Formal Modelling and Analysis of
Broadcasting Embedded Control Systems

David Kendall

Ph.D. Thesis

September 2001

University of Newcastle upon Tyne
Department of Computing Science

In memory of William Kendall (1908 — 1994)

ABSTRACT

Embedded systems are real-time, communicating systems, and the effective
modelling and analysis of these aspects of their behaviour is regarded as essential
for acquiring confidence in their correct operation. In practice, it is important
to minimise the burden of model construction and to automate the analysis,
if possible. Among the most promising techniques for real-time systems are
reachability analysis and model-checking of networks of timed automata. We
identify two obstacles to the application of these techniques to a large class of
distributed embedded systems: firstly, the language of timed automata is too
low-level for straightforward model construction, and secondly, the synchronous,
handshake communication mechanism of the timed automata model does not fit
well with the asynchronous, broadcast mechanism employed in many distributed
embedded systems. As a result, the task of model construction can be unduly
onerous.

This dissertation proposes an expressive language for the construction of
models of real-time, broadcasting control systems, and demonstrates how effi-
cient analysis techniques can be applied to them.

The dissertation is concerned in particular with the Controller Area Network
(CAN) protocol which is emerging as a de facto standard in the automotive
industry. An abstract formal model of CAN is developed. This model is adopted
as the communication primitive in a new language, bCANDLE, which includes
value passing, broadcast communication, message priorities and explicit time.
A high-level language, CANDLE, is introduced and its semantics defined by
translation to PCANDLE. We show how realistic CAN systems can be described
in CANDLE and how a timed transition model of a system can be extracted for
analysis. Finally, it is shown how efficient methods of analysis, such as ‘on-the-
fly’ and symbolic techniques, can be applied to these models. The dissertation
contributes to the practical application of formal methods within the domain
of broadcasting, embedded control systems.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Maciej Koutny for his
patient support throughout the years it has taken me to produce this thesis.
He has been extraordinarily generous in finding time for me, and his insistent
probing of my ideas and rigorous attention to detail have helped me immensely.

Of course, I am indebted to the many researchers whose work is mentioned
in this thesis, but I would like to acknowledge a personal debt to the following:
Sergio Yovine and Stavros Tripakis for their help with KRONOS and OPEN-
KRONOS, respectively; Hubert Garavel for support with CADP; and Gerard
Holzmann and Jean-Charles Grégoire for sharing their code, from which I have
learnt much about efficient implementation.

I have been fortunate to do this work surrounded by good friends and col-
leagues. Chris Phillips gave me vital support during my M.Sc. studies and
has been a stalwart friend and adviser ever since. Everyone in the High In-
tegrity Embedded Systems Group has provided friendly encouragement and
contributed to a stimulating environment in which to do research. Steven
Bradley, William Henderson and Adrian Robson have always been willing to
listen to my ideas; they are responsible for thrashing out much of the chaff.
Ljerka Beus-Dukic has never been short of an encouraging word, as I struggled
through the final stages of ‘writing up’. I consider myself particularly fortunate
to have shared an office with William Henderson for more than a decade. He
has been an unfailing source of good humour, good music, good advice and
good friendship.

I would like to thank the School of Computing and Mathematics at the
University of Northumbria, both for financial support and for the time which
it has allowed me to devote to this research. In this regard, I am particularly
grateful to Adrian Woolley for supporting my application for a secondment to
get the work started, and for managing my teaching allocation sympathetically
in subsequent years.

Above all others, I am grateful to Marilyn, my wife, best friend and greatest
ally, without whose loving support I would have given up long ago, and to my
children Caitlin, Martha and Josie, who always help to keep things in perspec-
tive, and whose love makes everything seem worthwhile.

PUBLISHED WORK

Preliminary versions of some of the work in this thesis have been presented at
a number of conferences and workshops. Steven Bradley, William Henderson
and Adrian Robson are co-authors of many of the following papers. The work
presented in the thesis is entirely my own, except where explicitly acknowledged.
The papers, in chronological order, are

e A formal basis for tool-supported simulation and verification of real-
time CAN systems. In Proceedings of 4th International CAN Conference
(1CC’97), pages 719-727, Berlin, October 1997.

e bCANDLE: Formal modelling and analysis of CAN control systems. In
Proceedings of 4th IEEE Real Time Technology and Applications Sympo-
sium (RTAS’98), pages 171-177. IEEE Computer Society Press, June
1998.

e CANDLE: A high level language and development environment for high
integrity CAN control systems. In Proceedings of 4th IEE Workshop on
Discrete Event Systems, pages 58—63, August 1998.

e Using sharing trees in the automated analysis of real-time systems with
data. In Proceedings of IEE Colloguium: Applicable Modelling, Verifica-
tion and Analysis Techniques for Real-Time Systems, Ref. No.1999/006,
pages 6/1-4. IEE, London, UK, January 1999.

o CANDLE: A tool for efficient analysis of CAN control systems. In Pro-
ceedings of the 1st Workshop on Real-Time Tools (RT-TOOLS’2001), Aal-
borg, Denmark, Technical Report 2001-014, University of Uppsala, August
2001.

My ideas concerning the translation from a process language to timed au-
tomata were developed first for the AORTA language. That work appears in

e Validation, verification and implementation of timed protocols using AORTA.
In P. Dembinski, editor, Proceedings of the Fifteenth International Sym-
posium on Protocol Specification, Testing and Verification, pages 205-220.
Chapman and Hall, June 1995.

CONTENTS

1. Introduction 1
1.1 Embedded Control Systems 1
1.2 Formal Methods 3
1.3 Broadcast Communication 6

1.3.1 Controller Area Network 6
1.4 The dissertation, 8
1.4.1 Justification oL Lo 8
1.4.2 Structure and contribution 9

2. Models, Specifications and Correctness 11
2.1 Introduction. 11
2.2 Modelsof Time, 11
2.3 Transition Systems Lo 13

2.3.1 Labelled Transition Systems 13
2.3.2 Timed Transition Systems 15
2.3.3 Composition of transition systems 16
24 Process Algebra L L 17
2.4.1 Basicconcepts 17
2.4.2 Timed Extensions 18
2.5 Timed Automata 19
2.5.1 Introduction 19
252 Clocks 20
2.5.3 Clock Constraints 20
2.5.4 Syntax and informal semantics 21
2.5.5 Formal Semantics. o oL 22
2.5.6 Composition of timed automata 24
2.6 Property Specification oo 0oL 25
2.6.1 State Properties 26
2.6.2 Automata e 27
2.6.3 Temporal Logic 29
264 Discussion.o e 32
2.7 Verification 33
2.7.1 Region Equivalence. oL 33
272 RegionGraph. 34
2.7.3 Complexity of reachability 36
2.7.4 Constraint Solving 38

2.7.5 Difference Bound Matrices 43

Contents vii

2.7.6 Implementing constraint solving 48

2.7.7 Other attacks on state space explosion 52

2.7.8 Tools . . . o o 56

2.8 Conclusions 57
3. bCANDLE: A low level modelling language 59
3.1 Introduction 59
3.2 Informal system model, 59
3.3 The Data Model 61
3.3.1 Formal Definition 62

3.4 The Network Model 64
3.4.1 Structure 65

3.42 Behaviour 71

3.5 The Process Model 76
3.5.1 Syntax 77

3.5.2 Informal Semantics 79

3.6 Formal system model 81
3.6.1 Well-formed systems 81
3.6.2 Operational semantics 82

3.6.3 Strongequivalence 84
3.6.4 Equationallaws. 87

3.7 Asimpleexample. 88
3.8 Conclusions and Related Work 91
3.8.1 Broadcast communication and Real-Time 91

3.8.2 Process Operators 92

4. Analysis via Timed Automata 93
4.1 A bCANDLE System and its Timed Automaton 93
4.2 Models with explicit clocks 95
4.2.1 Clocked Networks 96
4.2.2 Clocked Process Terms. 97
4.2.3 Safe Clock Allocations 100
4.2.4 Clocked bCANDLE systems 102

4.3 Timed Automaton Construction 102
4.3.1 Principles of construction 102
4.3.2 Construction of the automaton 103
4.3.3 Commentary on the construction 104
4.3.4 Correctness of the construction 107

4.4 Implementation of the construction 108
441 Nets e e 109
4.4.2 Constructing the net for a clocked term 112
4.4.3 TFinal stage of timed automaton construction 121

45 Asimpleexample. 122
4.6 Conclusions 125

Contents viii

5. Space-Efficient, On-the-fly Reachability Analysis 126
5.1 Introduction. o o o 126
5.2 On-the-fly reachability analysis 127

5.2.1 Basicalgorithm 000, 127
5.2.2 Clock activity reduction 128
5.3 A Minimised Automaton Representation of Reachable States . . 132
5.3.1 Minimised Deterministic Finite State Automata 133
5.4 Implementing a MA state store for bCANDLE 135
54.1 Thestatevector, 135
5.4.2 Mapping the state vector to MA layers. 137
5.4.3 Variable Ordering 138
5.5 An experimental platform 139
5.5.1 The bCANDLE Compiler 139
5.5.2 State Space Storage Modes 139
9.6 Experiments. 141
56.1 Systemmodels 141
5.6.2 Experimentalresults 141
5.6.3 Discussion of experimental results 142
57 Relatedwork 143
5.8 Conclusions and furtherwork 145

6. CANDLE: Modelling and Analysis in Practice 146
6.1 Introduction. 146
6.2 A Tourof CANDLEo... 146

6.21 Modules 147
6.2.2 Datadeclarations. 148
6.2.3 Expressions Lo 151
6.2.4 Statements 152
6.3 SDML: Simple Data Modelling Language 159
6.3.1 Types e 160
6.3.2 Constants e 161
6.3.3 Expressions 161
6.3.4 Functions and Procedures 161
6.3.5 Statements 162
6.3.6 Semantics e 163
6.4 Constructing a Formal Model 164
6.41 Declarations.o 165
6.4.2 Behaviour e 167
6.4.3 Anexample 172
6.5 The CANDLE Development Environment 175
6.5.1 Overview e 175
6.5.2 Validation Environment, 177
6.5.3 The OPEN/CAESAR Architecture 178
6.5.4 Model Generation 178
6.5.5 Model Exploration 179
6.6 Anexample L 180

6.6.1 The CANDLE program 180

Contents ix

6.6.2 The bCANDLE model 182

6.6.3 Analysisof themodel 183

6.7 Conclusions and Related Work 187
6.7.1 Conclusions 187

6.7.2 Related Work 187

7. Conclusions and Further Work 189
7.1 Conclusions 189
7.2 Further Work 189
Appendix 191
A. Flow Regulator TA 192
Al KRONOS .tgFormat 192
A2 Flow Regulator TA 192
B.Proofs 195
B.1 Correctness of the translation 195

C. The CANDLE Grammar 209
C.1 Syntax Notation 209
C.2 Lexical Conventions 210
C.3 Modules 210
C.4 Declarations e e 210
C.4.1 Type Declarations 211

C.4.2 Constant Declarations 211

C.4.3 Variable Declarations 211

C.4.4 Function and Procedure Declarations 211

C.4.5 Channel Declarations 212

C.4.6 Exception Declarations 212

C.H ExXpressions oo e e 212
C.6 Behaviour e 213
C.6.1 Sendstatement 214

C.6.2 Receivestatement 214

C.6.3 Elapsestatement 214

C.6.4 Assignment statement and Procedure Call 214

C.6.5 Ifstatement 214

C.6.6 Repetition statements 214

C.6.7 Select statement 215

C.6.8 Trapstatement 215

C.6.9 Module Instantiation 215

D. The SDML Grammar v 216
D.1 Introduction. 216
D2 DataModules 216
D.3 Declarations. 216

Contents x

D.3.2 Constant Declarations 217

D.3.3 Function and Procedure Declarations 217

D.3.4 Variable Declarations 218

D4 Expressions e 218
D.5 Statements 219
D.5.1 Assignment statement and Procedure Call 219

D.5.2 Returnstatement 219

D.5.3 If statement and Repetition 220

E. Glossary e e e 221

Bibliography 226

LIST OF FIGURES

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10

Simple Embedded Control System 2
CAN Frame - Standard Format 8
A simple timed automaton 22
Product construction for timed automata 24
Level Crossing Control System 25
Test automaton for bounded response 28
TBA for bounded response 29
Clock regions on {hi,hp} withci =co=2 35
Region graph reachability 37
Convex and Non-convex Polyhedra 41
Operations on Polyhedra 42
Representation of a convex polyhedron by DBM's. 44
Weighted graph interpretationof a DBM 45
Procedure to compute the canonical form of a DBM 46
Convex decompositions of a non-convex polyhedron. 48
An algorithm for reachability based on the simulation graph . . 51
Control system model 60
Transmission Status Notation (m € M and #1,t0 € Ro) 68
Rules for Network Behaviour 75
Example of network behaviour 76
Rules for Basic Systems 83
Rules for Guard, Sequential Composition, Choice and Recursion 84
Rules for Interrupt and Parallel Composition 85
Flow regulator in bCANDLE 89
Simulator trace of the flow regulator example 90
One-shot flow regulator in bCANDLE 94
A timed automaton for the one-shot flow regulator 95
Rules for Network Edges 104
Rules for Basic System Edges 105
Rules for Guard, Sequential Composition, Choice and Recursion

Edges e 106
Rules for Interrupt and Parallel Composition Edges 107
Invariant function I : 6CAN — o e e 108
Example Net e 110
Rulesfor fire 113
Net forabasicterm 113

List of Figures xii

4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Net for a sequential composition 114
Net for a data-guarded term 114
Net forachoice 115
Net for an interrupt 116
Net forarecursion 118
Compact net forarecursion 118
A recursion with indirections 119
A recursion with indirections removed 120
Algorithm to remove indirections 120
Algorithm to construct a timed automaton 122
The flow regulator revisited 123
Net for the flow regulator 123
Algorithm for on-the-fly reachability for \CANDLE 128
A minimised automaton L. 134
Structure of a LCANDLE state vector 135
Simple DBMs 136
State vector representation of a 3-clock zone 137
Orderings of the cells of DBM M"” (see Figure 54) 139
Flow Regulator: Instantiated and Renamed 159
Flow Regulator in CANDLE 173
CANDLE Development Environment: Architecture 176
CANDLE Validation Environment: Architecture 177
The Steam Boiler module 180
Water-level Sensor and Pump modules 181
Controllermodule 182
Steam Boiler Data Module. 183

A bCANDLE model for a simple boiler controller 184

LIST OF TABLES

3.1 Example of Transmission Latency Functions 67
3.2 Equationallaws, 87
5.1 Testsystems 141
5.2 Comparison of storage modes 142

5.3 Impact of variable ordering on minimised automaton modes . . 142

1. INTRODUCTION

This dissertation is concerned with the formal modelling and analysis of em-
bedded control systems. We adopt the view that the construction and analysis
of a formal model can contribute significantly to increased confidence in correct
system operation. Attention is directed to distributed systems whose compo-
nents communicate using a broadcast communication network. The deployment
of such systems is becoming increasingly common, and ensuring the reliable
fulfilment of their intended function is a challenging problem. In the rest of
this chapter, the topics of embedded systems, formal methods and broadcast
communication are introduced. The chapter concludes with a review of the
approach and contribution of the dissertation.

1.1 Embedded Control Systems

Embedded computer systems [Kop97] are pervasive in the electronic equipment
upon which we all are coming to depend. Applications range from household
products such as microwave ovens, video recorders and cellular phones to con-
trol systems for the transportation, chemical, electrical, gas, oil and nuclear
industries. What these computer systems have in common is that they are em-
bedded in a physical environment with which they are required to interact for
the purpose of control or monitoring. The role of the computer system in such
interaction is typically

e to monitor significant variables of the environment such as temperature,
pressure, flow or level;

e to execute a control algorithm which takes as its input the values of en-
vironmental variables and compute output values in accordance with one
or more mathematical models of the physical system,;

e to use values computed by the control algorithm to generate signals to the
environment in order to control its function or optimise its performance.

The function of monitoring the environment is performed by physical sensors
within it. For example, a thermocouple produces an analogue signal (a voltage)
which varies with the temperature of the environment in which it is placed. A
digital value is obtained from an analogue signal by A/D conversion, calibration
and transformation to standard measurement units (e.g. degrees Celsius) in a
process known as signal conditioning. Such digital values are the inputs to the
control algorithms of the computer system.

1. Introduction 2

Computer
Control +———Flow Setpoint
System

---------- =R

Control Valve Flow Sensor

Fig. 1.1: Simple Embedded Control System

Control algorithms are developed by control engineers who understand the
behaviour of the physical environment. The function of a control algorithm
is to generate output signals to the environment to influence its behaviour so
that some performance criterion is satisfied, even in the presence of random
disturbances.

Output from control algorithms is transmitted to the environment in digital
or analogue form. For example, a digital output may cause a heating element
to be turned on or a valve to be closed, or an analogue output, generated by
a D/A converter, may vary a demand voltage to an electric motor in order to
control its speed.

Figure 1.1 illustrates a simple embedded control system [Kop97]. The ob-
jective of the control system is to maintain the flow of liquid through a pipe
at a set rate, despite changing environmental conditions: varying level of lig-
uid in the vessel or temperature sensitive viscosity of the liquid, for example.
The computer interacts with its physical environment by monitoring the rate
of flow, using the flow sensor F', and adjusting the position of the control valve
to bring the flow rate as close as possible to the set-point.

In many systems, control is distributed among several computing nodes
interconnected by a communication network [T6r98]. A distributed comput-
ing system architecture is often a ‘good fit’ with the distributed nature of the
physical environment. Cooperating control units can be placed close to the
physical devices which they control, communicating with each other via a sim-
ple computer network rather than the expensive and heavy wiring harness of
traditional control systems. A distributed architecture also accords with sound
design principles such as modularity, dependability and scalability [Kop97].

The emphasis in this work is on techniques for increasing confidence in as-
pects of distributed system dependability. Laprie [Lap90] identifies dependabil-
ity as being concerned with those attributes of a computer system pertaining
to the quality of service which it delivers to its users over an extended period
of time. It is clear that failure of an embedded system to deliver an acceptable
quality of service may have catastrophic consequences, either for the safety of
the physical environment or for the economic soundness of the system’s sup-
plier, which may suffer as a result of the need to recall or repair many faulty
units of a mass produced commodity.

A crucial aspect of the dependability of an embedded system is its ability
to react to stimuli from the environment in a timely way. More precisely, an

1. Introduction 3

embedded control system is a real-time system whose correctness depends not
only on the logical results of computations, but also on the physical instants
at which those results are produced [Sta88]. Real-time systems are classified
as either hard or soft. A hard real-time system is a real-time system in which
a single failure to produce a correct result within a specified interval of time is
regarded as unacceptable. A soft real-time system is one in which a (usually
small) number of such fajlures, over a given period of time, can be tolerated.

In this dissertation, we treat hard real-time systems, and are particularly
concerned with techniques which seek to contribute to the assurance of sys-
tem dependability by demonstrating that temporal requirements are satisfied
under all possible workloads. Such techniques rely upon the predictability of
the temporal properties of all aspects of system behaviour, including worst case
execution times of application code and operating system services, and also
communication latencies and hardware performance [CVGH98, Hal93, HS91].
The requirement for predictability demands simplicity in system design, and
when necessary, flexibility and resource utilisation are sacrificed by adopting
static structures which can be analysed at design time.

1.2 Formal Methods

Formal methods entail the use of mathematically based languages, techniques
and tools for developing and reasoning about computer hardware and software.
The mathematics required is usually discrete mathematics, incorporating ideas
from set theory and logic. The use of mathematics has an impact both on the
descriptive and on the analytical tasks which are required in the development
of a computer system. For example, a descriptive task, such as specifying a
set of requirements, can be accomplished precisely, concisely, and unambigu-
ously using a mathematical language. Similarly, an analytical task, such as
demonstrating that a program function correctly implements a high-level de-
sign, can be discharged convincingly using a mathematically rigorous argument.
The objectives in applying a formal method are to achieve clarity and precision
in description, and to reduce reliance on human intuition and judgement in
analysis, making greater use of mathematical calculation.

This broad framework allows for a variety of levels of formality in the ap-
plication of formal methods within a project. The NASA guidebook [Nat97]
identifies the following:

1. Level 1 methods involve the use of notations and concepts derived from
discrete mathematics in order to develop more precise requirements state-
ments. Analysis, if any, is informal. There are no mechanical tools (com-
puterised algorithms) to support the writing or analysis of formal expres-
sions.

2. Level 2 methods involve the use of formalised specification languages
with mechanised support tools ranging from syntax checkers and pretty-
printers to type checkers, interpreters and animators. Usually, tool sup-
port for eliciting or checking mathematical arguments is not available.

1. Introduction 4

3. Level 3 methods involve the use of formal languages with rigorous seman-
tics and correspondingly formal methods of semantical analysis which
support mechanisation.

Wolper [Wol97] categorises methods at levels 1 and 2 as ‘weak’ formal methods
and methods at level 3 as ‘strong’. His opinion is that

Without semantical analysis formal methods are of limited value
with respect to their stated goal of ensuring the correctness of soft-
ware systems: their formal syntax and semantics are just theoretical
properties, not assets that are exploited in a substantial way. From
the point of view of the author, a strong formal method even with
limited applicability is more meaningful than a weak one that is
perfectly general.

There is a similar latitude in the scope of application of formal methods
within a project. For example, some stages in the development life cycle may
be singled out for particular attention, certain system components may be iden-
tified as critical to mission success or safety, and some system properties may
be judged particularly important and worthy of special attention.

Careful decisions are needed about the appropriate level of formality and
scope of application for each individual project, so that a good balance can be
achieved between the costs and benefits of formalisation.

In this work, we consider the problem of constructing formal models of
distributed embedded control systems, and of providing mechanical assistance
for the analysis of their functional and temporal properties. So the focus is
on ‘strong’ formal methods, in Wolper’s sense. As to scope of application, it
is often acknowledged that a formal model is useful in the design stages of a
computer system, as it facilitates the early detection of bugs and helps to avoid
expensive implementation of a faulty design. This is certainly the case. In
addition, however, we wish to emphasise the usefulness, for embedded systems
particularly, of a formal model of (some features of) the implementation. The
satisfaction of temporal properties of the system usually depends crucially on
implementation decisions whose details may not be available in the early stages
of design. For example, choice of processors and communication mechanisms,
task and message allocation and priorities, scheduling policies, and so on, can
all have a significant effect on real-time performance. It is important to take
steps to gain assurance that temporal requirements which are satisfied by the
design are also preserved in the implementation.

Experience suggests that successful application of formal methods in an
industrial setting depends upon a number of factors, including

e the use of expressive languages which are accessible to system designers,
being ‘intuitive’ and ‘easy to use’;

e the availability of computer-based tools which provide prompt and useful
feedback to their users; and

1. Introduction 5

e the ability to integrate the formal method into a familiar development
methodology, so that the method augments, rather than replaces, tradi-
tional techniques.

Many prominent formal methods are very expressive within a given context:
e.g., Z [Spi88] and VDM [Jon90] offer the full generality of set theory and pred-
icate calculus; Petri nets [Mur89] offer a general model of concurrency, and Hy-
brid Automata [Hen96] allow the expression of a wide variety of timed systems.
However, there is a growing interest in domain specific languages [J W96, which
sacrifice generality of expression in order to offer the system designer a more
familiar syntax, a greater ease of expression for typical applications within their
domain, and the possibility of tractable analysis supported by software tools.
It is hoped that these advantages can weaken resistance to the application of
formal methods in industry by reducing the cost of model building and analysis.
This is the approach followed here.

The need for automation and the provision of useful feedback to the user
has led to the increasing popularity of a style of analysis known as model check-
ing [CGP99]. Model checking is a technique which relies on building a finite
state transition model of a system and checking that a desired property holds
in that model. The basic procedure in model checking is exhaustive state space
search, which is guaranteed to terminate since the model is finite. Once the
model] has been constructed and the property of interest specified, the checking
is entirely automatic. Furthermore, in the case that the property does not hold
in the model, a counterexample is generated, which can provide the designer
with valuable insight into the behaviour of the system and aid in debugging.

The main obstacle in the application of model checking to industrial scale
systems is the size of the state spaces which arise in exhaustive search. This
is known as the state ezplosion problem. There are many techniques for at-
tacking this problem (§2.7.7). Here, we mention the importance of abstrac-
tion [LGS™95]. An abstract model omits detail from the system description.
However, it retains sufficient detail to preserve system properties of interest.
In this way, the size of the state space to be searched is reduced and useful
questions can be decided in practice. Some abstract models are ezact, i.e., for
all properties of interest, the property holds for the model iff it holds for the
system. Other abstract models are conservative approzimations, i.e., if a prop-
erty holds for the model, it also holds for the system; but, if it does not hold
for the model, its status with respect to the system is undecided. Clearly, an
exact abstraction is desirable, but a conservative approximation may lead to a
greater reduction in the size of the state space. If a property fails to hold in
a conservative approximation, further investigation is required to determine if
the failure is a genuine feature of the system, or an aberration caused by the
approximation. Conservative approximations have been used successfully to
analyse the behaviour of embedded system implementations [BHKR94, Cor96]
and they are used extensively in the rest of the dissertation.

Even an abstract formal model can produce a state space which is too large
to search completely in a reasonable amount of time or memory. Nevertheless,
the model can be used effectively for debugging the design or implementation

1. Introduction 6

from which it is derived. The focus here changes from verification based on
exhaustive search to falsification based on semi-exhaustive search [FKFV99).
Techniques motivated by this point of view include state storage methods which
allow a small probability that some reachable states are not explored [Hol95,
Ste97] and simulation techniques which aim for a saturated coverage of the
state space [GA98, YSAA97). The coverage provided by these methods can
improve significantly on traditional validation techniques such as simulation
and testing [Mye79].

In summary, formal methods are one important approach among several
for gaining increased confidence in system dependability. The benefits include
increased understanding gained from the construction and analysis of formal
models, improved communication made possible by formal documentation, and
a formal basis provided for the construction of software tools to assist in system
development.

1.3 Broadcast Communication

The communication architecture encountered most frequently in the implemen-
tation of distributed embedded control systems is the broadcast bus [UK94]. In
broadcast communication, a message transmitted from a single sending node
can be received directly by all nodes connected to the network. This contrasts
with point-to-point communication in which messages are transmitted from a
single sender to a single receiver. The use of a broadcast bus simplifies im-
plementation of the common requirement in an embedded system to provide
a consistent view of the state of the physical environment to a number of dif-
ferent nodes, e.g., to a man-machine interface, a process control node and an
alarm-monitoring node [Kop97]. It can also simplify the implementation of
clock synchronisation and the tolerance of individual node failures.

A wide variety of broadcast protocols is seen in practice, each offering a solu-
tion to the problems posed by a particular application area, e.g., Profibus [DIN89]
for process control, LON [Ech91] for building automation and CAN [IS092),
TTP [KG93] and QWIK [JO99] for automotive applications. It is not our in-
tention to review this extensive field here. Surveys of the relevant principles
and applications can be found in [Kop97, KS97, UK94, Ver97b]. However, we
do offer a more detailed consideration of one such protocol, CAN, which is the
basis of the formal model presented later in the dissertation and will serve as
our canonical example of broadcast communication.

1.3.1 Controller Area Network

Controller Area Network (CAN) [Bos91, ISO92] is a simple, deterministic,
broadcast communication protocol which is not only attractive to system de-
velopers but also amenable to formal modelling and analysis. It is gaining
increasing importance and attention in the implementation of distributed real-
time systems, as evidenced by the variety of contributions in the proceedings
of recent International CAN Conferences [CiA99)].

1. Introduction 7

CAN provides multi-master, priority-based bus access using a CSMA/CD
protocol similar to Ethernet’s, but with a deterministic collision resolution pol-
icy which makes it suitable for use in hard real-time systems. It is a robust
protocol offering high reliability even in harsh electromagnetic environments
and is suitable for the transmission of short messages over a small area at
speeds of up to 1 Mbit/s. CAN was developed by Bosch in the mid-eighties
in order to reduce the need for complex wiring harnesses in the automotive
industry. Its use in the European car industry has grown to the point where
it is an acknowledged industry standard and its popularity is growing in the
USA where it has been accepted as a standard by the SAE for bus and truck
manufacture [SAE92). The availability of low cost components from a vari-
ety of manufacturers, who are seeking to satisfy the high volume requirements
of the automotive industry, has encouraged the use of CAN in an expanding
range of application areas, including: medical, packaging control, agricultural
machinery, lift control, measurement, robot control and PLC controlled manu-
facturing.

CAN Operation

Information is transmitted as fixed format frames which consist of a message
identifier, 0 to 8 data bytes and sundry control bits as shown in figure 1.2. The
physical medium is usually twisted pair cable over which frames are transmitted
using NRZ encoding with stuff bits inserted when needed to preserve synchro-
nisation. When the bus is idle, any connected node may start to transmit a new
frame. If two or more nodes start to transmit frames at the same time, the bus
access conflict is resolved by non-destructive bitwise arbitration which is based
upon the message identifier. The bitwise arbitration mechanism classifies bits
as either dominant or recessive. During transmission of the arbitration field,
transmitting nodes monitor the bus. Transmission of a dominant bit by any
node causes all nodes to monitor a dominant bit on the bus; only if all transmit-
ting nodes send a recessive bit is the monitored bit recessive. If the transmitted
bit is recessive, but a dominant bit is detected on the bus, the transmitting
node recognises that it has lost the bus arbitration, ceases transmission of its
frame and behaves as a receiver of the highest priority competing frame. In
a standard CAN frame, the arbitration field consists of the message identifier
and the RTR (Remote-Transmit-Request) bit. A message identifier consists of
11 (29) bits in the standard (extended) frame format and is interpreted as a
non-negative integer assigning a priority to the frame. Priorities are assigned
in monotonically decreasing order starting from 0. The transmitter with the
frame of highest priority gains bus access without experiencing any delay due
to the access conflict, i.e. it behaves as if it were the only node seeking access
to the bus. This property makes the bus particularly suitable for predictable,
real-time communication. Frames which are disturbed either by losing arbi-
tration or by the occurrence of errors during transmission are retransmitted
automatically when the bus becomes idle again. A frame which is retransmit-
ted is handled like any other frame, i.e. it participates again in the arbitration
process in order to gain bus access.

1. Introduction 8

Control End of Bus
Arbitration Field Field Data Field CRCField | Ack Fame |y e
f=— |-
s 11 bits R[1] |avis 0-8 Bytes 15bis [DIATA] gy | 3
r E|C
o IDENTIFIER 71Dl 4| bLe DATA CcrRC |, 1k E EOF | bis
F R | E| 04t

Fig. 1.2: CAN Frame - Standard Format

In addition to giving a priority to a frame, the message identifier is also
used by each receiving node to determine whether or not it wishes to ‘accept’
the frame. There is no address associated with a frame to indicate its intended
recipient. Each node connected to the bus performs an acceptance test during,
or shortly after, the transmission of a frame. If the frame passes the test, its
data field is made available to the accepting node, otherwise the node ignores
the frame.

CAN-based protocols and analysis

There has been much interest in developing CAN-based protocols and analysis
to solve a variety of typical distributed system problems. Tindell et al. [THW94]
show how fixed priority pre-emptive scheduling analysis can be applied in order
to bound message response time for systems with a suitably restricted compu-
tational model [TBW95]. Another approach to message scheduling is presented
in [LKJ99], in which hard real-time messages are allocated off-line to slots in a
Time Division Multiple Access (TDMA) schedule [KS97], with redundant time
slots provided to achieve some fault tolerance; the redundant slots are used in
the Earliest Deadline First (EDF) scheduling [KS97] of soft real-time messages,
in the case of error-free transmission. Verissimo et al. [VRM97] derive bounds
for bus inaccessibility under a variety of fault scenarios. Protocols for achiev-
ing atomic broadcast in the presence of network faults are given in [RVA198]
and [LK99]. A solution to the problem of fault-tolerant clock synchronisation
is presented in [RGR98]. The only other formal study of CAN-based communi-
cation, so far as we know, is the Z specification of the protocol by Benzekri and
Bruel [BB97]; however, real-time and performance aspects are not discussed in
their work.

1.4 The dissertation

1.4.1 Justification

The work presented in this dissertation addresses the problem of providing a
high-level language for modelling embedded systems which communicate using
broadcast communication, with a view to exploiting efficient, automated analysis
techniques in order to increase confidence in the satisfaction of temporal system
properties. We briefly justify our belief in the need for work in these areas.

High-level language We have argued that a formal approach to system de-
velopment is an important component in the construction of dependable

1. Introduction 9

systems, and that high-level languages and computer-aided analysis are
required if formal methods are to be of practical use in industry. Much
recent research on formal analysis of real-time systems has concentrated
on techniques based on timed automata [AD90]. However, the language of
timed automata is generally acknowledged to be too low-level for general
use [AD94, BFK+98, Tri98, Pet99]. Therefore, there is a need for re-
search on methods to exploit the analysis techniques developed for timed
automata in the context of high-level languages for modelling and devel-
opment.

Broadcast communication An increasing number of distributed embedded
systems are implemented which rely on broadcast communication. CAN
is a simple, predictable broadcast protocol which is coming to dominate a
large sector of this market. As it is often employed in systems which de-
mand high dependability, there is considerable interest in the question of
how to apply formal methods in the development of CAN-based systems.
Currently available methods, however, do not offer a straightforward way
to model systems which communicate via the CAN protocol. Our work
is aimed at providing such a method.

Efficient analysis A high-level language for modelling broadcast systems will
only be useful in so far as there are efficient techniques for analysing
the models which are described with it. Our work shows how existing
techniques can be applied and also proposes new techniques for efficient
analysis.

1.4.2 Structure and contribution

Chapter 2 introduces labelled timed transition systems as a basic model for real-
time systems and describes how such models can be derived using either timed
automata or timed process algebra. The use of automata and temporal logic
for the specification of system properties is presented. Techniques for verifying
that a timed model possesses specified properties are described in some detail.
This chapter presents no new results but is the foundation on which the rest of
the dissertation is built.

Chapter 3 presents a new system modelling language, called bCANDLE,
which allows the expression of process behaviour using a small set of process
operators, includes primitives for broadcast communication based on a CAN-
style protocol, and permits the modelling of both data and control structures.
It is shown that the language satisfies a number of algebraic laws and is ex-
pressive enough to model essential features of CAN communication, including
message priorities and channel latency, as well as standard real-time constructs,
such as timeouts and watchdog timers. So far as we know, this is the first for-
mally defined language which treats broadcast communication with prioritised
message passing over latent channels in a dense time framework.

Chapter 4 defines a translation to timed automata for a large subset of
bCANDLE systems. An efficient method for performing the translation is de-
scribed and implemented. This work builds upon and extends the approach

1. Introduction 10

developed by Garavel in the translation of LOTOS [Gar92] and of Yovine in
the translation of ATP [Yov93]. We demonstrate the use of the method by
applying it to a simple bBCANDLE model which is analysed using the KRO-
NOS [BDM*98] model-checking tool.

Chapter 5 presents two techniques for efficient analysis of BCANDLE mod-
els: firstly, an on-the-fly generation of the simulation graph, incorporating clock
activity reduction; secondly, a BDD-like, compact representation of the state
space which treats discrete data variables and clock variables in a uniform man-
ner. The application of the latter technique to timed systems is entirely novel.
The former technique is based upon a combination of methods which is pre-
sented here for the first time.

Chapter 6 serves to validate the ideas presented in Chapters 3-5, and to
point the way to future developments. It presents a high-level modelling lan-
guage whose semantics are given by translation to bBCANDLE, so providing a
route to the use of the numerous analysis techniques based on timed automata,
including those introduced in Chapter 5. The framework of a practical mod-
elling and analysis environment is outlined. The utility and limitations of the
techniques are illustrated in a small case study.

Chapter 7 summarises the work and suggests lines of future enquiry. Related
work is referred to and discussed in context.

2. MODELS, SPECIFICATIONS AND
CORRECTNESS

2.1 Introduction

Very simply, the use of formal methods in the development of a computing
system involves:

1. the construction of a symbolic representation of (part of) the system,
which captures what are believed to be essential features of its structure
or behaviour. We call this symbolic representation a model.

2. the construction of a symbolic representation of some desired property of
the system’s structure or behaviour. We call this symbolic representation
a specification.

3. the demonstration that the property described by a specification is exhib-
ited by a model of the system. Such a demonstration is said to establish
the correctness of the model with respect to its specification.

There is a wide variety of languages for expressing models and specifications,
and of methods for establishing correctness. In this chapter, we introduce in
some detail those languages and methods which are relied upon later in the
dissertation. We also give a brief review of alternatives.

Most models of real-time systems, and specifications of their properties, em-
ploy a representation of Time. The representation which we use is introduced
in §2.2. In §2.3, we introduce labelled transition systems and their ezecutions,
which serve as a unifying model of computation for both system models and
specifications. Labelled transition systems can be described using several lan-
guages, including process algebra and automata which are the topics of §2.4 and
§2.5, respectively. Specifications can also be given as automata, but in addition
we use temporal logic; these approaches are discussed in §2.6. Verification is
the topic of §2.7. Finally, in §2.8 we summarise and mention briefly some other
approaches to modelling, specification and verification which have appeared in
the literature.

2.2 Models of Time

Notation. In this section, and throughout the dissertation, the following nota-
tion is used to denote sets of numbers: R - the set of non-negative real numbers;

2. Models, Specifications and Correctness 12

Q - the set of rational numbers; Z — the set of integers; and N - the set of natural
numbers.

The model of time used in this work is the non-negative reals, which we denote
by R and use with the usual operations of equality (=), ordering (<), addition
(+), and multiplication (-). As usual, we write t < t'if ¢ < ¢' and t # #'. It is
sometimes convenient to augment this domain with a value, co, which is defined
to be strictly greater than any other time value. We write Ry, for RU {oc} and
assume that the arithmetic operators and relations are extended to R, in the
usual way: for every ¢t € R, ¢ < 0o, and for every t € Roo, t +00 = 00+ ¢ = 00.
We also make use of an operator for subtraction, - : Ry x R — Ry, which
satisfies,

bty = 0 ify <ty
! t o<t Al =t +t

This model of time is one of a number which have been proposed for use
in the analysis of real-time systems [AH91, Jos91, Koy91, Nic92]. We briefly
draw attention to some salient features and their relationship to the model of
computation which will be used.

An important choice is the one between a dense or a discrete time domain.
In a dense domain, such as R or Q, any two distinct time points are separated
by a set of intervening points which are also elements of the domain. In a
discrete domain, such as Z, each time point has a unique successor. Formally,
R is a dense domain since it satisfies

@At eR.E<)ANVLYER|t<t . It"eR. t< ' <)
whereas N is a discrete domain since it satisfies
Vi,t'eN. t<t' = 3t"eN.t<t" AVI" eN.t <" > t" < t").

Alur [Alu91] has argued convincingly that dense time is more appropriate in
the modelling of asynchronous systems, where an arbitrarily small amount of
time may separate event occurrences. If a discrete domain is chosen, then
continuous physical time must be approximated by fixing a time granularity a
priori, and no matter how fine the granularity chosen, for some systems the
discrete model is not accurate enough to ensure that all possible erroneous
behaviours will be detected [ACD93]. This problem has been noted also by
Asarin et al. [AMP98] who exhibit a class of cyclic circuits as an example.
Moreover, even when it is possible to choose a sufficiently fine granularity, it
may be so fine that the size of the state space becomes too large for verification
to be feasible. A dense domain is also more convenient when it comes to the
composition of systems, since there is no need to worry about matching the
time granularities of the components, as is the case for a discrete model. A
possible advantage of the discrete model is that it facilitates the application of
efficient verification techniques known from the analysis of untimed systems, in
particular symbolic state space representation using binary decision diagrams

2. Models, Specifications and Correctness 13

(BDDs) [Bry86, McM92]. It remains to be seen whether or not efficient symbolic
representations will be discovered for dense time systems; the clock difference
diagrams of [LWYP98] show some promise in this respect. Another interesting
approach is to consider when it is possible to construct a discrete time model
which is known to preserve dense time properties, since then we can have the
expressiveness of the dense time model together with the efficient analysis of
the discrete model [ABK*97, AMP98, BMPY97, HMP92].

An alternative to a point-based domain, such as R, is a domain based on
intervals, in which statements concerning the duration of events may be more
conveniently expressed, see [Koy91] for further details. In its favour, we find
that the domain R fits naturally with a simple computational model of time-
stamped event sequences or trees. In this model, events are assumed to happen
instantaneously, and system behaviour consists in a sequence of two-phase steps.
In the first phase of a step, time passes by some finite or infinite amount. In
the second phase, a finite, though arbitrarily large, number of instantaneous
events occur in some well-defined order. A new step begins when the second
phase terminates. This two-phase model has proven very effective in practice
and is widely used; further arguments in its defence can be found in [NS91]. In
this approach, a duration can be modelled by introducing instantaneous events
representing its beginning and end.

It is convenient to assume that event sequences respect a weakly mono-
tonic ordering, i.e., for a sequence ((ej, t1), (€2, £2),...), where e; represents an
event and ¢; its time-stamp, then #; is required to be less than or equal to
t;11, rather than strictly less than, as would be required by a strongly mono-
tonic ordering. This allows concurrency to be modelled by the interleaving of
events: for example, a computation in which the events a and b occur concur-
rently, can be modelled by the pair of sequences (..., (a,), (b, tiz1),...) and
(..., (b,), (a,tis1),...), where ¢; = t;11 in each case.

One further point about the structure of time, which is also intimately re-
lated to the underlying computational model, concerns views of time as either
a linear or a branching structure [EH86, Lam80, Pnu85]. In the linear model
of time, it is assumed that at any moment there is only one possible next mo-
ment; system behaviour is represented as a set of possible execution sequences.
In the branching model, time has a tree-like structure where it is assumed that
each moment has at most one directly preceding moment, but perhaps many
next moments, representing different possible futures; system behaviour is rep-
resented as a tree and an execution is a path through the tree. Each view
supports the statement of system properties which cannot be expressed in the
other. We regard the two views as complementary and make no commitment
to either, but use whichever seems appropriate in the circumstances.

2.3 Transition Systems

2.3.1 Labelled Transition Systems

A method of modelling systems and their behaviour, which has been success-
fully applied in a wide variety of circumstances, is based on the idea that it

2. Models, Specifications and Correctness 14

is possible to identify a set of states which characterise certain aspects of the
system which are of interest to the modeller. A system begins its operation in
some initial state. During the operation of the system, its state may change.
A change of state is called a transition and a system model consisting of states
and transitions is a state transition system (usually abbreviated to transition
system). It is often useful to associate a label with a transition. The label
can be used for a variety of purposes: perhaps to identify an action which has
caused the transition, or an event whose occurrence is indicated by the tran-
sition. A transition system in which labels are associated with transitions is
called a labelled transition system (LTS). Within this basic framework, a system
modeller has wide discretion in the choice of states, transitions and labels in
the construction of a useful model. These ideas are presented formally below.

Definition 2.1 (Labelled Transition System) A labelled transition system
S = (Z,0%,L,—) is a tuple where ¥ is the set of states, o7 € ¥ is the initial
state, L is the set of labels and — C ¥ x L x ¥ is the set of transitions. O

Notation. We write 0—>3¢’ for (o, \,0') e —. If o—230" for some label A € L
then o’ is said to be a A-successor of o and o is a \-predecessor of o'. If ¢’ is a
A-successor (resp. -predecessor) of o, then ¢’ is a successor (resp. predecessor)

. A
of 0. If o has a A-successor, we note this by c——. If o has no A-successor, we

A by A An-2 An—1
write 0 -~. We use g9 —" o, to denote 00012 - =S 0op_1 —> 0y, for

0<i<nand)\ €L,and g — oy if 09 —" o7 for some n € N.

Definition 2.2 (Finite, Finitely Branching, Deterministic) A transition
system, S = (X,0%, L,—), is finite if the set of states ¥ and the transition
relation —> are finite. S is finitely branching if for all ¢ € ¥ and A € L, the

set {(\,0') | aim’} is finite. S is deterministic if, for any state o and label

Y A
A, if o0’ and 030" then o' = o". O

Definition 2.3 (Isomorphism)

Let S; = (21,07, L,—>;) and S = (X2,0%, L,—3) be transition systems. S;
and S, are said to be isomorphic iff there exists a bijection f:X; — ¥y such
that

L f(OII) = 021’ and

2. for every 0,0’ € 1, € L, o—10" iff f(U)-—A)gf(O") O

Definition 2.4 (Path) Let S = (%,07,L,—) be a transition system. Let
o € . A path in S from o is a finite or infinite sequence, p = ToAgO1AL102A2 "« +
of alternating states and labels which satisfies

1. p starts with state 0 = o, known as the source of p, and

2. Models, Specifications and Correctness 15

2. forall i =0,1,..., 0441 is a Aj-successor of o;. O

A path of length n is a finite path p = ogAgo1A1 - * An_10n. Let p = gg Ao A1 - - -
be a finite or infinite path. For i =0, 1,2, ..., the i-th state of p, denoted p(%),
is defined to be o; and the i-th label of p, denoted label, (), is defined to be ;.

Definition 2.5 (Reachability) A state o' is reachable from state o iff there
is a path in § from o which contains ¢’. The state o is reachable in S iff o is
reachable from the initial state, oZ. O

2.3.2 Timed Transition Systems

A real-time system can be modelled as a labelled transition system. The actions
of the system are represented by transitions whose labels are drawn from some
set A of actions. Such transitions are known as discrete transitions and are
assumed to be atomic and instantaneous. The passage of time is modelled by
transitions whose labels are drawn from the set of non-negative real numbers
R; these transitions are called time transitions. The set of labels is thus AUR.
We assume A NR = (. In order to serve as a model of a real-time system,
we require that the transition system S = (X, 0%, L, —>) satisfies the following
properties:

Time determinism The evolution of the system is deterministic with respect
to the passage of time [NS91, Nic92, Yi90], i.e., for a given state and a
given time, there is at most one state which can be reached in a single
step by taking the time transition. Formally,

t t
Vo,0',0"e€X; teR.o—0' Ao—rd" = o' =0

Time additivity The evolution of the system is continuous with respect to the
passage of time [NS91, Nic92, Yi90]. If a time transition is possible from
some state, then all smaller time transitions are also possible. Formally,

t+t! t %
Vo,0' €X; t,t' € R.ocs & 30" €. 0-30" A 0”0’

Definition 2.6 (Timed Transition System) A timed transition system S =
(B,0%, L,—>) is a labelled transition system whose set of labels L is A UR for
some set A such that A N R = (, and which satisfies the properties of time
determinism and time additivity. a

Definition 2.7 (Execution, Run) An ezecution or run of a timed transition
system S, starting from a state o, is an infinite path in S from . We denote
the set of all executions from ¢ by Eg(0), and by Zs = U, 5 Es(o) the set of
executions of S. m]

2. Models, Specifications and Correctness 16

We are primarily interested in those runs which can be regarded as a model
of some physical system. In particular, we wish to ensure that basic physical
laws concerning Time are respected:

1. a system cannot act with infinite speed, and
2. a system cannot block the progress of Time.

These ideas are captured for a timed transition system in the definition of a
time-divergent run.

Definition 2.8 (Time-divergent run, Non-Zeno system)

Let S = (2,07, L,—>) be a timed transition system, £ € Es an execution in
S and i,n € N. The i-th delay in £, denoted & (), is defined to be labelg (4)
if label¢ (i) € R, otherwise d¢(é) is 0. The time elapsed in ¢ from £(0) to &(n),
denoted A¢(n), is defined

A run ¢ is time-divergent (or simply divergent) iff lim; o0 Ag(i) = co. The set
of time-divergent runs from o € ¥ is denoted EF(0) and the set |J, 5 EF(0)
of all time-divergent runs in S is denoted =.

S is a Non-Zeno (well-timed) system iff every reachable state o € ¥ is the
source of some time-divergent run. O

Remark 2.1 (Finite Variability, Time Progress) It follows directly from
Definition 2.8 that there are a finite number of transitions represented in any
bounded time interval of a divergent run, £. It is also apparent that for any
t € R, there is a number n € N such that Ag(n) > t, i.e., time progresses
beyond any bound.

2.3.3 Composition of transition systems

A complex system can be modelled by identifying and modelling smaller com-
ponents of the whole system and then by stating precisely what is the behaviour
of the system which is obtained by combining components.

A standard form of combination for transition systems is a product which
models the parallel execution of two or more transition systems as a single
system. We now define a commonly used product of transition systems. Let
S) = (81,07, L1,—) and Sy = (Z2,0%, Ly, —3) be two transition systems
which we assume to represent system components. In the product of S$; and
S, a state is a pair (01,02) where 07 € £; and o2 € Y. The transitions of
the product take their labels from the set L; U Ly. If A is a label which occurs
both in Ly and in Lo, then we require each of S; and S, to perform a A-labelled
transition together in order for the product to perform a A-labelled transition.
If the label A occurs in the set of labels of only one component, then that
component can perform a A-labelled transition independently in the product.
The systems are said to synchronise on their shared labels, otherwise they act
independently.

2. Models, Specifications and Correctness 17

Definition 2.9 (Product of transition systems)

Let §; = (Z1,0%, Ly, —1) and §; = (X2,0%, Ly, —>5) be two transition sys-
tems. The transition system product of S; and S,, which is written S$118,, s
the transition system (£, x £y, (67, 0%), L1 U Ly, —) where (o7, 02)—'\)(011, ah)
iff

1. Ae LN Ly and Ul—A)lo'i and 0’2—/\>20'é, or
2. x€ L\ L and 01—A>101 and o) = o9, or

3. A€ L\ L; and 02—'\205 and o] = 01. O

2.4 Process Algebra

2.4.1 Basic concepts

The understanding of distributed systems has been advanced considerably by
the study of process algebra. In this approach, a system is regarded as a process,
which is constructed from smaller processes using a set of process constructors
(operators). Some processes are regarded as primitive — not subject to further
investigation — and larger processes are constructed from them using the process
operators, resulting in an algebraic structure. Processes are investigated by
considering equivalences between them, which leads to an equational style of
reasoning. There are several different approaches to the algebraic treatment of
processes. They can be characterised by:

e the choice of basic processes and process operators,
e the methods and models used to give a meaning to processes, and

¢ the notion of equivalence between processes.

The well known process algebras CCS [Mil89], CSP [Hoa85] and ACP [BW90]
exemplify the main variations within each of these categories; these references
should be consulted for a thorough introduction to the field. Here we mention
some aspects which may be helpful in understanding the rest of the dissertation.

In process algebra, system events are modelled as atomic actions. In the
family of ACP algebras, atomic actions are basic processes and act as the con-
stants of the algebra. There is a sequential composition operator which models
the execution of one process followed by the execution of another process. CCS
adopts a different approach in which an atomic action e is not regarded as a
basic process in its own right, but can be composed with some process P using
an action prefix operator, to yield a new process a.P, which is capable of first
performing the action a and then behaving as process P. In this approach,
the nil process, which cannot perform any action, serves as a basic process.
Given the possibility for modelling very simple systems such as these, more
complex systems can be constructed using a variety of other operators includ-
ing: choice, disabling, parallel composition and abstraction. Other features of

2. Models, Specifications and Correctness 18

system behaviour can also be modelled within the process algebraic framework,
e.g., process priority, memory state and shared resources [BV95, LBGGY4).
The formal description technique LOTOS [ISO88b) offers both a variety of use-
ful process operators and a data language for modelling the data values which
are stored and communicated by a system. It has been used extensively for
modelling and analysing systems of practical interest.

Currently, the predominant method for giving a meaning to the terms of
a process algebra is structural operational semantics (SOS) [Plo81]. SOS gen-
erates a labelled transition system, whose states are the terms of the process
algebra, and whose transitions are obtained inductively from a set of transition

rules of the form 22— An example of a typical transition rule is

P-4 p
P+ Q%P

from which we can conclude the existence of an a-labelled transition from any
term of the form P + @ to a term of the form P’, if we can demonstrate
the existence of an a-labelled transition from P to P’. In general, validity
of the premises of a transition rule, under a certain substitution, implies the
validity of the conclusion of this rule under the same substitution [AFV99]. This
operational style of semantic definition gives a meaning to a process description
in terms of its effect upon the behaviour of some abstract machine. Other
semantic approaches are the denotational method of CSP [BHR84] and the
axiomatic method of ACP [BK84].

A variety of process equivalences are studied in the literature [vG90, vG93].
They range from a weak equivalence, in which processes are equated iff they
can perform the same set of transition sequences, to a strong equivalence in
which they are equated iff their derivation trees are isomorphic. The former
equivalence may equate processes P and () even though there are environ-
ments in which P deadlocks while ¢ does not. The latter equivalence may
distinguish processes even if they can perform the same actions in all envi-
ronments. Useful equivalences are found somewhere between these extremes.
The variety of useful equivalences is greater in settings which distinguish be-
tween a set of actions which are observable and a set of actions which are
hidden or silent [vG93]. The process equivalence of most relevance to our
work is based on the idea of strong bisimulation [Mil89] and equates pro-
cesses P and Q iff for every action a, every a-successor of P is equivalent
to some a-successor of), and vice versa (cf. §3.6.3). This is generally re-
garded as the strongest of the useful equivalences. To be really useful, an
equivalence should also be a congruence, i.e., equivalent processes should be-
have the same in all contexts, e.g., assume op is an arbitrary process operator
and P and @Q are equivalent processes, then op(P1,...,Pi—1, P, Piy1... Py) and
op(P1,...,Pi—1,@, Piy1... Py) should also be equivalent processes.

2.4.2 Timed Extensions

In the process algebras considered so far, there is not the possibility to model
and reason about the quantitative aspects of the passage of time. This defi-

2. Models, Specifications and Correctness 19

ciency has been addressed by many researchers and, consequently, there are
now many timed process algebras which can be used in the analysis of real-time
systems. Vereijken [Ver97a] gives a very comprehensive review which covers
almost 40 different timed process algebras. Nicollin and Sifakis [NS91] present
a helpful unifying framework. Corradini et al. [CDI99] give a detailed study
of the relationship between four CCS-like variants. Here we aim to give just a
flavour of the main themes.

In general, timed process algebras introduce constants ranging over some
time domain, either discrete or dense, and a number of time constraining oper-
ators, into the framework of an untimed algebra. A typical time constraining
operator is one which delays a process, e.g., let ¢ be a constant of the time
domain, ¢ > 0, then the process (t).P is one which behaves just like P after
exactly ¢ time units. Such an operator is used in Temporal CCS [MT90], Timed
CCS [Yi90], Real-Time CSP [Dav93] and Urgent LOTOS [BL91]. ACP, [BB91]
adopts a different approach in which actions are time-stamped. Time stamps
can be absolute or relative. In the absolute case, a(t) performs the action a
after ¢ time units following the start of the process; in the relative case, a[t]
performs a after ¢ time units following the execution of the previous action.
The time-stamp operator has the effect of allowing the modelling both of de-
lays and also of urgent actions; a delayed action becomes urgent when the time
delay expires. Urgency can also be modelled by the introduction of immediate
actions, which do not admit the possibility of time passing until either they are
executed or disabled. This approach is adopted in ATP [NS94]. Other time
constraining operators which have appeared in several algebras, and which are
of practical interest for modelling real-time systems, are the timeout and watch-
dog operators. Real-time CSP offers both operators. Each takes two process
arguments P and @ and a time parameter t. The timeout P >{t} @ behaves
as P if an initial action of P is performed within time ¢, otherwise it behaves as
Q, after time t. The watchdog P ,/{t} Q behaves as P until time ¢. At time
¢, P is aborted and @ is started. Similar operators are found in other algebras,
e.g. ATP.

Schneider [Sch95] discusses the operational, denotational and axiomatic
styles of semantic definition in timed process algebras, and surveys the associ-
ated approaches to process equivalence. The decidability of timed bisimulation
is shown in [Cér92).

We return to some of the ideas mentioned in this section in Chapter 3, where
their influence on the design of the language which is introduced there will be
evident.

2.5 Timed Automata

2.5.1 Introduction

One of the most successful research areas of the last few years, in the mod-
elling and analysis of real-time systems, features the use of timed automata,
which were introduced in the seminal paper of Alur and Dill [AD90]. Early
work concentrated on the theoretical aspects of the decidability and complex-

2. Models, Specifications and Correctness 20

ity of the model-checking and satisfiability problems for timed temporal logics
such as TCTL [ACD90, AD9%4, AH91, Alu91]. Later, attention turned to the
development of practical algorithms [HNSY94, YPD94]. More recently, the ap-
plication of timed automata to the modelling of industrial problems [HSLL97,
LPY98, TY98], and the development of software tools to support their analy-
sis [BLL198, BDM*98], have been receiving considerable attention.

Informally, a timed automaton is a finite state automaton in which the sys-
tem states are augmented by a finite number of real-valued variables called
clocks. All clocks are synchronised and are assumed to keep perfect time. Tran-
sitions between states can be constrained to occur when the values of the clocks
satisfy some specified property. On the occurrence of a transition, one or more
clocks can be reset to zero. In this way, it is possible to model the “real time”
of occurrence of events and the time elapsed between events. Timed automata
are presented formally below.

2.5.2 Clocks

Let H be a finite set of real-valued variables called clocks. A H-valuation (clock
valuation) is a total function v : # — R which assigns to each clock h € H a
non-negative real number v(h). The set of H-valuations is denoted R*. The
‘H-valuation which assigns 0 to every clock in # is denoted 0. Let v € R* and
H C H. v[H := 0] denotes the valuation v’ such that for all h € H, v'(h) is
0 if » € H and is v(h) otherwise. This models the operation of resetting some
clocks while leaving the values of the other clocks unchanged. The elapse of
time is modelled by advancing the values of all clocks in a valuation by the
same amount. Let v € R* and t € R v + ¢ denotes the valuation v' in
which v/(h) = v(h) + ¢ for all clocks b € H. Occasionally, we will need the
operation ¢ - v where for t € Rand v € R*, t - v is the valuation v’ such that
v/(h) =t -v(h), for all h € H.

2.5.3 Clock Constraints

Let # denote a set of clocks ranged over by h,h'. An atomic constraint on H
is an expression of the form h > ¢ or h — &’ > ¢, where < € {<,£,>,>} and
¢ € N. The set of clock constraints on H, denoted ¥y, is generated by the
grammar:

pu=x|[Y A9

where x is an atomic constraint. The set of clock zones on ‘H, denoted Z;,
with 23 C Uy, is the set of conjunctions of atomic constraints. Let ¢, ¢’ range
over Zy.

The restricted grammar of clock constraints is necessary in order to ensure
that some important verification questions, such as model-checking, remain
decidable. It is possible to extend the range of ¢ to the non-negative rational
numbers Qt, but the restriction to N simplifies the presentation at no cost to
expressive power [AD94].

2. Models, Specifications and Correctness 21

A clock valuation v € R* is said to satisfy a clock constraint P € Yy,
denoted v = 9, if

vEhRxeCc iff v(h) ¢
viEh-—he iffvh)—v(h)xec
vEYAY iff vi=1and v 9
vE-9Y iff vIigd

The set of all clock valuations satisfying a clock constraint ¥ € ¥4 is denoted
[¥], ie., [¢] = {veRY | v ¢4}

We use tt to denote a clock constraint such as b > 0 which is satisfied by
any clock valuation, and ff to denote a clock constraint such as h < 0 which is
not satisfied by any clock valuation, i.e., [tt] = R* and [f] = 0. It is also useful
to have a notation for the clock constraint which requires that all clocks have
the value 0, zeroz; denotes such a constraint, i.e., zeroy = A4 b =0, (we will
just write zero when H is clear from the context).

2.5.4 Syntax and informal semantics

We can now give a formal definition of the syntax of timed automata. We also
provide some simple examples and an informal explanation of semantics.

Definition 2.10 (Timed Automaton) A timed automaton (TA) is a tuple
A=(Q,d* AH, E,I) where:

e () is a finite set of control locations.
e ¢% € (@ is the initial control location.
e A is a finite set of action labels.

e H is a finite set of clocks.

e EC Qx Zy x Ax2% x Q is a finite set of edges.

Each edge e € E is of the form (¢, (, a,H, ¢') where ¢, ¢’ € @ are control
locations, denoted src(e),tgt(e), respectively; { € Z3 is a clock zone,
called the guard of e and denoted guard(e); a € A is an action label,
denoted label(e) and H C H is a set of clocks to be reset, denoted reset(e).

e I: Q — 24 is a function which associates a time progress condition (or
invariant) with each control location. Control can remain at a location
while time passes so long as the invariant associated with the location
remains true.

We use Cmag(A, h) to denote the greatest constant to which the clock variable
h is compared in any guard or invariant condition of A, and cmaz (A) to denote
max{cmaz (A, k) | h € H}. O

2. Models, Specifications and Correctness 22

a, {HI }

Fig. 2.1: A simple timed automaton

Example 2.1 We can explain some of these details informally by reference to
Figure 2.1 which shows a simple example of a TA. The set of control locations
is {0,1}. Location 0 is assumed to be the initial location. The set of action
labels is {a,b}. The set of clocks is {H1}. The invariant associated with lo-
cation 0 is #; this means that the system can spend an arbitrary amount of
time in location 0. In the absence of an explicit clock constraint, the edge from
0 to 1 is assumed to have the clock constraint tt, and so an a-transition from
0 to 1 is possible at any time. If an a-transition occurs, clock H1 is reset to
0. While in location 1, the value of clock H1 shows the amount of time for
which control has been at this location. Control can remain here for no more
than 2 time units, as shown by the invariant H1 < 2, i.e., the invariant serves
as a way of enforcing progress: some transition via an outgoing edge must be
taken before the location invariant becomes false. The constraint H1 > 1 on
the edge from 1 to 0 ensures that a b-transition cannot occur until control
has resided at location 1 for at least 1 time unit, when a b-transition becomes
possible, taking control back to location 0. It is assumed that no clocks are
reset by a b-transition (the missing reset set on the edge from 1 to 0 is taken
to be). The timing requirement expressed by this automaton is that every
a action is inevitably followed by a b action after a delay of 1 to 2 time units. O

2.5.5 Formal Semantics

The semantics of the timed automaton, A, is defined by assigning a timed
transition system to it. A state in the transition system is a pair (g,v) where
q is a location of A and v is a clock valuation satisfying the invariant of g.
The initial state consists of the initial location and the clock valuation in which
all clocks are set to 0. The transition relation — comprises both discrete
transitions and #ime transitions. In a discrete transition, the location of control
may change by following an outgoing edge. In a time transition, the location
of control remains the same while time passes; the location invariant must be
satisfied throughout the passage of time. Formally, the semantics is defined as
follows:

Definition 2.11 (Timed Automaton Semantics) The semantics of the timed
automaton A = (Q,¢%, A,H,E,I) is given by the timed transition system
T [A] = (£, 0%, L,—) where

e ={(¢,v) g€ QAVER" AvEI(g)}.

2. Models, Specifications and Correctness 23

o & = (¢%,0) is the initial state.
e L =AUR is the set of labels.
e — C ¥ x L x X is the transition relation defined by:

— Discrete transitions

(¢:¢,a,H, ") EEAVE(AVH:=0]E I(¢
(q’)_)(q V[H ‘_0])

We say that (¢',v[H := 0]) is a discrete successor of (q,v).

TA.1

— Time transitions

tERAVE eR| ¢ <t. v+t | I(q)

TA.2 t
(Q7v)_)(Qav + t)

We say that (¢,v + t) is a time successor of (q,v). o

Notation. If o = (g,v), then o + t denotes the state (g,v + t) and o[H := 0]
denotes (g, v[H := 0]).

Example 2.2 Referring again to Figure 2.1, we can see that the state space
¥ C {0,1} x ({H1} — R). The initial state is (0, {H1 > 0}). The label set
L = {a,b} UR and some possible transitions are:

0,{H1 — 0})=5(0, {H1 — 1.7}) -5 (1, {H1 — 0}) 23 (1, {H1 ~ 0.2}) 23

(1, {H1 — 1.5})—5(0, {H1 — 1.5})%(0, {H1 ~ 51.5})—>(1, {H1 — 0})....

We define a notion of deterministic timed automata by analogy with the
classical notion of determinism for finite state automata, viz., the state reached
by following an edge with a given label is uniquely determined by the current
state. However, in the case of timed automata, it is not necessary to prohibit
the use of the same label on distinct outgoing edges of every location, but,
instead, it is required only that for any pair of such edges, the associated clock
constraints are mutually exclusive, so that at any time at most one of them is
enabled.

Definition 2.12 (Deterministic Timed Automaton) A timed automaton
is said to deterministic iff for all ¢ € @, for all « € A and for every pair of
distinct edges of the form (g, (1, a,H, ¢') and (g, {2, a, Ha, ¢"), there is no clock
valuation v which satisfies both of the following conditions:

1. v ¢ and v[H; :=0] = I(¢"),
2. v = (o and v[Hy := 0] = I(¢"). m

2. Models, Specifications and Correctness 24

Ay
a,(H1)
(_Hi=tp)
Aa
by(H2)
L _Hp=lc
A | Az
H2>=1,¢

Fig. 2.2: Product construction for timed automata

2.5.6 Composition of timed automata

By defining a product for timed automata, we can model a complex system
using several smaller, interacting component automata.

Let A; = (@1, qII, A1, H1, By, L) and A = (Q2, QQI, Ao, Ho, Eo, I) be two
timed automata. Assume that the clock sets H; and H, are disjoint. Then
the product, denoted A; | Ay, is the timed automaton (@1 X @, (qlz , q%), A1 U
Ao, H1 UM, E, I), where I(qi, ¢2) is defined to be I1(q1) A I(¢2) and the edges
E are given by:

1. Fora € A1 N A27 for every ((I1,C1, a’Hlv Q{) € E and (QQ,CQ,G,Hz, qé) €
E,, E contains ((g1, ¢2),¢1 A 2, a,H1 U Ha, (a1, %2))

2. For a € A; \ Aq, for every (q1,¢,a,H,q;) € E1 and every ¢ € Qe E
contains ((Qh Q2)an a, H, (qia (12))

3. For a € Ay \ A, for every (g2,(,a,H,q3) € E; and every q1 € Qi E
contains ((qla 42),<,0,H,(91, qé))

From this we can see that the locations of the product are just pairs of
component locations and the invariant of a compound location is the conjunc-
tion of the invariants of its component locations. The edges are obtained by
synchronising edges with identical labels.

For timed automata A; and As, it can be shown that the product of the
models of A; and Aj is the same as the model of the product of A; and As;
i.e., T[A1] | T [A4z] is isomorphic to 7 [A; | A2] [AD94]. Figure 2.2 shows a
simple example of a product construction of timed automata.

Example 2.3 (Train Gate Controller) The level crossing controller is a ubig-
uitous introductory example. We consider a simple system consisting of three

2. Models, Specifications and Correctness 25

Train

approach,{H3} H3>=1, lower

Fig. 2.3: Level Crossing Control System

components: a train, a gate and a controller. Each of these can be modelled
as a TA (see Figure 2.3). Timing constraints are expressed using 3 clocks: H1
for the train, H2 for the gate and H3 for the controller. The train advises the
controller of its approach more than 2 minutes before it enters the crossing.
The approach of the train is indicated by the action approach, and entry into
the crossing by the action in. Notice that the guard on the edge labelled in
is H1 > 2. The maximum delay between the actions approach and exit is 5
minutes. The gate is open in location Gate.0 and closed in location Gate.2.
The actions raise and lower are used to indicate requests for service from
the gate by the controller. The actions up (resp. down) indicate that the gate
has been completely raised (resp. lowered). The controller idles in location
Controller.0. Whenever it detects that the train is approaching, it requests
that the gate should be lowered. Similarly, whenever it detects that the train
has left the crossing, it requests that the gate should be raised. The com-
plete system is expressed as the composition of the three components Train |
Gate | Controller. The safety requirement for the system is straightforward:
whenever the train is in the crossing, the gate should be closed. a

2.6 Property Specification

The main point of constructing a formal system model is to check it for the
presence of desirable properties and the absence of undesirable properties. A

2. Models, Specifications and Correctness 26

first step in this direction involves formally stating the properties of inter-
est. A classification of properties which has proved of enduring usefulness is
the distinction between safety and liveness properties, introduced by Lam-
port {[Lam77, Lam80]. Informally, a safety property specifies that ‘nothing bad
ever happens’, while a liveness property specifies that ‘something good even-
tually happens’. There is a variety of approaches to expressing both safety
and liveness properties of timed transition system models. We consider some
of them in this section. The remainder of the section is structured as follows.
In §2.6.1, we consider the expression of properties of individual states using
state formulas. This allows us to state simple safety invariants which can be
checked by exploring all reachable states and testing them for satisfaction of
the invariant property. More complicated properties, involving system execu-
tions, can be expressed using specification automata or temporal logic. These
approaches are considered in §2.6.2 and §2.6.3, respectively. The relationship
between automata and temporal logic is considered in §2.6.4.

2.6.1 State Properties

For a state transition model, S, the simplest properties to assert and check are
those concerned only with individual states, i.e. given some state o determine
whether or not a property p holds at 0. What structure we attribute to a
state will depend on the circumstances. At the least, we assume that a state is
associated with a unique identifier; sometimes, in addition, we assume that a
state gives a valuation for a set of typed variables. Let Var be such a set and
let z range over Var. The value of z at state o is denoted o.z. We assume
that a state formula p is a boolean expression constructed in the usual way
from variables, function symbols, predicate symbols and boolean connectives,
and that there is a valuation function [p],, which gives the value of p at o.
We write o |= p iff [p], = true. The reader should refer to [MP92] for further
explanation of state formulas, if required.

Let S = T [A] be a transition system, where the TA A = (Q, ¢%, A, H, E, I)
is either a simple TA, or a composition of TA A;|---|A,. Then enable(a) and
A;@q can be encoded as state formulas, where a € A is an action and ¢ € Q is
a location. Informally, enable(a) is true if it is possible to take an a-transition
from the cwrrent state, and A;@q is true if control in the TA A; currently
resides at location gq.

Formally,

(g,v) k= enable(a) iff 3(q,¢,a,H,q') € E . v ¢ Av[H = 0] = I(¢')
and, for 1 < i< n,

((q1,92,--+5qn), V) |F Ai@g;.

Example 2.4 Let S = T [Train | Gate | Controller], where Train, Gate
and Controller are as given in Figure 2.3. Let ¢ = (1,1,0), i.e. g is a com-
pound location in which the components are: Train at location 1, Gate at lo-
cation 1 and Controller at location 0. Let v = {hy +> 1.5, by — 0.5, h3 — 1.5}

2. Models, Specifications and Correctness 27

be a clock valuation. Let o = (g,v). Then, we have o = enable(down) and
o |- Gate@1, but o [~ enable(in) and o |~ Controller@l. o

Example 2.5 Let o be a state over integer variables z,y and boolean variable
%, such that 0 = {z = 5,y — 7,z = true}. Then, 0 |= z, o KEz>uy,
clFz+y<1bandofz= (y—2z=2). O

Example 2.6 In the level crossing control system of Figure 2.3, the safety
requirement can be stated as the absence of any reachable state o satisfying
o |= Train@2 A - Gate @2. o

2.6.2 Automata

We can go beyond checking simple state properties and check properties of
executions by reasoning about the system in the context of a testing (observer)
automaton. Given a TA Ay which models the behaviour of a system, a test
TA Ag is constructed to capture a property specification, and the composition
A | As is checked to see if some error state is reachable. Using this technique
it is possible, for example, to test a bounded response property, i.e., that the
occurrence of a stimulus is followed by a response within a bounded period of
time.

Example 2.7 Figure 2.4! shows a test automaton for the level crossing control
system. The test automaton is used to check the bounded response property
‘the gate is always raised strictly within 10 minutes of being lowered’. We con-
sider the behaviour of the composition Train | Gate | Controller | Test.
A down action in Gate synchronises with a down action in Test, causing a tran-
sition in Test to location 1, resetting the test clock Ht. The invariant Ht <=
10 ensures that control can reside at Test.1 for no more than 10 minutes. At
any time before 10 minutes, an occurrence of any action other than up leaves
control at Test.1; an up action returns control to Test.0. When 10 minutes
have passed at Test.1, the only possible action for Test is fail, which takes
control to the error location Test.2. The bounded response property for the
system is satisfied iff it is not possible to reach a state satisfying Test@2. O

The approach to property checking via test automata is closely related to
classical verification methods based on language containment [AD94, Kur94,
Tho90]. We give a brief introduction to the use of such a method for timed
systems.

Let Ap be a TA defining a system model and As a TA, extended with

an acceptance condition, which defines a property specification. Let Ly =

! Standard abbreviations are used in the figure to reduce its size: an edge labelled with a
set of actions A represents a set of edges, one for each action in A; for any action a € A, the
notation \ a stands for the set A\ {a}.

2. Models, Specifications and Correctness 28

\down Hi<10, \up
down, {Ht}
' Ht=10, fail @
1 2
Ht<10, up Ht<=10

Fig. 2.4: Test automaton for bounded response

E%(0%;) be the set of non-Zeno executions of Ay and Ls = {¢ € E%(o%) |
§ satisfies the acceptance condition of .Ag} the set of those non-Zeno executions
of Ag which satisfy its acceptance condition. Ly is called the language of Ay
and Lg the language of Ag. The system model satisfies the specification iff
Ly C Lg, i.e., if the language Lyy N Lg = 0. Intuitively, Ag defines the set
of all allowed executions and Ay, defines the set of all possible executions of
the system. The verification problem is to show that all possible executions are
allowed or, equivalently, that no disallowed execution is possible. Attention is
restricted to the non-Zeno executions since they are the only ones which can
reasonably be judged to model the behaviour of a physical system.

Several acceptance conditions have been proposed in the literature [Tho90].
For timed systems, Biichi acceptance and Muller acceptance have received most
attention [AD94]. Here we concentrate on Biichi acceptance.

Biichi acceptance is defined for a TA A = (Q, ¢%, A, H, E, I) augmented
with a set F' C @ of accepting locations. In any execution, one or more loca-
tions are visited infinitely often. Let inf(£) be the set of all infinitely occurring
locations of the execution £. £ is accepted iff inf(§) N F # 0, i.e. if some ac-
cepting state occurs infinitely often in it. A timed automaton extended with a
Biichi acceptance condition is called a timed Biichi automaton (TBA).

In practice, the test for language containment L C Lg is usually imple-
mented by constructing the automaton Ay | As and checking for the absence
of any acceptance cycle. A problem with this approach is the requirement to
construct the complement Ag of the specification automaton Ag, since TBA
are not closed under complementation. However, if Ag is deterministic then
it can be complemented effectively. The restriction to deterministic TBA still
allows the expression of a wide range of specifications. An even more pragmatic
approach to the problem of complementation is to avoid it entirely by requiring
the specifier to provide Ag directly, rather than Ag. This approach is adopted,
for example, in [Tri98] where an efficient algorithm is given for testing TBA
emptiness.

Example 2.8 Figure 2.5% shows a deterministic TBA which specifies the bounded
response property for the level crossing control system. O

2 Accepting locations are shown as a double circle, as usual.

2. Models, Specifications and Correctness 29

\down Hi<10, \up

Fig. 2.5: TBA for bounded response

down, {Ht}

Ht<10, up

2.6.3 Temporal Logic

Temporal logic [Eme90] was developed originally in the field of philosophy,
where it was used to describe and reason about how the truth values of asser-
tions vary with time. For some assertion ¢, typical temporal operators include
sometime ¢, which is true now if ¢ will become true at some time in the
future, and always ¢, which is true now if ¢ is true now and forever more.
Pnueli [Pnu77] was the first to show how temporal logic could be used to rea-
son about the behaviour of computer programs, particularly reactive programs
such as operating systems and communication protocols. This early work often
involved a difficult manual construction of the proof of some program property.
Interest in the use of temporal logic for program specification increased when
it was shown that the validity of a specification for a given program could be
determined automatically by model checking [CE81, QS81], i.e., by checking
the truth or falsehood of the specification when interpreted using the program
as a model. The EMC model checker, developed at Carnegie Mellon, allowed
small programs to be checked automatically in linear time for satisfaction of
specifications written in the branching time logic CTL [CES86]. Activity in the
area intensified with the introduction of symbolic methods [BCM192, McM92]
which facilitate the storage of the large state spaces which arise in the checking
of realistic programs. The extension of temporal logics with ezplicit references
to time quantities was motivated by the desire to apply temporal logic to the
specification and verification of real-time programs, where, for example, it is
not enough to assert just “sometime ¢”, but rather “sometime within the next
5 seconds ¢”. Early quantitative temporal logics were based upon a discrete
model of time [AH93, Eme91, EMSS90, HLP90, Ost86]. However, the decid-
ability of the model-checking problem for a dense time model was demonstrated
in [ACD90] which introduced Timed Computation Tree Logic (TCTL), a timed
extension of CTL. The usefulness of this result was advanced by [HNSY94]
which gave a practical method for implementing the model-checking of timed
automata with respect to TCTL specifications; this method has been imple-
mented in the verification tool KRONOS [BDM*98]. An efficient, on-the-fly
implementation of model-checking for TECTLS, a logic strictly more expressive
than TCTL, is proposed in [BTY97].

It is outside the scope of this dissertation to provide a detailed survey of
temporal logics and model-checking, for which we refer the reader to the liter-

2. Models, Specifications and Correctness 30

ature [AH91, CGP99, Eme90, Yov97]; however, we do provide an introduction
to TCTL, since it is used in the rest of the dissertation for specifying real-time
properties.

TCTL: Syntax and Semantics

Let Z denote the set of all intervals of R of the form [c, '], [, ¢), (¢, ¢'], (¢, ¢),
[¢, 0] and (¢, 00) where ¢, ¢’ € N. The set of TCTL formulas is defined by the
following syntax:

pu=pl-d|dVe|dIUrd|dVUI ¢

where p is a state formula and I € 7 is an interval.

Let A bea TA. TCTL formulas are interpreted with respect to the transition
system 7 [A] = (£, 0%, L, —»), and a satisfaction relation |= for state formulas
p. The fact that a state o € X satisfies a TCTL formula ¢ is denoted o |=(4) ¢
(the subscript is usually omitted to avoid clutter). The dense nature of the
time model requires us to take some care in the definition of satisfaction for
TCTL and it is helpful to introduce some further notation before giving a
formal definition. For a state o, the temporal modalities 3U; and YU; are
interpreted with respect to the non-Zeno executions starting from o, i.e., 2% (o).
Suppose ¢ € Z% (o) is such an execution, along which we see the partial sequence

e ai—t—m,-.H In interpreting a formula such as ¢; U ¢2, we are required,
by the dense nature of time, to consider the truth values of the sub-formulas ¢,
and ¢9, not only at o; and 0,41, but also at all states between them, as time
passes for ¢ time units. This motivates the introduction of the idea of a position
along an execution, where for an execution £ € E 4(0) a position of £ is a pair
(i,t) € Nx R such that ¢t < d¢(i). We denote by II, the set of all positions of &.
Positions are ordered lexicographically so that (z,t) < (7,¢') iff 1 <j,or i =73
and ¢t < t'. Given an execution ¢ and a position (i,t) of £, we use £(i,t) to
denote the state £(¢) + ¢, and Ag (i, t) to denote A¢ (i) + ¢t. We can now define
o = ¢ as follows:

o Ep iff ofp

o E-¢ if oo

o Ed1V o if ok orokEd¢

o E¢13Ur ¢ iff 3{65&?(0). Imell. AE(W)EI/\f(ﬁ) Eda A
Val <x. E(n') = V b

o Ed VU d2 iff VfEE%(O‘) dmwelIlg. Af(ﬂ)EI/\g(ﬂ')Fgﬁg/\

V' <7 . &(x") Ed1V ¢

A TA A is said to satisfy a TCTL formula ¢, denoted A = ¢, if the initial state
o7 satisfies ¢.

The only tricky parts in the definition of satisfaction concern the operators
3U; and VU;. The intention is that a state o satisfies the formula ¢ IU; @2
if there is some position along a non-Zeno run starting from o which satisfies
¢2, and the time elapsed in the run up to that position lies within the interval
I, and finally that ¢ is satisfied continuously throughout the run up to that

2. Models, Specifications and Correctness 31

position. In fact, the formal statement of the final condition is that ¢; V ¢, is
satisfied continuously until ¢ is satisfied. This modification is required to com-
ply with the dense nature of the time domain, as explained in [HNSY94]. The
interpretation for VU; is similar, the only difference being that the conditions
must be satisfied by all non-Zeno runs from o.

A number of abbreviations are commonly used:

30,4 = true3dU; ¢
VO, ¢ = trueVU; ¢
30,6 2 - VO
VB¢ = - 30,04

Other abbreviations are used to simplify the notation for intervals: for example,
V<>55 ¢ is equivalent to VO[0,5] ¢ and 30 ¢ is equivalent to 3[1[0 00) -

Property Specification Patterns

It is not always easy to construct a temporal logic formula which specifies pre-
cisely a given property, e.g. the specification of a property of periodicity with
bounded jitter will be seen shortly to require some effort. This problem has
received some attention with respect to the qualitative logics LTL and CTL,
for which specification patterns have been identified for a variety of commonly
required properties [DAC98]. It is possible to apply this approach also to quan-
titative logics like TCTL. We give here a small selection of some simple property
patterns.

Invariance VO ¢ — ¢ is invariantly true, i.e., it holds in all states along all
executions

Bounded Invariance VO; ¢ — ¢ is satisfied continuously throughout the in-
terval I.

Bounded Inevitability V<O, ¢ — ¢ is satisfied eventually at some time within
the interval I;

Bounded Potentiality 30; ¢ — ¢ is satisfied eventually at some time within
the interval I, along at least one execution.

Upper Bounded Response VO (¢ = VO, ¢2) — ¢2 is satisfied within at
most ¢ time units of the satisfaction of ¢

Lower Bounded Response VO(¢; = — 3O, ¢p) — satisfaction of ¢, is
separated by at least ¢ time units from the satisfaction of ¢;

Non-Zenoness init = YO 3O_, true — Assume that init uniquely charac-
terises the initial state of a system. Then, the truth of this formula
implies that the system is non-Zeno, i.e. that from any reachable state,
time can progress without bound [HNSY94].

2. Models, Specifications and Correctness 32

Periodicity with bounded jitter VO ¢ A VO(¢ = VO_,((VO w9 A
(VOy, $))) — Assume that ¢ stands for enable(a) which holds iff the
action a is enabled. Assume also that a always occurs within ¢ time
units of becoming enabled. Then the formula above specifies that a oc-
curs periodically, the distance between occurrences being in the interval

[t1, 82 + t].

There is a need for a more systematic approach to the development of property
patterns for TCTL, with a view to developing a useful library.

Example 2.9 Consider again the level crossing controller of Figure 2.3. The
safety property ‘the gate is closed whenever the train is in the crossing’ can
be expressed in TCTL as init = VO(Train@2 = Gate@2), and the bounded
response property ‘the gate is always opened within 10 seconds of being closed’
as init = VO(Gate @2 = VO, Gate@0). O

2.6.4 Discussion

Naturally enough, the literature on both timed and untimed formalisms is
replete with discussions concerning the pros and cons of specification using
automata and temporal logic, and of the relationship between them [AH91,
BVW94, DW99, GPVW95, HKV96, Var96, VW86, VW94]. A prevalent view
is that automata, because of their explicit structure and simple, operational se-
mantics, are better suited to the construction of verification algorithms, while
temporal logics, because of their concise, more readable syntax, are better suited
to the expression of specifications. An obvious direction to follow in the search
for practical and usable formal methods is to see to what extent it is possible to
automate the translation of specifications expressed in temporal logic to equiva-
lent automata which can be used for verification. In the case of the qualitative,
linear-time logic LTL, this has been achieved [GPVW95] and found to lead to
an efficient, on-the-fly model checking procedure which has been implemented
in the verification tool SPIN [Hol96].

A similar relationship between the branching-time logic CTL and alter-
nating tree automata has been established in [BVW94]. This work has been
extended to TCTL in [HKV96] and the relationship between TCTL and timed
alternating tree automata is further developed in [DW99]. Although, this
work lays the theoretical foundations for efficient, on-the-fly model checking
for TCTL, we know of no implementations of the ideas or experimental results
which demonstrate their effectiveness in practice.

The relationship between temporal logic and testing automata is studied
in [ABL98]. The authors introduce a restricted safety and bounded liveness
logic (SBLL) and demonstrate that for any closed formula ¢ of SBLL and any
TA Ay, there is a test automaton Ag such that Ay satisfies ¢ iff no error
state is reachable in Ay | As®. Moreover, they show how to construct Ag

8 The notions of satisfaction and parallel composition used in [ABL98] differ somewhat from
those used in this dissertation, but their work is of interest and relevance, even so.

2. Models, Specifications and Correctness 33

automatically from ¢. In [ABBL98], a complete characterisation is provided
of the class of properties of TA for which model-checking can be redu