated fashion.

This data is then stored in a file system that in time has grown to over 1,500,000 documents. All newly

collected data is then filtered according to rules, which we have defmed based on experience. The goal of

this filtering is to isolate important information on new attacks and vulnerabilities, which can then be used

to create vulnerability descriptions.

We admit that it would have been preferable to store such a vast amount of information using a database

server. However, the data was stored in filesystem for historical reasons, and the migration to a database

21 SANS: "System Administration, Networking, and Security," an institute focusing on cooperative

research and education; founded in 1989.
22 NIAP: ''National Information Assurance Partnership," part of the National (US) Institute of Standards

and Technology (NIST).

173

ATI ACK-CLASS-BASED ANALYSIS OF P.>.TRUSION DETECTlO~ SYSTEMS

server was not done owing to the limited (human) resources avail bl Inst d th
a e. ea e focus was the content

of the database.

Filtering

- Isolation of vulnerabilities
- Isolation of attacks
- Categorization

Vulnerability Description

Creation

- Structured description
- Classification

Automated Collection

- Web crawter
- Mirroring
- News snalfer
- Mail archiver

I ::0 !

~

tReferences

Vulnerability
Description

Files

Figure 44-Data flow in VoIDa

A.3 Vulnerability descriptions

The vulnerability descriptions represent an important asset of VulDa. They are generally used as the

primary entry point for searches in VulDa. The creation of vulnerability descriptions requires both a good

knowledge of networking and computing systems in general and an in-depth understanding of computer

security, including the peculiarities of the security community. The latter is necessary because. for

instance, often only wrong or incomplete information is made available, which has to be identified as

such.

Vulnerability descriptions are stored in so-called vulnerability description files. These are composed of

sections that contain attribute-value pairs, which are used to describe the properties of vulnerabilities and

their corresponding attacks. Owing to these sections, VulDa's vulnerability descriptions are well

174

A IT ACK-CLASS-BASED ANAL YSlS OF INTRU 10 I DETECfIO y

structured and thereby clearly separate vulnerabilities and atta ks Grall · .
. . c . ene y speaking the \ulnerabilil)

descnptlODS are capable of representing a super-set of the info n· ·d d b nna on proVl e yother more re ent

efforts such as lCAT [ICAT] or the Bugtraq ID pursued by SecurityFocus [SecFoc].

Vulnerabilny
Description File

Main ~lStratove onfoonaoon
abstraa
keywords
CVE
Bugtraq ID
external references

Vulnerability nature of fautt
CharacterizatJon :... cause

Vulnerability
Detection

Vulnerability
Removal

Anack
Characterization

Attack
Detection

OS I Software
Hardware I Protocol

r;:::::::::===,

Reference
'--------'

attacked obtec1
attack orrterface
attack charactenstlcs
explortablhty
Impact

name
version
status
patch level

data category
search critena

Figure 4S--Overview of the vuJoerability description structure

10 the following we briefly discuss the purpose of the various sections shown in Figure 45 . We only

highlight details that are either believed to be of general interest or are used in the context of the work

described here.

The main section of vulnerability description files contains generic information about the document.

Besides information used for administrative purposes, it also contains the document title, an abstract,

keywords, external references, and last but not least, CVE identifiers and Bugtraq IDs (see also section

2.2.5 .1).

10 the section vulnerability characterization, the vulnerability is classified according to numerous criteria

such as the cause of the fault (e.g. , design fault , implementation fault etc.). Furthermore, the vulnerabili ty

is classified according to well-known fault characteristics such as insufficient input validation, privil ege

abuse etc. (See also Section 2.2.5) . Among other criteria this section also indicates the system component

in which the fault is located.

The sections vulnerability detection and vulnerability removal will not be explained in detail here. 10

summary the vulnerability detection section includes information on testing tools, e.g., a scanning tool.

and how these tools would report the vulnerability. The vulnerability removal section de cribe the

various ways to remove the vulnerability, e.g., disabling of a service reconfiguration, etc. ulnerabilil)

175

ATIACK-CLASS-BASED ANALYSIS OF INTRUSIOr--; DETEcnO~ SYSTEMS

descriptions may include several of these sections because several different ways to detect a \ulnerability

or to remove a vulnerability might exist.

Each of the attack characterization sections characterizes one of the ways the pre\iously described

vulnerability can be exploited, i.e., the way the fault can be activated. The attributes of these sections

describe attack characteristics such as the immediate impact of the attack, the exploitability (remote or

local), prerequisites, etc. In addition these sections support attributes required for the attack categorization

developed in this work.

The attack detection sections consist of properties that allow us specify how one can detect an attack

using a given IDS. Several attack detection sections are supported because the vulnerability description

may contain the description of several attacks, and because the various existing lDSs may detect attacks

in various different ways.

The sections OS, software, hardware and protocol have an almost identical structure. Each section

describes a specific version and patch-level of an OS, software, hardware, or protocol. In addition these

sections contain a status field that marks the described as being vulnerable or safe. Thus it becomes

possible to describe the difference in terms of version and patches between vulnerable and safe versions

of a product or protocol very precisely. This also means that it is possible to describe the fact that a given

patch introduced the described vulnerability and that the installation of another patch will remove the

vulnerability again.

The reference sections are used to link the vulnerability description with additional information sources.

It is possible to provide references to every document found in VulDa-including other vulnerability

descriptions, exploits (attack scripts), advisories, RFCs etc. It is important to note, and completely natural.

that in general information about a given vulnerability is discovered and published gradually.

Furthermore it seems obvious that in practice the frequent updating of references in several hundred or

thousand vulnerability descriptions is infeasible. This has led us to the introduction of so-called dynamic

references, which proved to be very efficient both in terms of maintenance and usability. A dynamic

reference consists ofa search pattern that is resolved at runtime. We thereby make use of the possibility to

search VulDa on a per-category basis, which allows us to refer to an entire series of subsequent

documents, e.g., mailing list threads or a series of advisories, very efficiently and in an always up-to-date

manner. Experience has shown that if the search patterns, i.e., the dynamic references, were formulated

with sufficient care in the first place, the number of non-relevant document references generated can

subsequently be kept to a negligible minimum. To further extend the expressiveness of the references

generated it is possible to rank them.

A.4 User interfaces provided

Over the years the VulDa database has grown to a large repository of security-relevant documents that are

organized by categories. The underlying technology extracts the text from all documents (including

PostScript, PDF etc.) and creates a searchable index per category of documents. Based on these indices

176

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO ' Y TE. I

VuLDa offers a flexible keyword search facility that allows the use t h (' d . r 0 searc lor ocuments by categone

or to browse vulnerability descriptions according to various criteria such as the operating stem affeeted.

A.4.1 Attack categorization

The attack categorization, which relies on dedicated attributes that we included in the anack

characterization section of the vulnerability descriptions, is probably the most directly visible contribution

that this work has made to VulDa. The statistical data derived from this categorization i used to eleet

activity categories for the analysis of IDSs. The categorization scheme and the manner its re ults are used

are explained at large in Chapter 4. Additional statistical data is provided in Appendix B.

\ l I.H \ .::

Attack Characteristics x Attacked Object (Attack
Interface)

- t- \- ~ - - .-,..:..,...., .-,
1--_:--....... - - ~-- - - --

r-----.r------~ - - - ' - --I QAl1II) ~ I ~ ~I ~ ~ lWU1I am IIo11a IlII U'&m

UJ

OF.
ill

m
ill

08"-
m

Qlli.ill

01 ~

Figure 46--Statistics derived from attack categorization superposing attacked object, attack
interface and attack characteristics

.:J

Besides the statistics discussed in Section 4.3, numerous HTML tables as shown in Figure 46 and Figure

47 are created, i.e. , updated, on a daily basis. The tables not only provide an overview of the most

frequent categories of attacks, but also allow us to obtain the list of vulnerabilities belonging to a given

category by clicking on the corresponding table field . This functionality simplifies the task of describing

attack classes that belong to a given category by providing us with attack examples.

Figure 46 shows a table that combines the static (rows of the table) and dynamic activity characteristic .

Both are described in detail in Section 4.2. Note that every attack may quali fy for several tatic and

dynamic activity characteristics. As a consequence vulnerability descriptions may qualify for e\ eral

177

ATIACK-CLASS-BASED ANALYSIS OF INTR SIO DETECllO t Y TE I

category fields in the table, which is a completely valid situation. (See also 2.2.1 and the citanon 0

Axelsson [AxelssOO] , p. 17)

Figure 47 shows a different example of a table that is generated based on the categorized ana . . Here

one can find the various ways the dynamic activity characteristics (labeled "attack characteri ti .. in the

figure) are combined within one attack. Note that this table reflects only combinations of two

characteristics per field . This means that attack categories that combine three or more attack

characteristics cannot be identified using this table. It also means that attacks combining everal

characteristics appear more than once in this table.

on: Attack Charactlmsh(s - (orrmhon MalrtK - f\Ioetscape

Attack Characteristics - Correlation Matrix

1---1'" = ---- _=. ___ l=
~~~ ...-! ......, ...-! ...-! '-:== - .................. '-=- - - '--

r-;;;;;;;;;;- r---, Ba 1iJ:i"!iii" loll 1iaJI1J All 3011a !!II I1Z1I em IHl I1Il l1lIl 

!A 

cwN11»4 .-.c*.:",. 
.. ___ : $<I IIIoy 11 01:13."" MDT 1001 

Figure 47-Statistics of concurrent occurrences of attack characteristics 

A.4.2 Vulnerability browser 

The vulnerability browser, also called "vulnerability overview," provides a browser-style interface that 

. . f vuln bili" d ttacks The interface is implemented enables a user to search eaSily for categones 0 era nes an a . 
.' 8 d F' 49 the user may choose a category of based on VulDa ' s search engine. As shown ill Figure 4 an 19ure , 

vulnerability descriptions in the left colurrm of the browser window and have them displayed in the main 

portion of the browser window. 

178 



ulnerability 
Overview 

• Help 
• Expand aU citegorie, 

A TTACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO. 

\ I Lit \ ... 

Vulnerabilities related to AIX 

• Cohplt ,II coll9Orio8 
• W.hotJllrame • 

• All 
• 3comOS 
• AAJX 
• AD( 
• """iv·OS 
• Ascend embedded OS 
• BlyeS 

BoOS 
• BSD OS 
• BSDI 
• COLTSDHO 
• Con,ctNa Unux 
• CorM.OS 
• CYGNUS 
• Otbian Unux 

DGIUX 
• Digital Unix 
• F,bric OS 
• F .. tBSD 

Horris CyberGulrd CXISX 
Horris Nigh1H .... CXISX .=J 

I Keyword $el rch I New yuM"bat"e! I V,*,er.bllty Se w eD I yyltlCUbtl!cy Om!tew I M eck anlfls: •• I 
1_ 1_1 1'nntl>!lI 1~ I WItI - .u I __ 1 

~DI:Irw ~. __ ' -..n_~ _"_--'--"~r~. _______ . 

Figure 48--Vulnerability browser showing vulnerabili ties of the AlX operati ng system 

-

\ I Lit \ .: : 

Overview ~ 

• Help 
• Expand ,II Clt.gOril. 

Vulnerabilities related to ao.proc 
• Cohps. an c ... gorits 

1. Buffer ovcrllow in 1IS5 ISAPI "rinter extamon • WIthout frames 

. O,.r1III ... ~m 

· Seftware 

• Harftu'e 

· P.-.. I 

· C-..ry 

• Altaek Ch..-rtlUcl 

... Altaek." O~ct 

• CPU 
• va dwiCI 

• mtmory 
• storage 
• fit-system object 
• firmware 
• nltll¥orking stack 
• OS core 
• OS modulo I dri¥or 
• protei'S 

.=J 

by rro, Bo/iinpr <W~I""'rom> ( lin. OCC\nDCe MIy 01.11101 . an.....- MIy 04. lOOl ) 
,.,."" tho J,(jm>ll)jI sonr1t7 Q(/vIJm1 A sonr1t7 YUhrlTabil/f1 muID _ tho fSAPJ_ ~ ... _Iwckal 
bIjOtT", a _ of""* riId -.. """'''''-.. TlI/, COIJid rrldbl. a _ _ .... 10 - .~­

_t 
1. Unusual MIME Types Cause IE to E.ncutc Attachments 

by 001, BlIlado <b1llrd:>c~ lb",rom> ( frrt ocormcc Mor<h 29, 200 1. an.....-. ~ 01. lOOl ) 
n. ltIkrosojl_~om' . ...,-., S.S...d .l. OJ, ranbt_ OO ....... _ I _ _ _ --"" n. 

mICIIIIon /, trlaond lit",*,,", one of_aJ ........." . VJIO W1iwltho til WIMl_ a ~ 10 tIIat """ ., 

-hhoc 
3. Vulnerability in Lucent/Orinoco Closed Network for 802. l1b 

bylt£l<t..I waJt.r ~~Ibm",",> ( frrt occurm<:c Apd 2. 2OO 1 . ... ~ Apd 11l. 200 1) 
.A YUhrlTobll/11 =", tho ~~"'CUI",""",_ ao..d~ jIx._-*> 
n. CIosod ~ aJloro, _",., broIo, tho __ rolltd tIIs SS1D. 1O)om tIIs -* n. ~abIiII1 

is th7ltlw. 
4. Tivoli Spider HTTP daemon allows remote cO!IlJrul1ld execution 

by Tro] Bo/IJnp7 dro~llmlrom> ( lint occurmce: MIrd> 15. lOO l . an ~ ,... 16. lOOt) 
n. T/I'oII ~I. HTTP"""'"""_ <Of!tatr1V11bruobd/tI<J. lhdrT _ ~ ~tdIT wflJ ~ ... ~ 
10 I"",""" _10 tho Ir:JsL ~/] lM>/I pdCh ' J 7 J. T1tff·fXXH (!fin "'" pOfIe4 -. lM>/I a..-
SIJpport 8~~· 

!!. Remote buffer overflow in NTP daemon 
by Tro] Bo/Ib1rT <w,~I""'rom> ( lint oc=c Apd 4. 2001 . an _ Apd 6. 200 1) 
n. -... _~ """'""" (>tpd Of' UJtpd) I> Vllbruobl.oo a _ ~ ~ .Ibn.""""'I1 ,..,. '" 
root, 1iIIl_ 011011 tho _kIlT 10 iab /llil "'""'" of tlls macltlnr. AbIIour/Itho • Cf»f/fp'l#JII jlH -

I key'!!Ofd Search I Mew VuVertbilitle'! I Vuh:r!biitySe!rsh I Yu lnerabt1ity Quer-... l .uttdc, Qns!"IUC!QrI 1 ~I 
1~ 1_1_1~I WtI. -W I __ J 

I re-A • ..,. ...;..a. I -.~--=":"~ ..... .. -----..-- .-----~. 

Figure 49-Vulnerabili ty browser showing vulner abilities in which at least one of the 
corresponding attacks affects a process 

179 

.:J 

.:J 



ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

Figure 48 shows an example listing of all vulnerabilities known to affect mM's AIX operating system. 

and Figure 49 shows an example listing of all vulnerabilities for which it is known that at least one of the 

corresponding attacks affects processes. The latter example exploits one of the attack categorization 

attributes included in the vulnerability description files. The vulnerability browser can be configured to 

operate on any of the attributes supported by the vulnerability descriptions. 

A.4.3 Integration with security software 

The flexibility of the vulnerability description mes and the search engine enables the efficient integration 

of VulDa with other systems such as mM's network security scanner. We have. for instance. created a 

package that integrates mM's security scanner with VulDa. The scanner generates an HTML report that 

contains links that indirectly refer to vulnerability descriptions on VulDa. A link may, for example, 

contain a reference to a tool-specific vulnerability identifier or to vulnerability identifier such as CVE 

numbers or Bugtraq IDs. By clicking on the link. VulDa returns the list of vulnerabilities matching the 

search criteria specified by any of the identifiers mentioned. Using this level of indirection it becomes 

possible to maintain any external system and VulDa in a highly independent, but still well integrated 

manner. 

A.5 Conclusion 

Over time VulDa has proved to be a highly useful and valuable system with respect to many aspects of 

this work and to the entire mM security community. Nevertheless, one has to mention that its 

development, maintenance, and population proved to be enormously time-consuming. However, 

concerning this work, VulDa represented the ideal facility to develop and implement the activity, i.e., 

attack, categorization scheme, and to educate us on security-related issues. Most importantly I enabled us 

to select a set of representative attack classes that was then used throughout this work. Note that also 

VulDa benefited from this work as the results have become an integral part of the system and are 

therefore readily available to its large number of more than 500 mM-internal users. It thereby represents 

an important and highly regarded contribution of this work. 

180 



Appendix B 

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfION SYSTEMS 

Statistical results derived from the attack 

categorization 

In Chapter 4 we have developed a classification scheme for activities, which is geared at the 

characterization of activities that are either malicious, i.e., attacks, or that are sufficiently attack-similar to 

be confused by an IDS with an attack. In Section 4.3 we have then explained how this classification 

scheme was used to classify 358 attacks taken from IBM's security database VulDa, which is described in 

Appendix A. Also in Section 4.3 we provide some more detailed insights gained from this classification 

effort. 

As a general comment on the following figures, note that we provide histograms rather than pie charts for 

most of the data. This is done because the classification scheme permits attacks to be characterized by 

multiple activity interface and dynamic activity characteristics. Solely the affected objects are defined 

such that only one characteristics is permitted per attack classified. In this case the sum of all affected 

objects adds up to 100%, which is why we provide a pie chart in B.3. 

B.I Dynamic fault characteristics 

As mentioned in Section 4.2.3, the dynamic activity characteristics allow the combination of several 

dynamic activity characteristics to describe an attack, i.e., we use the potential set created based on all the 

dynamic activity characteristics defined. 

In Figure 50 we consider the communication model combined with the method invocation model only. 

By considering the communication characteristics (uni- and bi-directional) it is apparent that more than 

half of the attacks classified involve some means of communication. 

Note that the histograms shown in Figure 50 and Figure 51 are simplifications of the underlying data. We 

have been able to identify 42 different combinations of dynamic activity characteristics in the data used 

for Figure 50, and 86 combinations in the data used for Figure 51. Figure 50 shows only 14 combinations 

of dynamic activity characteristics, whereas the remaining combinations are collected in the group called 

other combinations. Figure 51 shows 21 different combinations. 

Figure 51 incorporates also the dynamic activity attributes (see Section 4.2.3.3). This enables us to 

identify some very frequent types of attacks such as buffer overflow or special-character attacks against 

server processes. These attacks typically involve bi-directional communication and execution within 

object context. In addition, the input provided is of high importance because it contains the buffer 

overflow data or the special characters. One can easily identify these attacks in the figure by considering 

the input relevant, exec. within object context portion of the second bar (49 attacks). In a similar way one 

can identify any kind of potential buffer overflow or special-character attack by considering the first bar 

(taking a look at the raw data one finds 99 attacks that combine the attack characteristics "exec. within 

181 



A IT ACK-CLASS-BASED ANALYSIS OF ITRUSIO f DETECTlO.' Y TE. I 

object context" and the attribute "input data relevant"). Additional combinations of charactensnc e 

that involve other characteristics in addition to those just mentioned. For instance. the pecial-charn ler 

attack against a webserver that reveals the password file invol es the object read characteristi ill 

addition. 

200 .-------------------------------------------. 

180 +-----------------------------------------~ 

160 

(/) 140 
.::s:. 
u 
4ll 120 
ro 

'+-
o 100 ..... 
Q) 

E 80 ../-t""--"1--
:::J 

Z 60 

40 

20 

(") 
o 
3 

• other combinations 
o object creation 
o object modification 
o object read 
o exec . within object context 

• object deletion 
• bi-dir. com. 
o uni-dir. com . 
o no combinations 

(") 
o 
3 

Figure 50--Histogram of dynamic activity characteristic excluding attribute 

182 



A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECllO.· Y TE. 1 

200 

180 

160 

140 

120 

100 

80 

60 

40 

20 

0 
Qi' 
::: 
~ 

5 · 

" ~ 
CD 
CD 
< 
Ql 

::!. 

2: CD 0 0 

6. x .£ .£ CD :=;. ~ CD CD 
!1 !1 

() 
() 

§ . 0 0 3 () 
:l :T CD ? <b 0 

5 · a. ~ 
~ ~ o· 0 () 

.£ ~ :l 

CD o· 
!1 :l 

• other com binations 
no combinations 

o repeated activity 
o object read 
o object modification 
IJ exec. within object context 
O bi-dir. com . 
o bi-d ir. com ., exec. within object context 
~ input relevant, exec. within object context 
o uni-dir. com. 
• input relevant, bi-dir. com. 
o input relevant 

0 ¥ c: 0 Qi' ~ .£ :l .£ S CD Ql ~ 6: CD en .::. !1 !1 0 
() 

CD 
;=;. c: 3 5 

CD <" "0 a. n c: en 8 CD Ql ;::::;:m CD Ci. a. '< Ql ? ~ en -6. 
~ CD o· CD a. 0 :l :::l 

CO 
5 

Figure 51-Histogram of dynamic activity characteristic, including attribute 

B.2 Interface objects 

The histogram shown in Figure 52 shows the di stribution of interface objects used to stage an.acks. The 

total size of the bars shows that processes and application layer protocols are the most frequently u ed 

interface objects. Taking a closer look at the respective bars one can further deduce that protocol layer 

and processes are rarely combined to attack another object. This is not swprising as it highlights the fact 

that remote attacks generalJy involve the protocol stack, whereas local attacks typically involve processes 

as attack interface. This observation allows us to distinguish clearly between locall y and remotely 

executed attacks. 

183 



A IT ACK-CLASS-BASED ANALYSIS OF !NTRUSIO DETECnO r y TE 1 

100 r-------------------______________________ ~ 

90 

80 

70 

60 

50 

40 

30 

20 

10 

• other combinations 
o trsp. layer (conn. less ) 
o process , system call 

• system call 
o process 

filesystem object 
trs p. layer (conn . oriented) 

o app. layer (conn. less) 
• app. layer (multi-trans .) 
o app. layer (single-trans .) 
o environment 
o no combinations 

0+-~~~~~~Y_~~-U~~L-li-~~3L=w~==~ 
(J) Vi u;- 13 

~ 

Vi Cll .... 
"0 C Vi co ~ (J) (J) (J) 

(J) ro Cll Cll U co Cll g ~ (J) 
Cll C C U $ (J) (J) u -:; c > Cll U ~ c B E ~ ~ 

ro 0 ro ro E c c 2:- Cll OJ .;:: 
c !: .c OJ e ~ .... c 0 Cll c 'iii "0 ro 

cb ... $ 0 e c c ~ 
"0 0 ~ ~ (J) ~ :E c u E 

.;:: 

~ 
u ro (J) (J) 0 c C .D ~ "0 E OJ :J 0 >- Cll $ -:; 0 0 en "0 Cll 

c E .2- (J) ~ c c .2- .2- :J If) 'E Cll E If) "0 Cll 
~ C Cll en .... - >- .... u .... Cll :J (J) 0 .... 0 u Cll Cll E .... Cll >- E Cll .2- >- >- ro Cll >- ~ >- ~ 

~ .... ~ ~ U) E 
~ ci (J) Cll t ci 0 :J 

ci C >-
ci ~ 

~ ~ 0 ~ 
"0 

~ ro ~ Cll ~ ro ci E ro ~ 
~ 

Cll 
:J C 

E 
.... 
Cll 
>-
~ 
ci 
~ 
ro 

Figure 52-Histogram of interface objects 

Moreover, it is apparent that the jiJesystem objects and the environment are not used in combination with 

communication protocol layers to attack other objects (see bars labeled "environment " and "jiJesystem 

object " in Figure 52). This is a reasonable result, because for remote attacks jilesystem objects typically 

play the role of the affected objects, e.g. , reading of the password file . On the other hand they may serve 

as interface objects for local attacks that target processes for instance. For the environment, the findings 

are similar. Although the environment was involved in some remote attacks involving the telnet protocol, 

remote attacks involving the environment typically are very rare, as also revealed by Figure 52 . 

184 



A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTlO 

B.3 Mfected objects 

The distribution of the affected objects shown in Figure 53 shows the clear d rrun' f Th o ance 0 proces . ey 
represent the most prominent target of attacks. As to be demonstrated tater in more detail , till 

corresponds to the observations made in B.2, which showed a large number of attacks involving various 

application layer protocols. These attacks typically affect network services that are commonl 

implemented by daemon processes. Attacks against jilesystem objects are typicall targeted to\\'3Ids 

sensitive files such as the password ftle . 

networking 
stack 
5% 

filesystem 
object 
13% 

OS core CPU 
4% 1% firmware 

1% 

Figure 53-Distribution of affected objects 

process 
76% 

Note that we are not classifying the impact of attacks here . The impact of an attack is de cribed by a 

system state corresponding to an error and/or failure state, which depends on the success of an attack. 

However, the success of an attack mostly depends on the presence of the corresponding vulnerability and 

its characteristics. For instance, an attack that is staged against a process or afilesystem object may result, 

in both cases, in a shell being provided to the attacker. Thus, the affected object can be a process or the 

filesystem respectively. However, the impact of the successful attack is merely determined by the 

vulnerability rather than by the attack. 

185 



A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO.· Y Tal 

B.4 Dynamic attack characteristics with affected objects 

When considering the eight most frequent combinations of dynamic fault characteristic . we obtain a 

simi lar picture as in Figure 50. However, it is apparent that the combination of the activit)' characteristi 

bi-directional communication and execution within object context (second bar from the left in Figure ':-0 ) 

are even more frequent than the sole execution within object context (third bar from the left in Figure ':-0). 

This has already been observed in Section B. I , and demonstrates the importance of the attacks against 

(server) processes. This can also be verified byt the fact that almost all the attacks falling into to thi 

category target processes (especially apparent for the fIrst three bars from the left in Figure 50). 

90 I 
80 t 70 
60 
50 
40 
30 
20 
10 
0 

E 
0 
(.) 

....: 
'5 
. .1. 
.0 

• firmware 
oCPU 

I-===------ -----------i • OS core 

;( c: 
£ OJ c .~ 

;( 0 
(.) <.i OJ 

13 OJ C X 0 
~ OJ (.) 

0 E 13 
c: 0 OJ 

£ (.) is 
.~ ....: 0 

'5 
<.i . .1. 
OJ .0 
X 
Ql 

1-- - - ----- ----1 0 networking stack ­
o filesystem object 

bd. 
c: E .Q 
ro 0 

(.) 
Ql 

t; ....: 
'5 

13 . .1. 
c: 

Ql ::l 
is 
0 

"0 c: "0 13 ro .Q ro 
~ ro ~ ! 
13 (.) 13 0 c: -= .Q 
OJ '6 Ql C 
is 0 is .Q ro 
0 E 0 ro (.) -= 

13 E OJ '5 
t; 0 

Ql 0 E is (.) 13 0 ....: OJ 
'5 E 
• .1. 0 
.0 

Figure 54-Histogram of dynamic activity characteristics with affected object 

'" c: 
.Q 
ro 
c: 
:0 
E 
0 
() 

Q; 
~ 

"0 

Moreover we can identify the class of attacks that uses a communication mean to attack the networking 

stack of a system. Most of those attacks are denial-of-service (DoS) attacks, and attempt to crash the 

entire system by sending some malformed PDUs to the host. The malformed PDU may then force the 

networki.ng stack into an undefIned (error) state, a failure state. Finally we can identify an important class 

of attacks that affect the jilesystem by means of obj ect creation, modification or reading. Those attacks 

are typically staged on the local host. 

186 



ATTACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO.· Y TEM 

B.S Interface objects with dynamic attack characteristics 

The distribution of the combinations of interface objects with dynamic activity characteristic (hO\Yll ill 

Figure 55) is less bursty than the one found when considering the combination of affected objects and 

dynamic activity characteristics (see Section BA). The resulting sub-classes are distributed more evenly. 

At a fust glance the most important class by far is that consisting of processes (see first column of Figure 

55). However, a detailed analysis shows that the classes involving application layer protocols urn up t 

an even more significant number. 

00 .-----------------------------------------------------------1 
• other combinat ions 

80 +----------------------------- • bi-dir. com., object read 
• object modificat ion 

70 i----------------------------- • object read 
o uni-dir. com. 

60 ·1------------------------------ o object creation 
o bi-dir. com., exec . within object context 

50 o exec. within object context 
o bi-dir. com . 

40 

30.,.-,._--,.--

20 ++--1---1 

10 

u 0; c '" V) C ~-:- ~ '" V) ~ 'S ~ 'S ~ u c u c en 0 Q) 0 :::> 1!1 V) .!; E .s-,. E ~~ ~ g ~- E c - 'S v;- 0 Q) 

'" - ci '" ~ E Q; '" E C;; CD c Q; l5. ~ V) 
Q; a.; en Q; c c v;- -g Q) V) 

'" ~ Q; c >- c >- '" 
Q) >- >-.9/ >- '" ~.Q1 >- ~ V) 0 1!1 !:; c;; '" 1!1 ~ .!!l Q; >- .!!l u .9/ 1!1 -' en 1!1 c >- <Ii . 0 

~ 5 ci ci V) .!; ci '" ci V) 
V) a. 

(; 0 c V) ci a.; a. ~ Q) ~ a. a. 
~ - a. '" '" g ! '" '" '" '" l5. c 

Figure 55-Histogram of interface objects with dynamic activity characteristic 

Furthermore we can identify the class of remote buffer overflow and special -character attacks by 

considering the class of the combined dynamic activity characteristics bi-directional communication and 

execution within object context (appears in almost all columns). 

187 



A IT ACK-CLASS-BASED ANALYSIS OF INTRUSIO DETECTIO.· Y TE I 

B.6 Interface objects with affected objects 

When considering the relation between affected objects and interface objects \ve can identify the 

interfaces most frequently used to attack a given object. Considering Figure -6. we re ognize the 

dominance of processes as attack target objects and as attack interface objects. In addition we can identify 

filesystem objects to be attacked merely using a process as interface. This makes sense because proc ses 

are the primary objects making use of fi lesystem objects . However. even more frequently proce are 

attacked using some application layer protocol indicating attacks against daemon proce e . i.e .. ef\; e . 

90 

80 
70 

60 

50 
40 

• firrTrNare ---I. CPU 
~--------------------I 0 OS core 
HI-~--------------------j 0 net'MJrking stack 

I---c==----===------------, 0 filesystem object 
30 - o process 
20 
10 

0 
en 
en 
Q) 
u 
0 a. 

ci Q) U ro :0- (i) en ~ en en a. en c: Q) u Q) en co c: E C .91 .91 
~ 

~ 

~ E E 0 
2 Q) c C en 

cD :2 E "§ c: en c: en c: 
0 c: 

~ OJ en ~ 2 >-
C 

0 co c: E en en u ~ .:, 
cD 

.!; 

~ 
>- vi c: 

CD 
, en en en 0 (0 :f:: OJ c: Q; Q) en ~ ~ Q) >->- E .!; Q; 

~ 
c: >- ~ u .!l1 .!l1 ~~ >- E 0 .!l1 0 (0 

.!l1 u a. >- .>< ci .... 
Q; ci .!l1 0 a. Q) 

ci.. Q; a. co >- >- co ci ~ .!l1 .!l1 a. >-co .!l1 ~ 
Q) 

ci.. c: 
a. ci.. co a. 

co 

Figure 56-Histogram of interface objects with affected objects 

en 
c: 
.Q co 
c: 
:0 
E 
0 
u 
(0 

.J::. 
(5 

In addition, one can observe that the CPU is attacked by processes onl y, which can be explained by the 

fact that CPUs are generally attacked by exercising some malicious, possibly inva lid. command 

ul · d ' 1 f . b crashing the entire system. Another sequences. In most cases these attacks res t ill a eilla 0 sef\l1ce y 

observation one can make is the fact that the networking stack is general ly attacked by transport and 

. . " 1 h b 0' made above when identifying the processes network layer protocols. This IS slim ar to teo serva on we 

as a popular attack target, just at a lower level in terms of the protocol stack. 

188 



ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIO~ SYSTEMS 

Appendix C Example IDS scopes and their use 

In this appendix we provide additional information on IDS scopes and their use in the context of this 

work and specifically the RIDAX implementation. In a first section we pro\ide definitions of the IDS 

scope tree elements introduced in Section 4.1.1. In the second section we provide the definitions for the 

IDS scope attributes used to describe functional properties of IDS scopes as introduced in Section 4.1.2. 

In the last section we provide examples on how the semantics of the various IDS description 

characteristics is defmed using IDS scopes. 

C.I IDS scopes 

The IDS scope tree shown in Figure 9, p. 31, contains all the relevant higher-level IDS scopes we were 

able to identify. In addition the figure also shows some examples of lower-level IDS scopes. In the 

following sections we provide definitions of all the IDS scopes as used in this work and shown Figure 9. 

It is clear that the tree shown in Figure 9 may be extended if needed, for example. by the addition of 

further protocols if necessary. 

Note that we do not discuss the user IDS scope in greater detail because we do not divide the user IDS 

scope into lower-level IDS sub-scopes, as there are no user components that would seem to be of special 

interest to an IDS. Nevertheless the user IDS scope is needed as it may be used to describe the ability of 

an IDS to relate observations to a user or possibly a group of users. 

C.l.I IDS scopes related to networking 

As a first step we consider the networking IDS scopes used to describe networking-related IDS 

capabilities. For further details we refer to Tanenbaum [Tanenb96]. Note that the protocols listed below 

are mostly examples illustrating the conceptual foundation of the IDS scope tree. 

Physical layer 

Table 35--Networking-related IDS scopes-physical layer 

The physical layer of communication systems is not of importance for current 

IDSs. However, as technology evolves, this aspect may become relevant some 

day. 

189 



Link layer 

LLC 

MAC 

Network layer 

IPv4 

IPv6 

X25 

ARP 

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

Table 36-Networking-reIated IDS scopes-link layer 

The link layer is split into the less known LLC layer Oogical link control) and 

the MAC layer (medium access control). 

The logical link control layer used on today's mostly Ethernet-based networks 

is basically empty. In theory the LLC may offer the sen'ice of reliable 

communication, which is hardly used. The LLC has been defined in IEEE 

802.2. See also Tanenbaum {I'anenb96]. 

The medium access control layer provides the addressing of entities on the 

LAN, and defines the way the medium is accessed e.g.. Ethernet. which 

originally used a shared medium. This requires a special method to send data 

on the media such that possible collisions do not lead to the loss of data. The 

MAC has been defined in the IEEE 802.3 standard. See also Tanenbaum 

{I'anenb96]. 

Table 37-Networking-related IDS scopes-network layer 

The network layer generally provides a routable addressing of entities. and may 

also offer reliable communication, i.e., a connection-based service. However 

the most commonly used implementation of the network layer used today is 

IPv4, which offers a datagram service only. 

The internet protocol version 4 offers a routable datagram service that does 

not guarantee the delivery of a datagram nor the order of a"ival of datagrams. 

This new, not yet widely deployed, version of the internet protocol prOVides a 

much wider address space, and offers improved support for the encryption of 

data, quality of service, mobility, dynamic routing etc. 

The X25 is a connection-oriented neMork layer service that was used by 

telecom operators for data services before the internet became as popular as it 

is today. 

The address resolution protocol ARP resides at the lower neMork level. and 

provides the service of mapping MAC sub-layer addresses to neMork layer 

addresses. 

190 



Transport layer 

rcp 

UDP 

[CMP 

Middleware 

COREA 

DCOM 

Application layer 

DNS 

SMTP 

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

Table 38--Networking-related IDS scoper-transport layer 

The transport layer is the layer where reliable communication is implemented 

in current networks. However, connectionless transport layer senices also play 

an important role in today's networks. The transport layer is generally used to 
address a specific service on a given host. 

The transmission control protocol is the most common~\" used connection­

oriented protocol. The handling of rcp streams is an imponant but nontrivial 

issue for network-based IDSs. 

The user datagram protocol is similar to rcp but does not prm'ide bi­

directional connection-based service. As this protocol is not connection-based 

it is far easier for [DSs to analyze. 

The internet control message protocol is also a connection less protocol that 

was conceived to control the routing at the network layer and to offer simple 

service such as ping. However. the functionality offered by [CMP may be 

misused in various ways. which makes it an important protocol to be monitored 

byIDSs. 

Table 39-Networking-related IDS scopes--middleware 

The monitoring of middleware protocols is-if done at all-mostly 

implemented at the application layer level. However, we list it here for future 

developments. 

COREA is a middleware standard defined by the OMG (object management 

group) and is widely used in distributed systems. 

DCOM is Microsoft's answer to CaRRA. DCOM includes technology such as 

Microsoft's Active-X controls etc. 

Table 40--Networking-related IDS scopes-application layer 

The monitoring of application layer protocols is a tedious task for lOSs 

because there are so many of them. In addition, several versions have been 

defmed over the years for many of them e.g., http vO.9, http vI.O. http vl.l, 

POP vI, POP v2, POP v3 etc. 

The domain name service is the most commonly used name-resolution service. 

This protocol is mostly connection less. 

The simple mail transfer protocol is the most commonly used protocol to 

transfer e-mail over the internet. 

191 



FTP 

http 

ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

The file transfer protocol is used to transfer files over the internet. This 

protocol uses separate control and data connections which makes it Q 

challenge for IDSs to analyze FTP traffic. 

The hypertext transfer protocol is the protocol used by the world wide weh 

(WWW). Several versions of this protocol have been defined and are stifl in 
use. 

C.1.2 Host-related IDS scopes 

As already mentioned, it is not so straightforward to identify the IDS sub-scopes for the host IDS scope. 

The following IDS scopes have been defmed by identifying system components that can be found in 

computing systems. The list focuses on security-relevant IDS scopes by refining areas of special interest 

to IDSs. 

Devices 

CPU 

Storage 

I/O 

Memory 

Firmware 

OS core 

Table 41-Host-related IDS scopes-devices 

Devices are rarely covered by today's IDSs. However, one might foresee ID 

work to be done in this area in the future. This area currently does not seem 

very promising but this may change as new paradigms evolve. 

The central processing unit is the target of some attacks that attempt to exploit 

faults present in the CPU's microcode. 

Storage devices such as disks. tapes. CD-ROMs etc., are used for persistent 

storage of large volumes of data. 

Input/output devices allow a system to communicate with the outside world. 

Examples: Network inteiface cards, seriallparallel line interfaces. keyboards. 

mouse etc. 

The memory (RAM) is commonly used to store data and executable code. 

Table 42-Host-related IDS scopes-firmware 

The fmnware is a low-level piece of code that runs beneath the operating 

system and that is responsible for managing the hardware of a system It 

manages all the devices in a system e.g., power management and bootstrap, the 

operating system at power-up time. The firmware is not of importance to 

today's IDSs, but with the ongoing development of the technology 

[VMwareOO] that will enable the operation of several independent virtual 

machines on the same physical system this may change. 

Table 43-Host-reIated IDS scopes--OS core 

The operating system is used to control and to manage the system Moreover, it 

provides various services. 

192 



OS modules 

Network stack 

Calls 

System calls 

Function calls 

Filesystem objects 

ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

Table 44--Host-related IDS scopes-OS modules 

Operating system modules are commonly used to extend the OS core with 

device drivers etc. Because the network stack is an OS module of high 

importance for ID we list it separately. 

The network protocol stack is commonly implemented as an OS module for 

efficiency reasons. The reason why it is listed here separately is that it is a 

prominent target. If the network stack encounters a failure this often 

propagates to OS core and may therefore lead to the failure of the entire 

system. Also it is relatively easy to attack the network stack because it 

represents-by definition-one of the most important interfaces of the system to 

the outside world. 

Table 45--Host-related IDS scopes-calls 

Calls represent an important change in the execution path of a process. One can 

distinguish calls that do not require a context switch from user space to kernel 

space and calls, i.e., system calls, that require such a switch. 

System calls are used by a process to interfere with the under~ving OS. The 

sequence of system calls made by a process may be used by an IDS, such as the 

DaemonWatcher by Wespi et al. [WeDaDeOO, WesDeb99], to obtain an 

indication as to what a process actually does .. 

The tracing of function calls is generally not easy because they occur in the 

user space and do not require an interaction with a central component such as 

the OS kernel. However, it is conceivable that calls to library functions are 

logged by the library involved and then used for later analysis by an IDS. An 

example of such an approach is the work by Kerschbaum, Spafford and 

Zamboni [KeSpZaOO, SpaZamOO, SpaZamOOb, ZambonO 1]. 

Table 46-Host-related IDS scopes-filesystem objects 

The filesystem is a vital component of commonly used computing systems. It is 

used to store security-relevant data such as configuration fIles, passwords etc. 

The filesystem may also be used as a general address space. In Unix 

filesystems, for instance, one can fmd. in addition to ordinary fIles, directories 

and links, also the notion of special fIles such as named pipes, and sockets or 

device files. 

193 



IPC 

Signal 

Socket 

FIFO 

Shared memory 

Messages 

Semaphore 

Middleware 

Environment 

Variable 

Registry 

Process 

ArrACK-CLASS-BASED A\;AL YSIS OF INTRUSIO\; DETECTION SYSTf\IS 

Table 47-Host-related IDS scopes--IPC 

Inter-process communication is a widely used method to interfere with running 

processes. It therefore represents a potential interface for an adwrsarv 10 

manipulate the behavior of a running process. 

Signals are a basic technique to inform processes about a gil en e\·ent. Signals 

may also force a process to terminate. 

Sockets enable local clients to communicate with a local sen'er process. 

FIFO stands for first in-jirst out. FIFOs are pipes that can be used to feed the 

output generated b· ... one process to an input stream of another process. 

Shared memory enables two processes to exchange data \'ery' effieientil' 

directly over the memory. 

Messages provide a mechanism that enables processes to exchange data in a 

well-structured H'G\'. 

Semaphores are used for synchronization purposes e.g., to pre\'ent the 

concurrent access to a resource. 

Table 48--Host-related IDS scopes--middleware 

As mentioned, certain components of commonly used middlewarc' technology 

can only be monitored on the host level. This is why it is also listed here. 

Table 49-Host-related IDS scopes---environment 

The behavior of a process may be influenced by its environment. making the 

environment an important attack interface for adversaries. 

At process creation time. environment l'Griables are copied from the parent 

process to the new~l' created child process. 

The registry is specific to the fami/.v of the Windows operating systems. The 

registry represents a central repository' of configuration information of the 

entire system. The modification of the registry can. sometimes. influence 

processes already running. 

Table 50-Host-related IDS scopes-process 

A process is the running instance of a program. Any application. tool. servIce 

etc., that is run on a system is generally reflected by one or se\eral processes. 

This makes process the prime target and interface for attacks. Typical server 

processes are the http (world wide web) and sendmail (mail service) daemons. 

Typical applications are web browsers or text processors. 

194 



ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIO~ SYSTEMS 

C.2 IDS scope attributes 

IDS scope attributes are used to describe functional properties of IDS scopes. For the description we first 

list the high-level IDS scope to which the attributes described consecutively may be applied. The names 

of the IDS scope attributes are highlighted in italic font. We also provide examples wherever possible. 

Note that we again focus only on issues relevant to ID. 

C.2.1 Networking-related IDS scope attributes 

As before we start by discussing the networking scopes first: 

MAC 

Fragmentation 

Network layer 

Fragmentation 

Table 51-Networking-related IDS scope attributes-MAC layer 

Mediwn access control layer, see Table 36. 

Fragmentation at the MAC layer is generally not done in standard LAS 

environments. However, in other applications such as satellite communication. 

MAC layer PDUs may befragmented. 

Table 52-Networking-related IDS scope attributes-network layer 

See Table 37. 

Network layer protocols such as IP may offer the possibility to split PDUs into 

smaller pieces. This splitting is required whenever the underlying service has 

an MTU (maximum transmission unit) size that is smaller than the size of the 

network layer PDU to be transmitted. In order not to miss important data. 

network-based IDSs should recompose these fragments before they analyze the 

data. This is not very complicated, but costly in terms of CPU and memory 

required. Certain IDSs do not reassemble fragments for exactly those reasons. 

An adversary can fool those IDSs simply by fragmenting the data sent to the 

target. Examples: IPv4, IPv6 (see also [Thomas96}). 

Connection-oriented Connection-oriented network layer protocols are main(l' used in the telecom 

world (circuit switching etc.). Examples: X25, Frame Relay, ATM, DQDB. 

Connection less Network layer protocols used in LAN environments are generally not 

connection-oriented. Examples: IPv4, IPv6. 

195 



ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTBtS 

Table 53-Networking-reIated IDS scope attribntes-transport layer 

Transport layer See also the example shown in Section 4.1.2 and Table 38. 

Address Many transport layer protocols such as TCP or UDP provide the abilin· to 

address a service access point on the destination and source entity. In the case 

of TCP and UDP addressing is done by means of S (H:a lied port numbers. 

Connection-oriented The analysis of connection-oriented protocols imposes additional costs on the 

IDS monitoring the connection for suspicious traffic. Connecrion-oriented 

protocols may be tricked into splitting the data stream into arbitrary 

sequences. Such data-chopping can be used by an adversary to pre.·enr the 

detection of their attacks by IDSs that are not sufficient~v able to reconstruct 

data streams of connections. In general the IDS needs to keep track of the 

connection's state, data retransmissions etc. Example: TCP. 

Connection less 

Fragmentation 

Connection less protocols have the advantage that they do not impose the 

overhead of establishing a connection. This also reduces the burden for IDSs 

when monitoring such traffic. However, PDUs of connecrionless protocols can 

be easily spoofed. Examples: UDP, ICMP. 

We are not aware of a connecrionless transport layer protocol that would 

support fragmentation of data. However, as it is conceivable to be 

implemented, we mention it for the sake of completeness. 

Table 54-Networking-related IDS scope attributes-application layer 

Application layer 

Connection less 

Single connection 

Multi connection 

See Table 40. 

Application layer protocols may be defined on top of a connection-oriented or 

a connection less service. As mentioned, connectionless services may be subject 

to spoofing attacks. That attack naturally propagates to the overlaying 

application layer protocols. Examples: Domain (DNS). TFTP (trivial file 

transfer protocol), NTP (network time protocol). SNMP (simple network 

management protocol). 

Most application layer protocols that are based on a connection-oriented 

service only require a single connection. This means that an IDS has to 

monitor only one transport layer connection to analyze the application layer 

session. Examples: http, SMTP (simple mail transfer protocol). Telnet. SSH 

(secure shell). 

Very few application layer protocols require several transport layer 

connections for their operation. However, the few that do are quite complex to 

analyze for IDS because it needs to keep track of all the transport layer 

connections and in addition it has to correlate the observations made across 

the various connections. Example: FTP (file transfer protocol). 

196 



Multi transaction 

Single transaction 

ATTACK-CLASS-BASED At'\;ALYSIS OF r-;-"'TRUSIOl\ DETECTIO~ SYSTEMS 

Particularly in the database area e.g .. Oracle. DB:! .. \hSQL etc.. a clear~\" 
defined transaction concept exists. However. most application layer protocols 

do not have a clearly defined notion of transactions (see also Section -1.1.2). 

Application protocols that do not suppon multiple transactions withi" Ll 

session are generally simpler to anazee for an IDS because it needs to keep 

limited protocol state information only. Examples: http version 0.9 a"d 1.0. 

C.2.2 Host-related IDS scope attributes 

Within the host IDS scopes we have identified far fewer IDS scope attributes than for the networking IDS 

scopes: 

Environment 

Process creation 

Running process 

IPC 

Synchronization 

Interropts 

Data exchange 

Filesystem object 

Static 

Dynamic 

Table 55--Host-related IDS scope attributes~nvironment 

See Table 49. 

Environment elements belonging to this functional scope influence a process at 

the time of its creation. Examples: Unix and Windows environment \·ariables. 

Windows registry. 

Environment elements may influence processes alread)' nmning. £wmpll'. 

Windows Registry. 

Table 56--Host-related IDS scope attributes-IPC 

Inter-process communication, see Table 47. 

The fPC object can be used for synchronizatio" purposes. Examples: 

semaphore. signals. messages. 

The fPC object causes interropts of the normal program execution. Examples: 

FIFO. Signals. Sockets. 

The fPC object is used to exchange data. Examples: FIFOs. sockets. shared 

memory. messages. 

Table 57-Host-related IDS scope attributes-fiJesystem object 

See Table 46. 

The filesystem object is static. Examples: files. links. directories. 

Filesystem objects are considered to be dynamic if they are used for 

communication purposes such as fPC or the interaction with devices. 

Examples: named pipes. sockets. device files. 

197 



ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

C.3 Definition and use of IDS characteristics with respect to IDS scopes 

The examples provided in the following are given to illustrate the way the pairs of items and IDS scopes are interpreted. The following tables are therefore by no means meant to 

cover the entire IDS scope tree. 

In some cases several semantic interpretations seem possible. In such cases we generally choose and document the one that seems most suitable for the analysis of Jl)Ss and ID in 

general. 

IliS 



ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

C.3.1 IDS sensor characteristics 

Table 58-IDS sensor characteristics-Objects (see also Table 7) 

IDS scope I User Filesystem IPC Device Network Host Process OS module Calls Environment 
items object middleware middleware 

Name Denotes the Denotes the IPC objects may Denotes a unique The IDS sensor The IDS sensor Denotes the OS modules or System and An environment 
name of a user unique name of be identified by device name. is able to gather is able to gather name of the drivers can be function calls can object e.g., an 
e.g., login name, an object e.g., some unique the name of a the name of a executable used identified by a be identified by a environment 
real name etc. path and name23 e.g., middleware middleware to create the name e.g., Linux name. variable or a 

filename. signal name. object from the object on the process. modules or registry key 
network24

• host. Windows DLLs maybe 
(dyn.loadable identified by a 
libraries). unique name. 

10 Denotes the user Denotes a file IPC objects may Denotes a unique Middleware Middleware The process 10 N/A System calls can N/A 
10. Example Unix identifier e.g., be identified by device 10 object 10 object 10 identifies the be identified by 
user 10. Unix inode. some unique 10 running instance an 10. However 

e.g., signal of a program. this generally 
number. does not apply to 

function calls. 

Table 59-IDS sensor characteristics-Object attributes (see also Table 8) 

IDS scope I User Filesystem object IPC Device 
items 

Type Indicates the role of a user, e.g., the fact that Differentiates files, links, directories etc. Distinguish IPC object types Differentiates the various types of 1/0 
user is an administrative user. May be used devices, storage devices etc. 
to denote a user's role in role-based access 
control. 

-' ~-

11 This is not be l:onfused with \PC objects linked to a filesystem object as done on Unix systems. 

24 From a l:onceptual point of view, network and host middleware objects often do not exist. One usually refers to a middleware objcl:t and docs not l:arc about whcrc it is located 
e.g .. ('ORBA. Ilowever. whcn considering implementations of middleware solutions from the perspective of an IDS sensor this difference matters because the sensor may be 
monitoring object operations on a host or only on the network. 

199 

., 



, 
ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

Table 60--IDS sensor characteristics-Arguments (see also Table 9) 

IDS scope I Call Application layer 
items 

Basic The arguments provided to a call are available for analysis. The arguments directly associated with a request are available e.g., the URL of an http 
request. 

Options N/A Optional, possibly loosely associated request arguments are available for further analysis. A 

- -- -
typical examPle are the http head!l' fields that follow_the httpr~quest statement. .. ___ 

Table 61-IDS sensor characteristics-Request (see also Table 10) 

IDS scope I Call Application layer Transport layer 
items 

Name The name of the function or system call made. The name of the request made e.g., the name of an http N/A 
request. 

10 The identifier of the call made. The identifier of the type of request made. The identifier of the protocol request, e.g., ICMP echo request. 

Table 62-IDS sensor characteristics-Protocol control data (see also Table 11) 

liDS scope I MAC layer Network layer Transport layer 
items 

Source I There, the source I destination 10 denotes the MAC There, the source I destination 10 denotes the network There, the source I destination 10 generally denotes the 
destination 10 address of the POU sender I destination. address of the sender I destination, e.g., IP address. transport layer source I destination address, e.g., TCP port 

number. 

Source I N/A There, the source I destination 10 denotes the network name There, the source I destination name can often be associated 
destination of a system, e.g., hostname as stored in ONS. with a service such as listed by the lANA well-known port 
name numbers [IANAPN). 

Options N/A Protocols such as IP offer the possibility to extend the Protocols such as TCP use optional header fields to negotiate 
header information with fields for source routing etc. connection parameters. 

200 



A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

Table 63-IDS sensor characteristics-Data (see also Table 12) 

IDS scope I Filesystem object Process Device rcp 
items 

Up-I down- N/A N/A N/A TCP provides a reliable bidirectional data stream 
stream service. If the IDS sensor collects TCP packets 

on the network, the IDS is generally not able to 
guarantee the data stream. If the IDS sensor 
obtains the TCP stream data from one of the 
connection end points, one can consider the IDS 
to be operating based on a TCP stream. 

PDU data N/A N/A N/A If the sensor collects its data from the network it 
provides TCP PDUs only-and not as one could 
believe the reassembled TCP stream. On the 
other hand if the sensor collects its information 
on the host. TCP PO Us are not available. 

Status data In the filesystem IDS scope the status data The status data of a process can be seen In the device context the contents of 
represents the contents of a filesystem as the memory image of the process. physical memory or a storage device can 
object e.g., the contents of a file. be seen status data. This includes the 

status of device registers. 
- - '-- -- --- --------------

201 



ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTF1\\S 

C.3.2 Detector data pre-processing characteristics 

Table 64-Detector characteristics-data normalization (see also Table 14) 
- ------

IDS scope I http FTP SMTP Calls Filesystem object 
items 

Single-byte In http it is possible to encode N/A N/A N/A N/A 
character characters in the URL with their 
decoding hexadecimal representation. 

Multi-byte It is possible to use UNI standard N/A N/A N/A N/A 
character codes in URLs 
decoding 

String A typical escape sequence used in FTP and many other protocol E-mail addresses may be written in The arguments passed to a system Filenames may contain various 
resolution http URLs is 'I.' (without quotes). involving filenames are susceptible complicated obfuscated ways by or function call may be quoted in an types of escape sequences. 

Such an escape sequence does not to the obfuscation of attacks similar adding quotes etc. Unfortunately unusual way. 
change the document or script that to http. this can also be done with strings 
is being accessed, but it may be containing attack data (e.g., he 
able to obfuscate the attack from an infamous pipe attack, CVE-1999-
IDS. Also it is possible to represent 0203). 
the host portion of an URL in 
various different ways. 

--.----- .-------

Data decoding In http POST data is often encoded N/A Mail messages--especially the N/A The content of files Illily be 
in base64. attachments-are often base64 compressed. 

encoded. 

::0:: 



ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

C.3.3 Detector instance analysis characteristics 

Table 65-Single instance part analysis 

IDS scope f Call Process Transport f network flink layer Application layer 
items 

Basic analysis The detector is able to recognize calls. The detector is able to identify a thread of a Connection segments and PDU fragments The detector is able to identify a protocol 
process. If a process consists of a single are recognized, i.e., the type of the protocol sequence or protocol statement e.g., SMTP, 
thread only, this falls also into this category. is recognized. FTP etc. statements. 
Basic instance part analysis for processes is 
for example required in combination with 
system call sequence analysis, where the 
detector needs some degree of process 
analysis to relate system calls to each other. 

Logic The arguments of system and function calls NfA The structure of the instance part i.e., PDU The syntax of the protocol request Is verified 
verification are verified to be syntactically correct fragment or connection segment is verified. with respect to the protocol specification. 

(including data types). 

Semantic The arguments of system and function calls NfA Unacceptable values, value combinations, or The detector verifies the plausibility and the 
verification are verified to be valid, e.g., the arguments inconsistencies of header fields are policy compliance of the instance part. 

are verified to be within a meaningful value recognized. 
range. 

-- -- --- --

203 



" 

ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

Table 66--Single instance analysis 

IDS scope I Call Process Transport I network layer Application layer 
items 

Basic analysis N/A The detector is able to identify a process and The detector is able to continuously identify The detector is able to identify a group of 
its threads. the segments or fragments belonging to a protocol statements, i.e., a transaction. 

connection or a PDU. This can be seen as a 
very simplistic reconstruction of the instance 
without any logical verification, e.g., 
reordering of fragments or segments. 

Logic N/A N/A The detector is able to recompose the The detector is able to verify the correctness 
verification instance from its parts by following the of the protocol sequence. 

protocol specification. Further the detector is 
able to recognize suspicious protocol 
sequences e.g., stealth TCP scanning 
[CIN0498]. 

Semantic The detector is able to analyze the impact of N/A Inconsistent but logically correct parts are In the case of http one expects the detector 
verification a call, e.g., to verify whether its return values recognized. Overlapping fragments are to be able to identify the fact that a protected 

are acceptable with respect to the call recognized. Also connection segment document was revealed. In the case of 
arguments. retransmissions or overlapping fragments SMTP one would expect the detector to 

that no longer contain the same data are recognize the fact that a confidential 
recognized. document is sent to a receiver outside of the 

organization. 

Table 67-Instance group analysis 

liDS scope I Call Process Application layer 
items 

Basic analYSis The detector is able to associate calls to a process or to a The detector is able to identify a process group. The detector Is able to recognize an application layer 
user. This may additionally require some degree of process protocol session, e.g., http, SMTP, Oracle, D62, MySQL etc. 
analysis. This may be realized based on a well-known port number or 

any other simple check. 

Logic The detector is able to verify the logical correctness of a N/A The detector Is able to analyze the Instances, I.e., the 
verification sequence of calls made by a process or by a user. transactions executed within a session, independently. 

Semantic The detector is able to verify the acceptability of a task NlA If dependency among the Instances of a group exists, the 
verification represented by a sequence of calls made by a process or by detector is able to verify Its consistency and the acceptability 

a user. of sequences. I - -

204 



, 

A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

Table 68--Cross-instance (multi-instance) analysis 

IDS scope I Call Transport I network I link layer Application layer 
items 

Basic analysis N/A N/A N/A 
Logic N/A N/A N/A 
verification 

Semantic The detector is able to verify the semantic correctness and The detector is able to identify unacceptable sequences of If a dependency among instances exists, the detector is able 
verification acceptability of a sequence of calls (the calls may be made instances. to verify its consistency and the acceptability of sequen:j 

-- --
~y several indepe~dent processesl 

- - ---

Table 69-Bi-directional instance part group analysis 

IDS scope I Connection-oriented transport I network Ilink layer Application layer 
items 

Basic analysis The detector is able to associate PDUs flowing in both directions. The detector is able to identify the server response. 

Logic The detector is able to verify that the PDUs flowing in both directions are consistent with The detector is able to verify the logical, e.g., syntactical, correctness of the server response 
verification respect to the protocol definition. with respect to the request sent by the client. 

Semantic The detector is able to verify the acceptability of the bi-directional instance observed, e.g., it The detector is able to verify that the server's response is acceptable with respect to the j verification is able to detect the attempt of TCP connection hijacking. request sent by the client. 
-

205 



AIT ACK-CLASS-BASED ANALYSIS OF INTRUSIO~ DETECTION SYSTEMS 

C.4 IDS description example 

In the preceding sections we provided example definitions and interpretations of vanous IDS 

characteristics identified in Chapter 5. In this section we illustrate the underlying IDS description scheme 

by providing an example description of WebIDS [Almgre99]. Because WebIDS is a highly specialized 

host-based IDS that focuses on the monitoring of just one specifIc service, i.e., the http service. its 

description is comparatively short. 

In the following we provide the description of WebIDS that was used for the experiments described in 

Section 8.6. The description is split into several tables describing the various characteristics identified in 

Chapter 5 (see for instance Figure 21 and Figure 26). The first two tables describe the sensor portion of 

WebIDS, the other four its detector portion: 

Table 7O-Generic sensor characteristics of Web IDS 

Sensor item Value / level 

Reporting time Post-execution 

Reporting delay Less than 3 

seconds 

Reporting 

timestamp 

Information 

source type 

End of activity 

Application 

level log 

Comment (see also Section 5.2.1) 

The information is read as the webserver writes it to the log file. 

See above. 

The sensor passes on the time information prm'ided by the 

webserver. 

The information is read from the webserver application log file. 

Table 71-IDS scope dependent sensor characteristics of WebIDS 

Sensor item Sensor item IDS scope Comment (see also Section 5.2.2) 

type' 

Argument Basic http The arguments of the http request line (URL. 

protocol version) 

Request Name http The http request type (GET. HEAD. PUT) 

Result Size http Number of bytes transferred 

Result Status http Status (success) code of the http request 

Object Name User The (http) user ID of the user (used by the 

authentication method provided by the http 

protocol) 

206 



Protocol control 

data 

Protocol control 

data 

Detector item 

Alarm 

timestamp 

Alarm delay 

Knowledge-

based 

Behavior-based 

ATTACK-CLASS-BASED-\"\l'AL YSIS OF r~TRUSIO:-; DETECTIO:-; SYSTE\IS 

Source ID Network 

layer 

Destination ID Transpon 

layer 

Typica/(v the IP address o/the c1ielll 

Typical/y the TCP pon the request was sent to: 

the default is pon 81) and is provided only 

implicitly 

Table 72-Generic detector characteristics of Web IDS 

Value / level 

End of activity 

Less than 3 

seconds 

True 

False 

Comment (see also Section 5.3.1 ) 

The detector gets the information from sensor on(l' once the 

request has completed. 

The (light-weight) detector processes the information almost in 

real-time. 

The detector verifies each request for a list of" signatures of 

known attacks. 

The detector does not use any behavior-based component. 

Table 73-Data pre-processing detector characteristics of WeblD~ 

Detector item Detector item(s) IDS scope Comment (see also Section 5.3.2) 

type 

Filter Arguments. http The detector may .filter information based all 

request information available in the log file. 

Filter Source ID Network See above. 

layer 

Filter Object User See above. 

Data Single character http The detector is capable of decoding hexadecimal 

normalization decoding encoded characters used in the CRL. 

207 



ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECflON SYSTEMS 

Table 74-Analysis-level detector characteristics of WebIDS 

Detector item 

type 

(analysis type) 

Detector item 

(level) 

Single instance, Semantic 

bi-directional 

instance, single 

instance part, 

bi-directional 

instance part 

group 

Cross-instance, Basic 

bi-directional 

cross-instance 

IDS scope 

http 

http 

Comment (see also Section 0) 

The detector is capable of alUl(l'zing the 

semantics of the request (e.g., theft of password 

file). It may even investigate the success or non­

success of an attack. According(l', these 

capabilities enable an appropriate ana(rsis of 

individual pans of http requests. 

The detector is able to identify simple relations 

between requests for statistical purposes (see 

also below). 

Table 75-Control item analysis detector characteristics of Web IDS 

Detector item 

type 

(analysis type) 

Detector item 

(level) 

Single instance, Size 

single instance 

part 

Single instance, Regular 

single instance 

part 

expressions 

IDS scope 

http 

http 

Comment (see also Section 5.3.3.2.2) 

The detector is capable of verifying the si::e of 

http requests. 

The detector uses regular expressions to detect 

suspicious activities. 

To avoid repetition we omit the description of the statistical analysis capabilities of WebIDS here. It has 

already been provided in Example 1 of Section 5.3.3.3.2. 

208 



.... 

ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECflOl' SYSTBfS 

Appendix D Formal specifications and description 

examples 

In this appendix we provide the semi-formal specification for the constructs that we use to describe attack 

classes. This includes brief descriptions of all constructs and their elements and some extensive examples. 

The description scheme used in this work employs Prolog rules to express attack classes, attack class 

description building blocks, attack class variations, and alarm conditions. These rules are composed of a 

predefined set of elements, i.e., Prolog predicates. For the semi-formal specification of these constructs 

we rely on the BNF grammar for the Prolog core. Based on this grammar we specify the subset of 

predicates that may be used to create attack descriptions etc. 

D.I BNF specification of Prolog 

In its core Prolog is relatively small programming language. However, it contains a large set of 

predefmed predicates and supports many notational variations such as infix symbols. In the following 

BNF specification, which we derived from the book on logical programming by Slonneger and Kurtz 

[SloBar95a], only the core of the language is specified. We extended their specification towards covering 

the predicates we use to describe input to the IDS analysis process. 

<program> ::= <clause list> <query> I <query> 
<clause list> ::= <clause> I <clause list> <clause> 
<clause> ::= <predicate> "." I <predicate> ":-" <predicate list> "." 
<predicate> ::= <atom> I <atom> "(" <term list> ")" . 
<predicate list> ::= <predicate> I "(" <predicate list> "I" I "I" 

<predicate list> "," <predicate list> I 
<predicate list> ";" <predicate list> . 

<term list> ::= <term> I <term list> "," <term> 
<list> ::= "[" <term list> "j" I "[" <term list> "I" <term> "j- I "[j" . 

<term> ::= <numeral> I <predicate> I <variable> I <list> . 
<query> ::= "?-" <predicate list> "." . 
<atom> ::= <small atom> I "'" <string> "'" . 
<small atom> ::= <lowercase letter> I <small atom> <character> 
<variable> ::= <uppercase letter> I <variable> <character> . 
<lowercase letter> ::= "a" I _ I HZ" • 

<uppercase letter> ::= "A" I _ I HZ" I "_" . 
<numeral> ::= <digit> I <numeral> <digit> 
<digit> ::= "0" I ... I "9" . 
<character> ::= <lowercase letter> I <uppercase letter> I <digit> 

<special> . 
<special> ::= "+" I "-" I "*" I "I" I "\" I "A_ 

"@11 I 11#11 I "$" I "&" . 
<string> ::= <character> I <string> <character> 

"-" I II • n " . 

.' d" f tta kiss description In the subsequent sections we provide the specificatIons for the escnptIon 0 a c c a 

building blocks etc. These specifications are relatively simple, as we simply restrict the set of predicates 

that may be used to formulate clauses. Note, however, that in addition to the predicates to be defmed in 

the following we always permit the use of built-in predicates such as not (XI or equal (X, YI ~ithin rig.ht-

. ., rall d" infix tation' X - Y Moreover note that hand predicates. The check for equahty IS gene y use m Its no . - . 

209 



AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIO~ SYSTEMS 

in the following definitions terms starting with capital letters denote variables and terms starting \\ith 

lower-case letters denote atoms with a fixed value. In addition we denote lists by adding the suffix List 

and use the Prolog tenn "_" as a generic placeholder for empty or non-relevant fields. 

D.2 Attack class description building blocks 

Attack class description building blocks were introduced in Section 6.1. We therefore restrict the 

following descriptions to a semi-fonnal specification and a brief description of the permitted predicates. 

For right-hand predicates we permit the use of one particular predicate only: 

adbb(basic, ADBB, ADBBScp, IDS, Detector, EffScp, ScpList, DiaglnList, 
DiagOutList, VarslnList, VarsOUtList, BlkFlag) 

The adbb atom is used to fonnulate rules that describe attack class description building blocks. It takes 

several arguments: 

• basic: A variable used internally by RIDAX. For the description of attack class description 

building blocks this variable has to be substituted with the atom basic or basic2; however. the 

latter may only be used to defme helper rules that are included by other adbb (basic, _) 

clauses. The sole purpose of adbb (basic2, ... ) clauses is the simplification of the description 

task. 

• ADBB: Identifier of the attack class description building block. 

• ADBBScp: (High-level) IDS scope for which this attack class description building block IS 

defined. 

• 

• 

• 

• 

• 

• 

• 

IDS: Identifier of the IDS analyzed. 

Detector: Identifier of the detector considered. 

EffScp: IDS scope for which the attack class description building block is to be evaluated (see 

Section 6.1.1); commonly referred to as "effective IDS scope." 

ScpList: List of IDS scopes that the attack class considered involves. 

DiaglnList, DiagOutList: Lists that keep track of the analysis process and record all IDS 

attributes that were required to evaluate the attack class considered. 

VarslnList, VarsOutList: Lists that keep track of the variations already considered and of 

those that remain to be considered. 

BlkFlag: Variable indicating whether the evaluation of the attack class description building 

block has been blocked. 

Most of these arguments are reused in the following. Moreover note that they have already been 

introduced in Section 6.2.1, where we provided a simplified example of an attack class description. 

210 



AITACK-CLASS-BASED ANALYSIS OF INfRUSION DETECTIO~ SYSTBfS 

For the right-hand predicates we permit the use of a set of 13 predicates that can be used to describe 

attack class description building blocks (in the following we use .. (_)" as a place holder for argument 

lists defmed earlier): 

adbb(eval, ... ) , adbb(basic2, _) 

In Section 6.1.3 we explained why and how attack class description building blocks can depend upon 

each other. We therefore permit the description of an attack class description building block to include 

other attack class description building blocks in its evaluation. See also the second example in Section 

6.1.3. 

chkDetAttrib(Detector, RequestedScp, ItemType, Item, 
DiagInList, DiagOutList) 

This predicate verifies whether the detector description contains an attribute that enables the IDS to 

perform the analysis that is described by ItemType and Item at the IDS scope specified by 

RequestedScp. This rule, however, never fails. If the IDS is found capable of perfonning the analysis, 

this is recorded accordingly in DiagOutList, which serves as input to the alarm analysis process 

described in Section 7.1.2. 

• RequestedScp: IDS scope of the requested IDS characteristics. 

• ItemType, Item: Generic identifier of the requested IDS characteristics. 

All other arguments have already been defmed. 

chkSensorAttrib(Ids, Sensor, RequestedScp, ItemType. Item, 
DiagInList, DiagOutList) 

This predicate performs the same verification for sensors as chkDetAttrib does for detectors. 

reqDetAttrib ( ... ) , reqSensorAttrib I. .. ) 

These predicates are similar to chkDetAttrib and chkSensorAttrib. The difference is that they fail if 

the requested characteristic is not available. 

reqDetAttribAbsence ( ... ) , reqSensorAttribAbsence (-) 

These predicates are similar to reqDetAttrib and reqSensorAttrib. The difference is that they fail if 

the requested characteristic is available and succeed if no characteristics specified by ItemType, Item 

and RequestedScp is available. 

variation (exercise, , ,Detector, EffScp, ScpList, 
DiagInList, DiagoutList. VarsInList, VarsOutList, BlkFlag) 

This predicate exercises the variations listed in VarsInList that are applicable to the IDS scope specified 

by EffScp. The effects of the variation are recorded in DiagOutList. If the variation blocks any further 

analysis the BlkFlag variable is set accordingly. 

211 



A TTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

relBlkFlag(BlkFlagIn, BlkFlagOut) 

This predicate is used to resolve a RillAX, i e Prolog specifilc l'ssue that req' th . '" wres e BlkFlag argument 

given to other predicates to be an uninstantiated variable. It is the first of a set of helper predicates 

described in the following. 

selectAnyScp(SuperScp, SubScp, ScpList), selectSubScp(_). selectSuperScp(_) 

These predicates traverse the IDS scope tree and return either a lower-level (SubScp) or a higher-level 

(superScp) IDS scope from the list of IDS scopes provided in ScpList. selectSubScp. for instance. 

searches ScpList for an IDS scope SubScp below SuperScp. 

statCombinations(Comparison, Time, History, Unit. Item) 

This helper predicate facilitates the specification of detector characteristics related to statistical analysis as 

described in Section 5.3.3.3.2. 

D.3 Attack descriptions 

The specification of the core attack classes, i.e., attack class descriptions, is similar to the one for attack 

class description building blocks, and is restricted to a single left-hand predicate as well: 

attack (basic. Attack, EffScp, IDS. Detector, ScpList, MaxVars, DiagInList. 
DiagOutList, VarsList, BlkFlag) 

However, there are some important differences in the purpose of attack class and attack class description 

building block descriptions, resulting in some differences in the argument list: 

• Attack: Identifier of the attack class. 

• MaxVars: Maximum number of variations that may be selected concurrently. 

• VarsList: The set of variations selected. 

Note that EffScp, ScpList, varsList and BlkFlag represent output variables. In fact, the combination 

of Attack, EffScp and varsList defines an variant, as introduced in Chapter 6. 

The set of right-hand predicates that may be used to describe an attack class is almost identical to the one 

permitted for attack class description building blocks. The only difference is that attack class descriptions 

support an additional predicate that performs the selection of variations to be considered: 

selectVars(MaxVars, VarsList, scpList. DiagInList. DiagOutList) 

Each attack class description should select the variations to be considered before describing the actual 

core of the attack class (see also the example description in Section 6.2.1). Moreover, note that creating 

complex attack class descriptions is discouraged. Instead, it is preferable to create attack class description 

building block descriptions that can then be used to compose multiple attack class descriptions. 

212 



ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETEcnO~ SYSTEMS 

D.4 Attack class variations 

The specification of attack class variations is similar to that of the attack class description building blocks 

as well. However, the complete description of a variation requires two clauses, i.e .. left-hand predicates. 

A first clause defmes the existence of the variation: 

variation (index, Var, VarScp, _, Varlndex, 

Its primary goal is the defmition of the variation index (varlndex) and the IDS scope (VarScp) at which 

the variations is defmed. See also Sections 6.3.1 and 6.3.3. Based on this clause the selectVars 

predicate selects the variations to be considered. Moreover, note that the two-tuple composed of the 

identifier Var and the IDS scope VarScp identifies variations. This clause does not support any right-hand 

predicates. 

The second clause describes the actual variation and is defined by the following left-hand predicate: 

variation (blkChk, Var, VarScp, IDS, Detector, EffScp, ScpList, 
DiaglnList, DiagOutList, _, _, BlkFlag) 

The set of right-hand predicates that may be used to express these clauses is again almost identical to that 

permitted for the description of attack class description building blocks. The only difference is that the 

description of a variation may in addition suppress IDS characteristics: 

supDetAttrib C .. ), supSensorAttrib ( ... ) 

These predicates take the same arguments as chkDetAttrib and chkSensorAttrib defmed in Appendix 

D.2. Once such a predicate has succeeded all IDS characteristics described by ItemType and Item are 

unavailable for further analysis at all IDS scopes ofRequestedScp and below. 

D.S Alarm condition specification 

The specification of alarm conditions introduced in Section 7.1.2.1 is also similar to that of attack class 

description building blocks. The clauses describing alarm conditions start with the following left-hand 

predicate: 

alarmChk(basic, Alarm, Al armS cp, EffScp, SuccessState, IDS, Detector, 
_, _, DiaglnList, DiagOutList) 

In accordance to the clauses introduced, alarm conditions are identified by the arguments Alarm and 

AlarmScp. The (output) variable EffScp reflects the IDS scope for which the analysis IDS has the 

potential of generating alarms that belong to the alarm class identified by Alarm and AlarmScp. In 

addition, the variable SuccessState reflects whether the IDS analyzed is capable of analyzing the attack 

reported in terms of its success. 

For the description of alarm conditions all except one of right-hand predicates used for describing attack 

class description building blocks are permitted. The only restriction is that we do not permit variations 

213 



AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

(variation) to be included in alann conditions. In addition, we include two predicates that permit the 

examination of the IDS characteristics that were required for the analysis of attack class variant 

considered: 

reqDetAttribUsed (Detector, RequestedScp, EffScp, ItempType, Item, 
DiagInList, DiagOutList), reqSensorAttribUsed (_) 

The predicates reqDetAttribUsed and reqSensorAttribUsed only succeed if the analysis of the attack 

class variant required that the IDS analyzed employs the IDS characteristics described by It emType , 

Item and RequestedScp. If the predicate succeeds, EffScp reports the precise IDS scope at which the 

IDS made use of the IDS characteristics required. 

D.6 Example descriptions 

In this section we provide Prolog code examples to illustrate how the above specifications were used to 

describe attack classes etc. The examples are taken from the RIDAX prototype implementation. 

To facilitate the reading of the examples we provide the definitions of the most basic abbreviations, i.e .. 

atoms. All IDS characteristics used in the following examples have been defmed in Chapter 5; example 

interpretations are provided in Appendix C. 

Basic detector 

item types 

si i 

cr i 

method 

data norm 

filter 

alarm timestamp 

Table 76-Abbreviations of detector item types 

The detector item types (see Section 5.3) define item categories as illustrated 

for example in Figure 26. All item types related to instance analysis may be 

extended further by appending the extensions bidir (hi-directional analysis), 

data (analysis of data), info (analysis of control information), seq (analysis of 

sequences), stat (statistical analysis), and time (timing related analysis). 

Single instance analysis 

Single instance part analysis 

Cross-instance analysis 

Cross-instance part analysis 

Instance group analysis 

Instance part group analysis 

Detection method 

Data normalization 

Filtering 

Delay of alarms 

Alarm timestamp 

214 



ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIO,\ SYSTE~tS 

Table 77-Abbreviations of sensor item types 

Sensor item types The sensor item types (see Section 5.2) define item categories as illustrated for 
example in Figure 21. 

args Arguments 

data Data 

obj Object 

Object attributes 

prot ctl Protocol control information 

Delay of report provided to detector 

Reporting time 

report_timestmp Reporting timestamp provided 

req Request 

res Results 

Sensor type; information source monitored 

D.6.1 Alarm class description building blocks examples 

1* ---------------------------------------------------------------------
* adbb/17req - definition of the requirements to handle most 
* basic layer 7 activity. We start with description for a network-based 
* IDS. 
*1 

adbb(basic, AB, ABSCP, IDS, DET, EFFSCP, SCPLIST, 
DIAGIN, DIAGOUT, VARSIN, VARSOUT, BLKFLAG) 

(AB=reqDataUp; AB=reqDataDown; AB=reqDataBiDir), ABSCP=app_l, 
1* This only applies for external data sources *j 

reqSensorAttrib(IDS, _, generic, sensor_type, data_external, 
DIAGIN, DIAGl), 
1* verify and get the scope *1 

selectSubScp(ABSCP, EFFSCP, SCPLIST), 
1* blocking ... *1 

relBlkFlag(BLKFLAG, BLKl) , 
1* check the lower layers *1 

adbb(eval, AB, trsp 1, IDS, DET, ,SCPLIST, 
DIAGl, DIAG2, VARSIN, VARSl, BLKl) , 
1* blocking ... *1 

relBlkFlag(BLKl, BLK2) , 
1* check the required service access point of the 
* underlaying layer *1 

adbb(basic2, AB, ABSCP, IDS, DET, EFFSCP, SCPLIST, 
DIAG2, DIAG3, VARSl, VARS2, BLK2) , 
1* blocking ... *1 

relBlkFlag(BLK2, BLK3) , 
/* now check the variations for this layer *1 

selectAnyScp(ABSCP, VSCP, SCPLIST), 
variation (exercise, _, _, IDS, DET, VSCP, SCPLIST, 

DIAG3, DIAGOUT, VARS2, VARSOUT, BLK3) , 
relBlkFlag(BLK3, BLKFLAG). 

215 



ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETEcnO~ SYSTEMS 

adbb(basic2, AB, ABSCP, IDS, _, EFFSCP, SCPLIST, 
DIAGIN, DIAGOUT, VARS, VARS, notBlk) :-
1* here we verify the basic requirements for ABSCP scope awareness */ 

(AB=reqDataUp; AB=reqDataDown; AB=reqDataBiDir) ABSCP=app_l, 
1* verify and get the scope *1 ' 

selectSubScp(ABSCP, EFFSCP, SCPLIST), 
1* require the layer 4 data to be available *1 

reqSensorAttrib(IDS, _, EFFSCP, data, pdu, DIAGIN, DIAGOUT). 

1* ---------------------------------------------------------------------
* adbb/17req - alternatively we consider an IDS that is host based 
* and is providing access to tcp or udp data streams i.e., to the data 
* exchanged over sockets. 
*1 

adbb(basic, AB, ABSCP, IDS, _, EFFSCP, SCPLIST, 
DIAGIN, DIAGOUT, VARS, VARS, notBlk) :­

AB=reqDataUp, ABSCP=app 1, 
1* This only applies-for internal data sources *1 

reqSensorAttrib(IDS, SENSOR, generic, sensor_type, data_internal, 
DIAGIN, DIAGl), 
1* verify and get the scope *1 

selectSubScp(ABSCP, EFFSCP, SCPLIST), 
1* check the required service access point of the 

* underlaying layer *1 
reqSensorAttrib(IDS, SENSOR, EFFSCP, data, up_stream, DIAGl. DIAGOUT). 

adbb(basic, AB. ABSCP, IDS. • EFFSCP, SCPLIST. 
DIAGIN, DIAGOUT, VARS, VARS, notBlk) :­

AB=reqDataDown, ABSCP=app_l, 
1* This only applies for internal data sources *1 

reqSensorAttrib(IDS, SENSOR. generic, sensor_type. data internal. 
DIAGIN, DIAGl), 
1* verify and get the scope *1 

selectSubScp(ABSCP, EFFSCP, SCPLIST), 
1* check the required service access point of the 

* underlaying layer *1 
reqSensorAttrib(IDS, SENSOR. EFFSCP, data, down_stream. DIAGl. DIAGOUT). 

adbb(basic. AB, ABSCP, IDS, _, EFFSCP, SCPLIST. 
DIAGIN, DIAGOUT, VARS, VARS, notBlk) :­

AB=reqDataBiDir, ABSCP=app_l, 
1* This only applies for internal data sources *1 

reqSensorAttrib(IDS, SENSOR. generic, sensor_type, data internal. 
DIAGIN, DIAGl), 
1* verify and get the scope *1 

selectSubScp(ABSCP, EFFSCP, SCPLIST), 
1* check the required service access point of the 

* underlaying layer *1 
reqSensorAttrib(IDS, SENSOR. EFFSCP. data. up_stream. DIAGl, DIAG2). 
reqSensorAttrib(IDS, SENSOR, EFFSCP, data, down_stream. DIAG2, DIAGOUT). 

1* we do not exercise any transport layer variations here because 
* they should have been removed by the networking stack already *1 

216 



ATI ACK-CLASS-BASED ANALYSIS OF INTRL'SIOS DETECTIO~ SYSTE\fS 

/* ---------------------------------------------------------------------
: ~dbb/argBOF/optBOF ~ a buffer overflow attack using arguments 

1.e., the request 11ne of protocol session or the arguments 
* of a function call etc. 
*/ 

adbb(basic, AB, .ABSCP, IDS, DET, , SCPLIST, 
DIAGIN, DIAGOUT, VARS, VARS, notBlk) :_ 
(AB=argBOF; AB=optBOF), 
(ABSCP=app 1; ABSCP=call), 

/* verify and get the scope */ 
selectSubScp(call, EFFSCP, SCPLIST), 

/* information required */ 
reqSensorAttrib(IDS, SENSOR, EFFSCP, req, , DIAGIN, DIAG2), 
reqSensorAttrib(IDS, SENSOR, proc, obj, id~ DIAG2, DIAG4\, 

/* awareness level */ 
reqDetAttrib(DET, proc, si_i, basic, DIAG4, DIAG6), 
reqDetAttrib(DET, EFFSCP, si i, basic, DIAG6, DIAGS), 
reqDetAttrib(DET, EFFSCP, i_grp, logic, DIAGS, DIAGIO), 

/* the techniques */ 
reqDetAttrib(DET, EFFSCP, i_grp_seq, fixed, DIAGIO, DIAGOUT). 

D.6.2 Attack description example 

See also the example of the http argument buffer overflow attack provided in Section 6.2.1. 

/* ---------------------------------------------------------------------
* attack/suspArg - suspicious but benign argument string. 
* we verify the possibility of weak string signatures. 
* ActNbr: lS-20, 3S, 39 
*/ 

attack(basic, ACT, EFFSCP, IDS, DET, SCPLIST, MaxVars, 
DIAGIN, DIAGOUT, VARS, BLKFLAG) :­
ACT=suspArg, 
(((EFFSCP=http; EFFSCP=smtp; EFFSCP=ftp) ,LSCP=tcp); 

((EFFSCP=domain; EFFSCP=syslog),LSCP=udp», 
SCPLIST=[EFFSCP,LSCP,ipv4,ieee_S02_3] , 
/* select the variations to consider */ 

selectVars(MaxVars, VARS, SCPLIST, DIAGIN, DIAG2), 
/* This activity is in fact a layer 7 request */ 

adbb(eval, reqCtlUp, app_l, IDS, DET, EFFSCP, SCPLIST, 
DIAG2, DIAG4, VARS, VARS2, BLK1), 

relBlkFlag(BLK1, BLKFLAG), 
/* now check for the attack specific things i.e., the BOF */ 

adbb(eval, suspArg, app_l, IDS, DET, EFFSCP, SCPLIST, 
DIAG4, DIAGOUT, VARS2, _, BLKFLAG). 

D.6.3 Attack variation examples 

* -------------------------------------------------/ --------------------

* variation/13frgFirst - fragmentation on layer 3 . 
* This variation allows IDSs that are able to analyze only the f1rst 
* fragment only to recognize an attack correctly - assuming that the 
* attack can be identified by looking at the first fragment. 
*/ 

variation (index, 13frgFirst, net_l_frg, _, 3500, '_' _, _, -' ) . 

variation (blkChk, VAR, , ,DET, EFFSCP, 
DIAGIN, DIAGOUT,-_,-_, notBlk) :-
VAR=13frgFirst, 

/* simply check for fragment awareness 
* we assume that the interesting data is in the first 
* fragement. */ 

chkDetAttrib(DET, EFFSCP, si_ip, basic, DIAGIN, DIAGOUTI, .. 

217 



ArrACK-CLASS-BASED ANALYSIS OF INTRUSION DETECT]O~ SYSTEMS 

1* ------------------------ ________ _ 
: va:iatio~/l~frgNotFirst - fragmentation-~~-~~~~~-~-------------------
* T~~s ~ar~at~on makes the assumption that the suspicious data lS 

d~str~buted over multiple fragments, and that the IDS needs to be 
:/able recompose these fragments in order to recognize the attack. 

var~at~on(index, 13frgNotFirst, net_l_frg, ,3500, _, _). 
var~at~on(blkChk, VAR, _, IDS, DET, EFFSCP, 

DIAGIN, DIAGOUT, , ,notBlk):-
VAR=13frgNotFirst~ -

1* We require the IDS to be able to recompose fragments • 
reqDetAttrib(DET, EFFSCP, si_i, basic, DIAGIN, DIAGl) , 
reqDetAttrib(DET, EFFSCP, si_ip, basic, DIAGl, DIAG2) , 
reqDetAttrib(DET, EFFSCP, ip grp, logic, DIAG2, DIAG4) , 

1* Layer 3 data and header *1 
reqSensorAttrib(IDS, DET, EFFSCP, data, pdu, DIAG4, DIAG6), 
reqSensorAttrib(IDS, DET, EFFSCP, prot_ctl, frag_ctl, DIAG6, 

DIAGOUT), !. 

D.6.4 Alarm condition examples 

1* --------------------------------------------------------------- _____ _ 
* alarmChk/argStr - a suspicious argument string has been observed. 
* The IDS is capable of reporting the success-state of the suspected 
* attack. 
*1 

alarmChk(basic, ALR, ALRSCP, EFFSCP, true, IDS, DET, SCPLIST, ,DIAGIN, 
DIAGOUT) 

ALR=argStr, ALRSCP=app I, 
1* simplification of rule: reuse the rule for detecting suspicious 
1* data without reporting of success-state *1 

alarmChk(basic, ALR, ALRSCP, EFFSCP, false, IDS, DET, SCPLIST, 
, DIAGIN, DIAG2), 

1* now verify whether the IDS is capable to verify the success *1 
reqSensorAttrib(IDS, _, EFFSCP, res, status, DIAG2, DIAG4), 
(reqDetAttrib(DET, EFFSCP, si_i_bidir, semantic, DIAG4, DIAG6); 
reqDetAttrib(DET, EFFSCP, ip_grp_bidir, semantic, DIAG4, DIAG6», 

1* require the data *1 
adbb(eval, reqCtlDown, app_l, IDS, DET, EFFSCP, SCPLIST, 

DIAG6, DIAGOUT, [], ,notBlk). 

/* ---------------------------------------------------------------------
* alarmChk/argStr - a suspicious string has been observed. 
*1 

alarmChk(basic, ALR, ALRSCP, EFFSCPl, false, IDS, DET, SCPLIST, ,DIAGIN, 
DIAGOUT) :-

(ALR=argStr; 
ALR=optStr) , 

ALRSCP=app_l, 
selectSubScp(ALRSCP, EFFSCPl, SCPLIST), 
TSCP=trsp I, 

1* Check the IDS capabilities that were required *1 
(reqDetAttribUsed(DET, TSCP, EFFSCP, si_ip_data, string, DIAGIN, DIAG4); 
reqDetAttribUsed(DET, TSCP, EFFSCP, si_i_data, string, DIAGIN, DIAG4», 

1* check the required the data *1 
(reqSensorAttribUsed(IDS, ,TSCP,EFFSCP, data, pdu, DIAG4, DIAGOUT); 
reqSensorAttribUsed(IDS, ,TSCP,EFFSCP, data, up_stream, DIAG4, 

DIAGOUT» . 

218 



ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

Appendix E Glossary 

In the following we summarize the terms that were defined within the MAFfIA framework [021 MalO3) 

and that are relevant to this work and to ID. Note that we provide only the definition of terms relevant to 

this work and that many of these defInitions are based on the concept of security policy as defined in 

MAFTIA D21 [D21MalO3], Section 3.1. 

• 

• 

Activity: event or a sequence of events within a given context. 

Alarm (intrusion detection -): a report of an error that may lead to or has led to a security failure. 

optionally including diagnostic infonnation about the cause of the error. 

• Alarm (false -): see false positive. 

• Attack (general sense): a malicious interaction fault, through which an attacker aims to 

deliberately violate one or more security properties; an intrusion attempt; (human sense) a 

malicious human interaction fault whereby an attacker aims to deliberately violate one or more 

security properties; (technical sense) a malicious technical interaction fault aiming to exploit a 

vulnerability as a step towards achieving the final aim of the attacker. 

• Error: part of the state ofa system liable to lead tofailure [LaAvK092]; manifestation of a fault 

in a system [LaAvK092]. 

• Event: a thing that happens or takes place [OMED92]; a change in state. 

• Failure: event occurring when the delivered service deviates from fulfIlling the system function. 

i.e., from what the system is intended for [Laprie98]; transition from co"ect service to incorrect 

service [LaAvK092]; see also security failure. 

• Failure (security -): violation of a security property of the intended security policy. 

• False positive: the event corresponding to the incorrect decision to rate an activity as being 

erroneous; also called a "false alarm" or "type II error." 

• False negative: the event corresponding to the incorrect decision not to rate an activity as being 

erroneous; also called a "miss" or "type I error." 

• Fault: the adjudged or hypothesized cause of an e"or [LaAvK092]; error cause intended to be 

avoided or tolerated [LaAvK092]; consequence for a system of the failure of another system that 

has interacted or is interacting with the system considered [LaAvK092]. 

• 

• 

• 

Intrusion: a malicious, externally-induced fault resulting from an attack that has succeeded in 

exploiting a vulnerability. 

Malicious: intending or intended to do harm [OMED92]. 

Security policy: description of 1) the security properties to be fulfIlled by a computing system: 2) 

the rules according to which the system security state can evolve. 

• Service: system behavior as perceived by a system user [LaA vK092]. 

219 



AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

• Service (correct -): service that fulfills the system function [Laprie98]. 

• Service (incorrect -): service that does not fulfill the system function [Laprie98J. 

• State (system -): a condition of being, with respect to a set of circumstances [LaAvK092J. 

• System: entity having intemcted, intemcting or able to intemct with other entities [laAvK092J; 

set of components bound together in order to intemct [LaAvK092J. 

• System function: that for which the system is intended [Laprie98J. 

• True positive: the event corresponding to the correct decision to mte an activity as being 

erroneous; also called a "hit." 

• True negative: the event corresponding to the correct decision not to mte an activity as being 

erroneous. 

• User (system -): another system (physical, human) intemcting with the system considered 

[LaAvK092]. 

• Vulnerability: a fault created during development of the system, or during operation, that could 

be exploited to create an intrusion. 

220 



ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

List of Tables 

Table I--Comparison of the Lincoln Lab evaluation to our approach ....................................................... 28 

Table 2-Alarms generated by WebIDS and Snort including generalized alarms (in brackets) ................. B 

Table 3-The ten largest attack categories ................................................................................................. 64 

Table 4-Activities selected for analyzing IDSs ........................................................................................ 67 

Table 5-IDS scope-independent sensor characteristics ............................................................................. 75 

Table 6-Infonnation source types ............................................................................................................. 78 

Table 7-IDS scope-dependent sensor items-object ................................................................................ 80 

Table 8-IDS scope-dependent sensor items-object items ....................................................................... 80 

Table 9-IDS scope-dependent sensor items-argwnents ......................................................................... 81 

Table IO-IDS scope-dependent sensor items-request ............................................................................ 81 

Table II-IDS scope-dependent sensor items-protocol control data ....................................................... 81 

Table 12-IDS scope-dependent sensor items-data ................................................................................. 82 

Table I3-IDS scope-independent detector characteristics ........................................................................ 83 

Table 14-Data pre-processing detector items-data normalization .......................................................... 85 

Table 15-Data pre-processing detector items-filtering ........................................................................... 86 

Table 16-Exarnples how to combine IDS scopes with instances etc ........................................................ 88 

Table 17-Instance and instance part analysis levels-basic analysis ........................................................ 91 

Table 18-Instance and instance part analysis levels-logic verification .................................................. 91 

Table 19-Instance and instance part analysis levels-semantic verification ............................................ 92 

Table 20-Instance and instance part timing analysis ................................................................................ 93 

Table 21-Instance and instance part control item analysis ....................................................................... 94 

Table 22-Instance and instance part sequence analysis ............................................................................ 95 

Table 23-Statistical instance and instance part analysis-comparison ..................................................... 96 

Table 24-Statistical instance and instance part analysis-timeframe ....................................................... 96 

Table 25-Statistical instance and instance part analysis-history accumulation ................................. ·····96 

Table 26-Statistical instance and instance part analysis-unit ................................................................. 96 

Table 27-Rating of IDS analysis results based on lists of expectable alarms ......................................... 117 

221 



ATIACK-CLASS-BASED ANALYSIS OF INrRUSION DETECTION SYSTEMS 

Table 28-Example of how various IDSs report a buffer overflow attack ............................................... 126 

Table 29-Alarms generated by and generalized alarms predicted for WebIDS ...................................... 135 

Table 30-- Alarms generated by and generalized alarms predicted for Snort .......................................... 136 

Table 31-IDSs analyzed and assessed using the RIDAX prototype ....................................................... 152 

Table 32-Recall and precision of the IDSs assessed ............................................................................... 153 

Table 33-Fault diagnosis results for the class ofhttp argument buffer overflow attacks ....................... 156 

Table 34--Measurements resulting from alarm-set-based fault diagnosis 

(including variation alarms) ................................................................................................. 157 

Table 35-Networking-related IDS scopes-physical layer .................................................................... 189 

Table 36-Networking-related IDS scopes-link layer ........................................................................... 190 

Table 37-Networking-related IDS scopes-network layer ..................................................................... 190 

Table 38-Networking-related IDS scopes-transport layer .................................................................... 191 

Table 39-Networking-related IDS scopes-middleware ........................................................................ 191 

Table 40-Networking-related IDS scopes-application layer ................................................................ 191 

Table 41-Host-related IDS scopes-devices .......................................................................................... 192 

Table 42-Host-related IDS scopes-firmware ....................................................................................... 192 

Table 43-Host-related IDS scopes-OS core ......................................................................................... 192 

Table 44--Host-related IDS scopes-OS modules .................................................................................. 193 

Table 45-Host-related IDS scopes--calls ............................................................................................... 193 

Table 46-Host-related IDS scopes-fIle system objects ......................................................................... 193 

Table 47-Host-related IDS scopes-IPC ................................................................................................ 194 

Table 48-Host-related IDS scopes-middleware ................................................................................... 194 

Table 49-Host-related IDS scopes~nvironment .................................................................................. 194 

Table 50--Host-related IDS scopes-process .......................................................................................... 194 

Table 51-Networking-related IDS scope attributes-MAC layer .......................................................... 195 

Table 52-Networking-related IDS scope attributes-network layer ...................................................... 195 

Table 53-Networking-related IDS scope attributes-transport layer ..................................................... 196 

Table 54--Networking-related IDS scope attributes-application Jayer. .................. ·······························196 

Table 55-Host-related IDS scope attributes~nvironment... ........................ ··············· .......................... 197 

I d S 'b IPC ........................ 197 Table 56-Host-re ate ID scope attn utes- ......................................................... . 

222 



ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

Table 57-Host-related IDS scope attributes-filesystem object ............................................................. 197 

Table 58-IDS sensor characteristics-Objects (see also Table 7) .......................................................... 199 

Table 59-IDS sensor characteristics-Object attributes (see also Table 8) ............................................ 199 

Table 60-IDS sensor characteristics-Arguments (see also Table 9) ..................................................... 200 

Table 61-IDS sensor characteristics-Request (see also Table 10) ........................................................ 200 

Table 62-IDS sensor characteristics-Protocol control data (see also Table II) ................................... 200 

Table 63-IDS sensor characteristics-Data (see also Table 12) ............................................................. 201 

Table 64-Detector characteristics--data normalization (see also Table 14) ........................................... 202 

Table 65-Single instance part analysis ................................................................................................... 203 

Table 66-Single instance analysis ........................................................................................................... 204 

Table 67-Instance group analysis ........................................................................................................... 204 

Table 68-Cross-instance (multi-instance) analysis ................................................................................. 205 

Table 69-Bi-directional instance part group analysis ............................................................................. 205 

Table 7O-Generic sensor characteristics of Web IDS .............................................................................. 206 

Table 71-IDS scope dependent sensor characteristics of Web IDS ......................................................... 206 

Table 72--Generic detector characteristics of WebIDS ........................................................................... 207 

Table 73-Data pre-processing detector characteristics of Web IDS ........................................................ 207 

Table 74-Analysis-Ievel detector characteristics of Web IDS ................................................................. 208 

Table 75-Control item analysis detector characteristics of Web IDS ...................................................... 208 

Table 76-Abbreviations of detector item types .................................................. · .................................... 214 

Table 77-Abbreviations of sensor item types ......................................................................................... 215 

223 



ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

List of Figures 

Figure l-Overview of the IDS analysis process ........................................ . ................................................ 4 

Figure 2-Comparison of our approach with IDS bencbmarkin g ................................................................. 5 

Figure 3-Overview of thesis chapters 9 ......................................................................................................... 

Figure 4--Basic fault model ....................................................................................................................... 11 

Figure 5-IDS components of the CIDF modeL ......................................................................................... 13 

Figure 6-1999 IDS taxonomy by Debar et al. .......................................................................................... 15 

Figure 7-Revised IDS taxonomy by Debar et al. ...................................................................................... 16 

Figure 8-IDS model used for our description scheme .............................................................................. 30 

Figure 9-IDS scope tree with examples oflow-Ievel IDS scopes ............................................................. 31 

Figure IO-Top-Ievels of IDS characteristics hierarchy ............................................................................. 32 

Figure II-Information source types hierarchy including examples .......................................................... 33 

Figure 12-Simplified hierarchy of instance- and instance-part-related detector characteristics ............... 35 

Figure 13-The two-step IDS analysis process (including examples) ........................................................ 39 

Figure 14--Venn diagram illustrating the proximity of attacks and attack-similar benign activities ....... ..45 

Figure 15-An example how IDS scope attributes can be used to refme transport layer IDS scopes ........ 51 

Figure 16-System model used to categorize activities ............................................................................. .52 

Figure 17-Overview of activity categorization scheme ............................................................................ 54 

Figure 18-Distribution of attack category sizes ........................................................................................ 63 

Figure 19-Intrusion detection system model ............................................................................................ 73 

Figure 20-0verview of IDS scope-independent sensor characteristics .................................................... 75 

Figure 21-Overview of scope-dependent sensor items ............................................................................. 79 

Figure 22-Examples of sensor attributes .................................................................................................. 79 

Figure 23-Overview of IDS scope-independent detector characteristics ................................. ··········· ...... 83 

Figure 24-0verview of data pre-processing detector items ...................................................................... 84 

Figure 25-Concept of instances, instance parts and instance groups ........................................................ 87 

Figure 26-Description scheme for instance analysis ................................................................................ 89 

Figure 27-Overview of characteristics describing statistical analysis capabilities ................................... 95 

224 



A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECflOJl.; SYSTEMS 

Figure 28-Entity relationship diagram of the database used to store IDS descriptions ............................ 99 

Figure 29-Overview of the data required in and generated by each iteration of the IDS analysis 

process, including examples ................................................................................................ 121 

Figure 30-Input required for and output generated by the attack class analysis step .............................. I22 

Figure 31-Input required for and output generated by the alarm analysis step ....................................... 123 

Figure 32-Input required for and output generated by the alarm and attack class rating step ................ 128 

Figure 33-Entity relationship diagram of the database used to store analysis results ............................. 129 

Figure 34-Example of ROC curves ........................................................................................................ 140 

Figure 35-Projection of activity variants to alarm sets ........................................................................... 146 

Figure 36-Projection of activities to alarm sets and vice-versa .............................................................. 14 7 

Figure 37-Chart representing precision and recalL. ............................................................................... 155 

Figure 38-Attack recall, rating ambiguity and attack identification recall ............................................. 158 

Figure 39-Venn-diagram showing coverage overlaps of evaluated IDSs ............................................... 159 

Figure 40-Attack recall vs. rating ambiguity of IDS combinations ........................................................ 160 

Figure 4 I-Attack recall vs. attack identification recall of IDS combinations ......................................... 160 

Figure 42-Attack recall, rating precision and attack identification precision ......................................... 161 

Figure 43-Attack recall and rating ambiguity including vs. excluding alarms reporting variations ....... 162 

Figure 44-Data flow in VulDa ................................................................................................................ 174 

Figure 45-Overview of the vulnerability description structure ............................................................... 175 

Figure 46-Statistics derived from attack categorization superposing attacked object, attack 

interface and attack characteristics ...................................................................................... 177 

Figure 47-Statistics of concurrent occurrences of attack characteristics ................................................ 178 

Figure 48-Vulnerability browser showing vulnerabilities of the AIX operating system ........................ 179 

Figure 49-Vulnerability browser showing vulnerabilities in which at least one of the 

corresponding attacks affects a process ..................... '" ....................................................... 179 

Figure 50-Histogram of dynamic activity characteristics, excluding attributes ...................................... 182 

Figure 51-Histogram of dynamic activity characteristics, including attributes ...................................... 183 

Figure 52-Histogram of interface objects ............................................................................................... 184 

Figure 53-Distribution of affected objects .............................................................................................. 18:-

Figure 54-Histogram of dynamic activity characteristics "ith affected objects ..................................... 186 

225 



A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

Figure 55-Histogram of interface objects with dynamic activity cbaracteristics .................................... 1S-

Figure 56-Histogram of interface objects with affected objects ............................................................. 188 

226 



ATIACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTIOJl,; SYSTEMS 

References 

[ACFMPS99] Julia Allen. Alan Christie, William Fithen, John McHugh, Jed Pickel, and Ed Stoner. 

"State ofthe Practice ofIntrusion Detection Technologies." Camegie Mellon University. 

Pittsburgh, PA, Technical Report CMU/SEI-99-TR-028, 

http://www.sei.crnu.edulpub/documents/99 .reportslpdf/99trQ28.pdf. 1999. 

[Aleph96] Aleph One, "Smashing the stack for fun and profit," in Phrack Magazine. vol. 7. 

http://www.phrack.orglshow.php?p=49&a=14, 1996. 

[AlessaOO] Dominique Alessandri, "Using Rule-Based Activity Descriptions to Evaluate Intrusion­

Detection Systems," presented at Third International Workshop on Recent Advances in 

Intrusion Detection (RAID2000), Toulouse. France, published in LNCS. vol. 1907. 

http://link.springer.dellinklservice/seriesl0558Ibibs/1907/19070183.htm, 2000, pp. 183--

96. 

[Alessa03a] Dominique Alessandri, "Demonstration of an Intrusion-Tolerant Intrusion Detection 

System," http://www .newcastle.research.ec.orglmaftialmeetingslplenary IpaperslDemo­

WP3.pdf,2003. 

[Almgre99] Magnus Almgren, "Design and Implementation ofa Lightweight Tool for Detecting Web 

Server Attacks," M.S. Thesis, Uppsala: University ofUppsala, Sweden, Department of 

Scientific Computing, 1999, pp. 60. 

[AlmLinOl] Magnus Almgren and UlfLindqvist, "Interfacing Trusted Applications with Intrusion 

Detection Systems," presented at Fourth International Workshop on Recent Advances in 

Intrusion Detection (RAID2000), UC Davis, CA. http://www.raid­

symposium.orglraid200 lIprogram.html, 200 1. 

[Amor099] E. G. Amoroso, Intrusion Detection: An Introduction to Internet Surveillance. Co"eiation. 

Trace Back. Traps. and Response, first ed. Sparta, New Jersey: Intrusion.Net Books, 1999, 

ISBN 0-9666700-7-8. 

[Anders72] James P. Anderson, "Computer Security Technology Planning Study," Hanscom AFB, 

Bedford, Technical Report ESC-TR-73-51, 

http://seclab.cs. ucdavis.eduiprojectslhistory/CD/ande 72.pdf. 1972. 

[Anders80] James P. Anderson, "Computer Security Threat Monitoring and Surveillance," James P. 

[Apache] 

[AsKrSp96] 

Anderson Co., Fort Washington, PA, April 1980. 

Apache Foundation, "Apache webserver software," http://www.apache.orgi. 

Taimur Aslam, Ivan Krsul, and Eugene H. Spafford, "Use of A Taxonomy of Security 

Faults," Purdue University, COAST Laboratory, West Lafayette, IN, Tech. Report TR-96-

051,1996. 

[Aslam95] Taimur Aslam, "A Taxonomy of Security Faults in the UNIX Operating System," M.S. 

Thesis, West Lafayette, IN: Purdue University, Computer Sciences Department. 1995, pp. 

120. 

227 



ATIACK-CLASS-BASED ANALYSIS OF INfRUSION DETECTION SYSTEMS 

[AvLaRaOO] A. Avizienis, J.-C. Laprie, and B. RandelL ~Fundamental Concepts ofDependability.~ 

presented at Third Information Survivability Workshop (lSW-2000). Boston. MA. 

http://www.cert.orglresearch!isw/isw2000/papers/56.pdt: 2000. 

[AxelssOO] Stefan Axelsson, "Intrusion Detection Systems: A Survey and Taxonomy:' Chalmers 

University of Technology, Dept. of Computer Engineering, GOteborg.. Sweden. Technical 

Report 99-15, http://www.ce.chalmers.se/staffsax/taxonomy.ps. 2000. 

[Axelss99b] Stefan Axelsson, ''Research in Intrusion-Detection Systems: A Survey," Department of 

Computer Engineering, Chalmers University of Technology, Goteborg, Sweden. Technical 

Report 98-17, http://www.ce.chalmers.se/staff/sax/survey.ps. 1999. 

[BaCoBe94] Brian T. Bartell, Garrison W. Cottrell, and Richard K. Belew. "Optimizing Parameters in a 

Ranked Retrieval System Using Multi-Query Relevance Feedback," presented at Third 

Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, 

http://www-cse.ucsd.edulusers/rik/papers/dair94/inc.ps. 1994. pp. 8. 

[Bailey94] Kenneth D. Bailey, Typologies and Taxonomies: An Introduction to Classification 

Techniques. Thousand Oaks, CA: Sage Publications, 1994, ISBN 0803952597. 

[BasPer84] V. Basili and B. Perricone, "Software Errors and Complexity," Communications o/the 

ACM, vol. 27, pp. 42--52,1984. 

[BeGlRa98] R. Benjamin, B. Gladman, and B. Randell, "Protecting IT Systems from Cyber Crime," 

Imperial College, London, UK. Technical Report 1998. 

[Biggs02] 

[CAOI98] 

[CA0696] 

[CA0797] 

[CAI190] 

[CAI201] 

[CAl301] 

[CAl395] 

Norman L. Biggs, Discrete Mathematics, Second ed. New York: Oxford University Press, 

2002, ISBN 0-19-850717-8. 

CERT Coordination Center, "'smuri' IP Denial-of-Service Attacks," CERT Coordination 

Center, Pittsburgh, PA, Advisory CA-98.01, ftp:/lftp.cert.orglpub/cert_advisorieslCA-

98.01.smwf. 1998. 

CERT Coordination Center, "Vulnerability in NCSAlApache CGI example code," CERT 

Coordination Center, Pittsburgh, P A, Advisory CA-96.06, 

ftp:l/ftp.cert.orgipub/cert_advisories/CA-96.06.cgi_example_code. 1996. 

CERT Coordination Center, "Vulnerability in the httpd nph-test-cgi script," CERT 

Coordination Center, Pittsburgh, PA, Advisory CA-97.07, 

ftp://ftp.cert.orglpub/cert_advisories/CA-97 .07 .nph-test-cgi_script, 1997. 

CERT Coordination Center, "Security probes from Italy," CERT Coordination Center, 

Pittsburgh, PA, Advisory CA-90.1l, http://www.cert.orgladvisorieslCA-1990-11.htmI. 

1990. 

CERT Coordination Center, "Superfluous Decoding Vulnerability in lIS," 

http://www.cert.orgiadvisories/CA-2001-12.html, 2001, last update: May 15,2001. 

CERT Coordination Center, "Buffer Overflow In TIS Indexing Service DLL." 

http://www.cert.orgiadvisories/CA-2001-l3.html, 2001, last update: June 19,2001. 

CERT Coordination Center, "Syslog Vulnerability - A Workaround for Sendrnail," CERT 

Coordination Center, Pittsburgh, PA, Advisory CA-95.l3, 1995. 

228 



[CA 1 499] 

[CA1901] 

[CA2196] 

[CA2301] 

[CA2897] 

ATTACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTTO~ SYSTEMS 

CERT Coordination Center, "Multiple Vulnerabilities in BIND," CERT Coordinauon 

Center, Pittsburgh, PA, Advisory CA-99.l4, http://www.cert.orgadvisoriesCA-I999-

14.html, 1999. 

CERT Coordination Center, ""Code Red" Worm Exploiting Buffer Overflow in lIS 

Indexing Service DLL," http://www.cert.orgiadvisories·CA-2001-19.html. 2001. last 

update: August 23, 2001. 

CERT Coordination Center, "TCP SYN Flooding," CERT Coordination Center. 

Pittsburgh, P A, Advisory CA-96.21, ftp://ftp.cert.orgJpub/cercadvisoriesCA-

96.21.tcp_syn_flooding. 1996. 

CERT Coordination Center, "Continuing Threat of the "Code Red" Wonn," 

http://www.cert.orgiadvisorieslCA-2001-23.htrnl, 2001, last update: August 23. 2001. 

CERT Coordination Center, "IP Denial-of-Service Attacks," CERT Coordination Center. 

Pittsburgh, P A, Advisory CA-97.28, ftp://ftp.cert.orgipub/cercadvisorieslCA-

97%3A28.Teardrop_Land 1997. 

[CDEKS96] Mark Crosbie, Bryn Dole, Todd Ellis, Ivan Krsul, and Eugene Spafford, "IDIOT - User 

[CERT] 

Guide," Purdue University, COAST Laboratory, West Lafayette. IN. Tech. Report 1996. 

CERT Coordination Center, "Computer Emergency Response Team (CERT) / 

Coordination Center," http://www.cert.orgimeeccertimeetcertcc.html. 

http://www.cert.orglpresentlcert-overview-trendsl, 1988. 

[CheBeI94] W. R. Cheswick and S. M. Bellovin, Firewalls and Internet Security - Repelling the Wi~v 

[CIDF98] 

Hacker. Reading, MA: Addison-Wesley Publishing Company, 1994. 

Phil Porras, Dan Schnackenberg, Stuart Staniford-Chen, Maureen Stillman, and Felix Wu, 

"The Common Intrusion Detection Framework Architecture," 

http://www.isi.edul-brianlcidf/ drafts/architecture. txt. 1998. 

[CIN0498] CERT Coordination Center, "CERT Incident Note IN-98-04 - Advanced Scanning," 

CERT Coordination Center, Pittsburgh, Incident Note IN-98-04, 

http://www.cert.orgiincidencnotesIIN-98-04.html, 1998. 

[CIN0799] CERT Coordination Center, "CERT Incident Note IN-99-07 - Distributed Denial of Sevice 

Tools," CERT Coordination Center, Pittsburgh, Incident Note IN-99-07, 

http://www.cert.orgiincidencnotesIIN-99-07 .html, 1999. 

[CiscoNR99] Commercial Product, "NetRanger," Cisco Systems Inc., 

http://www.cisco.com/warp/publiclcc/cisco/mkt/security/nranger/prodlitnetra_ds.htm. 

1999. 

[CloMeI94] William F. Clocksin and Christopher S. Mellish, Programming in Prolog, Fourth ed. 

Berlin, Heidelberg: Springer-Verlag, 1994, ISBN 3-540-58350-5. 

[Cohen95] F. B. Cohen, Protection and Security on the Information Superhighway. New York. NY: 

John Wiley & Sons Inc., 1995. 

[CovTh091] Thomas M. Cover and Joy A. Thomas, Elements of Information Theory. New York. NY: 

John Wiley & Sons, Inc., 1991. ISBN 0-471-06259-6. 

229 



r 

[CVE99] 

AIT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTI01\' SYSTEMS 

The MITRE Corporation, "Common Vulnerabilities and Exposures." http: Icve.mitre.org. 
1999. 

[CVE002100] CVE editorial board. "CAN-2ooo-0021: Lotus Domino HTTPbuffer-overflow:' 

http://cve.mitre.orglcgi-binlcvenarne.cgi?name=CAN_2000-0021. 2000. 

[CVE007099] CVE editorial board, "CVE-1999-0070: test-cgi webserver vulnerability:' 

http://cve.mitre.orglcgi-binlcvename.cgi?name=CVE_1999-OO70, 1999. 

[CVE033301] CVE editorial board. "CVE-2001-0333: Directory traversal vulnerability in lIS." 

http://cve.mitre.orglcgi-binlcvename.cgi?name=CVE_200 1-0333, 200 I. 

[CVE084800] CVE editorial board. "CVE-2000-0848: IBM WebSphere Application Server Plugin 

HTTP-header Vulnerability," http://cve.mitre.orglcgi-binlcvename.cgi?name=CVE-2000-

0848,2000. 

[CVE087499] CVE editorial board, "CVE-1999-0874: Buffer overflow in lIS," http://cve.mitre.orglcgi­

binlcvename.cgi?name=CVE-1999-0874,1999. 

[DIMafOO] MAFTIA Consortium, "Reference Model and Use Cases," C. Cachin, Ed .• Malicious- and 

Accidental- Fault Tolerance for Internet Applications. MAFTIA project deliverable D1. 

2000. 

[D2MafOl] MAFTIA Consortium, "Architecture and revised model ofMAFTlA," R. Stroud, Ed .. 

Malicious- and Accidental- Fault Tolerance for Internet Applications. Newcastle upon 

Tyne, UK, MAFTIA project deliverable D2, 2001. 

[D3MafOl] MAFTIA Consortium, "Towards a Taxonomy of Intrusion Detection Systems and 

Attacks," D. Alessandri, Ed., Malicious- and Accidental- Fault Tolerance for Internet 

Applications, Zurich, Switzerland, MAFTIA project deliverable D3, 

http://www .newcastIe.research.ec.orgimaftiaideliverablesID 3 .pdf. 200 I. 

[D 10Maf02] MAFTIA Consortium, "Design of an Intrusion-Tolerant Intrusion Detection System," M. 

Dacier, Ed., Malicious- and Accidental- Fault Tolerance for Internet Applications, Zurich. 

Switzerland, MAFfIA project deliverable DIO, 

http://www.newcastle.research.ec.orgimaftiaideliverablesID10.pd( 2002. 

[D21Maf03] MAFTIA Consortium, "Conceptual Model and Architecture of MAFfIA," D. Powell and 

R. Stroud, Eds., Malicious- and Accidental- Fault Tolerance for Internet Applications; 

LAAS-CNRS, Toulouse and University of Newcastle upon Tyne, MAFTIA project 

deliverable D21, http://www.newcastle.research.ec.orglmaftiaideliverablesID21.pdf. 2003. 

[DacAle99] Marc Dacier and Dominique Alessandri, "VulDa: A Vulnerability Database," presented at 

2nd Workshop on Research with Security Vulnerability Databases, Purdue University, IN, 

1999. 

[DasOO] Kumar 1. Das, "Attack Development for Intrusion Detection Evaluation." M.S. thesis: 

Massachusetts Institute of Technology, Electrical Engineering and Computer Science, 

http://www.cs.ucf.eduJ-allenisecurity/paperslDasOO.pdf, 2000, pp. 97. 

230 



AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

[DCWMS99] Robert Durst, Terrence Champion, Brian Witten, Eric Miller, and Luigi Spanguolo. 

"Testing and Evaluating Computer Intrusion Detection Systems," Comm. of ACJf. vol. 42. 

1999. 

[DDWL98] H. Debar, M. Dacier, A. Wespi, and S. Lampart, "An Experimentation Workbench For 

Intrusion Detection Systems," ffiM Research Division, Zurich. Switzerland., Research 

Report RZ 2998, 

http://domino.watson.ibm.comllibrary/cyberdig.nsf/a3807 c5b4823c5 3 f85 2565610063 24be 

1647aa2a69bcc8ff2852565e6004d3897?OpenDocument, 1998. 

[DeBeSi92] Herve Debar, Monique Becker, and Didier Siboni, "A neural network component for an 

intrusion detection system," presented at IEEE Computer Society Symposium on Research 

in Security and Privacy, Oakland, CA, 1992, pp. 240--50. 

[DeDaWeOO] Herve Debar, Marc Dacier, and Andreas Wespi, "A Revised Taxonomy for Intrusion­

Detection Systems," presented at Annales des Telecommunications, vol. 55. 2000, pp. 

361--78. 

[DeDa We99] Herve Debar, Marc Dacier, and Andreas Wespi, "Towards a Taxonomy of Intrusion 

Detection Systems," Computer Networks, vol. 31, pp. 805--22, 1999. 

[DeHuDoOO] H. Debar, M.-Y. Huang, and D. J. Donahoo, "Intrusion Detection Exchange Format Data 

Model," http://www.ietf.orglintemet-draftsldraft-ietf-idwg-data-model-03.txt, 2000, last 

update: June 15,2000. 

[DeMMat95] R. A. DeMilIo and A. P. Mathur, "A Grammar Based Fault Classification Scheme and its 

Application to the Classification of the Errors ofTEX," Purdue University, Software 

Engineering Research Center, West Lafayette, IN, Technical Report TR-165-P, 1995. 

[Dennin87] Dorothy Denning, "An Intrusion-Detection Model," IEEE Transactions on Software 

Engineering, vol. 13, pp. 222--32, 1987. 

[DiazOO] Daniel Diaz, "GNU Prolog - A Native Prolog Compiler with Constraint Solving over 

Finite Domains v1.2.l," http://www.gnu.orglsoftware/prolog, 2000. 

[DLAR91] P. Dasgupta, R. 1. LeBlanc, M. Ahmad, and U. Ramachandran, "The Clouds Distributed 

Operating System," IEEE Computer, vol. 24, pp. 34--44, 1991. 

[Dobson89] John Dobson, "Modeling real-world issues for dependable software," in High-integrity 

Software, C. T. Sennett, Ed. London: Pitman, 1989, pp. 274--316. 

[EcViKeOO] Steven T. Eckmann, Giovanni Vigna, and Richard A. Kemmerer, "STATL: An Attack 

Language for State-based Intrusion Detection," presented at ACM Workshop on Intrusion 

Detection Systems, Athens, Greece, 

http://www.cs.ucsb.edul-rsglpub/2000_eckmann_vigna_kemmerecwidsOO.ps.gz. 2000, 

pp.16. 

[ElmNav94] Ramez Elmasri and Sharnkant B. Navathe, Fundamentals of Database Systems, second ed. 

Redwood City: The Benjamin/Cummings Publishing Company, Inc., 1994, ISBN 0-8053-

1753-8. 

231 



AITACK-CLASS-BASED ANALYSIS OF INTRL'SION DETECflOJ\ SYSTEMS 

[EsSaPi95] M. Esmaili, R. Safavi-Naini, and J. Pieprzyk., "Computer Intrusion Detection: :\ 

Comparative Survey," Center for Computer Security Research. University ofWollongong. 

Wollongong, NSW, Australia, Technical Report 95-07106. 1995. 

[GafUlvOI] John E. Gaffney and Jacob W. Ulvila, "Evaluation of Intrusion Detectors: :\ Decision 

Theory Approach," presented at 2001 IEEE Symposium on Security and Privacy. Oakland. 

CA, 2001. 

[GigandOO] Christian Gigandet, "Integration of Host-based Intrusion Detection Systems into the Tivoli 

Enterprise Console," IBM Research Division, Zurich. Switzerland. Research Report RZ 

3253, 

http://domino.watson.ibm.comllibrary/cyberdig.nsfla3807c5b4823c53f85256561006324be 

19I6dfa65ed8fec0285256919003I3b6e?OpenDocument, 2000. 

[Gross97] Andrew H. Gross, "Analyzing Computer Intrusions," Ph.D. Thesis. San Diego. CA: 

University of California, San Diego Supercomputer Center. 1997. pp. 233. 

[HalBauOO] L. R. Halme and R.K. Bauer, "AINT Misbehaving: A Taxonomy of Anti-Intrusion 

Techniques," http://www.sans.org/newlook/resourcesllDFAQlaint.htm. 2000. 

[HDLMWW90] L.T. Heberlein, G. Dias, K. Levitt. B. Mukherjee, 1. Wook, and D. Wolber. "A Network 

Security Monitor," presented at IEEE Symposium on Research in Security and Privacy. 

Oakland, CA, 1990, pp. 296--304. 

[Horiz098] Horizon, "Defeating Sniffers and Intrusion Detection Systems." in Ph rack Magazine. vol. 

8, http://www.phrack.org/show.php?p=54&a=1O, 1998. 

[Howard97] John D. Howard, "An Analysis Of Security Incidents On The Internet." Ph.D. Thesis. 

Pittsburgh, PA: Canegie Mellon University, Engineering and Public Policy, 1997. pp. 292. 

[HRLCOl] Joshua W. Haines, Lee M. Rossey, Richard P. Lippmann, and Robert K. Cunningham, 

"Extending the DARPA Off-Line Intrusion Detection Evaluations." presented at DARPA 

Information Survivability Conference & Exposition II (DISCEX '01). Anaheim, CA. vol. 

1,2001, pp. 35--45. 

[HucWelOO] Andrew Hutchison and Marc Welz, "IDS/A: An Interface between Intrusion Detection 

System and Application," presented at Recent Advances in Intrusion Detection, Third 

International Workshop, RAID2000, Toulouse, France, http://www.raid­

symposium.org/raid2000IMaterialsl Abstracts/21/2I.pdf, 2000, pp. 13. 

[IANAPN] Internet Assinged Number Authority (lANA), "Port Numbers," 

http://www.iana.org/assignments/port-numbers, last update: April 23, 2002. 

[ICAT] Peter Mell, Elizabeth Boteler, Derek Dye, Michael Reilly, and David Marks, "ICAT 

Metabase," http://icat.nist.gov/. 

[IcSeV095] D. Icove, K. Seger, and W. VonStorch, Computer Crime: A Crimejighter's Handbook. 

Sebastopol, CA: O'Reilly & Associates, Inc., 1995, ISBN 1-56592-086- 4. 

[llKeP095] Koral Ilgun, Richard A. Kemmerer, and Phillip A. Porras, "State Transition Analysis: A 

Rule-Based Intrusion Detection Approach," IEEE Transactions on Software Engineering, 

vol. 21, pp. 181--99, 1995. 

232 



ArrACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

[lnAlertOl] Symantec, "Symantec Intruder Alert v3.6," 

http://enterprisesecurity.symantec.COmlproductslproducts.cfm?ProductlD=48&P1D=88~ 41 

SO, 2001. 

[ISSNet99] ISS, "RealSecure Network Sensor v3.0," Internet Security Systems Inc. (ISS). 

http://www.iss.netlsecurin~e-

business/security -products/intrusion_detectionlreaIsecure networksensor. 1999. 

[ISSSca99] Commercial Product, "Internet Scanner vS.8," Internet Security Systems Inc. (ISS), 

http://www.iss.netl. 1999. 

[ISSSerOO] ISS, "Real Secure Server Sensor," Internet Security Systems Inc. (ISS), 

http://www.iss.netlsecurin~e-

business/security _products/intrusion_detectionlreaIsecure _serversensori, 2000. 

[Jacks099] Kathleen Jackson, "Intrusion Detection System (IDS) Product Survey," Los Alamos 

National Laboratory, Los Alamos, NM, Technical Report LA-UR-99-3883, http://lib­

www.lanl.gov!la-pubs/004167S0.pdf. 1999. 

[JiSilrOO] Jitsu-Disk, Simple Nomad, and Irib, "Project Area52: Delirium Tremens," in Ph rack 

Magazine, vol. 10, http://www.phrack.orgishow.php?p=S6&a=6, 2000. 

[JLADGJ93] R. Jagannathan, et aI., "System design document: Next-generation intrusion detection 

expert system (NIDES)," SRI International, 333 Ravenswood Avenue, Menlo Park, CA 

9402S, Tech. Report A007/A008/A009/AOl lIAO I 2/AO 14, 1993. 

[JuliscOO] 

[JuliscOl] 

Klaus Julisch, "Dealing with False Positives in Intrusion Detection," presented at Recent 

Advances in Intrusion Detection, Third International Workshop, RAID2000, Toulouse. 

France, http://www.raid­

symposiurn.orgiraid2000IMaterials/AbstractsiSO/Julisch_foils_RAID2000.pdf, 2000. 

Klaus Julisch, "Mining Alarm Clusters to Improve Alarm Handling Efficiency," presented 

at 17th Annual Computer Security Applications Conference (ACSAC), New Orleans, LA 

http://www.acsac.org/2001/abstracts/wed-l030-a-julisch.html, 200 I. 

[Kenda1l99] Kristopher Kendall, "A Database of Computer Attacks for the Evaluation of Intrusion 

Detection Systems," M.S. Thesis: Massachusetts Institute of Technology, Electrical 

Engineering and Computer Science, 

http://www.cs.ucf.edul-allenisecurity/papersiKenda1l99.pdf, 1999, pp. 124. 

[KeSpZaOO] Florian Kerschbaum, Eugene H. Spafford, and Diego Zamboni, "Using embedded sensors 

for detecting network attacks," presented at First ACM Workshop on Intrusion Detection 

Systems, Athens, Greece, 

http://www.cerias.purdue.edulhomes/zambonilpubs/wids2000.{pdtlps}, 2000. 

[Knuth89] D. E. Knuth, "The Errors ofTEX," Software - Practice and Experience, vol. 19, pp. 607-

8S, 1989. 

[KrSpTr98] Ivan V. Krsul, Eugene Spafford, and Mahesh Tripunitara, "Computer Vulnerability 

Analysis," COAST Laboratory, Purdue University, West Lafayette, IN, Technical Report 

1998. 

233 



A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECIlON SYSTEMS 

[Krsu198] Ivan V. Krsul, "Software Vulnerability Analysis," Ph.D. Thesis: Purdue University. 

Computer Sciences Department, 1998, pp. 171. 

[Kumar95] Sandeep Kumar, "Classification and Detection of Computer Intrusions:' Ph.D. Thesis. 

West Lafayette, IN: Purdue University, Computer Sciences Department 

ftp://coast.cs.purdue.eduJpub/COAST/paperslkumar_intdet_phddiss.ps.z, 1995. 

[KumSpa95] Sandeep Kumar and Eugene Spafford, "A Taxonomy of Common Computer Security 

Vulnerabilities based on their Method of Detection," COAST Laboratory, Purdue 

University, West Lafayette, IN, Technical Report 1995. 

[KYVOS95] S. Klinger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo, "A Coding Approach to Event 

Correlation," presented at Fourth IEEElIFIP International Symposium on Integrated 

Network Management, Santa Barbara, CA, vol. 4, 

http://www.cs.columbia.edulids/researchlkeypaperslpapers/eventcorrelationlisinm95.pdf, 

1995, pp. 266--77. 

[LaAvK092] J. C. Laprie, A. Avizienis, and H. Kopetz (Eds.), Dependability: Basic Concepts and 

Terminology, vol. 5: Springer Verlag, 1992, ISBN 3-211-82296-8. 

[Lager96] Mark Lager, "Spinning a Web Search," http://www.library.ucsb.eduluntanglellager.html, 

1996. 

[Laprie98] J.-C. Laprie, et 01., "Dependability Handook," LAAS-CNRS, Report 98346, 1998. 

[LBMW94] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi, "A Taxonomy 

of Computer Program Security Flaws," Information Technology Division. Naval Research 

Laboratory, Washington, D.C., WA 20375-5337,1994. 

[LCRM98] Douglas J. Landoll, Diann A. Carpenter, Christopher 1. Romeo, and Suzanne S. 

McMillion, "AIX Version 4.3.1 TCSEC Evaluated C2 Security," Arca Systems. IT AP 

Evaluation Facility, Final Report CSC-FER-98-004, 

http://www.radium.ncsc.milItpep/library/fers/CSC-FER-98-oo4.pdf. 1998. 

[LFGHKMOO] R. Lippmann, et 01., "Evaluating Intrusion Detection Systems: The 1998 DARPA Off-Line 

Intrusion Detection Evaluation," presented at DISCEX'OO - DARPA Information 

Survivability Conference & Exposition, Hilton Head, SC, vol. 2, 2000, pp. 12--26. 

[LHFKDOO] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and Kumar Das, 

"Analysis and Results of the 1999 DARPA Off-Line Intrusion Detection Evaluation," 

pres~nted at Third IntI. Workshop on Recent Advances in Intrusion Detection 

(RAID2000), Toulouse, published in LNCS, vol. 1907,2000, pp. 162-82. 

[LinJon97] UlfLindqvist and Erland Jonsson, "How to Systematically Classify Computer Security 

Intrusions," presented at IEEE Symposium on Security & Privacy, Oakland, CA, 

http://www.ce.chalmers.se/staffljonssonlpubI97-.html. 

http://www.ce.chalmers.se/staff/ulfllpubs/sp97ul.pdf. 1997, pp. 154--63. 

[Longst97] T. Longstaff, "Update: CERT/CC Vulnerability Knowledgebase," presented at DARPA 

workshop, Savannah, GA, 1997. 

234 



AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECfIO~ SYSTEMS 

[LSMITF98] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C. Taylor. S. Jeff 

Turner, and John F. Farrell, 'The Inevitability of Failure: The Flawed Assumptions of 

Security in Modern Computing Environments," National Security Agency, 1998. 

[Lunt88] T. F. Lunt, "Automated audit trail analysis and intrusion detection: A survey:' presented at 

11 th National Computer Security Conference, Baltimore, MD. 1988. pp. 65--73. 
[Lunt90a] Teresa F. Lunt, "IDES: An Intelligent System for Detecting Intruders." presented at 

Symposium of Computer Security, Threat and Countermeasures, Rome, Italy. 1990. 

[ManChr99] David E. Mann and Steven M. Christey, "Towards a Common Enumeration of 

Vulnerabilities," presented at 2nd Workshop on Research with Security Vulnerability 

Databases, Purdue University, West Lafayette, IN, http://cve.mitre.orgldocsltowards.ps, 

1999. 

[Marrad90] Alberto Marradi, "Classification, Typology, Taxonomy," Quality & Quantity, vol. XX. pp. 

129-57, http://www.unibo.edu.ar/marradilcIassqq.pdf. 

http://www.kluweronline.comlissnl0033-5177. 1990. 

[Marty02] Raffael Marty, "Thor - A Tool to Test Intrusion Detection Systems by Variations of 

Attacks," Diploma Thesis, Zurich, Switzerland: Swiss Federal Institute of Technology 

(ETH), Institut fUr Technische Informatik und Kornmunikationsnetze (TIK), 

http://www.raffy.ch!projects/ids/thor.pdf. 2002. 

[MatAvi70] Francis Mathur and Algirdas Avizienis, "Reliability analysis and architecture ofa hybrid­

redundant digital system: Generaized triple modular redundancy with self repair." 

presented at AFIPS (American Federation for Information Processing), Atlantic City. NJ, 

1970, pp. 375--83. 

[Maxion98] Roy A. Maxion, "Measuring Intrusion-Detection Systems," presented at 1st International 

Workshop on Recent Advances in Intrusion Detection (RAID98), Louvain la Neuve, 

Belgium, http://www.raid-symposiurn.orgiraid98IProg..,RAlD98IFull_Paperslmaxion.pdf, 

1998. 

[MaxTanOO] Roy A. Maxion and Kymie M.e. Tan, "Benchmarking Anomaly-Based Detection 

Systems," presented at First International Concerence on Dependable Systems & 

Networks, New Yorle. http://www-

2.cs.cmu.edulafs/cs.cmu.eduiuser/maxionlwww/pubslmaxiontanOO.pdf, 2000, pp. 623--30. 

[McHughOO] J. McHugh, "The Lincoln Laboratories Intrusion Detection System Evaluation: A 

Critique," presented at DISCEX'OO - DARPA Information Survivability Conference & 

Exposition, Hilton Head, SC, 2000. 

[McHughOOb] John McHugh, "The 1998 Lincoln Laboratory IDS Evaluation: A Critique," presented at 

Third Inti. Workshop on Recent Advances in Intrusion Detection (RAID2000), Toulouse, 

published in LNCS, vol. 1907, 2000, pp. 143--61. 

[McHughOl] John McHugh, "Intrusion and intrusion detection," International Journal of Information 

Security, vol. I, pp. 14--35. 

http://1ink.springer.de/link/service/joumalslI0207/papersll00100IIl00l0014.pdf, 2001. 

235 



AIT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETECTION SYSTEMS 

[MCZH99] St. Manganaris, M. Christensen, D. Zerkle, and K. Henniz. •. A Data Mining Analysis of 

RTID Alarms," presented at Second International Workshop on Recent Ad\ances in 

Intrusion Detection (RAID'99), West Lafayette, IN. http:/www.raid­

symposium.org/raid99/P APERSlManganaris.pdf, 1999. 

[Mounji97] Abdelaziz Mounji, "Languages and Tools for Rule-Based Distributed Intrusion Detection.·· 

Ph.D. Thesis: Facultes Universitaires Notre-Dame de la Paix Namur. Belgium. Computer 

Science Department, 1997. 

[MWSKHH90] N. McAuliffe, D. Wolcott, L. Schaefer, N. Kelem, B. Hubbard, and T. Haley. "Is your 

computer being misused? A survey of current intrusion detection system technology." 

presented at Sixth Computer Security Applications Conference. 1990, pp. 260-72. 

[MySql] MySQL AB, "MySQL Database," http://www.mysql.com/. 2000. 

[NessusOO] Renaud Deraison, ''Nessus,'' http://www.nessus.orglintro.html, 2000. 

[Neuman95] Peter G. Neumann, Computer-Related Risks. Reading. MA: ACM Press and Addison­

Wesley, 1995, ISBN 0-201-55805-X. 

[Neuman98] Peter G. Neumann, "Practical Architectures for Survivable Systems and Networks:' 

Computer Science Laboratory, SRI International, Menlo Park. CA, Technical Report 

http://www.csl.sri.coml-neumannlprivate/arldraft. {pd~ps}. October 1998. 

[Neurnan98b] Peter G. Neumann, "Illustrative Risks to the Public in the Use of Computer Systems and 

Related Technology," Computer Science Laboratory, SRI International, Menlo Park. CA. 

Technical Report ftp://ftp.csl.sri.comlpub/users/neurnannlillustrative. {pd~ps}. October 

1998. 

[NeuPar89] Peter G. Neumann and Donn B. Parker, "A Summary of Computer Misuse Techniques." 

presented at 12th National Computer Security Conference, Baltimore, MD, 1989, pp. 396--

407. 

[NIAP97] 

[NSA98] 

National Institute of Standards and Technology (NIST) and National Security Agency 

(NSA), ''NIAP - National Information Assurance Partnership," http://niap.nist.gov/, 1997. 

National Security Agency (NSA), ''NSA Glossary of Terms Used in Security and Intrusion 

Detection," http://www.sans.org/newlook/resourceslglossary.htm. 1998. 

[OMED92] The Oxford Modern English Dictionary: Oxford University Press, 1992. 

[OstWey84] T. Ostrand and E. Weyuker, "Collecting and Categorizing Software Error Data in an 

industrial Environment," The Journal of Systems and Software, vol. 4, pp. 289--300, 1984. 

[ParBus88] M. Paradies and D. Busch, "Root Cause Analysis at Savannah River Plant," presented at 

IEEE Conference on Human Factors and Power Plants, 1988, pp. 479-83. 

[paxson98] Vern Paxson, "Bro: A System for Detecting Network Intruders in Real-Time," presented at 

7th USENIX Security Symposium, San Antonio, TX. http://www-nrg.ee.lbl.gov/nrg-

papers.html, 1998. 

[paxson99] Vern Paxson, "Bro: A System for Detecting Network Intruders in Real-Time," Computer 

Networks, vol. 31, pp. 2435--63,1999. 

236 



[PC0M97] 

[peBiFo54] 

[perl87] 

[PHP] 

[phpAdm] 

AITACK-CLASS-BASED ANALYSIS OF INTRUSION DETECflON SYSTEMS 

N. Puketza, M. Chung, R.A Olsson, and B. MukheIjee. "A software platform testing 

intrusion detection systems," IEEE Software, vol. 14, pp. 43-51, 

http://seclab.cs.ucdavis.edulpaperslpdfslIlJrmc_97.pdf, 1997. 

W. Wesley Peterson, T. G. Birdsall, and W. C. Fox. "The theory of signal detectability," 

IEEE Transactions on Information Theory, vol. IT-4, pp. 171-212, 1954. 

Perl Mongers, "Perl," http://www.perl.orgl, 1987. 

PHP, "PHP - Hypertext preprocessor," http://www.php.netl. 2000. 

phpWizard, "phpMyAdmin - MySQL administration over the web," 

http://phpwizard.netiprojectslphpMy Admin!, 2000. 

[PorKem92] Phillip A Porras and Richard A Kemmerer, "Penetration State Transition Analysis: A 

Rule-Based Intrusion Detection Approach," presented at Eight Computer Security 

Applications Conference, 1992, pp. 220--9. 

[PostleOl] Roland Postle, "Serious Pitbull LX Vulnerability," 

http://www.securityfocus.comlarchive/1l172699. 2001. 

[Power96] R. Power, "Current and Future Danger: A CSI Primer of Computer Crime & Information 

Warefare," CSI Bulletin 1996. 

[PtaNew98] Thomas H. Ptacek and Timothy N. Newsham, "Insertion, Evasion, and Denial of Service: 

Eluding Network Intrusion Detection," Secure Networks Inc .. 1998. 

[PZCM096] Nicholas J. Puketza, Kui Zhang, Mandy Chung, Biswanath MukheIjee, and Ronald A. 

Olsson, "A Methodology for Testing Intrusion Detection Systems," IEEE Trans. On 

Software Engineering, vol. 22, pp. 719--29, October 1996. 

[RCFRLHOI] Lee M. Rossey, Robert K. Cunningham, David 1. Fried, Jesse C. Rabek, Richard P. 

[RFPOO] 

Lippmann, and Joshua W. Haines, "LARIAT: Lincoln Adaptable Real-time Information 

Assurance Testbed," presented at Fourth International Workshop on Recent Advances in 

Intrusion Detection (RAID2001), UC Davis, CA. http://www.raid­

symposium.org/raidlOO l/program.html, 200 I. 

Rain Forest Puppy, "A look at whisker's anti-IDS tactics - Just how bad can we ruin a good 

thing?," 

http://www.securityfocus.comltemplates/forutD_message.html?forum=2&head=670&id=6 

70,2000. 

[Roesch99] Martin Roesch, "Snort: Lightweight Intrusion Detection for Networks," presented at LISA 

'99: 13th Systems Administration Conference, Seattle, W A. http://www.snort.orgl, 

http://www . usenix.orgipublicationsllibrary/proceedingsllisa99/full-paperslroeschlroesch. P 

df, 1999, pp. 229--38. 

[SANS] Consortium, "SANS (System Administration, Networking, and Security) Institute," 

http://www.sans.org/. 

[SasBeeOO] sasha and beetle, "A Strict Anomaly Detection Model for IDS," in Phrack Magazine, vol. 

10, http://www.phrack.org/show.php?p=56&a=ll, 2000. 

237 



[SchneiOO] 

[SecFoc] 

[SF2708] 

[SGVS99] 

ATIACK-CLASS-BASED ANALYSIS OF P.-.TRUSION DETECTIO~ SYSTEMS 

Bruce Schneier, Secret & Lies: Digital Security in a Networked World. 1st ed ~ew Yon:: 

John Wiley & Sons, inc., 2000, ISBN 0-471-25311-1. 

SecurityFocus Inc., "SecurityFocus," http://www.securityfocus.com. 1999. 

SecurityFocus Inc., "MS nslPws Escaped Characters Decoding Command Execution 

Vulnerability," http://www.securityfocus.com 'bidi2 708, 200 1. 

R Sekar, Y. Guang, S. Venna, and T. Shanbhag, "A High-Performance Network Intrusion 

Detection System," presented at ACM Conference on Computer and Communications 

Security, 1999. 

[SinSigOl] Thomas Singer and RolfSigg, "Smart Intrusion Detection Systems:' Diploma Thesis. 

Zurich, Switzerland: Swiss Federal Institute of Technology (ETH). Institut fUr Technische 

Infonnatik und Kommunikationsnetze (TIK). 2001, pp. 113. 

[SKKSSZ] Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Eugene H. Spafford. Aurobindo 

Sundaram, and Diego Zamboni, "Analysis of Denial ofSerice Attack on TCP," COAST 

Laboratory, Purdue University, West Lafayette, IN, Technical Report. 

[SloBar95a] Ken Slonneger and Barry L. Kurtz, "Appendix A: Logic Programming with Prolog," in 

Formal Syntax and Semantics of Programming Langauges: A Laboratory-Based 

Approach. Reading, MA: Addison-Wesley, 1995, pp. 610. 

[Sobire98] 

[Song02] 

[Song99] 

Michael Sobirey, "Michael Sobirey's Intrusion Detection Systems page," http://www­

rnks.infonnatik.tu-cottbus.de/-sobirey/ids.html, November 1998, last update: June 15, 

2000. 

Dug Song, "Fragroute," http://www.monkey.orgl-dugsonglfragroute/, 2002. 

Dug Song, "Fragrouter - network intrusion detection evasion toolkit," Anzen Computing, 

Manual Page http://www.netflood.netlfllesIIDS/fragrouter.html. 1999. 

[Spaffo88] E. H. Spafford, "The Internet Worm Program: An Analysis," Purdue University, Tech. 

Report NCSD-TR-823 , 1988. 

[SpaZamOO] Eugene H. Spafford and Diego Zamboni, "Design and implementation issues for 

embedded sensors in intrusion detection," presented at Third International Workshop on 

Recent Advances in Intrusion Detection (RAlD2000), Toulouse, France, 

http://www .cerias. purdue.edulhomes/zambonilpubs/sensors-raid2000. {pslpdf}, 2000. 

[SpaZamOOb] Eugene H. Spafford and Diego Zamboni, "Data collection mechanisms for intrusion 

detection systems," CERIAS, Purdue University, 1315 Recitation Building, West 

Lafayette, IN, Tech. Report 2000-08, 

http://www .cerias. purdue.edulhomeslzambonilpubsl2000-08. {pslpdf}, 2000. 

[Stalli95] W. Stallings, Network and Internetwork Security Principles and Practice. Englewood 

Cliffs, NJ: Prentice Hall, 1995, ISBN 0-02-415483-0. 

[Stewar99] Andrew J. Stewart, "Distributed Metastasis: A Computer Network Penetration 

Methodology," The packet Factory, http://magnificent.skldOxldistributed_metastasis.pdf, 

1999. 

238 



A IT ACK-CLASS-BASED ANALYSIS OF INTRUSION DETEcnON SYSTEMS 

[StHoMcOO] Stuart Staniford-Chen, James A. Hoagland, and Joseph M. McAlerney, "Practical 

Automated Detection of Stealthy Portscans," presented at CCS IDS Workshop 2000, 

Athens, Greece, http://www.silicondefense.comlpptntextlspice-ccs2000.pdf. 2000. 

[Sundar96] Aurobindo Sundaram, "An Introduction to Intrusion Detection," ACM Crossroads Student 

Magazine, pp. 10, http://www.acm.orglcrossroads/xrds2-4/intrus.html., 1996. 

[Symantec] Symantec Corporation, "Symantec Corporation," http://www.semantec.com.. 2001. 

[Tanenb87] A. S. Tanenbaum, Operating Systems Design and Implementation; Prentice Hall, 1987. 

[Tanenb96] Andrew S. Tanenbaum, Computer Networks, 3rd ed: Prentice-Hall Inc., 1996, ISBN 0-13-

394248-1. 

[Thomas96] Stephen A. Thomas, IPng and the TCP/IP protocols: implementing the next generation 

internet, fIrst ed. New York: John Wiley & Sons, Inc., 1996, ISBN 0-471-13088-5. 

[TLFH01] T. Tidwell, R. Larson, K. Fitch, and J. Hale, "Modeling Internet Attacks," presented at 

IEEE Workshop on Information Assurance and Security, United States Military Academy. 

West Point, NY, 2001, pp. 54--9. 

[Tripw99] 

[TRMOO] 

Commercial Product, "Tripwire v1.2," Tripwire Security Systems Inc., 

http;/ /www.tripwiresecurity.com!. 1999. 

Tivoli Systems, "Tivoli SecureWay Risk Manager, User's Guide v3.7," IDM Corp .. 

http;/ /www.tivoli.com!products/iodex/secureway _risk_mgr/. 2000. 

[VeRaGlOI] Iris Vessey, V. Ramesh, and Robert L. Glass, "A Unified Classification System for 

Research in the Computing Disciplines," Indiana University, Technical Report TR107-1, 

http://www.bus.indiana.eduJardennislwp/tr107-1.doc. 2001. 

[ViEcKeOO] G. Vigna, S.T. Eckmann. and R.A. Kemmerer, "The STAT Tool Suite," presented at 

DISCEX'OO - DARPA Information Survivability Conference & Exposition, Hilton Head, 

SC. http://www.cs.ucsb.edul-vignaipub/vigna_eckmann_kemrnerer_discexOO.ps.gz. 2000. 

[VMwareOO] Inc. VMware, "VMware Workstation v2.0," http://www.vmware.coml. 2000. 

[WalderOla] The NSS Group, "Intrusion Detection Systems Group Test," B. Walder, Ed., 

Cambridgeshire, UK., 

http://www.nss.co.uklidsIIDS%20Group%20Test%20Reporf.1020Edition%202.pdf. 200 1. 

[Walder01b] The NSS Group, "Vulnerability Assessment Group Test," B. Walder, Ed., Cambridgeshire, 

UK., http://www.nss.co.uklvaIV A %2OGroup%20Test%20Report%20Edition%202.pdf. 

2001. 

[Wan Y anO 1] Tao Wan and Xue Dong Yang, "IntruDetector; A Software Platform for Testing Network 

Intrusion Detection Algorithms," presented at 17th Annual Computer Security 

Applications Conference (ACSAC), New Orleans, LA. 

http;//www.acsac.orgl2001labstracts/wed-l030-a-wan.html, 2001. 

[WDDN98] Andreas Wespi, Marc Dacier, Herve Debar, and Mehdi M. Nassehi, "Audit Trail Pattern 

Analysis for Detecting Suspicious Process Behavior," presented at RAID 98, Workshop on 

Recent Advances in Intrusion Detection, Louvain-Ia-Neuve. Belgium. http;//www.raid­

symposium.orgiraid98IPro~RAID98ITable_oLcontent.html, 1998. 

239 



ATI ACK-CLASS-BASED ANALYSIS OF INTRUSION DETEcrION SYSTEMS 

[Weber98] Daniel Weber, "A Taxonomy of Computer Intrusions," M.S. thesis, Cambridge. MA: 

Massachusetts Institute of Technology, 1998. 

[WeDaDeOO] Andreas Wespi, Marc Dacier, and Herve Debar, "Intrusion Detection Using Variable­

Length Audit Trail Patterns," presented at Third International Workshop on Recent 

Advances in Intrusion Detection (RAID2000), Toulouse, France. published in LNCS. vol. 

1907, http://link.springer.dellinklservice/seriesl0558Ibibsll907/19070 II O.htm, 2000. pp. 

110--30. 

[Weinma98] William E. Weinman, "About Web Server Logs: Common Log Format," 

http://www.weinman.com!wew!log-talkIclf.html. 1998. 

[Weiss97] Scott Weiss, "Glossary for Information Retrieval," 

http://www.cs.jhu.edul-weisslglossary.html, 1997, last update: 21.1.1997. 

[WesDeb99] Andreas Wespi and Herve Debar, "Building an Intrusion-Detection System to Detect 

[Wilkis02] 

Suspicious Process Behavior," presented at RAID 99, Workshop on Recent Advances in 

Intrusion Detection, West Lafayette, IN, 1999. 

Michael Wilkison, "Intrusion Detection F AQ: How to evaluating Network Intrusion 

Detection Systems?," http://www.sans.orglresourceslidfaq/eval_ids.php, 2002. 

[WooErlOl] M. Wood and M. Erlinger, "Intrusion Detection Message Exchange Requirements," 

http://www.ietf.orgiinternet-drafts/draft-ietf-idwg-requirements-05.txt, 200 1. last update: 

February 20, 2001. 

[ZalewsOl] Michal Zalewski, "Delivering Signals for Fun and Profit - Understanding. exploiting and 

preventing signal-handling related vulnerabilities," 

http://www.securityfocus.com!archive/1/187124. 2001, last update: May 16,2001. 

[ZambonOl] Diego Zamboni, "Using Internal Sensors for Computer Intrusion Detection," Ph.D. Thesis, 

Purdue, IN: Purdue University, Center for Education and Research in Information 

Assurance and Security, http://www .cerias. purdue .edulhomes/zambonilpubs/thesis­

techreport.pdf, 2001, pp. 169. 

[ZeIWa197] Marvin V. Zelkowitz and Dolores Wallace, "Experimental Validation in Software 

Engineering," presented at Empirical Assessment & Evaluation in Software Engineering, 

Keele University, Staffordshire, U.K., http://hissa.nist.gov/exper/ease.html, 1997. 

240 


	402148_0001
	402148_0002
	402148_0003
	402148_0004
	402148_0005
	402148_0006
	402148_0007
	402148_0008
	402148_0009
	402148_0010
	402148_0011
	402148_0012
	402148_0013
	402148_0014
	402148_0015
	402148_0016
	402148_0017
	402148_0018
	402148_0019
	402148_0020
	402148_0021
	402148_0022
	402148_0023
	402148_0024
	402148_0025
	402148_0026
	402148_0027
	402148_0028
	402148_0029
	402148_0030
	402148_0031
	402148_0032
	402148_0033
	402148_0034
	402148_0035
	402148_0036
	402148_0037
	402148_0038
	402148_0039
	402148_0040
	402148_0041
	402148_0042
	402148_0043
	402148_0044
	402148_0045
	402148_0046
	402148_0047
	402148_0048
	402148_0049
	402148_0050
	402148_0051
	402148_0052
	402148_0053
	402148_0054
	402148_0055
	402148_0056
	402148_0057
	402148_0058
	402148_0059
	402148_0060
	402148_0061
	402148_0062
	402148_0063
	402148_0064
	402148_0065
	402148_0066
	402148_0067
	402148_0068
	402148_0069
	402148_0070
	402148_0071
	402148_0072
	402148_0073
	402148_0074
	402148_0075
	402148_0076
	402148_0077
	402148_0078
	402148_0079
	402148_0080
	402148_0081
	402148_0082
	402148_0083
	402148_0084
	402148_0085
	402148_0086
	402148_0087
	402148_0088
	402148_0089
	402148_0090
	402148_0091
	402148_0092
	402148_0093
	402148_0094
	402148_0095
	402148_0096
	402148_0097
	402148_0098
	402148_0099
	402148_0100
	402148_0101
	402148_0102
	402148_0103
	402148_0104
	402148_0105
	402148_0106
	402148_0107
	402148_0108
	402148_0109
	402148_0110
	402148_0111
	402148_0112
	402148_0113
	402148_0114
	402148_0115
	402148_0116
	402148_0117
	402148_0118
	402148_0119
	402148_0120
	402148_0121
	402148_0122
	402148_0123
	402148_0124
	402148_0125
	402148_0126
	402148_0127
	402148_0128
	402148_0129
	402148_0130
	402148_0131
	402148_0132
	402148_0133
	402148_0134
	402148_0135
	402148_0136
	402148_0137
	402148_0138
	402148_0139
	402148_0140
	402148_0141
	402148_0142
	402148_0143
	402148_0144
	402148_0145
	402148_0146
	402148_0147
	402148_0148
	402148_0149
	402148_0150
	402148_0151
	402148_0152
	402148_0153
	402148_0154
	402148_0155
	402148_0156
	402148_0157
	402148_0158
	402148_0159
	402148_0160
	402148_0161
	402148_0162
	402148_0163
	402148_0164
	402148_0165
	402148_0166
	402148_0167
	402148_0168
	402148_0169
	402148_0170
	402148_0171
	402148_0172
	402148_0173
	402148_0174
	402148_0175
	402148_0176
	402148_0177
	402148_0178
	402148_0179
	402148_0180
	402148_0181
	402148_0182
	402148_0183
	402148_0184
	402148_0185
	402148_0186
	402148_0187
	402148_0188
	402148_0189
	402148_0190
	402148_0191
	402148_0192
	402148_0193
	402148_0194
	402148_0195
	402148_0196
	402148_0197
	402148_0198
	402148_0199
	402148_0200
	402148_0201
	402148_0202
	402148_0203
	402148_0204
	402148_0205
	402148_0206
	402148_0207
	402148_0208
	402148_0209
	402148_0210
	402148_0211
	402148_0212
	402148_0213
	402148_0214
	402148_0215
	402148_0216
	402148_0217
	402148_0218
	402148_0219
	402148_0220
	402148_0221
	402148_0222
	402148_0223
	402148_0224
	402148_0225
	402148_0226
	402148_0227
	402148_0228
	402148_0229
	402148_0230
	402148_0231
	402148_0232
	402148_0233
	402148_0234
	402148_0235
	402148_0236
	402148_0237
	402148_0238
	402148_0239
	402148_0240
	402148_0241
	402148_0242
	402148_0243
	402148_0244
	402148_0245
	402148_0246
	402148_0247
	402148_0248

