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Abstract

In the context of asynchronous distributed systems, many important applications depend on
the ability to check that all observations of the execution of a distributed program, or distributed
computation, satisfy a desired (or undesired) temporal evolution of states, or dynamic property.
Examples include the implementation of distributed algorithms, automated testing via oracles,
debugging, and building fault-tolerant applications through exception detection and handling.

When a distributed program exhibits a high degree of concurrency, the number of possible
observations of an execution can grow exponentially, quickly leading to an explosion in the amount
of space and time required to check a dynamic property. In the worst case, detection of such
properties may be defeated. This is the run-time counterpart of the well-known state ezplosion
problem studied in model checking.

In this thesis, we study the problem of state explosion as it arises in the detection of dynamic
properties. In particular, we consider the potential of applying well-known techniques for dealing
with state explosion from model checking to the case of dynamic property detection. Significant
semantic similarities between the two problems means that there is great potential for deriving
techniques for dealing with state explosion in dynamic property detection based on existing model
checking techniques. However, differences between the contexts in which model checking and
dynamic property detection take place mean that not all approaches to dealing with state explosion

in model checking may carry over to the run-time case.

We investigate these similarities and differences and provide the development and analysis
of two approaches for combating state explosion in dynamic property detection based on model
checking methods: on-the-fly automata theoretic model checking, and partial order reduction.
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Chapter 1

Introduction

1.1 Research Background

A distributed computing system is a computing system made up of several processes which
may execute concurrently and which communicate with each other via a communication network,

where communication is based on message passing.

Many computing systems today are distributed in nature. Distribution arises quite naturally
in the need to control, via software, disparate elements of a system which are physically separated
and require independent local control. In addition to the need to support the inherent distributed
nature of such systems, distributed systems have many advantages over centralized (parallel)
systems, in terms of scalability, reliability, low-cost, and modularity, which further account for their
widespread use. Examples of distributed systems include computer networks, telecommunication
systems, automated manufacturing systems, as well as ATM and point-of-sale systems, electronic

auctions, other e-commerce applications.

Two important, classes of distributed systems are the synchronous and asynchronous distributed
systems [82]. Informally, a synchronous distributed system is one in which there exist bounds on
the relative speeds of processors, message delays, and the time it takes a process to execute one
step. Synchronous distributed systems represent an important model due to the fact that, in a
synchronous system, it is possible to synchronize local clocks and use global time for global reason-
ing within the system. An asynchronous distributed system, on the other hand, is a distributed
system in which there are no bounds on the relative speeds of processes and no bounds on message
delay. In such systems, synchronization of local clocks is not possible, and message passing is the
only means of synchronizing behaviour between processes. However, asynchronous distributed

systems represent a realistic model for many distributed systems found in practice.
The development of distributed systems can present serious challenges for the software devel-

oper, for several reasons:

o Due to their distributed nature, distributed systems often depend upon specialized dis-
tributed algorithms for performing key functional tasks, examples of which include:



— the ability to structure complex algorithms into a sequence of phases, where the end of
phase is characterized by some termination condition or condition of stability:

— providing mutual exclusion to shared resources in a distributed environment;

— providing concurrent access to distributed databases via distributed transactions, which
may require detecting deadlock;

— providing load-balancing reconfigurations of the system, when load on one or more
servers exceeds a prescribed threshold

* Due to the added complexity of distributed systems resulting from the possible interactions
between concurrent components, the development of distributed systems depends heavily
upon verification and validation activities, such as testing and debugging, to ensure that the
distributed systems designed and implemented are indeed correct.

* Due to their ubiquitous nature, distributed systems may often represent systems with strin-
gent reliability requirements, as for example found in mission-critical applications, and so
require the provision of features such as fault-tolerance (via exception detection and han-
dling) and security (via intrusion detection).

Each of the important problems cited above in the development of distributed systems includes
a step involving the execution of some notification or reaction when the system satisfies some
desired (or undesired) temporal evolution of states. For example, a temporal evolution of states
can be used to represent correctness conditions for a distributed system under test, global break-
points identifying an erroneous state in a distributed system, or the description of an exceptional
execution in a fault-tolerant system. We call such a desired (or undesired) temporal evolution of
the system state a dynamic property. We refer to the problem of detecting when a distributed
computation (i.e. an execution trace of a distributed system) satisfies a specified dynamic property
variously as the dynamic property detection problem or, sometimes, as the trace checking prob-
lem!. Given a solution to the dynamic property detection problem, solutions to the important
activities defined above may be obtained by specifying an appropriate dynamic property, together
with the appropriate notification or reaction. In this way, the dynamic property detection problem
represents the basis of solutions to many important problems in distributed computing.

In the context of an asynchronous distributed system, solving the dynamic property detection
problem faces two key challenges [83]. Firstly, due to the fact that the state of a distributed system
is made up of the local states of the individual processes, and no single process has instantaneous
access to these local states, any process in a distributed system wishing to perform such a detection
must first construct the global state (or states) of the distributed computation on which to base
the detection. Secondly, due to the relative speeds of processes and delays in communication
possible in an asynchronous distributed system, different processes involved in the construction
of global states for the same distributed computation may arrive at different global states being
constructed, leading to differing actions being taken. This is the so-called relativistic effect of

1These two terms, dynamic property detection [5] and trace checking [60], have both been used in the literature
to describe the problem stated here. Rather than choose one over the other, in the sequel, we shall use these two
terms interchangeably.



asynchronous distributed systems in which observations made of a distributed computation are
relative to the observer [24].

There has been a considerable amount of research invested into solving the dynamic property
detection problem, particularly in the case where properties are specified by simple predicates
defined on global state [83].

The detection of stable properties was first considered by Chandy and Lamport in [16]. A
stable property is one which, once it becomes true in an execution, remains true in that exe-
cution. Examples of stable properties include termination and deadlock. Stable properties can
be detected using a simple approach: periodically constructing a global state of the distributed
system execution and testing the truth of the predicate on that global state. In [16], Chandy and
Lamport presented a distributed snapshot algorithm which can be used to construct global states
at run-time for the purpose of checking stable properties.

Unlike stable properties, an unstable property is one whose truth value may alternate between
true and false throughout an execution. An example of unstable property is “the value of variable
x is 1”. An approach to detection of unstable properties cannot be based on the simple approach
of periodically constructing global states via snapshots, as even repeated application of a snapshot
algorithm to construct global states can miss possible global states through which the system
passed and in which the predicate evaluates to true. Detection of unstable properties needs to be
based upon the construction of observations [24]. An observation of a distributed computation is
a sequence of global states of the distributed system in which the effect of all events occurring in
the distributed computation are represented. Observations may be constructed in the following
way: each process participating in the distributed computation sends notification messages to a
monitor process, where notification messages describe state changes occurring at each process.
On the basis of notification messages received, the monitor then constructs a sequence of global
states reflecting all changes taking place at each process in the system. In this way, observations
represent all events of the distributed computation and their corresponding state changes.

Unfortunately, the detection of unstable predicates cannot be based on the construction of a
single observation. In an asynchronous distributed system, due to the relative speeds of processors
and the delays in communication, it is not possible to determine the total order in which events on
different processes have occurred. The best information which can be obtained in an asynchronous
distributed system concerning the relative ordering of events is the ordering resulting from causal
dependence between events. The happened-before relation [65] is a partial ordering of the events in
a distributed computation which reflects causal dependence between events. Each total ordering
of the events in the distributed computation which is consistent with the happened before relation
represents a possible observation of the distributed computation. Each observation determines a
corresponding sequence of global states. This state of affairs leads to the situation wherein an
unstable property may be true in one observation, and false in another observation of the same
distributed computation. In such a way, two monitors checking the same property over the same
computation, on the basis of a single observation, could come to differing conclusions about its
truth value.

In order to avoid such inconsistencies, detection based on observations needs to be observation-
independent. In [24], Cooper and Marzullo proposed a formulation of the dynamic property



detection problem in which detection is observation-independent. Observation-independence is
achieved by introducing modal operators Pos and Def to define detection over the set of possible
observations of the distributed computation. Given a predicate & defined on the global state of
the system, a distributed computation satisfies Def & if and only if all possible observations of the
distributed computation pass through a state satisfying ®. Similarly, a distributed computation
satisfies Pos® if and only if some possible observation of the distributed computation passes
through a state satisfying ®. Detection algorithms for detecting Pos ® and Def & are based on
recording the happened-before relation on events during system execution and using this relation
to construct and explore a structure which contains all possible observations of the distributed
computation.

Simple global predicates are able to describe many interesting properties of distributed sys-
tems, but they lack any notion of time or relative ordering of events, which is important in the
specification of reactive distributed systems. Unlike transformational computing systems, which
are designed to transform information in a functional manner and are specified in terms of pre-
and post-conditions on initial and final states, respectively, reactive systems [70] are designed to
maintain a specified relationship with their environment over time. Examples include operat-
ing systems and network communication systems. Reactive systems are often designed not to
terminate, and are specified by their behaviour over time. Consequently, the specification and
detection of sequence-based or temporal dynamic properties figure highly in the development of re-
active distributed systems. Several solutions to the property detection problem for sequence-based
or temporal properties have appeared in the literature. In [6], Babaoglu and Raynal presented a
language for specifying sequence-based predicates in terms of simple predicates, through simple
composition (simple sequences), and composition with interval restrictions (interval-constrained
sequences). In [5], Babaoglu, Fromentin and Raynal presented an alternative formulation of tem-
poral properties where properties are specified as formal languages over an appropriate alphabet.
Sequence-based properties, like unstable properties, also require detection based on observations
and, as such, require detection which is observation-independent. As in the case of unstable predi-
cates, the detection algorithms for such temporal dynamic properties are based on construction and
exploration of a structure which contains all possible observations of the distributed computation.

The consequence of the need to make dynamic property detection observation-independent is
that all observations of a distributed computation must implicitly be considered in the detection
of properties defined by unstable simple predicates or the more general sequence-based predicates.
Although the detection algorithms cited previously for the detection of unstable predicates and
temporal predicates are linear in the size of the computation state space, the size of the computa-
tion state space grows exponentially: if |S| represents the greatest number of events on any single
process, and N the number of processes, then the size of the computation state space is O(|S ™).
This exponential growth in the size of the computation state space and its impact on detection of
dynamic properties is referred to as the state ezplosion problem. When programs exhibit a high
degree of concurrency, this leads to an explosion in the number of possible states and observations
which must be considered in order to check the satisfaction of a dynamic property by a distributed
computation. In the worst case, the checking of such properties may be defeated.



1.2 Research Motivation

There have been various approaches to dealing with the state explosion problem in the detec-
tion of unstable properties. One of the most successful of these are property-structural methods,
which are based on using the known structure of the property to avoid having to explore all pos-
sible observations of the distributed computation. Efficient algorithms have been developed for
a number of classes of properties based on simple global predicates, classes such as disjunctive ,
conjunctive, relational, and others (a survey of such approaches appears in [37]). This approach
has been very successful in combating state explosion for these considered classes. Despite the
success in providing efficient detection algorithms for these considered classes, this approach to
dealing with state explosion suffers from several disadvantages:

1. the approach does not apply to general properties, but is limited in application to properties
belonging to the considered classes

2. each property class results in a different algorithm, resulting in a multiplicity of algorithms

3. the results developed using this approach are, in the main, limited to properties described
by simple global predicates

We would like an approach to combating state explosion which is applicable to more general
predicates, in particular, with more relevance to predicates specified by sequence-based properties.

The state explosion problem has been studied extensively in the context of model checking[19).
In model checking, the problem is to check that all executions of a finite state concurrent program
satisfy a specification of desired behaviour, often in the form of a linear temporal logic formula
[70]. The basis of one well-known solution is to exhaustively explore all possible executions of
the system, based on a depth-first search of the graph representing the program state space, and
check that each execution explored satisfies the linear temporal logic formula. This exhaustive
analysis approach, combined with the representation of concurrency through interleaving, leads
to an explosion in the number of states which has to be considered. Intensive research over the
past twenty years has been conducted into developing methods for dealing with the state explosion
problem in the context of model checking, and a wide range of techniques have been developed.

From the algorithmic point of view, model checking and dynamic property detection exhibit
strong similarities, not only in the semantic representations used to model program behaviours and
computations, but also in the required exploration of those representations during analysis. This
immediately suggests that any approach to dealing with state explosion in the model checking
context might be applicable to dealing with state explosion in the dynamic property detection

context.

Although the two problems have several key similarities, there may well also be certain chal-
lenges in applying model checking methods to the dynamic property detection context. These
challenges arise partly due to the dynamic nature of the run-time environment in which property
detection is carried out, and partly due to the limitations of what we can observe at run-time in

an asynchronous distributed system. For example, when observing a distributed computation, we



maintain only a prefix of the computation at any given point in time; this may rule out certain ap-
proaches to exploring the possible states and observations of the execution, which might otherwise
be possible in model checking.

The overall aim of the present research is to determine if techniques for combating state
explosion in model checking can be successfully applied to the problem of state explosion in
dynamic property detection. In particular, we aim to answer the following questions:

e what are the broad classes of approaches used to address state explosion in model checking
and dynamic property detection?

e how do the contexts in which these two problems are carried out affect the feasibility of an
approach to combating state explosion?

e is it possible to adapt techniques for combating state explosion used with success in model
checking to combat state explosion in dynamic property detection?

1.3 Research Tasks

Based on the above research questions, the following research tasks will be explored in this
work:

1. survey existing approaches to combating state ezplosion in both model checking and trace
checking
Surveying state explosion techniques from model checking is required in order to fully un-
derstand the key approaches to combating state explosion which are available for potential
application. Further, a survey of the approaches already in use in trace checking is required
in order to determine if any of these approaches, or similar approaches, are being used
already. This task will effectively answer the first of our three research questions.

2. compare and contrast the conterts and identify promising candidates
As mentioned in the previous section, there are significant differences in the context in which
model checking algorithms are based upon and trace checking algorithms need to cater to.
Such differences may rule out certain algorithmic approaches, so we next need to look in
detail at the differences in context. These differences in context can then be used to identify
which state explosion techniques from model checking are the most promising candidates for
use in a trace checking context. This task effectively answers the second research question.

3. explore the application of one or more candidate techniques
Despite having identified an approach to combating state explosion from model checking as
a promising candidate for use in a trace checking context, answering the question of whether
model checking techniques can be used successfully can only really be borne out by carrving
out the details of the development. This task can be the most informative task of all, in that
the development of any complex algorithm can lead to unexpected outcomes. This task will
address the third research question.



1.4 Organization

The organization of the thesis is as follows. Chapter 2 aims to further motivate the importance
of the dynamic property detection problem and its role as a canonical problem in distributed
computing. We first examine the relationship between model checking and dynamic property
detection, from the point of view of its application in the software engineering life cycle. In par-
ticular, we differentiate between the different times at which property detection may be required.
This leads to consideration of several application contexts in which dynamic property detection
arises as a canonical problem: the design and implementation of distributed algorithms, validation
testing and debugging of distributed programs, and implementing fault-tolerance for distributed
programs, based on exception detection and handling. Here, we aim to identify application-specific
requirements on solutions to the dynamic property detection problem, which will be important
when considering the feasibility of model checking approaches.

Chapter 3 presents a survey of techniques for combating state explosion in model checking.
The chapter begins with a supporting discussion of the various fundamental concepts which are
required in order to understand the model checking problem, as well as an analysis of how the state
explosion problem arises. This is followed by a discussion of the various approaches appearing in
the literature for combating state explosion. In presenting and discussing each approach, we shall
attempt to focus on the basic idea of the approach, key examples from the literature, and its
algorithmic complexity, a measure of the degree to which state explosion is mitigated.

Chapter 4 similarly surveys existing techniques for combating state explosion in the detection of
dynamic properties of asynchronous distributed computations. The chapter likewise begins with
a supporting discussion of the fundamental concepts of dynamic property detection which are
required in order to understand the dynamic property detection problem, as well as an analysis
of how the state explosion problem arises. As in the previous chapter, when discussing state
explosion techniques, we shall attempt to focus on the key idea underlying each approach, key
examples from the literature, and its achieved algorithmic complexity.

Chapter 5 provides a comparative analysis of the techniques for combating state explosion in
model checking and trace checking reviewed in the previous two chapters. The chapter begins
by considering the differences in context between model checking and trace checking, in order
to identify potential areas where model checking algorithms may require adjustment. This is a
required ingredient in making a determination as to whether a mode! checking algorithm may
be a successful candidate. Additionally, we compare and contrast the techniques for state space
reduction, identifying existing and potential synergies between the two areas which could poten-
tially be exploited. This comparative analysis leads to the identification of two techniques for
combating state explosion in model checking which appear especially promising: the on-the-fly
automata-theoretic approach, and the partial order reduction approach.

Chapter 6 considers the problem of developing an algorithm for combating state explosion in
trace checking based on the on-the-fly automata-theoretic method of model checking. The chapter
begins by presenting the necessary background on the theory of on-the-fly automata-theoretic
model checking which will be necessary for the development of the algorithm. Design and related
issues are then discussed, followed by presentation of the algorithm. In this chapter, based on



an existing algorithm for dynamic property detection for the case of general temporal properties,
we present the successful development of an algorithm incorporating state space reduction based
on the on-the-fly approach. This chapter illustrates that certain state explosion techniques from
model checking can work very well with existing dynamic property detection approaches, with
little adjustment required and well suited to the new context.

Chapter 7 considers the problem of developing of an algorithm for combating state explo-
sion in trace checking based on the partial order reduction approach of model checking. Unlike
the on-the-fly automata-theoretic approach, whose application to the new context is relatively
straightforward, the partial order reduction approach immediately presents several alternatives
for application, which are discussed initially. The chapter follows by presenting the necessary
background on the theory of partial order reduction which will be necessary for the development
of the algorithm. This background is followed by a discussion of the issues which affect the design
of an algorithm to perform partial order reduction in a trace checking context, including a discus-
sion of why this approach will not work for certain formulations of the dynamic property detection
problem. We follow this discussion with the development, of an algorithm for combating state ex-
plosion in dynamic property detection based on partial order reduction. This chapter illustrates
how certain approaches to combating state explosion in model checking can prove unwieldy when
transported to a new context.

In Chapter 8, we summarize the results of the research tasks and present our conclusions on
the proposed research question: can model checking techniques be applied to the trace checking
context, and if so, which are the promising areas of investigation. We review the results of our
applications of model checking techniques, and present our view on avenues for further investiga-
tion.



Chapter 2

Applications of Dynamic Property

Detection

In this chapter, we aim to explore in more detail the application contexts in which dynamic

property detection is required.

In particular, we aim to examine in greater detail how dvnamic property detection arises as
a key component of a solution to many important problems encountered in distributed syvstems.
To this end, we examine several key problems and, in particular, the dynamic properties required,
as well as the notifications or reactions required, in applying dynamic property detection to form
solutions to these problems. These considerations will in turn highlight application-specific re-
quirements on the solution to the dynamic property detection problem. Such requirements will
have a bearing on the suitability of state explosion approaches which will be considered in the

survey and in later chapters.

One important aspect of the application of dynamic property detection concerns the times
at which dynamic property detection may be employed: during execution of a program, or after
execution of the program has completed. In order to illustrate these differences, we begin by

examining in more detail the relationship between model checking and dynamic property detection.

2.1 The Relationship between Model Checking and Trace
Checking

Model checking and dynamic property detection both concern determining when a distributed
program satisfies a desired (or undesired) temporal evolution of states. We can compare these two
activities through the lens of verification. There are three times at which we need to verify when
a distributed program satisfies a desired (or undesired) property [5]: before execution, during

execution, and after execution.

Model checking is a verification technique which is used to check whether all possible executions

of a finite state concurrent program satisfy a desired property. This verification generallv occurs



before the concurrent program is ever executed. In model checking. both the program and its envi-
ronment are modeled, and the possible executions of the program, together with its environment,
are explored. During exploration, each possible execution of the concurrent program is examined
to see if it satisfies the property in question. Thus, model checking is concerned with verifying
that all possible ezecutions of the program (together with its environment) satisfy the property.

We may also require to verify a property during program execution, such as when performing
validation testing of a distributed program. Run-time property detection involves checking a
property concurrent with program execution. Unlike model checking. run-time property detection
only makes claims about a single distributed computation of the concurrent, program. In this case,
run-time property detection is concerned with verifying that all observations of the distributed
computation satisfy the property.

Finally, property verification may be required after a distributed computation has terminated.
Post-mortem analysis refers to the process of verifying whether a distributed computation satisfies
a property, after the program has terminated. Such forms of after-the-fact validation can be
required in the analysis of production systems which have exhibited failures and for which the
cause of the failure needs to be determined. Post-mortem property detection is similar to run-
time property detection in that it checks whether all sequential observations of the distributed
computation satisfy the property. It differs from run-time property detection in that this check is
performed after execution has terminated. In the sequel, we consider run-time property detection
and post-mortem analysis simply as two forms of the dynamic property detection problem.

Babaoglu et al. [5] also note that model checking and dynamic property detection differ
in important semantic terms. For example, model checking can answer questions such as “will
all executions of this program terminate?”, or “will any execution of this program encounter a
deadlock?”. Dynamic property detection instead answers the questions “has this program execution
terminated?” or “has this program execution entered a deadlock state?” (in the case of the run-
time variant) or “did this program execution terminate?” or “did this program execution enter a
deadlock state? (in the case of post-mortem analysis). In this sense, dynamic property detection
can be viewed as detecting certain conditions arising in an execution. This permits using run-time
property detection as a basis for applications other than verification and validation.

Indeed, dynamic property detection, in its run-time variant, forms an important part of certain
applications based on a reactive architecture [49, 118], in which a control component passively
monitors a system and takes action when the state of the system is known to satisfy a certain
condition. Examples of applications based on a reactive architecture include the implementation of
certain distributed algorithms, debugging of distributed programs, and providing fault-tolerance of
distributed programs via exception detection and handling, among others. In this sense, dynamic
property detection is a more general problem than model checking, and its solution can be subject

to a more varied set of application-specific constraints.

In the next section, we explore in more detail the varied applications of dvnamic property
detection and the application-specific requirements on solutions to the problem which arise from

them.
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2.2 Applications of Dynamic Property Detection

‘In this section, we consider several problems in distributed systems for which a core part of
any solution involves executing some notification or reaction when the state of the svstem satisfies
some desired (or undesired) temporal evolution of states (i.e. problems for which dynamic property
detection represents an important part of a solution).

We consider several contexts: the design and implementation of asynchronous distributed
algorithms; the validation of asynchronous distributed programs through testing and debugging;
and the provision of fault-tolerance through exception detection and handling for asynchronous
distributed programs.

For each of these application contexts, we aim to focus on the following parameters of the
dynamic property detection problem:

e the dynamic properties which arise in these contexts, the aspects of the problem they rep-
resent, and how they are specified

e the corresponding notifications or reactions which are required

e the modalities of detection which arise in these application contexts and what application-

specific requirements they represent

» any other application-specific requirements which influence property detection, including the
suitability of run-time or post-mortem detection

These application-specific features will play an important role when we come to consider the
application of specific techniques for addressing the state explosion problem in dynamic property
detection.

2.2.1 Distributed Algorithm Design and Implementation

In the engineering of complex distributed systems, the implementation of key tasks in the
system functionality is often carried out by one or more specially designed algorithms. Examples
include structuring algorithms into phases, provision of mutual exclusion to shared resources,
detection of deadlock in client-server systems, and load balancing reconfigurations of the system.
Such algorithms are employed at various times during the execution of the distributed system,
and represent sub-tasks of the overall system functionality.

In the design of such distributed algorithms, we often need to reason about the combined
behaviour of the system, as opposed to the behaviour of any one of its component processes.
During implementation, such requirements often translate into the need to evaluate a Boolean-
valued predicate ® defined on the global system state during the execution of the system, and then
execute some notification or reaction in response to the detection. By the global system state of a
distributed system, we refer to the values of all local variables in all processes participating in the
computation, including program counters, and the states of all channels used for communication
between processes. The detection of dynamic properties specified by such simple predicates defined
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on global state represents an important example of the dynamic property detection problem, so
important that it has been studied in its own right, and is referred to in the literature as the global
predicate evaluation (GPE) problem. A detailed development of the concepts and mechanisms
underlying global predicate evaluation is presented in [83].

In the following, we illustrate some important examples of the global predicate evaluation
problem.

2.2.1.1 End of Phase Detection

When distributed algorithms are structured into phases, there is a requirement to identify
the end of one algorithm phase, so that the next algorithm phase may be initiated [16]. Unlike
termination, the end of a phase is often not characterized by a lack of activity, but rather a period
of stability in the computation, with respect to some defined, phase-specific stability predicate
defined on global state. Indeed, during the period of stability at the end of a phase, processes
may still change state and exchange messages. However, such conditions are stable, in that once
they become true in a system execution, they remain true. In [16], the condition describing the
completion of a phase is described by a Boolean-valued predicate on the global state of the system.
The detection is required to be made concurrent with algorithm execution, as detecting end of
phase forms part of the functionality of the algorithm itself. Thus, run-time property detection, as
to the post-mortem variant, is required. The purpose of the notification or reaction is to initiate
the start of the next phase and can be achieved, for example, by sending an “end of phase” message
to each participating process.

2.2.1.2 Client-Server Distributed Systems and Deadlock

In [83], the authors present an example of how dynamic property detection arises as a re-
quirement for the detection of deadlock in client-server-based distributed systems. A client-server
based distributed system is one comprised of servers, which provide remote services and clients
which require those services in order to perform their intended function. Access to services in a
distributed system is often provided via remote procedure calls, wherein a client issues a request
for a service, naming the desired remote procedure and procedure parameters in the request, and
remains blocked until a corresponding reply, containing the procedure resuit, is returned. In such
a system, servers may themselves depend upon the services provided by other servers, and so act
as may act as clients. Executions of such systems have the potential to enter a deadlock state:
a global system state in which all processes are blocked, each waiting for a reply from another
blocked process. In such systems, it is important to be able to detect when the system has entered
a deadlocked state, and to take action to resolve the deadlock.

The detection of deadlock can be formulated as a case of global predicate evaluation, by defining
a suitable Boolean-valued predicate on global state which characterizes the condition under which
deadlock occurs. This can be achieved through the use of a waits-for-graph, in which graph nodes
model processes and edges model blocking of processes. In this approach to deadlock detection,
each server process p; keeps track of remote procedure calls which have been received from processes
pj, © # j, but not responded to. Using suitable data structures, such local information can be
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used to maintain a global waits-for-graph. The condition characterizing deadlock then becomes
to detect the presence of a cycle in the global waits-for-graph, which could be expressed by the
predicate & = "a cycle exists in the wait-for-graph”. Note that this property is also a stable
property. The notification or response required in this case is to resolve the deadlock, in some
way. This can be achieved, for example, by terminating one or more of the processes involved
in the deadlock. As in the case of detecting the end of phase, the detection and resolution of
deadlocks is required to be carried out concurrent with program execution.

2.2.1.83 Mutual Exclusion and Token Loss Detection

In distributed systems in which concurrent accesses to shared data are permitted, a distributed
mnutual ezxclusion algorithm may be employed to guarantee exclusive access to shared resources.
When mutual exclusion algorithms are token-based (i.e. based on passing a token around the
system, and only the process which holds the token may access the resource), tokens can get lost,
and may require being regenerated. This presents a requirement for detecting token loss. The
detection is required to be performed concurrently with the execution of the mutual exclusion
algorithm. Token loss is a stable property: once the token is lost, it does not reappear until it is
regenerated. In formulating this problem as an instance of global predicate evaluation, the global
predicate characterizes the condition under which a token is not present in the system: if each
process P; holds a local variable hasToken;, then the required predicate is hasToken; V ...V
hasTokeny, if there are k processes. The notification or response will be to invoke an algorithm
for regenerating the token, which may involve simply sending a token to the process which holds
the token initially.

2.2.1.4 Load Balancing

As a final example, we now consider a problem in which the property to be represented is not
stable.

Consider the problem of detecting the processing load on a collection of k servers in a distributed
system. Assume that the local state of each server process S; records the current processing load
on that server in the variable load;. The overall load on the system is then given by the global state
predicate load; + ...+ load,. In this context, a simple load balancing strategy could be to detect
when the system load exceeds a particular threshold, and then take corrective action by either
adding or removing servers. The overall load of each server process and the system as a whole
is dynamically changing - the load may temporarily exceed the threshold (when one particular
server is receiving a lot of requests), but later fall within the constraints defined by the threshold.
The condition of the overall load of the system exceeding, for example, a threshold ¢ is an unstable
property. The global predicate ® = loady + ...+ load; > t identifies the condition under which
the load exceeds an upper threshold (in this case, too few servers). A similar arrangement could
be used to define a lower threshold. The notification or reaction in this case is to allocate (or
deallocate) one or more servers to the pool of servers handling the processing load, which may
depend on the difference between the total load and the threshold.
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Summary

The examples above show how many diverse problems in the development of complex dis-
tributed systems depend upon the ability to detect when the state of the svstem satisfies a condi-
tion and then execute a notification or reaction when that property is detected.

In the examples above, the required conditions were able to be expressed in terms of a single
predicate ® defined on the global state of the system. It was also seen that some conditions
{end of phase detection, deadlock detection, and token loss) are stable, in the sense that once they
become true, they remain true. Other properties (such as unbalanced load) do not represent stable
properties. Further, the associated notification or reaction was seen to be application-specific.

Given a solution to the dynamic property detection problem, such a solution may form part of
the implementation of such complex distributed systems in which these particular problems need
to be solved.

Finally, note that special purpose distributed algorithms exist for performing some of these
tasks, such as stability detection [53] and deadlock detection [15, 31]. The difference between
a general solution as proposed here and the special purpose distributed algorithm will be some
measure of efficiency (the special purpose algorithms will be more efficient).

2.2.2 Testing and Debugging Asynchronous Distributed Applications

Testing and debugging are two related verification and validation activities, which together rep-
resent an important approach to uncovering and eliminating software design faults' in distributed

program implementations.

Testing is the process of identifying the presence of software design faults in a software imple-
mentation. Debugging is the complimentary process of locating the source of those design faults
in the software implementation in order that they may be corrected.

In this section, we aim to examine how dynamic property detection represents a core sub-

problem of these two important verification and validation activities.

2.2.2.1 Testing Asynchronous Distributed Computations

The purpose of testing is to make a judgment about the quality or acceptability of software
with regard to its intended purpose, as defined by a set of requirements, by executing the software
under controlled conditions in order to identify the presence of software design faults. Testing
can be applied at various stages of software development. It can be applied to individual units
or modules of the implementation (unit testing), assembled subsystems of the implementation
(integration testing), or to the entire system (validation testing). Here, we focus on validation
testing of distributed programs, where the aim is ultimately to determine if the svstem, as a

whole, satisfies requirements.

! According to standard theory on fault-tolerance, a design fault is the logical cause of an error, which represents
an undesired attribute of system state, and is manifested to the user through a failure, which is a recognizable
deviation of specified behaviour.
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Further, we base the discussion around the validation testing of reactive systems {70]. Unlike
transformational systems, which transform information in a functional manner from one state to
another and are specified in terms of pre- and post-conditions on initial and final states respectively,
reactive systems are specified by describing their behaviour over time. Indeed, reactive systems
are very often designed for the express purpose of maintaining a specified relationship with their
environment over time and, as such, are often designed not to terminate.

Reactive systems are often specified using temporal logiés. Temporal logics are formal specifi-
cation logics which were expressly designed for the specification of reactive systems {89]. Temporal
logics allow describing individual states and sequences of states which the reactive system must
pass through. Temporal sequencing of states is described through the use of modal operators, such
as X (“next”), G (“always”), F (“eventually”) and U (“until”), which can be combined in formulae
to describe complex conditions occurring in distributed computations. Temporal logics permit
the specification of temporal behaviour of reactive systems through the specification of properties:
each desired behavioural property is described formally as a formula in the temporal logic. The
overall temporal requirements of the system are then characterized by the set of associated for-
mulae. In certain cases, the specification of temporal behaviours may not require the use of the
X (“next”) operator: such specifications are referred to as being next-free?.

Validation testing is carried out in a two-step approach. In the first step, a testing methodology
is used to identify a finite set of test cases for the program, where each test case specifies inputs and
expected outputs for an execution of the software. In the case of reactive systems, test cases are
composed of sequences of inputs, and have an associated sequence of outputs and state transitions.
In a second step, a testing environment is set up to execute the test cases in a controlled manner.
This involves executing each test case in turn, observing the execution behaviour as it progresses,
and deciding whether or not the execution satisfies its temporal properties.

Testing complex distributed systems is labour-intensive and error-prone. As a result, tools
have been developed [95, 29] to automate the various testing tasks and improve the integrity of
the testing exercise itself.

One area where automation is required is in the observation and validation of test executions.
Executions need to be observed, and their actual temporal behaviour compared against intended
or specified temporal behaviour. This problem is particularly acute in the case of testing reactive
distributed systems. There, testing is complicated by the fact that (i) such systems exhibit many
possible behaviours and so in order to obtain adequate “coverage” of the set of possible behaviours,
many test cases must be selected and (ii) each test execution requires considering potentially long
executions, as reactive systems are not designed to terminate, and relative ordering must be
checked throughout such long executions.

Automation of test execution validation can be achieved through the combined use of a test
execution monitor and a test oracle [95]. A test monitor is employed to collect information about
the actual observed execution generated by a test case and store it in a test execution profile. A
test oracle is a mechanism for determining the behavioural correctness of a test execution. An

2 An important class of temporal logic formulae, the nezt-free temporal logic formulae, are those which do not
involve the “next” operator, X. Informally, next-free formulae do not impose restrictions on the specific successor
states which a reactive system may enter from a given current state.
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oracle consists of two parts: oracle information, which is an encoding of correct behaviour, and an
oracle procedure, which describes how the behaviour encoded in the oracle information is related
to the actual execution. The test oracle is then used to evaluate the data contained in the test
execution profile for correctness.

In order to automate test execution validation, we require a means to compare the observed
behaviour of the distributed computation recorded in a test execution profile, with the specifica-
tion, which we assume is initially formulated in a temporal logic. One way to achieve this is to
convert the temporal logic specification into a form which is executable. The theory of formal
automata [57] provide an executable representation for properties of reactive systems specified in
temporal logic. Finite state automata are state machines which are executable and can be used
to represent all and only the set of sequences which are described by a formula in a number of
temporal logics, including linear temporal logic and graphical interval logic. In [29], Dillon and Yu
describe the process of translating reactive system specifications presented in a graphical interval
logic into finite state automata.

Based on the above discussion, testing can be seen as an application which contains an impor-
tant subproblem involving executing some notification or reaction when the state of the system
satisfies a desired temporal evolution of states. The subproblem is the problem of test execution
validation: the desired temporal evolution of states of the system is represented by the test oracle
(information), and the notification or reaction required upon detection is a simple notification
either that the test succeeded (the property was satisfied by the observed execution) or the test
failed (the property was not satisfied by the observed execution). Note that in testing, we want
to determine whether all possible observations of the distributed system execution satisfy the
temporal property, assuming that the temporal property represents desired system behaviour.

Test execution validation may occur at run-time, and so concurrently with the test execution,
or post-mortem, based on the information recorded in the test execution profile.

2.2.2.2 Debugging Asynchronous Distributed Computations

Once the presence of a software design fault (i.e. a “bug”) has been identified through testing,
(i.e. the execution of a chosen test case has produced a distributed computation of the distributed
program which does not satisfy the requirements), a distributed debugging application or distributed
debugger is used to locate the presence of the software design fault through controlled execution of
the software. A distributed debugger is a software program which aims to provide the user with the
ability to control (manage) the execution of the distributed program being debugged. Distributed
debugging software is naturally structured as a reactive architecture, in which the distributed
debugger assumes the role of the control component, and the program being debugged, the role

of the environment.

Distributed debugging proceeds in ways similar to those found in traditional debuggers for
centralized programs: in particular, by stepping through the execution one step at a time, or by
defining breakpoints on the state of the distributed system and allowing the execution of the system
to proceed up to the first point in the execution where the breakpoint is satisfied and then halting
the program in a state in which the breakpoint holds true. Breakpoints represent significant
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conditions in the execution of the distributed program being debugged. They are of interest in
locating a design fault and its associated error. Many significant conditions can be characterized
through the use of appropriately defined predicates on global states of the computation. Unlike
centralized systems, the detection of breakpoints and the halting of the distributed computation
in a globally consistent state are complicated by the fact that the system is distributed.

Debugging can take place at run-time, concurrent with program execution, or off-line, based on
a recorded execution trace. One of the chief difficulties in debugging concurrent with program exe-
cution is that distributed system executions are generally not repeatable, due to non-determinism
present in the program. Re-executing a distributed program with the same inputs can lead to in-
determinate executions, due to the way in which non-determinism is resolved. This effectively pro-
hibits debugging based on a cyclic debugging methodology, wherein a cycle of program execution,
examination of program state and program re-execution is performed. Debugging on-line, based
on deterministic replay [66] is useful when debugging programs which contain non-determinism.
In the absence of a deterministic replay mechanism, in so-called one-shot or trace-based debug-
ging, debugging must be based solely upon the information is recorded in the execution trace. In
both approaches to debugging, however, specification and detection of breakpoints combined with
halting are used to inspect program states of interest.

Debugging asynchronous distributed programs can be seen as yet another application which
contains an important subproblem involving executing some notification or reaction when the state
of the system satisfies a desired temporal evolution of states: the desired temporal evolution of
states of the system is represented by the breakpoint specification, and the notification or reaction
is to halt the system in a consistent state in which the breakpoint holds, if possible. In fact, much
early research into dynamic property detection was motivated by this application.

The aim of specifying a breakpoint is to identify a point of interest in the program execu-
tion which may shed light on the source of an error. Breakpoints are specified as debugging
progresses, and so breakpoint specifications should be easily specified and understandable. They
should also be flexible enough to describe a wide range of conditions of interest in a distributed
program execution. Two types of breakpoint specifications have been considered in the literature:
Boolean-valued predicates on global states, and sequence-based predicates defined on sequences
of global states. Predicates on global state are useful for defining conditions on global state for
halting, for the same reasons as in centralized debugging. For example, we may want to halt the
program when the global state reaches a point in which all communication queues are empty. The
specification and detection of predicates on global state fall within the scope of the global predi-
cate evaluation problem. On the other hand, sequence-based breakpoints can be used to describe
interesting conditions involving the relative ordering of program states of interest. For example,
we may wish to halt the program execution when a state satisfying the predicate ®; = (z == 1)
is immediately followed by a state satisfying ®; = (y == 1). The specification and detection
of sequence-based properties was considered in [6], where sequence-based properties are specified
in terms of simple predicates, simple sequences, and interval-constrained sequences. The speci-
fication language results in compact, easily understandable specifications of breakpoints, such as
®,; [false]®, to represent the predicate mentioned above. Unlike temporal specifications encoun-
tered in testing, sequence-based breakpoint specifications are generally not next-free: debugging
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may require isolating specific successors of a state which manifest an error.

Unlike testing, where we generally want to check that all possible observations of the distributed
computation satisfy the specification, there are two possible modalities of detection useful in
debugging. When a property specification represents a desired temporal evolution (such as the
satisfaction of a global invariant), we want to ensure that all observations of the distributed
computation satisfy the property. On the other hand, when the property represents an undesired
temporal evolution of states (such as the violation of a mutual exclusion condition), we want to
check if some observation of the distributed computation satisfies the undesired property. The
existence of some observation satisfying an undesired property indicates that the bug may be
revealed due to the relative speeds of processors.

The notification or reaction to detecting as breakpoint is to halt the distributed computation
in a state in which the predicate holds. A discussion of how this is achieved is beyond the scope
of this discussion. One solution to this problem in the case of breakpoints defined by predicates
on local states was presented by Miller and Choi {80] and based on a modification of the snapshot
protocol.

2.2.3 Providing Fault-tolerant Asynchronous Distributed Applications

The more we rely on distributed computing systems, the more we require that the systems
be reliable. Reliability is “the probability of failure free operation of a computer program in a
specified environment for a specified period of time” [110], where failure free operation in the
context of software is interpreted as adherence to its requirements. Software does not fail due to
the degradation of physical components as hardware components do, but due to the activation
of software design faults introduced during software development. Fault-removal techniques, such
as reviews, analyses, and in particular testing and debugging, are used to attempt to identify
and remove software design faults from the distributed program. However, such fault-removal
activities are not able to conclusively prove that all software design faults have been eliminated
from a software system: they can demonstrate the presence of software design faults, but not prove
their absence. This means that some software design faults will remain latent in the final software
product, and possibly be activated in response to particular combinations of inputs. Therefore,
software fault-tolerance is used in order to deal with software design faults which may be activated

during execution.

One approach to implementing software fault-tolerance is based on using an ezception mecha-
nism to alter the normal sequence of control specified in a program when a software design fault
is activated. Informally, an ezceptional ezecution is an execution of a distributed system for which
it is known that, from some point on, that execution cannot satisfy its specification if normal con-
tinuation of execution is followed. This often coincides with the system being in an inconsistent
state (i.e. a state containing an error, or undesired attribute). When such a determination is
made, there is no point in continuing with the normal continuation of execution. An exception
mechanism allows interrupting the normal continuation of the program once an exception has been
detected, in order to take some form of corrective action. Corrective action is achieved through

the use of error recovery techniques, such as forward error recovery, and backward error recovery.

18



Forward error recovery is based on the use of redundant data and algorithms which repair the
system by analyzing the detected error, and returning the system to a correct state. Backward
error recovery, on the other hand, returns the system to a previous error free state without re-
quiring any knowledge of the errors. For example, check-pointing techniques have been used for
recovering consistent states.

Software fault tolerance techniques are often tightly integrated with the modular structure
of the computer system, and the detection of exceptional executions and initiation of recovery
procedures used to provide fault-tolerant system components often reflect this. For example,
exception detection and handling have been used to provide fault-tolerance in coordinated atomic
actions [92], an object-oriented atomic action paradigm for concurrent systems. The system is
structured into atomic actions in which several processes may participate. Therefore, the exact
form of specification (and so the means of characterizing exceptional executions) will be dependent
on the modular structure of the system in question. However, for the purposes of this discussion,
we do not consider the issue of modularity and note simply that temporal specifications will be
required in some form.

The provision of fault-tolerance based on exception detection and handling can also be seen
as an application which involves executing some notification or reaction when the state of the
system satisfies a desired (or undesired) temporal evolution of states. The undesired temporal
evolutions of states of the system, in this case, are the exceptional executions of system, and the
desired notification or reaction required upon detection is either an initiation of recovery, through
forward or backward recovery, or notification of the user. In many cases, included in the set of the
exceptional executions of the system are those which violate any global temporal requirements o,
and these can often be specified as the negation of the specification, —y.

Furthermore, it should be noted that this application of dynamic property detection is re-
stricted to run-time property detection. In the case of error recovery through forward exception
handling, which is based on analysis of the exceptional execution, there may be a requirement to
provide information concerning the particular exceptional execution, in the form of an error trace.
Furthermore, a key element of successfully tolerating design faults is the ability to detect within a
reasonable time when the system is in an exceptional execution [27]. Thus, timeliness of detection

is an important application-specific requirement.

2.3 Summary

This chapter has presented several important application contexts in which dynamic property
detection forms an important sub-problem. We review the key observations:

e distributed algorithm design and implementation: many key tasks involve the detection of
conditions which may be encoded as global predicates on system state, such as end of phase
and token loss. Certain key tasks involve properties which are stable, such as end of phase
detection and deadlock; others, such as load balancing, involve detection of properties which

are unstable. Detection needs to occur concurrent with system execution.
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o testing asynchronous distributed systems: the automation of test execution validation re-
quires determining if a test execution satisfies its temporal specification, followed by no-
tification of test success, or production of error trace. Dynamic properties represent test
oracle information, in the form of finite state automata derived from temporal properties,
often initially specified in a temporal logic. Detection generally needs to establish that all
possible observations of the distributed system execution satisfy the required temporal evo-
lution. Depending on whether test execution validation is performed concurrent with test
case execution or not, property detection may be required on-line or post-mortem.

o debugging asynchronous distributed systems: debugging asynchronous distributed systems
requires the specification and detection of breakpoints on global state, which represent
significant conditions in the execution. Both simple predicates on global state as well as
sequence-based predicates are useful for specifying breakpoints. In the case of identifving
breakpoints, detection may require identifying whether some possible observation satisfies
the required breakpoint; in the case of checking an invariant, detection may require iden-
tifying whether all possible observations satisfy the required invariant. Dynamic property
detection may be required on-line or post-mortem, depending on the debugging strategy.

o providing fault-tolerance: provision of fault-tolerance requires the specification and detection
of exceptional executions. Dynamic properties are used to describe exceptional executions,
which may be specified as the negation of temporal specifications on system state. In order
to facilitate forward error recovery, an error trace describing the exceptional execution may
be required. Detection needs to occur concurrent with system execution, and should be

timely, in order to successfully recover from failure.

Each of these important applications involves dynamic property detection as an important sub-
problem, and so can be defeated by the state explosion problem. This is especially true for
temporal properties, such as required in testing, debugging and fault-tolerance.

Beginning with the next chapter, we begin a detailed look into the state explosion problem,
how it manifests itself in both model checking and dynamic property detection, and the existing
techniques for combating state explosion. Our aim will be to arrive at a position where we
can compare these techniques and develop improved techniques for combating state explosion in
dynamic property detection, particularly for the case of temporal properties.
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Chapter 3

Model Checking and The State

Explosion Problem

Specification is the process of describing a system and its desired properties. Verification is
the complimentary process: that of analyzing a system to determine if it does indeed satisfy those
desired properties.

Temporal logic model checking is a technique for verifying that a concurrent system satisfies its
specification. Specifically, given a concurrent system P and a temporal logic formula > representing
a specification, the model checking problem is the problem of checking that all executions of P
satisfy the formula ¢.

In contrast with other verification techniques, such as simulation, testing and theorem proving,
model checking has certain advantages. Unlike simulation and testing, which can only explore a
small fraction of the executions of a concurrent system, model checking can determine whether all
executions of the system satisfy the specification. And unlike theorem proving, model checking is
fully automatic, and can often verify a system in minutes. Model checking also provides an error
trace: if the concurrent system does not satisfy the temporal formula, an example execution which
does not satisfy the formula can be produced, aiding debugging.

Model checking involves three distinct activities: specification, modeling, and verification.

Specification: Specification involves describing the desired properties of the concurrent system,
in a formal language. Temporal logics, such as CTL {22, 20] and LTL (89, 70], are used to
specify temporal behaviours of reactive concurrent programs.

Modeling: The modeling phase concerns the construction of a finite state model, or validation
model, from the description of the concurrent system. The finite state model represents the
concurrent system in an abstract way, and should reflect all aspects of the system which are
relevant to the specification. Details of the system irrelevant to the property being verified
are eliminated from the model through the process of abstraction.

Verification: Verification involves analyzing all possible behaviours of the validation model in
order to check that each execution satisfies the specification. If not, the model checking tool
provides an example of a system execution which violates the property. which aids debugging.
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The main limitation of model checking as a verification technique is the state explosion problem,
which arises when the system being verified is composed of a number of components which can
operate in parallel. The state explosion problem effectively places an upper bound on the size of
systems which can be verified using the model checking technique.

In the next section, we briefly present background relevant to the model checking problem,
and examine how the state explosion arises in model checking. The remainder of the chapter is
devoted to examining approaches to combating state explosion in model checking.

3.1 Fundamentals of Model Checking

Model checking addresses the verification of reactive, concurrent systems. A concurrent pro-
gram is a set of processes Pj,..., P, which communicate via a communication medium. There
are many types of concurrent programs, which vary in their mode of execution (synchronous or
asynchronous execution of program steps), mode of communication(via shared variables or mes-
sage passing), and architecture (centralized or distributed). Concurrent programs can be reactive
or transformational. A reactive program [70] is a program which maintains a relationship with its
environment, by accepting inputs from the environment and reacting to those inputs by perform-
ing a local state change and producing outputs to the environment. Reactive programs are thus
generally not designed to terminate. Examples include communication protocols and telephone
switches. Unlike transformational programs, where behaviours are described in terms of initial
and final states, reactive programs are described by their behaviour over time, by the sequence of
states they pass through.

Modeling Concurrent Programs

Although there are many formal models of concurrent systems, many are based on the notion
of a finite-state transition system. A (non-deterministic) finite-state transition system is a tuple
< V,%,0,v0 > where V is a finite set of states, &, a set of actions, o : V x & — 2V a transition
relation between states, and vy an initial state. Transition systems model the states of a system
and the possible transitions between states. Each individual process P; of a concurrent program
can be modeled by a finite state transition system, P; =< V;, X;,0;,v0: >. The concurrent system
itself P = Py||...||P, is modeled as a composition of the transition systems P;. The form of
composition used depends upon the mode of communication within the concurrent system. For
example, concurrent systems P = P,||...||P, with synchronous communication can be modeled
by the partly synchronous composition of transition systems, P =< V,X,0,v9 >, where V =
[T, Vi, © = U7 Zivo = (vor,---,vn) and the transition relation o is such that (v, .. LU e
o((v1,-..,vn),a) if and only if (i) v} € oi(vs,a) for each i such that a € ; and (i) v; = v; for
each i such that a ¢ ;. Concurrent systems P = P||...{|P, with asynchronous communication
are modeled by introducing a finite-state transition system for each communication channel where
transitions of channels are synchronized with their respective processes. The transition system of
the system as a whole is formed by taking the partly synchronous composition of the transition
systems representing the processes and the channels. Given a concurrent program P = P I Pn,
the finite state transition system resulting from the composition of the state transition svstems
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representing the processes and channels, if any, represents the global state transition system of the
concurrent program P. We shall refer to this global state transition svstem for the concurrent
program P as the program state space.

A Kripke structure is a model of the global state transition system of a concurrent program
in which states and transitions between states are represented, but process structure is no longer
explicitly represented. Atomic propositions are used to characterize aspects of states which are
of interest in relation to the specification. Let AP be a set of atomic propositions. Formally. a
Kripke structure M over AP is a four-tuple M = (S, Sy, R, L) where S is a finite set of states.
Sp C S is the set of initial states, R C S x S is a transition relation that must be total (for every
state s € S there is a state s’ € S such that R(s,s') and L : § — 247 is a function that labels
each state with the set of atomic propositions true in that state. A path in the structure M from
a state s is an infinite sequence of states m = 80315 ... such that sg = s and R(s;, s:+1) holds for
alli > 0.

Temporal Logics

Temporal logics have proved successful in the specification of behaviour of reactive, concurrent
systems. A propositional temporal logic (PT L) is an extension of propositional logic with temporal
operators, such as X (“next”), G(“always”), F(“eventually”) and U(“until”). Temporal operators
permit description of the relative ordering between states in a concurrent program execution.
Temporal logic formulae are interpreted over Kripke structures.

Temporal logics can be classified into linear-time temporal logics and branching-time temporal
logics. These two variants differ in the way in which the temporal logic formulae are interpreted
over the Kripke structure. In linear-time model, formulae are interpreted over infinite paths in
the structure: each path represents an infinite sequence of values from 24P. In the branching-
time model, formulae are interpreted over computation trees, a tree-like structure representing
all possible sequences of elements of 24F starting from an initial state in Sp. Unlike linear time
logics, branching time logics are augmented with path operators A(“for all’) and E(“for some”)
which allow specifying paths within the computation tree for which the formula must hold. In
the linear-time model, at each state, only a single next state is presented; in the branching-time
model, all possible next states are represented. LT L is an example of a linear-time temporal logic.
CTL is an example of a branching time temporal logic.

Properties of reactive concurrent systems can be classified into safety properties and liveness
properties. Informally, a safety property describes execution behaviours in which “bad things don’t
happen”. A liveness property describes execution behaviours in which “good things do happen”.
For example, in the case of a mutual exclusion protocol designed to ensure access to a shared
resource, a “bad thing” would be entering a state of the system in which two processes had access
to the resource(violation of mutual exclusion). In the same example, a “good thing” would be that
every request for the resource was eventually granted(absence of starvation).

In [3], Alpern and Schneider present automata-theoretic characterizations of safety and liveness.
An important result of that paper concerns the nature of the automata required in order to
recognize safety and liveness properties. In the case of safety properties, the authors show that. in
order to identify violations of safety properties, we need only consider finite prefixes of interleaving
sequences. They also show that safety properties can be recognized by prefix closed automata on
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finite words. In the case of liveness properties, they reason that the defining characteristic of
liveness properties is that, for any finite prefix, there is some continuation of that prefix which will
satisfy the property, and that in order to identify violations of liveness properties, we must consider
infinite suffixes of interleaving sequences. Summarizing, a safety property can only be violated
on finite prefixes of interleaving sequences, whereas liveness properties can only be violated on
infinite suffixes of interleaving sequences.

Explicit State Model Checking

The idea behind model checking is to view the global state transition system of a finite state
concurrent program as a finite propositional Kripke structure. The model checking problem is to
determine if all executions of a concurrent program, represented abstractly by a Kripke structure
M = (S, S0, R, L), satisfy the specification of the concurrent program, represented by a temporal
logic formula ¢.

The first model checking algorithms [91, 22] used the branching-time temporal logic CTL as a
specification language. The algorithms were based on exploiting fix-point representations of CTL
operators and playing a “labeling game”, where the Kripke structure representing the concurrent
program is labeled with the sub-formulae of the temporal formula which are true in each state,
starting from the atomic propositions and working up. Later, Lichtenstein and Pnueli [68] provided
a model checking algorithm for the linear-time logic LTL, based on a tableau procedure. In this
case, a certain product graph was created, and the terminal strongly connected components of
that product graph checked for reachable acceptance states. The complexity of the algorithm of
[68] was shown to be linear in the number of states of the Kripke structure. These model checking
algorithms are referred to as explicit state model checking algorithm, as they decide the model
checking problem by explicitly examining the states of the global state transition system of the
concurrent program.

In these model checking algorithms, the generation of the state transition graph (represented
by the Kripke structure) is carried out by exploring all states reachable from the initial state.
This is generally performed by a depth-first traversal of the graph representing the program state
space, although other graph traversal algorithms, such as breadth-first traversal, may be used as
well. Figure 3.1 shows such a depth-first graph traversal algorithm. The algorithm maintains a
hash table H of visited states, and a stack Stack to assist in managing the recursive organization
of the search. It is assumed that the set of possible reachable states is finite, so that the traversal
of the state space is guaranteed to terminate. However, the state space can still be unmanageably
large: the construction of the state transition graph can suffer from an explosion in the number
of states and transitions which need to be considered in order to construct the graph.

State Explosion Problem

The key problem with explicit state model checking is in dealing with large state spaces.
Although the complexity of the model checking problem is linear in the size of the state space of
the program, represented by the associated Kripke structure, the size of the Kripke structure can
be exponential in the size of the concurrent program, represented by the number of processes n,
due to the state explosion problem.
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1 Stack := empty;
2 H :=empty;
3 push initial state onto Stack;

4  while (Stack is not empty)
5 pop s from Stack;

6 if (s is not in H) then
7 insert s in H,

8 T := enabled(s);

9 foreach t in T do

10 s' := the state that results from executing ¢ in s;
11 push s’ onto Stack;

12 endforeach

13 end while

Figure 3.1: Algorithm for depth-first search of full state space

The state explosion problem arises when processes in a concurrent program may make in-
dependent transitions in parallel. To see this, consider the following example of a concurrent
program P = Py||...||P,, where execution is asynchronous and processes do not communicate
with each other. The state space of the concurrent program will be P = P, x ... x P,, having size
|P] % ... % |P,|. Viewing the size of the concurrent program as the number of processes n, the
corresponding size of the state space is O(m™), where m = maz{|P\|,...,|Px|}-

Early model checking algorithms, such as those described by Clarke and Emerson {22] and
Lichtenstein and Pnueli [68], made no attempt to deal with state explosion. Their algorithms
assumed that the Kripke structure was constructed in a separate stage, and that this Kripke
structure, along with the temporal logic formula, were inputs to the model checking algorithm.

The representation of concurrency by interleaving is a major factor in contributing to the
size of the state space of a concurrent program. Indeed, the model checking problem for linear
temporal logic was shown to be PSP AC E-complete by Sistla and Clarke [101], and this is due in
large measure to the need to explore the state space, which has size exponential in the size of the
problem. However, it is not the only such factor. Additionally, the number of variables in each
process and the size of the domains of those variables contribute to the size of the state space of
a concurrent program, by increasing the size of the potential state space, P = P, x ... x P,. This
holds for concurrent programs with synchronous execution, as well as for those with asynchronous
execution. As a consequence, techniques to handle large state spaces are required in the model
checking of synchronous concurrent programs as well.

The problem of dealing with large state spaces in general, and the state explosion problem in
particular, are the key to making the automatic verification technique of model checking applicable
to realistic verification problems. In the next section, we survey the broad classes of approaches

to dealing with the state explosion problem.



3.2 Techniques for Alleviating State Explosion

In this section, we survey the broad classes of approaches to dealing with the state explosion
problem found in the literature. The approaches have been divided into the following categories!:

» automata-theoretic methods: based on a formal language approach. Both the set of exe-
cutions which satisfy the formula, and the set of executions of the concurrent program are
viewed as formal languages (i.e. a set of words over a specific alphabet). The model check-
ing problem is then viewed as a decision problem: deciding language containment. This
approach has the benefit of providing algorithms which are independent of the specification
language and modeling language used.

e symbolic methods: these methods are based on binary decision diagrams, which permit the
compact representation of Boolean functions. The methods avoid the explicit enumeration
of states by representing the Kripke structure as a Boolean function, and solving the model
checking problem by Boolean function manipulation.

e mode] extraction-based methods: abstraction is used to eliminate irrelevant states and tran-
sitions from the state space which have no bearing on the specification. This results in
smaller state spaces which need to be checked. This approach is based on abstracting away
irrelevant detail.

¢ partial-order methods: this approach to state explosion aims to use an alternative semantic
model (partial order semantic models) in order to avoid having to explore all possible paths
through the Kripke structure. This could be summarized as a semantic approach to state
explosion.

o distribution-based methods: in this approach, the problem of constructing and exploring the
Kripke structure is distributed over a set of processes - a network of workstations connected
by a communication network. This approach addresses state explosion by (i) increasing
the amount of main memory available, which permits larger models to be explored, and
(ii) introducing parallelism, which offers a potential speedup in the exploration of the state

space.

In what follows, we consider each approach based on the following criteria: the basic approach to
dealing with the state explosion problem, the details of the approach, the resulting improvement
in complexity, and the variations of the general approach which appear in the literature.

3.2.1 Automata-theoretic Methods

The automata-theoretic approach to model checking was presented by Vardi and Wolper in
[114].

The automata-theoretic approach to model checking is based on the notions of formal languages
and finite automata which recognize them. In this approach, the Kripke structure M is viewed as

1The list of surveyed approaches does not include compositional approaches to combating state explosion. Com-
positional approaches make use of the fact that many concurrent systems are composed of multiple processes running
in parallel, and this known process structure can be used to to address the state explosion problem. We refer the
reader to [19, Chapter 12] for discussion of these approaches.
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a language generator, the specification, in the form of a linear-time temporal logic formula ¢, is
viewed as a language acceptor, and the model checking problem is then viewed as the automata-
theoretic problem of deciding language contatnment: the problem is to determine if the language
generated by the Kripke structure is contained in the language accepted by the formula. The
basic automata-theoretic approach in and of itself does not achieve reduction in memory used in
the model checking; however, state space reduction can be achieved using the on-the-fly variant
of the automata-theoretic approach. In this approach, only the portion of the state space of the
program which needs to be explored to check the property is explored, by using the automaton
representing the property to guide the search.

In the following sections, we review the key concepts and details of this approach.

Key concepts: The automata-theoretic approach relies on certain results from formal language
theory; in particular, upon the ability to represent the set of execution sequences which satisfy
the linear-time temporal logic formula ¢ by a finite state automaton.

Certain formal languages can be represented compactly by finite state automata {57]. For
example, regular languages are formal languages on finite sequences which can be described by
regular expressions, or equivalently, recognized by deterministic finite state automata.

Definition 8.1. A deterministic finite automaton (DFA) on finite wordsis a tuple 4 = (@, %, 4, g0, @F)
where

e (} is a finite set of states,

e ¥ is an alphabet,

e §:Q x ¥ — @ is a deterministic transition function,
o go € Q is an initial or starting state, and

o Qr C @ is a set of accepting (or final) states.

Let w be a finite word over ¥ of length {w|. A run of A over w = a14a;3...a)y is a sequence of states
90,41, - - - qJw|> Where gg € Qo and ¢; € 6(gi-1,0;), forall 1 < < lw|. A run over w is accepting if
it ends in an accepting state (i.e. gy € F). The word w is accepted by the automaton A if there
is an accepting run of A over w. The language of A, denoted by L(A), consists of all the words

accepted by A.

Note that the transition function of a deterministic finite automaton requires that every
(state,input symbol) combination lead to a state of A. If this condition does not hold, the automa-
ton does not represent a DFA. However, it can be viewed as a non-deterministic finite automaton
(NFA), and the well-known subset construction used to convert it to a DFA with a dead (or trap)
state: a non-accepting state that leads to itself on every possible input symbol [57).

Regular languages are suitable for specifying safety properties. Alpern and Schneider (3] have
shown that safety properties can be characterized by prefix closed finite automata (finite automata
in which all states but possibly the dead state are accepting).

w-regular languages are formal languages on infinite sequences which can be specified by w-

regular expressions, or equivalently, recognized by Buchi automata.

Definition 3.2. A Buchi automaton is a tuple A = (Q, X, 4, Qo, QF) where
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s (Q is a finite set of states,

¥ is an alphabet,

6:Q x T = 29 is a non-deterministic transition function,
e Qo C Q is a set of starting states, and

» Qr C @Q is a set of accepting states.

A state ¢ € Q is deterministic if |6(q,a)| < 1for all a € £. If |Qo] = 1 and all states are
deterministic, then A is said to be deterministic. A run of A over an infinite word w = aias..., is
a sequence qo, ¢, - - -, where go € Qo and ¢; € 6(¢i—1,a;), for all i > 1. A run go,qi,... is accepting
if there is some accepting state of the run which repeats infinitely often (i.e. for some ¢ € QF,
there are infinitely many ¢’s such that ¢; = ¢. The infinite word w is accepted by A if there is an
accepting run of A over w. The set of infinite words accepted by A is denoted L(A).

Buchi automata are suitable for specifying general safety and liveness properties. They have
the advantage of being closed under union, intersection and complementation. However, comple-
mentation is expensive: the complementation problem for a Buchi automaton with n states has
complexity 0(16"2) [100]. The construction for representing the set of execution sequences which
satisfy the linear-time temporal logic formula ¢ as a Buchi automaton is presented in [114] and
has complexity O(2%!¢l), exponential in the length of the formula.

Details of the Approach: In the automata-theoretic approach, the Kripke structure M is viewed
as a language generator, generating a language L(M) over the alphabet 24F. The specification, in
the form of a linear-time temporal logic formula g, is viewed as a language acceptor, accepting a
language L{yp) of sequences over the same alphabet. The model checking problem is then viewed
as the problem of deciding language containment: the problem is to determine if L(M) C L(y).
By elementary set theory, the language containment test L(M) C L{yp) is equivalent to testing
the relation L(M) N L{p) = @, where L(y) is the complement of the language L(y). In order to
perform this test, the connection between formal languages and finite automata is exploited. By
defining Buchi automata A(M) and A(p) which accept the languages L(M) and L(p), respectively,
the language containment problem is in turn reduced to checking the non-emptiness of the Buchi
automaton, here denoted by A(M) N m, which accepts the intersection of the two languages
accepted by A(M) and A(p). This automaton is well-defined as Buchi automata are closed under
intersection. If the automaton A(M) N Z(go_) accepts a sequence, then this sequence represents
both a valid program execution and an execution satisfying the negation of the specification (i.e.
violating the specification).

Based on this theory, the automata-theoretic model checking procedure involves several steps:
(i) computing the automaton A(M) for the language L(M) (ii) computing the automaton A(yp)
for L{p) (iii) computing the automaton A(M) N A(yp) representing the intersection of the two
languages, and (iv) checking that the automaton A(M) N A(yp) is non-empty. It can be shown
that checking the non-emptiness of the automaton A(M) N A(p) can be reduced to determining

if there is a reachable acceptance state of the intersection A(M) N A(y) which is reachable from
itself. This in turn can be achieved by computing the strongly connected components (SCCs) of
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the automaton representing the intersection using Tarjan’s algorithm [107], and checking if any
one of these components contains an acceptance state which is also reachable from the initial state.

Vardi and Wolper cite as advantages of this approach the fact that (i) specification and program
are described using the same formalism (formal languages and automata), resulting in an algorithm
which is easy to understand, and (ii) the approach can be extended to various logics: all that needs
to be provided is a translation from the formula in the new logic to an automaton.

On-the-fly model checking: With respect to state explosion, the basic automata-theoretic ap-
proach described above achieves no reduction in memory used, due to the sequential manner in
which the steps are performed, and the fact that Tarjan’s algorithm requires full exploration of
the product state space in order to determine the strongly connected components of the product
state space. In particular, the full state space of the program is always constructed, in the initial
step. However, if we instead combine the exploration of the program state space with the checking
of the intersection, so that the state space is constructed on-the-fly, substantial reductions in the
number of states which are required to be explored can be achieved. In this approach, the Buchi
automaton representing the negation of the formula A(—¢) is computed in an initial step (this ap-
proach produces the same language as A(yp) but is computationally more efficient than computing
the complement). Then, viewing both the program P = Pi|f...||P, and the automaton A(—y) as
finite state transition systems, the synchronous product of the two transition systems is explored.
The conditions under which an execution of the synchronous product satisfies both the concurrent
program and the negation of the property depend upon the property being verified; that is, the
approach varies depending on whether safety properties only are verified, or general safety and
liveness properties.

The first application of this approach to dealing with the state explosion problem appeared
in {59]. There, the approach was applied to the case of checking safety properties only. Safety
properties can be characterized in terms of finite automata on finite sequences. In such a case,
we need only find an acceptance state which is reachable from the initial state. In the on-the-fly
approach, it is possible to discover a violating execution path, without having had to build the
full state space. Worst case complexity is realized when the intersection is indeed empty - i.e. the
system is correct - and the full product state space needs to be explored.

The on-the-fly approach was extended to the case of verifying general LT L properties in [26].
General LTL properties are expressed using Buchi automata, and the acceptance conditions for
such automata require that we discover reachable acceptance states contained in cycles. There, a
'double’ depth first search was used to identify reachable acceptance states which are contained
in cycles: a first depth first search is used to locate reachable acceptance states; the second
search, initiated from each reachable acceptance state, aims to discover a cycle leading back to
the acceptance state within that portion of the state space already explored. In this approach,
the secondary depth first searches used to detect cycles must be performed in the order in which
backtracking occurs in depth first search (i.e. postorder). This property of depth-first search is
an important part of the proof of correctness of the algorithm.

One of the disadvantages of the approach in [26] is that computation of the Buchi automaton
representing the property, or property automaton, is still performed in a separate preliminary
step. The property automation can have exponential size, of order 29(n) where n is the number
of sub formulas in the property formula. In [44], the authors present an algorithm in which both
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the property automaton and the system model are constructed on-the-fly.

Ezamples from the literature: The basic automata-theoretic approach is presented in [114],
where the discussion focuses on the theoretical foundations of using automata and formal languages
to restate the model checking problem as a problem in formal languages. On-the-fly variants of
the approach, which focus on achieving a reduction in the size of the state space which needs to be
considered in order to check the property, appear in [59] for the case of checking safety properties
only, and in 26, 44] for the case of general safety and liveness properties.

On-the-fly model checking has been used with success in the model checking tool SPIN [55].

Complezity: The complexity of the basic automata-theoretic approach is O(|M|-2°00#D) where
| M| is the size of the Kripke structure (in some appropriate encoding) and |¢] is the length of the
formula (the number of variables and operators). In practice, model checking algorithms based on
the automata-theoretic approach face two complexity-related limits:

o the size of the automata, both for the concurrent system and the property, as execution time
is proportional to the product of the number of states in the automata

e the size of that part of the product automaton which has to be kept in memory in order to
check emptiness, as available memory sets a firm bound on the size of problems that can be
treated

Both of these issues are addressed by the on-the-fly variant on the basic automata-theoretic ap-
proach. The degree of reduction achieved is however dependent upon both the Kripke structure
representing the concurrent program and property being checked.

3.2.2 Symbolic Methods

Symbolic model checking is an example of an approach to model checking in which the states
and transitions of the Kripke structure are not explicitly constructed or enumerated. In this
approach, Boolean functions are used to encode both system states and transitions between states,
effectively replacing the Kripke structure. The model checking algorithm is reduced to a sequence
of manipulations of those Boolean functions. This approach alleviates state explosion by not
explicitly enumerating the states of the Kripke structure. Symbolic model checking has proved
to be very successful in the verification of synchronous and asynchronous circuits: systems with
over 10'20 explicit states have been successfully verified using symbolic model checking [14]. In
the following sections, we review the key concepts and details of this approach.

Key Concepts: Let V = (v1,...,ua) be a set of Boolean variables. A Boolean function is
a function from V to the Boolean values {0,1}. Many problems in digital design and testing,
artificial intelligence, and combinatorics can be expressed as a sequence of operations on boolean
functions [13]. Ordered binary decision diagrams(OBDD) are canonical form representations for
Boolean functions based on directed acyclic graphs. It is possible to represent Boolean functions
using binary decision trees. A binary decision tree is a tree with two types of nodes: terminal
and non-terminal. Non-terminal nodes are labeled with variable names, and terminal nodes are
labeled with the values 0 and 1. A binary decision tree effectively represents the function values
for all possible combinations of inputs values. Figure 3.2 shows the binary tree for the Boolean

function f(z1,z2) = 1 A T2.
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Figure 3.2: Binary decision tree for formula

Binary decision trees have essentially the same size as truth tables, and contain a lot of re-
dundancy. Binary decision diagrams(BDDs) are more compact representations, based on directed
acyclic graphs, and essentially obtained from binary decision trees by removing redundancy ac-
cording to certain rules. These rules result in BDDs having canonical form properties and the
functions that manipulate them having efficient complexity. OBDDs are a further refinement of
BDDs, in that all variable labeling is based on a common order, to minimize blowup of the rep-
resentation. Given a Boolean function f , the OBDD for f can be used for various purposes: to
evaluate the value of function for a given set of inputs, determine satisfaction (test whether there is
a set of input values which make the function true), and to determine if two Boolean functions are
equivalent. OBDD function representations may be combined using the standard logical operators
(A, V,—, =), and well as first order quantification (3,V¥). OBDDs have certain important advan-
tages when it comes to complexity. Brayton has noted that OBDDs do have complexity-related
problems. For example, OBDDs need to perform operations such as satisfaction and equivalence,
and that these problems are NP-complete and coN P-complete. He also notes that there are
Boolean formulas for which the OBDD representation is exponential in the size of the formula.
Further, the size of an OBDD representation is sensitive to the variable ordering, which must be
the same for all functions. The advantages of OBDDs are that (i) most commonly encountered
functions have a compact representation (ii) the performance of a program based on OBDDs is
bounded by the size of the function graphs (iii) the representation is a canonical form, which
makes it easy to determine satisfaction and equivalence. The disadvantages of OBDDs are that
they are highly sensitive to variable ordering, and that there are some functions which have an
exponential blowup.

Details of the Approach: The symbolic model checking approach is based on two steps: (i)
representing the reactive concurrent program using first order logical representations and their
OBDD representation, and (ii) reworking the model checking algorithm to process OBDDs instead
of the states in the Kripke structure. Using first order logical representations, it is possible to
represent the Kripke structure of a concurrent, reactive program in terms of Boolean functions.
This requires representing states, sets of states, and transitions between states. States over the
Boolean domain can be represented by Boolean variables. Variables over a finite domain D can
be represented in terms of a Boolean domain defining a set of Boolean variables z,,...,z, and
mapping Boolean values from {0,1}" to D. n-ary relations Q on the domain D x ... x D (n times)
can be represented by the characteristic function fo(z1,....z,) = 1 if and only if Q(z1,...,2n)
holds true. Transition relations R(s,s') require representing the initial state of the transition s

31



together with the final state s’. This is achieved by introducing a new set of variables z},....r/,
and describing the transitions by the conjunction of the description of the initial state and the final
state. Transition relations over all states are represented by a disjunction of individual transitions.
Having translated the description of the system (program text) into first order representations.
OBDDs can be used to encode those relations and we thus have a representation of the concurrent
program in terms of OBDDs. The OBDD representing the system as a whole is constructed by
applying OBDD operators to combine the various high-level elements of the system. represented
as OBDDs.

The model checking algorithm now operates on OBDDs instead of a Kripke structure. In
the symbolic model checking algorithm presented in [19, Chapter 6], CTL is used for symbolic
model checking as it permits the characterization of temporal logic operators in terms of fix points.
These fix point operators in turn can be expressed in terms of set-based operations on OBDDs.
The model checking algorithm uses a procedure called Check(f) which returns the OBDD that
represents exactly the states of the system that satisfy the CT L formula f . The function Check()
is defined inductively, on the syntax of CTL:

e if f = @ where a is an atomic proposition, then Check(f) returns the OBDD representing
the set of states satisfying a

o if f=f or f=f Af" then Check(f) returns the OBDD resulting from applying the
OBDD manipulation function Apply(obdds,~) and Apply(obddy:,obdds:, )

In the case of temporal operators, Check() is defined in terms of operations which compute the
least (or greatest) fix point of the corresponding least (or greatest) fix-point representation of the
operator in question.

Ezamples from the literature: The first implementation of a symbolic model checker was the
SMV system presented by McMillan [78]. Burch et al. [14] present a success story for symbolic
model checking in which they successfully model check an asynchronous circuit having more than
10120 explicit states. Alur [4] has investigated the combination of symbolic model checking with
partial order reduction.

Complezity: There are a number of points to make regarding the complexity of the symbolic
approach. Symbolic methods alleviate the state explosion problem by not explicitly constructing
the Kripke structure corresponding to the concurrent, reactive system in order to perform the ver-
ification, but instead represent the states and transitions between states implicitly, using Boolean
functions. The Boolean functions are in turn represented by OBDDs and manipulated by OBDD
operations which are relatively efficient. However, as Bryant explains, it is sometimes not possible
to entirely avoid representations which are exponential in size.

Thus, symbolic model checking does not eliminate the problem of dealing with large state
spaces, but alleviates it in many cases, allowing larger systems to be checked. Two cases where
state explosion (now in the form of exponentially sized OBDD representations) still does arise in

symbolic model checking:

o The BDD representing the transition relation can still be exponential in the size of the sys-
tem, as shown by Clarke [19, Chapter 6]. This necessitated the use of special techniques, such
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as partitioned transition relations and lazy parallel composition, in the case of synchronous
systems to avoid exponential blowup

¢ Alur [4] investigated addressing this problem in the case of symbolic approaches to reacha-
bility analysis. He noted that symbolic verification of the leader election protocol runs out of
memory (with N = 5 processes) . This motivated the development of partial order reduction
techniques which could be used in combination with symbolic model checking, in order to
reduce the size of memory used.

3.2.3 Model extraction-based Methods

The model extraction-based approach is based on the view that the key to applying model
checking to large systems is not to build clever model checkers, but to build clever mode! builders.

A key step in model checking is the modeling phase: constructing the finite state validation
model from the description of the concurrent system (code or design). If it is possible to construct
a smaller Kripke structure which is equivalent in some sense to the full Kripke structure, and if the
formulae which are to be verified are insensitive to this equivalence, then we may use verification
of the smaller model in order to reason about properties in the full model. We refer to these
methods for dealing with state explosion as model eztraction methods, as they are applied during
the modeling phase, and before model checking actually takes place.

There are three key principles for reducing the size of models [25]:

o irrelevant component elimination: some of the program components (e.g. statements, vari-
ables, processes) may not be relevant to the property being verified. Such components may
be safely eliminated from the model before verification begins. Techniques related here are

slicing and cone of influence reduction.

o data abstraction: some variables might be recording more detail than necessary for the
property being verified. By reducing the size of the variable domains, we can reduce the size
of the potential state space which needs to be explored.

o component restriction: if irrelevant component elimination and data abstraction still do not
result in a small model, we can restrict the full generality of the program and consider a

restricted set of execution behaviours.

In the following sections, we review the key concepts and details of this approach.

Key concepts: Program slicing is a technique used to achieve irrelevant component elimination
when the system is presented in terms of program text. A program slice Pyice is an executable
program which is obtained from an original program P through the deletion of zero or more
statements. A slicing criterion is a pair (n,V) where n is a program statement and V is a subset
of the program’s variables. A slice with respect to the slicing criterion satisfies the following
property: whenever P halts for a given input, the slice Pyce also halts for that input, producing
the same values for the variables in V whenever the statement n is executed. Slices were introduced
in [117), where sequential, transformational programs were studied. Slices can be classified as
static or dynamic. A static slice is one which makes no assumptions about the program’s input;
a dynamic slice is one which pertains to some specific execution, as, for example, determined by
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a test case during program testing. In dynamic slicing, only those dependencies which occur in
a specific execution are taken into account. Program slices are constructed by considering the
control dependencies and data dependencies between statements, as well as control predicates
present in the program. Control and data dependencies are defined in terms of the control flow
graph (CFG) representing the program. The dependencies are recorded in a program dependency
graph (PDG) and used by the slicing algorithm. The slicing algorithm aims to remove those
program elements which do not affect the computation at the criterion statements. For a survey
of slicing approaches, see [108].

The program slicing approach has been extended to reactive, concurrent programs written in
Java in [25], with the aim of producing reduced models for model checking LTL formula. Given an
LTL formula, a slicing criterion consisting of a set of program statements {s, . .., 8, } is produced,
based on considering the atomic propositions of the temporal logic formula and those statements
of the program which can affect the atomic propositions. The correctness of the slicing criterion
is adjusted to refer to the satisfaction of the temporal formula, and involves the definition of an
equivalence between the program P and its slice Py;cebased on bisimilarity [50].

The cone of influence reduction {19, Chapter 13] is another technique for achieving irrelevant
component elimination, which-is applicable to the verification of synchronous circuits (i.e. where
the system description is presented as a synchronous transformation of state variables). Suppose
we are given a circuit whose design can be modeled by a set of simultaneous equations v; = f;(V),
1 < ¢ < n. Given a set of variables V, the cone of influence is a minimal set of variables C such
that (i) V C C and (ii) if for some v € C its f; depends on v;, then v; € C. A reduced system
is constructed by removing all equations whose left hand side variables do not appear in the cone
of influence, C. It can be shown that the reduced system is bisimilar to the original system, and
that a CTL* formula holds for the original system iff it holds in the reduced system.

Data abstraction involves defining a mapping between a potentially large set of variable values and
a small set of abstract values. The abstraction mapping is then extended to states of the system
and the transitions between states of the system, resulting in a structure which ’'simulates’ the
original system in some sense and can be considerably smaller. If the simulation relation can be
shown to preserve the properties defined by specification, the smaller abstract version of the system
may be used for analysis. The data abstraction approach can be used when the specification makes
reference to the properties of data values, as opposed to the values themselves. For example, if the
system contains a variable  over a domain D, and the specification only references the atomic
propositions z > 0, z == 0, and z < 0, the (potentially infinite) domain D could be replaced by
the abstract domain A = {apeg,a0,8pos}- Clarke et al. [19, Chapter 13] describe transformations
required for implementing data abstraction in terms of Kripke structures generated during model
extraction. Informally, the transformation is based on the defining a mapping between actual
data values D in the system and and a small set A of abstract values, using this relation to
update the labels of the Kripke structure to reflect abstract versions of the propositions (e.g.
z = d is replaced by £ = a, where £ denotes an abstracted version of the variable r), identifying
all resulting abstract states in the resulting structure which have the same labeling. and finally
ensuring that each transition between actual states in the original Kripke structure is represented
with a corresponding transition between abstract states in the reduced Kripke structure. The
abstract system Mg, obtained by their transformation is shown to simulate the original system

34



M: the simulation relation guarantees that every possible execution of the original system M will
be a possible execution of the abstract version of the system M,p,. This permits a verification
approach based on the simulation relation: if a property ¢ holds for the abstract svstem Mgp,,
then the property also holds for M. The converse relation does not hold: any error trace for
M.p; need not be an error trace of M. The data abstraction approach has also been applied to
the case of the verification of concurrent programs written in Java [25]. The transformation is
based on first describing programs abstractly using flow chart language (FCL), and then applying
parameterized transformations which encode the mapping from concrete to abstract data values.
A similar notion of correctness is used, which is based on an equivalence notion. The result of the
transformation is an abstract version P,;, of the original program, which has the property that it
contains all executions of the original system. The formal proof of correctness is described in [51].
Ezamples from the literature: The Bandera tool [25] enables the automatic extraction of safe,
compact, finite state models from program source code using the principles of irrelevant component
elimination, data abstraction, and component restriction. Bandera takes as input a Java program
and generates a validation model corresponding to the program in the input language of one of
several existing verification tools. The approach is based upon using the property to eliminate
(via program slicing) irrelevant components of the program from the validation model, as well as
(via data abstraction) adjust the range of data types to smaller domains. This creates a reduced
model of the program: the specification holds for the program only if the specification holds in
the reduced version of the program. The authors prove that the reduced model is correct for
LT L-based specifications, using a theory of program dependencies [50]. Clarke has also reported
use of the the data abstraction approach for sequential circuit verification, in [23, 19] .

Complezity: We want to consider the power of model extraction techniques in reducing the
size of state spaces. In the case of irrelevant component elimination via slicing, the effectiveness of
slicing for reducing the size of program models varies, depending on the structure of the program:
when program components are tightly coupled, or where large sections of the program are relevant
to the specification, the slicing reduction is only moderate. In the case of data abstraction, the
technique can not only be used to reduce the size of large, finite state models, but also, in the
case of programs with infinite states, such as Java programs, it has the potential to create a finite
state model from an infinite state space.

3.2.4 Partial Order-Based Methods

Partial order-based methods are based on the observation that the execution of a concurrent
program defines a partial order: events occurring within an execution of a concurrent system may
be unordered with respect to each other. This state of affairs arises due to the fact that transitions
in a concurrent program may depend only on a subset of local states, and so can be independent
(in a precise sense) of other transitions, and so execute concurrently.

When concurrency is represented by interleaving, as in the interleaving semantics model, con-
current system behaviours are represented by interleaving sequences, in which the set of events
occurring in an execution is totally ordered. Interleaving semantics models concurrency implic-
itly by representing all possible interleavings of concurrent events. Partial order semantic models

for concurrent programs represent concurrency ezplicitly, by defining only a partial ordering on
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events. Two events are concurrent if they are unordered with respect to the partial order. The
advantage of using a partial order semantic model lies in the fact that the Kripke structure, which
contains all possible interleaving sequences of the program and whose construction is the source
of the state explosion problem, need not be constructed.

Partial order methods exploit these facts in order to combat state explosion in model checking.
In this section, we consider two such methods: partial order reduction, and the method of unfold-
ings. Both of these methods are based on the view of concurrent system executions as partial
orders.

Partial order reduction is based on the observation that interleaving sequences corresponding
to the same concurrent system execution contain related information, and that it may not be
necessary to explore all interleaving sequences in each concurrent system execution in order to
check a property. The approach is based on generating a reduced state space which is guaranteed
to contain enough interleaving sequences in order to check the property. This reduced state
space can often be considerably smaller than the full state space, and may be used with existing
model checking algorithms to check the property in question. Although based on the ideas of a
partial order semantic model (known as trace semantics), partial order reduction methods use the
interleaving semantic model.

In the method of unfoldings, concurrent system executions are represented ezplicitly as partial
orders. An unfolding is a (potentially) exponentially compact (as compared to interleaving se-
mantics) representation of a concurrent system’s behaviour. Unfoldings are generally infinite, and
unsuitable as a basis for model checking algorithms. However, in the case of finite state concurrent
programs, it is possible to construct a finite prefix of the unfolding which is guaranteed to contain
all reachable states of the program. This opens up the possibility for efficient model checking
algorithms which operate on this compact representation.

In this section, we review the key concepts and details of these methods.

Key concepts: Semantic models for concurrent programs: Semantic models for concurrent pro-
grams differ in the way they represent non-deterministic choice (alternative continuations) and
concurrency. Interleaving semantic models model concurrency by interleaving: that is, concur-
rency is represented implicitly. In interleaving semantic models, conceptually, only one transition
is active at any point in time and global states are therefore represented explicitly. Interleaving
semantic models exist in two forms: interleaving sequences, and computation trees. Interleav-
ing sequences model concurrent system behaviours as a total order of global states (or transition
instances). In this model, possible non-deterministic choices between transitions enabled in the
same global state, leading to alternative continuations of the execution, are not represented: each
state reached has one unique successor state. In this model, a concurrent system execution from
a given initial state is represented by a set of interleaving sequences. Computation trees [22] are
another interleaving semantic model, in which possible non-deterministic choice of transitions is
represented. Given a Kripke structure M = (S, So, R, L), a computation tree with root labeled
with sg € Sg is an infinite tree structure, whose nodes are labeled with states of M, such that (i)
the root node ng of the tree is labeled with so, and (ii) n — n' in the tree if and only if (s,s') € R,
where s and s’ in S are the labels of nodes n and n' respectively. A computation tree effectively
collects together all interleaving sequences from a given initial state, and so describes the possible
non-deterministic choices which may be made from a given state in the tree. In this model. all con-
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Table 3.1: Classification of semantic models

non-branching branching

non-explicit concurrency interleaving sequences computation trees

explicit concurrency Mazurkiewicz traces, pom- | branching processes, event
sets, occurrence nets structures

current system executions from a given initial state are represented by a single computation tree.
Interleaving sequences could be referred to as linear-time interleaving semantics, and computation
trees as branching-time interleaving semantics, given their use as interpretations for linear-time
and branching-time temporal logics, respectively.

Unlike interleaving semantic models, partial order models of computation represent concur-
rency explicitly by defining only a partial order between events (or local states). Any two events
(or local states) which are not ordered by the partial order are viewed as being concurrent. Partial
order semantic models for concurrent programs have several advantages over interleaving seman-
tic models: (i) they explicitly represent the inherent concurrency between events in a concurrent
system execution, and so can be viewed as being more expressive, and (ii) they are potentially ex-
ponentially more compact than their interleaving counterparts. For these reasons, various partial
order semantic models have been considered in the literature, including pomsets [90], Mazurkiewicz
traces [76], occurrence nets [94], event structures [85] and branching processes [32]. Of these par-
tial order models, some explicitly represent non-deterministic choice, and some do not. Table 3.1
illustrates the various possibilities for representing concurrency and non-determinism in a semantic
model for concurrent programs.

Trace semantics: Trace semantics [76] is a partial order-based semantic model for concurrent
programs. The semantic model is based on defining an equivalence relation on interleaving se-
quences. Traces are equivalence classes of interleaving sequences under this equivalence relation.
The equivalence is based on the notion of dependence relation between transitions of the concur-
rent system, which is in turn based on the notion of independence between transitions. Let T
represent the set of transitions of a concurrent program P. An anti-reflexive, symmetric relation
I C TxT is an independence relation if for any (t,t') € I and any state s, (i) if t € enabled(s), then
t' € enabled(t(s)) (i-e. t and t' do not enable or disable each other at s) and (ii) if t, ¢’ € enabled(s),
then t(t'(s)) = t'(t(s)) (i.e. t and ¢’ commute). The dependence relation D of T is the complement
of the independence relation I: D = (T x T')\ I. The dependence relation is a reflexive, symmetric
relation on T, and so can be used to define an equivalence relation on the set of finite interleaving
sequences of the program (where interleaving sequences are represented by finite strings in 7°):
two paths w,w' € T* are equivalent iff one can be obtained from the other by a finite number of
permutations of adjacent, independent transitions. A trace is an equivalence class of paths, and
is denoted by [w], where w is any path in the trace. For any two paths in a trace, they contain
the same transitions and lead to the same final state. The notion of traces has been extended to
infinite paths [64]. A run of a concurrent program P is a trace that contains maximal interleaving
sequences of P . Thus, the run is finite if and only if each one of its sequences cannot be extended
by another operation. Trace semantics effectively partition the set of all maximal interleaving
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sequences into runs, where each run represents a concurrent system execution: the set of events
fired in that execution, and all possible equivalent paths containing those events.

Unfoldings: An unfolding |32] is a structure which represents, in a unique way, the behaviour of
a concurrent program, modeled as a Petri Net, in terms of local states and transitions. Unfoldings
represent non-deterministic choice and concurrency explicitly. We should like to convey informally
the essential features of unfoldings and how they represent behaviour of concurrent programs, but
it seems difficult without depending on at least some terminology related to Petri Nets. We
therefore review some basic terminology. The definitions presented here are from Esparza [62].

A net (P,T,W) consists of a set of places P, a set of transitions T, and a function W where
W :(PxT)U(T x P) - {0,1}. Elements of the set P U T are referred to as nodes. When
W(z,y) = 1, this represents an arc from node z to node y. A net can be viewed as a directed
graph, where the verticies are represented by nodes and edges are represented by arcs. A path
through the net (viewed as a directed graph) is a non-empty sequences of nodes such that, for
each node, there is an arc leading to the following node (if one exists). The preset of a node z,
denoted *z, is the set {y € PUT|W(y,z) = 1}. Similarly, the postset of a node z, denoted z°,
is the set {y € PUT|W(z,y) = 1}. A marking of a net (P,T,W) is a mapping M : P —» N
where N is the set of natural numbers. A tuple (P, T, W, Mg) is a net system if (P,T, W) is a net,
and My is a marking of (P,T,W). My is referred to as the initial marking of (P, T, F, Mp). In
what follows, we shall require the use of nets with associated labellings. A labeled net is a pair
(N,1) where N is a net, and [ is a labeling function which maps nodes of N to some set of labels.
Informally, a net can be used to represent the local states and transitions of a concurrent system.
Markings represent possible global states of the net. A net system represents a concurrent system
which additionally has a specified initial state, represented by the initial marking.

The partial order semantics of net systems are based on occurrence nets and branching pro-
cesses. Informally, occurrence nets are a restricted form of the general net defined above, used
as a basis for the partial order representation of execution behaviour of a net system. Branching
processes, in turn, are occurrence nets paired with a mapping which ties the occurrence net to
a specific net system. Before introducing occurrence nets and branching processes formally, we
introduce some useful terminology. Again, viewing a net as a directed graph, we may define a
number of key relations between nodes in the net. For z,y € PUT, z causally precedes y, denoted
z <y, if there is a directed path from z to y in (PUT, W). The reflexive, transitive closure of the
relation < on nodes is denoted by<. For z;,z2 € PUT, z; and z are in conflict, denoted r#y,
if there exist distinct transitions t1,t, € T such that ®¢; N *ty # 0, and t; < z1and ¢tz < z2. For
z € PUT, z is in self-conflict if z#z. For z,y € PUT, z is concurrent with y, denoted z coy,
if neither z < y nor y <  nor z#y. These relations identify the way in which causality, conflict
and concurrency are explicitly represented in this partial order view of semantics.

An occurrence net is anet O = (B, E, F) satisfying the following conditions: (i) for every b € B,
|*b| < 1, (ii) O is acyclic (the directed graph corresponding to the net is acyclic, or equivalently, the
causal precedence relation < is a partial order) (iii) O is finitely preceded (every node in the net
has finitely many causal predecessors) and (iv) no transition t € T is in self-conflict. The elements
of B are referred to as conditions, and the elements of E are referred to as events. Occurrence
nets define a partial order on the elements BU E. It can be shown that, for any two nodes z,y

of the occurrence net, z and y are either causally related, concurrent, or in conflict[62]. In this
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way, occurrence nets explicitly represent the causality, conflict and concurrency relations between
the nodes B and E. Informally, when using occurrence nets as a basis for the representation of
the execution behaviour of a net, the elements of B are interpreted as local state instances, and
elements of E as transition firings.

Branching processes allow associating the execution behaviour represented by an occurrence
net with a specific net system. Let £ = (P,T, W, M) be a net system. A branching process of T is
a labeled occurrence net (O, p) = (B, E, F,p) where the labeling function p satisfies the following
conditions: (i) p(B) € P and p(E) C T (ii) for every e € E, the restriction of p to ®e is a bijection
between *e and °p(e), and similarly for e* and p(e)*® (iii) the restriction of p to Min(O) is a
bijection between Min(O) and My (iv) for every e;,e; € E | if *e; = ®e, and p(e;) = p(ez), then
e; = ey. Branching processes of ¥ are occurrence nets whose conditions and events are labeled
by the places and transitions of ¥. A branching process can be used to represent one or more
executions of the net system, either in part or in full.

For the purposes of verification, we are interested in obtaining a branching process which
represents all possible executions of the net. In order to ensure that all possible executions are
represented, an ordering relation is defined on branching processes, describing when one branching
process contains another. Let §' = (O',p') and 8 = (O, p) be two branching processes of a net
system. B' is a prefiz of B if O' is a subnet of O satisfying (i) Min(O) belongs to O'(ii) if a
condition b belongs to 0, then its input event e € *b in O also belongs to O'and (iii) if an event
e belongs to O, then its input and output conditions ®*e U e* in O also belong to O' and p' is the
restriction of p to O'. The unfolding of a net system is a branching process which is mazimal with
respect to the prefix ordering relation on branching processes. It is unique up to isomorphism, and
represents the complete behaviour of a concurrent program, in terms of local states and events [32].
As noted earlier, the occurrence net associated with the branching process (O,p) = (B, E, F,p)
represents local state instances B and events E of the net system, and the causality, conflict and
concurrency relations between them. In particular, the causal precedence relation defines a partial
order. In this sense, the unfolding of a net system is a partial order representation of behaviour
of the net system (concurrent system).

Given an unfolding of a net system, which represents all possible execution behaviours of
the net system in a single structure, a means of representing individual concurrent executions is
required. A configuration C of a branching process is a subset of events satisfying the conditions
() ee C =>Ve <e:e €C and (ii) Ve,e' € C : —(efe’); that is, a configuration of a branching
process is a set of events which is closed under the causality relation, and contains no conflicting
events. Configurations represent partial order views of prefixes of concurrent system executions.

Maximal configurations correspond to runs (concurrent system executions).

3.2.4.1 Partial Order Reduction Methods

Partial order reduction methods are based upon using a modified search of the program state
space, known as a selective search, to generate a reduced state space which has fewer states and
transitions than the full program state space. In a selective search, for each state s reached during
the search, instead of exploring the set of all transitions enabled at s, enabled(s), only a subset of
transitions is explored. The subset of transitions explored is chosen carefully. so as to guarantee
that the reduced state space satisfies the desired property if and only if the full state space satisfies
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the property. The reduced state space is then used for verification of the property, using standard
model checking algorithms.

Various treatments of this approach have been investigated in the literature, and vary in the
way in which the subset of transitions is computed and the class of properties to which the method
is applicable. These include the persistent set method [45, 46], the stubborn set method [112, 113],
and the ample set method [86].

The approach is loosely based upon the notion of trace semantics; in particular, the obser-
vation that interleaving sequences corresponding to the same concurrent system execution (i.e.
a trace) contain related information, and that when the property to be verified is insensitive to
this equivalence, not all interleavings corresponding to a concurrent system execution need be
explored. Although inspired by this notion, Godefroid notes in [46] that in some cases (e.g. the
detection of deadlock states), the reduced state space need not contain at least one interleaving
sequence for every possible concurrent execution of the program.

In the following sections, we review the key concepts and details of the approach.

Key details of the approach: We illustrate the approach with the basic persistent set selective
search method of Godefroid, presented in [45], which aims to create a reduced state space sufficient
for detecting deadlock states. The reduced state space search is based on a modified state space
exploration algorithm in which only a persistent set of transitions, denoted by ps(s), is explored.
Informally, a set of transitions ps(s) C enabled(s) is persistent at s if when firing any finite sequence
of transitions from T'\ps(s) to reach a state s', the transitions in ps(s) will still be enabled in s'.
More formally, a persistent set is defined as follows:

Definition 3.3. A set T of transitions enabled in a state s is persistent in s iff, for all non-empty
sequences of transitions s = s, 2N So 4 $3-.. t"—")' Sn ty $nt1 from s in the full state space and
including only transitions t; € T, 1 <1 < n, t, is independent in s, with all transitions in T.

Figure 3.3 shows a modified state space search based on computing and exploring only a
persistent set of transitions at each state reached.

1  Stack := empty;

2  H := empty;

3 push initial state onto Stack;

4  while (Stack is not empty)

5 pop s from Stack;

6 if (s is not in H) then

7 insert s in H;

8 T := ps(s);

9 foreach t in T do

10 s’ := the state that results from executing ¢ in s;
11 push s’ onto Stack;
12 endforeach

13 end while

Figure 3.3: Algorithm for depth-first persistent set search

Using this fact, Godefroid showed that, by performing a reduced state space search based on
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persistent sets, any deadlock state reachable in the full state space will also be reachable in the
reduced state space. The proof is based on the observation that, on a path of length k from a state
s to a deadlock state d, if only transitions from outside the persistent set ps(s) are fired, then all
transitions in ps(s) will remain enabled in state d, and so d cannot be a deadlock. Therefore. at
least one transition ¢ from ps(s) must be fired on the path from s to d. By suitable permutations
of independent transitions in the path, an equivalent path of length k in which ¢ is fired from s
can be produced (and which can be shown to be explored by the persistent set selective search).

In order to implement the algorithm in Figure 3.3, a method is required to compute, for each
state s reached in the search, a persistent set ps(s) of transitions at s. Peled has shown [19.
Chapter 10] that the complexity of checking that a given set of transitions T is persistent is
equivalent to checking reachability of the full state space. For this reason, rather than checking
arbitrary subsets of enabled transitions for the persistence property, algorithms have been devel-
oped which are guaranteed to produce persistent sets of transitions. Godefroid has summarized
several approaches to computing persistent sets presented by several authors in [46]. Each of these
approaches compute persistent sets based on the static structure (program text) of the system
being verified.

Godefroid extended his theory in [46] to cater for general safety properties and properties
expressed by linear-time temporal logic formulas, as well as deadlocks. These properties require
more complex theoretical arguments for proving that properties are preserved. Valmari and Peled
also considered the detection of general safety and liveness properties using partial order reduction,
in the reports mentioned earlier.

In the case applying the partial order reduction approach to linear-time temporal logic formu-
las, special care must be taken to ensure that the temporal property is not sensitive to the order
of independent transitions in the system (which the selective search algorithm may depend on
permuting). In some approaches to applying the method to linear-time temporal logic formulas,
this problem is solved by requiring that all visible transitions (those transitions which may affect
the truth value of one or more of the propositions in the temporal formula) are considered as
being dependent, and restricting the class of properties to be checked to those which are stuttering
invariant. Informally, a linear-time temporal logic formula f is invariant under stuttering if when-
ever the formula f holds on a given interleaving sequence, the formula also holds on any sequence
obtained from the original sequence by stuttering (repeating) any state of the sequence a finite
number of times.

Ezamples from the literature: Godefroid developed a theory of partial order reduction based
on persistent sets which caters for the detection of deadlocks [45], safety properties (48] and linear
temporal logic properties. A summary of these works is presented in his PhD thesis [46]. Valmari
developed a theory of partial order reduction based on stubborn sets, catering for the detection of
deadlocks [111], and general linear-time temporal logic properties [112]. Finally, Peled developed
a version of the theory based on the notion of ample sets, first presented in a proof context in [88],
and re-presented in a model checking context in [86]. A very concise and informative summary
of partial order reduction, presented from the point of view of ample sets, is presented in [19,
Chapter 10].

The method has been combined with other approaches: partial order reduction and on-the-fly
automata theoretic model checking were considered in [87]; partial order reduction and symbolic
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model checking were considered in [4]. Partial order reduction has been perhaps most notably the
key approach to combating state explosion in the model checker SPIN [55].

Complezity: In the case of partial order reduction, the improvement realized is difficult to
quantify, as the reduction obtained from the method varies over a fixed input size (size of concurrent
program + size of formula). The effectiveness of the approach depends upon (i) the degree of
concurrency of the concurrent program, which determines the number of equivalent sequences in
each equivalence class and (ii) the degree to which the property is sensitive to the interleavings
of concurrent events. Thus, the same program can have very different reductions, depending on
the property being verified. However, as reported in the literature, impressive results have been
found in many cases.

3.2.4.2 Methods based on Unfoldings

The unfoldings approach to model checking is based on representing the behaviour of a con-
current program by its unfolding. Model checking based on unfoldings involves a two-step process:
in the first step, a finite prefix of the unfolding is generated, which is guaranteed to contain all
reachable states of the finite state program; in a second step, the finite prefix is used as input to
a model checking algorithm, which implicitly checks if all execution sequences consistent with the
finite prefix satisfy the property in question.

Key details of the approach:

The first use of unfoldings as an approach to combat state explosion in model checking was re-
ported in McMillan [63]. The approach was based the idea of using the unfolding as a partial order
representation of the behaviour of a concurrent program. The advantage of using the unfolding is
that, compared with the Kripke structure or similar formalism based on interleaving semantics, it
is an exponentially compact representation. The problem with the unfolding however is that it is
generally infinite, for concurrent programs with non-terminating executions. McMillan proposed
to avoid this problem by computing a finite prefix of the unfolding, with the property that it
contains all reachable states of the concurrent program. This finite prefix could then be used as
a basis for analysis. In [63], McMillan presented an algorithm for computing a finite prefix of the
unfolding of a 1-safe Petri Net. The finite prefix is constructed by modifying the construction of
the full unfolding, so that unfolding does not proceed beyond what are known as cut-off events.
Cut-off events are events in the computation which, when fired, reach states already visited during
the construction. McMillan proved that such an approach does result in a finite prefix containing
all reachable states. In [62], Esparza noted that the size of McMillan’s complete prefix can be
larger than necessary: in some cases, the size of the minimal complete prefix is O(n), where n is
the size of the Petri Net, while McMillan’s algorithm generates a prefix of size O(2"). An improved
algorithm is presented in [62].

In his original paper, McMillan showed how the finite prefix could be used to answer ques-
tions about the behaviour of the concurrent system. In particular, he showed how to solve the
reachability of a terminal state (or deadlock) problem in terms of the finite prefix of the unfolding,
using an algorithm based on the branch and bound techniques. McMillan notes that although the
problem of determining the existence of a terminal marking in an occurrence net is N P-complete.
the problem is solved in practice for even very large unfoldings.

Ezamples from the literature: The unfoldings approach introduced by McMillan has been ex-
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tended in various ways: to checking ever larger classes of properties (general reachability, temporal
logic) and in applying different algorithmic techniques. In [34, 116, 33|, the unfoldings approach
has been combined with automata-theoretic model checking, in order to check general properties
specified using linear-time temporal logic. In this approach, a synchronized product is defined
between a Petri Net and Buchi automaton on observable places only. Melzer et al. [79] combined
the unfoldings approach with linear programming in order to perform reachability analysis. In
this approach, a marking equation is used to define the constraints which hold during reachability
analysis. The marking equation is a set of inequalities which characterize the set of reachable
markings of an acyclic net. This equation is then solved using linear programming techniques.
Heljanko [54] used the finite prefix of the unfolding together with logic programming in order to
perform reachability analysis. In this approach, the reachability problem is translated into a rule-
based logic program. This effectively reduces the reachability problem to SAT. A SAT-checker
is used to check for a stable model.

A comparison of several of these approaches, as applied to reachability analysis, appears in
[96].

Complexity: In the case of unfoldings, there are some interesting results. Reachability analysis
is PSPAC E-complete in general (for systems represented by automata communicating through
rendez-vous communication or bounded buffers, or as synchronous products of transition systems,
or as 1-safe Petri Nets) [96]. In [96], Esparza shows that this complexity is reduced to N P-complete
(in the size of the complete prefix) when carried out using finite prefixes.

3.2.5 Distribution-based Methods

The main computational task of the model checking problem is the exploration of the program
state space, which is limited primarily by the amount of available memory on the machine on which
model checking takes place. When the size of the validation model is such that the state space
does not fit into main memory, virtual memory must be used to store parts of the model. Given
that the state space exploration algorithm, whether depth first search or breadth first search,
requires random access to the visited states of the state space, some of these which may reside in
virtual memory pages on disk, this results in thrashing and a marked decrease in computational
performance. As with other large computational problems, we can increase the size of the problems
which can be handled by introducing additional processing power and random access memory.

The distribution-based approach to addressing state explosion in model checking is based
upon distributing the model checking problem over a network of workstations. The immediate
advantages of this approach are that (i) a virtually unlimited amount of random-access memory
is made available to the solution of the problem, which is important as the amount of available
memory is generally the limiting factor in the model checking of large validation models, and (ii)
with the availability of multiple processors, parallel processing techniques may be used to achieve
a potential speedup solving the problem.

Distribution of the problem is based upon a partitioning of the state space, with the state
space being partitioned into as many regions as there are workstations. Each workstation node is
responsible for exploring the portion of the state space belonging to its assigned partition.

The method has been applied successfully to the problem of determining reachability (67],
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as well as the general LT'L model checking problem [9, 7, 8], with very promising results. This
success is dependent upon resolving some key issues involved in developing a parallel version of a
sequential model checking algorithm.

In this section, we review the key concepts and details of the approach.

Key details of the approach: Distributed reachability analysis has been considered by sev-
eral investigators in the literature [1, 102, 67]. To illustrate the issues of the distribution-based
approach, we review the key issues of the distribution-based approach to reachability presented
in [67]. Lerda et al. considered the problem of distributing the model checking problem over a
network of workstations, in the case of checking reachability and safety properties only. Their
work was based on the model checker SPIN, which uses an algorithm based upon the automata-
theoretic approach to model checking, where both the concurrent system and the property to be
checked are represented as automata. In this context, solving the model checking problem reduces
to solving a reachability problem (via depth-first search) in a product state space, formed by the
synchronous product of the automaton representing the concurrent system, and the automaton
representing the negation of the property: that is, the task is to discover reachable acceptance
states in the product space. In their approach, the depth-first search exploration of the state space
is distributed over a network of N workstations. The distribution of the problem is based upon
partitioning the state space into a set of N regions, one for each workstation. Each workstation is
then responsible for managing its region of the state space, which entails exploration of successors
of states in its partition, as well as storing visited states belonging to its partition in a local hash
table, V[i]. Each workstation executes the same algorithm, Visit(), a modified version of a clas-
sical depth-first search algorithm. A local pending queue, Uli], is used to store states belonging
to partition ¢ which have yet to be processed. According to the algorithm, each process proceeds
by checking for a state to be processed in its local pending queue, U[i]. If a state is found, the
algorithm checks if the state is already in its set of visited states, V[i]. If it is present, no further
exploration takes place. If it is not present, the successors of the state are determined. For each
successor, a partition function partition(s) is used to determine which partition the successor state
belongs to. If the successor state belongs to the local partition 7, and has not been visited, it is
explored locally; if the successor state belongs to the partition of another process j, the state is
sent to the local pending queue U[j] for processing by the remote workstation. When exploration
of all local successors has completed, which may involve recursion, the algorithm checks the local
pending queue U[i] for the next state to process.

In addition to the N processes executing copies of the algorithm V'isit(), a manager process
is used to coordinate the initialization of the algorithms, as well as detect termination of the dis-
tributed algorithm. Initialization consists of determining which partition the initial state belongs
to and sending that state to the designated local pending queue. Termination detection is required
as each instantiation of the Visit() algorithm will wait indefinitely for new states in its partition
to arrive from remote processors in its local pending queue Uf[i}, and will continue to wait even
though all queues U[] may be empty and no messages are in transit.

Because exploration of states occurs in parallel, the depth-first search exploration order {pos-
torder) is not preserved by the distributed algorithm. Lerda et al. note that, although this does
not pose a problem for reachability analysis, where exploration order does not matter, it does
mean that the algorithm is not adequate for checking general LT L properties, where instead of
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searching for reachable acceptance states in the product automaton, the algorithm must discover
reachable acceptance cycles. The algorithm of Courcoubetis et al. [26] used by SPIN to check
general LT L properties depends on reachable acceptance states being processed in postorder.

A major issue in the success of the approach is how to partition the state space. Lerda et
al. note that a partition function should satisfy three desirable properties: (i) determining the
partition for state s should be a function of that state alone (ii) the partition function should
balance the number of states in each partition and (iii) the partition function should minimize the
number of cross transitions (those times when a successor state belongs to a different region and
must be sent to a remote pending queue). The authors consider two strategies for partitioning: one
strategy based on partitioning the state space according to hash function - this leads to balancing
of the number of states in each partition, but does not do well in minimizing cross transitions; and
another strategy based on partitioning according to the state values taken by a single component
(the designated process) - this balances the workload, and at the same time generates a lower
number of cross transitions, on average.

One of the important functions of a state space exploration approach is the ability to generate
an error trace when an error is encountered. Generating an error trace is complicated by the fact
that in the distributed version of the algorithm, we no longer have a stack containing a full path
to the current state: each process stack only contains states in its partition. The authors solve
this problem by sending to the remote pending queues not only the remote state, but also a path
(sequences of transitions) to that state, relative to the previous state on that path from the same
partition. Thus, the pending sets U[i] contain relative paths to remote states, which can be used
to reconstruct the full path to each state in U[i]. In this way, each process will contain a complete
error trace in its stack, and can be used to produce the required error trace.

Finally, the authors note that it is important that any gains introduced through distribution
of the problem should not rule out the use of other state space reduction methods. In particular,
they show that their algorithm is compatible with such methods used by SPIN, such as bit state
hashing, partial order reduction, and state compression.

Ezamples from the literature: The distribution-based approach to reachability has been ex-
plored by several researchers, and in the context of several different model checking environments
[1, 102, 67]. Barnat et al. have investigated several approaches to the application of the method
to general LT L model checking. In [9], the authors extend the method of Lerda et al. to general
LTL model checking based on a nested depth-first search through the introduction of a depen-
dency structure. This structure is used to maintain successor relationships between acceptance
states and transfer states (those states involved in cross transitions) encountered in the search
and allow the algorithm to enforce the required post order when reachable acceptance states are
explored. Other approaches based on property-driven distribution of the state space [7], in which
the property is used as a basis for partitioning the state space, and negative cycle detection [12],
in which the problem of detecting accepting cycles is reduced to a problem of detecting negative
length cycles, which admits a more efficient parallel solution, have also been explored. A review
of these approaches is presented in [11].

Barnat et al. have also considered distributed LT L model checking based on breadth-first
search in [8]. The authors note that this approach has two advantages over depth-first search
based exploration: firstly, that breadth-first search is more amenable to parallelization than depth-
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first search, due to the fact that exploration is based on discovering successors in a frontier of
states and this can simplify parallelization of the algorithm; secondly, that unlike the algorithm of
Courcoubetis et al., it does not require postorder exploration of reachable cycles from reachable
acceptance states.

Limitations of the method: This is a very promising approach, as it caters to both reachability
analysis, which is sufficient for checking reachability and general safety properties, as well as
general LTL model checking. In particular, it places no restrictions on the class of problems
which may be considered.

One area of difficulty is ensuring compatibility with other state space reduction methods -
each method needs to be adjusted to the distributed approach, resulting in costly re-engineering
of complex algorithms. As cited in the examples above, this re-engineering may or may not be
successful.

Complexity: In the case of the distributed reachability algorithm of Lerda et al. they demon-
strate that the partitioning function based on states of a designated process is superior to that of
the hash function. In both cases, the space complexity per process is O(|S|/N), where NV is the
number of processes. In the case of cross transitions, which can be viewed as message complex-
ity of the distributed algorithm, the average fraction of cross transitions is O(N — 1/N) in the
case of the hash function partition approach, which tends to 1 as N increases; in the case of the
designated process approach, the average fraction of cross transitions is O(@q * k/P), where P is
the number of processes, k, the number of processes per transition, and ¢4, the fraction of cross
transitions on the designated process. The time complexity per process is linear in the number
of states considered per process, made up of O(|S|/N) states from the region, together with cross
states encountered.

In the case of distributed model checking of LT L formulae, as presented in [9], they note
that the memory complexity is on average linear, in the size of the state space and the degree of

non-determinism present.

3.3 Summary

Model checking is an automatic method for the verification of finite state concurrent programs.
Given a concurrent program P and a specification of temporal behaviour ¢, model checking
allows determining if all executions of the concurrent program satisfy the temporal specification
of behaviour.

The main limitation of the model checking technique is the state explosion problem; the fact
that state space of a concurrent program can be exponential in the size of the program. The main
cause of the state explosion problem is the representation of concurrency by interleaving.

Given that the model checking problem is PSPAC E-complete, any attempt to produce an
efficient (polynomial complexity) algorithm for model checking, in the general case, is unlikely
to succeed. Thus, approaches to combating state explosion cannot eliminate the problem for
model checking; rather, they mitigate the problem by allowing ever larger validation models to be
validated.

In this section, we surveyed the broad classes of approaches to dealing with the state explosion

found in the literature:

46



automata-theoretic methods

symbolic methods

mode] extraction-based methods

partial-order methods

o distribution-based methods

These approaches vary in their view of how the state explosion problem in model checking may
be mitigated. The reduction achieved by many of the methods, for a given problem size, varies
depending on the particular combination of concurrent program and temporal property considered.

In the next chapter, we move our attention to the problem of trace checking, and examine the
origins of state explosion in the trace checking problem, and the techniques for dealing with state
explosion which have been considered.
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Chapter 4

Dynamic Property Detection and
The State Explosion Problem

As we saw in Chapter 2, many important problems in distributed computing can be cast as
executing some notification or reaction when a distributed system execution satisfies a desired
temporal evolution of states, or dynamic property. In particular, we examined examples from
the implementation of distributed algorithms, testing and debugging of asynchronous distributed
computations, as well as providing fault-tolerance in asynchronous distributed computations.

The dynamic property detection problem involves checking that the execution of an asyn-
chronous distributed program (distributed computation) satisfies a desired temporal evolution of
states, or dynamic property. Unlike model checking, which considers all executions of a concurrent
system, dynamic property detection is concerned with checking a single execution.

We consider the property detection problem in the context of asynchronous distributed systems.
Unlike synchronous distributed systems, in which timeliness guarantees are placed on processor
execution speed and message communication, and execution is arranged to proceed in lock-step,
asynchronous distributed systems have relatively few guarantees and so exhibit a greater range of
execution behaviours.

Any process intending to carry out property detection must have a means for constructing
global states, and this involves somehow monitoring the execution in order to obtain information
to be able to construct such states. The monitoring problem for asynchronous distributed systems
is complicated by two key characteristics of asynchronous distributed systems: distribution, and
the relativistic effect. Firstly, a global state of the system is distributed throughout the system: it
is made up of the local states of the various processors, together with the states of communication
channels. These local process states and channel states need somehow to be gathered together
to produce a global state. The assembly of such states must be performed with care, as not all
global states which may be constructed on the basis of monitoring are meaningful. Secondly,
the relativistic effect, which describes the fact that, due to the absence of timeliness guarantees,
different processes may see different orderings of events in the same distributed computation, may
result in different processors coming to different conclusions as to the actual states or sequences of
states through which a distributed computation may have passed. Both of these key factors make
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property detection in asynchronous distributed systems challenging. Indeed, although synchronous
distributed systems are also distributed, they do not exhibit the relativistic effect.

Given this dependence on monitoring, an important aspect of property detection is the mon-
itoring strategy employed. When properties are stable, detection of dynamic properties can be
based on the construction of individual global states of the distributed computation. By peri-
odically testing the value of a stable property on a constructed global state of the computation,
correct detection of the property can be assured. Such a construction of individual global states
can be based on an active monitoring strategy, wherein the process or processes performing de-
tection actively probe the distributed computation for local state information, and, using this
information, construct a consistent (meaningful) global state of the distributed computation. The
snapshot protocol of Chandy and Lamport is based on such a monitoring strategy.

For the detection of properties which are not stable, detection must be based on passive
monitoring and the construction of observations. Observations are views of the distributed system
execution which are in a sense complete: the effect of every event occurring in the distributed
computation is represented. An observation represents one possible sequence of states through
which the computation may have passed. In passive monitoring, processes participating in the
distributed computation send local information corresponding to state transitions of interest to
a monitor process, which passively receives them. The monitor process may then build up an
observation of the computation based on the received information.

Unfortunately, due to the relativistic effect of asynchronous distributed computations, no indi-
vidual process can ever know the actual sequence of states which the computation passed through.
This necessitates the introduction of modal operators, such as Pos and Def, in order to make the
problem of detecting unstable dynamic properties well defined.

Property detection in the general case, as based on a passive monitoring strategy, can be viewed
as having four distinct phases:

Specification: Specification involves describing the desired temporal evolution of states of the
distributed computation, or dynamic property, in some formalism. A variety of formalisms
are used for describing properties, including predicates on global state, regular languages and
automata, or temporal logics. Modal operators provide a variety of semantic interpretations

required for different application purposes.

Modeling: In the modeling phase, the distributed program is instrumented with (redundant)
code to generate event notifications, where each event notification represents a transition of
interest of the system execution. The event notifications together comprise the verification
model (execution trace) of the system execution. The verification model should contain
enough information to allow verification of the property, but it will, in general, represent an
abstract model of the execution. The resulting model is used in the verification/detection

phase.

Execution and Monitoring: In this phase, the instrumented distributed program is executed
and generates a verification model (execution trace) representing the execution. The elements

of the verification model are collected by one or more monitors and stored for later analysis.

Verification/Detection: The verification model (execution trace) generated during the program
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execution and monitoring phase is analyzed, in order to determine if the execution trace sat-
isfies the specified property. As noted in Chapter 2, detection may take place concurrently
with execution/monitoring, in as run-time trace checking, or after execution of has termi-
nated, as in post-mortem trace checking. The different times at which detection takes place
are a result of application-specific requirements.

The main limitation of dynamic property detection based on passive monitoring is the state explo-
sion problem, which arises when the distributed computation being verified contains a high degree
of concurrency, and so results in large number of possible observations. The state explosion prob-
lem effectively places an upper bound on the size of systems for which general dynamic properties
can be detected.

In the rest of this section, we briefly present background relevant to the dyvnamic property
detection problem, and examine how the state explosion problem arises in dynamic property
detection. The remainder of the chapter is devoted to examining the approaches to combating
state explosion in dynamic property detection.

4.1 Fundamentals of Dynamic Property Detection

In our investigation, we focus on the detection of dynamic properties in asynchronous dis-
tributed systems, for several reasons. Firstly, asynchronous distributed systems are generally
considered a realistic model of distributed systems occurring in practice. Secondly. any results
obtained for asynchronous distributed systems will be applicable to distributed systems in which
stronger guarantees on process execution and message passing are in effect. In this way, results
obtained for asynchronous distributed systems represent a lower bound on what is possible.

An asynchronous distributed system is a collection of n sequential processes Py, ..., P, which
communicate solely through the exchange of messages. Processes do not share memory. and do
not have access to a global clock. Furthermore, no assumptions are made concerning the relative
speeds of processes. Communication is achieved via one-way message channels x;; between pairs
of processes P; and P;, i # j. Communication is assumed to be reliable, but it may be subject
to arbitrary but finite delays. No assumptions are made about the order in which messages are

received with respect to the order in which they are sent.

Monitoring Asynchronous Distributed Systems

A key aspect of solving the dynamic property detection problem in asynchronous distributed
system concerns the physical limitations of monitoring the execution behaviour of such systems.
In an asynchronous distributed system, due to finite but arbitrary delays in the transmission
of messages between processes, as well as the lack of any guarantees on the relative speeds of
processes, it is not possible for any process within the distributed system to determine the actual
sequence in which events in the distributed computation have occurred.

As Lamport showed in [65], the best information available in a distributed system concerning
the relative ordering of events (or local states) must be based on causality relationships between
events in the distributed system. The happened-before relation [65] is a irreflexive, transitive
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relation on events occurring in a distributed system, based on the causal relations between events
induced by execution of events at processes and any message passing occurring between processes.

The happened-before relation defines a partial order on the set of events occurring in the
distributed computation. Although the happened before relation does not determine an actual
total ordering of events (or global states) through which the computation passed, it does limit
the possibilities: any sequence of events which is consistent with the happened before relation
represents a possible sequence of events through which the computation may have passed.

We define the happened-before relation on the events of a distributed computation formally
below. One important advantage of the happened-before relation is that it can be implemented
fairly efficiently in a distributed system through the use of vector clocks [74]. The vector clock en-
coding of causality in a distributed computation represent an important foundation for algorithms
for property detection.

Modeling Executions of Asynchronous Distributed Systems

In this section, we present the formalisms used to formally model the executions of asyn-
chronous distributed programs. We adopt the notation of [83].

The activity of each sequential process participating in the distributed computation is modeled
as a sequence of events, where each event corresponds to an internal state change, the sending of a
message, or the receipt of a message. In the case of communication events, we denote the sending
of a message m by send(m) and the corresponding receipt of the message m by receive(m).

The local history of a process P; participating in the computation is a sequence of events
h; = ele?.... where the superscript indicates the sequential order in which the events occur
within process P;. We shall use h¥ to denote the prefix of length k of the local history hi!. The
global history of the computation is the set H = h; U ... U hn containing all events executed in
the system.

As mentioned in the previous section, the best information we have concerning the relative

order of occurrence of events is given by the happened before relation [65] —:
1. if ef,e% € h; and j < k then & — ef

2. if ; = send(m) is a send event, and e; = receive(m) is the corresponding receive event,

then e; = ¢;
3. ife; = €; and e; —% €k, then e; — e

Additionally, it is assumed that for any event e € H, (e — e) holds true (Lamport notes that
systems in which an event happens before itself are not physically meaningful). Under this assump-
tion, the happened-before relation is an irreflexive partial order relation [65]. The happened-before
relation reflects the causal precedence between events occurring in the distributed computation
induced by sequential process execution and message passing. We therefore sometimes refer to

this relation as the causal precedence relation.

1 Although the variables hg,h{-‘ refer to sequences of events, we shall also require referring to ‘the set of events
making up those sequences. We use the same notation to refer to both the sequence of events and its corresponding
set of events. The intended meaning should be clear from the context.
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Figure 4.1: Two views of a distributed computation.

A distributed computation is the partially ordered set (H,—), where +C H x H is the binary
causal precedence relation. Distributed computations are a partial order representation of the
execution of an asynchronous distributed program. Distributed computations can be visually
represented by a space-time diagram, where the execution of each process P; in the computation is
represented by a horizontal line, labeled with events from h; in increasing order from left to right,
and messages between processes are represented by directed arrows, again proceeding from left to
right. Figure 4.1(a) shows a sample distributed computation involving two processes.

Although the distributed computation has thus far been described in terms of events and their
ordering, we shall require a corresponding state-based view. Let o denote the local state of the
process P; immediately after having executed event ef. The local state of a process consists of a
set of local variables (including the program counter) and the current values of those variables in
that state. Let 0¥ denote the initial state of the process, before any events have been executed.

A global state of the distributed computation will be defined as an n-tuple of local states
Y = (o}, ... ,08), one for each process in the computation.

Not all global states which can be assembled as a tuple of local states are meaningful. Each
global state T defines a subset Cut(X) = h$! U... U A% of the global history called a cut. A
cut of the global history can be thought of as a moment in time in a distributed computation:
it divides the global history into events which came before the cut, and events which come after
the cut. A global state is consistent if the cut associated with it is left-closed under the causal
precedence relation: that is, ¥ is consistent if Ve,e' € H (e € Cut(Z)) A (e = e) = €' € Cut(Z).
Left closure and the causal precedence relation ensure that whenever a receive event belongs to
a cut, so does its corresponding send event. Cuts which are not consistent violate this property
and are not meaningful, in the sense that they do not correspond to physical reality. Define the
frontier of a cut C , denoted frontier(C), to be the maximal set of events of C, with respect to
the sequential ordering of processes. Given a cut C = h{* U... U hS, the frontier of C is the set
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of events {ef*,... e }.

Given a distributed computation v = (H, —), let 2 = ele2e®... be any total ordering of the
events in H which is consistent with the partial order defined by causal precedence relation — of
7. Q1 is called a sequential observation of the distributed computation . A sequential observation
can be thought of as a sequence of events which would arise if the distributed program were
executed on a machine with a single processor. For each sequential observation ! = ele2e3 .. ..
there is a corresponding sequence of global states £°S1X2. .. where I° represents the initial state
(63,-..,05) and each global state T is obtained from the previous global state £i~! by some
process executing the event e’ in v. Because € is an ordering of events consistent with the partial
order relation — of H, each of the states £? is consistent. In the sequel, we shall use the term
sequential observation, or observation, for short, to refer either to a total ordering of events of the
distributed computation, or its corresponding sequence of global states. The interpretation should
be clear from the context. We denote the set of all observations of a distributed computation ~
by Q,.

For two adjacent global states £*~!, &% of the observation Q, their respective cuts differ by the
firing of a single event ef; that is, Cut(Z%) = Cut(£*~!) U {e'}. In terms of states, we denote this
fact using the notation $f = e*(£i~'). We say that T* is the immediate successor of £i~! (or
Ti-l is the immediate predecessor of £') in Q, denoted by £*~! <¥" L. The transitive closure
of this relation, denoted <q, defines the successor (or, predecessor) relation between states in the
observation £). The immediate successor and successor relations between states in an observation
can be extended to the set of all states in all observations (and so to all possible states of the
distributed computation). We say that X' is an immediate successor of £ (or X is an immediate
predecessor of ¥'), denoted by ¥ <f,"‘ ¥') if and only if there exists an observation 2 such that
¥ <" ¥'. The subscript v indicates that the immediate successor relation is associated with the
distributed computation v. Similarly, we say that T’ is a successor of £ (or T is a predecessor of
¥, denoted by ¥ <, ', if and only if there exists an observation Q € (1, such that £ <o ¥'.

Consider now the set of all possible consistent global states of the distributed computation
7. We denote this set by £,. The successor relation <, defines a partial order on the possible
consistent global states of the distributed computation. The set I, together with the successor
relation <., on global states, defines a lattice structure £, = (£, <,)?. The lattice can be imagined
as having n axes, one for each process. Let T¢c» denote the global state (o7*, ... ,05) and
¢ + ... + ¢, its level Then, the level of the global state £°°= represents the number of
events necessary to produce it. This structure is referred to as the lattice of consistent global
states or lattice of global states. This structure is important as it represents all possible sequential
observations of the distributed computation: every sequential observation of the computation
appears as some path of states through the lattice, and conversely, every path through the lattice
is a possible sequential observation of the distributed computation. Figure 4.1(b) shows the lattice
of global states associated with the distributed computation of Figure 4.1(a).

In what follows, given a distributed computation vy = (X, —), we will refer to the corresponding
lattice of global states £, = (Z.,, <) as the computation state space of the distributed computation
~. It is the construction of this computation state space from an observed distributed computation

2Formally, a partially ordered set (P, —) is a lattice if any of its two element subsets has a greatest lower bound
and a least upper bound in (P, —=).
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which gives rise to the state explosion problem.

In the sequel, we shall require interpreting the lattice of global states from the point of view of
different formalisms. In particular, we shall require viewing the lattice of global states alternatively
as a labeled directed acyclic graph, or labeled DAG, as well as a Kripke structure. In the definitions
which follow, we assume that AP is a set of atomic propositions defined on global state.

A directed acyclic graph, or DAG, is a graph G = (V, E) where V is the set of graph verticies,
E C V x V is the set of (directed) graph edges, and (V, E) is acyclic. A labeled DAG G is a
DAG G together with a finite alphabet of symbols A and labeling function X : V — 24 where
A(v) represents the labeling of the vertex v € V. The lattice of global states £, = (Z.,, <,) quite
naturally defines a directed acyclic graph if we set G = (X, <¥™). This structure, in which graph
edges represent immediate successor relationships between global states, is sometimes referred to
in the literature as the DAG of global states [5]. An important labeling associated with the DAG
of global states is the labeling A : £., — 24”7 which assigns to each global state T € ., the subset
of atomic propositions, A(X), of AP which hold true in ¥.

We met the definition of a Kripke structure in Section 3.1. A Kripke structure M = (S, So, R, L)
may be similarly associated with the lattice of global states, and models the lattice of global states
as a labeled state transition system. We obtain the associated Kripke structure by setting S = £,
S = %o (the unique minimal element of the lattice), R : £, x £, where R(Z,X') iff T <™ T,
and L : X, = 247 the labeling function which assigns to each global state £ € T, the subset of
atomic propositions of AP which hold true in £. The structure defined above may not satisfy the
totality requirement, in the case where the lattice of global states is finite. In this case, we may
ensure totality by defining R(Zfinat, Zfinat) Where Zging is the unique maximal element of the
lattice.

Notice that the view of the lattice of global states as a labeled DAG and as a Kripke structure
are essentially the same. We define them separately for notational convenience only.

Specification of Dynamic Properties

The dynamic property detection problem is motivated by the fact that a number of important
applications depend on the ability to detect when a distributed system satisfies a desired (or
undesired) temporal evolution of states, or dynamic property.

In Chapter 2, we reviewed a number of applications in which dynamic property detection is
required, and examples of the types of dynamic properties which arise in those applications. For
example, in the implementation of distributed algorithms, we saw that relevant dynamic properties
included the property of reaching a global state on which certain conditions are satisfied, such as
stability, deadlock, and loss of a token. In the case of testing of reactive distributed systems, we
saw that relevant dynamic properties included the property of satisfying specific relationships over
time between a reactive system and its environment.

Specifying dynamic properties requires the use of a specification formalism, some of which
were mentioned in the examples presented in Chapter 2. A range of formalisms have appeared in
the literature for specifying dynamic properties of distributed computations, including predicates
(e.g. simple predicates [24], sequences of predicates [6}), temporal logics [30, 97}, and various
descriptions of formal languages, including regular expressions and finite state automata [60, 5].
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Given a dynamic property specification, in some formalism, for a distributed system, the dy-
namic property can be identified with a set of temporal evolutions of the system: those evolutions
of system states of the distributed system which satisfy the dynamic property specification, taken
from all evolutions of system states which are possible for the distributed system. In this set-based
view of dynamic properties, each temporal evolution in the set can be viewed as satisfying the
dynamic property.

In this section, we shall look in more detail at some of the formalisms used in the specification
of dynamic properties. In what follows, we shall find it convenient to differentiate between two
versions of the dynamic property detection problem, corresponding to two important ways in
which dynamic properties may be specified:

e the global predicate evaluation problem, in which dynamic properties are specified by simple
global predicates

e the temporal predicate evaluation problem, in which dynamic properties are specified by
sequence-based global predicates (or similar formalisms for specifying sets of sequences, such
as finite state automata)

Although it will become apparent that the global predicate evaluation problem can be seen as a
special case of the temporal predicate evaluation problem, we define the two problems separately,
as they are treated separately in the literature.

The global predicate evaluation problem was the earliest formulation of the property detection
problem. There, the aim is to detect whether or not the system passes through a global state
satisfying a predicate defined on global state. In this view of the dynamic property detection
problem, dynamic properties are specified in terms of a single Boolean valued predicate ® defined
on global state. In the sequel, we use ®, ®;, ¥’ to denote simple predicates defined on global
state. For example, ®; = (x > 5) A (y == 7) and &2 = (x23 == @) are examples of such global
predicates.

In the general formulation of the global predicate evaluation problem, predicates are potentially
unstable. Unlike stable predicates, they may become true in one observation of a distributed
computation, yet remain false in another observation of the same distributed computation, which
presents a problem for detection. In order to ensure that the predicate detection problem for
distributed computations is well-defined, Cooper and Marzullo [24] introduced modal operators
Pos and Def so that predicate detection becomes observation-independent:

Definition 4.1. A distributed computation v = (H, —) satisfies Pos ® if and only if, for some
sequential observation Q of v, @ holds true in some state of €.

Definition 4.2. A distributed computation v = (H,—) satisfies Def ® if and only if, for all
sequential observations Q of v, ® holds true in some state of €.

The modal operators Pos and Def, in addition to making the predicate detection problem
well-defined, also have an application-specific interpretation. If the predicate ® represents a de-
sired temporal evolution of states, then detecting De f ® ensures that all possible observations of
the distributed computation satisfy this desired evolution, and so represents a fault-free system
execution. On the other hand, if the predicate ® represents an undesired temporal evolution of
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states, then detecting Pos @ checks if some possible observation of the distributed computation
satisfies this undesired evolution, and so represents an erroneous system execution. The global
predicate evaluation problem is surveyed in [83].

The temporal predicate detection problem is the general form of the property detection problem,
in which properties are specified in terms of formalisms which allow constraining the relative
ordering of states. In the sequel, we use ¢, p;, ¢’ to denote sequence-based predicates defined on
global state.

With regard to the specification of temporal properties, a number of formalisms for specifying
dynamic properties as sequences of predicates have been proposed. In [6], Babaoglu and Ray-
nal presented a sequence-based predicate language for specifying properties as simple predicates,
simple sequences, and interval-constrained sequences. A simple predicate is a simply a Boolean
valued predicate SP defined on global state, as discussed earlier. A sequential observation satis-
fies a simple predicate SP if the predicate holds true in some state of the observation. A simple
sequence is a sequence SS = SP;;...;SP, of simple predicates. A sequential observation satisfies
a simple sequence SS if each simple predicate SPi , for 1 < k¥ < m , holds true in a distinct
state X;, of the observation, and the states X;, appear in the observation in the same order as
their corresponding predicates SPy appear in SS. Simple sequences permit specification of rel-
ative temporal ordering between states in an observation. An interval-constrained sequence is a
sequence ICS = [0;]SP;...;[0m]SPm of simple predicates SP; and interval predicates §;. The
interval predicates §; are also constrained to be simple predicates. An observation satisfies an
interval-constrained predicate if it satisfies the simple sequence predicate formed by the SP;, and,
additionally, over every state in the interval between satisfying states £;,_, and Z;,, (or the ini-
tial state and X, , in case k = 1), the interval predicate f; does not hold. Interval-constrained
sequences permit describing conditions on intervals in sequential observations. This form of prop-
erty specification is useful for applications such as debugging, where breakpoint specifications are
often relatively simple and need to be easy to encode.

A more general approach to temporal property specification is based on formal language theory.
In this approach, a temporal property ¢ is associated with a regular language L{p). Regular
languages and the finite deterministic automata that recognize them were introduced in 3.2.1. A
regular language can thus be specified by describing the finite state automaton which recognizes it.
This feature of regular languages makes the specification of temporal properties very convenient.

For example, the regular language corresponding to the set of sequences which pass through
a state satisfying the predicate ® is specified by the finite state automaton described in Figure
4.2. In the example, the automaton (Q,%,d, g0, QF) is specified by Q = {g0,q1}, T = {®,~®},
8(g0,®) = q1, (g0, ~®) = g0, Qo = {go} and Qr = {a1}.

o
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Figure 4.2: An example automaton.



Temporal properties ¢ are interpreted over observations. We need to introduce modal operators
in temporal property detection, for the same reason as in global predicate evaluation: in order to
make detection observation-independent.

In the work of Babaoglu and Raynal, where sequence-based predicates were used to specify
dynamic properties, sequence-based predicates were quantified using the modal operators Pos and
Def, in a manner analogous to the definition of satisfaction for global predicates. In this approach,
the distributed computation is viewed as defining a set of possible sequential observations, and
satisfaction is defined in terms of whether some or all of those sequential observations individually
satisfy the property.

Definition 4.3. Distributed computation v satisfies Posy, denoted v = Pos o, if and only if
there exists an observation (2 of 7 such that Q ¢

Definition 4.4. Distributed computation + satisfies Def ¢, denoted v = Def . if and only if
for all observations € of v it is the case that Q = ¢

Here, ) &= ¢ denotes the satisfaction relation for ¢ over sequential observation 2, which varies
according to the class of properties considered. For example, if ¢ represents a property in the
class SS, the satisfaction relation 2 |= ¢ will refer to the satisfaction relation particular to the
class SS.

The above definition of satisfaction for the modal operators Pos ¢ and Def p can be extended
to the case where the dynamic property ¢ is specified by a regular language, L(y). In this
case, labeled sequential observations are viewed as sequences of propositions. The states of the
sequential observation are labeled with sets of predicates, from a set AP of predicates defined
on global state. The labeling of a state is intended to reflect the global predicates which hold
true in that state. With global states so labeled, sequential observations now induce sequences
of such state labels, referred to as observation labellings. Interpreting predicate labels as atomic
propositions, regular languages L(y) over the set of atomic propositions AP may be defined. Given
this view of sequential observations as sequences of propositions, there are several views possible
for the satisfaction of a property y by a sequential observation Q.

If the dynamic property ¢ is specified by a general regular language L(y) (i.e. a language of
finite words over the alphabet AP), then one definition of satisfaction is the following:

e Q |= ¢ if and only if some labeling of the sequential observation € is in the language L(y)

In other words, some labeling of the complete sequential observation €2 belongs to the language. A
limitation of this definition of satisfaction is that if the sequential observation is non-terminating,
then this view of satisfaction is not well-defined (as L(y) is a language of finite words over the
alphabet AP).

Another view of satisfaction applies to the case in which the dynamic property ¢ represents a
safety property. As noted in Alpern-Schneider (3], safety properties form a subclass of the the class
of properties defined by regular languages: safety properties can be characterized by prefix-closed
finite automata on finite words. Further, a (possibly non-terminating) sequential observation
satisfies a safety property if and only if every finite prefix of the sequential observation satisfies
the safety property. Thus, in the case of safety properties ¢4z, we have the following definition

of satisfaction:
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o ) = psape if and only if for some labeling of the sequential observation Q, and for each
prefix of the labeling, the prefix is in the language L(g,q7.)

The advantage of this definition is that it applies to sequential observations which are also non-
terminating.

An alternative approach to making dynamic property detection observation-independent was
proposed in [5], and is based on viewing the lattice of global states as a labeled, directed acyclic
graph. In this approach, Babaoglu, Fromentin and Raynal defined satisfaction in terms of modal
operators SOME and ALL. The modal operators SOME and ALL were introduced in order to
unify many previous results concerning property detection which had appeared in the literature.
The modal operators SOME and ALL differ quite markedly from the modal operators Pos and
Def, in which the distributed computation is viewed as a set of sequential observations, and
the modalities reflect satisfaction for some or all of those sequential observations. In the case
of SOME and ALL, the lattice of global states corresponding to a distributed computation is
viewed as a labeled, directed acyclic graph, where graph nodes correspond to global states and are
labeled with sets of predicates from a set AP of predicates defined on global state. The labeling
of a state is intended to reflect the set of global predicates (atomic propositions) which hold
true in that state. With global states so labeled, sequential observations now induce sequences
of such state labels, referred to as observation labellings. Viewing the lattice of global states of
the distributed computation as a labeled, directed acyclic graph permits defining satisfaction of
a property by a distributed computation in terms of global states of the lattice, as opposed to
sequential observations.

Under the modal operators SOME and ALL, the dynamic property detection problem for a
dynamic property  takes the following form:

Definition 4.5. Given an alphabet AP of global predicates, a lattice of global states £, a labeling
function ), a state T of £ and a property ¢ represented by the language L(y), £ | SOMEp if
and only if there exists at least one observation terminating in £ whose labeling defines a word in

L(p).

Definition 4.6. Given an alphabet AP of global predicates, a lattice of global states £, a labeling
function ), a state T of £ and a property ¢ represented by the language L(p), £ = ALL ¢ if and
only if all observations terminating in £ have labellings which define words in L(p).

One point of comparison between these two sets of modal operators concerns their use with
non-terminating distributed computations.

The modal operators Pos and Def are defined in terms of sequential observations and, as such,
deciding the satisfaction of Pos (resp. Def) requires deciding whether or not a dynamic property
holds on some (resp. all) complete sequential observation(s). In the case of a non-terminating
distributed computation, only finite prefixes of its sequential observations may be observed, and
it is generally not possible to decide whether a property holds on a sequential observation based
solely on observing a finite prefix. For example, in the case of unstable properties specified by
simple global predicates, the predicate may not hold on an observed prefix of a non-terminating
sequential observation, but become true on the (unobserved) continuation of that prefix. Thus, in
the case where distributed computations are non-terminating, it may not be possible, in general,
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to decide the truth of Pos and Def. This proviso on the detection of properties defined in terms
of Pos and Def will be reiterated in the sequel when necessary to qualify statements concerning
the applicability of detection algorithms.

One the other hand, the modal operators SOME and ALL are defined in terms of global states,
and the prefixes of sequential observations leading to them. Whether the distributed computation
is terminating or non-terminating, it is always possible to decide SOME or ALL correctly for
all states reached in the finite prefix, and so make definitive conclusions about satisfaction of
the property on the prefix. Furthermore, in the case of terminating computations, and when
satisfaction of a dynamic property ¢ by a sequential observation §? is defined as above for general
regular languages, it is possible to express the modal operators Pos and Def in terms of the modal
operators SOME and ALL, evaluated at the unique final state of the distributed computation:
given a terminating distributed computation v = (H, —) and a dynamic property ¢

YEPosy iff Zfina b SOMEg
Y }: Def(p iff z:fina.l ’: ALL(P

where ¥ ¢inq; represents the unique maximal state of the lattice of global states £, = (£, <)
of 4. These relations are immediate from the definitions.

Explicit State Property Detection

In this section, we consider algorithms for the detection of the dynamic properties described
above based on explicit state enumeration.

Cooper and Marzullo [24] presented an algorithm for explicit state detection of unstable prop-
erties defined by predicates on global state with modal operators Pos and Def. The detection
algorithms for Pos and Def are both based on an underlying algorithm for constructing the lattice
of global states. The algorithm for exploring the lattice of global states is presented in Figure 4.3.

The algorithm is based on a passive monitoring strategy. The monitor stores event notifications
received from each process P; in a queue @;. The monitor constructs the lattice of global states as
a series of levels I;, where level l;11 is defined as the set of states which are successors of states in
level I;. Starting from the initial level Iy, the lattice construction algorithm constructs Iy, I3, and
so on. The lattice construction algorithm does not begin the construction of the next level until
all events required have arrived.

The algorithm for detecting Pos ® is superimposed on the lattice construction algorithm: the
algorithm is based on constructing each level in the lattice and checking if some state in the level
satisfies the predicate. Figure 4.4 shows the algorithm for detecting the predicate Pos®. The
algorithm for detecting Def @ is similar.

In the case of the detection of dynamic properties quantified by SOME and ALL, the de
facto detection algorithm is that of Babaoglu-Fromentin-Raynal, presented in [5]. This algorithm
is based on an automata-theoretic approach to the detection of dynamic properties, wherein the
dynamic property is represented as a finite state automaton on finite sequences, and a particular
product space is explored for reachable acceptance states. However, the exploration of the product
space is still based on the lattice construction presented in Figure 4.3. We shall be discussing this

algorithm in more detail in Chapter 6.
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1 current : set of global states : init {initial state}

2 previous : set of global states : init §

3 level : integer :init 0

4  while current # 0

) level = level + 1

6 previous = current

7 current =0

8 foreach ¥ € previous do

9 enabled(X) = compute__enabled(XT)
10 foreach e € enabled(X) do

11 T = e(T)

12 current = current UYL

13 od

14 od

15 % wait until we can compute the next level level
16 end while

Figure 4.3: Algorithm for constructing the lattice of global states.

We note that other algorithms exist for constructing the lattice of global states from a dis-
tributed computation. In [28], Diehl et al. present an algorithm for constructing the lattice of
global states based on the close correspondence between a partial order and its lattice of ideals.
In this construction, the lattice of global states is constructed, not in a level-based manner, as in
the algorithm of Cooper and Marzullo, but based on any observed linearizations of the distributed
computation. The algorithm requires maintaining the cover of the partial order (H,—), which
represents the immediate predecessor/successor relationships of events in the partial order. For
each event received from an observed linearization, a particular sub-lattice is added to the existing
lattice structure. The advantage of this algorithm is a faster construction of the lattice, due to
not having to wait until all events of a given level have arrived at the monitor. For details of the
algorithm, see [28].

State Explosion Problem

The main problem in trace checking of general dynamic properties is in dealing with large
computation state spaces. When a distributed computation exhibits a high degree of concurrency
between processes, the number of possible observations of the distributed computation becomes
unmanageably large: the size of the lattice of global states is O(S™), where N is the number of
processes in the computation, and S is the maximum number of events on any process.

The algorithm of Cooper and Marzullo is exponential in both space and time: it is exponential
in time as there are O(S™V) possible global states in the lattice, and the algorithm executes in
time proportional to the number of global states; it is exponential in space as the states for each
level are stored, and the breadth of the state space grows exponentially (at each level k, there are
O(N*) possible states).

This complexity estimate also applies to any algorithms based on the lattice construction.
In particular, the algorithm for detecting dynamic properties presented in Babaoglu-Fromentin-
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1 Pos(®):

2  begin

3 % Synchronize processes and distribute ®
4 send @ to all processes ;

5 current := S(0,0, ..., 0);

6 release processes ;

7 vl :=0;

8 while no state in current satisfies ® do
9 last := current;

10 l:=Wwl+1;

11 current := states of level lvl reachable from a state in last ;
12 end while

13 end

14 report Pos &
Figure 4.4: Algorithm for detecting Pos &.

Raynal is based on the exhaustive exploration of the computation state space (using the level-based
approach or a linearization-based approach), and so suffers at least the same complexity.

More generally, Chase and Garg [18] have shown that checking the property Pos® for arbi-
trary predicate ® is N P-complete. Similarly, checking Def ® for arbitrary predicate @ is coN P-
complete.

4.2 Techniques for Alleviating State Explosion

In this section, we consider the broad classes of approaches used in property detection to
combat state explosion which have appeared in the literature. The approaches have been divided
into the following categories:

e methods for stable properties: based on an active monitoring approach, in which a snapshot
algorithm is used to periodically construct individual global states of the distributed com-
putation, which are then tested for satisfaction. The stability characteristic of the property

ensures that this approach ensures correct detection.

e filtering-based approaches: based on the observation that the number of global states in the
lattice depends upon the number of events in the distributed computation. These methods
reduce the size of the lattice by selectively removing events from the computation which

have no effect on the satisfaction of the property.

o property-structural methods: these methods use information about the structure of the
property (the predicate or predicates defining the property) in order to avoid exploring
parts of the state space which are known not to contain satisfying global states.

e slicing methods: these methods are based on constructing a slice of the distributed computa-
tion (with respect to the property being detected) as an initial step. A slice is a distributed
computation which is generally smaller than the original and whose state space is guaran-
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teed to contain all the solutions to the property contained in the original computation state
space.

e distribution-based methods: based on a divide and conquer approach to property detection,
these methods distribute the detection computation across a set of processors, in order to
achieve parallelism

¢ methods from model checking: these approaches are based on applying model checking
techniques to the property detection problem

In what follows, we consider each approach according to the following criteria: the motivation
behind the approach, or view of the state explosion problem, the details behind the approach,
the resulting improvement in complexity, and the variations of the approach which appear in the
literature.

4.2.1 Methods for Stable Properties

A stable property of a distributed system D is a property defined on a global state S such that
once it becomes true, it remains true in all states S’ reachable from S. As we saw in Chapter 2,
a number of important problems in distributed systems can be formulated as an instance of the
dynamic property detection problem in which the property to be detected is stable. Examples
include end of computation phase detection, deadlock detection, and token loss detection in the
provision of mutual exclusion. In these cases, the associated stable properties to be detected are
"the computation has reached its end of phase", "the system is deadlocked", and "the token has
been lost".

When a property is stable, the stable property detection problem can be solved by repeatedly
constructing a consistent global state of the system execution, and testing to see if the predicate
describing the property holds. The problem of determining a global state in a distributed compu-
tation is difficult: processes can only record their local state, and the messages sent and received
by them. Further, all processes cannot record their local state at the same time, unless they have
access to a common clock. Further, care must be taken to ensure that the global state constructed
is meaningful, or consistent.

In [16], Chandy and Lamport aim to devise a distributed algorithm so that processes can
record their own state, and the states of communication channels, in such a way that the set of
local states and communication channels form a consistent global system state. We review the
key details of that algorithm in the following sections.

Key details of approach: The snapshot algorithm, presented in [16}, is a distributed algorithm
which is superimposed on the distributed application. The snapshot algorithm and the distributed
computation execute concurrently. The algorithm is based on each process being held responsible
for recording its own local state, and the state of all incoming channels. The state of a channel
at a given moment in time is the set of messages sent on that channel minus the set of messages
received on that channel. As mentioned earlier, the key problem to be faced is in synchronizing
the recording activities of the individual processes, so that a consistent global states is recorded.
This is achieved through the use of 'marker’ messages to synchronize the local snapshots and to
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ensure correct recording of channel states. The algorithm consists of two rules: a marker sending
rule, and a marker receiving rule:

o Marker sending rule (process P;): for each channel ¢, incident on and directed away from P;,
P; sends one marker along c after P; records its state and before P; sends further messages
along ¢

e Marker receiving rule (process P;): on receiving a marker along channel ¢: if P has not
recorded its state, then P; records its state and records the state of ¢ as @; otherwise, P;
records the state of c as the sequence of messages received along ¢, after P;’s state was
recorded, and before P; received the marker along c

The snapshot algorithm may be spontaneously initiated by any single process. Chandy and Lam-
port show that, once initiated, the algorithm will terminate at all processes P;, resulting in each
process F; holding (i) its snapshot of its own local state and (ii) the channel states of the channels
Xji incident on the process P;.

Chandy and Lamport note that the state constructed by the snapshot algorithm may not
be a state that the distributed computation actually passed through. Let SEQ be a sequential
observation of a distributed system execution in which the snapshot algorithm is executed, and
suppose that the snapshot was initiated in a state S; of SEQ and the algorithm terminated in
a state S, of SEQ. They prove that the global state constructed by the algorithm, Sx, has the
property that there is a permutation SEQ’' of SEQ which differs only in states between S; and
Se of SEQ, such that S occurs as a global state of the sequential observation SEQ’. Chandy
and Lamport note that although the actual sequential observation SEQ which the distributed
system passed through cannot be observed (one of the fundamental limitations cited earlier), this
property can be used to deduce whether or not the property holds in SEQ: if the property holds
in Sx, then the property is guaranteed to hold in S. of SEQ , and in all successor states, due to
stability; if the property does not hold in Sx, then the property is guaranteed never to have held
in S; of SEQ, nor in any predecessor states, again, due to stability.

In terms of the lattice of global states, given a path SEQ through the lattice and states S; and
S, on the path where the snapshot algorithm is initiated and terminates, respectively, the global
state constructed by the snapshot algorithm lies on some path SEQ’ between states S; and S, in
the lattice.

Limitations of the approach: The approach is limited to the detection of stable properties. There-
fore it cannot be used to detect properties (global predicates) which are unstable. This holds
even if we take repeated snapshots [10]. This approach is also restricted to checking properties
which can be expressed as a simple predicate on global state. The snapshot algorithm for con-
structing global states is based on an active monitoring approach, in which individual global states
are constructed (or a sequence of such) by actively probing the distributed program execution.
Consequently, in this form, it applies only to solve the run-time version of the stable property
detection problem. In cases where we need to detect stable properties in other application circum-
stances which require post-mortem detection(such as testing, or post-mortem debugging), other
more general algorithms may need to be applied.

Complezity results: The snapshot algorithm explores at most one sequential observation of the
distributed computation; in fact, it generally explores only a small part of any one sequential
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observation, between the states when it is initiated and where it terminates. Therefore, its com-
plexity in terms of the distributed computation is at worst linear in the number of events H of
the distributed computation.

Ezamples of the approach used in the literature: Chandy and Lamport presented the first algorithm
for detecting stable properties. In their formulation of the problem, they assumed that message
delivery between processes satisfied a FIFO assumption. In [75], Mattern presented a version
of the snapshot algorithm based on the underlying concept of vector clocks in which no FIFO
assumption on message delivery is required. The snapshot algorithm has also been extended to
the generation of sequences of global states. In [52], Helary presented an algorithm for obtaining a
sequence of global snapshots, and gathering together the local states for each snapshot, through a
combination of several algorithms: a marker algorithm, which generates pairwise consistent local
states, together with a wave sequence algorithm, which, in each wave, collects the set of local
states in such a way that the local states from each snapshot are collected together. Bougé [10]
also studied the construction of sequences of global states through snapshots.

4.2.2 Filtering-based Methods

Filtering [71, 60, 61] refers to the process of selectively excluding event instances from the dis-
tributed computation (H,—) before analysis, in such a way that the truth value of the property
to be detected is not affected. Filtering reduces the size of the distributed computation, and so
reduces the size of the lattice which needs to be explored. In this sense, filtering is an impor-
tant technique for combating state explosion in property detection. Filtering also results in less
processing (intrusion) at the application processes, as well as more timely detections, due to the
reduced size of the lattice to be explored.

Filtering is closely connected to the way in which causality is encoded in a distributed com-
putation [61] : if events are to be removed from the distributed computation, it is important that
the removal of such events does not invalidate or otherwise alter causality relationships between
events.

In this section, we discuss the key concepts and approaches associated with filtering.

Key concepts: Logical clocks. In asynchronous distributed systems, the happened before re-
lation defines a partial order on the events occurring in the distributed computation, based on
the causal relations between events induced by the sequential order of processing at each process
together with message passing between processes. Logical clocks aim to encode some or all of
that causality information. A logical clock is a mechanism used to establish a relative order on the
events occurring in an asynchronous distributed system. In this approach, every process maintains
a local clock value, LC, which represents the view of time held by that process. Local clocks are
updated using a set of clock update rules which are triggered by the occurrence of events. Each
event e; occurring in the distributed system may then be associated with a logical time of occur-
rence, or logical timestamp, LC(e;). Various formulations of logical clocks bave appeared in the
literature, including scalar clocks [65] and vector clocks [36, 73]. These logical clock formulations
vary in the degree of information they represent concerning the relative ordering of events in an
asynchronous distributed system.

Lamport introduced a formulation of logical clocks in [65] which is suitable for recording a total
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ordering of the events in a distributed computation. In this approach, each process maintains a
scalar value SC representing its view of global time. As each event e; occurs, it is assigned a
timestamp SC/(e;) based on the current value of the scalar clock SC local to the process at which
it occurs. Updates to clock values are triggered by event occurrences. Each clock variable SC is
initialized to zero. When messages are sent, the clock value of the send event is piggybacked onto
the message. The following rules are used to update clock values:

SC(e;) =8SC+1 if e; is an internal event or a send event
SC(e;) = maz{SC,TS(m)} +1 if e; = receive(m)

where 7S (m) denotes the scalar clock value associated with the sending event of message m and
maz is the component-wise maximum. Given two events, e; and e; in the distributed computation,
the scalar clock mechanism satisfies the weak clock condition e; — e; = SC(e;) < SC(e3), where
— is the happened-before relation on events. The disadvantage of the logical clock mechanism
based on scalar values is that the reverse implication SC(e1) < SC(ez) = e; — ey does not
necessarily hold for events on different processes. This prohibits, in particular, the use of logical
clock values to determine when two events are concurrent.

Vector clocks are a mechanism which provide more information on causality than scalar clocks,
and are the de facto method for encoding causality in distributed systems. Vector clocks were
developed independently by Mattern [73] and Fidge [36]. Rather than each process maintaining
simply a scalar value to represent logical clock values, each process maintains a vector VC of
natural numbers. As before, in order to record the causal relationships between events, each
event e; is assigned a timestamp, VC/(e;), based on the current vector clock value. As before,
when messages are sent, the clock value of the send event is piggybacked onto the message. The
following rules are used to update the values of vector clocks at each process:

VC(e)[i) = VCE] + 1 if e; is an internal event or a send event
VC(e;) = maz{VC,TS(m)} if e; = receive(m)
VC(e)li] = VC[i) +1

where T'S(m) denotes the vector clock value associated with the sending event of message m
and, again, maz is the component-wise maximum.

Vector clock values can be interpreted in the following way: given an event ef occurring at
process P;,VC(ef)[i] = k, the number of events which causally precede event e¥ on process P;,
and for each j # i, VC(e¥)[j] represents the number of events which causally precede event e* on
process P;.

The importance of vector clocks lies in their ability to characterize three important conditions
used in the construction of consistent global states.

Firstly, vector clocks satisfy the strong clock condition [83]: e = ¢’ = VC(e) < VC(e'), where
the ordering < on vector clock values (which are vectors) is determined according to the relation
V< V'=(V #V')AV[k] < V'[k] for 1 < k < n. This strong clock condition permits determining
when two events are concurrent, based only on their logical vector timestamps. Secondly, they
can be used to characterize when two events are pairwise consistent. Two events ef and e} (where
i # j) are pairwise inconsistent when they cannot belong to the frontier of the same consistent

cutd. This can only happen when the cut includes at least one receive event without including

3The focus on the frontier of the consistent cut arises from the fact that the lattice of global states is constructed
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its corresponding send event (and so is not left-closed under the causality relation). The two
possible cases in which this can happen (and which involve events e} and €}) are (i) (ef — €|
and Jef :ef o ef - el)or (¢ — ef and Jel : €l = €} — eF). In terms of vector clocks, the
events e} and e’ are pairwise inconsistent when VC(e¥)[i] < VC (e5)[s] or VC(e})[j] < VC(e¥)[j].
Two events ef and eé- are therefore pairwise consistent when this cannot arise; namely. when
VC(eb)i) > VO(€})[i] and VC(€})[j] > VC(ek)ls]. Finally, vector clocks can characterize when
the set of events frontier(C) = {e;,...,e,} in the frontier of a consistent cut C are pairwise
consistent: V3,7 : V(e;)[f) > V(e;)[¢). This condition is important as the global state associated
with a cut is consistent if and only if the events in the frontier of the cut are pairwise consistent.

One of the disadvantages of vector clocks is that they require piggybacking O(n) information to
each message sent in the distributed computation: when distributed computations involve a large
number of processes, this can result in significant overhead. The method of direct dependencies
is another method of encoding causality in distributed systems which only requires piggybacking
a scalar value onto messages. For a detailed survey of techniques used to encode causality in
asynchronous distributed systems, see Raynal and Singhal [93].

Key details of the approach: Trace checking can be viewed as performing a simulation, which
involves recording events and their causal dependencies immediately after execution, and then
using those events and causality information to simulate all possible sequential observations. Pro-
gram transitions (int, send, recv) are instrumented with software probes, in order to generate event
notifications and send them to the monitor process for analysis. In filtering distributed computa-
tions, we selectively remove a subset of events from consideration: conceptually, starting from the
complete distributed computation (H, —), which reflects all events occurring in the computation,
we derive the reduced distributed computation (Hred, —req) through filtering. Filtering generally
proceeds by determining, in some manner, a set of relevant events for a property: those which can
affect the truth value of the property.

We can differentiate between static filtering and dynamic filtering. In static filtering, the
decision as to which events are relevant is made at the time of program instrumentation, during
the modeling phase of trace checking, and before event notifications are generated; in dynamic
filtering, event notifications are selectively removed after they have been generated, either at the
sending process or at the monitor.

Filtering, however it is performed, must ensure the following key requirement: the property
will be detected in the full computation (H,—) iff it is detected in the reduced computation
(Hreds —red)-

A key decision is how to determine which events can (and should) be filtered. Events cannot

be filtered (removed) arbitrarily. In removing events, we potentially remove:

1. transitions which affect the values of program variables computed in the simulation, and so
potentially affect correct detection of the property

2. causality information between events which may be necessary to correctly simulate the exe-
cutions (e.g. if we remove send or recv events, we will produce a different causality relation

(Hyeds = red), than in the actual computation (H,—), not a suborder)

incrementally, constructing successor cuts from predecessor cuts through the addition of a single event. Consistency
conditions therefore need only be verified for events in the frontier of each new candidate cut.
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Furthermore, depending on application requirements, it may not be desirable to filter all events
not relevant to the property(see Limitations).

Ezamples of the approach: In this section, we provide two examples from the literature of how

filtering has been used to generate reduced lattices.
Filtering based on weak vector clocks. In [71], Marzullo and Neiger present an approach to filtering
based on relevant events and weak vector clocks. They note that for many properties, only a subset
of so called relevant events need to be considered in order to check the property. Given a property
defined by a predicate ® on global state and a distributed computation (H,—), an event e} is
said to potentially affirm ® if the execution of ef in some global state can cause the value of ® to
change from false to true. Similarly, event ef potentially rejects @ if the execution of ef in some
global state can cause the value of ® to change from true to false. Event ef potentially changes &
if it potentially affirms or potentially rejects ®. Among all the events of a distributed computation
(H,—), the relevant events (relative to a predicate ®) are those events which potentially change
®. For example, in the case of deadlock detection, the relevant events are the sending of a request
for a resource, the sending of a grant of a resource, and the receiving of a grant of a resource.
Marzullo and Neiger describe an approach in which only relevant events, those which potentially
change the predicate ®, are sent to the monitor process for analysis. The potential difficulty
in adopting this filtering approach is that when send and receive events are not relevant, it is
possible that important causal relations between relevant events may be affected. Weak vector
clocks [71] (with respect to a fixed predicate ®) are a logical clock mechanism, based on standard
vector clocks, in which the local clock values VCq need only be updated by (i) relevant events
occurring at the local process and (ii) receive events which indicate that another process has
potentially changed . In this scheme, all events of the distributed computation are timestamped
with the weak vector clock VCs corresponding to the property. Unlike the case of vector clocks,
now different events on the same process can have the same weak vector clock timestamp. Weak
vector clocks are weak in the sense that they no longer satisfy the strong clock condition of vector
clocks; however, as reported in [72], they satisfy variants of the strong clock condition, the pairwise
consistency condition, and the consistent state condition, which are sufficient for the purposes of
constructing the lattice of global states based on the level-based algorithm of [24]. They also
note that a conservative approximation of the relevant events for a distributed computation for
a predicate ® can be obtained by determining the process variables involved in the predicate,
and then identifying all events which read or write those variables as relevant. This approach
to filtering based on weak vector clocks is a static filtering approach, in that the decision as to
which events are relevant must be made before instrumenting the program with software probes
containing the weak vector clock VCeg.

Filtering based on observable events. In [60], Jard et al. present a method of filtering which
is specific to the linearization-based lattice construction of [28]. Their approach was applied to
the case of checking temporal properties, specified as finite state automata on finite sequences
of events. The set of events of the full computation H = OU X U X is modeled as the disjoint
union of set of observable events O, the set of send events, X, and the set of corresponding receive
events, X. In their approach, the observable events O of a distributed computation are the set
of events which are involved in the specification. The computation is filtered by assuming that
all events in X and X are in principle unobservable. In the analysis. the partial order (H,—n)
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is replaced by the partial order (O, —¢) where —¢ is the partial order =y restricted to the set
O . Thus, (O,—p) is a suborder of (H, —g). The linearization-based construction of the lattice
of global states corresponding to the partial order (O, —+0) uses the cover of the partial order
(the immediate predecessor/successor causal relationships between elements of 0). The authors
present algorithms for retrieving the cover of the causality relation for (O, —0), when causality is
encoded in the usual way, for all events in H, using vector clocks, and when causality is encoded
using direct dependencies. This covering relation is then used together with the linearization-
based lattice construction algorithm to generate the reduced lattice for (O, »¢). This approach
to filtering is dynamic, in the sense that the decision as to which events to include in O can be
made at the monitor when the cover of the suborder is being generated.

In [61], Jard and Jourdan consider the relationship between filtering and encoding the causal
dependency relation in detail. They present the technique of adaptive filtering, which permits en-
coding the causal dependency relation in a way more conducive to filtering requirements. However,
this technique assumes the direct dependency encoding of causality.

Limitations of the approach: The lattice constructed from (Hr.q, = req) does not include all
global states of original lattice. This means that although a property may be correctly detected in
the reduced lattice, when the detection occurs, a trace of the full computation is not immediately
available. This may be required for certain applications, such as debugging (where examination
of the full state space is required) or fault-tolerance (where analysis of the exceptional execution
may be required, as in forward exception handling).

We also note that filtering will not in general be compatible with the detection of temporal
dynamic properties, unless those properties are stuttering-invariant. Stuttering-invariance was
discussed in Section 3.2.4.1.

Complezity: Filtering ameliorates the state explosion problem by reducing the size of the partial
order which needs to be considered. If S denotes the maximum number of events on any process
in (H,—), and S,.q denotes the maximum number of events on any process in (Hred, ~red), then
the complexity of the lattice construction is reduced from O(S™) to O(S¥,). The complexity is
still exponential, but leads to smaller lattice structures being explored.

4.2.3 Property-structural Methods

It was noted in Section 4.1 that the global predicate evaluation problem is N P-complete for
the Pos modality [18], and coN P-complete for the Def modality {105, and therefore complexity
theory tells us that finding efficient (polynomial) solutions for the general case is very unlikely.
In such a situation, one strategy for finding efficient solutions is to consider special cases of the
general problem, for which efficient solutions can be found.

The property-structural approach is based on this point of view: it is an approach to combating
state explosion is based on exploiting the structure of a property in order to avoid exploring the
full lattice of global states. Structural aspects of the property include its syntactic structure, as
well as its semantic structure. By syntactic structure, we refer to knowledge that, for example,
a predicate is formed from a disjunction of local predicates. By semantic structure, we refer to
knowledge that, for example, the global states on which a predicate evaluates to true is known to
form a sub-lattice of the lattice of global states. In this approach, attention is focused on defining
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classes of predicates for which efficient solutions can be found, in such a way that these classes
represent many of the important predicates used in practice.

A considerable body of work based on this approach exists. Predicates classes, such as dis-
junctive [41], conjunctive [41, 58, 42], relational {109], generalized conjunctive [43]. observer-
independent [17, 18], linear [18], regular [39] have been defined. These predicate classes, when taken
in combination with specific modal operators, have been shown to admit efficient (polynomial-time)
detection algorithms.

The results apply in the main to properties specified as predicates on global state, but the
approach has also been extended to consideration of temporal predicates. Further, a number of
these algorithms additionally depend upon assumptions concerning termination of the distributed
computation, and so apply only to the case of post-mortem analysis.

In this section, we discuss the key concepts and approaches associated with property-structural
methods for combating state explosion in dynamic property detection.

Key concepts:

Property classes. We illustrate here the range of predicate classes considered. A local predicate
is a predicate whose truth value depends only on the state of a single process. A predicate is
conjunctive (resp. disjunctive) if it can be written as a conjunction (resp. disjunction) of local
predicates. Examples of conjunctive predicates are mutual exclusion violation - describing when
two processes are each in their critical section - and resource sharing violation - two processes
simultaneously holding a read-lock and a write-lock on a shared data item. Generalized conjunctive
predicates are conjunctive predicates which may additionally include predicates on channel states.
Termination detection is an example of a generalized conjunctive predicate - termination occurs
when all processes are passive and all channels are empty. Relational predicates are predicates of
the form @ = > | z; < k , where each z; represents a value or count on process F;. Token loss
detection or detection of excessive use of a resource may be achieved with relational predicates.
Identification of predicates as being disjunctive, conjunctive, relational and generalized conjunctive
represent knowledge of syntactic structure of a predicate.

A predicate ® is said to be observer-independent [17] if Pos® = Def &; that is, it holds
in one observation if and only if it holds in all observations. For example, stable predicates are
observer-independent. Also, locally-defined predicates are observer-independent, even when they
are not stable.

Linear predicates [43] are the first of a class of predicates which may be characterized by
the structure of their solution set, the set of consistent cuts in which they evaluate to true. In
particular, a predicate is linear if the set of consistent cuts which satisfy the predicate form an
inf-semi-lattice (definition to follow) of the lattice of consistent cuts. Linear predicates have an
alternative characterization, in terms of forbidden states, which provide the basis for their efficient
detection. Informally, a predicate is linear if, for each global state ¥ in which it evaluates to false,
there is a local state component o; of the global state which is forbidden, in the sense that no
other global state containing o; will satisfy the predicate. Examples of linear predicates include
conjunctive predicates under the modality Pos and monotone channel predicates (definition to
follow).

Finally, a predicate is regular if the set of consistent cuts satisfying the predicate form a sub-
lattice of the lattice of consistent cuts. Equivalently, a predicate is regular if, whenever consistent
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cuts C, D satisfy the predicate, then so do C U D and C N D. Examples of regular predicates
include any local predicates, any linear predicate, and certain predicates on the states of channels.
such as “there is no outstanding message in the channel”, or “there is no token message in transit".

Identification of predicates as being stable, observer-independent, linear and regular represent
semantic knowledge concerning a predicate.

Modal operators: In presenting efficient algorithms for the detection of property classes, modal
operators play a significant role. The property-structural approach has considered modal op-
erators Pos, Def, Controllable and Invariant. A distributed computation (H,—) satisfies
Controllable @ if and only if, for some sequential observation, ® holds true for all states of the
sequential observation. A distributed computation (H,—) satisfies Invariant ® if and only if,
for all sequential observations, @ holds true for all states of the sequential observation. These
two modalities relate to the problems of controllability of distributed computations, important in
debugging [105] and fault-tolerance applications [106], and the testing of program invariants. Each
combination of modal operator and property class effectively defines a separate problem, with its
own algorithmic solution.

Structural aspects of the lattice of consistent cuts: Property-structural methods make reference
to structural aspects of the lattice of consistent global states for efficiently detecting properties with
known semantic structure. The identification between a consistent global state and a consistent
cut permits viewing the semantics of distributed computations in terms of the lattice of consistent
cuts, as opposed to the lattice of global states. In the case of reasoning about semantic properties
of global predicates, property-structural approaches generally use this consistent cut-based view.
In this view, the key lattice property takes the following form: for any two consistent cuts C' and D
in the lattice, the sets C U D and C N D are also consistent cuts. Three important related notions
are inf-semi-lattice, sup-semi-lattice and sub-lattice. An inf-semi-lattice satisfies the property that,
for any two cuts C and D in the inf-semi-lattice, the set CN D is a cut in the inf-semi-lattice. An
inf-semi-lattice is guaranteed to have a least consistent cut. Similarly, an sup-semi-lattice satisfies
the property that, for any two cuts C and D in the sup-semi-lattice, the set CUD is a cut in the
sup-semi-lattice. A sup-semi-lattice is guaranteed to have a greatest consistent cut. A sub-lattice
satisfies both the inf-semi-lattice property and the sup-semi-lattice property, and is guaranteed to
have both a least consistent cut and a greatest consistent cut. Efficient algorithms for detecting
linear and regular properties make use of the fact that efficient algorithms have been developed
for computing the least and greatest cuts of a semi-lattice.

Details of the approach: In this section, we illustrate how the property structural approach
is used to design efficient detection algorithms, for some of the classes of properties mentioned
above. We present examples of how the approach is used in the case of syntactic knowledge (for
disjunctive and conjunctive predicates), as well as the case of semantic knowledge (for linear and
regular predicates). All examples involve only the modality Pos.

Disjunctive and conjunctive predicates. Disjunctive and conjunctive predicates under the Pos
modality were considered by Garg et al. in [41]. Detection of disjunctive predicates ® = LP V
...V LP,, where 1 < k < n, can be performed by each process detecting the predicates LF;
which are local to it, and announcing detection of & when one such local predicate is detected.
In the case of conjunctive predicates, ® = LPy A ... A LF, Garg notes that there are two ways
in which to check such a predicate: (i) construct all consistent global states and check if the
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predicate is true in any of those consistent global states or (ii) identify local states o; where the
LP; hold true, and check if combinations of the o; are consistent. Garg focuses on the second
approach (the first approach leads to a combinatorial explosion in the number of combinations to
consider). A naive approach could be based upon (i) determining all local states ¢; in which the
LP; hold true and then (ii) checking all possible combinations of such states, but this would also
lead to a combinatorial explosion of possible global states. However, Garg makes use of two key
observations: (i) in order to check consistency of a global state, we only need use one o; between
every two external events (ii) if, in exploring a combination of local states involving o and o',
we find that ¢ — ¢’, then not only will ¢ and o' be pairwise inconsistent, and so cannot form
part of a consistent global state, but o will causally precede any successor of o' as well, and so no
global state containing ¢ will exist. In this way, any global states involving ¢ may be eliminated
from consideration. These observations permit developing an algorithm for detecting conjunctive
predicates which (i} avoids sending all local states satisfying local predicates LP; to the monitor
and (ii) avoids checking all possible combinations of local states. The algorithm works as follows:
non-checker processes (the processes participating in the distributed computation) send a local
snapshot message to the checker process whenever the local predicate becomes true for the first
time between external messages. The checker process builds queues @; of local snapshots and
explores the queues using the reasoning described above, searching for a consistent global state
which satisfies the predicate. The algorithm has complexity O(mn), where m is the number of
messages sent or received by any process and n is the number of processes. Thus, in the case
of detecting disjunctive and conjunctive predicates under the modality Pos as describe above,
efficient (polynomial) algorithms based on the above approaches exist.

Channel Predicates: We mention one extension to the above. Certain predicates must make
statements about the states of channels. An example is termination detection, where a distributed
program is deemed to have terminated iff all processes are passive and all channels are empty. In
the case of weak conjunctive predicates (cohjunctive predicates under the Pos modality), only local
states are examined, and they are thus unable to describe such properties. Let x;j; be a channel
from process P; to process P;. The state of the channel x;; is defined to be the messages sent on
the channel minus the messages received on the channel. A channel predicate on channel x;; is any
Boolean-valued function defined on the state of the channel. A generalized conjunctive predicate
is a predicate formed by the conjunction of predicates on local state and channel predicates.
Termination detection is an example of a generalized conjunctive predicate. Garg and Waldecker
define the notion of linear or monotonic channel predicates [43]. A channel predicate is linear if,
when false, it remains false when either there are sends on the channel but no receives, or there
are receives on the channel but no sends. For example, “the channel is empty” is linear (exclusively
sending more messages to a channel which is not empty will not make the predicate true), whereas
“The channel has an even number of messages” is not linear (both exclusively sending messages
and exclusively receiving messages to a channel which has an odd number of messages will make
the predicate true). Linearity is important for the following reason: when a linear predicate on a
channel is false in a global state, there is at least one process which must make further progress
before the channel predicate can become true. Using this characteristic of linear channel predicates
to eliminate states from consideration, the algorithm described earlier for detecting conjunctive
predicates was modified in [43] to produce an algorithm for detecting generalized conjunctive

71



predicates. The non-checker processes, as before, send a local snapshot message to the checker
process whenever the local predicate becomes true for the first time between two external messages.
But this time, it sends the local state plus the values incsend and inerect , where these represent
the additional messages sent and received since the last detection. In addition to rejecting cuts
which are not consistent as before, the checker process can now reject cuts which do not satisfy
one of the channel predicates. By monotonicity, there will be at least one process which may
be advanced before the channel predicate will become true. The algorithm has O(m2n + mn?)
time complexity, and O(mn?) space complexity, where m is the maximum number of application
messages generated by a process, and n is the number of processes. The algorithms are based on
an architecture of non-checker and checker(monitor) processes, and operate on-line.

Linear predicates: The ideas described in the previous section form the basis of the notion
of linear predicates. Detection of linear predicates depends on the notion of a forbidden state: a
local state Gfi] of a consistent cut G is forbidden, denoted forbidden(G,i), for a predicate & if
for all successor cuts H in the lattice of cuts, then (G[i] # H[i]) or ~®(H) holds. Informally, a
local state G[¢] is forbidden if its inclusion in any successor cut H of G implies that ® is false
in H. A predicate & is linear iff VG : -®(G) = 3i : forbidden(G,i). Linearity implies that, if
the predicate is false, there is at least one process state G[i] which is forbidden. If we persist
in keeping G[i] in the consistent cuts we consider, the predicate will remain false. Conversely,
we may always advance one step on P; and not risk missing a consistent global state in which
the predicate is satisfied. This forms the basis for detection of linear predicates. Informally, the
algorithm operates as follows, starting from the initial state: if the predicate does not hold in the
current state, we know from linearity that the current state contains a forbidden local state. By
identifying this state G[i] and the process it resides on, P;, we may advance by one state on process
P; without missing a consistent cut which satisfies . The process is then repeated. Examples of
linear predicates include any local predicate (if the predicate is false in a local state, it will remain
false until we advance from that state), conjunctive predicates, any linear channel predicate, or
any generalized conjunctive predicate where channel predicates are linear. Garg shows that the set
of cuts satisfying a linear predicate form an inf-semi-lattice within the lattice of consistent cuts.
This guarantees, in particular, that the least cut satisfying ® is well-defined. In [18], Garg presents
an algorithm for detecting linear predicates with complexity O(mn), where m is the maximum
number of states on any process and n is the number of processes. The algorithm is guaranteed
to detect the least cut satisfying @.

Regular predicates: Regular predicates are those whose solution set form a sub-lattice of the
lattice of global states. Garg notes that regular predicates may equivalently be characterized as
those which are both linear and post-linear. Post-linear predicates represent the dual of linear
predicates: a predicate @ is post-linear iff the states satisfying ® form a sup-semi-lattice. Post-
linear predicates are guaranteed to have a greatest cut which satisfies them. Garg notes that, in
the case of terminating distributed computations, post-linear predicates may be detected using
the same approach for detecting linear predicates, but beginning the detection from the terminal
state of the distributed computation. Such a detection approach is guaranteed to detect the
greatest cut satisfying ®. The detection of regular predicates, whether the least cut satisfying
the predicate, or the greatest cut satisfying the predicate, can be achieved using the detection
algorithm for linear or post-linear predicates [18], and so the complexity of detection is the same
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[ Predicate class | Structure/Defining Characteristic | Lattice Correspondence

disjunctive &=LPV...VLP, N A
conjunctive ®=LPA...ALP, N A
relational &=>" <k N A
observer-independent Pos® = Def ® N/A ;
linear VG : =®(G) = i : forbidden(G,1i) solutions form inf-semi-lattice
post-linear dual of linear solutions form sup-semi-lattice
regular (G)ANB(H)=> d(GNH)APGUH) solutions form sub-lattice

Table 4.1: Predicate Classes and Their Characteristics

as for linear predicates, O(mn), where m is the maximum number of events on any process, and
n is the number of processes.

These classes of predicates and their defining characteristics are summarized in Table 4.1.

Ezamples from the literature: In this section, we cite examples from the literature in which
other modalities, in addition to Pos, are considered.

In the case of the modality Def, a number of results appear in the literature. Garg and
Waldecker considered the detection of strong conjunctive predicates {conjunctive predicates under
the Def modality) in [42]. Given a strong conjunctive predicate Def & = Def LAy A ... A LP,,.
the approach is based on identifying overlapping intervals I¥ on which the LP, are true. On each
process, the contiguous states on which the LP; are true define intervals I I?,... Garg shows
that if such overlapping intervals exist, then Def LP1 A ... A LPp, will hold true, and conversely,
that if Def LP, A ... A LP,, holds true, there must be a set of overlapping intervals. This latter
fact is proved by showing that, if none of the intervals overlap, a sequential observation may be
constructed in which the predicate never holds. The complexity of their detection algorithm is
O(m?2p), where m is the number of event queues (equal to the number of local predicates) and
p is the maximum length of any queue. The class of observer-independent predicates, whose
truth value is the same whether under the Pos or Def modality, may be checked in O(|H|) time,
by checking if the predicate holds on an arbitrarily selected sequential observation. This was
shown by Charron-Bost et al. in [17]. This result also covers the cases of stable and disjunctive
predicates, as they are observer-independent. In the case of regular predicates, in {98], Sen and
Garg present several ad hoc necessary and sufficient conditions to reduce the coN P-complete
complexity of detection under the modality Def to polynomial complexity, for certain classes of
regular predicates.

The property-structural approach has also been applied to the detection of temporal predicates.
In [97], Sen and Garg consider applying the property-structural approach to restricted classes of
temporal predicates. Predicates are specified using a version of the branching-time temporal
logic CT L, defined appropriately over the lattice of consistent cuts, where sequential observations
replace paths. One advantage of the use of CTL as a specification languages is that it permits a
unified presentation of the modal operators considered previously: given a predicate ®, Pos® =
EF®, Def® = AF ®, Controllable® = EG ®, and Invariant® = AG®. This paper unifies
existing results for the modalities Pos, Def, Controllable, and Invariant, and introduces some
new results. Examples of new results presented include polynomial complexity algorithms for
EG ® and AG ®, with & linear, as well as EG[®:0'®] and AG[®,U ®,] where &, is conjunctive
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| Predicate class | Pos® | Dejd |

disjunctive “ O(|HY)) O(|H])

conjunctive O(n’m) O(m?p)
generalized conjunctive | O(m?n +mn?) | open
relational open open
observer-independent O(|H)) O(|H))
linear O(mn) open
post-linear O(mn) open
regular O(mn) open

Table 4.2: Predicate Classes and Their Complexity of Detection

and ®, is linear. These algorithms are suitable for off-line use only.

Limitations of the approach: The property-structural approach to combating state explosion
in dynamic property detection is highly successful, in that efficient algorithms are obtained for
many important classes of properties expressed as predicates on global state. This exemplifies
the success in adopting the approach to combating state explosion outlined in the introduction,
based on identifying classes of properties for which efficient algorithms may be found, as opposed
to addressing the general property detection problem.

As seen in the above examples, one of the limitations of the property-structural approach
is the fact that each modal operator, property class specification requires a different detection
algorithm, resulting in a multiplicity of detection algorithms. Some of the algorithms also depend
upon off-line assumptions, which restricts the applications to which these detection algorithms
may be applied.

Finally, application of this approach has been less successful to date on combating state explo-
sion in the case of temporal predicates, with the vast majority of the results applying to the case
of properties specified by global predicates. The existing results place serious restrictions on the
classes of temporal properties for which detection algorithms exist.

Complezity: The complexity results for key property classes and modal operators Pos and
Def are summarized in the Table 4.2, where open refers to the fact that algorithms of polynomial
complexity are not known for the general case.

4.2.4 Slicing Distributed Computations

Slicing [39] is an approach to combating state explosion in the analysis of distributed com-
putations, based on the idea of dynamic program slicing for distributed programs, discussed in
Section 3.2.3. Given a distributed computation ¥ = (H, —) and a Boolean predicate ®, a slice
of the computation v with respect to @, denoted slice(y,®), is a partial order defined on subsets
of events, where each subset of events is to be interpreted as being executed atomically, and the
set of consistent cuts of the slice is guaranteed to contain all solutions of the original computation
(H,—) which satisfy the predicate. In general, slices of a distributed computation will be signifi-
cantly smaller that the original computation. Polynomial time algorithms exist to create slices of
distributed computations.

Distributed computation slicing can be used to mitigate the effects of state explosion by per-
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forming predicate detection in a two stage process: in the first stage, a slice slice(~.®) of the
original distributed computation v is created with respect to the predicate ® defining the prop-
erty; in the second stage, the slice is analyzed, using existing lattice exploration techniques to
explore the lattice of consistent cuts associated with the slice, which is guaranteed to contain all
consistent cuts of the original computation satisfying the predicate.

In addition to this important application of combating state explosion in property detection,
distributed computation slicing is also an important ingredient in the solution to the predicate
control problem. Given a distributed computation and a predicate defined on global state, the
predicate control problem aims to add synchronization arrows to the distributed computation such
that the predicate always stays true. In this context, computation slicing is used to determine
when a distributed computation is controllable. Predicate control has applications in debugging
[105] and software fault-tolerance [106].

In the following sections, we review the key concepts and details of distributed computation
slicing.

Key concepts: Lattice Theory and Birkhoff's Representation Theorem for Finite Distributive
Lattices. Slicing is based on a theorem by Birkhoff concerning the correspondence between partial
orders and finite distributive lattices. We review the basic definitions associated with partial orders
and distributive lattices, in order to be able to state the theorem.

A partially ordered set or poset P = (P,<g) is a set of elements P together with a reflexive,
antisymmetric, transitive binary relation <p on P which represents an ordering relation on the
elements of P. For z,y € P ,weuse z <p ytodenotez <pyandz #y. fz <pyory<pz,
we say that the elements z and y are comparable. Given a set of elements P' C P and an element
¢ € P, we say that z is an upper bound for P' if y <p z forevery y € P'. The upper bound z is a
least upper bound for P' if z < z' for all upper bounds z' of P'. The notion of a lower bound and
the greatest lower bound are defined similarly. Finally, given two elements =,y € P, the greatest
lower bound of the set {z,y} is referred to as the meet of z and y, and denoted £ Mz y. Similarly,
the least upper bound of the set {z,y} is referred to as the join of z and y, and denoted z Up y.

A partially ordered set defines a lattice if, for every pair of elements {z,y} in the set, the least
upper bound of {z,y} and the greatest lower bound of {z,y} are likewise elements of the partially
ordered set. A subset of a lattice is a sub-lattice if the subset is closed under the meet and join
operations. A lattice is distributive if its meet operation distributes over its join operation.

Given a partial order P =(P,<p),asubset ] C Pisan ideal or left-closed subset of P if, for
each element z € I, the set of elements which precede z in the order on P are also in I. We denote
the set of ideals of a partial order P by I deals(P). The set of ideals of P, together with the set
inclusion relation C, form a distributive lattice (I deals(P), C). In this lattice, the meet operation
M corresponds to set intersection N, and the join operation U corresponds to set union U.

Birkhoff’s representation theorem makes explicit the relationship between partial orders and
finite distributive lattices. Given a finite distributive lattice L = (L,<j), an element z € Lis
join-irreducible if  # O (the zero element of L) and Va,b € L: z =alj b= (z=a)V(z =b). Let
JoinIrr(L) be the set of join-irreducible elements of I. We now state Birkhoff’s representation

theorem for finite distributive lattices:

Theorem 4.1. Let L be a finite distributive lattice. Then the map f : L = Ideals(Joinl ~rr( Ly)
defined by f(a) = {z € JoinIrr(L)|z <} a} is an isomorphism of L onto Ideals(JoinIrr(L)). In
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a dual manner, let P be a finite poset. Then the map g : P — JoinIrr(Ideals(P)) defined by
g(a) = {z € P|z <p a} is an isomorphism of P onto JoinIrr(Ideals(P)).

Birkhoff’s theorem states that there is a one-to-one correspondence between a finite poset
and a finite distributive lattice. Given any poset, we can reconstruct the corresponding lattice
by considering its left-closed subsets; conversely, given a lattice, we can reconstruct the poset by
considering its join-irreducible elements.

This theorem will be seen to play a major role in the algorithm used to construct slices with
respect to a predicate. As noted in [39], this theorem is important in a computational sense, as
the set of join-irreducible elements is often much smaller than the size of the corresponding lattice.
Thus, if a computation on L can be performed instead on JoinIrr(L), then there is a significant
computational advantage (c.f. model checking techniques on unfoldings).

We consider the above theory in the context of a particular partial order, the distributed
computation (H,—). As we have seen in Section 4.1, the left-closed subsets of the partial order
(H,—) are exactly the set of consistent cuts Cuts(H) of the distributed computation. There,
we noted that the set of consistent cuts forms a lattice under set inclusion. We now know that
this lattice is also a distributive lattice. The meet operation M on the lattice corresponds to
set intersection, and the join operation U corresponds to set union. Birkhoff’s theorem tells us
that there is an isomorphism between the elements of the distributed computation and the join-
irreducible elements of lattice, under the mapping g(e) = {¢' € Hle' — e}. In other words, the
consistent cuts of the form {e' € H|e' — e} are the join-irreducible elements of the lattice of global
states. These consistent cuts, one for each event e € H, are referred to as the local configurations
of the events e.

The idea behind slicing is as follows. A regular predicate is such that the set of consistent
cuts on which it is true forms a sub-lattice of the lattice of global states. Using the Birkhoff
representation theorem, if we are able to identify the join-irreducible elements of this sub-lattice,
the representation theorem can be used to construct a partial order on subsets of events such that
the lattice of ideals corresponding to the partial order is exactly the sub-lattice in question.

Representing slices. Slices consist of partial orders defined on subsets of events, where events
in a subset are interpreted as being executed atomically. The slice describes (i) which events are
to be executed atomically and (ii) which order those subsets should be executed in. Formally,
given a distributed computation (H,—) and a global predicate &, the triple (Is,F, —¢), where
F C 2H and —¢ is a partial order on F, is a slice [39] if the following two conditions are satisfied:

1. F is a partition of some subset of H
2. VG € Cuts(H) : ®(G) = (G € Cuts(F))

The first requirement guarantees that the elements of the slice are mutually disjoint subsets of
H. The second requirement states that the slice must capture all and only the consistent cuts
satisfying ®.

Garg and Mittal prove in [39] that a slice for a distributed computation exists if and only if
the predicate @ is a regular predicate.

Details of the approach: Slicing regular predicates. In the case of a regular predicate, the slice
of a distributed computation contains all and only the solutions (if any) to the predicate. As
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noted in [39], the size of the lattice Cuts(H) and the size of the solution set Cutsq(H) may be
exponential in the size of the problem, and so a naive algorithm which enumerated the consistent
cuts in Cutsg(H) would be inefficient. Mittal and Garg provide an efficient algorithm. The slicing
algorithm for regular predicates consists of four steps (we present only an outline here):

Step 1: compute the least cut, V, of Cutsg(H), using the algorithm for linear predicates

Step 2: compute the greatest cut, W, of Cutse(H) using the reverse algorithm for linear predi-
cates

Step 3: the sub-lattice W — V of Cuts(H) has now been identified. This sub-lattice contains
all solutions of Cutsg(H), by regularity of ®, as well as other global states which do not.
The join-irreducible elements of the sub-lattice Cutsg(H) are found as follows: given an
event ¢ € H , define the predicate ®.(X) = ®(X) A (e € X) and let J(e) be the least cut in
W —V satisfying ®.(X). It is shown in [39] that these consistent cuts are the join-irreducible
elements of Cutsg(H). The least consistent cut algorithm for linear predicates is used to
determine all such elements, for each e € H.

Step 4: the join-irreducible elements J(e) may be such that some are equal. In this step, equiv-
alence classes Ci,...,Cr on the set of events in W — V are defined: two events e, f are
equivalent if J(e) < J(f) and J(e) < J(e). This is achieved by constructing a graph repre-
senting containment, and identifying the strongly connected components. Each equivalence
class C; is represented by a join-irreducible element J(C;) in the lattice, where J(C;) = J(e)
for one element e of the class C;. Then the slice (I, F, +4) is defined as follows: I =V,
F = {Cil1 S i Sm) and —e={(C;,C)II(C:) € J(C3) AJ(C)) # J(Cy)}-

The algorithm for computing the slice runs in O(N 2|H|), where N is the number of processes in
the system, and |H| is the number of events in the distributed computation.

Figure 4.5, reproduced from [39], shows the stages of construction of a slice of a distributed
computation with respect to a predicate. Figure 4.5(a) shows the original distributed computation.
Figure 4.5(b) shows the lattice of consistent cuts, where the cuts satisfying a given but unspecified
predicate have been shaded. Steps 1 and 2 of the algorithm effectively identify this sub-lattice.
Step 3 identifies the join-irreducible cuts of the sub-lattice of shaded cuts: in the example, J(e;) =
J(f1) = {el,fl}, J(e2) = {ez,e1, f1}, J(g) = {g1} and J(f2) = J(g2) = {91,f2,f1a92,91}-
Figure 4.5(c) shows the sub-lattice of solutions, with join-irreducible elements indicated by a thick
border: in the example, the equivalence classes of events are C = {e1, i},C2 = {@1},Cs = {e2},
C4 = {f2, 92} Figure 4.5(d) shows the slice corresponding to the original distributed computation.

Ezamples from the literature: This slicing approach has been extended to handle the case of
general Boolean predicates [81] and temporal predicates [99)].

In [81], Mittal and Garg considered developing an approach to slicing which would apply to
general predicates, not necessarily regular. The approach is based on identifying a sub-lattice of
the lattice of consistent cuts which contains all consistent cuts which satisfy the predicate, even if
the Iatter do not form a sub-lattice. This can be achieved by adding in consistent cuts to complete
the sub-lattice.

In [99], Sen and Garg extend the slicing approach to the detection of temporal predicates. In
this work, a temporal logic called regular CTL, and denoted RCTL*, is defined. RCTLY is a
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Figure 4.5: A computation (a), its lattice (b), a sub-lattice (c) and the corresponding slice (d).

restricted form of the temporal logic CT L in which atomic propositions must be regular predicates.
Sen showed that slices can be defined and computed for temporal formulae in which the temporal
operators are restricted to EF, AG, EG.

Limitations of the approach: The slicing algorithms presented in [39. 81, 99| require exploring
the partial order from its maximal elements in reverse, in order to compute the greatest cut. Thus,
slicing algorithms are generally limited to post-mortem analysis.

Complezity: Computing the slice of a regular predicate can be achieved in O(N? H|) [39].

4.2.5 Distribution

In centralized dynamic property detection schemes, such as those considered thus far. the
property detection task is performed at a single monitor process. The main computational task

of the trace checking problem is the exploration of the computation state space. which is limited

78



primarily by the amount of available memory on the machine on which the monitor process resides.
As with model checking, when the size of the validation model (now represented by the distributed
computation) is such that the computation state space does not fit into main memory. paging of
virtual memory results in a marked decrease in computational performance.

In a distributed dynamic property detection scheme, the property detection task is distributed
over a set of processes which cooperate in order to detect the property. There are two key reasons
for wanting to produce distributed detection algorithms:

1. reduction of time and space complexity per process: by using a distributed detection algo-
rithm, the time and space complexity can be distributed over the processes cooperating in
the detection. This mitigates the effects of the state explosion problem at each site.

2. speedup of detection: distribution also opens up the possibility of achieving faster detection.
This speedup can be achieved if the processes involved in the detection are allowed to execute
concurrently.

This method has been applied successfully to a number of algorithms for the on-line detection
of weak conjunctive predicates (conjunctive predicates under the modality Pos) [38, 58], on-line
detection of strong conjunctive predicates (conjunctive predicates under the modality Pos) [38],
and the off-line detection of conjunctive predicates for a range of modalities [115].

In this section, we review the key concepts and details of this approach to combating state

explosion in trace checking.
Key concepts: Decentralized Detection Architecture. In a centralized detection scheme, with each
application process P;, we associate a non-checker process NC;. These non-checker processes can
be conceived as being superimposed on the P;. The non-checker processes do not perform detec-
tion: they receive information from the application processes and are responsible for conveying
that information to a centralized checker process (or monitor), C. The centralized checker pro-
cess receives local state information from the non-checker processes and uses this information to
perform detection. The computation and data required for detection is centralized at the checker
process. In a decentralized detection model, with each application process, we associate a dis-
tributed checker process DC;. In place of a centralized checker process, the distributed checker
processes collectively perform detection. In this scheme, two types of messages are exchanged be-
tween processes: application messages, and control messages. Application messages are messages
exchanged between processes by the underlying distributed program. Control messages are mes-
sages exchanged between distributed checker processes in order to permit detection. Figure 4.6
illustrates these two architectures. In the diagram, arrows with solid lines represent application
messages, and arrows with dotted lines represent control messages.

In some detection algorithms [58], control messages may be avoided by piggybacking control
information onto application messages. The data required for detection is distributed amongst the
distributed checker processes.

Decentralized token-based algorithms versus fully distributed algorithms. Distributed algorithms
can vary in the degree of concurrency they provide. Token-based algorithms are distributed
algorithms where processing is synchronized through the use of a token, passed between processes.
Generally, only the process which has the token may be active. A token-based approach to
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Figure 4.6: Centralised vs Distributed architectures.

providing distribution of detection allows decentralization of the algorithm (permitting distribution
of time and space complexity) but results in no concurrency: only the process which currently holds
the token may perform steps of the detection. This effectively eliminates any potential speedup due
to parallelism. Non-token based distributed algorithms must synchronize any concurrent activity
through the use of additional control messages. This results in an equitable distribution of space
and time complexity, as well as achieving speedup.

Message complezity. When algorithms are distributed, in addition to time complerity and space
complexity, we must consider the message complezity of the algorithm. The message complexity
of a distributed algorithm is the total number of bits of information communicated in messages
exchanged by the distributed algorithm. Message complexity is significant as each message sent
or received incurs overhead (in the form of context switches between processes and execution of
various protocol layers). It can happen that the positive advantages incurred by distributing pro-
cessing can be significantly reduced by increased message complexity. Thus, message complexity
is an important consideration in distributed detection algorithms.

Ezamples from literature: The first distributed algorithms for predicate detection appeared in
Garg and Waldecker, for the case of on-line detection of weak conjunctive predicates [41] and
strong conjunctive predicates [42]. The distributed version of the algorithm for weak conjunctive
predicates was based on the approach taken in the centralized version of the algorithm (identifying
a consistent set of local states, each of which satisfies the local predicate) together with the
observation that the problem of determining when a set of local states S = T U U is consistent
can be subdivided into the problems of determining separately when the set of local states T and
U are consistent, and checking an additional condition between sets of local states. This permits
distribution of the algorithm by dividing the set of processes into groups, and having each group
run the centralized detection algorithm, to identify a candidate consistent cut for the group. These
candidate cuts for each group are then assembled by an overall checker process which checks if the
remaining additional condition holds true. If it does, the predicate is detected. If not, one or more
of the candidate cuts are returned to the groups, and the process repeated. A similar approach
was used to provide a distributed algorithm for strong conjunctive predicates, only in this case a
result for finding a concurrent set of intervals is used.

As cited in [38], this approach suffers from the fact that the group processes may have to send
an exponential number of global states (exponential in the number of processes in the group)
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to the overall checker process. Garg and Chase presented improved on-line distributed detection
algorithms for weak conjunctive predicates in [38]. In that paper, the approach was based on
circulating a token containing a candidate consistent cut G[] and a vector of colors color[], where
each color(i] is red or green. If a local state G[i] in the candidate cut has color[i] = red, then the
local state G[i] happened before some other local state G[j]; if color[i] = green, then G[i] does
not happen before any other G[j]. The token is sent to processes whose local state G[i] is red.
Upon receiving the token, the monitor process waits for local state changes. At each local state
change, it updates G[i] with the new local state and recomputes the values in the color vector.
When colorfi] = green, it sends the token on to another process whose local state is marked
red. Again, this algorithm operates in essentially the same way as the centralized algorithm for
detecting weak conjunctive predicates, which is based on advancing past a forbidden state (one
which causally precedes some other local state and can never be part of a consistent set of local
states) in a candidate cut. The distributed version has time and space complexity O(mp?) in total,
and O(mp) per process, where p is the number of processes over which the predicate is defined,
and m is the number of messages sent or received. The algorithm has message complexity O(mp)
messages sent, with O(n) bits per message, and so overall O(mp?) bits. The disadvantage of a
token-based algorithm is that there is no concurrency: only the monitor which has the token can
be active. Garg and Chase introduce parallelism into the algorithm using a set of g tokens: the
set of processes is divided up into g groups, where each group runs the single token algorithm,
following eliminated states until a consistent group state is reached. These consistent group states
are sent to an overall checker process, which assembles them into a global cut and checks for
consistency. If they are consistent, the predicate has been detected. If they are not consistent, the
overall checker process sends a token back to one or more groups, and the process is repeated.
The algorithm described above is based on the use of vector clocks, and only requires participation
of the p processes in the system on which the local predicates are defined. Garg and Chase
present a second distributed algorithm for detecting weak conjunctive predicate based on direct
dependencies between states, in which it is necessary that all n processes in the system participate.
This algorithm has has time and space complexity O(mn) in total, with worst case for a process
O(m). The message complexity is O(mn) messages sent with O(1) bits per message and so overall
O(mn) bits.

Hurfin, Mizuno, Raynal and Singhal [58] provided an efficient distributed detection algorithms for
the on-line detection of weak conjunctive predicates, which is not token-based. The algorithms are
based on modeling distributed computations in terms of events, local states and intervals of local
states (between communication events) and their causal dependencies. The conjunctive predicate
detection problem is recast in terms of finding a set of intervals which are (i) concurrent and (ii)
such that each interval contains a local state satisfying the local predicate. Two versions of the
algorithm are presented. The first is based on each process maintaining sets of concurrent intervals,
and, for each set, each process checking if its interval in the set satisfies the predicate; the second
is based on each process keeping track of one set of intervals, each of which satisfies the local
predicate, and checking whether the set is concurrent. The algorithms are fully distributed (each
process runs the same algorithm) and do not depend on the passing of a token for synchronizing
detection activity. The authors note that, although the volume of control information exchanged
by these algorithms is the same as the vector clocks based distributed algorithm of Chase and
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Garg, O(mp?) (where m is the number of messages sent by any process and p is the number of
processes over which the predicate is defined), a key aspect of these algorithms is that they do not
introduce any additional messages - control information is piggybacked on application messages.
By contrast, the two algorithms of Chase and Garg may exchange up to O(mp) and O(mn)
control messages respectively. This is a significant as message exchanges account for significant
extra overhead.

Distributed detection algorithms have also been developed for post-mortem analysis. Ventkate-
san and Dathan {115] provide a family of distributed detection algorithms for off-line detection of
conjunctive predicates. Their application focus is testing and debugging via deterministic replay:
the execution of the distributed program is recorded in such a way that it can be deterministi-
cally replayed, and during analysis, it is replayed one or more times. The authors consider the
detection of conjunctive predicates & under a range of modalities useful for debugging applica-
tions: POSSIBLY (®), ALWAY S(®)(= -POSSIBLY (—~®)), DEFINITELY(®), FIRST(®)
and LAST(®). The fact that detection proceeds off-line permits a wider range of modalities to
be efficiently detected in a distributed manner. The algorithms are based on computing intersec-
tions of projections of spectra, where a spectrum is defined as a contiguous interval of states on a
single process for which a local predicate is true. A spectrum S can be described as the interval
S = [first(S),last(S)], where first(S) is the first event in the spectrum, and last(5) is the last.
Given an event e on process P;, the authors define the first consistent cut event FCCEg(e) to
be the first event on process P which can participate in a consistent cut with event e. The last
consistent cut event LCCEy(e) is defined similarly. The consistency set for e is a set of spec-
tra, one for each process, defined for process P; by [FCCEy(e), LCCEg(e)], and represents the
possible events on other processes which may be involved in consistent cuts with e. Based on
these ideas, the projection of spectrum S; onto process P;, denoted by m(S; — F;), is a spectrum
on P; defined by [FCCE;(first(S;)), LCCE;(last(S;))] and represents those events on P; which
are concurrent with at least one event in S;. Finally, given a set of spectra Si,..., Sy, the ith
intersection of projections of spectra is defined as I; = n(Sy - B)N...N7(Sn — P;). This
defines a spectrum on P; such that, for any event e € [;, e is in the consistency set of at least
one event of Sy, one event of S,, etc. Ventkatesan and Dathan present sequential and distributed
algorithms for computing the Ii,..., I, given a set of spectra Si,.. .,Sn- The algorithms are
based on performing n — 1 iterations of a two-phase process which starts with the Sy, ..., Sp,and
iteratively eliminates events which do not satisfy the conditions required for the intersections of
spectra. The algorithms for detecting conjunctive form predicates for the various modalities are
based on computing the intersections of spectra. For example, in the case of the modal operator
POSSIBLY (@), it can be shown that if a set of spectra Si,. .., Spcan be found such that each
S;satisfies the local conjunct, and the corresponding intersections I, ..., I, are all non-empty,
then both (first(ly),..., first(In)) and (last(I1),...,last(In)) are consistent cuts which satisfy
the conjunctive form predicate. In order to avoid having to examine all possible combinations of
such spectra, the authors use a technique, first introduced in [41], for eliminating spectra which
can never be part of a solution.

The authors note the message complexity of their distributed algorithms, for computing in-
tersections of spectra as well as detecting conjunctive form predicates, but no other complexity

estimates for the detection algorithms are provided.

82



Limitations of the approach: Despite their great potential for distributing the computational task
more equitably amongst detection monitor processes and achieving speedup, distributed detection
algorithms have yet had only limited applicability. The approaches cited only apply to the detec-
tion of weak conjunctive predicates and strong conjunctive predicates, in particular, and exploit
the structure of the predicates in order to distribute the detection task. Providing distributed
detection for more general classes of predicates is required. One reason for this state of affairs
may be that that distributed algorithms are generally more complex to develop than centralized
algorithms. This is particularly true if one wishes to avoid the introduction of additional message
complexity due to communication required between monitor processes.

Complezity: The algorithms presented are effective in distributing the time and space complexity
equitably amongst a set of detector processes. For example, in the case of weak conjunctive pred-
icates, time and space complexity is reduced from O(n%m) for the centralized checker process to
O(mn) per process in the distributed case. However, some of this benefit is eliminated due to ad-
ditional message overhead introduced by the required communication between monitor processes.
For example, in the case of weak conjunctive predicates, this overhead can be as much as O(mn?)
bits. However, as cited earlier, Hurfin et al. [58] showed that by careful algorithmic design, this
additional message complexity can be avoided.

4.2.6 Model Checking Methods

The rationale behind the use of model checking techniques for combating state explosion in
dynamic property detection is to exploit the use of techniques which have proved successful in
combating state explosion in model checking in the problem of dealing with state explosion in the
dynamic property detection.

In this section, we outline examples of existing research which has pursued this approach to
the state explosion problem in trace checking. The examples to follow are limited in application
to the global predicate detection problem (in which dynamic properties are specified by simple
global predicates defined on global state) and in which only the modal operators Pos and Def
are considered.

Tt should be noted that although these examples support the view of this thesis that techniques
for combating state explosion in model checking have the potential to be used successfully in
trace checking, they do not consider the more general issue of which of the many techniques
for combating state explosion in model checking are well-suited for application to the dynamic
property detection problem. This will be the subject of the next chapter.

Ezamples from the literature: There are two examples of the use of model checking techniques for
combating stat explosion in trace checking appearing in the literature: partial order reduction and
symbolic model checking.

Partial order reduction. In [104], Stoller et al. investigate applying the method of partial order
reduction to combat the problem of state explosion in the detection of Pos ® and Def ® (where
® is a simple predicate defined on global state) over a distributed computation v = (H,—). The
authors investigate the use of a persistent set selective search (discussed in Section 3.2.4) which
performs a reduced search of the state space of a concurrent system, while at the same time
detecting all deadlocks. The approach is based on being able to construct a concurrent system
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Systemp,, (resp. Systempes) such that the concurrent system contains a deadlock iff the dis-
tributed computation v satisfies Pos ® (resp. Def ®). Once this system has been constructed. a
persistent set selective search of Systemp,, (resp. Systempeys) is used to discover if any dead-
locks do, in fact, exist. The details of the approach (construction of the concurrent system and
calculation of persistent sets) vary, depending on the modal operator under consideration.

The concurrent system representing - is constructed based on a computational model presented
in Godefroid {46]. We now recap briefly the main elements of this computational model. A
concurrent system is described as a tuple (P, O, T. s;nit), consisting of processes P, variables O,
transitions 7 and an initial state 8;,;;. In this model, each process P; € P describes a set of
control points, variables in O may be shared or non-shared variables, and transitions in 7 are of
the form t = (L1,G,C, Ly), where Ly, L, are sets of control points (with at most one from each
process), G is a Boolean-valued guard defined on variables, and C is a command, a sequence of
operations defined on variables in 0. Global states of the system are tuples s = (L, V') where L is
a set of control points (one per process) and V is a valuation of the variables in O. A transition
t = (L1, G,C, Ly) is enabled in global state (L,V) when L; C L and G evaluates to true when
using the values in V. If a transition t = (L;, G, C, L) is enabled in state s = (L, V), then it can
be executed, leading to a state s' = ((L\ L1) U L2, C(V)), where C(V') represents the new values
obtained by using the operations in C to update the values in V. Such transitions are denoted
by s Y &', Executions of the system are finite or infinite sequences s; LY 82 3 $3--- such that
81 = Sinit and for all ¢, s; LY Sit1-
Details of approach for Pos ®: The approach to applying partial order reduction to the solution
of the problem involves the following three steps:

1. construct a concurrent system Systemp,s (see below) which has the same set of executions
as the distributed computation v = (H, =)

2. modify Systemp,, so that the detection problem vy = Pos® is expressed as a deadlock
detection problem for the concurrent system: that is, Pos & holds in the original distributed
computation 7 iff the system Systempo, contains a deadlock

3. use the persistent set selective search algorithm to detect if a deadlock exists in the system
Systempos (and so decide if the property holds over the computation).

Constructing Systemp,s: Using the model of computation outlined above, each process of the
distributed computation = is represented by a process P; € P, 1 <1 < n, with one control point
representing each local state o¥. For each process P; in P, a shared variable p; of O is defined,
whose possible values are the vector clock values VC(ef) of the events eX € h;. Transitions t;x € T
are defined to model the execution of events e¥ of v: the transition i is enabled in s = (L.V)
when (i) the current control state of P; corresponds the the local state o5~ in which e¥ is enabled
and (ii) the new value of p; in s' = (L', V') which would result from firing ¢ is such that the
set of timestamps {p1,..-,Pn} are pairwise consistent (i.e. represent a consistent global state);
the effect of executing transition t; is to (i) update the control state of P; to correspond to the
new local state 0¥ and (ii) the variable p; is updated with the timestamp V"C(e¥) of the event ek
In this way, the distributed computation = is modeled by a concurrent system Systempg,, in the

sense that they have corresponding sets of execution sequences.
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In order to express the detection of Pos @ as deadlock, System p,, is modified as follows: (i) a new
process Fy is added to the system, having only two control points: an initial control point Iy g
(where the subscript nd represents the fact that Pos® is 'not detected’) and a terminal control
point lg,q (where the subscript d represents ’detected’) (ii) a new transition t; € 7 is added,
defined in such a way that (a) it is enabled in a state s = (L, V') only when process P, is in control
state lo,ng and ® holds in s = (L, V), and (b) firing ¢, has the effect of changing the control state
of Py to lp,s and disabling all transitions t;;. This latter feature requires updating the enabling
conditions of the ¢;; to additionally require that process F, be in control state lg ,4. The authors
show that, in the modified system, v |= Pos ® holds iff the constructed system System p,, reaches
a deadlock.
Computing persistent sets: An algorithm is required to compute persistent sets ps(s) for each state
s reached during the exploration of Systemp,, using the persistent set search. The authors show
that most existing algorithms for computing persistent sets result in sets which are ineffective
(i.e. result in all transitions in enabled(s) being explored), due to the special structure of the
constructed system. It is proven that if the predicate & is false in a state s, then a set of directions
ps(8) containing all enabled transitions which potentially make the predicate value change from
false to true is a persistent set. Using this fact, the authors provide an algorithm for efficiently
computing such a persistent set from state s.
Assuming that the Boolean predicate & can be written as a conjunction of Boolean predicates ¢;
(that is, ® = ¢ A...A¢p , where n > 1), the authors then show that the time complexity involved
in computing persistent sets at each state s is O(Nd), where N is the number of processes in the
system, d = maz{|supp(¢1)|, - - -, |supp(¢n)|}, and supp(e;) is the support of the formula ¢; (the
variables over which the formula is defined). The overall time complexity of the persistent set
selective search is O(NdN,), where N, is the number of states explored by the algorithm. The
authors show that the algorithm, when applied to the case of conjunctive form predicates, has
time complexity O(N2S), where S is the maximum number of steps taken by a single process,
which matches the time complexity of the efficient algorithm by Garg and Waldecker for detection
of conjunctive form predicates. Stoller et al. also note that their algorithm applies to a larger
class of predicates than conjunctive form predicates. They show that their algorithm for detection
of Pos ® is superior to the algorithm of Cooper and Marzullo, as the latter algorithm does not
exploit the structure of the predicate in order to determine which part of the state space to explore
- it explores all states. Finally, the algorithm presented by Stoller et al. is designed for off-line
detection of finite computations, based on constructing Systemp,s and using the depth-first search
based persistent set search algorithm of Godefroid. They claim that the method can be adjusted
for on-line use, in particular by changing the order in which the search is carried out, but no proof
of this claim is given.

Details of the approach for Def ®: The details of the approach for detecting De f ® are similar
to that of Pos ®:

1. construct a concurrent system Systempes which has the same set of executions as the

distributed computation vy = (H, =)

2. express the detection problem v = Def® as a deadlock detection problem for the concurrent
system: that is, Def ® holds in the original distributed computation iff the constructed
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system Systempey contains a deadlock

3. use the persistent set selective search algorithm to detect if a deadlock exists in the system
Systemp.s (and so decide if the property holds over the computation).

Constructing Systemp.s: The construction of the concurrent system Systemp,, to model the
distributed computation «y is identical to the case of Systemp,,. In order to express the detection
of Def ® as deadlock, changes are made to system Systemp.s. The key idea is to, during the
state space search, keep track of whether the predicate & became true in any state on the path
currently being explored. If the final state of the distributed computation is reached without @
having become true, then Def @ is violated. The system Systemp,; is modified as follows: (i) a
new process Py is added, having only two control points Iy n, (where the subscript nv represents
the fact that Def ® is 'not violated’) and Iy, (where the subscript v represents the fact that Def &
is *violated’) (ii) a new shared variable h is added, and is used to record the fact that, along the
current path followed by the depth-first exploration, a state was encountered where the predicate
® became true (this is achieved by adding an operation to the effect of each transition t;x which
sets h to true if the state reached by executing t;. satisfies ®) (iii) a new transition ty is added,
defined in such a way that (a) ¢y is enabled only when process P is in control state I ny, the
control states of the processes Py,..., P, are in the terminal control states of the computation,
and h = false and (b) when transition ¢, fires, it changes the control state of process Py to lo,y-
The transition #g will be enabled only when it is possible to reach the final state of the distributed
computation by a path on which & never holds. Note that any state containing the control state
lo,» represents a deadlock of Systemp.y, as no transitions in either Py or the processes Py, ..., P,
are enabled. The authors show that Systemp.s will enter a deadlock containing lo,, iff some path
leading to the final state of the computation has not encountered a state satisfying the predicate
o.

Computing persistent sets: The algorithm for constructing persistent sets is largely based on
the same idea as in the case of Pos®: to identify a set of enabled transitions which must be
fired in order to change the value of & from false to true. The authors present worst-case time
complexity for the case of conjunctions of local predicates: the worst-case time complexity for
calculating persistent sets is O(N); the overall time complexity of the persistent set selective search
is O(NN,), where N, is the number of states explored by the algorithm. The authors remark that
PSpes(s) sometimes returns en(s), so that, in the worst-case, N, is ©(SV). However, in many
cases, PSp.s(s) returns a proper subset, and so explores many fewer states than the algorithm of
Cooper-Marzullo.

Symbolic model checking. In [103], Stoller et al. investigate the application of symbolic
methods of model checking to the problem of predicate detection. The idea behind the approach
is to encode the property detection problem as a Boolean formula in such a way that a distributed
computation y = (H,—) satisfies the property if and only if the Boolean formulae evaluates to
the Boolean value true.

In this work, Stoller only considers properties specified by a predicate defined on global state
with modal operator Pos. Under this modality, the property detection problem is equivalent to
determining if there exists a consistent global state which satisfies ®.

In this approach, Boolean formulae are used to encode the variables of the processes involved in
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the distributed computation, as well as the vector clock values. The variables of the processes are
represented as Zo,...,Z~—1 and vector clock values as vey 1,...,v¢1 N,...,v¢y ~. The Boolean
formula which encodes the detection problem as a satisfiability problem is

®(x) A global State,(z,ve) A consis., (vc)

where the predicate globalState.(z,vc) represents the restrictions on what it means to be a
global state for distributed computation v = (H, —), and consis, (vc) represents what it means
for a set of vector clocks ve to represent a consistent set of local states. These restrictions involve
the possible variable and possible vector clock values over the full distributed computation, and
5o the formulae become quite long.

The algorithm used to check satisfiability is shown in Figure 4.7. Detection does not involve
the use of a satisfiability checker, but a simple comparison of BDD values for the Boolean predicate
representing the problem, and falseyqq. The detection algorithm presented Figure 4.7 is also suit-
able only for off-line detection, in that the Boolean formulas globalState.(z,vc) and consis,(vc)
represent the all possible values for variables and vector clocks over the entire computation. It
could be adjusted for run-time property detection by periodically checking its truth value over
intermediate finite prefixes of the computation.

1 procedure BDD-detection(y, 3)
2 1= truepqq

3 := b Apdd globalState, (z,vc)
4 b := b Apgq consis.(vc)

b = b Abdd 6(:1:)

6 if b = falsepqq then

7 return("y # Pos(®))")
8 else

9 return(”y |= Pos(®))”)
10 fi

Figure 4.7: Pseudo-code for BDD detection

In terms of performance, Stoller notes that, on the basis of experiments in comparing his
algorithm to a standard enumerative algorithm for detecting Pos ® off-line, when the property is
not violated, the new method is faster by a factor that increases exponentially with the number
of process in the system. However, he also notes that the BDD-based detection uses significantly
more memory than the enumerative approach, because the enumerative approach does not ever
store any representation of the full set of consistent global states.

Stoller also notes that the detection of Pos ® (as well as Def ® and other temporal properties)
may be reduced to CTL model checking, by encoding a computation as a transition system whose
interleaving sequences are the same as the sequential observations of the distributed computation
under consideration, and using a CTL model checker to check whether that transition system
satisfies the relevant CTL formula (for example, Pos ® may be encoded as E F ®). Such a solution
would be suitable for off-line detection, but would require some adjustment in the case of run-time
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detection, in which the whole of the computation is not generally available. This is particularly
true as CT L model checking involves the use of fixpoints in checking temporal operators.
Limitations of the Approach: A key limitation of applying these model checking approaches to the
problem of combating state explosion in trace checking is that it is necessary to find a suitable
encoding of the problem for each modal operator considered, and (i) this may or may not be
possible and (ii) if possible, may or may not result in an efficient algorithm.

4.3 Summary

Trace checking considers the problem of determining when the execution of an asynchronous
distributed program satisfies a desired temporal evolution of states or dynamic property. Given
the execution of an asynchronous distributed program, or distributed computation, (H,—) and
a desired (or undesired temporal evolution of states, represented as a dynamic property ¢, the
dynamic property detection problem aims to determine if some or all of the sequential observa-
tions of the distributed computation satisfy ¢. Due to the limitations on making observations of
asynchronous distributed systems and the characteristics of unstable properties, the trace checking
problem must be defined in such a way that the detection of general properties is observation-
independent. This is achieved by defining satisfaction in terms of the set of all possible observations
and application-specific modal operators, such as Pos and Def.

The main limitation of the trace checking technique is the state explosion problem: the fact
that the computation state space of the distributed computation (which implicitly contains the set
of all possible observations) can be exponential in the size of the distributed computation. Indeed,
the trace checking problem for Pos ¢ has been shown to be N P-complete, and the trace checking
problem for Def ¢ has been shown to be coN P-complete.

In the face of this computational complexity of the trace checking problem, a number of
techniques have appeared in the literature, developed in order to mitigate the effects of state
explosion, and we surveyed the key classes of these techniques in this chapter:

e methods for stable properties: based on an active monitoring approach in which consistent
global states of the distributed computation are constructed periodically, this approach is
well-suited to the on-line detection of stable properties, providing an efficient solution. How-
ever, it is not applicable to properties other than stable properties specified in terms of global

predicates.

e filtering-based methods: based on eliminating or filtering events, statically or dynamically,
from the observed distributed computation before detection takes place, resulting in an an-
alyzed distributed computation which can be considerably smaller than the original. The
degree of computation state space reduction achieved depends upon the proportion of rele-
vant or observable events in the distributed computation. The approach depends on having
a method for identifying which events are relevant or observable, as well as special techniques
for encoding causality in the reduced model. This approach is potentially applicable to tem-
poral properties. One disadvantage of the method is that it does not result in a complete
trace being analyzed, which certain applications, such as debugging and fault-tolerance, may
depend upon, as they have an application-specific need to engage in error trace analysis.
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» property-structural methods: a technique based on identifying classes of properties, based on
their syntactic or semantic structure, for which efficient (polynomial) detection algorithms
may be found. In this sense, the technique is very successful, resulting in a large class of
efficient algorithms. However, the disadvantage of the approach is that (i) the classes of
properties considered are limited in scope, especially when it comes to temporal properties
and (ii) the approach results in a multiplicity of detection algorithms, one for each modal
operator, property class combination. Further, a number of the classes are restricted to
off-line detection only.

o distributed computation slicing: a technique in which the detection/verification phase of
trace checking becomes a two-step process, in which a slice of the distributed computation
with respect to a property is created in the first step, followed by analysis. Slices can be
created in polynomial time, this reducing the size of the lattice which needs to be explored.
The degree of reduction achieved depends upon the size of the solution set of the property.
Unlike filtering, which depends upon identifying relevant or observable events, the slicing
approach depends upon identifying subsets of events which correspond to join-irreducible
elements of the solution set. The approach has been applied primarily to non-temporal
predicates, but results exist for specific classes of temporal predicates. This approach is also
limited to off-line trace checking.

o distribution-based methods: based on a divide and conquer approach, where detection is
distributed over a set of workstations, resulting in polynomial time and space complexity
per process. At present, the approach is limited to the detection of conjunctive predicates,
with Pos and Def modality. These methods do apply to on-line trace checking.

o model checking-based methods: this approach is based on applying techniques from model
checking, partial order reduction and symbolic state space exploration, to the trace checking
problem. In the case of partial order reduction, the approach leads to polynomial algorithms
for detection of properties specified by global predicates, for the modalities Pos and Def,
both for on-line and off-line trace checking. In the case of the symbolic approach, solutions
have been found only for such predicates under the Pos modality, and is possibly only
suitable for off-line checking.

The chief problem with the above methods is that many of them apply only to the case of checking
dynamic properties in which properties are specified by predicates in global state. In the case where
temporal predicates are covered, the temporal predicates are restricted to specific classes. As we
have seen in Chapter 2, many important applications, such as testing, debugging, and provision of
fault-tolerance, depend on solving the dynamic property detection in the case of general temporal
properties. We shall look to model checking techniques surveyed in Chapter 3 as a source for
techniques for solving the dynamic property detection problem in the case of general temporal
properties.

In the next chapter, we shall look in more detail at the relationships between the model checking
and trace checking problems, in an effort to determine which model checking techniques might be
well suited to combating state explosion in the trace checking context.
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Chapter 5

Comparative Analysis of Techniques

The original goals of this thesis (with the associated research tasks) were to answer the following
questions :

o what are the broad classes of approaches used to address state explosion in model checking
and in dynamic property detection? (task: survey existing approaches to combating state
explosion in both model checking and trace checking)

e how do the contexts in which these two problems are carried out affect the feasibility of
an approach to combating state explosion? (task: compare and contrast the contexts and
identify promising candidates)

* is it possible to adapt techniques successful for combating state explosion in model checking
to combat state explosion in dynamic property detection? (task: explore the application of
one or more candidate techniques)

In previous chapters, we addressed the first question by surveying the range of techniques appearing
in the literature for combating state explosion in model checking, presented in Chapter 3, and in
dynamic property detection, presented in Chapter 4. There we saw that, in both model checking
and dynamic property detection, a range of techniques are available for addressing the state
explosion problem. In this chapter, we address the second question; that is, we begin to investigate
how contexts in which model checking and trace checking are carried out affect the degree to
which techniques in model checking can be used in combating state explosion in dvnamic property
detection and, through this, identify promising candidates for further detailed development.

Our approach will be based on a comparative analysis of the two problem areas, with respect
to solutions to the problem of state explosion. By a comparative analysis, we understand the

following;:

e an initial comparison of the respective problem definitions and problem contexts in which

these problems must be solved

¢ based on the identified problem definition and problem context differences, an investigation of
which techniques for combating state explosion in model checking show the greatest promise

for application in trace checking
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In the introduction to this work, we argued that it was quite likely that techniques for combating
state explosion in model checking could be used in the context of dynamic property detection.
because dynamic property detection and model checking exhibited many apparent similarities,
with respect to problem definition, semantics and algorithmic approach. We also noted that.
despite these similarities, there were also significant differences between the two problems, and
that these differences might actually prevent a technique from being applied in the new context.
The initial stage of the comparative analysis aims to make these similarities and differences explicit.

Concerning the second task, let us note that determining conclusively whether or not a model
checking technique can be successfully applied in the context of dynamic property detection really
can only be achieved through a detailed attempt at development of algorithms based on the
approach. Given the complexity of the techniques surveyed in Chapter 3, this is a challenging task,
for any one of the individual techniques surveyed there. Therefore, our aim in this second task is
not to make such conclusive determinations, but rather try to identify promising candidates for
further investigation. Our approach will involve first identifying any existing use of the technique
(which might be referred to as existing synergies) and then to consider the potential use of the
technique (which might be referred to as potential synergies), taking into account the similarities
and differences between the two problems, identified earlier. On the basis of this comparative
analysis, we will select one or more such promising techniques and carry out the development and
analysis - this will make up the remainder of the thesis.

In the first part of this chapter, we investigate the significant similarities and differences between
the two problems which can potentially affect the application of model checking techniques. Using
this information, in the second part of the chapter, we examine each technique for combating
state explosion in model checking and its potential applicability to the dynamic property detection
context.

5.1 Problem Definition and Problem Context: Similarities
and Differences

Similarities between the definition and context of the two problems add to the potential of
successfully applying model checking techniques for combating state explosion to the trace check-
ing problem. Differences between the problem definition and problem context detract from this
potential.

In considering similarities and differences of the two problems, we shall touch on the follow-
ing aspects: the problem definition, underlying semantic structures, the fundamental algorithms

involved, and the detection context.

5.1.1 Problem Definition and Problem Context: Similarities

We note the following similarities:

1. specification of temporal properties: both problem definitions involve specification of
temporal properties via temporal logics (or equivalently expressive formalisms, such as finite

state automata), based on the interleaving semantic model. In particular, this permits view-
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ing the behaviours of both concurrent programs and distributed computations in terms of
state transition systems or similar structures [60]. In the case of model checking. the program
state space is represented by the Kripke structure associated with a concurrent program. In
the case of trace checking, the computation state space is represented by the lattice of con-
sistent global states (in the case of global predicate evaluation) or the Kripke structure
associated with a distributed computation (in the case of temporal predicate evaluation).
One important consequence of this is that both problems suffer from the combinatorial ex-
plosion brought on by exploring all interleavings (resp. sequential observations) consistent
with a concurrent program (resp. distributed computation).

2. notion of conformance: in both problems, the notion of whether the behaviour of a system
(concurrent program, or distributed computation) conforms to a property is based upon a
language containment test: informally, the set of execution behaviours of the system must
be contained in the set of execution behaviours defined by the property. This conformance
notion is central to model checking: the notion that a finite state transition system is a
model for the specification. This notion of conformance is distinguished from other notions
of conformance, such as refinement orderings, or observational equivalence, which are used
in verification frameworks where both specification and system are modeled as automata
[21].

3. fundamental algorithms: solutions to both problems are based on state space exploration,
and make use of graph traversal algorithms in order to explore the program state space
(resp. computation state space) of the concurrent program (resp. distributed computation).
Therefore, state space reduction techniques are directed at the same basic algorithm.

4. semantic structures: in both problems, we can represent the executions of concurrent
programs either as sets of partial orders, or as sets of interleaving sequences. Therefore,
state space reduction methods in model checking which make use of particular semantic
representations have the potential to be used in trace checking as well.

5.1.2 Problem Definition and Problem Context: Differences

We note the following differences:

1. all executions versus one execution: in model checking, all executions of the program
are verified, as opposed to dynamic property detection, in which only the single observed

execution of the program is verified or checked.

2. finite state assumption: in model checking, a finite state assumption is required in order to
guarantee termination of the exploration of the program state space. In property detection,
there is generally no such assumption that the program being monitored is finite state.
This is due in part to the fact that dynamic property detection is concerned with analyzing
either terminating distributed computations, or finite prefixes of non-terminating distributed
computations. In this sense, termination of the exploration of the (complete) computation
state space is not an issue. For applications of dynamic property detection such as controlling
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distributed computations, detecting breakpoints in debugging, and providing fault-tolerance
via exception detection and handling, this assumption matches application Tequirements.

. finite observations versus infinite execution paths: model checking, when combined
with the finite state assumption, has the potential to verify infinite execution paths of the
concurrent program: infinite execution paths are represented within the finite Kripke struc-
ture, in a ’folded’ form, via finite length cycles. On the other hand, dynamic property
detection generally avoids the finite state assumption, and also avoids the use of a folded
structure to represent the possible behaviours of a distributed computation (c.f. the lattice
of global states, and the algorithm of Cooper-Marzullo). As mentioned earlier, this is due
in large part to the applications of dynamic property detection. Our position here is that
we take this approach as given, and make no attempt to justify it. In the absence of a
finite state assumption, we can only hope to check terminating distributed computations, or
finite prefixes of non-terminating distributed computations (due to the fact that observing
an infinite execution would take infinite time). In this sense, model checking is generally
concerned with verifying infinite execution paths, and property detection is concerned with
checking properties on finite observations, either of terminating distributed computations or
of finite prefixes of non-terminating distributed computations.

An important consequence of this inability to observe infinite execution sequences (in the
absence of a finite state assumption) means that we cannot generally check liveness prop-
erties, whose violation cannot be determined by examining finite prefixes of computations
only {3]. However, finite execution sequences are sufficient for checking safety properties,
which if violated on a program execution, are always violated on some finite prefix of that
execution. Given that the application of state space reduction techniques can differ consid-
erably, depending on whether one is checking safety or liveness properties, this difference is
significant.

. monitoring and the probe effect: unlike model checking, property detection depends
upon the execution and monitoring of the distributed computation. Model extraction in
property detection occurs at run-time and can result in the probe effect [77], wherein the
attempt to extract information concerning the execution can itself modify the execution
behaviour. In carrying out property detection and techniques for combating state explosion
which involve instrumenting the program, this undesired effect needs to be considered. In
particular, we may rate model checking techniques which necessitate less intrusion more
highly than those which introduce more intrusion.

. systematic exploration of non-determinism and termination of exploration: when
concurrent programs involve non-deterministic choice between program transitions, during
program execution, possible alternatives are non-deterministically resolved in favor of one
choice. In model checking, all possible non-deterministic choices are systematically explored
during the generation of the program state space. A consequence of this is that it is possible
to determine when all reachable states of the program have been visited, and this fact
is used to determine when program state space exploration may terminate. In dynamic
property detection, such non-deterministic choices are resolved non-deterministically by the
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program during execution, excluding the possibility of such systematic exploration of non-
determinism. There are two important consequences of this lack of a systematic exploration
of possible non-deterministic choices:

(a) it is generally not possible to determine, based on observing a finite prefiz of an ez-
ecution, when all reachable states have been visited. To see this, consider a program
which contains non-deterministic choice between two transitions ¢, and ta from state s:
given a finite prefix of a computation which passes through state s, it is possible that
the non-deterministic choice was resolved in favour of ¢; each time state s was reached
in the prefix, but that the non-deterministic choice may (or may not) be resolved in
favour of t3 in a continuation of the prefix which reaches s. This means that the state
resulting from the firing of ¢ may or may not be reached, but we cannot determine
this based on the finite prefix.

(b) continuations of executions from a given state s are not necessarily the same: In partic-
ular, it is no longer the case that we may avoid exploring execution paths from a visited
state s, under the assumption that any executions explored from s upon revisiting will
be equivalent (in some sense) to those explored when s was visited for the first time.
This fact is used implicitly in the termination reasoning of model checking.

Model checking algorithms are based on the assumption that programs are finite state and
that non-determinism is systematically explored, and consequently that the program state
space exploration algorithm will eventually terminate, after exploring all possible reachable
states. By contrast, the algorithms we have seen in property detection make no assumptions
concerning termination: they do however implicitly assume that all events in the distributed
computation are processed. This difference is significant as a number of approaches to
combating state explosion in model checking depend on these two characteristics resulting

from systematic exploration of non-determinism (e.g. for proofs of correctness)

. receipt of information: in the run-time variant of dynamic property detection, the analysis
algorithms have to contend with three characteristics concerning the receipt of information

from the distributed computation:

(a) information is incomplete: in run-time property detection, events of the distributed
computation are conveyed to the monitor(s) concurrent with execution of the dis-
tributed program. Consequently, algorithms for run-time property detection must be
able to carry out processing, despite not having full information concerning the dis-

tributed computation under analysis.

(b) information is received in breadth-first manner: events are received by the monitor(s)
in an order which is largely consistent with a breadth-first exploration of the computa-
tion state space. This ordering of events is due to the fact that executions of processes
making up a distributed computation largely make progress in a uniform manner -
this can be violated if processor speeds differ greatly and there is little communication
between processes, however. This ordering can constrain the way in which the com-

putation state space is explored, and consequently the suitability of a state explosion
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technique. For example, a number of methods for combating state explosion in model
checking are based on (and correctness proved for) depth-first explorations of the state
space. Such methods may require significant adjustment in order to take into account
the breadth-first receipt of information.

(c) information can be delayed: due to the asynchronous nature of communication, delays
in the receipt of individual events can arise from delays in communication of events
to the monitor process(es). Such delays may result in delays in exploration of the
state space. Algorithms for run-time property detection (in particular, exploration of
the computation state space [24, 28]) have been developed to overcome such delays.
and any technique for combating state explosion will have to be compatible with such
methods.

The issues concerning the receipt of information apply only to the case of run-time property
detection. These delays are not present in post-mortem analysis of distributed computations,
in which the distributed computation has terminated, and all information concerning the
distributed computation has been collected.

7. partial order observation: due to the inability to observe the actual execution which a
distributed computation passes through, distributed computations are quite naturally mod-
eled as partial orders. This fact may enhance the suitability of techniques for combating
state explosion based on partial order semantics.

8. application requirements: dynamic property detection can be subject to application-
specific requirements on detection: two examples are timeliness of detection and complete
trace information. Unlike model checking, which is used solely for the purposes of verifica-
tion and always carried out off-line (not concurrent with program execution), the run-time
variant of dynamic property detection has applications which require timeliness of detec-
tion. For example, when using dynamic property detection in the context of control of a
distributed application, or the provision of fault-tolerance via exception detection and han-
dling, timeliness of detection is an important consideration. This fact, for example, can lead
to choices between competing computation state space exploration algorithms (e.g. breadth-
first based on level-based algorithm |24} versus breadth-first based on linearizations [28}).
Such choices impact on implementation of state space reduction techniques and the suitabil-
ity of techniques for use with applications subject to such constraints. Completeness of trace
information refers to the requirement that, after detection has occurred, the application-
specific notification or reaction may depend upon a complete error trace being provided
(complete in the sense that key events and state variables have not been removed from the
execution trace), in order to support any related analysis. One example of this is in the case
of fault-tolerance: once an exceptional execution is identified, full error trace information
may be required in order to satisfy exception handling, when error handling is based on
forward recovery techniques (which involve recovering from the exception by analyzing the
error and taking corrective action). This fact, for example, may lead to choices between
methods which vary in the trace information they are able provide.

9. non-standard modal operators: dynamic property detection makes use of a range of
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application-specific modal operators, including Pos, Def, SOME, ALL, discussed in Chap-
ter 4. Some of these modal operators are not considered in model checking (c.f. SOME,

ALL). Any approach to combating state explosion in trace checking must be compatible
with these modal operators.

The similarities and differences outlined above affect the suitability of the application of techniques
for combating state explosion, as well as the design of algorithms to implement those techniques.
In the next section, these observations concerning the similarities and differences between the two
problems will be used in determining whether the state explosion techniques from model checking
can be potentially applied in the new context of trace checking.

5.2 Analysis of Suitability of Techniques for Property Detec-
tion

In this section, we turn our attention to the problem of identifying which techniques for com-
bating state explosion in model checking show potential for combating state explosion in property
detection. The analysis carried out in this section will be used to determine those particular model
checking techniques which deserve detailed investigation, which shall be carried out in subsequent
chapters of the thesis.

In order to provide a systematic treatment of each technique, we consider them in turn. Our
approach will involve focusing on the following two aspects:

o existing synergies: identifying any direct use of the technique or significant relationships
with existing techniques used to combat state explosion in property detection

e potential synergies: identifying potential use of the technique in combating state explosion, in
the light of the similarities and differences between the two problems, or similarly identifying
potential limitations of the technique, given the new context

We examine the techniques in the order presented in the survey.

5.2.1 Automata-theoretic methods

As we saw in Section 3.2.1, the automata-theoretic approach to model checking views the model
checking problem from the point of view of formal languages and automata. In this approach,
both the temporal specification ¢ and the program P are viewed as automata. Model checking
proceeds by translating the temporal specification ¢ into an automaton A, which accepts the
same language as the specification, and checking the product P x A, for non-emptiness.

In this basic formulation, the approach can be carried out successfully while still exploring the
full state space of the program P. In the on-the-fly variant of the approach, the automaton A4,
is used to guide the exploration of the state space, by exploring the synchronous product of P
and A-,. This results in only that part of the program state space necessary for detecting the
property being explored, and so mitigating the state explosion problem.

In this section, we aim to determine the suitability of the on-the-fly variant of the automata-

theoretic approach to combat state explosion in property detection.
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Existing Synergies

We begin by considering existing use of the automata-theoretic approach in trace checking. In
[60], Jard et al. put forward the automata-theoretic approach as an approach to trace checking of
general temporal properties. This was based on the observation that the lattice of global states
can be viewed as a labeled transition system and so this model checking technique can be applied.
In that paper, temporal properties were specified as regular languages over program actions, and
satisfaction was defined in terms of prefixes of sequential observations using the modal operators
SOME and ALL (there notated as =3 and [=v). Detection is based on labeling each state in the
lattice with a set of automaton states: for each state ¥, ¥ is labeled with the set of automaton
states reachable by considering all paths from the initial state to £. Jard et al. note that this may
be performed during lattice construction in an inductive manner, based on the set of automaton
states reached by predecessor states. Although the automata-theoretic approach forms the basis
of this algorithm for detection of such general temporal properties, the product space of the lattice
and the automaton is defined in such a way that the full computation state space of the distributed
computation is always explored; that is, the automaton is not used to guide the search and so
avoid exploring parts of the computation state space. The automata-theoretic approach has also
been applied to the case of detection of state-based temporal properties [3], in a manner similar to
that proposed in [60]. The automata-theoretic approach to the detection of temporal properties
presented in [5] also explores fully the computation state space of the distributed computation.

Use of the on-the-fly automata-theoretic approach to combat state explosion is not without
precedent in dynamic property detection. An approach based on a similar idea has been used by
Cooper and Marzullo in the algorithm presented in [24] for the detection of Def ®, where & is a
predicate on global state. In that algorithm, the negation of the property (in this case =®) is used
to guide the search through the lattice: successors of a global state are explored only if the global
state satisfies =®. Detection of Def ® holds iff a level of the lattice is reached in which no states
satisfying —® are present. The approach is based on the observation that, once a path is known
to satisfy ®, then there is no need to explore any continuation of that path. This condition on
which successors are explored in the detection of Def ® can be viewed as a form of synchronous
composition between the lattice of global states of the distributed computation and an automaton

representing the negation of the property.

Potential Synergies

We now turn our attention to the potential synergies between the on-the-fly automata-theoretic
approach to combating state explosion in model checking, and trace checking.

The first and most obvious potential synergy is the fact that automata-theoretic model checking
approach is already used to check temporal properties in dynamic property detection with the
BFR algorithm, introduced in Section 4.1. This makes it likely that incorporating the on-the-
fly variant of the approach to combating state explosion in property detection may be achieved
with a straightforward modification of existing algorithms. The fact that the key existing (and
well-known) algorithms for checking temporal properties in trace checking based on the automata-
theoretic approach are widely used strengthens this argument.

Another key advantage concerns the assumptions underlying the on-the-fly approach. The
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method makes no assumptions concerning the property, other than it can be expressed as a finite
state automaton, which means that the approach does not unduly constrain the dynamic properties
which may be specified. Further, exploration can proceed in any fashion, as the method only
requires the reachable states of the product automaton are correctly labeled in order to determine
satisfaction. This is important in the face of competing algorithms used to explore the lattice of
global states.

We also note that the method does not depend upon assumptions concerning termination of the
exploration for correctness. Because of the fact that dynamic properties are necessarily restricted
to those which may be decided on finite prefixes of sequential observations, it is a method which
is essentially based on reachability analysis, in that determination of satisfaction depends solely
upon exploring all reachable accepting states in the product automaton (as opposed to exploring
all reachable accepting cycles in the product automaton). This is compatible with the fact that
dynamic property detection algorithms generally do not terminate.

Finally, this method appears to be compatible with the modal operators SOME and ALL, as
well as Pos and Def (subject to the restriction that Pos and Def cannot be decided in general
for non-terminating computations). Although making such a claim requires formal proof, we note
informally that the approach explores all paths which do satisfy the property, and so if a path
exists from the initial state to a state ¥ for which a predicate holds, then this path will be explored
by the on-the-fly approach.

5.2.2 Symbolic Methods

Symbolic methods to combating state explosion in model checking were presented in Section
3.2.2.

The idea behind the symbolic state space exploration approach is to encode the state transition
system representing the program state space to be verified as a Boolean formula, defined over a
suitable set of Boolean valued variables and represented efficiently using binary decision diagrams
(BDDs). The model checking algorithm for symbolic model checking then operates on the BDD
representation of the system, instead of a Kripke structure. Satisfiability may then be decided
through the use of model checking algorithms which operate on BDDs.

Existing Synergies

As we saw in Section 4.2.6, Stoller [103] applied the symbolic approach to model checking to
the case of checking Pos &, where @ is a simple predicate defined on the global state of the system.
The idea behind the approach is to encode the dynamic property detection problem as a Boolean
formula in such a way that a distributed computation v = (H,—) satisfies the property if and
only if the Boolean formulae evaluates to true.

In the work presented there, Stoller only considers predicates ® on global state qualified by the
modal operator Pos. Under this modality, the dynamic property detection problem is equivalent to
determining if there exists a consistent global state of the distributed computation which satisfies
®. In this approach, Boolean formulae are used to encode the variables of the processes involved
in the global predicate, represented as zg,...,TN-1 , @S well as the vector clock values recorded

during monitoring, represented as vey,1,.--, VLN, - UCN,N- The formulation of the solution
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presented there was suitable for off-line detection, in which all possible variable values for the
process variables and vector clock variables recorded during monitoring are represented in the
formula ®(z) A globalState,(z,vc) A consis,(vc) representing the problem, before evaluation of
the formula.

Potential Synergies

We now consider the potential of applying the symbolic model checking approach to the general
dynamic property detection problem.

We consider first the approach of Stoller et al.. One of the chief difficulties in adopting this
approach is discovering a suitable Boolean formula representation for a given property detection
problem, taking modal operators into account. The encoding of Pos ® is relatively straightforward,
as the problem is equivalent to finding a consistent global state which satisfies the predicate. This
is encoded as a set of constraints representing what it means to be a global state, what it means to
be a consistent global state and what it means to satisfy the predicate. This view of the problem
does not require the need to model the possible sequential observations (paths through the lattice
of global states), described in the definition of satisfaction for Pos. In the encoding of Def @,
the modeling of a sequential observation is not so easily avoided. A similar problem will arise for
other modal operators considered, such as SOME and ALL. In this sense, the symbolic model
checking approach as proposed by Stoller et al. may place significant constraints on the type of
dynamic properties which can be checked.

An approach which avoids the need to find a suitable representation of the problem, as described
above, is to perform detection of dynamic properties using a CTL model checker, which could
be used to detect dynamic properties which may be expressed as CTL temporal formulae. In
particular, the formula Def ® is expressible as the CTL formula AF . However, the problem of
encoding SOME ® and ALL ® remains, as these modal operators do not seem to be expressible
in CTL.

Another potential difficulty with this approach is that, in order to adapt the approach to run-
time dynamic property detection, some means of evaluating the Boolean formula and checking
the dynamic property without having access to the complete distributed computation is required;
otherwise, detection will need to be postponed until the end of the computation is reached. In
the case of detecting Pos & using the approach of Stoller et al., this can be achieved, for example,
by periodically evaluating the predicate on a prefiz of the distributed computation. It is unclear
how such a solution might work in the case of a CTL model checker employed to check general
temporal formulae, as suggested above. On the other hand, the symbolic approach does seem
well-suited to the problem of post-mortem dynamic property detection, where the full distributed
computation is available.

Finally, it was noted by Stoller et al. that, in the symbolic algorithm implementing the detec-
tion of Pos ®, the algorithm used a far greater amount of memory than the enumerative dynamic
property detection algorithm of Cooper and Marzullo [24]. This was due to the fact that the
symbolic algorithm represented the complete lattice of global states during detection (by way of
encoding all possible vector clock values in the formula representing the problem), as opposed to
the algorithm of Cooper and Marzullo which only maintains two levels of the lattice at any point
in time. With large computations, this aspect of the approach would also need to be avoided.
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which again may be difficult in the case of checking temporal properties.

We may summarize by saying that there are several challenges associated with this approach
which raise doubts about its suitability as a technique for combating state explosion in dynamic
property detection, at least in the case of run-time property detection.

5.2.3 Model Extraction-based Methods

Model extraction-based methods for combating state explosion in model checking were pre-
sented in Section 3.2.3.

The idea behind model extraction-based methods is to reduce the size of the program state
space considered in checking the property through irrelevant component elimination, data abstrac-
tion and component restriction and thereby reduce the effect of state explosion problem. Irrelevant
component elimination is achieved through program slicing, based on eliminating program vari-
ables, program transitions, and even processes of the concurrent program, which do not affect
verification of the property. Identification of such program elements is based on a static analysis
of control and data relationships. The result is a smaller program model, with a reduced number
of states, transitions and processes. Data abstraction, on the other hand, is based on replacing
concrete variable domains of the variables of the concurrent program with (smaller) abstract vari-
able domains. The resulting program contains the same number of variables and transitions, but
with a smaller potential program state space (represented by the Cartesian product of the abstract
domains of the variables involved in the program).

Model extraction-based methods are applied to the representation of the concurrent program
(code) during the modeling phase to generate a smaller validation model. Model extraction based-
methods therefore still rely on an existing model checking algorithm to perform model checking
on this smaller model.

Existing Synergies

Dynamic program slicing in model checking has a close connection with the approaches of
filtering and computation slicing in trace checking. Both filtering and computation slicing aim to
reduce the size of the considered computation state space, but they do it in differing ways.

Computation slicing is based on using the structure of the predicate and its solution set to
eliminate event combinations which do not lead to states which satisfy the property, and therefore
for the purposes of detection, may be ignored. In this approach, the number of variables considered
in each local state and the number of events considered in the distributed computation is not
affected, however fewer transitions in the computation state space are explored, as now sets of
events are fired atomically, eliminating intermediate global states which do not satisfy the property.
In this sense, computation slicing corresponds to dynamic program slicing in that the set of states
and transitions to be explored is reduced and the remaining states and transitions are sufficient
to check the dynamic property. Filtering, on the other hand, is based on identifying variables
and events of the distributed computation which are relevant to the detection of the property, and
eliminating non-relevant variables and events from the lattice exploration. Filtering can be applied
to the detection of general temporal properties, as long as those temporal properties are stuttering-
invariant. Like computation slicing, filtering corresponds to dynamic program slicing in that the
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set of states and transitions to be explored is reduced and the remaining states and transitions are
sufficient to check the dynamic property. However, because filtering actually removes variables and
events from the distributed computation, it could be argued that filtering bears a slightly stronger
connection to dynamic program slicing than does computation slicing. Unlike dynamic program
slicing, filtering does not depend upon complex dependency analysis, and can be implemented as
a conservative approach, based on identifying events of the computation which potentially affect
detection of the property.

With respect to data abstraction, there is no seeming connection between the use of data
abstraction in model checking, and any existing state explosion technique in trace checking.

Potential Synergies

We now turn our attention to the potential use of program slicing and data abstraction in a
trace checking context.

One potential synergy between model extraction-based methods and trace checking is that
dynamic program slicing has potential for use in conjunction with filtering to produce a better
approximation to the set of variables and transitions of the program which are relevant for detection
of the property. A dynamic program analysis could be carried out before the modeling phase
of trace checking, in order to identify those variables and transitions which were required in
order to correctly detect the property considered. As this analysis would be based on control
and data dependencies, it would represent a closer approximation to the optimal set of relevant
variables and transitions than the conservative analysis, based on events which potentially change
the predicate, employed in filtering. This approach would apply to general properties, including
temporal predicates. In other words, dynamic program slicing could be used to produce a better
filtering by identifying a smaller set of relevant variables and events. This strategy may be limited
by the finite state assumption of model checking, upon which dynamic filtering may be dependent.
Further, it would not avoid the inherent disadvantages of filtering, such as its inability to provide
a full trace for notification or reaction purposes. In this respect, computation slicing has the
advantage.

Another potential synergy concerns data abstraction. This technique could be used, during
the execution and monitoring phase of trace checking and in conjunction with event generation,
to reduce the size of the potential computation state space of the distributed computation by
replacing concrete data values of local states of the distributed computation with abstract values
from a (smaller) abstract domain. Although the number of variables represented in local states
and number of events of the distributed computation would remain the same, this would reduce
the size of the potential computation state space, represented by the Cartesian product of the
variable domains. This could result in a smaller number of global states possible in each level of
the lattice exploration (in the case of a level-based exploration) and so mitigate the problem of

state explosion.

5.2.4 Partial Order-based Methods

The idea behind partial order-based methods is to exploit the properties of a different seman-
tic model (the partial order semantic model, as opposed to an interleaving semantic model) in
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combating state explosion.

Partial order-based methods were surveyed in Section 3.2.4. Two key partial order-based meth-
ods for combating state explosion were considered there: partial order reduction. and the method
of unfoldings. In the case of partial order reduction, the idea is to generate a reduced program
state space, based on the partial order information implicit in a dependency relation between pro-
gram transitions, which contains enough interleavings of the full program state space in order to
correctly verify the property. In the case of unfoldings, the idea is to represent program behaviour
using a partial order-based representation (the unfolding) which is (potentially) exponentially
more compact, and develop algorithms which operate on that representation.

The key opportunity, when considering the applicability of partial order-based methods to the
dynamic property detection problem, is the close semantic match between partial order seman-
tics, on the one hand, which underly partial order-based methods, and the partial order based
representation of an asynchronous distributed system execution, as represented by a distributed
computation.

In the case of partial order reduction, distributed computations may be interpreted in terms of
traces, which were covered in Section 3.2.4, in the following way: for each state X of the distributed
computation, the set of all sequential observations from the initial state to the state X define a finite
trace. Indeed, the distributed computation itself defines a (possibly infinite) trace of equivalent
sequential observations. In the case of the method of unfoldings, the distributed computation
may be interpreted in terms of configurations of an unfolding: the distributed computation itself
represents a (possibly infinite) configuration of the unfolding of the asynchronous distributed
program. This close correspondence between the underlying semantic representations of partial
order reduction (traces) and the method of unfoldings (configurations) to distributed computations
represents a promising starting point.

In this section, we aim to explore the suitability of partial order based methods for combating

state explosion in dynamic property detection.

Existing Synergies

We consider here the existing synergies between partial order methods and existing methods
for combating state explosion in dynamic property detection.

In Section 4.2.6, we saw that the method of partial order reduction has been applied to the
detection of dynamic properties. Stoller et al. [104] considered the application of partial order
methods to solving the problems Pos® and Def ®, in the case where ® is a simple predicate
defined on global state. In that approach, the property detection problem was encoded as a
deadlock detection problem in a modified system, in such a way that a distributed computation
satisfied the property if and only if a deadlock existed in the modified system. The modified
system was then checked for deadlock using a persistent set selective search. This approach was
applicable to both a run-time and post-mortem context. The authors identified extending the
method to cater for the detection of temporal properties as one area of future work.

Unlike partial order reduction, the method of unfoldings has not been explicitly used as an
approach to combating state explosion in dynamic property detection. However, there are some
interesting connections between the method of unfoldings, and certain results of Sen and Garg.
For example, Sen and Garg prove in [98] that Def & holds iff a certain associated property holds
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on all join-irreducible elements of the lattice. It can be shown that the join-irreducible elements
of the lattice of global states are exactly the local configurations of the distributed computation
(where the distributed computation itself is viewed as a configuration of an unfolding): those cuts
of the lattice of the form LC(e) = {¢’ € H|e' = e}. Local configurations similarly play a very
important role in unfolding based-algorithms.

Potential Synergies

Considering the close connection between trace semantics and distributed computations, it is
very likely that partial order reduction methods could be used with success in dynamic property
detection in the checking of temporal properties. Indeed, as we saw in Section 3.2.4.1, a very rich
theory has been developed in model checking based on partial order reduction, and this theory
has been used with success in model checking tools, such as SPIN [55].

The development of such an approach presents a number of interesting challenges. Firstly,
partial order reduction, as a model checking technique associated with LT L model checking, does
not make use certain of the modal operators which are commonly encountered in dynamic property
detection, such as SOME or ALL. For the approach to be generally applicable within trace
checking, it should be compatible with these modal operators. Secondly, partial order reduction
has a complex associated theory, involving complex correctness proofs, based on assumptions of a
finite number of program states and termination of state space exploration. Adapting this theory
to the trace checking context could prove to be a challenging task, given these assumptions, and
the related differences between the model checking context and the trace checking context. One
additional limitation of such an approach involves the restriction that partial order reduction
imposes on temporal properties: that they be stuttering-invariant. This would restrict the class
of dynamic properties which could be detected using the method, which could be significant for
applications like debugging, where temporal predicates need not be stuttering-invariant. Thus,
despite the very promising connection between trace semantics and distributed computations,
developing an approach to combating state explosion in dynamic property detection based on
partial order reduction could present several significant challenges.

Similar opportunities and challenges hold for applying the method of unfoldings to combat-
ing state explosion in dynamic property detection. Concerning opportunities, as cited earlier, a
distributed computation itself may be viewed as a configuration of the unfolding of a distributed
program. This configuration is generated through execution of the distributed program, and, as
such, comes 'for free’. This contrasts with the situation in model checking where the unfold-
ing and configurations of the unfolding must be generated in an initial step. Another important
opportunity concerns the structure of the distributed computation, viewed as a configuration of
an unfolding. Configurations are, by definition, conflict-free (the notion of conflict in nets was
introduced in Section 3.2.4.2). A special class of conflict-free nets are known as marked graphs.
Informally, a net is a marked graph if every place has at most one input transition and one output
transition. Esparza notes that many interesting problems concerning marked graphs are solvable
in polynomial time [35]. This raises the possibility of developing algorithms for dynamic property
detection which have polynomial complexity, based on viewing a distributed computation as a
marked graph. Finally, as cited in Section 3.2.1, the method of unfoldings has been combined
with the automata-theoretic approach, which may permit the detection of temporal properties
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based on such an approach. Given the correspondence between join-irreducible consistent cuts of
the lattice and local configurations of the unfolding, this suggests that unfolding-based algorithms
could be directly applied to the distributed computation, viewed as a configuration.

However, as in the case of partial order reduction, there are challenges. Although the dis-
tributed computation represents a configuration which is obtained 'for free’, existing methods
based on unfoldings are based on exploring a finite prefix of the unfolding which is guaranteed
to contain all reachable states, which are furthermore assumed finite in number. In the case
of off-line dynamic property detection, it would appear that this assumption does not present a
problem: the configuration representing either a terminating distributed computation, or a finite
prefix of a non-terminating distributed computation, would be finite and would contain all reach-
able states of the terminating computation (or prefix of the non-terminating computation). In
the case of on-line dynamic property detection, determining when an observed finite prefix of the
configuration contains all reachable states suffers from the problem of the fact that we do not ex-
plore non-deterministic choices systematically, one of the differences between the model checking
context and trace checking context cited earlier. In such a case, new algorithms (or substantial
modifications to existing algorithms) for property detection based on unfoldings may be required.

5.2.5 Distribution

The distribution-based methods of model checking were presented in Section 3.2.5. The idea
behind these methods for combating state explosion in model checking is to employ a divide and
conquer approach, by making use of a set of processes to carry out the detection effort, as opposed
to a single centralized process. This not only makes more memory and processing power available,
and so increases the size of problems which can be solved, but also introduces the possibility of
speedup, due to paralle! processing.

Existing Synergies

Distribution is an approach to combating state explosion in model checking which has also been
independently considered in trace checking. Indeed, in Chapter 4, we reviewed several distributed
detection algorithms [40, 41, 42, 38, 58] for conjunctive and generalized conjunctive predicates
with using the modal operators Pos and Def.

These examples of the distribution approach were based on using the structure of the predicate
and predicate detection algorithm (in this case, conjunctive predicates and algorithms for detecting
conjunctive predicates) to organize distribution. The approach effectively distributed both the
time and space complexity of conjunctive predicate detection across a set of checker processes.
Such distributed solutions to the trace checking problem not only increase the size of distributed
computations which may be checked, but also contribute to the timeliness requirement of run-time
dynamic property detection through potential speedup.

The key disadvantage of these methods is that they are tailored to one very specific class of
predicates. In this sense, these approaches to distribution differ from the approaches to distribution
used in model checking, where distribution of the general reachability problem and the general

model checking problem are considered.
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Potential Synergies

The application of distribution to the general reachability problem as considered in model
checking represents a state space reduction technique for trace checking with very good potential.
There are several reasons for this.

Firstly, reachability analysis, when combined with the automata-theoretic approach to trace
checking, is general enough to permit the detection of dynamic properties which can be expressed
as regular languages, which includes general safety properties. In particular, the formulation of
the problem, based on the algorithm of [5] and presented in Chapter 4 reduces the detection
of temporal properties to detecting reachable acceptance states in the product. In this sense,
implementing a distributed reachability analysis algorithm, along the lines of that presented in
Lerda et al. [67], would represent a distributed solution to the general trace checking problem.

Secondly, the general reachability approach would be compatible with the modal operators
Pos and Def (subject to the restriction that Pos and Def cannot be decided in general for
non-terminating computations) and SOME and ALL, as the conditions for satisfaction of these
modal operators are expressed solely in terms of reachable acceptance states of the product. The
distribution-based algorithm is guaranteed to explore all reachable states of the product, and so
would not affect satisfaction of modal operators.

Thirdly, as noted in Barnat et al. [8], breadth-first search is more amenable to parallelization
than depth-first search, due to the fact that exploration is based on discovering successors in a
frontier of states and this can simplify parallelization of the algorithm. This provides a match
between the natural breadth-first evolution of events in a distributed computation with an easily
parallelizable breadth-first search algorithm for conducting distributed reachability analysis.

In trace checking, the effect of cross transitions will be more significant than in model checking
(again, due to the timeliness requirement on trace checking) and so partitioning of the state space
in such a way as to minimize cross transitions would be an important issue. As noted in the work
of Lerda et al., such an algorithm would need to provide a complete error trace, to be reported
upon detection and upon which notification or reaction could be based.

5.2.6 Summary

In the previous sections, we investigated which techniques for combating state explosion in
model checking show the greatest promise for application in trace checking.

As mentioned in the introduction to this section, this investigation was based on identifying
any ezisting use of model checking techniques for combating state explosion in trace checking
(existing synergies) as well as the potential use of model checking techniques for combating state
explosion in trace checking (potential synergies).

We summarize the results of the above discussion in Table 5.1. In the table, in the case of
identifying existing synergies, ’yes’ indicates existing use of the technique in trace checking, and
'no’ indicates no prior use of the technique in trace checking. In the case of potential synergies, we
differentiate between the potential synergies for run-time trace checking and off-line trace checking.
Potential synergies are classified as "weak’, ’strong’, and "very strong’, reflecting, respectively. weak,
strong, and very strong degrees of compatibility together with absence of significant potential
challenges to application of the method.



Model Checking Approach SE;'):::Z;ES ;);;::;: ;);’:::;:sl E
(run-time) (off-line)
Automata-theoretic yes very strong very strong
Symbolic yes weak strong
Model Extraction (slicing) yes strong strong
Model Extraction (data abs.) no strong strong
Partial Order (reduction) yes very strong very strong
Partial Order (unfolding) no weak strong
Distributed yes very strong very strong
Table 5.1:

5.3 Selection of Candidates for Further Development

As mentioned in the introduction to this chapter, the only way to conclusively determine the
whether or not a model checking technique can be successfully applied in the context of dynamic
property detection can really only be achieved through a detailed attempt at development of
algorithms based on the approach.

In Chapters 6 and 7 of this thesis, we shall do exactly that: we shall engage in a detailed
attempt at the development of algorithms for combating state explosion in trace checking, based
on two model checking methods: on-the-fly automata-theoretic model checking, and partial order

reduction.
Before we move to that development, we should like to present our reasons for selection of

these two specific approaches, which as based on the comparative analysis of the model checking

methods carried out in Section 5.1 and Section 5.2.

5.3.1 The Case for An On-the-Fly Approach to Combating State Ex-

plosion

Based on the observations made in the comparative analysis, we note the following potential
synergies between an on-the-fly automata-theoretic approach to combating state explosion and

trace checking:

1. This method for combating state explosion is based on the automata-theoretic approach to
model checking, which is the basis of the several well-known, existing algorithms for the
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detection of temporal dynamic properties [60, 5]. It is also possible that implementation
may be achieved with a straightforward modification of existing algorithms.

2. The method does not make any assumptions concerning the property to be detected, thus
supports wide applicability in detection of dynamic properties.

3. The method is essentially based on reachability analysis, and does not depend upon assump-
tions concerning the way in which the computation state space is explored.

4. The method appears to be compatible with the modal operators SOME and ALL. as well
as Pos and Def (subject to the restriction that Pos and Def cannot be decided in general
for non-terminating computations), thus supports wide applicability in detection of dynamic
properties with application-specific modal requirements.

For these reasons, we feel that the on-the-fly approach has a good chance of being successfully
applied to the task of combating state explosion in property detection. In Chapter 6, we investigate
the development of such an approach.

5.3.2 The Case for A Partial Order Approach To Combating State Ex-
plosion

Based on the observations made in the comparative analysis, we note the following potential
synergies between an partial order reduction approach to combating state explosion and trace
checking:

1. the trace semantics connection: the evolving distributed computation is semantically a trace -
or more specifically a partial order representing a trace, and so there is an excellent semantic
match between the distributed computation and trace theory, upon which partial order
reduction is based.

2. partial order reduction is known to be highly successful in model checking, and is known to
combine well with other approaches to combating state explosion (e.g. on-the-fly automata-

theoretic approach [87], symbolic approach [4])

3. although the partial order reduction approach imposes a restriction of stuttering-invariance
on properties to be detected, for many applications, such as testing and exception detection
and handling, dynamic properties represent specifications of distributed computations and
are generally stuttering-invariant. On the other hand, properties for applications such as
debugging, certain dynamic properties may not be next-free (e.g- halting the debugger in a

particular state).

4. partial order reduction has already been investigated as a technique for combating state
explosion in the case of properties described in terms of global states [104]. Thus, a further
investigation of the technique for the case of temporal properties will provide a point of

comparison.

For these reasons, we feel that partial order reduction has a good chance of being successfully
applied to the task of combating state explosion in dynamic property detection. On the other

hand, we noted certain challenges with this approach:
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1. partial order reduction was developed for the case of LT'L model checking, in which satisfac-
tion is based on all interleaving sequences satisfying the desired temporal property (which
corresponds to the Def modality of trace checking). Partial order reduction was not de-

signed for use with certain modal operators found in trace checking, such as Pos, SOME,
and ALL.

2. partial order reduction has a complex associated theory, involving complex correctness

proofs, based on assumptions of finite program state space, which does not hold in a trace
checking context

These challenges, although potentially making development of an algorithm more difficult, also
have the potential advantage of illustrating the difficulties which may be encountered in adapting
a technique from mode] checking to the trace checking context. Identifying such difficulties and
attempting to resolve them are also an important part of this investigation. In Chapter 7, we
investigate the development of such an approach.

5.4 Summary

In this chapter, we investigated the similarities and differences between model checking tech-
niques and their suitability for use as techniques for combating state explosion in trace checking.
We also identified two candidate techniques for further development: the on-the-fly automata
theoretic approach, and the partial order approach. In the following two chapters, we present the
development of detection algorithms for temporal properties which incorporate these techniques
for combating state explosion.
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Chapter 6

An On-the-Fly Automata-theoretic
Approach to Combating State

Explosion

6.1 Introduction

In the previous chapter, we outlined several reasons why the on-the-fly approach to combating
state explosion in model checking is a promising candidate for combating state explosion in the
detection of temporal properties in trace checking. In this chapter, we present the development of
such an algorithm.

The essence of this approach is to use the automaton defining the dynamic property to guide
the search and avoid exploring paths through the computation state space which are known not
to satisfy the property.

In order to implement the on-the-fly approach to combating state explosion, we shall begin
with an existing detection algorithm, based on the automata-theoretic approach, and adjust the
algorithm to incorporate on-the-fly state space reduction. The algorithm of Babaoglu, Fromentin,
and Raynal, presented in [5], is an ideal candidate: it is an algorithm for the detection of temporal
properties (expressed as automata recognizing regular languages) in trace checking, is based on
an automata-theoretic approach, and explores the computation state space exhaustively. Using
this algorithm as a base, we adjust the exploration of the computation state space in such a way
that continuations of sequential observations which are known not to satisfy the property are not
explored.

As we shall show, the resulting on-the-fly version of the Babaoglu-Fromentin-Raynal algorithm

will exhibit the following desirable features:
s supports detection of properties » which can be described as regular languages
¢ can be used in an on-line or off-line context

= computations need not satisfy a finite state assumption
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» is compatible with modal operators SOME and ALL, and Pos (subject to the restriction
that Pos cannot be decided in general for non-terminating computations)

The rest of the chapter is organized as follows. In Section 6.2, we present the necessary background
on the existing automata-theoretic approach of Babaoglu-Fromentin-Raynal and certain definitions
concerning deterministic finite state automata, used to represent regular properties. In Section 6.3,
we consider the design issues to be considered in developing such an algorithm and, in Section 6.4,
present a description of the on-the-fly algorithm. In Section 6.5, we demonstrate the correctness of
the algorithm, focusing on an invariance property which ensures invariance of the modal operators.
Section 6.6. examines the complexity of the algorithm. In Section 6.7, we summarize and present
conclusions.

6.2 Background

In this section, we review the automata-theoretic approach to dynamic property detection of
Babaoglu, Fromentin and Raynal {5], discussed briefly in Chapter 4. In the interests of brevity,
we shall sometimes refer to this algorithm as the BFR algorithm.

The approach is based on viewing the lattice of global states as a labeled DAG and defining
satisfaction through the use of the modal operators SOME and ALL. As mentioned in Section
4.1, when defining the temporal predicate detection problem, modal operators may be defined
based on two views of the distributed computation: viewing the distributed computation as a set
of sequential observations and defining satisfaction in terms of modal operators Pos and Def; or
viewing the computation as a DAG of global states, and defining satisfaction in terms of global
states instead, using the modal operators SOME and ALL.

6.2.1 Detection of temporal properties

In this section, we summarize the concepts required in order to understand the modifications
to the algorithm we shall introduce later.

The original paper [5] presented the development of the algorithm in terms of a general graph
G = (V, E) and an alphabet A, later instantiated as the lattice of global states and a set of atomic
propositions defined on global states, respectively. In Section 4.1, we showed how the lattice of
global states can be viewed as a labeled DAG. In this summary of the algorithm, we shall refer
directly to the lattice and the set of global propositions. In order to describe the algorithm, we
need to establish some notation related to the view of the lattice of global states as a labeled
DAG.

Graph Labeling and Languages

In what follows, we assume that v = (H,—) is a distributed computation, £ = (., <) is the
associated lattice of global states. Let AP be a set of atomic propositions defined on global states,
and X : £, — 24 be an associated labeling function.

Let DAG, = (Z,, <i™) be the directed acyclic graph associated with the lattice of global states
£ = (Z,,<+). Given a global state £ € £, let DAGx denote the subgraph of DAG. consisting
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of the global state £ and its predecessors. The subgraph DAGSy is itself a directed acyclic graph.
A directed path of DAGsy is a sequence of global states 75 = ¥,%, ¥y ... X, starting at the initial
state and ending at . Let IIx denote the set of all directed paths in DAGsx. Directed paths in
the DAGy. correspond to sequential observations in the lattice starting from the initial state and
terminating at . The set of all directed paths IIy in DAGx corresponds to a trace of equivalent
sequential observations.

Given a directed path g = 54X, 5, ... %y, a labeling of the path 75 is defined to be a word
wowi - . - Wk such that, Vi : 0 <4 < k, w; € A(Z;). Each directed path 75 may have several possible
labellings. The labeling of a directed path, denoted by A(rx), defines a set of words, representing
all possible labellings. The set of labellings for all directed paths in Ily defines a language LMT)
associated with each global state X. The language is defined as L*(T) = Unrgens A(mg). Path
labellings in DAGs correspond to propositional sequences, obtained from sequential observations
in the lattice starting from the initial state and terminating at ¥ which have had their states
labeled with atomic propositions.

In this way, with each state T of the lattice £, is associated a language of propositional
sequences L* ().

Dynamic Properties

Dynamic properties aim to characterize the temporal evolution of states in the distributed
computation. In the framework of Babaoglu-Fromentin-Raynal, a dynamic property is defined by
a language of words over the alphabet AP. The convention is to differentiate between a dynamic
property ¢ and the set of words L(p) which characterize it. In this view, each word of the language
is viewed as satisfying the property.

Dynamic properties are assumed to be such that they define regular languages. Regular lan-
guages are those which can be specified by regular expressions, or equivalently, be recognized by
a finite automaton [57]. This feature of regular languages makes the specification of temporal
properties very convenient. We assume in the sequel that the automaton describing the regular
language is a deterministic finite automaton (DFA), with a possible dead (or trap) state defined.
The definition of a deterministic finite automaton was presented in Section 3.2.1.

Given a property ¢ represented by the language L(¢p), satisfaction of the property ¢ by a
distributed computation in this framework is defined in terms of the associated labeled DAG of

global states, as follows:

Definition 6.1. Given an alphabet AP of global predicates, a lattice of global states L. a state
labeling function A, a state £ of £ and a property ¢ represented by the language L(y), T |
SOME o if and only if there exists some labeling of at least one directed path terminating in ¥
which defines a word in L(y).

Definition 6.2. Given an alphabet AP of global predicates, a lattice of global states L, a state
labeling function ), a state T of £ and a property ¢ represented by the language L), X = ALL ¢
if and only if all labellings of all directed paths terminating in ¥ define words in L(yp).

In the next section, we review the algorithms for determining satisfaction of temporal properties

under these modalities.
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Detection of dynamic properties

In the spirit of the automata-theoretic approach, the satisfaction relations defined above for
the modal operators SOME and ALL can be expressed in terms of the languages associated with
the dynamic property. In particular, when expressed in terms of languages:

S ESOMEy iff IMNZ)NL(p) #0
SEALLe  iff LME)C L(y)

Thus, deciding satisfaction of a property over a distributed computation can be achieved by
determining if the language relations described above hold true. These relations in turn can be
expressed in terms of reachable states of the automaton which recognizes the property, in the
following way.

Given a property ¢, a lattice £, and a state L € I.,, suppose that the property y is recognized
by the deterministic finite automaton A, = (Q,X,4,Qo,Qr). Let R¥(X) denote the set of all
states of A, which are reached after processing all words in L*(X). The relations become

INS)NL(p) #0 iff RP(T)NQr #0
LMZ) € L(yp) iff RY(Z)CQr

Thus, deciding satisfaction reduces to deciding if the relations above hold. The authors show
that the sets R¥(X) can be calculated inductively, based on the following relation:

R¥(T) = U 8(q, @)

a€AX(E)9ERY,  y()

where

Rﬁrcd(E) = U R¢ (u)
u€pred(X)

and pred(X) denotes the immediate predecessors of the state X in the lattice.

The inductive calculation of the sets R¥(X) above can in turn be performed by a breadth-first
search of the lattice. The algorithm is shown in Figure 6.1. The algorithm works in conjunction
with an algorithm for exploring the lattice of global states of the distributed computation. The
exploration is exhaustive, in the sense that all states in lattice of global states are explored.

For each global state T, the associated set of reachable automaton states R¥(X) is represented
in the algorithm by the Boolean array Bz[Q]. Bslg] evaluates to true iff there is a labeling of
a path leading from the initial state £° to X, whose corresponding run of the automaton leads
to state ¢. A fictitious state £~ is introduced as the unique predecessor of the initial state 0.
The corresponding Boolean array Bg-1 is such that Bg-1[go] is the only array element which is
initially true.

Algorithm 6.1 makes use of two additional Boolean arrays Bpred[@) and B[Q] to represent
intermediate sets of reached automaton states. Given a state T, Bprea[Q] represents the set of
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1 previous := {£71}
current := {£0}

~No

3 while (current # 9)

4 foreach ¥ € current do

5 foreach g € Qdo Byredlg:= \  Bs/g]od
6

7

8

T'epred(x)
foreach ¢ € A(T) do
B*[Q] := (false, ..., false)
foreach (g € Q : Byred[g] = true) do

9 foreach r € §(¢, @) do B®[r] := true od
10 od
11 od
12 foreach ¢ € Q do By[g]:== \/ B%[q]od
a€A(L)
13 od
14 previous := current
15 current := {global states directly reachable from those in previous}
16 end while

Figure 6.1: Algorithm to compute the set of automaton states R¥(X).

automaton states reached by considering all paths leading from the initial state to immediate
predecessors ' of %; that is, Bprea[g] = true if and only if there is a labeling of a path leading
from the initial state to some predecessor ¥’ of X, whose corresponding run of the automaton
leads to state g. The array By, .q[Q] is calculated in line 5 of the algorithm. B%[Q] represents the
set of automaton states reached by runs corresponding to path labellings of paths leading from
the initial state to ¥ which have a final label of a. Given a € A(Z) , the array B*[Q)] is calculated
in lines 7-11. Finally, the arrays B*[Q] are used to calculate Bg[@] in line 12.

This exploration may be carried out using the level-based approach of [24] or the linearization-
based approach of [28]. In the development of our algorithm for combating state explosion which
follows, we shall assume that computation state space exploration is achieved using the level-based
algorithm of Cooper-Marzullo.

Using the above algorithm for computing the sets R¥ (%) for each global state of the lattice,
deciding satisfaction of a temporal property ¢ in a global state ¥ is achieved simply by checking
the satisfaction relations defined earlier for SOME ¢ and ALL ¢ at state X.

6.2.2 The on-the-fly approach to automata theoretic model checking

We review the key ideas behind the on-the-fly version of automata-theoretic model checking.

The automata-theoretic approach views the model checking problem in terms of formal lan-
guages: checking that Lp C L, where Lp is the language of the program, and L., is the language
corresponding to the property . Checking this relation holds is equivalent to checking that
LpN L., # 0 does not hold. Given automata Ap and A_, recognizing Lp and L. respectively,
this in turn is equivalent to checking if the automaton which accepts the intersection LpN L is
non-empty. This automaton is denoted by Ap N A-,.

In the on-the-fly version, rather than constructing the automaton Ap in a separate step and
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using Ap and A-, to compute the automaton accepting the intersection, A pNA-,. the intersection
is viewed as a synchronous product Ap x A, between the two automata and it is this product space
which is explored. This approach can be viewed as using the automaton to guide the exploration
of the state space: in the synchronous product, only interleaving sequences which allow both the
program automaton and the property automaton (which, in this case, represents the negation of
the desired temporal property) to successfully transition are explored. More formally. if (s,a) is a
state of the product state space Ap x A_, then a transition to a possible successor state (s',a’)
will only occur if the following conditions hold: (i) (s,t, s') is a transition of the automaton 4p.
for some ¢t (ii) (a,l,a’) is a transition of A_, , for some set of possible input symbols I, and (iii)
L(s') € 1, where L(s') is the labeling of the successor state s'.

In this way, we need only keep as much of the automaton Ap in memory as is needed to
explore the product. In the case where ¢ is represented by a finite deterministic automaton
on finite words (which includes the class of safety properties), checking non-emptiness of the
intersection is equivalent to finding reachable acceptance states of the product. In the case where
¢ is represented by a Buchi automaton on infinite words (which includes the class of liveness
properties), checking non-emptiness of the intersection is equivalent to finding reachable acceptance
cycles of the product.

In on-the-fly automata theoretic model checking, there is only a single notion of satisfaction:
language containment (i.e. Lp C L,). This is due to the fact that in LTL model checking,
it is implicitly assumed that the concurrent program satisfies the LTL property only when all
interleaving sequences satisfy the property. Further, the languages associated with the property
and the program are defined over the alphabet 247, due to the fact that automata representations
for LTL properties are defined over the alphabet 24P 114].

In the remainder of this chapter, we shall adapt the BFR algorithm to incorporate on-the-fly
model checking, by using the automaton representing the property to guide the exploration, and
so avoid exhaustive exploration of the lattice of global states.

6.3 Design Issues

In this section, we consider the general issues involved in introducing the on-the-fly automata-
theoretic approach from model checking into the context of detection of dynamic properties. In

particular, we consider:
1. assumptions underlying the approach of on-the-fly automata-theoretic model checking

2. any issues which arise due to the difference between assumptions underlying the on-the-fly
automata-theoretic approach to model checking, on the one hand, and the new contezt for
the proposed algorithm and any related requirements, application or otherwise, on the other.

The issues were considered briefly in the survey section of the thesis. We reconsider them here
in more detail, as they potentially impact on the detailed design of our algorithm. Given that an
algorithm for detection of dynamic properties based on the automata-theoretic approach already
exists, our consideration lies in how these issues relate to the incorporation of the on-the-fly state

space reduction.
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Assumptions underlying the approach

In this section, we consider the on-the-fly automata theoretic method and its suitability at the
level of algorithmic design assumptions. In particular, we discuss the key assumptions underlying
the method, and consider the possibility of conflicts with the new trace checking context.

e finite state assumption: in the property detection problem, there is generally no assump-
tion that the program being monitored is finite state, whereas in model checking there is.
In model checking, the finite state assumption is used simply to ensure that the exploration
of the product state space will always terminate. As mentioned in Section 5.1, we can only
ever analyze a finite prefix of any distributed computation (even when the computation is
infinite), and so a corresponding analysis of the distributed computation will also always ter-
minate (either by reaching the end of a terminating distributed computation, or by reaching
the end of the finite prefix of the non-terminating distributed computation, when termination
is initiated by the user). Further, as the automata-theoretic approach effectively translates
the trace checking problem into a reachability problem (see below), given the above, such
a reachability problem will also terminate in the property detection case, even when the
program being analyzed is not finite state.

o class of properties: model checking generally considers the checking of general tempo-
ral properties (safety and liveness), but in dynamic property detection, we can only check
properties which can be decided based on observing at most finite prefixes of distributed
computations. The on-the-fly approach for model checking was first introduced by Jard et
al. [59], where it was shown that the model checking problem for properties which define
regular languages (which includes the class of safety properties) translates into a reachabil-
ity problem (reachability of product states in a specific synchronous product, as opposed
to reachability of accepting cycles). Thus, in translating the on-the-fly method to check
properties which define regular languages (and so the class of safety properties), we need
only perform a standard reachability analysis of a product, locating reachable acceptance
states, as opposed to the case of checking liveness properties, where we must locate reachable
acceptance cycles.

e exploration order: algorithms in the literature for on-the-fly automata-theoretic model
checking are presented in terms of a depth-first exploration, whereas property detection is
generally based on breadth-first exploration. Unless algorithms are proved correct in an
exploration-independent manner, this becomes a correctness issue. In this case, because the
problem for safety is effectively a reachability problem in a product space, the correctness
of the algorithm does not depend upon the exploration order. Note that this would not be
the case for checking liveness properties, which equates to checking for reachable accepting
cycles in the product space - there, exploration order does effect the detection of cycles.

» modal operators and invariance: in on-the-fly model checking of LTL properties, there is
an implicit assumption that all interleaving sequences must satisfy the property (equivalent
to applying a single modal operator, similar to Def), whereas, in property detection, a
variety of application-dependent modal operators are used, such as Pos, Def, SOME. and
ALL. An important issue in applying on-the-fly reduction is whether these modal operators
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are preserved under the transformation we introduce. In other words, we need to ensure

that the reduction does not invalidate the correctness of detection of properties quantified
by these operators.

These issues arise when we consider adapting the on-the-fly approach to the context of dynamic
property detection. Of these, we shall carefully address the invariance of modal operators in
Section 6.5.

6.4 Design

As noted in Section 6.2, the Babaoglu-Fromentin-Raynal algorithm for detection of dynamic
properties is an existing algorithm which is based on the automata-theoretic approach. As we
shall demonstrate, this algorithm can be modified in order to obtain an implementation of the
on-the-fly automata theoretic approach.

6.4.1 On-the-fly automata-theoretic approach

The Babaoglu-Fromentin-Raynal algorithm already exhibits several features of the on-the-fly
method. It is based on the automata-theoretic approach, in that properties and computations
are represented as languages, and satisfaction is represented in terms of relations between those
languages. It also explores the computation state space and automaton state space simultaneously,
constructing a form of ’product’ state space, as in the on-the-fly method. However, the 'product’
state space explored does not correspond to a synchronous product as in on-the-fly model checking:
the entire computation state space is explored, and the corresponding automaton states generated.
This results in the BFR algorithm exhaustively exploring the computation state space.

The key idea in on-the-fly automata-theoretic model checking is to use the automaton to guide
the exploration of the program state space, by not following continuations of interleaving sequences
which do not allow both the program automaton and the property automaton to transition suc-
cessfully. This approach allows the algorithm to keep only that part of the program state space in
memory which is needed to discover the reachable states of the product which potentially satisfy
the property. This is achieved through the definition of the synchronous product.

In trace checking, the same principle can be applied, in that when checking for satisfaction of
a dynamic property ¢ over the computation state space, we use the automaton A, representing
the property to guide the search in such a way that sequential observations which are known not
to satisfy the property are not explored. In order to do this, we need to simulate the synchronous

product used in on-the-fly model checking.

6.4.2 Adjustments required

We simulate a synchronous product in the BFR algorithm by introducing a mechanism cor-
responding to that used in the on-the-fly synchronous product: a transition of the product state
space is enabled iff (i) each of the component transitions are enabled and (ii) the input sym-
bols contained in the label of the computation state component reached in the product state are

accepted by the automaton.

116



In the case of a deterministic finite automaton A, representing the dynamic property , a
propositional sequence corresponding to a labeled sequential observation is guaranteed not to
satisfy the property if the run of the automaton corresponding to that propositional sequence
leads to a dead state of the automaton. This condition can be decided in a state £ on the
sequential observation. In other words: in order to avoid this exhaustive exploration, we note
that if, in exploring a path leading to I, we find we reach a state (Z,a) of the product where a
is a dead state, then all continuations of that path will leave the automaton at that dead state.
Since a dead state can never lead to an accepting state, all continuations of this path need not
be explored. Not exploring such continuations will not affect correct detection, but will result in
fewer paths being explored.

We can adjust the existing detection algorithm to incorporate this reduction. Remember
that the detection algorithm consists of two algorithms operating in interleaved fashion: the
Cooper-Marzullo algorithm used to generate the states ¥ of the computation state space, and the
Babaoglu-Fromentin-Raynal algorithm, used to calculate the reachable automaton states R¥(X).

Let (¥,a) be a state of the product space along a path, and let (Z,e, Z’) be a transition in
the computation state space. According to the BFR definition of satisfaction (based on languages
over AP), this transition in the computation state space generates one or more corresponding
transitions a — a' in the automaton state space: a — a’ if for some label a in A(s') there is a
transition (a, 8, a’) where @ = 8. We need not follow a transition in the computation state space
if we know that all corresponding automaton transitions lead to the dead state. We still want to
push all automaton states through for the transitions we do explore, as we know by construction
that at least one of them has a corresponding automaton transition which does not lead solely to
trap.

This is the essence of the modification to the automata-theoretic approach which we will make.

6.4.3 Description of the Algorithm

In this section, we describe our on-the-fly algorithm for detecting temporal properties in a
trace checking context.

The key change to the operation of the detection algorithm of Babaoglu-Fromentin-Raynal is to
introduce the function guided() to determine, given a reachable state ¥ of the computation state
space, a subset of enabled transitions which should be explored, in the computation state space
exploration part of the algorithm. That is, in the Cooper-Marzullo component of the algorithm,
the function guided(X) is called to determine the set of enabled transitions to be explored, instead
of the usual function enabled(). Figure 6.2 shows the function guided(Z).

The function guided(Z) returns a subset of the set enabled(X) of transitions enabled at state
¥ such that, for each event e in the subset, the successor state e(X) will have a set of associated
automaton states By[Q] which include a non-trap state.

The function works as follows. For each event e € enabled(E), the function determines if there
is an automaton state in Bg[Q)] (lines 6-12), representing the current set of reachable states R?(X).
which can cause the automaton to transition on some symbol o € A(X') and end up at a non-trap
state (line 8), where X' is the successor of £ under the event e. In this case, the flag syncpossible
is set for the event e (line 9). Otherwise, all transitions of the automaton possible from states in
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1  procedure guided(X)

2 GT:={}
3 foreach (e € enabled(X)) do

4 syncpossible := false

5 T =e(X)

6 foreach (g € Q : Bx[g] = true) do

7 foreach (a € A(Y')) do

8 if (6(q,a) is defined A 8(q, @) # trap) then
9 syncpossible := true

10 fi

11 od

12 od

13 if (syncpossible = true) then

14 GT :=GT U {e}

15 fi

16 od

17 return GT

18 end
Figure 6.2: Algorithm for computing the set of guided transitions

Bz [Q] will lead to trap, and the flag syncpossible will remain false. This represents the case in
which enabling and firing the event e would lead to a state £’ for which the only automaton state
reached was trap. Thus, the flag syncpossible represents the fact that the successor state T’ of an
event e will have a set of reachable states Bg/[Q] in which some non-trap state is included.

6.5 Correctness

In this section, we consider the correctness of the algorithm modification. Specifically, we need
to show that, given a lattice and a property ¢, if ¥ | SOME ¢ holds in the full computation
state space, then it will be detected by the modified algorithm.

This will involve proving the following invariant, informally stated as follows: if, for some state
L, £ = SOME ¢ in the full computation state space, then the state X will be reached in the
reduced state space and the set R*(X) will be the same, up to non-trap states. On the other hand,
if the property is not satisfied, the state will not be explored.

In this section, we shall also comment on why the approach does not work for the modal

operator ALL.

An Invariant

The proof of correctness is based on the following invariant: let ¥ be a state in the full state
space for which R¥(X)} # {trap}. Then:

1. X is reached in the reduced state space and
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2. X has the set of a-states R7, ;(T) in the reduced state space, and which satisfy R?,,(¥)
R¥(Z) V R?(X) \ {trap}

This invariant needs to be proved by induction, using the idea of the construction embodied in
guided(). The proof involves identifying the sets R*(T) and showing that the equalities hold. We
now prove the invariant. Induction is based on the length of the path needed to reach a state.

Base Case: in the development of the algorithm in [5], the authors define a fictitious initial
state Lz;c which is an immediate predecessor of all states in the lattice which have no predecessor
(i.e. the unique minimal element of the lattice) and define R¥(Zy;.) = {go}. For this initial state
Zic, it will be reached in the reduced state space and RY, ,(S£s:.) = {¢o} = R¥(Ssic). Thus, the
induction hypothesis holds in the initial state.

Induction Step: Now suppose that ¥ is a state in the full state space for which R¥(E) # {trap}.
We need to show that:

1. ¥ is reached in the reduced state space and

2. R?,4(T) = R*(S) V R*(E) \ {trap}

e

We first show that ¥ is reached in the reduced state space. R¥(XZ) # {trap}, so there is a state
g € R¥(Z) such that ¢ # trap and a path m = £,%; ... X, and associated labeling in the full
computation state space such that £g = Ly;c £y = ¥ and for each state Z;, the automaton state
associated with ¥; is not a trap state (these must be non-trap states, otherwise the final state
g would be a trap state). In particular, there is an immediate predecessor state £,..4 of X, a
state gpred € R¥(Zpreq) such that gpreqs # trap, and a label a € A(X) such that (gpres,a) = g.
Because the induction hypothesis holds, the state ¥preq is reached in the reduced state space, and
RY ;(Zpred) = R®(Zpred) V R?(Epred) \ {trap}. By the construction of guided(), in the reduced
state space, the transition from Tpq.q to £ will be selected in guided(Zpreq) and g € RY,4(T).
Thus, X is reached in the reduced state space.

We now show that R?,,(X) = R®(Z)V R?(X) \ {trap}. Because the non-trap state ¢ € R¥(X)
was arbitrary, the above argument also shows that ¢ € RY,,(Z). Now we consider the fate of
a trap state in R?(X). If ¢ € R¥(Z) and ¢ = trap, then there is a path 7 = X, ... X4 and
associated labeling in the full computation state space such that £o = L;. £ = £ and for some
state &;, 1 < ¢ < k, the automaton state associated with ¥, becomes a trap state and remains
so until £4. Let T,..q be the predecessor state of ¥ in that path. By the induction hypothesis,
Rfed(zpred) = Rw(zpred) V R? (Epred) \ {trap}'

The case RY,;(Zprea) = R?(Eprea) \ {trap} is not consistent with the path being explored up
t0 state Tpreq in the reduced state space, and corresponds to the case where the exploration of
that path was not continued, by an earlier transition in the path not being included in guided().

In this case, the trap state of the path will not be added to R?, (%)

The case RY, ;(Spred) = R?(Zpred) leads to two possibilities: the trap state may be added to
the set RY, ;(E) if there is another non-trap state in Rf,;(Eprea) and a label in A(E) which causes

the transition Zpeq to ¥ to be selected in guided(3). If there is no such state-label pair, guided()
will not explore the transition and the trap state will not be added to the set RY, (%)

The path was arbitrary, and for each such path, the trap state may or may not be added to
R? ,(%). Thus, RY, (%) = R?(Z) V R?(Z) \ {trap}.

QED
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Invariance of modal operator

From the above invariant, we may conclude that the modal operators SOME is invariant under
the reduction introduced by the on-the-fly transformation. The proof follows.

Theorem 6.1. T | SOME g in the full computation state space if and only if © = SOME
in the reduced computation state space.

Proof. f £ |F SOME ¢ in the full computation state space, then R¥(S) N Qr # 0. Since Qf
does not contain trap, then, by the invariant, state T is reached in the reduced state space and
Rf (E)NQF # 0. Thus, £ = SOMEyp in the reduced computation state space.

Conversely, if © = SOME ¢ in the reduced computation state space, then R7,,(Z)NQF # 0.
Since, by the invariant, RY, () C R¥(X), then this implies that R¥(Z) N Qr # 0. Thus. ¥
SOME ¢ in the full computation state space.

0

We have shown that the method is compatible with the modal operator SOME. One imme-
diate consequence of this fact is that the method may also be used with modal operator Pos in
the case of terminating distributed computations, given the relations:

vYE Posp ff ZTinalE SOME@

where Xfinai represents the maximal state of the lattice of global states £, = (£,,<,). In the
case of non-terminating distributed computations, correct conclusions concerning the satisfiability
of Pos cannot be made in general based on a finite prefix.

We mention here also why the method does not work for the modal operator ALL. It is possible
to prove one direction of the required proof:

Theorem 6.2. If X = ALL ¢ in the full computation state space, then £ = ALL y in the reduced
computation state space.

Proof. If © = ALL ¢ in the full computation state space, then R¥(X) C Q@r. By the invariant,
state T is reached in the reduced computation state space and RY,,(X) C R*(X) C Qr. Thus,

Y | ALLp in the reduced computation state space.
O

The converse of the above theorem does not hold. The invariant only guarantees that R, ()
will be equal to R?(X) up to non-trap states. If R?(X) = RY,,(E) U {trap}, it is possible that
R? (T) C Qr, but that R¥(X) € Qp. This means that £ | ALLy will hold in the reduced
computation state space, when in fact ¥ & ALL ¢ holds in the full computation state space.

In short, the invariant is not strong enough to ensure invariance of the modal operator ALL
under the reduction produced by the on-the-fly approach presented in this chapter.

6.6 Complexity

We now consider the complexity of the on-the-fly approach.
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The only change to the algorithm is the introduction of the function guided() which is used to
compute, for each state T, the set of computation state space events which are (i) enabled from
%, and (ii) which do not result in all corresponding automaton states leading to the dead state.

For each enabled event e, the function guided() must process at most |A.! automaton states
and, for each automaton state, must process at most |AP| state labels. Thus, the processing of
each event has complexity O(|4,| * |AP|). Given that there are at most N events enabled at each
state X, the overall complexity of guided() is O(N = |A,| * |AP)).

It is difficult to gauge the reduction achieved by this approach in general, as the degree of
reduction depends upon the dynamic property and the distributed computation in question (as
in the case of on-the-fly automata theoretic model checking). However, as the method is based
on the on-the-fly automata theoretic approach, we expect to obtain reductions in the size of the
state space explored which are consistent with those encountered when the approach is used in
the context of model checking.

Becaunse the method avoids exploration of continuations of sequential observations which are
guaranteed not to satisfy a dynamic property, it will perform best when sequential observations
may be ruled out based on violation of the property over a finite prefix, which is the defining
characteristic of safety properties. When dynamic properties place strict requirements on the
relative ordering of global states, the degree of reduction increases, due to the fact that the chance
of a sequential observation violating the ordering on a finite prefix increases and, by the method,
continuations of this prefix will not be explored.

However, when the dynamic properties does not place strict requirements on temporal ordering,
reduction can be non-existent. One such case is global predicate evaluation. Indeed, detection of
properties such as Pos ® and Def ® exhibit a liveness character: on any finite prefix of a sequential
observation which does not satisfy the predicate ®, it is possible that ® will be satisfied on some
continuation of the prefix. In such cases, such continuations will not be ruled out by the method.

Therefore, this method appears to best suited to temporal specifications representing safety
properties, which place strict requirements on the relative ordering of states in a sequential obser-

vation.

6.7 Implementation

We have implemented a version of the BFR algorithm which incorporates the on-the-fly modi-
fication presented in this chapter. In this section, we present an example of a reduced state space
generated by the algorithm.

The distributed computation v = (H,—) we consider is made up of two processes, P; and
P,. The lattice of global states corresponding to the distributed computation is shown in Figure
6.3. State T denotes the state of the distributed computation reached after exploring the first i
events of process P, and the first j events of process Ps.

In the example, the propositions defined on global state are taken from the set AP = {1, 2. ¥3, ¢4, €}
The proposition € is used to represent the fact that none of the propositions 2i.1=1,2,3,4 hold
true in a global state. Global states are labeled with the propositions which hold true in those
states. An exception to this rule are states whose labeling is the set {e}. In the interests of visual
clarity, these state labellings have not been indicated in the figure. Any state with no labeling is
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Figure 6.3: A distributed computation and on-the-fly reduction

therefore assumed to be labeled by the set {e}.

The property we consider in the example is one which can be described informally as requiring
that the propositions yp;, w2, p3 and ¢4 appear only once in the path labeling and that they
appear in that order. It is described formally by the deterministic finite state automaton A =
(@,%,Q0,6,Qr), where Q@ = {g0,41,92,43,94, %}, £ = {01,902, 03, 01.€¢}, Qo = {0} and QF =
{g4}. The transition relation ¢ is defined by the following transition table:

S | w1 [ p2 |3 | pa| €
o { @1 | & | ¢ | ¢ | o
qQu g | 9 | @ | @ | @1
Q| @ | 4@ | B G|
g3 | @ | 9 | 9t | 94 | O3
Q4 | Q4 | 94 | Q4 | 94 | G4
qt | 4t Q[ 9t | Q¢ | @

Note that the property is stable: once the acceptance state g4 is reached, there are no further

constraints on the labels that may appear.
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In the Figure 6.3, transitions which are shown in solid lines are those which are explored in the
reduced state space, and transitions shown in dotted lines are not explored in the reduced state
space.

The distributed computation v = (H, =) of this example satisfies £'°1® = SOME ;- and
4 k= Pos g, as there exists a sequential observation leading to the final state £'9!° passing through
states satisfying @1, 2,93, @4, in that order. It can be seen that this satisfaction relation also
holds for the reduced computation state space.

6.8 Conclusions

In this chapter, we explored the development of an algorithm for the detection of temporal
properties which incorporates the on-the-fly approach to combating state explosion. The algorithm
was shown to have the following advantages:

e easy to implement in the context of an existing detection algorithm based on the automata-
theoretic approach

e is compatible with the modal operators SOM E and Pos used in dynamic property detection
applications

e works at run-time or in a post-mortem context

e works in the case of terminating and non-terminating, infinite state programs (subject to
the restriction that Pos cannot be decided in general for non-terminating computations)

Future work in this area could consider the compatibility of other methods for combating state
explosion in trace checking with the automata-theoretic approach.
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Chapter 7

A Partial Order Reduction Approach
To Combating State Explosion

7.1 Introduction

In Chapter 5, we outlined several reasons why the partial order reduction approach to combat-
ing state explosion in model checking is a promising candidate for combating state explosion in the
detection of temporal properties in trace checking. In this chapter, we present the development of
a second approach to combating state explosion in dynamic property detection, this time based
on the partial order reduction approach to model checking.

In model checking, the partial order reduction approach is based on performing a selective
search of the state transition system representing the program state space, resulting in a reduced
program state space. The basis of our approach will be to view the lattice of global states (the
computation state space) as a state transition system (where events are considered as individual
transitions of the system), and apply the partial order theory to that transition system.

Specifically, our aim is begin with an approach to detecting temporal properties in trace check-
ing based on exhaustive analysis, and using the theory of partial order reduction from model
checking, develop a corresponding approach to detecting temporal properties in trace checking in
which the state explosion problem is mitigated.

In the case of deciding upon a formulation of the property detection problem, we use the
formulation of the detection of temporal properties in trace checking of the previous chapter,
wherein properties are specified by regular languages of finite words over an alphabet, quanti-
fied by modal operators SOME and ALL, and property detection is based on the algorithm of
Babaoglu-Fromentin-Raynal. This algorithm can also be used to detect Pos and Def in the case of
terminating computations, using the equalities involving final states presented in Section 4.1. We
consider this version of the property detection problem as (i) it is a well-established formulation of
the problem with great generality (ii) it is based upon an exhaustive analysis of the computation
state space and (iii) it will permit comparison with the results developed in the previous chapter.

In the case of making use of the theory of partial order reduction from model checking, it is
important to realize that that although the central idea behind partial order reduction is perform-

124



ing a reduced state space search, there is no single theory of partial order reduction. Rather there
are a family of theories, all based around the same central idea, which vary according to:

1. the means by which properties are specified (i.e. sequences of transitions, sequences of
labeled states)

2. classes of properties considered (i.e. deadlock, safety, general safety and liveness)
3. the exploration methods the theory is based on (depth-first search, breadth-first search. etc.)

That is, partial order reduction theories are sensitive to these three problem parameters, in the
sense that the theories can vary depending on the particular set of problem parameters we consider.
We shall require choosing a formulation of the partial order theory which is suitable to the problem
context we consider.

In addition, we shall see that there are several approaches possible for applying the technique of
partial order reduction to the trace checking problem, namely the “modified system” approach and
the “equivalent state space” approach. Both of these approaches will be described in Section 7.3,
devoted to consideration of preliminary design issues. Depending on the approach chosen, there
are further approach-specific design issues to be resolved, before the development of an approach
to adapting partial order reduction in a way which is useful for trace checking can begin. In
this sense, we shall see that applying partial order reduction to the problem of combating state
explosion in trace checking is significantly more involved than applying the on-the-fly approach,
as explored in the previous chapter.

As we shall demonstrate, for the resulting partial order approach to combating state explosion
in the detection of dynamic properties which we do explore, it will exhibit the following desirable
features:

e the approach is suitable for checking temporal properties which are stuttering-invariant and
which define regular languages (which includes the class of safety properties)

e the approach is compatible with some (Pos, Def) but not all (SOME, ALL) of the standard
modal operators used in dynamic property detection applications

e it is suitable for run-time or off-line trace checking
o works in the case of terminating, infinite-state programs

The rest of the chapter is structured as follows. In Section 7.2, we present background work on
partial order reduction which will be necessary for the development of the reduced state space
algorithm based on the partial order reduction approach. This background involves the develop-
ment of a theory of partial order reduction which is appropriate for the trace checking context.
In Section 7.3, we consider the design issues which underly the development of an algorithm for
producing an equivalent state space, suitable for checking stuttering-invariant temporal properties
in trace checking. In Section 7.4, we present our algorithm for generating an equivalent state
space - a modification of the Cooper-Marzullo algorithm which generates a stuttering-equivalent
lattice structure. Section 7.5 considers the correctness issues involved in the theory. Section 7.6
the complexity of the resulting state space exploration algorithm. In Section 7.7, we present our

conclusions and consider further work in this area.
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Figure 7.1: Two stuttering equivalent paths.

7.2 Background on Partial Order Reduction

In the presentation of the concepts required for partial order reduction, we must refer in detail
to semantic aspects of the program being considered. The general notion of a finite state transition
system is used to represent the behaviour of concurrent programs, in order to avoid being tied
down to any particular representation of concurrent programs.

A labeled finite state transition system is a tuple < S,Sy,T,L > where S is a finite set of
states, Sp is a set of initial states, T is a finite set of transitions such that each transition a € T
is a deterministic partial function «: S = S, AP is a finite set of propositions and L is a labeling
function L : § = 247, Given a transition o € T, « is enabled at state s € S if a(s) is defined. The
set of transitions enabled at a state s is denoted as enabled(s). When a is enabled at state s, then
the state a(s) is the successor of s under a. A path through the transition system is defined as a
sequence of states interleaved by transitions, i.e. a sequence sg 21 g, =% ... such that 5 € Sp
and for each i > 0, 8;41 = a:(s;).

Two transitions a, 8 € T, o # B, are independent if, for each state s € S such that a,B €
enabled(s), the following two properties hold:

1. a and B do not disable each other: o € enabled(8(s)) and B € enabled(a(s))
2. o and B are commutative: a(8(s)) = B(a(s))

Independence defines an anti-reflexive, symmetric relation I on the set of transitions T. Two
transitions o, 8 € T, & # 3, are dependent if they are not independent. The dependence relation
D is the complement of the independence relation, defined by D = (T x T) \ I, and defines a
reflexive, symmetric relation on the set of transitions 7.

A transition o« € T is invisible with respect to a set of propositions AP’ C AP if for each pair
of states s,s’ such that s' = a(s), we have L(s) N AP’ = L(s') N AP".

Two infinite paths o0 = 5o =2 s; — ... and p =719 LN 71 By are stuttering equivalent,
denoted by o ~g p, if there are two infinite sequences of positive integers 0 = 7o < 1 < ig < ...
and 0 = jo < j1 < ja < ... such that for every k > 0, L(si,) = L(siz+1) = ... = L(Siuy—1) =
L(r;,) = L(rju41) = ... = L(rj,1)-

A finite sequence of identically labeled states within a sequence is called a block. Two paths
are stuttering equivalent when they can be partitioned into finitely many blocks, such that the
k-th block of one are labeled in the same way as the k-th block of the other. Corresponding blocks
can have differing lengths. Figure 7.1 shows two stuttering equivalent paths.

It is possible to define in a similar manner the idea of stuttering equivalence for finite paths.

3 ’
. Ao Bl 52 L
Two finite paths 0 = 8o —2 8, 3 ...8,5|_1 —% 8, and p =19 —> 1 — ...Tp—1 — Tp
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are stuttering eguivalent, denoted by o ~,; p, if there are two finite sequences of positive integers
0=1 <11 <i2 <..<ip=|ojand 0 =735 <j; <j < ... < jn = |p| such that for every
0<k<mn, L(8i) = L(8iy41) = ... = L(85,,,-1) = L(r;,) = L(rjy11) = ... = Lirj, . ,-1).

The notion of stuttering equivalence for infinite paths is extended to labeled transition svstems.
Two labeled transition systems M and M' are stuttering equivalent if and only if

e M and M’ have the same set of initial states

» for each path o of M that starts from an initial state s of M, there exists a path o’ of M’
that starts from the same initial state s such that o is stuttering equivalent to o'

o for each path o' of M’ that starts from an initial state s of M’, there exists a path o of M
that starts from the same initial state s such that ¢’ is stuttering equivalent to o

An LTL formula f is tnvariant under stuttering if and only if for each pair of stuttering equivalent
paths 7 and 7', we have 7 |= f if and only if 7' |= f. It can be shown that an LT L formula
which is stuttering equivalent does not distinguish between labeled transition systems which are
stuttering equivalent [19].

The development of the partial order theory to be considered in the sequel will involve discus-
sion of certain results related to graph traversal algorithms, which form the basis of state space
exploration. We introduce the key concepts and notation here. Let G = (V, E) be a directed
graph consisting of a set of verticies V and a set of edges E C V x V. Given v,w € V, a path
from v to w is a sequence of edges (v;,vs), (v2,v3),-.., (Vn—1,Vn) where v = vjand w = v,. Paths
will be represented by listing the sequence of verticies vy, v2,...,v, on the path. The length of a
path is the number of edges contained in the path. A path is simple if all the edges and verticies
on the path are distinct, except possibly the first and last verticies. A cycle is a simple path of
length at least one which begins and ends at the same vertex.

A graph G = (V, E) is strongly connected if, for any pair of verticies v,w € V, there is a path
from v to w and a path from w to v. A directed graph G' = (V',E') is a subgraph of Gif V' C V
and E' C E. G' is a strongly connected subgraph of G if G' is a subgraph of G and G’ is strongly
connected. Following [2], given a graph G = (V, E), the verticies of G can be partitioned into
equivalence classes V;,1 < i < r, such that v and w are equivalent if and only if there is a path
from v to w and a path from w to v. Let E;,1 < i <, be the set of edges connecting the pairs
of verticies in V;. The subgraphs G; = (V;, E;) are called the strongly connected components of
G. These represent the maximal strongly connected subgraphs of G. Every strongly connected
subgraph of G is a subgraph of some strongly connected component of G.

The strongly connected components of a directed graph form a directed acyclic graph(D AG).
This DAG can be represented as a tree, where the nodes of the tree are strongly connected
components, and an edge appears between two nodes if a vertex in one component is reachable
from a vertex in another component. A strongly connected component with no incoming edges is
called a source strongly connected component. A strongly connected component with no outgoing

edges is called a sink strongly connected component.
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7.2.1 Reduced state space search and ample sets

Partial order reduction methods are based upon using a modified search of the program state
space, known as a selective search, to generate a reduced program state space which has potentially
fewer states and transitions than the full program state space, and yet which contains enough
states and transitions in order to correctly verify the property in question. Partial order reduction
methods were reviewed in Chapter 3. There, the persistent set approach of Godefroid was discussed
as an example of the partial order reduction approach. It was noted that the persistent set
reduction was suitable for checking properties which could be characterized in terms of deadlock
or reachability of local states. For the development to be presented in this chapter, we shall use
an alternative version of the partial order theory.

The version of the partial order theory which we present here and use in the sequel is presented
in [19, Chapter 10]. We shall at times refer to this as the Peled theory, as the presentation
is due to Doron Peled. As in other versions of the partial order theory, the method is based
upon using a selective search to generate a reduced state space. In this version of the theory,
however, specifications are assumed to be in the form of stuttering-invariant LT L formulae. The
reduction is based on the fact that stuttering-equivalent LT L formulae do not distinguish between
labeled transition systems which are stuttering-equivalent. Given a stuttering-equivalent formula
i, defined on a set of propositions AP’ C AP, the aim is to generate a reduced state space which
is stuttering-equivalent (with respect to the propositions in AP') and use that reduced state space,
instead of the full state space, in the model checking exercise.

The reduced state space exploration is based on exploring only a subset ample(s) of the tran-
sitions in enabled(s) at each state s reached during the search of the state space. The subsets
ample(s) are constructed in such a way that the reduced state space search will provably produce
a state graph M’ which is stuttering-equivalent (with respect to the propositions in AP’) to the
full state space graph M. This allows using M’ in place of M when verifying the formula .

A key ingredient of the approach concerns how to calculate ample sets. In most treatments of
partial order reduction, the calculation of the set of directions to be followed in the selective search
(here called ample sets) is dependent on the particular state space exploration algorithm (e.g.
depth-first search, breadth-first search) used to explore the state space. However, in the treatment
of the theory presented by Peled, ample sets are characterized in an exploration-independent
manner. Peled presents a set of four conditions characterizing ample sets. These conditions are
expressed solely in terms of the formula to be verified, the full state graph and the reduced state
graph, and are independent of the exploration method used to generate the state graphs. The
conditions are defined as follows, where s represents a state reached during the selective search,
and we assume that the formula ¢ to be verified is defined on the set of propositions AP C AP :

C0 ample(s) = § if and only if enabled(s) = 0

C1 Along every path in the full state graph that starts at s, the following condition holds: a
transition that is dependent on a transition in ample(s) cannot be executed without a

transition in ample(s) occurring first

C2 if s is not fully expanded (i.e. ample(s) C enabled(s)), then every a € ample(s) is invisible
(with respect to the propositions in AP')
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C3 acycle (in the reduced state space) is not allowed if it contains a state in which some transition
a is enabled, but never included in ample(s) for any state s on the cycle

Using the conditions above {19, Chapter 10), it is possible to prove that the reduced state space
search produces a state transition system which is stuttering-equivalent to the state transition
system produced by the conventional state space search search, or full state transition graph.

7.2.2 Methods for constructing ample sets

Although a characterization of ample sets has been presented, we still need a practical means
of calculating them during the state space exploration. For each state s encountered during
the search, it is theoretically possible to construct ample sets ample(s) by selecting arbitrary
subsets of enabled(s) and checking to see that each of the conditions C0, C1 ,C2 and C3 hold.
However, checking certain of these conditions has been shown to be computationally complex [19].
For example, it has been shown that checking condition C1 is as complex as checking general
reachability, and checking condition C3 is equivalent to checking that a state is reachable from
itself. Therefore, heuristics are used, which represent sufficiency conditions which are easier to
check in practice.

The computation of sets of transitions satisfying conditions CO and C1 has been studied exten-
sively [112, 47, 86] in the context of early research on partial order reduction, appearing variously
as stubborn sets, persistent sets and ample sets. The methods are based on using information
concerning the dependency relation between transitions in the program, gained through various
combinations of static and dynamic analysis, and taking into account the semantics of access to
data by program transitions (i.e. shared versus non-shared objects, read- versus write-access).
The chief difficulty in these methods is dealing with potential dependencies in future states (im-
plicit in the description of condition C1) between transitions which touch shared objects, such
as global variables and communication channels. Furthermore, ample sets must be computed at
every global state reached during the search, creating considerable run-time overhead in the state
space exploration.

Unlike conditions C0, C1 and C2, which are independent of the method used to explore the
state space, condition C3, which involves the detection of cycles, is exploration-dependent. For
example, in a depth-first search, the detection of transitions which create cycles can be easily
determined, as a prefix of the computation is maintained in the search stack. Thus, condition C3

may be replaced by the sufficient condition [19, Chapter 10]:

C3-dfs If s is not fully expanded, then no transition in ample(s) must reach a state that is on
the search stack of the depth first search

Checking for the existence of a cycle in a breadth-first search is more difficult. as breadth-first
search explores many interleavings simultaneously, and there is no notion of a current interleaving
being explored. As noted in [19, Chapter 10], a necessary condition for the creation of cycles in a
breadth-first search is that we revisit a state. This leads to the sufficient condition:

C3-bfs If s is not fully expanded, then no transition applied to state s in the current level results

in a state in the current level or a previous level
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This sufficiency condition for C3 results in many more nodes being fully expanded than necessarv.
as repeated states are very common in concurrent programs.

7.2.3 Static analysis

A simplified approach to the identification of ample sets of transitions was pursued in [56]. The
motivation behind the approach was to reduce as far as possible the run-time overhead incurred
in calculating ample sets by performing the majority of the calculation in a static analysis phase.
The approach depends on identifying statically which transitions in the program text are globally
independent and visible, and then using that information at run-time to identify a set of safe
transitions.

Two transitions ¢,t' € T, t # t', are said to be globally independent if and only if they are
independent in every possible state where they are simultaneously enabled:

Vs € S t,t' € enabled(s) = (t,t') eI

where I C T x T is the independence relation on T'. For example, two transitions on different
processes which access only variables (not communication channels) local to their processes will
be globally independent. What makes global independence so significant for computing ample sets
is that if the set of transitions enabled in state s on process P;, denoted by 7;(s), are globally
independent with all transitions on other processes P;, i # j, then they satisfy conditions CO0 and
C1.

Given a stuttering-invariant linear temporal logic formula ¢, let Props(yp) C AP denote the
set of propositions on which the formula is defined. A transition ¢t on F; is said to be safe with
respect to g if:

o for all transitions t' on processes P;j such that j # 4, transitions ¢,t' are globally independent,

and

e tis invisible with respect to the propositions in Props(y)

In the exposition presented in [56], Holzmann considered concurrent program models based on
message passing communication, although the method applies equally well to communication
based on shared memory. For example, any transition which is local to a process and is not a
communication action (send or recv) is globally independent with all transitions on other processes
P;, i # j. However, communication actions may not be globally independent with all transitions
on other processes Pj, i # j. For example, a recv operation which is enabled in a state may be
disabled by the execution of a recv operation on another process, if the two operations share a
communication channel.

It is shown in [56] that both global independence and visibility of transitions can be approxi-
mated statically and encoded in a table.

How can this static analysis phase lead to the efficient calculation of ample sets? During
state space exploration (in the case of exploration based on depth-first search), ample sets can be
identified by locating a set of transitions T;(s) enabled in state s on some process P; which satisfy

the following conditions:
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e the transitions in T;(s) are safe, where safety is determined by a simple table lookup
e for each transition in Ti(s), no transition leads to a state on the search stack

I no such set of transitions T3(s) exists, then the set of transitions enabled(s) is used as the ample
set.

A cost penalty arises with this method if no set Tj(s) containing only safe transitions can be
found: then, the node must be fully expanded, even though a smaller ample set could possibly
have been found using more elaborate algorithms for computing ample sets. This approach trades
off run-time efficiency against accuracy.

7.3 Preliminary Design Issues

In this section, we consider some preliminary design issues which need to be resolved in applying
partial order reduction to the problem of trace checking.

7.3.1 Applying Partial Order Reduction

The first such design issue concerns the way in which partial order reduction is applied to the
detection problem. There are two quite different approaches to applying partial order reduction
in the verification of properties of concurrent systems. The approaches differ by the way in which
different classes of properties are verified:

e the “modified system” approach - in Godefroid’s PhD thesis [46], a notion of equivalence
(trace equivalence) between the full and reduced state space was shown to preserve transitions
fired between the full and reduced state space, and so also the local states reached between the
full and reduced state space. Thus, properties described in terms of transitions fired or the
reachability of local states are preserved by trace equivalence, and so may be checked directly
on the reduced state space. Godefroid showed how more general properties which were not
preserved under trace equivalence (such as invariance or general safety properties) could be
checked by creating a modified system in which the properties of interest were encoded as
determining the reachability of a local state. In this approach, each class of property so
considered potentially has a different modified system representation. Verification of the
property is coupled with the exploration of the modified system using the partial order
reduction.

e the “equivalent state space” approach - in this approach, an example of which is presented
in [19], properties considered (e.g. the stuttering-invariant properties) are assumed to be
invariant with respect to a certain equivalence (e.g. stuttering-equivalence) between state
spaces, and the approach focuses on generating a reduced state space which preserves this
equivalence. Unlike the “modified system” approach, the “equivalent state space” approach
depends on properties being invariant under the equivalence in question. Peled considered
this approach as the class of stuttering-invariant properties includes many important classes
of properties. Verification proceeds by using standard verification algorithms on the reduced
state space. In this approach, verification of the property is decoupled from the exploration

of the system using partial order reduction.
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Both of these approaches would be consistent with viewing the lattice of global states (the com-
putation state space) as a state transition system (where events are considered as individual
transitions of the system), and applying the partial order theory to that transition system. How-
ever, both are significantly different from one another, and we do not propose to consider both
approaches here. How do we choose between approaches?

In a “modified system” approach, the property detection problem would be encoded as an
equivalent problem of detecting deadlock or reachability of a local state in a modified system.
This approach was used by Stoller et al. [104] to apply partial order reduction to the problem
of global predicate detection, where Pos® and Def & were encoded as the problem of detecting
deadlock in a modified system. In the case of checking temporal properties, such an approach
may either be based on encoding SOME ¢, ALL ¢, Posy and Def p as the problem of detecting
deadlock, or reachability of a local state in a modified system. A potential advantage of this
approach is that if a modified system can be found for a property (and this is not guaranteed!),
it may be possible to avoid the general restriction of stuttering-invariance. The disadvantage of
this approach is that, for each modal operator considered, a different modified system, a different
definition of persistent sets and a different correctness proof will probably be required. This state
of affairs was evident in the work of Stoller.

In an “equivalent state space” approach, a reduced state space would be generated which is
equivalent in some sense to the original computation state space, and the equivalence chosen
in such a way that the properties we want to check are invariant under the equivalence. The
advantage of such an approach would be (i) a single algorithm can be used to generate a reduced
state space for properties which are invariant under the equivalence. This considerably reduces
the work involved in developing proofs and correct formulations of persistent sets (ii) detection
algorithms for such properties which operate on the full state space (as generated in an exhaustive
analysis) may be reused on the reduced state space. The disadvantage of such an approach would
be the approach cannot be applied to properties which are not invariant under the equivalence.

Both of the approaches described above have advantages, and both approaches deserve con-
sideration. However, for the purposes of this work, which is to highlight the issues involved in
applying model checking techniques to the trace checking context, we shall choose only one of
these approaches for further development, and our choice shall be fairly ad hoc. We choose the
“equivalent state space” approach, simply due to the potential gains which may be realized in

terms of algorithmic generality.

7.3.2 The Impact of Modal Operators

The “equivalent state space” approach to applying partial order reduction involves two impor-

tant elements:

¢ defining an equivalence between program state spaces, under which properties of interest are
invariant

¢ developing an algorithm for generating a reduced program state space which is equivalent

(in the sense above) to the full state space
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For example, in model checking, for the purposes of checking stuttering-invariant LT L proper-
ties, Peled showed that such properties were invariant under stuttering-equivalence between state
spaces, and that an algorithm based on partial order reduction could be developed to generate
a stuttering-equivalent reduced state space. In the definition of satisfaction for LT L properties,
although no modal operator is specified, there is an implicit modal operator (equivalent to Def)
which requires that all possible execution sequences must satisfy the given LT L property. Such
modalities, as we will see, do impact greatly on the equivalence required. In the case of dynamic
property detection, this task is complicated by the fact that we have two sets of semantically
different modal operators to consider.

Given the task of applying this approach to the trace checking context, one way to proceed is
to:

1. examine the basic requirements of the modal operators Pos, Def, SOME, and ALL for
invariance

2. use these basic requirements to determine a suitable equivalence between state spaces under
which properties would be invariant

3. identify a candidate reduction algorithm, based on partial order reduction, upon which an
algorithm to generate a reduced state space (satisfying the desired equivalence)j could be
based

In the rest of this section, we shall aim to identify candidate equivalence notions, and candi-
date algorithms from partial order reduction which could be used as a basis for generating such
equivalences in a trace checking context.

7.3.2.1 Characteristics of Modals and Candidate Equivalences

In this section, we shall examine the basic characteristics of the modal operators used in
trace checking, Pos, Def, SOME, and ALL, in order to determine the basic requirements of
equivalences which will preserve these modal operators. Based on these requirements, we shall
also propose candidate equivalences for these modal operators, and prove that these equivalences

are sufficient to preserve invariance of the modal operators.

Stuttering-invariance assumption

We require that dynamic properties ¢ are stuttering-invariant when using the “equivalent
state space” approach. Informally, this is required because the partial order reduction methods
we consider are dependent upon freely permuting adjacent, independent transitions in order to
avoid having to explore equivalent interleavings. Although such permutations can result in the
corresponding labeled sequences being unequal, these labeled sequences are always guaranteed to

be stuttering-equivalent [19, Chapter 10].

Modal Operators Pos and Def

These modal operators are path-based, in the sense that they are defined over the set of sequen-
tial observations of the distributed computation. Combined with the fact that dynamic properties
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are now assumed to be stuttering-invariant, the basic requirements for an equivalence between the

full and reduced computation state spaces which preserves Pos and Def will be an equivalence
which:

1. is path-based, in the sense that the equivalence is defined in terms of the sequential obser-
vations of the distributed computation

2. preserves stuttering-equivalence of sequential observations in the distributed computation
3. preserves in some manner the set of sequential observations of the distributed computation

It is easy to see that the notion of stuttering-equivalence of computation state spaces is an equiv-
alence between computation state spaces which satisfies these basic requirements, and so is a
candidate equivalence for preserving stuttering-invariant properties quantified with the modal op-
erators Pos and Def. In particular, we aim to show that given dynamic property y defined over
a set of propositions AP, a distributed computation (H,—) and its associated lattice of global
states £ = (T, <), that if £’ = (&', <’) is another lattice which is stuttering-equivalent to £ with
respect to the propositions in AP, then the modal operators Pos and Def are invariant under this
equivalence between lattices. Before proving this assertion, we need to make some preliminary
remarks.

Firstly, in Section 4.1, we defined satisfaction of the modal operators Pos and Def in terms
of the distributed computation v = (H,—) and its sequential observations. Because the lattice
of global states £ = (X, <) contains all and only the sequential observations of the distributed
computation, we extend the definition of Pos and Def to lattices in the obvious way (i.e. a lattice
L satisfies Pos ¢ if and only if some sequential observation 2 of the lattice satisfies {2 E ¢, and
similarly for the modal operator Def).

Secondly, the notion of stuttering-equivalence has been defined in the context of labeled state
transition systems. In order to prove the above assertion, we need to make use of the notion of
stuttering-equivalence for sequential observations and lattices of global states. Given a lattice of
global states £ = (£,,~<,) and a set of atomic propositions AP, we may view this lattice a labeled
state transition system (S, So,T, L), where § = £,, So = %9 where 22 is the unique minimal
element of the lattice, and L = ) is a labeling function which labels states in ¥, with propositions
from AP. The transitions T of this state transition system are represented by elements of the
immediate predecessor relation <f,"‘ on the global states: each pair of states £, X' for which ¥ <ir'"
Y is viewed as a transition in 7. In this way, viewing the lattice of global states as a labeled state
transition system, the definitions of stuttering-equivalence of paths and stuttering-equivalence
of state transition systems carry over to stuttering-equivalence of sequential observations and
stuttering-equivalence of lattices.

We now prove the desired assertion:

Theorem 7.1. Suppose that ¢ is a stuttering-invariant temporal property, defined over a set of
propositions AP. Let (H, —+) be a distributed computation with lattice of global states £ = (X, <),
whose states are suitably labeled with propositions from AP. Let £ = (T, <) be a lattice of
global states, whose states are also labeled with propositions from AP, and which is stuttering-
equivalent to £ = (T, <) with respect to the propositions in AP. Then £ = Posy if and only if
L' | Pos .
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Proof. Suppose that £ = Pos . We need to show that £’ |= Pos ¢. Because £ = Pos . there is
a sequential observation  of £ which satisfies Q |= . By assumption, £ and £’ are stuttering-
equivalent with respect to the propositions in AP, so there exists a sequential observation '
of £' which is stuttering-equivalent to @ with respect to the propositions in AP. Because ¢ is
stuttering-invariant, and because  |= ¢, the sequential observation Q' of L' satisfies Q' = .
Thus £' |= Pos ¢. (The converse holds by symmetry).

O

Theorem 7.2. Suppose that ¢ is a stuttering-invariant temporal property, defined over a set of
propositions AP.V Let (H, —) be a distributed computation with lattice of global states £ = (T, <),
whose states are suitably labeled with propositions from AP. Let £’ = (X', <') be a lattice of global
states, whose states are also labeled with propositions from AP, which is stuttering-equivalent to
L = (X,<) with respect to the propositions in AP. Then L |= Def ¢ if and only if £’ |= Def ».

Proof. Suppose that £ |= Def ¢. Because £ |= Def i, for each sequential observation € of £, we
have © = ¢. We need to show that £’ |= Def ¢. Suppose not; that is, suppose that there is a
sequential observation Q' of £’ such that ' }~ ¢. Because £ and L' are stuttering-equivalent with
respect to the propositions in AP, there is a sequential observation ©? of £ which is stuttering-
equivalent to Q' with respect to the propositions in AP. Because y is stuttering-invariant and
Q' B o, we have Q }£ o. This contradicts the fact that £ = Def . Therefore, L' |= Def . (The
converse holds by symmetry)

O

Modal Operators SOME and ALL

An important distinction between the modal operators Pos and Def, on the one hand, and the
modal operators SOME and ALL, on the other, is that, unlike Pos and De f, which quantify over
the set of sequential observations of a distributed computation, SOM E and ALL quantify over the
set of paths leading to a pre-determined reachable global state ¥ of the distributed computation.

Unlike Pos and Def which are path-based, these modal operators are prefiz-based, in the sense
that for a fixed, reachable global state ¥, they are defined over the set of prefixes of sequential
observations of the distributed computation which lead from the unique initial state to X. In the
definition of the modal operators SOME and ALL presented in Section 6.2, we recall that given a
dynamic property ¢ defined over propositions in AP and a distributed computation v = (H, =),
the lattice of global states (., <) of ¥ was viewed as a labeled directed acyclic graph DAG., =
(Zy,<i™), with the labeling function A : 4 — 24P Tor each state T in DAG,, the state &
and its predecessors form a labeled directed acyclic graph DAGsx, and the set of directed paths
of DAGy, leading from the unique initial state to ¥ were denoted by Ils. Satisfaction of ¢ under
modal operators SOME and ALL was defined with respect to labellings of paths in IIx.

Given the fact that the modal operators define satisfaction in terms of prefixes of sequential
observations leading to a fixed state ¥, any meaningful correspondence between full and reduced
computation state spaces must be on a state by state basis; that is, in order to be able to detect
the property, for example, T k= SOME ¢, we need to have ¥ itself somehow represented in the
reduced state space. In the simplest case, we would require that all states reachable in the full state
space are also reachable in the reduced state space. Failing this, we would need to have a means
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of establishing a correspondence between the state ¥ in the full state space, and its counterpart
state in the reduced state space; furthermore, this counterpart state should be unique. In the
equivalence we consider here, we assume that all states of the full state space are represented in
the reduced state space.

Based on the above discussion, the basic requirements for an equivalence which preserves
SOME and ALL will be an equivalence which:

1. is prefix-based, in that the equivalence is defined in terms of the structure of the state space
represented by the sets IIs

2. preserves stuttering-invariance of paths in the distributed computation

3. preserves in some manner the set of paths in each set IIx

We now propose to define a notion of equivalence between computation state spaces (viewed as
labeled DAGs) which we call prefiz-based stuttering-equivalence. Informally, it is an equivalence
between state spaces in which there is a correspondence between the sets Iz in the full and reduced
state space, under which stuttering-equivalence is preserved.

We wish to define this equivalence on labeled DAGs, and then use the equivalence to show
that prefix-based stuttering equivalent lattices (when viewed as labeled DAGs) are invariant under
the modal operators SOME and ALL. Rather than define the equivalence for a general directed
acyclic graph and labeling function, we use the notation presented in Chapter 6 and restrict the
development to those DAGs which represent lattices of global states, as described above. Note
that, unlike general DAGs, the DAGs we consider here have a unique minimal element (element
with no predecessors).

Let DAG; and DAG, be two such directed acyclic graphs, with DAG; = (Z;,<!™) with
labeling function \; : &; — 24F for i = 1,2.

We first defined stuttering-equivalence between the sets of paths IIy in a labeled DAG. For
each T € I;, the sets IIx are well-defined. Two sets of paths Iy and [y, are stuttering-equivalent
if and only if (i) IIy and IT%, have the same final state (i.e. £ = £') and (ii) for every path =g in
IIs, there exists a stuttering-equivalent path w%, in I}, and (iii) for every path 7y, in Iy, there
exists a stuttering-equivalent path 7y in ITx. In this case, the notion of stuttering-equivalence of
finite paths is used.

Two labeled directed acyclic graphs DAG, and DAG, are prefiz-based stuttering-equivalent if
and only if

e DAG, and DAG, have the same set of states (i.e. £; = X3) and the same unique minimal

element

e for each set of paths IIy leading to state ¥ in DAG], there exists a set of paths II§, of DAG,
leading to ¥ that such that IIx is stuttering-equivalent to Iy

o for each set of paths IT§ leading to state T in D AG», there exists a set of paths Iy of DAG),
leading to T that such that IT§ is stuttering-equivalent to Ils

We now show that prefix-based stuttering-equivalence is an appropriate equivalence for preserving
the modal operators SOME and ALL.
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In what follows, we shall have to differentiate between the satisfaction of the modal operators
SOME or ALL with respect to the states T of a given lattice £. Therefore, we use the notation
L,T = ¢ to denote the fact that L = ¢, for state T in lattice £.

Theorem 7.3. Suppose that ¢ is a stuttering-invariant temporal property, defined over a set of
propositions AP. Let (H,—) be a distributed computation with lattice of global states £ = (£,=),
whose states are suitably labeled with propositions from AP. Let £' = (X', <') be a lattice of
global states, whose states are also labeled with propositions from AP, and which is prefix-based
stuttering-equivalent to £ = (£, <) with respect to the propositions in AP. Let ¥ be a reachable
state of £. Then £, = SOME ¢ if and only if £',¥ = SOME .

Proof. Suppose that £, |= SOME . We want to show that £',L = SOMEy. Because £
and L' are prefix-based stuttering-equivalent, the state ¥ is a reachable state of £’ and so the
formula £, = SOME ¢ is well-defined. Because £,T | SOME ¢, there is a path 7 through
the lattice £ with final state ¥ such that = |= ¢. Because £ and L' are prefix-based stuttering-
equivalent, there is a path 7’ through the lattice £’ with final state T such that 7' |= . Therefore,
L',% = SOME ¢. (the converse holds by symmetry)

a

Theorem 7.4. Suppose that @ is a stuttering-invariant temporal property, defined over a set of
propositions AP. Let (H, —) be a distributed computation with lattice of global states £ = (£, <),
whose states are suitably labeled with propositions from AP. Let £' = (¥, <’) be a lattice of
global states, whose states are also labeled with propositions from AP, and which is prefix-based
stuttering-equivalent to £ = (X, <) with respect to the propositions in AP. Let ¥ be a reachable
state of £. Then £,¥ = ALLy if and only if £',E = ALL¢.

Proof. Suppose that £,¥ = ALL . Because £ and £’ are prefix-based stuttering-equivalent, the
state L is a reachable state of £’ and so the formula £',T | ALLy is well-defined. We want
to show that £/,% = ALL . Suppose not; that is, suppose that £, ¢ ALLy. Then for each
path 7' through the lattice £' with final state £, we have that 7' [£ ¢. Because £ and L' are
prefix-based stuttering-equivalent, for each path ' through the lattice £' with final state 3, there
is a path 7 through the lattice £ with final state £ which is stuttering-equivalent, and so 7 }~ ¢.
This contradicts the fact that £,~ = ALL . Therefore, L', X = ALL p. (the converse holds by
symmetry) a

7.3.2.2 Identifying Candidate Algorithms

In this section, we aim to identify candidate algorithms, based on partial order reduction,
which can be used to generate reduced state spaces for the equivalences defined in the previous
section. Thus far, we have determined that:

o for stuttering-invariant properties quantified by the modal operators Pos and Def, stuttering-
equivalence is an equivalence between labeled lattices of global states which preserves these
properties

o for stuttering-invariant properties quantified by the modal operators S OME and ALL, we
need a stronger form of equivalence, and have considered prefix-based stuttering-equivalence

between labeled lattices of global states as a suitable equivalence
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With this in mind, we now begin the search for candidate algorithms, based on partial order
reduction, for generating these equivalences.

Ample sets based algorithm

Clearly, a candidate algorithm for generating a reduced state space which is stuttering-equivalent
is the algorithm based on ample sets presented in [19, Chapter 10]. This model checking algorithm
provides a good starting point for developing an algorithm to generate a reduced state space suit-
able for checking Pos and Def in a trace checking context. It is based on performing a selective
search, in which only a subset (an ample set) of enabled transitions is explored from each state
reached. Ample sets were defined in an exploration-independent way in [19, Chapter 10] in terms
of four conditions relating the full and reduced state spaces: C0/C1,;C2 and C3.

Unfortunately, although the algorithm based on ample sets preserves stuttering-equivalence
between full and reduced state spaces, it does not preserve the stronger prefix-based stuttering
equivalence between the full and reduced state spaces. In particular, concerning the correspondence
between the full and reduced state spaces:

o the reduced state space generated by the algorithm need not reach all states reachable in
the full state space

* arepresentative for a path, although stuttering-equivalent to the original path, may include
a finite number of additional (independent) transitions, resulting in the final state reached
by the representative of a path differing from the final state of the original path

We illustrate these points with an example. Figure 7.2 shows a concurrent system of two processes
and the full program state space. Figure 7.2(a) shows two processes, P, and P,, and the resulting
full program state space. Process P executes transitions rl, z2 and z3 in sequential order. Process
P, executes transitions y1 and y2 also in sequential order. The transitions in P, are independent
of those in P,, and vice versa. All transitions are treated as invisible. The resulting program
state space is shown in Figure 7.2(b). States are numbered by the order in which they would be
explored in a depth first exploration of the program state space.

xi yl
2 2
x3
(a) The processes (b) The full state space

Figure 7.2: Two concurrent processes and the full state space
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Figure 7.3 shows one reduced state space which could be generated by an ample set exploration
of the full program state space of Figure 7.2(b). States and transitions which are not explored are
shown in dotted lines. This reduced state space does not explore all states (states 7, 8, 9, 10, 11
and 12 are not explored). Furthermore, the path 7 = y1 of the full state space is represented in the
reduced state space by the stuttering-equivalent path 7' = z122z3 yl, where the representative
path includes the additional transitions z1, z2 and 3.

Figure 7.3: Ample set exploration

This latter point arises as the condition C1 of ample sets permits the introduction of inde-
pendent transitions when constructing representatives for paths in the full state space, and the
underlying trace equivalence only guarantees that every transition in a path will be fired in its
representative. These features of the reduced state space mean that the ample sets based algo-
rithm (in its present form) is not a suitable candidate on which to base an algorithm to generate
a reduced state space suitable for checking properties involving SOME and ALL.

Sleep sets based algorithm

There is another algorithm for generating a reduced state space which is a possible candidate
for generating a prefix-based stuttering-equivalent state space. In [45, 47], Godefroid introduced a
method of partial order reduction based on sleep sets. Sleeps sets are based on the idea of avoiding
the exploration of trace-equivalent interleavings by not exploring transitions which may be enabled
in a state but whose exploration would result in exploring a path equivalent to (in the sense of
trace equivalence) a path already explored in the state space exploration. This is achieved by
entering selected transitions into sleep sets, and exploring only transitions in enabled(s) \ sleep(s).
As Godefroid has shown, state space reduction based on sleep sets results in a reduced state space
with the same set of reachable states as the full state space, but with (potentially) fewer paths to
those states [46]. Sleep sets avoid the wasteful exploration of multiple interleavings of independent
transitions. The sleep sets algorithm presented in Godefroid could possibly be modified to take
into account visible transitions to obtain an algorithm for generating a prefix-based stuttering-
equivalent state space.

Figure 7.4 shows the reduced state space resulting from a sleep sets-based exploration of the full
program state space shown in Figure 7.2(b). As before, dotted lines indicate states and transitions
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which are not explored in the reduced state space. Note that although all states in the full state
space are explored, not all transitions in the full state space are explored.

Figure 7.4: Sleep set exploration

7.3.2.3 Candidate Algorithms for Generating Reduced State Spaces

Based on the above discussion, we arrive at two candidate solutions for generating a reduced
state space suitable for dynamic property checking:

e reduced state space generation based on ample sets, to generate a stuttering-equivalent state
space, which is suitable for modal operators Pos and Def quantifying stuttering-invariant
temporal properties

e reduced state space generation based on sleep sets, to generate a prefix-based stuttering-
equivalent state space, which is suitable for modal operators SOME and ALL quantifying
stuttering-invariant properties

In what follows, we pursue the development of only one of these algorithms. Although both
methods represent valid lines of investigation in an attempt to apply partial order reduction to
the problem of trace checking, based on an “equivalent state space” approach, it would appear that
the algorithm based on sleeps sets is particularly well-suited to the detection of dynamic properties
for use with the algorithm of Babaoglu, Fromentin and Raynal. Despite this fact, we have chosen
to pursue the development of an algorithm for generating a stuttering-equivalent reduced state
space based on ample sets.

The reasons for this choice are based on two facts: (i) in the early stages of this research, the
stuttering-equivalent approach to partial order reduction seemed a highly promising candidate,
due to its success in model checking, and (ii) the impact of modal operators on the suitability of
a state explosion technique for combating state explosion in trace checking was underestimated.
As a consequence, a decision was made early on to adopt this approach. It was only after the ap-
proach was explored in detail did it become apparent that there were problems with this reduction
approach for certain modal operators.

From one point of view, this represents a missed opportunity. We believe that an algorithm
based on the sleep sets reduction is a very promising approach for the modal operators SOME
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and ALL, and would result in an extremely simple and effective method. On the other hand, the
development of the stuttering-equivalent approach, which appears in the sequel. illustrates very
clearly the complex issues which can arise in adapting a state space reduction approach to the
trace checking context, and in this sense, it successfully illustrates how the differences in context
can affect techniques for combating state explosion.

As this thesis aims to investigate the issues involved in addressing state explosion in trace
checking via model checking techniques, this early choice perhaps is fortuitous.

7.3.3 Summary

In this section, we have seen that partial order reduction can be applied using the “modified
system” approach, or the “equivalent state space” approach, and that these two approaches differ
considerably in their development.

We also saw that the success of applying the equivalent state space approach is dependent
upon the invariance of modal operators under the chosen equivalence. By examining the require-
ments placed upon an equivalence which preserves these modal operators, we brought forward
two candidate algorithms for generating reduced state spaces based on a selective search of the
computation state space: one based on ample sets, and one based on sleep sets. As an illustration
of the issues raised in adapting such a model checking algorithm to the trace checking context, we
chose to develop the algorithm based on ample sets.

We review some facts concerning the problem we shall now try to solve:

1. Our approach is based on viewing the lattice of global states as a state transition system,
and we attempt to apply the existing theory (and algorithm) of selective search based on
ample sets from model checking to the problem of generating a reduced, stuttering-equivalent
computation state space based on selective search for trace checking.

2. In particular, we aim to adapt this eristing model checking algorithm to the trace checking
context; that is, we do not design the algorithm from scratch.

3. The theory we start from consists of (i) a selective search algorithm based on ample sets,
(ii) conditions for defining ample sets (iii) methods for calculating ample sets and (iv) an

underlying theory of correctness

We now continue with the development of an algorithm for generating a reduced state space based

on ample sets, which is suitable for trace checking.

7.4 Design Issues

In this section, we consider the design issues surrounding the design of an algorithm to generate
a stuttering-equivalent reduced state space suitable for trace checking, given the fact that we
know stuttering-equivalence is a suitable equivalence for checking properties based on the modal
operators Pos and Def.

As mentioned previously, the partial order reduction approach views the full program state

space as a transition system, and performs an exploration of that state space which explores only
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enough states and transitions in order to guarantee that the resulting reduced state space preserves
the properties of interest. The reduced state space is then used in the validation exercise to check
whether or not properties hold. What we aim to do here is to apply the same technique to the
computation state space, viewing the lattice of global states as a transition svstem, where each
event corresponds to a transition. Although both the program state space and the computation
state space can both be viewed as state transition systems, differences in the two contexts in which
the technique is carried out may cause problems in porting the partial order reduction method to
the new context.

As we aim to use an existing model checking algorithm (selective search based on ample sets)
as a basis for development, we want to look at the differences in context between the existing
model checking algorithm, and the trace checking context in which the algorithm to be developed
will need to operate. Therefore, in this section, we consider the key assumptions underlying the
partial order reduction method, and consider the possibility of conflicts with the new trace checking
context.

The following key differences between the two contexts have been identified:

» exploration order: Algorithms for partial order reduction in the literature are generally
based on depth-first search exploration of the program state space, whereas property detec-
tion is generally based on breadth-first search exploration of the computation state space.
As our aim is to use partial order reduction in the context of breadth-first exploration of the
lattice of global states, changes in exploration order potentially impact both the correctness
and the effectiveness of the partial order reduction approach. Concerning correctness, depth-
first search is the exploration method of choice in many treatments of partial order reduction,
due to (i) its facility for conducting inductive proofs and (ii) its very concise characterization
(via necessary and sufficient conditions) of how cycles may be created during an exploration.
Consequently, many treatments of correctness in partial order reduction are cast in terms of
depth-first exploration. Adapting the partial order approach to a context in which breadth-
first search is a commonly-used exploration order may therefore require correctness proofs
and other elements (such as ignoring provisos) to be redeveloped. Concerning effectiveness
of the approach, the concise characterization of cycles in depth-first search again leads to
relatively efficient methods for detecting such cycles and implementing provisos for avoiding
ignoring, which in turn results in effective (in the sense of non-full expansion) computation
of ample sets. Characterization of cycles in breadth-first search is much less concise (via
sufficient conditions only), resulting in conservative provisos for guaranteeing the absence of
ignoring, which in turn results in less effective computation of ample sets. This fact impacts
the effectiveness of the method in a breadth-first search context.

e safety properties only: in a trace checking context, due to the fact that we may only
observe finite prefixes of non-terminating distributed computations, we are only able to check
properties whose satisfaction or violation may be demonstrated based on finite prefixes alone
(e.g. safety properties). On the other hand, many formulations of the partial order reduction
theory (c.f. [19, 86, 113]) present conditions for ample sets which are suitable for checking
general safety and liveness properties. As will be shown in Section 7.5.2.4; a weaker notion
of finite stuttering-equivalence can be used in place of stuttering-equivalence when checking
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safety properties only. This opens up the possibility of producing a smaller reduced state
space for checking safety properties in a trace checking context. However, adopting such
an approach requires a corresponding theory of partial order reduction based on preserving
finite stuttering-equivalence only. As in the case of exploration order, this will therefore
require correctness proofs and other elements (such as ignoring provisos) to be redeveloped.

finite state assumption: in model checking, the finite state assumption is used in order
to guarantee that the exploration of the program state space will always terminate; in the
dynamic property detection problem, there is generally no assumption that the program
being monitored is finite state. As will be demonstrated, correctness proofs for the partial
order theory depend on the finite state assumption (for guaranteeing absence of ignoring)
and so, unless we are prepared to restrict the application of property detection to finite state
programs, this issue needs careful consideration.

algorithm-initiated termination: Model checking and trace checking also differ with re-
spect to termination of the exploration and conditions holding at termination (such as the
whether or not all reachable states have been explored at termination). In model checking,
which bases state space exploration on graph traversal algorithms, termination of the state
space exploration is guaranteed by the finite state assumption, together with the convention
that states which are re-visited (after having already been explored) during the search are
not re-explored. This convention 'works’, as state space exploration algorithms systemati-
cally explore all possible successors of a state (and so explore all possible non-deterministic
choices from each state), and so there is no need to re-explore a previously visited state: all
continuations from that re-visited state will have already been ezplored. This guarantees that
all states reachable from the set of initial states will be explored at termination. In trace
checking, the situation is subtly different. In trace checking, it is in general impossible to
detect at run-time when all reachable states of a distributed computation have been visited,
and so impossible to terminate the exploration with the guarantee that all reachable states
have been visited. This is due to the fact that, when a program contains states where non-
deterministic choice between enabled transitions is possible, such possible non-deterministic
choices in the program are resolved non-deterministically by the program execution itself,
before the computation state space exploration begins. Thus, if a state is re-visited by the
program, a different set of non-deterministic choices may be made from that re-visited state.
Therefore, the assumption that the possible continuations of a re-visited state will not only
be the same but will also already have been visited does not hold in the trace checking con-
tezt. This means that, in general, if we wish to visit all reachable states of the distributed
computation, we cannot terminate the exploration of the computation state space before
reaching a terminal state, if such a state exists. Thus, the issue of termination in the al-
gorithm for generating an equivalent state space will need to be considered carefully. Even
if were possible to determine at run-time when all reachable states have been visited, there
are application-dependent reasons which may influence the decision to terminate the explo-
ration of the state space. For example, in some applications, such as testing, where the
aim is to discover logical errors in the design of software, termination of the exploration of
a distributed computation once all reachable states have been visited may be appropriate.
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On the other hand, in applications such as fault-tolerance, where the failure of software to
satisfy its specification may be caused by factors other than logical design errors (e.g. failure
of other components upon which the software depends, such as hardware) termination after
having visited all possible reachable states may not be appropriate.

» user-initiated termination: in certain applications of trace checking, such as testing, we
shall require the ability for the user to terminate the exploration of the computation state
space. The reason is that, in the case of non-terminating executions, or even terminating
computations which are excessively long, the user may not wish to pursue the checking of the
full computation, and may be satisfied with checking a prefix of the computation instead. In
such a case, some arrangement needs to be made for ensuring that the resulting state space
(now corresponding to the prefix explored) is still suitable for property detection, in some
sense.

Having examined the issues arising in the design of such an algorithm, each of these issues will
need to be addressed in the development of an algorithm to generate an equivalent reduced state
space suitable for trace checking. We address the issues in the next section.

7.5 Design

In designing an algorithm for generating a stuttering-equivalent reduced computation state
space, we need to start out with the existing algorithm for generating a stuttering-equivalent
reduced program state space (and related theory) and determine how the design issues identified
above may be resolved.

Our approach will be to group the design issues into two types: issues which have been consid-
ered within a model checking context previously (i.e. the issue of exploration order, and the issue
of checking safety properties), and issues which are not relevant to the model checking context
(i.e. the finite state assumption, the issue of algorithm-initiated termination, and the need for a
user-initiated termination protocol).

Concerning the first set of design issues, although the issues of exploration order and safety
properties have been considered in the literature, we did not find a version of the theory of partial
order reduction which considers them together. Therefore, we found it necessary to develop such
a theory. Once such a version of the theory has been developed, designing an algorithm to work
in the trace checking context would require adjusting the theory to deal with the remaining three
design issues: the finite state assumption, the issue of non-termination, and the need for a user-
termination protocol.

We shall therefore adopt a two step development approach:

e in the first step, we develop a theory of partial order reduction which incorporates stuttering-
equivalence, safety only properties, and exploration independence, resulting in a partial order
theory which more closely matches the requirements of trace checking context

e in the second step, we adjust that theory to deal with the remaining issues of a differing
finite state assumption, algorithm-initiated termination of the exploration, and the need for

a user-termination protocol
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The rest of the design section is organized as follows.

In Section 7.5.1, we consider the design issues involved in developing a version of the theory of
ample sets which is suitable for checking safety properties in an exploration-independent manner
in a model checking context. We shall show that this can be achieved by tailoring the Peled theory
for safety properties only and requires introducing a new concept of equivalence, suitable for safety
properties only, and a new concept of ignoring. The result is a theory of partial order reduction
for model checking which is suitable for checking safety properties in an exploration-independent
manner.

In Section 7.5.2, we go on to consider the further design issues which need to be considered
in order to adjust this theory for the trace checking context. We shall show that issues such as
the lack of a finite state assumption , the inability to detect termination of the execution, and
the need for user-initiated termination necessitate significant adjustments to the theory in order
to adapt it to the trace checking context.

7.5.1 Model Checking Design Issues

This section concerns adjusting the theory and algorithm behind selective search based on
ample sets to the issues of stuttering-equivalence, exploration order and safety properties only.

7.5.1.1 The need for an exploration-independent characterization of ample sets for

checking safety properties

The theory of partial order reduction is based on generating a reduced state space which
contains fewer states and transitions than the full state space, and which can be substituted
for the full state space in the model checking exercise. The reduction algorithm ensures that the
reduced state space is equivalent, in a particular sense, to the full state space, and the substitution
can be made when checking properties which are insensitive to that equivalence.

The reduced state space is generated by a modified state space exploration algorithm, which
explores only a subset of directions, called an ample set, enabled at each state encountered during
the search. Informally, ample sets explore just enough transitions from each state of the full state
- space in order to correctly check the property in question.

Early research on partial order reduction defined ample sets in an exploration-specific manner,
in terms of conditions on the particular state space exploration algorithm being used (e.g. depth-
first search, breadth-first search). In Section 7.2.1, it was shown that ample sets can be defined
in an exploration-independent manner by a set of conditions relating the full state space and the
corresponding reduced state space.

Exploration-independent formulations of ample sets are becoming increasingly important. Firstly,
state space exploration methods other than depth-first search are now being more widely used in
validation exercises. Alur et al. [4] show that symbolic state space exploration, based on breadth-
first search, can benefit from being combined with partial order reduction, in order to give greater
reduction in time and space required to perform validation exercises. Lluch-lafuente et al. [69]
demonstrate that partial order reduction can be used in combination with directed model check-
ing, where heuristics are used to perform a goal-directed exploration of the state space, based on
exploration methods such as best-first search, A%, and others. For each such exploration method.
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exploration-dependent conditions defining ample sets must be formulated and associated proofs
of correctness must be developed. An exploration-independent characterization of ample sets can
greatly simplify such proofs of correctness.

The presentation in {19, Chapter 10] focused on the conditions characterizing the ample sets
needed to generate reduced state spaces sufficient for checking safety and liveness properties. In
particular, the resulting reduced state space is guaranteed to be stuttering-equivalent to the full
state space: informally, every infinite sequence in the full state space is guaranteed to have a rep-
resentative in the reduced state space which is stuttering-equivalent. This form of correspondence
between the full state space and the reduced state space is required when checking general safety
and liveness properties.

When checking safety properties only, the requirements on the reduced state space are not
as strong as in the case of general safety and liveness properties. In particular, we need only a
reduced state space which is finitely stuttering-equivalent: informally, every finite sequence in the
full state graph has a finite representative in the reduced state graph which is stuttering-equivalent.
Such reduced state spaces generally contain fewer states and transitions than the corresponding
stuttering-equivalent counterparts, and so represent an important reduction in state explosion
which can be achieved when checking safety properties only.

This difference in reduced state spaces arises due to the different characteristics of safety
and liveness properties [3]. Informally, safety properties can only be violated on finite prefixes
of executions, whereas liveness properties can only be violated on infinite suffixes of executions.
Therefore, the reduced state spaces necessary for checking each class of property differ in the
number and type of representatives they must contain.

In the sequel, we shall extend the exploration-independent characterization of ample sets pre-
sented in [19, Chapter 10] to the case required for checking safety properties, wherein the re-
duced state space need only be finitely stuttering-equivalent to the full state space. Of the four
exploration-independent conditions used to define ample sets, only one of these is dependent upon
the class of property being checked, and accounts completely for the differences in the reduced
state spaces required. This condition, referred to in [19, Chapter 10} as the cycle condition, guar-
antees the absence of ignoring cycles in the reduced state space graph. Ignoring is a problem
which affects methods for combating state explosion based on generating a reduced state space
(e.g. stubborn set method of [112], persistent set method of [46], ample set method of [86]) where
only a subset of enabled transitions are explored from each state. We show that the cycle con-
dition has a corresponding, weaker, safety-only counterpart, guaranteeing the absence of ignoring
strongly connected subgraphs with no progress direction in the reduced state space graph. We show
that this weaker condition, defined on strongly connected subgraphs of the reduced state space, is
sufficient to prove finite stuttering-equivalence between the full and reduced state spaces. We also
show that this condition is consistent with existing exploration-dependent conditions for checking
safety properties, based on depth-first search and breadth-first search, by way of a spanning forest
analysis.

Although these results shall be required for the development of our algorithm for applving
partial order reduction to trace checking, the details of the development are purely theoretical
matter, firmly within the theory of partial order reduction. Rather than present them here, we
instead summarize the key results required and relegate the details of the development of these
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results to an Appendix, so that they may be referred to without disrupting the flow of discussion.
In the next section, we summarize the key results concerning this “safety properties only” version
of the partial order reduction theory based on ample sets.

7.5.1.2 An exploration-independent characterization of ample sets for checking safety
properties

The exploration-independent theory of partial order reduction for the case of safety properties
is based on the notion of finite stuttering-equivalence. Two labeled transition systems M and M’
are finitely stuttering-equivalent if and only if

e M and M’ have the same set of initial states

e for each finite path o of M that starts from an initial state s of M, there exists a finite path
o' of M' that starts from the same initial state s such that o is stuttering-equivalent to o'

o for each finite path o' of M’ that starts from an initial state s’ of M’, there exists a finite
path o of M that starts from the same initial state s’ such that o' is stuttering-equivalent
too

Notice that the definition of finite stuttering-equivalence of labeled transition systems involves
only finite paths through the labeled transition systems.

The four exploration-independent conditions used to define ample sets in the case of finite
stuttering-equivalence are as follows, where s represents a state reached during the selective search,
and we assume that the formula ¢ to be verified is defined on the set of propositions AP' C AP:

CO0 ample(s) = 0 if and only if enabled(s) = 0

C1 Along every path in the full state graph that starts at s, the following condition holds: a
transition that is dependent on a transition in ample(s) cannot be executed without a

transition in ample(s) occurring first

C2 if s is not fully expanded (i.e. ample(s) C enabled(s)), then every a € ample(s) is invisible
(with respect to the propositions in AP”)

C3-fin A strongly connected subgraph is not allowed in the reduced state graph if (i) it contains
a state in which some transition « is enabled, but never included in ample(s) for any state
s in the subgraph, and (ii) there is no state s’ in the subgraph for which ample(s’) contains

a direction leading to state not contained in the subgraph

The condition C3-fin requires that the reduced state space cannot contain strongly connected
subgraphs which are (i) ignoring and (ii) which do not contain directions which permit leaving
the strongly connected subgraph. Given that a cycle in the reduced state space can be viewed as
a strongly connected subgraph, it is easy to see that the condition C3-fin is strictly weaker than
the condition C3. In the Appendix (Section A.2.2), it is proved that these conditions on ample
sets are sufficient to guarantee that the reduced state space will be finitely stuttering equivalent

to the full state space.
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The exploration-independent description of the ignoring condition is a useful characterization
of the properties of ample sets required to generate a finitely stuttering-equivalent state space,
but in developing a real algorithm, we need provisos which can be efficiently computed and which
guarantee the condition C3-fin. In the Appendix, Section A.3, we prove that this new exploration-
independent condition is consistent with the following existing exploration-dependent provisos for
ensuring the absence of ignoring in the case of safety properties:

C3-dfs’ If s is not fully expanded, then at least one transition in ample(s) must not reach a state
that is on the search stack

C3-bfs’ If s is not fully expanded, then at least one transition in ample(s) must not reach a state
that is in the current level or a previous level of the breadth-first search

In other words, if the proviso C3-dfs’ (resp. C3-bfs’) holds during depth-first search-based (resp.
breadth-first search-based) ample set exploration of the program state space, then the condition
C3-fin holds in the reduced state space generated.

The exploration-dependent provisos for guaranteeing C3 differ from the exploration-dependent
provisos for C3-fin in terms of the creation of cycles in the reduced state space. For example,
proviso C3-dfs requires that no transition in ample(s) reach a state which is on the search stack
(i.e. create a cycle) when ample(s) is not fully expanded, as this potentially introduces an ignoring
cycle into the reduced state space, and is enough to violate condition C3. On the other hand,
proviso C3-dfs’ requires that at least one transition in ample(s) not reach a state which is on the
search stack (i.e. create a cycle) when ample(s) is not fully expanded. In other words, possible
ignoring cycles may be created in the reduced state space, but not in such a way that condition
C3-fin is violated. In the same way that a single transition (from state s) reaching a state on the
search stack can potentially form an ignoring cycle, if all transitions (from state s) reach states on
the search stack, it is possible to construct a strongly connected subgraph (informally. by taking
all the individual cycles created and forming their union - each cycle is strongly connected, and all
cycles have the state s in common) which is potentially ignoring and potentially such that there
are no transitions in the reduced state space leading out of the subgraph. Such a subgraph would
violate C3-fin.

7.5.1.3 Summary

The development presented in this section, together with the detailed proofs in the Appendix,
provides a theory and associated algorithm, suitable for a model checking context, for generating
a reduced state space which is finitely stuttering-equivalent to the full program state space.

In the sequel, we shall simply refer to the results of this theory as and when we need them.
This will simplify the presentation of the required adjustments to make partial order reduction

work at run time.

7.5.2 Trace Checking Design Issues

In this section, we consider the problem of adjusting the theory of selective search based
on ample sets developed in the previous section to take account of the remaining design issues

presented by the trace checking context:
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o inability to terminate the execution, based on seeing all reachable states
o the need for user-initiated termination

e finite state assumption

We consider each of these issues in turn.

7.5.2.1 No Termination (Based On All Reachable States) Problem

As discussed in the design issues section, we noted that, unlike model checking, it is not possible
to assume that the continuations of re-visited states will be isomorphic to the continuations of
the states the first time they were encountered. This was due to the fact that, in model checking,
possible non-deterministic alternatives from a state are systematically and exhaustively explored,
whereas in trace checking, program execution non-deterministically selects one such alternative
only, and so continuations may vary each time a given state is visited. This makes it impossible
in general to terminate the exploration of the computation state space based on having seen all
possible reachable states.

Several consequences arise due to this state of affairs:

1. The only way in which the exploration of the computation state space may terminate is by:
(i) the computation reaching a terminal state or (i) the user terminating the exploration

through user-initiated termination (see Section 7.4.2.2)

2. The exploration algorithm may re-explore states of the computation state space which have
already been visited

This has an impact on the operation of the algorithm. The C3-fin condition requires that, for
ample set selections from state s in which ample(s) is not fully expanded, at least one transition
from ample(s) leads to a new state which has not yet been explored. However, when re-exploring
visited states, this will tend to result in full expansion. Why? Because for any transitions in
enabled(s) explored on previous visits to state s, we cannot explore the same ample sets - as these
will not contain directions leading to new states. Thus, in order to satisfy condition C3-fin, the
ample set construction algorithm must find ample sets containing new transitions, and so explore
more and more transitions from the same state each time we visit it. Thus, exploring re-visited
states will tend to cause ample set selection to result in full expansion.

Therefore, this inability to avoid exploring re-visited states, combined with ignoring proviso
C3-fin, results in inefficient exploration of the computation state space. This is a significant

impediment to porting the algorithm.

7.5.2.2 Need for User Termination

As pointed out in the design issues section, for certain applications (e.g. testing), we need
to be able to user-terminate the exploration safely, and draw conclusions about the prefix of the

computation observed, for two reasons:

1. the distributed computation being observed is a non-terminating computation
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2. the distributed computation being observed is a terminating computation which, although
terminating, is too long to check in its entirety

User-initiated termination of the exploration at level level will result in an incomplete reduced
state space, in the sense that finite stuttering-equivalence may not hold between the (incomplete)
reduced computation state space and the full computation state space. For example, if the full
computation state space contains paths of length greater than level, and user-initiated termination
occurs at a level level’ such that level’ < level, then the reduced computation state space generated
to that point will contain paths of length at most level’, and so paths of length greater than level
will not be represented.

In order to make use of such an incomplete reduced computation state space for the purposes
of verification, some form of guarantee (in the form of an invariant) on the nature of the resulting
equivalence between the incomplete reduced state space and the full state space would be required.
One reasonable invariant is to require that, if the user-initiated termination were initiated at
level level, all paths of length less than or equal to level have representatives in the (incomplete)
reduced computation state space. But, for a given path, the length of a representative for that path
depends upon the degree of ignoring present in the representative (where the degree of ignoring is
represented by the number of invisible, independent transitions introduced by the selective search
algorithm when constructing the representative) (see Appendix, Section A.2.2). In order to deal
with possible ignoring present in paths, it is possible to introduce a safe termination phase, by
performing an exhaustive exploration of the computation state space from the level level at which
user termination was initiated, for a number of levels equal to the maximal amount of ignoring
possible in any path of length less than or equal to level. This could be used to guarantee that
all paths of length less than or equal to level were represented.

The problem with this solution is that the ample sets algorithm based on the ignoring proviso
C3-fin can potentially introduce up to |S| invisible, independent transitions in a representative,
where | S| is the size of the state space being explored. So, for example, if termination were initiated
in level level, ensuring the invariant holds would require a safe termination phase of length level
levels, which clearly negates any benefit obtained by the reduction.

Therefore, the ignoring proviso C3-fin makes implementing a termination protocol difficult.

7.5.2.8 TFinite State Assumption

In the model checking algorithm, the finite state assumption plays a key role in the proof of
finite stuttering equivalence (see Appendix, Section A.2.2) and, in particular, in the proof that
ignoring does not occur in the reduced state space.

The assumption that the program state space is finite is essentially an assumption that the
number of reachable states of the state space is finite and bounded. Given that in any exploration
of the computation state space, the exploration will only ever examine a finite number of reachable
states, we ask if it is possible to replace this assumption by the assumption that the number of
reachable states is finite but unbounded.

As we saw earlier, there are only two ways in which the exploration may terminate:

1. the distributed computation is terminating, and is explored through to termination
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2. the distributed computation is non-terminating, and the exploration is terminated by the
user at level level

In the case of termination by the user, a termination protocol is required, and this protocol will
need to ensure that ignoring does not occur for paths of length less than or equal to level. Whether
the distributed computation contains finitely many states or infinitely many states, this does not
affect the way in which any ignoring present in the (incomplete) reduced state space is adjusted.

7.5.2.4 Summary

The problems discussed in this section, namely

e the inability to terminate the execution, based on seeing all reachable states
o the need for user-initiated termination

e the finite state assumption

result in the ample sets algorithm in its current form (based on the development presented in
Section , which resulted in the exploration-independent conditions C0, C1, C2, C3-fin) becoming
inefficient when applied to the case of trace checking.

Each of these problems involve the ignoring proviso C3-fin and the issue of ignoring. As we
shall show, it is possible to overcome these problems in the trace checking context by considering
an alternative approach to dealing with ignoring.

In the next section, we consider an alternative approach to ignoring which avoids these prob-

lems.

7.5.3 An Alternative Approach To Ignoring

In [84], Nalumasu et al. investigated the use of an alternative approach to dealing with the
problem of ignoring in partial order reduction. In this section, we describe this alternative approach
and show how it can be used to overcome the problems cited earlier.

The authors noted that partial order reduction algorithms which involve the ignoring proviso
can result in more states than necessary being explored, and the source of the inefficiency is the
ignoring proviso itself. They introduce a partial order reduction method which does not involve
an ignoring proviso. The method is based on a two phase approach to exploration of the program
state space, in which the exploration of the set of paths leaving a state in the program state space
consists of a repeated alternation of two phases: a first deterministic, partial order phase, followed
by a second full ezpansion phase. The first phase is deterministic, in the sense that, during this
phase, from any state s, program transitions are selected for exploration from state s only if they
belong to a single process and that process has only one enabled transition; the first phase is partial
order, in the sense that, during this phase, only one interleaving is used to explore a portion of
the state space containing many equivalent interleavings. We shall refer to the algorithm as the
Two Phase algorithm for program state space exploration.

The Two Phase algorithm is based on a version of partial order reduction presented in Holzmann-
Peled [56], summarized in Section 7.2.3, which uses static analysis to assist in the selection of ample
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sets. Static analysis is used to identify program transitions which are safe (globally independent
with respect to transitions on other processes and invisible). Ample sets are then identified by
locating processes P; whose set of enabled transitions Ti(s) are such that each transition in the se.t
is safe. Following this approach, the Two Phase algorithm introduces a first, deterministic partial
order phase by requiring that any ample sets (sets of safe transitions T, i(s) from a process P;)
selected in the first phase are such that |7;(s)| = 1. The algorithm is then structured to ensure
that a second, full expansion phase always follows the first.

procedure model_check()

begin
V,i=0;E, =0,
Twophase(InitialState);
end

procedure T'wophase(s)
begin procedure phasel(in)
/* Phase 1 */ begin
(path, s) := phasel(s); s :=in;list := {s}; path := {};
foreach process P do

/* Phase 2 */
if (s ¢ V..) then
Vr := V; + all states in path;
E, := E, + path;
foreach (t € enabled(s)) do ;
E. :=E. + (s,t,t(s));
if t(s) ¢ V; then

while (deterministic(s, P)) do
/* t, the only transition enabled */

olds := s;
s := t(olds);
olds := s;

path := path + {(s,t.t(8))};
if (s € list) then

Twophase(t(s)); goto NEXTPROC;
fi fi
endforeach ; list := list + {s}
else end while
Vy := V. + all states in path; NEXTPROC :
E, := E, + path; endforeach
fi return (path, s);
end end

(a) Two Phase procedure (b) phasel() procedure

Figure 7.5: Algorithm for depth-first two phase

The algorithm is presented in Figure 7.5. The main algorithm consists of a recursive, depth-first
search-based procedure TwoPhase(), pictured in Figure 7.5(a), which explores the paths from a
state s in two phase fashion, and generates a reduced program state space. The reduced program
state space is stored in a graph, G, = (V;, E,.), with vertices V; representing states reached in the
exploration, and edges E. representing transitions between states.

The procedure TwoPhase() begins by calling procedure phasel(), presented in Figure 7.5(b),
to carry out the first phase processing. In the first phase, the algorithm visits each process once,
in turn. At each process P;, the algorithm calls the function deterministic(s, P) which returns
true if the set of enabled transitions T;(s) at process P; are each safe and such that |T;(s)| = 1.
If true, the transition is explored, and the relevant data structures are updated (the variable path
holds the path of states and transitions explored in the current instance of phase 1 processing,
and list holds the states visited in the current instance). Such deterministic execution continues
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Figure 7.6: Depth-first two phase algorithm

at process P; until deterministic(s,P) returns false, or it reaches a state already visited in
the first phase. At this point, phase 1 processing switches to the next process. At the end of
the first phase, which is guaranteed to terminate as the program is finite state, only a sequence
of deterministic, safe transitions (possibly empty) have been executed. At this stage, transitions
which were enabled on the path but not explored, due to being involved in non-deterministic choice,
may have accumulated. The procedure phasel() returns the final state reached by deterministic
exploration, together with the path of states and transitions fired.

The procedure TwoPhase() then executes the code following the call to phasel(), which per-
forms second phase processing. This processing phase is based on a classical recursive, depth-first
search exploration. The graph (V;, E,) is first updated with the graph edges explored in the first
phase. If the state s reached at the end of the first phase has not been visited, TwoPhase()
performs a full expansion of the state s; otherwise, if the state has already been visited, the al-
gorithm backtracks. Any ignoring on the path explored in phase 1 is eliminated by performing
a full expansion in phase 2. This algorithm avoids ignoring by construction: on any path in the
reduced state space leaving an expanded state, phase 1 always terminates, and is always followed
by phase 2.

Figure 7.6 illustrates the way in which the algorithm works. States and transitions which are
dashed represent states and transitions in the full program state space which are not explored.

The algorithm was presented in the context of SPIN {55]. Nalumasu proved that his proviso-
less approach can be used to model check stutter-invariant LTL properties, as well as stuttering-
invariant CTL* properties.

We shall use these ideas in our algorithm to generate a reduced computation state space suitable
for a trace checking context. We use the basis of the two phase approach to generate a finitely
stuttering-equivalent state space in a trace checking context:

1. to permit the efficient calculation of ample sets, based on identification of a set of safe

transitions from a process

2. to avoid the problems caused by using the ignoring proviso in a trace checking context

Further, as we shall see, the two phase approach to state space exploration is well-suited to the

trace checking case, for two reasons:
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1. in a distributed computation, and identifying events with their underlying transitions. the
sets T;(s) of enabled transitions in state s at each process P;, although they may not contain
only safe transitions, will be deterministic, and so the deterministic phase is well-suited to
the structure of distributed computations

2. the approach can be adapted to control the degree of ignoring in the state space when used
with a termination protocol, as well as to work with distributed computations generated by
programs with infinite state spaces

This new proviso will permit the following features:

1. it avoids the problem associated with revisiting parts of the state space and the negative
effect on ample set selection resulting from ignoring proviso C3-fin

2. it aids the development of a user termination algorithm, as we can now limit the degree of
ignoring which occurs to a user selectable bound, and so control the inefficiency resulting
from invoking the user termination protocol

3. it allows exploration of infinite state programs, as the level of ignoring present in any incom-
plete prefix of the distributed computation can be bounded

We describe the algorithm in the next section.

7.5.4 The Algorithm

Our algorithm for generating a reduced finitely stuttering-equivalent computation state space
based on partial order reduction based on ample sets is presented in this section. The key elements
of the algorithm are: (i) ample set selection is based on the static analysis method of Holzmann-
Peled where we look for a process P; with T;(s) containing only safe transitions and (i) exploration
of paths is structured into two phases: a deterministic first phase in which no non-determinism is
explored from any state reached, followed by a second phase of full expansion from a state.

Our algorithm differs from the depth-first algorithm presented in [84] in the following ways:

1. the algorithm is breadth-first, and so several paths are explored simultaneously; therefore,
data structures necessary for managing the exploration need to be associated with each state

2. it is not required to record states visited during the exploration (in a hash table or a graph
representing the explored state space), as we do not terminate the exploration based on

having seen all reachable states

3. the way in which phase 1 is terminated, which depends in part on a differing view of the
impact of cycles in model checking and trace checking

The last point deserves some explanation. In the algorithm presented in [84], a means of ensuring
that phasel terminates is required. This is achieved by maintaining a 'list’ of the states reached
in phase 1, and switching deterministic exploration at the current process to the next process, if
any, when a process reaches a state already visited in phasel (i.e. in the 'list’). This procedure,
combined with the maintenance of the list, serves three functions: (i) it is used to guarantee that
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phase 1 terminates (the program is assumed finite state, and so each process will eventually see
a repeated state, and avoid a potential infinite loop) (ii) the ’list’ is used to keep a record of the
states and transitions traversed in phasel, so that the state graph can be updated after phasel
completes (iii) use of the list avoids one process exploring the same deterministic cycle in phase
1, which in model checking is wasteful, as it would not contribute to new states and transitions
being added to the state graph.

In our algorithm, we also require a means to ensure that phasel terminates. We could impose
a finite state assumption on our computations and use the ’list’ method to ensure that phasel ter-
minates. But such a method unduly restricts the distributed computations the resulting method
can be applied to. Further, allowing a process to deterministically explore a cycle is not a prob-
lem in trace checking - in fact, the events making up the cycle must be explored as they form
part of the computation. Because the exploration is organized in breadth-first manner, we also
have no need for keeping a separate record of the states explored in phasel to maintain the state
graph(represented by previous and current). But more importantly, using the ’list’ approach
does not guarantee how much independent progress a process can make, leading potentially un-
bounded ignoring. We instead guarantee termination of phasel simply by placing a numerical
bound MAX PROCSTEPS on process steps. This allows us to guarantee termination of phasel
(phasel is guaranteed to terminate in at most MAXPROCSTEPS « N PROCS steps, where
NPROCS is the number of processes), has the advantage of not requiring a finite state assump-
tion, and also allows us to place a bound on ignoring present in the reduced state space, which aids
development of a termination protocol. The question arises as to how we might set the bound.
Setting the bound small raises the possibility of making less 'partial order progress’ than might
otherwise be achievable. Setting the bound high will allow more partial order progress, but will
result in a long termination protocol. The choice of bound will depend upon whether termination
is required.

We now describe the algorithm, which is presented in Figures 7.7, 7.8, 7.9, and 7.10.

Figure 7.7 shows the main algorithm, which is essentially a modification of the Cooper-Marzullo
algorithm which incorporates the partial order reduction approaches described earlier, where the
two phase approach is adjusted for breadth-first search. The data structures required for execution
of the algorithm are as follows. The sets previous and current represent sets of global states,
reached in the previous level and current level of exploration, respectively. The current level of
exploration is held in level. The constant M AX PROCSTPS holds the user-defined bound on
the number of process steps which may be performed by any process in phase 1. The constant
NPROCS is set to the number of processes. Associated with each global state ¥, we maintain

the following information:

o ¥.phase - the current phase of processing associated with X

e Y.pid - the process id of the process from which execution is currently being explored, if

processing is in phase 1; undefined otherwise

s Y.stepCount - the current number of events already processed at the current process ¥ .pid,

if processing is in phase 1; undefined otherwise

The initial state Sins is initialized so that Tini¢.phase = first, Yinit.pid = 1 and Tinie.stepCount =
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1 current : set of global states : init {initial state}

2  previous : set of global states : init §

3 level:integer :init 0

4 MAXPROCSTEPS : const integer : init {bound on number of process steps}
§ NPROCS : const integer : init {number of processes}

5 while current £ 0

6 level = level + 1;

7 previous = current;

8 current = {;

9 foreach ¥ € previous do

10 if (X.phase == first)

11 % perform first phase processing
12 phasel(X);

13 else

14 % perform second phase processing
15 phase2(X);

16 fi

17 od

18 % wait until we can compute next level level

19 end while

Figure 7.7: Algorithm for computing reduced state space.

The algorithm operates on a level-by-level basis, as in the Cooper-Marzullo algorithm. Each
state ¥ in previous is processed as before, however, processing is now dependent upon the current
phase ¥.phase associated with the state: at each level, phasel processing can result in only one
deterministic successor being explored, whereas phase 2 processing explores all possible successors.
Once all states in previous have been processed, the algorithm waits until enough events have
arrived to begin processing of the next level, as in the original Cooper-Marzullo algorithm.

Figure 7.8 shows the algorithm for performing phase 1. Procedure phasel() performs the
deterministic phase of the exploration, and operates analogously to the phase 1 processing of the
algorithm T'woPhase. The predicate enabled(X, pid) returns the set of events which are enabled
in state ¥, and which belong to process pid: this set can be empty, or contain a single event.
Given an event ¢ € H, we denote by e.t the transition associated with e (the transition ¢ of which
e is an instance) and denote by e.pid the process id of the process to which e.t belongs. The
predicate safe{e) is true when the transition underlying event e is safe: when e.t is invisible with
respect to the set of propositions Props(y) associated with the dynamic property ¢, and e.t is
globally independent with respect to all transitions on processes Pj, j # e.pid. We assume that
these attributes of events have been identified through a static analysis phase of the distributed
program and included in the information associated with events at generation.

Phase 1 proceeds as follows:

e if there is a transition e enabled at state ¥ satisfying sa fe(e) and associated with the current
process Pr piq, then that transition is explored from T resulting in state ¥'. If processing

156



1  procedure phasel(X)

2 if (3e € enabled(%, T.pid) s.t. safe(e))

3 % compute the successor state

4 T =e(D);

5 % check if we have performed max steps

6 if (X.stepCount < MAXPROCSTEPS)

7 % continue processing process pid in next level
8 Y.stepCount + +;

9 else

10 % switch processing to next process in next level
11 updatepid(L);

12 fi

13 ¥ .phase = T.phase; T’ .pid = T.pid;

14 %' .stepCount = Y.stepCount;

15 % add successor to next level to be processed
16 current = current + {Z'}

17  else

18 % no deterministic transition - change process
19 updatepid(X)

20 if (X.phase == first)

21 phasel(%)

22 else

23 phase2(X)

24 fi

25 fi

26 end

Figure 7.8: Algorithm for phase 1

at Pr i has not reached the maximum level of steps, M AX PROCSTEPS, then the step
count is incremented and processing will continue at Py piq in the next level; otherwise,
the procedure updatepid() is called to update the process id and phase of processing which
should be applied at the next level. The data structures associated with L’ are initialized
to reflect these decisions, and ¥’ is added to the set current for processing in the next level.

e if there is no transition e enabled at state T satisfying safe(e) and associated with the
current process P ;4, then the procedure updatepid() is called to update the process and/or
phase of processing which should be applied to . The state X is then considered again for
processing, based on the new values of its associated data structures. Note that this step
may occur several times in the processing of a state, but that it will always result in either

phase 1 processing at some process, or phase 2 processing being performed on .

Note that the number of transitions which may be executed in any instantiation of phase 1 is
bounded by MAXPROCSTEPS » NPROCS, as each process is limited to exploring at most
MAXPROCSTEPS transitions, and NPROC S processes may participate in phase 1.

Figure 7.9 shows the algorithm for phase 2. In procedure phase2(), the algorithm simply
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1 procedure phase2(X)

2 foreach (e € enabled(X)) do

3 T =e(T);

4 E’.phase =1;% pid = 1;

5 T .stepCount = (;

6 % add successor to next level to be processed
7 current = current + {T'};

8 od

9 end

Figure 7.9: Algorithm for phase 2

1 procedure updatepid(X)

Ypid=Y.pd+1;
Y. stepCount = 0;
% if all processes examined in phasel, switch to phase?2
if (X.pid > NPROCS)
¥.phase = second;

=3Ot LN

fi

end

o

Figure 7.10: Algorithm for updating process id

explores all possible successors ' of the state . As part of the processing for each successor,
it initializes the data structures to initiate phase 1 processing in the next level, and adds each
successor to the set current.

Finally, Figure 7.10 shows the algorithm updatepid() which updates the data structures ap-
propriately for ¥, causing the next process within phase 1, if any, to be considered or to switch to
phase 2, if required.

Figure 7.11 illustrates the way in which our algorithm works.

7.5.5 Related Issues

In the following sections, we consider several issues which affect the use of the algorithm in

checking dynamic properties:
o the determination of safe transitions
e the use of the algorithm with detection algorithms for detecting dynamic properties

e the compatibility of the approach with a user-initiated termination protocol
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Figure 7.11: Breadth-first two phase algorithm

7.5.5.1 Determination of safe transitions

The algorithm is based on a selection of ample sets involving the static analysis approach
described in [56). In that paper, the selection of ample sets was based upon finding a set of enabled
transitions which were safe with respect to the dynamic property ¢ being detected: globally
independent (with respect to all transitions on other processes) and invisible with respect to
the propositions in Props(y). In this section, we briefly discuss the identification of globally
independent events in the trace checking context.

Dynamic property detection depends upon the modeling phase in order to instrument the
distributed program with redundant, event generation code to produce the data making up the
observation of the distributed computation. These event generators describe, for each event, for
example:

e event type (internal, send, recv)

e vector clock timestamp of the event
e process id of the event

e local variables modified by the event

Such instrumentation requires some static analysis (pre-processing) of the program text, before
the program is executed. Therefore, we can add in further static analysis to identify, for the
transitions of the program (which underly the generated events):

¢ global independence of the transitions (with respect to transitions on other processes)

e visibility of transitions with respect to the propositions Props(p) in the dynamic property

¢ being detected

The approach requires consideration of the type of program statements and their semantics. In
[56], the method of static analysis was applied within the context of the model checker SPIN,
and its associated validation modeling language PROMELA [55]. A number of classes of program
statements were identified as being safe. To decide global independence or visibility exactly would
require examining all reachable states. Instead, heuristics are used to identify those transitions
that are, with certainty, globally independent or visible, and assume that the other transitions are

not.
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In the model of a distributed program presented in Section 4.1, distributed program statements
were classified as internal, send or receive. No programming language was described, and this pre-
cludes a detailed description of how to precisely define heuristics for deciding global independence
and visibility. Therefore, the following discussion is somewhat informal.

The transitions in asynchronous distributed programs do not share memory, in the sense of
sharing program variables local to a process, but they do share communication channels Xij- These
shared memory objects have a bearing on the determination of global independence. The global
state of a distributed program may require consideration of channel states in addition to the local
states of processes involved in the computation. We now consider the three classes of program
statements in turn:

Internal transitions int; located on process P; are globally independent with respect to tran-
sitions on other processes P;, j # i, as these transitions share no memory and thus cannot be
dependent. Internal transitions may or may not be visible, depending on their access to variables
involved in atomic propositions involved in the property being checked.

In the case of send;(m) transitions on channel x;;, these transitions can exhibit dependencies
with other communication transitions through channel states of x;: channels act as shared vari-
ables in a distributed program, and so computing global independence of send transitions is, in
general, as complex as checking reachability. As described in {56], the situation is greatly simplified
if it can be shown that only one process has ezclusive send access to a channel x;; (which must
also include use of predicates which test the contents of the channel or whether the channel is
full). Under the assumption of exclusive send access to the channel yx;;, the transition send;(m)
will be globally independent. Transitions send;(m) modify the channel state x;; upon execution,
and may therefore be visible to any channel predicates defined on x;;jand used in the property.

In the case of recvj(m) transitions on channel x;;, these transitions can also exhibit dependen-
cies with other communication transitions through channel states of x;; and so computing global
independence of receive transitions is, in general, as complex as checking reachability. As in the
case of send transitions, the situation is greatly simplified if it can be shown that only one process
has exclustve receive access to a channel x;;. Under the assumption of exclusive receive access
to the channel x;;, the transition recv;(m) will be globally independent. Transitions recv;(m)
modify local states of P; as well as the channel state x;; upon execution, and may therefore be
visible to any channel predicates defined on x;; and used in the property.

In summary, transitions which are not safe include:

e internal transitions int; which are visible to propositions defined in terms of variables on F;

e send;(m) transitions on channel x;; which do not have exclusive send access to the channel
Xij, or which are visible to channel predicates defined on x;;

e recvj(m) transitions on channel x;; which do not have exclusive read access to channel x;;,
or which are visible to channel predicates defined on x;; or local predicates defined on P;

Thus, we assume that program transitions are identified as being safe or not, and visible or not.
according to considerations of the type described above, and the information recorded in a table.
During the execution and monitoring phase, this information is added to the usual information

included with the event.
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7.5.5.2 Detection of temporal properties

In order to make use of the algorithm developed in this chapter to detect stuttering-invariant
temporal properties ¢ qualified by the modal operators Pos and De f, we require a detection
algorithm to detect such temporal properties in combination with the modalities Pos and Def.

In the case of terminating distributed computations, we may use the algorithm developed in
this chapter to conduct the exploration of the reduced computation state space. This algorithm
may then be combined with the Babaoglu, Fromentin, Raynal algorithm used in the detection
of SOME and ALL to decorate the states of the computation states space with the automaton
states reachable at each global state. Then, based on the relations:

v Posy iff Ytina E SOME
YEDefy iff Tfinal ALLy

where T yinq; represents the maximal state of the lattice of global states L, = (E,,<,), we
may decide Posy and Def ¢, based on the reduced state space generated.

In the case of non-terminating distributed computations, correct conclusions concerning the
satisfiability of Pos and Def cannot be made in general based on a finite prefix. However, exam-
ination of the above relations at the final state of the finite prefix can provide useful information
concerning satisfaction or violation of the dynamic property on the prefix.

7.5.5.3 Termination Protocol

In Section 7.5.2.2, it was noted that the algorithm for partial order reduction based on the
ignoring proviso C3-fin can introduce up to |S| invisible, independent transitions in the representa-
tive for a path and this can defeat any attempt at implementing a user-termination protocol which
guarantees that, for paths of length level, stuttering-equivalent representatives will be present. In
this section, we indicate how our algorithm can make implementing a user-termination protocol
feasible.

One advantage of our algorithm is that it permits us to bound the degree of ignoring present
in the reduced state space, for any given transition. As will be shown in the course of the proof
of correctness of the algorithm in Section 7.6.2, the maximum degree of ignoring for any given
transition is MAX PROCSTEPS « NPROCS. This bound on the degree of ignoring present
allows the development of a user-termination protocol with the property that, if user-termination
is initiated at level level and the user-termination protocol initiated, the reduced state space
generated will contain stuttering-equivalent representatives for all paths in the full computation
state space of length at most level.

In the case where user termination of the protocol is required, termination can be initiated at an
arbitrary level level, and the termination protocol needs to guarantee that all finite paths of length
level or less have stuttering-equivalent representatives in the (incomplete) reduced computation
state space. This can be achieved by switching the mode of exploration from selective search
at level, to exhaustive search in subsequent levels, and continuing the exploration for at least
level * MAXPROCSTEPS x NPROCS levels. This will guarantee that all paths of length at
most level will have stuttering-equivalent representatives included.

We do not describe the algorithm here.
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7.6 Correctness

In this Section, we prove that the TwoPhase algorithm, presented in Figures 7.7, 7.8, 7.9,
and 7.10, does indeed generate a finitely stuttering-equivalent computation state space. Our
advantage in this regard is that we have already proved (in the Appendix, Section A.2.2) that ample
set selections satisfying conditions C0, C1, C2, C3-fin generate a finitely stuttering-equivalent
computation state space. There, the strategy of the proof was to take a sample finite path in the
full computation state space, and show exactly how the stuttering-equivalent representative(s) for
that path are constructed. Much of the proof in the Appendix can be reused if we can show:

1. The set of transitions selected at each state s in the TwoPhase algorithm, denoted by 2P(s),
satisfy conditions C0, C1, and C2.

2. These "ample’ set selections, when combined with the two phase exploration regimen of the
TwoPhase algorithm, guarantee the absence of ignoring (i.e. all transitions in the finite
path are eventually fired in the representative)

Then, by the details of the proof presented in the Appendix, we can conclude that for any given
finite path o in the full computation state space, the reduced computation state space generated by
the TwoPhase algorithm contains a finite path which is stuttering-equivalent to ¢, and therefore
that the full computation state space is finitely stuttering-equivalent to the reduced state space.

In the proofs that follow, we need to make the following qualifying remarks:

1. Although the T'woPhase algorithm operates entirely on events in the distributed computa-
tion (H,—) and the information contained in those events, the selection of ample sets of events
is based on the transitions T underlying those events. Indeed, although events and their causal
dependency relation are used to determine the enabledness of events in a global state of the lat-
tice, it is the global independence and visibility of the transitions underlying the events which is
used to decide which collection of events forms an ample set, and drives the exploration of the
lattice. Reasoning about the correctness of such set selections is cast in terms of the transitions
underlying the events. Therefore, in the interest of clarity, we present the proofs of correctness in
terms of transitions underlying the events of the distributed computation, as opposed to events
themselves. This distinction between events and the transitions underlying them should be clear
from the context.

2. The proofs of correctness of the TwoPhase algorithm are dependent on the proofs of the
results introduced in Section 7.5.1.2 concerning exploration-independent conditions for generating
a finitely stuttering-equivalent state space. The details of these proofs were presented in the
Appendix. We shall at times need to make reference to the details of those proofs here.

7.6.1 Proving set selection satisfies C0, C1 and C2

We first show that the selection of ample sets in the TwoPhase algorithm satisfies C0, C1
and C2.

In what follows, we shall need to associate with a transition ¢ the process to which it belongs
(this view of transitions belonging to a single process is consistent with our model of asynchronous
distributed programs). Given a transition t € T, t.pid indicates the process id of the process to

which the transition ¢ belongs.
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Lemma 7.1. Let 2P(s) represent a set of transitions selected by the algorithm of Figure 7.7.
Then 2P(s) satisfies conditions C0, C1 and C2.

Proof. The set selection depends upon which phase of processing the state s is undergoing.

In the case where the state s is undergoing phase 1 processing, the only set 2P(s) of transitions
which can possibly be selected and explored from s consists of a single deterministic transition
t € enabled(s) such that safe(t) holds and t.pid = s.pid.

CO is satisfied as if 2P(s) is non-empty, then it contains a transition enabled at s, and if
enabled(s) is empty, then no such deterministic transition exists and 2P(s) is empty. To show
that C1 is satisfied, we need to show that along every path in the full state graph that starts at
8, the following condition holds: a transition that is dependent on a transition in 2P(s) cannot be
executed without a transition in 2P(s) occurring first. Suppose not; that is, suppose that for some
path s = s; 4 8 3 .e.8p i) 8n+1 in the full state space, t and t,, are dependent and t # t,. We
assume without loss of generality that t,, is the first such dependent transition. Since t # t,,, then
t, cannot be such that t,.pid = t.pid; that is, they must be on different processes. But we know
that t is globally independent with all transitions ' such that t'.pid # t.pid, and so, for all states
s’ where t and t' are simultaneously enabled, we know that ¢t and t' are independent. Because t
is independent of the transitions t;,...,t,-1, we know that t is enabled in s,. Therefore ¢t and t,
cannot be dependent, which presents a contradiction. Thus, condition C1 is satisfied by 2P(s).
Finally, C2 is also satisfied, as in the case when the set 2P(s) is not fully expanded at s, the single
deterministic transition in 2P(s) is guaranteed to be safe, and therefore invisible.

In the case where the state s is undergoing phase 2 processing, 2P(s) = enabled(s), and this

set selection obviously satisfies all three conditions.
a

It is instructive to consider, given the new way in which sets of transitions are selected by the
TwoPhase algorithm, the way in which the representative iterations my = 7y o 6x are constructed
from o. Given m, = 7 o 8k, we select the next transition to fire from 6, at state sk based on

whether s is undergoing phase 1 processing or phase 2 processing:
e if s is undergoing phase 1 processing, then there are three cases:

— the transition selected is a, because we happen to be processing a.pid; and a is deter-
ministic (case A)

— the transition selected is not «, but some other deterministic transition Bon process
B.pid with B.pid # a.pid. Note that such a transition selection satisfies C1, by the
above lemma. Consequently, as in the proof of finite stuttering-equivalence, there are

two cases:

* the deterministic transition f is in 8x(case B1)
+ the deterministic transition 8 is not in 8 and is independent of all transitions in
Or(case B2)
_ there are no deterministic transitions enabled at sx and we switch to phase 2 processing

to process Sk
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o if 4 is undergoing phase 2 processing, then the transition selected is afcase A)

In this way, we may carry out exactly the same proof steps as was done for the proof of finite
stuttering-equivalence, as every transition explored by the TwoPhase reduced state space con-
struction appears as one of the cases in the ample set reduced state space construction.

7.6.2 Proving absence of ignoring

A key difference in the proofs of finite stuttering-equivalence between C3-fin and the TwoPhase
algorithm lies in how ignoring is dealt with. In the proof of finite stuttering-equivalence presented
in the Appendix, in which ample sets satisfied the conditions C0, C1, C2 and C3-fin , we defined
the following property of representatives constructed by the algorithm:

CMPLT for all © > 0, if o denotes the first transition of §;, then there exists j > i such that a
is the last transition of n; and, for ¢ < k < j, ais the first transition of 8

This property, when satisfied, guarantees that a representative minimally fires all transitions in
the path o. It was shown in [19, Chapter 10], that this property holds for all representatives which
satisfy condition C3. However, when C3 is replaced with C38-fin, not all representatives have
this property (i.e. some representatives can ignore a by entering an ignoring cycle and remaining
in that ignoring cycle by selecting B2 transitions infinitely often). This led to differentiating
between reps(o), the set of all representatives of o, and completereps(c), those representatives
which satisfy the completeness property.

In the TwoPhase algorithm, this state of affairs can never happen: representatives may not
ignore enabled transitions indefinitely. Informally, representatives constructed by the TwoPhase
algorithm may contain several traversals of an ignoring cycle (in terms of the construction, Bl
and B2 may be fired in phase 1, which may traverse part of an ignoring cycle), but they will never
be allowed to pursue the transitions making up those cycles indefinitely (B1 and B2 will only be
selected in phase 1, and phase 2 will always be triggered in finite time, whether by maintaining
a list of states visited in phase 1, or by placing a bound MAXPROCSTEPS on the number
of transitions a process may execute in phase 1). Therefore, the completeness property holds
for every representative of o constructed and so reps(c) = completereps(o) for the TwoPhase
algorithm.

We now demonstrate formally that, given an arbitrary representative, it belongs to completereps(o).

Lemma 7.2. Let o be the first transition on ;. Then there exists j > ¢ such that a is the last

transition of 7; and, for ¢ < k < j, ais the first transition of 6.

Proof. According to the construction, if « is the first transition of 6y, then either it is the first
transition of fx41 (case B), or it will become the last transition of 741 (case A). We need to
show that the first case cannot hold for every k > i . Suppose that this is the case. Consider the
sequence of states $;, $it1,.... Let s = first(6x). According to the construction, se4+1 = Yk (sk)
for some y; € 2P(s;). Moreover, because « is the first transition of 6; and was not selected in
case A to be moved to ng41, @ must be in enabled(sy) \ 2P(sk). Because the end of phase 1 will
be reached in at most MAX PROCSTEPS » NPROCS steps from s;, there exists [ satisfying
0<!< MAXPROCSTEPS x NPROCS such that phase 1 terminates in state s and phase
2 initiated in state s;4;41. Then one of the following two cases holds:
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e for some j, 0 < j <1, 2P(si+;) = {a}, and « is fired in 8i+j (i.e. a is fired in phase 1) or

e phase 2 is initiated in ;4,1 where full expansion occurs, and a is fired in 5,_;_; {i.e. ais
fired in phase 2)

In either case, @ will be fired, contradicting the assumption that case A never holds.
O

The rest of the proof of the finite stuttering-equivalence between the full computation state
space and the reduced computation state space follows from the proof steps already given in the
appendix.

7.7 Complexity

In this section, we consider the complexity of the approach. The algorithm presented in this
chapter is essentially the level-based, computation state space exploration algorithm of Cooper-
Marzullo, adjusted so that exploration of states in the lattice proceeds in a sequence of two
phases: a deterministic phase, followed by a full exploration phase. The reduction potential of
this algorithm lies in phase 1 processing, in which only a subset of enabled transitions from each
state reached in phase 1 are explored.

We consider the time complexity of the procedures introduced. The procedure phasel() repre-
sents the deterministic phase of exploration. Examining the algorithm in Figure 7.8, we see that
the main algorithmic complexity introduced is in (i) determining if a safe, enabled event e exists
on process L.pid and (ii) computing the successor state e(X) and updating the data structure ele-
ments associated with the successor state L’. If no such enabled event exists, this processing may
be repeated at the next process through a call to updatepid(). Therefore, each call to phasel()
involves O(N) time complexity. The procedure phase2() implements a simple computation of
all possible the successors of the state ¥, and so has time complexity of O(.V). The procedure
updatepid() has O(1) time complexity.

We now consider the potential reduction of the method, which involves considering the degree
to which phase 1 processing will be carried out during the state space exploration. The reduction
achieved will vary depending on (i) how many safe events(transitions of the computation state
space) are available in phase 1, and (ii) the particular choice of the variable M AX PROCSTEPS.

The availability of safe events depends upon which proportion of events in the distributed
computation have been identified as being both globally independent and invisible. Global inde-
pendence of an event corresponding to a program transition depends upon the degree of concur-
rency in the asynchronous distributed program. Visibility of an event depends upon the particular
dynamic property which is being checked. The discussion on the determination of safe transitions,
in Section 7.5.5.1, has a bearing on this. These considerations are the roughly same as those which
apply to considering the reduction potential of the method in model checking.

The choice of the value for the variable M AX PROCST EPS was discussed earlier and involves
a trade-off between the desire to allow phase 1 to continue as long as is possible, and the need to

reduce the length of time of a termination phase, if any.

165



In general, we can expect similar degrees of reduction in this approach as are encountered in
applications of partial order reduction to model checking, taking into account the fact that we
now consider only one execution instead of all executions.

7.8 Implementation

We have implemented a version of the BFR algorithm which incorporates the partial order
reduction described in this chapter. In this section, we present an example of a reduced state
space generated by the algorithm.

The distributed computation 4 = (H,—) we consider is made up of two processes, P, and
P,. The lattice of global states corresponding to the distributed computation is shown in Figure
7.12. State % denotes the state of the distributed computation reached after exploring the first
i events of process P; and the first j events of process P,.

In the example, the propositions defined on global state are taken from the set AP = {7, 15.¢€}.
The proposition ¢ is used to represent the fact that none of the propositions y;,i = 7, 18 hold true
in a global state. Global states are labeled with the propositions which hold true in those states.
An exception to this rule are states whose labeling is the set {¢}. In the interests of visual clarity,
these state labellings have not been indicated in the figure. Any state with no labeling is therefore
assumed to be labeled by the set {¢}.

The property ¢ we consider in this example is one which can be described informally as
requiring that the propositions @7 and ;3 appear one or more times in a path labeling, but that
they appear in that order. It is described formally by the deterministic finite state automaton
A=(Q,%,Q0,6,QrF), where Q@ = {go0,q1,92, %}, T = {¥7,18,€}, Qo = {go} and QF = {q2}. The
transition relation 4 is defined by the following transition table:

6 | w1 | 18| €
do | 1 at | 9
Q| Q1 q2 a1
g2 | 492 g2 | ¢
qt | 4t gt '

Note that the property is stable: once the acceptance state g is reached, there are no further
constraints on the labels that may appear.

In the Figure 7.12, transitions which are shown in solid lines are those which are explored in
the reduced state space, and transitions shown in dotted lines are not explored in the reduced
state space.

The distributed computation v = (H, —) of this example satisfies ¥ = Pos ¢ and ¥ E Def .
as all sequential observations leading to the final state £'°* pass through states satisfying ¢7
and ¢y, in that order. It can be seen that this satisfaction relation also holds for the reduced

computation state space.
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Figure 7.12: A distributed computation and partial order reduction

7.9 Conclusions

The partial order approach to state space reduction in trace checking of temporal properties
of distributed computations was presented in this chapter.
The algorithm developed and presented in this chapter has the following advantages:

e suitable for checking temporal properties which are stuttering-invariant and quantified by
the modal operators Pos and Def, standard modal operators used in property detection

applications

e works at run-time or off-line

o works for terminating and non-terminating, infinite state programs (subject to the restriction
that properties quantified by Pos and Def cannot be decided in general for non-terminating

computations)
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Unfortunately, there are disadvantages:

o reduction achieved depends upon the property (as in the case of partial order reduction
model checking)

¢ not compatible for checking stuttering-invariant temporal properties quantified by the modal
operators SOME or ALL

e not suitable for some applications whose properties are not stuttering-invariant
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Chapter 8

Conclusions

In this chapter, we aim to review the investigation carried out in the thesis, and draw the
key conclusions and lessons learned. In doing so, we shall also point the way forward for further
research along the lines drawn out in the thesis.

8.1 Summary of Results

The success of this research endeavor lies in the degree to which the following questions have
been answered:

1. what can we conclude about the similarities and differences between the two problems, and,
from that, which model checking techniques are viable candidates for use in a trace checking
context

2. what can we conclude about the practical viability of attempts to transfer model checking
method(s) to the run-time case?

In the case of similarities and differences between the two problems, these issues were investigated
in Chapter 5, where we performed a comparative analysis of techniques used in model checking
and trace checking for combating state explosion. There, the investigation was based on, first of
all, comparing the two problem contexts, and then examining how the new trace checking context
may or may not influence the success of using a model checking technique in the trace checking
context. We considered each of the key model checking techniques in turn, identifying:

o the eristing synergies between the technique and the existing trace checking techniques which
incorporate approaches for mitigating the effect of state explosion. For example, we found
that certain model checking techniques, namely, model extraction-based techniques, partial
order reduction, symbolic and automata-theoretic approaches, were used in some limited

form.

e the potential synergies between model checking and trace checking for incorporating ap-
proaches to combating state explosion. For example, we identified several candidates which
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seemed well matched to the trace checking context, taking the context differences into ac-
count. These were described in the summary section, and formed the basis for our selection
of two promising candidates for more detailed investigation.

Concerning the viability of an approach based on transferring techniques for combating state
explosion from the model checking context to the trace checking context, we draw conclusions
based upon our experience in attempting to port two existing model checking methods: an on-
the-fly automata-theoretic based approach, and a partial order reduction approach.

In the case of the automata-theoretic approach, the results were promising. We presented
an algorithm which mitigated the effect of state explosion and was at the same time compatible
with certain important context differences: existing well-known techniques for performing dynamic
property detection, the description of dynamic properties by (not necessarily stuttering-invariant)
regular languages, and requirements for both on-line and post-mortem detection. The development
of the algorithm was very straight forward, due in part to the existence of an algorithm for trace
checking based on the automata-theoretic approach. Overall, this approach led to a working
algorithm for dealing with the state explosion problem in trace checking, but only for certain
modal operators.

In the case of the partial order approach, the situation was very different. The development
of the algorithm was long and protracted, due mainly to context differences (such as exploration
order, finite state assumption, the variety of modal operators, and termination) which required
adjustment of the partial order reduction theory. The situation was also complicated by the fact
that the partial order theory can be applied to the problem in several ways, and as part of the
design of the approach, we had to decide between what would otherwise be suitable candidates
for investigation. Overall, the approach led to a working algorithm for mitigating the effects of
state explosion through partial order reduction, but only for certain modal operators.

Overall, on the basis of our development of these two approaches, we conclude that model
checking techniques can be used in a trace checking context, but due to the differences in context.
significant changes to the algorithms and the theory underlying the algorithms may be required.

This is a hopeful result.

8.2 Future Work

Returning to the existing synergies and potential synergies for each of the broad classes of
model checking methods identified in Chapter 5, the key conclusion to be drawn is that there are
a range of important areas which would benefit from further investigation. We review here a few

of the significant candidates.
In the case of partial order-based techniques, we feel that the following represent promising

areas of investigation:

e developing an algorithm for partial order reduction for the modal operators SOME and
ALL, based on the technique of generating equivalent state spaces based on sleep sets

e further exploration of techniques based on the modified system approach to partial order
reduction in the case of temporal properties, which have vet to be explored
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e an exploration of approaches based upon the method of unfoldings, which could propose a

theory for the detection of general temporal dynamic properties based on join-irreducible
elements of the lattice of global states

The area of distribution is also a highly promising area of investigation, for several reasons, in
addition to the fundamental reasons of mitigating the state explosion problem and introducing
the possibility of speedup:

e being based on distribution of the reachability problem, the approach is general enough to
permit the detection of dynamic properties which can be expressed as regular languages

e approach would be fully compatible with the modal operators Pos, Def, SOME and ALL,
as the conditions for satisfaction of these modal operators are expressed solely in terms of
reachable acceptance states of the product

e there is a good match between the natural breadth-first evolution of events in a distributed
computation with an easily parallelizable breadth-first search algorithm for conducting dis-
tributed reachability analysis
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Appendix A

Exploration-independent Proofs

A.1 Exploration-dependent provisos for avoiding ignoring

In this section, we informally review the provisos which have been developed in the context
of partial order reduction based on depth-first search, both in the case of stuttering-equivalence
and finite stuttering-equivalence. Depth-first search was the exploration method of choice in the
early incarnations of partial order reduction theory, as it permits efficient detection of cycles and
exhibits certain convenient properties with respect to inductive proofs. Our aim is to gain some
insight into the form of exploration-independent condition required, by examining differences in
the resulting reduced state spaces.

In what follows, we use the following example concurrent program to illustrate the variations
in the reduced state state spaces generated. The program is composed of the three processes,
illustrated in Figure A.1(a). Transitions from each process are independent of transitions on the
other processes. The transitions z; are interdependent, as are the transitions y;. As we are focusing
on condition C38, we assume that all transitions in the program are invisible. The full state space
is shown in Figure A.1(b). For convenience, states in the state space are labeled by the order in
which they were visited during a depth-first exploration generation of the state space.

A.1.1 Avoiding the ignoring problem: stuttering equivalence

Consider the case of constructing a reduced state space which contains one representative per
infinite execution (stuttering equivalence) of the full state space. If any direction from a state s
leads to a previously visited state on the execution currently being explored (i.e. on the search
stack), that direction will create a cycle in reduced state space graph. Any path leading from
an initial state to that cycle, together with the cycle itself, represents an infinite execution in
the reduced state space. If the state s is not fully expanded (i.e. enabled(s) \ ample(s) is not
empty), then, potentially, transitions not selected from s can be ignored on that infinite execution.
Therefore, when generating reduced state spaces which must contain representatives of infinite
runs, any ample direction which creates a cycle can potentially result in ignoring.

In [86, 87], Peled provided a proviso for depth-first search which guaranteed generating a
reduced state space containing one representative for every infinite execution in the full state
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(a) Three concurrent processes (b) The full state space

Figure A.1: Three concurrent processes and the full state space

space. In this work, a slightly different form of equivalence (based on the notion of equivalence
robustness of a checked property) was required between the full and reduced state space. However,
the treatment of ignoring is largely unaffected. The proviso was stated as follows:

C3-dfs If s is not fully expanded, then no transition in ample(s) may reach a state that is on the
search stack

In this work, proof of correctness was based on induction on the order in which nodes back-
track during the depth-first search exploration. The proviso C3-dfs is used to ensure that the
exploration from a state s can always reach a state where the induction hypothesis holds.

Figure A.2 shows one possible reduced state space for the concurrent program of Figure A.1(a),
constructed by a modified depth-first search satisfying proviso C3-dfs. Dotted lines indicate
transitions of the full state space which are not included in the reduced state space. Note that

none of the cycles present in the graph are ignoring.

Figure A.2: The reduced state space with proviso C3-dfs

A.1.2 Avoiding the ignoring problem: finite stuttering equivalence

Consider now the case of constructing a reduced state space which contains one representative
per finite trace (finite stuttering-equivalence). In such a scenario, ignoring can arise when all
directions from s lead to cycles, and the state s is not fully expanded. Informally, each direction
leaving s represents a possible continuation of a path reaching s. Therefore, if all directions lead
to ignoring cycles, this means that, potentially, from s, there is no path from s which fires one of

the transitions in enabled(s) \ ample(s).
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In his PhD thesis [46], Godefroid presented a theory of partial order reduction which focused on
generating reduced state spaces which contained one representative for every finite trace (starting
from the initial state) in the full state space, which is sufficient for checking safety properties. In
his thesis, Godefroid considered the use of partial order reduction in a slightly different context,
defining the notion of a trace automaton, which did not explicitly involve the notion of (finite)
stuttering-equivalence of state transition systems. However, the problem of ignoring and its treat-
ment in the case of reduced state spaces where only representatives for finite sequences are required
is largely unaffected. In that work, the proviso used to avoid ignoring was stated as follows:

C3-dfs’ If s is not fully expanded, then at least one transition in ample(s) must not reach a state
that is on the search stack

This proviso requires that at least one direction from s must not create a cycle in the reduced state
space. As in the work cited in the previous section, proof of correctness was based on induction on
the order in which nodes backtrack during the depth-first search exploration. The proviso C3-dfs’
is used to ensure that the exploration can always reach a state where the induction hypothesis
holds.

Figure A.3 shows a reduced state space constructed by a modified depth-first search satisfying
the proviso C3-dfs’. Ample sets have been chosen in such a way as to be consistent with the
choices made in the previous example, to aid comparison of the state spaces.

Figure A.3: The reduced state space with proviso C3-dfs’

A.1.3 Comparison of the reduced state spaces

It is instructive to compare the reduced state spaces associated with the two provisos.

First, note that the reduced state space satisfying C3-dfs’ in Figure A.3 is a subgraph of the
reduced state space satisfying C3-dfs in Figure A.2. This is partly a consequence of the fact that
C3-dfs is a strictly stronger condition on ample sets than C3-dfs’, and partly a consequence of
the fact that choices are ample sets were made consistently in each.

Note also that ignoring cycles do exist in the reduced state space generated using C3-dfs’.
For example, the cycle represented by the states {1,2,3} ignores transition y1. This illustrates
well how what constitutes ignoring depends upon the equivalence required between the full and
reduced state spaces. Under finite stuttering equivalence, such cycles no longer represent infinite

executions which can lead to incorrect representatives which ignore transitions.
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Although ignoring cycles do exist in the reduced state space generated using C3-dfs’, each
ignoring cycle has a state s such that some direction in ample(s) leads to a state outside the
cycle. For example, in Figure A.3, the cycle represented by the states {1,2, 3}, which ignores y1,
contains the state 3, for which ample(3) contains the direction z1, with successor state 4 lying
outside the cycle. By contrast, it is easy to check that the much larger cycle, represented by the
states {1,2,3,4,5,6,7,8,9,10, 11, 12}, has no such direction, but it is not ignoring.

This leads us to surmise that, in the reduced state space satisfying proviso C3-dfs’, ignoring
cycles are permitted as long as we can ’escape’ from each ignoring cycle by some ample direction
which leads to a state not on the cycle. We shall refer to such a direction as a progress direction,
as they allows us to make progress in the exploration of the state space.

A.2  An exploration-independent condition for finite stutter-
ing equivalence

In this section, we develop and prove the correctness of an exploration-independent condition
for avoiding ignoring in the case of finite stuttering equivalence.

A.2.1 Motivating the condition

Based on the above observations made in Section A.1.3, we might propose the following con-
dition for avoiding ignoring in the case of finite stuttering equivalence:

C3-fin(provisional) a cycle is not allowed in the reduced state graph if it contains a state in
which some transition « is enabled, but never included in ample(s) for any state s in the
cycle, and there is no state s' in the cycle for which ample(s') contains a direction leading
to a state not in the cycle

This condition could be described informally by saying that every ignoring cycle within the reduced
state space must have an ample progress direction leading to a state outside the cycle. It allows
ignoring cycles to exist in the reduced state space, but we must have a means of escaping them
to continue the exploration. Notice that the condition is satisfied for the reduced state space of
Figure A.3. As condition C3, this condition applies to cycles appearing in the reduced state graph.

The following example in Figure A.4 shows that such a cycle-based condition is not adequate.

We suppose that the transitions are as in the previous example, but now the transitions
z1,22,23 and y1,y2,y3 are adjusted so that they execute in a mutually exclusive manner. The
resulting reduced state graph is shown, where states are labeled by the order in which they are
visited, and dotted circles and lines represent states and transitions in the full state space which
are not explored in the reduced state space. The cycle {1, 2,3} satisfies the proviso with progress
direction y1; similarly, the cycle {1, 4, 5} satisfies the proviso with progress direction z1. However,
the reduced state graph is incorrect as it ignores transition z1. Note however, that the strongly
connected subgraph {1,2,3,4, 5}, made up by joining together the two simple cycles, is ignoring
and does not have a progress direction leading to a state outside the strongly connected subgraph.

We therefore adjust the definition of the new condition to place a restriction on ignoring
strongly connected subgraphs, as opposed to ignoring cycles. This condition is more general as
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Figure A.4: A reduced state space violating the cycle condition

every ignoring cycle is also an ignoring strongly connected subgraph. The new cycle condition
allows ignoring strongly connected subgraphs within the reduced state space graph, as long as
there is a progress direction:

C3-fin a strongly connected subgraph is not allowed in the reduced state graph if it contains a
state in which some transition « is enabled, but never included in ample(s) for any state
s in the subgraph, and there is no state s’ in the subgraph for which ample(s’) contains a
direction leading to a state not in the subgraph

Returning to Figure A.3, note that the strongly connected subgraphs are {1,2,3},{4, 5,6}, {7,8,9},
{10,11,12} and {4,5,6,7,8,9,10,11,12} and that the condition C3-fin is satisfied for them. Note
that the last strongly connected subgraph is maximal (i.e. a strongly connected component).
Another interpretation of this condition arises by considering which strongly connected sub-
graphs are not allowed in the reduced state space. It is easy to show that if G’ is a strongly
connected subgraph of a directed graph G which has no edge leading to a vertex outside G’, then
G' must be a strongly connected component (i.e. maximal) and further, a sink strongly con-
nected component (i.e. no outgoing edges). Thus, the condition C3-fin can be interpreted as a
requirement that the reduced state space contain no ignoring sink strongly connected components.

A.2.2 Correctness

In this section, we need to show that the condition C3-fin is sufficient to guarantee that the
reduced state space M' generated by a state space search which explores only an ample set of
directions at each state reached will be finitely stuttering-equivalent to the full state space M.

In order to prove finite stuttering equivalence, we follow closely the proof of stuttering equiv-
alence presented in [19, Chapter 10, Section 6]. In order to avoid being tied to a particular state
space exploration algorithm, the proof is organized around an exploration-independent construc-
tion, which describes how a representative for a path o is constructed through a sequence of
construction steps. In the next section, we describe this exploration-independent construction.

In what follows, we assume that ample sets are constructed in such a way that they satisfy
conditions C0, C1, C2 and C3-fin.



A.2.2.1 Definition of construction

Let M be the full state graph of some system, and M’ be a reduced state graph constructed
using the ample set algorithm.

In the proof that follows, we shall make use of the notation introduced in Chapter 7 concerning
labeled state transition systems, stuttering equivalence of paths, and finite stuttering-equivalence
of labeled state transition systems. We introduce some additional notation required for the con-
struction, taken from {19, Chapter 10, Section 6]. A string is a sequence of transitions from T.
Let T* be the set of all strings over T. Given a finite string v € T, denote by vis(v) the projection
of v onto the visible transitions. Given a finite path ¢ = 8o =% 81 —> ... 5|, ) 244 s, through
M, let tr{c) be the sequence of transitions aja, ... a,, on the path. Let v, w be two finite strings.
The relation v C w holds if v can be obtained from w by erasing one or more transitions. The
relation v C w holds if v C w or v = w.

Let o o7 denote the concatenation of the finite paths o and 7 of M, where the last state last(o)
of o is equal to the first state first(n) of n. The length of a path ¢ is equal to the number of
edges of o and is denoted by |o|.

Let o be some finite path in the full state graph M, starting with some initial state. We will
construct a (possibly infinite) sequence of paths mg,y,..., where mp = 0. Each path m; will be
decomposed into a concatenation of two paths, 7; o 8;, where 7; is of length i. Assuming that
we have constructed the paths 7o, ..., T;, we describe how to construct miy; = 741 © 0iyq. Let
so = last(n;) = first(6;) and « the transition labeling the first edge of 6;. Denote

xo— oy a2
i =89 — 81 — 82 — ...

There are two cases:

A. a € ample(so). Then select mipy = i 0 (50 —=> &(80)). Bis1 is 81 — 82 — ...; that is, 6
without its first edge.

B. o ¢ ample(sy). By C2, all of the transitions in ample(so) must be invisible, since 89 is not
fully expanded. Here again, there are two cases, B1 and B2:

B1. Some 8 € ample(sy) appears on §; after some sequence of transitions aga;as - . . ak—; inde-
pendent with §; that is, 8 = ax. Then there is a path £ = so 2L, B(se) 2= B(s1) =H
i’y B(sk) B sky2 T+2  in M. That is, 8 is moved to appear before apa a2 ... Qk—_1-

Note that 8(sg) = sk+1. Therefore, B(sx) B spr2-

B2. Some 3 € ample(so) is independent of all the transitions that appear on 6;. Then there is a
path £ = so — B(s0) “=F B(s1) = B(s2) =3 ... in M. That is, j is executed from so

and then applied to each state of ;.

In both cases, 7;+1 = 7 © (o LN B(s0)) and ;41 is the path that is obtained from £ by removing
the first transition sg LN B(so0)-

As the path ¢ is finite, the construction sequence may construct a path m; such that 6; has
length zero. In such a case, the construction process will stop.

Let 1 be the path such that the prefix of n of length i is defined by n;. We refer to n as a
representative of the path o. The path 7 is well defined in that 7; is constructed from ;- by
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appending a single transition. In the sequel, for a given o, we represent distinct representatives
by 7,m',7 and their associated construction sequences of paths by {7;}i>¢, {7!}i>e, {7'}i>0-

A.2.2.2 Key lemmas

The proof consists of a number of key lemmas which establish properties of the constructed
representative in order to prove the main theorem (Theorem A.1) stating the finite stuttering
equivalence between M and M'. Lemmas which hold true for both the case of finite stuttering
equivalence and stuttering equivalence are reproduced here, without change. Their original names
from (19, Chapter 10, Section 6] are quoted in brackets.

Lemma A.1l. (Lemma 26, [19]) The following hold for all i, j such that i > j > 0:
1. 7o~
2. vis(tr(m;)) = vis(tr(m;))

3. Let & be a prefix of 7; and ¢; be a prefix of 7; such that vis(tr(£;)) = vis(tr(€;)). Then
L(last(&;)) = L(last(§;))

Proof. 1t is sufficient to consider the case where j =i+ 1. Consider the three ways of constructing
mi+1 from m;. In case A, m; = w41, and all three parts of the lemma hold trivially.

Next, consider case B1 of the construction, in which 7;4; is obtained from m; by executing
some invisible transition 8 in m;;+; earlier than it is executed in ;. In this case, we replace the
sequence sg =% s; 25 ... B 5 By gy by so 2, B(so) =22 B(s1) 25 ... BT B(sk_y).
Because § is invisible, corresponding states have the same label, that is, for each 0 < | < k,
L(s;) = L(B(s1)). Also, the order of visible transitions remains unchanged. Parts 1, 2 and 3 follow
immediately.

Finally, in case B2 of the construction, the difference between n; and w4, is that m;4; includes
an additional invisible transition 8. Thus, we replace some suffix s —% s, —» ... of m; by
so 2= B(so) =2 B(s1) =2 B(s2) = .... So, L(s1) = L(B(s1)) for I > 0. Again, the order of
visible transitions remains unchanged. As in the previous case, parts 1, 2 and 3 follow immediately.

a

Lemma A.2. (Lemma 27, [19]) Let n be the path constructed as the limit of the finite paths 7;.
Then 7 belongs to the reduced state graph M'.

Proof. By induction on the length of the prefixes 7; of . The base case is that 70 is a single
node, which is an initial state in S. According to the reduction algorithms, all the initial states
are included in S’ as well. For the inductive step, assume that 7; is in M'. Then notice that ;1)

is obtained from 7; by appending a transition from ample(last(n;)).
O

Until now, it has not been necessary to distinguish between the different possible representatives
n which may result from the construction. For any single path o, distinct representatives may
be created when there are two or more choices available for case B. We shall now require to
differentiate between the various possible representatives for a given sequence o.
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In the construction of a representative 7 using ample sets satisfying CO0, C1, C2 and C3, all
representatives constructed satisfy the following property:

CMPLT for all 7 > 0, if @ denotes the first transition of 0;, then there exists j > i such that a
is the last transition of n; and, for i < k < J, a is the first transition of 8;

This completeness property was proved in Lemma 28 [19, Chapter 10, Section 6] and ensures that
every representative minimally fires all transitions of the path o. However, when C3-fin replaces
C3 in the definition of ample sets, not all representatives generated by the construction have this
property. We therefore need to differentiate between representatives for a given sequence ¢.

Let reps(o) be the set of all representatives for o produced by the construction. Let compl etereps(o)
be the subset of reps(o) whose associated sequences satisfy the property CMPLT.

In order to prove finite stuttering equivalence, we need to show that, for any given finite
sequence o, there is some constructed representative 7 in reps (o) which satisfies the completeness
property for 0. We prove this fact using the following two lemmas.

Lemma A.3. Let 7 € reps(c) be a representative constructed, with associated construction
sequence {;};>0, and suppose that, for some i > 0, o remains the first transition of 8, for all
k > i. Then there exists 7/ € reps(o) with associated construction sequence {mi}i>o and j > i
such that

1. forall 0 <k <, m =7},
2. a is the last transition of n} and
3. for i < k < j, a is the first transition of 8},

Proof. The proof proceeds by contradiction. We assume that the result of the lemma does not
hold. This implies, in particular, that for each ' € reps(s) which does match n up to i, there
does not exists a j > 1 such that conditions 2 and 3 hold. We wish to derive a contradiction to
show that this assumption cannot hold simultaneously with condition C3-fin. Condition C8-fin
concerns the ignoring strongly connected subgraphs in the reduced state space. Therefore, we aim
to use this negative assumption to produce an example of an ignoring strongly connected subgraph
which contradicts C3-fin.

To demonstrate the existence of such an ignoring strongly connected subgraph, we consider
the set of all paths 7' € reps(c) which match 5 up to construction step i: that is, all possible
continuations n' of n; which are consistent with the construction, and the suffix 8;. Each such
path 0’ is a path through M’', by Lemma A.2. Further, we know that a is ignored on these paths,
for k > i, by assumption. We wish to show that these paths naturally form a subgraph M" of
M' on which a is ignored, and that this subgraph can be used to demonstrate the existence of an
ignoring strongly connected subgraph with no progress direction.

Let M" be the directed graph whose nodes represent the states reached by the paths 7' and
whose edges represent the transitions between states encountered on the paths n'. M" is a subgraph
of the directed graph M', as every path 7’ which is used to define 1/” is also a path of M’.
Furthermore, « is ignored at all states of M": that is, « is enabled at all states of M " and
@ never appears as a transition between states in M"”. This follows from the fact that, from

construction step i on, « is enabled and ignored on every path used to define M ",
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The subgraph M", as a directed graph in its own right, can be factored into its strongly
connected components. Any strongly connected component of M* will be a strongly connected
subgraph of M’, but not necessarily maximal. Any sink strongly connected component of M"" will
also be a sink strongly connected component of M'.

From graph theory, we know that the strongly connected components of M" form a directed
acyclic graph and, because of this fact, at least one of the components of M" must be a sink
strongly connected component. The directed acyclic graph can be represented as a tree, and the
sink strongly connected component is a leaf node of that tree.

This sink strongly connected component of M" will also a be a sink strongly connected com-
ponent of M'. Because « is ignored at all nodes of M" and in particular, on all strongly connected
components of M", we have demonstrated the existence of a strongly connected component of M’
on which « is ignored. Thus, C3-fin does not hold for the reduced state space M'.

a

The next lemma shows that the reduction algorithm always produces at least one representative
which consumes all transitions of a finite path ¢ of the full state space.

Lemma A.4. The set completereps(c) is not empty.

Proof. Select a representative € reps(o) with associated construction {;};>o. If this construc-
tion satisfies the completeness property CMPLT, then we are done. Otherwise, there exists an
integer i; > 0 and a transition oy, such that for all k > i1, a;,is the first transition of 6x. By the
previous lemma, we can find another representative n' € reps(c) and an ji > i such that

1. forall 0 < k <@y, Mk =1 »
2. a is the last transition of 7}, and
3. for i; < k < j1, o is the first transition of 8

If this representative 7' satisfies the completeness property, then we are done. Otherwise there
exists an integer i, > ji and a transition a;, such that, for all k > 1a, ay,is the first transition of
6,.. By the same argument, we can find another representative 7" which has the same prefix as 7'
up to ip and fires ay,-

Since the length of o is finite, this process need only be repeated finitely many times, and thus

there is a representative in reps(c) which satisfies the completeness property for o.
O

Thus, we have shown that at least one representative in reps(c) satisfies the completeness
property. Note that representatives in completereps(c) are finite in length.
The next lemma holds for all representatives in reps(c).

Lemma A.5. (Lemma 29, {19]) Let -y be the first visible transition on 8; and prefiz.(8;) be the
maximal prefix of tr(6;) that does not contain 7. Then one of the following holds:

e ~ is the first transition of 6; and the last transition of 74y, or

e ~is the first visible transition of 8;,1, the last transition of 74, is invisible, and pre fiz,(6i+1) C

Prefix"r(oi)
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Proof. The first case of the lemma holds when 7 is selected from ample(s;) and becomes the last

transition of 7;,1, according to case A of the construction. If this does not happen, there exists

another transition B that is appended to 7; to form 7;.;. The transition 3 cannot be visible.

Otherwise, according to C2, ample(s;) = enabled(s;). By case B1 of the construction, 8 must be

the first transition of 8;. But then f is a visible transition that precedes v in 8;, a contradiction.
There are three possibilities:

1. B appears on 6; before v (case B1 in the construction)
2. [ appears on 6; after v (case B1 in the construction)

3. p is independent of all the transitions of §; (case B2 in the construction)

According to the above construction, in (1), prefiz,(6i+1) C prefiz, (6;) since 8 is removed from
the prefix of §; before v when constructing 6;_;. In (2) and (3), prefiz,(8is1) = prefiz.(6;)
since the prefix of §;_;that precedes the transition v has the same transition as the corresponding
prefix of 6;.

@]

Lemma A.6. (Lemma 30, [19]) Let n be a representative from completereps(c). Let v be a prefix
of vis(tr(o)). Then there exists a prefix 7; of n such that v = vis(tr(n;)).

Proof. By induction on the length of v. The base case holds trivially for [v] = 0. In the inductive
step, we must prove that if v~y is a prefix of vis(tr(c)) and there is a path 7; such that vis(tr(n;)) =
v, then there is a path n; with j > 4 such that vis(tr(n;)) = vy. Thus, we need to show that v
will be eventually added to n; for some j > ¢, and that no other visible transition will be added to
7k for i < k < j. According to case A of the construction, we may add a visible transition to the
end of 7 to form 7,4, only if it appears as the first transition of 6. Lemma A.5 shows that v
remains the first visible transition in successive paths 8 after 8; unless it is being added to some
n;. Moreover, the sequence of transitions before v can only shrink. Lemma A.4 shows that the
first transition in each 6, is eventually removed and added to the end of some 6, for I > k. Thus,

v as well is eventually added to some sequence 7;.
O

Theorem A.l. (slight modification of Theorem 12, [19]) The structures M and M’ are finitely
stuttering equivalent.

Proof. Each finite path of M’ that begins from an initial state must also be a path of A, for it
is constructed by repeatedly applying transitions from the initial state. We need to show that for
each path ¢ = sg 20 6 2 L. I Sp—1 Ty s, in M, where sq is an initial state, there exists
apathn=r1g Po, Ty by Py Tm—1 Byt Tm in M' such that o ~4 1. We will show that any
path n in completereps(c) that is constructed above for o is indeed stuttering equivalent to o.
First, we show that o and 7 have the same sequence of visible transitions: that is, vis(tr(o}) =
vis(tr(n)). According to Lemma A.6, 7 contains the visible transitions of ¢ in the same order,
because for any prefix of o with m visible transitions, there is a prefix 7; of n with the same m
visible transitions. On the other hand, ¢ must contain the visible transitions of 71 in the same order.
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Take any prefix 7; of . According to Lemma A.1, 7; = 7; © 0; has the same visible transitions as
mo = 0. Thus, ¢ has a prefix with the same sequence of visible transitions as 7%-

We construct two finite sequences of indexes 0 = ip <4, < ... < i, and 0 = Jo<ii<...< jg
that define corresponding stuttering blocks of ¢ and 7, as required in the definition of stuttering.
Assume that both o = mp and 7 have sb visible transitions. Let i, be the length of the smallest
prefix o;, of o that contains exactly n visible transitions. Let j, be the length of the smallest
prefix 7;, of 1) that contains the same sequence of visible transitions as o;,. Recall that Ty 18
a prefix of 7;,. Then by part 3 of Lemma A.1, L(s;.) = L{r;.). By the definition of visible
transitions, we also know that if n >0, for i,_; < k <i, — 1, L(s¢) = L{s,,_,). This is because
in-1 is the length of the smallest prefix o;,_, of o that contains exactly n — 1 visible transitions.
Thus, there is no visible transition between i,_; and i,, — 1. Similarly, for jo_, <! < Jn— L,
L(r;) = L(rj,_,). Thus, 0 ~z 0.

(]

A.3 Relationship with exploration-dependent provisos

Although we established in the previous section the sufficiency of condition C3-fin as an
exploration-independent condition for avoiding ignoring in the defining ample sets in the case
of finite stuttering equivalence, it is possible that the condition is unnecessarily strong. In this
Section, we shall demonstrate that existing exploration-dependent provisos for avoiding ignoring
in the case of finite stuttering equivalence are sufficient conditions for ensuring condition C3-fin
holds in the reduced state space. We consider both the cases of depth-first search and breadth-first
search.

In proving the sufficiency relationship between existing provisos and condition C3-fin, we will
need a way to relate the provisos (which are exploration-dependent) to the conditions (which
are exploration-independent). We achieve this by considering the spanning forest induced by
the exploration-dependent algorithm, which represents each strongly connected component of the
reduced state space as a subtree in the spanning forest. We also show how this spanning forest
analysis provides an effective way to develop new, computationally more efficient provisos which
are sufficient for C3-fin. We use breadth-first search as an example, but the ideas apply equally

well to other state space exploration methods.

A.3.1 Depth-first search

In this section, our aim is to show that a modified state space exploration algorithm based
on depth-first search for which proviso C3-dfs’ holds is sufficient to guarantee that the property
C3-fin holds in the resulting reduced state graph. In order to relate the condition on cycles of
C3-dfs’ to the condition on strongly connected subgraphs of C3-fin, we consider the spanning
forest induced during depth first-traversal.

Depth-first traversal of a graph G = (V E) can be used to create a spanning forest S = (V, ),
composed of an ordered sequence 11,73, .-, T, of spanning trees which contain all the verticies
of the graph G [2] and where graph edges are classified as tree edges or non-tree edges. Non-tree
edges are further classified as forward edges, back edges or cross edges. A non-tree edge < v,w >
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is: a forward edge if w is a non-son descendant of v ; a back edge if w is an ancestor of v : a
cross edge if w is neither an ancestor nor a descendant of v . The strongly connected components
Gi = (Vi, E;) of the graph G appear as subtrees STg, = (V;, E; N T) of the spanning forest,
where all the verticies V; are represented in each subtree STg;, but only the edges in E; ~ T are
represented as tree edges (the remaining edges in E; are represented as non-tree edges). In this
way, a depth-first traversal of a graph will visit all verticies of each strongly connected component,
and will also provide a classification of the edges leaving each vertex. With this classification of
edges in hand, we can now attempt to relate the two conditions.

Firstly, within the context of a depth-first search exploration of the state space, a direction
creates a cycle (leads to a state on the stack, or in other words an ancestor in the current inter-
leaving) if and only if it is a back edge. Condition C3-dfs’ can therefore equivalently be seen as
a condition on back edges: no vertex reached during the search, which corresponds to a state s in
which ample(s) is not fully expanded, may have outgoing edges which consist only of back edges.

Secondly, with respect to condition C3-fin, it can be shown that a necessary condition for
a strongly connected subgraph not to have a progress direction is that it must contain a vertex
whose outgoing edges consist solely of back edges. We shall need this result in order to prove
sufficiency. However, rather than prove the result for arbitrary strongly connected subgraphs, we
first prove a similar result for strongly connected components in the following lemma.

Lemma A.7. Let G = (V, E) be a graph, with strongly connected components G, = (V,, E;)
and let S = (V,T) be the spanning forest generated in a depth-first traversal of the graph. Let
STg, = (V;, B;NT) be the subtree representing G; in the spanning forest. For each G; = (V5. E1),
if G; does not have an edge leaving G; in G, then there is a vertex v € V; such that the only
outgoing edges of v in ST, are back edges.

Proof. Assume that G; has no edge leaving G; in G. Consider the tree STg; in $ corresponding
to G;. We want to show that there must exist a vertex v € V; for which the only outgoing edges
of v in ST, are back edges.

If the strongly connected component Gj is trivial (consists of a single vertex), then either it
has no outgoing edge, or an outgoing edge to itself (a self-loop), which is necessarily a back edge.
In both cases, the lemma holds. Therefore, we now assume that the component is non-trivial, and
consists of at least a root node together with one or more child vertices.

Because, by assumption, no edge in G; leaves G; in G, then no outgoing edge of a vertex
in STg, leaves the tree. Thus, for any vertex v € V;, and any edge < v,w >€ E;, w € V,.
Furthermore, because G; is strongly connected, for any two verticies v, w € V;, there is a path
from v to w which remains in G;. Consider now the leaf nodes of STg,. Because all outgoing
edges lead to verticies in the tree, these leaf nodes can only have outgoing back edges or cross
edges (tree edges or forward edges are not possible outgoing edges from a leaf node). Any outgoing
cross edges from a leaf node go from right to left: if < v,w > is a cross edge, then w < v, where
nodes are ordered by their dfs number. This is a property of depth-first search spanning trees.
Consider now the left most leaf node firstback (the leaf node with the smallest dfs number). The
utgoing edges possible from here are back edges or cross edges. We cannot have a cross edge
otherwise the firstback would not be the left most: there would be a node with a
s edges move from right to left, and to verticies which

only o
leaving here,
dfs number smaller than firstback, as cros
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are neither ancestors nor descendants. On the other hand, because the component is strongly
connected, there must be an outgoing edge to the root node. Therefore, firstback is a vertex
which consists only of back edges.

We illustrate the above Lemma with an example. Figure A.5 shows the spanning tree rep-
resentation of the reduced state graph of Figure A.3, generated using proviso C3-dfs’. Tree
edges are represented by solid lines, and non-tree edges by dotted lines. It identifies in partic-
ular the strongly connected components (verticies only listed) SCC; = {1.2,3} and SCC; =
{4,5,6,7,8,9,10,11,12}, as well as the additional non-maximal strongly connected subgraphs
{4,5,6}, {7,8,9}, and {10,11,12}. The strongly connected component SCC; does not have an
edge leaving SCC: in the reduced state graph. By the Lemma, it should contain a vertex consisting
only of back edges. Vertex 12 is such a vertex.

5CCy

SCC,

Figure A.5: The reduced state space of Figure A.3 in spanning tree form

With Lemma A.7 completed, we may now prove the following:
Corollary A.1. For the modified depth-first search generation of the reduced state space, the
proviso C3-dfs’ is a sufficient condition for C3-fin.

Proof. We prove the corollary by proving the contrapositive: assuming that condition C3-fin

does not hold, we show that condition C3-dfs’ does not hold. So suppose that condition C3-fin
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does not hold for the reduced state space; that is, assume that there exists an ignoring strongly
connected subgraph SCSG which has no progress direction leaving the subgraph.

The subgraph SCSG is ignoring, so there exists a state s’ and a transition o € T such that
a € enabled(s’) but a does not appear in ample(s) for any state s in the subgraph. Thus,
a € enabled(s') \ ample(s') and the state ¢’ is not fully expanded. It is easy to show that for all
successor states of s'(and so for all states of the subgraph) the same properties hold.

Any strongly connected subgraph which has no edge leaving the subgraph must be maximal,
and so SCSG is a strongly connected component. Therefore, by Lemma A.7, SCSG must, contain
a state whose outgoing edges consist only of backedges. Furthermore, by the above, this state is
not fully expanded.

Therefore, condition C3-dfs’ does not hold in the reduced state space.

A.3.2 Breadth-first search

In {19, Chapter 10], a proviso was described which avoids ignoring in breadth-first search in
the case of stuttering equivalence. We state it here for completeness:

C3-bfs If s is not fully expanded, then no transition in ample(s) may reach a state that is in the
current level or a previous level of the breadth-first search

This proviso is based on the fact that a necessary condition for closing a cycle in breadth-first
search is that the state closing the cycle has already been visited during the search. Note that the
proviso is based on information concerning the current level of the search or past levels. We now
state a similar condition for the case of finite stuttering equivalence:

C3-bfs’ If s is not fully expanded, then at least one transition in ample(s) must not reach a state
that is in the current level or a previous level of the breadth-first search

In this section, our aim is to show that a modified state space exploration algorithm based on
breadth-first search for which proviso C3-bfs’ holds is sufficient to guarantee that the property
C3-fin holds in the resulting reduced state graph. As before, in order to relate the condition on
cycles of C3-bfs’ to the condition on strongly connected subgraphs of C3-fin, we consider the
spanning forest induced during breadth-first traversal.

As in the case of depth-first search, breadth-first traversal of a graph generates a spanning
forest and classifies edges in the graph, in the same way as depth-first traversal. However, in
breadth-first search, there are only three types of edges: tree edges, back edges and cross edges.
Forward edges no longer exist due to the fact that all immediate successors of a node s are visited
before any successors of those successors (and so non-son descendants cannot arise).

As with the provisos to ensure the absence of ignoring for depth-first search, provisos for
breadth-first search represent sufficient conditions to guarantee that the reduced state space
does not contain ignoring strongly connected subgraphs with no progress direction (ignoring sink
). This is because it is generally too complex to determine exactly

strongly connected components
the minimum conditions under which the edges explored from a vertex will lead to the creation of

a sink strongly connected component.
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In avoiding the creation of such subgraphs, we must pay particular attention to cross edges
and back edges leading back into the subgraph. Informally, these edges have the potential to close
a sink strongly connected component. Other possible edges encountered during a breadth-first
search will only either lead to existing states outside the subgraph, or tree edges leading to new
states of the subgraph.

Formally, we have the following lemma.

Lemma A.8. Let G = (V, E) be a graph, with strongly connected components G; = (V;, E;)
and let S = (V,T) be the spanning forest generated in a breadth-first traversal of the graph. Let
S8Te; = (Vi, E;NT) be the subtree representing G; in the spanning forest. For each G; = (1}, E)),
if G; does not have an edge leaving G; in G, then, for all nodes v of STg;, the only outgoing edges
of v are tree edges leading into V;, back edges leading into V; or cross edges leading into V.

Proof. Consider the subtree STg,of the spanning tree containing G;, and consider a node v € Vi
of that subtree. In the breadth-first exploration of Gy, all outgoing edges < v, w > of verticies v
in V; are classified as one of the following:

» a tree edge, or back edge, or cross edge such that w € V;
® a tree edge or cross edge such that w ¢ V;

By assumption, G; does not have an edge leaving G; in G, and so the last two cases cannot hold.
O

Tree edges represent the only transitions which reach new states in the breadth-first exploration
of the state space. Thus, the proviso C3-bfs’ effectively requires that if a state is not fully
expanded, at least one direction in ample(s) must correspond to a tree edge in the breadth-first
search exploration of the state space. Tree edges are 'safe’ in the sense that they either lead us
into a new component, or stay in the same component but do not close the subgraph. We now
prove that this proviso is sufficient to guarantee finite stuttering-equivalence.

Lemma A.9. For breadth-first search, the proviso C3-bfs’ is a sufficient condition for C3-fin.

Proof. We prove the corollary by proving the contrapositive: assuming that condition C3-fin does
not hold, we show that condition C3-bfs’ does not hold. So suppose that the condition C3-fin
does not hold. We need to show that the condition C3-bfs’ does not hold. By assumption, there
exists an ignoring strongly connected subgraph SCSG in the reduced state space which has no
progress direction leaving the subgraph.

The subgraph SCSG is ignoring, so there exists a state s’ and a transition a € T such that
o € enabled(s') but a does not appear in ample(s) for any state s in the subgraph. Thus,
a € enabled(s') \ ample(s') and the state s’ is not fully expanded. It is easy to show that for all
successor states of s’ (and so for all states of the subgraph) the same properties hold.

Any strongly connected subgraph which has no edge leaving the subgraph must be maximal,

and so SCSG is a strongly connected component. Consider the greatest level of the spanning

tree containing the subtree STscsa and let v be any vertex in that level belonging to SCSG.

By Lemma A.8, we know that the only outgoing edges of v are tree edges, back edges or cross
edges leading back into SCSG. An outgoing tree edge from v is not possible, otherwise this would
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contradict the maximality of the component. Since tree edges are those edges which visit new
states in breadth-first search, all edges in v revisit states in the current level or previous levels of
the search. Therefore the proviso C3-bfs’ does not hold. O

The above proviso is particularly easy to enforce as tree edges are easily identified during a
breadth-first search: they correspond to directions leading to states which do not exist in the hash
table. However, because repeated states are encountered often in state space searches of concurrent
programs, there will be many states in the state space which contain only non-tree edges. Thus.
this proviso will result in a great number of states which are fully expanded, defeating attempts

at partial order reduction.
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