
THE UNIVERSITY OF NEWCASTLE UPON TYNE
DEPARTMENT OF COMPUTING SCIENCE

UNIVERSITY OF
NEWCASTLE UPON TYNE

Exploiting Parallelism in n-D
Convex Hull Algorithms

by

Edet Okon Eyoh
NEWCASTLE UNIVERSITY LIBRARY

094 50743 X

---rhes\S L532 b
PhD Thesis

September 1994

Abstract

The convex hull is a problem of primary importance because of its applications in

computational geometry. A number of sequential and parallel algorithms for computing

the convex hull of a finite set of points in the lower dimensions are known. In compar­

ison, the general n-D problem is not as well understood and parallel algorithms are not

so prevalent because the 2-D and 3-D methods are not easily extended to the general

case. This thesis presents parallel algorithms for evaluating the general n-D convex hull

problem (where 2-D and 3-D are special cases) using Swart's sequential algorithm. One of

our methods combines a gift-wrapping technique with partitioning and merge algorithms

where the original list is split into p > 1 partitions followed by the computation of

the subhulls using the sequential n-D gift-wrapping method. The partial hulls are then

combined using a fanin tree. The second method computes the convex hull in parallel

by wrapping around the edges until a complete facial lattice structure of the polytope is

generated.

Several parameterised versions of the proposed algorithms have been implemented on

the shared memory and message passing architectures. In the former, performance on an

Encore Multimax using Encore Parallel Threads and the more lightweight Microthread

programming utilities are examined. In the latter, performance on a transputer based

machine using CS-Tools is discussed. We have shown that our techniques will be useful

in the construction of faster algorithms which employ the n-D convex hull algorithms as

a sub-algorithm.

Acknowledgements

I sincerely thank my supervisor, Dr. G. M. Megson, for suggesting this area of research

and for reading and commenting upon the numerous drafts of this thesis.

I would also like to express my appreciation to Dr. John 1. Lloyd and Dr. Chris

Phillips for their suggestions at different levels of the work. My thanks also go to the

members of the Algorithm Engineering Research Group and other colleagues in the de­

partment, their efforts were greatly appreciated. I am grateful to the then University of

Cross River State, Uyo, Nigeria (now University of Uyo) for granting me a study leave

during the period of this research.

Financial support for this research was provided by the Commonwealth Scholarship

Commission in the United Kingdom.

Finally, I thank my family for their support and encouragement which they gave me

during my studies particularly my wife Unyime and Ekomobong my daughter.

1

Declaration

I certify that no part of the original material offered here in this thesis has been previ­

ously submitted by me for a degree or other qualification in this or any other university.

EDET OKON EYOH

11

Contents

Abstract

Acknowledgements

Declaration

Contents

List of Figures

List of Tables

1 Introduction

2 Parallel Architectures And Their Implementations

2.1 SISD Architectures

2.2 MISD Architectures.

2.3 SIMD Architectures.

2.4 MIMD Architectures

2.5 }'1 ul ti processors

2.6 ~lulticomputers

2.6.1 Transputer.

2.6.2 Systolic Array Architectures

111

11

111

viii

Xl11

1

6

8

9

11

12

13

16

2.6.3 Dataflow Architectures 18

2.6.4 Reduction Machines 20

2.7 Summary Of Parallel Architectures 20

2.8 Granularity 22

2.9 Parallel Programming 23

2.10 Multiprocessor Implementation 24

2.10.1 Monitors .. 25

2.10.2 Semaphores 25

2.11 Distributed Memory Implementation 30

2.12 Performance Measures 34

2.12.1 Speedup 35

2.12.2 Efficiency 36

2.12.3 Algorithm Equivalence 36

3 The Convex Hull Problem 37

3.1 Definition Of Terms. 37

3.2 2-D Algorithms ... 41

3.2.1 Graham's Algorithm: 42

3.2.2 Jarvis's Algorithm: 45

3.2.3 Divide-and-Conquer Algorithms 45

3.3 3-D Algorithms 47

3.4 n-D Algorithms 49

3.5 Parallel Algorithms 52

3.5.1 2-D Algorithms 52

3.5.2 3-D Algorithms .J I

3.6 Summary 59

IV

4 Sequential Algorithms 61

4.1 The Gift-Wrapping Technique .. 62

4.1.1 Recursive Method. -.)
1-

4.1.2 Stack Version ... 74

4.2 Sequential Implementation . 7S

4.3 Program Testing .. 79

4.4 Design Of Test Data 81

4.4.1 Test Generation For Type 1 Hulls 82

4.4.2 Test Generation For Type 2 Hulls 82

5 Implementation Using Partitioning 85

5.1 Sequential Method 85

5.2 Shared Memory Implementation. 89

5.3 Results From Shared Memory Machine 94

5.4 Message Passing Implementation 97

5.4.1 Simulated Tree 100

5.4.2 Tree Method 104

5.4.3 Fixed Size Tree or Pipelined Method 107

5.5 Results From Distributed Memory Machine 110

5.6 Partitioning Methods 111

5.6.1 Lexicographic Partitioning 115

5.6.2 Random Colouring 118

5.6.3 Bucket Method 121

5.6.4 Shell Method 121

5.6.5 New_Shell Partitioning 125

5.6.6 Multiple Level Partitions. 12.5

v

5.7 Results From Partitioning Methods . 126

6 Facial Lattice Exploration (FLE)

6.1 FLE On Shared Memory (Version 1)

6.1.1 Results

6.2 FLE On Shared Memory (Version 2)

6.2.1 Results From Shared Memory

6.3 Transputer Implementation Of FLE .

6.3.1 Results From Distributed Memory

7 Conclusions and Summary

Bibliography

Appendices

A Tables

B Graphs

C Some Program Listings

C.1 Definitions for the convex hull program

C.1.1 Routines for manipulating Points

C.1.2 Routines for manipulating Edge/Face lists

C.1.3 Points Sorting

C.1.4 Generate_Hull(S, n, CH, FA) .

C.1.5 int Check_Hul1(S, Faces, n) ..

C.1.6 POINTS Remove~uplicateYoints(S, n)

C.l. 7 Generate_Bounds(small, large, S, n) ...

C.1.8 Simple Matrix And Vector Manipulation

VI

128

134

140

144

153

156

168

173

182

192

192

226

247

248

248

253

256

258

2.59

260

. 260

. 261

C.L9 Rotate(S, AS, n, k, F, norm, J) .

C.LlO InitiaLfacet(S, AS, n, k, F, norm)

C.Lll POINTS Affine_Hull(S, n, A, k) .

C.L12 int Check_Plane(S, n, norm, PO) .

C.2 Test Data Generators

C.2.l Generate_Test(CH, FA, n, npts)

C.2.2 Test To Generate Circular Structure

C.2.3 Test To Generate Rectangles In Levels

C.3 Routine For Distributed Memory Architecture

C.3.l List Communication Primitives On Transputer.

C.3.2 Build Files For Partitioning Method

C.3.3 Build Files For FLE

VB

· 264

· 269

271

273

· 274

· 274

· 275

· 276

· 278

· 278

· 280

· 281

List of Figures

2.1 General Structure of SISD Architecture. 9

2.2 General Structure of MISD Architecture 10

2.3 General Structure of SIMD Architecture 11

2.4 General Structure of MIMD Architecture 1:3

2.5 Bus Interconnection. 1')

2.6 Transputer Network. 17

2.7 Systolic flow of data to and from memory. 18

2.8 Dataflow Graph . 19

3.1 Angle Between Three Points ·1:3

3.2 2-D Convex Hull Illustration 44

3.3 2-D Convex Hull For Divide-And-Conquer n

3.4 Upper and lower tangent lines between 8 1 and 8 2 .'):~

3.5 A partitioning of 8 into 5 subsets 55

3.6 Illustration Of Merge Procedure . ?)(j

4.1 Transformation Of 3-D To 2-D square. 66

L2 Set S Projected Onto The Plane Of e And it 67

4.3 Stack Implementation For 3-D 76

.1. ~l Types Of Shapes In 2- D :31

4.5 Illustration of 3-D Circular Shape 8:1

Vill

4.6 Illustration of 3-D Pyramid Shape .. S4

5.1 Illustration Of Hybrid Approach ..

5.2 Merge Tree For Eight Subconvex Hulls

5.3 Recursive Version 2-D 26 Vertices Using Threads

5.4 Recursive Version 4-D 6 Vertices Using Threads

5.5 Recursive Version 3-D 12 Vertices Using Microthreads .

5.6 Stack Version 2-D 26 Vertices Using Threads.

5.7 Stack Version 4-D 6 Vertices Using Threads

5.8 Stack Version 3-D 12 Vertices Using Microthreads

5.9 A Simulated Tree Implementation.

5.10 Tree In A Distributed Machine ..

5.11 Recursion Version 1 2-D 26 Vertices Using Transputer.

5.12 Recursion Version 2 2-D 26 Vertices Using Transputer.

5.13 Recursion Version 2 4-D 6 Vertices Using Transputer

5.14 Recursion Version 1 4-D 6 Vertices Using Transputer

5.15 Stack Version 1 2-D 26 Vertices Using Transputer

5.16 Stack Version 2 2-D 26 Vertices Using Transputer

5.17 Stack Version 2 4-D 6 Vertices Using Transputer.

5.18 Stack Version 1 4-D 6 Vertices Using Transputer.

5.19 Point Allocation In Lex Partitioning .. ,

5.20 Allocation Of Points In Random Colouring

5.21 Partitioning of 2-D Plane

5.22 Distribution Of Points Into Buckets

5.23 Allocation Of Points To Shells With Convex Hull On One Band

5.24 Allocation Of Points To Shells With Convex Hull Across Bands

IX

89

93

97

98

98

99

99

100

103

105

111

112

112

113

113

114

114

115

117

119

120

122

123

124

6.1 Facial lattice of a pyramid over a square

6.2 Illustration Of Parallel Execution Of 3D Convexhull by FLE

6.3 Edge Computation In A 2-D Problem

6.4 Exploiting Parallelism With Unlimited Number Of Processors

6.5 FLE Implementation Using Global Lists

6.6 FLE For 2-D On Shared Memory

6.7 FLE For 3-D Circular Shape On Shared Memory

6.8 FLE For 3-D Pyramidal Shape On Shared Memory

6.9 Communication Between Processes on Different Transputers

6.10 Master And Manager Run On Same Transputers.

6.11 FLE For 2-D On Transputer (Ver 1)

6.12 FLE For 2-D On Transputer (Ver 2)

6.13 3-D Circular Shape On Transputer (Ver 1)

6.14 3-D Circular Shape On Transputer (Ver 2)

7.1 Partitioning of GNORMS into three sublists ..

B.1 Recursive Version 2D 3 Vertices Using Threads

B.2 Recursive Version 2D 4 Vertices Using Threads

B.3 Recursive Version 2D 6 Vertices Using Threads

B.4 Recursive Version 2D 16 Vertices Using Threads

B.5 Recursive Version 3D 3 Vertices Using Threads

B.6 Recursive Version 3D 4 Vertices Using Threads

B.7 Recursive Version 3D 6 Vertices Using Threads

B.S Recursive Version 3D 12 Vertices Using Threads

B.9 Recursive Version 4D 4 Vertices Using Threads

B.10 Recursive Version 2D 3 Vertices Using Microthreads .

x

129

130

1:3:2

133

146

156

157

157

159

168

170

171

171

172

181

227

227

228

228

229

229

230

230

231

231

B.ll Recursive Version 2D 4 Vertices Using Microthreads .

B.12 Recursive Version 2D 6 Vertices Using Microthreads .

B.13 Recursive Version 2D 16 Vertices Using Microthreads

B.14 Recursive Version 2D 26 Vertices Using Microthreads

B.15 Recursive Version 3D 3 Vertices Using Microthreads .

B.16 Recursive Version 3D 4 Vertices Using Microthreads .

B.17 Recursive Version 3D 6 Vertices Using Microthreads .

B.18 Recursive Version 4D 4 Vertices Using Microthreads .

B.19 Recursive Version 4D 6 Vertices Using Microthreads .

B.20 Stack Version 2D 3 Vertices Using Threads

B.21 Stack Version 2D 4 Vertices Using Threads

B.22 Stack Version 2D 6 Vertices Using Threads

B.23 Stack Version 2D 16 Vertices Using Threads

B.24 Stack Version 3D 3 Vertices Using Threads

B.25 Stack Version 3D 4 Vertices Using Threads

B.26 Stack Version 3D 6 Vertices Using Threads

B.27 Stack Version 3D 12 Vertices Using Threads

B.28 Stack Version 4D 4 Vertices Using Threads.

B.29 Stack Version 2D 26 Vertices Using Microthreads

B.30 Stack Version 3D 6 Vertices Using Microthreads

B.31 Stack Version 4D 6 Vertices Using Microthreads

B.32 Recursion Version 1 3D 6 Vertices Using Transputer.

B.33 Recursion Version 1 3D 12 Vertices Using Transputer

B.34 Stack Version 4D 6 Vertices Using Microthreads ...

B.35 Recursion Version 1 3D 6 Vertices Using Transputer.

B.36 Recursion Version 1 3D 12 Vertices Using Transputer

Xl

232

232

233

233

234

234

235

235

236

236

237

237

238

238

239

239

240

240

241

241

242

242

243

243

244

244

B.37 Stack Version 1 3D 6 Vertices Csing Transputer .

B.38 Stack Version 1 3D 12 Vertices Using Transputer

B.39 Recursion Version 2 3D 6 Vertices Using Transputer.

B.40 Recursion Version 2 3D 12 Vertices t: sing Transputer

xu

2-1.)

2-1.5

246

246

List of Tables

2.1

2.2

3.1

3.2

3.3

4.1

Properties Of Multiprocessors ..

Examples Of Some Architectures

Set Of Points To Illustrate 2-D Algorithms

Sequential Running Time For 2-D and 3-D Algorithms

Parallel 2-D Complexity Table

Test Data

Hi

.).)

.58

80

5.1 Partitioning (2-D 26vertices, 4-D 6vertices, with 1000points) On :\Illitimax 126

5.2 Statistics For Partitioning Methods From Table 39

6.1 Movement Of Edges Into Pend_List

6.2 Movement Of Edges Into Pend_List (Table 6.1 Cont.) .

6.3 Results For FLE Version 1

127

141

142

143

6.4 Timing for 2-D 1:S.5

6.5 Timing for 3-D Circular Structure. 1.5.5

6.6 Timing for 3-D Pyramidal Structure Generating Rectangle In Levels. 156

6.7 Timing for 2-D 169

6.S Timing for 3-D Pyramidal Structure 170

6.9 Timing for 3-D Circular Structure. . 170

Xlll

Chapter 1

Introduction

Sometimes when we have a large number of points to process, we are interested in finding

the boundaries of the points so that all other points will be interior to the boundary points.

If these points are plotted on a diagram, it takes very little time to find out their positions

relative to the chosen origin. The mathematical name for the natural boundary of a point

set is the convex hull. This is defined to be the smallest convex polygon containing all the

points. Equally, it could be considered as the shortest path surrounding all the points.

The points or vertices of the convex hull are points from the original set.

For the 2-D case, the concept of a convex hull is natural and easy to understand. If

S consists of a finite set of points in the plane, consider surrounding the set by a large,

stretched, rubber band. When the rubber band is released, it \vill assume the shape

of the boundary points which is the convex hull of S. In this case the boundaries of

the resulting polygon are made up of straight lines whose points of intersection give the

vertices of the hull. For greater than two dimensions, the polytope is bounded by faces,

and the intersection of two faces gives rise to an edge. For example a cube has six faces,

twelve edges and eight vertices. If one edge and one of the faces containing this edge is

known, then another face can be generated by a rotation of the known face about the

known edge. A repetition of a number of rotations will be necessary to eventually produce

a complete description or facial lattice structure of the object.

1

These intuitive and simple definitions hide the fact that the convex hull is a geometric

structure of primary importance in computational geometry. It has important applications

in computer-aided design, computer graphics, image generation, and operations research

[4, 5, 61]. In graphics applications, the interest is in determining the edges that uniquely

describe the object. In Linear Programming (LP) we consider maximising (or minimising)

some linear functional over a polyhedron defined by,

subject to

max

n

n

"'c-x­~]]

j=1

L aijXj < bi (i = 1,2, ... , m)
j=1

Xj 2: 0, (j 1,2, ... , n).

Any solution of Ax = b which is non negative gives a feasible solution to the optimisation

problem and these solutions are the vertices of the convex hull. One of these vertices which

maximises the objective function is the optimal solution. Other applications include

simulating chemical reactions or estimating population parameters in Statistics which

often require the calculation of the convex hull in a dynamic fashion [3]. The depth of a

point p in a set S can be considered as the number of convex hulls (convex layers) that have

to be stripped from S before p is removed. In graphics applications, the dimension n ~ 3 is

usual. But in problems involving principal component analysis and clustering applications

(such as quality testing) and automatic analysis of data dependency by parallel compilers

n > 3 is common. Most recently, the convex hull is also being used in automatic synthesis

of parallel algorithms where nested loops are regarded as geometric objects and whose

computations are defined inside a convex polytope [6]. The partitions of the hull and

mapping of partitions into processor arrays often requires the construction of convex hulls

to define loop bounds for the code.

2

In two (2-D) and three (3-D) dimensions, quite a lot has been achieved in computing

the convex hull both sequentially and in parallel. Some of these contributions are con­

sidered in more detail in chapter three. For the higher dimensions i.e. for n > 3, the

problem is less well understood and hence relatively little research has appeared in the

literature on computing the convex hull. In 2-D as well as in the higher dimensional cases,

the approaches adopted by the different authors are mainly theoretical with each paying

particular attention to the analysis of the expected time performance of their algorithms.

Only a few authors have given consideration to practical implementations of t.hese algo­

rithms. Also significant effort has been devoted to designing parallel methods for solving

the 2-D and 3-D problems in the shared memory and distributed memory architectures

which use the divide-and-conquer paradigm to achieve an optimal time bound.

Unfortunately, the methods used for identifying the convex hull for 2-D and 3-D prob­

lems cannot be directly extended to compute the convex hull for the n-D problem. At­

tempting to scale the methods to higher dimensions will result in increased computing

time. This is because of the combinatorial nature of the n-D problem. However, with

renewed interest and development in the field of Computational Geometry, researchers

have become more interested in the n-D convex hull problem. Chand & Kapur [1] paved

the way in their paper by proposing a sequential algorithm for the n-D problem. Swart

[2] then modified this algorithm to improve its performance. So far, there is no concerted

effort on parallel implementation of the n-D convex hull problem. Motivated by this slow

pace of work, and with the availability of parallel machines, the main theme of this re­

search has centered on the development and implementation of parallel algorithms for the

n-D convex hull problem.

In light of the above, the main contribution of this research is to present parallel

methods for evaluating the n-D convex hull algorithm on both shared memory and message

passing architectures. The approaches to be adopted in the study are as follows:

3

• Use an existing algorithm based on Chand and Kapur's wrappmg technique [1)

modified to use the affine basis method as described by Swart [2) and extend to a

parallel implementation.

• Levels of implementation: This will be considered in two stages

1. A partitioning approach.

2. A method to explore the facial lattice of the convex hull.

The recursive and non-recursive versions of this algorithm are implemented on the chosen

architecture. The C programming language is used in coding the algorithm, and

• Encore Parallel Threads (EPT) and microthreads [54) on the shared memory ma­

chine.

• CS-Tools [97] on a message passing transputer architecture.

The aim is that by implementing the parallel version of the n-D problem we will

provide a substantial improvement over the sequential algorithm. Hence we conclude that

our algorithms will prove useful in the construction of faster algorithms which employ the

n-D convex hull as a sub-algorithm.

The rest of this thesis is organised into six chapters. Chapter two presents an overview

of parallel architectures. Of special interest are the discussions on the shared memory and

message passing architectures on which our convex hull algorithms are to be implemented.

A brief discussion on EPT and CS-Tools is also given. Chapter three gives a brief definition

of the terms to be used in the discussion to aid the understanding of subsequent chapters,

and reviews some of the major approaches to the convex hull problem so far and indicates

the areas that might benefit from further research. Chapter four focuses on the sequential

version of the n-D convex hull algorithm which is the basis of our parallel implementations

and discusses various features of the test data and test generation. The main supporting

routines are also discussed. In chapter five, we discuss several parameterised versions of

the proposed parallel algorithms as implemented on shared memory and message passing

architectures. The techniques are based on partitioning of the data using a divide-and­

conquer method followed by a merge procedure to produce a solution to the problem.

In the shared memory architecture we use a fanin tree approach and simulate the tree

level by level. In the message passing architecture, we also simulate the tree based on

a master-slave relationship. An alternative method pipelines the partitions through the

architecture by constructing a tree in hardware. We present a summary of the results from

our implementations with p > 1 processors on both the shared and distributed memory

machines. Chapter six looks at a method based on facial lattice exploration by wrapping

around the edges until a complete facial lattice structure of the polytope is generated.

It uses the stack version which is better for some shapes than the recursive approach

and is implemented again on both the shared memory and message passing architectures.

Results of these implementations are discussed. Finally, chapter seven provides an overall

summary of the thesis and suggests possible areas for future work.

5

Chapter 2

Parallel Architectures And Their
Implementations

Parallel computers are computers that emphasise concurrent manipulation of data ele­

ments belonging to one or more processes solving a single problem. ;\lgorithms designed

[or implementation on parallel computers are called parallel algorithms. The essence of

the parallel version of any algorithm is to obtain a significant speed-up onT the sequen­

tial version. To date the major set back on rapid introduction of parallel computing has

been the huge investments already made in software for sequential machines (lnd the lack

of good parallel processing software to aid design and development. There are reasons,

however, why parallel processing is gaining widespread attention. Parallel processing is

intended to be used for applications that require massive amounts of data manipulation.

Such problems include real time simulations of complex systems, artificial intelligence,

weather forecasting, computational aerodynamics, energy resource exploration, medical,

military and in basic research among others [:2:2, 23]. Using fast and efficient computers

makes these simulations far cheaper and faster than physical laboratory experiments and

enables the solution of a wider range of problems and these machines are thus cost ef­

fcctiyc. Computational ability is only limited by computer speed and memory capacity

whereas physical experiments are subjected to many constraints. An algorithm whose

order of magnitude time performance is bounded by a polynomial function of .Y (e.g. log-

6

arithmic, linear and quadratic etc.) where N is the size of input. is called a polynomial

time algorithm and is said to be a reasonable algorithm. Similarly, an algorithm that,

in the worst case, requires an exponential time will be considered umeasonable (e.g . .Y~.

NN, 2N). As far as algorithmic problems are concerned, a problem that admits a reason­

able or polynomial solution is said to be tractable, whereas problems with unreasonable

or exponential time solution are termed intractable. Sorting is an example of a tractable

problem and the Towers of Hanoi problem with at least 64 rings or more, is hopelessly

time consuming [59].

Parallel algorithms and programs are closely connected with the architecture of parallel

computers, and therefore design and analysis of parallel algorithms and programs cannot

be considered independently of their implementation and the architecture of the computer

on which they are to be implemented. Unlike in serial computation, where the Random

Access Machine (RAM) is used, one generic model of computation has not been found for

the design and analysis of parallel algorithms. Although the Parallel RAM (PRAM) has

gained a lot of popularity as a general model of parallel computers [23], it is not easy to

use for all applications. This chapter examines some of the parallel computers currently

available. It is not the intention of this thesis to examine the various categorisations in

detail since the emphasis is on algorithms rather than hardware. The purpose here is to

present an overview of some of the parallel computer architectures and in particular those

on which our algorithms are to be implemented.

Most research in design and development of parallel algorithms has come about as a

result of the availability of different models of parallel computers. In order to properly

design these algorithms, a clear understanding of the model of the underlying parallel

computer is required. Many methods of categorisation have been proposed in the literature

[7 - 14] and one of the earliest was Flynn's [7] taxonomy which classifies architectures

according to the presence of instruction and data streams. Although this classification

7

is limited in terms of recent developments in the field, resulting in new architectural

models, it nevertheless provides the basis of most schemes. The four major categories are

as follows:

• Single Instruction Stream - Single Data Stream SISD

• Multiple Instruction Stream - Single Data Stream MISD

• Single Instruction Stream - Multiple Data Stream SIMD

• Multiple Instruction Stream - Multiple Data Stream MIMD

Flynn's classification is very general in nature and does not reveal some important de­

tails of a number of systems e.g. many processors have arithmetic or instruction pipelines

or both and Flynn does not distinguish processors of this type. Haandler [13] and Hwang

& Briggs [23] stress the availability of pipelining and the number of pipeline stages. An­

other classification scheme proposed by Feng [11] stresses the degree of parallelism i.e. the

maximal number of bits that can be processed within a time unit by a computing system

e.g. the Carnegie Mellon C.mmp is a multiprocessor consisting of 16 processors of 16-bit

wordlength. Duncan [9] has extended the scope to include Systolic Arrays, Dataflow and

Reduction machines. Although we shall not make use of them in the rest of the thesis we

will briefly outline their characteristics to place the work in context.

2.1 SISD Architectures

Computers in this group consist of a single processmg element (PE) receiving single

streams of instructions (IS) from the control unit (CU) that operates on a single stream

of data (DS) from the memory (M). This is illustrated in Figure 2.1. At each step during

the computation, the control unit executes a single instruction that operates on a single

datum from memory. Instructions tell the processor the operations to be performed on

8

M
L..-_

CU_;-lS--;1", PH

os

Figure 2.1: General Structure of SISD Architecture

the data and subsequently put it back in the memory. The majority of the present day

computers are in this group, often termed Von Neumann architectures (because they were

invented by John von Neumann [16]). Serial or sequential algorithms are implemented on

SISD machines.

Example 1: Consider the problem of multiplying n numbers. The processor needs to

gain access to the memory n times in order to obtain the n data items. It also performs

(n - 1) multiplications in sequence which requires an order of n operations in total. The

IBM 7090 is an example of a SISD computer.

2.2 MISD Architectures

In this case there are multiple processors, with each processor having its own control unit

but sharing a common memory where data resides. Figure 2.2 is a representation of this

type of architecture. There are multiple streams of instruction and a single data stream.

Parallelism is achieved by letting each processor do different things concurrently on the

same data. These computers are best suited to computations that require a single input

to be subjected to numerous different operations each receiving the input in the same

original form.

9

IS

IS

os
M

IS
cu

IS

Figure 2.2: General Structure of MISD Architecture

Example 2: Suppose we want to classify objects according to some set of predefined

rules. The objects could be mathematical, for instance, where a number could be associ­

ated with one of several sets, each satisfying its own criteria. Alternatively, the objects

could be physical ones (e.g. students, lecturers and civil servants) trying to recognise

objects in order to classify them. The member (single data) of the objects is usually

subjected to many different tests (multiple instructions) in order to group them properly.

MISD computers prove useful as each processor is associated with each class and can

recognise members of that class after subjecting the member to a number of computa­

tional tests. Each member (data) is sent at the same time to each processor where it is

tested against the set criteria in parallel.

At the same time, the computation appears to be of a rather specialised nature and

hence very limited in use. Parallel computers that are more flexible and hence suitable

for a wide range of applications would be preferred.

10

OS PE

1

OS PE
2

SM

OR

lCN
IS

OJ

OS PE

n-l

OS PE

n

Figure 2.3: General Structure of SIMD Architecture

2.3 SIMD Architectures

SIMD architectures typically employ a central control unit, multiple processors, and inter

processor connection network. A single instruction is broadcast to all processors by the

control unit and the results are communicated between the processors from the intercon-

nection network. The model is shown is Figure 2.3. SIMD machines can be subdivided

into Array Processors [8, 18] suitable for large scale numerical calculations such as image

processing and nuclear energy modelling. SIMD machines consist of synchronised Proces-

sor Elements (PE's) under the control of one control unit. Each PE has working registers

and local memory. Examples include Loral's Massively Parallel Processor MPP [24] and

Illiac IV [25] and recently DAP [22]. Associative Memory architectures [25] use special

logic to access stored data in parallel according to its contents. They are geared towards

data based oriented applications, such as tracking and surveillance. Examples include

Bell Laboratories' Parallel Processing Element Ensemble (PEP E) and Loral's Associative

Processor (Aspro) [22].

11

Example 3: Let's consider a very large unsorted file with n items. Suppose that

a certain item y is required in order to perform an operation. On a SISD computer,

retrieving y requires n steps in the worst case when y is the last item in the file. If the

file entry is uniformly distributed over a given range, then the processing time can be

greatly reduced, for instance on a SIMD architecture with p > 0 processors. The item

y (single data) needs to be broadcast to all the processors. The file to be searched is

subdivided into smaller files of size nip, say, of approximately equal number of entries

and are searched simultaneously by the processors. The processor that finds y returns its

result and signals the other processors that y has been found and that they can terminate

their execution. This task requires O(nlp) steps compared with a sequential time of O(n)

steps.

2.4 MIMD Architectures

This is the most general and most popular design among parallel computers. Here we

have multiple instructions and multiple data streams on different processors. Each pro­

cessor operates under the control of instruction streams issued by its control unit. The

processors execute different parts of the program on different data and cooperate by solv­

ing different subproblems of a single problem. Communication is through shared memory

(SM) or an interconnection network (ICN) (message passing). Processors sharing a com­

mon memory are referred to as multiprocessors while those with a local memory are called

multicomputers or Distributed Memory machines. MIMD computers support higher lev­

els of parallelism than can be exploited by 'divide and conquer' algorithms organised as

largely independent subca1culations. Later we shall employ MIMD architectures to imple­

ment the parallel version of n-D convex hull algorithms using a master-slave organisation.

An example of a shared memory paradigm is the Encore Multimax [8] and the Sequent

Machines while the Transputers typify the Distributed Memory ~1achines [8]. The two

12

-
DSI PE ISI CUI

I

SM
PE DS2 IS2 CU2

OR 2

lCN

DSn-l PE IS n-I
n-I CUn-l

DSn PE ISn
n CUn

~

Figure 2-4: General Structure of MIMD Architecture

subclasses namely the Multiprocessors and Multicomputers are briefly examined to draw

out the differences and similarities between them since this is of interest to us. A general

structure of MIMD architecture is shown in Figure 2-4_

Example 4: Consider the problem of finding the sum of n numbers. With a SISD

machine, the processor will access the memory n times to receive the numbers. The

sequential execution also requires (n - 1) additions. In a MIMD architecture, using p

processors, we can partition the problem into nip subproblems or tasks. Each task is

now mapped to a processor and all the subproblems will be executed simultaneously each

producing a partial sum. The partial sum can now be added together in a treelike fashion

to give the final solution to the problem. This requires an O(nlp + log2P) steps, where

p is the number of leaves in the tree. The tree structure is simulated on the p processors.

2.5 Multiprocessors

This class, also called Parallel Random Access Machine (PRAM) [8] or tightly Coupled

machines, share a common memory in the same way a group of people might share a

notice board. If two processors want to communicate, the first processor first writes the

13

item into the shared memory location known to the second processor which then reads the

item from that location. Allowing multiple read accesses to the same address in memory

should in principle pose no problems. Conceptually, each of the several processors reading

from that location makes a copy of the location's contents and stores it in its own local

memory. There are three classes of such machine, depending on the kind of memory

contention tolerated. These are EREW (exclusive read/exclusive write), which requires

that at any time any memory cell should be accessed by at most one processor. CRE\V

(concurrent read/exclusive write) will allow any number of processors to read the same

memory cell simultaneously, but not to write to the cell simultaneously. The third model,

(concurrent read/concurrent write) CRCW machine, allows simultaneous read and write

access. If several processors attempt to write to the same location, then only one of them

succeeds, and the successful processor is chosen arbitrarily. Each processor in addition to

a shared memory also has a local memory used as a cache where multiple copies of the

shared data may exist at a given time. There are three major alternatives for connecting

multiple processors to the shared memory and these are Bus Interconnection [35], Crossbar

[21] and Multistage Interconnection Network (MIN) [31 - 33].

A bus system (figure 2.5) contains one or more buses on which the system compo­

nents are connected. A single bus is the simplest and least expensive to implement and

is flexible as components can be added to or disconnected from the bus. Time-shared

buses offer a fairly simple way to give multiple processors access to a shared memory. A

simple time-shared bus effectively accommodates a moderate number of processors since

one processor accesses the bus at a given time. In the Encore Multimax, such a bus is

the Nanobus. Since the bus is the potential bottleneck preventing physical expansion of

the system beyond a certain limit, extension of the single bus architecture is required

to increase the capacity of the bus-based parallel processing systems. The Nanobus of

the Encore's Multimax system [8] is a backplane bus that delivers a usable throughput

14

System

Figure 2.5: Bus Interconnection

of 100Mbytes/sec. Present systems have 2 to 20 National Semiconductor NS32332s con­

nected to the backplane N anobus, providing up to 40MIPS of processing power with up

to 128Mbytes of shared memory. The Encore Multimax on which our experiments will be

conducted is a structured architecture running the UMAX operating system and contain­

ing 14, NS32332 processors each with 256Kb processor cache memory. Its major setback

is the bus bottleneck. However this could be avoided if multiple buses are implemented

so that failure of a single bus will not cause a total failure of the whole system. On the

other hand, the multiple bus implementation requires multiporting which is expensive.

The Crossbar permits the concurrent communication and link between all processors and

memory modules to be established. Multiple accesses of memory modules are possible

as long as they are accessing different locations. This class of multiprocessors has a high

throughput resulting from multiple, concurrent communication paths. Reducing the com­

munication overhead is the main concern of designing an efficient communication system.

Multistage Interconnection Networks (MIN) attempt to strike a compromise between the

price and performance alternatives offered by Crossbar and buses. An N x N MIN con­

nects N processors to N memories by deploying multiple stages or banks of switches in

15

Table 2.1: Properties Of Multiprocessors
Property Bus Crossbar Multistage

Speed low high high
Cost low high moderate

Reliabili ty low high high
Configurability high low moderate

Complexity low high moderate

the interconnection network pathway. A processor making a memory access request spec-

ifies the desired destination (the pathway) by issuing a bit-value that contains a control

bit for each stage. Table 2.1 [52] summarises the properties of the three categories of the

multiprocessors mentioned above.

2.6 Multicomputers

Multicomputers are also called Loosely Coupled or Distributed Memory machines. The

distinction between the multicomputers and distributed memory machines lies on the

physical distance separating the processors. If the processors are in close proximity they

are called multicomputers otherwise they are termed distributed systems. For example if

the processors are in the same room they are termed multicomputers but if they are in

different cities they are distributed systems. This is important when evaluating parallel

algorithms, because the processors in a distributed system are far apart. If the number of

data exchanges between them is significantly more than the number of computational steps

performed by any of them then the performance will be affected. The Distributed memory

architectures are further subdivided into Ring topology structure [27], Mesh computers

[29], Pyramid topology [28], Mesh-of-tree [25], Hypercube [17, 26] and Reconfigurable

architecture [30] according to the way the processors are connected.

16

Figure 2.6: Transputer Network

2.6.1 Transputer

A transputer is a microcomputer with its own local memory and with links for connecting

one transputer to another. A typical member of the transputer family is a single chip

containing processor, memory, and communication links which provide point to point con­

nection between transputers. In addition each transputer contains special circuitry and

interfaces adapting it to a particular use. A transputer can be used in a single processor

system or in networks to build high performance concurrent systems. A network of trans­

puters and peripheral controllers is easily constructed using point-to-point communication

as shown in figure 2.6. The point-to-point connection allows transputer networks of arbi­

trary size and topology to be constructed. There is no contention for the communication

mechanism, regardless of the number of transputers in the system. There is no capacitive

load penalty as transputers are added to a system and the communication bandwidth does

not saturate as the size of the system increases. In particular, our experimental work was

carried out on a Meiko system [29] which uses T800 transputer processors each with a

memory capacity of 4MB. This system has 16 transputers each with four bi-directional

17

M

Figure 2.7: Systolic flow of data to and from memory

links.

2.6.2 Systolic Array Architectures

This group of SIMD /MIMD computers proposed by Kung [15] solves problems mainly in

special purpose systems. The basic principle involves the pumping of data from memory

through processor elements (cells) and back to memory as shown in Figure 2.7. Once a

data item enters the systolic array from memory or an external device, it is passed to any

processor element that needs it. Systolic Arrays apart from their applications in Linear

Algebra (e.g. matrix product, inverses, triangularization) also find application in medical

image and signal processing algorithms [8]. Examples include Carnegie Mellon's Warp

[36 - 38]. They can be reconfigured into different topologies to suit applications but are

very special purpose in nature.

2.6.3 Dataflow Architectures

Dataflow machines (Data - Driven) [19, 40] employ an execution paradigm in which in­

structions are enabled for execution as soon as all their operands become available instead

18

Node 2

Figure 2.8: Dataflow Graph

of following the sequence dictated by the ordering of program instructions. The sequence

of instructions are based on data dependencies allowing the architecture to exploit par-

allelism at task, routine and instruction levels. Data Driven machines are designed to

execute dataflow graphs in which the nodes represent the operations (such as multiplica-

tion, addition) and the arcs denote the data dependencies between the functions. Figure

2.8 illustrates a dataflow graph. A dataflow graph is made up of operators (actors) con-

nected by arcs that convey data. In figure 2.8 the actors are drawn as circles with the

function symbols of +, - and * representing addition, subtraction and multiplication re-

spectively. The arcs convey inputs a and b and the output arcs will carry tokens being

values computed by the previous actors. When all the values are present in the input arcs

and none in the output arc, the actor is enabled or fired. Node 1 and Node 2 compute the

sum and difference of a and b respectively and then pass on the tokens to Node 3 where

the product is computed.

There are two types of Dataflow architectures:

• Static Dataflow Machines where all the graph nodes are loaded into the memory

19

during initialisation and which allow one instance of the node to be executed at a

time.

• Dynamic Dataflow Architecture permits the creation of node instances at run time

and multiple instances of a node can be executed concurrently.

Examples of Dataflow machines are Manchester Dataflow Computer [34] and the i\IIT

Tagged Token Dataflow Machine [33].

2.6.4 Reduction Machines

Reduction or Demand-Driven [20] architectures seek to reduce an expression in a program­

ming language to its final result. An instruction is executed when its result is needed by

an operand for another instruction which is ready to execute and not when their operands

are ready as in dataflow. Programs are viewed as nested applications and execution pro­

ceeds from the innermost application until there are no further calculations. Thus they

are good for programs with nested expressions. The reduction may be a string reduction

like a * b in which case a string is replaced by its value or a graph reduction in which case

pointers are manipulated. This type of architecture is exemplified by the University of

North Carolina's FFP computer [41]. There are however attempts to create hybrid ma­

chines for the dataflow and reduction paradigms. Rediflow [57] has the features of both

Dataflow and Reduction machines. Here, processors will work first on the instructions

demanded of them if the operands are available before working on instructions that are

ready for execution.

2.7 Summary Of Parallel Architectures

So far, we have presented different models of parallel architectures. Differing processor

organisations have been suggested and some implementations for both the shared memory

and message passing architectures described. The different models offer varying abilities

20

in terms of granularity of computation, performance ranges and programming require­

ments. Some models are targeted at specific applications and may perform poorly in

other circumstances while some are general purpose machines. The MnrD class are gen­

eral purpose since they consist of a number of central processing units asynchronously

executing independent instruction streams. MIMD computers are grouped according to

the manner in which the CPUs access memory. The multiprocessors have a single shared

address space and the distance from a CPU is constant but in some cases each memory

cell is closer to one CPU than to others. Multicomputers have no shared memory. Each

CPU has its private address space and the processors communicate by message passing.

Clearly, one cannot conclude which specific architectural structure is superior, but a cost

effective parallel processing architecture is one that provides a balanced performance and

an effective processor utilisation, memories and input/output with minimum communi­

cation overhead. The loosely coupled processors communicate by exchanging messages,

whereas the tightly coupled processors communicate through a shared main memory. Each

processor in a distributed system has its own local memory and if a processor needs data

from another processor, it must send a message through a communication subsystem to

the other processor about its demand. In a shared memory machine all processors have

access to the global shared memory which can take the form of memory modules con­

nected to the system bus or distributed in the form of local memories through processors

that can access non local memories through an interconnection network of switches. The

flexibility to access shared memory causes memory access conflicts, but the advantage lies

in the fact that asynchronous communication is easy and fast. Distributed systems are

preferred when the interactions between tasks are minimal as against the shared memory

system that can tolerate a higher degree of interaction between tasks. Table 2.2 shows

some typical examples of architectural models.

21

Table 2.2: Examples Of Some Architectures
SISD IBM 7090 [52]
SIMD Illiac IV [25]
MISD

Multiprocessors(Shared Memory) Encore ~lultimax [35]
Multicomputers(Distributed Memory) Transputers [29]

Systolic Arrays Carnegie Mellon's Warp [36-38]
Dataflow MIT Tagged Token Dataflow [39]

Reduction North Carolina's FFP [41]

2.8 Granularity

Granularity refers to the size of tasks given to each processor, and is a very important

issue in parallel performance because the time invested in creating processes and moving

information among processors must be balanced by that invested in actual computation.

For example a message passing program would not perform well if the time spent in

communication is not balanced by that spent in evaluating computations. It is difficult

to say precisely what the correct size of task should be. However for every hardware

environment and coordination language (like Linda, threads or Parallel-C) there is a limit

in which an application will be too fine-grained to give a meaningful performance. The

cost of communication is usually a dominating factor. In Distributed systems, it takes

quite some time to send and receive data between processors whereas in a shared memory

architecture the data are only copied from one location in memory to another or involves

movement of pointers.

If the time it takes to perform the task is less than the total time it takes to find the

task, perform the computation and then return the result, more is being paid in overhead

than in performing the task and good performance cannot be guaranteed. It is good

practice to avoid excessive fine-grain granularity as this can lead to work starvation. At

the same time too large a spread of granularity among processes is not recommended as

22

this will lead to load balancing problems where the computation time depends on the

load of the most burdened processor.

2.9 Parallel Programming

Programming languages allow parallelism available in an architecture to be exploited.

Concurrent languages can be divided into three major groupings:

• Procedure-Oriented Languages

• Message-Oriented Languages

• Operation-Oriented languages

Any of the above languages can be implemented on MIMD machines but if the language

features do not match the architecture, an efficient development of a parallel algorithm

will be difficult.

In Procedure-Oriented Languages [42] process interaction is based on shared variables.

Processes have access to the data that they want to manipulate while providing means for

ensuring mutual exclusion of processes in critical regions. These languages are particularly

suitable for programming the multiprocessors. Examples include Modula [53], Concurrent

Pascal [43], Mesa [44], Edison [49], Linda [46], Threads and Microthreads [54].

Message-Oriented languages are based on the principle of send and receive. They do

not give access to every data object as each process manages its own data. Processes com­

municate by exchanging messages and so concurrent access is not a problem in this group

of languages. Examples are Occam [45], Communicating Sequential Processes (CSP) [47,

48], and PLITS [56].

Operation-Oriented languages use remote procedure calls as the primary means of

process interaction. These languages have the characteristics of both procedure- and

message-oriented languages. Operations are performed on objects by calling procedures

23

while objects are managed by message passing. The languages can be implemented effi­

ciently on both multiprocessors and multicomputers. Examples include Distributed Pro­

cesses [50, 55] and Ada [51].

Parallel programming can be approached in two main ways, either by writing the

conventional serial algorithm and allowing a parallel compiler to detect areas of parallelism

or by using any of the parallel programming languages outlined above to exploit the

hardware architecture through the syntax of the language. It is this second option that we

adopt in this research. The Procedure- and Message-Oriented languages are implemented

on MIMD architectures using threads, microthreads on shared memory and Parallel-C on

a distributed memory machine.

2.10 Multiprocessor Implementation

The Encore Parallel Threads (EPT) system designed for the Encore Multimax provides an

efficient support for concurrency on the shared memory architectures, and is used in this

work. Communication is via shared variables. Setting up a thread environment has some

overhead but initialisation only takes place at startup and does not affect the performance

of the thread programs. Subsequently, EPT also supports Microthreads which is intended

for applications such as parallelised for and do loops for example in the C programming

language. The shared memory contains sections of data that can be accessed or modified

by different processors. If a processor PI has access to a shared memory and is about to

modify it, and another processor P2 attempts to access and modify the same section, an

error in computation may occur because the value can change before PI has completed its

operation. To avoid such a conflict, controlled access and mutual exclusion with respect

to such sections of memory is required. Modifiable sections of a program, shared by

many processors and executed as uninterrupted operations are termed critical sections.

In the EPT there are mechanisms for mutual exclusion of critical sections and these are

24

Monitors and Semaphores [58].

2.10.1 Monitors

The Monitor is a standard synchronisation mechanism in EPT and it keeps track of the

state of a process in order to safely exit in the case of an exception. It collects critical

sections into a single unit which can only permit one process to gain entry at a time.

These critical sections are procedures or functions of the monitor. :'lonitors also execute

an initialisation operation when a data structure is created. A process can access the

shared data by calling one of the monitor procedures. If there is more than one process

in the access queue, it has to wait until the one in the monitor has finished its operation

before it can enter the monitor and resume. Sometimes some additional logical condition

may have to be fulfilled before a process can enter and execute a critical section even

when it is free.

2.10.2 Semaphores

Semaphores are another synchronisation mechanism which employ nonnegative integers

with two associated operations p and v. They are intended for operations where speed is

of paramount importance .

• p operation causes a semaphore's value to be decreased by 1 but it is not reduced

beyond o .

• v operation causes a semaphore's value to be increased by 1 provided it is not 1

already.

The semaphore is normally a location in shared memory and has a value 0 if a process

is executing in the critical region associated with it, otherwise its value is 1 implying

that the critical region is free. A process can only gain access to the critical region if

the semaphore value is 1, it immediately performs the p operation to lock the region by

reducing the semaphore value to 0 and thus preventing other processes from interrupting.

At completion, the process performs the v operation, raising the \'alue from 0 to 1 thus

setting the critical section free for other processes to gain access. To implement mutual

exclusion every critical section in a program must be preceded by a p operation followed

by a v operation on the same semaphore. PROGRAMl below illustrates the use of

threads to implement a matrix product. PROGRAM2 is an example where semaphores

are implemented. The original code is in the C programming language.

/*
** A parallel program using multiple threads for multiplying matrices.

*/
PROGRAM1
========
#include <thread.h>
#include <stdio.h>
int A [9] = {1, 2, 3,

4, 5, 6,
7, 8, 9};

int B [9] = {9, 8, 7,

6, 5, 4,
3, 2, 1};

int e[9];

rnain(argc,argv)
int argc;
char *argv[];
{

extern void startup();
atol(argv[1]) = procs;
if(argc != 2)
{

fprintf(stderr,"usage: tst #processors\n");
exit(1);

}

THREADgo(atol(argv[1]), 2*1024*1024, startup, 0, 0, 20*1024, 2);
}

void startup 0
{

extern void rnult();
1* A structure must be used to pass multiple parameters

because of the way EPT handles parameters

26

*/
struct {

}

int i;
int j;
hj;

for (ij.i=O; ij.i<3; ij.i++)
for (ij.j=O; ij.j<3; ij.j++)

THREADcreate(mult, &ij, sizeof(ij), ATTACHED, 20*1024, 2);
while(THREADjoin());
printf(IIY.3d Y.3d Y.3d\n Y.3d Y.3d Y.3d\n Y.3d Y.3d Y.3d\n",
C[O], C[l], C[2], C[3], C[4], C[5], C[6], C[7], C[8]);

void mult(ij)
struct {

int i;
int j; }*ij; {
register int i;
register int t=O;
register int col = 3 * ij->i;
register int row = 3 * ij->j;

for (i=O; i<3; i++) {
t += A[col] * B[row];
col++;
row += 3;
}

C[3*ij->i + ij->j] = t;
}

/* row 1, colO */
/* row 0, col j */

To implement this parallel version on the shared memory (SM), the sequential pro-

gram was converted into the parallel version by using the facilities provided in the Encore

Parallel Thread (EPT) package. The Encore Parallel Thread package provides for process

creation and synchronisation mechanisms in the list of the facilities in its library. A struc-

ture was used to pass multiple parameters because of the way EPT handles parameters.

The function ThreadgoO establishes a single thread to initialise EPT. It is stated as:

Threadgo(argv[l], data_size, startup, args, 0, stacksize, priority).

27

The first argument specifies the number of processors allocated for use by EPT.

data_size is the amount of memory allocated to hold the stack and control blocks for all

the threads and also to hold the shared heap. The single initial thread starts execution

by entering the routine startup which is passed a single argument represented by args.

The value 0 represents the argsize and arg is passed to startup. The argsize can also

take a value which is nonzero in which case args will be treated as a pointer to a region

of memory of length argsize. The initial thread is also given a stack size represented by

the argument stacksize which executes at a priority ranging from 0 to 31 with 0 as the

highest. On return from ThreadgoO, EPT is shut down and other processes are released.

What follows thereafter is the creation of a corresponding number of new threads

for parallel execution using the routine ThreadcreateO provided in EPT. Threadcre­

ate(mult, &ij, sizeof(ij), ATTACHED, stacksize, priority) creates a thread of

control with stated priority and executes the function multO which calls each of the

subproblems concurrently to compute the matrix product by using the serial algorithm.

The additional argument ATTACHED dictates that the parent cannot terminate un­

til all the children terminate. The parent can wait for the children by executing the

ThreadjoinO operation. In the alternative, if the argument is DETACHED there is

no relationship between the parent and the children and each is entirely independent. In

our programs, ATTACHED is used to ensure that all new threads have completed their

respective computation before termination.

In the convex hull program, the startup function generates a menu option for com­

puting the convex hull sequentially or in parallel. The first option executes the serial

algorithm. In the latter option, the parallel execution is initiated. 'What follows there­

after is the creation of a corresponding number of new threads for parallel execution using

the routine ThreadcreateO·

1*

28

** A parallel program that counts the number of loops performed by
** each thread using semaphores in the critical region.

*1
PROGRAM2
========

#include <thread.h>
#include <stdio.h>
SEMAPHORE sem;
int count;
main(argc,argv)
int argc;
char *argv[] ;
{

extern void startup();

if(argc != 2)
{

fprintf(stderr,"usage: tst #processors\n");
exit(1);

}

THREADgo(atol(argv[l]), 2*1024*1024, startup, 0, 0, 20*1024,2);
}

void startupO
{

}

extern int child();
THREAD tcb;
int i, total iterations = 0;
sem = THREADseminit(l);
for(i=O; i<10; i++)

THREADcreate(child, 0, 0, ATTACHED, 20*1024, 2);
while((tcb = THREADjoin()) != NULL) {

1* wait for the children to terminate *1
total_iterations += THREADreturnvalue(tcb);
THREADfree(tcb);
}

printf(" count = %d, total iterations = %d\n", count, total_iterations);
fflush(stdout);

int childO
{

int l;

for(i=O; ; i++) {
THREADpsem(sem);
if(count >= 1000)

1* critical region

29

}

break;
count++;
THREADvsem(sem);

}

THREADvsem(sem);
return(i);

The critical sections are protected by the statements THREADpsem(sem) and

THREADvsem(sem) and cannot be interfered with by other processes until after its

operation is completed by the current processor when it is free. The threads and mi-

crothreads libraries are used to introduce parallelism into the hull programs. Multiple

threads of control run in a single shared address space, the overhead of process creation

is incurred only in the start-up phase of the algorithm. Threads in this context are

lightweight containing only program counters and a small amount of additional memory.

2.11 Distributed Memory Implementation

Message passing is a method of synchronisation between processors in distributed memory

machines. The process transmitting the information is the sender, and the process

receiving it is the receiver. The channels for communications are clearly defined and

specified for exchange of information between the processes.

We intend to use a Meiko Computing Surface and the illustration here uses the con-

cept and implementation on the transputer. The examples below show how the different

functions are being harnessed to provide the communication between two processes via

Transports. A par file which describe a multi-process task to the parallel loader is also

shown. Each process calls the function, csn_initO to initialise the Computing Surface

Network (CSN). This is followed by a call to csn_openO that creates a connection be-

tween the process and the CSN. This connection is called a Transport. Each Transport

on the CSN has an associated address, called a Net Id.

30

For a message to be passed from a Sender's Transport to the Receiver's Transport it

is necessary for the Sender to determine the Net Id of the receiver's transport. To do

this the receiving process calls the CSN function, csnJegisternameO, which instructs

the CSN to associate the function's argument with the transport's Xet Id. The sending

process then makes a similar call to the function, csn_IookupnameO, which instructs

the CSN to return the Net Id of the named transport. Finally, having established the

Net Id of the receiver's transport, the sender passes its data by calling the CSN function,

csn_txO and blocks. This function passes data to the transport whose ~et Id is specified

as an argument. In our example, the first process, heading.c writes the title for the table

and informs the second process, solution.c that it has finished. The second process then

waits until it receives the signal from the first process before computing and writing the

temperature conversion.

Process One (Writes Title) heading.c
==

#include <stdio.h>
#include <csn/csn.h>
#include <csn/names.h>
#include <cs.h>
maine argc, argv)
int argc;
char* argv[];
{

}

Transport transport;
netid_t solution_id;
int flag = 1;
int status;
csn_initO;
status = csn_open(CSN_NULL_ID, &transport);
if(status != CSN_OK)

cs_abort(lIheading: cannot open transport\n", -1);
status = csn_lookupname(&solution_id, ISol utionTransport", 1);
if(status != CSN_OK)

cs_abort(lIheading: cannot lookup SolutionTransport\n", -1);
printf("Farenheit Celsius\n"); fflush(stdout);
csn_tx(transport, 0, solution_id, &flag, sizeof(flag));

31

Process Two (Perform Computation) solution.c
==

#include <stdio.h>
#include <csn/csn.h>
#include <csn/names.h>
#include <cs.h>

#define LOWER 0 /* lower limit of table */
#define UPPER 300 /* upper limit */
#define STEP 20 /* step size */
maine argc, argv)
int argc;
char* argv[];
{

}

Transport transport;
int flag;
int status;
int fahr;
csn_init 0;
status = csn_open(CSN_NULL_ID, &transport);
if(status != CSN_OK)

cs_abort("solution: cannot open transport\n", -1);
status = csn_registername(transport, "SolutionTransport");
if(status 1= CSN_OK)

cs_abort("solution: cannot register SolutionTransport\n", -1);
csn_rx(transport, NULL, &flag, sizeof(flag));
for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP)

printf("%7d %12.1f\n",fahr,(5.0/9.0)*(fahr-32));

Parallel Loader (heading.par)
=============================

par
processor 0 heading
processor 1 solution

endpar

The Parallel Loader specify the placement ofthe two processses 'heading' and 'solution'

within the network. More examples are available in [97]. The CSToois also provides the

CSBuild library to create a customised loader to place code more effectively for execution.

To implement the CSBuild routine here we need to create two executable files 'heading'

32

and 'solution'. In a CSBuild program, objects called Groups are arranged into a complex

Group hierarchy. In the CSBuild program, cs_groupO is used to create a single group

and we assign the single process, heading, to that Group by using cs_exeO. Similarly,

we adopt the same method in creating the executable file solution. At this moment,

each of the processes as they stand are not committed to processors for execution. The

function cs_optionO is used to set one of the groups attributes and in our own case

we specify that the group will be executed on a transputer. Finally, cs_IoadO sets the

stage by putting our processes onto the hardware and control will not be returned to the

program until the task is completed. A timing routine to trigger the system's clock was

also written.

Example of CSBuild Program
==========================
#include <stdio.h>
#include <cstools/build.h>

mainO
{

GROUP* headingGRP_ptr;
GROUP* solutionGRP_ptr;

headingGRP_ptr = cs_group(NULL, "HeadingGRP");
solutionGRP_ptr = cs_group(NULL, "SolutionGRP");

}

cs_exe(headingGRP _ptr, "Heading", "heading", 0);
cs_exe(solutionGRP_ptr, "Solution", "solution", 0);

cs_option(headingGRP_ptr, "commit", "transputer");
cs_option(solutionGRP_ptr, "commit", "transputer");

In all our implementations, we have used the synchronous and blocking communication

type. By using this mechanism, data transmission will only occur when both the sender

and receiver are ready and both processes will block (wait) until transmission is complete.

33

A sender process will block until its message is received, and a receiver will block until

the message is sent by the sender. By using this model, both processes must synchronise

before data may be transferred between them with the result that one of the processes

may waste time waiting for the other to be ready. There are other options available to

the programmer to overcome this problem. The send mode options include Blocked

Synchronous, Blocked Asynchronous, Non-Blocked Synchronous and Non-Blocked Asyn­

chronous. The receiver mode options are Blocked and Non-Blocked. The use of blocking

and non-blocking communications affects the way in which the transmission function de­

termines that the communication is completed. A message transmitted synchronously

is complete only when the receiving process has received the message into its own local

buffer whereas a message transmitted asynchronously is complete only when data has

been received by the CSN.

2.12 Performance Measures

Once a parallel program has been implemented, it is the responsibility of the programmer

to explore the performance of the algorithm. If the parallel program does not run faster

than the sequential code, at least to a reasonable limit, then it is a failure. The usual

measures of parallel performance are cost, attectiveness, speedup and efficiency. The

two we will use to measure the performance of n-dimensional convex hull algorithms,

are speedup and efficiency. We will compare the parallel version with an equivalent

sequential version of the same algorithm. Equally worth mentioning is the fact that

we will run the sequential algorithm on one processor of a parallel machine, and the

parallel versions of the same algorithm on many processors of the same machine. This

is important because it is possible to split code over several types of processor which

have different performance characteristics and obscure the results. We will then use the

performance characteristics mentioned above to study the performance figures obtained

34

from our algorithms and try to understand them.

2.12.1 Speedup

The speedup achieved by a parallel algorithm running on p processors is the ratio between

the time taken by a parallel computer executing the serial algorithm and the time taken

by the same parallel computer executing the parallel algorithm using the p processors.

This can be expressed as

where

Sp = Speedup

Ts = running time of fastest sequential algorithm and

Tp = running time of parallel algorithm.

Normally 0 ~ Sp ~ p. Ideally, the maximum value of Sp using p processors is p but in

practice this is seldom achieved for the following reasons:

• It is extremely difficult to partition a problem into p tasks, each requiring a processor

to use the same amount of time to solve each task. There may be some idle time

on processors.

• Process creation and synchronisation in a partitioned algorithm adds overheads.

• Sequential code limits the speedup. If any portion of the algorithm must be executed

sequentially, then the remaining processors have to wait for the sequential portion

to complete its computation before they resume.

• The architecture used also imposes restrictions that render the desired running time

unattainable. This could be caused by memory conflicts and! or communication path

delays.

35

2.12.2 Efficiency

The efficiency e of a parallel algorithm running on p processors is the speedup divided by

p and usually 0 :::; e :::; 1

Sp
e=-

p

Algorithms that approach the upper bounds in Sp and e as p tends to 00 or the problem

size increases for fixed p are said to be optimal.

2.12.3 Algorithm Equivalence

For Sp = p, we always assume that parallel and serial programs are the same algorithmi-

cally but in practice this is rarely achieved because code changes are introduced when we

write parallel components. Good serial algorithms are optimised for sequential machines.

An algorithm with optimal speedup may have a very poor efficiency and on the other

hand an algorithm with good efficiency can have a poor speedup. A good serial algorithm

may be a bad parallel algorithm whereas a cheap and nasty serial algorithm may turn out

to be the best parallel algorithm.

The nature of the problem can also affect the achievable speedup. Some problems are

compute-bound. In such a case the amount of computation dominates and the processors

will be busy most of the time. An example is matrix multiplication. If we consider an

n X n matrix, the total data is O(n2
) but O(n3) operations are required. Others are

input/output bound with very little computation but input/output phases dominate the

process e.g matrix addition with O(n2) data and O(n2) operations. Often this fact is

obscured by the fact that the lack of dependency in matrix addition make it much easier

to parallelize than matrix multiplication.

36

Chapter 3

The Convex Hull Problem

Many algorithmic problems in Computational Geometry in\'oh'e geometric concepts such

as points, lines and distances. Also, maIlY of the problems are deceptively easy to solw

using the human visual system, but often present a real challenge when designing an

algorithm. The convex hull problem is one such problem. In order to discuss the convex

hull problem formally and in a more generalised manner, it is appropriate here to review

the basic concepts and terminologies that are relevant. The combinatorial theory of convex

hulls is largely concerned with their facial structure [93]. This section will provide formal

definitions of the geometric concepts and notations used in this thesis. The objects we will

normally manipulate are sets of points in Euclidean space. Each point is represented as

a vector of appropriate dimension. The geometric objects will normally consist of a finite

set of points. We shall consider besides individual points, the straight line containing two

given points, the line segment defined by its two given points. the polygon defined by a

number of points, etc.

3.1 Definition Of Terms

Let R be the set of real numbers. By Rd we mean the d-dimensional Euclidean space,

that is the space of d-tuples (xt,···, Xd) of real numbers Xi, i = L···. d with metric

('1'/=1 Xi 2)1/2. Some important definitions are given below:

37

Point: A d-tuple (Xl,·· . ,Xd) denotes a point P of Rd which is also a d-component vector

applied to the origin of Rd.

Line: Given two distinct points PI and P2 in Rd, the linear combination

(3PI + (1 - (3)P2 ((3 E R) is a line in Rd.

Line Segment: Given two points PI and P2 in Rd the line segment denoted by PIP2 is

defined by (3Pl + (1 - (3)P2 provided 0 :::; (3 :::; 1.

Flat: An r-flat is a region determined by (1" + 1) points having dimension r. We will

call 1"-flat (1" > d) a hyperplane of 1" dimensions, denoted by HTr.

Linearly Independent: The collection of points PI, P2, ... ,Pk in Rd is said to be linearly

dependent if there exist numbers aI, a2, ... , ak, not all zero such that alPl +

a2P2 + ... + akpk = o. If the vectors are not linearly dependent, they are said to

be linearly independent (i.e. if no vectors in the collection can be expressed as a

linear combination of the other vectors).

Affine set: Given k distincts points PI, . .. ,Pk in Rd, the set of points

P = (alPl + a2P2 + ... + akPk) where (aj E R , 2::7=1 aj = 1) is the affine set

generated by PI, P2, ... ,Pk and its affine combination is p. If k = 2, the resulting

affine set is a straight line through two points. Examples of affine sets are points,

lines, planes, hyperplanes.

Affinely Independent: Given k points Pl,P2,··· ,Pk in Rd, the points are said to be

affinely independent if the (k - 1) vectors (P2 - PI)' ... , (Pk - PI) are linearly inde­

pendent. A useful criterion for affine independence is the following:

If Xi = (ail,···, aid) then {Xl,· .. ,xd is an affinely independent set of points if

38

and only if the matrix A has rank k.

A = (;

an '" aId 1
a2l '" au
· . · . · .

akl akd

Affine Hull: Given a subset K of Rd
, the affine hull AH(K) of K is the smallest affine

set containing K. For any two points PI, P2 in K, the entire line determined by

these two points belong to AH(K). The affine hull of a segment is a line, and of a

plane polygon is a plane.

Convex set: Given k distincts points PI, ... ,Pk in Rd, the set of points

P = (alPl + a2P2 + ... + akPk) where (aj E R ,aj > 0, Lj=l aj = 1) is the convex

set generated by PI, P2, ... ,Pk and its convex combination is p. A domain D in Rd is

convex if, for any two points PI and P2 in D, the segment PlP2 is entirely contained

in D.

Hyperplane: A hyperplane H is the set of points X = (Xl, X2,'" ,Xd) which satisfy

an equation represented in the form L1=1 aixi - f3 = 0, where not all ai are zero.

A hyperplane H separates the space Rd into two half spaces. A normal to the

hyperplane H is a vector parallel to r, where r = (aI, a2,"', ad). The unit normal

to H denoted by f is given by

A hyperplane H bounds the set S C Rd if and only if all points of S lie either on H

or in one half space. If Vi denotes a unit vector along Q P, Q E H, PES, we say H

bounds the set S if and only if either the inner product (d. v;) ;::: ° for i = 1, ... , d

or the inner product (d.v;) :::; ° i = 1,"" m; d being the unit normal to Hand m

the number of points.

39

Support Hyperplane: A hyperplane H is a support plane of S if H bounds S and at

least one point of S lies on H.

Convex Hull: The convex hull of a set S ~ Rd is the intersection of all convex sets

containing S. We denote the convex hull of S as CH(S). If S is a finite set. then

C H(S) is called a polytope. In general, the convex polytope of a set S is the set of

all convex combinations of finite subsets of S i.e.

r

CH(S) = {x E Rd I x = A1X1 + ... + ArXn I S r < 00, Ai ~ 0; Xi E S, L Ai = I}
i=l

A support plane H of S is said to be an d-face of CH(S) if d independent points of

S lie on H. A convex polytope is described by means of its boundary, which consists

of faces. Each face of a convex polytope is a convex set (i.e. a lower dimensional

convex polytope); a k-face denotes a k-dimensional face (i.e. a face whose affine hull

has dimension k). If a polytope Pis d-dimensional, its (d-l)-faces are called facets,

its (d-2)-faces are subfacets, its I-faces are edges, and its O-faces are vertices. For a

3-D polytope, facets are plain polygons, while subfacets and edges coincide.

Edge: A d-edge of CH(S) is a (d - 2)-fiat contained in a support plane of CH(S) which

is not a d-face of C H(S).

Size Of Set: The size n of a set S, denoted by I S I is the number of points in S.

Norm: The vector norm of x is a non negative number denoted by II x II, associated with

x, satisfying:

(a) II x II > 0, II x II = 0 implies x = O.

(b) II kx II = I k III x II for any scalar k.

(c) II x + y II S II x II + II y II (the triangular inequality).

40

The length or norm of a d x 1 column vector II x II is defined to be

d

II x II = (~= I Xi 12)1/2
i=l

Orthonormal Set: If (x,x) = II X 112 = 1, the vector x is said to be normalised. If

a set of vectors Xl,···, Xd is orthogonal and normalised i.e (Xi, Xj) = 0 (i # j)

1 (i = j), then the vectors are said to form an orthonormal set.

3.2 2-D Algorithms

Among the problems in computational geometry, the planar convex hull problem is one

of the earliest and best studied. Numerous papers have appeared in the literature dealing

with different aspects and generalisations of the planar convex hull problem. Given a set

S of n points in R2, this section reviews some of the earlier approaches in the design and

analysis of algorithms for constructing the convex hull CH(S) from S using sequential

computations. Yao [87] has shown that this problem has an O(nlog2n) sequential lower

bound. There is a long list of articles containing results on the convex hull of a planar

point set in two dimensions. Some examples are [60], [62], [64], [76], [81] in which this

lower bound is achievable. The running times of these algorithms are either O(nlog2n)

where n = I S I, since the problem is as hard as sorting, or O(nH) where H is the number

of points on the convex hull. Kirkpatrick [75] has proposed an algorithm whose complexity

is O(nlog2h) where h is the number of edges of CH(S) and is superior to the previous ones

in the sense that its running time is sensitive to the size of the output. In the worst case,

when h = n, the result reduces to O(nlog2n). The approach adopted in the algorithm

is to find the maximum and minimum coordinates of S, determine the upper and lower

convex polygonal paths respectively, and then concatenate the two paths to obtain the

convex hull of S. For brevity here, we will review three early approaches to the solution

of this problem namely, Graham [64], Jarvis [60] and the Divide-and-Conquer technique

41

[82] which cover most of the variations.

3.2.1 Graham's Algorithm:

Graham in [64] presented one of the first O(nlo92n) algorithms to compute the com·ex hull

of n points in the plane. The first step in the algorithm involves sorting the input points

and this step dominates others in the determination of the convex hull. Since sorting

is of O(nlo92n), it follows that finding the convex hull by Graham's algorithm requires

O(nlo92n) steps. The algorithm can be summarised as follows:

Step 1: An internal point 0 is chosen arbitrarily (e.g. centroid of three non colinear

points). At worst case this can be done in Cln steps, where Cl is a constant.

Step 2: The points are expressed in polar coordinates about the origin 0 and 0 = 0 in

the direction of an arbitrary fixed line L from O. This can be done in C2n operations,

C2 a constant.

Step 3: The elements pexp(i(h) are sorted in terms of increasing Ok such that the set of

points S = {rlexp(i7jJl), ... ,rnexp(i7jJn)} with 0 ~ 7jJl ~ ... 7jJn ~ 271" and rj ~ o.

This is possible in O(nlo92n) time.

Step 4: If 7jJ; = 7jJi+1 then we delete the points with smaller amplitude since it cannot be

an extreme point. Also points with ri = 0 can be deleted and renumbering the rest

of the points so that the set of points S' = {rl exp(i7jJl) , ... , r n,exp(i7jJn')} where

n' ~ n. This elimination can be done in less than n comparisons.

Step 5: Start with three consecutive points in S', say, A = rkexp(i7jJk), B = rk+1 exp(i7jJk+l),

C = rk+2exp(i7jJk+2) with 7jJk < 7jJk+1 < 7jJk+2. There are two possibilities as illus­

trated using figure 3.1.

42

A

c

a

o

Figure 3.1: Angle Between Three Points

1. If (0: + (3) 2: 7r, delete the point rk+l exp(i'ljJk+l) from 5' since it cannot be an

extreme point and return to the beginning of step 5 with the points rkexp(i'ljJk),

rk+l exp(i'ljJk+l) , rk+2exp(i'ljJk+2) replaced by rk-l exp(i'ljJk-l), rkexp(i'ljJk) , rk+2exp(i'ljJk+2).

2. If (0:+13) < 7r, return to beginning of step 5 with points rkexp(i'ljJk), rk+lexp(i'ljJk+l),

rk+2exp(i'ljJk+2) replaced by rk+lexp(i'ljJk+l), rk+2exp(i'ljJk+2), rk+3exp(i'ljJk+3).

This step can be accomplished in less than 2n' since the number of possi­

ble points in C H (5) is reduced by one or the current total number of points

in 5' is increased by one.

The algorithm starts by constructing a simple closed polygon from the sorted points

in angular order about the point 0, so that tracing through the points gives a closed

polygon. Computation of the convex hull is completed by proceeding cyclically around

the points, trying to place each point on the hull and eliminating the points that cannot

possibly be on the hull. Illustrating with the example in the Table 3.1, we consider the

points in the order Vb V12, Vg, Vl1, Vl3, VlS, VlO, Vs, V8, V4, V2, Vl4, Vo, V7, V6, V3. We know that

because of sorting the points v!, V12 are on the hull. When Vg is encountered, the algorithm

43

Va VI

X 4 12

Y 10 2

15

10

5

o

T bl 3 1 S t Of P . t T III t t 2 D Al . thIn a e e Oln s 0 us ra e - l~on s
V2

7
9

V3 V4 Vs

5 6 9
4 16 12

x

5 10

V6

2
7

x

V7

8
5

x

v 9

15

Vs Vg VlO Vn V12

10 15 11 17 16
8 6 14 15 3

v 11

Figure 3.2: 2-D Convex Hull Illustration

VI3

14
17

VI4 VIS

4 13
13 11

includes it in the trial hull for the first three points. When Vn is encountered, we note

from the algorithm that Vg cannot be on the hull because the points Vll V9V12 forms an

internal angle VI2VgVn which is 2: 7r and so Vg is not a candidate for the hull and hence

is eliminated from further consideration. The situation as each new point is encountered

will either add to or eliminate the point from the partial hull so far constructed until all

the points are considered. Figure 3.2 shows a 2-D convex hull.

Step 3 of the algorithm requires sorting the points and from the sorting algorithms, we

know that the expected time performance is O(nlog2 n) [90]. Since Graham's algorithm

requires sorting, and it is this step that dominates, its expected time performance is

therefore O(n log2 n).

3.2.2 Jarvis's Algorithm:

Jarvis [60] presented an alternative solution to the convex hull problem that runs in time

O(nH) where H is the number of vertices of the hull. The approach taken by Jan"is is

suggestive of the idea of "gift wrapping". Starting with a point VI as shown in Figure

3.2, that is known to be on the convex hull, in linear time O(n), we find the next point

VIZ such that edge VI VIZ is on the convex hull, i.e all the remaining points must lie on one

side of the directed line containing VI VIZ • After VIZ has been found, the same technique

is applied to locate the next point Vu such that VIZVU is a hull edge, and so on, until we

'wrap' back to the starting point VI. The algorithm can be summarised as follows:

Step 1: Find an origin point Vi, 0 :::; i :::; n - 1 from the set with largest x-coordinate

(and smallest v-coordinate, if several points have the same minimal x value);

Step 2: Let LI be the line containing Vi which is parallel to the x-axis. Take a horizontal

ray in the positive direction and "sweep" it upward until we hit another point Vk

such that the angle between the line joining Vi and Vk and the line LI is minimised.

For equal minimum angles pick the point closest to the origin.

Step 3: Shift the origin to Vk and repeat step 2 with consistent angle direction and origin

until the first convex hull point is re-found.

Since there are H vertices we have to have at most H -1 edges (faces). Finding a vertex

when given an existing one requires re-examination of (n - 1) points, thus O(nH).

3.2.3 Divide-and-Conquer Algorithms

A problem of size n can often be split into two similar subproblems of size approximately

equal to n/2. This splitting process can be repeated on subproblems (recursively) until

subproblems of constant size are obtained for which the solutions are trivially known.

For example, the quicksort algorithm [90] is based on this principle. On the other hand,

45

one can start with about n equal-sized small problems. and marry the subsolutions in a

pairwise manner as in the merge sort algorithm [94]. These techniques have many appli­

cations in computational geometry which often result in considerable savings in expected

computation time. The first general discussion of their value in the design of fast expected

time algorithms is illustrated by Bentley and Shamos [66]. The convex hull problem for a

set of n points in the plane can also be solved in O(nlog2n) time by a Divide-and-Conquer

Technique [82]. This technique normally involves partitioning of the original problem into

several subproblems, recursively solving each problem and then combining the solutions

to the subproblems to obtain the solution of the original problem. The following steps

are involved.

Step 1: If I S I:S 2 return Sj else go to step 2.

Step 2: Partition the original set S arbitrarily into two subsets Sl and S2 of approxi­

mately equal number of points.

Step 3: Recursively find the convex hulls of Sl and S2 .

Step 4: Merge the two sub convex hulls together to form the convex hull for S.

Preparata and Shamos [82] gave the following algorithm for the merge procedure:

Given two convex polygons S1 and S2, the merge step could be performed as follows:

Step 1: Find a point v that is internal to Sl (e.g. centroid of any three vertices of Sl).

This point will also be internal to C H (S1 U S2).

Step 2: Determine whether or not v will be internal to S2. If v is not internal go to step

4.

Step 3: If v is internal to S2, the vertices of both SI and S2 occur in sorted angular

order about v as shown in figure 3.3a, we merge the vertices of both SI and S2 and

proceed to step 5.

46

fig (a) fig (b)

Figure 3.3: 2-D Convex Hull For Divide-And-Conquer

Step 4: If v is not internal to 52, figure 3.3b applies. As seen from v, 52 lies in a wedge

whose apex is v and whose apex angle is ::; 1r. This wedge is defined by two vertices

u and t of 52, thus partitioning 52 into two chains of vertices which are monotonic in

polar angle about v, one in increasing angle and the other decreasing. Of these two

chains, the one convex towards v can be immediately discarded, since its vertices

will be internal to the convex hull of 5. The other chain of 52 and the boundary of

51 constitute two sorted lists that contain at most n vertices. They can be merged

to form the vertices of the convex hull of 5, which is sorted about v.

Step 5: Step 5 of Graham's algorithm can now be performed on the obtained list of

vertices from 51 and 52 to obtain the convex hull of 5. Since in the worst case

n = 151 1 + 152 1 the algorithm is O(nlog2n).

3.3 3-D Algorithms

The convex hull of a set of points in 3-D space is a convex three dimensional object with

fiat faces. The divide-and-conquer technique of constructing the convex hull in 2-D can be

47

easily extended to the 3-D case. However, this is more involved than the two dimensional

case. This problem has been studied by Day [63], Johansen and Gram [65], Preparata

and Hong [62] among others. Suppose we are given a set S = {PI,P2,'" ,Pn} of n

points in R3. For simplicity we assume that for any two points Pi and Pj in S we have

Xk(Pi) =f xk(Pi), for k = 1, 2, 3. The Divide-and-Conquer algorithm of [82] could be

summarised as follows:

If I SIS; 2 then return CH(S)

else

begin

divide S into Sl and S2 such that I Sl I = L 1/2 I S IJ and Sl U S2 = 5j

S' := Convex Hull(St)j

S" := Convex Hull(S2)j

T := Merge (S' , 5")j

return (T)

end.

As a preliminary step the elements of S are sorted according to the coordinate Xl

and relabelled if necessary so that we may assume Xl (Pi) < Xl (Pi) if and only if i < j.

We assume that the polytopes 51 and S2 which are two nonintersecting 3-D polytopes

have been recursively obtained. Due to initial sorting and to the chosen partition of the

resulting point set, the convex hull of Sl and S2 are nonintersecting. The merge, which

is the crucial component of the method, involves the calculation of the collar (i.e a union

of triangular faces, each face supporting a plane tangent to an edge of one hull and a

corner of the other). Having identified the corners, edges and faces of CH(S), a complete

description of CH(5) is built. The method was first proposed by Preparata and Hong

[62].

Johansen and Gram [65] gave the following algorithm for finding the convex hull of a

48

Table 32 S .. equen la unnlllg Ime or - an - gor fIR F 2 D d 3 D A.I ithms
Dimension Author Time

R.1. Graham 64] O(nlo92n)
2-D R. A. Jarvis [60] O(nH)

Divide-and-Conquer[82] O(nlo92n)
3-D Preparata and Hong [62] O(nlo92n)

Johansen and Cram [65] O(nF)

3-D problem

Step 1: Find one face of the convex hull;

Step 2: Initialise Hull, Boundary, and set of potential vertices

repeat

Step 3: Find a new face adjoining the Boundary

Step 4: Update Hull, Boundary and set of potential vertices

until Boundary is empty

To find a new face, an edge E is selected from the current boundary. Since E is a

boundary edge it has one adjoining face F' already in the convex hull. With E and F'the

remaining set of points are scanned to find a new point which together with E defines a

new face of the hull. The computational complexity of this algorithm is related to n, the

number of points in 5, and to the number of faces, F. The worst case computing time is

O(nF). In fact, this method is an extension of Jarvis' technique to the 3-D case. Table

3.2 shows the complexity of the sequential version for 2-D and 3-D problem.

3.4 n-D Algorithms

There are few research works available on higher dimensional spaces of the conYex hull

problem. This is because the n-D problem is more complicated than the 2-D and 3-D

49

cases. Secondly, most of the applications rely heavily on the lower dimensional cases. In

the Computer Science literature Chand and Kapur's study [1] is based on the geometry

of convex polytopes. Chand and Kapur observed that exactly two faces of the convex

polytope of a set S C Rd intersect along each edge of the hull. If one of the edges and

one of the faces containing this edge are known, then the second face can be computed by

a rotation through an appropriate angle of the known face about the known edge. The

determination of each new face gives rise to at least (d - 1) edges of the hull that are

different from the known edge. This process is continued until each edge is the intersection

of two adjacent faces of the convex polytope. The convex polytope of the set S is generated

by repeating a cycle of steps, each cycle computing a new face of the desired polytope

until all the faces are determined. Chand and Kapur have given a generalised algorithm

for finding the convex hull of n-Dimensional problem in which 2-D and 3-D are special

cases.

Let Se denote the subset of S whose convex polytope is being enumerated, and de

denote the current dimension of the space. Let m denote the number of points of Se. The

following steps summarise the algorithm:

Step 1: Let Se = S, de = d and me = m + 1

Step 2: Determine point(s) of Se with least first component. Let Sb be the set consisting

of these points pI ESe' The hyperplane H, Xl = pI, is a support hyperplane of S

and its normal is parallel to the vector d = (1,0,0, ... ,0) .

Step 3: Construct a unit vector e such that (e.d) = 0, (e. Vi) = 0, Pi E Sb, Vi being a

unit vector along pIpi and (e.vk) 2: 0, Pk ESc·

Step 4: For each point, pk ESc, compute the ratio

--A-

d.Vk

50

and determine point(s) pJ E Se such that

AJ Ak
- =max{-}
JlJ Jlk

where the maximum is taken over all k such that pk ESe.

The normal to the z-flat defined by adjoining to Sb the points for which the ratio of

A and Jl is maximum, is given by, d* = AJd + JlJe, where A/ + JlJ2 = 1 .

Step 5: If z < de the starting face of C H(Se) has not been computed yet; therefore,

replace Se by the points on z-flat and return to step 3 with d = d*. If z 2: de a

dc-face of C H(Se) has been computed. But in the case when z > de let Se denote

the points on the z-flat and return to step 2 with de = de - 1 . When z = de go to

step 6.

Step 6: Check whether the de edges of the computed face have been found. Finding an

edge implies that one face containing this edge was found before and now that the

second face has been computed this edge will be omitted from further consideration.

Save new edges except for one. Return to step 3 with Se consisting of points defining

this edge and with d = d*. If all the edges of the face are already known go to step

7.

Step 7: Pick an edge and compute the normal d to the face containing this edge. Return

to step 3 with Se consisting of points on this edge. If no edge exists in the storage

then the dc-polytope has been computed; proceed to step 8.

Step 8: Check whether de = d . If yes, the desired convex polytope has been generated.

If de < d return to step 6 with the faces of the dc-polytope being the edges of the

de = (de + 1)-polytope.

Swart [2] has studied the facet, facial and lattice problems and presented algorithms which

exhibit the best known time complexity. These algorithms are based on a reformulation

51

and analysis of Chand and Kapur's algorithm using the affine basis method in order

to reduce the computational effort. This method is the basis of our work and will be

presented in more detail in chapter 4. The facets of the convex hull are enumerated, the

facial lattice is computed and a new compact structure representing the combinatorial

type of the convex hull is produced. Swart noted that the simplest of the convex hull

problems is that of picking out the elements of the set S which are the vertices of the

convex hull. He called this the vertex problem. The facet problem is that of enumerating

the facets of the polytope. The facial lattice problem produces the complete facial lattice

of the hull. We are interested in the vertex problem but also generate the facets as a by

product.

3.5 Parallel Algorithms

The essence of a parallel implementation is to solve the convex hull problem efficiently

in terms of both the run time and the number of processors used. Parallel computers

provide the possibility of substantial improvements in the running time of algorithms,

allowing larger problems to be solved in a feasible amount of time. For two and three

dimensional problems, parallel versions of the convex hull have appeared in the literature.

Compared to the number of serial algorithms for solving such problems, the number of

parallel algorithms is quite small.

3.5.1 2-D Algorithms

Miller and Stout [67] presented an O(yin) time solution on an n-node square mesh of

processors. They also implemented their algorithms on the hypercube, pyramid, tree ma­

chine, mesh-of-trees, mesh with reconfigurable bus, EREW PRAM and a modified AKS

network [68]. In each of these cases, different running times were achieved with fixed num­

ber of processors. On the hypercube, the algorithm finishes in o (logn) time, a worst case

52

UCTL

LCfL

Figure 3.4: Upper and lower tangent lines between 51 and 52

algorithm for the pyramid, tree machine, and mesh-of-trees finishes in O(log3n/(loglogn)2)

time while a mesh with a reconfigurable bus uses O(log2n) time. The general algorithm

implemented can be summarised as follows:

Step 1: Divide the set 5 of n planar points into two subsets 51 and 52, each of size n/2,

so that all points of 51 have x-coordinates less than those of 52, and 5 = 51 U 52 .

Step 2: Recursively identify the convex hull of 51 and 52 .

Step 3: Identify the upper and lower common tangent lines (UCTL, LCTL) between the

convex hull of 51 and that of 52

Step 4: Eliminate all extreme points between the common tangent lines (i.e. extreme

points of 51 and 52 that are inside the quadrilateral formed by the four endpoints

representing the common tangent lines) and renumber the remaining extreme points.

This is shown in figure 3.4.

Atallah and Goodrich [69] give an o (logn) algorithm using O(n) processors on the CREW

PRAM model (i.e. the synchronous parallel model where processors have a common

53

memory in which concurrent reads are allowed, but no two processors can simultaneously

write to the same memory location). Their algorithm, although still based on the di\'ide­

and-conquer method, differs in many aspects from that of Miller and Stout. The problem

is subdivided into many subproblems (e.g. yin instead of just two); solves all the problems

recursively in parallel and merges them in parallel to produce the final solution. This shows

an improvement of a similar parallel version on the same model of parallel architecture

using O(n) processors and a running time of O(log2n) presented by Chow [86]. Their

method is paraphrased below:

Input: A set 5 of n points in the plane.

Output: The list CH(5). That is the list of the convex hull of 5 listed in clockwise

order.

Method: The main idea of the algorithm is to divide the problem into yin subproblems

of size yin each, solve the problems recursively in parallel, and combine the solutions

to the subproblems quickly and with a linear number of processors. This is shown

in figure 3.5 with n = 25 points.

Step 1: Sort the n points by x-coordinate and partition 5 into sets 51 ,52 , ••. , 5..;n, each

of size yin such that 5 i is left of 5 j if i < j.

Step 2: Recursively solve the convex hull problem for each 5 i , Z E {1,2,3, ... ,y'n}, III

parallel.

Step 3: Find the convex hull of 5 by computing the convex hull of the union of the yin

sub convex hull polygons CH(51), ... , CH(5..;n) using ALGORITHM MERGE.

54

s S s
2

Figure 3.5: A partitioning of S into 5 subsets

ALGORITHM MERGE

Input: The input here is the collection of convex polygons CH(Sl), C H(S2)" .. , C H(Sfo}

Output: The upper convex hull UH(S) of the vertices of the union of the CH(Si)'S.

Method: The main idea is to find, in parallel for each CH(S;), which of its vertices are

on U H(S). This is done by assigning Vn processors to each CH(Si) and having

each of these processors compute the upper common tangent between CH(S;) and

one of the other input polygons.

Step 1: In parallel for each i E {1,2, ... ,Vn} use Vn processors to find those points of the

convex hull of C H(Si) which belong to U H(S) using the steps outlined below:

Step 1.1: Find the Vn - 1 upper common tangents between the convex hull CH(Si)

and the remaining Vn - 1 other input polygons. Let Ti,j denote the upper com-

mon tangent between the convex hull of CH(Si) and that of CH(S)), where Ti,j

is represented by its point of contact with CH(Si) and its point of contact with

55

P
1 P 5

(b)

Figure 3.6: Illustration Of Merge Procedure

Step 1.2: Let v,: be the tangent with smallest slope in {Ti,l,"" Ti,i-d (i.e. v,: is the

smallest slope tangent which 'comes from the left' of CH(Si))' and let Wi be the

tangent with the largest slope in {Ti,i+b ... ,Ti,y'n} (i.e. Wi is the largest-slope which

'comes from the right' of CH(Si))' Let Vi be the point of contact of v,: with CH(Si)

and Wi the point of contact of Wi with CH(Si).

Step 1.3: Since neither v,: nor Wi can be vertical, they intersect and form an angle (with

interior pointing upward). If this angle is less than 7r, then none of the points of

CH(S;) belong to U H(S). Otherwise all the points from Vi to Wi , inclusive, belong

to UH(S). This is shown in Figure 3.6(a) and 3.6(b). Figure 3.6(a) shows the case

when none of CH(Si)'S points are in U H(S) because v,: and Wi form an angle which

is < 7r. In Figure 3.6(b) the points P2, P3 and P4 are in UH(S) because v,: and Wi

form an angle which is < 7r.

Step 2: Step 1 has computed, for every i E {1,2,3, ... ,y'n} all the points of CH(Si) which

belong to U H(S) (possibly none). This step compresses each of these lists into one

list to get U H(S).

56

Aggarwal etal. [85] also achieved O(logn) time using O(n) processors on a CRE\\" PRA.\!.

Goodrich [70], using the hull tree (a parallel data structure) on a CREW PRAM has solved

the convex hull problem in two dimensions in O(logn) time using O(njlogn) processors

for the case when the input points are given in a sorted order. Holey and Ibarra [83],

without using the recursive or divide-and-conquer technique, also solve the planar convex

hull problem on a variety of mesh-connected arrays of processors. Their approach. which

is based on the Graham's scan sequential algorithm, is iterative and so avoids the overhead

of the merge step in the divide-and-conquer algorithm. It also avoids presorting the points.

The input points are directed into processor 0 one at a time and sorted according to their

x-coordinates. The points are "pushed" into the next processor as new points are entered.

When a new point is received from the processor's input, the new point is sorted together

with the points which the processor is already storing and the Graham's scan is performed

on the sorted list of points to determine those points that are extreme points. Chazelle

[78] shows how to solve the problem systolically on an n-node linear array of processors in

O(n) time. Others who have studied the 2-D problem are [72], [79]. Table 3.3 illustrates

the time complexity of some of the parallel versions of the 2-D convex hull problem.

3.5.2 3-D Algorithms

The preceding section has shown some theoretical analysis of the parallel versions of the 2-

D convex hull problem. For the 3-D problem, parallel versions of the algorithms have also

shown that significant speedup is attainable compared with their equivalent sequential

algorithms. Aggarwal et al. [85] derived a parallel algorithm of o (log3 (n)) based on the

Preparata-Hong algorithm. Chow [86] in her thesis also achieved the same run time using

Voronoi diagrams to control the calculation. Reif and Sen [84] have given an O(logn)

randomised parallel algorithm for the 3-D convex hull problem using O(n) processors on

the CREW PRAM model. It should be emphasised that these presentations are largely

57

Table 3.3: Parallel 2-D Complexity Table

Architecture Author Complexity Processors
Systolic array Chazelle [78] O(n) n

CREW PRAM Chow [73, 86] O(I09~n) n
Multiprocessors Akl [74] O(1092 n) n;j

SIMD Akl [76] O(nelo92 n) n1 e

0< e < 1
Square mesh O(fo)
Hypercube O(I092n)

Tree machine
Mesh of trees Miller and Stout [68] O(I09~n/ (I0921092n)2) n

Pyramid
Reconfigurable mesh O(lo9~n)

AKS network O(lo92n) worst case
Pyramid (ordered input) O(lo92n) worst case

CREW PRAM Goodrich and Atallah [69] O(lo92n) O(n)
CREW PRAM Goodrich [70] O(lo92n) O(n/lo92 n)

Mesh array (OIA) O(n) (n - 2)
Cellular array Holey and Ibarra [80] O(n) O(n)

D-Cellular array O(nl/<1) O(n)
OCA O(n) n

58

theoretical with the authors concentrating on the design and analysis of the complexity

of their algorithms. Day [77, 89] instead of taking a theoretical approach, presented a

practical implementation of the Divide-and-Conquer parallel version of the 3-D algorit hm.

This was implemented on a Meiko Computing Surface using several sizes of network up

to a maximum of eight processors which were configured in the form of a hypercube.

The results indicated a significant speed-up compared to the sequential version running

on a Sun workstation. A speed-up of 5 was obtained using 8 processors and 1.8 using 2

processors.

3.6 Summary

The input to an algorithm for finding the convex hull is an array of points. The output is a

polytope, also represented as an array of points with the property that tracing through the

points produces the outline of the polytope. The algorithm simply rearranges the points

in the original array eliminating unqualified candidates to leave the polytope vertices.

Clearly, computing the convex hull is closely related to sorting and a sequential lower

bound of O(nlog2n) time, regardless of data, has been achieved, because often the first

step is sorting the input. Jarvis's algorithm, on the other hand, uses time that varies

between linear and quadratic. In Jarvis's approach, the algorithm is simple and consists

of angle comparisons only. However, the major disadvantage of his gift-wrapping method

is that in the worst case, when all the points fall on the convex hull, the running time

is proportional to n 2 • On the other hand, the method has the attractive feature that

it generalises to three (or more) dimensions. To protect against the worst case (when

all points are on the hull), it is prudent to use Graham's scan. This gives an algorithm

which is almost sure to run in linear time in practice and is guaranteed to run in time

proportional to O(nlog2n).

The 2-D parallel version has differing running times depending on the architectural

59

model and the number of processors. In each case, there is always an improvement over

the running time of the sequential version. Similarly, the 3-D problem has also benefitted

from parallelisation. Surprisingly, despite the continued interest in the subject, the n-D

problem has not yet been given adequate attention.

60

Chapter 4

Sequential Algorithms

The purpose of this chapter is to present sequential or serial algorithms that compute the

n-D convex hull algorithm facet by facet. Some of the algorithms proposed for finding

the convex hull for 2-D and 3-D were outlined earlier in chapter three with the method of

Chand and Kapur [1] presenting the n-D algorithm. The divide-and-conquer method for

2-D and 3-D rely mainly on recursive partitioning of the point set followed by a merging

technique to combine the partitions into a full hull. The problem in which the dimension

is greater than 3 is not as well studied. In particular, the divide-and-conquer technique

alone does not scale well to higher dimensions. However, Jarvis's gift-wrapping technique

for 2-D can be extended in a relatively straightforward manner to compute the convex

hull for n-D problems.

Two methods are considered during the design and implementation of the sequential

algorithms for the n-D problem. These are:

• Recursive Method .

• Non Recursive or Stack Based Version.

A recursive program is one that calls itself (and a recursive function is one that is defined

in terms of itself). In our algorithm, after the determination of the initial facet, the

algorithm calls itself recursively in order to compute the remaining edges and vertices

61

of the convex hull of the given set. Recursion can be removed from any program [91].

It is on this assumption that we develop the nonrecursive or stack based algorithm for

the same problem. Primarily, removing recursion requires more work in implementation.

Usually the values of the local variable and the address of the instruction are pushed

on a stack along with the values of the parameters that are set in the procedure call.

When the procedure completes its computation, it must pop or unstack the values of the

local variables and return address from the stack. The removal of recursion, though a

complicated task, often leads to efficient implementation and a better understanding of

the nature of recursive implementations. In particular, the stack version provides a more

efficient parallel implementation (see later) and allows ready access to the various stages

of the gift wrapping process.

4.1 The Gift-Wrapping Technique.

The gift-wrapping technique proposed by Chand and Kapur [1] is based on the observation

that every edge of C H (S) belongs to exactly two faces of the polytope C H (S), or more

precisely, the intersection of exactly two faces from a set of faces describing the polytope

determine an edge. The running time of this algorithm is a function of d, the space

dimension, N = I S I, the number of points, and J, the number of facets of CH(S). It

has been shown by Swart [2] that the running time of the algorithm in [1] is O(NdJ +

d3 P + N d!f). Swart [2] also modified this algorithm to improve upon its efficiency by

using the affine basis method. In general for d > 3 a face or facet can be defined in terms of

its edges which are themselves the facets of a polytope in fewer dimensions. In particular,

the problem is recursive and eventually reduces to a collection of subproblems involving

only two or three dimensions. Three major steps are involved in the determination of

C H (S) and these are:

Step 1: Find an initial facet.

62

Step 2: Given this initial facet, find its subfacets.

Step 3: Given a facet and one of its sub facets, F, determine the other facet containing

F.

The facet problem is that of enumerating the facets of a polytope CH(S), where each

facet is represented by its affine hull. Chand and Kapur [1] and Griinbaum [88] observed

that if CH(S) is a d-polytope, each (d - 2)-face F of CH(S) is contained in precisely two

facets, Fl and F2 , of CH(S) and F = Fl n F2 • To implement steps 1 through 3 above,

we explain each in more detail.

In step 1, to find the initial facet, a supporting hyperplane to 5 is constructed. This

hyperplane is rotated until its intersection with 5 is of dimension (d - 1) (and therefore

a facet of CH(S)). For simplicity it is sufficient to choose the supporting hyperplane

to have the normal (1,0,· .. ,0) and for it to pass through the minimal coordinate of S.

Intuitively, this hyperplane can be viewed as a piece of paper with which we try to cover

a facet of C H(S). Suppose F is the intersection of the supporting hyperplane with S.

We perform the following steps:

• Rotate the supporting hyperplane about F until we intersect a new set of points in

S.

• Add any new points so intersected and repeat the rotation until F has dimension

(d - 1).

Step 2 requires us to find the facets (or edges) of a facet. Given the initial facet which

is confined to (d - 1) dimensions, the edges are clearly (d - 2) dimensional facets, and

can be determined by computing the convex hull of the facet (a simpler problem since the

dimension is now (d - 1)).

In step 3, given a facet and one of its subfacets, a (d - 2)-face, we are to find another

facet containing this (d-2)-face. This can be done by gift-wrapping; rotating a hyperplane

63

by starting at the given facet through the (d - 2)-face until the intersection with a new

point is achieved. The affine hull of this point and the (d - 2)-face intersected with S is

the desired result. This means that in d dimensions, the facets of a (d - 1) dimensional

facet can be regarded as supporting hyperplanes of the convex hull so t hat a (d - 1)

dimensional facet can be found by rotating the (d - 2) facet until one additional point

from S is added to the hyperplane making a (d - 1) dimensional facet. Specifically, we

want to use the algorithm by Swart [2] which is presented here and is based on the affine

basis method.

The routine affine_hullO is used to compute the affine hull, which is an input to other

routines. The orthonormal basis of d-dimensional points in the set S is computed and

returned as the function result. The associated set of affinely independent points copied

from S are placed in A, k is the dimensionality of S. Note that k < d is possible (e.g.

a square in three dimensions). The running time of each of the steps in the routines are

given in parentheses after each step.

Algorithm affine_hullO

Input: d> 1,S ~ Rd

Output: A ~ S the first points of S which form a maximal set of affinely independent

points, k is the dimensionality of S.

function affine_hull(S, d) : (A, k)j

A := 0; (1)

Po := first point in S; (1)

r:= 0; (1)

For pES - {Po} do

{check if pOp is representable in terms of elements of A}

64

v := poP; (I S I d)

for x E A do (I S I k)

v:= v - a.x; {a a scalar} (I S I kd)

end

if(v # 0) {Pop is not representable} (I S I)

thenA:=AUv (kd)

end

return ({Po} U {x + Po : x E A}, IAI) (kd)

end

The running time of the algorithm affinellUllO is given by kd I S I which is the time used

for the Gram-Schmidt Orthogonalisation Process and this stage dominates the com put a-

tion. The code for the routine is shown in Appendix C.l.1l. This method of computing

the affine hull makes use of the Gram-Schmidt Orthogonalisation procedure which, given a

set of s linearly independent vectors Ut, .•. , Us, we construct an orthonormal set Xl, ... , Xs

where the Xi are suitable linear combinations of the Ui, i = 1 to s.

As an example, consider the following vectors

we set VI UI and then choose a so that

This implies

(Vb U2) 1
a

(VI, VI) 4

giving

V2 ~ l ~l j 4 -1
1

65

D
3D 2D

Figure 4.1: Transformation Of 3-D To 2-D square

Similarly

giving f3 ~ and, -~ and so we compute V3 as

Normalisation of VI, V2 and V3 gives

3 -1 1 1

[3] [0]
SV3 ~ 1 ' X3 = V3 i

In Figure 4.1, the set S is specified as 3-D points but in fact all points can be transformed

to a 2-D plane. The affine hull gives us a basis to span the plane in which S lies and so

reduces the dimensionality of the problem. For example, the square in 3-D with vertices

{(1,4,0), (4,4,0), (1,1,0), (4,1,0)} can be reduced to a square in 2-D with vertices {(1,4),

(4,4), (1,1), (4,1)}. Also the affine basis method is preferred because it allows the storage

of a basis rather than all points on the face. The main algorithm convex_hullO uses two

subroutines initiaLfacetO and rotateO corresponding to steps 1 and 3.

66

....

II
n

II
e

s

Figure 4.2: Set S Projected Onto The Plane Of e And n

Algorithm rotateO: In performing steps 1 and 3, a common routine rotateO that

moves the hyperplane is required. This routine accepts the normal to the supporting

hyperplane and an affinely independent set to be rotated through, F = {Po,· .. ,Pk}, and

returns a point J E S such that AH(F U {J} n CH(S)) is a (k + 1)-face of CH(S) but J

is not on the starting hyperplane. In the routine we are given a k-dimensional subset of

S as defined by the affine hull AS and a set F of j < k - 1 points with outward normal

defining a j-face of the convex hull. A point J and a new normal are determined such

that when J is added to F a (j + 1)-face is produced.

Chand and Kapur [1] give an efficient method for computing J. Their method involves

the computation of a vector e = (ell e2,···, ed) which together with n (the unit outward

normal to a supporting hyperplane of C H (S) that contains F) define a 2-flat (a plane)

upon which the angle will be measured. The vector e is chosen so that it is orthogonal

to both affine(F) and n. For every vector Vp = poP, which is projected onto the 2-flat so

defined, vectors are determined so that the angle between them and n are minimised or

maximised as shown in figure 4.2. The components ej of vector e are computed by finding

67

a solution to the system of linear equations:

e.n 0

where

1,2,···, k.

The projection of vp onto the 2-flat is given by

and the tangent of the angle ()p between Vp and it by

e.vp
tan ()p = --A-.

n.vp

The vector orthogonal to VJ is given by

n* .Vq :::; 0 for any q E S

and it is an outward normal to a supporting hyperplane containing the (k + I)-face.

68

Algorithm rotateO

Input: d ~ k > 1,5 a k-dimensional subset of Rd, AS = affineJmU(S,d); Fa (j + 1)­

membered subset of AS, s.t. j < k - 1 and affineJmll(F, d) n CH(S) is a j-face

of CH(S), it the unit outward normal to a supporting hyperplane of C H(S) that

contains F.

Output: J E 5 s.t. 5 n AH(F U J) is a (j + I)-face of CH(S) and fI: =I n is the unit

outward normal to a supporting hyperplane containing the face.

function rotate(S, AS, d, k, F, n) : (P, n)j

Pick a point Po E F; (1)

{compute a unit vector e E affine(S) orthogonal to F and it}

AS' := {PoP: pEAS - {Po}} (kd)

F* := (j + 1) by k matrix of the vectors {Pop: p E F - {Po}} U {it} is represented

in the basis AS'; (j kd)

Pick a solution e' to F*e' = 0; (jkk)

e := e' translated back into Rd with AS'; (kd)

e = e j II e II; (d)

Compute the minimum and maximum of tanBp = -(it.vp)j(e.vp) over all points in

p and 5; (I 5 I d)

J = one of the points computed above whose tangent was not positive or negative

infinity; (d)

.. (A) A (A) A n = vJ.n e - vJ.e n; (d)

n* := n*j II n*lI; (d)

if n.pO'p > 0 for any pES {i.e. check the orientation of the outward normal}

then n* := -n*;

69

return (J,n*);

end

Normally, once a facet is known, a single call of rotateO will produce a new facet but

at the start of the algorithm a number of rotates are required to ensure that the facet

has dimension d - 1. The running time of rotate is given as jkd + diS I. The two

major steps that contributes to the running time of this routine are the formation of the

(j + 1) by k matrix and the computation of the angle. The code for rotate 0 is given in

Appendix C.1.g.

70

Algorithm initiaLface

Input: d 2: k > 1, S a k-dimensional subset of Rd and AS = affineJlUll(S, d).

Output: Fan affinely independent subset of S s.t. AH(F) n C H(S) is a facet of C H(S)

and n is its normal vector.

function initiaLface(S, AS, d, k) : (F, n)

Pick an i such that not all the points in S have the same ith coordinate; (d)

F := set of points in S with minimal ith coordinate; (I Sid)

F := affineJmll(F, d) (I S 1 kd)

n := projection of the outward normal (0,0, ... ,-1,0, ... ,0)

{ i.e. vector with -1 in the ith component} onto affine(AS) (kd)

while 1 F 1 :::; k - 1 do (k)

(P,n):= rotate(S,d,F,n); (k(kkd + diS I))

F := F UP; (kd)

end;

return (F, n) (d)

end

The running time of initialJacetO is given as kd lSI + Pd. This is made up of the

sum of the time for computing the affine hull and the rotation step. The code is presented

in Appendix C.l.10. We are now ready to see the whole convex hull algorithm using the

routines discussed above.

71

4.1.1 Recursive Method

Algorithm convex_hull

Input: d 2: 1,S a k-dimensional subset of Rd , AS = affine~ull(S,d).

Output: C H ~ S, a set of vertices of CH(S). FAa family of sets of affinely independent

points {FAt, ... ,F Afd_J such that affine(F Ai) is a hyperplane containing the ith

facet of CH(S).

function convex_hull(S, AS, d, k) : (CH, FA);

{Check for a one dimensional set} (1)

if (k = 1) then

Let AS = {Po,pt};

min := pES s.t. p({P.POPl is minimised; (I Sid)

max := pES s.t. p({P.POPl is maximised;

return {{max,min}, {max}, {min}}; j* check for a simplex *j

{Check for CH(S) a simplex, this is a SIMPLEX BYPASS}

if 1 S 1 = k + 1 then (1)

return (S, {FA ~ F: 1 F 1 = k}) (kd);

(F, n) := initiaLiacet(S, AS, d, k); (kd 1 S 1 +Pd)

{ Find the rest of the facets }

Edge list := 0 (1)

CH:= 0

FA:= 0

{Find each (k - 2)-face's facet}

do (h-d

FA := FA U {F}; (h-lkd)

72

Pick a point po E Fj (h-l)

F' := {p E S : pop.it = OJ; (h-l I S I d)

(FCH,FFA) := convexJlUll(F', F, d, k -1); (Li T(F:, k - 1))

CH := CH U FCH; (fd-l I S I d)

while(FFA =1= 0) do (2h-2)

{remove facet(E,-) from FFA; (2!d_2kdlog h-2)

if (E E EdgeList) remove facet (E,-) from EdgeListj

else add (E, it) to EdgeList; }

if(EdgeList =1= 0) (h-l)

{ Pick an (E, it) from the edge list;

(P,it):= rotate(S,AS,d,k,E,it);

F = E U {P}j } (h-1d)

}while(EdgeList =1= 0);

return (CH,FA);

end

(h-lkd)

(fd-l(Pd+ I S I d))

The time for one call of this procedure on a set S C Rd of dimension k ~ d and

cardinality n > k + 1 is given by

T(S, k) = O(k2dh_l + dnh-l + kd/d-21og/d-2 + LT(F/, k - 1))

where !k is A(P) and F: is the set of points sharing the hyperplane with the ith facet of

P. The boundary conditions are T(S, k) = 8(k d) if I S I = k+1, and T(S, 1) = 8(n).

The main driving routine in the program is the function convex_hullO that takes a set

S of dimension n and affine basis AS a subset of S with dimension k. The function

returns the set of points CH(S) which are the vertices of the convex hull and FA the

lists of facets. The routine is recursive. Given the set S, the routine firstly determines the

number of points in S and checks for a I-dimensional set which in this case is a straight

73

line. If there are only two points, they are returned as the vertices and the edge. In the

case where there are more than two points, the end points will be returned as the vertices

of the convex hull and the edge. If the input set S is not a 1-dimensional set. the routine

calls the function InitiaLfacetO to compute the initial face to start the computation of

the faces. All the points on the initial face are copied and used as the input to call the

convex hull routine recursively to compute the vertices and edges of this face. The vertices

and edges so computed are stored in the FC Hand F F A lists respectively. Before storing

the vertices and edges so computed, the routine checks the already existing vertices and

edges to ensure that there is no duplication. The routine keeps the edges computed at

each recursive call in an EdgeList. While there are still more edges in the EdgeList, an

edge is picked with its outward normal and rotated by calling the function rotateO in

order to determine a new face and the process is repeated. A simplex bypass is added as

a quick exit for recursion. In order to check for a simplex bypass, consider a set with k =

2 having three points S = {(3,3), (3,1), (l,l)}, then I S I = 3 = k + 1, so the points are

vertices of the convex hull and the edges (faces) are the permutation of k vectors. e.g. k

= 2 and CH(S) = S. FA = {{(1,1), (3,3)}, {(1,1), (3,1)}, {(3,3), (3,l)}}.

4.1.2 Stack Version

As a variation to the recursive partitioning method, we have also implemented a non

recursive or stack based version. Non recursive methods are more efficient and allow a

better management of dynamic memory allowing larger problem sizes to be processed. A

stack that is proportional to the size of maximum dimension is created in order to solve

the convex hull problem. Each level of the stack is a record that contains the following

information:

• Set of points S

• Set of points AS which is the affine basis of S

74

• The dimension k of 5

and the following lists which are initially set to the empty list.

• EdgeList, Elist

• Convex hull list, CH

• Face list, FA

The Elist is used as a storage for the computed edgelist determined during the com­

putation. Once an edge is found twice, the two adjacent faces with this edge as their

intersection have been found and this edge can be deleted from further consideration.

Initially, the stack level is set to zero and the initiaLiacetO routine is called to

determined the initial face to initiate the computation of the rest of the faces and vertices

of the object. The edges of the initial face so determined are preserved in the Elist.

When an edge is selected it is rotated and a new face determined, copying all the points

on that face onto the next level of the stack with the maximum dimension decremented

by 1. With the new set of vertices, affine basis and dimension, the CH, FA, and Elist

are computed. This process is continued until the highest level on the stack is equivalent

to the maximum dimension size. After the computation of the Elist, CH, and FA, the

face so computed has to be unstacked before a new edge is selected for consideration. The

components in Elist, CH and FA on stack level sp are unstacked to the lower level sp-l

ensuring that there is no duplication of members. This is continued until the stack level

is again reduced to zero. Another edge, if any, is then picked, rotated and the process

repeated to determine yet another face. Edges are picked until the Elist at sp = 0 is

empty and in that case all the faces have been computed.

Figure 4.3 illustrates the stack version with a 3-D example. In each of the partitions,

the steps described here are executed. The Elist, CH for the convex hull and FA for the

75

..
sp=2 ..

S AS k=! Elist CH FA

, , , ,
S AS k=2 Elist CH FA

sp= 1

S AS k=3 Elist=O CH=O FA=O sp=O

Figure 4.3: Stack Implementation For 3-D

facets list are initially set to null sets at level sp = o. 5 is the set whose convex hull is

to be determined and AS is its affine basis with k representing the dimension. First of

all, the initial face is computed to start the execution of the program. All the points of

S that are on the initial face are copied into 5' which is on the next higher level of the

stack, i.e. level sp = 1. The affine basis of 5' is computed which we represent as AS'

for the k -1 dimensional set. (Elist)" CH' and FA' are then computed for that level on

the stack. At sp = 2 the problem is trivial as it reduces to straight lines where the end

points form the vertices of the hull i.e. CHand two extreme points define an edge which

in turn describes a facet. To complete the computation on that face, the (Elist)" CH'

and FA' lists are now unstacked from sp = 2 to sp = 1. At each level of the stack, the

algorithm checks the list at the lower level before adding the list from the upper level of

the stack to ensure that there is no duplication. This is repeated until sp = O.

A new edge is now selected from the Elist and a rotation is performed along that edge

to describe a new face where the above steps are repeated on that face to compute C H

and FA. This rotation step is repeated as long as there are more edges in the Elist. A

number of rotations may be necessary depending on how complex the shape of the object

76

is. A merge of two subproblems followed by convex hull computation using the sequential

stack version is then carried out with the final results emerging after the last merge and

compute process. The sequential stack algorithm is summarised as follows:

Function Convex Hull(S,AS,n,k) : (CH,FA);

{ /* setup the stack * /

sp = 0; Stack[sp].S = S; Stack[sp].AS = AS; Stack[sp].k = k;

Stack[sp].Elist = 0; Stack[sp].FA = 0; Stack[sp].CH = 0;

do{
if(Stack[sp].CH = 0 and Stack[sp].FA = 0)
{

if(k = 1) /* a 1 - dimensional set * /
{ AS = { po, PI };
min = pES such that PolJ},PoPl is minimised
max = pES such that POPI,POPI is maximised
return ({max,min} , {max}, {min});
}

if (I 5 1 = k + 1)
return (5, {F ~ 5 :1 F 1= k}); /* check for a simplex'" /

else
{
(F ,n) = initial facet(S,AS,n,k)
FA = FA u { F }
F' = 0;
Pick a point Po E F;
F' = {p E 5 : p~. n = O} ;
sp = sp+l; Stack[sp].S = F' ; Stack[sp].AS = F; 1* stack the face */
Stack[sp].k = Stack[sp].k-l;
EdgeList = 0; Stack[sp].CH = 0; Stack[sp].FA = 0;
}

} /* unstack completed faces * /
if (Stack[sp].CH ::j:. 0 and Stack[sp].FA ::j:. 0)

while(EdgeList = 0 and sp > 0)
{

while(Stack[sp].CH::j:. 0) { Pick P E 5tack[sp].CH}
if(p t/:. Stack[sp-l].CH)
Stack[sp-l].CH = Stack[sp-l].CH U p; } /* Insert point * /
while(Stack[sp].FA::j:. 0)
{
remove facet (E,-) from Stack[sp].FA;
if(E E Stack[sp-l].Elist) remove (E,-) from EdgeList

77

else add (E,-) to Stack[sp-1].Elist
}

Delete lists: Stack[sp].S; Stack[sp].AS;
Stack[sp].k = 0; sp = sp-1;
}

if (EdgeList i= 0) /* get next face * /
{
Pick an (E, it) from EdgeList;
(p, it) = rotate(S,AS,n,k,E,it);
F=EU{p};
FA = FA U {F}
Pick a point po E F
F' = {p E 5 : POPl. it = O};

/* stack the face * /
sp = sp +1; Stack[sp].S = F'; Stack[sp].AS = (F,it);
Stack[sp].k = Stack[sp-1].k-1;
}

}while(EdgeList i= 0 or sp > 0)

return (Stack[O].CH, Stack[O].FA)j
}

4.2 Sequential Implementation

In our programs we employ the C programming language with sets implemented as circular

linked lists. Sets of sets (i.e. EdgeList and FA) are circular lists augmented with a vector

for the facet normal it. This representation follows because the pair (E, it) in the algorithm

define a facet in terms of points on the facet and the outward normal. The routines for

manipulating the points and the edges are shown in Appendies C.l.1 and C.l.2. The

non-recursive method is intended to provide a better management of dynamic memory

allowing larger problem sizes to be processed in a distributed memory implementation.

The vectors or points are represented as arrays. The list structure is to provide a dynamic

memory allocation which allows the list to expand or shrink depending on the size of the

data.

Some other auxiliary routines are provided for development of the algorithms and are

described below. First a routine Remove~uplicate~ointsO (Appendix C.l.6) exam-

78

ines the set, eliminating points that appear more than once, if any. The points are then

sorted lexicographically according to their x co-ordinate using the routine Quick_SortO

(Appendix C.1.3) with average time O(n log2 n) and O(n 2
) in the worst case. The algo­

rithm then splits the ordered set of points into p subproblems, where p is the number of

partitions, corresponding to the number of processors to be used in the parallel implemen­

tation, solve all the subproblems by calling the sequential algorithm GenerateJiullO

(Appendix C.1.4) to compute the convex hull for each of the subproblems and then merge

all the subproblem solutions to obtain the solution to the original problem.

4.3 Program Testing

Program testing is that part of the validation process which is normally carried out during

implementation. Testing entails exercising the program using data similar to the real data

the program is designed to execute on, observing the program outputs and inferring the

existence of program errors or inadequacies from anomalies in that output. Testing in fact

is meant to reveal program errors but in our context it is also used to assess overheads of

various implementation strategies. For very large programs it is unrealistic to attempt the

testing process as a single unit. Large programs are built out of procedures and functions.

Testing the system as a whole will make it difficult to detect and identify errors. Testing

could be carried out in stages.

In order to test our algorithms, we have to design our test data to cater for shapes with

peculiar characteristics. This is because some of the algorithms seem to perform better

with some test data than with others. In particular we have considered the following:

Type 1: Hulls with a small number of vertices but many interior points.

Type 2: Hulls with many points on the faces.

Type 3: Hulls with many vertices and few interior points.

79

Table 4 1· Test Data ..
Points Vertices Dimension

25-4000 3
25-4000 4
25-4000 6 2-D
25-4000 16
50-4000 26
25-4000 3
25-4000 4 3-D
25-4000 6
25-3000 12
25-4000 3
25-4000 4 4-D
25-4000 6

The experiments were repeated with sets of points of different sizes in 2-D to 4-D problems.

For problems greater than 4-D, we did not try them because we ran out of memory each

time we made an attempt. Table 4.1 illustrates the dimensions and size of data set we have

used to test our algorithm. This data is used to test our algorithms using the partitioning

technique discussed in chapter five. Another noticeable feature in the table is the fact

that the different options mentioned in Type 1 to Type 3 above are adequately catered for

in our test data. Running our algorithms with the different test data will reveal how the

size, dimension and number of facets may affect performance. For example, a problem in

2-D of size 50 with 4 vertices on the convex hull will give a different running time when

compared with a similar problem in 3-D. If we consider a 2-D space, the shapes in Figure

4.4 (a) to (c) demonstrate some of the shapes that we considered when generating our

test data. The convex hull in Figure 4.4(a) has very few vertices as against those of (c)

with many vertices while in (b), the edges have more than two points. Our algorithm is

designed to trap such features and return only the two extreme points eliminating those

points that are between the vertices. The size of the test data ranges from as small as 25

points to as many as 4000 points thus satisfying conditions (1) to (3) above.

80

-

b

Figure 4.4: Types Of Shapes In 2-D

The characteristic mentioned in (3) is satisfied in the test generator for the imple­

mentation discussed in chapter six. In fact all the points generated to test our imple­

mentation in chapter six consists of points that are all on the vertices of the convex hull.

Generate_Test2() (Appendix C.2.2) and Generate_Test3() (Appendix C.2.3) are used to

generate these data and their detailed discussions are clearly given in the appropriate

section. These sets of data were necessary because our algorithms in that chapter were

designed for problems with many edges and vertices. Data items designed for the parti­

tioning technique will perform poorly if used. The data for Type 1 are for the partitioning

techniques in chapter five.

4.4 Design Of Test Data

The input data to the convex hull program is a set of points in d dimensions and the output

is the vertices and faces of the convex polytope. Planning the testing of this algorithm

involves formulating a set of test cases which are akin to the real data that the system

is intended to manipulate. The test data consists of d, the dimension, n the number of

points in the set S and the vectors or points. The aim was to ensure that the program

81

responds as expected to both valid and invalid input, and that it performs to specification.

Separate and different codes were written to generate data for the programs in chapters

five and chapter six. This variation is necessary because of the manner in which the

programs are designed to manipulate the data.

4.4.1 Test Generation For Type 1 Hulls

In order to obtain data to test our programs, codes were written to generate the test

data. The algorithm uses the standard C random number generator to generate the test

data. A routine Generate_TestO (Appendix C.2.I) was written for this purpose. A set

S which contains the vertices of the convex polytope are given as input data. The routine

Generate_TestO first of all computes the convex hull of the given set producing FA as

its facets. A random number seed is then given as input to activate the random number

generator. The algorithm also requires r the total number of points to be generated. The

required number of points is then generated randomly inside the polytope. To eliminate

unnecessary duplication of points, the routine Remove...Duplicate~ointsO checks and

removes points that are duplicated. The process repeats until r points are produced and

aborted after a large number of trials. Also to ensure that the points generated fall inside

the convex polytope, a routine called Check_HullO (Appendix C.1.5) ensures that all

the points generated are within the specified boundary and this uses the faces computed

from the initial convex hull. A set S consisting of the convex hull as a subset together

with the additional points generated is returned and this will act as our input data.

4.4.2 Test Generation For Type 2 Hulls

To exercise the facial lattice program in chapter six it is necessary to generate complex

hulls with few or no interior points. The above mechanism is not suitable.

The data used for the timings were generated using programs written to produce S,

the set of n-dimensional points. For the 2-D case, a centre c is chosen on the plane and a

82

A

A

Figure 4.5: Illustration of 3-D Circular Shape

constant radius r. With the starting radius, and rotating in an anticlockwise direction, an

angle () is formed with another point say, Pi such that arc PPi subtends an angle () at the

centre of the circle. By stepping with this constant angle and radius around the circle,

the points so generated are used as our test data to compute the vertices of the convex

hull of S. For the 3-D object the method is easily extended with two additional points

projected in opposite direction as the vertex of the object as shown in Figure 4.5. This

is a simplified representation of a circular structure with a square base, but the vertex

projected in opposite directions. The shape can be viewed as two separate pyramids on

a common square base.

The next set of data aims at generating objects with more vertices and edges. Figure

4.6 shows a section of the 3-D pyramidal shape and the faces that could be computed in

parallel. This object can be viewed as a pyramidal structure built with rectangles in such

a way that the square on the next upper level is smaller than the one immediately below

it. The angle of inclination at each square is varied so that the vertices are not co-linear.

The algorithm could be modified to produce a similar object in the opposite direction

both having a common base which is the initial square, thus resulting in a shape with

83

A B

2

3

3
2 3 4

3

2

C

Figure 4.6: Illustration of 3-D Pyramid Shape

more vertices and edges. Type 3 data can be generated by employing a mixture of the

techniques for Type 1 and Type 2 data.

84

Chapter 5

Implementation Using Partitioning

The algorithms in this chapter combine divide-and-conquer partitioning techniques with

the gift-wrapping concept discussed in chapter four. Both recursive and non-recursive

(stack based) algorithms have been implemented using master-slave and fanin tree ap­

proaches in shared memory (Encore Multimax) and message-passing (Transputer - .'dcikcJ

Computing Surface) architectures. The performance of the parallel versions are monitored

with several partition sizes on different numbers of processors running on the same parallel

machines.

5.1 Sequential Method

The sequential Divide-and-Conquer method that we propose is given here in this section.

The main idea is to divide a problem into p subproblems of approximately equal size, solve

the subproblems and merge the solutions to the subproblems. Our sequential program

is based on both the recursive and stack versions of the algorithms presented in chapter

four. Both versions were implemented on the shared memory and transputer architectures,

running each version on one processor of each machine. Initially, the points are sorted

lexicographically using the quicksort algorithm. Duplicate points are also removed from

the list. The computing time for the sequential algorithm as stated earlier in chapter four

is gin'Il by nUN d + d3 P + d!df) where f is the number of facets of C H(5). The p term

8,j

can be reduced to j log2 j if we use binary tree data structures (as in Swart [2]). Clearly

when N » j, or d, the key to a fast convex hull algorithm is the ability to eliminate

large numbers of points from S as quickly as possible. The algorithm splits the ordered

set of points into p > 1 partitions from which p convex hulls are generated by calling the

sequential program on each partition. The sub convex hulls are then merged to form the

complete hull. The algorithm is given as follows:

Algorithm CH(S)

Input: A set S of n points in space.

Output: The list CH(S) i.e. the vertices of the convex polytope of S.

Step 1: Sort the n points of S, and partition S into sets Rl, R 2 , ••• ,14, where p is the

number of processors.

Step 2: Solve the convex hull problem for each 14, i E {I, 2, ... ,p}, using the sequential

convex hull routine. After the return of each computation, we will have CH(14) for

each 14.

Step 3: Find the convex hull of S by computing the convex hull of the union of the p

convex polytopes CH(R1), ••• , CH(J4). This is done by using algorithm Merge!.

Merge1

Input: The collection of convex polytopes C H(R1), ... ,C H(J4).

Output: The list of points consisting of the vertices of CH(S).

For i = p down to 2 1* loop 1 * /

begin

CH(Ri-d = CH(14-d U CH(14)

86

Generate_Hull(C H(I4-1))

CH(Ri) = 0

end.

The sequential merge algorithm is performed in loop 1. Suppose there are p partitions,

the convex hull of each partition is computed using the sequential algorithm. The first

merge step is to find the union of the set of points in partitions p and (p-l) and computes

its convex hull. This result is in turn merged with partition (p - 2) and the same process

is repeated until the final merge appears in partition 1 where the vertices of the convex

polytope are filtered out. This clearly demonstrates that at each step two subproblems are

merged together followed by a computation step which finds the vertices of yet another

subproblem. In the case where the size of the partitions is reasonably large and not all the

points are on the convex hull, the first call of the sequential algorithm greatly reduces the

number of points to be considered in the subsequent stages by eliminating the points that

are interior to each sub convex polytope. The timing for computing the convex hull for

the different partition sizes and the number of points using data of Type 1 were recorded

(see chapter 4). This will be compared against the time used to compute the convex hull

of the same problem using the same number of partitions in parallel.

The parallel implementation of the n-D convex hull algorithm discussed in this chapter

is modelled by a fanin tree structure. The main approaches in which the fanin tree can

be implemented depend on the architecture available. Assuming an unlimited number of

processors we can consider the following approaches:

1. Simulate Levels Of The Tree.

2. Emulate The Tree In Hardware.

3. Hybrid Approach

87

In the following sections we will consider these methods for both shared memory and

distributed memory architectures. Before proceeding, it is worthwhile considering the

problems involved in the various approaches.

In the shared memory machine, we implement the simulated fanin tree. The tree is

simulated level by level by reusing some of the processors. This is suitable for a shared

memory implementation because the bus traffic is considerably reduced by simulating the

tree at different levels. At each level of the simulation, the number of processors being

utilised is also reduced. To model a tree in hardware using a shared memory architecture

will present some difficulties because the machine is a bus-based architecture and will

suffer from communication delays due to too much traffic.

In the message passing paradigm we have emulated the tree in hardware as well as

simulating the tree level by level, adopting a master-slave relationship and reusing some

of the processors. These implementations are enhanced by the architectural design of the

distributed memory machines. For the transputer machine that we use to implement our

algorithms, the four bidirectional links between each processor promote the exchange of

messages among processors. The different methods that we use to model the tree in the

message passing architecture are discussed in more detail in section 5.4.2.

The hybrid approach seeks to combine options 1 and 2 above in its design. Basically,

the initial partitions are distributed to the slave processors where the sub convex hulls are

computed. Two neighbouring processors merge their results and one of them recomputes

the new subhull. This in turn merges with another and the process is repeated until the

last two processors merge where the final result will be filtered out. The proposed method

is illustrated in figure 5.1. Here PI to P4 compute their respective subhulls. In the next

stage PI merges with P2 while P3 merges with P4 and new sub hulls are computed. The

final stage involves the merging of PI and P3 followed by the computation of the final

convex hull. We have not implemented this method because of problems with comparison

88

I

o
Figure 5.1: Illustration Of Hybrid Approach

between the architectures available and the communication difficulties.

5.2 Shared Memory Implementation

The convex hull problem has a solution which is expressible directly by recursion. The

ability to map the solution onto a recursive function leads to an elegant and natural

implementation. The power of recursion is utilised here since the solution can be expressed

by successively applying the same solution to subsets of the problem. The recursive

convex hullO routine is given in chapter four. The parallel implementation of this

version in the shared memory architecture now follows:

Parallel ConvexJiuliO

Input: A set 5 of n points.

Output: A list C H(S) i.e. the vertices of the convex hull.

Method: Step 1: Sort the n points by minimal first coordinate, and partition S' into

sets R 1 , R 2 , ... , Rp such that Rb R2 , ••• , Rp = partition(S. d)

89

Step 2: Recursively solve the convex hull problem for each.&, in parallel by assign­

ing each partition to a processor. Each processor calls the sequential recursive

Convex_Hull() routine concurrently to compute CH('&). After the parallel

recursive call returns we will have CH('&) for each .&.

Step 3: Find the convex hull of S by computing the convex hull of the union of

the C H (Rt), C H (R2), ••• , C H (Rp). This could be achieved by using algorithm

Merge20 described below:

Algorithm Merge20:

Input: The collection of convex polytopes C H(R1), • •• ,C H(Rp).

Output: The convex polytope of the vertices of the union of CH(.&)'s. i.e. CH(S).

procs = r p/21

if procs odd C H(Rp+l) = 0

while(procs i= 1) /* loop 1 * /

{

For i = 1 to procs

{

CH('&) = CH('&) U CH(Rrp/2l+i)

}

C H(Rrp/2l+i) = 0 /* loop 3 * /

Generate_Hull(CH(R;)) /* loop 2 * /

procs = rprocs/21

}

Generate_Thread_Hull(.&)

/* Computes the convex hull of set.& producing vertices in CH('&) and facets in FA */

90

if(IsEmpty..Plist(14) =I TRUE)

if(14 =I GetNext..Point(14)

14 = Remove...Duplicate..Points(14, n)

Quick_Sort(GetNext..Point(14), GetPrev..Point(14), n)

Affine-Hull(14, n, AS, k)

Convex-Hull(14, AS, n, k, CH(14), FA)

else

Return single point as C H (14)

else

MakeEmpty ..Plist(C H(14))

MakeEmpty ~list(FA)

The main idea is to merge and to compute in parallel the convex polytope of the

union of two sub convex hulls by using p/2 processors at each stage. If the number of

subproblems is odd, the algorithm generates an additional partition which is empty so

that an even number of partitions are obtained. The points inside each of the CH(14)

need not be considered any further because they cannot be vertices of CH(S). This

algorithm could be summarised as follows:

R}, R2 , . .• , Rp = partition(S, d)

/* Find the convex hull of partitions in parallel * /

For i = 1 to procs

THREADcreate(Generate_Thread_Hull, i, 0, ATTACHED, 30*1024, 2)

while(THREADjoinO)

/* merge the partitions in parallel * /

if(procs /2 = 0)

procs = procs/2

91

else

procs = procs/2 + 1

while(procs =I 1)

{

For i = 1 to procs

THREADcreate(Merge2, i, 0, ATTACHED, 30*1024, 2)

while(THREADjoinO)

if(procs /2 = 0 or procs = 1)

procs = procs/2

else

procs = procs/2 + 1

}

CH(S) = CH(R1);

This algorithm is a sequential coding of a binary fanin tree algorithm where the C H(R)

are computed on p processors and then merged and further reduced as they filter up the

tree with CH(S) emerging from the root. For a particular iteration of loop 1, j say, loop

3 followed by loop 2 is executed on level j of the tree with a tree node performing the

lexicographic set union of two lists of points followed by applying the recursive Convex

RullO to the result. A crude timing estimate can be given by !1((log 2 P + 1) (fmax nd +

d3 fmax 2 + d!dfmax)) assuming that the last partition at the root contains all N points (i.e

the input set was the set CH(S) and must be an upper bound for the partition size at all

the other levels in the tree. The value fmax is the maximum number of facets in the hull

of any partition. Alternatively, we can use the bound !1((log2P+ l)(fmaxdn/p+J3 fmax 2 +

d!dfmax)) if n/p is the maximum number of points in any partition which in general is

unknown. Observe that although we can guarantee the size n/p is true for the starting

partitions it may not be true once merging occurs and points are eliminated. However, it

92

Figure 5.2: Merge Tree For Eight Subconvex Hulls

is likely to hold for convex hulls with a small number of vertices because each partition is

likely to eliminate few interior points during computation. We conclude that these results

are comparable to previous parallel methods on fixed number of processors discussed in

chapter three and in any case approximate linear performance in n for small p, d and f

as expected compared to n log2 n for most sequential algorithms using divide and conquer

methods. Notice that both our sequential and parallel methods involve partial sorting so

that the n log2 n condition can be omitted since no speedup is expected from that portion

of the program. The diagram in Figure 5.2 illustrates the method using eight processors.

The merge and convex hull computation takes place at subsequent levels of the tree. The

arrow indicates the direction of fanin. The example in the diagram illustrates a perfectly

balanced tree but in general this may not be the case. Some examples of unbalanced trees

include cases where p, the number of processors, is odd or when p cannot be expressed

as a power of 2 (e.g. p = 10). Our method deals with this automatically but degrades

performance. Where the number of processors at a particular level of the tree is odd,

an empty sub convex hull is created and this is merged with the extra sublist. By this

approach, a balanced tree is created at the expense of performance.

93

5.3 Results From Shared Memory Machine

The programmer does not have control of the allocation of either processors or storage in

the shared memory implementation. The libraries allow multiple tasks to be setup and

they are allocated to processors by the operating system (this is to allow flexibility in a

multi-user environment). Different versions of the proposed algorithm described above

have been implemented in the shared memory architectures.

This section on practical implementation and results demonstrates the performance

of our techniques on the shared memory machine. All timings were done at off peak

times. The EPT library provides a facility whereby the system clock can be started. In

all cases our timings exclude the times used for reading the input and writing the output

from and to files. A comparison of the serial time with the potential parallel time for

a divide-and-conquer construct-and-merge algorithm shows that a significant speedup is

possible.

We have used up to 4000 points to test run our algorithms as shown in table 4.1. The

experimental data used to test our algorithms were generated using Test Generation

For Type 1 Hulls. This is discussed in detail in section 4.4.1 of chapter four. Polytopes

of different shapes were considered. For example, in 2-D we consider shapes with three,

four, six, sixteen and twenty-six vertices on the convex hull to illustrate a triangle, a

quadrilateral, and a hexagon etc. each showing an increase in the number of vertices

and faces of the shape under consideration. Similar trends are followed for the 3-D and

4-D polytopes. The generated set was then split into the required number of partitions.

Execution times were then recorded in microseconds for the serial and parallel algorithms

using 2 to 6 parti tions (processors). Tables 7 - 28 of Appendix A show the timings recorded

for the various data sets used to test our algorithms. The performance characteristics -

speedup and efficiency discussed in section 2.12.1 and 2.12.2 of chapter two, and used to

94

characterise our performance were computed from these tables. Tables 7(2)27 of Appendix

A show the timing recorded for the recursive version using threads and microthreads with

the dimension and the number of points on the convex hull clearly stated for each problem

size. Similarly, the timing for the stack version on similar problems are recorded in Tables

8(2)28 of Appendix A. In all cases, what is easily noticeable is the fact that significant

improvements of the running times of the parallel algorithms over the sequential ones

are achieveable. In particular the 2D problem reaches its optimal speedup of 2 when

using 2 processors. This apparent lack of overhead can be attributed to some book­

keeping exercises in the architecture. The speedup for the same problem size decreases

as the dimension of the problem increases. A plot of the speedup against the number of

processors for some of our results are shown in figures 5.3 - 5.8 which are presented in

the graphs. A common feature in both the recursive and stack versions is the fact that

the running times depend on the problem size, the dimension and the number of facets of

the convex hull. For example in 2-D, using the recursive implementation, we have shown

the performance from 50 to 4000 points with 26 vertices on the convex hull as in Table

15 of Appendix A. This is illustrated in figure 5.3. In this case the speedup increases

quite rapidly with an increase in the problem size. 3-D with 12 vertices demonstrates

the effect of 2000 points (see Table 23 of Appendix A). Figure 5.5 shows the performance

using microthreads and again the speedup increases steadily but not as much as it was

in the 2-D case. This is because of the increase from 2-D to 3-D problem. In the 4-D

case, using a problem with 6 vertices on the hull and a problem size of 500 points is

shown in Table 27 of Appendix A. Figure 5.4 gives the representation. In contrast to

the above, the stack version has the capacity of running a larger problem size. This is

shown using 3-D with 12 vertices on the hull and 4-D with 6 vertices on the convex hull

Tables 24, 28 of Appendix A where problem sizes of up to 4000 points were used. The

stack implementations for similar problems are illustrated in figures 5.6, 5.7 and 5.8. The

95

problem in the recursive version is as a result of the combinatorial nature of the point and

edge data structures. Each call to the algorithm generates new vertices and edges which

are stored and eventually fills up a lot of space in the memory. This is likely to happen

when the shape of the object has a lot of faces and vertices on the convex hull. Also, each

sub problem generates its respective results (vertices and edges) which also contributes

to the increase in the storage space in memory.

However, a common feature is that the speedup increases as the problem size increases.

This is due to the fact that a lot of points are eliminated during the first stage of the

computation and the steps involving the merge are less significant. Also worth noting is

the fact that when using fewer number of processors, the speedup increases more rapidly

as against using more processors to run the same problem. This is attributable to load

balancing. The partitioning of a given problem into different subproblems decreases the

size of the subproblem as the number of partitions increases. Partitioning a set 5, say

of 1000 points into 2 subproblems may assign 500 points to each subproblem whereas a

similar subdivision into say 5 partitions may yield only 200 points per partition. There is

no doubt that this will eventually affect the performance and subsequently the speedup of

the problem. Using more partitions may reduce the amount of work given to a processor.

The work load may not be enough to keep the processors busy. On the other hand,

more points will be eliminated by the leaf processors, thus simplifying the inital hulls.

At subsequent stages not many points are removed because these will be vertices of sub

hulls. The speedups however tend to stabilise when each processor is given adequate

task to keep them busy. The graphical representations in figures B.l - B.32 and B.34

of Appendix B illustrate the shared memory implementation for the different problems

using both threads and microthreads for the recursive and stack based implementations.

The speedup for 2-D problems increases quite rapidly because of the simplicity of the

problem whose shapes are mainly plain polygons. For the higher dimensional problems

96

6

5

4

01-------.------,-------r------.
o 1000 2000

Number Of Points

3000 4000

Figure 5.3: Recursive Version 2-D 26 Vertices Using Threads

the speedup also increases with an increase in the problem size but the increase is gradual

and steady because of the interplay of the dimension and the increased number of facets of

the object. The microthreads implementation also shows a similar trend. Similar results

are observed in both the recursive and stack versions but the stack version usually proves

to be faster and larger problem sizes could be implemented. The most significant result is

that we can measure real performance gains even for a relatively small number of points.

Scaling up the results is non-trivial due to memory management problems resulting from

combinatorial explosion of the point and edge data structures.

5.4 Message Passing Implementation

This section considers the implementation of the n-D convex hull algorithm on a dis­

tributed memory machine. Three versions of the parallel algorithms were implemented

and are reported here:

• Simulated Fanin Tree.

• Tree Method.

97

6

5

4

2

1
key

....... -
-- 3p<ocs -a-.....,.
-it- """'"

O~----~-----'r-----~----~------, ~"""'"

o 100 200 300 400 500

Number Of Points

Figure 5.4: Recursive Version 4-D 6 Vertices Using Threads

a.
::l

6

5

4

-g 3
~

C/)

O~---------.----------~--------~

o 500 1000 1500

Number Of Points

Figure 5.5: Recursive \"ersion 3-D 12 Vertices Using :\Iicrothreads

98

6

5

4

2

O-r-------,-------.,-------,-------,
o 1000 2000

Number Of Points

3000 4000

key

Figure 5.6: Stack Version 2-D 26 Vertices Using Threads

a.
~

6

5

4

-g 3
~

(/)

2

O-r-------,-------.~------,-------.

o 1000 2000

Number Of Points

3000 4000

Figure 5.7: Stack Version 4-D 6 Vertices Using Threads

99

5

4

2

O~------r------.-------.------,

o 1000 2000

Number Of Points

3000 4000

Figure 5.8: Stack Version 3-D 12 Vertices Using Microthreads

• Pipelined or Fixed Size Tree.

In the Distributed Memory implementation, all the three different approaches adopted

build a fanin tree structure but differ in the way in which communication and exchange

of data takes place. The processors at the highest level of the tree are termed the treeleaf

processors while those between the root and the treeleaves are the treenode processors.

5.4.1 Simulated Tree

In this approach a processor known as the master processor is given the initial problem to

be solved. All other processors initially have nothing to do and are thus idle. The master

processor starts by splitting the set of points whose convex polytope is to be computed

into a predetermined number of subsets or subproblems. After this partitioning scheme,

the master processor then farms out each subproblem to its neighbouring idle processors

at the highest level of the tree called the slaves. Initially, the master processor transmits

the p subproblems to p slave processors. The slaves accept these tasks from the master

and compute the convex hull of each subproblem and in turn give back their results to

the master. The master now sends two respective subconvex hull lists to each of p/2

100

slaves at the next lower level of the tree for the next round of computation by reusing the

processors. The slaves at this level perform the merge process by calling the merge routine

before computing the convex hull. This approach constructs a simulated fanin tree and

this merge and compute process is repeated until in the final stage, two sub convex hull

lists are sent to one slave (root processor) by the master. The final merging and com"ex

hull computation takes place here producing the final solution to the problem. The result

is communicated back to the master for output. The algorithm is summarised as follows:

101

Rb R2 ,.··, Rp = partition(S, d)

For i = 1 to procs j* send list to slave i * j

{

}

csn_tx(masterchan, 0, toslaveid[i], &status, sizeof(status));

Transmit_Plist(Ri,n, masterchan ,toslaveid[i]);

For i = 1 to procs j* get result from slave i * j

{

}

csn_tx(masterchan, 0, toslaveid[i], &status, sizeof(status));

Receive~list(&C H(R.),&m, masterchan ,&fromslaveid[i]);

while(procs > 1) /* loop 1 * j

{ /* send list to slaves * j

For i = 1 to rprocsj21

{

}

csn_tx(masterchan, 0, toslaveid[i], &status, sizeof(status));

TransmiLPlist(C H(R.),n, masterchan ,toslaveid[i]);

TransmitYlist(C H(Rrprocs/2l+i),n, masterchan ,toslaveid[i]);

For i = 1 to rprocsj21 1* master gets results from slaves * j

{

csn_tx(masterchan, 0, toslaveid[i], &status, sizeof(status));

ReceiveYlist(&CH(R.), &m, masterchan,&fromslaveid[i]);

For i = 1 to rprocsj21 do { R. = R. u Rrprocs/2l+i;

Rrp/2l+i = 0}

procs = rprocsj21;

102

Slave 1 Slave 2 Slave 3 Slave 4

Figure 5.9: A Simulated Tree Implementation

}

CH(S) = CH(Rl);

Two major processes are involved here. The first involves the master processor which

handles the distribution and coordination of tasks around the network. The second is

performed by the slave processors and actually does the application specific work by

merging two sublists where necessary before using the sequential convex hull routine for

computation. The master and the slave processors work closely to achieve the desired

result. By this scheme the complexity of the slaves is minimised and the master can

be kept busy with the communication task. However one of the major limitations of

the method is that the programmer has to be involved with all the low level issues such

as routing and message passing and a significant proportion of the development time of

the parallel implementation was spent catering for these communication problems. The

diagram in figure 5.9 illustrates the exchange of information and data between the master

and the slave processors in a simulated tree environment using four leaf slave processors.

103

5.4.2 Tree Method

This implementation seeks to address the communication overhead experienced in the

simulated tree approach. The master initially partitions the set into p subsets. These

subproblems are in turn mapped onto the p treeleaf processors where each will basically

use the sequential convex hull algorithm to compute its convex polytope. The algorithm

for the master is paraphrased here:

Rl, R2 , •. • , Rp = partition(S, d)

For i = 1 to procs /* send list to R to leaf i * /

TransmitYlist(Ri,n, masterchan_out ,treejd[i]);

/* send computed result back to the master * /

Receive~list(CH(Rl)' &n, masterchanjn ,NULL);

CH(S) = CH(R1)

Each treeleaf is a transputer which possesses its own copy of the sublist sent by the master

and also runs a sequential convex hull routine. Once a leaf process has produced its convex

hull it is directly transmitted to the next lower level of the tree. Here a treenode awaits

the arrival of two sub convex hull lists with which to carry out a merge and consequently

compute the convex hull at that node. The method which builds a tree in hardware

requires 2P- 1 + 1 processors. The diagram in figure 5.10 illustrates the configuration of

a four leaf transputer network showing how the tree is constructed. The final solution is

filtered out from the root. The processes that run on each transputer are identical (except

the master) apart from the fact that the size of the data used for computation at each

level of the tree may be different once the computation starts. The sub hulls produced

after the initial computation may differ in the number of points and hence the number

of faces. After the merge process, the load distribution will depend on the number of

points from the previous two sub hulls where the data were derived before the merge.

The following algorithm Transputer_RullO summarises steps performed at the treeleaf:

104

Figure 5.10: Tree In A Distributed Machine

Transputer _Hull 0

/* get list from the master * /

Receive...Plist(&Ri, &n, leafjn ,NULL);

/* compute the sub convex hull * /

CH(Ri) = 0

if(IsEmpty...Plist(R) = FALSE)

Generate_Hull(R, n, &CH(R), &FA)

/* send result to node * /

Transmit_Plist(CH(R),n, leaLout ,leaLoutid);

/* shutdown * /

csn_rx(leafjn, NULL, &status, sizeof(status));

csn_tx(1eaLout, 0, leaLouLid, &status, sizeof(status));

The algorithm Thansputer_MergeO receives two sub convex hull lists, merges them

and computes yet another subhull until the final list comes from the root node. Trans­

puter-MergeO is implemented at the treenode.

105

1ransputer_~erge()

/* get two sub convex hull lists * /

Receive...Plist(&CH(~), &n1, leafjn_1 ,NULL);

Receive...Plist(&CH(Rt), &n2, leafjn_2 ,NULL);

if(IsEmpty...Plist(C H(~)) == FALSE)

{

while(IsEmpty"'plist(CH(Rt)) == FALSE)

{

}

CH(.R) = CH(.R) U CH(Rd

CH(Rt) - 0

} Generate_Hull(CH(~))

/* send result to the next lower node * /

TransmiLPlist(C H(Ri),n, leaLout ,1eaLoutjd);

/* shut down * /

csnJx(node_in_l, NULL, &status, sizeof(status));

csn_rx(nodejn~, NULL, &status, sizeof(status));

csn_tx(node_out, 0, node_outjd, &status, sizeof(status));

A major limitation in this approach stems from the fact that as the process moves from

one level of the tree to the next lower level, the previous processors are made redundant

making them idle. The number of partitions also gets smaller as points are filtered out

at different levels so that parallelism drops. Where the size of partition drops the fan­

in part of the tree produces overheads. This is because the number of points generally

gets smaller as the computation advances from one level of the tree to the next level.

Secondly, the communication versus the computation is not so good. The tree scheme has

106

been implemented using both recursive and stack versions and the timing recorded using

different number of leaf processors. The results are presented in tables 29 - 38 as Version

2. The sequential program runs on only one transputer.

5.4.3 Fixed Size Tree or Pipelined Method

This third approach differs from the simulated tree and pipelined versions in the sense

that the original set of points is split into p partitions where p > > p the number of leaf

processors. The treeleaf processors compute the convex hull from their respective sublist

sent by the master and pushes the results down the next lower level of the tree. If there

are more sublists in the queue whose convex hull is yet to be computed, the next batch

is sent to idle leaf processors as soon as they are ready for another round of tasks. The

root processor sends its list to rejoin the queue for reprocessing. This cyclic motion is

terminated when the partitions are exhausted and the tree is full. The root node returns

the final result. The code is given below:

1* split S into parts - storing in an edge list *1

MakeEmpty_Elist(&Parts_List);
for(i=O; i<parts; i++)

{

MakeEmpty_Plist(&Slist);
Parts_List = Insert_Edge (Parts_List , n, Slist, v);

};

while(IsEmpty_Plist(S) == FALSE)
{

};

Read_Edge (Parts_List , n, &Slist, v);
Read_Point(S, n, v);
Slist = Insert_Point(Slist, n, v);
Write_Edge(Parts_List, n, Slist, v);
Parts_List = GetNext_Edge(Parts_List);
S = Delete_Point(S);

1* fill up tree to start computation *1

107

h = (int) (log10(procs)/log10(2)) + 1
status = 1;

/* height of tree -1 */

for(i=1; i<=h; i++)
{

} ;

/* send data to leaves */

for(j=O; j< procs; j++)
{

if (IsEmpty_Elist(Parts_List) == FALSE)
{

}

Read_Edge (Parts_List , n, &Slist, v);
Transmit_Plist(Slist, n, masterchan_out, tree_id[j]);
Parts_List = Delete_Edge(Parts_List);
parts = parts - 1;

else
{

};

MakeEmpty_Plist(&Slist);
Transmit_Plist(Slist, n, masterchan_out, tree_id[j]);
parts = 0;

csn_tx(masterchan_out, 0, tree_id[j], &status, sizeof(status));
};

/* process rest of parts until less than procs left */

while(parts+h > procs)
{

Receive_Plist(&Slist, &k, masterchan_in, NULL);
csn_rx(masterchan_in, NULL, &status, sizeof(status));
Parts_List = Insert_Edge(Parts_List, n, Slist, v);
parts = parts + 1;
for(j=O; j< procs; j++)

{

if (IsEmpty_Elist(Parts_List) == FALSE)
{

}

Read_Edge(Parts_List, n, &Slist, v);
Transmit_Plist(Slist, n, masterchan_out, tree_id[j]);
Parts_List = Delete_Edge(Parts_List);
parts = parts - 1;

else

lOS

}

};

{

MakeErnpty_Plist(&Slist);
Transrnit_Plist(Slist, n, rnasterchan_out, tree_id[j]);
parts = 0;

};

csn_tx(rnasterchan_out, 0, tree_id[j], &status, sizeof(status));
};

1* collect results still In tree *1

for(i=1; i<=h; i++)
{

Receive_Plist(&Slist, &k, rnasterchan_in, NULL);
csn_rx(rnasterchan_in, NULL, &status, sizeof(status));
Parts_List = Insert_Edge(Parts_List, n, Slist, v);
parts = parts + 1;

};

1* send last proc lists *1

status = 0;
for(j=O; j< procs; j++)

{

if (IsErnpty_Elist(Parts_List) == FALSE)
{

}

else
{

};

Read_Edge(Parts_List, n, &Slist, v);
Transmit_Plist(Slist, n, masterchan_out, tree_id[j]);
Parts_List = Delete_Edge(Parts_List);

MakeEmpty_Plist(&Slist);
Transrnit_Plist(Slist, n, masterchan_out, tree_id[j]);

csn_tx(rnasterchan_out, 0, tree_id[j], &status, sizeof(status));
};

Receive_Plist(&Slist, &k, masterchan_in, NULL);
csn_rx(masterchan_in, NULL, &status, sizeof(status));

*CH = Slist; *FA = FAlist;

This implies that a fixed sized tree with p leaf processors (2P-
1+ 1 processors altogether)

where p > > p is used to pipeline partitions through the architecture in blocks of size

109

pip. Each pass through the tree reduces p partitions to one partition so eventually a

single partition representing the final hull is produced. This technique tends towards

a 100% efficiency since the processors are always busy but requires careful control and

manipulation of the underlying architecture.

5.5 Results From Distributed Memory Machine

Like in the shared memory, the experiments were test run on different problems on 2-D,

3-D and 4-D. From our results, recorded in Tables 29 - 38 of Appendix A, the simulated

tree implementation gives the best performance in terms of the speedup obtained despite

the communication problem. This is because the processors are being reused at each

level of the tree. It was observed that the stack version was faster as was the case in the

shared memory implementation. The size of the problem implemented in a distributed

architecture for d > 2 was quite small because of limited memory. For example the stack

version in the simulated tree approach was able to run problems of size 200 points each

in 3-D with 12 vertices (Table 32 of Appendix A) and 4-D with 6 vertices (Table 33 of

Appendix A). This was further reduced to 100 points for 3-D and 200 points for 4-D

respectively when version 2 (tree method) was recursively implemented. Even though the

communication cost in the tree method (version 2) is reduced compared to the simulated

fanin tree (version 1) the method appears to be expensive in terms of processor utilisation.

This leads to poor efficiency which could be readily derived from the results. A fanin tree

constructed from four treeleaf processors using the pipelined method will require a total

of seven processors before the result is filtered out from the root of the tree (see figure

5.10) while three slave processors will need a total of five processors before the final

result is sent to the master. This could be expensive in a situation where processors

are expensive assets. These problems notwithstanding we have still demonstrated that

reasonable speedup is obtainable with our techniques even with small problem sizes. \Vith

110

6

5

4

2

04-------~----~------_r----~

o 1000 2000

Number Of Points

3000 4000

Figure 5.11: Recursion Version 1 2-D 26 Vertices Using Transputer

available architecture where memory capacity is not a problem, scaling up the problem

is trivial. The results of the simulated tree scheme are presented in tables[29 - 38]. This

is represented as Version 1 in the tables. Some of the graphical presentation of these

results are shown in Figures 5.11 - 5.18 while others are included in Appendix B.33, B.35

- BAO and they also confirm that a significant improvement over the sequential algorithm

is possible.

5.6 Partitioning Methods

Rabhi and Manson [92] show that for certain applications it is only necessary to generate

as many subtasks as there are processors in order to obtain optimal performance. Such

applications are those that divide up evenly and give rise to as many equal sized subtasks

as there are processors. However, some applications divide up in an uneven or unpre-

dictable fashion in a way that does not straightforwardly give a good load balancing of

task to processors. It is not very clear when the dividing process should stop for these

applications. If division does not result in a good load balancing, some processors will be

starved of work. If the division is too fine grained, the processors will spend too much

111

6

5

4

2

01--------.-------,--------r-------.

o 1000 2000

Number Of Points

3000 4000

key

Figure 5.12: Recursion Version 2 2-D 26 Vertices Using Transputer

a.
::>

6

5

4

-g 3
~

(/)

2

O~-------.-------.,_------r-------,

o 50 100

Number Of Points

150 200

Figure 5.13: Recursion Version 2 4-D 6 Vertices Using Transputer

112

6

5

4

O-L----,---------,--------.--------,
50 100 150 200

Number Of Points

Figure 5.14: Recursion Version 1 4-D 6 Vertices Using Transputer

a.
::l

6

5

4

-g 3
~

(/)

2

O~------~------~--------~------,

o 1000 2000

Number Of Points

3000 4000

Figure 5.15: Stack Version 1 2-D 26 Vertices Using Transputer

113

6

5

4

2

O~-------.-------,r-------,-------.

o 1000 2000

Number Of Points

3000 4000

Figure 5.16: Stack Version 2 2-D 26 Vertices Using Transputer

6

5

4

O~----.-------~r--------.--------.

50 100 150 200

Number Of Points

Figure 5.11: Stack Version 2 4-D 6 Vertices Csing Transputer

ll-i

6

5

4

O~---,--------.-------.-------.

50 100 150 200

Number Of Points

Figure 5.18: Stack Version 1 4-D 6 Vertices Using Transputer

time engaged in performing the house keeping tasks rather than solving the problem at

hand. Hence Rahbi and Manson demonstrate that the key issue to be resolved for a given

application is that of finding the 'optimal partition' of subtasks.

Although we can choose the partition size for the convex hull arbitrarily at the outset,

difficulty arises once the first merge occurs because the shape of the resulting sub convex

hulls can be arbitrary. Consequently, we need to find a good partitioning method which

attempts to balance the size of convex hulls at each level of the algorithm. Generally, this

is not possible (because of the random distribution of points) but we can define partitions

for different classes of problems. On the basis of this we have tried in many ways to

partition the set 5 into p subtasks. This is an attempt to devise a partitioning strategy

to control the size nip. We now consider the following and most promising partitioning

methods:

5.6.1 Lexicographic Partitioning

Here the points in 5 are sorted lexicographically and then taken in order one at a time

and allocated to partitions using wrap around. The ith point being assigned to partition

115

according to (i + 1)mod p. This could be summarised as follows:

{

}

Algorithm LexcoJ>artitioning(S,n,parts)

Input: A set S of points.

Output: Subsets Slist[i] of set S, i=0(1)parts-1.

QuickJ)ort(S,n) 1* put S into lexicographic order * /

For i = 0 to MAXPARTITIONS-1

{

CHlist[i] = 0; FAlist[i] = 0;

Pointcount[i] = 0;

}

For i = 0 to parts-1

Slist[i] = 0

i = 0;

while(S -j. 0) {

}

Take the next point from S

Add point to Slist [i]

Pointcount[i] = Pointcount[i] + 1

i = (i + 1)%parts;

This method does not attempt to check if partitions are disjoint but guarantees almost

perfect load balancing by spreading the points evenly across partitions initially. We

can illustrate the lexicographic partitioning by considering a quadrilateral in 2-D with

sixteen points as shown in figure 5.19. Suppose the points are ordered and split into three

116

1. 2. 3. 1.
3 • 1.2 • 3 • D 0<3 p=3 2 • 3.1 • 2 . 1. 2. 3. 1.
1. 2. 1. 2.

[]I] p=2
1. 2. 1. 2 • 1. 2. 1. 2.
1. 2. 1. 2.
1. 2 • 3 . 4.

p=4 1. 2 • 3. 4. G J

1· 2· 3· 4·
• • • • 2 3 4

Figure 5.19: Point Allocation In Lex Partitioning

partitions (p = 3), the shapes labelled A, B, and C will be generated from the points

in the three partitions. Shape A is from the first partition with the points labelled 1,

shape B from the second partition from points labelled 2 and shape C from the third

partition from points labelled 3. From the diagram, the shape labelled A has four vertices

on the convex hull and also has four faces. B has five vertices on the convex hull and

five faces while C has four vertices and four faces. In section .i1 the running time of

the sequential algorithm is a function of the problem size, the faces and the dimension

space. Since the shape generated from each partition is different, their running time also

varies and in the next level of the tree where a merge and compute process is carried

out perfect load balancing is no longer guaranteed. The convex hull when the points are

split into two partitions (p = 2) will yield the shapes labelled D and E. In this case

the rectangles have an equal number of faces and vertices and a perfect load balance is

possible. If the partition sizes match the size of data we may also get disjoint partitions

as shown in shapes G, H, I and J, resulting in a perfect load balance. However, these

117

shapes will escape through simplex bypass and there is relatively little work to occupy

the processors. In the case of an even number of partitions, the load is balanced among

processors as data moves up the tree but most of the computations are carried out in the

leaf processors. Notice that in the case of three partitions, the vertices of the convex hull

lie in the partition with the points labelled 1 while other partitions produce vertices that

do not form part of the convex hull. Except in shapes G, H, I and J the method does not

guarantee disjoint sets. A, B, and C form intersecting domains and so do D and E.

The Lexicographic partitioning method uses the quick sort algorithm to sort the points

which is of O(n2) in the worst case and with average speed O(nlog2n) and requires n

operations to partition the points into the subproblems.

5.6.2 Random Colouring

This is similar to the lexicographic scheme except that each point is given a random

number (colour) from 1 to p determining its partition. This scheme is based on the idea

that a random distribution of colours should produce shapes of roughly equal number of

vertices and faces. Points with similar colours are grouped under the same partition. The

method requires n operations to partition the set.

Algorithm RndColour _Partitioning(S, n, parts)

Input: A set S of points.

Output: Subsets Slist[i] of set S, i=O(l)parts-l.

{

For i = 0 to MAXPARTITIONS-l

{

CHlist[i] = 0; FAlist[i] = 0;

}

118

}

• o

• 2

• 2

• 1

• o

• 1

• o

Figure 5.20: Allocation Of Points In Random Colouring

For i = 0 to parts-l

{

Slist[i] = 0

Pointcount[i] = OJ

}

i = OJ srand(l)j

while(S =I- 0) {

}

Take the next point from S

i = srandO%parts

Add point to Slist[i]

Point count = Pointcount[i] + 1

This method does not even guarantee the same load to all processors. If we consider

dividing nine points in the 2-D plane into say three partitions using the random colouring

method, a possible distribution may result in a situation shown in figure 5.20. The shape

119

2 3 4 p

I~ r------~1

Figure 5.21: Partitioning of 2-D Plane

A is for points labelled 2, B for points labelled 0 while C is for those labelled 1. The colours

are randomly assigned as each point is considered. As we have seen in the lexicographic

partitioning, the complexity depends on the subconvex hulls. The Random Colouring

method aims at producing subconvex hulls with equal complexity but unfortunately this

has not been achieved though the initial partitions may provide a reasonable load to each

processor. In figure 5.20, to generate A and B may yield the same complexity if the

problem sizes that gave rise to them were the same. The complexity to produce C is quite

different from that of A and B. The lexicographic and random colouring schemes have

very low overhead for partitioning compared to the next three methods. The rest of the

methods are also computationally more complex but do better in identifying clusters of

points.

An obvious way to do partitioning in 2-D is to use a number of bands as indicated

in figure 5.21 and use the (x, y) position as an indication of the band. This require the

checking of the lower and upper bounds to determine the partition and also requires the

length r to decide on the band positioning. The advantage of this method is that the

hull in each partition is distinct but there may be problems of load balancing and the

120

number of vertices on the sub hull shapes may be different depending on how the points

are distributed. In 3-D the partitions become cubical in shape and requires the checking of

six halfspaces and hence the method does not extend well. An alternative to this method

is therefore the Bucket approach.

5.6.3 Bucket Method

The reason for using bucket partitioning comes from the fact that points can cluster into

different regions. To partition the points using the methods discussed above may not give

an even spread or distribution among the different sub problems.

In this approach, we determine a point c interior to S and use it as an ongm to

partition the n-D space into 2n disjoint subspaces or buckets. Points are allocated to the

buckets according to their position relative to c. The method also guarantees disjoint

partitions but not an even load balance and complications arise if p "# 2n which is often

the case. Figure 5.22 shows a 2-D plane being partitioned into four buckets. The set

of points in each quadrant belongs to a bucket i.e. 8 points, 3 points, 2 points and 3

points. As can be seen from the diagram, a perfect load balancing is not guaranteed.

There is a concentration of points in the first quadrant compared to the others. In order

to overcome the clustering of points in some regions, the quadrant with more points can

be repartitioned recursively until almost a perfect load balance is achieved as shown in

figure 5.22. We have not considered this repartitioning method in this research because

the overhead in computing the partitions make it prohibitive.

5.6.4 Shell Method

The first step involves the ordering of the points. This requires O(n2
) worst case. In

this scheme we determine a point c interior to S (preferably the centroid or alternatively

the average of the maximum or minimum coordinates). This can be done in Cln steps.

The longest euclidean distance r between c and points xES is calculated and shell i

121

2nd 1st •
• • • • •

• • • • •
c

3rd • • • •
• 4th

Figure 5.22: Distribution Of Points Into Buckets

is determined according to the bounds (i - l)rjp and irjp. This will require C2n steps.

Points are allocated to partitions according to the shell they inhabit and this can be

accomplished in C3n steps. The method essentially computes a set of concentric circles in

2-D, spheres in 3-D, and their extensions for n-D. In the simple approach the radius of

two adjacent shells differs by a constant but the volume increases with distance from c so

load balancing is not guaranteed for a uniform distribution of points but we know that

the hull of partitions are derived from non overlapping sets and may contain some nesting

within each other. The shapes may be roughly spherical and so of roughly the same

complexity which is the essence of this implementation. The subconvex hulls generated

from each partition are non intersecting. In figure 5.23 we show how points could be

partitioned into different shells. Notice that Bands [4] contains the convex hull and that

each band is a subhull. The different domains are labelled A, B, C and D corresponding

to Bands[l]' Bands[2], Bands[3] and Bands[4]. The different bands will be assigned to

the leaf processors to compute the convex hull. There may exist situations where the

points are clustered on one side in which the convex hull may not fall into one band.

This is illustrated in figure 5.23 where the convex hull falls in more than one shell. The

122

6
B

<:7
A

Figure 5.23: Allocation Of Points To Shells With Convex Hull On One Band

shapes with labels E, F, G and H are the domains from different shells. The convex hull

is represented as I and it cuts across Bands[2]' Bands[3] and Bands[4].

123

{

Figure 5.24: Allocation Of Points To Shells With Convex Hull Across Bands

Algorithm SheILPartitioning(S,n,parts)

Input: A set 5 of points.

Output: Subsets 5list[i] of set 5, i=0(1)parts-1.

QuickJ3ort(S,n) /* put 5 into lexicographic order * /
Get two extreme points v and w. /* Find center of polytope * /
c = (v + w)/2;

j* Find the longest distance between centre and any point x E 5 * /
max = 0;
while(5 i- 0)
{

}

Read point x
t = sqrt(v 2 + w 2

)

if(max < t) max = t;

r = sqrt(max)/parts;
Bands[O] = 0;
For i = 1 to parts-1

Bands[i] = Bands[i-1] + r;
For i = 0 to MAXPARTITIONS-1
{

CHlist[i] = 0; FAlist[i] = 0;
}
For i = 0 to parts-l
{

124

}

Slist[i] = 0
Pcount = 0;

/* Partition S according to distance Bands[i-l] <= r < Bands[i] inserted into Slist[i-l] or. /

while(S i= 0)
{

}
}

Get a point x

r=x
i= 1;
while(r - Bands[i] > 0 and i < parts)
i = i+l;
i = i-I;
Add point x to Slist[i-l];
Pcount = Pcount[i] + 1;

5.6.5 New _Shell Partitioning

This is an improvement on the shell partitioning method. Rather than stepping through

a constant increase in the radius of each consecutive shell, shells with equal volume are

computed using the mathematical formula for an n-dimensional sphere given by

v:;n
Vol = r(% + I)Rn

where n is the space dimension, R the radius of sphere and r is the gamma function. The

total volume can now be partitioned into shells of equal volumes and the points allocated

according to the shell in which they belong. If the points are uniformly distributed, the

load balancing will be improved. An advantage of this scheme is that the shells get thinner

as they move away from the centre. The implication here is that for a large number of

points that are evenly spread, the thinner shells will virtually be convex hulls but the

problem is that we will get more vertices and faces on each of the sub hulls.

5.6.6 Multiple Level Partitions

In all the partitioning methods that we have considered, the possibility of merging the re­

sults after each level of computation and repartitioning could help to achieve a better load

125

Table 5.1: Partitioning (2-D 26vertices, 4-D 6vertices, with 1000points) On Multimax
Partitions

Methods 2 3 4 5 6
2D 4D 2D 4D 2D 4D 2D 4D 2D 4D

Lex (sp) 1.89 1.79 2.57 2.14 3.12 2.49 2.87 2.12 2.83 1.89
Rand (sp) 1.61 1.78 2.53 2.00 3.47 2.30 2.68 1.67 1.86 1.71
Shell (sp) 1.74 1.29 1.17 1.56 1.86 1.73 1.73 1.46 1.86 1.80

New _Shell (sp) 1.05 0.98 1.28 1.02 1.66 0.97 1.86 0.94 2.02 0.97
Bucket (sp) 1.41 1.11 1.29 1.03 2.38 1.18 2.04 1.07 2.27 1.47

distribution at each level of the computation but this will tend to increase the computing

time as some of the techniques that we have proposed are quite complicated. Merging

the partial results and repartitioning requires nl steps where 1 is the number of levels in

the tree.

5.7 Results From Partitioning Methods

Table 39 of Appendix A shows how a set S with a total of 1000 points in 2-D and

4-D are distributed into 6 partitions using the different partitioning methods. A trial

experiment was carried out on the Encore Multimax using the Recursive algorithm to

test the performance of the different partitioning methods. This was carried out on a 2-D

problem with 26 vertices on the convex hull and 4-D problem with 6 vertices. In both cases

a set S with a total of 1000 points was considered. Table 5.1 shows the speedup obtained

when the partitions in Table 39 of Appendix A were implemented. From these results,

the simplest scheme (Lex) appears to be the best for small point sets and partitions.

This is because the other methods require a proportionally large computing time and the

standard deviation from the mean partition size is larger than that for Lex which is always

close to optimal. Increasing the number of partitions generally improves the speedup and

this is reflected in Table 5.1 until the size of partitions is very small. For large set of points

126

Table 5.2: Statistics For Partitioning Methods From Table 39

Partitions

Methods 2 3 4 5 6
2D 4D 2D 4D 2D 4D 2D 4D 2D 4D

Lex SD 0.0 0.0 0.58 0.58 0.0 0.0 0.0 0.0 0.52 0.52
X 500 500 333.3 333.3 250 250 200 200 166.7 166.7

Random SD 0.0 0.0 14.7 14.7 0.0 0.0 11.18 11.18 13.37 13.37
X 500 500 333.3 333.3 250 250 200 200 166.7 166.7

Shell SD 58 147.1 221.5 141.5 146.8 145.5 115.6 116.8 106.1 100.9
X 500 500 333.3 333.3 250 250 200 200 166.7 166.7

New_Shell SD 473.8 688.7 261.0 532.7 196.9 430.0 154.1 367.1 126.51 319.4
X 500 500 333.3 333.3 250 250 200 200 166.7 166.7

Bucket SD 158.4 418.6 243 407.5 68.6 376.5 126.6 337.3 139.6 190.7
X 500 500 333.3 333.3 250 250 200 200 166.7 166.7

results indicate that the shell method based on volume reduces the loading deviation more

rapidly than the new shell. Table 5.2 shows the standard deviation and the mean for table

39. For Lex and Random colouring partitioning, the deviation is small compared to other

methods. This also illustrates why Lex is the best because of good load balancing.

127

Chapter 6

Facial Lattice Exploration (FLE)

In the previous chapter, we proposed a parallel implementation of the n-D convex hull

algorithm based on the divide-and-conquer technique. In this chapter a different approach

based on exploring the facial lattice of the convex hull is adopted. The facial lattice of a

polytope P is a lattice which represents the polytope facial structure. Each node in the

lattice is a face of the polytope; there is an edge from F to G if and only if F is a facet

of G. Altenatively, it is the lattice given by the set of faces of P and the subset relations

which are edges and vertices. In figure 6.1, we show the facial lattice of a pyramid over

a square, the element I represents the entire polytope, while 0 represents the empty

set. The motivation for the partitioning method in the previous chapter is that large

numbers of points are eliminated quickly. Unfortunately, the merging process required to

combine the partitions cannot control the load balancing and hence results in potential

loss of performance. The FLE will avoid the partitioning of the set of points S into

subproblems. This FLE technique seeks to find the convex hull of the set of points S by

'wrapping' around the edges of the hull. After the determination of the initial facet, the

sequential algorithm picks each of the edges in turn and performs rotations to produce

more edges until all the edges are computed twice. The strategy used in [1] and [2] is to

maintain a list of edges with adjacent nodes in the lattice but whose other adjacent node

has not yet been computed. In each step, the sequential algorithm picks an edge from the

128

Figure 6.1: Facial lattice of a pyramid over a square

edge list and performs rotations to find the edge's other adjacent node. For every edge,

the algorithm checks to see if it is present in the edge list, if so it is deleted from further

consideration because it is now computed twice, else it is added to the edge list. The

difference between this implementation and that of the previous chapter is that there is

no partitioning of the points into subsets. The main aim of this chapter therefore is to

demonstrate that parallelism in the n-D convex hull problem can also be exploited along

the edges once the initial face has been computed.

Our technique, which we term Facial Lattice Exploration (FLE), computes the faces

simultaneously by picking more than one edge from an EdgeList. Figure 6.2 shows how

the convex hull of a 3-D cube can be found in parallel using FLE. For simplicity the shape

is flattened onto a plane surface to expose all the faces. First, the initial face labelled 1 is

computed. The four edges, ABCD are now available and by assigning each edge to an idle

processor the other faces labelled 2 can be computed in parallel. After the computation

of the initial face, a processor picks an edge say A from a queue, leaving BCD for other

processors that are idle. If all the remaining edges are allocated to processors, all the

faces labelled 2 can be computed in parallel. Thus the edges E - P are produced, greatly

129

K
4 v 1

2
L

t B

J

M I

N
2 c V13 V2
.~

1 -I- H

0 VlO t Vs G
2 D

P F

V9
'f E V6

Q 3 S

v 8 v 7
R

Figure 6.2: Illustration Of Parallel Execution Of 3D Convexhull by FLE

increasing the possible parallelism. In particular if we choose edge E the final face labelled

3 can be found. Thus in principle (i.e. with enough processors) the complete hull can

be found in just three steps of the sequential method. However, there are a number of

problems with this approach, for example

• The original sequential algorithm eliminates edges once they have been determined

twice. In this scheme the edges LM JI GF OP are actually the same edge and

should be eliminated from further consideration. However, they may reside in dif-

ferent processors implying some overheads in communication and co-ordination of

edgelists.

• A further problem arises when we consider the edges K, H, Nand E. Potentially,

each of the edges could be grabbed by a processor simultaneously producing face 3

four times. These four copies when computed in parallel contribute no additional

costs except for potential clashes for accessing global list data but when staggered

can contribute considerable cost (e.g. if not enough processors are available).

• The second point raises a more serious problem, that of termination. The sequential

130

algorithm relies heavily on the fact that an edge can only be found twice. Indeed

this assertion is used to control the edge list so that eventually the list will be

empty and the algorithm can terminate. It might appear in figure 6.2 that this rule

is not violated. In fact the correctness depends on the non-deterministic order of

face evaluation. For example if we only have two processors, after finding the edges

ABCD we could choose Band D producing edge list LKJPEFAC. Next choose C

and E this produces the additional edges MNO and QRS. Clearly LM. OP. QN are

duplicates and should be deleted. Given the list KJFARS it is now possible to choose

edge K in one processor and proceed to generate LKJB, K and J are duplicates but

Land B have already been found but deleted from the list and will be reinserted.

Potentially the algorithm may never terminate thus some mechanism of global list

management has to be devised.

The FLE approach is well suited to applications where the data consists only of points on

the hull (e.g. generating loop nests in parallel compilers). In these cases the partitioning

method cannot exploit the divide-and-conquer principle and delivers poor performance.

The FLE method avoids partitioning and the potential irregular loading of processors

during merging. There are also some problems inherent in the lattice approach. A perfect

load balance cannot be guaranteed because of different sized facets and the fact that the

number of facets limits parallelism. The best we can do for a 2-D problem is a factor

of 2 speed-up irrespective of the number of processors that we use. This is because

the maximum number of edges available after the computation of the initial face cannot

exceed 2. If we consider figure 6.3 and suppose that facet A is computed first, we can then

compute the faces labelled Band C in parallel. The next step will be to find D and E also

in parallel before the process will terminate with the determination of face F. Obviously~

we have seen that the possible parallelism depends on the number of facets. A similar

argument holds for the cube (3-D) as already explained using figure 6.2. Here a single

131

F

Figure 6.3: Edge Computation In A 2-D Problem

facet generates three new edges and if the faces have the same structure we can see that

the maximum parallelism is related to 3 (e.g. 3, 32
, 33 etc.) but for each shape we cannot

predict the structure otherwise we would already know the convex hull or a large degree of

it. In general, if we consider a hypothetical situation, where we have m edges per face, this

will produce m other faces with each face giving rise to m -1 other edges. This will result

in a total of m 2 - m = m(m -1) edges in the second level. Similarly, the third level of the

tree will yield m(m -l)(m -1) edges. This trend is easily extended to subsequent levels.

Though the FLE implementation is not considered as a tree structure, the representation

in Figure 6.4 illustrates the components of the facial lattice structure and the possible

parallelism. Assuming we have an unlimited number of processors, then we can exploit

the inherent parallelism by assigning each edge to a processor and then computing the

faces in parallel. To explore the parallelism, it is necessary to break up the tree pattern.

The representation of figure 6.4 shows how to enumerate the faces and edges of the facial

lattice structure as a tree. At some level of the tree there are duplicate edges which

are connections between tree levels that produce the facial lattice structure. However,

since in practice there may be duplicate edges and usually the number of processors is

132

Figure 6.4: Exploiting Parallelism With Unlimited Number Of Processors

limited, the option of implementing the algorithm by starting with some initial edges

seems practicable. For a limited number of processors we can consider the computation

of nodes as a wavefront that moves down the tree, the parallelism evolving irregularly.

Such problems have not been seriously addressed in the literature in parallel processing.

In our implementation we confine the facial lattice exploration to face level and not the

sub-facet levels in order to simplify the design.

The different implementations which we consider in this chapter on the shared memory

and message passing architecture are enumerated here:

• Version 1 a shared memory implementation, which uses the pending edge list to

store the edges that have been computed twice.

• Version 2 a shared memory implementation, which uses the global list structure to

store the different lists for easy access by the processors.

• Version 1 a transputer implementation, where master and manager processes run

on separate processors.

133

• Version 2 a transputer implementation, where the master and manager processes

run on the same processor.

6.1 FLE On Shared Memory (Version 1)

In the shared memory architecture we have implemented two different versions each using

a different method to organise the data. Both methods make use of the master/slave

organization, and can be summarised as follows:

• FLE on shared memory (Version 1) using the pending edge list to terminate the

iteration.

• FLE on shared memory (Version 2) using the global list organization.

The sequential stack implementation (chapter 4) of the n-D convex hull algorithm

is the underlying concept in the facial lattice exploration technique. The stack version

makes it possible easily to access the sublists at different levels of the implementation. The

master processor starts the computation by finding the initial face. The face computed by

the master has to be unstacked keeping the vertices in the CHlist, the facets in FAlist and

the edges defining the face in the Elist at the lowest level of the stack. The pending edge

list will contain the edges that have been found twice. The major function of the pending

edge list is to terminate the algorithm when all the edges have been computed twice.

Once an edge has been found twice it is deleted from further consideration since it is the

intersection of two adjacent faces and is placed in the pending edge list (Pend_Elist).

With the available edges in the Elist, the master now distributes work to the idle slaves.

This is accomplished by selecting an edge and giving it to an idle slave processor. The slave

accepts the given edge, rotates it and copies all the points on that face and then computes

the new edges and vertices for that face by using the sequential algorithm. On completion,

the slaves have to return their results back to the master to update the appropriate list in

134

the stack. The master also checks the Pend~list to ensure that the edge it is considering at

that particular moment has not yet been computed twice. When the master has finished

distributing the jobs to the slaves, it also picks an edge and computes its own edges

and vertices. At the completion of each task, the processors check the Elist to ascertain

whether the edges are exhausted and the slaves have completed their task. If there are

more edges, one is picked for the next round of computation, otherwise the algorithm

terminates or waits for a slave to return a result. In the routine Convex_HuILSlaveO,

semaphores are used to protect the critical sections of the computation. This consists of

the jobs assigned to the slaves as well as the results of their computation. In the master

processor, the semaphores are used to prevent interference during the assignment of jobs to

processors and also in copying the results from the slaves and resetting their status. Table

6.1 and Table 6.2 show how the Pending edge list grows as the computation proceeds.

The 3-D problem in figure 6.2 is used for the illustration. The following two routines

Convex_HulLMasterO and Convex_Hull_SlaveO summarise the computation by the

master and the slave processors.

Function Convex_HuILMaster(S,AS,n,k,parts) : (CH,FA);

{ /* setup the stack * /

sp and lsp /* stack top and local stack index * /

sp = 0; Stack[sp].S = S; Stack[sp].AS = AS; Stack[sp].k = k;

Stack[sp].e =0; /* number of edges being computed by with slaves * /

Stack[sp].Pend~list = 0; /* Edges found twice * /

Stack[sp).Elist = 0; Stack[sp).FA = 0; Stack[sp].CH = 0;

count = 0; /* Slave counter * /

do{
if(Stack[sp].CH == 0 and Stack[sp].FA == 0)
{

if(k == 1) /* a 1 - dimensional set * /
{AS = {PO,Pl };

135

min = pES such that POPl,POPl is minimised
max = pES such that POPl'POPl is maximised
return ({max,min} , {max}, {min});
}

if (I S 1== k + 1)
return (S, {F ~ S :1 F 1= k}); /* check for a simplex * /

else

}

{
(F,n) = initial facet(Stack[sp].S,Stack[sp].AS,n,Stack[sp].k)
Stack[sp].FA = Stack[sp].FA U { F }
F' = 0;
Pick a point Po E F;
F' = {p E S : POPl. n = O} ;
sp = sp+1; Stack[sp].S = F' ; Stack[sp].AS = F; /* stack the face */
Stack[sp].k = Stack[sp-1].k-1; stack[sp].e = 0;
Stack[sp].Elist = 0; Stack[sp].CH = 0; Stack[sp].FA = 0;
Stack[sp].Pend~list = 0;
}

/* unstack the face completed by master * /
if (Stack[sp].CH i= 0 and Stack[sp].FA i= 0)

while(Stack[sp].Elist = 0 and Stack[sp].e == 0 and sp > 0)
{
while(Stack[sp].CH i= 0)
{ /* add new vertices found * /
pick a point p;
if (p tt. Stack[sp-1].CH)

Stack[sp-1].CH = Stack[sp-1].CH U { P };
}

while(Stack[sp].FA i= 0)
{ j* add new edges found using norm of complete face * /
pick an Edge E;
if (E tt. Stack[sp-1].Pend~list

{
if (E E Stack[sp-1].Elist

{ remove E from Stack[sp-1].Elist
and add to Stack[sp-1].Pend~list }

else
Stack[sp-1].Elist = Stack[sp-1].Elist U { E }

}
}

/* U nstack the face * /
Delete lists: Stack[sp].Pend~list; Stack[sp].S; Stack[sp].AS;
Stack[sp].k = 0; Stack[sp].e = 0;
sp = sp-1;

136

if(Stack[sp].e> 0) Stack[sp].e = Stack[sp].e - 1
}

For i = 1 to procs-l j*add faces produced by the slaves x j
{ /* Copy results from slaves to master * j
count = (count + 1)%parts;
THREADpsem(Slavesem[count]);
status = Slaves[count].status;
lsp = Slaves[count].sp;
TCH = Slaves[count].CH;
TFA = Slaves[count].FA;
TS = Slaves[count].S;
TAS = Slaves[count].AS;
Q = Slaves[count].E;
for j = 1 to n

norm[j] = Slaves[count].norm[j];
THREADvsem(Slavesem[count]);
if(status == RESULT) break;
/* Update master stack with edges and faces from slaves * j
if(status == RESULT);
{
while(TCH =1= 0)
{ j* add new vertices found * j
pick a point p;
if (p f/: Stack[lsp].CH)

Stack[lsp].CH = Stack[lsp].CH U { P };
}
while(TFA =1= 0)
{ /* add new edges found using norm of complete face * j
pick an Edge E;
if (E f/: Stack[lsp].Pend..Elist

}

{
if (E E Stack[lsp].Elist

add to Stack[lsp].Pend..Elist }
else

add to Stack[lsp].Elist }
}

Stack[lsp].FA = Stack[lsp].FA U { Q }
/* Reset the slaves for more work * j
Stack[lsp].e = Stack[lsp].e -1;
THREADpsem(Slavesem[count]);
Slaves[count].k = 0;
Slaves[count].S = 0; Slaves[count].AS = 0;
Slaves[count].E = 0;
for j = 1 to n

137

Slaves[count].normUJ = 0;
Slaves[count].sp = -1; Slaves[count].status = START;
THREADvsem(Slavesem[count]);
}

if (Stack[sp].Elist # 0) /* get next face for the master x /

{
Pick an Edge E;
(p,n) = rotate(S,AS,n,k,E,n);
F = F U { P };
Stack[sp].Pend~list = Stack[sp].Pend~list U {E}
Stack[sp].FA = Stack[sp].FA U {F}
Pick a point po E F
F' = {p E S : POPI. n = O};
/* stack new face * /
Stack[sp].e = Stack[sp].e + 1;
sp = sp + 1;
Stack[sp].S = F'; Stack[sp].AS = F; Stack[sp-l].k = k-l;
Stack[sp].e =0; Stack[sp].Pend~list = 0;
Stack[sp].Elist = 0; Stack[sp].FA = 0; Stack[sp].CH = 0;
}

For i = 1 to procs

}

{ /* allocate work to slaves using local stack index lsp * /
count = (count+l)%procs;
THREADpsem(Slavesem[count]);
status = Slaves[count].status;
THREADvsem(Slavesem[count]);
if(status == START) break;

if(status == START)
{ /* slave count is currently idle so find some work in the stack * /
lsp = 0;
For i = 1 to sp /* direction of search * /

{
if(Stack[i].Elist # 0)

lsp = i; break;
} if (Stack[lsp].Elist # 0)
{

Pick an Edge E;
Stack[lsp].Pend~list = Stack[lsp].Pend~list U {E}
Stack[lsp].e = Stack[lsp].e + 1;

/* Set up slaves to do the work * /
THREADpsem(Slavesem[count 1);
Slaves[count].S = Stack[lsp].S;
Slaves[count].sp = lsp;
Slaves[count].k = Stack[lsp].k;

138

Slaves[count].CH = 0;
Slaves[count].FA = 0;
Slaves[count].AS = Stack[lsp].AS;
Slaves[count].E = E;
for j = 1 to n
normfj] = Slaves[count].norm[j];

Slaves[count].status = lsp;
THREADvsem(Slavesem[count]);

}
}

}while(Stack[sp].Elist 1= 0 or sp > 0 or Stack[sp).e > 0)

return (Stack[O).CH, Stack[O).FA);
}

Function Convex_HulLSlave(p);

{ /* grab current job for processor p * /
THREADpsem(Slavesem[p]) ;
status = Slaves[p].status;
S = Slaves[p).S;
AS = Slaves[p].AS;
F = Slaves[p].E;
TS = Slaves[p).S;
k = Slaves[p).k;
n = Slaves[p].n;
for i = 1 to n

norm[i] = Slaves[p].norm[i);
THREADvsem(Slavesem[p));
while(status 1= STOP)

{
if(status > START and status < RESULT)

{
if(S 1= 0)

(p,n) = rotate(S,AS,n,k,F,n);
F = F u {p};
F' = 0;
Pick a point Po E F;
F' = {p E S : p"Qp.n = O};
CH = 0; FA = 0;
Convexjlull(F',F,n,k-1) : (CH,FA);

/* signal result is valid * /
THREADpsem(Slavesem[p));
Slaves[p).status = RESULT;
Slaves[p).CH = CHi

139

}
}

Slaves[p].FA = FA;
Slaves[p].E = F;
for i = 1 to n

Slaves[p].norm[i] = norm[i];
THREADvsem(Slavesem[p]);
}
/* grab current job for processor p * /

THREADpsem(Slavesem[p]);
status = Slaves[p].status;
S = Slaves[p].S;
AS = Slaves[p].AS;
F = Slaves[p].E;
TS = Slaves[p].S;
k = Slaves[p].k;
n = Slaves[p].n;
for i = 1 to n

norm[i] = Slaves[p].norm[i];
THREADvsem(Slavesem[p]);

6.1.1 Results

The test data was generated using the Type 1 routine of chapter 4 shown in the appendix.

It is more difficult to collect data to test the algorithms in this chapter as the type of

data used in testing the algorithms in chapter five did not give a promising result. This

difficulty arises because the data should be such that a reasonable number of faces must

be produced as an output. Such a data set will also consist of a reasonable number of

edges that will be picked by different processors to exploit the inherent parallelism but

such data leads to a combinatorial explosion in the work and to memory problems. The

preliminary results using Type 1 data is shown in Table 6.3. The performance obtained

seems poor and can be explained as follows:

• The master is dominating the computation as the slaves 'steal' their tasks from the

master only when an edge is made available to them from the Elist which is kept

140

Table 6.1: Movement Of Edges Into Pend~ist
List Master Slave 1 Slave 2 Slave 3

Edgelist ABCD
Pend_List

Faces (ABCD)
Vertices V2V13VIOVS

Edgelist BCD A
Pend_List A

Faces (ABCD) i

Vertices V2V SV lOV 13

Edgelist CD A B
Pend_List AB

Faces (ABCD) AIHG
Vertices V2 V SV lOV 13 V2 V3V4V S

Edgelist D A B C
Pend~ist ABC

Faces (ABCD) AIHG BJKL
Vertices V2 V SV lOV 13 V2 V l V14V 13

Edgelist IHGPEF B C
Pend_List ABCDG

Faces (ABCD)(DPEF)(AIHG) BJKL CMNO
Vertices V2VSVIOV13V6V9V3V4 V2 V l V14V 13 V13V12Vll VlO

Edgelist IHPEJKL C
Pend_List ABCDGJ

Faces (ABCD)(DFEP)(AIHG)(BJKL) (CMNO)
Vertices V2VSVIOV13V6V9V3V4VIV14

141

Table 6.2: Movement Of Edges Into Pend~ist (Table 6.1 Cont.)

List Master Slave 1 Slave 2 Slave 3
Edgelist HPEKLMNO

Pend_List ABCDGJM
Faces (ABCD)(DFEP)(AIGH)(BJKL)(CMNO)

Vertices V2V5VIOV13V6V9V3V4VIV14V12Vll

Edgelist EKN H
Pend_List ABCDGJMP

Faces (ABCD)(DFEP)(AIGH)(BJKL)(CMNO)
Vertices V2V5VIOV13V9V4VIV12Vll

Edgelist KN H E
,

i
Pend_List ABCDGJMP

Faces (ABCD)(DFEP)(AIGH)(BJKL)(CMNO) EKNH
Vertices V2V5VIOV13V9V4VIV12Vll

i

Edgelist NEKNH E
i

1\ I
Pend~ist ABCDGJMPN i

Faces (ABCD)(DFEP)(AIGH)(BJKL)(CMNO)(EKNH) EPDF I

Vertices V2V5VlOV13V9V4Vl V12 Vll

Edgelist EKHEPDF K
i

Pend_List ABCDGJMPNEH
Faces (ABCD)(DFEP)(AIGH)(BJKL)(CMNO)(EKNH) K.JBL I

I

Vertices V2V5VIOV13V9V4VIV12Vll !

I

Edgelist KFKJBL H E
Pend_List ABCDGJMPNEKH I

Faces (ABCD)(DFEP)(AIHG)(BJKL)(CMNO)(ENKH)
Vertices V2V5VIOV13V9V4VIV12Vll

142

Table 6.3: Rp-sults For FLE Version 1
Sequential Procs Parallel Remarks

2 18558925
3 17933964 4D 6 vertices

19039752 4 18911185 Using 1000 points
5 18722954
6 18811114
2 20752284
3 19728550 3D 29 vertices

24953393 4 19115759 Using 1000 points
5 18871582
6 18993580
2 14596503
3 14756803 2D 26 vertices

16168211 4 14766466 Using 1000 points
5 15038233
6 15154157

by the master .

• Secondly, the results computed by the slaves are not returned immediately as the

master may still be busy computing its own face while the slaves are waiting to

hand in their results.

The manipulation of the pending edge list is also a major cost of the algorithm. Every

time a new edge is computed, the master has to search through the pending edge list to

determine whether it has already been computed twice. In a situation where there are

many edges in the pending edge list, searching through the list can take a large amount of

computing time. Indeed this algorithm is proposed for complex shapes where many faces

and edges exist. In order to exploit the parallelism for a list with many edges the search

is likely to be a significant overhead. Also, the performance can be explained in terms of

the distribution of points. With the Type 1 routine, a lot of points generated are interior

points with relatively few points on the facets. It is the points on the facet that are used

to determine the vertices and edges of the convex hull. The algorithms here are designed

143

for compute bound problems. These problems seem to have some negative influence on

the expected results. Type 2 data were therefore used to test the algorithms in the next

section.

6.2 FLE On Shared Memory (Version 2)

Considering the fact that our algorithm was designed for shapes with numerous edges and

also the likely setback caused by the pending edge list, we propose a major modification

to our algorithm and the test data generator leading to Types 2 and 3. These changes

will be discussed in this section. The possible improvements are:

• Free the master from computing a face to avoid starving the slaves of work. In the

previous implementation, both the master and the slaves pick an edge to compute

the subfacet whenever they are idle and the edge list is not empty. If a slave finishes

computing a subfacet while the master is still busy, the slave has to wait for the

master to finish its task before handing in the result. On the other hand, if a slave

has a complex face to compute, longer delays may occur. The problem with the

new approach is that the best speedup is between p - 1 and p since the master is

now only acting as a coordinator between the processors and may be idle most of

the time .

• Using shared memory to store the global lists. The following lists could be stored
\

globally:

1. GEDGES which stores the edges computed by the slaves.

2. GNORMS which stores the normal of the already computed faces.

3. GCH which stores the vertices of the convex hull.

4. GFA which stores the faces of the convex hull.

144

In this arrangement the slaves can only write directly to the global lists, and do not

use the master as an intermediary as was the case in the previous implementation.

One of the problems in the previous version was the use of the pending edge list by

the master to store edges that had been computed twice. This not only requires a

lot of memory but also requires matching of edges (i.e. sets of points). This has been

eliminated and most of the parameters to handle the vertices and edges are globally

declared and can be accessed directly by the master and the slave processors. The

pending edge list is replaced by the norm list 'GNORMS' which is used here to

simplify the search for duplicate edges. When a slave is given an edge, it uses the

norm of that edge to check against those already stored in the GNORMS. If the

norm is a member of that list, then that edge is discarded because it has already

been computed, otherwise it rotates the edge and computes the subfacet. Thus a

slave can stop computations at an early stage, therefore saving time. Checking with

the norm is a vector comparison which is equivalent to a single point and this makes

the search much faster than checking the edges in the pending edge list. The second

advantage is that the number of entries in the norm list is comparatively fewer than

the edges since we keep one norm per facet rather than its subfacets .

• Split access to global structures to improve overhead between updating of the global

lists by the slaves e.g. GEDGES, GNORMS, GCH and GFA and can all be accessed

independently.

In this version, the major responsibilities of the master includes the determination of

the initial facet and coordination of the parallel environment while the slaves concentrate

on computing the convex hull of subfacets. The master gives out the tasks to the slaves

and accesses the global lists when the edge list is empty. The slaves now return the result

of their computation directly to the global lists GCH for the vertices and GF A for the

145

Figure 6.5: FLE Implementation Using Global Lists

facets as shown in figure 6.5. Semaphores are used to lock the critical regions during the

insertion of the results into the global lists by the slaves.

146

*/

Convex_HulLMaster(S, AS, n, k, CH, FA, parts)

this routine takes a set S with n-dimensional points
and the affine basis AS of S with dimension k. Returns the sets
CH = vertices of the convex hull, FA = list of facets.
The routine is non recursive and uses a stack.

EDGES *FA;
POINTS S, AS, *CH;
int n, k, parts;
{

typedef struct cell4{
POINTS S, AS, CH;
EDGES Elist, FA;
int k;

}STACKCELL
STACKCELL Stack[MAXSTACK] ;

/* stack */

POINTS E, Q, R, F, Fbar, TCH, Norm_List;
EDGES Edge_List, TFA, Tmp_List, Junk;
Vector P, PO, Pl, norm, minp, maxp;
double t,
int size,
int sp;

min, max;
i, j, sref, new_face, slave_count,

/* stack top */

setup stack and compute initial face

status;

/* exit loop after edges of first face found */

if ((IsEmpty_Elist(Stack[O] .Elist) == FALSE) && (sp -- 0))
{

break;
}

/* get next face */

if (IsEmpty_Elist (Stack[sp] .Elist) == FALSE)
{

Read_Edge (Stack[sp] .Elist, n, &E, norm);
Rotate(Stack[sp] .S, Stack[sp] .AS, n, Stack [sp] .k, E, norm, p);
F = Insert_Point(Copy_Plist(E, n), n, p);
F = GetNext_Point(F);

/* save current facet description */

147

};

Stack[spJ .FA = Insert_Edge(Stack[spJ .FA, n, F, norm);

/* find set of all points on the face */

MakeEmpty_Plist(&Fbar);
Read_Point(F, n, PO);
Q = Stack[sp] .S;
do{

Read_Point(Q, n, p);
t = 0.0;
for(i=l; i<=n; i++) t = t + (P[i] - PO[i])*norm[i];
if (fabs(t) <= TOL)

Fbar = Insert_Point (Fbar, n, p);
Q = GetNext_Point(Q);

}while(Q != Stack[sp] .S);
Fbar = GetNext_Point(Fbar);

/* stack new face */

sp = sp + 1;
if (sp == MAXSTACK) PrintErr(IIConvex_Hull", "Stack Overflow");
Stack[sp] .S = Fbar;
Stack[sp] .AS = Copy_Plist(F,n);
Stack[sp] .k = Stack[sp-1] .k-1;
MakeEmpty_Elist(&(Stack[sp] .Elist»;
MakeEmpty_Elist(&(Stack[sp] .FA»;
MakeEmpty_Plist(&(Stack[sp] .CH»;

}while((IsEmpty_Elist(Stack[sp] .Elist) -- FALSE) I I (sp> 0));

/* now share work with slaves */

GCH = Stack[O] .CH; GFA = Stack[O] .FA;
Read_Edge (GFA, n, &R, norm);
MakeEmpty_Elist(&GEDGES);
MakeEmpty_Plist(&GNORMS);
GNORMS = Insert_Point (GNORMS, n, norm);
sref = 0;
slave_count = 0;

/* starting edge list */

MakeEmpty_Elist(&Edge_List);
Edge_List = Stack[O] .Elist;

us

/* control slaves */

do{
new_face = FALSE;

/* process current edges */

do{

/* look for a free slave */

while(1)
{

};

/* locate a slave */

sref = (sref +1) 'l. parts;
THREADpsem(Slavesem[sref]);

status = Slaves [sref] .status;

/* test it */

if ((status == START) I I (status -- RESULT)) break;
THREADvsem(Slavesem[sref]);

/* check status */

switch(status)
{

case START

/* start a slave */

if (IsEmpty_Elist(Edge_List) -- FALSE)
{

Read_Edge(Edge_List, n, &R, p);
Setup Slave;
Slaves[sref].E = GetNext_Point(Copy_Plist(R,n));
for(j=1; j<=n; j++)

Slaves [sref] .norm[j] = p[j];
MakeEmpty_Plist(&(Slaves[sref] .CH));
MakeEmpty_Elist(&(Slaves[sref] .FA));
Slaves [sref] . status = GO;
slave count = slave count + 1;

149

}

Write_Edge(Edge_List, n, NULL, P);
Edge_List = Delete_Edge(Edge_List);

};

break;
case RESULT:

/* check if slave added new faces */

if (Slaves [sref] .n == TRUE) new_face = TRUE;

/* give it more work if possible */

if (IsEmpty_Elist(Edge_List) == FALSE)
{

}

else
{

} ;

Read_Edge(Edge_List, n, &R, p);
Slaves [sref] .n = n;
Slaves [sref] .k = k;
Slaves [sref] .S = S;
Slaves [sref] .AS = AS;
Slaves [sref] .E = GetNext_Point(Copy_Plist(R,n));
for(j=l; j<=n; j++)

Slaves [sref] .norm[j] = P[j];
MakeEmpty_Plist (&(Slaves [sref] .CH));
MakeEmpty_Elist(&(Slaves[sref] .FA));
Slaves [sref] . status = GO;
Write_Edge(Edge_List, n, NULL, p);
Edge_List = Delete_Edge(Edge_List);

slave_count = slave_count - 1;

Slaves [sref] . status = START;

break;
default

break;
};

THREADvsem(Slavesem[sref]);
}while«IsErnpty_Elist(Edge_List) -- FALSE) I I (slave_count 1= 0))

Edge_List = GEDGES;
MakeEmpty_Elist(&GEDGES);

}while«new_face == TRUE) && (IsEmpty_Elist(Edge_List) -- FALSE));
*CH = GCH;
*FA = GFA;

150

Convex_HulLSlave(p)

int p;
{

/* slave number */

POINTS ONE;
EDGES FA, TFA;
POINTS S, AS, CH, F, Fbar, Q, Junk;
Vector norm, P, PO;
float t;
int n, k, i, j;
int status, new_face;
status = START;
do{

/* grab current job for processor p */

THREADpsem(Slavesem[p]);
status = Slaves[p] .status;

THREADvsem(Slavesem[p]);
if (status == GO)

{

new_face = FALSE;
Setup Slave;
for(i=l; i<=n; i++) norm[i]

/* solve current problem */

if (IsEmpty_Plist(S) == FALSE)
{

Slaves[p] .norm[i];

Junk = Copy_Plist(F, n);
Rotate(S, AS, n, k, F, norm, p);
THREADpsem(Norms);

if (IsMember_Plist(GNORMS, n, norm) -- FALSE)
{

new_face = TRUE;
GNORMS = Insert_Point(GNORMS, n, norm);

}

else
new_face = FALSE;

THREADvsem(Norms);
if (new_face == TRUE)

{

/* find edges of new face */

F = Insert_Point(F, n, P);

151

F = GetNext_Point(F);

/* find set of all points on the face */

MakeEmpty_Plist(&Fbar);
Read_Point(F, n, PO);
Q = S;
do{

Read_Point(Q, n, p);
t = 0.0;

for(j=l; j<=n; j++) t = t + (P[j] - PO[j])*norm~];

if (fabs(t) <= TOL)
Fbar = Insert_Point (Fbar, n, P);
Q = GetNext_Point(Q);

}while(Q 1= S);
Fbar = GetNext_Point(Fbar);
MakeEmpty_Plist(&CH); /* find hull */
MakeEmpty_Elist(&FA);
Convex_Hull (Fbar, F, n, k-l, &CH, &FA);

/* add new vertices found */

THREADpsem(New_Verts);
while(IsEmpty_Plist(CH) -- FALSE)

{

Read_Point (CH, n, P);

if (IsMember_Plist(GCH, n, p) == FALSE)
{

GCH = Insert_Point (GCH, n, P);
};

CH = Delete_Point(CH);
} ;

THREADvsem(New_Verts);

/* add new edges found using norm of complete face */

if (IsMember_Elist(&FA, n, Junk) == TRUE)
{

FA = Delete_Edge(FA);
Junk = Delete_Plist(Junk);

}

else
PrintErr("slave", "starting edge not on face \n")

THREADpsem(New_Edges)

152

}

};

while(IsEmpty_Elist(FA) == FALSE)
{

} ;

Read_Edge(FA, n, &Q, P);
if (IsMember_Elist(&GEDGES, n, Q) -- TRUE)

{

}

else
{

} ;

GEDGES = Delete_Edge(GEDGES);

GEDGES = Insert_Edge(GEDGES, n, Q, norm);
Write_Edge(FA, n, NULL, P);

FA = Delete_Edge(FA);

1* add face to face list */

GFA = Insert_Edge(GFA, n, F, norm);
THREADvsem(New_Edges);

};
}

else
{

MakeEmpty_Plist(&CH);
MakeEmpty_Elist(&FA);

};

1* signals result is valid *1

Slaves[p].n = new_face;
THREADpsem(Slavesem[p]);

Slaves[p] . status = RESULT;
THREADvsem(Slavesem[p]);

}while(status 1= STOP);

6.2.1 Results From Shared Memory

The data generated to test our programs comes from the polytopes discussed in section

4.4.2. Figure 4.5 is a simplified representation of the pyramidal structure with a square

base, but the vertex projected in an opposite direction. The shape can be viewed as two

153

separate pyramids on a common square base. The master processor starts the computation

by determining the initial face labelled 1, generating three edges A, B, and C. This is

the only computation performed by the master processor. All the three edges (A. B.

e) could be assigned to the slave processors and the faces labelled 2 can be computed

simultaneously. This technique is continued until the computation is complete. The

programs to generate the test data for this section are shown in Appendix C2.

The timings were taken at off-peak periods. It should be emphasised that the method

is intended for objects with many facets so as to keep the slave processors busy. Table

6.4 illustrates the timings for 2-D. It should be noted that during the computation of the

vertices in 2-D, the maximum number of slave processors that can be utilised is two. This

is because the number of edges that are available at any point in time cannot exceed two.

This scenario is shown in figure 6.3 where we discuss how parallelism is exploited. Since

the number of faces that can be computed in parallel is 2, this limits the speedup to 2

and is reflected in Table 6.4. If more than two slave processors are used, the additional

processors will be idle and no significant contribution will be made to the speedup.

The timings for the 3-D object shown in Table 6.5 is that of the circular structure

with the vertices projected in either direction. The data was generated using the program

in Appendix 2.2. Clearly, there is an improvement over that of 2-D as a result of the

multiple facets of the shape. The graphical representations are in figures 6.6, 6.7 and 6.8

for the 2-D and 3-D cases respectively. The gradual increase in the speedup is as a result

of the complexity of the shape of the object under consideration.

The timing recorded in Table 6.6 demonstrates a significant improvement to that of

Table 6.5 even though both shapes are in 3-D. The data came from the program in Ap­

pendix 2.3 where rectangles of different sizes where generated in levels. This improvement

in speedup is attained mainly due to the increase in the number of facets as shown in

figure 4.6 of chapter 4. In each of these cases, the speedup is limited by the complexity of

154

Table 6.4: Timing for 2-D
Points Seq. Processors

2 3 4 5 6
10 61946 85050 97208 108145 118386 138746
20 165693 165057 182230 198029 211846 241288
30 291058 287509 300129 318960 350037 342996
50 645248 574529 609818 624019 636293 650159
100 2146766 1773448 1843447 1867255 1881780 1918853
150 4516176 3679362 3772718 3823652 3913955 3851436
250 12437120 9728746 9854043 9987508 9755902 10081848
350 23144612 18363471 18626296 18832709 18764585 18461995

Table 6 5· Timing for 3-D Circular Structure ..
Points Seq. Processors

2 3 4 5 6
10 568741 459748 416767 396144 404662 405506
30 1899102 1614474 1441846 1232050 1164047 12021.58
50 3606038 3126744 2621719 2286960 2050852 2124603

100 10273413 8604516 7080557 6295752 5684705 5523024
120 15126292 11963384 9356036 8160797 7555822 7388448

155

Tabl 6 6 T . £ 3 D P e . : lmmg or - 'd 1 St yraml a ructure G eneratin.e: Rectangle In Le
Points

40
80
120

Seq.
2

1578688 1213436
5005574 3674417
10405410 7076664

6

5

4

2

3
1052820
2784585
5339403

•

Processors
4

932388
2498091
4647789

•

5
926521
2289742
4067981

key
............. -----e-_
-6-_

04-----.------.-----.----~

o 100 200

Number Of Points

300 400

Figure 6.6: FLE For 2-D On Shared Memory

6
894041
2190818
3812792

vels

the shape. In the 2-D case the speedup is limited to a factor of 2 which we have illustrated

using figure 6.3. Similar arguments equally apply to the 3-D case. There is no doubt that

further improvements may be obtained if more complex objects are generated. Combi-

natorial blow-up of the point and edge data structures prevent us from testing higher

dimensions (see chapter 7 for justification).

6.3 Transputer Implementation Of FLE

We have shown in the preceeding section that a speedup is achievable using facial lattice

exploration on the shared memory machine. The main problem in this implementation is

that there is no shared memory on a transputer so global lists have to be kept centrally or

156

6

5

4

2 I ~~~.----------, ~ key

OJ--.-----.----.----,-----r--~

20 40 60 so 100 120

Number Of Points

.............
-+- """'" -6-_
-ll-_

-e- """'"

Figure 6.7: FLE For 3-D Circular Shape On Shared ;'vIemory

6

5

4

40 50 60 70 so 90 100 110 120

Number Of Points

Figure 6.8: FLE For 3-D Pyramidal Shape On Shared :'lemory

157

distributed among transputers. Here we discuss a similar implementation to the shared

memory version but on the transputer.

• In the case of a centrally located set of global lists, there is an obvious bottleneck

for accessing lists.

• In a distributed organisation, we have to decide how to spread the lists out amongst

the processors and then carefully control access.

Of the two approaches, the first is by far the simplest. It has the advantage of low

communication costs which simplifies the possibilities of queries to a list manager. In

the latter, we have the added problems of locating items in a distributed structure and

increased traffic between processors. Recent evidence in the implementation of distributed

LINDA whose tuple space is similar to the edge list indicates that the former approach

is better than the latter. In particular, our intention is to use the high granularity of the

sequential algorithm to provide compute-bound slaves. Thus it would not be efficient to

constantly interrupt the slaves to access shared data. The allocation of extra processors to

manage the shared structures although practical adds to efficiency costs because the work

involved in list search is sporadic and depends on the shape of the hull. Two different

implementation strategies were adopted.

• Master and manager processes run on different transputers (Ver 1).

• Master and manager processes run on the same transputer (Ver 2).

In the first method, the master, manager and each of the slave processors runs on a

separate transputer. Communication links or channels were established between different

processors. There is a link from the master to the manager and also from the manager

to the master. There is also a channel from the master to each of the slaves. Between

the slaves and the manager, there are two communication channels (see figure 6.9). The

158

Figure 6.9: Communication Between Processes on Different Transputers

master first of all computes the initial face using the stack version of the sequential

algorithm. The norm of the face, the vertices of the convex hull and the facet list are

stored in the global variables GNORMS, GCH and GFA respectively. The master sends

these partial solutions to the manager who will update the lists as more solutions become

available.

With the initial edges from the EdgeList, the master picks an edge, finds an idle

and free slave and assigns the job to it. The slave on receiving the edge from the master,

confirms that it is a new edge by checking its norm against the lists of norms in GNORMS

held by the Manager. If the norm is not present in the GNORMS list then it is a new face.

The slave then rotates and computes the convex hull of the new face to produce more

edges and some new vertices. A signal will then be sent from the slave to the manager

via one of the channels to inform it that the slave has completed its computation. The

manager then shifts over to the second channel and reads the result of the computation.

This is to avoid message confusion and data collision which led to deadlocks in earlier

versions of the program. With the new results coming in, the manager updates its lists

and sends more edges that have been computed from the new face to the master (when the

159

master runs out of edges) who will again farm out more work to slaves which are ready for

another round of computation. This cycle will be repeated until the EdgeList is empty.

The slaves are now synchronised. At this stage the manager sends a signal to the master

which will in turn send the final result back to the master. This situation is illustrated in

the diagram in Figure 6.9 with the arrows pointing to the direction where the messages

arrive. In the figure we consider a situation where five different transputers are used each

running a process. There are three slaves. The section of the code below shows how the

master distributes work to the slaves and also communicates with the manager after the

computation of the initial face using the sequential stack algorithm. The slave processors

on receiving an edge from the master use the routine Convex_HulLSlaveO to compute

the subfacet.

/* now share work with slaves */

GCH = Stack[O] .CH; GFA = Stack[O] .FA;
Read_Edge(GFA, n, &R, norm);
MakeEmpty_Elist(&GEDGES);
MakeEmpty_Plist(&GNORMS);
GNORMS = Insert_Point(GNORMS, n, norm);

/* send initial Global lists to Manager */

csn_tx(masterchan, 0, manager_id, &n, sizeof(n));
csn_tx(masterchan, 0, manager_id, &k, sizeof(k));
Transmit_Plist(GNORMS, n, masterchan, manager_id);
Transmit_Plist(GCH, n, masterchan, manager_id);
Transmit_Elist(GFA, n, masterchan, manager_id);
new_face = TRUE;
for(i=O; i<parts; i++)
slave_count = parts;

Svector[i] = i; /* slave numbers
/* available slaves */

/* starting edge list */

MakeEmpty_Elist(&Edge_List);
Edge_List = Stack[O] .Elist;

/* set up slave data */

160

for(i=O; i<parts; i++)
{

};

csn_tx(masterchan, 0, toslave_id[i], &n, sizeof(n));
csn_tx(masterchan, 0, toslave_id[i], &k, sizeof(k));
Transmit_Plist(S, n, masterchan, toslave_id[i]);
Transmit_Plist(AS, n, masterchan, toslave_id[i]);

/* control slaves */

do{ /* process current edges */

while(IsEmpty_Elist(Edge_List) == FALSE)
{

/* look for a free slave */
if (slave_count == 0)
{

/* ask manager for another slave */
csn_rx(masterchan, NULL, &status, sizeof(status));
Svector[slave_count] = status;
slave count = slave count + 1;

};

/* allocate data */
slave_count = slave_count - 1
sref = Svector[slave_count];

/* set up slave data */

Read_Edge(Edge_List, n, &R, P);
Slaves [sref] . status = GO;
Slaves [sref] .E = GetNext_Point(Copy_Plist(R,n));
forCj=l; j<=n; j++)
Slaves [sref] .norm[j] = p[j];

/* send data */

csn_tx(masterchan, 0, toslave_id[sref], &(Slaves[sref] . status) ,
sizeof((Slaves[sref] .status)));

csn_tx(masterchan, 0, toslave_id[sref], &(Slaves[sref] . norm) ,
sizeof((Slaves[sref] .norm)));

Transmit_Plist(Slaves[sref] .E, n, masterchan, toslave_id[sref]);

/* record send */

Write_Edge (Edge_List , n, NULL, p);
Edge_List = Delete_Edge(Edge_List);

161

}

};

/* run out of edges and synchronise slaves */

while(slave_count != parts)
{

};

csn_rx(masterchan, NULL, &status, sizeof(status»;
Svector[slave_count] = status;
slave_count = slave count + 1;

/* ask manager for new edge list and set new_face flag */

status = NEWLIST;
MakeEmpty_Elist(&Edge_List);
csn_tx(masterchan, 0, manager_id, &status, sizeof(status»;
csn_rx(masterchan, NULL, &new_face, sizeof(new_face»;
Receive_Elist(&Edge_List, &n, masterchan, NULL);

}while((new_face == TRUE) && (IsEmpty_Elist(Edge_List) -- FALSE»;

/* master completes computation */

status = RESULT;
csn_tx(masterchan, 0, manager_id, &status, sizeof(status»;
Receive_Plist(&GCH, &n, masterchan, NULL);
Receive_Elist(&GFA, &n, masterchan, NULL);

/* recieve result and shutdown */

status = STOP;
for(i=O;i<parts; i++)

csn_tx(masterchan, 0, toslave_id[i], &status, sizeof(status»;
*CH = GCH;
*FA = GFA;

Convex_H ulLSlave (p)

int p;
{

/* slave number */

POINTS ONB;
EDGES FA, TFA;
POINTS S, AS, CH, F, Fbar, Q, Junk;
Vector norm, P, PO;
float t;

162

int n, k, i, j, m;
int status, new_face;

/* set up data */

csn_rx(slavechan_from_master, NULL, &n, sizeof(n));
csn_rx(slavechan_from_master, NULL, &k, sizeof(k));
Receive_Plist(&S, &m, slavechan_from_master, NULL);
Receive_Plist(&AS, &m, slavechan_from_master, NULL);

do{
csn_rx(slavechan_from_master, NULL, &status, sizeof(status));
if (status != STOP)
{ /* recieve data from master */

csn_rx(slavechan_from_master, NULL, &norm, sizeof(norm));
Receive_Plist(&F, &m, slavechan_from_master, NULL);
if (IsEmpty_Plist(S) == FALSE)
{

Junk = Copy_Plist(F, n);
Rotate(S, AS, n, k, F, norm, P);

/* slave - ask manager to check norm against global list */

status = CHECKNM;
csn_tx(slavechan_from_manager, 0, manager_id, &status, sizeof(status));
csn_tx(slavechan_from_manager, 0, aux_manager_id, &norm, sizeof(norm));

/* receive result */

csn_rx(slavechan_from_manager, NULL, &new_face, sizeof(new_face));
/* manager checked norm list and process it *1

if (new_face == TRUE)
{ 1* find edges of new face *1

F = Insert_Point(F, n, p);
F GetNext_Point(F);

1* find set of all points on the face *1

MakeEmpty_Plist(&Fbar);
Read_Point(F, n, PO);
Q = S;

do{
Read_Point(Q, n, P);
t = 0.0;

for(j=l; j<=n; j++) t = t + (p[j] - PO[j])*norm[j];

163

}

if (fabs(t) <= TOL)
Fbar = Insert_Point (Fbar, n, P);
Q = GetNext_Point(Q);
}while(Q != S);

Fbar = GetNext_Point(Fbar);
MakeEmpty_Plist(&CH); /* find hull */
MakeEmpty_Elist(&FA);
Convex_Hull(Fbar, F, n, k-1, &CH, &FA);

/* check orignal edge is on face */

}

if (IsMember_Elist(&FA, n, Junk) -- TRUE)
{

FA = Delete_Edge(FA);
Junk = Delete_Plist(Junk);

}
else
status = RESULT; /* send result to manager */
csn_tx(slavechan_from_manager, 0, manager_id, &status, sizeof(status»;
csn_tx(slavechan_from_manager, 0, aux_manager_id, &norm, sizeof(norm»;
Transmit_Plist(CH, n, slavechan_from_manager , aux_manager_id);
Transmit_Elist(FA, n, slavechan_from_manager , aux_manager_id);
Transmit_Plist(F, n, slavechan_from_manager , aux_manager_id);
}; /* slave send result to manager */

else
{

MakeErnpty_Plist(&CH);
MakeErnpty_Elist(&FA);

/* scrap result */

status = SCRAP;
csn_txCslavechan_frorn_rnanager, 0, rnanager_id, &status, sizeof(status»;
};

};

}while(status != STOP);

16~

Convex_HulLManager(p)

int p;
{

/* slave number */

POINTS ONB;
EDGES FA, TFA;
POINTS S, AS, CH, F, Fbar, Q, Junk;
Vector norm, P, PO;
float t;
int n, k, i, j, m;
int status, new_face, global_new_face;

1* set slave status */

for(i=O; i<p; i++) Slaves[i] . status = GO;

1* recieve starting global lists */

global_new_face = FALSE;
MakeEmpty_Plist(&GCH);
MakeEmpty_Elist(&GFA);
MakeEmpty_Elist(&GEDGES);
MakeEmpty_Plist(&GNORMS)
csn_rx(managerchan, &junk_id, &n, sizeof(n));
csn_rx(managerchan, &junk_id, &k, sizeof(k));
Receive_Plist(&GNORMS, &m, managerchan, NULL);
Receive_Plist(&GCH, &m, managerchan, NULL);
Receive_Elist(&GFA, &m, managerchan, NULL);

1* service requests from slaves and master */

do{ /* get request */

csn_rx(managerchan, &junk_id, &status, sizeof(status));

1* MANAGER recieves message and process it */

if (junk_id == master_id)
{

switch (status)
{

case NEWLIST : /* send new edge list to master */

165

sizeof(global_new_face))
Transmit_Elist(GEDGES, n, managerchan, master_id);
MakeEmpty_Elist(&GEDGES);
global_new_face = FALSE;
break;

case RESULT : /* return final results */

}

Transmit_Plist(GCH, n, managerchan, master_id);
Transmit_Elist(GFA, n, managerchan, master_id);
status = STOP;
break;

default : /* Oops !! */

printf("MASTER-MANAGER message error \n");
break;

};

else
{ /* identify slave */

for(i=O; i<p; i++)
if (junk_id == toslave_id[i]) break;
switch(status)

{

case CHECKNM : /* check global norm list */
csn_rx(aux_managerchan, &junk_id, &norm, sizeof(norm));
if (IsMember_Plist(GNORMS, n, norm) == FALSE)

{

new_face = TRUE;
GNORMS = Insert_Point(GNORMS, n, norm);

}

else
{

new_face = FALSE;
csn_tx(managerchan, 0, master_id, &i, sizeof(i)); /* free slave */

};

/* return result */

csn_tx(managerchan, 0, toslave_id[i], &new_face, sizeof(new_face));
break;

case RESULT /* process result */

166

csn_rx(aux_managerchan, &junk_id, &norm, sizeof(norm));
Receive_Plist(&CH, &m, aux_managerchan, NULL);
Receive_Elist(&FA, &m, aux_managerchan, NULL);
Receive_Plist(&F, &m, aux_managerchan, NULL);
csn_tx (manager chan , 0, master_id, &i, sizeof(i)); /* release slave */
while(IsEmpty_Plist(CH) == FALSE) /* process new vertices */

{

Read_Point(CH, n, p);
if (IsMember_Plist(GCH, n, P) == FALSE)

{

GCH = Insert_Point (GCH, n, p);
};

CH = Delete_Point(CH);
};

/* add new edges found using norm of complete face */

while(IsEmpty_Elist(FA) == FALSE)
{

Read_Edge(FA, n, &Q, P);
if (IsMember_Elist(&GEDGES, n, Q)

{

GEDGES = Delete_Edge(GEDGES);
}

else
{

TRUE)

GEDGES = Insert_Edge (GEDGES, n, Q, norm);
Write_Edge(FA, n, NULL, P);

};

FA = Delete_Edge(FA);
} ;

/* add face to face list */

GFA = Insert_Edge(GFA, n, F, norm);
global_new_face = TRUE
break;

case SCRAP : 1* invalid computations release slave */
csn_tx(managerchan, 0, master_id, &i, sizeof(i));
break;

default : /* Oops !! *1

};

} ;

printf("MASTER-SLAVE message error \n");
break;

167

}

Figure 6.10: Master And Manager Run On Same Transputers

}while(status != STOP);

In the second version, the same principle used in the first version is also adopted, but

the major modification lies in the fact that the master and the manager processes run

on a single transputer as if it were a time sharing service. In this case the resources are

shared between the master and the manager. The number of transputers used is one less

than that of the previous version. It will be possible with this approach to estimate the

processing time used by the manager. The diagram in figure 6.10 depicts the situation

discussed here. The reason for this is that the master is relatively lightly loaded and the

manager will have periods of inactivity although the best result is to stagger the start up

of the slaves.

6.3.1 Results From Distributed Memory

The results from the distributed memory architecture are shown in Table 6.7 to Table 6.9.

Table 6.7 shows the timings for the 2-D example while Table 6.8 and Table 6.9 are for the

3-D example. A speedup of 1.17 was achieved for 2-D when considering 350 points on the

168

a e lmlllg or -T bl 6 7 T" . f 2 D
Size Sequential Parallel Processors

3 4 5 6 7
10 92160 Ver 1 167616 150528 151232 161216 170048

Ver 2 150016 156416 162752 169088 175424
20 232896 Ver 1 376512 324864 324544 341120 356736

Ver 2 324096 334336 343936 354880 365760
31 433920 Ver 1 646976 545920 545152 569856 591232

Ver 2 545280 559808 574208 589952 603776
50 951232 Ver 1 1317504 1075584 1073216 1112512 1144768

Ver 2 1074880 1096832 1119488 1138240 1163712
100 3136320 Ver 1 3926016 3079296 3077120 3152576 3211328

Ver 2 3078528 3120640 3155392 3200704 3247488
350 32472128 Ver 1 36438336 27231552 27229184 27488960 27675840

Ver 2 27799104 27695232 27534272 27373760 27231360

hull and using 3 processors. The data used to test the algorithm were generated from the

Type 2 test generators. The graphical representations are shown in Figures 6.11 through

6.14 . The poor speedup in the transputer version is as a result of the communication

problems. Routing information around the network can be very expensive. Most of the

computation is performed by the slaves while the master and the manager processes are

busy coordinating the activities of the system. With few processors, Version 2 gives a

better performance than Version 1. The manager and the master by sharing a processor

reduce the idle time between them. In both the shared memory and the message passing

architectures we have shown that parallelism could be achieved taking into consideration

the architectural features and the test data.

169

Size

40

80

120

Size

12

33

a e . : Immg or -T bl 6 8 T' . £ 3 D P yraIDl a rue ure 'd 1 St t
Sequential Parallel Processors

3 4 5 6
2448640 Ver 1 3015744 2061120 1827584 1753024

Ver 2 2124864 1816384 1896192 1802752
7668288 Ver 1 8721792 5818432 5053056 5012352

Ver 2 5905664 5313536 4913472 4940032
15429632 Ver 1 16701248 10794688 9264832 9319040

Ver 2 11174464 5963136 9363584 9366848

Table 6.9: Timing for 3-D Circular Structure
Sequential Parallel Processors

804736

2952446

Ver 1
Ver 2
Ver 1
Ver 2

7

6

5

0.4 .g
Q)

~3

2

1 '11" ,

3 4
1079552 739648
771200 689664

3905664 2564224
2720960 2364800

5
638592
671360

2196096
2254016

key

...... ---- -e-

o+-----~---.----.---_,
.... --e-_

o 100 200

Number Of Points

300 400

6
656064
629504
2113536
2104704

Figure 6.11: FLE For 2-D On Transputer (Ver 1)

170

i
1903680
1989632
4941i60
5074li6
9371904
9878272

7
625536
636224

2065472
2016448

7

6

5

0.4
-g
~3

2

O~------r------.------'------'
o 100 200

Number Of Points

300 400

Figure 6.12: FLE For 2-D On Transputer (Ver 2)

7

6

5

0.4
::l

al
'" ~3

2

40 50 60 70 80 90 100 110 120

Number Of Points

Figure 6.13: 3-D Circular Shape On Transputer (Ver 1)

171

7

6

5

2

40 50 60 70 SO 90 100 110 120

Number Of Points

Figure 6.14: 3-D Circular Shape On Transputer (Ver 2)

1_·)
1-

Chapter 7

Conclusions and Summary

This chapter gives an overview of the work carried out in this thesis. Below, the differences

between each implementation will be pointed out, and suggestions for further research are

briefly discussed.

As pointed out earlier, the main aim of this thesis was to implement parallel algorithms

for the n-D convex hull problem. The benefits that are derived from the convex hull

problem are enormous particularly in computer graphics, computer aided design, image

generation, operations research and simulation. In some cases, the algorithm is used

as a sub-algorithm in solving the main problem, as in automatic synthesis of parallel

algorithms, and may be used several times. Because of these numerous applications, there

have been attempts at developing elegant and concise algorithms that are both economical

and fast. Unfortunately, this attention is mainly theoretical, and has concentrated on

finding the convex hull for the lower (2 and 3) dimensional problems. This thesis has

addressed this imbalance by proposing parallel algorithms for the general n-D problem.

As far as we are aware they are the first algorithms to appear in the literature [95]. In

particular, we have concentrated on practical aspects rather than theoretical analysis, so

all our methods have been implemented and tested.

An extensive survey of the literature highlighted the work carried out in this field

so far. This sur vel' reveals the fact that the convex hull problem could be solved by

173

either a divide-and-conquer method or by a gift-wrapping technique. In this thesis we

propose a hybrid case, that is a combination of divide-and-conquer and a gift-wrapping

technique, which we implemented in chapter five. This acts as a mechanism for overcoming

the generalisation of divide-and-conquer methods to the general case. In chapter six we

discussed the Facial Lattice Exploration implementation. In our implementations, we

have chosen the Encore Multimax and the (Meiko) transputer architecture to represent

each category of the MIMD computation. The facilities of the EPT were used for process

creation and synchronisation on the Encore Multimax. In the Distributed system, we

employed Parallel-C which provides the necessary constructs for exchanging messages

and moving data between the processes.

The speedup of a parallel algorithm is usually measured against the fastest sequential

algorithm. The timings for the sequential algorithm in chapter five were obtained by

partitioning the set of points into subproblems and solving the subproblems by using the

sequential algorithm followed by a merge and compute procedure until the final result

is obtained. The idea here is to use sequential algorithm which is equivalent to the

parallel version, and speedups are measured with respect to this. These speedups are only

conservative because partitioning the points into subproblems tends to run faster than the

normal sequential algorithm because a lot of points are eliminated quickly. Consequently,

this will improve on the performance of the normal sequential algorithm.

Measured against the sequential algorithm with no partitions would give better speedup

results. To determine optimal performance we would need to look very carefully at the

partitioning, and the speedup would look rather worse. Our strategy is, at least, consis­

tent. The results presented using the partitioning method consider polytopes with varying

number of vertices and interior points. In order to test our algorithms, we examined the

performance of polytopes with 3, 4, 6, 16 and 26 vertices on the convex hull in 2 dimen­

sions. For the 3-D problem we demonstrated the effect of 3, 4, 6 and 12 vertices whereas

174

shapes with 4 and 6 vertices on the convex hull were tested in 4-D. The performance

on the shared memory architecture for the 2-D problem are shown in Tables 7 - 16 in

Appendix A with the sets consisting of points from 25 - 4000. An interesting feature to

observe in the results is that as the number of points increases the speedup also increases.

An optimal speedup of 2 was achieved with 2 processors and a speedup of 5.2 when us­

ing six processors. The speedup also increases rapidly with an increase in the number

of points on the vertices of the hull. Also for the 2-D problem, a speedup of 4.3 was

realised with six processors using the Meiko transputer system. For the 3-D problem, a

speedup of 5.45 (Table 17) was achieved when a polytope of three vertices was examined

on the shared memory architecture. Increasing the number of vertices on the convex hull

to 12 reduces the speedup to 3.1 (Table 24) on six processors. This drop in speedup is a

result of the increase of the complexity of the shape. Again the amount of work given to

the processors can affect its performance. With the transputer version, a speedup of 3.5

(Table 32) was achieved when using six processors. An example of a 4-D problem gave

a speedup of 3.5 (Table 28) and 3.2 (Table 33) on the shared memory and transputer

architectures respectively when using six processors. In each of these examples there is

an improvement in the speedup obtained if a smaller number of processors are utilised as

can be readily seen from the Tables. This suggests that there is a limit to the number of

processors that can be used effectively and efficiently.

In the FLE implementation, the number of facets of the shape limits the parallelism.

In 2-D problems, the number of processors that can be efficiently utilised is two because

of the number of edges available at any point in time. We have further demonstrated

that for the 3-D problems, the speedup depends not only on the problem size but also

on the complexity of the shape. Two typical examples were considered: the first shape

generated was in the form of a pyramid on a square base with the vertices projecting in

either direction resulting in a number of faces in the structure. The second shape was

175

generated by building rectangles in levels, in order to have more edges and vertices on

the convex hull. This second option resulted in a better speedup than the first. Vlie have

no results for higher dimensional cases because of combinatorial blow up of the point

and edge data structures. The results from the FLE method in chapter six depends on

the complexity of the shape in which the convex hull is to be determined. For the 2-D

problem we have shown that the maximum speedup cannot exceed 2. Tables 6.4 and

6.7 show our results from the shared memory and transputer implementations. In fact

our results confirm 0 < Sp < 2 and in particular speedups of 1.3 and 1.2 were obtained

for the shared memory and transputer implementations when considering a shape with

350 points. For the 3-D problem, we have shown that the speedup is a multiple of 3

depending on the complexity of the shape. To demonstrate this we generated a circular

and pyramidal 3-D shapes to test our algorithms. The results shown in Tables 6.5 and 6.6

are for the shared memory implementations while those shown in Tables 6.8 and 6.9 are

for the transputer implementations. From the shared memory implementation, a speedup

of 2.04 (Table 6.5) was obtained for the circular structure and 2.73 (Table 6.6) for the

more complicated pyramidal shape. For the transputer implementations, the speedup

is not very encouraging as a result of the communication problems earlier explained in

section 6.3.

The decision as to which of the methods (partitioning or facial lattice exploration)

should be used depends on the type of data available. However, as a guide it is rec­

ommended that if the data set comprises a large number of interior points, then the

partitioning method would be useful taking into consideration the number of processors.

On the other hand, a situation involving complex shapes where most of the points are

suspected to be on the convex hull will perform well with the facial lattice exploration

technique. If no knowledge of the type of data is known, then a pilot study might reveal

the characteristics of the data to enable a proper decision to be taken.

176

However, a problem size of not less than 2000 points will require 2 processors in order

to give an optimal speedup in a 2-D problem increasing to 4000 points if 4 processors are

available in a shared memory machine. In 3-D, at least 1000 points are needed to gi\'e a

reasonable speedup with 2 processors and a corresponding larger sized problem if more

processors are to be used. This trend can be extended to higher dimensions bearing in

mind that other factors will affect the performance. The results indicate that a significant

speedup can be obtained with our techniques. These results can be summaried as follows:

• They confirm that the problem size, number of facets and dimension of the problem

affects the performance of our algorithms. We observed that the larger the problem

size the better the performance when using the partitioning scheme. The speedup

decreases as the partition size is reduced because the computation is less intensive.

For 2-D problems, we have obtained a near optimal solution with 2 and 3 processors

but for 3-D and 4-D the speedup decreased when problems of the same size were

tested.

• The speedup obtained using a higher number of processors (say 6) seems to be low

compared with using a smaller number of processors (say 2). This is in agreement

with the fact that there is a limit to the number of processors with which efficient

parallelism can be exploited for a particular problem. Assigning a very small amount

of work to the processors can lead to work starvation. As the number of processors

increases, the speedup drops indicating that a point may be reached where additional

processors are of no advantage.

• We have tried a number of partitioning strategies but the lexicographic partitioning

method appears to be the best because the scheme attempts to provide an initial

load balance among the processors and has very low overhead.

The divide-and-conquer implementation is more straight forward to implement than

177

the FLE. The FLE needs specialised data while simple test data such as those of Type 1

generated randomly were used to test the partitioning algorithms. One might ask which

is the best architecture or approach to adopt and why? There is no clear cut answer

to such a question because varying degrees of success have been achieved using different

types of architecture and approaching parallelism in a different manner. Nevertheless, we

state briefly the characteristics and features we observed in our implementations:

• The shared memory architecture has the capacity of running larger problem sizes

than the distributed memory machines mainly because of availability of more mem­

ory. Although some modifications to list management would improve the situation

this would also add additional overheads. Some of the lists (like those of the edges

computed twice) could be deleted in order to get more memory to run larger prob­

lem sizes, but this will incur an additional overhead because of the time spent in

deleting the list.

• The stack version is usually faster and runs larger problem sizes than the recursive

verSIOn.

• The speed up obtained from the shared memory architecture is better than those

from the distributed memory architecture. The message passing paradigm seems

to be spending most of its time on managing the communication protocols due to

unpredictable sizes of edges and face data.

Although we have shown that parallelism can be exploited in the n-D convex hull

algorithm by partitioning and by facial lattice exploration, there are other areas where

additional research could be usefully carried out. Some of these areas include implement­

mg:

• Parallelisation of low level sub-routines.

178

• Multiple Partitioning

• Exploiting parallelism from FLE at sub-facet levels.

• Parallelising global data structures.

The n-D convex hull algorithm is made up of various routines as could be seen in the

sequential algorithm presented in chapter 4. Some of these sub routines could themselves

benefit from parallelisation if they were treated as separate algorithms. In our sequential

code, quick sort, solving a system of linear equations, list insertions, finding the maximum

and minimum angle of rotations are component parts of the algorithm and are all potential

candidates for parallelisation. Our present parallel implementation does not consider

implementing these routines in parallel as component parts but we assign each processor

a task to perform by using the overall sequential algorithm. It would be of interest to

consider this low level implementation in the two types of architecture in order to compare

the results against our implementation. Also, in chapter five we have proposed a multiple

partitioning method where the number of partitions of the problem is greater than the

number of processors. The idea here is that once the allocation of tasks is started, the

processors will be kept busy most of the time as new tasks will be given out once a

processor is idle. We hope that a good performance benefit can be gained by carrying

out as much work as possible rather than having a fixed number of partitions which

render the slave processors idle once they have completed their assigned task. In our

implementations, the granularity is reduced as the fanin of tasks progresses. In order to

address this situation, a repartitioning of the data periodically is suggested. This calls for

a merge and repartitioning process at each level of the tree. Though the load balance may

be improved, the major concern is the overhead introduced by partitioning as some of the

partitioning techniques that we have examined are complicated. ~1ore may be incurred

in overheads than improvements in performance.

179

At the moment, the FLE technique that we have proposed explores the lattice structure

facet by facet. If we consider a situation where the shape of the object is very complex.

resulting in many faces and of a high dimension, we could consider a facet as a problem

in itself and then attempt to explore the parallelism in that face by considering the sub­

facets. The time spent to determine a face in our implementation may greatly be reduced

as the sub-facet jobs could be distributed among processors. This could be implemented by

allowing idle processors to steal work from more active processes. An initial version of this

implementation was attempted but memory problems forced us to consider the simpler

approach here. In general, we encountered memory problems during our implementation.

For example, during the recursive implementation, the memory fills up with the vertices

and edges of the convex hull and we require stack space for procedure calls. This was very

prominent when considering problems with complex shapes which eventually generate

the vertices of the convex hull along with the edges as a by product. The subproblems

at different levels of the tree also generate their corresponding vertices and edges and

they all compete for storage in the memory. This is disappointing and limits the size

of the problem that we can use to test our algorithm. Although such problems could

be addressed by improving the management of dynamic structures, they would not be

completely solved. The answer appears to lie in the use of external memory which could

require a complete re-design of the approach.

Parallelising the global data structures may also enhance the performance of the algo­

rithms. In this organisation, the global lists (e.g. GNORMS) could be partitioned into p

sublists and so use p processors to access each individual sublist in parallel. The situation

is pictured here in figure 7.1 where GNORMS is partitioned into three sublists SI, Sz, S3'

Three processors could be used to access the individual sublists in parallel and it is hoped

that the time of searching the entire GNORMS sequentially will be greatly minimised.

We could also allow separate slaves to enter different partitions, this reduces access time

180

GNORMS

S 1

Figure 7.1: Partitioning of GNORMS into three sublists

for a number of slaves.

The goal of this research as pointed out from the outset was to implement the sequen­

tial n-D convex hull algorithm in parallel. From the research that we have carried out and

which is reported in this thesis we can conclude that effective exploitation of parallelism

with this problem is dependent on several factors some of which include the nature of the

problem to be solved and the type of architecture on which to implement the problem as

well as the test data. Moreover, the ideas used here could be applied in other research

efforts, such as parallelising the low level routines and exploiting parallelism at sub-facet

levels in the FLE method. These problems address the general problems of combinatorial

and optimisation problems, including branch-and-bound and problems with irregular task

structures [96]. Such work will be of key importance in further development of the system.

181

Bibliography

[1] Chand,D.R.; and Kapur,S.S.; An Algorithm For Convex Polytopes, Journal Of A(,\1

Vo1.17 (1) (1970) pp 78-86

[2] Swart, G.; Finding The Convex Hull Facet By Facet, Journal Of Algorithms 6 (198,,))

pp 17-48.

[3] Lee D. T.; and Preparata F. P.; Computational Geometry - A Survey, IEEE Trans.

On Computers C-33 (12) (1984) pp 1072-1101.

[4] Kay T. 1.; and Kajiya J. T.; Ray tracing complexes scenes, Computer Graphics

Vo1.20(4) (1986) pp 269-278.

[5] Freeman H.; Computer processing of line drawing images, Computing Surn:ys Vo1.6

(1974) pp 57-97.

[6] Megson,G.M.; and X.Chen; Partitioning And Mapping For Lower Dimensional Given

Regular Arrays, Proceedings Euromicro Workshop On Parallel And Distributed Pro­

cessing, Malaga, Spain (Jan. 1994) pp1 49-155.

[7] Flynn,M.J.; Very High Speed Computing Systems. Proceeding Of The IEEE, Vol.,j4,

No.12, Dec. 1966, pp 1901-1909.

[8] Decegama,A.L.; The Technology Of Parallel Processing - Parallel Processing Archi­

tectu1'es And 'LSI Hardwa1'e Vol. 1 , Prentice Hall 1989.

182

[9] Duncan,R.; A Survey Of Parallel Computer Architectures. Computer, Vo1.23 .:\0.2

IEEE Feb. 1990, pp 6-16.

[10] Skillicorn,D.B.; A Taxonomy For Computer Architectures. Computer, Vol.21, No.11

IEEE Nov. 1988.

[11] Feng,T.Y.j Parallel Processors and Processing, ACM Computing Surveys, Vol. 9 No.

1 1977.

[12] Reddi,S.S.j and Feurstel,E.A.j A Conceptual Framework For Computer Architectures.

Computing Surveys, Vol.8, No.2 June 1976, pp 277-300.

[13] Handler,Wj The Impact Of Classification Schemes On Computer Architecture. Proc.

Int. Conf. On Parallel Processing, Aug.1977, pp 7-15.

[14] Evans,D.J.j Parallel Processing - Its Use In All Levels Of Processing Operations.

Data Processing, Vol.28, No.10, Dec. 1986, pp 529-542. [Butterworths & Co. (Pub­

lishers) Ltd.]

[15] Kung,H.T.; Why Systolic Architectures? Computer, Vol. 15, No.1, Jan.1982, pp

37-46.

[16] Neumann,J.von.; The Computer and the Brain, Yale University Press, New Haven,

1958.

[17] Hayes,J.; Mudge,T.N.; Stout,Q.F.; Colley,S.; and Palmer,J.; A Microprocessor-Based

Hypercube Supercomputer. IEEE Micro, Vol.6, 1986, pp 6-17.

[18] Gustafson,J.L.j Hawkinson,S.; and Scott,I{.; The Architecture Of A Homogeneo'US

Vector Supercomputer. Proc. Int. Conf. On Parallel Processing, 1986, pp 649-652.

[IEEE Computer Society Press.]

183

[19] Veen,A.H.; Dataflow Machine Architecture. ACM Computing SU[\'eys . VoLlS. No.4

Dec.1986, pp 365-396.

[20] Treleaven,P.C.; Brownbridge,D.R.; and Hopkins,R.P.; Data-Driven And Demand­

Driven Computer Architecture. ACM Computing Surveys, Vol. 14, No.1, 1982, pp

93-143.

[21] Fuller,S.H.; and Harbison,S.P.; The C.mmp Multiprocessors, Report CMU-CS-78-146

[22] Hockney,R.W.; and Jesshope,C.R.; Parallel Computers - Architecture And Algo­

rithms. Adam Hilger, Bristol 1981.

[23] Hwang,K.; and Briggs,F.A.; Computer Architecture and Parallel Processing. McGraw

Hill, New York 1984.

[24] Batcher,K.E.; Design of Massively Parallel Processors, IEEE Trans. Computers, Vol.

C-29 Sept. 1980 pp 836-844.

[25] Stolfo,S.J.; and Miranker,D.P.; DADO: A Parallel Processor For Expert Systems.

Proceedings 1984 IEEE International Conference On Parallel Processing, pp 74-82,

IEEE Computer Society Press, 1984.

[26] Hayes,J.P; etal., Architecture Of A Hypercube Supercomputer, 1986 IEEE Interna­

tional Conference On Parallel Processing, pp 653-660, IEEE Computer Society Press,

1986.

[27] Snyder L.; Introduction To The Configurable Highly Parallel Computer. Computer,

Vol. 15, No.1, pp 47-56, Jan. 1982.

[28] Maples,C.; Pyramids) Crossbars And Thousands Of Processors, 1985 IEEE Inter­

national Conference On Parallel Processing, pp 681-688, IEEE Computer Society

Press, 1985.

184

[29] Transputer Development System, Prentice Hall International (UK) Ltd, 1988.

[30] Gollakota,N.S.; and Gray,F.G.; Reconfigurable Cellular Architecture, 1984 IEEE In­

ternational Conference On Parallel Processing, pp 377-379, IEEE Computer Society

Press, 1984.

[31] Siegel etal.; The PASM Parallel System Prototype, 1985 IEEE COMPCON, pp 429-

434.

[32] Gottlieb,A.; An Overview Of The NYU Ultracomputer Project, Ultracomputer Note

#100, July 1986, Ultracomputer Research Lab. New York University, New York.

[33] Pfister,G.F.; etal. The IBM Research Parallel Processor Prototype (RP3): Introduc­

tion And Architecture, 1985 IEEE International Conference On Parallel Processing,

pp 764-771, IEEE Computer Society Press, 1985.

[34] Gurd,J.R; Kirkham,C.C.; and Watson,!.; The Manchester Prototype Dataflow Com­

puter, Communications of the ACM. Vo1.28, No.1 pp 34 - 52, 1985.

[35] Multimax Technical Summary, Encore Computer Corporation, Jan 1989.

[36] Annaratone,M.; etal. Architecture of Warp, Proceedings of 14th Annual International

Conference On Computer Architecture, pp 264-267, 1987.

[37] Bruegge,B.; etal. Programming Warp, Proceedings of 14th Annual International Con­

ference On Computer Architecture, pp 268-271,1987.

[38] Annaratone,M.; etal. Applications And Algorithm Partitioning On Warp, Proceed­

ings of 14th Annual International Conference On Computer Architecture, pp 272-275,

1987.

[39] Arvind,V.K.; and Culler,D.E.; Dataflow Architectures, MIT Laboratory for Com­

puter Science, MIT, LCS/TM-294, 1986

185

[40] Gurd,J.; and Watson I.; Data Driven Systems For High Speed Parallel Computing,

Computer Design, Parts I and II, June/July 1980.

[41] Mago,G.; A Cellular Computer Architecture For Functional Programming, Proceed­

ings of IEEE Computer Society COMPCON, pp 179-187 Spring 1980.

[42] Andrews,G.R.; and Schneider,F.B.; Concepts And Notations For Concurrent Pro­

gramming, Computing Surveys, 15, pp 34-43, 1983.

[43] Brinch-Hansen,P.; The Architecture Of Concurrent Programs, Prentice Hall Int. 1977.

[44] Lampson,B.; and Redell,D.; Experiences With Processes And Monitors In Mesa,

CACM, Vol 23, No 2, February 1980.

[45] Jones,G.; Programming In Occam, Prentice Hall, 1985.

[46] Carriero,N.; and Gelernter,D.; How To Write Parallel Programs: A Guide To The

Perplexed, ACM Computing Surveys, Vol 21, No 3, pp 323-357, September 1989.

[47] Brookes,S.D.; and Hoare,C.A.R.; A Theory Of Communicating Sequential Processes,

Journal of the ACM, Vol 31, No 3, July 1984.

[48] Hoare,C.A.R.; Communicating Sequential Processes, CACM, Vol. 21, No 8, August

1978.

[49] Brinch-Hansen,P.; Edison: A Multiprocessor Language, Software Practice And Ex­

perience, Vol. 11, pp 325-361, 1981.

[50] Brinch-Hansen,P. Distributed Processing

CACM, Vol 21, pp 934-940, 1978.

A Concurrent Programming Concept,

[51] Gehani,N.; Ada: Concurrent Programming, Prentice-Hall, Englewood Cliffs, ~J,

1984.

186

[52] Tabak,Daniel; Multiprocessors, Prentice-Hall International, NJ, 1990.

[53] Wirth,N.; Modula: A Language For Modular Multiprogramming, Software Practice

And Experience 7, 1977, pp 33-35.

[54] Encore Parallel Threads Manual, Encore Corporation, ref 724-06210, 1988.

[55] Feldman,J.A.; High Level Programming For Distributed Computing, Communication

Of The ACM 22, 6 (June), 1979, pp 353-368.

[56] Fanstini,A.A.; and Wedge,W.W.; An Eductive Interpreter For The Functional Lan­

guages Lucid. Second ACM Conference On Functional Programming And Computer

Architecture, Nancy, France, 1985.

[57] Keller,R.M.; Rediflow Architecture Prospectus. Technical Report No. UUCS-85-105,

April 1986 Dept. Of Computer Science, University Of Utah.

[58] Quinn,M.J.; Designing Efficient Algorithms For Parallel Computers Mcgraw-Hill In­

ternational Editions, 1987.

[59] Harel,D.; Algorithmics, The Spirit Of Computing, 2nd Edition Addison-Wesley Pub­

lishing Company, 1992.

[60] Jarvis,R.A.; On The Identification Of The Convex Hull Of A Finite Set Of Point In

The Plane, Information Processing Letters Vo1.2 (1973) pp 18-21.

[61] Lee,D.T; and Preparata,F.P.; Computational Geometry - A Survey, IEEE Transac­

tions On Computers C-33 (12) (1984) pp 1072-1101.

[62] Preparata,F.P.; and Hong,S.J.; Convex Hull Of A Finite Set Of Points In Two And

Three Dimensions, Commun. ACM Vo1.20(2) (1977) pp 87-93

187

[63] Day,A.M.; The Implementation Of An Algorithm To Find The Convex Hull Of A Set

Of 3-D Points. ACM TOG Vol. 9(1) (1990) pp 105-226

[64] Graham,R.L.; An Efficient Algorithm For Determining The Convex Hull Of A Finite

Planar Set, Information Processing Letters 1 (1972) pp 132-133

[65] Johansen G.H.; and Cram C.; A Simple Algorithm For Building The 3-D convex

Hull, BIT Vol. 23 (1983) pp 146-160.

[66] Bentley,J.L.; and Shamos,M,I,; Divide and Conquer For Linear Expected Time, In­

formation Processing Letters 7 (1978) pp 87-91.

[67] Miller,R.; and Stout,Q.F.; Computational Geometry On A Mesh-Connected Com­

puter, 1984 IEEE International Conference On Parallel Processing, pp 66-73, IEEE

Computer Society Press, 1984.

[68] Miller,R.; and Stout,Q.F.; Efficient Parallel Convex Hull Algorithms, IEEE Trans.

On Computers Vol 37(12) (1988) pp 1605-1618.

[69i Atallah,M.J.; and Goodrich,M.J.; Efficient Solution To Some Geometric Problems,

Journal of Parallel And Distributed Computing 3 (1986) pp 492-507.

[70] Goodrich,M.J.; Finding The Convex Hull Of A Sorted Point Set In Parallel, Infor­

mation Processing Letters 26 (1987/88) pp 173-179

[71] Akl,S,G,; A Constant Time Parallel Algorithm For Computing Convex Hulls, BIT

22 (1982) pp 130-134.

[72] Nath,D.; Maheshwari,S.N.; and Bhatt, P.C.P.; Parallel Algorithm For The Convex

Hull Problem In Two Dimensions, Technical Report EE 8005, Department Of Elec­

trical Engineering, Indian Institute Of Technology, New Delhi, India (October 1980).

188

[73] Chow,A.L.; A Parallel Algorithm For Determining Convex Hull Of Sets Of Points In

Two Dimensions, Proceedings Of The 19th Allerton Conference On Communication.

Control And Computing, Monticello, Illinois (1981) pp 214-223.

[74] Akl,S.G.; Optimal Parallel Algorithms For Selection, Sorting And Computing Convex

Hulls, Computational Geometry (Editor G. T. Toussaint), Elsevier Science Publishers,

(1985) pp 1-22.

[75] Kirkpatrick,D.G.; and Seidel,R.; Planar Convex Hull Algorithms?, SIAM Journal Of

Computing 15(1) (1986) pp 287-299.

[76] Edelsdrunner,H.; Kirkpatrick,D.G.; and Seidel,R.; On The Shape Of Set Of Points

In The Plane IEEE Transactions On Information Theory 29, (1983) pp 551-559.

[77] Day,A.M.; Parallel Implementation Of 3-D Convex Hull Algorithm, Computer-aided

Design Vol. 23 (1991) pp 177-188

[78] Chazelle, B.; Computational Geometry On A Systolic Chip, IEEE Trans. On Com­

puters C-33(9) (1984) pp 774-785.

[79] Miller,R.; and Stout,Q.F.; Mesh Computer Algorithm For Computational Geometry,

IEEE Trans. On Computers Vol.38 (1989) pp 321-340.

[80] Holey,J.A.; and Ibarra,O.H.; Iterative Algorithms For The Planar Convex Hull Prob­

lem On Mesh-Connected Arrays, Parallel Computing 18 (1992) pp 281-296.

[81] Sedgewick,R.; Algorithms (2nd Edition), Addison-Wesley, New York, (1988).

[82] Preparata,F.P.; and Shamos, M.L; Computational Geometry - An Introduction

Springer-Verlag, New York, (1985).

189

[83] Holey,J.A.; and Ibarra,O.H.; Triangulation In A Plane And 3-D Convex Hu.ll On

Mesh-Connected Arrays And Hypercubes Int. Conference On Parallel Processing

(1992) pp 10-17.

[84] Reif,J; and Sen,S.; Optimal Parallel Algorithms For 3-Dimensional Convex Hull And

Related Problems, SIAM Journal On Computing 21:3 (1992) pp 466-485.

[85] Aggarwal,A.; Chazelle,B.; Guibas,L.; Dunlaing,C.O,; and Yap,C.; Parallel Compu.­

tational Geometry, Algorithmica 3(3) (1988) pp 293-328.

[86] Chow,A.; Parallel Algorithms For Geometric Problems, Ph.D. Thesis, Compo Sc.

Dept., Univ. Of Illinois, 1980.

[87] Yao,A.C.; A Lower Bound To Finding Convex Hulls, JACM 28 (1981) pp 780-787.

[88] Griinbaum,B.; Convex Polytopes, Wiley, New York, 1967

[89] Day,A.M.; Experiments in the Parallel Computation of 3D Convex Hulls Computer

Graphics forum Vol.13 (1994) number 1, pp 21-36.

[90] Goodman,S.E. and Hedetneimi,S.T.; Introduction to the Design and Analysis of Al­

gorithms McGraw-Hill, 1977.

[91] Horowitz, Ellis; and Sahni, Sartaj; Fundamentals Of Computer Algorithms, Com­

puter Science Press, Inc, 1978

[92] Rabhi,F.A.; and Manson,A.; Divide-and-Conquer Parallel Graph Reduction, Parallel

Computing 17 (1) pp 189-205 (1991).

[93] McMullen,P.; and Shephard,G.C.; Convex Polytopes and the Upper Bound Conjec­

ture, Cambridge University Press, Cambridge (1971).

190

[94] Aho,A.V.; Hopcroft,J.E.; and Ullman,J.D.; The Design and Analysis of ComputEr

Algorithms, Addison-Wesley, Reading, Mass., (1974).

[95] Megson,G.M; and Eyoh,E.O; Implementation And Evaluation Of Parallel n-D Con­

vex Hull Algorithms, Parallel Computing: Trends and Applications Joubert,G.R.:

Trystram,D.; Peters,F.J.; and Evans,D.J.; (Editors) pp 169-176 1994 Elsevier Sci­

ence B.V

[96] Frierbera,A; Megson;G.M.; etal. Solving COmbinatorial Optimization problems in

Parallel (SCOOP), HCM Grant From EC, 1994.

[97] C-S Tools Meiko Manual, S0205-20T101.02, 1983.

191

Appendix A

Tables

192

Table 7: Timing Of Recursive Version For 2D With 3 Vertices (Multimax)
Size Of Set

Part Time 25 50 100 200 500 1000
Sequential 166643 226598 395592 841881 2888055 9944076

2 Thread 145477 174203 283449 531775 1581603 4998430
Microthread 119575 151613 245838 503796 1530946 4959641
Sequential 250455 259281 408478 700583 2415931 7381996

3 Thread 255714 245774 315450 426747 1090612 2843493
Microthread 208585 192197 268140 394880 1017109 2729174
Sequential 297844 338180 486876 883342 2347805 6649440

4 Thread 298106 311715 409316 566718 916117 1969556
Microthread 257928 266216 340557 469771 843114 1903718
Sequential 318418 407157 513174 855599 2145561 5799237

5 Thread 463863 459578 541558 699127 1039039 1819594
Microthread 356237 423753 470971 583695 873298 1715513
Sequential 347294 425128 605007 901621 2115442 5029615

6 Thread 503843 547304 662944 757207 1146337 1679135
Microthread 442964 429084 573459 652567 987300 1576188

2000 3000
36344589 79394541
18087512 39788809
17759369 39146672
24643418 52916117
8571150 18351091
8317713 17939287
20961733 43864862
5901357 11178784
5688291 10887830
17139867 34310048
4656267 7973657
4378911 7751366
15210449 31765370
3579314 6525964
3289031 6203045

4000
1378888505
68566957
67444355
92943296
31479976
31025329
74988769
18907401
18424953
59230580
13107170
12625087
53226559
10219182
9711809

M
0":> -

Table 8: Running Time Of Stack Version For 2D With 3 Vertices (Multimax)

Size Of Set
Part Time 25 50 100 200 500 1000

Sequential 171795 220795 405292 800480 2805394 9416219
2 Thread 128067 160722 259339 479444 1508454 4927765

Microthread 118362 140034 247320 470177 1483651 4923643
Sequential 230080 272634 461340 743921 2424615 7186961

3 Thread 225864 248969 326768 439353 1103186 2727143
Microthread 183634 216023 306004 421202 1084138 2637875
Sequential 280428 353605 575213 893349 2498857 6405496

4 Thread 240641 292351 387192 461127 973430 1910593
Microthread 239551 249390 351870 438841 870968 1836431
Sequential 374792 500755 543308 853976 2178488 5665507

5 Thread 394556 463900 530366 607584 987637 1818106
Microthread 360002 448842 434042 529114 971841 1735659
Sequential 353168 442014 619913 892631 2182652 5121904

6 Thread 443582 490571 590469 690288 1113235 1561610
Microthread 379444 480216 576132 644633 1071175 1584105

2000 3000
35165824 76264562
18215514 39169851
18378435 39275085
23885017 52160976
8531503 18461144
8394068 18287225
20256477 42276904
5806972 10996424
5715211 11038432
16981020 34106313
4388859 7923885
4292449 7760416
15149259 31427771
3417766 6465608
3338281 6256069

4000
131861840
67262466
66840088 I

90594770
31236412
31136970
72281665
18361041
18334049
57401634
12935666
12870669
52130207
9993635
9727668

"<:f<
O'l

Table 9: Running Time Of Recursion Version For 2D With 4 Vertices Mul-
;imax

Size Of Set
Part Time 25 50 100 200 500 1000

Sequential 184718 256787 404946 837163 3086369 10387073
2 Thread 153726 207290 298654 501634 1678617 5281474

Microthread 135439 190973 273922 477257 1631857 5110611
Sequential 247632 339463 551195 898768 2723183 7939021

3 Thread 265885 303179 412607 567280 1206506 2966390
Microthread 220720 245900 344514 508256 1171959 2948384
Sequential 316932 429847 568383 940243 2718568 7042684

4 Thread 285591 408423 419467 603010 1153803 2183848
Microthread 264546 369890 383428 530410 995708 2052921
Sequential 380775 445247 704988 1039649 2419476 6000231

5 Thread 443970 519756 683598 832369 1061796 1895604
Microthread 397882 440698 604610 714095 961593 1959000
Sequential 408523 487766 740164 1230741 2577658 5903105

6 Thread 563195 625305 757138 894526 1369915 2099523
Microthread 460624 553136 664903 826341 1198693 1876853

2000 3000
37339400 81452728
18400466 39577255
18580781 39305244
25898307 54332578
9129147 18696411
8979744 18434301
22459330 45490372
6005215 11773635
5811840 11623861
17652364 36200510
4527614 8484806
4394591 8190441
16380658 33477002
3941789 6838396
3735809 6543242

4000
139086980
67727610 I

67017867
95859112
32013841
31704243
76796234
19146855
19027283
60498770
13116768
12855870
54592502
10395177
10198214

U':)
O"l
..--+

Table 10: R ----- - - -- ----

__ > Time Of Stack Version For 2D With 4 Vertices Mult' - - .- - -

Size Of Set
Part Time 25 50 100 200 500 1000

Sequential 179937 246330 401684 896571 3148521 10061855
2 Thread 133073 172573 249834 494699 1663914 5152896

Microthread 124118 147559 234823 487940 1643575 5080126
Sequential 258929 347523 593902 998718 2727935 7795451

3 Thread 232112 277962 402711 548566 1152339 2869871
Microthread 198650 243254 384149 506839 1111128 2878764
Sequential 328139 439211 645478 935660 2735482 6995230

4 Thread 262010 328902 409402 536057 1043818 2111955
Microthread 227745 291614 369991 472544 1010210 2090919
Sequential 338587 399897 649008 1002435 2322423 5908421

5 Thread 385796 430921 576295 765984 1110811 1967018
Microthread 342270 375946 526294 696474 1063812 1847302
Sequential 362989 474592 724406 1132590 2544260 5801328

6 Thread 490819 562849 723758 885897 1255013 1961690
Microthread 442047 526553 634937 774331 1141670 1805265

2000 3000
35246600 75542696
18134939 37861602
17967554 38245979
25251701 52203333
8855241 18108688
8841232 18185660
21567480 43911145
5712353 11335829
5670572 11495215
16987047 35224746
4346752 8447888
4371905 8271329
16283151 32323302
3701654 6567896
3670439 6452282

4000
132227836
66423436
66867522 I

91777099
30953067
31117805
74595295
19108059
19143499
58496400
12778839
12711139
52838541
10329716
10119331

(.0
0')
..-4

Table 11: Running Time Of Recursion Version For 2D With 6 Vertices Mul-
;imax

Size OJ Set
Part Time 25 50 100 200 500 1000

Sequential 221998 284216 475811 844084 2994355 10074251
2 Thread 176022 215691 326818 560735 1615788 5296834

Microthread 159331 207183 309624 560825 1593358 5242129
Sequential 297073 343671 601389 943006 2902141 8146052

3 Thread 277173 305834 420827 545904 1258780 3026240
Microthread 244954 270467 388251 527734 1198566 2996836
Sequential 319250 432511 599318 951104 2575469 6888964

4 Thread 328587 371911 475127 551431 1066793 2026243
Microthread 270854 361611 427553 532695 973770 2087041
Sequential 385861 513460 683076 1105969 2498052 6188444

5 Thread 465381 577280 692530 818183 1240429 2100728
Microthread 406235 526190 643591 760641 1203854 1995165
Sequential 495790 568149 779717 1238328 2721480 6106542

6 Thread 542052 622397 714767 880753 1341999 2098050
Microthread 495053 560969 694309 853716 1290812 2048214

2000 3000
38507491 81983467
19528552 40108865
18919027 39982323
7269586 57574391
9773776 20391250
9633546 19583982
22043638 46214546
6038707 11647296
5923266 11584230
18236801 37617244
4841619 8398059
4658336 8429404
17666738 34107467
4379085 6844348
4010596 6863816

4000
142852560
69735024
68984396
97345795
32460103
32202725
80110130
19780583
19629361
62691278
13866013
14036697
56227909
10952141
10417525

t­
~
..-<

Table 12: R Time Of Stack Version For 2D With 6 Vertices MuIr
- - - -~ - - ---- - --

Size Of Set
Part Time 25 50 100 200 500 1000

Sequential 219703 282218 452471 874563 3098384 9902401
2 Thread 171561 208862 292862 531426 1698052 5039327

Microthread 155103 195200 284284 522818 1679954 5058126
Sequential 276994 392818 562226 942158 2636662 7741089

3 Thread 283200 344730 415738 538480 1217950 2907186
Microthread 252478 305324 379204 515239 1174462 2891341
Sequential 346713 447768 572729 897743 2566478 7127616

4 Thread 313368 357773 422339 527712 1042473 2157542
Microthread 293014 351504 401716 497407 951755 2122063
Sequential 438973 575829 716454 1116581 25799534 6113786

5 Thread 469163 561835 699586 806569 1231890 2135698
Microthread 437648 513183 600356 771537 1111605 2034998
Sequential 438154 577205 792405 1271968 2452412 5892925

6 Thread 553973 637605 746262 873162 1251918 1966603
Microthread 444930 570824 649353 829752 1181233 1854700

2000 3000
35938228 77616206
18131809 39472836
18175808 39461650
26440531 54617805
9326959 19049083
9295835 19081092

21925298 45040262
5734172 11657229
5708770 11619756
17776446 37094961
4648554 8619235
4495085 8520865
16800228 32790522
4117385 6710347
3937502 6604640

4000
134590474
67895813
68000178
93102282
31785887
31697839
75847007
19631788
19461919
62944229
13908491
13980592
54431487
10488974
10232065

00
0':>

Table 13: Running Time Of Recursive Version For 2D With 16 Vertices
MII!timax

Size Of Set
Part Time 50 100 200 500 1000 2000

Sequential 602471 835479 1469125 4229507 12402870 40618124
2 Thread 405774 531614 866955 2308325 6290290 20032395

Microthread 360991 465392 819964 2228885 6122574 20041050
Sequential 662965 842963 1293993 3334217 9022123 29559550

3 Thread 485752 623511 804473 1527234 3529152 10570816
Microthread 412542 551983 714245 1462163 3323032 10333311
Sequential 786429 989894 1486063 3312612 8417969 25513497

4 Thread 635058 752697 984605 1535809 2810454 7038562
Microthread 528816 603506 853768 1356001 2681696 6787691
Sequential 845834 1044532 1545487 3329581 7391584 20961062

5 Thread 848205 981892 1226905 1793451 2710403 5620218
Microthread 676471 854621 1076408 1592007 2494333 5447993
Sequential 1007704 1221947 1874625 3478913 7425055 19835133

6 Thread 930181 1103334 1348552 1767130 2744056 5220778
Microthread 726209 942612 1123241 1632563 2489998 4659696

3000
85707559
42359593
42008423
60664435
20916199
20749627
50994652
13619740
13578626
41263157
10023203
9767438
38479566
8511904
8178321

-

4000
150378853
74305470
72830190
105490322
35977255
35828266
85283854
22376597
22187587
71001479
16128231
15781184
64631080
12395989
12204448

--

O'l
O'l
.-4

'l'cl,ble 14: R Time Of Stack Version For 2D With 16 Vertices Mult"
Size Of Set

Farl Time 25 50 100 200 500 1000
Sequential 438237 501098 688407 1206813 3781394 11288503

2 Thread 273809 327065 435688 707819 2065308 ,5857332
Minot.hread 262787 313203 412283 672180 2028574 5908308
Seql\ential 540370 616302 795805 1234391 3260153 8818599

a Thread 456423 485827 580193 810903 1510498 3592190
Minot.hread 415623 423394 530172 778839 1499541 3593458
Sequential 619046 722180 988565 1501872 3393357 8320267

4 Thread 465538 499980 626410 790614 1378202 2649174
Microthread 415924 466732 598099 738900 1303722 2637578
Sequential 672044 830658 1018513 1445755 3275966 7468584

5 Thread 692004 738367 856461 1103499 1759247 2863324
Microthread 591768 628544 796601 959053 1640498 2743912
Sequential 805349 907354 1201049 1644466 3409271 7126086

6 Thread 769638 824613 894559 1171371 1739702 2489209
Microthread 626740 745269 883191 1062892 1560810 2316508

2000 3000
39382710 82586303
19965172 41947280
20063185 42189504
34191495 59812347
10108609 20783700
10089207 20833155
24637632 49397993
6847562 13168099
6794975 13145470
20449382 40699345
5641694 10158813
5496743 10079398
19331759 37549010
4514578 8057934
4613527 7804343

4000
143232614
71997072
72255027
101186146
35300877
35254412
81469924
21326094
21335850
67130694
15535053
15267890
62311681
12314018
12256118

o
o
C'l

Table 15: Running Time Of Recursive Version For 2D With 26 Vertices
Multimax

Size Of Set
Part Time 50 100 200 500 1000 2000

Se 964889 1160424 1899973 4837268 12829542 42508855
2 Thd 575609 723871 1103277 2594791 6473626 21288419

Mic 529471 659029 1033137 2529473 6402651 21098194
Se 1022317 1221381 1805385 3957516 10199550 30671482

3 Thd 709530 849220 1166013 1946468 4246614 11227680
Mic 645742 752913 987639 1775792 4134344 10812395
Se 1170221 1408673 1925895 3947911 9071274 26139869

4 Thd 768549 1000718 1281315 1843590 3091455 7759988
Mic 727521 843694 1156380 1758960 2941975 7536789
Se 1304737 1545678 2033306 3822352 8122054 22044446

5 Thd 1135889 1231019 1498220 2093196 3168640 6553279
Mic 962679 1151950 1368687 1915379 2878962 6019937
Se 1485323 1773226 2302073 4063619 8465524 20734042

6 Thd 1270880 1391464 1678968 2366798 3129037 5621141
Mic 1031737 1087402 1431080 1969049 2904042 5457167

3000
87288169
42923848
42617297
62225972
21508762
21246392
51320751
13585782
13172829
42451833
10781561
10259267
38921146
8915234
8426992

4000
150142739
73579814
72638377
104756362
35742436
35138608
85651257
22006890
21862406
70543433
16393182
15980502
63413802
13116447
12551836

-o
C'I

Table 16: R - -- - - - - ---

Part Time
Se

2 Thd
Mic
Se

3 Thd
Mic
Se

4 Thd
Mic
Se

5 Thd
Mic
Se

6 Thd
Mic

Time Of Stack Version For 2D With 26 Vertices MuIr
Size Of Set

50 100 200 500 1000 2000
799626 1018554 1616582 4211996 12099486 41075182
468751 594439 889918 2322021 6426176 21298879
499363 591368 946001 2339214 6547105 21512137
955540 1135145 1684747 3897608 9732913 30609698
657030 771407 1008305 1910711 3987107 11188300
729229 781073 1105368 1849045 4083197 11170921
1081779 1264601 1891106 3838060 9179551 26401304
640842 723185 1034944 1542973 2929600 7767234
721574 787835 1084781 1547949 3027627 7798447
1274056 1600812 2046954 3829524 8402885 22202521
1088321 1130568 1368516 1894319 3081545 6394846
910606 1042344 1286985 1847069 2955581 6326362
1441501 1632284 2347862 4175950 8269892 20513379
1051740 1235442 1458794 1991132 2990148 5145894
999598 1071338 1460061 1956984 2784946 5188213

~ -- -

3000
84993169
43167069
43641390
60793146
21204006
21673246
51889124
13875375
14075527
42320349
10580379
10426058
39222263
8382625
8842198

4000
146502630
74045495
74481206 I

103046696
35654079
36135443
84503948
22073110
22390803
69545423
16124866
16106770
62389904
12431726
12339234

C':j
o
C':j

Table 17: Running Time Of Recursive Version For 3D With 3 Vertices Mul­
timax

Size Of Set
Part Time 25 50 100 200 500 1000

Seq 191002 257505 422981 907270 3311387 11262728
2 Thd 147057 176926 285245 569361 1784776 5736607

Micro 124955 167571 264300 535801 1691438 5634501
Seq 281662 270256 446775 772714 2701048 8339643

3 Thd 262261 236420 344696 444811 1172869 3200211
Micro 223739 193277 299745 421406 1130563 3081471
Seq 337128 383227 557649 988080 2651712 7611609

4 Thd 296197 321281 414554 534011 953907 2214881
Micro 268700 281930 365666 508142 879827 2143965

Seq 374438 457316 597845 979171 2401118 6341535
5 Thd 412845 453437 558529 641171 1116176 2000253

Micro 401533 407290 483835 579773 984947 1791846
Seq 397678 485684 674168 1035264 2384366 5733392

6 Thd 465541 507082 653816 733550 1130847 1780661
Micro 452704 464233 567087 645442 106515 1697762

2000 3000
41646847 90963577
20801350 46191565
20411169 45110666
27793519 60746721
9615183 21229381
9391500 20558236
24032760 50264628
6470076 12691111
6366797 12513896
19384828 39074948
5111176 8952028
4958971 8753109
17267740 36735811
3913172 7242708
3710122 7042643

4000
158090182
79149567
77989612
105842702
36180296
35387207
86095773
21340911
21089096
66937214
14569480
14502298
60281419
11511981
10994920

M
o
C'J

Table 18: R Time Of Stack Version For 3D With 3 Vertices Mul'
Size Of Set

Pad Time 25 50 100 200 500 1000
Sequential 164261 230552 426877 892198 3201575 10842843

2 Thread 150744 180104 297298 534238 1727143 5664150
Microthread 127222 155432 279483 519014 1731914 5661155
Sequential 227730 291267 493370 805211 2698044 8032566

3 Thread 231516 271860 373627 499642 1248264 3137940
Microthread 187059 233711 319585 429613 1227727 3053498
Sequential 272936 355076 581550 961489 2726522 7279003

4 Thread 272024 296529 429222 514919 1073314 2168768
Microthread 237440 260158 386297 476331 1017961 2083785
Sequential 501454 483300 553496 907848 2376180 6390708

5 Thread 506365 513106 558656 668767 1105444 1895065
Microthread 443543 464680 442418 614421 1052246 1970731

, Sequential 349277 429281 634935 937718 2384980 5863562
6 Thread 478600 510883 679019 758801 1237021 1820303

Microthread 404445 453944 634708 673364 112570 1609410

2000 3000
40298028 87692368
21055835 45053790
21105611 45285034
27228649 59481820
9705098 21094198
9555944 20976719

23450202 48368051
6601624 12541863
6441090 12509020
19148047 38718325
4950537 8958928
4795839 8788986
17322716 35780457
3805581 7394280
3718570 7039703

'------- -_ .. _- - ~~-

4000
151524478
76916959
76744759
103313185
35736292
35653243
83130233
20930652
20856008
65756050
14611194
14482455
59591289
11546585
11147451
-- -

"'<!<
a
C'l

Table 19: Running Time Of Recursive Version For 3D With 6 Vertices Mul-
Gimax

Size Of Set
Part Time 25 50 100 200 500 1000

Sequential 1408992 2045367 3123531 4794280 9537390 24459785
2 Thread 1019090 1498559 2180051 3254645 5358834 12849886

Microthread 922762 1375346 2056412 3121691 5238302 12456578
Sequential 1765916 3022200 4013869 6222328 14181379 30785002

3 Thread 1795665 2458018 3372433 4688611 8588337 16031583
Microthread 1611633 2270763 3145186 4440276 8218655 15229455
Sequential 2301323 4189155 6312317 9763828 15881987 31083664

4 Thread 1777621 3277518 4279028 6340170 8036408 13235591
Microthread 1740002 3030974 4288062 5670915 8203960 13168767
Sequential 2597564 4858734 6750602 10147752 16860846 30651408

5 Thread 2603970 4999464 6269377 9027274 14437509 19537096
Microthread 2060013 4282070 6239949 8734159 13003050 17916020
Sequential 2429977 4660491 8034779 11084349 20729449 36907585

6 Thread 2857940 4419704 6707080 9057511 15846982 23112309
Microthread 2767652 4364910 6242605 9019551 14295803 20911524

2000 3000
69419005 140138731
36589913 74900019
36352647 73535602
70003050 122739191
28991650 47200861
28172232 46357493
66840105 114759296
24132584 37205074
23099406 36319282
62963046 103075953
30325360 38812347
28498004 36926320
70798109 112962003
31370218 42167355
30773925 40093255

4000
235748086
121829580
120502781
198105746
74096213
72717403
177561500
55411393
54094344
159240981
54848687
54165774

U')
o
C'l

Table 20: R Time Of Stack Version For 3D With 6 Vertices Mult"
Size Of Set

Part Time 25 50 100 200 500 1000
Sequential 1354126 1964372 3467641 5249766 10233543 47777153

2 Thread 931053 1406728 2207168 3380621 5788846 24352283
Microthread 926152 1404746 2136772 3394829 5780546 24637839
Sequential 1808409 3100231 4227923 6420597 14133709 30487417

3 Thread 1501117 2573954 3521707 4848839 7578600 14363838
Microthread 1506685 2428275 3496390 5019037 7595814 14121249
Sequential 2373251 4394728 6623836 10605187 16644702 30529141

4 Thread 1545363 2922992 4191561 6224911 8178610 12684899
Microthread 1586404 2717748 4268620 6241414 79233898 12369110
Sequential 2208959 4237917 6979341 10569777 18574668 32550786

5 Thread 2131256 3979656 6906242 8989477 13468181 18498185
Microthread 1961248 3675145 6829397 8585202 12522565 18298623
Sequential 2470822 4510592 7892396 11174624 20174141 36720752

6 Thread 2562205 4181715 6299489 8918670 12223090 20503996
Microthread 2158121 4279180 6541125 8552091 12471590 19516881

-

2000 3000
75116996 140522946
38252659 71635451
38380556 73642918
72208457 118884854
29582509 44189544
29755374 46058247
70771712 117472593
24097498 35978730
24203162 35481027
67347138 108829496
30304653 40112169
27938634 35704247
72470059 114156170
28997871 36807894
29972876 36541452

- ~- - - --

4000
231929393
116792935
118595412
192784718
70741649
70712140
181922875
54799339
53871123
167334070
55881617
53451278
166816567
46852393
45726394

L- ______

'" o
C'1

Table 21: Running Time Of Recursive Version For 3D With 4 Vertices Mul-
jmax

Size OJ Set
Part Time 25 50 100 200 500 1000

Sequential 1029209 1731725 2063612 2450055 6959136 19682131
2 Thread 736165 1180139 1349724 1423903 4301364 11186286

Microthread 729565 1158003 1333289 1447564 4280487 11139758
Sequential 1516177 2404234 3140973 4581890 8984569 21582399

3 Thread 1196174 1849343 2456583 3377019 5529202 11408487
Microthread 1124898 1774696 2331521 3230932 5425084 11156196
Sequential 2036716 3072537 4906458 5799374 11161337 22115273

4 Thread 1492149 2559347 3192184 3468030 5577790 9499841
Microthread 1371296 2585033 3277687 3449376 5501486 9484761
Sequential 2210800 4123100 5228460 7399654 13432186 26495203

5 Thread 2235279 3469332 4238592 6420875 10597099 15388740
Microthread 2102834 3574987 4280684 6204155 10382109 14881230
Sequential 2075348 3625572 5578632 7713982 14018784 24588080

6 Thread 2091257 3409623 4922741 6836127 10322681 15838850
Microthread 2125613 3300676 5267435 5615746 9940959 14727413

2000 3000
61075993 123679083
32395962 62181250
32137025 61732493
53598594 99891860
24418535 41303516
23873380 40941737
5834495 102123876
19837317 30685058
19622241 30210972
56590499 90549336
23516016 31196291
23194596 31226483
54745205 92710057
23905220 33416037
23824410 31992792

4000
201868635
102696619
101661372
159672945
61465074
61142249
150737625
45029581
44328131
136447324
42602577
42210981
127654696
37962118
37378900

t­
o
C'I

Table 22: R Time Of Stack Version For 3D With 4 Vertices Mult'
Size Of Set

Part Time 25 50 100 200 500 1000
Sequential 824448 1317836 1966149 2831352 6965447 19082476

2 Thread 625051 981317 1418046 1757316 3813474 10022249
Microthread 555864 896421 1301346 1642382 3574871 9911399
Sequential 1649136 2403866 3088686 4906667 9723408 22093569

3 Thread 1256806 2160935 2459137 3566299 6104928 11294064
Microthread 1260156 2052497 2354820 3474618 6012278 11053363
Sequential 2078128 3127831 5424324 5388741 12588846 24287117

4 Thread 1251415 2169715 3160214 3586279 5453281 9996009
Microthread 1226353 2039686 3285314 3440695 5390922 10207619
Sequential 2222092 4221255 5649386 8067373 12939023 23445026

5 Thread 2113062 4036456 5031962 6017084 9478750 13514314
Microthread 2027396 3668457 4895662 5857628 8953232 13447734

, Sequential 2092445 3532993 5550338 7806060 13907603 26016431
6 Thread 2039055 4036238 4515347 6004118 9624268 15930748

Microthread 2167988 3890213 4694520 5919338 10253676 14643373
.-- ...

2000 3000
60973772 116750103
31209276 60277176
31131740 59979838
52185938 97832498
24240601 41185120
23230891 41094742
62390064 102100480
21978173 31463286
21811502 31262556
57163054 90122919
23912694 32290905
24549103 32155788
55474547 89311795
22749017 32905282
23436801 29568532

- - --

4000
196545184
100516366
100807104
159636227
66953905
65225880
153532173
48043550
49494975
133755173
41120167
39843737
122732678
39662904
34890424

-

00
o
C'I

Table 23: Running Time Of Recursive Version For 3D With 12 Vertices
Mult' 4u.u,vln ax

Size Of Set
Part Time 25 50 100 200 500 1000

Se 2230274 2837968 3951825 5497084 12868619 31860599
2 Thd 1494974 1821453 2681349 3603937 7497893 18112834

Mic 1322588 1663876 2522490 3401606 7217238 17623925
Se 2879735 3516638 5390896 8102545 17059070 35444910

3 Thd 2365613 2922105 4421350 6242234 11234806 19117964
Mic 2144717 2531592 4018140 5765831 10853025 18234510
Se 3304689 5000448 7043008 10466587 19803319 41318174

4 Thd 2261120 3602718 5125209 6642256 10962011 19555123
Mic 2146794 3187145 4555571 6019811 10390158 17727574
Se 3689174 5184579 7219759 11424423 23687109 41849833

5 Thd 3727365 4912099 6918398 10713618 16488925 24729878
Mic 3107662 4494727 6092362 9487920 15729572 23706920
Se 3830610 5453476 8692048 11954175 24687434 44105853

6 Thd 3095672 4930355 7932046 11083089 19459897 28135740
Mic 3222731 4907094 7337385 10474654 18153202 25323758

1500
54763524
29192735
28590517
57230207
27417510
27136816
62387147
25285284
23485229
60230266
31029290
30029516
63431709
34541676
32589889

2000
86671992
46157369
45439081
80008248
37305975
36825423
86665659
32447824
30574548
86049520
38646778
37836727
85573980

38414012

O'l
o
c-:I

Tahlc 2t1: R Time Of Stack Version For 3D With 12 Vertices Mult"
Size Of Set

IJari Time 25 50 100 200 500 1000
Sequential 2204041 2741851 3735085 56011642 14234881 29213943

2 Thread 1251693 1762498 2270701 3389339 8126989 15815902
Microthread 1321214 1862647 2470408 3596146 8299166 16356070
Sequential 2779650 3317128 4701923 818988 16567745 36879165

3 Thread 2146009 2708450 3730842 5540172 9704841 17306836
Microthread 2102714 2724695 3893413 5709344 9570865 18301103
Sequential . 3136157 4711118 6619404 9971261 21130785 41385047

4 Thread 1921481 2874589 4173276 5723226 10624790 17295682
Microthread 2082639 3027677 4248592 5923726 10945494 17238292
Sequential 3704253 5274559 7787765 10502310 22837574 40605383

5 Thread 2807329 4203521 5814783 8122623 15398649 22318513
Microthread 3138806 4171137 5730686 8521258 15647516 22781468
Sequential 3866709 5610750 8577267 13233042 26211257 45865123

6 Thread 3127962 4966923 6609025 9697545 16379433 24727389
Microthread 3110675 4576035 6654482 9505082 16495974 24717599

2000 3000
8366037 151141884
43928584 77795509
58312752 78835444
78073921 138545877
32131949 53602113
32411269 54203214
88176575 144502151
31561535 44645276
31965270 46238221
83235725 138417672
37684960 52448457
38212674 49069180
90951005 144167198
36506680 48382486
35483472 47188209

4000
244313804
124963041
125766382
208982002
77533099
78167892
221044594
63125342
63469361

o
~

C'l

Table 25: Running Time Of Recursion Version For 4D With 4 Vertices Mul-
~imax

Size Of Set
Part Time 25 50 100 200 500 1000

Sequential 1158206 1966674 2741508 3985138 8326177 22027647
2 Thread 802472 1357565 1797885 2424096 4881826 11976947

Microthread 776741 1342427 1872418 2480479 4800511 12107501
Sequential 1805074 2629180 3829272 6605513 13267715 24262032

3 Thread 1371249 2051285 2761506 4162198 7544741 12002554
Microthread 1318712 2053119 2809943 4112512 7779136 12251590
Sequential 2481469 3580083 4766951 7212221 13697578 24612912

4 Thread 1497734 2527076 3353795 4347110 6382623 10445176
Microthread 1450719 2626278 3378771 4357245 6467682 10134720
Sequential 2713999 4097572 5777287 8414176 14974888 26163343

5 Thread 2145057 3115028 4877886 6924146 10690652 14493183
Microthread 2092092 2994206 4596052 6707321 10278986 14244952
Sequential 2294691 4018381 6447497 9143431 17483216 27693143

6 Thread 2477229 4013943 5747545 7783671 12965054 16899753
Microthread 2193537 3906841 5760220 7770783 13206322 16049395
~-- --- ~- -- - -- ---

2000 3000
68450236 140037467
36028564 69232122
36373235 68679960
66073331 118906314
31611004 52193217
31275451 51906021
65320061 109822524
21879559 32619503
21448268 33348190
60572885 103505265
25651936 39688430
25618457 39013947
73955452 99453434
29431648 38116715
27362659 34268775

- '---- ---

4000
229948679
116352606 I

116086347
191218448
75663140
75915160
169744488
48976054
48322766
152359908
47026264
45618124
144488390
45373326
39929238

- -~- -

"""" """" C'l

Table 26: R Time Of Stack Version For 4D With 4 Vertices Mult'
Size Of Set

Part Time 25 50 100 200 500 1000
Sequential 1138077 1697442 2617576 4425604 9058828 22288278

2 Thread 825432 1352566 1872348 2899550 5176467 11369985
Microthread 733512 1253308 1747722 2692085 5117828 11484210
Sequential 1814229 2774631 4511882 6813202 12002137 24901228

3 Thread 1446208 2210376 3412172 4268580 6937759 12194278
Microthread 1343525 1997912 3120188 3916779 6713808 12238967
Sequential 2072888 2966513 4681063 7512854 14616840 24109518

4 Thread 1402305 2466578 3596980 4786488 7404375 9976870
Microthread 1295292 2292970 3139602 4570776 7085635 9616745
Sequential 2521494 3961067 5819348 9343878 17023370 25459597

5 Thread 2040500 3582381 4862166 6523997 10679989 13497818
Microthread 1910114 3127204 4866249 6091358 9882265 12422160
Sequential 2252262 4321293 8422066 9016757 17771167 29679813

6 Thread 2751466 4439935 6156647 7083331 12014048 17260445
Microthread 2325774 3818927 5673450 7613544 9920228 16037868

-- - - '----- ----

2000 3000
70210909 136039653
37317550 69857589
37384943 69952883
64235226 117365598
31185031 46086170
29888780 45526258
63150015 109422245
21406417 33650175
20559884 33216084
56521139 102935522
26173280 39980457
23310568 37894962
63770801 99576673
28858599 34324986
27182858 30506228
~

4000
223048907
112596087
112741702
179434591
69172729
68942788
169201164
49509870
49027371
149439460
45529606
44483526
144591169
42825180
42110908

C"I
,...-l

C"I

Table 27: Running Time Of Recursion Version For 4D With 6 Vertices Mul-
~.imR.Y

Size Of Set
Part Time 25 50 100 200 500

Sequential 1415454 2256424 3144069 4473580 11097172
2 Thread 973649 1557434 2007314 2923587 7516094 I

Microthread 966602 1555640 2009687 2941250 7652470
Sequential 2177069 3840606 4717484 6378258 14027001

3 Thread 1649357 2954981 3561955 4598603 8297328
Microthread 1651806 2862417 3831109 4170080 80166570
Sequential 2151635 3950716 6350195 7634326 15262782

4 Thread 1622152 2765458 4019103 5390021 9418362
Microthread 1605438 2879478 3872044 5276979 9019382
Sequential 3185643 5701038 7681109 10242403 19516214

5 Thread 2785837 4557850 6164982 8647973 11383711
Microthread 2539810 4206738 5762590 7696241 13002992
Sequential 2994899 5527919 81120022 12216067 22663236

6 Thread 2656984 5359347 9141272 8226553 14939240
Microthread 2711542 4860165 6786919 9210576 14843606

M
~

C'l

Table 28: Running Time Of Stack Version For 4D With 6 Vertices (Multi­
max)

Size Of Set
Part Time 25 50 100 200 500 1000

Sequential 1483262 2052189 2832361 4257537 12001020 27840025
2 Thread 930070 1306623 1756920 2382976 7324872 14779193

Microthread 945196 1299912 1738383 2449510 7401634 14843552
Sequential 1964238 3127499 5083690 6037713 14415293 28364695

3 Thread 1541639 2370795 3532133 4098230 8312304 13769341
Microthread 1512782 2311715 3430170 3949422 8256607 13489688
Sequential 2822031 4772036 6550691 7837972 15723008 33434190

4 Thread 1612849 2591325 3989683 4514043 8017037 13119550
Microthread 1652581 2586407 3796719 4658620 8220714 13049250
Sequential 2829477 4815503 6611360 9390307 18812688 34078983

5 Thread 2271872 4346821 5788596 7540462 12152854 18379908
Microthread 2258483 4130430 5529576 7724367 10741914 16391612
Sequential 2976810 4515871 7558337 11817052 22267167 37359059

6 Thread 2615702 4297267 6347670 7895590 13399292 18021789
Microthread 2394701 4191436 6361005 7200881 13339700 17853546

-~.~-~.--- -

2000 3000
76940957 146168404
38675072 76259056
38934447 74717331
72529471 136880584
30026110 53372827
30636134 52830140
73621468 122705343
24065039 36314714
24173440 37309307
71784306 120775183
27418719 42151713
28562629 41638107
74153346 118722189
29828200 38930694
27780024 39339894

4000
247081506
125303875
125549171
205456060
78535576
78582997
195679459
56799570
57876617
178484126
60889963
59436165
170168512
48354522
49408206

~ ,....,
C'l

bl R ------ -- - ----------0

Part Time
Sequential

2 Version 1
Version 2
Sequential

3 Version 1
Version 2
Sequential

4 Version 1
Version 2
Sequential

5 Version 1
Version 2
Sequential

6 Version 1
Version 2

Time Of Stack For 2D With 26 Vertices Usine: T -- - J,- - --

Size Of Set
50 100 200 500 1000 2000

1023744 1326912 2149824 5820992 16314944 53836672
569600 751040 1217536 3219264 8824128 27911808
552000 736512 1201472 3201216 8804992 27886464
1203008 1474304 2278464 5516160 13938352 41854656
724032 878592 1315200 2624960 5733376 16046016
697792 840640 1228672 2502720 5560832 15361536
1360640 1565312 2493184 5185792 12353920 34703808
635712 754432 1144448 2073024 4473984 11078400
628608 727808 1156672 2015360 4294016 10588864
1594432 1951872 2733824 5385792 11798848 31590592
815872 1025024 1335040 2261184 4172608 9148864
794944 998528 1340736 2159488 3949440 8565504

1758912 2105024 3091520 5789120 11576064 28451136
805504 935168 1337792 2135552 3734208 8011264
812160 997504 1327104 2073728 3441408 7181056

3000
110340480
55785088
55760832
82758848
30732288
29353280
67940800
20309212
19113600
59183872
16036928
14710272
53320896
13545664
11921152

4000
188417792
94943104
94915008
137646976
50425408
47952384
110584124
32234560
29723456
95910976
25216256
22499008
84442880
20076480
17460608

11?
~

C'l

hI R Time Of Stack For 2D With 16 Vertices Usim: T ------ --- --~-------o --- - - -- - - - - - - - - -- - --- -- -- --- ._- - -----0 - -- -

Size Of Set
Part Time 25 50 100 200 500 1000

Sequential 530368 636608 922432 1672192 5219456 15275520
2 Version 1 304960 390912 568064 976512 2932224 8032834

Version 2 295168 377408 551296 963072 2915584 8014208
Sequential 642816 746240 1009664 1707968 4649088 12603392

3 Version 1 425664 474688 620992 1000960 2222144 5510080
Version 2 376128 433920 569792 872064 2057920 5242944
Sequential 750336 901696 1269376 1972352 4659520 11373376

4 Version 1 367616 444736 604544 851136 1826432 3958976
Version 2 343424 400832 550936 830720 1757888 3792064
Sequential 822784 1018304 1306048 1955328 4654272 10855744

5 Version 1 473024 546944 714112 998272 1960192 3827904
Version 2 418752 534016 650624 845248 1757760 3547072
Sequential 938304 1081152 1500608 2162688 4638784 9918720

6 Version 1 486144 546560 705920 1037824 1775872 3321984
Version 2 430016 496640 665792 914688 1658048 2951808

2000 3000
51156864 107220992
26113152 54241472
26092288 54217984
38899008 80630592
14948608 30203840
14151104 28757184
32809856 65035840
10184896 19205440
9730432 17825152
28995648 57138240
8761344 15502848
7691264 13822592

26757312 51416768
7201600 12576000
6369024 11107712

4000
184807232
92326400
92300096
134504128
49794432
47204544
106478976
30339584
28457536
93126528
24351232
21229056
83520576
19990272
17152320

<0
~

C"I

Table 31: R -

Part Time
Sequential

2 Version 1
Version 2
Sequential

3 Version 1
Version 2
Sequential

4 Version 1
Version 2
Sequential

5 Version 1
Version 2
Sequential

6 Version 1
Version 2

Time Of Stack For 3D With 6 Vertices Using Transputer
Size Of Set !

25 50 100 200
1613888 2518720 4328000 7016704 I

887680 1490496 2342848 4148544 I

876160 1473920 2318016 4118016
2118656 3753984 5316224 8355520 I

1365952 2313344 3315584 5001344
1099072 1956480 2525248 3624576 I

2801024 5355328 8620032 16652480
1204992 2271040 3594496 5754752
1251840 2190080 3635456 5475136
2689472 5117632 9590400 18109696
1352000 2704128 5608320 6496896
1238976 2294336 3270528 5327488
3044608 5767680 11829888 19591680
1607744 2872064 4289280 6328704
1406848 1976192 3920896 5390208

t­
.--;
C'l

Table 32: R

Part Time
Sequential

2 Version 1
Version 2
Sequential

3 Version 1
Version 2
Sequential

4 Version 1
Version 2
Sequential

5 Version 1
Version 2
Sequential

6 Version 1
Version 2

Time Of Stack For 3D With 12 Vertices Using: Transputer
Size Of Set

25 50 100 200
2707840 3503232 4792960 7417216
1405120 2054848 2584704 3931520
1395584 2038912 2561152 3896512
3626176 4275904 6152640 11295680
12238592 2921280 3739584 5685376
2113024 2379008 3346304 5478080
4134080 5941632 8870336 15343680
1801408 2654592 3607168 5258624
1854912 2526784 3475392 4946240
4945856 7091968 11083964 18197056
2257536 3128192 4706880 6652160
2485568 3754688 5240256 6336448
4924864 6885056 12945408 25192704
2480960 3320128 4620864 7003008
2097856 2915008 4395648 6429568

00
.-4
C'l

Table 33: R --------0

Part Time
Sequential

2 Version 1
Version 2
Sequential

3 Version 1
Version 2
Sequential

4 Version 1
Version 2

I
Sequential

5 Version 1
Version 2
Sequential

6 Version 1
Version 2

Time Of Stack For 4D With 6 Vertices Using Transputer
Size Of Set

25 50 100 200
1837056 2602432 3740224 5868160
1097088 1528064 2167360 3173312
1086272 1512960 2147264 3144384
2411904 4051264 6427584 7928320
1468352 2325504 3569792 4021888
1256960 2031168 3090496 3785088
3520768 6054336 8215808 10488384
1523264 2288000 3387648 4261504
1429248 2363200 3132288 3833792
3485632 6222080 8864256 13702720
1988736 3469376 4748096 6113152
1786752 2794560 3770176 4352064
3565056 5774528 10247040 17050240
1734720 2946624 4520576 5384192
1341440 2407232 3800000 5399488

0'; -C'l

Table 34: Running Time Of Recursion For 2D With 26 Vertices Using Trans­
£u t

Size Of Set
Part Time 50 100 200 500 1000 2000

Sequential 1086912 1405568 2441024 6365888 16630848 53746624
2 Version 1 624832 829504 1425664 3478720 8802688 27438976

Version 2 604096 807168 1394752 3448768 8746816 27392896
Sequential 1141184 1436928 2235456 5372736 13847936 41110336

3 Version 1 693248 829056 1251840 2575936 5879168 15846656
Version 2 656448 819136 1204608 2456704 5587392 15012032
Sequential 1315264 1611072 2363584 5141504 11864320 33711232

4 Version 1 692416 834432 1251008 2184064 4210304 10780416
Version 2 592320 708800 1029824 1953280 3937024 10149184
Sequential 1467840 756544 2473344 5016128 11137344 30450496

5 Version 1 804160 1014016 1314624 2225856 4019712 8996928
Version 2 713152 865344 1181568 2011776 3535424 7932736
Sequential 1672640 2037504 2751424 5279616 11241024 27797888

6 Version 1 778432 904704 1256896 2155904 3856512 7952064
Version 2 737920 879296 1153024 1964800 3533760 6902528

3000
109602624
55138496
54911104
81103680
30328192
28777792
65517888
19281280
18082432
57514880
15780416
13983744
51681280
13371968
11560192

4000
186876416
93090304
92911936
135746432
49576128
47001728
108934336
31350144
28910528
94030656
24513600
21673728
82819712
19856448
16994176

o
C"l
C"l

Table 35: Running Time Of Recursion For 2D With 16 Vertices Using Trans­
pu t

Size Of Set
Part Time 25 50 100 200 500 1000

Sequential 524672 680960 1000192 1917888 5597696 15944512
2 Version 1 312448 421504 615680 1131200 3096128 8390400

Version 2 284224 390464 595904 1101952 3079168 8317440
Sequential 578752 721984 995264 1619392 4495680 12371968

3 Version 1 391104 433792 591680 917504 2133504 5212480
Version 2 361920 447104 609408 853952 2052928 5064320
Sequential 670784 833856 1093376 1780416 4323136 11003648

4 Version 1 369152 468032 607936 930688 1836672 3942976
Version 2 321280 399360 506240 798144 1628800 3562368
Sequential 775808 915840 1184256 1870720 4454144 10226496

5 Version 1 450816 550976 715328 982592 1843968 3421824
Version 2 401728 461120 603584 835072 1672512 3117120
Sequential 862784 1050880 1394496 2105664 4529216 9566976

6 Version 1 439872 513216 683392 969408 1719872 3103360
Version 2 394496 459584 625920 916800 1618816 2728832

2000 3000
50916928 107224896
26081856 54026432
25979584 53880384
38701312 79100736
15108864 29689984
14374208 28314496
32586048 64841600
9965440 18709632
9359488 18129216
28328320 55726720
8363648 14984768
7419456 13268608

26142976 51012736
7178816 12498496
6228288 10932800

4000
183449024
91068608
90893632 !

134215424
49289344
46901952
105794752
29949312
28799808
92217344
23963392
21041920
82154368
19456448
16627200

.......
C'I
C'I

i

I

Table 36: Running Time Of Recursion For 3D With 6 Vertices Using Trans-
puter

Size Of Set I

Part Time 25 50 100 200
I

Sequential 1555456 2280896 3749312 5983808
2 Version 1 902464 1319104 2066560 3390400 I

Version 2 892544 1302784 2042432 3358720
Sequential 2096320 3490944 5038720 7524544 I

3 Version 1 1420352 1845952 2823744 4061376 I

Version 2 1166464 1890560 2585536 3609728
Sequential 2659008 4895104 7717056 12508160 I

4 Version 1 1264512 2113216 3134912 4577472
Version 2 1387264 2125056 3167488 4840512
Sequential 2989824 5634880 8094208 13096640

5 Version 1 1472832 2787136 4387648 6222464
Version 2 1214592 2474112 3263872 5000640 I

Sequential 2704320 5427840 9974400
6 Version 1 1644928 2295936 3680704

,

Version 2 1132288 2059072 3854016

~
~
~

Table 37: Running Time Of Recursion For 3D With 12 Vertices Using Trans­
pu t

Size Of Set
Part Time 25 50 100 200

Sequential 2584512 3331840 4770560 6927104
2 Version 1 1380736 1761216 2694848 4052160

Version 2 1289536 1738688 2042432 3777024
Sequential 3185856 4122624 6402240 9962112

3 Version 1 1982720 2553536 3836608 5496256
Version 2 1802816 2289664 3408768 4964736
Sequential 3666368 6046784 8745664 13497216

4 Version 1 1670016 2411200 3779456 5432576
Version 2 1623680 2515072 3610240 5287744
Sequential 4245184 5951104 8616064

5 Version 1 2361408 3002112 4565184
Version 2 2149312 2970432 4199808
Sequential 4228992 6436160 10964032

6 Version 1 2207168 2984640 4672576
Version 2 1858944 2541184 4352576

M
C'l
C'l

Table 38: R -----_. -- -- --

Part Time
Sequential

2 Version 1
Version 2
Sequential

3 Version 1
Version 2
Sequential

4 Version 1
Version 2
Sequential

5 Version 1
Version 2
Sequential

6 Version 1
Version 2

Time Of Stack For 3D With 6 Vertices Using Transputer
Size OJ Set

I

25 50 100 200
1803392 2635200 3635584 5958848 I
1036736 1526720 2012480 3430080 I

9244096 1503488 1990848 3405184
2402816 4357568 5746752 8037376 I

1363456 2272512 3075712 4326144 I

1255936 2337216 2594240 3977152
2533952 4580736 7030464 9396416
1355904 2256000 3030400 4413824 I

1155264 2044352 2966720 4221824
3601536 6072960 8953344 12732544
1745600 2949568 3596096 6116096
1668992 2911040 3581376 4460864 !

3312768 5658688 9662528 16160768
1611776 2849664 3935168 5529920
1255104 2088128 3363840 4992960

"<t'
C'l
C'l

Tah]!' :J!l: Pa.rtit.ioning Of 2-D - 26 wrticE's and 'I-D - 6 vertices using 1000
points Iktw('!'n 2 () Partitions
,--

2D
Lex)LlIldolll Sh!'])

--- --,--

2 :\ 'I 5 (; 2 :\ ,I !l G 2 3 ·1
-~- .- ---
;)00 :nl 250 200 IG7 500 :J28 250 207 172 1159 200 ll5
EiOO :\:n 250 200 1 G7 500 :J22 250 199 176 541 589 344

-
333 250 200 IG7 350 250 208 182 211 406

250 200 167 250 205 156 135
200 166 181 146

166 168
40

Lex Random Shell

2 :3 4 5 6 :2 3 4 5 6 2 3 4
I [lOO J:3·1 250 :WO lG7 GOO :328 250 207 172 604 337 220

GOO 33:3 250 200 167 500 322 250 199 176 396 473 384
333 250 200 167 350 250 208 182 190 338

250 200 167 250 205 156 58
200 166 181 146

166 168
- c_

N ('w _S]H'I\

5 (i 2 :J 4 G
79 57 8:3Ei (; II 'lEi9 :J57

211 143 IG5 296 376 370
365 259 93 100 151
243 330 65 76
102 128 46

83

New.Shell

5 6 2 3 4 5
152 99 987 948 892 851
333 278 13 47 95 120
268 227 5 11 23
219 246 2 4
28 135 2

15

- --- --
(; 2 :J

209 ;J~~ IGG
:312 GI2 222
224 G12
72

58
35

6 2 3
810 201 28
138 796 176
39 796
8
3
2

Bllckd
---- - -- -

·1 ;)

IGG 1(;(;

222 222
309 0
:30:3 :309

303

Bucket

1 5
0 0

204 121
0 83

796 0
796

()
-~

IGG
()

222
0

:309
30:3

G
0
28
176
0

398
:\98 I

U?
C'l
C'l

Appendix B

Graphs

226

6

5

4

2

O-r------~------~~------~----~

o 1000 2000

Number Of Points

3000 4000

Figure B.l: Recursive Version 2D 3 Vertices Using Threads

Q.
~

6

5

4

1l 3
~

(/)

2

O~------~--------r-------~----~

o 1000 2000

Number Of Points

3000 4000

Figure B.2: Recursive Version 2D 4 Vertices l:sing Threads

6

5

4

2

O~-------r-------r------~------~

o 1000 2000

Number Of Points

3000 4000

key

-...."""'"
---~ ~.....,.

-it- !5pn>a
..••• !5pn>a

-&-"""'"

Figure B.3: Recursive Version 2D 6 Vertices Using Threads

a.
~

]
~

(f)

6

5

4

3

2

o 1000 2000

Number OF Points

3000 4000

Figure B.4: Recursive Version 2D 16 Vertices Using Threads

228

0-
::J

6

5

4

al 3
8.

(/)

2

O~------~--------~------T-----~

o 1000 2000

Number Of Points

3000 4000

Figure B.5: Recursive Version 3D 3 Vertices Using Threads

0-
::J

6

5

4

al 3
8.
(/)

O~------,-------~------.------,

o 1000 2000

Number Of Points

3000 4000

key
-+- 2pn>cS

....... 3p«>cs
-e- 5pn>a

-it- 5.",,,,
-&- 5pn>a

Figure B.6: Recursive Version 3D 4 Vertices Using Threads

229

6

5

4

2

O-r------~------~r_------~----~

o 1000 2000

Number Of Points

3000 4000

Figure B.7: Recursive Version 3D 6 Vertices Using Threads

Q.
:::>

6

5

4

1l 3
~
(f)

2

04-------.-------.-------.------.
o 500 1000

Number Of Points

1500 2000

Figure B.8: Recursive Version 3D 12 Vertices Using Threads

230

6

5

4

2

O~------~--------r-------~----~

o 1000 2000

Number Of Points

3000 4000

Figure B.9: Recursive Version 4D 4 Vertices Using Threads

6

5

4

2

O~------~--------r-------~----~

o 1000 2000

Number Of Points

3000 4000

key

""-2pOCO
---- 3pnxs -er.....,.
-it-
-6-

Figure B.10: Recursive Version 2D 3 Vertices Using .vlicrothreads

231

6

5

4

2

O~------~------~--------~----~

o 1000 2000

Number Of Points

3000 4000

Figure B.ll: Recursive Version 2D 4 Vertices Using Microthreads

a.
~

6

5

4

] 3
~

(/)

2

04-------.------,r------.------,
o 1000 2000

Number Of Points

3000 4000

Figure B.12: Recursive Version 2D 6 Vertices Using Microthreads

232

6

5

4

3

2

o 1000 2000

Number Of Points

3000 4000

Figure B.13: Recursive Version 2D 16 Vertices Using l\Iicrothreads

a.
:::l

6

5

4

~ 3
~

(/)

2

O~------~--------r-------~------'
o 1000 2000

Number Of Points

3000 4000

Figure B.14: Recursive Version 2D 26 Vertices Using ~vIicrothreads

233

6

5

4

2

O-r-------r-------r-------r------~

o 1000 2000

Number Of Points

3000 4000

Figure B.15: Recursive Version 3D 3 Vertices Using Microthreads

a.
::J

6

5

4

"i 3
~
(/)

2

O~-------r-------r-------r-------,

o 1000 2000

Number Of Points

3000 4000

Figure B.16: Recursive Version 3D 4 Vertices Using Microthreads

23.J:

6

5

4

2

O~----------r---------~--------~

o 1000 2000 3000

Number Of Points

Figure B.17: Recursive Version 3D 6 Vertices Using Microthreads

o 1000 2000

Number Of Points

3000 4000

Figure B.IS: Recursive Version 4D 4 Vertices Using Microthreads

235

6

5

4

2

;
key

....... """'" -+- 3pocs

-6-_
~s,-s
~6prlx::a

O~-----'------.------.------r-----.

o 100 200 300 400 500

Number Of Points

Figure B.19: Recursive Version 4D 6 Vertices Using .\licrothreads

6

5

4

2

O~-------.-------'r-------'-------'

o 1000 2000

Number Of Points

3000 4000

Figure B.20: Stack Version 2D 3 Vertices Using Threads

236

6

5

4

2

O~-------r-------r-------r------~

o 1000 2000

Number Of Points

3000 4000

Figure B.2l: Stack Version 2D 4 Vertices Using Threads

Co
:J

6

5

4

"i 3
8.

(/)

2

O~------.-------.-------.-----~

o 1000 2000

Number Of Points

3000 4000

key

Figure B.22: Stack Version 2D 6 Vertices using Threads

237

6

5

4

2

O~-------.-------r-------.------~

o 1000 2000

Number Of Points

3000 4000

Figure B.23: Stack Version 2D 16 Vertices Using Threads

6

5

4

2

O~------.-------.-------.-----~

o 1000 2000

Number Of Points

3000 4000

Figure B.24: Stack Version 3D 3 Vertices Using Threads

238

0..
:>

6

5

4

"i 3
8.
(/)

2

O~-------r-------r-------r------~

o 1000 2000

Number Of Points

3000 4000

Figure B.25: Stack Version 3D 4 Vertices Using Threads

0..
:>

6

5

4

"i 3
8.
(/)

2

o~------,-------~------.------,

o 1000 2000

Number Of Points

3000 4000

key

Figure B.26: Stack Version 3D 6 Vertices Lsing Threads

239

6

5

4

O~-------r-------r-------r------~

o 1000 2000

Number Of Points

3000 4000

Figure B.27: Stack Version 3D 12 Vertices l;sing Threads

a.
:::>

6

5

4

~ 3
~

(/)

2

O~------.-------~------.------,

o 1000 2000

Number Of Points

3000 4000

Figure B.28: Stack Version 4D 4 Vertices Using Threads

2.10

o 1000 2000

Number Of Points

3000 4000

Figure B.29: Stack Version 2D 26 Vertices Using Microthreads

6

5

4

2

o~------,-------.-------.------,

o 1000 2000

Number Of Points

3000 4000

key
~ 2p<OCO

-+- 3pna
-e-_
--"'- 5p<oa

~ 6prooa

Figure B.30: Stack Version 3D 6 Vertices using :'Iicrothreads

241

6

5

4

O~-------r-------r-------r------~

o 1000 2000

Number Of Points

3000 4000

Figure B.31: Stack Version 4D 6 Vertices Using Microthreads

a.
:;)

6

5

4

-g 3
~

(/)

O~--~--~---r---r---r---r---.----'

20 30 40 50 60 70 80 90 100

Number Of Points

Figure B.32: Recursion Version 1 3D 6 Vertices Using Transputer

2-!2

6

5

4

2 ;
key

....... 2IWo<a

-+--
-et-_
-it- !on>ca
~ !on>ca

20 30 40 50 60 70 80 90 100

Number Of Points

Figure B.33: Recursion Version 1 3D 12 Vertices Using Transputer

a.
:>

6

5

4

1l 3
~

C/l

2

o~------~------~------.------,

o 1000 2000

Number Of Points

3000 4000

Figure B.34: Stack Version 4D 6 Vertices Csing :'Iicrothreads

2-13

6

5

4

2

O-r---.---.---.---r---.---.---.--~

20 30 40 50 60 70 80 90 100

Number Of Points

Figure B.35: Recursion Version 1 3D 6 Vertices Using Transputer

a.
::>

6

5

4

~ 3
~

(/)

2

20 30 40 50 60 70

Number Of Points

;
key

........ ,...,.,.
""-3pRa
-a- 4pnxS

..... """""
~

80 90 100

Figure B.36: Recursion Version 1 3D 12 Vertices Using Transputer

2H

6

5

4

O~----.--------r--------r-------~

50 100 150 200

Number Of Points

Figure B.37: Stack Version 1 3D 6 Vertices C sing Transputer

a.
::l

6

5

4

"i 3
!
(f)

2

O~----r-------.--------r-------'

50 100 150 200

Number Of Points

Figure B.38: Stack Version 1 3D 12 Vertices C sing Transputer

2-15

6

5

4

2 :
20 30 40 50 60 70 80 90 100

Number Of Points

Figure B.39: Recursion Version 2 3D 6 Vertices Using Transputer

a.
::J

6

5

4

-g 3
~

(/)

2
~ ~~==========~~

" i

20 30 40 50 60 70 80 90 100

Number Of Points

Figure B.4D: Recursion Version 2 3D 12 Vertices Using Transputer

246

Appendix C

Some Program Listings

247

C.1 Definitions for the convex hull program
•••••••••••••.................•..•.........••••.....................
i\\"'X' I,of,_ II
iJ,·finitioll' for tltr' conw'x 111111 program

.....••..•.•........•••••.............................•..•..•.•.•.•.
tfindurl" <Htriio,II>
tfillciuri,' <lIlat.II,II>
tfri"IiIH' MAXI'OINTS:W
Hd ... fin<, MAXN :10
HddilH' TOt. 1,OE-()(;
Hd .. lilll' THill': 1
Hd...tinl' FALSE 0
typ,·d,·f doubl .. V,·ct.or[MAXN];
typ,·d,·f doubll' Mat.rix[!\1AXN][MAXNj;
typ,·d .. f sl.rud C,-II! {

\',-ctor coord;
struet. (',.111 'prev, *Ill'xt;
} Point, 'POINTS;

tYi',·def stnlel CI'1I2 {
strllct Cpll! • Edp;,-;
Vector norm;
struel (\,112 'prey, *next ;
} Edp;t' , 'EIXiES;

C.l.1 Routines for manipulating Points

MakeEmpty..Plist(P)
POINTS *P;
{

'I' = NULL;
}

int IsEmpty..Plist(P)
POINTS P;
{

}

if (P == NULL) return TRUE;
else return FALSE;

POINTS Insert.Point(P, n, v)
POINTS Pi
Vector v;

int n;
{

248

1'011\TS T;
Point junk;
int i;
'1' = &junk;
T = (POINTS) malloc(sizt'Of('T));
if ('1' == I'l'LL) PrintErr("lnserLPoint", n ... No HOOlll •• "');

for(i=I; ii= n; i++) T->coord[i] = v[i];
if (lsEmptyJ>list(P) == T\WE)

T->prev = T;
T->next = '1';

else

};

T->prev = 1';
'1'->next = I'-i,next;
'1'->next-Lprev = '1';
P->next = '1';

return '1';

POINTS Delete..Point(P)
POINTS P;
{

POINTS Q;
if (P->prev != P)
{

}

P->prev->next = P->next;
P->next->prev = P->prev;
Q = P->next;
free(P);
return Q;

else
{

};

free(P);
MakeEmpty ..Plist(&Q);
return Q;

POINTS Delete..Plist(P)
POINTS P;
{

whiIe(IsEmpty..PIist(P) == FALSE) P = Delete...Point(P);
return P;

249

POINTS G~lN~xl Point(P)
I'OII\TS I';
(

if (I,ElIlpty J'li,t(1') == TIt\JI~) rpturn 1';
f·I ... rdurli I' 'lIf'xl;

POINTS GetPrev.Point(P)
POINTS 1';
{
if (lsEIll ply J'lisl(1') == TH Ii E) rpturn 1';
,,1,,· fI'lufIl 1'- > !>fI'V;

}
Read.Point(P, n, v)

POINTS 1';
V"clor v;
inl. n;

{
int i;
if (lsEmpty J'list(1') == FALSE)

for(i=l; i<=llj i++}
v[iJ = 1'->coord[iJ;

Write.Point(P, n, v)
POINTS 1';
Vector Vj
int n;

int i;
if (IsEmpty Jllist(P) == FALSE)
{
for(i=lj i<=nj i++)

P->coord[i] = v[i];

250

int Compare.Points(P, Q, n)
Vector 1', Qj
int n;

int C, i;
C = 0;
for(i=l; i<=n; i++)

if (fabs(l'[iJ-Q[iJ) > TOL) c = c+l;
if (c != 0) return FALSE;

else return TRUE;

int IsMember.Plist(P, n, v)
POINTS P;
Vector v;
int n;
{

POINTS Q;
int i;
Vector Wj
illt Match;
if (IsEmptyJ'list(P) == TRUE)

Match = FALSE;
else

Q = P;
dol

Read_Point(Q, n, W);
Match = TRUE;
for(i=lj i<=n; i++)

if «Match == TRUE) && (fabs(v[i]- w[iJ) < TOL))
Match = TRUE;

}

else
Match = FALSE;

Q = GetNext.Point(Q);
} while ((P != Q) && (Match == FALSE»;

} j

return Match;

251

illt CUlllpltrt· PliHt(P, Q, n)
I'OIt'TS 1', (1,
lilt II,

l'OIt'TS T;
Vf~lor v;
illt '\L~I. .. h,
I' = 1';
:\Iatcb = TIll! E;
du {

It"iuU'uint(T, II, v);
if ((Malch == TilliE) &X: (ls:\lplldwr I'li,t(Q, II, v) == TIlI'E))

Malch = TIUlE;
else

~I;",ch = FALSE;
T = (;"tN,'xU'uinl('I');

} \Vhil,' (('I' '-= 1') ,'\''\' (Match == THlIE));
rl'l,1I1'11 Malch;

POINTS Copy_Plist(P, 11)
I'OINTS 1';
int n;

POINTS '1', Q;
V,'cl.or v;
int i;
1\lakeEmpty j'list.(,"'l');
if (IsEmptyJ'list(l') == FALSE)
{

};

Q = 1';
dot

HeadJ>oint(Q, n, v);
T = InserLPoint(T, n, v);
Q = GetNexLPoint(Q)j

}while(Q != 1');

return T;

252

C.1.2 Routines for manipulating Edge/Face lists

MakeEmpty Elist(P)
EDGES "I';
{

"I' = I\I'LL;

int IsEmpty...Elist(P)
J<:DGES 1';
{

if (I' == NULL) return TIWE;
else return FALSE;

EDGES Insert...Edge(P. n, e, norm)
J<:DGES 1';
POINTS e;
Vector norm;
int n;

EDGES Tj
Edge junk;
int i;
T = &junk;
T = (EDGES) malloc(sizeof(*T));
if (T == NULL) PrintErr("lnsert...Edge", ,,*** No Room *** ")j
T->Edge = ej

}

for(i=l; i<=nj i++)
T->norm[i] = norm[i]j

if (lsEmpty...Elist(P) == TRUE)
{

}

T->prev = Tj
T->next = Tj

else
{

}j

T->prev = Pj
T->next = P->nextj
T->next->prev = Tj
P->next = Tj

return Tj

253

EJ)(;Jo;S J) .. I.·t.·t;rtgr(P)
I<I>CES I',
{

«;J)CES 1';
I'OIr\TS tl. H;
if (I' 'prr'\' 1- 1')
{

1">prf'v",",'Xt. = I">n<'xt;
I' >Il"xl- ~'prr'\' == I' >prr·v;

T ::" I' ·",·x!.;
H == 1'""-' I·;d~ .. ;
H == I>,,),·l .. I'li.,1(Il);
fn·t·(I');
\'I'lurnT;

ds ..

H = 1'-> Etlgt'j
I{ = Ddt'tl'J'list(R);
fn't'(I'); Makt'Empty ,Elis!.(So,T);
r .. turn '1';

I;

EDGES Delete--.Elist(E)
EDCES E; {

whilt'(IsEmpt,yJ<:list,(E) == FALSE) E = Delt'teJ<:dge(E);
rt'!.urn E;

EDGES GetNext--.Edge(P)
EDGES 1';
{

if (lsEmpty..Elist(P) == TRUE) return P;
else [('turn l'->next;

EDGES GetPrev --.Edge(P)
EDGES P;
{

if (lsEmpty..Elist(P) == TRUE) return P;
else return P->prev;

254

Read--.Edge(P, n, e, norm)
EDGES 1';
POlr\TS "e;

Vector norm;
int n;

int i;
if (lsEmpty1:lisl(l') == FALSE)
{

"e = I'->Edge;
for(i=l; i<=n; i++)

norm[ij = I'->normlij;

else
I'rintErr("Head_Edg(''','' *** No Cells to read from *** ");

Write--.Edge(P, n, e, norm)
EDGES 1';
POINTS e;
Vector norm;
int n;
{

int i;
if (IsEmpty..Elist(P) == FALSE)
{

P->Edge = e;
for(i=l; i<=n; i++)

l'->norm[ij = norm[i];

else
PrintErr("Write-Edge", " *** invalid write *** ");

int IsMember--.EIist(E, n, P)
EDGES *E;
POINTS P;
int n;
{

EDGES Q;
POINTS W;
Vector v;
int i;
int Match;
if (IsEmpty..Elist(*E) == TRUE)

Match = FALSE;

255

,..1 ...

};

(l E;
do{

H,·,,, I I';d","((l, II, A-W, v);

if ('''IIII'M'' I'li,l(W, 1', n) == THI E)
~I.~t,h "" TIWE;

,..1 .. •
~Ltt.('h = FALSE;

q = <:,·tN"xL!·;d",,·((l);
} whil,' ((Q!- -E) A'A- (Mi\l.rh ==== FALSE));
"I-: = C,·tl'n'\' Ed",..(tlJ;

rt'\.lIrtl Mi\trh;

C.1.3 Points Sorting

QuicLSort(f, I, 11)
POINTS f, I;
int n:

POINTS i, j;
int flag, swap, rj
V<'etor vO, vI, v2;
if «f != Gt"tNextl'oint(l)) &,\~ (I != GetPred'oint(f)))
{

i = f; j = I;
Rei\lLl'oint(f. n, vOl:
j = GetNexU'oint(j);
do {

do {
i = GetNext.Yoint(i); Read.Yoint(i, n, VI);
r = 0;
do{

r = r + 1;
if (v1[rJ == vOIr]) swap = TRUE;
else

if (vl[r] > vOIr])
{ swap = TRUE;

r = n;

}
else swap = FALSEj

}while«swap == TRUE) && (r < n));
if «i == GetNext...Point(j)) 1\ (i == GetNext...Point(I)))

256

flag = TlH' E;
else

Hal!; == FALSE;
} while «sw<~p == FALSE) .v,f..: (Hal!; == FALSE));
do {

j = Getl'rt'"j'oint(j); j{<'alLl'oilll.(j, n, v'2);

r = 0;
dol

r = r + 1;
if ("2[r] == \'O[r]) swap = THlIE;
else

if (v2[r] < \'O[rl)
{ swap = TIWE;
r = n;

else swap = FALSE;
}while«swap == TRUE) &&. (r < n));
if «flag == TRUE) II (i == GetNextl'oint(j)) II U == f))

flag = TRUE;
else'

flag = FALSE;
} while «swap == FALSE) && (flag == FALSE));
if (flag == FALSE)
{

};

Write.Yoint(i, n, v2);
Write.Yoint(j, n, vi);

} while (flag == FALSE);
Write.Yoint(j, n, vOl;
Write.Yoint(f, n, v2);
Quick...8ort(f, GetPrev.Yoint(j), n);
Quick...8ort(GetNext.Yoint(j), I, n);
}

257

C.IA Generate Hull(S, 11, CH, FA)

I'
('''llIplllI-lll<" ("""\'f'X 111111 of ,,·t.'i l)fodIKill~ vertices in CI{, anri
F"n·t, ill FA.

POINTS S, .('II.
EI>(;ES 'FA;
illt. II;

[,OINTS AS, ONB;
POINTS junkl;
EI)(a·;s jUllk2;
V.·('t.or v;
int k, i, j;
if (lsElllptyJ'list(S) !- 'l'IWE)
{

if (S !"" (;pt.Nt'xU'oillt.(S))
{

/" mort' than 011<' point in S "/
S = Ht'moveJJuplicateJ'oints(S, n);

}
else
{

for(k=l; k<""n; k++) v[k] = 0.0;
S = InsertJ'oint(S, n, v);
QuicL"iort(CetNextJ'oint(S), Getl'revJ'oint(S), n);
S = Delete J'oint(S);
ONI3 = AffineJiull(S, n, &AS, ,\,k);
COll\'exHlllI(S, AS, n, k, CH, FA);

/* return single point as answer • /
MakeEmpty j>list(CH);
Read.Point(S, n, v);

}

·CH = InsertJ'oint(*CH, n, v)j
MakeEmptyJ'list(FA);

else
{

};

MakeEmpty.1'list(CH);
MakeEmpty..Elist(FA);

258

C.1.5 int CheclcHull(S, Faces, 11)

I'" check that all points are t'ndosed by fact" -
rails to detect open rt'!1;ions

/
~DG~S Faces;
POll'iTS S;
int n;

{
~DC~S R;
POINTS Q,~;
Vector norm, 1', ['0;

double t;
int i, test;
test = TRU~;
R = Faces;
do{

/* for each face' /
Read.Edge(R, n, &1-:, norm);
Read.Point(~, n,I'O);

/* check that all points in S produce negative results • /
Q = S;

};

dol
Read...Point(Q, n, 1');
t = 0.0;
for(i=I; I<=n; i++)

t = t + norm[i]*(P[i]-PO[i]);
if (t > TOL) test = FALSE;
Q = GetNext.1'oint(Q);

}while((Q != S) && (test == TRUE));
R = GetNexLEdge(R);

}while((R != Faces) && (test == TRUE));
return test;

259

C.l.6 POINTS Remove DuplicateJ>oints(S, n)

l'OIl'\1 S S,
illl II;

POINTS '1';
V,·<'I.or v;
M iLlu·EIIl ply J'lisl(I: .. T);
whil<-(IsEmptyJ'list.(S) == FALSE)
{

};

H'·!1..LPoint(S, II, v);
S = D,·I.·t .. J'oillt(S);
if (lsM'·lIlb .. rJ'list(T, II, v) == FALSE)

'I' = Ills .. rtJ'oinl('I'. n, v);

ff't.urll'1';

C.1.7 Generate.J3ounds(small, large, S, n)

POINTS S;
V<'ct.or sm!1.lI, larp;<';
int n;

POINTS H;
V ('d.or t(,1ll p;
int i;
if (lsEmptyJ'list(S) == TRUE)

I'rintErr("C(,ll('rate...Bounds", ,,**** Empty List ****");
else
{

}

RealLl'oint(S, n, small);
for(i=lj k=nj i++) Jarge[i] = small[iJ;
R = GetNext..Point(S)j
while(R != S)
{

};

Read..Point(R, n, temp):
for(i=I; i<=n; i++)
if (temp[iJ < small[i]) small[i] = temp[i];
else

if (temp[i] > large[i]) large[i] = temp[i]i
R = GetNext..Point(R);

260

C.1.8 Simple Matrix And Vector Manipulation

j* matrix limes a "eclor ll'm problem ~Iv~e *j
MaLVec(M, n, m, v, e)
~[atrix ~[;

V('clor v, ej
int 11, m:

illt i, j:
double r;

for(i=l; i<=II; i++)
{

};

r = 0.0;
for(j=l; j<=mj H+)

r = r + MlilUJ'vUJ;
eliJ = rj

Normalize(v, n)
Vector v;
iot II;

illt i;
double t;
t = 0.0;

1* normalisation of a vector v of size n * I
for(i=l; i <= n; i++)

t = t + v[i]"v[iJ;
t = sqrt(t);
if (fabs(t) > TOL)

for(i=l; k=n; i++) v[i] = v[i]/t;

261

n .. dllrr(M, n, p, ehs)
:.oliltnx :.01,
lilt D. p, rll:,\;

{
illl i, j, k;
dUII},I" c. St r; r (;i\"I'II' tri'UIRIlIMisat.ioll of an nxp matrix with rhs riRhl hanosides

.ton,d in ("011111111' p+ 1 ... p+rhs, trani!;lllaris(' M */

}

for(1 I; k"" p; i++)
for(j- 11; jr~i+l; j.)

{

} :

r = sqrt(MU][i)·MU][i) + MU-Illi)·l\lU·I][i));
if (fabs(r) > TOL)

{

};

if (fi\bs(MU-l][i)) < TOL)
{

}
t'lse

{

}

c = 0.0; s = 1.0;
r = 1\IU·I)[i);
MU-IJ[i] = MUJ[i];
MU][i] ,,; r;

c = MU·I)[iJ/r:
s = MU][i)/r;
1\IU·l][iJ = r:
MUJli] = 0.0;

for(k=i+l: k<=p+rhs: k++)
{

};

r = MU-IJ(k]*c + 1\1U][kJ*s;
MUJ[kJ = MUJ[k]*c - MU-l][kJ*s;
MU-l][k] = r;

262

SoIVl'(M, n, p, v, e)
~latrix ~L
Vector \", I';

int n, p;

{
doubll'r;
int i, j; r Hack subsitutioll of all nxp matrix with nxn uppf'r trii\II!!;lIlar

portion and rhs \' - result is in pxl vector ", pad·up for SlI1"titutioll '/

l'[p) = 1.0;
/* substitute * /

}

for(i=n; i>=I; i-)
{

};

r = v[iJ;
for(j=i+l; j<=p; i++)

r = r - M[iJU]*eUJ;
if (fabs(r) < TOL)

if (fabs(M[iJ[iJ) < TOL)
eli] = 1.0;

else

else
eli] = 0.0;

if(fabs(M[i][i]) < TOL)
{

e[iJ = 1.0;
for(j=i+l; j<=p; i++)

eUJ = 0.0;

else
e[iJ = (r) / M[iJ[iJ;

263

C.1.9 Rotate(S, AS, D, k, F, Dorm, J)

r
(;"',." i\ k dilllf"ll,iollal sub"'l of S as d"fi!wri by AS and a , .. t

F "f j i k I poi Ill' wilh oulward normal (norm) d,.finin)!. a j·f",e
of till" ("onVl'x 111111. A point .J and" new norm (norm O\'''rwritl('n)
ar,· ,j,·ll"flllin,·d such lhal when .J is add,.d to Fa j+1 f"'l" is
prtHllln·d. */
POINTS S, AS, F;
V"dor nor III , .J;
int n, k;
(

POINTS H, ASbar;
V"clor 1'0, 1', e, v, lllax.J, min.!, !H'wnorm;
!\Ialrix F,lM, B,,,,is, Trans;
doubl,' nvp, ('vp, lambda, mu;
dOllbl .. l1lilX, min, temp;
int i, j, Ill, sign, 1", t;
/" ("ompul.· t' in afi1nt'(S) orlhop;onal to F and norm */
/" make k·dinlt'nsional basis frolll AS ~ /
ASbM = Afi1nd-iull(AS, n, 8e,H, &j);

/" delete H * /
H = ASbar; j = 0;
H,'adJ'oint(H, n, 1'0);
H = Get,NextJ'oint.(H);
while(H != ASbar)

{

} ;

RpalLl'oint(H.. n, P);
j = j + 1;
for(i=l; k=n; i++)

{

};

Basis[illi] = P[i] . POri];
Trans [ilU] = Basis[iJli];

R = GetNext.Point(R);

/* represent F and norm with the basis * /

R = F; m=j;
ReadYoint(R, n, PO);
R = GetNext.Point(R);
while (R != F)

{
Read..Point(R, n, P);

264

} ;

j = j + I;
for(i~l; i<=n; i++)

Hasis[i]li] ~ P[i] - POri];
I{ = Gell'\t'xU'oint(R);

/" inserl normal" /

j = j + I;
{or(i=lj i<=nj i++)

Hasis[i][j] = norm[i];
Reduce(Basis, n, m, j·m);

/* make matrix F* which is (k·l)*k */

for(i=l; i<=nj i++)
{ v[i] = 0,0;
eli] = 0,0;
} ;

for(i=m+l; i<=jj i++)
{

};

for(t=lj t<=kj t++)
v[t] = Basis[tJ[i]j

Solve(Basis, k, k, v, e)j
for(t=lj t<=kj t++)

Fstar[i-m](t] = eft];

/" pick an e */

for(i=l; i<=n; i++)
{

};

v[i] = 0.0;
eli) = 0,0;

Reduce(Fstar, j-m, k, 0);
Solve(Fstar, j-m, k, e, v);

1* translate e back into n dimensions * /

MaLVec(Trans, n, k, v, e);
Normalize(e, n);

1* determine points in S with max and min of tangent to current face * /

265

If (I,ElIlplyJ'li,t(S) ~- TH.I'E)
{

I;

I'rintErr("Hut"t,·", "Empty Points li,t "l;
rptt1rll ;

1* lind first v"lid point· /

H S;
dn{

H,'"d I'oint(H, n, 1');
nvp = 0.0; ('Vi' = ILl);

for(i-I; i<=n; i++)
{

} ;

nvp = nv" + nOfm[ij*(P[ij-PO[ij);
('\'p = evp + e[ij*(P[i]PIl[ij);

H = CetNl'xtJ'oint(H);
}while((fnhs(nvp) < '1'01,) &,\- (H 1= S));
if (fnhs(nvp) :> '1'OL)

{

}
else

};

max = (-e"p)/nvp:
min = (-e\'p)/I1\'P;
for{i=l; i<=nj i++)

{

}j

min.l[i] = P[ij;
ma.x.J[i] = P[i];

I'rintErr("Rotate", "all points on existing face ");
return;

/* determine max and min from remaining points * /
whil,,(R != S)

{
ReadYoint(R, n, P);
nvp = O.Oj evp = 0.0;
for(i=l; i<=n; i++)

{
nvp = nvp + norm(i]*(P(i]-PO(iJ);
evp = evp + e(i]*(P[i]-PO[iJ);

};
if (fabs(nvp) > TOL)

266

} ;

} ;

temp = (.,,\.I')! nvp:
if (temp> max)

{
max = temp:
for(i=l: i<=n: i++) max.l[iJ = I'[i];

else
if (temp < min)

{
min = temp;
for(i=l; i<=n; i++) min.l[i] = P[i];

};

R = GetNext...Point(R);

/* compute new normal from max point * /
mu = sqrt(I/(I+max'max)); lambda = sqrt(l-mu*mu);
if (fabs((Iambda/mu)- max) > TOL) mu = - mu;
for(i= 1; i<=n; i++) .

{

};

newnorm[i] = lambda*norm[i] + mu*e[i];
J[i] = max.J[i];

N ormalize{ newnorm, n);
1* test new norm * /

sign = Check...Plane{S, n, newnorm, PO);
if (sign == 0)

{
/* choose other possible normal if necessary * /

mu = sqrt(l/(l+min*min))j lambda = sqrt(l-mu*mu);
if (fabs((lambda/mu)- min) > TOL) mu = - mu;
for(i=l; i<=nj i++)

{

}j

newnorm[i] = lambda*norm[i] + mu*e[i]j
J[i] = minJ[i];

Normalize(newnorm, n);
/* check this norm * /

sign = CheckYlane(S, n, newnorm, PO);
}j

/* check validity of norm * /
if (sign == 0)

{
PrintErr("Rotate", "No supporting plane found ");

267

rrtl1rn;

I;
/. urwnlat", Ilorrn corrrctiy • /

If I"~n > 0)
fodi -I; i< -n; itt)

nOfll1[il = .. n(~wll()nn[il;

f'I~I'

for(i-1; i<-n; itt)
normli] = nnwl1orlllli];

268

C.l.l0 InitiaLfacet(S, AS, n, k, F, norm)

/*
Given a k-dimensional subset of n-dimensional span' as
described by S using the basis AS find a supporting hyperplane
of the convex hull and comput<' it.s normal. * /
I'O(I'TS S, AS, "F;
Vector norm;
int n, k;
{

I'OII'TS Q, 1', Abar;
Vector v, vI, ,,0;
double x, r;
int i, j, size;

/* Pick an i so that not all points in S have same i co-ord * /
i = 0;
do{

i = i+l;
Q = S; Read..Point(Q, n, v); x = viii;
do{

Q = GetNext..Point(Q);
Read_l'oint(Q, n, v);

}while«Q != S) && (vii] == x));
} while «Q == S) && (i < n));

/* copy elements with i co-ord into Q * /
Ma.keEmpty"plist(&Q);
P = S;
do{

Read..Point(P, n, v);
if (v[i] == x) Q = Insert..Point(Q, n, v);
P = GetNext..Point(P);

}while (P != S);
Q = GetNext..Point(Q);

1* find concise representation for face Fusing Q * /
P = Affine.1Iull(Q, n, F, &size);
size = size + 1;

1* compute normal and project onto AFFINE(AS) * /
for(j=I; j<=n; it+)

{

};

norm[j] = 0.0;
vI[j] = 0.0;

vIii] = -1.0;
/* find orthonormal basis for AS * /

Abar = Affine.JIull(AS, n, &Q, &j);

269

Ie rOIl",trllct projrrtion • /

I' = Ahac;
H"ad ~I'oillt(1'. n, VOl;
I' = (;"l1\"xll'oilll(1');

dol
H .. adJ'oinl(1', n, v);

for(j-I: j- '~II; j++)
vUl ... vUI - \'%]:

1\ormali7.'·(V ,II);
r = (Ul;

for(j~I: j<=n; i++)
r = r + vlWvUI;

for(joel; j<=n: i++)
nOrillUI .,., norrnUI + r*vU]:

I' ... C,>t.Nl'xU'oint(I'):
}while(I' h Abar):

r dt>lt>rmine facd * I
while(size <= k-I)

{
i{otatt'(S, AS, n, k, GetNext.Point("F), norm, 'v);
"F = InserLl'oint(*F, n, v);
size = size + 1;

} :
'F = GetNexLl'oint(-F):

270

C.loll POINTS AflineJiull(S, n, A, k)

r
Computes the an orthonormal basis (ONB) of the n-dimensional point.'
in set S. ONB is return as the function result, and tl1t" associated
set of affinely independent points copied from S are placed in A.
k is the dimension of the space spanned ION H 1 = 1 A 1= k + 1. * /
POINTS S, * A:
int n, *k:
{

POINTS T, Q, ONS:
Vector PO, 1', v, x;
double r, c, s;
int i, j;

/* make a maximal set of affinely independent points * /
MakeEmpty'plist(A);
MakeEmpty .Plist(&ON S);
*k = 0;
Read...Point(S, n, PO):
Q = GetNext.Point(S):
while (Q != S)

{
Read...Point(Q, n, 1');

j* make a direction vector P-PO *1
for(i=1j i<=nj i++)

{

};

P[i] = P[i] - POri];
v[i] = P[i];

if (IsEmpty.Plist(ONB) == FALSE)
{

j* check if vector P-PO is representable by existing vectors in ONB */
T = ONBj
do{

Read...Point(T, n, x);
r = O.Oj
for(i=1; i<=nj i++)

r = r + x[i]*P[i]j
for(i=1; i<=n; i++)

vii] = v[i] - r*x[i];
T = GetNext.Point(T);

}while(T != ONB);
r = 0.0;
for(i=1; i<=n; i++)

r = r + fabs(v[i));

271

;" add ""W "",·tor if reqllirf"d ";
if(r > TOL)

I
1\ormali z,·(v ,n);

• A ~ Insf'rLl'oinL(' A, n, 1');

ONB = In"'rLl'oint(ONB, n, v);
ok = ok + 1;

I;

('I,,·
{

/* first point. always copi .. d • /
Normalize(v,n);
• A = Insl'rLl'oint(- A, n, 1');
ONB = InserU'oint(ONB, n, ,,);
*k = I;

I
Q = C .. lNl'xU'oint(Q);

} ;
/* add PO and fix A. ON B* /

if (l'Empty _l'list(ON Il) == FALSE)

};

T=*A;Q=ONB;
dol

ReadJ>oint(1', n, v)j
ReadJ'oint(Q, n, x);
for(i=l; i<=n; i++)

{

};

v[iJ = v[iJ + PO[iJ;
xli] = x[iJ + PO[i];

Write-Point(T, n, v);
Write-Point(Q, n, x);
T = GetNext-Point(T);
Q = GetNext-Point(Q);

}while(T != *A);

* A = lnsert-Point(* A, n, PO);
ONB = lnsert-Point(ONB, n, PO);
return ONB;

272

C.1.12 int CheckJllane(S, 11, norm, PO)

1*
checks to see if norm is the normal of a support.inp, hyper- plant'
of set S in n-dimensional space. 1'0 is a point on t.hl' plant'_
returns: +1 (for an inward normal), -1 (for out.ward normal)
o when plane is not a sllpportinp, plane. -;
POI1\TS S;
Vector norm, PO;
int n;

POINTS R;
Vector 1';
double t;
int i, sign;

/* orientate hyperplane * /
sign = 0;
R = S;
do {

ReadYoint(R, n, 1');
t = 0.0;
for(i=I; i<=n; i++)

t = t + norm[iJ*(P[iJ-I'O[iJ);
if (fabs(t) > TOL)

{

};

if (t > 0_0) sign = I;
else sign = -1;

R = GetNexLPoint(R);
}while ((R != S) && (sign == 0));

/* check if plane cuts convex hull * /
while((R != S) && (sign != 0))

{
Read-Point(R, n, P);
t = 0.0;
for(i=l; i<=n; i++)

t = t + norm[iJ*(P[iJ-PO[i]);
if ((t*sign < 0.0) && (fabs(t) > TOL)) sign = 0;
R = GetNext-Point(R);

};
/* return result * /

return sign;
}

273

C.2 Test Data Generators

C.2.1 Generate_Test(CH, FA, n, npts)

r (j"'lf'I.,I,,·, t,.,.t data using random number gpn('rator ·1
POII'\TS 'CH;
EI)(;f';S FA;
int 11, ·Ilpl~;

{
POINTS '1';
Vector sl11all, largp, v;
doubl,- fmc,t"mp;
int. i, j, r;
illl. COUllt,I.,·.t;
ullsignt·d sl'eri;
char 'statl';
C'·llPrat,-J:!ounds(smll.ll, large, 'elf, n);
1\lakd':m pty J 'list(&'1');
T = Insert .. l'oint(T, n, small);
printf("Enter (total) number of points in test: ");
sca.nf("%d", ,\:r);
printf("l':nter random number seed: ");
scanfC'%d", &seed);
stat," = (char *) calloc(25G, 1);
initstate(sl't'd, state, 256);
srandol1l(seed);
for(i=(*npts)+I; i<=r; i++)
{

print.fC' generating %d points",i);
count = 0;
do{

1* try to produce point a maximum of 500 times * /
count = count + Ii
test = 0;
do{

test = test + 1;
I * generate test points integer part * /

for(j=I; j<=ni H+)
{

temp = fabs(large[j]) - fabs(sma.ll[j));
if (temp> TOL)
{

frac = randomO/3.14259;
/* to generate decimal places - prime number better *1

{rae = frac - (int) frae;

274

\'Ul = (random()% ((inl.)l.~mp + 1)) + smallUl + frar;

~ls~

vUl = smallUl;
};

};
}while ((lsMemberJ'lisl.('CII,Il,Y) == TH \' 1':) && (test < ClOO));

/* point is unique or has been duplicated ClOO l.illlPs • /
\\lriteJ'oint(T, n, v);

}while (Check...Hull(T,FA,n) == FALSI':) && (count < 500));
/* point is unique and inside hull * I

'CH = InsertJloint('CH, n, v);
};
*npts = r;
'CH = Remove-.OuplicateJ'oints(*CH,n);
T = 'CH;
r = 0;
do{

r = r+l;
T = GetNextJloint(T);

}while (T != *CH);
if(r != *npts)
{

1* check test set * /

PrintWarn("Generate test" , "multiple points in test");
printf(" removing »» %d «« duplicates ",.npts - r);
printf(" final test size = %d ",r);

} ;
*npts = r;
}

C.2.2 Test To Generate Circular Structure

#include <stdio.h>
#include <math.h>
#define pi 3.1415927
mainO
{

int i, count;
float x, y, z, t;
float r, r 1, theta, step, pts, red;
scanf(" %f %f %f %f %f", &x, &y, &z, &r, &pts);

/* calculate number of points * /
count = 0;

275

,1,'1' = :l·pi/"t.;
1-1111,

",,{
(Ollnt _ r.,II,,1 t I;
t _ I + ,t,·p;

)wllllt-{l. <: (:l°pi));
/0 print Ilf'a.d .. r for w,"11. fil" */

prillt.f(":1 %d ", n)\lIIt +2);

/. ~~f'lwratl' pOlllb */
t = (UI;

""{
prinlf("%f %f %f ", X t r'cos(l), y -t r'sin(t), z);

t = t t st,·p;
)wltii<·(t < (2'pi));
prinlf(,'%f %f %f ", X, y, z+r);
printf("%f %f %f ", X, y, z-r);

C.2.3 Test To Generate Rectangles In Levels

#include <stdio.h>
#include <math.lt>
#defint> pi :U·1\!i!)27
/* generat"s test for convex hull.
enter (XS,z) centre of a squart>
r = distance from centre to side of squar,,;
levels = number of squar"s to be generat"ci;
theta = angle (in radians) for initial face; -f
main()
{

int i, count;
float X, y, z, t;
float 1', adj, levels;
float offset, step, theta;
scanf("%f %f %f %f %f %f", !,:,x, &y, &z, &r, &Ievels, &theta);
count = 8*levels;
printf(":1 %d ". count);
adj = r /I"\'els;
offset = 0;
for(i=l; i<=levels; H+)
{

/* generate current square * f
printfC%f %f %f", x-r, y-r, z+offset);
printf("%f %f %f", x+r, y-r, z+offset);
printf("%f %f %f", x-r, y+r, z+offset);

276

printf("%f %f %f", xtr, rtr, z+ ntfset);
prinlf("%f %f %f ", x·r, y-r. Z otTset);
printf("')'o{ %f %f ", xtr, y-r, z-offset.);
printf("%f %f %f ", x-r, ytr, z-ofTsd);
printf("%f %f %f", xtr, rtr, z·otf,,·t);

/* 1110ve to new leve! */
r = r - adj;
theta = theta/2;
offset = offset t adj'tan(t.heta);

277

C.3 Routine For Distributed Memory Architecture

C.3.1 List Communication Primitives On Transputer

If eI.,li I'" VA LID :1
d.·fil ... I N VA LlI> -:l
#d .. lilll'Sn·W I
#eI"lilw STOP 0
ftd"fin" IIIILL I
#d,·filw i\lEH<:E :!
,'\(.ruct IIU",'\S ~l {

int elat,dlilp;:
V .. ctor elatiL\":

sll'ttcl llH'SS ... "it llleSsagp;

Tranlunit.Plist(P, 11, channel, chRlLid)
POINTS 1':
int n;
Transport challlwl;
nl'tidJ. chanjd;

POINTS H:

lIll'ssap;e.datil.Jlap; == ni /* send list *'
if (lsElIlpt.yJ'list(P) ==== FALSE)
{

R = 1';
dot

Head_l'oint(H, n, message. data_v);
cS1Llx(chru11lel, 0, chanJd, (char *) &message, sizeof(message»j
R = GetNext-Point(R);

}while (P != R);
};
message.dataJiag = INVALID; /* signal end of data * /
csn_tx(channel, 0, chanJd, (char *) &message, sizeof(message»;

Receive.Plist(P, n, channel, chan_id)
POINTS *Pj
int on;
Transport channel;
netid_t *chanJd;

POINTS R:
int m;
MakeEmptyJ'list(&R);

278

r !!;et list",
dot

csn_rx(channel, ChruLjd, (dlar .) ,I,: Illt'ssap;t', sizrof(messap; ..)):
if (message.data...flag != 11\\'ALI1))
{

m = l11t'ssap;t'.dataJlap;:
H = Ins .. rtj'oint.(H, 111, m .. ,sap;l'.dat.a ,.):

} :
}while(message.dataJiag != INVALID);
-n = nl;
'I' = H:

TransmiLElist(E, n, channel, chan_id)
EDGES E:
int n;
Transport channel:
netid_t chanjd;
{

EDGES R:
POINTS P;
if (IsEmpty-Elist(E) == FALSE)
{

R= E;
dot

message.dataJiag = VALID;
Read-Edge(R, n, &P, message.data_v);
csn_tx(channel, 0, chanJd, (char *) &message, sizeof(message» j
Transmit.Plist(P, n, channel, chanJd);
R = GetNext-Edge(R)j

}whlle (R != E);
};
message.dataJiag == INVALID;
csn_tx(channel, 0, chanJd, (char *) &message, sizeof(message»;

}
Receive...Elist(E, n, channel, chan_id)

EDGES *E;
int *n;
Transport channel;
netid_t *chanJd;
{

EDGES Rj
POINTS P;
int m;
struct mess-st local...rnessage;

279

\\ak"i-:fIIptyEI!,L(f, .. H);

dot
nrLrx(.-hlltHwl, dranjd, (dtar oJ &local..rnessage, ,iz.'of(locaIJllf'"ap;f'));

If (I()(·.~l JIt,'"ap;".dataJlap; != II'\VALID)
{

H"'·"iv.,J'li,qX,I', X' III , chanrIPI, chan_id);

H = 11t'f'rl Edp;,'(H, 111, 1', 10callTlf'Ssap;f'.data v);

};
}whil,·(lo("allll""ap;".r\ala_flap; ,~ II'\VALlD);
'1'; = H;
·u = In;

C.3.2 Build Files For Partitioning Method

Hindu'!,' <stdio.h.>

#ill.-Iu<l,' <csl.oois/build.h
H<I<'Iill" MAXl'1l0CS I(i

Illilill(ar!!,c, ar{\v)
inl. argc;
char *argv[J;
{

CROllI' 'masl.erCRI'_ptr;
(; ROt' I' '1,'afGRt' _ptr[l'IIAXt'HOCS];
CROllI' 'nodeCHI'_ptr[MAXI'ROCSJ;
int i, parts;
parts = atoi(ar{\\'[I]);
printf("number of I .. aves in t.ree = if (2*parts-l>= MAXI'ROCS)

{

}

printf("Not Enough processors available ");
exit(l);

1* build process objects *1
masterGRP _ptr = cs..group(NULL, "masterGRP");
for(i=O; i< parts; i++)

leafGRP_ptr[i] = cs...group(NULL, "leafGRP");
for(i=l; k parts; i++)

nodeGRP _ptr[i] = cs...group(NULL, "nodeGRP");
/* at tach processes * /

cs_exe(masterGRP_ptr, "treemaster", "treemaster", "int arg", parts, 0);
for(i=O; k parts; i++)

cs_exe(leafGRP _ptrli], "treeleaf", "treeleaf", "int arg", i+parts, 0);
for(i=l; kparts; i++)

cs_exe(nodeGRP _ptr[i], "treenode", "treenode", "int arg", i, 0);
/* commit processes to transputers * /

280

cs_option(masterCR!'_ptr, "commIt", "transputer");
for(i=O; i< parts; i++)

cLoption\ leafCR!' _ptrliJ, "commit", "transp"t.'r"):
for(i=l: i< parts: i++)

cs_option\ nod .. CRI' _ptrli], "commit", "transput..>r"):
printf("Co "):

/* load computinp; surfac .. * /
csJoad():
printf("stop "):

C,3.3 Build Files For FLE

build-ItulLl.c

#include <stdio,h>
#include <cstools/build.h>
#define ~IAXt'ROCS 16

/* build file - runs master-slave convex hull with
master and manager on different transputer

/
maine argc, argv)
int argc;
char *argvO;
{

GROUI' *masterGRP_ptr;
GROUP *managerGRP _ptr;
GROUP *slaveGRP _ptr[MAXPROCS];
int i, parts;
parts = atoi(argv[!]);
printf("number of processors = %d ", parts);
if (parts> MAXPROCS)

{

}

printf("Not Enough processors available ");
exit(I);

if (parts <= 2)
{

}

printf("Not Enough processors specified ")j
exit(!);

/* build process objects *1
masterGRP_ptr = cs_group(NULL, "masterGRP");
managerGRP _ptr = cs...group(NULL, "managerGRP")j
for{i=l; i<= parts-2; i++)

281

,IIl\"'(au' ptr\ i I ,., .p'WIJ p(1\'1' LL, "~Iiw"(; IU'");
/,. I\lla(11 pron·,"l'·'" • /

rl'_r"xt-(flll\."'Ilr'r(;HP ptr, "rJla. ... tt·r", >'IJlliL ... t,·r", "int iH,!?,'" , part~·2, 0);

("' '·X"(IllaJta~f'rC:HP_plr, 11'Tlallagf'r", "rnanagrr", "inL arg", PiUt~-'2, 0);

furl i I. i <." PM!.' l; i + +)
,., "x,'(,lil\'l·(;HI'.pt.r\il, ",Ia,,"", "slaYr''', "int arg", i·l, 0);

/- (-Ollllliit prOn~~!"4f'~ to trall:"lpl1t"r~ */
c..opt.ion(lIli,-,t.,·r(;HI'.ptr, "commit", "tran'put"r");
'"' option(1I1ilniLp,,,r(;IU' ptr, "commit", "t.rall'put .. r");
fort i· I; i·, - "art..·2; i + +)

cs opt.ion(sla,,{'(;UI'_pt.r\il, "colllmit.", "transput. .. r");
print.f("(;o ");

r luad COllllltll,inP, slJrfacr> • /
cs load();
print.f("st.op ");

build hull 2,('

/* l)lJild lilt' . runs master·slave COllvex hull with
mil.st.er and manap;er on Same transputer

/
#include <st.tiio.h>
#include <cst.ools/build.h>
#ddine MAXI'HOCS 16
main(arp;c, arp;")
int argc;
char 'arp;\'lI:
{

CROUP *mastl'rCRP _ptr;
GHOUl' *slaveGRP _ptr[MAXPROCS];
int i, parts;
parts = atoi(argv[l));
printf("number of processors = %d ", parts);
if (parts> MAXPROCS)

{

}

printf("Not Enough processors available ");
exit(l):

if (parts <= 2)
{

}

printfC'Not Enough processors specified ");
exit(l);

/* build process objects * /
masterGRP _ptr = cs..group(NULL, "masterGRpll)i

282

for(i=l; i<= parts·l; i++)
sl,~n'GIU'_ptr\il -= cs.p;roup(l\t'LL, "slav('(;HI''');

/* attach processes • /
cs_exe(masterGRI' _ptr, "master", "mast,>r", "int MP,", parts 1,0);
c,_exe(maslprGHI'_ptr. ·'manap;er". "manap;er". "int aq(, l",rb·l. 0);

for(i=l; i<= parts-I; i++)
cs_exe(sla\'eGRI' _ptr[il. "slave", " slave" , "int arP,", i-I, 0);

/. commit processes to transputers * /
,,_option(masterGRP _ptr, ., commit" •. , transput('r");
for(i=l; i<= parts-I; i++)

cs_option(slaveGHI' _ptr[iJ, "commit". "transputl'r");
printf("Go "):

/* load computinp; surfacl' • /
csJoad();
printf(" stop");

283

	586723_0001
	586723_0002
	586723_0003
	586723_0004
	586723_0005
	586723_0006
	586723_0007
	586723_0008
	586723_0009
	586723_0010
	586723_0011
	586723_0012
	586723_0013
	586723_0014
	586723_0015
	586723_0016
	586723_0017
	586723_0018
	586723_0019
	586723_0020
	586723_0021
	586723_0022
	586723_0023
	586723_0024
	586723_0025
	586723_0026
	586723_0027
	586723_0028
	586723_0029
	586723_0030
	586723_0031
	586723_0032
	586723_0033
	586723_0034
	586723_0035
	586723_0036
	586723_0037
	586723_0038
	586723_0039
	586723_0040
	586723_0041
	586723_0042
	586723_0043
	586723_0044
	586723_0045
	586723_0046
	586723_0047
	586723_0048
	586723_0049
	586723_0050
	586723_0051
	586723_0052
	586723_0053
	586723_0054
	586723_0055
	586723_0056
	586723_0057
	586723_0058
	586723_0059
	586723_0060
	586723_0061
	586723_0062
	586723_0063
	586723_0064
	586723_0065
	586723_0066
	586723_0067
	586723_0068
	586723_0069
	586723_0070
	586723_0071
	586723_0072
	586723_0073
	586723_0074
	586723_0075
	586723_0076
	586723_0077
	586723_0078
	586723_0079
	586723_0080
	586723_0081
	586723_0082
	586723_0083
	586723_0084
	586723_0085
	586723_0086
	586723_0087
	586723_0088
	586723_0089
	586723_0090
	586723_0091
	586723_0092
	586723_0093
	586723_0094
	586723_0095
	586723_0096
	586723_0097
	586723_0098
	586723_0099
	586723_0100
	586723_0101
	586723_0102
	586723_0103
	586723_0104
	586723_0105
	586723_0106
	586723_0107
	586723_0108
	586723_0109
	586723_0110
	586723_0111
	586723_0112
	586723_0113
	586723_0114
	586723_0115
	586723_0116
	586723_0117
	586723_0118
	586723_0119
	586723_0120
	586723_0121
	586723_0122
	586723_0123
	586723_0124
	586723_0125
	586723_0126
	586723_0127
	586723_0128
	586723_0129
	586723_0130
	586723_0131
	586723_0132
	586723_0133
	586723_0134
	586723_0135
	586723_0136
	586723_0137
	586723_0138
	586723_0139
	586723_0140
	586723_0141
	586723_0142
	586723_0143
	586723_0144
	586723_0145
	586723_0146
	586723_0147
	586723_0148
	586723_0149
	586723_0150
	586723_0151
	586723_0152
	586723_0153
	586723_0154
	586723_0155
	586723_0156
	586723_0157
	586723_0158
	586723_0159
	586723_0160
	586723_0161
	586723_0162
	586723_0163
	586723_0164
	586723_0165
	586723_0166
	586723_0167
	586723_0168
	586723_0169
	586723_0170
	586723_0171
	586723_0172
	586723_0173
	586723_0174
	586723_0175
	586723_0176
	586723_0177
	586723_0178
	586723_0179
	586723_0180
	586723_0181
	586723_0182
	586723_0183
	586723_0184
	586723_0185
	586723_0186
	586723_0187
	586723_0188
	586723_0189
	586723_0190
	586723_0191
	586723_0192
	586723_0193
	586723_0194
	586723_0195
	586723_0196
	586723_0197
	586723_0198
	586723_0199
	586723_0200
	586723_0201
	586723_0202
	586723_0203
	586723_0204
	586723_0205
	586723_0206
	586723_0207
	586723_0208
	586723_0209
	586723_0210
	586723_0211
	586723_0212
	586723_0213
	586723_0214
	586723_0215
	586723_0216
	586723_0217
	586723_0218
	586723_0219
	586723_0220
	586723_0221
	586723_0222
	586723_0223
	586723_0224
	586723_0225
	586723_0226
	586723_0227
	586723_0228
	586723_0229
	586723_0230
	586723_0231
	586723_0232
	586723_0233
	586723_0234
	586723_0235
	586723_0236
	586723_0237
	586723_0238
	586723_0239
	586723_0240
	586723_0241
	586723_0242
	586723_0243
	586723_0244
	586723_0245
	586723_0246
	586723_0247
	586723_0248
	586723_0249
	586723_0250
	586723_0251
	586723_0252
	586723_0253
	586723_0254
	586723_0255
	586723_0256
	586723_0257
	586723_0258
	586723_0259
	586723_0260
	586723_0261
	586723_0262
	586723_0263
	586723_0264
	586723_0265
	586723_0266
	586723_0267
	586723_0268
	586723_0269
	586723_0270
	586723_0271
	586723_0272
	586723_0273
	586723_0274
	586723_0275
	586723_0276
	586723_0277
	586723_0278
	586723_0279
	586723_0280

