
THE UNIVERSITY OF NEWCASTLE UPON TYNE 
DEPARTMENT OF COMPUTING SCIENCE 

UNIVERSITY OF 
NEWCASTLE UPON TYNE 

Exploiting Parallelism in n-D 
Convex Hull Algorithms 

by 

Edet Okon Eyoh 
NEWCASTLE UNIVERSITY LIBRARY 

094 50743 X 

---rhes\S L532 b 
PhD Thesis 

September 1994 



Abstract 

The convex hull is a problem of primary importance because of its applications in 

computational geometry. A number of sequential and parallel algorithms for computing 

the convex hull of a finite set of points in the lower dimensions are known. In compar­

ison, the general n-D problem is not as well understood and parallel algorithms are not 

so prevalent because the 2-D and 3-D methods are not easily extended to the general 

case. This thesis presents parallel algorithms for evaluating the general n-D convex hull 

problem (where 2-D and 3-D are special cases) using Swart's sequential algorithm. One of 

our methods combines a gift-wrapping technique with partitioning and merge algorithms 

where the original list is split into p > 1 partitions followed by the computation of 

the subhulls using the sequential n-D gift-wrapping method. The partial hulls are then 

combined using a fanin tree. The second method computes the convex hull in parallel 

by wrapping around the edges until a complete facial lattice structure of the polytope is 

generated. 

Several parameterised versions of the proposed algorithms have been implemented on 

the shared memory and message passing architectures. In the former, performance on an 

Encore Multimax using Encore Parallel Threads and the more lightweight Microthread 

programming utilities are examined. In the latter, performance on a transputer based 

machine using CS-Tools is discussed. We have shown that our techniques will be useful 

in the construction of faster algorithms which employ the n-D convex hull algorithms as 

a sub-algorithm. 
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Chapter 1 

Introduction 

Sometimes when we have a large number of points to process, we are interested in finding 

the boundaries of the points so that all other points will be interior to the boundary points. 

If these points are plotted on a diagram, it takes very little time to find out their positions 

relative to the chosen origin. The mathematical name for the natural boundary of a point 

set is the convex hull. This is defined to be the smallest convex polygon containing all the 

points. Equally, it could be considered as the shortest path surrounding all the points. 

The points or vertices of the convex hull are points from the original set. 

For the 2-D case, the concept of a convex hull is natural and easy to understand. If 

S consists of a finite set of points in the plane, consider surrounding the set by a large, 

stretched, rubber band. When the rubber band is released, it \vill assume the shape 

of the boundary points which is the convex hull of S. In this case the boundaries of 

the resulting polygon are made up of straight lines whose points of intersection give the 

vertices of the hull. For greater than two dimensions, the polytope is bounded by faces, 

and the intersection of two faces gives rise to an edge. For example a cube has six faces, 

twelve edges and eight vertices. If one edge and one of the faces containing this edge is 

known, then another face can be generated by a rotation of the known face about the 

known edge. A repetition of a number of rotations will be necessary to eventually produce 

a complete description or facial lattice structure of the object. 
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These intuitive and simple definitions hide the fact that the convex hull is a geometric 

structure of primary importance in computational geometry. It has important applications 

in computer-aided design, computer graphics, image generation, and operations research 

[4, 5, 61]. In graphics applications, the interest is in determining the edges that uniquely 

describe the object. In Linear Programming (LP) we consider maximising (or minimising) 

some linear functional over a polyhedron defined by, 

subject to 

max 

n 

n 

"'c-x­~ ] ] 

j=1 

L aijXj < bi (i = 1,2, ... , m) 
j=1 

Xj 2: 0, (j 1,2, ... , n). 

Any solution of Ax = b which is non negative gives a feasible solution to the optimisation 

problem and these solutions are the vertices of the convex hull. One of these vertices which 

maximises the objective function is the optimal solution. Other applications include 

simulating chemical reactions or estimating population parameters in Statistics which 

often require the calculation of the convex hull in a dynamic fashion [3]. The depth of a 

point p in a set S can be considered as the number of convex hulls (convex layers) that have 

to be stripped from S before p is removed. In graphics applications, the dimension n ~ 3 is 

usual. But in problems involving principal component analysis and clustering applications 

(such as quality testing) and automatic analysis of data dependency by parallel compilers 

n > 3 is common. Most recently, the convex hull is also being used in automatic synthesis 

of parallel algorithms where nested loops are regarded as geometric objects and whose 

computations are defined inside a convex polytope [6]. The partitions of the hull and 

mapping of partitions into processor arrays often requires the construction of convex hulls 

to define loop bounds for the code. 
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In two (2-D) and three (3-D) dimensions, quite a lot has been achieved in computing 

the convex hull both sequentially and in parallel. Some of these contributions are con­

sidered in more detail in chapter three. For the higher dimensions i.e. for n > 3, the 

problem is less well understood and hence relatively little research has appeared in the 

literature on computing the convex hull. In 2-D as well as in the higher dimensional cases, 

the approaches adopted by the different authors are mainly theoretical with each paying 

particular attention to the analysis of the expected time performance of their algorithms. 

Only a few authors have given consideration to practical implementations of t.hese algo­

rithms. Also significant effort has been devoted to designing parallel methods for solving 

the 2-D and 3-D problems in the shared memory and distributed memory architectures 

which use the divide-and-conquer paradigm to achieve an optimal time bound. 

Unfortunately, the methods used for identifying the convex hull for 2-D and 3-D prob­

lems cannot be directly extended to compute the convex hull for the n-D problem. At­

tempting to scale the methods to higher dimensions will result in increased computing 

time. This is because of the combinatorial nature of the n-D problem. However, with 

renewed interest and development in the field of Computational Geometry, researchers 

have become more interested in the n-D convex hull problem. Chand & Kapur [1] paved 

the way in their paper by proposing a sequential algorithm for the n-D problem. Swart 

[2] then modified this algorithm to improve its performance. So far, there is no concerted 

effort on parallel implementation of the n-D convex hull problem. Motivated by this slow 

pace of work, and with the availability of parallel machines, the main theme of this re­

search has centered on the development and implementation of parallel algorithms for the 

n-D convex hull problem. 

In light of the above, the main contribution of this research is to present parallel 

methods for evaluating the n-D convex hull algorithm on both shared memory and message 

passing architectures. The approaches to be adopted in the study are as follows: 

3 



• Use an existing algorithm based on Chand and Kapur's wrappmg technique [1) 

modified to use the affine basis method as described by Swart [2) and extend to a 

parallel implementation. 

• Levels of implementation: This will be considered in two stages 

1. A partitioning approach. 

2. A method to explore the facial lattice of the convex hull. 

The recursive and non-recursive versions of this algorithm are implemented on the chosen 

architecture. The C programming language is used in coding the algorithm, and 

• Encore Parallel Threads (EPT) and microthreads [54) on the shared memory ma­

chine. 

• CS-Tools [97] on a message passing transputer architecture. 

The aim is that by implementing the parallel version of the n-D problem we will 

provide a substantial improvement over the sequential algorithm. Hence we conclude that 

our algorithms will prove useful in the construction of faster algorithms which employ the 

n-D convex hull as a sub-algorithm. 

The rest of this thesis is organised into six chapters. Chapter two presents an overview 

of parallel architectures. Of special interest are the discussions on the shared memory and 

message passing architectures on which our convex hull algorithms are to be implemented. 

A brief discussion on EPT and CS-Tools is also given. Chapter three gives a brief definition 

of the terms to be used in the discussion to aid the understanding of subsequent chapters, 

and reviews some of the major approaches to the convex hull problem so far and indicates 

the areas that might benefit from further research. Chapter four focuses on the sequential 

version of the n-D convex hull algorithm which is the basis of our parallel implementations 

and discusses various features of the test data and test generation. The main supporting 



routines are also discussed. In chapter five, we discuss several parameterised versions of 

the proposed parallel algorithms as implemented on shared memory and message passing 

architectures. The techniques are based on partitioning of the data using a divide-and­

conquer method followed by a merge procedure to produce a solution to the problem. 

In the shared memory architecture we use a fanin tree approach and simulate the tree 

level by level. In the message passing architecture, we also simulate the tree based on 

a master-slave relationship. An alternative method pipelines the partitions through the 

architecture by constructing a tree in hardware. We present a summary of the results from 

our implementations with p > 1 processors on both the shared and distributed memory 

machines. Chapter six looks at a method based on facial lattice exploration by wrapping 

around the edges until a complete facial lattice structure of the polytope is generated. 

It uses the stack version which is better for some shapes than the recursive approach 

and is implemented again on both the shared memory and message passing architectures. 

Results of these implementations are discussed. Finally, chapter seven provides an overall 

summary of the thesis and suggests possible areas for future work. 
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Chapter 2 

Parallel Architectures And Their 
Implementations 

Parallel computers are computers that emphasise concurrent manipulation of data ele­

ments belonging to one or more processes solving a single problem. ;\lgorithms designed 

[or implementation on parallel computers are called parallel algorithms. The essence of 

the parallel version of any algorithm is to obtain a significant speed-up onT the sequen­

tial version. To date the major set back on rapid introduction of parallel computing has 

been the huge investments already made in software for sequential machines (lnd the lack 

of good parallel processing software to aid design and development. There are reasons, 

however, why parallel processing is gaining widespread attention. Parallel processing is 

intended to be used for applications that require massive amounts of data manipulation. 

Such problems include real time simulations of complex systems, artificial intelligence, 

weather forecasting, computational aerodynamics, energy resource exploration, medical, 

military and in basic research among others [:2:2, 23]. Using fast and efficient computers 

makes these simulations far cheaper and faster than physical laboratory experiments and 

enables the solution of a wider range of problems and these machines are thus cost ef­

fcctiyc. Computational ability is only limited by computer speed and memory capacity 

whereas physical experiments are subjected to many constraints. An algorithm whose 

order of magnitude time performance is bounded by a polynomial function of .Y (e.g. log-
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arithmic, linear and quadratic etc.) where N is the size of input. is called a polynomial 

time algorithm and is said to be a reasonable algorithm. Similarly, an algorithm that, 

in the worst case, requires an exponential time will be considered umeasonable (e.g . .Y~. 

NN, 2N). As far as algorithmic problems are concerned, a problem that admits a reason­

able or polynomial solution is said to be tractable, whereas problems with unreasonable 

or exponential time solution are termed intractable. Sorting is an example of a tractable 

problem and the Towers of Hanoi problem with at least 64 rings or more, is hopelessly 

time consuming [59]. 

Parallel algorithms and programs are closely connected with the architecture of parallel 

computers, and therefore design and analysis of parallel algorithms and programs cannot 

be considered independently of their implementation and the architecture of the computer 

on which they are to be implemented. Unlike in serial computation, where the Random 

Access Machine (RAM) is used, one generic model of computation has not been found for 

the design and analysis of parallel algorithms. Although the Parallel RAM (PRAM) has 

gained a lot of popularity as a general model of parallel computers [23], it is not easy to 

use for all applications. This chapter examines some of the parallel computers currently 

available. It is not the intention of this thesis to examine the various categorisations in 

detail since the emphasis is on algorithms rather than hardware. The purpose here is to 

present an overview of some of the parallel computer architectures and in particular those 

on which our algorithms are to be implemented. 

Most research in design and development of parallel algorithms has come about as a 

result of the availability of different models of parallel computers. In order to properly 

design these algorithms, a clear understanding of the model of the underlying parallel 

computer is required. Many methods of categorisation have been proposed in the literature 

[7 - 14] and one of the earliest was Flynn's [7] taxonomy which classifies architectures 

according to the presence of instruction and data streams. Although this classification 
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is limited in terms of recent developments in the field, resulting in new architectural 

models, it nevertheless provides the basis of most schemes. The four major categories are 

as follows: 

• Single Instruction Stream - Single Data Stream SISD 

• Multiple Instruction Stream - Single Data Stream MISD 

• Single Instruction Stream - Multiple Data Stream SIMD 

• Multiple Instruction Stream - Multiple Data Stream MIMD 

Flynn's classification is very general in nature and does not reveal some important de­

tails of a number of systems e.g. many processors have arithmetic or instruction pipelines 

or both and Flynn does not distinguish processors of this type. Haandler [13] and Hwang 

& Briggs [23] stress the availability of pipelining and the number of pipeline stages. An­

other classification scheme proposed by Feng [11] stresses the degree of parallelism i.e. the 

maximal number of bits that can be processed within a time unit by a computing system 

e.g. the Carnegie Mellon C.mmp is a multiprocessor consisting of 16 processors of 16-bit 

wordlength. Duncan [9] has extended the scope to include Systolic Arrays, Dataflow and 

Reduction machines. Although we shall not make use of them in the rest of the thesis we 

will briefly outline their characteristics to place the work in context. 

2.1 SISD Architectures 

Computers in this group consist of a single processmg element (PE) receiving single 

streams of instructions (IS) from the control unit (CU) that operates on a single stream 

of data (DS) from the memory (M). This is illustrated in Figure 2.1. At each step during 

the computation, the control unit executes a single instruction that operates on a single 

datum from memory. Instructions tell the processor the operations to be performed on 

8 
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os 

Figure 2.1: General Structure of SISD Architecture 

the data and subsequently put it back in the memory. The majority of the present day 

computers are in this group, often termed Von Neumann architectures (because they were 

invented by John von Neumann [16]). Serial or sequential algorithms are implemented on 

SISD machines. 

Example 1: Consider the problem of multiplying n numbers. The processor needs to 

gain access to the memory n times in order to obtain the n data items. It also performs 

(n - 1) multiplications in sequence which requires an order of n operations in total. The 

IBM 7090 is an example of a SISD computer. 

2.2 MISD Architectures 

In this case there are multiple processors, with each processor having its own control unit 

but sharing a common memory where data resides. Figure 2.2 is a representation of this 

type of architecture. There are multiple streams of instruction and a single data stream. 

Parallelism is achieved by letting each processor do different things concurrently on the 

same data. These computers are best suited to computations that require a single input 

to be subjected to numerous different operations each receiving the input in the same 

original form. 
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Figure 2.2: General Structure of MISD Architecture 

Example 2: Suppose we want to classify objects according to some set of predefined 

rules. The objects could be mathematical, for instance, where a number could be associ­

ated with one of several sets, each satisfying its own criteria. Alternatively, the objects 

could be physical ones (e.g. students, lecturers and civil servants) trying to recognise 

objects in order to classify them. The member (single data) of the objects is usually 

subjected to many different tests (multiple instructions) in order to group them properly. 

MISD computers prove useful as each processor is associated with each class and can 

recognise members of that class after subjecting the member to a number of computa­

tional tests. Each member (data) is sent at the same time to each processor where it is 

tested against the set criteria in parallel. 

At the same time, the computation appears to be of a rather specialised nature and 

hence very limited in use. Parallel computers that are more flexible and hence suitable 

for a wide range of applications would be preferred. 
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Figure 2.3: General Structure of SIMD Architecture 

2.3 SIMD Architectures 

SIMD architectures typically employ a central control unit, multiple processors, and inter 

processor connection network. A single instruction is broadcast to all processors by the 

control unit and the results are communicated between the processors from the intercon-

nection network. The model is shown is Figure 2.3. SIMD machines can be subdivided 

into Array Processors [8, 18] suitable for large scale numerical calculations such as image 

processing and nuclear energy modelling. SIMD machines consist of synchronised Proces-

sor Elements (PE's) under the control of one control unit. Each PE has working registers 

and local memory. Examples include Loral's Massively Parallel Processor MPP [24] and 

Illiac IV [25] and recently DAP [22]. Associative Memory architectures [25] use special 

logic to access stored data in parallel according to its contents. They are geared towards 

data based oriented applications, such as tracking and surveillance. Examples include 

Bell Laboratories' Parallel Processing Element Ensemble (PEP E) and Loral's Associative 

Processor (Aspro) [22]. 
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Example 3: Let's consider a very large unsorted file with n items. Suppose that 

a certain item y is required in order to perform an operation. On a SISD computer, 

retrieving y requires n steps in the worst case when y is the last item in the file. If the 

file entry is uniformly distributed over a given range, then the processing time can be 

greatly reduced, for instance on a SIMD architecture with p > 0 processors. The item 

y (single data) needs to be broadcast to all the processors. The file to be searched is 

subdivided into smaller files of size nip, say, of approximately equal number of entries 

and are searched simultaneously by the processors. The processor that finds y returns its 

result and signals the other processors that y has been found and that they can terminate 

their execution. This task requires O(nlp) steps compared with a sequential time of O(n) 

steps. 

2.4 MIMD Architectures 

This is the most general and most popular design among parallel computers. Here we 

have multiple instructions and multiple data streams on different processors. Each pro­

cessor operates under the control of instruction streams issued by its control unit. The 

processors execute different parts of the program on different data and cooperate by solv­

ing different subproblems of a single problem. Communication is through shared memory 

(SM) or an interconnection network (ICN) (message passing). Processors sharing a com­

mon memory are referred to as multiprocessors while those with a local memory are called 

multicomputers or Distributed Memory machines. MIMD computers support higher lev­

els of parallelism than can be exploited by 'divide and conquer' algorithms organised as 

largely independent subca1culations. Later we shall employ MIMD architectures to imple­

ment the parallel version of n-D convex hull algorithms using a master-slave organisation. 

An example of a shared memory paradigm is the Encore Multimax [8] and the Sequent 

Machines while the Transputers typify the Distributed Memory ~1achines [8]. The two 
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Figure 2-4: General Structure of MIMD Architecture 

subclasses namely the Multiprocessors and Multicomputers are briefly examined to draw 

out the differences and similarities between them since this is of interest to us. A general 

structure of MIMD architecture is shown in Figure 2-4_ 

Example 4: Consider the problem of finding the sum of n numbers. With a SISD 

machine, the processor will access the memory n times to receive the numbers. The 

sequential execution also requires (n - 1) additions. In a MIMD architecture, using p 

processors, we can partition the problem into nip subproblems or tasks. Each task is 

now mapped to a processor and all the subproblems will be executed simultaneously each 

producing a partial sum. The partial sum can now be added together in a treelike fashion 

to give the final solution to the problem. This requires an O(nlp + log2P) steps, where 

p is the number of leaves in the tree. The tree structure is simulated on the p processors. 

2.5 Multiprocessors 

This class, also called Parallel Random Access Machine (PRAM) [8] or tightly Coupled 

machines, share a common memory in the same way a group of people might share a 

notice board. If two processors want to communicate, the first processor first writes the 
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item into the shared memory location known to the second processor which then reads the 

item from that location. Allowing multiple read accesses to the same address in memory 

should in principle pose no problems. Conceptually, each of the several processors reading 

from that location makes a copy of the location's contents and stores it in its own local 

memory. There are three classes of such machine, depending on the kind of memory 

contention tolerated. These are EREW (exclusive read/exclusive write), which requires 

that at any time any memory cell should be accessed by at most one processor. CRE\V 

(concurrent read/exclusive write) will allow any number of processors to read the same 

memory cell simultaneously, but not to write to the cell simultaneously. The third model, 

(concurrent read/concurrent write) CRCW machine, allows simultaneous read and write 

access. If several processors attempt to write to the same location, then only one of them 

succeeds, and the successful processor is chosen arbitrarily. Each processor in addition to 

a shared memory also has a local memory used as a cache where multiple copies of the 

shared data may exist at a given time. There are three major alternatives for connecting 

multiple processors to the shared memory and these are Bus Interconnection [35], Crossbar 

[21] and Multistage Interconnection Network (MIN) [31 - 33]. 

A bus system (figure 2.5) contains one or more buses on which the system compo­

nents are connected. A single bus is the simplest and least expensive to implement and 

is flexible as components can be added to or disconnected from the bus. Time-shared 

buses offer a fairly simple way to give multiple processors access to a shared memory. A 

simple time-shared bus effectively accommodates a moderate number of processors since 

one processor accesses the bus at a given time. In the Encore Multimax, such a bus is 

the Nanobus. Since the bus is the potential bottleneck preventing physical expansion of 

the system beyond a certain limit, extension of the single bus architecture is required 

to increase the capacity of the bus-based parallel processing systems. The Nanobus of 

the Encore's Multimax system [8] is a backplane bus that delivers a usable throughput 
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Figure 2.5: Bus Interconnection 

of 100Mbytes/sec. Present systems have 2 to 20 National Semiconductor NS32332s con­

nected to the backplane N anobus, providing up to 40MIPS of processing power with up 

to 128Mbytes of shared memory. The Encore Multimax on which our experiments will be 

conducted is a structured architecture running the UMAX operating system and contain­

ing 14, NS32332 processors each with 256Kb processor cache memory. Its major setback 

is the bus bottleneck. However this could be avoided if multiple buses are implemented 

so that failure of a single bus will not cause a total failure of the whole system. On the 

other hand, the multiple bus implementation requires multiporting which is expensive. 

The Crossbar permits the concurrent communication and link between all processors and 

memory modules to be established. Multiple accesses of memory modules are possible 

as long as they are accessing different locations. This class of multiprocessors has a high 

throughput resulting from multiple, concurrent communication paths. Reducing the com­

munication overhead is the main concern of designing an efficient communication system. 

Multistage Interconnection Networks (MIN) attempt to strike a compromise between the 

price and performance alternatives offered by Crossbar and buses. An N x N MIN con­

nects N processors to N memories by deploying multiple stages or banks of switches in 
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Table 2.1: Properties Of Multiprocessors 
Property Bus Crossbar Multistage 

Speed low high high 
Cost low high moderate 

Reliabili ty low high high 
Configurability high low moderate 

Complexity low high moderate 

the interconnection network pathway. A processor making a memory access request spec-

ifies the desired destination (the pathway) by issuing a bit-value that contains a control 

bit for each stage. Table 2.1 [52] summarises the properties of the three categories of the 

multiprocessors mentioned above. 

2.6 Multicomputers 

Multicomputers are also called Loosely Coupled or Distributed Memory machines. The 

distinction between the multicomputers and distributed memory machines lies on the 

physical distance separating the processors. If the processors are in close proximity they 

are called multicomputers otherwise they are termed distributed systems. For example if 

the processors are in the same room they are termed multicomputers but if they are in 

different cities they are distributed systems. This is important when evaluating parallel 

algorithms, because the processors in a distributed system are far apart. If the number of 

data exchanges between them is significantly more than the number of computational steps 

performed by any of them then the performance will be affected. The Distributed memory 

architectures are further subdivided into Ring topology structure [27], Mesh computers 

[29], Pyramid topology [28], Mesh-of-tree [25], Hypercube [17, 26] and Reconfigurable 

architecture [30] according to the way the processors are connected. 

16 



Figure 2.6: Transputer Network 

2.6.1 Transputer 

A transputer is a microcomputer with its own local memory and with links for connecting 

one transputer to another. A typical member of the transputer family is a single chip 

containing processor, memory, and communication links which provide point to point con­

nection between transputers. In addition each transputer contains special circuitry and 

interfaces adapting it to a particular use. A transputer can be used in a single processor 

system or in networks to build high performance concurrent systems. A network of trans­

puters and peripheral controllers is easily constructed using point-to-point communication 

as shown in figure 2.6. The point-to-point connection allows transputer networks of arbi­

trary size and topology to be constructed. There is no contention for the communication 

mechanism, regardless of the number of transputers in the system. There is no capacitive 

load penalty as transputers are added to a system and the communication bandwidth does 

not saturate as the size of the system increases. In particular, our experimental work was 

carried out on a Meiko system [29] which uses T800 transputer processors each with a 

memory capacity of 4MB. This system has 16 transputers each with four bi-directional 
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Figure 2.7: Systolic flow of data to and from memory 

links. 

2.6.2 Systolic Array Architectures 

This group of SIMD /MIMD computers proposed by Kung [15] solves problems mainly in 

special purpose systems. The basic principle involves the pumping of data from memory 

through processor elements (cells) and back to memory as shown in Figure 2.7. Once a 

data item enters the systolic array from memory or an external device, it is passed to any 

processor element that needs it. Systolic Arrays apart from their applications in Linear 

Algebra (e.g. matrix product, inverses, triangularization) also find application in medical 

image and signal processing algorithms [8]. Examples include Carnegie Mellon's Warp 

[36 - 38]. They can be reconfigured into different topologies to suit applications but are 

very special purpose in nature. 

2.6.3 Dataflow Architectures 

Dataflow machines (Data - Driven) [19, 40] employ an execution paradigm in which in­

structions are enabled for execution as soon as all their operands become available instead 
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Node 2 

Figure 2.8: Dataflow Graph 

of following the sequence dictated by the ordering of program instructions. The sequence 

of instructions are based on data dependencies allowing the architecture to exploit par-

allelism at task, routine and instruction levels. Data Driven machines are designed to 

execute dataflow graphs in which the nodes represent the operations (such as multiplica-

tion, addition) and the arcs denote the data dependencies between the functions. Figure 

2.8 illustrates a dataflow graph. A dataflow graph is made up of operators (actors) con-

nected by arcs that convey data. In figure 2.8 the actors are drawn as circles with the 

function symbols of +, - and * representing addition, subtraction and multiplication re-

spectively. The arcs convey inputs a and b and the output arcs will carry tokens being 

values computed by the previous actors. When all the values are present in the input arcs 

and none in the output arc, the actor is enabled or fired. Node 1 and Node 2 compute the 

sum and difference of a and b respectively and then pass on the tokens to Node 3 where 

the product is computed. 

There are two types of Dataflow architectures: 

• Static Dataflow Machines where all the graph nodes are loaded into the memory 
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during initialisation and which allow one instance of the node to be executed at a 

time. 

• Dynamic Dataflow Architecture permits the creation of node instances at run time 

and multiple instances of a node can be executed concurrently. 

Examples of Dataflow machines are Manchester Dataflow Computer [34] and the i\IIT 

Tagged Token Dataflow Machine [33]. 

2.6.4 Reduction Machines 

Reduction or Demand-Driven [20] architectures seek to reduce an expression in a program­

ming language to its final result. An instruction is executed when its result is needed by 

an operand for another instruction which is ready to execute and not when their operands 

are ready as in dataflow. Programs are viewed as nested applications and execution pro­

ceeds from the innermost application until there are no further calculations. Thus they 

are good for programs with nested expressions. The reduction may be a string reduction 

like a * b in which case a string is replaced by its value or a graph reduction in which case 

pointers are manipulated. This type of architecture is exemplified by the University of 

North Carolina's FFP computer [41]. There are however attempts to create hybrid ma­

chines for the dataflow and reduction paradigms. Rediflow [57] has the features of both 

Dataflow and Reduction machines. Here, processors will work first on the instructions 

demanded of them if the operands are available before working on instructions that are 

ready for execution. 

2.7 Summary Of Parallel Architectures 

So far, we have presented different models of parallel architectures. Differing processor 

organisations have been suggested and some implementations for both the shared memory 

and message passing architectures described. The different models offer varying abilities 
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in terms of granularity of computation, performance ranges and programming require­

ments. Some models are targeted at specific applications and may perform poorly in 

other circumstances while some are general purpose machines. The MnrD class are gen­

eral purpose since they consist of a number of central processing units asynchronously 

executing independent instruction streams. MIMD computers are grouped according to 

the manner in which the CPUs access memory. The multiprocessors have a single shared 

address space and the distance from a CPU is constant but in some cases each memory 

cell is closer to one CPU than to others. Multicomputers have no shared memory. Each 

CPU has its private address space and the processors communicate by message passing. 

Clearly, one cannot conclude which specific architectural structure is superior, but a cost 

effective parallel processing architecture is one that provides a balanced performance and 

an effective processor utilisation, memories and input/output with minimum communi­

cation overhead. The loosely coupled processors communicate by exchanging messages, 

whereas the tightly coupled processors communicate through a shared main memory. Each 

processor in a distributed system has its own local memory and if a processor needs data 

from another processor, it must send a message through a communication subsystem to 

the other processor about its demand. In a shared memory machine all processors have 

access to the global shared memory which can take the form of memory modules con­

nected to the system bus or distributed in the form of local memories through processors 

that can access non local memories through an interconnection network of switches. The 

flexibility to access shared memory causes memory access conflicts, but the advantage lies 

in the fact that asynchronous communication is easy and fast. Distributed systems are 

preferred when the interactions between tasks are minimal as against the shared memory 

system that can tolerate a higher degree of interaction between tasks. Table 2.2 shows 

some typical examples of architectural models. 
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Table 2.2: Examples Of Some Architectures 
SISD IBM 7090 [52] 
SIMD Illiac IV [25] 
MISD 

Multiprocessors(Shared Memory) Encore ~lultimax [35] 
Multicomputers(Distributed Memory) Transputers [29] 

Systolic Arrays Carnegie Mellon's Warp [36-38] 
Dataflow MIT Tagged Token Dataflow [39] 

Reduction North Carolina's FFP [41] 

2.8 Granularity 

Granularity refers to the size of tasks given to each processor, and is a very important 

issue in parallel performance because the time invested in creating processes and moving 

information among processors must be balanced by that invested in actual computation. 

For example a message passing program would not perform well if the time spent in 

communication is not balanced by that spent in evaluating computations. It is difficult 

to say precisely what the correct size of task should be. However for every hardware 

environment and coordination language (like Linda, threads or Parallel-C) there is a limit 

in which an application will be too fine-grained to give a meaningful performance. The 

cost of communication is usually a dominating factor. In Distributed systems, it takes 

quite some time to send and receive data between processors whereas in a shared memory 

architecture the data are only copied from one location in memory to another or involves 

movement of pointers. 

If the time it takes to perform the task is less than the total time it takes to find the 

task, perform the computation and then return the result, more is being paid in overhead 

than in performing the task and good performance cannot be guaranteed. It is good 

practice to avoid excessive fine-grain granularity as this can lead to work starvation. At 

the same time too large a spread of granularity among processes is not recommended as 
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this will lead to load balancing problems where the computation time depends on the 

load of the most burdened processor. 

2.9 Parallel Programming 

Programming languages allow parallelism available in an architecture to be exploited. 

Concurrent languages can be divided into three major groupings: 

• Procedure-Oriented Languages 

• Message-Oriented Languages 

• Operation-Oriented languages 

Any of the above languages can be implemented on MIMD machines but if the language 

features do not match the architecture, an efficient development of a parallel algorithm 

will be difficult. 

In Procedure-Oriented Languages [42] process interaction is based on shared variables. 

Processes have access to the data that they want to manipulate while providing means for 

ensuring mutual exclusion of processes in critical regions. These languages are particularly 

suitable for programming the multiprocessors. Examples include Modula [53], Concurrent 

Pascal [43], Mesa [44], Edison [49], Linda [46], Threads and Microthreads [54]. 

Message-Oriented languages are based on the principle of send and receive. They do 

not give access to every data object as each process manages its own data. Processes com­

municate by exchanging messages and so concurrent access is not a problem in this group 

of languages. Examples are Occam [45], Communicating Sequential Processes (CSP) [47, 

48], and PLITS [56]. 

Operation-Oriented languages use remote procedure calls as the primary means of 

process interaction. These languages have the characteristics of both procedure- and 

message-oriented languages. Operations are performed on objects by calling procedures 
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while objects are managed by message passing. The languages can be implemented effi­

ciently on both multiprocessors and multicomputers. Examples include Distributed Pro­

cesses [50, 55] and Ada [51]. 

Parallel programming can be approached in two main ways, either by writing the 

conventional serial algorithm and allowing a parallel compiler to detect areas of parallelism 

or by using any of the parallel programming languages outlined above to exploit the 

hardware architecture through the syntax of the language. It is this second option that we 

adopt in this research. The Procedure- and Message-Oriented languages are implemented 

on MIMD architectures using threads, microthreads on shared memory and Parallel-C on 

a distributed memory machine. 

2.10 Multiprocessor Implementation 

The Encore Parallel Threads (EPT) system designed for the Encore Multimax provides an 

efficient support for concurrency on the shared memory architectures, and is used in this 

work. Communication is via shared variables. Setting up a thread environment has some 

overhead but initialisation only takes place at startup and does not affect the performance 

of the thread programs. Subsequently, EPT also supports Microthreads which is intended 

for applications such as parallelised for and do loops for example in the C programming 

language. The shared memory contains sections of data that can be accessed or modified 

by different processors. If a processor PI has access to a shared memory and is about to 

modify it, and another processor P2 attempts to access and modify the same section, an 

error in computation may occur because the value can change before PI has completed its 

operation. To avoid such a conflict, controlled access and mutual exclusion with respect 

to such sections of memory is required. Modifiable sections of a program, shared by 

many processors and executed as uninterrupted operations are termed critical sections. 

In the EPT there are mechanisms for mutual exclusion of critical sections and these are 
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Monitors and Semaphores [58]. 

2.10.1 Monitors 

The Monitor is a standard synchronisation mechanism in EPT and it keeps track of the 

state of a process in order to safely exit in the case of an exception. It collects critical 

sections into a single unit which can only permit one process to gain entry at a time. 

These critical sections are procedures or functions of the monitor. :'lonitors also execute 

an initialisation operation when a data structure is created. A process can access the 

shared data by calling one of the monitor procedures. If there is more than one process 

in the access queue, it has to wait until the one in the monitor has finished its operation 

before it can enter the monitor and resume. Sometimes some additional logical condition 

may have to be fulfilled before a process can enter and execute a critical section even 

when it is free. 

2.10.2 Semaphores 

Semaphores are another synchronisation mechanism which employ nonnegative integers 

with two associated operations p and v. They are intended for operations where speed is 

of paramount importance . 

• p operation causes a semaphore's value to be decreased by 1 but it is not reduced 

beyond o . 

• v operation causes a semaphore's value to be increased by 1 provided it is not 1 

already. 

The semaphore is normally a location in shared memory and has a value 0 if a process 

is executing in the critical region associated with it, otherwise its value is 1 implying 

that the critical region is free. A process can only gain access to the critical region if 

the semaphore value is 1, it immediately performs the p operation to lock the region by 



reducing the semaphore value to 0 and thus preventing other processes from interrupting. 

At completion, the process performs the v operation, raising the \'alue from 0 to 1 thus 

setting the critical section free for other processes to gain access. To implement mutual 

exclusion every critical section in a program must be preceded by a p operation followed 

by a v operation on the same semaphore. PROGRAMl below illustrates the use of 

threads to implement a matrix product. PROGRAM2 is an example where semaphores 

are implemented. The original code is in the C programming language. 

/* 
** A parallel program using multiple threads for multiplying matrices. 

*/ 
PROGRAM1 
======== 
#include <thread.h> 
#include <stdio.h> 
int A [9] = {1, 2, 3, 

4, 5, 6, 
7, 8, 9}; 

int B [9] = {9, 8, 7, 

6, 5, 4, 
3, 2, 1}; 

int e[9]; 

rnain(argc,argv) 
int argc; 
char *argv[]; 
{ 

extern void startup(); 
atol(argv[1]) = procs; 
if(argc != 2) 
{ 

fprintf(stderr,"usage: tst #processors\n"); 
exit(1); 

} 

THREADgo(atol(argv[1]), 2*1024*1024, startup, 0, 0, 20*1024, 2); 
} 

void startup 0 
{ 

extern void rnult(); 
1* A structure must be used to pass multiple parameters 

because of the way EPT handles parameters 
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*/ 
struct { 

} 

int i; 
int j; 
hj; 

for (ij.i=O; ij.i<3; ij.i++) 
for (ij.j=O; ij.j<3; ij.j++) 

THREADcreate(mult, &ij, sizeof(ij), ATTACHED, 20*1024, 2); 
while(THREADjoin()); 
printf(IIY.3d Y.3d Y.3d\n Y.3d Y.3d Y.3d\n Y.3d Y.3d Y.3d\n", 
C[O], C[l], C[2], C[3], C[4], C[5], C[6], C[7], C[8]); 

void mult(ij) 
struct { 

int i; 
int j; }*ij; { 
register int i; 
register int t=O; 
register int col = 3 * ij->i; 
register int row = 3 * ij->j; 

for (i=O; i<3; i++) { 
t += A[col] * B[row]; 
col++; 
row += 3; 
} 

C[3*ij->i + ij->j] = t; 
} 

/* row 1, colO */ 
/* row 0, col j */ 

To implement this parallel version on the shared memory (SM), the sequential pro-

gram was converted into the parallel version by using the facilities provided in the Encore 

Parallel Thread (EPT) package. The Encore Parallel Thread package provides for process 

creation and synchronisation mechanisms in the list of the facilities in its library. A struc-

ture was used to pass multiple parameters because of the way EPT handles parameters. 

The function ThreadgoO establishes a single thread to initialise EPT. It is stated as: 

Threadgo( argv[l], data_size, startup, args, 0, stacksize, priority). 
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The first argument specifies the number of processors allocated for use by EPT. 

data_size is the amount of memory allocated to hold the stack and control blocks for all 

the threads and also to hold the shared heap. The single initial thread starts execution 

by entering the routine startup which is passed a single argument represented by args. 

The value 0 represents the argsize and arg is passed to startup. The argsize can also 

take a value which is nonzero in which case args will be treated as a pointer to a region 

of memory of length argsize. The initial thread is also given a stack size represented by 

the argument stacksize which executes at a priority ranging from 0 to 31 with 0 as the 

highest. On return from ThreadgoO, EPT is shut down and other processes are released. 

What follows thereafter is the creation of a corresponding number of new threads 

for parallel execution using the routine ThreadcreateO provided in EPT. Threadcre­

ate(mult, &ij, sizeof(ij), ATTACHED, stacksize, priority) creates a thread of 

control with stated priority and executes the function multO which calls each of the 

subproblems concurrently to compute the matrix product by using the serial algorithm. 

The additional argument ATTACHED dictates that the parent cannot terminate un­

til all the children terminate. The parent can wait for the children by executing the 

ThreadjoinO operation. In the alternative, if the argument is DETACHED there is 

no relationship between the parent and the children and each is entirely independent. In 

our programs, ATTACHED is used to ensure that all new threads have completed their 

respective computation before termination. 

In the convex hull program, the startup function generates a menu option for com­

puting the convex hull sequentially or in parallel. The first option executes the serial 

algorithm. In the latter option, the parallel execution is initiated. 'What follows there­

after is the creation of a corresponding number of new threads for parallel execution using 

the routine ThreadcreateO· 

1* 
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** A parallel program that counts the number of loops performed by 
** each thread using semaphores in the critical region. 

*1 
PROGRAM2 
======== 

#include <thread.h> 
#include <stdio.h> 
SEMAPHORE sem; 
int count; 
main(argc,argv) 
int argc; 
char *argv[] ; 
{ 

extern void startup(); 

if(argc != 2) 
{ 

fprintf(stderr,"usage: tst #processors\n"); 
exit(1); 

} 

THREADgo(atol(argv[l]), 2*1024*1024, startup, 0, 0, 20*1024,2); 
} 

void startupO 
{ 

} 

extern int child(); 
THREAD tcb; 
int i, total iterations = 0; 
sem = THREADseminit(l); 
for(i=O; i<10; i++) 

THREADcreate(child, 0, 0, ATTACHED, 20*1024, 2); 
while((tcb = THREADjoin()) != NULL) { 

1* wait for the children to terminate *1 
total_iterations += THREADreturnvalue(tcb); 
THREADfree(tcb); 
} 

printf(" count = %d, total iterations = %d\n", count, total_iterations); 
fflush(stdout); 

int childO 
{ 

int l; 

for(i=O; ; i++) { 
THREADpsem(sem); 
if(count >= 1000) 

1* critical region 

29 



} 

break; 
count++; 
THREADvsem(sem); 

} 

THREADvsem(sem); 
return(i); 

The critical sections are protected by the statements THREADpsem(sem) and 

THREADvsem(sem) and cannot be interfered with by other processes until after its 

operation is completed by the current processor when it is free. The threads and mi-

crothreads libraries are used to introduce parallelism into the hull programs. Multiple 

threads of control run in a single shared address space, the overhead of process creation 

is incurred only in the start-up phase of the algorithm. Threads in this context are 

lightweight containing only program counters and a small amount of additional memory. 

2.11 Distributed Memory Implementation 

Message passing is a method of synchronisation between processors in distributed memory 

machines. The process transmitting the information is the sender, and the process 

receiving it is the receiver. The channels for communications are clearly defined and 

specified for exchange of information between the processes. 

We intend to use a Meiko Computing Surface and the illustration here uses the con-

cept and implementation on the transputer. The examples below show how the different 

functions are being harnessed to provide the communication between two processes via 

Transports. A par file which describe a multi-process task to the parallel loader is also 

shown. Each process calls the function, csn_initO to initialise the Computing Surface 

Network (CSN). This is followed by a call to csn_openO that creates a connection be-

tween the process and the CSN. This connection is called a Transport. Each Transport 

on the CSN has an associated address, called a Net Id. 
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For a message to be passed from a Sender's Transport to the Receiver's Transport it 

is necessary for the Sender to determine the Net Id of the receiver's transport. To do 

this the receiving process calls the CSN function, csnJegisternameO, which instructs 

the CSN to associate the function's argument with the transport's Xet Id. The sending 

process then makes a similar call to the function, csn_IookupnameO, which instructs 

the CSN to return the Net Id of the named transport. Finally, having established the 

Net Id of the receiver's transport, the sender passes its data by calling the CSN function, 

csn_txO and blocks. This function passes data to the transport whose ~et Id is specified 

as an argument. In our example, the first process, heading.c writes the title for the table 

and informs the second process, solution.c that it has finished. The second process then 

waits until it receives the signal from the first process before computing and writing the 

temperature conversion. 

Process One (Writes Title) heading.c 
======================================== 

#include <stdio.h> 
#include <csn/csn.h> 
#include <csn/names.h> 
#include <cs.h> 
maine argc, argv ) 
int argc; 
char* argv[]; 
{ 

} 

Transport transport; 
netid_t solution_id; 
int flag = 1; 
int status; 
csn_initO; 
status = csn_open( CSN_NULL_ID, &transport ); 
if( status != CSN_OK ) 

cs_abort(lIheading: cannot open transport\n", -1 ); 
status = csn_lookupname( &solution_id, ISol utionTransport", 1 ); 
if( status != CSN_OK ) 

cs_abort(lIheading: cannot lookup SolutionTransport\n", -1 ); 
printf("Farenheit Celsius\n"); fflush( stdout ); 
csn_tx( transport, 0, solution_id, &flag, sizeof(flag) ); 
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Process Two (Perform Computation) solution.c 
================================================ 

#include <stdio.h> 
#include <csn/csn.h> 
#include <csn/names.h> 
#include <cs.h> 

#define LOWER 0 /* lower limit of table */ 
#define UPPER 300 /* upper limit */ 
#define STEP 20 /* step size */ 
maine argc, argv ) 
int argc; 
char* argv[]; 
{ 

} 

Transport transport; 
int flag; 
int status; 
int fahr; 
csn_init 0; 
status = csn_open( CSN_NULL_ID, &transport ); 
if( status != CSN_OK ) 

cs_abort( "solution: cannot open transport\n", -1 ); 
status = csn_registername( transport, "SolutionTransport" ); 
if( status 1= CSN_OK ) 

cs_abort( "solution: cannot register SolutionTransport\n", -1 ); 
csn_rx( transport, NULL, &flag, sizeof(flag) ); 
for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP) 

printf("%7d %12.1f\n",fahr,(5.0/9.0)*(fahr-32)); 

Parallel Loader (heading.par) 
============================= 

par 
processor 0 heading 
processor 1 solution 

endpar 

The Parallel Loader specify the placement ofthe two processses 'heading' and 'solution' 

within the network. More examples are available in [97]. The CSToois also provides the 

CSBuild library to create a customised loader to place code more effectively for execution. 

To implement the CSBuild routine here we need to create two executable files 'heading' 
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and 'solution'. In a CSBuild program, objects called Groups are arranged into a complex 

Group hierarchy. In the CSBuild program, cs_groupO is used to create a single group 

and we assign the single process, heading, to that Group by using cs_exeO. Similarly, 

we adopt the same method in creating the executable file solution. At this moment, 

each of the processes as they stand are not committed to processors for execution. The 

function cs_optionO is used to set one of the groups attributes and in our own case 

we specify that the group will be executed on a transputer. Finally, cs_IoadO sets the 

stage by putting our processes onto the hardware and control will not be returned to the 

program until the task is completed. A timing routine to trigger the system's clock was 

also written. 

Example of CSBuild Program 
========================== 
#include <stdio.h> 
#include <cstools/build.h> 

mainO 
{ 

GROUP* headingGRP_ptr; 
GROUP* solutionGRP_ptr; 

headingGRP_ptr = cs_group( NULL, "HeadingGRP" ); 
solutionGRP_ptr = cs_group( NULL, "SolutionGRP" ); 

} 

cs_exe( headingGRP _ptr, "Heading", "heading", 0 ); 
cs_exe( solutionGRP_ptr, "Solution", "solution", 0 ); 

cs_option( headingGRP_ptr, "commit", "transputer" ); 
cs_option( solutionGRP_ptr, "commit", "transputer" ); 

In all our implementations, we have used the synchronous and blocking communication 

type. By using this mechanism, data transmission will only occur when both the sender 

and receiver are ready and both processes will block (wait) until transmission is complete. 
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A sender process will block until its message is received, and a receiver will block until 

the message is sent by the sender. By using this model, both processes must synchronise 

before data may be transferred between them with the result that one of the processes 

may waste time waiting for the other to be ready. There are other options available to 

the programmer to overcome this problem. The send mode options include Blocked 

Synchronous, Blocked Asynchronous, Non-Blocked Synchronous and Non-Blocked Asyn­

chronous. The receiver mode options are Blocked and Non-Blocked. The use of blocking 

and non-blocking communications affects the way in which the transmission function de­

termines that the communication is completed. A message transmitted synchronously 

is complete only when the receiving process has received the message into its own local 

buffer whereas a message transmitted asynchronously is complete only when data has 

been received by the CSN. 

2.12 Performance Measures 

Once a parallel program has been implemented, it is the responsibility of the programmer 

to explore the performance of the algorithm. If the parallel program does not run faster 

than the sequential code, at least to a reasonable limit, then it is a failure. The usual 

measures of parallel performance are cost, attectiveness, speedup and efficiency. The 

two we will use to measure the performance of n-dimensional convex hull algorithms, 

are speedup and efficiency. We will compare the parallel version with an equivalent 

sequential version of the same algorithm. Equally worth mentioning is the fact that 

we will run the sequential algorithm on one processor of a parallel machine, and the 

parallel versions of the same algorithm on many processors of the same machine. This 

is important because it is possible to split code over several types of processor which 

have different performance characteristics and obscure the results. We will then use the 

performance characteristics mentioned above to study the performance figures obtained 
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from our algorithms and try to understand them. 

2.12.1 Speedup 

The speedup achieved by a parallel algorithm running on p processors is the ratio between 

the time taken by a parallel computer executing the serial algorithm and the time taken 

by the same parallel computer executing the parallel algorithm using the p processors. 

This can be expressed as 

where 

Sp = Speedup 

Ts = running time of fastest sequential algorithm and 

Tp = running time of parallel algorithm. 

Normally 0 ~ Sp ~ p. Ideally, the maximum value of Sp using p processors is p but in 

practice this is seldom achieved for the following reasons: 

• It is extremely difficult to partition a problem into p tasks, each requiring a processor 

to use the same amount of time to solve each task. There may be some idle time 

on processors. 

• Process creation and synchronisation in a partitioned algorithm adds overheads. 

• Sequential code limits the speedup. If any portion of the algorithm must be executed 

sequentially, then the remaining processors have to wait for the sequential portion 

to complete its computation before they resume. 

• The architecture used also imposes restrictions that render the desired running time 

unattainable. This could be caused by memory conflicts and! or communication path 

delays. 
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2.12.2 Efficiency 

The efficiency e of a parallel algorithm running on p processors is the speedup divided by 

p and usually 0 :::; e :::; 1 

Sp 
e=-

p 

Algorithms that approach the upper bounds in Sp and e as p tends to 00 or the problem 

size increases for fixed p are said to be optimal. 

2.12.3 Algorithm Equivalence 

For Sp = p, we always assume that parallel and serial programs are the same algorithmi-

cally but in practice this is rarely achieved because code changes are introduced when we 

write parallel components. Good serial algorithms are optimised for sequential machines. 

An algorithm with optimal speedup may have a very poor efficiency and on the other 

hand an algorithm with good efficiency can have a poor speedup. A good serial algorithm 

may be a bad parallel algorithm whereas a cheap and nasty serial algorithm may turn out 

to be the best parallel algorithm. 

The nature of the problem can also affect the achievable speedup. Some problems are 

compute-bound. In such a case the amount of computation dominates and the processors 

will be busy most of the time. An example is matrix multiplication. If we consider an 

n X n matrix, the total data is O( n2
) but O( n3 ) operations are required. Others are 

input/output bound with very little computation but input/output phases dominate the 

process e.g matrix addition with O(n2) data and O(n2) operations. Often this fact is 

obscured by the fact that the lack of dependency in matrix addition make it much easier 

to parallelize than matrix multiplication. 
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Chapter 3 

The Convex Hull Problem 

Many algorithmic problems in Computational Geometry in\'oh'e geometric concepts such 

as points, lines and distances. Also, maIlY of the problems are deceptively easy to solw 

using the human visual system, but often present a real challenge when designing an 

algorithm. The convex hull problem is one such problem. In order to discuss the convex 

hull problem formally and in a more generalised manner, it is appropriate here to review 

the basic concepts and terminologies that are relevant. The combinatorial theory of convex 

hulls is largely concerned with their facial structure [93]. This section will provide formal 

definitions of the geometric concepts and notations used in this thesis. The objects we will 

normally manipulate are sets of points in Euclidean space. Each point is represented as 

a vector of appropriate dimension. The geometric objects will normally consist of a finite 

set of points. We shall consider besides individual points, the straight line containing two 

given points, the line segment defined by its two given points. the polygon defined by a 

number of points, etc. 

3.1 Definition Of Terms 

Let R be the set of real numbers. By Rd we mean the d-dimensional Euclidean space, 

that is the space of d-tuples (xt,···, Xd) of real numbers Xi, i = L···. d with metric 

('1'/=1 Xi 2)1/2. Some important definitions are given below: 
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Point: A d-tuple (Xl,·· . ,Xd) denotes a point P of Rd which is also a d-component vector 

applied to the origin of Rd. 

Line: Given two distinct points PI and P2 in Rd, the linear combination 

(3PI + (1 - (3)P2 ((3 E R) is a line in Rd. 

Line Segment: Given two points PI and P2 in Rd the line segment denoted by PIP2 is 

defined by (3Pl + (1 - (3)P2 provided 0 :::; (3 :::; 1. 

Flat: An r-flat is a region determined by (1" + 1) points having dimension r. We will 

call 1"-flat (1" > d) a hyperplane of 1" dimensions, denoted by HTr. 

Linearly Independent: The collection of points PI, P2, ... ,Pk in Rd is said to be linearly 

dependent if there exist numbers aI, a2, ... , ak, not all zero such that alPl + 

a2P2 + ... + akpk = o. If the vectors are not linearly dependent, they are said to 

be linearly independent (i.e. if no vectors in the collection can be expressed as a 

linear combination of the other vectors). 

Affine set: Given k distincts points PI, . .. ,Pk in Rd, the set of points 

P = (alPl + a2P2 + ... + akPk) where (aj E R , 2::7=1 aj = 1) is the affine set 

generated by PI, P2, ... ,Pk and its affine combination is p. If k = 2, the resulting 

affine set is a straight line through two points. Examples of affine sets are points, 

lines, planes, hyperplanes. 

Affinely Independent: Given k points Pl,P2,··· ,Pk in Rd, the points are said to be 

affinely independent if the (k - 1) vectors (P2 - PI)' ... , (Pk - PI) are linearly inde­

pendent. A useful criterion for affine independence is the following: 

If Xi = (ail,···, aid) then {Xl,· .. ,xd is an affinely independent set of points if 
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and only if the matrix A has rank k. 

A = (; 

an '" aId 1 
a2l '" au 
· . · . · . 

akl akd 

Affine Hull: Given a subset K of Rd
, the affine hull AH(K) of K is the smallest affine 

set containing K. For any two points PI, P2 in K, the entire line determined by 

these two points belong to AH(K). The affine hull of a segment is a line, and of a 

plane polygon is a plane. 

Convex set: Given k distincts points PI, ... ,Pk in Rd, the set of points 

P = (alPl + a2P2 + ... + akPk) where (aj E R ,aj > 0, Lj=l aj = 1) is the convex 

set generated by PI, P2, ... ,Pk and its convex combination is p. A domain D in Rd is 

convex if, for any two points PI and P2 in D, the segment PlP2 is entirely contained 

in D. 

Hyperplane: A hyperplane H is the set of points X = (Xl, X2,'" ,Xd) which satisfy 

an equation represented in the form L1=1 aixi - f3 = 0, where not all ai are zero. 

A hyperplane H separates the space Rd into two half spaces. A normal to the 

hyperplane H is a vector parallel to r, where r = (aI, a2,"', ad). The unit normal 

to H denoted by f is given by 

A hyperplane H bounds the set S C Rd if and only if all points of S lie either on H 

or in one half space. If Vi denotes a unit vector along Q P, Q E H, PES, we say H 

bounds the set S if and only if either the inner product (d. v;) ;::: ° for i = 1, ... , d 

or the inner product (d.v;) :::; ° i = 1,"" m; d being the unit normal to Hand m 

the number of points. 
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Support Hyperplane: A hyperplane H is a support plane of S if H bounds S and at 

least one point of S lies on H. 

Convex Hull: The convex hull of a set S ~ Rd is the intersection of all convex sets 

containing S. We denote the convex hull of S as CH(S). If S is a finite set. then 

C H(S) is called a polytope. In general, the convex polytope of a set S is the set of 

all convex combinations of finite subsets of S i.e. 

r 

CH(S) = {x E Rd I x = A1X1 + ... + ArXn I S r < 00, Ai ~ 0; Xi E S, L Ai = I} 
i=l 

A support plane H of S is said to be an d-face of CH(S) if d independent points of 

S lie on H. A convex polytope is described by means of its boundary, which consists 

of faces. Each face of a convex polytope is a convex set (i.e. a lower dimensional 

convex polytope); a k-face denotes a k-dimensional face (i.e. a face whose affine hull 

has dimension k). If a polytope Pis d-dimensional, its (d-l)-faces are called facets, 

its (d-2)-faces are subfacets, its I-faces are edges, and its O-faces are vertices. For a 

3-D polytope, facets are plain polygons, while subfacets and edges coincide. 

Edge: A d-edge of CH(S) is a (d - 2)-fiat contained in a support plane of CH(S) which 

is not a d-face of C H(S). 

Size Of Set: The size n of a set S, denoted by I S I is the number of points in S. 

Norm: The vector norm of x is a non negative number denoted by II x II, associated with 

x, satisfying: 

(a) II x II > 0, II x II = 0 implies x = O. 

(b) II kx II = I k III x II for any scalar k. 

(c) II x + y II S II x II + II y II (the triangular inequality). 
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The length or norm of a d x 1 column vector II x II is defined to be 

d 

II x II = (~= I Xi 12)1/2 
i=l 

Orthonormal Set: If (x,x) = II X 112 = 1, the vector x is said to be normalised. If 

a set of vectors Xl,···, Xd is orthogonal and normalised i.e (Xi, Xj) = 0 (i # j) 

1 (i = j), then the vectors are said to form an orthonormal set. 

3.2 2-D Algorithms 

Among the problems in computational geometry, the planar convex hull problem is one 

of the earliest and best studied. Numerous papers have appeared in the literature dealing 

with different aspects and generalisations of the planar convex hull problem. Given a set 

S of n points in R2, this section reviews some of the earlier approaches in the design and 

analysis of algorithms for constructing the convex hull CH(S) from S using sequential 

computations. Yao [87] has shown that this problem has an O(nlog2n) sequential lower 

bound. There is a long list of articles containing results on the convex hull of a planar 

point set in two dimensions. Some examples are [60], [62], [64], [76], [81] in which this 

lower bound is achievable. The running times of these algorithms are either O(nlog2n) 

where n = I S I, since the problem is as hard as sorting, or O(nH) where H is the number 

of points on the convex hull. Kirkpatrick [75] has proposed an algorithm whose complexity 

is O(nlog2h) where h is the number of edges of CH(S) and is superior to the previous ones 

in the sense that its running time is sensitive to the size of the output. In the worst case, 

when h = n, the result reduces to O(nlog2n). The approach adopted in the algorithm 

is to find the maximum and minimum coordinates of S, determine the upper and lower 

convex polygonal paths respectively, and then concatenate the two paths to obtain the 

convex hull of S. For brevity here, we will review three early approaches to the solution 

of this problem namely, Graham [64], Jarvis [60] and the Divide-and-Conquer technique 
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[82] which cover most of the variations. 

3.2.1 Graham's Algorithm: 

Graham in [64] presented one of the first O(nlo92n) algorithms to compute the com·ex hull 

of n points in the plane. The first step in the algorithm involves sorting the input points 

and this step dominates others in the determination of the convex hull. Since sorting 

is of O( nlo92n), it follows that finding the convex hull by Graham's algorithm requires 

O(nlo92n) steps. The algorithm can be summarised as follows: 

Step 1: An internal point 0 is chosen arbitrarily (e.g. centroid of three non colinear 

points). At worst case this can be done in Cln steps, where Cl is a constant. 

Step 2: The points are expressed in polar coordinates about the origin 0 and 0 = 0 in 

the direction of an arbitrary fixed line L from O. This can be done in C2n operations, 

C2 a constant. 

Step 3: The elements pexp( i(h) are sorted in terms of increasing Ok such that the set of 

points S = {rlexp(i7jJl), ... ,rnexp(i7jJn)} with 0 ~ 7jJl ~ ... 7jJn ~ 271" and rj ~ o. 

This is possible in O(nlo92n) time. 

Step 4: If 7jJ; = 7jJi+1 then we delete the points with smaller amplitude since it cannot be 

an extreme point. Also points with ri = 0 can be deleted and renumbering the rest 

of the points so that the set of points S' = {rl exp( i7jJl) , ... , r n,exp( i7jJn')} where 

n' ~ n. This elimination can be done in less than n comparisons. 

Step 5: Start with three consecutive points in S', say, A = rkexp(i7jJk), B = rk+1 exp(i7jJk+l), 

C = rk+2exp(i7jJk+2) with 7jJk < 7jJk+1 < 7jJk+2. There are two possibilities as illus­

trated using figure 3.1. 
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Figure 3.1: Angle Between Three Points 

1. If (0: + (3) 2: 7r, delete the point rk+l exp(i'ljJk+l) from 5' since it cannot be an 

extreme point and return to the beginning of step 5 with the points rkexp(i'ljJk), 

rk+l exp( i'ljJk+l) , rk+2exp( i'ljJk+2) replaced by rk-l exp( i'ljJk-l), rkexp( i'ljJk) , rk+2exp( i'ljJk+2). 

2. If (0:+13) < 7r, return to beginning of step 5 with points rkexp(i'ljJk), rk+lexp(i'ljJk+l), 

rk+2exp(i'ljJk+2) replaced by rk+lexp(i'ljJk+l), rk+2exp(i'ljJk+2), rk+3exp(i'ljJk+3). 

This step can be accomplished in less than 2n' since the number of possi­

ble points in C H (5) is reduced by one or the current total number of points 

in 5' is increased by one. 

The algorithm starts by constructing a simple closed polygon from the sorted points 

in angular order about the point 0, so that tracing through the points gives a closed 

polygon. Computation of the convex hull is completed by proceeding cyclically around 

the points, trying to place each point on the hull and eliminating the points that cannot 

possibly be on the hull. Illustrating with the example in the Table 3.1, we consider the 

points in the order Vb V12, Vg, Vl1, Vl3, VlS, VlO, Vs, V8, V4, V2, Vl4, Vo, V7, V6, V3. We know that 

because of sorting the points v!, V12 are on the hull. When Vg is encountered, the algorithm 
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includes it in the trial hull for the first three points. When Vn is encountered, we note 

from the algorithm that Vg cannot be on the hull because the points Vll V9V12 forms an 

internal angle VI2VgVn which is 2: 7r and so Vg is not a candidate for the hull and hence 

is eliminated from further consideration. The situation as each new point is encountered 

will either add to or eliminate the point from the partial hull so far constructed until all 

the points are considered. Figure 3.2 shows a 2-D convex hull. 

Step 3 of the algorithm requires sorting the points and from the sorting algorithms, we 

know that the expected time performance is O(nlog2 n) [90]. Since Graham's algorithm 

requires sorting, and it is this step that dominates, its expected time performance is 

therefore O( n log2 n). 



3.2.2 Jarvis's Algorithm: 

Jarvis [60] presented an alternative solution to the convex hull problem that runs in time 

O(nH) where H is the number of vertices of the hull. The approach taken by Jan"is is 

suggestive of the idea of "gift wrapping". Starting with a point VI as shown in Figure 

3.2, that is known to be on the convex hull, in linear time O(n), we find the next point 

VIZ such that edge VI VIZ is on the convex hull, i.e all the remaining points must lie on one 

side of the directed line containing VI VIZ • After VIZ has been found, the same technique 

is applied to locate the next point Vu such that VIZVU is a hull edge, and so on, until we 

'wrap' back to the starting point VI. The algorithm can be summarised as follows: 

Step 1: Find an origin point Vi, 0 :::; i :::; n - 1 from the set with largest x-coordinate 

(and smallest v-coordinate, if several points have the same minimal x value); 

Step 2: Let LI be the line containing Vi which is parallel to the x-axis. Take a horizontal 

ray in the positive direction and "sweep" it upward until we hit another point Vk 

such that the angle between the line joining Vi and Vk and the line LI is minimised. 

For equal minimum angles pick the point closest to the origin. 

Step 3: Shift the origin to Vk and repeat step 2 with consistent angle direction and origin 

until the first convex hull point is re-found. 

Since there are H vertices we have to have at most H -1 edges (faces). Finding a vertex 

when given an existing one requires re-examination of (n - 1) points, thus O(nH). 

3.2.3 Divide-and-Conquer Algorithms 

A problem of size n can often be split into two similar subproblems of size approximately 

equal to n/2. This splitting process can be repeated on subproblems (recursively) until 

subproblems of constant size are obtained for which the solutions are trivially known. 

For example, the quicksort algorithm [90] is based on this principle. On the other hand, 
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one can start with about n equal-sized small problems. and marry the subsolutions in a 

pairwise manner as in the merge sort algorithm [94]. These techniques have many appli­

cations in computational geometry which often result in considerable savings in expected 

computation time. The first general discussion of their value in the design of fast expected 

time algorithms is illustrated by Bentley and Shamos [66]. The convex hull problem for a 

set of n points in the plane can also be solved in O( nlog2n) time by a Divide-and-Conquer 

Technique [82]. This technique normally involves partitioning of the original problem into 

several subproblems, recursively solving each problem and then combining the solutions 

to the subproblems to obtain the solution of the original problem. The following steps 

are involved. 

Step 1: If I S I:S 2 return Sj else go to step 2. 

Step 2: Partition the original set S arbitrarily into two subsets Sl and S2 of approxi­

mately equal number of points. 

Step 3: Recursively find the convex hulls of Sl and S2 . 

Step 4: Merge the two sub convex hulls together to form the convex hull for S. 

Preparata and Shamos [82] gave the following algorithm for the merge procedure: 

Given two convex polygons S1 and S2, the merge step could be performed as follows: 

Step 1: Find a point v that is internal to Sl (e.g. centroid of any three vertices of Sl). 

This point will also be internal to C H (S1 U S2). 

Step 2: Determine whether or not v will be internal to S2. If v is not internal go to step 

4. 

Step 3: If v is internal to S2, the vertices of both SI and S2 occur in sorted angular 

order about v as shown in figure 3.3a, we merge the vertices of both SI and S2 and 

proceed to step 5. 
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fig (a) fig (b) 

Figure 3.3: 2-D Convex Hull For Divide-And-Conquer 

Step 4: If v is not internal to 52, figure 3.3b applies. As seen from v, 52 lies in a wedge 

whose apex is v and whose apex angle is ::; 1r. This wedge is defined by two vertices 

u and t of 52, thus partitioning 52 into two chains of vertices which are monotonic in 

polar angle about v, one in increasing angle and the other decreasing. Of these two 

chains, the one convex towards v can be immediately discarded, since its vertices 

will be internal to the convex hull of 5. The other chain of 52 and the boundary of 

51 constitute two sorted lists that contain at most n vertices. They can be merged 

to form the vertices of the convex hull of 5, which is sorted about v. 

Step 5: Step 5 of Graham's algorithm can now be performed on the obtained list of 

vertices from 51 and 52 to obtain the convex hull of 5. Since in the worst case 

n = 151 1 + 152 1 the algorithm is O(nlog2n). 

3.3 3-D Algorithms 

The convex hull of a set of points in 3-D space is a convex three dimensional object with 

fiat faces. The divide-and-conquer technique of constructing the convex hull in 2-D can be 
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easily extended to the 3-D case. However, this is more involved than the two dimensional 

case. This problem has been studied by Day [63], Johansen and Gram [65], Preparata 

and Hong [62] among others. Suppose we are given a set S = {PI,P2,'" ,Pn} of n 

points in R3. For simplicity we assume that for any two points Pi and Pj in S we have 

Xk(Pi) =f xk(Pi), for k = 1, 2, 3. The Divide-and-Conquer algorithm of [82] could be 

summarised as follows: 

If I SIS; 2 then return CH(S) 

else 

begin 

divide S into Sl and S2 such that I Sl I = L 1/2 I S IJ and Sl U S2 = 5j 

S' := Convex Hull(St)j 

S" := Convex Hull(S2)j 

T := Merge (S' , 5")j 

return (T) 

end. 

As a preliminary step the elements of S are sorted according to the coordinate Xl 

and relabelled if necessary so that we may assume Xl (Pi) < Xl (Pi) if and only if i < j. 

We assume that the polytopes 51 and S2 which are two nonintersecting 3-D polytopes 

have been recursively obtained. Due to initial sorting and to the chosen partition of the 

resulting point set, the convex hull of Sl and S2 are nonintersecting. The merge, which 

is the crucial component of the method, involves the calculation of the collar (i.e a union 

of triangular faces, each face supporting a plane tangent to an edge of one hull and a 

corner of the other). Having identified the corners, edges and faces of CH(S), a complete 

description of CH(5) is built. The method was first proposed by Preparata and Hong 

[62]. 

Johansen and Gram [65] gave the following algorithm for finding the convex hull of a 
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Table 32 S .. equen la unnlllg Ime or - an - gor fIR F 2 D d 3 D A.I ithms 
Dimension Author Time 

R.1. Graham 64] O(nlo92n) 
2-D R. A. Jarvis [60] O(nH) 

Divide-and-Conquer[82] O(nlo92n) 
3-D Preparata and Hong [62] O(nlo92n) 

Johansen and Cram [65] O(nF) 

3-D problem 

Step 1: Find one face of the convex hull; 

Step 2: Initialise Hull, Boundary, and set of potential vertices 

repeat 

Step 3: Find a new face adjoining the Boundary 

Step 4: Update Hull, Boundary and set of potential vertices 

until Boundary is empty 

To find a new face, an edge E is selected from the current boundary. Since E is a 

boundary edge it has one adjoining face F' already in the convex hull. With E and F'the 

remaining set of points are scanned to find a new point which together with E defines a 

new face of the hull. The computational complexity of this algorithm is related to n, the 

number of points in 5, and to the number of faces, F. The worst case computing time is 

O(nF). In fact, this method is an extension of Jarvis' technique to the 3-D case. Table 

3.2 shows the complexity of the sequential version for 2-D and 3-D problem. 

3.4 n-D Algorithms 

There are few research works available on higher dimensional spaces of the conYex hull 

problem. This is because the n-D problem is more complicated than the 2-D and 3-D 
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cases. Secondly, most of the applications rely heavily on the lower dimensional cases. In 

the Computer Science literature Chand and Kapur's study [1] is based on the geometry 

of convex polytopes. Chand and Kapur observed that exactly two faces of the convex 

polytope of a set S C Rd intersect along each edge of the hull. If one of the edges and 

one of the faces containing this edge are known, then the second face can be computed by 

a rotation through an appropriate angle of the known face about the known edge. The 

determination of each new face gives rise to at least (d - 1) edges of the hull that are 

different from the known edge. This process is continued until each edge is the intersection 

of two adjacent faces of the convex polytope. The convex polytope of the set S is generated 

by repeating a cycle of steps, each cycle computing a new face of the desired polytope 

until all the faces are determined. Chand and Kapur have given a generalised algorithm 

for finding the convex hull of n-Dimensional problem in which 2-D and 3-D are special 

cases. 

Let Se denote the subset of S whose convex polytope is being enumerated, and de 

denote the current dimension of the space. Let m denote the number of points of Se. The 

following steps summarise the algorithm: 

Step 1: Let Se = S, de = d and me = m + 1 

Step 2: Determine point(s) of Se with least first component. Let Sb be the set consisting 

of these points pI ESe' The hyperplane H, Xl = pI, is a support hyperplane of S 

and its normal is parallel to the vector d = (1,0,0, ... ,0) . 

Step 3: Construct a unit vector e such that (e.d ) = 0, (e. Vi) = 0, Pi E Sb, Vi being a 

unit vector along pIpi and (e.vk) 2: 0, Pk ESc· 

Step 4: For each point, pk ESc, compute the ratio 

--A-

d.Vk 
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and determine point(s) pJ E Se such that 

AJ Ak 
- =max{-} 
JlJ Jlk 

where the maximum is taken over all k such that pk ESe. 

The normal to the z-flat defined by adjoining to Sb the points for which the ratio of 

A and Jl is maximum, is given by, d* = AJd + JlJe, where A/ + JlJ2 = 1 . 

Step 5: If z < de the starting face of C H(Se) has not been computed yet; therefore, 

replace Se by the points on z-flat and return to step 3 with d = d*. If z 2: de a 

dc-face of C H(Se) has been computed. But in the case when z > de let Se denote 

the points on the z-flat and return to step 2 with de = de - 1 . When z = de go to 

step 6. 

Step 6: Check whether the de edges of the computed face have been found. Finding an 

edge implies that one face containing this edge was found before and now that the 

second face has been computed this edge will be omitted from further consideration. 

Save new edges except for one. Return to step 3 with Se consisting of points defining 

this edge and with d = d*. If all the edges of the face are already known go to step 

7. 

Step 7: Pick an edge and compute the normal d to the face containing this edge. Return 

to step 3 with Se consisting of points on this edge. If no edge exists in the storage 

then the dc-polytope has been computed; proceed to step 8. 

Step 8: Check whether de = d . If yes, the desired convex polytope has been generated. 

If de < d return to step 6 with the faces of the dc-polytope being the edges of the 

de = (de + 1 )-polytope. 

Swart [2] has studied the facet, facial and lattice problems and presented algorithms which 

exhibit the best known time complexity. These algorithms are based on a reformulation 
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and analysis of Chand and Kapur's algorithm using the affine basis method in order 

to reduce the computational effort. This method is the basis of our work and will be 

presented in more detail in chapter 4. The facets of the convex hull are enumerated, the 

facial lattice is computed and a new compact structure representing the combinatorial 

type of the convex hull is produced. Swart noted that the simplest of the convex hull 

problems is that of picking out the elements of the set S which are the vertices of the 

convex hull. He called this the vertex problem. The facet problem is that of enumerating 

the facets of the polytope. The facial lattice problem produces the complete facial lattice 

of the hull. We are interested in the vertex problem but also generate the facets as a by 

product. 

3.5 Parallel Algorithms 

The essence of a parallel implementation is to solve the convex hull problem efficiently 

in terms of both the run time and the number of processors used. Parallel computers 

provide the possibility of substantial improvements in the running time of algorithms, 

allowing larger problems to be solved in a feasible amount of time. For two and three 

dimensional problems, parallel versions of the convex hull have appeared in the literature. 

Compared to the number of serial algorithms for solving such problems, the number of 

parallel algorithms is quite small. 

3.5.1 2-D Algorithms 

Miller and Stout [67] presented an O( yin) time solution on an n-node square mesh of 

processors. They also implemented their algorithms on the hypercube, pyramid, tree ma­

chine, mesh-of-trees, mesh with reconfigurable bus, EREW PRAM and a modified AKS 

network [68]. In each of these cases, different running times were achieved with fixed num­

ber of processors. On the hypercube, the algorithm finishes in o (logn ) time, a worst case 
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UCTL 

LCfL 

Figure 3.4: Upper and lower tangent lines between 51 and 52 

algorithm for the pyramid, tree machine, and mesh-of-trees finishes in O(log3n/(loglogn)2) 

time while a mesh with a reconfigurable bus uses O(log2n) time. The general algorithm 

implemented can be summarised as follows: 

Step 1: Divide the set 5 of n planar points into two subsets 51 and 52, each of size n/2, 

so that all points of 51 have x-coordinates less than those of 52, and 5 = 51 U 52 . 

Step 2: Recursively identify the convex hull of 51 and 52 . 

Step 3: Identify the upper and lower common tangent lines (UCTL, LCTL) between the 

convex hull of 51 and that of 52 

Step 4: Eliminate all extreme points between the common tangent lines (i.e. extreme 

points of 51 and 52 that are inside the quadrilateral formed by the four endpoints 

representing the common tangent lines) and renumber the remaining extreme points. 

This is shown in figure 3.4. 

Atallah and Goodrich [69] give an o (logn ) algorithm using O( n) processors on the CREW 

PRAM model (i.e. the synchronous parallel model where processors have a common 
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memory in which concurrent reads are allowed, but no two processors can simultaneously 

write to the same memory location). Their algorithm, although still based on the di\'ide­

and-conquer method, differs in many aspects from that of Miller and Stout. The problem 

is subdivided into many subproblems (e.g. yin instead of just two); solves all the problems 

recursively in parallel and merges them in parallel to produce the final solution. This shows 

an improvement of a similar parallel version on the same model of parallel architecture 

using O(n) processors and a running time of O(log2n) presented by Chow [86]. Their 

method is paraphrased below: 

Input: A set 5 of n points in the plane. 

Output: The list CH(5). That is the list of the convex hull of 5 listed in clockwise 

order. 

Method: The main idea of the algorithm is to divide the problem into yin subproblems 

of size yin each, solve the problems recursively in parallel, and combine the solutions 

to the subproblems quickly and with a linear number of processors. This is shown 

in figure 3.5 with n = 25 points. 

Step 1: Sort the n points by x-coordinate and partition 5 into sets 51 ,52 , ••. , 5..;n, each 

of size yin such that 5 i is left of 5 j if i < j. 

Step 2: Recursively solve the convex hull problem for each 5 i , Z E {1,2,3, ... ,y'n}, III 

parallel. 

Step 3: Find the convex hull of 5 by computing the convex hull of the union of the yin 

sub convex hull polygons CH(51 ), ... , CH(5..;n) using ALGORITHM MERGE. 
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Figure 3.5: A partitioning of S into 5 subsets 

ALGORITHM MERGE 

Input: The input here is the collection of convex polygons CH(Sl), C H(S2)" .. , C H(Sfo} 

Output: The upper convex hull UH(S) of the vertices of the union of the CH(Si)'S. 

Method: The main idea is to find, in parallel for each CH(S;), which of its vertices are 

on U H(S). This is done by assigning Vn processors to each CH(Si) and having 

each of these processors compute the upper common tangent between CH(S;) and 

one of the other input polygons. 

Step 1: In parallel for each i E {1,2, ... ,Vn} use Vn processors to find those points of the 

convex hull of C H(Si) which belong to U H(S) using the steps outlined below: 

Step 1.1: Find the Vn - 1 upper common tangents between the convex hull CH(Si) 

and the remaining Vn - 1 other input polygons. Let Ti,j denote the upper com-

mon tangent between the convex hull of CH(Si) and that of CH(S)), where Ti,j 

is represented by its point of contact with CH(Si) and its point of contact with 
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Figure 3.6: Illustration Of Merge Procedure 

Step 1.2: Let v,: be the tangent with smallest slope in {Ti,l,"" Ti,i-d (i.e. v,: is the 

smallest slope tangent which 'comes from the left' of CH(Si))' and let Wi be the 

tangent with the largest slope in {Ti,i+b ... ,Ti,y'n} (i.e. Wi is the largest-slope which 

'comes from the right' of CH(Si))' Let Vi be the point of contact of v,: with CH(Si) 

and Wi the point of contact of Wi with CH(Si). 

Step 1.3: Since neither v,: nor Wi can be vertical, they intersect and form an angle (with 

interior pointing upward). If this angle is less than 7r, then none of the points of 

CH(S;) belong to U H(S). Otherwise all the points from Vi to Wi , inclusive, belong 

to UH(S). This is shown in Figure 3.6(a) and 3.6(b). Figure 3.6(a) shows the case 

when none of CH(Si)'S points are in U H(S) because v,: and Wi form an angle which 

is < 7r. In Figure 3.6(b) the points P2, P3 and P4 are in UH(S) because v,: and Wi 

form an angle which is < 7r. 

Step 2: Step 1 has computed, for every i E {1,2,3, ... ,y'n} all the points of CH(Si) which 

belong to U H(S) (possibly none). This step compresses each of these lists into one 

list to get U H(S). 
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Aggarwal etal. [85] also achieved O(logn) time using O(n) processors on a CRE\\" PRA.\!. 

Goodrich [70], using the hull tree (a parallel data structure) on a CREW PRAM has solved 

the convex hull problem in two dimensions in O(logn) time using O(njlogn) processors 

for the case when the input points are given in a sorted order. Holey and Ibarra [83], 

without using the recursive or divide-and-conquer technique, also solve the planar convex 

hull problem on a variety of mesh-connected arrays of processors. Their approach. which 

is based on the Graham's scan sequential algorithm, is iterative and so avoids the overhead 

of the merge step in the divide-and-conquer algorithm. It also avoids presorting the points. 

The input points are directed into processor 0 one at a time and sorted according to their 

x-coordinates. The points are "pushed" into the next processor as new points are entered. 

When a new point is received from the processor's input, the new point is sorted together 

with the points which the processor is already storing and the Graham's scan is performed 

on the sorted list of points to determine those points that are extreme points. Chazelle 

[78] shows how to solve the problem systolically on an n-node linear array of processors in 

O(n) time. Others who have studied the 2-D problem are [72], [79]. Table 3.3 illustrates 

the time complexity of some of the parallel versions of the 2-D convex hull problem. 

3.5.2 3-D Algorithms 

The preceding section has shown some theoretical analysis of the parallel versions of the 2-

D convex hull problem. For the 3-D problem, parallel versions of the algorithms have also 

shown that significant speedup is attainable compared with their equivalent sequential 

algorithms. Aggarwal et al. [85] derived a parallel algorithm of o (log3 ( n)) based on the 

Preparata-Hong algorithm. Chow [86] in her thesis also achieved the same run time using 

Voronoi diagrams to control the calculation. Reif and Sen [84] have given an O( logn) 

randomised parallel algorithm for the 3-D convex hull problem using O(n) processors on 

the CREW PRAM model. It should be emphasised that these presentations are largely 
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Table 3.3: Parallel 2-D Complexity Table 

Architecture Author Complexity Processors 
Systolic array Chazelle [78] O(n) n 

CREW PRAM Chow [73, 86] O( I09~n) n 
Multiprocessors Akl [74] O(1092 n ) n;j 

SIMD Akl [76] O(nelo92 n ) n1 e 

0< e < 1 
Square mesh O(fo) 
Hypercube O( I092n) 

Tree machine 
Mesh of trees Miller and Stout [68] O( I09~n/ (I0921092n )2) n 

Pyramid 
Reconfigurable mesh O(lo9~n) 

AKS network O(lo92n) worst case 
Pyramid (ordered input) O(lo92n) worst case 

CREW PRAM Goodrich and Atallah [69] O(lo92n) O(n) 
CREW PRAM Goodrich [70] O(lo92n) O(n/lo92 n ) 

Mesh array (OIA) O(n) (n - 2) 
Cellular array Holey and Ibarra [80] O(n) O(n) 

D-Cellular array O(nl/<1) O(n) 
OCA O(n) n 

58 



theoretical with the authors concentrating on the design and analysis of the complexity 

of their algorithms. Day [77, 89] instead of taking a theoretical approach, presented a 

practical implementation of the Divide-and-Conquer parallel version of the 3-D algorit hm. 

This was implemented on a Meiko Computing Surface using several sizes of network up 

to a maximum of eight processors which were configured in the form of a hypercube. 

The results indicated a significant speed-up compared to the sequential version running 

on a Sun workstation. A speed-up of 5 was obtained using 8 processors and 1.8 using 2 

processors. 

3.6 Summary 

The input to an algorithm for finding the convex hull is an array of points. The output is a 

polytope, also represented as an array of points with the property that tracing through the 

points produces the outline of the polytope. The algorithm simply rearranges the points 

in the original array eliminating unqualified candidates to leave the polytope vertices. 

Clearly, computing the convex hull is closely related to sorting and a sequential lower 

bound of O( nlog2n) time, regardless of data, has been achieved, because often the first 

step is sorting the input. Jarvis's algorithm, on the other hand, uses time that varies 

between linear and quadratic. In Jarvis's approach, the algorithm is simple and consists 

of angle comparisons only. However, the major disadvantage of his gift-wrapping method 

is that in the worst case, when all the points fall on the convex hull, the running time 

is proportional to n 2 • On the other hand, the method has the attractive feature that 

it generalises to three (or more) dimensions. To protect against the worst case (when 

all points are on the hull), it is prudent to use Graham's scan. This gives an algorithm 

which is almost sure to run in linear time in practice and is guaranteed to run in time 

proportional to O( nlog2n). 

The 2-D parallel version has differing running times depending on the architectural 
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model and the number of processors. In each case, there is always an improvement over 

the running time of the sequential version. Similarly, the 3-D problem has also benefitted 

from parallelisation. Surprisingly, despite the continued interest in the subject, the n-D 

problem has not yet been given adequate attention. 
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Chapter 4 

Sequential Algorithms 

The purpose of this chapter is to present sequential or serial algorithms that compute the 

n-D convex hull algorithm facet by facet. Some of the algorithms proposed for finding 

the convex hull for 2-D and 3-D were outlined earlier in chapter three with the method of 

Chand and Kapur [1] presenting the n-D algorithm. The divide-and-conquer method for 

2-D and 3-D rely mainly on recursive partitioning of the point set followed by a merging 

technique to combine the partitions into a full hull. The problem in which the dimension 

is greater than 3 is not as well studied. In particular, the divide-and-conquer technique 

alone does not scale well to higher dimensions. However, Jarvis's gift-wrapping technique 

for 2-D can be extended in a relatively straightforward manner to compute the convex 

hull for n-D problems. 

Two methods are considered during the design and implementation of the sequential 

algorithms for the n-D problem. These are: 

• Recursive Method . 

• Non Recursive or Stack Based Version. 

A recursive program is one that calls itself (and a recursive function is one that is defined 

in terms of itself). In our algorithm, after the determination of the initial facet, the 

algorithm calls itself recursively in order to compute the remaining edges and vertices 
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of the convex hull of the given set. Recursion can be removed from any program [91]. 

It is on this assumption that we develop the nonrecursive or stack based algorithm for 

the same problem. Primarily, removing recursion requires more work in implementation. 

Usually the values of the local variable and the address of the instruction are pushed 

on a stack along with the values of the parameters that are set in the procedure call. 

When the procedure completes its computation, it must pop or unstack the values of the 

local variables and return address from the stack. The removal of recursion, though a 

complicated task, often leads to efficient implementation and a better understanding of 

the nature of recursive implementations. In particular, the stack version provides a more 

efficient parallel implementation (see later) and allows ready access to the various stages 

of the gift wrapping process. 

4.1 The Gift-Wrapping Technique. 

The gift-wrapping technique proposed by Chand and Kapur [1] is based on the observation 

that every edge of C H (S) belongs to exactly two faces of the polytope C H (S), or more 

precisely, the intersection of exactly two faces from a set of faces describing the polytope 

determine an edge. The running time of this algorithm is a function of d, the space 

dimension, N = I S I, the number of points, and J, the number of facets of CH(S). It 

has been shown by Swart [2] that the running time of the algorithm in [1] is O(NdJ + 

d3 P + N d!f). Swart [2] also modified this algorithm to improve upon its efficiency by 

using the affine basis method. In general for d > 3 a face or facet can be defined in terms of 

its edges which are themselves the facets of a polytope in fewer dimensions. In particular, 

the problem is recursive and eventually reduces to a collection of subproblems involving 

only two or three dimensions. Three major steps are involved in the determination of 

C H (S) and these are: 

Step 1: Find an initial facet. 
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Step 2: Given this initial facet, find its subfacets. 

Step 3: Given a facet and one of its sub facets, F, determine the other facet containing 

F. 

The facet problem is that of enumerating the facets of a polytope CH(S), where each 

facet is represented by its affine hull. Chand and Kapur [1] and Griinbaum [88] observed 

that if CH(S) is a d-polytope, each (d - 2)-face F of CH(S) is contained in precisely two 

facets, Fl and F2 , of CH(S) and F = Fl n F2 • To implement steps 1 through 3 above, 

we explain each in more detail. 

In step 1, to find the initial facet, a supporting hyperplane to 5 is constructed. This 

hyperplane is rotated until its intersection with 5 is of dimension (d - 1) (and therefore 

a facet of CH(S)). For simplicity it is sufficient to choose the supporting hyperplane 

to have the normal (1,0,· .. ,0) and for it to pass through the minimal coordinate of S. 

Intuitively, this hyperplane can be viewed as a piece of paper with which we try to cover 

a facet of C H(S). Suppose F is the intersection of the supporting hyperplane with S. 

We perform the following steps: 

• Rotate the supporting hyperplane about F until we intersect a new set of points in 

S. 

• Add any new points so intersected and repeat the rotation until F has dimension 

(d - 1). 

Step 2 requires us to find the facets (or edges) of a facet. Given the initial facet which 

is confined to (d - 1) dimensions, the edges are clearly (d - 2) dimensional facets, and 

can be determined by computing the convex hull of the facet (a simpler problem since the 

dimension is now (d - 1)). 

In step 3, given a facet and one of its subfacets, a (d - 2)-face, we are to find another 

facet containing this (d-2)-face. This can be done by gift-wrapping; rotating a hyperplane 
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by starting at the given facet through the (d - 2)-face until the intersection with a new 

point is achieved. The affine hull of this point and the (d - 2)-face intersected with S is 

the desired result. This means that in d dimensions, the facets of a (d - 1) dimensional 

facet can be regarded as supporting hyperplanes of the convex hull so t hat a (d - 1) 

dimensional facet can be found by rotating the (d - 2) facet until one additional point 

from S is added to the hyperplane making a (d - 1) dimensional facet. Specifically, we 

want to use the algorithm by Swart [2] which is presented here and is based on the affine 

basis method. 

The routine affine_hullO is used to compute the affine hull, which is an input to other 

routines. The orthonormal basis of d-dimensional points in the set S is computed and 

returned as the function result. The associated set of affinely independent points copied 

from S are placed in A, k is the dimensionality of S. Note that k < d is possible (e.g. 

a square in three dimensions). The running time of each of the steps in the routines are 

given in parentheses after each step. 

Algorithm affine_hullO 

Input: d> 1,S ~ Rd 

Output: A ~ S the first points of S which form a maximal set of affinely independent 

points, k is the dimensionality of S. 

function affine_hull(S, d) : (A, k)j 

A := 0; (1) 

Po := first point in S; (1) 

r:= 0; (1) 

For pES - {Po} do 

{check if pOp is representable in terms of elements of A} 
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v := poP; (I S I d) 

for x E A do (I S I k) 

v:= v - a.x; {a a scalar} (I S I kd) 

end 

if( v # 0) {Pop is not representable} (I S I) 

thenA:=AUv (kd) 

end 

return ({Po} U {x + Po : x E A}, IAI) (kd) 

end 

The running time of the algorithm affinellUllO is given by kd I S I which is the time used 

for the Gram-Schmidt Orthogonalisation Process and this stage dominates the com put a-

tion. The code for the routine is shown in Appendix C.l.1l. This method of computing 

the affine hull makes use of the Gram-Schmidt Orthogonalisation procedure which, given a 

set of s linearly independent vectors Ut, .•. , Us, we construct an orthonormal set Xl, ... , Xs 

where the Xi are suitable linear combinations of the Ui, i = 1 to s. 

As an example, consider the following vectors 

we set VI UI and then choose a so that 

This implies 

(Vb U2) 1 
a 

(VI, VI) 4 

giving 

V2 ~ l ~l j 4 -1 
1 
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D 
3D 2D 

Figure 4.1: Transformation Of 3-D To 2-D square 

Similarly 

giving f3 ~ and, -~ and so we compute V3 as 

Normalisation of VI, V2 and V3 gives 

3 -1 1 1 

[ 3] [0] 
SV3 ~ 1 ' X3 = V3 i 

In Figure 4.1, the set S is specified as 3-D points but in fact all points can be transformed 

to a 2-D plane. The affine hull gives us a basis to span the plane in which S lies and so 

reduces the dimensionality of the problem. For example, the square in 3-D with vertices 

{(1,4,0), (4,4,0), (1,1,0), (4,1,0)} can be reduced to a square in 2-D with vertices {(1,4), 

(4,4), (1,1), (4,1)}. Also the affine basis method is preferred because it allows the storage 

of a basis rather than all points on the face. The main algorithm convex_hullO uses two 

subroutines initiaLfacetO and rotateO corresponding to steps 1 and 3. 
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Figure 4.2: Set S Projected Onto The Plane Of e And n 

Algorithm rotateO: In performing steps 1 and 3, a common routine rotateO that 

moves the hyperplane is required. This routine accepts the normal to the supporting 

hyperplane and an affinely independent set to be rotated through, F = {Po,· .. ,Pk}, and 

returns a point J E S such that AH(F U {J} n CH(S)) is a (k + 1)-face of CH(S) but J 

is not on the starting hyperplane. In the routine we are given a k-dimensional subset of 

S as defined by the affine hull AS and a set F of j < k - 1 points with outward normal 

defining a j-face of the convex hull. A point J and a new normal are determined such 

that when J is added to F a (j + 1 )-face is produced. 

Chand and Kapur [1] give an efficient method for computing J. Their method involves 

the computation of a vector e = (ell e2,···, ed) which together with n (the unit outward 

normal to a supporting hyperplane of C H (S) that contains F) define a 2-flat (a plane) 

upon which the angle will be measured. The vector e is chosen so that it is orthogonal 

to both affine(F) and n. For every vector Vp = poP, which is projected onto the 2-flat so 

defined, vectors are determined so that the angle between them and n are minimised or 

maximised as shown in figure 4.2. The components ej of vector e are computed by finding 
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a solution to the system of linear equations: 

e.n 0 

where 

1,2,···, k. 

The projection of vp onto the 2-flat is given by 

and the tangent of the angle ()p between Vp and it by 

e.vp 
tan ()p = --A-. 

n.vp 

The vector orthogonal to VJ is given by 

n* .Vq :::; 0 for any q E S 

and it is an outward normal to a supporting hyperplane containing the (k + I)-face. 
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Algorithm rotateO 

Input: d ~ k > 1,5 a k-dimensional subset of Rd, AS = affineJmU(S,d); Fa (j + 1)­

membered subset of AS, s.t. j < k - 1 and affineJmll(F, d) n CH(S) is a j-face 

of CH(S), it the unit outward normal to a supporting hyperplane of C H(S) that 

contains F. 

Output: J E 5 s.t. 5 n AH(F U J) is a (j + I)-face of CH(S) and fI: =I n is the unit 

outward normal to a supporting hyperplane containing the face. 

function rotate(S, AS, d, k, F, n) : (P, n)j 

Pick a point Po E F; (1) 

{compute a unit vector e E affine(S) orthogonal to F and it} 

AS' := {PoP: pEAS - {Po}} (kd) 

F* := (j + 1) by k matrix of the vectors {Pop: p E F - {Po}} U {it} is represented 

in the basis AS'; (j kd) 

Pick a solution e' to F*e' = 0; (jkk) 

e := e' translated back into Rd with AS'; (kd) 

e = e j II e II; ( d) 

Compute the minimum and maximum of tanBp = -(it.vp)j(e.vp) over all points in 

p and 5; (I 5 I d) 

J = one of the points computed above whose tangent was not positive or negative 

infinity; (d) 

.. ( A) A ( A) A n = vJ.n e - vJ.e n; (d) 

n* := n*j II n*lI; (d) 

if n.pO'p > 0 for any pES {i.e. check the orientation of the outward normal} 

then n* := -n*; 
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return (J,n*); 

end 

Normally, once a facet is known, a single call of rotateO will produce a new facet but 

at the start of the algorithm a number of rotates are required to ensure that the facet 

has dimension d - 1. The running time of rotate is given as jkd + diS I. The two 

major steps that contributes to the running time of this routine are the formation of the 

(j + 1) by k matrix and the computation of the angle. The code for rotate 0 is given in 

Appendix C.1.g. 
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Algorithm initiaLface 

Input: d 2: k > 1, S a k-dimensional subset of Rd and AS = affineJlUll(S, d). 

Output: Fan affinely independent subset of S s.t. AH(F) n C H(S) is a facet of C H(S) 

and n is its normal vector. 

function initiaLface( S, AS, d, k) : (F, n) 

Pick an i such that not all the points in S have the same ith coordinate; (d) 

F := set of points in S with minimal ith coordinate; (I Sid) 

F := affineJmll(F, d) (I S 1 kd) 

n := projection of the outward normal (0,0, ... ,-1,0, ... ,0) 

{ i.e. vector with -1 in the ith component} onto affine(AS) (kd) 

while 1 F 1 :::; k - 1 do ( k ) 

(P,n):= rotate(S,d,F,n); (k(kkd + diS I)) 

F := F UP; (kd) 

end; 

return (F, n) (d) 

end 

The running time of initialJacetO is given as kd lSI + Pd. This is made up of the 

sum of the time for computing the affine hull and the rotation step. The code is presented 

in Appendix C.l.10. We are now ready to see the whole convex hull algorithm using the 

routines discussed above. 
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4.1.1 Recursive Method 

Algorithm convex_hull 

Input: d 2: 1,S a k-dimensional subset of Rd , AS = affine~ull(S,d). 

Output: C H ~ S, a set of vertices of CH(S). FAa family of sets of affinely independent 

points {FAt, ... ,F Afd_J such that affine(F Ai) is a hyperplane containing the ith 

facet of CH(S). 

function convex_hull(S, AS, d, k) : (CH, FA); 

{Check for a one dimensional set} ( 1 ) 

if (k = 1) then 

Let AS = {Po,pt}; 

min := pES s.t. p({P.POPl is minimised; (I Sid) 

max := pES s.t. p({P.POPl is maximised; 

return {{max,min}, {max}, {min}}; j* check for a simplex *j 

{Check for CH(S) a simplex, this is a SIMPLEX BYPASS} 

if 1 S 1 = k + 1 then (1 ) 

return (S, {FA ~ F: 1 F 1 = k}) (kd); 

(F, n) := initiaLiacet(S, AS, d, k); (kd 1 S 1 +Pd) 

{ Find the rest of the facets } 

Edge list := 0 (1) 

CH:= 0 

FA:= 0 

{Find each (k - 2)-face's facet} 

do (h-d 

FA := FA U {F}; (h-lkd) 
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Pick a point po E Fj (h-l) 

F' := {p E S : pop.it = OJ; (h-l I S I d) 

(FCH,FFA) := convexJlUll(F', F, d, k -1); (Li T(F:, k - 1)) 

CH := CH U FCH; (fd-l I S I d) 

while(FFA =1= 0) do (2h-2) 

{remove facet(E,-) from FFA; (2!d_2kdlog h-2) 

if (E E EdgeList) remove facet (E,- ) from EdgeListj 

else add (E, it) to EdgeList; } 

if(EdgeList =1= 0) (h-l) 

{ Pick an (E, it) from the edge list; 

(P,it):= rotate(S,AS,d,k,E,it); 

F = E U {P}j } (h-1d) 

}while(EdgeList =1= 0); 

return (CH,FA); 

end 

(h-lkd) 

(fd-l(Pd+ I S I d)) 

The time for one call of this procedure on a set S C Rd of dimension k ~ d and 

cardinality n > k + 1 is given by 

T(S, k) = O(k2dh_l + dnh-l + kd/d-21og/d-2 + LT(F/, k - 1)) 

where !k is A(P) and F: is the set of points sharing the hyperplane with the ith facet of 

P. The boundary conditions are T(S, k) = 8(k d) if I S I = k+1, and T(S, 1) = 8(n). 

The main driving routine in the program is the function convex_hullO that takes a set 

S of dimension n and affine basis AS a subset of S with dimension k. The function 

returns the set of points CH(S) which are the vertices of the convex hull and FA the 

lists of facets. The routine is recursive. Given the set S, the routine firstly determines the 

number of points in S and checks for a I-dimensional set which in this case is a straight 
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line. If there are only two points, they are returned as the vertices and the edge. In the 

case where there are more than two points, the end points will be returned as the vertices 

of the convex hull and the edge. If the input set S is not a 1-dimensional set. the routine 

calls the function InitiaLfacetO to compute the initial face to start the computation of 

the faces. All the points on the initial face are copied and used as the input to call the 

convex hull routine recursively to compute the vertices and edges of this face. The vertices 

and edges so computed are stored in the FC Hand F F A lists respectively. Before storing 

the vertices and edges so computed, the routine checks the already existing vertices and 

edges to ensure that there is no duplication. The routine keeps the edges computed at 

each recursive call in an EdgeList. While there are still more edges in the EdgeList, an 

edge is picked with its outward normal and rotated by calling the function rotateO in 

order to determine a new face and the process is repeated. A simplex bypass is added as 

a quick exit for recursion. In order to check for a simplex bypass, consider a set with k = 

2 having three points S = {(3,3), (3,1), (l,l)}, then I S I = 3 = k + 1, so the points are 

vertices of the convex hull and the edges (faces) are the permutation of k vectors. e.g. k 

= 2 and CH(S) = S. FA = {{(1,1), (3,3)}, {(1,1), (3,1)}, {(3,3), (3,l)}}. 

4.1.2 Stack Version 

As a variation to the recursive partitioning method, we have also implemented a non 

recursive or stack based version. Non recursive methods are more efficient and allow a 

better management of dynamic memory allowing larger problem sizes to be processed. A 

stack that is proportional to the size of maximum dimension is created in order to solve 

the convex hull problem. Each level of the stack is a record that contains the following 

information: 

• Set of points S 

• Set of points AS which is the affine basis of S 
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• The dimension k of 5 

and the following lists which are initially set to the empty list. 

• EdgeList, Elist 

• Convex hull list, CH 

• Face list, FA 

The Elist is used as a storage for the computed edgelist determined during the com­

putation. Once an edge is found twice, the two adjacent faces with this edge as their 

intersection have been found and this edge can be deleted from further consideration. 

Initially, the stack level is set to zero and the initiaLiacetO routine is called to 

determined the initial face to initiate the computation of the rest of the faces and vertices 

of the object. The edges of the initial face so determined are preserved in the Elist. 

When an edge is selected it is rotated and a new face determined, copying all the points 

on that face onto the next level of the stack with the maximum dimension decremented 

by 1. With the new set of vertices, affine basis and dimension, the CH, FA, and Elist 

are computed. This process is continued until the highest level on the stack is equivalent 

to the maximum dimension size. After the computation of the Elist, CH, and FA, the 

face so computed has to be unstacked before a new edge is selected for consideration. The 

components in Elist, CH and FA on stack level sp are unstacked to the lower level sp-l 

ensuring that there is no duplication of members. This is continued until the stack level 

is again reduced to zero. Another edge, if any, is then picked, rotated and the process 

repeated to determine yet another face. Edges are picked until the Elist at sp = 0 is 

empty and in that case all the faces have been computed. 

Figure 4.3 illustrates the stack version with a 3-D example. In each of the partitions, 

the steps described here are executed. The Elist, CH for the convex hull and FA for the 

75 



.. .. .. .. 
sp=2 .. 

S AS k=! Elist CH FA 

, , , , 
S AS k=2 Elist CH FA 

sp= 1 

S AS k=3 Elist=O CH=O FA=O sp=O 

Figure 4.3: Stack Implementation For 3-D 

facets list are initially set to null sets at level sp = o. 5 is the set whose convex hull is 

to be determined and AS is its affine basis with k representing the dimension. First of 

all, the initial face is computed to start the execution of the program. All the points of 

S that are on the initial face are copied into 5' which is on the next higher level of the 

stack, i.e. level sp = 1. The affine basis of 5' is computed which we represent as AS' 

for the k -1 dimensional set. (Elist)" CH' and FA' are then computed for that level on 

the stack. At sp = 2 the problem is trivial as it reduces to straight lines where the end 

points form the vertices of the hull i.e. CHand two extreme points define an edge which 

in turn describes a facet. To complete the computation on that face, the (Elist)" CH' 

and FA' lists are now unstacked from sp = 2 to sp = 1. At each level of the stack, the 

algorithm checks the list at the lower level before adding the list from the upper level of 

the stack to ensure that there is no duplication. This is repeated until sp = O. 

A new edge is now selected from the Elist and a rotation is performed along that edge 

to describe a new face where the above steps are repeated on that face to compute C H 

and FA. This rotation step is repeated as long as there are more edges in the Elist. A 

number of rotations may be necessary depending on how complex the shape of the object 
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is. A merge of two subproblems followed by convex hull computation using the sequential 

stack version is then carried out with the final results emerging after the last merge and 

compute process. The sequential stack algorithm is summarised as follows: 

Function Convex Hull(S,AS,n,k) : (CH,FA); 

{ /* setup the stack * / 

sp = 0; Stack[sp].S = S; Stack[sp].AS = AS; Stack[sp].k = k; 

Stack[sp].Elist = 0; Stack[sp].FA = 0; Stack[sp].CH = 0; 

do{ 
if(Stack[sp].CH = 0 and Stack[sp].FA = 0) 
{ 

if(k = 1) /* a 1 - dimensional set * / 
{ AS = { po, PI }; 
min = pES such that PolJ},PoPl is minimised 
max = pES such that POPI,POPI is maximised 
return ({max,min} , {max}, {min}); 
} 

if (I 5 1 = k + 1) 
return (5, {F ~ 5 :1 F 1= k}); /* check for a simplex'" / 

else 
{ 
(F ,n) = initial facet(S,AS,n,k) 
FA = FA u { F } 
F' = 0; 
Pick a point Po E F; 
F' = {p E 5 : p~. n = O} ; 
sp = sp+l; Stack[sp].S = F' ; Stack[sp].AS = F; 1* stack the face */ 
Stack[sp].k = Stack[sp].k-l; 
EdgeList = 0; Stack[sp].CH = 0; Stack[sp].FA = 0; 
} 

} /* unstack completed faces * / 
if (Stack[sp].CH ::j:. 0 and Stack[sp].FA ::j:. 0) 

while(EdgeList = 0 and sp > 0) 
{ 

while(Stack[sp].CH::j:. 0) { Pick P E 5tack[sp].CH} 
if(p t/:. Stack[sp-l].CH) 
Stack[sp-l].CH = Stack[sp-l].CH U p; } /* Insert point * / 
while(Stack[sp].FA::j:. 0) 
{ 
remove facet (E,-) from Stack[sp].FA; 
if(E E Stack[sp-l].Elist) remove (E,-) from EdgeList 
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else add (E,-) to Stack[sp-1].Elist 
} 

Delete lists: Stack[sp].S; Stack[sp].AS; 
Stack[sp].k = 0; sp = sp-1; 
} 

if (EdgeList i= 0) /* get next face * / 
{ 
Pick an (E, it) from EdgeList; 
(p, it) = rotate(S,AS,n,k,E,it); 
F=EU{p}; 
FA = FA U {F} 
Pick a point po E F 
F' = {p E 5 : POPl. it = O}; 

/* stack the face * / 
sp = sp +1; Stack[sp].S = F'; Stack[sp].AS = (F,it); 
Stack[sp].k = Stack[sp-1].k-1; 
} 

}while(EdgeList i= 0 or sp > 0) 

return (Stack[O].CH, Stack[O].FA)j 
} 

4.2 Sequential Implementation 

In our programs we employ the C programming language with sets implemented as circular 

linked lists. Sets of sets (i.e. EdgeList and FA) are circular lists augmented with a vector 

for the facet normal it. This representation follows because the pair (E, it) in the algorithm 

define a facet in terms of points on the facet and the outward normal. The routines for 

manipulating the points and the edges are shown in Appendies C.l.1 and C.l.2. The 

non-recursive method is intended to provide a better management of dynamic memory 

allowing larger problem sizes to be processed in a distributed memory implementation. 

The vectors or points are represented as arrays. The list structure is to provide a dynamic 

memory allocation which allows the list to expand or shrink depending on the size of the 

data. 

Some other auxiliary routines are provided for development of the algorithms and are 

described below. First a routine Remove~uplicate~ointsO (Appendix C.l.6) exam-
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ines the set, eliminating points that appear more than once, if any. The points are then 

sorted lexicographically according to their x co-ordinate using the routine Quick_SortO 

(Appendix C.1.3) with average time O(n log2 n) and O(n 2
) in the worst case. The algo­

rithm then splits the ordered set of points into p subproblems, where p is the number of 

partitions, corresponding to the number of processors to be used in the parallel implemen­

tation, solve all the subproblems by calling the sequential algorithm GenerateJiullO 

(Appendix C.1.4) to compute the convex hull for each of the subproblems and then merge 

all the subproblem solutions to obtain the solution to the original problem. 

4.3 Program Testing 

Program testing is that part of the validation process which is normally carried out during 

implementation. Testing entails exercising the program using data similar to the real data 

the program is designed to execute on, observing the program outputs and inferring the 

existence of program errors or inadequacies from anomalies in that output. Testing in fact 

is meant to reveal program errors but in our context it is also used to assess overheads of 

various implementation strategies. For very large programs it is unrealistic to attempt the 

testing process as a single unit. Large programs are built out of procedures and functions. 

Testing the system as a whole will make it difficult to detect and identify errors. Testing 

could be carried out in stages. 

In order to test our algorithms, we have to design our test data to cater for shapes with 

peculiar characteristics. This is because some of the algorithms seem to perform better 

with some test data than with others. In particular we have considered the following: 

Type 1: Hulls with a small number of vertices but many interior points. 

Type 2: Hulls with many points on the faces. 

Type 3: Hulls with many vertices and few interior points. 
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Table 4 1· Test Data .. 
Points Vertices Dimension 

25-4000 3 
25-4000 4 
25-4000 6 2-D 
25-4000 16 
50-4000 26 
25-4000 3 
25-4000 4 3-D 
25-4000 6 
25-3000 12 
25-4000 3 
25-4000 4 4-D 
25-4000 6 

The experiments were repeated with sets of points of different sizes in 2-D to 4-D problems. 

For problems greater than 4-D, we did not try them because we ran out of memory each 

time we made an attempt. Table 4.1 illustrates the dimensions and size of data set we have 

used to test our algorithm. This data is used to test our algorithms using the partitioning 

technique discussed in chapter five. Another noticeable feature in the table is the fact 

that the different options mentioned in Type 1 to Type 3 above are adequately catered for 

in our test data. Running our algorithms with the different test data will reveal how the 

size, dimension and number of facets may affect performance. For example, a problem in 

2-D of size 50 with 4 vertices on the convex hull will give a different running time when 

compared with a similar problem in 3-D. If we consider a 2-D space, the shapes in Figure 

4.4 (a) to (c) demonstrate some of the shapes that we considered when generating our 

test data. The convex hull in Figure 4.4( a) has very few vertices as against those of (c) 

with many vertices while in (b), the edges have more than two points. Our algorithm is 

designed to trap such features and return only the two extreme points eliminating those 

points that are between the vertices. The size of the test data ranges from as small as 25 

points to as many as 4000 points thus satisfying conditions (1) to (3) above. 
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Figure 4.4: Types Of Shapes In 2-D 

The characteristic mentioned in (3) is satisfied in the test generator for the imple­

mentation discussed in chapter six. In fact all the points generated to test our imple­

mentation in chapter six consists of points that are all on the vertices of the convex hull. 

Generate_Test2() (Appendix C.2.2) and Generate_Test3() (Appendix C.2.3) are used to 

generate these data and their detailed discussions are clearly given in the appropriate 

section. These sets of data were necessary because our algorithms in that chapter were 

designed for problems with many edges and vertices. Data items designed for the parti­

tioning technique will perform poorly if used. The data for Type 1 are for the partitioning 

techniques in chapter five. 

4.4 Design Of Test Data 

The input data to the convex hull program is a set of points in d dimensions and the output 

is the vertices and faces of the convex polytope. Planning the testing of this algorithm 

involves formulating a set of test cases which are akin to the real data that the system 

is intended to manipulate. The test data consists of d, the dimension, n the number of 

points in the set S and the vectors or points. The aim was to ensure that the program 
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responds as expected to both valid and invalid input, and that it performs to specification. 

Separate and different codes were written to generate data for the programs in chapters 

five and chapter six. This variation is necessary because of the manner in which the 

programs are designed to manipulate the data. 

4.4.1 Test Generation For Type 1 Hulls 

In order to obtain data to test our programs, codes were written to generate the test 

data. The algorithm uses the standard C random number generator to generate the test 

data. A routine Generate_TestO (Appendix C.2.I) was written for this purpose. A set 

S which contains the vertices of the convex polytope are given as input data. The routine 

Generate_TestO first of all computes the convex hull of the given set producing FA as 

its facets. A random number seed is then given as input to activate the random number 

generator. The algorithm also requires r the total number of points to be generated. The 

required number of points is then generated randomly inside the polytope. To eliminate 

unnecessary duplication of points, the routine Remove...Duplicate~ointsO checks and 

removes points that are duplicated. The process repeats until r points are produced and 

aborted after a large number of trials. Also to ensure that the points generated fall inside 

the convex polytope, a routine called Check_HullO (Appendix C.1.5) ensures that all 

the points generated are within the specified boundary and this uses the faces computed 

from the initial convex hull. A set S consisting of the convex hull as a subset together 

with the additional points generated is returned and this will act as our input data. 

4.4.2 Test Generation For Type 2 Hulls 

To exercise the facial lattice program in chapter six it is necessary to generate complex 

hulls with few or no interior points. The above mechanism is not suitable. 

The data used for the timings were generated using programs written to produce S, 

the set of n-dimensional points. For the 2-D case, a centre c is chosen on the plane and a 
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Figure 4.5: Illustration of 3-D Circular Shape 

constant radius r. With the starting radius, and rotating in an anticlockwise direction, an 

angle () is formed with another point say, Pi such that arc PPi subtends an angle () at the 

centre of the circle. By stepping with this constant angle and radius around the circle, 

the points so generated are used as our test data to compute the vertices of the convex 

hull of S. For the 3-D object the method is easily extended with two additional points 

projected in opposite direction as the vertex of the object as shown in Figure 4.5. This 

is a simplified representation of a circular structure with a square base, but the vertex 

projected in opposite directions. The shape can be viewed as two separate pyramids on 

a common square base. 

The next set of data aims at generating objects with more vertices and edges. Figure 

4.6 shows a section of the 3-D pyramidal shape and the faces that could be computed in 

parallel. This object can be viewed as a pyramidal structure built with rectangles in such 

a way that the square on the next upper level is smaller than the one immediately below 

it. The angle of inclination at each square is varied so that the vertices are not co-linear. 

The algorithm could be modified to produce a similar object in the opposite direction 

both having a common base which is the initial square, thus resulting in a shape with 
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Figure 4.6: Illustration of 3-D Pyramid Shape 

more vertices and edges. Type 3 data can be generated by employing a mixture of the 

techniques for Type 1 and Type 2 data. 
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Chapter 5 

Implementation Using Partitioning 

The algorithms in this chapter combine divide-and-conquer partitioning techniques with 

the gift-wrapping concept discussed in chapter four. Both recursive and non-recursive 

(stack based) algorithms have been implemented using master-slave and fanin tree ap­

proaches in shared memory (Encore Multimax) and message-passing (Transputer - .'dcikcJ 

Computing Surface) architectures. The performance of the parallel versions are monitored 

with several partition sizes on different numbers of processors running on the same parallel 

machines. 

5.1 Sequential Method 

The sequential Divide-and-Conquer method that we propose is given here in this section. 

The main idea is to divide a problem into p subproblems of approximately equal size, solve 

the subproblems and merge the solutions to the subproblems. Our sequential program 

is based on both the recursive and stack versions of the algorithms presented in chapter 

four. Both versions were implemented on the shared memory and transputer architectures, 

running each version on one processor of each machine. Initially, the points are sorted 

lexicographically using the quicksort algorithm. Duplicate points are also removed from 

the list. The computing time for the sequential algorithm as stated earlier in chapter four 

is gin'Il by nUN d + d3 P + d!df) where f is the number of facets of C H( 5). The p term 
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can be reduced to j log2 j if we use binary tree data structures (as in Swart [2]). Clearly 

when N » j, or d, the key to a fast convex hull algorithm is the ability to eliminate 

large numbers of points from S as quickly as possible. The algorithm splits the ordered 

set of points into p > 1 partitions from which p convex hulls are generated by calling the 

sequential program on each partition. The sub convex hulls are then merged to form the 

complete hull. The algorithm is given as follows: 

Algorithm CH(S) 

Input: A set S of n points in space. 

Output: The list CH(S) i.e. the vertices of the convex polytope of S. 

Step 1: Sort the n points of S, and partition S into sets Rl, R 2 , ••• ,14, where p is the 

number of processors. 

Step 2: Solve the convex hull problem for each 14, i E {I, 2, ... ,p}, using the sequential 

convex hull routine. After the return of each computation, we will have CH(14) for 

each 14. 

Step 3: Find the convex hull of S by computing the convex hull of the union of the p 

convex polytopes CH(R1 ), ••• , CH(J4). This is done by using algorithm Merge!. 

Merge1 

Input: The collection of convex polytopes C H(R1 ), ... ,C H(J4). 

Output: The list of points consisting of the vertices of CH(S). 

For i = p down to 2 1* loop 1 * / 

begin 

CH(Ri-d = CH(14-d U CH(14) 
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Generate_Hull( C H(I4-1)) 

CH(Ri) = 0 

end. 

The sequential merge algorithm is performed in loop 1. Suppose there are p partitions, 

the convex hull of each partition is computed using the sequential algorithm. The first 

merge step is to find the union of the set of points in partitions p and (p-l) and computes 

its convex hull. This result is in turn merged with partition (p - 2) and the same process 

is repeated until the final merge appears in partition 1 where the vertices of the convex 

polytope are filtered out. This clearly demonstrates that at each step two subproblems are 

merged together followed by a computation step which finds the vertices of yet another 

subproblem. In the case where the size of the partitions is reasonably large and not all the 

points are on the convex hull, the first call of the sequential algorithm greatly reduces the 

number of points to be considered in the subsequent stages by eliminating the points that 

are interior to each sub convex polytope. The timing for computing the convex hull for 

the different partition sizes and the number of points using data of Type 1 were recorded 

(see chapter 4). This will be compared against the time used to compute the convex hull 

of the same problem using the same number of partitions in parallel. 

The parallel implementation of the n-D convex hull algorithm discussed in this chapter 

is modelled by a fanin tree structure. The main approaches in which the fanin tree can 

be implemented depend on the architecture available. Assuming an unlimited number of 

processors we can consider the following approaches: 

1. Simulate Levels Of The Tree. 

2. Emulate The Tree In Hardware. 

3. Hybrid Approach 
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In the following sections we will consider these methods for both shared memory and 

distributed memory architectures. Before proceeding, it is worthwhile considering the 

problems involved in the various approaches. 

In the shared memory machine, we implement the simulated fanin tree. The tree is 

simulated level by level by reusing some of the processors. This is suitable for a shared 

memory implementation because the bus traffic is considerably reduced by simulating the 

tree at different levels. At each level of the simulation, the number of processors being 

utilised is also reduced. To model a tree in hardware using a shared memory architecture 

will present some difficulties because the machine is a bus-based architecture and will 

suffer from communication delays due to too much traffic. 

In the message passing paradigm we have emulated the tree in hardware as well as 

simulating the tree level by level, adopting a master-slave relationship and reusing some 

of the processors. These implementations are enhanced by the architectural design of the 

distributed memory machines. For the transputer machine that we use to implement our 

algorithms, the four bidirectional links between each processor promote the exchange of 

messages among processors. The different methods that we use to model the tree in the 

message passing architecture are discussed in more detail in section 5.4.2. 

The hybrid approach seeks to combine options 1 and 2 above in its design. Basically, 

the initial partitions are distributed to the slave processors where the sub convex hulls are 

computed. Two neighbouring processors merge their results and one of them recomputes 

the new subhull. This in turn merges with another and the process is repeated until the 

last two processors merge where the final result will be filtered out. The proposed method 

is illustrated in figure 5.1. Here PI to P4 compute their respective subhulls. In the next 

stage PI merges with P2 while P3 merges with P4 and new sub hulls are computed. The 

final stage involves the merging of PI and P3 followed by the computation of the final 

convex hull. We have not implemented this method because of problems with comparison 
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Figure 5.1: Illustration Of Hybrid Approach 

between the architectures available and the communication difficulties. 

5.2 Shared Memory Implementation 

The convex hull problem has a solution which is expressible directly by recursion. The 

ability to map the solution onto a recursive function leads to an elegant and natural 

implementation. The power of recursion is utilised here since the solution can be expressed 

by successively applying the same solution to subsets of the problem. The recursive 

convex hullO routine is given in chapter four. The parallel implementation of this 

version in the shared memory architecture now follows: 

Parallel ConvexJiuliO 

Input: A set 5 of n points. 

Output: A list C H(S) i.e. the vertices of the convex hull. 

Method: Step 1: Sort the n points by minimal first coordinate, and partition S' into 

sets R 1 , R 2 , ... , Rp such that Rb R2 , ••• , Rp = partition(S. d) 
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Step 2: Recursively solve the convex hull problem for each.&, in parallel by assign­

ing each partition to a processor. Each processor calls the sequential recursive 

Convex_Hull() routine concurrently to compute CH('&). After the parallel 

recursive call returns we will have CH('&) for each .&. 

Step 3: Find the convex hull of S by computing the convex hull of the union of 

the C H (Rt), C H (R2 ), ••• , C H (Rp). This could be achieved by using algorithm 

Merge20 described below: 

Algorithm Merge20: 

Input: The collection of convex polytopes C H(R1 ), • •• ,C H(Rp). 

Output: The convex polytope of the vertices of the union of CH(.&)'s. i.e. CH(S). 

procs = r p/21 

if procs odd C H(Rp+l) = 0 

while(procs i= 1) /* loop 1 * / 

{ 

For i = 1 to procs 

{ 

CH('&) = CH('&) U CH(Rrp/2l+i) 

} 

C H(Rrp/2l+i) = 0 /* loop 3 * / 

Generate_Hull(CH(R;)) /* loop 2 * / 

procs = rprocs/21 

} 

Generate_Thread_Hull(.& ) 

/* Computes the convex hull of set.& producing vertices in CH('&) and facets in FA */ 
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if(IsEmpty..Plist(14) =I TRUE) 

if(14 =I GetNext..Point(14) 

14 = Remove...Duplicate..Points(14, n) 

Quick_Sort(GetNext..Point(14), GetPrev..Point(14), n) 

Affine-Hull(14, n, AS, k) 

Convex-Hull(14, AS, n, k, CH(14), FA) 

else 

Return single point as C H (14) 

else 

MakeEmpty ..Plist( C H(14)) 

MakeEmpty ~list(FA) 

The main idea is to merge and to compute in parallel the convex polytope of the 

union of two sub convex hulls by using p/2 processors at each stage. If the number of 

subproblems is odd, the algorithm generates an additional partition which is empty so 

that an even number of partitions are obtained. The points inside each of the CH(14) 

need not be considered any further because they cannot be vertices of CH(S). This 

algorithm could be summarised as follows: 

R}, R2 , . .• , Rp = partition(S, d) 

/* Find the convex hull of partitions in parallel * / 

For i = 1 to procs 

THREADcreate(Generate_Thread_Hull, i, 0, ATTACHED, 30*1024, 2) 

while(THREADjoinO) 

/* merge the partitions in parallel * / 

if(procs /2 = 0) 

procs = procs/2 
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else 

procs = procs/2 + 1 

while(procs =I 1) 

{ 

For i = 1 to procs 

THREADcreate(Merge2, i, 0, ATTACHED, 30*1024, 2) 

while(THREADjoinO) 

if(procs /2 = 0 or procs = 1) 

procs = procs/2 

else 

procs = procs/2 + 1 

} 

CH(S) = CH(R1 ); 

This algorithm is a sequential coding of a binary fanin tree algorithm where the C H(R) 

are computed on p processors and then merged and further reduced as they filter up the 

tree with CH(S) emerging from the root. For a particular iteration of loop 1, j say, loop 

3 followed by loop 2 is executed on level j of the tree with a tree node performing the 

lexicographic set union of two lists of points followed by applying the recursive Convex 

RullO to the result. A crude timing estimate can be given by !1( (log 2 P + 1 ) (fmax nd + 

d3 fmax 2 + d!dfmax)) assuming that the last partition at the root contains all N points (i.e 

the input set was the set CH(S) and must be an upper bound for the partition size at all 

the other levels in the tree. The value fmax is the maximum number of facets in the hull 

of any partition. Alternatively, we can use the bound !1((log2P+ l)(fmaxdn/p+J3 fmax 2 + 

d!dfmax)) if n/p is the maximum number of points in any partition which in general is 

unknown. Observe that although we can guarantee the size n/p is true for the starting 

partitions it may not be true once merging occurs and points are eliminated. However, it 
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Figure 5.2: Merge Tree For Eight Subconvex Hulls 

is likely to hold for convex hulls with a small number of vertices because each partition is 

likely to eliminate few interior points during computation. We conclude that these results 

are comparable to previous parallel methods on fixed number of processors discussed in 

chapter three and in any case approximate linear performance in n for small p, d and f 

as expected compared to n log2 n for most sequential algorithms using divide and conquer 

methods. Notice that both our sequential and parallel methods involve partial sorting so 

that the n log2 n condition can be omitted since no speedup is expected from that portion 

of the program. The diagram in Figure 5.2 illustrates the method using eight processors. 

The merge and convex hull computation takes place at subsequent levels of the tree. The 

arrow indicates the direction of fanin. The example in the diagram illustrates a perfectly 

balanced tree but in general this may not be the case. Some examples of unbalanced trees 

include cases where p, the number of processors, is odd or when p cannot be expressed 

as a power of 2 (e.g. p = 10). Our method deals with this automatically but degrades 

performance. Where the number of processors at a particular level of the tree is odd, 

an empty sub convex hull is created and this is merged with the extra sublist. By this 

approach, a balanced tree is created at the expense of performance. 
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5.3 Results From Shared Memory Machine 

The programmer does not have control of the allocation of either processors or storage in 

the shared memory implementation. The libraries allow multiple tasks to be setup and 

they are allocated to processors by the operating system (this is to allow flexibility in a 

multi-user environment). Different versions of the proposed algorithm described above 

have been implemented in the shared memory architectures. 

This section on practical implementation and results demonstrates the performance 

of our techniques on the shared memory machine. All timings were done at off peak 

times. The EPT library provides a facility whereby the system clock can be started. In 

all cases our timings exclude the times used for reading the input and writing the output 

from and to files. A comparison of the serial time with the potential parallel time for 

a divide-and-conquer construct-and-merge algorithm shows that a significant speedup is 

possible. 

We have used up to 4000 points to test run our algorithms as shown in table 4.1. The 

experimental data used to test our algorithms were generated using Test Generation 

For Type 1 Hulls. This is discussed in detail in section 4.4.1 of chapter four. Polytopes 

of different shapes were considered. For example, in 2-D we consider shapes with three, 

four, six, sixteen and twenty-six vertices on the convex hull to illustrate a triangle, a 

quadrilateral, and a hexagon etc. each showing an increase in the number of vertices 

and faces of the shape under consideration. Similar trends are followed for the 3-D and 

4-D polytopes. The generated set was then split into the required number of partitions. 

Execution times were then recorded in microseconds for the serial and parallel algorithms 

using 2 to 6 parti tions (processors). Tables 7 - 28 of Appendix A show the timings recorded 

for the various data sets used to test our algorithms. The performance characteristics -

speedup and efficiency discussed in section 2.12.1 and 2.12.2 of chapter two, and used to 
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characterise our performance were computed from these tables. Tables 7(2)27 of Appendix 

A show the timing recorded for the recursive version using threads and microthreads with 

the dimension and the number of points on the convex hull clearly stated for each problem 

size. Similarly, the timing for the stack version on similar problems are recorded in Tables 

8(2)28 of Appendix A. In all cases, what is easily noticeable is the fact that significant 

improvements of the running times of the parallel algorithms over the sequential ones 

are achieveable. In particular the 2D problem reaches its optimal speedup of 2 when 

using 2 processors. This apparent lack of overhead can be attributed to some book­

keeping exercises in the architecture. The speedup for the same problem size decreases 

as the dimension of the problem increases. A plot of the speedup against the number of 

processors for some of our results are shown in figures 5.3 - 5.8 which are presented in 

the graphs. A common feature in both the recursive and stack versions is the fact that 

the running times depend on the problem size, the dimension and the number of facets of 

the convex hull. For example in 2-D, using the recursive implementation, we have shown 

the performance from 50 to 4000 points with 26 vertices on the convex hull as in Table 

15 of Appendix A. This is illustrated in figure 5.3. In this case the speedup increases 

quite rapidly with an increase in the problem size. 3-D with 12 vertices demonstrates 

the effect of 2000 points (see Table 23 of Appendix A). Figure 5.5 shows the performance 

using microthreads and again the speedup increases steadily but not as much as it was 

in the 2-D case. This is because of the increase from 2-D to 3-D problem. In the 4-D 

case, using a problem with 6 vertices on the hull and a problem size of 500 points is 

shown in Table 27 of Appendix A. Figure 5.4 gives the representation. In contrast to 

the above, the stack version has the capacity of running a larger problem size. This is 

shown using 3-D with 12 vertices on the hull and 4-D with 6 vertices on the convex hull 

Tables 24, 28 of Appendix A where problem sizes of up to 4000 points were used. The 

stack implementations for similar problems are illustrated in figures 5.6, 5.7 and 5.8. The 
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problem in the recursive version is as a result of the combinatorial nature of the point and 

edge data structures. Each call to the algorithm generates new vertices and edges which 

are stored and eventually fills up a lot of space in the memory. This is likely to happen 

when the shape of the object has a lot of faces and vertices on the convex hull. Also, each 

sub problem generates its respective results (vertices and edges) which also contributes 

to the increase in the storage space in memory. 

However, a common feature is that the speedup increases as the problem size increases. 

This is due to the fact that a lot of points are eliminated during the first stage of the 

computation and the steps involving the merge are less significant. Also worth noting is 

the fact that when using fewer number of processors, the speedup increases more rapidly 

as against using more processors to run the same problem. This is attributable to load 

balancing. The partitioning of a given problem into different subproblems decreases the 

size of the subproblem as the number of partitions increases. Partitioning a set 5, say 

of 1000 points into 2 subproblems may assign 500 points to each subproblem whereas a 

similar subdivision into say 5 partitions may yield only 200 points per partition. There is 

no doubt that this will eventually affect the performance and subsequently the speedup of 

the problem. Using more partitions may reduce the amount of work given to a processor. 

The work load may not be enough to keep the processors busy. On the other hand, 

more points will be eliminated by the leaf processors, thus simplifying the inital hulls. 

At subsequent stages not many points are removed because these will be vertices of sub 

hulls. The speedups however tend to stabilise when each processor is given adequate 

task to keep them busy. The graphical representations in figures B.l - B.32 and B.34 

of Appendix B illustrate the shared memory implementation for the different problems 

using both threads and microthreads for the recursive and stack based implementations. 

The speedup for 2-D problems increases quite rapidly because of the simplicity of the 

problem whose shapes are mainly plain polygons. For the higher dimensional problems 
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Figure 5.3: Recursive Version 2-D 26 Vertices Using Threads 

the speedup also increases with an increase in the problem size but the increase is gradual 

and steady because of the interplay of the dimension and the increased number of facets of 

the object. The microthreads implementation also shows a similar trend. Similar results 

are observed in both the recursive and stack versions but the stack version usually proves 

to be faster and larger problem sizes could be implemented. The most significant result is 

that we can measure real performance gains even for a relatively small number of points. 

Scaling up the results is non-trivial due to memory management problems resulting from 

combinatorial explosion of the point and edge data structures. 

5.4 Message Passing Implementation 

This section considers the implementation of the n-D convex hull algorithm on a dis­

tributed memory machine. Three versions of the parallel algorithms were implemented 

and are reported here: 

• Simulated Fanin Tree. 

• Tree Method. 
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Figure 5.6: Stack Version 2-D 26 Vertices Using Threads 
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Figure 5.7: Stack Version 4-D 6 Vertices Using Threads 
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Figure 5.8: Stack Version 3-D 12 Vertices Using Microthreads 

• Pipelined or Fixed Size Tree. 

In the Distributed Memory implementation, all the three different approaches adopted 

build a fanin tree structure but differ in the way in which communication and exchange 

of data takes place. The processors at the highest level of the tree are termed the treeleaf 

processors while those between the root and the treeleaves are the treenode processors. 

5.4.1 Simulated Tree 

In this approach a processor known as the master processor is given the initial problem to 

be solved. All other processors initially have nothing to do and are thus idle. The master 

processor starts by splitting the set of points whose convex polytope is to be computed 

into a predetermined number of subsets or subproblems. After this partitioning scheme, 

the master processor then farms out each subproblem to its neighbouring idle processors 

at the highest level of the tree called the slaves. Initially, the master processor transmits 

the p subproblems to p slave processors. The slaves accept these tasks from the master 

and compute the convex hull of each subproblem and in turn give back their results to 

the master. The master now sends two respective subconvex hull lists to each of p/2 
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slaves at the next lower level of the tree for the next round of computation by reusing the 

processors. The slaves at this level perform the merge process by calling the merge routine 

before computing the convex hull. This approach constructs a simulated fanin tree and 

this merge and compute process is repeated until in the final stage, two sub convex hull 

lists are sent to one slave (root processor) by the master. The final merging and com"ex 

hull computation takes place here producing the final solution to the problem. The result 

is communicated back to the master for output. The algorithm is summarised as follows: 
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Rb R2 ,.··, Rp = partition(S, d) 

For i = 1 to procs j* send list to slave i * j 

{ 

} 

csn_tx(masterchan, 0, toslaveid[i], &status, sizeof(status)); 

Transmit_Plist(Ri,n, masterchan ,toslaveid[i]); 

For i = 1 to procs j* get result from slave i * j 

{ 

} 

csn_tx( masterchan, 0, toslaveid[i], &status, sizeof( status)); 

Receive~list( &C H(R.),&m, masterchan ,&fromslaveid[i]); 

while(procs > 1) /* loop 1 * j 

{ /* send list to slaves * j 

For i = 1 to rprocsj21 

{ 

} 

csn_tx(masterchan, 0, toslaveid[i], &status, sizeof(status)); 

TransmiLPlist( C H(R.),n, masterchan ,toslaveid[i]); 

TransmitYlist( C H(Rrprocs/2l+i),n, masterchan ,toslaveid[i]); 

For i = 1 to rprocsj21 1* master gets results from slaves * j 

{ 

csn_tx( masterchan, 0, toslaveid[i], &status, sizeof( status)); 

ReceiveYlist(&CH(R.), &m, masterchan,&fromslaveid[i]); 

For i = 1 to rprocsj21 do { R. = R. u Rrprocs/2l+i; 

Rrp/2l+i = 0} 

procs = rprocsj21; 
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Slave 1 Slave 2 Slave 3 Slave 4 

Figure 5.9: A Simulated Tree Implementation 

} 

CH(S) = CH(Rl); 

Two major processes are involved here. The first involves the master processor which 

handles the distribution and coordination of tasks around the network. The second is 

performed by the slave processors and actually does the application specific work by 

merging two sublists where necessary before using the sequential convex hull routine for 

computation. The master and the slave processors work closely to achieve the desired 

result. By this scheme the complexity of the slaves is minimised and the master can 

be kept busy with the communication task. However one of the major limitations of 

the method is that the programmer has to be involved with all the low level issues such 

as routing and message passing and a significant proportion of the development time of 

the parallel implementation was spent catering for these communication problems. The 

diagram in figure 5.9 illustrates the exchange of information and data between the master 

and the slave processors in a simulated tree environment using four leaf slave processors. 
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5.4.2 Tree Method 

This implementation seeks to address the communication overhead experienced in the 

simulated tree approach. The master initially partitions the set into p subsets. These 

subproblems are in turn mapped onto the p treeleaf processors where each will basically 

use the sequential convex hull algorithm to compute its convex polytope. The algorithm 

for the master is paraphrased here: 

Rl, R2 , •. • , Rp = partition(S, d) 

For i = 1 to procs /* send list to R to leaf i * / 

TransmitYlist(Ri,n, masterchan_out ,treejd[i]); 

/* send computed result back to the master * / 

Receive~list(CH(Rl)' &n, masterchanjn ,NULL); 

CH(S) = CH(R1 ) 

Each treeleaf is a transputer which possesses its own copy of the sublist sent by the master 

and also runs a sequential convex hull routine. Once a leaf process has produced its convex 

hull it is directly transmitted to the next lower level of the tree. Here a treenode awaits 

the arrival of two sub convex hull lists with which to carry out a merge and consequently 

compute the convex hull at that node. The method which builds a tree in hardware 

requires 2P- 1 + 1 processors. The diagram in figure 5.10 illustrates the configuration of 

a four leaf transputer network showing how the tree is constructed. The final solution is 

filtered out from the root. The processes that run on each transputer are identical (except 

the master) apart from the fact that the size of the data used for computation at each 

level of the tree may be different once the computation starts. The sub hulls produced 

after the initial computation may differ in the number of points and hence the number 

of faces. After the merge process, the load distribution will depend on the number of 

points from the previous two sub hulls where the data were derived before the merge. 

The following algorithm Transputer_RullO summarises steps performed at the treeleaf: 
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Figure 5.10: Tree In A Distributed Machine 

Transputer _Hull 0 

/* get list from the master * / 

Receive...Plist( &Ri, &n, leafjn ,NULL); 

/* compute the sub convex hull * / 

CH(Ri) = 0 

if(IsEmpty...Plist(R) = FALSE) 

Generate_Hull(R, n, &CH(R), &FA) 

/* send result to node * / 

Transmit_Plist(CH(R),n, leaLout ,leaLoutid); 

/* shutdown * / 

csn_rx(leafjn, NULL, &status, sizeof( status)); 

csn_tx(1eaLout, 0, leaLouLid, &status, sizeof(status)); 

The algorithm Thansputer_MergeO receives two sub convex hull lists, merges them 

and computes yet another subhull until the final list comes from the root node. Trans­

puter-MergeO is implemented at the treenode. 
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1ransputer_~erge() 

/* get two sub convex hull lists * / 

Receive...Plist(&CH(~), &n1, leafjn_1 ,NULL); 

Receive...Plist(&CH(Rt ), &n2, leafjn_2 ,NULL); 

if(IsEmpty...Plist( C H(~)) == FALSE) 

{ 

while(IsEmpty"'plist(CH(Rt)) == FALSE) 

{ 

} 

CH(.R) = CH(.R) U CH(Rd 

CH(Rt ) - 0 

} Generate_Hull(CH(~)) 

/* send result to the next lower node * / 

TransmiLPlist( C H(Ri),n, leaLout ,1eaLoutjd); 

/* shut down * / 

csnJx( node_in_l, NULL, &status, sizeof( status)); 

csn_rx( nodejn~, NULL, &status, sizeof( status)); 

csn_tx(node_out, 0, node_outjd, &status, sizeof(status)); 

A major limitation in this approach stems from the fact that as the process moves from 

one level of the tree to the next lower level, the previous processors are made redundant 

making them idle. The number of partitions also gets smaller as points are filtered out 

at different levels so that parallelism drops. Where the size of partition drops the fan­

in part of the tree produces overheads. This is because the number of points generally 

gets smaller as the computation advances from one level of the tree to the next level. 

Secondly, the communication versus the computation is not so good. The tree scheme has 
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been implemented using both recursive and stack versions and the timing recorded using 

different number of leaf processors. The results are presented in tables 29 - 38 as Version 

2. The sequential program runs on only one transputer. 

5.4.3 Fixed Size Tree or Pipelined Method 

This third approach differs from the simulated tree and pipelined versions in the sense 

that the original set of points is split into p partitions where p > > p the number of leaf 

processors. The treeleaf processors compute the convex hull from their respective sublist 

sent by the master and pushes the results down the next lower level of the tree. If there 

are more sublists in the queue whose convex hull is yet to be computed, the next batch 

is sent to idle leaf processors as soon as they are ready for another round of tasks. The 

root processor sends its list to rejoin the queue for reprocessing. This cyclic motion is 

terminated when the partitions are exhausted and the tree is full. The root node returns 

the final result. The code is given below: 

1* split S into parts - storing in an edge list *1 

MakeEmpty_Elist(&Parts_List); 
for(i=O; i<parts; i++) 

{ 

MakeEmpty_Plist(&Slist); 
Parts_List = Insert_Edge (Parts_List , n, Slist, v); 

}; 

while(IsEmpty_Plist(S) == FALSE) 
{ 

}; 

Read_Edge (Parts_List , n, &Slist, v); 
Read_Point(S, n, v); 
Slist = Insert_Point(Slist, n, v); 
Write_Edge(Parts_List, n, Slist, v); 
Parts_List = GetNext_Edge(Parts_List); 
S = Delete_Point(S); 

1* fill up tree to start computation *1 
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h = (int) (log10(procs)/log10(2)) + 1 
status = 1; 

/* height of tree -1 */ 

for(i=1; i<=h; i++) 
{ 

} ; 

/* send data to leaves */ 

for(j=O; j< procs; j++) 
{ 

if (IsEmpty_Elist(Parts_List) == FALSE) 
{ 

} 

Read_Edge (Parts_List , n, &Slist, v); 
Transmit_Plist(Slist, n, masterchan_out, tree_id[j]); 
Parts_List = Delete_Edge(Parts_List); 
parts = parts - 1; 

else 
{ 

}; 

MakeEmpty_Plist(&Slist); 
Transmit_Plist(Slist, n, masterchan_out, tree_id[j]); 
parts = 0; 

csn_tx(masterchan_out, 0, tree_id[j], &status, sizeof(status)); 
}; 

/* process rest of parts until less than procs left */ 

while(parts+h > procs) 
{ 

Receive_Plist(&Slist, &k, masterchan_in, NULL); 
csn_rx(masterchan_in, NULL, &status, sizeof(status)); 
Parts_List = Insert_Edge(Parts_List, n, Slist, v); 
parts = parts + 1; 
for(j=O; j< procs; j++) 

{ 

if (IsEmpty_Elist(Parts_List) == FALSE) 
{ 

} 

Read_Edge(Parts_List, n, &Slist, v); 
Transmit_Plist(Slist, n, masterchan_out, tree_id[j]); 
Parts_List = Delete_Edge(Parts_List); 
parts = parts - 1; 

else 
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} 

}; 

{ 

MakeErnpty_Plist(&Slist); 
Transrnit_Plist(Slist, n, rnasterchan_out, tree_id[j]); 
parts = 0; 

}; 

csn_tx(rnasterchan_out, 0, tree_id[j], &status, sizeof(status)); 
}; 

1* collect results still In tree *1 

for(i=1; i<=h; i++) 
{ 

Receive_Plist(&Slist, &k, rnasterchan_in, NULL); 
csn_rx(rnasterchan_in, NULL, &status, sizeof(status)); 
Parts_List = Insert_Edge(Parts_List, n, Slist, v); 
parts = parts + 1; 

}; 

1* send last proc lists *1 

status = 0; 
for(j=O; j< procs; j++) 

{ 

if (IsErnpty_Elist(Parts_List) == FALSE) 
{ 

} 

else 
{ 

}; 

Read_Edge(Parts_List, n, &Slist, v); 
Transmit_Plist(Slist, n, masterchan_out, tree_id[j]); 
Parts_List = Delete_Edge(Parts_List); 

MakeEmpty_Plist(&Slist); 
Transrnit_Plist(Slist, n, masterchan_out, tree_id[j]); 

csn_tx(rnasterchan_out, 0, tree_id[j], &status, sizeof(status)); 
}; 

Receive_Plist(&Slist, &k, masterchan_in, NULL); 
csn_rx(masterchan_in, NULL, &status, sizeof(status)); 

*CH = Slist; *FA = FAlist; 

This implies that a fixed sized tree with p leaf processors (2P-
1+ 1 processors altogether) 

where p > > p is used to pipeline partitions through the architecture in blocks of size 
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pip. Each pass through the tree reduces p partitions to one partition so eventually a 

single partition representing the final hull is produced. This technique tends towards 

a 100% efficiency since the processors are always busy but requires careful control and 

manipulation of the underlying architecture. 

5.5 Results From Distributed Memory Machine 

Like in the shared memory, the experiments were test run on different problems on 2-D, 

3-D and 4-D. From our results, recorded in Tables 29 - 38 of Appendix A, the simulated 

tree implementation gives the best performance in terms of the speedup obtained despite 

the communication problem. This is because the processors are being reused at each 

level of the tree. It was observed that the stack version was faster as was the case in the 

shared memory implementation. The size of the problem implemented in a distributed 

architecture for d > 2 was quite small because of limited memory. For example the stack 

version in the simulated tree approach was able to run problems of size 200 points each 

in 3-D with 12 vertices (Table 32 of Appendix A) and 4-D with 6 vertices (Table 33 of 

Appendix A). This was further reduced to 100 points for 3-D and 200 points for 4-D 

respectively when version 2 (tree method) was recursively implemented. Even though the 

communication cost in the tree method (version 2) is reduced compared to the simulated 

fanin tree (version 1) the method appears to be expensive in terms of processor utilisation. 

This leads to poor efficiency which could be readily derived from the results. A fanin tree 

constructed from four treeleaf processors using the pipelined method will require a total 

of seven processors before the result is filtered out from the root of the tree (see figure 

5.10) while three slave processors will need a total of five processors before the final 

result is sent to the master. This could be expensive in a situation where processors 

are expensive assets. These problems notwithstanding we have still demonstrated that 

reasonable speedup is obtainable with our techniques even with small problem sizes. \Vith 

110 



6 

5 

4 

2 

04-------~----~------_r----~ 

o 1000 2000 

Number Of Points 

3000 4000 

Figure 5.11: Recursion Version 1 2-D 26 Vertices Using Transputer 

available architecture where memory capacity is not a problem, scaling up the problem 

is trivial. The results of the simulated tree scheme are presented in tables[29 - 38]. This 

is represented as Version 1 in the tables. Some of the graphical presentation of these 

results are shown in Figures 5.11 - 5.18 while others are included in Appendix B.33, B.35 

- BAO and they also confirm that a significant improvement over the sequential algorithm 

is possible. 

5.6 Partitioning Methods 

Rabhi and Manson [92] show that for certain applications it is only necessary to generate 

as many subtasks as there are processors in order to obtain optimal performance. Such 

applications are those that divide up evenly and give rise to as many equal sized subtasks 

as there are processors. However, some applications divide up in an uneven or unpre-

dictable fashion in a way that does not straightforwardly give a good load balancing of 

task to processors. It is not very clear when the dividing process should stop for these 

applications. If division does not result in a good load balancing, some processors will be 

starved of work. If the division is too fine grained, the processors will spend too much 
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Figure 5.13: Recursion Version 2 4-D 6 Vertices Using Transputer 
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Figure 5.15: Stack Version 1 2-D 26 Vertices Using Transputer 
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Figure 5.18: Stack Version 1 4-D 6 Vertices Using Transputer 

time engaged in performing the house keeping tasks rather than solving the problem at 

hand. Hence Rahbi and Manson demonstrate that the key issue to be resolved for a given 

application is that of finding the 'optimal partition' of subtasks. 

Although we can choose the partition size for the convex hull arbitrarily at the outset, 

difficulty arises once the first merge occurs because the shape of the resulting sub convex 

hulls can be arbitrary. Consequently, we need to find a good partitioning method which 

attempts to balance the size of convex hulls at each level of the algorithm. Generally, this 

is not possible (because of the random distribution of points) but we can define partitions 

for different classes of problems. On the basis of this we have tried in many ways to 

partition the set 5 into p subtasks. This is an attempt to devise a partitioning strategy 

to control the size nip. We now consider the following and most promising partitioning 

methods: 

5.6.1 Lexicographic Partitioning 

Here the points in 5 are sorted lexicographically and then taken in order one at a time 

and allocated to partitions using wrap around. The ith point being assigned to partition 
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according to (i + 1)mod p. This could be summarised as follows: 

{ 

} 

Algorithm LexcoJ>artitioning(S,n,parts) 

Input: A set S of points. 

Output: Subsets Slist[i] of set S, i=0(1)parts-1. 

QuickJ)ort(S,n) 1* put S into lexicographic order * / 

For i = 0 to MAXPARTITIONS-1 

{ 

CHlist[i] = 0; FAlist[i] = 0; 

Pointcount[i] = 0; 

} 

For i = 0 to parts-1 

Slist[i] = 0 

i = 0; 

while(S -j. 0) { 

} 

Take the next point from S 

Add point to Slist [i] 

Pointcount[i] = Pointcount[i] + 1 

i = (i + 1)%parts; 

This method does not attempt to check if partitions are disjoint but guarantees almost 

perfect load balancing by spreading the points evenly across partitions initially. We 

can illustrate the lexicographic partitioning by considering a quadrilateral in 2-D with 

sixteen points as shown in figure 5.19. Suppose the points are ordered and split into three 
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Figure 5.19: Point Allocation In Lex Partitioning 

partitions (p = 3), the shapes labelled A, B, and C will be generated from the points 

in the three partitions. Shape A is from the first partition with the points labelled 1, 

shape B from the second partition from points labelled 2 and shape C from the third 

partition from points labelled 3. From the diagram, the shape labelled A has four vertices 

on the convex hull and also has four faces. B has five vertices on the convex hull and 

five faces while C has four vertices and four faces. In section .i1 the running time of 

the sequential algorithm is a function of the problem size, the faces and the dimension 

space. Since the shape generated from each partition is different, their running time also 

varies and in the next level of the tree where a merge and compute process is carried 

out perfect load balancing is no longer guaranteed. The convex hull when the points are 

split into two partitions (p = 2) will yield the shapes labelled D and E. In this case 

the rectangles have an equal number of faces and vertices and a perfect load balance is 

possible. If the partition sizes match the size of data we may also get disjoint partitions 

as shown in shapes G, H, I and J, resulting in a perfect load balance. However, these 
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shapes will escape through simplex bypass and there is relatively little work to occupy 

the processors. In the case of an even number of partitions, the load is balanced among 

processors as data moves up the tree but most of the computations are carried out in the 

leaf processors. Notice that in the case of three partitions, the vertices of the convex hull 

lie in the partition with the points labelled 1 while other partitions produce vertices that 

do not form part of the convex hull. Except in shapes G, H, I and J the method does not 

guarantee disjoint sets. A, B, and C form intersecting domains and so do D and E. 

The Lexicographic partitioning method uses the quick sort algorithm to sort the points 

which is of O(n2) in the worst case and with average speed O(nlog2n) and requires n 

operations to partition the points into the subproblems. 

5.6.2 Random Colouring 

This is similar to the lexicographic scheme except that each point is given a random 

number (colour) from 1 to p determining its partition. This scheme is based on the idea 

that a random distribution of colours should produce shapes of roughly equal number of 

vertices and faces. Points with similar colours are grouped under the same partition. The 

method requires n operations to partition the set. 

Algorithm RndColour _Partitioning(S, n, parts) 

Input: A set S of points. 

Output: Subsets Slist[i] of set S, i=O(l)parts-l. 

{ 

For i = 0 to MAXPARTITIONS-l 

{ 

CHlist[i] = 0; FAlist[i] = 0; 

} 
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Figure 5.20: Allocation Of Points In Random Colouring 

For i = 0 to parts-l 

{ 

Slist[i] = 0 

Pointcount[i] = OJ 

} 

i = OJ srand(l)j 

while(S =I- 0) { 

} 

Take the next point from S 

i = srandO%parts 

Add point to Slist[i] 

Point count = Pointcount[i] + 1 

This method does not even guarantee the same load to all processors. If we consider 

dividing nine points in the 2-D plane into say three partitions using the random colouring 

method, a possible distribution may result in a situation shown in figure 5.20. The shape 
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Figure 5.21: Partitioning of 2-D Plane 

A is for points labelled 2, B for points labelled 0 while C is for those labelled 1. The colours 

are randomly assigned as each point is considered. As we have seen in the lexicographic 

partitioning, the complexity depends on the subconvex hulls. The Random Colouring 

method aims at producing subconvex hulls with equal complexity but unfortunately this 

has not been achieved though the initial partitions may provide a reasonable load to each 

processor. In figure 5.20, to generate A and B may yield the same complexity if the 

problem sizes that gave rise to them were the same. The complexity to produce C is quite 

different from that of A and B. The lexicographic and random colouring schemes have 

very low overhead for partitioning compared to the next three methods. The rest of the 

methods are also computationally more complex but do better in identifying clusters of 

points. 

An obvious way to do partitioning in 2-D is to use a number of bands as indicated 

in figure 5.21 and use the (x, y) position as an indication of the band. This require the 

checking of the lower and upper bounds to determine the partition and also requires the 

length r to decide on the band positioning. The advantage of this method is that the 

hull in each partition is distinct but there may be problems of load balancing and the 
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number of vertices on the sub hull shapes may be different depending on how the points 

are distributed. In 3-D the partitions become cubical in shape and requires the checking of 

six halfspaces and hence the method does not extend well. An alternative to this method 

is therefore the Bucket approach. 

5.6.3 Bucket Method 

The reason for using bucket partitioning comes from the fact that points can cluster into 

different regions. To partition the points using the methods discussed above may not give 

an even spread or distribution among the different sub problems. 

In this approach, we determine a point c interior to S and use it as an ongm to 

partition the n-D space into 2n disjoint subspaces or buckets. Points are allocated to the 

buckets according to their position relative to c. The method also guarantees disjoint 

partitions but not an even load balance and complications arise if p "# 2n which is often 

the case. Figure 5.22 shows a 2-D plane being partitioned into four buckets. The set 

of points in each quadrant belongs to a bucket i.e. 8 points, 3 points, 2 points and 3 

points. As can be seen from the diagram, a perfect load balancing is not guaranteed. 

There is a concentration of points in the first quadrant compared to the others. In order 

to overcome the clustering of points in some regions, the quadrant with more points can 

be repartitioned recursively until almost a perfect load balance is achieved as shown in 

figure 5.22. We have not considered this repartitioning method in this research because 

the overhead in computing the partitions make it prohibitive. 

5.6.4 Shell Method 

The first step involves the ordering of the points. This requires O(n2
) worst case. In 

this scheme we determine a point c interior to S (preferably the centroid or alternatively 

the average of the maximum or minimum coordinates). This can be done in Cln steps. 

The longest euclidean distance r between c and points xES is calculated and shell i 
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Figure 5.22: Distribution Of Points Into Buckets 

is determined according to the bounds (i - l)rjp and irjp. This will require C2n steps. 

Points are allocated to partitions according to the shell they inhabit and this can be 

accomplished in C3n steps. The method essentially computes a set of concentric circles in 

2-D, spheres in 3-D, and their extensions for n-D. In the simple approach the radius of 

two adjacent shells differs by a constant but the volume increases with distance from c so 

load balancing is not guaranteed for a uniform distribution of points but we know that 

the hull of partitions are derived from non overlapping sets and may contain some nesting 

within each other. The shapes may be roughly spherical and so of roughly the same 

complexity which is the essence of this implementation. The subconvex hulls generated 

from each partition are non intersecting. In figure 5.23 we show how points could be 

partitioned into different shells. Notice that Bands [4] contains the convex hull and that 

each band is a subhull. The different domains are labelled A, B, C and D corresponding 

to Bands[l]' Bands[2], Bands[3] and Bands[4]. The different bands will be assigned to 

the leaf processors to compute the convex hull. There may exist situations where the 

points are clustered on one side in which the convex hull may not fall into one band. 

This is illustrated in figure 5.23 where the convex hull falls in more than one shell. The 
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Figure 5.23: Allocation Of Points To Shells With Convex Hull On One Band 

shapes with labels E, F, G and H are the domains from different shells. The convex hull 

is represented as I and it cuts across Bands[2]' Bands[3] and Bands[4]. 
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Figure 5.24: Allocation Of Points To Shells With Convex Hull Across Bands 

Algorithm SheILPartitioning(S,n,parts) 

Input: A set 5 of points. 

Output: Subsets 5list[i] of set 5, i=0(1)parts-1. 

QuickJ3ort(S,n) /* put 5 into lexicographic order * / 
Get two extreme points v and w. /* Find center of polytope * / 
c = (v + w)/2; 

j* Find the longest distance between centre and any point x E 5 * / 
max = 0; 
while(5 i- 0) 
{ 

} 

Read point x 
t = sqrt( v 2 + w 2

) 

if(max < t) max = t; 

r = sqrt(max)/parts; 
Bands[O] = 0; 
For i = 1 to parts-1 

Bands[i] = Bands[i-1] + r; 
For i = 0 to MAXPARTITIONS-1 
{ 

CHlist[i] = 0; FAlist[i] = 0; 
} 
For i = 0 to parts-l 
{ 
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} 

Slist[i] = 0 
Pcount = 0; 

/* Partition S according to distance Bands[i-l] <= r < Bands[i] inserted into Slist[i-l] or. / 

while(S i= 0) 
{ 

} 
} 

Get a point x 

r=x 
i= 1; 
while(r - Bands[i] > 0 and i < parts) 
i = i+l; 
i = i-I; 
Add point x to Slist[i-l]; 
Pcount = Pcount[i] + 1; 

5.6.5 New _Shell Partitioning 

This is an improvement on the shell partitioning method. Rather than stepping through 

a constant increase in the radius of each consecutive shell, shells with equal volume are 

computed using the mathematical formula for an n-dimensional sphere given by 

v:;n 
Vol = r(% + I)Rn 

where n is the space dimension, R the radius of sphere and r is the gamma function. The 

total volume can now be partitioned into shells of equal volumes and the points allocated 

according to the shell in which they belong. If the points are uniformly distributed, the 

load balancing will be improved. An advantage of this scheme is that the shells get thinner 

as they move away from the centre. The implication here is that for a large number of 

points that are evenly spread, the thinner shells will virtually be convex hulls but the 

problem is that we will get more vertices and faces on each of the sub hulls. 

5.6.6 Multiple Level Partitions 

In all the partitioning methods that we have considered, the possibility of merging the re­

sults after each level of computation and repartitioning could help to achieve a better load 
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Table 5.1: Partitioning (2-D 26vertices, 4-D 6vertices, with 1000points) On Multimax 
Partitions 

Methods 2 3 4 5 6 
2D 4D 2D 4D 2D 4D 2D 4D 2D 4D 

Lex (sp) 1.89 1.79 2.57 2.14 3.12 2.49 2.87 2.12 2.83 1.89 
Rand (sp) 1.61 1.78 2.53 2.00 3.47 2.30 2.68 1.67 1.86 1.71 
Shell (sp) 1.74 1.29 1.17 1.56 1.86 1.73 1.73 1.46 1.86 1.80 

New _Shell (sp) 1.05 0.98 1.28 1.02 1.66 0.97 1.86 0.94 2.02 0.97 
Bucket (sp) 1.41 1.11 1.29 1.03 2.38 1.18 2.04 1.07 2.27 1.47 

distribution at each level of the computation but this will tend to increase the computing 

time as some of the techniques that we have proposed are quite complicated. Merging 

the partial results and repartitioning requires nl steps where 1 is the number of levels in 

the tree. 

5.7 Results From Partitioning Methods 

Table 39 of Appendix A shows how a set S with a total of 1000 points in 2-D and 

4-D are distributed into 6 partitions using the different partitioning methods. A trial 

experiment was carried out on the Encore Multimax using the Recursive algorithm to 

test the performance of the different partitioning methods. This was carried out on a 2-D 

problem with 26 vertices on the convex hull and 4-D problem with 6 vertices. In both cases 

a set S with a total of 1000 points was considered. Table 5.1 shows the speedup obtained 

when the partitions in Table 39 of Appendix A were implemented. From these results, 

the simplest scheme (Lex) appears to be the best for small point sets and partitions. 

This is because the other methods require a proportionally large computing time and the 

standard deviation from the mean partition size is larger than that for Lex which is always 

close to optimal. Increasing the number of partitions generally improves the speedup and 

this is reflected in Table 5.1 until the size of partitions is very small. For large set of points 
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Table 5.2: Statistics For Partitioning Methods From Table 39 

Partitions 

Methods 2 3 4 5 6 
2D 4D 2D 4D 2D 4D 2D 4D 2D 4D 

Lex SD 0.0 0.0 0.58 0.58 0.0 0.0 0.0 0.0 0.52 0.52 
X 500 500 333.3 333.3 250 250 200 200 166.7 166.7 

Random SD 0.0 0.0 14.7 14.7 0.0 0.0 11.18 11.18 13.37 13.37 
X 500 500 333.3 333.3 250 250 200 200 166.7 166.7 

Shell SD 58 147.1 221.5 141.5 146.8 145.5 115.6 116.8 106.1 100.9 
X 500 500 333.3 333.3 250 250 200 200 166.7 166.7 

New_Shell SD 473.8 688.7 261.0 532.7 196.9 430.0 154.1 367.1 126.51 319.4 
X 500 500 333.3 333.3 250 250 200 200 166.7 166.7 

Bucket SD 158.4 418.6 243 407.5 68.6 376.5 126.6 337.3 139.6 190.7 
X 500 500 333.3 333.3 250 250 200 200 166.7 166.7 

results indicate that the shell method based on volume reduces the loading deviation more 

rapidly than the new shell. Table 5.2 shows the standard deviation and the mean for table 

39. For Lex and Random colouring partitioning, the deviation is small compared to other 

methods. This also illustrates why Lex is the best because of good load balancing. 
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Chapter 6 

Facial Lattice Exploration (FLE) 

In the previous chapter, we proposed a parallel implementation of the n-D convex hull 

algorithm based on the divide-and-conquer technique. In this chapter a different approach 

based on exploring the facial lattice of the convex hull is adopted. The facial lattice of a 

polytope P is a lattice which represents the polytope facial structure. Each node in the 

lattice is a face of the polytope; there is an edge from F to G if and only if F is a facet 

of G. Altenatively, it is the lattice given by the set of faces of P and the subset relations 

which are edges and vertices. In figure 6.1, we show the facial lattice of a pyramid over 

a square, the element I represents the entire polytope, while 0 represents the empty 

set. The motivation for the partitioning method in the previous chapter is that large 

numbers of points are eliminated quickly. Unfortunately, the merging process required to 

combine the partitions cannot control the load balancing and hence results in potential 

loss of performance. The FLE will avoid the partitioning of the set of points S into 

subproblems. This FLE technique seeks to find the convex hull of the set of points S by 

'wrapping' around the edges of the hull. After the determination of the initial facet, the 

sequential algorithm picks each of the edges in turn and performs rotations to produce 

more edges until all the edges are computed twice. The strategy used in [1] and [2] is to 

maintain a list of edges with adjacent nodes in the lattice but whose other adjacent node 

has not yet been computed. In each step, the sequential algorithm picks an edge from the 
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Figure 6.1: Facial lattice of a pyramid over a square 

edge list and performs rotations to find the edge's other adjacent node. For every edge, 

the algorithm checks to see if it is present in the edge list, if so it is deleted from further 

consideration because it is now computed twice, else it is added to the edge list. The 

difference between this implementation and that of the previous chapter is that there is 

no partitioning of the points into subsets. The main aim of this chapter therefore is to 

demonstrate that parallelism in the n-D convex hull problem can also be exploited along 

the edges once the initial face has been computed. 

Our technique, which we term Facial Lattice Exploration (FLE), computes the faces 

simultaneously by picking more than one edge from an EdgeList. Figure 6.2 shows how 

the convex hull of a 3-D cube can be found in parallel using FLE. For simplicity the shape 

is flattened onto a plane surface to expose all the faces. First, the initial face labelled 1 is 

computed. The four edges, ABCD are now available and by assigning each edge to an idle 

processor the other faces labelled 2 can be computed in parallel. After the computation 

of the initial face, a processor picks an edge say A from a queue, leaving BCD for other 

processors that are idle. If all the remaining edges are allocated to processors, all the 

faces labelled 2 can be computed in parallel. Thus the edges E - P are produced, greatly 
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Figure 6.2: Illustration Of Parallel Execution Of 3D Convexhull by FLE 

increasing the possible parallelism. In particular if we choose edge E the final face labelled 

3 can be found. Thus in principle (i.e. with enough processors) the complete hull can 

be found in just three steps of the sequential method. However, there are a number of 

problems with this approach, for example 

• The original sequential algorithm eliminates edges once they have been determined 

twice. In this scheme the edges LM JI GF OP are actually the same edge and 

should be eliminated from further consideration. However, they may reside in dif-

ferent processors implying some overheads in communication and co-ordination of 

edgelists. 

• A further problem arises when we consider the edges K, H, Nand E. Potentially, 

each of the edges could be grabbed by a processor simultaneously producing face 3 

four times. These four copies when computed in parallel contribute no additional 

costs except for potential clashes for accessing global list data but when staggered 

can contribute considerable cost (e.g. if not enough processors are available). 

• The second point raises a more serious problem, that of termination. The sequential 
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algorithm relies heavily on the fact that an edge can only be found twice. Indeed 

this assertion is used to control the edge list so that eventually the list will be 

empty and the algorithm can terminate. It might appear in figure 6.2 that this rule 

is not violated. In fact the correctness depends on the non-deterministic order of 

face evaluation. For example if we only have two processors, after finding the edges 

ABCD we could choose Band D producing edge list LKJPEFAC. Next choose C 

and E this produces the additional edges MNO and QRS. Clearly LM. OP. QN are 

duplicates and should be deleted. Given the list KJFARS it is now possible to choose 

edge K in one processor and proceed to generate LKJB, K and J are duplicates but 

Land B have already been found but deleted from the list and will be reinserted. 

Potentially the algorithm may never terminate thus some mechanism of global list 

management has to be devised. 

The FLE approach is well suited to applications where the data consists only of points on 

the hull (e.g. generating loop nests in parallel compilers). In these cases the partitioning 

method cannot exploit the divide-and-conquer principle and delivers poor performance. 

The FLE method avoids partitioning and the potential irregular loading of processors 

during merging. There are also some problems inherent in the lattice approach. A perfect 

load balance cannot be guaranteed because of different sized facets and the fact that the 

number of facets limits parallelism. The best we can do for a 2-D problem is a factor 

of 2 speed-up irrespective of the number of processors that we use. This is because 

the maximum number of edges available after the computation of the initial face cannot 

exceed 2. If we consider figure 6.3 and suppose that facet A is computed first, we can then 

compute the faces labelled Band C in parallel. The next step will be to find D and E also 

in parallel before the process will terminate with the determination of face F. Obviously~ 

we have seen that the possible parallelism depends on the number of facets. A similar 

argument holds for the cube (3-D) as already explained using figure 6.2. Here a single 
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Figure 6.3: Edge Computation In A 2-D Problem 

facet generates three new edges and if the faces have the same structure we can see that 

the maximum parallelism is related to 3 (e.g. 3, 32
, 33 etc.) but for each shape we cannot 

predict the structure otherwise we would already know the convex hull or a large degree of 

it. In general, if we consider a hypothetical situation, where we have m edges per face, this 

will produce m other faces with each face giving rise to m -1 other edges. This will result 

in a total of m 2 - m = m(m -1) edges in the second level. Similarly, the third level of the 

tree will yield m(m -l)(m -1) edges. This trend is easily extended to subsequent levels. 

Though the FLE implementation is not considered as a tree structure, the representation 

in Figure 6.4 illustrates the components of the facial lattice structure and the possible 

parallelism. Assuming we have an unlimited number of processors, then we can exploit 

the inherent parallelism by assigning each edge to a processor and then computing the 

faces in parallel. To explore the parallelism, it is necessary to break up the tree pattern. 

The representation of figure 6.4 shows how to enumerate the faces and edges of the facial 

lattice structure as a tree. At some level of the tree there are duplicate edges which 

are connections between tree levels that produce the facial lattice structure. However, 

since in practice there may be duplicate edges and usually the number of processors is 
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Figure 6.4: Exploiting Parallelism With Unlimited Number Of Processors 

limited, the option of implementing the algorithm by starting with some initial edges 

seems practicable. For a limited number of processors we can consider the computation 

of nodes as a wavefront that moves down the tree, the parallelism evolving irregularly. 

Such problems have not been seriously addressed in the literature in parallel processing. 

In our implementation we confine the facial lattice exploration to face level and not the 

sub-facet levels in order to simplify the design. 

The different implementations which we consider in this chapter on the shared memory 

and message passing architecture are enumerated here: 

• Version 1 a shared memory implementation, which uses the pending edge list to 

store the edges that have been computed twice. 

• Version 2 a shared memory implementation, which uses the global list structure to 

store the different lists for easy access by the processors. 

• Version 1 a transputer implementation, where master and manager processes run 

on separate processors. 

133 



• Version 2 a transputer implementation, where the master and manager processes 

run on the same processor. 

6.1 FLE On Shared Memory (Version 1) 

In the shared memory architecture we have implemented two different versions each using 

a different method to organise the data. Both methods make use of the master/slave 

organization, and can be summarised as follows: 

• FLE on shared memory (Version 1) using the pending edge list to terminate the 

iteration. 

• FLE on shared memory (Version 2) using the global list organization. 

The sequential stack implementation (chapter 4) of the n-D convex hull algorithm 

is the underlying concept in the facial lattice exploration technique. The stack version 

makes it possible easily to access the sublists at different levels of the implementation. The 

master processor starts the computation by finding the initial face. The face computed by 

the master has to be unstacked keeping the vertices in the CHlist, the facets in FAlist and 

the edges defining the face in the Elist at the lowest level of the stack. The pending edge 

list will contain the edges that have been found twice. The major function of the pending 

edge list is to terminate the algorithm when all the edges have been computed twice. 

Once an edge has been found twice it is deleted from further consideration since it is the 

intersection of two adjacent faces and is placed in the pending edge list (Pend_Elist). 

With the available edges in the Elist, the master now distributes work to the idle slaves. 

This is accomplished by selecting an edge and giving it to an idle slave processor. The slave 

accepts the given edge, rotates it and copies all the points on that face and then computes 

the new edges and vertices for that face by using the sequential algorithm. On completion, 

the slaves have to return their results back to the master to update the appropriate list in 
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the stack. The master also checks the Pend~list to ensure that the edge it is considering at 

that particular moment has not yet been computed twice. When the master has finished 

distributing the jobs to the slaves, it also picks an edge and computes its own edges 

and vertices. At the completion of each task, the processors check the Elist to ascertain 

whether the edges are exhausted and the slaves have completed their task. If there are 

more edges, one is picked for the next round of computation, otherwise the algorithm 

terminates or waits for a slave to return a result. In the routine Convex_HuILSlaveO, 

semaphores are used to protect the critical sections of the computation. This consists of 

the jobs assigned to the slaves as well as the results of their computation. In the master 

processor, the semaphores are used to prevent interference during the assignment of jobs to 

processors and also in copying the results from the slaves and resetting their status. Table 

6.1 and Table 6.2 show how the Pending edge list grows as the computation proceeds. 

The 3-D problem in figure 6.2 is used for the illustration. The following two routines 

Convex_HulLMasterO and Convex_Hull_SlaveO summarise the computation by the 

master and the slave processors. 

Function Convex_HuILMaster(S,AS,n,k,parts) : (CH,FA); 

{ /* setup the stack * / 

sp and lsp /* stack top and local stack index * / 

sp = 0; Stack[sp].S = S; Stack[sp].AS = AS; Stack[sp].k = k; 

Stack[sp].e =0; /* number of edges being computed by with slaves * / 

Stack[sp].Pend~list = 0; /* Edges found twice * / 

Stack[sp).Elist = 0; Stack[sp).FA = 0; Stack[sp].CH = 0; 

count = 0; /* Slave counter * / 

do{ 
if(Stack[sp].CH == 0 and Stack[sp].FA == 0) 
{ 

if(k == 1) /* a 1 - dimensional set * / 
{AS = {PO,Pl }; 
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min = pES such that POPl,POPl is minimised 
max = pES such that POPl'POPl is maximised 
return ({max,min} , {max}, {min}); 
} 

if (I S 1== k + 1) 
return (S, {F ~ S :1 F 1= k}); /* check for a simplex * / 

else 

} 

{ 
(F,n) = initial facet(Stack[sp].S,Stack[sp].AS,n,Stack[sp].k) 
Stack[sp].FA = Stack[sp].FA U { F } 
F' = 0; 
Pick a point Po E F; 
F' = {p E S : POPl. n = O} ; 
sp = sp+1; Stack[sp].S = F' ; Stack[sp].AS = F; /* stack the face */ 
Stack[sp].k = Stack[sp-1].k-1; stack[sp].e = 0; 
Stack[sp].Elist = 0; Stack[sp].CH = 0; Stack[sp].FA = 0; 
Stack[sp].Pend~list = 0; 
} 

/* unstack the face completed by master * / 
if (Stack[sp].CH i= 0 and Stack[sp].FA i= 0) 

while(Stack[sp].Elist = 0 and Stack[sp].e == 0 and sp > 0) 
{ 
while(Stack[sp].CH i= 0) 
{ /* add new vertices found * / 
pick a point p; 
if (p tt. Stack[sp-1].CH) 

Stack[sp-1].CH = Stack[sp-1].CH U { P }; 
} 

while(Stack[sp].FA i= 0) 
{ j* add new edges found using norm of complete face * / 
pick an Edge E; 
if (E tt. Stack[sp-1].Pend~list 

{ 
if (E E Stack[sp-1].Elist 

{ remove E from Stack[sp-1].Elist 
and add to Stack[sp-1].Pend~list } 

else 
Stack[sp-1].Elist = Stack[sp-1].Elist U { E } 

} 
} 

/* U nstack the face * / 
Delete lists: Stack[sp].Pend~list; Stack[sp].S; Stack[sp].AS; 
Stack[sp].k = 0; Stack[sp].e = 0; 
sp = sp-1; 
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if(Stack[sp].e> 0) Stack[sp].e = Stack[sp].e - 1 
} 

For i = 1 to procs-l j*add faces produced by the slaves x j 
{ /* Copy results from slaves to master * j 
count = (count + 1 )%parts; 
THREADpsem(Slavesem[count]); 
status = Slaves[count].status; 
lsp = Slaves[count].sp; 
TCH = Slaves[count].CH; 
TFA = Slaves[count].FA; 
TS = Slaves[count].S; 
TAS = Slaves[count].AS; 
Q = Slaves[count].E; 
for j = 1 to n 

norm[j] = Slaves[count].norm[j]; 
THREADvsem(Slavesem[count]); 
if(status == RESULT) break; 
/* Update master stack with edges and faces from slaves * j 
if( status == RESULT); 
{ 
while(TCH =1= 0) 
{ j* add new vertices found * j 
pick a point p; 
if (p f/: Stack[lsp].CH) 

Stack[lsp].CH = Stack[lsp].CH U { P }; 
} 
while(TFA =1= 0) 
{ /* add new edges found using norm of complete face * j 
pick an Edge E; 
if (E f/: Stack[lsp].Pend..Elist 

} 

{ 
if (E E Stack[lsp].Elist 

add to Stack[lsp].Pend..Elist } 
else 

add to Stack[lsp].Elist } 
} 

Stack[lsp].FA = Stack[lsp].FA U { Q } 
/* Reset the slaves for more work * j 
Stack[lsp].e = Stack[lsp].e -1; 
THREADpsem( Slavesem[count]); 
Slaves[count].k = 0; 
Slaves[count].S = 0; Slaves[count].AS = 0; 
Slaves[count].E = 0; 
for j = 1 to n 
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Slaves[count].normUJ = 0; 
Slaves[count].sp = -1; Slaves[count].status = START; 
THREADvsem(Slavesem[count]); 
} 

if (Stack[sp].Elist # 0) /* get next face for the master x / 

{ 
Pick an Edge E; 
(p,n) = rotate(S,AS,n,k,E,n); 
F = F U { P }; 
Stack[sp].Pend~list = Stack[sp].Pend~list U {E} 
Stack[sp].FA = Stack[sp].FA U {F} 
Pick a point po E F 
F' = {p E S : POPI. n = O}; 
/* stack new face * / 
Stack[sp].e = Stack[sp].e + 1; 
sp = sp + 1; 
Stack[sp].S = F'; Stack[sp].AS = F; Stack[sp-l].k = k-l; 
Stack[sp].e =0; Stack[sp].Pend~list = 0; 
Stack[sp].Elist = 0; Stack[sp].FA = 0; Stack[sp].CH = 0; 
} 

For i = 1 to procs 

} 

{ /* allocate work to slaves using local stack index lsp * / 
count = (count+l)%procs; 
THREADpsem(Slavesem[count]); 
status = Slaves[count].status; 
THREADvsem(Slavesem[count]); 
if( status == START) break; 

if( status == START) 
{ /* slave count is currently idle so find some work in the stack * / 
lsp = 0; 
For i = 1 to sp /* direction of search * / 

{ 
if(Stack[i].Elist # 0) 

lsp = i; break; 
} if (Stack[lsp].Elist # 0) 
{ 

Pick an Edge E; 
Stack[lsp].Pend~list = Stack[lsp].Pend~list U {E} 
Stack[lsp].e = Stack[lsp].e + 1; 

/* Set up slaves to do the work * / 
THREADpsem( Slavesem[ count 1); 
Slaves[count].S = Stack[lsp].S; 
Slaves[count].sp = lsp; 
Slaves[count].k = Stack[lsp].k; 
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Slaves[count].CH = 0; 
Slaves[count].FA = 0; 
Slaves[count].AS = Stack[lsp].AS; 
Slaves[count].E = E; 
for j = 1 to n 
normfj] = Slaves[count].norm[j]; 

Slaves[count].status = lsp; 
THREADvsem( Slavesem[ count]); 

} 
} 

}while(Stack[sp].Elist 1= 0 or sp > 0 or Stack[sp).e > 0) 

return (Stack[O).CH, Stack[O).FA); 
} 

Function Convex_HulLSlave(p); 

{ /* grab current job for processor p * / 
THREADpsem(Slavesem[p]) ; 
status = Slaves[p].status; 
S = Slaves[p).S; 
AS = Slaves[p].AS; 
F = Slaves[p].E; 
TS = Slaves[p).S; 
k = Slaves[p).k; 
n = Slaves[p].n; 
for i = 1 to n 

norm[i] = Slaves[p].norm[i); 
THREADvsem(Slavesem[p)); 
while(status 1= STOP) 

{ 
if(status > START and status < RESULT) 

{ 
if(S 1= 0 ) 

(p,n) = rotate(S,AS,n,k,F,n); 
F = F u {p}; 
F' = 0; 
Pick a point Po E F; 
F' = {p E S : p"Qp.n = O}; 
CH = 0; FA = 0; 
Convexjlull(F',F,n,k-1) : (CH,FA); 

/* signal result is valid * / 
THREADpsem(Slavesem[p)); 
Slaves[p).status = RESULT; 
Slaves[p).CH = CHi 
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} 
} 

Slaves[p].FA = FA; 
Slaves[p].E = F; 
for i = 1 to n 

Slaves[p].norm[i] = norm[i]; 
THREADvsem( Slavesem[p]); 
} 
/* grab current job for processor p * / 

THREADpsem( Slavesem[p]); 
status = Slaves[p].status; 
S = Slaves[p].S; 
AS = Slaves[p].AS; 
F = Slaves[p].E; 
TS = Slaves[p].S; 
k = Slaves[p].k; 
n = Slaves[p].n; 
for i = 1 to n 

norm[i] = Slaves[p].norm[i]; 
THREADvsem( Slavesem[p]); 

6.1.1 Results 

The test data was generated using the Type 1 routine of chapter 4 shown in the appendix. 

It is more difficult to collect data to test the algorithms in this chapter as the type of 

data used in testing the algorithms in chapter five did not give a promising result. This 

difficulty arises because the data should be such that a reasonable number of faces must 

be produced as an output. Such a data set will also consist of a reasonable number of 

edges that will be picked by different processors to exploit the inherent parallelism but 

such data leads to a combinatorial explosion in the work and to memory problems. The 

preliminary results using Type 1 data is shown in Table 6.3. The performance obtained 

seems poor and can be explained as follows: 

• The master is dominating the computation as the slaves 'steal' their tasks from the 

master only when an edge is made available to them from the Elist which is kept 
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Table 6.1: Movement Of Edges Into Pend~ist 
List Master Slave 1 Slave 2 Slave 3 

Edgelist ABCD 
Pend_List 

Faces (ABCD) 
Vertices V2V13VIOVS 

Edgelist BCD A 
Pend_List A 

Faces (ABCD) i 

Vertices V2V SV lOV 13 

Edgelist CD A B 
Pend_List AB 

Faces (ABCD) AIHG 
Vertices V2 V SV lOV 13 V2 V3V4V S 

Edgelist D A B C 
Pend~ist ABC 

Faces (ABCD) AIHG BJKL 
Vertices V2 V SV lOV 13 V2 V l V14V 13 

Edgelist IHGPEF B C 
Pend_List ABCDG 

Faces (ABCD)(DPEF)(AIHG) BJKL CMNO 
Vertices V2VSVIOV13V6V9V3V4 V2 V l V14V 13 V13V12Vll VlO 

Edgelist IHPEJKL C 
Pend_List ABCDGJ 

Faces (ABCD)(DFEP)(AIHG)(BJKL) (CMNO) 
Vertices V2VSVIOV13V6V9V3V4VIV14 
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Table 6.2: Movement Of Edges Into Pend~ist ( Table 6.1 Cont.) 

List Master Slave 1 Slave 2 Slave 3 
Edgelist HPEKLMNO 

Pend_List ABCDGJM 
Faces (ABCD)(DFEP)(AIGH)(BJKL)(CMNO) 

Vertices V2V5VIOV13V6V9V3V4VIV14V12Vll 

Edgelist EKN H 
Pend_List ABCDGJMP 

Faces (ABCD)(DFEP)(AIGH)(BJKL)(CMNO) 
Vertices V2V5VIOV13V9V4VIV12Vll 

Edgelist KN H E 
, 

i 
Pend_List ABCDGJMP 

Faces (ABCD)(DFEP)(AIGH)(BJKL)(CMNO) EKNH 
Vertices V2V5VIOV13V9V4VIV12Vll 

i 
---

Edgelist NEKNH E 
i 

1\ I 
Pend~ist ABCDGJMPN i 

Faces (ABCD)(DFEP)(AIGH)(BJKL)(CMNO)(EKNH) EPDF I 

Vertices V2V5VlOV13V9V4Vl V12 Vll 

Edgelist EKHEPDF K 
i 

Pend_List ABCDGJMPNEH 
Faces (ABCD)(DFEP)(AIGH)(BJKL)(CMNO)(EKNH) K.JBL I 

I 

Vertices V2V5VIOV13V9V4VIV12Vll ! 

I 

Edgelist KFKJBL H E 
Pend_List ABCDGJMPNEKH I 

Faces (ABCD)(DFEP)(AIHG)(BJKL)(CMNO)(ENKH) 
Vertices V2V5VIOV13V9V4VIV12Vll 
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Table 6.3: Rp-sults For FLE Version 1 
Sequential Procs Parallel Remarks 

2 18558925 
3 17933964 4D 6 vertices 

19039752 4 18911185 Using 1000 points 
5 18722954 
6 18811114 
2 20752284 
3 19728550 3D 29 vertices 

24953393 4 19115759 Using 1000 points 
5 18871582 
6 18993580 
2 14596503 
3 14756803 2D 26 vertices 

16168211 4 14766466 Using 1000 points 
5 15038233 
6 15154157 

by the master . 

• Secondly, the results computed by the slaves are not returned immediately as the 

master may still be busy computing its own face while the slaves are waiting to 

hand in their results. 

The manipulation of the pending edge list is also a major cost of the algorithm. Every 

time a new edge is computed, the master has to search through the pending edge list to 

determine whether it has already been computed twice. In a situation where there are 

many edges in the pending edge list, searching through the list can take a large amount of 

computing time. Indeed this algorithm is proposed for complex shapes where many faces 

and edges exist. In order to exploit the parallelism for a list with many edges the search 

is likely to be a significant overhead. Also, the performance can be explained in terms of 

the distribution of points. With the Type 1 routine, a lot of points generated are interior 

points with relatively few points on the facets. It is the points on the facet that are used 

to determine the vertices and edges of the convex hull. The algorithms here are designed 
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for compute bound problems. These problems seem to have some negative influence on 

the expected results. Type 2 data were therefore used to test the algorithms in the next 

section. 

6.2 FLE On Shared Memory (Version 2) 

Considering the fact that our algorithm was designed for shapes with numerous edges and 

also the likely setback caused by the pending edge list, we propose a major modification 

to our algorithm and the test data generator leading to Types 2 and 3. These changes 

will be discussed in this section. The possible improvements are: 

• Free the master from computing a face to avoid starving the slaves of work. In the 

previous implementation, both the master and the slaves pick an edge to compute 

the subfacet whenever they are idle and the edge list is not empty. If a slave finishes 

computing a subfacet while the master is still busy, the slave has to wait for the 

master to finish its task before handing in the result. On the other hand, if a slave 

has a complex face to compute, longer delays may occur. The problem with the 

new approach is that the best speedup is between p - 1 and p since the master is 

now only acting as a coordinator between the processors and may be idle most of 

the time . 

• Using shared memory to store the global lists. The following lists could be stored 
\ 

globally: 

1. GEDGES which stores the edges computed by the slaves. 

2. GNORMS which stores the normal of the already computed faces. 

3. GCH which stores the vertices of the convex hull. 

4. GFA which stores the faces of the convex hull. 
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In this arrangement the slaves can only write directly to the global lists, and do not 

use the master as an intermediary as was the case in the previous implementation. 

One of the problems in the previous version was the use of the pending edge list by 

the master to store edges that had been computed twice. This not only requires a 

lot of memory but also requires matching of edges (i.e. sets of points). This has been 

eliminated and most of the parameters to handle the vertices and edges are globally 

declared and can be accessed directly by the master and the slave processors. The 

pending edge list is replaced by the norm list 'GNORMS' which is used here to 

simplify the search for duplicate edges. When a slave is given an edge, it uses the 

norm of that edge to check against those already stored in the GNORMS. If the 

norm is a member of that list, then that edge is discarded because it has already 

been computed, otherwise it rotates the edge and computes the subfacet. Thus a 

slave can stop computations at an early stage, therefore saving time. Checking with 

the norm is a vector comparison which is equivalent to a single point and this makes 

the search much faster than checking the edges in the pending edge list. The second 

advantage is that the number of entries in the norm list is comparatively fewer than 

the edges since we keep one norm per facet rather than its subfacets . 

• Split access to global structures to improve overhead between updating of the global 

lists by the slaves e.g. GEDGES, GNORMS, GCH and GFA and can all be accessed 

independently. 

In this version, the major responsibilities of the master includes the determination of 

the initial facet and coordination of the parallel environment while the slaves concentrate 

on computing the convex hull of subfacets. The master gives out the tasks to the slaves 

and accesses the global lists when the edge list is empty. The slaves now return the result 

of their computation directly to the global lists GCH for the vertices and GF A for the 
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Figure 6.5: FLE Implementation Using Global Lists 

facets as shown in figure 6.5. Semaphores are used to lock the critical regions during the 

insertion of the results into the global lists by the slaves. 

146 



*/ 

Convex_HulLMaster(S, AS, n, k, CH, FA, parts) 

this routine takes a set S with n-dimensional points 
and the affine basis AS of S with dimension k. Returns the sets 
CH = vertices of the convex hull, FA = list of facets. 
The routine is non recursive and uses a stack. 

EDGES *FA; 
POINTS S, AS, *CH; 
int n, k, parts; 
{ 

typedef struct cell4{ 
POINTS S, AS, CH; 
EDGES Elist, FA; 
int k; 

}STACKCELL 
STACKCELL Stack[MAXSTACK] ; 

/* stack */ 

POINTS E, Q, R, F, Fbar, TCH, Norm_List; 
EDGES Edge_List, TFA, Tmp_List, Junk; 
Vector P, PO, Pl, norm, minp, maxp; 
double t, 
int size, 
int sp; 

min, max; 
i, j, sref, new_face, slave_count, 

/* stack top */ 

setup stack and compute initial face 

status; 

/* exit loop after edges of first face found */ 

if ((IsEmpty_Elist(Stack[O] .Elist) == FALSE) && (sp -- 0)) 
{ 

break; 
} 

/* get next face */ 

if (IsEmpty_Elist (Stack[sp] .Elist) == FALSE) 
{ 

Read_Edge (Stack[sp] .Elist, n, &E, norm); 
Rotate(Stack[sp] .S, Stack[sp] .AS, n, Stack [sp] .k, E, norm, p); 
F = Insert_Point( Copy_Plist(E, n), n, p); 
F = GetNext_Point(F); 

/* save current facet description */ 
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}; 

Stack[spJ .FA = Insert_Edge(Stack[spJ .FA, n, F, norm); 

/* find set of all points on the face */ 

MakeEmpty_Plist(&Fbar); 
Read_Point(F, n, PO); 
Q = Stack[sp] .S; 
do{ 

Read_Point(Q, n, p); 
t = 0.0; 
for(i=l; i<=n; i++) t = t + (P[i] - PO[i])*norm[i]; 
if (fabs(t) <= TOL) 

Fbar = Insert_Point (Fbar, n, p); 
Q = GetNext_Point(Q); 

}while( Q != Stack[sp] .S); 
Fbar = GetNext_Point(Fbar); 

/* stack new face */ 

sp = sp + 1; 
if (sp == MAXSTACK) PrintErr(IIConvex_Hull", "Stack Overflow"); 
Stack[sp] .S = Fbar; 
Stack[sp] .AS = Copy_Plist(F,n); 
Stack[sp] .k = Stack[sp-1] .k-1; 
MakeEmpty_Elist(&(Stack[sp] .Elist»; 
MakeEmpty_Elist(&(Stack[sp] .FA»; 
MakeEmpty_Plist(&(Stack[sp] .CH»; 

}while( (IsEmpty_Elist(Stack[sp] .Elist) -- FALSE) I I (sp> 0) ); 

/* now share work with slaves */ 

GCH = Stack[O] .CH; GFA = Stack[O] .FA; 
Read_Edge (GFA, n, &R, norm); 
MakeEmpty_Elist(&GEDGES); 
MakeEmpty_Plist(&GNORMS); 
GNORMS = Insert_Point (GNORMS, n, norm); 
sref = 0; 
slave_count = 0; 

/* starting edge list */ 

MakeEmpty_Elist(&Edge_List); 
Edge_List = Stack[O] .Elist; 
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/* control slaves */ 

do{ 
new_face = FALSE; 

/* process current edges */ 

do{ 

/* look for a free slave */ 

while(1) 
{ 

}; 

/* locate a slave */ 

sref = (sref +1 ) 'l. parts; 
THREADpsem(Slavesem[sref]); 

status = Slaves [sref] .status; 

/* test it */ 

if ((status == START) I I (status -- RESULT)) break; 
THREADvsem(Slavesem[sref]); 

/* check status */ 

switch(status) 
{ 

case START 

/* start a slave */ 

if (IsEmpty_Elist(Edge_List) -- FALSE) 
{ 

Read_Edge(Edge_List, n, &R, p); 
Setup Slave; 
Slaves[sref].E = GetNext_Point(Copy_Plist(R,n)); 
for(j=1; j<=n; j++) 

Slaves [sref] .norm[j] = p[j]; 
MakeEmpty_Plist(&(Slaves[sref] .CH)); 
MakeEmpty_Elist(&(Slaves[sref] .FA)); 
Slaves [sref] . status = GO; 
slave count = slave count + 1; 
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} 

Write_Edge(Edge_List, n, NULL, P); 
Edge_List = Delete_Edge(Edge_List); 

}; 

break; 
case RESULT: 

/* check if slave added new faces */ 

if (Slaves [sref] .n == TRUE) new_face = TRUE; 

/* give it more work if possible */ 

if (IsEmpty_Elist(Edge_List) == FALSE) 
{ 

} 

else 
{ 

} ; 

Read_Edge(Edge_List, n, &R, p); 
Slaves [sref] .n = n; 
Slaves [sref] .k = k; 
Slaves [sref] .S = S; 
Slaves [sref] .AS = AS; 
Slaves [sref] .E = GetNext_Point(Copy_Plist(R,n)); 
for(j=l; j<=n; j++) 

Slaves [sref] .norm[j] = P[j]; 
MakeEmpty_Plist (&(Slaves [sref] .CH)); 
MakeEmpty_Elist(&(Slaves[sref] .FA)); 
Slaves [sref] . status = GO; 
Write_Edge(Edge_List, n, NULL, p); 
Edge_List = Delete_Edge(Edge_List); 

slave_count = slave_count - 1; 

Slaves [sref] . status = START; 

break; 
default 

break; 
}; 

THREADvsem(Slavesem[sref]); 
}while«IsErnpty_Elist(Edge_List) -- FALSE) I I (slave_count 1= 0)) 

Edge_List = GEDGES; 
MakeEmpty_Elist(&GEDGES); 

}while«new_face == TRUE) && (IsEmpty_Elist(Edge_List) -- FALSE)); 
*CH = GCH; 
*FA = GFA; 
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Convex_HulLSlave(p) 

int p; 
{ 

/* slave number */ 

POINTS ONE; 
EDGES FA, TFA; 
POINTS S, AS, CH, F, Fbar, Q, Junk; 
Vector norm, P, PO; 
float t; 
int n, k, i, j; 
int status, new_face; 
status = START; 
do{ 

/* grab current job for processor p */ 

THREADpsem(Slavesem[p]); 
status = Slaves[p] .status; 

THREADvsem(Slavesem[p]); 
if (status == GO) 

{ 

new_face = FALSE; 
Setup Slave; 
for(i=l; i<=n; i++) norm[i] 

/* solve current problem */ 

if (IsEmpty_Plist(S) == FALSE) 
{ 

Slaves[p] .norm[i]; 

Junk = Copy_Plist(F, n); 
Rotate(S, AS, n, k, F, norm, p); 
THREADpsem(Norms); 

if (IsMember_Plist(GNORMS, n, norm) -- FALSE) 
{ 

new_face = TRUE; 
GNORMS = Insert_Point(GNORMS, n, norm); 

} 

else 
new_face = FALSE; 

THREADvsem(Norms); 
if (new_face == TRUE) 

{ 

/* find edges of new face */ 

F = Insert_Point(F, n, P); 
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F = GetNext_Point(F); 

/* find set of all points on the face */ 

MakeEmpty_Plist(&Fbar); 
Read_Point(F, n, PO); 
Q = S; 
do{ 

Read_Point(Q, n, p); 
t = 0.0; 

for(j=l; j<=n; j++) t = t + (P[j] - PO[j])*norm~]; 

if (fabs(t) <= TOL) 
Fbar = Insert_Point (Fbar, n, P); 
Q = GetNext_Point(Q); 

}while( Q 1= S); 
Fbar = GetNext_Point(Fbar); 
MakeEmpty_Plist(&CH); /* find hull */ 
MakeEmpty_Elist(&FA); 
Convex_Hull (Fbar, F, n, k-l, &CH, &FA); 

/* add new vertices found */ 

THREADpsem(New_Verts); 
while( IsEmpty_Plist(CH) -- FALSE) 

{ 

Read_Point (CH, n, P); 

if (IsMember_Plist(GCH, n, p) == FALSE) 
{ 

GCH = Insert_Point (GCH, n, P); 
}; 

CH = Delete_Point(CH); 
} ; 

THREADvsem(New_Verts); 

/* add new edges found using norm of complete face */ 

if (IsMember_Elist(&FA, n, Junk) == TRUE) 
{ 

FA = Delete_Edge(FA); 
Junk = Delete_Plist(Junk); 

} 

else 
PrintErr("slave", "starting edge not on face \n") 

THREADpsem(New_Edges) 
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} 

}; 

while( IsEmpty_Elist(FA) == FALSE) 
{ 

} ; 

Read_Edge(FA, n, &Q, P); 
if (IsMember_Elist(&GEDGES, n, Q) -- TRUE) 

{ 

} 

else 
{ 

} ; 

GEDGES = Delete_Edge(GEDGES); 

GEDGES = Insert_Edge(GEDGES, n, Q, norm); 
Write_Edge(FA, n, NULL, P); 

FA = Delete_Edge(FA); 

1* add face to face list */ 

GFA = Insert_Edge(GFA, n, F, norm); 
THREADvsem(New_Edges); 

}; 
} 

else 
{ 

MakeEmpty_Plist(&CH); 
MakeEmpty_Elist(&FA); 

}; 

1* signals result is valid *1 

Slaves[p].n = new_face; 
THREADpsem(Slavesem[p]); 

Slaves[p] . status = RESULT; 
THREADvsem(Slavesem[p]); 

}while(status 1= STOP); 

6.2.1 Results From Shared Memory 

The data generated to test our programs comes from the polytopes discussed in section 

4.4.2. Figure 4.5 is a simplified representation of the pyramidal structure with a square 

base, but the vertex projected in an opposite direction. The shape can be viewed as two 
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separate pyramids on a common square base. The master processor starts the computation 

by determining the initial face labelled 1, generating three edges A, B, and C. This is 

the only computation performed by the master processor. All the three edges (A. B. 

e) could be assigned to the slave processors and the faces labelled 2 can be computed 

simultaneously. This technique is continued until the computation is complete. The 

programs to generate the test data for this section are shown in Appendix C2. 

The timings were taken at off-peak periods. It should be emphasised that the method 

is intended for objects with many facets so as to keep the slave processors busy. Table 

6.4 illustrates the timings for 2-D. It should be noted that during the computation of the 

vertices in 2-D, the maximum number of slave processors that can be utilised is two. This 

is because the number of edges that are available at any point in time cannot exceed two. 

This scenario is shown in figure 6.3 where we discuss how parallelism is exploited. Since 

the number of faces that can be computed in parallel is 2, this limits the speedup to 2 

and is reflected in Table 6.4. If more than two slave processors are used, the additional 

processors will be idle and no significant contribution will be made to the speedup. 

The timings for the 3-D object shown in Table 6.5 is that of the circular structure 

with the vertices projected in either direction. The data was generated using the program 

in Appendix 2.2. Clearly, there is an improvement over that of 2-D as a result of the 

multiple facets of the shape. The graphical representations are in figures 6.6, 6.7 and 6.8 

for the 2-D and 3-D cases respectively. The gradual increase in the speedup is as a result 

of the complexity of the shape of the object under consideration. 

The timing recorded in Table 6.6 demonstrates a significant improvement to that of 

Table 6.5 even though both shapes are in 3-D. The data came from the program in Ap­

pendix 2.3 where rectangles of different sizes where generated in levels. This improvement 

in speedup is attained mainly due to the increase in the number of facets as shown in 

figure 4.6 of chapter 4. In each of these cases, the speedup is limited by the complexity of 
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Table 6.4: Timing for 2-D 
Points Seq. Processors 

2 3 4 5 6 
10 61946 85050 97208 108145 118386 138746 
20 165693 165057 182230 198029 211846 241288 
30 291058 287509 300129 318960 350037 342996 
50 645248 574529 609818 624019 636293 650159 
100 2146766 1773448 1843447 1867255 1881780 1918853 
150 4516176 3679362 3772718 3823652 3913955 3851436 
250 12437120 9728746 9854043 9987508 9755902 10081848 
350 23144612 18363471 18626296 18832709 18764585 18461995 

Table 6 5· Timing for 3-D Circular Structure .. 
Points Seq. Processors 

2 3 4 5 6 
10 568741 459748 416767 396144 404662 405506 
30 1899102 1614474 1441846 1232050 1164047 12021.58 
50 3606038 3126744 2621719 2286960 2050852 2124603 

100 10273413 8604516 7080557 6295752 5684705 5523024 
120 15126292 11963384 9356036 8160797 7555822 7388448 
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the shape. In the 2-D case the speedup is limited to a factor of 2 which we have illustrated 

using figure 6.3. Similar arguments equally apply to the 3-D case. There is no doubt that 

further improvements may be obtained if more complex objects are generated. Combi-

natorial blow-up of the point and edge data structures prevent us from testing higher 

dimensions (see chapter 7 for justification). 

6.3 Transputer Implementation Of FLE 

We have shown in the preceeding section that a speedup is achievable using facial lattice 

exploration on the shared memory machine. The main problem in this implementation is 

that there is no shared memory on a transputer so global lists have to be kept centrally or 
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distributed among transputers. Here we discuss a similar implementation to the shared 

memory version but on the transputer. 

• In the case of a centrally located set of global lists, there is an obvious bottleneck 

for accessing lists. 

• In a distributed organisation, we have to decide how to spread the lists out amongst 

the processors and then carefully control access. 

Of the two approaches, the first is by far the simplest. It has the advantage of low 

communication costs which simplifies the possibilities of queries to a list manager. In 

the latter, we have the added problems of locating items in a distributed structure and 

increased traffic between processors. Recent evidence in the implementation of distributed 

LINDA whose tuple space is similar to the edge list indicates that the former approach 

is better than the latter. In particular, our intention is to use the high granularity of the 

sequential algorithm to provide compute-bound slaves. Thus it would not be efficient to 

constantly interrupt the slaves to access shared data. The allocation of extra processors to 

manage the shared structures although practical adds to efficiency costs because the work 

involved in list search is sporadic and depends on the shape of the hull. Two different 

implementation strategies were adopted. 

• Master and manager processes run on different transputers (Ver 1). 

• Master and manager processes run on the same transputer (Ver 2). 

In the first method, the master, manager and each of the slave processors runs on a 

separate transputer. Communication links or channels were established between different 

processors. There is a link from the master to the manager and also from the manager 

to the master. There is also a channel from the master to each of the slaves. Between 

the slaves and the manager, there are two communication channels (see figure 6.9). The 
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Figure 6.9: Communication Between Processes on Different Transputers 

master first of all computes the initial face using the stack version of the sequential 

algorithm. The norm of the face, the vertices of the convex hull and the facet list are 

stored in the global variables GNORMS, GCH and GFA respectively. The master sends 

these partial solutions to the manager who will update the lists as more solutions become 

available. 

With the initial edges from the EdgeList, the master picks an edge, finds an idle 

and free slave and assigns the job to it. The slave on receiving the edge from the master, 

confirms that it is a new edge by checking its norm against the lists of norms in GNORMS 

held by the Manager. If the norm is not present in the GNORMS list then it is a new face. 

The slave then rotates and computes the convex hull of the new face to produce more 

edges and some new vertices. A signal will then be sent from the slave to the manager 

via one of the channels to inform it that the slave has completed its computation. The 

manager then shifts over to the second channel and reads the result of the computation. 

This is to avoid message confusion and data collision which led to deadlocks in earlier 

versions of the program. With the new results coming in, the manager updates its lists 

and sends more edges that have been computed from the new face to the master (when the 
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master runs out of edges) who will again farm out more work to slaves which are ready for 

another round of computation. This cycle will be repeated until the EdgeList is empty. 

The slaves are now synchronised. At this stage the manager sends a signal to the master 

which will in turn send the final result back to the master. This situation is illustrated in 

the diagram in Figure 6.9 with the arrows pointing to the direction where the messages 

arrive. In the figure we consider a situation where five different transputers are used each 

running a process. There are three slaves. The section of the code below shows how the 

master distributes work to the slaves and also communicates with the manager after the 

computation of the initial face using the sequential stack algorithm. The slave processors 

on receiving an edge from the master use the routine Convex_HulLSlaveO to compute 

the subfacet. 

/* now share work with slaves */ 

GCH = Stack[O] .CH; GFA = Stack[O] .FA; 
Read_Edge(GFA, n, &R, norm); 
MakeEmpty_Elist(&GEDGES); 
MakeEmpty_Plist(&GNORMS); 
GNORMS = Insert_Point(GNORMS, n, norm); 

/* send initial Global lists to Manager */ 

csn_tx(masterchan, 0, manager_id, &n, sizeof(n)); 
csn_tx(masterchan, 0, manager_id, &k, sizeof(k)); 
Transmit_Plist(GNORMS, n, masterchan, manager_id); 
Transmit_Plist(GCH, n, masterchan, manager_id); 
Transmit_Elist(GFA, n, masterchan, manager_id); 
new_face = TRUE; 
for(i=O; i<parts; i++) 
slave_count = parts; 

Svector[i] = i; /* slave numbers 
/* available slaves */ 

/* starting edge list */ 

MakeEmpty_Elist(&Edge_List); 
Edge_List = Stack[O] .Elist; 

/* set up slave data */ 
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for(i=O; i<parts; i++) 
{ 

}; 

csn_tx(masterchan, 0, toslave_id[i], &n, sizeof(n)); 
csn_tx(masterchan, 0, toslave_id[i], &k, sizeof(k)); 
Transmit_Plist(S, n, masterchan, toslave_id[i] ); 
Transmit_Plist(AS, n, masterchan, toslave_id[i] ); 

/* control slaves */ 

do{ /* process current edges */ 

while(IsEmpty_Elist(Edge_List) == FALSE) 
{ 

/* look for a free slave */ 
if (slave_count == 0) 
{ 

/* ask manager for another slave */ 
csn_rx(masterchan, NULL, &status, sizeof(status)); 
Svector[slave_count] = status; 
slave count = slave count + 1; 

}; 

/* allocate data */ 
slave_count = slave_count - 1 
sref = Svector[slave_count]; 

/* set up slave data */ 

Read_Edge(Edge_List, n, &R, P); 
Slaves [sref] . status = GO; 
Slaves [sref] .E = GetNext_Point(Copy_Plist(R,n)); 
forCj=l; j<=n; j++) 
Slaves [sref] .norm[j] = p[j]; 

/* send data */ 

csn_tx(masterchan, 0, toslave_id[sref], &(Slaves[sref] . status) , 
sizeof((Slaves[sref] .status))); 

csn_tx(masterchan, 0, toslave_id[sref], &(Slaves[sref] . norm) , 
sizeof((Slaves[sref] .norm))); 

Transmit_Plist(Slaves[sref] .E, n, masterchan, toslave_id[sref] ); 

/* record send */ 

Write_Edge (Edge_List , n, NULL, p); 
Edge_List = Delete_Edge(Edge_List); 
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} 

}; 

/* run out of edges and synchronise slaves */ 

while( slave_count != parts) 
{ 

}; 

csn_rx(masterchan, NULL, &status, sizeof(status»; 
Svector[slave_count] = status; 
slave_count = slave count + 1; 

/* ask manager for new edge list and set new_face flag */ 

status = NEWLIST; 
MakeEmpty_Elist(&Edge_List); 
csn_tx(masterchan, 0, manager_id, &status, sizeof(status»; 
csn_rx(masterchan, NULL, &new_face, sizeof(new_face»; 
Receive_Elist(&Edge_List, &n, masterchan, NULL); 

}while((new_face == TRUE) && (IsEmpty_Elist(Edge_List) -- FALSE»; 

/* master completes computation */ 

status = RESULT; 
csn_tx(masterchan, 0, manager_id, &status, sizeof(status»; 
Receive_Plist(&GCH, &n, masterchan, NULL); 
Receive_Elist(&GFA, &n, masterchan, NULL); 

/* recieve result and shutdown */ 

status = STOP; 
for(i=O;i<parts; i++) 

csn_tx(masterchan, 0, toslave_id[i], &status, sizeof(status»; 
*CH = GCH; 
*FA = GFA; 

Convex_H ulLSlave (p) 

int p; 
{ 

/* slave number */ 

POINTS ONB; 
EDGES FA, TFA; 
POINTS S, AS, CH, F, Fbar, Q, Junk; 
Vector norm, P, PO; 
float t; 
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int n, k, i, j, m; 
int status, new_face; 

/* set up data */ 

csn_rx(slavechan_from_master, NULL, &n, sizeof(n)); 
csn_rx(slavechan_from_master, NULL, &k, sizeof(k)); 
Receive_Plist(&S, &m, slavechan_from_master, NULL); 
Receive_Plist(&AS, &m, slavechan_from_master, NULL); 

do{ 
csn_rx(slavechan_from_master, NULL, &status, sizeof(status)); 
if (status != STOP) 
{ /* recieve data from master */ 

csn_rx(slavechan_from_master, NULL, &norm, sizeof(norm)); 
Receive_Plist(&F, &m, slavechan_from_master, NULL); 
if (IsEmpty_Plist(S) == FALSE) 
{ 

Junk = Copy_Plist(F, n); 
Rotate(S, AS, n, k, F, norm, P); 

/* slave - ask manager to check norm against global list */ 

status = CHECKNM; 
csn_tx(slavechan_from_manager, 0, manager_id, &status, sizeof(status)); 
csn_tx(slavechan_from_manager, 0, aux_manager_id, &norm, sizeof(norm)); 

/* receive result */ 

csn_rx(slavechan_from_manager, NULL, &new_face, sizeof(new_face)); 
/* manager checked norm list and process it *1 

if (new_face == TRUE) 
{ 1* find edges of new face *1 

F = Insert_Point(F, n, p); 
F GetNext_Point(F); 

1* find set of all points on the face *1 

MakeEmpty_Plist(&Fbar); 
Read_Point(F, n, PO); 
Q = S; 

do{ 
Read_Point(Q, n, P); 
t = 0.0; 

for(j=l; j<=n; j++) t = t + (p[j] - PO[j])*norm[j]; 
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} 

if (fabs(t) <= TOL) 
Fbar = Insert_Point (Fbar, n, P); 
Q = GetNext_Point(Q); 
}while( Q != S); 

Fbar = GetNext_Point(Fbar); 
MakeEmpty_Plist(&CH); /* find hull */ 
MakeEmpty_Elist(&FA); 
Convex_Hull(Fbar, F, n, k-1, &CH, &FA); 

/* check orignal edge is on face */ 

} 

if (IsMember_Elist(&FA, n, Junk) -- TRUE) 
{ 

FA = Delete_Edge(FA); 
Junk = Delete_Plist(Junk); 

} 
else 
status = RESULT; /* send result to manager */ 
csn_tx(slavechan_from_manager, 0, manager_id, &status, sizeof(status»; 
csn_tx(slavechan_from_manager, 0, aux_manager_id, &norm, sizeof(norm»; 
Transmit_Plist(CH, n, slavechan_from_manager , aux_manager_id); 
Transmit_Elist(FA, n, slavechan_from_manager , aux_manager_id); 
Transmit_Plist(F, n, slavechan_from_manager , aux_manager_id); 
}; /* slave send result to manager */ 

else 
{ 

MakeErnpty_Plist(&CH); 
MakeErnpty_Elist(&FA); 

/* scrap result */ 

status = SCRAP; 
csn_txCslavechan_frorn_rnanager, 0, rnanager_id, &status, sizeof(status»; 
}; 

}; 

}while(status != STOP); 
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Convex_HulLManager(p) 

int p; 
{ 

/* slave number */ 

POINTS ONB; 
EDGES FA, TFA; 
POINTS S, AS, CH, F, Fbar, Q, Junk; 
Vector norm, P, PO; 
float t; 
int n, k, i, j, m; 
int status, new_face, global_new_face; 

1* set slave status */ 

for(i=O; i<p; i++) Slaves[i] . status = GO; 

1* recieve starting global lists */ 

global_new_face = FALSE; 
MakeEmpty_Plist(&GCH); 
MakeEmpty_Elist(&GFA); 
MakeEmpty_Elist(&GEDGES); 
MakeEmpty_Plist(&GNORMS) 
csn_rx(managerchan, &junk_id, &n, sizeof(n)); 
csn_rx(managerchan, &junk_id, &k, sizeof(k)); 
Receive_Plist(&GNORMS, &m, managerchan, NULL); 
Receive_Plist(&GCH, &m, managerchan, NULL); 
Receive_Elist(&GFA, &m, managerchan, NULL); 

1* service requests from slaves and master */ 

do{ /* get request */ 

csn_rx(managerchan, &junk_id, &status, sizeof(status)); 

1* MANAGER recieves message and process it */ 

if (junk_id == master_id) 
{ 

switch (status) 
{ 

case NEWLIST : /* send new edge list to master */ 
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sizeof(global_new_face)) 
Transmit_Elist(GEDGES, n, managerchan, master_id); 
MakeEmpty_Elist(&GEDGES); 
global_new_face = FALSE; 
break; 

case RESULT : /* return final results */ 

} 

Transmit_Plist(GCH, n, managerchan, master_id); 
Transmit_Elist(GFA, n, managerchan, master_id); 
status = STOP; 
break; 

default : /* Oops !! */ 

printf("MASTER-MANAGER message error \n"); 
break; 

}; 

else 
{ /* identify slave */ 

for(i=O; i<p; i++) 
if (junk_id == toslave_id[i]) break; 
switch(status) 

{ 

case CHECKNM : /* check global norm list */ 
csn_rx(aux_managerchan, &junk_id, &norm, sizeof(norm)); 
if (IsMember_Plist(GNORMS, n, norm) == FALSE) 

{ 

new_face = TRUE; 
GNORMS = Insert_Point(GNORMS, n, norm); 

} 

else 
{ 

new_face = FALSE; 
csn_tx(managerchan, 0, master_id, &i, sizeof(i)); /* free slave */ 

}; 

/* return result */ 

csn_tx(managerchan, 0, toslave_id[i], &new_face, sizeof(new_face)); 
break; 

case RESULT /* process result */ 
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csn_rx(aux_managerchan, &junk_id, &norm, sizeof(norm)); 
Receive_Plist(&CH, &m, aux_managerchan, NULL); 
Receive_Elist(&FA, &m, aux_managerchan, NULL); 
Receive_Plist(&F, &m, aux_managerchan, NULL); 
csn_tx (manager chan , 0, master_id, &i, sizeof(i)); /* release slave */ 
while( IsEmpty_Plist(CH) == FALSE) /* process new vertices */ 

{ 

Read_Point(CH, n, p); 
if (IsMember_Plist(GCH, n, P) == FALSE) 

{ 

GCH = Insert_Point (GCH, n, p); 
}; 

CH = Delete_Point(CH); 
}; 

/* add new edges found using norm of complete face */ 

while( IsEmpty_Elist(FA) == FALSE) 
{ 

Read_Edge(FA, n, &Q, P); 
if (IsMember_Elist(&GEDGES, n, Q) 

{ 

GEDGES = Delete_Edge(GEDGES); 
} 

else 
{ 

TRUE ) 

GEDGES = Insert_Edge (GEDGES, n, Q, norm); 
Write_Edge(FA, n, NULL, P); 

}; 

FA = Delete_Edge(FA); 
} ; 

/* add face to face list */ 

GFA = Insert_Edge(GFA, n, F, norm); 
global_new_face = TRUE 
break; 

case SCRAP : 1* invalid computations release slave */ 
csn_tx(managerchan, 0, master_id, &i, sizeof(i)); 
break; 

default : /* Oops !! *1 

}; 

} ; 

printf("MASTER-SLAVE message error \n"); 
break; 

167 



} 

Figure 6.10: Master And Manager Run On Same Transputers 

}while(status != STOP); 

In the second version, the same principle used in the first version is also adopted, but 

the major modification lies in the fact that the master and the manager processes run 

on a single transputer as if it were a time sharing service. In this case the resources are 

shared between the master and the manager. The number of transputers used is one less 

than that of the previous version. It will be possible with this approach to estimate the 

processing time used by the manager. The diagram in figure 6.10 depicts the situation 

discussed here. The reason for this is that the master is relatively lightly loaded and the 

manager will have periods of inactivity although the best result is to stagger the start up 

of the slaves. 

6.3.1 Results From Distributed Memory 

The results from the distributed memory architecture are shown in Table 6.7 to Table 6.9. 

Table 6.7 shows the timings for the 2-D example while Table 6.8 and Table 6.9 are for the 

3-D example. A speedup of 1.17 was achieved for 2-D when considering 350 points on the 
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a e lmlllg or -T bl 6 7 T" . f 2 D 
Size Sequential Parallel Processors 

3 4 5 6 7 
10 92160 Ver 1 167616 150528 151232 161216 170048 

Ver 2 150016 156416 162752 169088 175424 
20 232896 Ver 1 376512 324864 324544 341120 356736 

Ver 2 324096 334336 343936 354880 365760 
31 433920 Ver 1 646976 545920 545152 569856 591232 

Ver 2 545280 559808 574208 589952 603776 
50 951232 Ver 1 1317504 1075584 1073216 1112512 1144768 

Ver 2 1074880 1096832 1119488 1138240 1163712 
100 3136320 Ver 1 3926016 3079296 3077120 3152576 3211328 

Ver 2 3078528 3120640 3155392 3200704 3247488 
350 32472128 Ver 1 36438336 27231552 27229184 27488960 27675840 

Ver 2 27799104 27695232 27534272 27373760 27231360 

hull and using 3 processors. The data used to test the algorithm were generated from the 

Type 2 test generators. The graphical representations are shown in Figures 6.11 through 

6.14 . The poor speedup in the transputer version is as a result of the communication 

problems. Routing information around the network can be very expensive. Most of the 

computation is performed by the slaves while the master and the manager processes are 

busy coordinating the activities of the system. With few processors, Version 2 gives a 

better performance than Version 1. The manager and the master by sharing a processor 

reduce the idle time between them. In both the shared memory and the message passing 

architectures we have shown that parallelism could be achieved taking into consideration 

the architectural features and the test data. 
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Chapter 7 

Conclusions and Summary 

This chapter gives an overview of the work carried out in this thesis. Below, the differences 

between each implementation will be pointed out, and suggestions for further research are 

briefly discussed. 

As pointed out earlier, the main aim of this thesis was to implement parallel algorithms 

for the n-D convex hull problem. The benefits that are derived from the convex hull 

problem are enormous particularly in computer graphics, computer aided design, image 

generation, operations research and simulation. In some cases, the algorithm is used 

as a sub-algorithm in solving the main problem, as in automatic synthesis of parallel 

algorithms, and may be used several times. Because of these numerous applications, there 

have been attempts at developing elegant and concise algorithms that are both economical 

and fast. Unfortunately, this attention is mainly theoretical, and has concentrated on 

finding the convex hull for the lower (2 and 3) dimensional problems. This thesis has 

addressed this imbalance by proposing parallel algorithms for the general n-D problem. 

As far as we are aware they are the first algorithms to appear in the literature [95]. In 

particular, we have concentrated on practical aspects rather than theoretical analysis, so 

all our methods have been implemented and tested. 

An extensive survey of the literature highlighted the work carried out in this field 

so far. This sur vel' reveals the fact that the convex hull problem could be solved by 
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either a divide-and-conquer method or by a gift-wrapping technique. In this thesis we 

propose a hybrid case, that is a combination of divide-and-conquer and a gift-wrapping 

technique, which we implemented in chapter five. This acts as a mechanism for overcoming 

the generalisation of divide-and-conquer methods to the general case. In chapter six we 

discussed the Facial Lattice Exploration implementation. In our implementations, we 

have chosen the Encore Multimax and the (Meiko) transputer architecture to represent 

each category of the MIMD computation. The facilities of the EPT were used for process 

creation and synchronisation on the Encore Multimax. In the Distributed system, we 

employed Parallel-C which provides the necessary constructs for exchanging messages 

and moving data between the processes. 

The speedup of a parallel algorithm is usually measured against the fastest sequential 

algorithm. The timings for the sequential algorithm in chapter five were obtained by 

partitioning the set of points into subproblems and solving the subproblems by using the 

sequential algorithm followed by a merge and compute procedure until the final result 

is obtained. The idea here is to use sequential algorithm which is equivalent to the 

parallel version, and speedups are measured with respect to this. These speedups are only 

conservative because partitioning the points into subproblems tends to run faster than the 

normal sequential algorithm because a lot of points are eliminated quickly. Consequently, 

this will improve on the performance of the normal sequential algorithm. 

Measured against the sequential algorithm with no partitions would give better speedup 

results. To determine optimal performance we would need to look very carefully at the 

partitioning, and the speedup would look rather worse. Our strategy is, at least, consis­

tent. The results presented using the partitioning method consider polytopes with varying 

number of vertices and interior points. In order to test our algorithms, we examined the 

performance of polytopes with 3, 4, 6, 16 and 26 vertices on the convex hull in 2 dimen­

sions. For the 3-D problem we demonstrated the effect of 3, 4, 6 and 12 vertices whereas 
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shapes with 4 and 6 vertices on the convex hull were tested in 4-D. The performance 

on the shared memory architecture for the 2-D problem are shown in Tables 7 - 16 in 

Appendix A with the sets consisting of points from 25 - 4000. An interesting feature to 

observe in the results is that as the number of points increases the speedup also increases. 

An optimal speedup of 2 was achieved with 2 processors and a speedup of 5.2 when us­

ing six processors. The speedup also increases rapidly with an increase in the number 

of points on the vertices of the hull. Also for the 2-D problem, a speedup of 4.3 was 

realised with six processors using the Meiko transputer system. For the 3-D problem, a 

speedup of 5.45 (Table 17) was achieved when a polytope of three vertices was examined 

on the shared memory architecture. Increasing the number of vertices on the convex hull 

to 12 reduces the speedup to 3.1 (Table 24) on six processors. This drop in speedup is a 

result of the increase of the complexity of the shape. Again the amount of work given to 

the processors can affect its performance. With the transputer version, a speedup of 3.5 

(Table 32) was achieved when using six processors. An example of a 4-D problem gave 

a speedup of 3.5 (Table 28) and 3.2 (Table 33) on the shared memory and transputer 

architectures respectively when using six processors. In each of these examples there is 

an improvement in the speedup obtained if a smaller number of processors are utilised as 

can be readily seen from the Tables. This suggests that there is a limit to the number of 

processors that can be used effectively and efficiently. 

In the FLE implementation, the number of facets of the shape limits the parallelism. 

In 2-D problems, the number of processors that can be efficiently utilised is two because 

of the number of edges available at any point in time. We have further demonstrated 

that for the 3-D problems, the speedup depends not only on the problem size but also 

on the complexity of the shape. Two typical examples were considered: the first shape 

generated was in the form of a pyramid on a square base with the vertices projecting in 

either direction resulting in a number of faces in the structure. The second shape was 

175 



generated by building rectangles in levels, in order to have more edges and vertices on 

the convex hull. This second option resulted in a better speedup than the first. Vlie have 

no results for higher dimensional cases because of combinatorial blow up of the point 

and edge data structures. The results from the FLE method in chapter six depends on 

the complexity of the shape in which the convex hull is to be determined. For the 2-D 

problem we have shown that the maximum speedup cannot exceed 2. Tables 6.4 and 

6.7 show our results from the shared memory and transputer implementations. In fact 

our results confirm 0 < Sp < 2 and in particular speedups of 1.3 and 1.2 were obtained 

for the shared memory and transputer implementations when considering a shape with 

350 points. For the 3-D problem, we have shown that the speedup is a multiple of 3 

depending on the complexity of the shape. To demonstrate this we generated a circular 

and pyramidal 3-D shapes to test our algorithms. The results shown in Tables 6.5 and 6.6 

are for the shared memory implementations while those shown in Tables 6.8 and 6.9 are 

for the transputer implementations. From the shared memory implementation, a speedup 

of 2.04 (Table 6.5) was obtained for the circular structure and 2.73 (Table 6.6) for the 

more complicated pyramidal shape. For the transputer implementations, the speedup 

is not very encouraging as a result of the communication problems earlier explained in 

section 6.3. 

The decision as to which of the methods (partitioning or facial lattice exploration) 

should be used depends on the type of data available. However, as a guide it is rec­

ommended that if the data set comprises a large number of interior points, then the 

partitioning method would be useful taking into consideration the number of processors. 

On the other hand, a situation involving complex shapes where most of the points are 

suspected to be on the convex hull will perform well with the facial lattice exploration 

technique. If no knowledge of the type of data is known, then a pilot study might reveal 

the characteristics of the data to enable a proper decision to be taken. 
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However, a problem size of not less than 2000 points will require 2 processors in order 

to give an optimal speedup in a 2-D problem increasing to 4000 points if 4 processors are 

available in a shared memory machine. In 3-D, at least 1000 points are needed to gi\'e a 

reasonable speedup with 2 processors and a corresponding larger sized problem if more 

processors are to be used. This trend can be extended to higher dimensions bearing in 

mind that other factors will affect the performance. The results indicate that a significant 

speedup can be obtained with our techniques. These results can be summaried as follows: 

• They confirm that the problem size, number of facets and dimension of the problem 

affects the performance of our algorithms. We observed that the larger the problem 

size the better the performance when using the partitioning scheme. The speedup 

decreases as the partition size is reduced because the computation is less intensive. 

For 2-D problems, we have obtained a near optimal solution with 2 and 3 processors 

but for 3-D and 4-D the speedup decreased when problems of the same size were 

tested. 

• The speedup obtained using a higher number of processors (say 6) seems to be low 

compared with using a smaller number of processors (say 2). This is in agreement 

with the fact that there is a limit to the number of processors with which efficient 

parallelism can be exploited for a particular problem. Assigning a very small amount 

of work to the processors can lead to work starvation. As the number of processors 

increases, the speedup drops indicating that a point may be reached where additional 

processors are of no advantage. 

• We have tried a number of partitioning strategies but the lexicographic partitioning 

method appears to be the best because the scheme attempts to provide an initial 

load balance among the processors and has very low overhead. 

The divide-and-conquer implementation is more straight forward to implement than 
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the FLE. The FLE needs specialised data while simple test data such as those of Type 1 

generated randomly were used to test the partitioning algorithms. One might ask which 

is the best architecture or approach to adopt and why? There is no clear cut answer 

to such a question because varying degrees of success have been achieved using different 

types of architecture and approaching parallelism in a different manner. Nevertheless, we 

state briefly the characteristics and features we observed in our implementations: 

• The shared memory architecture has the capacity of running larger problem sizes 

than the distributed memory machines mainly because of availability of more mem­

ory. Although some modifications to list management would improve the situation 

this would also add additional overheads. Some of the lists (like those of the edges 

computed twice) could be deleted in order to get more memory to run larger prob­

lem sizes, but this will incur an additional overhead because of the time spent in 

deleting the list. 

• The stack version is usually faster and runs larger problem sizes than the recursive 

verSIOn. 

• The speed up obtained from the shared memory architecture is better than those 

from the distributed memory architecture. The message passing paradigm seems 

to be spending most of its time on managing the communication protocols due to 

unpredictable sizes of edges and face data. 

Although we have shown that parallelism can be exploited in the n-D convex hull 

algorithm by partitioning and by facial lattice exploration, there are other areas where 

additional research could be usefully carried out. Some of these areas include implement­

mg: 

• Parallelisation of low level sub-routines. 

178 



• Multiple Partitioning 

• Exploiting parallelism from FLE at sub-facet levels. 

• Parallelising global data structures. 

The n-D convex hull algorithm is made up of various routines as could be seen in the 

sequential algorithm presented in chapter 4. Some of these sub routines could themselves 

benefit from parallelisation if they were treated as separate algorithms. In our sequential 

code, quick sort, solving a system of linear equations, list insertions, finding the maximum 

and minimum angle of rotations are component parts of the algorithm and are all potential 

candidates for parallelisation. Our present parallel implementation does not consider 

implementing these routines in parallel as component parts but we assign each processor 

a task to perform by using the overall sequential algorithm. It would be of interest to 

consider this low level implementation in the two types of architecture in order to compare 

the results against our implementation. Also, in chapter five we have proposed a multiple 

partitioning method where the number of partitions of the problem is greater than the 

number of processors. The idea here is that once the allocation of tasks is started, the 

processors will be kept busy most of the time as new tasks will be given out once a 

processor is idle. We hope that a good performance benefit can be gained by carrying 

out as much work as possible rather than having a fixed number of partitions which 

render the slave processors idle once they have completed their assigned task. In our 

implementations, the granularity is reduced as the fanin of tasks progresses. In order to 

address this situation, a repartitioning of the data periodically is suggested. This calls for 

a merge and repartitioning process at each level of the tree. Though the load balance may 

be improved, the major concern is the overhead introduced by partitioning as some of the 

partitioning techniques that we have examined are complicated. ~1ore may be incurred 

in overheads than improvements in performance. 
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At the moment, the FLE technique that we have proposed explores the lattice structure 

facet by facet. If we consider a situation where the shape of the object is very complex. 

resulting in many faces and of a high dimension, we could consider a facet as a problem 

in itself and then attempt to explore the parallelism in that face by considering the sub­

facets. The time spent to determine a face in our implementation may greatly be reduced 

as the sub-facet jobs could be distributed among processors. This could be implemented by 

allowing idle processors to steal work from more active processes. An initial version of this 

implementation was attempted but memory problems forced us to consider the simpler 

approach here. In general, we encountered memory problems during our implementation. 

For example, during the recursive implementation, the memory fills up with the vertices 

and edges of the convex hull and we require stack space for procedure calls. This was very 

prominent when considering problems with complex shapes which eventually generate 

the vertices of the convex hull along with the edges as a by product. The subproblems 

at different levels of the tree also generate their corresponding vertices and edges and 

they all compete for storage in the memory. This is disappointing and limits the size 

of the problem that we can use to test our algorithm. Although such problems could 

be addressed by improving the management of dynamic structures, they would not be 

completely solved. The answer appears to lie in the use of external memory which could 

require a complete re-design of the approach. 

Parallelising the global data structures may also enhance the performance of the algo­

rithms. In this organisation, the global lists (e.g. GNORMS) could be partitioned into p 

sublists and so use p processors to access each individual sublist in parallel. The situation 

is pictured here in figure 7.1 where GNORMS is partitioned into three sublists SI, Sz, S3' 

Three processors could be used to access the individual sublists in parallel and it is hoped 

that the time of searching the entire GNORMS sequentially will be greatly minimised. 

We could also allow separate slaves to enter different partitions, this reduces access time 
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GNORMS 

S 1 

Figure 7.1: Partitioning of GNORMS into three sublists 

for a number of slaves. 

The goal of this research as pointed out from the outset was to implement the sequen­

tial n-D convex hull algorithm in parallel. From the research that we have carried out and 

which is reported in this thesis we can conclude that effective exploitation of parallelism 

with this problem is dependent on several factors some of which include the nature of the 

problem to be solved and the type of architecture on which to implement the problem as 

well as the test data. Moreover, the ideas used here could be applied in other research 

efforts, such as parallelising the low level routines and exploiting parallelism at sub-facet 

levels in the FLE method. These problems address the general problems of combinatorial 

and optimisation problems, including branch-and-bound and problems with irregular task 

structures [96]. Such work will be of key importance in further development of the system. 
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Table 7: Timing Of Recursive Version For 2D With 3 Vertices (Multimax) 
Size Of Set 

Part Time 25 50 100 200 500 1000 
Sequential 166643 226598 395592 841881 2888055 9944076 

2 Thread 145477 174203 283449 531775 1581603 4998430 
Microthread 119575 151613 245838 503796 1530946 4959641 
Sequential 250455 259281 408478 700583 2415931 7381996 

3 Thread 255714 245774 315450 426747 1090612 2843493 
Microthread 208585 192197 268140 394880 1017109 2729174 
Sequential 297844 338180 486876 883342 2347805 6649440 

4 Thread 298106 311715 409316 566718 916117 1969556 
Microthread 257928 266216 340557 469771 843114 1903718 
Sequential 318418 407157 513174 855599 2145561 5799237 

5 Thread 463863 459578 541558 699127 1039039 1819594 
Microthread 356237 423753 470971 583695 873298 1715513 
Sequential 347294 425128 605007 901621 2115442 5029615 

6 Thread 503843 547304 662944 757207 1146337 1679135 
Microthread 442964 429084 573459 652567 987300 1576188 

2000 3000 
36344589 79394541 
18087512 39788809 
17759369 39146672 
24643418 52916117 
8571150 18351091 
8317713 17939287 
20961733 43864862 
5901357 11178784 
5688291 10887830 
17139867 34310048 
4656267 7973657 
4378911 7751366 
15210449 31765370 
3579314 6525964 
3289031 6203045 

4000 
1378888505 
68566957 
67444355 
92943296 
31479976 
31025329 
74988769 
18907401 
18424953 
59230580 
13107170 
12625087 
53226559 
10219182 
9711809 

M 
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Table 8: Running Time Of Stack Version For 2D With 3 Vertices (Multimax) 

Size Of Set 
Part Time 25 50 100 200 500 1000 

Sequential 171795 220795 405292 800480 2805394 9416219 
2 Thread 128067 160722 259339 479444 1508454 4927765 

Microthread 118362 140034 247320 470177 1483651 4923643 
Sequential 230080 272634 461340 743921 2424615 7186961 

3 Thread 225864 248969 326768 439353 1103186 2727143 
Microthread 183634 216023 306004 421202 1084138 2637875 
Sequential 280428 353605 575213 893349 2498857 6405496 

4 Thread 240641 292351 387192 461127 973430 1910593 
Microthread 239551 249390 351870 438841 870968 1836431 
Sequential 374792 500755 543308 853976 2178488 5665507 

5 Thread 394556 463900 530366 607584 987637 1818106 
Microthread 360002 448842 434042 529114 971841 1735659 
Sequential 353168 442014 619913 892631 2182652 5121904 

6 Thread 443582 490571 590469 690288 1113235 1561610 
Microthread 379444 480216 576132 644633 1071175 1584105 

2000 3000 
35165824 76264562 
18215514 39169851 
18378435 39275085 
23885017 52160976 
8531503 18461144 
8394068 18287225 
20256477 42276904 
5806972 10996424 
5715211 11038432 
16981020 34106313 
4388859 7923885 
4292449 7760416 
15149259 31427771 
3417766 6465608 
3338281 6256069 

4000 
131861840 
67262466 
66840088 I 

90594770 
31236412 
31136970 
72281665 
18361041 
18334049 
57401634 
12935666 
12870669 
52130207 
9993635 
9727668 

"<:f< 
O'l ...... 



Table 9: Running Time Of Recursion Version For 2D With 4 Vertices Mul-
;imax 

Size Of Set 
Part Time 25 50 100 200 500 1000 

Sequential 184718 256787 404946 837163 3086369 10387073 
2 Thread 153726 207290 298654 501634 1678617 5281474 

Microthread 135439 190973 273922 477257 1631857 5110611 
Sequential 247632 339463 551195 898768 2723183 7939021 

3 Thread 265885 303179 412607 567280 1206506 2966390 
Microthread 220720 245900 344514 508256 1171959 2948384 
Sequential 316932 429847 568383 940243 2718568 7042684 

4 Thread 285591 408423 419467 603010 1153803 2183848 
Microthread 264546 369890 383428 530410 995708 2052921 
Sequential 380775 445247 704988 1039649 2419476 6000231 

5 Thread 443970 519756 683598 832369 1061796 1895604 
Microthread 397882 440698 604610 714095 961593 1959000 
Sequential 408523 487766 740164 1230741 2577658 5903105 

6 Thread 563195 625305 757138 894526 1369915 2099523 
Microthread 460624 553136 664903 826341 1198693 1876853 

2000 3000 
37339400 81452728 
18400466 39577255 
18580781 39305244 
25898307 54332578 
9129147 18696411 
8979744 18434301 
22459330 45490372 
6005215 11773635 
5811840 11623861 
17652364 36200510 
4527614 8484806 
4394591 8190441 
16380658 33477002 
3941789 6838396 
3735809 6543242 

4000 
139086980 
67727610 I 

67017867 
95859112 
32013841 
31704243 
76796234 
19146855 
19027283 
60498770 
13116768 
12855870 
54592502 
10395177 
10198214 

U':) 
O"l 
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Table 10: R ----- - - -- ----

__ > Time Of Stack Version For 2D With 4 Vertices Mult' - - .- - -

Size Of Set 
Part Time 25 50 100 200 500 1000 

Sequential 179937 246330 401684 896571 3148521 10061855 
2 Thread 133073 172573 249834 494699 1663914 5152896 

Microthread 124118 147559 234823 487940 1643575 5080126 
Sequential 258929 347523 593902 998718 2727935 7795451 

3 Thread 232112 277962 402711 548566 1152339 2869871 
Microthread 198650 243254 384149 506839 1111128 2878764 
Sequential 328139 439211 645478 935660 2735482 6995230 

4 Thread 262010 328902 409402 536057 1043818 2111955 
Microthread 227745 291614 369991 472544 1010210 2090919 
Sequential 338587 399897 649008 1002435 2322423 5908421 

5 Thread 385796 430921 576295 765984 1110811 1967018 
Microthread 342270 375946 526294 696474 1063812 1847302 
Sequential 362989 474592 724406 1132590 2544260 5801328 

6 Thread 490819 562849 723758 885897 1255013 1961690 
Microthread 442047 526553 634937 774331 1141670 1805265 

2000 3000 
35246600 75542696 
18134939 37861602 
17967554 38245979 
25251701 52203333 
8855241 18108688 
8841232 18185660 
21567480 43911145 
5712353 11335829 
5670572 11495215 
16987047 35224746 
4346752 8447888 
4371905 8271329 
16283151 32323302 
3701654 6567896 
3670439 6452282 

4000 
132227836 
66423436 
66867522 I 

91777099 
30953067 
31117805 
74595295 
19108059 
19143499 
58496400 
12778839 
12711139 
52838541 
10329716 
10119331 

(.0 
0') 
..-4 



Table 11: Running Time Of Recursion Version For 2D With 6 Vertices Mul-
;imax 

Size OJ Set 
Part Time 25 50 100 200 500 1000 

Sequential 221998 284216 475811 844084 2994355 10074251 
2 Thread 176022 215691 326818 560735 1615788 5296834 

Microthread 159331 207183 309624 560825 1593358 5242129 
Sequential 297073 343671 601389 943006 2902141 8146052 

3 Thread 277173 305834 420827 545904 1258780 3026240 
Microthread 244954 270467 388251 527734 1198566 2996836 
Sequential 319250 432511 599318 951104 2575469 6888964 

4 Thread 328587 371911 475127 551431 1066793 2026243 
Microthread 270854 361611 427553 532695 973770 2087041 
Sequential 385861 513460 683076 1105969 2498052 6188444 

5 Thread 465381 577280 692530 818183 1240429 2100728 
Microthread 406235 526190 643591 760641 1203854 1995165 
Sequential 495790 568149 779717 1238328 2721480 6106542 

6 Thread 542052 622397 714767 880753 1341999 2098050 
Microthread 495053 560969 694309 853716 1290812 2048214 

2000 3000 
38507491 81983467 
19528552 40108865 
18919027 39982323 
7269586 57574391 
9773776 20391250 
9633546 19583982 
22043638 46214546 
6038707 11647296 
5923266 11584230 
18236801 37617244 
4841619 8398059 
4658336 8429404 
17666738 34107467 
4379085 6844348 
4010596 6863816 

4000 
142852560 
69735024 
68984396 
97345795 
32460103 
32202725 
80110130 
19780583 
19629361 
62691278 
13866013 
14036697 
56227909 
10952141 
10417525 

t­
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Table 12: R Time Of Stack Version For 2D With 6 Vertices MuIr 
- - - -~ - - ---- - --

Size Of Set 
Part Time 25 50 100 200 500 1000 

Sequential 219703 282218 452471 874563 3098384 9902401 
2 Thread 171561 208862 292862 531426 1698052 5039327 

Microthread 155103 195200 284284 522818 1679954 5058126 
Sequential 276994 392818 562226 942158 2636662 7741089 

3 Thread 283200 344730 415738 538480 1217950 2907186 
Microthread 252478 305324 379204 515239 1174462 2891341 
Sequential 346713 447768 572729 897743 2566478 7127616 

4 Thread 313368 357773 422339 527712 1042473 2157542 
Microthread 293014 351504 401716 497407 951755 2122063 
Sequential 438973 575829 716454 1116581 25799534 6113786 

5 Thread 469163 561835 699586 806569 1231890 2135698 
Microthread 437648 513183 600356 771537 1111605 2034998 
Sequential 438154 577205 792405 1271968 2452412 5892925 

6 Thread 553973 637605 746262 873162 1251918 1966603 
Microthread 444930 570824 649353 829752 1181233 1854700 

2000 3000 
35938228 77616206 
18131809 39472836 
18175808 39461650 
26440531 54617805 
9326959 19049083 
9295835 19081092 

21925298 45040262 
5734172 11657229 
5708770 11619756 
17776446 37094961 
4648554 8619235 
4495085 8520865 
16800228 32790522 
4117385 6710347 
3937502 6604640 

4000 
134590474 
67895813 
68000178 
93102282 
31785887 
31697839 
75847007 
19631788 
19461919 
62944229 
13908491 
13980592 
54431487 
10488974 
10232065 

00 
0':> ...... 



Table 13: Running Time Of Recursive Version For 2D With 16 Vertices 
MII!timax 

Size Of Set 
Part Time 50 100 200 500 1000 2000 

Sequential 602471 835479 1469125 4229507 12402870 40618124 
2 Thread 405774 531614 866955 2308325 6290290 20032395 

Microthread 360991 465392 819964 2228885 6122574 20041050 
Sequential 662965 842963 1293993 3334217 9022123 29559550 

3 Thread 485752 623511 804473 1527234 3529152 10570816 
Microthread 412542 551983 714245 1462163 3323032 10333311 
Sequential 786429 989894 1486063 3312612 8417969 25513497 

4 Thread 635058 752697 984605 1535809 2810454 7038562 
Microthread 528816 603506 853768 1356001 2681696 6787691 
Sequential 845834 1044532 1545487 3329581 7391584 20961062 

5 Thread 848205 981892 1226905 1793451 2710403 5620218 
Microthread 676471 854621 1076408 1592007 2494333 5447993 
Sequential 1007704 1221947 1874625 3478913 7425055 19835133 

6 Thread 930181 1103334 1348552 1767130 2744056 5220778 
Microthread 726209 942612 1123241 1632563 2489998 4659696 

---

3000 
85707559 
42359593 
42008423 
60664435 
20916199 
20749627 
50994652 
13619740 
13578626 
41263157 
10023203 
9767438 
38479566 
8511904 
8178321 

-

4000 
150378853 
74305470 
72830190 
105490322 
35977255 
35828266 
85283854 
22376597 
22187587 
71001479 
16128231 
15781184 
64631080 
12395989 
12204448 

--

O'l 
O'l 
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'l'cl,ble 14: R Time Of Stack Version For 2D With 16 Vertices Mult" 
Size Of Set 

Farl Time 25 50 100 200 500 1000 
Sequential 438237 501098 688407 1206813 3781394 11288503 

2 Thread 273809 327065 435688 707819 2065308 ,5857332 
Minot.hread 262787 313203 412283 672180 2028574 5908308 
Seql\ential 540370 616302 795805 1234391 3260153 8818599 

a Thread 456423 485827 580193 810903 1510498 3592190 
Minot.hread 415623 423394 530172 778839 1499541 3593458 
Sequential 619046 722180 988565 1501872 3393357 8320267 

4 Thread 465538 499980 626410 790614 1378202 2649174 
Microthread 415924 466732 598099 738900 1303722 2637578 
Sequential 672044 830658 1018513 1445755 3275966 7468584 

5 Thread 692004 738367 856461 1103499 1759247 2863324 
Microthread 591768 628544 796601 959053 1640498 2743912 
Sequential 805349 907354 1201049 1644466 3409271 7126086 

6 Thread 769638 824613 894559 1171371 1739702 2489209 
Microthread 626740 745269 883191 1062892 1560810 2316508 

2000 3000 
39382710 82586303 
19965172 41947280 
20063185 42189504 
34191495 59812347 
10108609 20783700 
10089207 20833155 
24637632 49397993 
6847562 13168099 
6794975 13145470 
20449382 40699345 
5641694 10158813 
5496743 10079398 
19331759 37549010 
4514578 8057934 
4613527 7804343 

4000 
143232614 
71997072 
72255027 
101186146 
35300877 
35254412 
81469924 
21326094 
21335850 
67130694 
15535053 
15267890 
62311681 
12314018 
12256118 

o 
o 
C'l 



Table 15: Running Time Of Recursive Version For 2D With 26 Vertices 
Multimax 

Size Of Set 
Part Time 50 100 200 500 1000 2000 

Se 964889 1160424 1899973 4837268 12829542 42508855 
2 Thd 575609 723871 1103277 2594791 6473626 21288419 

Mic 529471 659029 1033137 2529473 6402651 21098194 
Se 1022317 1221381 1805385 3957516 10199550 30671482 

3 Thd 709530 849220 1166013 1946468 4246614 11227680 
Mic 645742 752913 987639 1775792 4134344 10812395 
Se 1170221 1408673 1925895 3947911 9071274 26139869 

4 Thd 768549 1000718 1281315 1843590 3091455 7759988 
Mic 727521 843694 1156380 1758960 2941975 7536789 
Se 1304737 1545678 2033306 3822352 8122054 22044446 

5 Thd 1135889 1231019 1498220 2093196 3168640 6553279 
Mic 962679 1151950 1368687 1915379 2878962 6019937 
Se 1485323 1773226 2302073 4063619 8465524 20734042 

6 Thd 1270880 1391464 1678968 2366798 3129037 5621141 
Mic 1031737 1087402 1431080 1969049 2904042 5457167 

3000 
87288169 
42923848 
42617297 
62225972 
21508762 
21246392 
51320751 
13585782 
13172829 
42451833 
10781561 
10259267 
38921146 
8915234 
8426992 

4000 
150142739 
73579814 
72638377 
104756362 
35742436 
35138608 
85651257 
22006890 
21862406 
70543433 
16393182 
15980502 
63413802 
13116447 
12551836 

-o 
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Table 16: R - -- - - - - ---

Part Time 
Se 

2 Thd 
Mic 
Se 

3 Thd 
Mic 
Se 

4 Thd 
Mic 
Se 

5 Thd 
Mic 
Se 

6 Thd 
Mic 

Time Of Stack Version For 2D With 26 Vertices MuIr 
Size Of Set 

50 100 200 500 1000 2000 
799626 1018554 1616582 4211996 12099486 41075182 
468751 594439 889918 2322021 6426176 21298879 
499363 591368 946001 2339214 6547105 21512137 
955540 1135145 1684747 3897608 9732913 30609698 
657030 771407 1008305 1910711 3987107 11188300 
729229 781073 1105368 1849045 4083197 11170921 
1081779 1264601 1891106 3838060 9179551 26401304 
640842 723185 1034944 1542973 2929600 7767234 
721574 787835 1084781 1547949 3027627 7798447 
1274056 1600812 2046954 3829524 8402885 22202521 
1088321 1130568 1368516 1894319 3081545 6394846 
910606 1042344 1286985 1847069 2955581 6326362 
1441501 1632284 2347862 4175950 8269892 20513379 
1051740 1235442 1458794 1991132 2990148 5145894 
999598 1071338 1460061 1956984 2784946 5188213 

~ -- -

3000 
84993169 
43167069 
43641390 
60793146 
21204006 
21673246 
51889124 
13875375 
14075527 
42320349 
10580379 
10426058 
39222263 
8382625 
8842198 

4000 
146502630 
74045495 
74481206 I 

103046696 
35654079 
36135443 
84503948 
22073110 
22390803 
69545423 
16124866 
16106770 
62389904 
12431726 
12339234 

C':j 
o 
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Table 17: Running Time Of Recursive Version For 3D With 3 Vertices Mul­
timax 

Size Of Set 
Part Time 25 50 100 200 500 1000 

Seq 191002 257505 422981 907270 3311387 11262728 
2 Thd 147057 176926 285245 569361 1784776 5736607 

Micro 124955 167571 264300 535801 1691438 5634501 
Seq 281662 270256 446775 772714 2701048 8339643 

3 Thd 262261 236420 344696 444811 1172869 3200211 
Micro 223739 193277 299745 421406 1130563 3081471 
Seq 337128 383227 557649 988080 2651712 7611609 

4 Thd 296197 321281 414554 534011 953907 2214881 
Micro 268700 281930 365666 508142 879827 2143965 

Seq 374438 457316 597845 979171 2401118 6341535 
5 Thd 412845 453437 558529 641171 1116176 2000253 

Micro 401533 407290 483835 579773 984947 1791846 
Seq 397678 485684 674168 1035264 2384366 5733392 

6 Thd 465541 507082 653816 733550 1130847 1780661 
Micro 452704 464233 567087 645442 106515 1697762 

2000 3000 
41646847 90963577 
20801350 46191565 
20411169 45110666 
27793519 60746721 
9615183 21229381 
9391500 20558236 
24032760 50264628 
6470076 12691111 
6366797 12513896 
19384828 39074948 
5111176 8952028 
4958971 8753109 
17267740 36735811 
3913172 7242708 
3710122 7042643 

4000 
158090182 
79149567 
77989612 
105842702 
36180296 
35387207 
86095773 
21340911 
21089096 
66937214 
14569480 
14502298 
60281419 
11511981 
10994920 

M 
o 
C'J 



Table 18: R Time Of Stack Version For 3D With 3 Vertices Mul' 
Size Of Set 

Pad Time 25 50 100 200 500 1000 
Sequential 164261 230552 426877 892198 3201575 10842843 

2 Thread 150744 180104 297298 534238 1727143 5664150 
Microthread 127222 155432 279483 519014 1731914 5661155 
Sequential 227730 291267 493370 805211 2698044 8032566 

3 Thread 231516 271860 373627 499642 1248264 3137940 
Microthread 187059 233711 319585 429613 1227727 3053498 
Sequential 272936 355076 581550 961489 2726522 7279003 

4 Thread 272024 296529 429222 514919 1073314 2168768 
Microthread 237440 260158 386297 476331 1017961 2083785 
Sequential 501454 483300 553496 907848 2376180 6390708 

5 Thread 506365 513106 558656 668767 1105444 1895065 
Microthread 443543 464680 442418 614421 1052246 1970731 

, Sequential 349277 429281 634935 937718 2384980 5863562 
6 Thread 478600 510883 679019 758801 1237021 1820303 

Microthread 404445 453944 634708 673364 112570 1609410 
----

2000 3000 
40298028 87692368 
21055835 45053790 
21105611 45285034 
27228649 59481820 
9705098 21094198 
9555944 20976719 

23450202 48368051 
6601624 12541863 
6441090 12509020 
19148047 38718325 
4950537 8958928 
4795839 8788986 
17322716 35780457 
3805581 7394280 
3718570 7039703 

'------- -_ .. _- - ~~-

4000 
151524478 
76916959 
76744759 
103313185 
35736292 
35653243 
83130233 
20930652 
20856008 
65756050 
14611194 
14482455 
59591289 
11546585 
11147451 
-- -

"'<!< 
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Table 19: Running Time Of Recursive Version For 3D With 6 Vertices Mul-
Gimax 

Size Of Set 
Part Time 25 50 100 200 500 1000 

Sequential 1408992 2045367 3123531 4794280 9537390 24459785 
2 Thread 1019090 1498559 2180051 3254645 5358834 12849886 

Microthread 922762 1375346 2056412 3121691 5238302 12456578 
Sequential 1765916 3022200 4013869 6222328 14181379 30785002 

3 Thread 1795665 2458018 3372433 4688611 8588337 16031583 
Microthread 1611633 2270763 3145186 4440276 8218655 15229455 
Sequential 2301323 4189155 6312317 9763828 15881987 31083664 

4 Thread 1777621 3277518 4279028 6340170 8036408 13235591 
Microthread 1740002 3030974 4288062 5670915 8203960 13168767 
Sequential 2597564 4858734 6750602 10147752 16860846 30651408 

5 Thread 2603970 4999464 6269377 9027274 14437509 19537096 
Microthread 2060013 4282070 6239949 8734159 13003050 17916020 
Sequential 2429977 4660491 8034779 11084349 20729449 36907585 

6 Thread 2857940 4419704 6707080 9057511 15846982 23112309 
Microthread 2767652 4364910 6242605 9019551 14295803 20911524 

2000 3000 
69419005 140138731 
36589913 74900019 
36352647 73535602 
70003050 122739191 
28991650 47200861 
28172232 46357493 
66840105 114759296 
24132584 37205074 
23099406 36319282 
62963046 103075953 
30325360 38812347 
28498004 36926320 
70798109 112962003 
31370218 42167355 
30773925 40093255 

4000 
235748086 
121829580 
120502781 
198105746 
74096213 
72717403 
177561500 
55411393 
54094344 
159240981 
54848687 
54165774 

U') 
o 
C'l 



Table 20: R Time Of Stack Version For 3D With 6 Vertices Mult" 
Size Of Set 

Part Time 25 50 100 200 500 1000 
Sequential 1354126 1964372 3467641 5249766 10233543 47777153 

2 Thread 931053 1406728 2207168 3380621 5788846 24352283 
Microthread 926152 1404746 2136772 3394829 5780546 24637839 
Sequential 1808409 3100231 4227923 6420597 14133709 30487417 

3 Thread 1501117 2573954 3521707 4848839 7578600 14363838 
Microthread 1506685 2428275 3496390 5019037 7595814 14121249 
Sequential 2373251 4394728 6623836 10605187 16644702 30529141 

4 Thread 1545363 2922992 4191561 6224911 8178610 12684899 
Microthread 1586404 2717748 4268620 6241414 79233898 12369110 
Sequential 2208959 4237917 6979341 10569777 18574668 32550786 

5 Thread 2131256 3979656 6906242 8989477 13468181 18498185 
Microthread 1961248 3675145 6829397 8585202 12522565 18298623 
Sequential 2470822 4510592 7892396 11174624 20174141 36720752 

6 Thread 2562205 4181715 6299489 8918670 12223090 20503996 
Microthread 2158121 4279180 6541125 8552091 12471590 19516881 

-

2000 3000 
75116996 140522946 
38252659 71635451 
38380556 73642918 
72208457 118884854 
29582509 44189544 
29755374 46058247 
70771712 117472593 
24097498 35978730 
24203162 35481027 
67347138 108829496 
30304653 40112169 
27938634 35704247 
72470059 114156170 
28997871 36807894 
29972876 36541452 

- ~- - - --

4000 
231929393 
116792935 
118595412 
192784718 
70741649 
70712140 
181922875 
54799339 
53871123 
167334070 
55881617 
53451278 
166816567 
46852393 
45726394 

L- ______ 
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Table 21: Running Time Of Recursive Version For 3D With 4 Vertices Mul-
jmax 

Size OJ Set 
Part Time 25 50 100 200 500 1000 

Sequential 1029209 1731725 2063612 2450055 6959136 19682131 
2 Thread 736165 1180139 1349724 1423903 4301364 11186286 

Microthread 729565 1158003 1333289 1447564 4280487 11139758 
Sequential 1516177 2404234 3140973 4581890 8984569 21582399 

3 Thread 1196174 1849343 2456583 3377019 5529202 11408487 
Microthread 1124898 1774696 2331521 3230932 5425084 11156196 
Sequential 2036716 3072537 4906458 5799374 11161337 22115273 

4 Thread 1492149 2559347 3192184 3468030 5577790 9499841 
Microthread 1371296 2585033 3277687 3449376 5501486 9484761 
Sequential 2210800 4123100 5228460 7399654 13432186 26495203 

5 Thread 2235279 3469332 4238592 6420875 10597099 15388740 
Microthread 2102834 3574987 4280684 6204155 10382109 14881230 
Sequential 2075348 3625572 5578632 7713982 14018784 24588080 

6 Thread 2091257 3409623 4922741 6836127 10322681 15838850 
Microthread 2125613 3300676 5267435 5615746 9940959 14727413 

2000 3000 
61075993 123679083 
32395962 62181250 
32137025 61732493 
53598594 99891860 
24418535 41303516 
23873380 40941737 
5834495 102123876 
19837317 30685058 
19622241 30210972 
56590499 90549336 
23516016 31196291 
23194596 31226483 
54745205 92710057 
23905220 33416037 
23824410 31992792 

4000 
201868635 
102696619 
101661372 
159672945 
61465074 
61142249 
150737625 
45029581 
44328131 
136447324 
42602577 
42210981 
127654696 
37962118 
37378900 
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Table 22: R Time Of Stack Version For 3D With 4 Vertices Mult' 
Size Of Set 

Part Time 25 50 100 200 500 1000 
Sequential 824448 1317836 1966149 2831352 6965447 19082476 

2 Thread 625051 981317 1418046 1757316 3813474 10022249 
Microthread 555864 896421 1301346 1642382 3574871 9911399 
Sequential 1649136 2403866 3088686 4906667 9723408 22093569 

3 Thread 1256806 2160935 2459137 3566299 6104928 11294064 
Microthread 1260156 2052497 2354820 3474618 6012278 11053363 
Sequential 2078128 3127831 5424324 5388741 12588846 24287117 

4 Thread 1251415 2169715 3160214 3586279 5453281 9996009 
Microthread 1226353 2039686 3285314 3440695 5390922 10207619 
Sequential 2222092 4221255 5649386 8067373 12939023 23445026 

5 Thread 2113062 4036456 5031962 6017084 9478750 13514314 
Microthread 2027396 3668457 4895662 5857628 8953232 13447734 

, Sequential 2092445 3532993 5550338 7806060 13907603 26016431 
6 Thread 2039055 4036238 4515347 6004118 9624268 15930748 

Microthread 2167988 3890213 4694520 5919338 10253676 14643373 
_._-- ... 

2000 3000 
60973772 116750103 
31209276 60277176 
31131740 59979838 
52185938 97832498 
24240601 41185120 
23230891 41094742 
62390064 102100480 
21978173 31463286 
21811502 31262556 
57163054 90122919 
23912694 32290905 
24549103 32155788 
55474547 89311795 
22749017 32905282 
23436801 29568532 

- - --

4000 
196545184 
100516366 
100807104 
159636227 
66953905 
65225880 
153532173 
48043550 
49494975 
133755173 
41120167 
39843737 
122732678 
39662904 
34890424 

-
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Table 23: Running Time Of Recursive Version For 3D With 12 Vertices 
Mult' 4u.u,vln ax 

Size Of Set 
Part Time 25 50 100 200 500 1000 

Se 2230274 2837968 3951825 5497084 12868619 31860599 
2 Thd 1494974 1821453 2681349 3603937 7497893 18112834 

Mic 1322588 1663876 2522490 3401606 7217238 17623925 
Se 2879735 3516638 5390896 8102545 17059070 35444910 

3 Thd 2365613 2922105 4421350 6242234 11234806 19117964 
Mic 2144717 2531592 4018140 5765831 10853025 18234510 
Se 3304689 5000448 7043008 10466587 19803319 41318174 

4 Thd 2261120 3602718 5125209 6642256 10962011 19555123 
Mic 2146794 3187145 4555571 6019811 10390158 17727574 
Se 3689174 5184579 7219759 11424423 23687109 41849833 

5 Thd 3727365 4912099 6918398 10713618 16488925 24729878 
Mic 3107662 4494727 6092362 9487920 15729572 23706920 
Se 3830610 5453476 8692048 11954175 24687434 44105853 

6 Thd 3095672 4930355 7932046 11083089 19459897 28135740 
Mic 3222731 4907094 7337385 10474654 18153202 25323758 

1500 
54763524 
29192735 
28590517 
57230207 
27417510 
27136816 
62387147 
25285284 
23485229 
60230266 
31029290 
30029516 
63431709 
34541676 
32589889 

2000 
86671992 
46157369 
45439081 
80008248 
37305975 
36825423 
86665659 
32447824 
30574548 
86049520 
38646778 
37836727 
85573980 

38414012 
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Tahlc 2t1: R Time Of Stack Version For 3D With 12 Vertices Mult" 
Size Of Set 

IJari Time 25 50 100 200 500 1000 
Sequential 2204041 2741851 3735085 56011642 14234881 29213943 

2 Thread 1251693 1762498 2270701 3389339 8126989 15815902 
Microthread 1321214 1862647 2470408 3596146 8299166 16356070 
Sequential 2779650 3317128 4701923 818988 16567745 36879165 

3 Thread 2146009 2708450 3730842 5540172 9704841 17306836 
Microthread 2102714 2724695 3893413 5709344 9570865 18301103 
Sequential . 3136157 4711118 6619404 9971261 21130785 41385047 

4 Thread 1921481 2874589 4173276 5723226 10624790 17295682 
Microthread 2082639 3027677 4248592 5923726 10945494 17238292 
Sequential 3704253 5274559 7787765 10502310 22837574 40605383 

5 Thread 2807329 4203521 5814783 8122623 15398649 22318513 
Microthread 3138806 4171137 5730686 8521258 15647516 22781468 
Sequential 3866709 5610750 8577267 13233042 26211257 45865123 

6 Thread 3127962 4966923 6609025 9697545 16379433 24727389 
Microthread 3110675 4576035 6654482 9505082 16495974 24717599 

2000 3000 
8366037 151141884 
43928584 77795509 
58312752 78835444 
78073921 138545877 
32131949 53602113 
32411269 54203214 
88176575 144502151 
31561535 44645276 
31965270 46238221 
83235725 138417672 
37684960 52448457 
38212674 49069180 
90951005 144167198 
36506680 48382486 
35483472 47188209 

4000 
244313804 
124963041 
125766382 
208982002 
77533099 
78167892 
221044594 
63125342 
63469361 
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Table 25: Running Time Of Recursion Version For 4D With 4 Vertices Mul-
~imax 

Size Of Set 
Part Time 25 50 100 200 500 1000 

Sequential 1158206 1966674 2741508 3985138 8326177 22027647 
2 Thread 802472 1357565 1797885 2424096 4881826 11976947 

Microthread 776741 1342427 1872418 2480479 4800511 12107501 
Sequential 1805074 2629180 3829272 6605513 13267715 24262032 

3 Thread 1371249 2051285 2761506 4162198 7544741 12002554 
Microthread 1318712 2053119 2809943 4112512 7779136 12251590 
Sequential 2481469 3580083 4766951 7212221 13697578 24612912 

4 Thread 1497734 2527076 3353795 4347110 6382623 10445176 
Microthread 1450719 2626278 3378771 4357245 6467682 10134720 
Sequential 2713999 4097572 5777287 8414176 14974888 26163343 

5 Thread 2145057 3115028 4877886 6924146 10690652 14493183 
Microthread 2092092 2994206 4596052 6707321 10278986 14244952 
Sequential 2294691 4018381 6447497 9143431 17483216 27693143 

6 Thread 2477229 4013943 5747545 7783671 12965054 16899753 
Microthread 2193537 3906841 5760220 7770783 13206322 16049395 
~-- --- ~- -- - -- ---

2000 3000 
68450236 140037467 
36028564 69232122 
36373235 68679960 
66073331 118906314 
31611004 52193217 
31275451 51906021 
65320061 109822524 
21879559 32619503 
21448268 33348190 
60572885 103505265 
25651936 39688430 
25618457 39013947 
73955452 99453434 
29431648 38116715 
27362659 34268775 

- '---- ---

4000 
229948679 
116352606 I 

116086347 
191218448 
75663140 
75915160 
169744488 
48976054 
48322766 
152359908 
47026264 
45618124 
144488390 
45373326 
39929238 

- -~- -
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Table 26: R Time Of Stack Version For 4D With 4 Vertices Mult' 
Size Of Set 

Part Time 25 50 100 200 500 1000 
Sequential 1138077 1697442 2617576 4425604 9058828 22288278 

2 Thread 825432 1352566 1872348 2899550 5176467 11369985 
Microthread 733512 1253308 1747722 2692085 5117828 11484210 
Sequential 1814229 2774631 4511882 6813202 12002137 24901228 

3 Thread 1446208 2210376 3412172 4268580 6937759 12194278 
Microthread 1343525 1997912 3120188 3916779 6713808 12238967 
Sequential 2072888 2966513 4681063 7512854 14616840 24109518 

4 Thread 1402305 2466578 3596980 4786488 7404375 9976870 
Microthread 1295292 2292970 3139602 4570776 7085635 9616745 
Sequential 2521494 3961067 5819348 9343878 17023370 25459597 

5 Thread 2040500 3582381 4862166 6523997 10679989 13497818 
Microthread 1910114 3127204 4866249 6091358 9882265 12422160 
Sequential 2252262 4321293 8422066 9016757 17771167 29679813 

6 Thread 2751466 4439935 6156647 7083331 12014048 17260445 
Microthread 2325774 3818927 5673450 7613544 9920228 16037868 

-- - - '----- ----

2000 3000 
70210909 136039653 
37317550 69857589 
37384943 69952883 
64235226 117365598 
31185031 46086170 
29888780 45526258 
63150015 109422245 
21406417 33650175 
20559884 33216084 
56521139 102935522 
26173280 39980457 
23310568 37894962 
63770801 99576673 
28858599 34324986 
27182858 30506228 
~ 

4000 
223048907 
112596087 
112741702 
179434591 
69172729 
68942788 
169201164 
49509870 
49027371 
149439460 
45529606 
44483526 
144591169 
42825180 
42110908 

C"I 
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Table 27: Running Time Of Recursion Version For 4D With 6 Vertices Mul-
~.imR.Y 

Size Of Set 
Part Time 25 50 100 200 500 

Sequential 1415454 2256424 3144069 4473580 11097172 
2 Thread 973649 1557434 2007314 2923587 7516094 I 

Microthread 966602 1555640 2009687 2941250 7652470 
Sequential 2177069 3840606 4717484 6378258 14027001 

3 Thread 1649357 2954981 3561955 4598603 8297328 
Microthread 1651806 2862417 3831109 4170080 80166570 
Sequential 2151635 3950716 6350195 7634326 15262782 

4 Thread 1622152 2765458 4019103 5390021 9418362 
Microthread 1605438 2879478 3872044 5276979 9019382 
Sequential 3185643 5701038 7681109 10242403 19516214 

5 Thread 2785837 4557850 6164982 8647973 11383711 
Microthread 2539810 4206738 5762590 7696241 13002992 
Sequential 2994899 5527919 81120022 12216067 22663236 

6 Thread 2656984 5359347 9141272 8226553 14939240 
Microthread 2711542 4860165 6786919 9210576 14843606 

M 
~ 
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Table 28: Running Time Of Stack Version For 4D With 6 Vertices (Multi­
max) 

Size Of Set 
Part Time 25 50 100 200 500 1000 

Sequential 1483262 2052189 2832361 4257537 12001020 27840025 
2 Thread 930070 1306623 1756920 2382976 7324872 14779193 

Microthread 945196 1299912 1738383 2449510 7401634 14843552 
Sequential 1964238 3127499 5083690 6037713 14415293 28364695 

3 Thread 1541639 2370795 3532133 4098230 8312304 13769341 
Microthread 1512782 2311715 3430170 3949422 8256607 13489688 
Sequential 2822031 4772036 6550691 7837972 15723008 33434190 

4 Thread 1612849 2591325 3989683 4514043 8017037 13119550 
Microthread 1652581 2586407 3796719 4658620 8220714 13049250 
Sequential 2829477 4815503 6611360 9390307 18812688 34078983 

5 Thread 2271872 4346821 5788596 7540462 12152854 18379908 
Microthread 2258483 4130430 5529576 7724367 10741914 16391612 
Sequential 2976810 4515871 7558337 11817052 22267167 37359059 

6 Thread 2615702 4297267 6347670 7895590 13399292 18021789 
Microthread 2394701 4191436 6361005 7200881 13339700 17853546 

-~.~-~.--- -

2000 3000 
76940957 146168404 
38675072 76259056 
38934447 74717331 
72529471 136880584 
30026110 53372827 
30636134 52830140 
73621468 122705343 
24065039 36314714 
24173440 37309307 
71784306 120775183 
27418719 42151713 
28562629 41638107 
74153346 118722189 
29828200 38930694 
27780024 39339894 

4000 
247081506 
125303875 
125549171 
205456060 
78535576 
78582997 
195679459 
56799570 
57876617 
178484126 
60889963 
59436165 
170168512 
48354522 
49408206 

~ ,...., 
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bl R ------ -- - ----------0 

Part Time 
Sequential 

2 Version 1 
Version 2 
Sequential 

3 Version 1 
Version 2 
Sequential 

4 Version 1 
Version 2 
Sequential 

5 Version 1 
Version 2 
Sequential 

6 Version 1 
Version 2 

Time Of Stack For 2D With 26 Vertices Usine: T -- - J,- - --

Size Of Set 
50 100 200 500 1000 2000 

1023744 1326912 2149824 5820992 16314944 53836672 
569600 751040 1217536 3219264 8824128 27911808 
552000 736512 1201472 3201216 8804992 27886464 
1203008 1474304 2278464 5516160 13938352 41854656 
724032 878592 1315200 2624960 5733376 16046016 
697792 840640 1228672 2502720 5560832 15361536 
1360640 1565312 2493184 5185792 12353920 34703808 
635712 754432 1144448 2073024 4473984 11078400 
628608 727808 1156672 2015360 4294016 10588864 
1594432 1951872 2733824 5385792 11798848 31590592 
815872 1025024 1335040 2261184 4172608 9148864 
794944 998528 1340736 2159488 3949440 8565504 

1758912 2105024 3091520 5789120 11576064 28451136 
805504 935168 1337792 2135552 3734208 8011264 
812160 997504 1327104 2073728 3441408 7181056 

3000 
110340480 
55785088 
55760832 
82758848 
30732288 
29353280 
67940800 
20309212 
19113600 
59183872 
16036928 
14710272 
53320896 
13545664 
11921152 

4000 
188417792 
94943104 
94915008 
137646976 
50425408 
47952384 
110584124 
32234560 
29723456 
95910976 
25216256 
22499008 
84442880 
20076480 
17460608 

11? 
~ 
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hI R Time Of Stack For 2D With 16 Vertices Usim: T ------ --- --~-------o --- - - -- - - - - - - - - -- - --- -- -- --- ._- - -----0 - -- -

Size Of Set 
Part Time 25 50 100 200 500 1000 

Sequential 530368 636608 922432 1672192 5219456 15275520 
2 Version 1 304960 390912 568064 976512 2932224 8032834 

Version 2 295168 377408 551296 963072 2915584 8014208 
Sequential 642816 746240 1009664 1707968 4649088 12603392 

3 Version 1 425664 474688 620992 1000960 2222144 5510080 
Version 2 376128 433920 569792 872064 2057920 5242944 
Sequential 750336 901696 1269376 1972352 4659520 11373376 

4 Version 1 367616 444736 604544 851136 1826432 3958976 
Version 2 343424 400832 550936 830720 1757888 3792064 
Sequential 822784 1018304 1306048 1955328 4654272 10855744 

5 Version 1 473024 546944 714112 998272 1960192 3827904 
Version 2 418752 534016 650624 845248 1757760 3547072 
Sequential 938304 1081152 1500608 2162688 4638784 9918720 

6 Version 1 486144 546560 705920 1037824 1775872 3321984 
Version 2 430016 496640 665792 914688 1658048 2951808 

2000 3000 
51156864 107220992 
26113152 54241472 
26092288 54217984 
38899008 80630592 
14948608 30203840 
14151104 28757184 
32809856 65035840 
10184896 19205440 
9730432 17825152 
28995648 57138240 
8761344 15502848 
7691264 13822592 

26757312 51416768 
7201600 12576000 
6369024 11107712 

4000 
184807232 
92326400 
92300096 
134504128 
49794432 
47204544 
106478976 
30339584 
28457536 
93126528 
24351232 
21229056 
83520576 
19990272 
17152320 
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Table 31: R -

Part Time 
Sequential 

2 Version 1 
Version 2 
Sequential 

3 Version 1 
Version 2 
Sequential 

4 Version 1 
Version 2 
Sequential 

5 Version 1 
Version 2 
Sequential 

6 Version 1 
Version 2 

Time Of Stack For 3D With 6 Vertices Using Transputer 
Size Of Set ! 

25 50 100 200 
1613888 2518720 4328000 7016704 I 

887680 1490496 2342848 4148544 I 

876160 1473920 2318016 4118016 
2118656 3753984 5316224 8355520 I 

1365952 2313344 3315584 5001344 
1099072 1956480 2525248 3624576 I 

2801024 5355328 8620032 16652480 
1204992 2271040 3594496 5754752 
1251840 2190080 3635456 5475136 
2689472 5117632 9590400 18109696 
1352000 2704128 5608320 6496896 
1238976 2294336 3270528 5327488 
3044608 5767680 11829888 19591680 
1607744 2872064 4289280 6328704 
1406848 1976192 3920896 5390208 
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Table 32: R 

Part Time 
Sequential 

2 Version 1 
Version 2 
Sequential 

3 Version 1 
Version 2 
Sequential 

4 Version 1 
Version 2 
Sequential 

5 Version 1 
Version 2 
Sequential 

6 Version 1 
Version 2 

Time Of Stack For 3D With 12 Vertices Using: Transputer 
Size Of Set 

25 50 100 200 
2707840 3503232 4792960 7417216 
1405120 2054848 2584704 3931520 
1395584 2038912 2561152 3896512 
3626176 4275904 6152640 11295680 
12238592 2921280 3739584 5685376 
2113024 2379008 3346304 5478080 
4134080 5941632 8870336 15343680 
1801408 2654592 3607168 5258624 
1854912 2526784 3475392 4946240 
4945856 7091968 11083964 18197056 
2257536 3128192 4706880 6652160 
2485568 3754688 5240256 6336448 
4924864 6885056 12945408 25192704 
2480960 3320128 4620864 7003008 
2097856 2915008 4395648 6429568 

00 
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Table 33: R --------0 

Part Time 
Sequential 

2 Version 1 
Version 2 
Sequential 

3 Version 1 
Version 2 
Sequential 

4 Version 1 
Version 2 

I 
Sequential 

5 Version 1 
Version 2 
Sequential 

6 Version 1 
Version 2 

Time Of Stack For 4D With 6 Vertices Using Transputer 
Size Of Set 

25 50 100 200 
1837056 2602432 3740224 5868160 
1097088 1528064 2167360 3173312 
1086272 1512960 2147264 3144384 
2411904 4051264 6427584 7928320 
1468352 2325504 3569792 4021888 
1256960 2031168 3090496 3785088 
3520768 6054336 8215808 10488384 
1523264 2288000 3387648 4261504 
1429248 2363200 3132288 3833792 
3485632 6222080 8864256 13702720 
1988736 3469376 4748096 6113152 
1786752 2794560 3770176 4352064 
3565056 5774528 10247040 17050240 
1734720 2946624 4520576 5384192 
1341440 2407232 3800000 5399488 

0'; -C'l 



Table 34: Running Time Of Recursion For 2D With 26 Vertices Using Trans­
£u t 

Size Of Set 
Part Time 50 100 200 500 1000 2000 

Sequential 1086912 1405568 2441024 6365888 16630848 53746624 
2 Version 1 624832 829504 1425664 3478720 8802688 27438976 

Version 2 604096 807168 1394752 3448768 8746816 27392896 
Sequential 1141184 1436928 2235456 5372736 13847936 41110336 

3 Version 1 693248 829056 1251840 2575936 5879168 15846656 
Version 2 656448 819136 1204608 2456704 5587392 15012032 
Sequential 1315264 1611072 2363584 5141504 11864320 33711232 

4 Version 1 692416 834432 1251008 2184064 4210304 10780416 
Version 2 592320 708800 1029824 1953280 3937024 10149184 
Sequential 1467840 756544 2473344 5016128 11137344 30450496 

5 Version 1 804160 1014016 1314624 2225856 4019712 8996928 
Version 2 713152 865344 1181568 2011776 3535424 7932736 
Sequential 1672640 2037504 2751424 5279616 11241024 27797888 

6 Version 1 778432 904704 1256896 2155904 3856512 7952064 
Version 2 737920 879296 1153024 1964800 3533760 6902528 

3000 
109602624 
55138496 
54911104 
81103680 
30328192 
28777792 
65517888 
19281280 
18082432 
57514880 
15780416 
13983744 
51681280 
13371968 
11560192 

4000 
186876416 
93090304 
92911936 
135746432 
49576128 
47001728 
108934336 
31350144 
28910528 
94030656 
24513600 
21673728 
82819712 
19856448 
16994176 

o 
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Table 35: Running Time Of Recursion For 2D With 16 Vertices Using Trans­
pu t 

Size Of Set 
Part Time 25 50 100 200 500 1000 

Sequential 524672 680960 1000192 1917888 5597696 15944512 
2 Version 1 312448 421504 615680 1131200 3096128 8390400 

Version 2 284224 390464 595904 1101952 3079168 8317440 
Sequential 578752 721984 995264 1619392 4495680 12371968 

3 Version 1 391104 433792 591680 917504 2133504 5212480 
Version 2 361920 447104 609408 853952 2052928 5064320 
Sequential 670784 833856 1093376 1780416 4323136 11003648 

4 Version 1 369152 468032 607936 930688 1836672 3942976 
Version 2 321280 399360 506240 798144 1628800 3562368 
Sequential 775808 915840 1184256 1870720 4454144 10226496 

5 Version 1 450816 550976 715328 982592 1843968 3421824 
Version 2 401728 461120 603584 835072 1672512 3117120 
Sequential 862784 1050880 1394496 2105664 4529216 9566976 

6 Version 1 439872 513216 683392 969408 1719872 3103360 
Version 2 394496 459584 625920 916800 1618816 2728832 

2000 3000 
50916928 107224896 
26081856 54026432 
25979584 53880384 
38701312 79100736 
15108864 29689984 
14374208 28314496 
32586048 64841600 
9965440 18709632 
9359488 18129216 
28328320 55726720 
8363648 14984768 
7419456 13268608 

26142976 51012736 
7178816 12498496 
6228288 10932800 

4000 
183449024 
91068608 
90893632 ! 

134215424 
49289344 
46901952 
105794752 
29949312 
28799808 
92217344 
23963392 
21041920 
82154368 
19456448 
16627200 

....... 
C'I 
C'I 
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Table 36: Running Time Of Recursion For 3D With 6 Vertices Using Trans-
puter 

Size Of Set I 

Part Time 25 50 100 200 
I 

Sequential 1555456 2280896 3749312 5983808 
2 Version 1 902464 1319104 2066560 3390400 I 

Version 2 892544 1302784 2042432 3358720 
Sequential 2096320 3490944 5038720 7524544 I 

3 Version 1 1420352 1845952 2823744 4061376 I 

Version 2 1166464 1890560 2585536 3609728 
Sequential 2659008 4895104 7717056 12508160 I 

4 Version 1 1264512 2113216 3134912 4577472 
Version 2 1387264 2125056 3167488 4840512 
Sequential 2989824 5634880 8094208 13096640 

5 Version 1 1472832 2787136 4387648 6222464 
Version 2 1214592 2474112 3263872 5000640 I 

Sequential 2704320 5427840 9974400 
6 Version 1 1644928 2295936 3680704 

, 

Version 2 1132288 2059072 3854016 

~ 
~ 
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Table 37: Running Time Of Recursion For 3D With 12 Vertices Using Trans­
pu t 

Size Of Set 
Part Time 25 50 100 200 

Sequential 2584512 3331840 4770560 6927104 
2 Version 1 1380736 1761216 2694848 4052160 

Version 2 1289536 1738688 2042432 3777024 
Sequential 3185856 4122624 6402240 9962112 

3 Version 1 1982720 2553536 3836608 5496256 
Version 2 1802816 2289664 3408768 4964736 
Sequential 3666368 6046784 8745664 13497216 

4 Version 1 1670016 2411200 3779456 5432576 
Version 2 1623680 2515072 3610240 5287744 
Sequential 4245184 5951104 8616064 

5 Version 1 2361408 3002112 4565184 
Version 2 2149312 2970432 4199808 
Sequential 4228992 6436160 10964032 

6 Version 1 2207168 2984640 4672576 
Version 2 1858944 2541184 4352576 

---

M 
C'l 
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Table 38: R -----_. -- -- --

Part Time 
Sequential 

2 Version 1 
Version 2 
Sequential 

3 Version 1 
Version 2 
Sequential 

4 Version 1 
Version 2 
Sequential 

5 Version 1 
Version 2 
Sequential 

6 Version 1 
Version 2 

Time Of Stack For 3D With 6 Vertices Using Transputer 
Size OJ Set 

I 

25 50 100 200 
1803392 2635200 3635584 5958848 I 
1036736 1526720 2012480 3430080 I 

9244096 1503488 1990848 3405184 
2402816 4357568 5746752 8037376 I 

1363456 2272512 3075712 4326144 I 

1255936 2337216 2594240 3977152 
2533952 4580736 7030464 9396416 
1355904 2256000 3030400 4413824 I 

1155264 2044352 2966720 4221824 
3601536 6072960 8953344 12732544 
1745600 2949568 3596096 6116096 
1668992 2911040 3581376 4460864 ! 

3312768 5658688 9662528 16160768 
1611776 2849664 3935168 5529920 
1255104 2088128 3363840 4992960 

"<t' 
C'l 
C'l 



Tah]!' :J!l: Pa.rtit.ioning Of 2-D - 26 wrticE's and 'I-D - 6 vertices using 1000 
points Iktw('!'n 2 () Partitions 
,--

2D 
Lex )LlIldolll Sh!']) 

--- --,--

2 :\ 'I 5 (; 2 :\ ,I !l G 2 3 ·1 
-~- .- ---
;)00 :nl 250 200 IG7 500 :J28 250 207 172 1159 200 ll5 
EiOO :\:n 250 200 1 G7 500 :J22 250 199 176 541 589 344 

-
333 250 200 IG7 350 250 208 182 211 406 

250 200 167 250 205 156 135 
200 166 181 146 

166 168 
40 

Lex Random Shell 

2 :3 4 5 6 :2 3 4 5 6 2 3 4 
I [lOO J:3·1 250 :WO lG7 GOO :328 250 207 172 604 337 220 

GOO 33:3 250 200 167 500 322 250 199 176 396 473 384 
333 250 200 167 350 250 208 182 190 338 

250 200 167 250 205 156 58 
200 166 181 146 

166 168 
- c_ 

N ('w _S]H'I\ 

5 (i 2 :J 4 G 
79 57 8:3Ei (; II 'lEi9 :J57 

211 143 IG5 296 376 370 
365 259 93 100 151 
243 330 65 76 
102 128 46 

83 

New.Shell 

5 6 2 3 4 5 
152 99 987 948 892 851 
333 278 13 47 95 120 
268 227 5 11 23 
219 246 2 4 
28 135 2 

15 

- --- --
(; 2 :J 

209 ;J~~ IGG 
:312 GI2 222 
224 G12 
72 

58 
35 

6 2 3 
810 201 28 
138 796 176 
39 796 
8 
3 
2 

Bllckd 
---- - -- -

·1 ;) 

IGG 1(;(; 

222 222 
309 0 
:30:3 :309 

303 

Bucket 

1 5 
0 0 

204 121 
0 83 

796 0 
796 

----

() 
-~ 

IGG 
() 

222 
0 

:309 
30:3 

G 
0 
28 
176 
0 

398 
:\98 I 

U? 
C'l 
C'l 
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Figure B.4: Recursive Version 2D 16 Vertices Using Threads 
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Figure B.6: Recursive Version 3D 4 Vertices Using Threads 
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Figure B.7: Recursive Version 3D 6 Vertices Using Threads 
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Figure B.8: Recursive Version 3D 12 Vertices Using Threads 
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Figure B.9: Recursive Version 4D 4 Vertices Using Threads 
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Figure B.12: Recursive Version 2D 6 Vertices Using Microthreads 
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Figure B.16: Recursive Version 3D 4 Vertices Using Microthreads 
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Figure B.2l: Stack Version 2D 4 Vertices Using Threads 
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Figure B.22: Stack Version 2D 6 Vertices using Threads 
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Figure B.23: Stack Version 2D 16 Vertices Using Threads 
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Figure B.24: Stack Version 3D 3 Vertices Using Threads 
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Figure B.25: Stack Version 3D 4 Vertices Using Threads 
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Figure B.30: Stack Version 3D 6 Vertices using :'Iicrothreads 
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Figure B.33: Recursion Version 1 3D 12 Vertices Using Transputer 
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C.1 Definitions for the convex hull program 
•••••••••••••.................•..•.........••••..................... 
i\\"'X' I,of,_ II 
iJ,·finitioll' for tltr' conw'x 111111 program 

.....••..•.•........•••••.............................•..•..•.•.•.•. 
tfindurl" <Htriio,II> 
tfillciuri,' <lIlat.II,II> 
tfri"IiIH' MAXI'OINTS:W 
Hd ... fin<, MAXN :10 
HddilH' TOt. 1,OE-()(; 
Hd .. lilll' THill': 1 
Hd...tinl' FALSE 0 
typ,·d,·f doubl .. V,·ct.or[MAXN]; 
typ,·d,·f doubll' Mat.rix[!\1AXN][MAXNj; 
typ,·d .. f sl.rud C,-II! { 

\',-ctor coord; 
struet. (',.111 'prev, *Ill'xt; 
} Point, 'POINTS; 

tYi',·def stnlel CI'1I2 { 
strllct Cpll! • Edp;,-; 
Vector norm; 
struel (\,112 'prey, *next ; 
} Edp;t' , 'EIXiES; 

C.l.1 Routines for manipulating Points 

MakeEmpty..Plist(P) 
POINTS *P; 
{ 

'I' = NULL; 
} 

int IsEmpty..Plist(P) 
POINTS P; 
{ 

} 

if (P == NULL) return TRUE; 
else return FALSE; 

POINTS Insert.Point(P, n, v) 
POINTS Pi 
Vector v; 

int n; 
{ 

248 

1'011\TS T; 
Point junk; 
int i; 
'1' = &junk; 
T = (POINTS) malloc(sizt'Of('T)); 
if ('1' == I'l'LL) PrintErr("lnserLPoint", n ... No HOOlll •• "'); 

for(i=I; ii= n; i++) T->coord[i] = v[i]; 
if (lsEmptyJ>list(P) == T\WE) 

T->prev = T; 
T->next = '1'; 

else 

}; 

T->prev = 1'; 
'1'->next = I'-i,next; 
'1'->next-Lprev = '1'; 
P->next = '1'; 

return '1'; 

POINTS Delete..Point(P) 
POINTS P; 
{ 

POINTS Q; 
if (P->prev != P) 
{ 

} 

P->prev->next = P->next; 
P->next->prev = P->prev; 
Q = P->next; 
free(P); 
return Q; 

else 
{ 

}; 

free(P); 
MakeEmpty ..Plist( &Q); 
return Q; 

POINTS Delete..Plist(P) 
POINTS P; 
{ 

whiIe(IsEmpty..PIist(P) == FALSE) P = Delete...Point(P); 
return P; 
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POINTS G~lN~xl Point(P) 
I'OII\TS I'; 
( 

if (I,ElIlpty J'li,t( 1') == TIt\JI~) rpturn 1'; 
f·I ... rdurli I' 'lIf'xl; 

POINTS GetPrev.Point(P) 
POINTS 1'; 
{ 
if (lsEIll ply J'lisl( 1') == TH Ii E) rpturn 1'; 
,,1,,· fI'lufIl 1'- > !>fI'V; 

} 
Read.Point(P, n, v) 

POINTS 1'; 
V"clor v; 
inl. n; 

{ 
int i; 
if (lsEmpty J'list( 1') == FALSE) 

for(i=l; i<=llj i++} 
v[iJ = 1'->coord[iJ; 

Write.Point(P, n, v) 
POINTS 1'; 
Vector Vj 
int n; 

int i; 
if (IsEmpty Jllist( P) == FALSE) 
{ 
for(i=lj i<=nj i++) 

P->coord[i] = v[i]; 

250 

int Compare.Points(P, Q, n) 
Vector 1', Qj 
int n; 

int C, i; 
C = 0; 
for(i=l; i<=n; i++) 

if (fabs(l'[iJ-Q[iJ) > TOL) c = c+l; 
if (c != 0) return FALSE; 

else return TRUE; 

int IsMember.Plist(P, n, v) 
POINTS P; 
Vector v; 
int n; 
{ 

POINTS Q; 
int i; 
Vector Wj 
illt Match; 
if ( IsEmptyJ'list(P) == TRUE) 

Match = FALSE; 
else 

Q = P; 
dol 

Read_Point(Q, n, W ); 
Match = TRUE; 
for(i=lj i<=n; i++) 

if «Match == TRUE) && (fabs(v[i]- w[iJ) < TOL)) 
Match = TRUE; 

} 

else 
Match = FALSE; 

Q = GetNext.Point(Q); 
} while ( (P != Q) && (Match == FALSE»; 

} j 

return Match; 
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illt CUlllpltrt· PliHt(P, Q, n) 
I'OIt'TS 1', (1, 
lilt II, 

l'OIt'TS T; 
Vf~lor v; 
illt '\L~I. .. h, 
I' = 1'; 
:\Iatcb = TIll! E; 
du { 

It"iuU'uint(T, II, v); 
if (( Malch == TilliE) &X: (ls:\lplldwr I'li,t(Q, II, v) == TIlI'E)) 

Malch = TIUlE; 
else 

~I;",ch = FALSE; 
T = (;"tN,'xU'uinl('I'); 

} \Vhil,' (('I' '-= 1') ,'\''\' (Match == THlIE)); 
rl'l,1I1'11 Malch; 

POINTS Copy_Plist(P, 11) 
I'OINTS 1'; 
int n; 

POINTS '1', Q; 
V,'cl.or v; 
int i; 
1\lakeEmpty j'list.(,"'l'); 
if ( IsEmptyJ'list(l') == FALSE) 
{ 

}; 

Q = 1'; 
dot 

HeadJ>oint(Q, n, v); 
T = InserLPoint(T, n, v); 
Q = GetNexLPoint(Q)j 

}while( Q != 1'); 

return T; 
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C.1.2 Routines for manipulating Edge/Face lists 

MakeEmpty Elist(P) 
EDGES "I'; 
{ 

"I' = I\I'LL; 

int IsEmpty...Elist(P) 
J<:DGES 1'; 
{ 

if (I' == NULL) return TIWE; 
else return FALSE; 

EDGES Insert...Edge(P. n, e, norm) 
J<:DGES 1'; 
POINTS e; 
Vector norm; 
int n; 

EDGES Tj 
Edge junk; 
int i; 
T = &junk; 
T = (EDGES) malloc(sizeof(*T)); 
if (T == NULL) PrintErr("lnsert...Edge", ,,*** No Room *** ")j 
T->Edge = ej 

} 

for(i=l; i<=nj i++) 
T->norm[i] = norm[i]j 

if (lsEmpty...Elist(P) == TRUE) 
{ 

} 

T->prev = Tj 
T->next = Tj 

else 
{ 

}j 

T->prev = Pj 
T->next = P->nextj 
T->next->prev = Tj 
P->next = Tj 

return Tj 
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EJ)(;Jo;S J) .. I.·t.·t;rtgr(P) 
I<I>CES I', 
{ 

«;J)CES 1'; 
I'OIr\TS tl. H; 
if (I' 'prr'\' 1- 1') 
{ 

1">prf'v",",'Xt. = I">n<'xt; 
I' >Il"xl- ~'prr'\' == I' >prr·v; 

T ::" I' ·",·x!.; 
H == 1'""-' I·;d~ .. ; 
H == I>,,),·l .. I'li.,1( Il); 
fn·t·(I'); 
\'I'lurnT; 

ds .. 

H = 1'-> Etlgt'j 
I{ = Ddt'tl'J'list(R); 
fn't'( I'); Makt'Empty ,Elis!.( So,T); 
r .. turn '1'; 

I; 

EDGES Delete--.Elist(E) 
EDCES E; { 

whilt'( IsEmpt,yJ<:list,(E) == FALSE) E = Delt'teJ<:dge(E); 
rt'!.urn E; 

EDGES GetNext--.Edge(P) 
EDGES 1'; 
{ 

if (lsEmpty..Elist(P) == TRUE) return P; 
else [('turn l'->next; 

EDGES GetPrev --.Edge(P) 
EDGES P; 
{ 

if (lsEmpty..Elist(P) == TRUE) return P; 
else return P->prev; 

254 

Read--.Edge(P, n, e, norm) 
EDGES 1'; 
POlr\TS "e; 

Vector norm; 
int n; 

int i; 
if (lsEmpty1:lisl(l') == FALSE) 
{ 

"e = I'->Edge; 
for(i=l; i<=n; i++) 

norm[ij = I'->normlij; 

else 
I'rintErr("Head_Edg(''','' *** No Cells to read from *** "); 

Write--.Edge(P, n, e, norm) 
EDGES 1'; 
POINTS e; 
Vector norm; 
int n; 
{ 

int i; 
if (IsEmpty..Elist(P) == FALSE) 
{ 

P->Edge = e; 
for(i=l; i<=n; i++) 

l'->norm[ij = norm[i]; 

else 
PrintErr("Write-Edge", " *** invalid write *** "); 

int IsMember--.EIist(E, n, P) 
EDGES *E; 
POINTS P; 
int n; 
{ 

EDGES Q; 
POINTS W; 
Vector v; 
int i; 
int Match; 
if ( IsEmpty..Elist(*E) == TRUE) 

Match = FALSE; 
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,..1 ... 

}; 

(l .... E; 
do{ 

H,·,,, I I';d","((l, II, A-W, v); 

if ('''IIII'M'' I'li,l(W, 1', n) == THI E) 
~I.~t,h "" TIWE; 

,..1 .. • 
~Ltt.('h = FALSE; 

q = <:,·tN"xL!·;d",,·((l); 
} whil,' ( (Q!- -E) A'A- (Mi\l.rh ==== FALSE)); 
"I-: = C,·tl'n'\' Ed",..(tlJ; 

rt'\.lIrtl Mi\trh; 

C.1.3 Points Sorting 

QuicLSort(f, I, 11) 
POINTS f, I; 
int n: 

POINTS i, j; 
int flag, swap, rj 
V<'etor vO, vI, v2; 
if «f != Gt"tNextl'oint(l)) &,\~ (I != GetPred'oint(f))) 
{ 

i = f; j = I; 
Rei\lLl'oint(f. n, vOl: 
j = GetNexU'oint(j); 
do { 

do { 
i = GetNext.Yoint(i); Read.Yoint(i, n, VI); 
r = 0; 
do{ 

r = r + 1; 
if (v1[rJ == vOIr]) swap = TRUE; 
else 

if (vl[r] > vOIr]) 
{ swap = TRUE; 

r = n; 

} 
else swap = FALSEj 

}while«swap == TRUE) && (r < n)); 
if «i == GetNext...Point(j)) 1\ ( i == GetNext...Point(I))) 
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flag = TlH' E; 
else 

Hal!; == FALSE; 
} while «sw<~p == FALSE) .v,f..: (Hal!; == FALSE)); 
do { 

j = Getl'rt'"j'oint(j); j{<'alLl'oilll.(j, n, v'2); 

r = 0; 
dol 

r = r + 1; 
if ("2[r] == \'O[r]) swap = THlIE; 
else 

if (v2[r] < \'O[rl) 
{ swap = TIWE; 
r = n; 

else swap = FALSE; 
}while«swap == TRUE) &&. (r < n)); 
if «flag == TRUE) II (i == GetNextl'oint(j)) II U == f)) 

flag = TRUE; 
else' 

flag = FALSE; 
} while «swap == FALSE) && (flag == FALSE)); 
if (flag == FALSE) 
{ 

}; 

Write.Yoint(i, n, v2); 
Write.Yoint(j, n, vi); 

} while ( flag == FALSE); 
Write.Yoint(j, n, vOl; 
Write.Yoint(f, n, v2); 
Quick...8ort(f, GetPrev.Yoint(j), n ); 
Quick...8ort(GetNext.Yoint(j), I, n ); 
} 
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C.IA Generate Hull(S, 11, CH, FA) 

I' 
('''llIplllI-lll<" ("""\'f'X 111111 of ,,·t.'i l)fodIKill~ vertices in CI{, anri 
F"n·t, ill FA. 

POINTS S, .( 'II. 
EI>(;ES 'FA; 
illt. II; 

[,OINTS AS, ONB; 
POINTS junkl; 
EI)( a·;s jUllk2; 
V.·('t.or v; 
int k, i, j; 
if (lsElllptyJ'list(S) !- 'l'IWE) 
{ 

if (S !"" (;pt.Nt'xU'oillt.(S)) 
{ 

/" mort' than 011<' point in S "/ 
S = Ht'moveJJuplicateJ'oints(S, n); 

} 
else 
{ 

for(k=l; k<""n; k++) v[k] = 0.0; 
S = InsertJ'oint(S, n, v); 
QuicL"iort(CetNextJ'oint(S), Getl'revJ'oint(S), n); 
S = Delete J'oint(S); 
ONI3 = AffineJiull(S, n, &AS, ,\,k); 
COll\'exHlllI(S, AS, n, k, CH, FA); 

/* return single point as answer • / 
MakeEmpty j>list( CH); 
Read.Point(S, n, v); 

} 

·CH = InsertJ'oint(*CH, n, v)j 
MakeEmptyJ'list(FA); 

else 
{ 

}; 

MakeEmpty.1'list(CH); 
MakeEmpty..Elist(FA); 
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C.1.5 int CheclcHull(S, Faces, 11) 

I'" check that all points are t'ndosed by fact" -
rails to detect open rt'!1;ions 

/ 
~DG~S Faces; 
POll'iTS S; 
int n; 

{ 
~DC~S R; 
POINTS Q,~; 
Vector norm, 1', ['0; 

double t; 
int i, test; 
test = TRU~; 
R = Faces; 
do{ 

/* for each face' / 
Read.Edge(R, n, &1-:, norm); 
Read.Point(~, n,I'O); 

/* check that all points in S produce negative results • / 
Q = S; 

}; 

dol 
Read...Point(Q, n, 1'); 
t = 0.0; 
for(i=I; I<=n; i++) 

t = t + norm[i]*(P[i]-PO[i]); 
if (t > TOL) test = FALSE; 
Q = GetNext.1'oint(Q); 

}while( (Q != S) && (test == TRUE)); 
R = GetNexLEdge(R); 

}while( (R != Faces) && (test == TRUE)); 
return test; 
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C.l.6 POINTS Remove DuplicateJ>oints(S, n) 

l'OIl'\1 S S, 
illl II; 

POINTS '1'; 
V,·<'I.or v; 
M iLlu·EIIl ply J'lisl(I: .. T); 
whil<-( IsEmptyJ'list.(S) == FALSE) 
{ 

}; 

H'·!1..LPoint(S, II, v); 
S = D,·I.·t .. J'oillt(S); 
if (lsM'·lIlb .. rJ'list(T, II, v) == FALSE) 

'I' = Ills .. rtJ'oinl('I'. n, v); 

ff't.urll'1'; 

C.1.7 Generate.J3ounds(small, large, S, n) 

POINTS S; 
V<'ct.or sm!1.lI, larp;<'; 
int n; 

POINTS H; 
V ('d.or t(,1ll p; 
int i; 
if (lsEmptyJ'list(S) == TRUE) 

I'rintErr("C(,ll('rate...Bounds", ,,**** Empty List ****"); 
else 
{ 

} 

RealLl'oint(S, n, small); 
for(i=lj k=nj i++) Jarge[i] = small[iJ; 
R = GetNext..Point(S)j 
while( R != S) 
{ 

}; 

Read..Point(R, n, temp): 
for(i=I; i<=n; i++) 
if (temp[iJ < small[i]) small[i] = temp[i]; 
else 

if (temp[i] > large[i]) large[i] = temp[i]i 
R = GetNext..Point(R); 
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C.1.8 Simple Matrix And Vector Manipulation 

j* matrix limes a "eclor ll'm problem ~Iv~e *j 
MaLVec(M, n, m, v, e) 
~[atrix ~[; 

V('clor v, ej 
int 11, m: 

illt i, j: 
double r; 

for(i=l; i<=II; i++) 
{ 

}; 

r = 0.0; 
for(j=l; j<=mj H+) 

r = r + MlilUJ'vUJ; 
eliJ = rj 

Normalize(v, n) 
Vector v; 
iot II; 

illt i; 
double t; 
t = 0.0; 

1* normalisation of a vector v of size n * I 
for(i=l; i <= n; i++) 

t = t + v[i]"v[iJ; 
t = sqrt(t); 
if (fabs(t) > TOL ) 

for(i=l; k=n; i++) v[i] = v[i]/t; 
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n .. dllrr(M, n, p, ehs) 
:.oliltnx :.01, 
lilt D. p, rll:,\; 

{ 
illl i, j, k; 
dUII},I" c. St r; r (;i\"I'II' tri'UIRIlIMisat.ioll of an nxp matrix with rhs riRhl hanosides 

.ton,d in ("011111111' p+ 1 ... p+rhs, trani!;lllaris(' M */ 

} 

for(1 I; k"" p; i++) 
for(j- 11; jr~i+l; j.) 

{ 

} : 

r = sqrt(MU][i)·MU][i) + MU-Illi)·l\lU·I][i)); 
if (fabs(r) > TOL) 

{ 

}; 

if (fi\bs(MU-l][i)) < TOL) 
{ 

} 
t'lse 

{ 

} 

c = 0.0; s = 1.0; 
r = 1\IU·I)[i); 
MU-IJ[i] = MUJ[i]; 
MU][i] ,,; r; 

c = MU·I)[iJ/r: 
s = MU][i)/r; 
1\IU·l][iJ = r: 
MUJli] = 0.0; 

for(k=i+l: k<=p+rhs: k++) 
{ 

}; 

r = MU-IJ(k]*c + 1\1U][kJ*s; 
MUJ[kJ = MUJ[k]*c - MU-l][kJ*s; 
MU-l][k] = r; 
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SoIVl'(M, n, p, v, e) 
~latrix ~L 
Vector \", I'; 

int n, p; 

{ 
doubll'r; 
int i, j; r Hack subsitutioll of all nxp matrix with nxn uppf'r trii\II!!;lIlar 

portion and rhs \' - result is in pxl vector ", pad·up for SlI1"titutioll '/ 

l'[p) = 1.0; 
/* substitute * / 

} 

for(i=n; i>=I; i-) 
{ 

}; 

r = v[iJ; 
for(j=i+l; j<=p; i++) 

r = r - M[iJU]*eUJ; 
if (fabs(r) < TOL) 

if (fabs(M[iJ[iJ) < TOL) 
eli] = 1.0; 

else 

else 
eli] = 0.0; 

if(fabs(M[i][i]) < TOL) 
{ 

e[iJ = 1.0; 
for(j=i+l; j<=p; i++) 

eUJ = 0.0; 

else 
e[iJ = (r) / M[iJ[iJ; 
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C.1.9 Rotate(S, AS, D, k, F, Dorm, J) 

r 
(;"',." i\ k dilllf"ll,iollal sub"'l of S as d"fi!wri by AS and a , .. t 

F "f j i k I poi Ill' wilh oulward normal (norm) d,.finin)!. a j·f",e 
of till" ("onVl'x 111111. A point .J and" new norm (norm O\'''rwritl('n) 
ar,· ,j,·ll"flllin,·d such lhal when .J is add,.d to Fa j+1 f"'l" is 
prtHllln·d. */ 
POINTS S, AS, F; 
V"dor nor III , .J; 
int n, k; 
( 

POINTS H, ASbar; 
V"clor 1'0, 1', e, v, lllax.J, min.!, !H'wnorm; 
!\Ialrix F,lM, B,,,,is, Trans; 
doubl,' nvp, ('vp, lambda, mu; 
dOllbl .. l1lilX, min, temp; 
int i, j, Ill, sign, 1", t; 
/" ("ompul.· t' in afi1nt'(S) orlhop;onal to F and norm */ 
/" make k·dinlt'nsional basis frolll AS ~ / 
ASbM = Afi1nd-iull(AS, n, 8e,H, &j); 

/" delete H * / 
H = ASbar; j = 0; 
H,'adJ'oint(H, n, 1'0); 
H = Get,NextJ'oint.(H); 
while( H != ASbar) 

{ 

} ; 

RpalLl'oint(H.. n, P); 
j = j + 1; 
for(i=l; k=n; i++) 

{ 

}; 

Basis[illi] = P[i] . POri]; 
Trans [ilU] = Basis[iJli]; 

R = GetNext.Point(R); 

/* represent F and norm with the basis * / 

R = F; m=j; 
ReadYoint(R, n, PO); 
R = GetNext.Point(R); 
while ( R != F) 

{ 
Read..Point(R, n, P); 
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} ; 

j = j + I; 
for(i~l; i<=n; i++) 

Hasis[i]li] ~ P[i] - POri]; 
I{ = Gell'\t'xU'oint(R); 

/" inserl normal" / 

j = j + I; 
{or(i=lj i<=nj i++) 

Hasis[i][j] = norm[i]; 
Reduce(Basis, n, m, j·m); 

/* make matrix F* which is (k·l)*k */ 

for(i=l; i<=nj i++) 
{ v[i] = 0,0; 
eli] = 0,0; 
} ; 

for(i=m+l; i<=jj i++) 
{ 

}; 

for(t=lj t<=kj t++) 
v[t] = Basis[tJ[i]j 

Solve(Basis, k, k, v, e)j 
for(t=lj t<=kj t++) 

Fstar[i-m](t] = eft]; 

/" pick an e */ 

for(i=l; i<=n; i++) 
{ 

}; 

v[i] = 0.0; 
eli) = 0,0; 

Reduce(Fstar, j-m, k, 0); 
Solve(Fstar, j-m, k, e, v); 

1* translate e back into n dimensions * / 

MaLVec(Trans, n, k, v, e); 
Normalize(e, n); 

1* determine points in S with max and min of tangent to current face * / 

265 



If (I,ElIlplyJ'li,t(S) ~- TH.I'E) 
{ 

I; 

I'rintErr("Hut"t,·", "Empty Points li,t "l; 
rptt1rll ; 

1* lind first v"lid point· / 

H S; 
dn{ 

H,'"d I'oint( H, n, 1'); 
nvp = 0.0; ('Vi' = ILl); 

for(i-I; i<=n; i++) 
{ 

} ; 

nvp = nv" + nOfm[ij*(P[ij-PO[ij); 
('\'p = evp + e[ij*(P[i]PIl[ij); 

H = CetNl'xtJ'oint( H); 
}while( (fnhs(nvp) < '1'01,) &,\- (H 1= S)); 
if ( fnhs(nvp) :> '1'OL) 

{ 

} 
else 

}; 

max = (-e"p)/nvp: 
min = (-e\'p)/I1\'P; 
for{i=l; i<=nj i++) 

{ 

}j 

min.l[i] = P[ij; 
ma.x.J[i] = P[i]; 

I'rintErr("Rotate", "all points on existing face "); 
return; 

/* determine max and min from remaining points * / 
whil,,( R != S ) 

{ 
ReadYoint(R, n, P); 
nvp = O.Oj evp = 0.0; 
for(i=l; i<=n; i++) 

{ 
nvp = nvp + norm(i]*(P(i]-PO(iJ); 
evp = evp + e(i]*(P[i]-PO[iJ); 

}; 
if (fabs(nvp) > TOL) 

266 

} ; 

} ; 

temp = (.,,\.I')! nvp: 
if (temp> max) 

{ 
max = temp: 
for(i=l: i<=n: i++) max.l[iJ = I'[i]; 

else 
if (temp < min) 

{ 
min = temp; 
for(i=l; i<=n; i++) min.l[i] = P[i]; 

}; 

R = GetNext...Point(R); 

/* compute new normal from max point * / 
mu = sqrt(I/(I+max'max)); lambda = sqrt(l-mu*mu); 
if (fabs( (Iambda/mu)- max) > TOL ) mu = - mu; 
for(i= 1; i<=n; i++) . 

{ 

}; 

newnorm[i] = lambda*norm[i] + mu*e[i]; 
J[i] = max.J[i]; 

N ormalize{ newnorm, n); 
1* test new norm * / 

sign = Check...Plane{S, n, newnorm, PO); 
if (sign == 0) 

{ 
/* choose other possible normal if necessary * / 

mu = sqrt(l/(l+min*min))j lambda = sqrt(l-mu*mu); 
if (fabs( (lambda/mu)- min) > TOL ) mu = - mu; 
for(i=l; i<=nj i++) 

{ 

}j 

newnorm[i] = lambda*norm[i] + mu*e[i]j 
J[i] = minJ[i]; 

Normalize(newnorm, n); 
/* check this norm * / 

sign = CheckYlane(S, n, newnorm, PO); 
}j 

/* check validity of norm * / 
if ( sign == 0 ) 

{ 
PrintErr("Rotate", "No supporting plane found "); 
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rrtl1rn; 

I; 
/. urwnlat", Ilorrn corrrctiy • / 

If I"~n > 0) 
fodi -I; i< -n; itt) 

nOfll1[il = .. n(~wll()nn[il; 

f'I~I' 

for(i-1; i<-n; itt) 
normli] = nnwl1orlllli]; 
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C.l.l0 InitiaLfacet(S, AS, n, k, F, norm) 

/* 
Given a k-dimensional subset of n-dimensional span' as 
described by S using the basis AS find a supporting hyperplane 
of the convex hull and comput<' it.s normal. * / 
I'O(I'TS S, AS, "F; 
Vector norm; 
int n, k; 
{ 

I'OII'TS Q, 1', Abar; 
Vector v, vI, ,,0; 
double x, r; 
int i, j, size; 

/* Pick an i so that not all points in S have same i co-ord * / 
i = 0; 
do{ 

i = i+l; 
Q = S; Read..Point(Q, n, v); x = viii; 
do{ 

Q = GetNext..Point(Q); 
Read_l'oint(Q, n, v); 

}while«Q != S) && (vii] == x)); 
} while «Q == S) && (i < n)); 

/* copy elements with i co-ord into Q * / 
Ma.keEmpty"plist(&Q); 
P = S; 
do{ 

Read..Point(P, n, v); 
if (v[i] == x) Q = Insert..Point(Q, n, v); 
P = GetNext..Point(P); 

}while (P != S); 
Q = GetNext..Point(Q); 

1* find concise representation for face Fusing Q * / 
P = Affine.1Iull(Q, n, F, &size); 
size = size + 1; 

1* compute normal and project onto AFFINE(AS) * / 
for(j=I; j<=n; it+) 

{ 

}; 

norm[j] = 0.0; 
vI[j] = 0.0; 

vIii] = -1.0; 
/* find orthonormal basis for AS * / 

Abar = Affine.JIull(AS, n, &Q, &j); 
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Ie rOIl",trllct projrrtion • / 

I' = Ahac; 
H"ad ~I'oillt( 1'. n, VOl; 
I' = (;"l1\"xll'oilll( 1'); 

dol 
H .. adJ'oinl( 1', n, v); 

for(j-I: j- '~II; j++) 
vUl ... vUI - \'%]: 

1\ormali7.'·( V ,II); 
r = (Ul; 

for(j~I: j<=n; i++) 
r = r + vlWvUI; 

for(joel; j<=n: i++) 
nOrillUI .,., norrnUI + r*vU]: 

I' ... C,>t.Nl'xU'oint(I'): 
}while( I' h Abar): 

r dt>lt>rmine facd * I 
while( size <= k-I) 

{ 
i{otatt'(S, AS, n, k, GetNext.Point("F), norm, 'v); 
"F = InserLl'oint(*F, n, v); 
size = size + 1; 

} : 
'F = GetNexLl'oint(-F): 

270 

C.loll POINTS AflineJiull(S, n, A, k) 

r 
Computes the an orthonormal basis (ONB) of the n-dimensional point.' 
in set S. ONB is return as the function result, and tl1t" associated 
set of affinely independent points copied from S are placed in A. 
k is the dimension of the space spanned ION H 1 = 1 A 1= k + 1. * / 
POINTS S, * A: 
int n, *k: 
{ 

POINTS T, Q, ONS: 
Vector PO, 1', v, x; 
double r, c, s; 
int i, j; 

/* make a maximal set of affinely independent points * / 
MakeEmpty'plist(A); 
MakeEmpty .Plist(&ON S); 
*k = 0; 
Read...Point(S, n, PO): 
Q = GetNext.Point(S): 
while (Q != S) 

{ 
Read...Point(Q, n, 1'); 

j* make a direction vector P-PO *1 
for(i=1j i<=nj i++) 

{ 

}; 

P[i] = P[i] - POri]; 
v[i] = P[i]; 

if (IsEmpty.Plist(ONB) == FALSE) 
{ 

j* check if vector P-PO is representable by existing vectors in ONB */ 
T = ONBj 
do{ 

Read...Point(T, n, x); 
r = O.Oj 
for(i=1; i<=nj i++) 

r = r + x[i]*P[i]j 
for(i=1; i<=n; i++) 

vii] = v[i] - r*x[i]; 
T = GetNext.Point(T); 

}while( T != ONB); 
r = 0.0; 
for(i=1; i<=n; i++) 

r = r + fabs(v[i)); 
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;" add ""W "",·tor if reqllirf"d "; 
if( r > TOL) 

I 
1\ormali z,·( v ,n); 

• A ~ Insf'rLl'oinL(' A, n, 1'); 

ONB = In"'rLl'oint(ONB, n, v); 
ok = ok + 1; 

I; 

('I,,· 
{ 

/* first point. always copi .. d • / 
Normalize(v,n); 
• A = Insl'rLl'oint( - A, n, 1'); 
ONB = InserU'oint(ONB, n, ,,); 
*k = I; 

I 
Q = C .. lNl'xU'oint(Q); 

} ; 
/* add PO and fix A. ON B* / 

if (l'Empty _l'list(ON Il) == FALSE) 

}; 

T=*A;Q=ONB; 
dol 

ReadJ>oint(1', n, v)j 
ReadJ'oint(Q, n, x); 
for(i=l; i<=n; i++) 

{ 

}; 

v[iJ = v[iJ + PO[iJ; 
xli] = x[iJ + PO[i]; 

Write-Point(T, n, v); 
Write-Point(Q, n, x); 
T = GetNext-Point(T); 
Q = GetNext-Point(Q); 

}while( T != *A); 

* A = lnsert-Point(* A, n, PO); 
ONB = lnsert-Point(ONB, n, PO); 
return ONB; 
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C.1.12 int CheckJllane(S, 11, norm, PO) 

1* 
checks to see if norm is the normal of a support.inp, hyper- plant' 
of set S in n-dimensional space. 1'0 is a point on t.hl' plant'_ 
returns: +1 (for an inward normal), -1 (for out.ward normal) 
o when plane is not a sllpportinp, plane. -; 
POI1\TS S; 
Vector norm, PO; 
int n; 

POINTS R; 
Vector 1'; 
double t; 
int i, sign; 

/* orientate hyperplane * / 
sign = 0; 
R = S; 
do { 

ReadYoint(R, n, 1'); 
t = 0.0; 
for(i=I; i<=n; i++) 

t = t + norm[iJ*(P[iJ-I'O[iJ); 
if (fabs(t) > TOL ) 

{ 

}; 

if (t > 0_0) sign = I; 
else sign = -1; 

R = GetNexLPoint(R); 
}while ((R != S) && (sign == 0)); 

/* check if plane cuts convex hull * / 
while( (R != S) && (sign != 0)) 

{ 
Read-Point(R, n, P); 
t = 0.0; 
for(i=l; i<=n; i++) 

t = t + norm[iJ*(P[iJ-PO[i]); 
if ( (t*sign < 0.0) && (fabs(t) > TOL) ) sign = 0; 
R = GetNext-Point(R); 

}; 
/* return result * / 

return sign; 
} 
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C.2 Test Data Generators 

C.2.1 Generate_Test(CH, FA, n, npts) 

r (j"'lf'I.,I,,·, t,.,.t data using random number gpn('rator ·1 
POII'\TS 'CH; 
EI)(;f';S FA; 
int 11, ·Ilpl~; 

{ 
POINTS '1'; 
Vector sl11all, largp, v; 
doubl,- fmc,t"mp; 
int. i, j, r; 
illl. COUllt,I.,·.t; 
ullsignt·d sl'eri; 
char 'statl'; 
C'·llPrat,-J:!ounds(smll.ll, large, 'elf, n); 
1\lakd':m pty J 'list( &'1'); 
T = Insert .. l'oint(T, n, small); 
printf("Enter (total) number of points in test: "); 
sca.nf("%d", ,\:r); 
printf("l':nter random number seed: "); 
scanfC'%d", &seed); 
stat," = (char *) calloc(25G, 1); 
initstate(sl't'd, state, 256); 
srandol1l( seed); 
for(i=(*npts)+I; i<=r; i++) 
{ 

print.fC' generating %d points",i); 
count = 0; 
do{ 

1* try to produce point a maximum of 500 times * / 
count = count + Ii 
test = 0; 
do{ 

test = test + 1; 
I * generate test points integer part * / 

for(j=I; j<=ni H+) 
{ 

temp = fabs( large[j]) - fabs( sma.ll[j)); 
if (temp> TOL) 
{ 

frac = randomO/3.14259; 
/* to generate decimal places - prime number better *1 

{rae = frac - (int) frae; 
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\'Ul = (random()% ((inl.)l.~mp + 1)) + smallUl + frar; 

~ls~ 

vUl = smallUl; 
}; 

}; 
}while ((lsMemberJ'lisl.( 'CII,Il,Y) == TH \' 1':) && (test < ClOO)); 

/* point is unique or has been duplicated ClOO l.illlPs • / 
\\lriteJ'oint(T, n, v); 

}while (Check...Hull(T,FA,n) == FALSI':) && (count < 500)); 
/* point is unique and inside hull * I 

'CH = InsertJloint('CH, n, v); 
}; 
*npts = r; 
'CH = Remove-.OuplicateJ'oints(*CH,n); 
T = 'CH; 
r = 0; 
do{ 

r = r+l; 
T = GetNextJloint(T); 

}while (T != *CH); 
if(r != *npts) 
{ 

1* check test set * / 

PrintWarn( "Generate test" , "multiple points in test"); 
printf(" removing »» %d «« duplicates ",.npts - r); 
printf( " final test size = %d ",r); 

} ; 
*npts = r; 
} 

C.2.2 Test To Generate Circular Structure 

#include <stdio.h> 
#include <math.h> 
#define pi 3.1415927 
mainO 
{ 

int i, count; 
float x, y, z, t; 
float r, r 1, theta, step, pts, red; 
scanf(" %f %f %f %f %f", &x, &y, &z, &r, &pts); 

/* calculate number of points * / 
count = 0; 
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,1,'1' = :l·pi/"t.; 
1-1111, 

",,{ 
(Ollnt _ r.,II,,1 t I; 
t _ I + ,t,·p; 

)wllllt-{l. <: (:l°pi)); 
/0 print Ilf'a.d .. r for w,"11. fil" */ 

prillt.f( ":1 %d ", n)\lIIt +2); 

/. ~~f'lwratl' pOlllb */ 
t = (UI; 

""{ 
prinlf("%f %f %f ", X t r'cos(l), y -t r'sin(t), z); 

t = t t st,·p; 
)wltii<·(t < (2'pi)); 
prinlf(,'%f %f %f ", X, y, z+r); 
printf("%f %f %f ", X, y, z-r); 

C.2.3 Test To Generate Rectangles In Levels 

#include <stdio.h> 
#include <math.lt> 
#defint> pi :U·1\!i!)27 
/* generat"s test for convex hull. 
enter (XS,z) centre of a squart> 
r = distance from centre to side of squar,,; 
levels = number of squar"s to be generat"ci; 
theta = angle (in radians) for initial face; -f 
main() 
{ 

int i, count; 
float X, y, z, t; 
float 1', adj, levels; 
float offset, step, theta; 
scanf("%f %f %f %f %f %f", !,:,x, &y, &z, &r, &Ievels, &theta); 
count = 8*levels; 
printf(":1 %d ". count); 
adj = r /I"\'els; 
offset = 0; 
for(i=l; i<=levels; H+) 
{ 

/* generate current square * f 
printfC%f %f %f", x-r, y-r, z+offset); 
printf("%f %f %f", x+r, y-r, z+offset); 
printf("%f %f %f", x-r, y+r, z+offset); 
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printf("%f %f %f", xtr, rtr, z+ ntfset); 
prinlf("%f %f %f ", x·r, y-r. Z otTset); 
printf("')'o{ %f %f ", xtr, y-r, z-offset.); 
printf("%f %f %f ", x-r, ytr, z-ofTsd); 
printf("%f %f %f", xtr, rtr, z·otf,,·t); 

/* 1110ve to new leve! */ 
r = r - adj; 
theta = theta/2; 
offset = offset t adj'tan(t.heta); 
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C.3 Routine For Distributed Memory Architecture 

C.3.1 List Communication Primitives On Transputer 

If eI.,li I'" VA LID :1 
# d.·fil ... I N VA LlI> -:l 
#d .. lilll'Sn·W I 
#eI"lilw STOP 0 
ftd"fin" IIIILL I 
#d,·filw i\lEH<:E :! 
,'\(.ruct IIU",'\S ~l { 

int elat,dlilp;: 
V .. ctor elatiL\": 

sll'ttcl llH'SS ... "it llleSsagp; 

Tranlunit.Plist(P, 11, channel, chRlLid) 
POINTS 1': 
int n; 
Transport challlwl; 
nl'tidJ. chanjd; 

POINTS H: 

lIll'ssap;e.datil.Jlap; == ni /* send list *' 
if (lsElIlpt.yJ'list(P) ==== FALSE) 
{ 

R = 1'; 
dot 

Head_l'oint(H, n, message. data_v); 
cS1Llx(chru11lel, 0, chanJd, (char *) &message, sizeof(message»j 
R = GetNext-Point(R); 

}while (P != R); 
}; 
message.dataJiag = INVALID; /* signal end of data * / 
csn_tx(channel, 0, chanJd, (char *) &message, sizeof(message»; 

Receive.Plist(P, n, channel, chan_id) 
POINTS *Pj 
int on; 
Transport channel; 
netid_t *chanJd; 

POINTS R: 
int m; 
MakeEmptyJ'list(&R); 
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r !!;et list", 
dot 

csn_rx( channel, ChruLjd, (dlar .) ,I,: Illt'ssap;t', sizrof( messap; .. )): 
if (message.data...flag != 11\\'ALI1)) 
{ 

m = l11t'ssap;t'.dataJlap;: 
H = Ins .. rtj'oint.(H, 111, m .. ,sap;l'.dat.a ,.): 

} : 
}while( message.dataJiag != INVALID); 
-n = nl; 
'I' = H: 

TransmiLElist(E, n, channel, chan_id) 
EDGES E: 
int n; 
Transport channel: 
netid_t chanjd; 
{ 

EDGES R: 
POINTS P; 
if (IsEmpty-Elist(E) == FALSE) 
{ 

R= E; 
dot 

message.dataJiag = VALID; 
Read-Edge(R, n, &P, message.data_v); 
csn_tx( channel, 0, chanJd, (char *) &message, sizeof( message» j 
Transmit.Plist(P, n, channel, chanJd); 
R = GetNext-Edge(R)j 

}whlle (R != E); 
}; 
message.dataJiag == INVALID; 
csn_tx(channel, 0, chanJd, (char *) &message, sizeof(message»; 

} 
Receive...Elist(E, n, channel, chan_id) 

EDGES *E; 
int *n; 
Transport channel; 
netid_t *chanJd; 
{ 

EDGES Rj 
POINTS P; 
int m; 
struct mess-st local...rnessage; 
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\\ak"i-:fIIptyEI!,L( f, .. H); 

dot 
nrLrx(.-hlltHwl, dranjd, (dtar oJ &local..rnessage, ,iz.'of(locaIJllf'"ap;f')); 

If (I()(·.~l JIt,'"ap;".dataJlap; != II'\VALID) 
{ 

H"'·"iv.,J'li,qX,I', X' III , chanrIPI, chan_id); 

H = 11t'f'rl Edp;,'(H, 111, 1', 10callTlf'Ssap;f'.data v); 

}; 
}whil,·( lo("allll""ap;".r\ala_flap; ,~ II'\VALlD); 
'1'; = H; 
·u = In; 

C.3.2 Build Files For Partitioning Method 

Hindu'!,' <stdio.h.> 

#ill.-Iu<l,' <csl.oois/build.h 
H<I<'Iill" MAXl'1l0CS I(i 

Illilill(ar!!,c, ar{\v) 
inl. argc; 
char *argv[J; 
{ 

CROllI' 'masl.erCRI'_ptr; 
(; ROt' I' '1,'afGRt' _ptr[l'IIAXt'HOCS]; 
CROllI' 'nodeCHI'_ptr[MAXI'ROCSJ; 
int i, parts; 
parts = atoi(ar{\\'[I]); 
printf("number of I .. aves in t.ree = if (2*parts-l>= MAXI'ROCS) 

{ 

} 

printf("Not Enough processors available "); 
exit(l); 

1* build process objects *1 
masterGRP _ptr = cs..group(NULL, "masterGRP"); 
for(i=O; i< parts; i++) 

leafGRP_ptr[i] = cs...group(NULL, "leafGRP"); 
for(i=l; k parts; i++) 

nodeGRP _ptr[i] = cs...group(NULL, "nodeGRP"); 
/* at tach processes * / 

cs_exe( masterGRP_ptr, "treemaster", "treemaster", "int arg", parts, 0); 
for(i=O; k parts; i++) 

cs_exe( leafGRP _ptrli], "treeleaf", "treeleaf", "int arg", i+parts, 0); 
for(i=l; kparts; i++) 

cs_exe( nodeGRP _ptr[i], "treenode", "treenode", "int arg", i, 0); 
/* commit processes to transputers * / 
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cs_option( masterCR!'_ptr, "commIt", "transputer"); 
for(i=O; i< parts; i++) 

cLoption\ leafCR!' _ptrliJ, "commit", "transp"t.'r"): 
for(i=l: i< parts: i++) 

cs_option\ nod .. CRI' _ptrli], "commit", "transput..>r"): 
printf("Co "): 

/* load computinp; surfac .. * / 
csJoad(): 
printf("stop "): 

C,3.3 Build Files For FLE 

build-ItulLl.c 

#include <stdio,h> 
#include <cstools/build.h> 
#define ~IAXt'ROCS 16 

/* build file - runs master-slave convex hull with 
master and manager on different transputer 

/ 
maine argc, argv) 
int argc; 
char *argvO; 
{ 

GROUI' *masterGRP_ptr; 
GROUP *managerGRP _ptr; 
GROUP *slaveGRP _ptr[MAXPROCS]; 
int i, parts; 
parts = atoi( argv[!]); 
printf("number of processors = %d ", parts); 
if (parts> MAXPROCS) 

{ 

} 

printf("Not Enough processors available "); 
exit(I); 

if (parts <= 2 ) 
{ 

} 

printf("Not Enough processors specified ")j 
exit(! ); 

/* build process objects *1 
masterGRP_ptr = cs_group(NULL, "masterGRP"); 
managerGRP _ptr = cs...group(NULL, "managerGRP")j 
for{i=l; i<= parts-2; i++) 
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,IIl\"'( au' ptr\ i I ,., .p'WIJ p( 1\'1' LL, "~Iiw"(; IU'" ); 
/,. I\lla( 11 pron·,"l'·'" • / 

rl'_r"xt-( flll\."'Ilr'r(;HP ptr, "rJla. ... tt·r", >'IJlliL ... t,·r", "int iH,!?,'" , part~·2, 0); 

("' '·X"( IllaJta~f'rC:HP_plr, 11'Tlallagf'r", "rnanagrr", "inL arg", PiUt~-'2, 0); 

furl i I. i <." PM!.' l; i + + ) 
,., "x,'( ,lil\'l·(;HI'.pt.r\il, ",Ia,,"", "slaYr''', "int arg", i·l, 0); 

/- (-Ollllliit prOn~~!"4f'~ to trall:"lpl1t"r~ */ 
c..opt.ion( lIli,-,t.,·r(;HI'.ptr, "commit", "tran'put"r"); 
'"' option( 1I1ilniLp,,,r(;IU' ptr, "commit", "t.rall'put .. r"); 
fort i· I; i·, - "art..·2; i + +) 

cs opt.ion( sla,,{'(;UI'_pt.r\il, "colllmit.", "transput. .. r"); 
print.f("(;o "); 

r luad COllllltll,inP, slJrfacr> • / 
cs load(); 
print.f("st.op "); 

build hull 2,(' 

/* l)lJild lilt' . runs master·slave COllvex hull with 
mil.st.er and manap;er on Same transputer 

/ 
#include <st.tiio.h> 
#include <cst.ools/build.h> 
#ddine MAXI'HOCS 16 
main(arp;c, arp;") 
int argc; 
char 'arp;\'lI: 
{ 

CROUP *mastl'rCRP _ptr; 
GHOUl' *slaveGRP _ptr[MAXPROCS]; 
int i, parts; 
parts = atoi(argv[l)); 
printf("number of processors = %d ", parts); 
if (parts> MAXPROCS) 

{ 

} 

printf("Not Enough processors available "); 
exit(l ): 

if (parts <= 2 ) 
{ 

} 

printfC'Not Enough processors specified "); 
exit(l ); 

/* build process objects * / 
masterGRP _ptr = cs..group(NULL, "masterGRpll)i 
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for(i=l; i<= parts·l; i++) 
sl,~n'GIU'_ptr\il -= cs.p;roup(l\t'LL, "slav('(;HI'''); 

/* attach processes • / 
cs_exe( masterGRI' _ptr, "master", "mast,>r", "int MP,", parts 1,0); 
c,_exe( maslprGHI'_ptr. ·'manap;er". "manap;er". "int aq(, l",rb·l. 0); 

for(i=l; i<= parts-I; i++) 
cs_exe( sla\'eGRI' _ptr[il. "slave", " slave" , "int arP,", i-I, 0); 

/. commit processes to transputers * / 
,,_option( masterGRP _ptr, ., commit" •. , transput('r"); 
for(i=l; i<= parts-I; i++) 

cs_option( slaveGHI' _ptr[iJ, "commit". "transputl'r"); 
printf("Go "): 

/* load computinp; surfacl' • / 
csJoad(); 
printf(" stop"); 

283 


	586723_0001
	586723_0002
	586723_0003
	586723_0004
	586723_0005
	586723_0006
	586723_0007
	586723_0008
	586723_0009
	586723_0010
	586723_0011
	586723_0012
	586723_0013
	586723_0014
	586723_0015
	586723_0016
	586723_0017
	586723_0018
	586723_0019
	586723_0020
	586723_0021
	586723_0022
	586723_0023
	586723_0024
	586723_0025
	586723_0026
	586723_0027
	586723_0028
	586723_0029
	586723_0030
	586723_0031
	586723_0032
	586723_0033
	586723_0034
	586723_0035
	586723_0036
	586723_0037
	586723_0038
	586723_0039
	586723_0040
	586723_0041
	586723_0042
	586723_0043
	586723_0044
	586723_0045
	586723_0046
	586723_0047
	586723_0048
	586723_0049
	586723_0050
	586723_0051
	586723_0052
	586723_0053
	586723_0054
	586723_0055
	586723_0056
	586723_0057
	586723_0058
	586723_0059
	586723_0060
	586723_0061
	586723_0062
	586723_0063
	586723_0064
	586723_0065
	586723_0066
	586723_0067
	586723_0068
	586723_0069
	586723_0070
	586723_0071
	586723_0072
	586723_0073
	586723_0074
	586723_0075
	586723_0076
	586723_0077
	586723_0078
	586723_0079
	586723_0080
	586723_0081
	586723_0082
	586723_0083
	586723_0084
	586723_0085
	586723_0086
	586723_0087
	586723_0088
	586723_0089
	586723_0090
	586723_0091
	586723_0092
	586723_0093
	586723_0094
	586723_0095
	586723_0096
	586723_0097
	586723_0098
	586723_0099
	586723_0100
	586723_0101
	586723_0102
	586723_0103
	586723_0104
	586723_0105
	586723_0106
	586723_0107
	586723_0108
	586723_0109
	586723_0110
	586723_0111
	586723_0112
	586723_0113
	586723_0114
	586723_0115
	586723_0116
	586723_0117
	586723_0118
	586723_0119
	586723_0120
	586723_0121
	586723_0122
	586723_0123
	586723_0124
	586723_0125
	586723_0126
	586723_0127
	586723_0128
	586723_0129
	586723_0130
	586723_0131
	586723_0132
	586723_0133
	586723_0134
	586723_0135
	586723_0136
	586723_0137
	586723_0138
	586723_0139
	586723_0140
	586723_0141
	586723_0142
	586723_0143
	586723_0144
	586723_0145
	586723_0146
	586723_0147
	586723_0148
	586723_0149
	586723_0150
	586723_0151
	586723_0152
	586723_0153
	586723_0154
	586723_0155
	586723_0156
	586723_0157
	586723_0158
	586723_0159
	586723_0160
	586723_0161
	586723_0162
	586723_0163
	586723_0164
	586723_0165
	586723_0166
	586723_0167
	586723_0168
	586723_0169
	586723_0170
	586723_0171
	586723_0172
	586723_0173
	586723_0174
	586723_0175
	586723_0176
	586723_0177
	586723_0178
	586723_0179
	586723_0180
	586723_0181
	586723_0182
	586723_0183
	586723_0184
	586723_0185
	586723_0186
	586723_0187
	586723_0188
	586723_0189
	586723_0190
	586723_0191
	586723_0192
	586723_0193
	586723_0194
	586723_0195
	586723_0196
	586723_0197
	586723_0198
	586723_0199
	586723_0200
	586723_0201
	586723_0202
	586723_0203
	586723_0204
	586723_0205
	586723_0206
	586723_0207
	586723_0208
	586723_0209
	586723_0210
	586723_0211
	586723_0212
	586723_0213
	586723_0214
	586723_0215
	586723_0216
	586723_0217
	586723_0218
	586723_0219
	586723_0220
	586723_0221
	586723_0222
	586723_0223
	586723_0224
	586723_0225
	586723_0226
	586723_0227
	586723_0228
	586723_0229
	586723_0230
	586723_0231
	586723_0232
	586723_0233
	586723_0234
	586723_0235
	586723_0236
	586723_0237
	586723_0238
	586723_0239
	586723_0240
	586723_0241
	586723_0242
	586723_0243
	586723_0244
	586723_0245
	586723_0246
	586723_0247
	586723_0248
	586723_0249
	586723_0250
	586723_0251
	586723_0252
	586723_0253
	586723_0254
	586723_0255
	586723_0256
	586723_0257
	586723_0258
	586723_0259
	586723_0260
	586723_0261
	586723_0262
	586723_0263
	586723_0264
	586723_0265
	586723_0266
	586723_0267
	586723_0268
	586723_0269
	586723_0270
	586723_0271
	586723_0272
	586723_0273
	586723_0274
	586723_0275
	586723_0276
	586723_0277
	586723_0278
	586723_0279
	586723_0280

